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Abstract

This thesis develops an efficient discretization based Monte Carlo algorithm stud-
ied by Wang and Lee (2008) for generating random variates from high dimensional
distributions of complex structures. The improvement to a discretization-based algo-
rithm of Fu and Wang (2002) is achieved regarding the computational efficiency. The
cornerstone of this algorithm is the discretization of the sample space and efficient
numerical inversion of a multivariate cumulative distribution function. This algo-
rithm is dimension-free, non-iterative, and easy to implement. These characteristics
compensate for some limitations of Markov chain Monte Carlo (MCMC) methods
and will be featured using classic examples and applications. For general use, a prac-
tical guide with programs implemented by GNU statistical software R, is provided for

practitioners.



Chapter 1

Introduction

The studies of Fu and Wang (2002) and Wang and Fu (2007) provided a practical
computational algorithm for multivariate random sample generation. This algorithm
overcomes many limitations of the Markov chain Monte Carlo (MCMC) methods and
successfully identifies the quantity of interest in a statistical inference with model
complexity in high dimensions. In this thesis, it will be referred to as the Fu-Wang
algorithm and its principles will be investigated in Chapter 3. An improved algo-
rithm, henceforth in this thesis entitled the Wang-Lee algorithm, will be developed
in the following area: data structure, sorting, searching, and different approaches in
numerical analysis based on this examination of the Fu-Wang algorithm. This is a
methodological work which uses a sample-based simulation study to efficiently gener-
ate multivariate random samples from high dimensional distributions with elaborate

structure.

1.1 Domain of Problems

A computational challenge is predominantly a distinguished issue in statistical
problem-solving. This statistical problem-solving typically involves a procedure from

statistical modelling on real data to a statistical inference for the best statistical



1.1. DOMAIN OF PROBLEMS

model selection and its prediction. The best model is determined on the basis of
how rationally and precisely a designed model explains and describes the real data.
It is essential to efficiently esimate parameters in statistical problem-solving. In this
section, the etiology of the computational burden will be discussed on the statistical
inference. A similar argument in Section 1.1 is also put forth by Robert and Casella

(2004)

1.1.1 Statistical Inference in Complex Models

A well designed statistical model usually includes many independent variables to
clarify the real data. However, the mathematical form in the designed model will
become more complex as the number of independent variables increases. The model
complexity has a direct connection with the type of model and its dimensions. In
the statistical inference, these are often considered as the primary sources resulting
in the failure of the analytical estimation of interest. Another contributing cause to
the failure of the analytical evaluation of interest is computer related limitations (see
Section 4.1).

Examples of this type of problem are found from a Gaussian mixture model and
a Bayesian hierachical model. With respect to the computation of a mixture model
specifically, Robert and Casella (2004) clearly state that “the representation of the
likelihood function (and therefore the analytical computation of maximum likelihood
or Bayes estimates) is generally impossible for mixtures” (p. 4). Therefore the analyt-
ical computation of maximum likelihood or Bayes estimates is considered implausible.

However, Wang and Fu’s 2007 study provided successful results for the statistical
quantity of interest with this model; the statistical model in their study utilized a

mixed form of Gaussian mixture and Bayesian hierarchical models, as shown in the
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equation (1.1).
K
F@) = [Twifswlns, o3, (1.1)

j=1
where y is observations from y ~ f(y|u,o?), K is the number of sub-populations,
w; > 0 is the probabilites of sub-populations and } w; = 1. (Wang & Fu, 2007,
p. 633). This equation clearly illustrates the model complexity regarding the number
of parameters to be estimated on the statistical modelling as the number of sub-

population increases.

1.1.2 Numerical Optimization and Integration

With regard to the statistical inference in the mixture model mentioned in Sec-
tion 1.1.1, O(kn) and O(k™) computations are needed on the inference by a classical
likelihood and a Bayesian method respectively (Robert & Casella, 2004, p. 4). The
connection exists that the computational burden will be dramatically increased as
either the number of k(sub-population) or n(sample size) increases. These represent
two conventional streams of statistical methodologies in the statistical inference.

Maximum likelihood estimator (MLE) is a value which maximizes the likelihood
function of f(x), L(6|z), or the log-likelihood function, In L(6|x), when assuming a set
of observations, (1, s,...,2,) and a general density, f(z), are given. In considera-
tion of the computational convenience, its solution, (5, is easily found by differentiating
In L(0|z) about 8, where § € Q and  is a parameter space. Hence, it can be pre-
ceived as the opitimization problem. The study of Wang and Fu (2007) cannot be
solved analytically using conventional numerical methods due to its model complex-
ity and numerous computations. Its likelihood function is identified as the following

equation (1.2) (Wang & Fu, 2007, p. 634).

N N K ’LUI(' (y _ ILL]{')Q
T 7wl o, w™, K) =[] D —oils exp -0 (1.2)
=1 i1 o1 V270 20y



1.2. PREVIOUS RESEARCH

The computational challenge is also revealed from the definition of posterior func-
tion on a Bayesian paradigm. Suppose that 7(6) is prior information and a set of
observations, x = (1, s, ..., Zn), and f(x|0) is a sample distribution. The posterior

density function, p(f|x), then, is:

p(0]x) = [l (0) _ f(x[6)x(6) (1.3)
J f(x16)m(6) m(z)

where m(z) = [ f(x|6)7(0)d6 is a marginal distribution of x. In the denominator

of equation (1.3), the form of integration exists as the marginal distribution, m(x).

A significant issue is how to solve this integration in high dimensions with as com-

plex structure as the equation (1.4) in a study of Wang and Fu (2007) with prior

specification of p, 0%, w, and K (p. 635).

N
LT £ @sle™, o ™, K)p(u™ | K)p(o? K )p(w™ [ K )p(K) (1.4)

i=1

According to Robert (2007), the increase of number of dimensions leads to the
rapid loss of numerical accuracy regardless of which typical numerical method is used.
Robert stresses that “most standard methods should not be used for integration in
dimensions larger than 4”7 (p. 293). It is the strong argument for further investigation

of the Fu-Wang algorithm with this type of model complexity with high dimensions.

1.2 Previous Research

In Section 1.1.1 and Section 1.1.2, significant sources of computational difficulties
in statistical inference are established; the integral of non-closed from a likelihood or
posterior distribution. In particular, Robert and Casella (2004) note it as “a practical
realization of the curse of dimensionality” (p. 268).

Concerning this kind of impractical computation, “Markov chain Monte Carlo
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(MCMC) is a key technique for calculating analytically intractable integrals in high
dimensions” (Sahu & Zhigljavsky, 2003, p. 395).

Numerous statisticians have identified limitations on MCMC methods and ave
presently employed in their resolution. As reported by Fishman (2006), the corre-
lated samples generated by MCMC are sequential as the intrinsic property of MCMC
(p. 203). However, the matter of highly correlated samples in MCMC generate an-
other restriction — “a slow mixing Markov chain” (W. R. Gilks, Roberts, & Sahu,
1998, p. 1045). The number of iterations has an inverse association between the cost
and numerical accuracy (Fishman, 2006, p. 203; W. R. Gilks et al., 1998, p. 1045;
Liu, Liang, & Wong, 2001, p. 561). Reparameterization is essential on occasion for
the successful implementation of MCMC (Fu & Wang, 2002, p. 6, W. Gilks, Richard-
son, & Spicgelhalter, 1998, p. 97). A starting point is the influential factor on the
rate of convergence (Robert, 2007, p. 302). The limitation of the standard MCMC in
consideration of examining posterior modes is attributed to the localization tendency

of MCMC algorithm (Celeux, Hurn, & Robert, 2000, p. 957).

1.3 Thesis Organization

This thesis is structured in the following way. Chapter 2 briefly explains some
preliminaries essential to understanding the Wang-Lee algorithm. Chapter 3 analyzes
the procedures of the Fu-Wang algorithm. Also, limitations of the Fu-Wang algorithm
which lead to the development of the Wang-Lee algorithm are discussed. Chapter 4
summarizes a computational algorithm at each stage of the Wang-Lee algorithm.
Chapter 5 demonstrates the Wang-Lee algorithm using examples. A guide for use of
the Wang-Lee algorithm is provided. Chapter 6 shows the validity of the Wang-Lee
algorithm using comparisons to standard applications. Finally, Chapter 7 concludes

with a discussion of concerns associated with the use of the Wang-Lee algorithm and
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suggests resolutions to the constraints of this algorithm. Chapter 7 also proposes

areas for further research to enhance fundamental applications.



Chapter 2

Random Variates Generation

Generally speaking, an algorithm can be regarded as a sequential combination
of several statistical procedures. Essential statistical preliminaries will be covered by
Chapter 2 to provide a basis for understanding of the Fu-Wang algorithm in Chapter 3
as well as the Wang-Lee algorithm in Chapter 4.

The objective of these algorithms is to efficiently generate random variates from a
given or target density function, f(z), from a significant region. It also implies that
crucial techniques in this algorithm are mainly categorized into a random variate
generation and a variance reduction.

First, a given or target density function, f(z), may be one of a simple standard
distribution and/or a complex non-standard distribution. Typically most commercial
statistical software provides libraries with which to generate random variates from
the standard distributions. However, it is not easy to obtain non-standard random
variates from non-standard distributions from the libraries provided by this software.
To accomplish this, it is necessary to understand how to generate random variates
from a given or target density function, f(z), not subject to the standard distribution
through Section 2.1.

Secondly, the basic idea of significant region is to draw more samples from a high



2.1. GENERATING RANDOM VARIATES

density area rather than a low density area. According to the following criteria from
Gentle, 2002, p. 59: “an objective is to devise a sampling plan that will yield esti-
mators with small variance”, it proves the fact that the Fu-Wang algorithm is well
constructed as a sampling algorithm. For the purpopse of variance reduction, the im-
portance sampling and the stratified sampling techniques are reviewed in Section 2.2.

In the computational perspective random variates generation and its simulation
study, three major facts should be known in advance as the random variates are de-
rived from the psuedo random numbers. First, a sequence of random numbers should
be reproducible under the equivalent conditions of a Monte Carlo study (Gentle, 2003,
p- 230). Secondly, investigation of a sampling algorithm is necessary since “total com-
puting time can be substantial and sample generation accounts for more than 80% of
this time” (Fishman, 2006, p. 74). Finally, the quality of uniform distribution should
not be overlooked because any random numbers generated from the computer are
on the basis of a behaviour of uniform distribution (Fishman, 2006, p. 75; Robert &
Casella, 2004, p. 39).

Several excellent references related to Chapter 2 include the book Non-uniform
Random Variate Generation, written by Devroye (1986). This book includes useful
algorithms for generating random deviations from non-standard distributions. Nu-
merical Recipes, by Press, Teukolsky, Vetterling, and Flannery (2007) is a masterpiece
in the field of numerical analysis. This practical text provides the complete codes in
C/C++, efficient program techniques, and detailed mathematical solutions for sta-

tistical algorithm development (See Chapter 7.)

2.1 Generating Random Variates

There are two methodologies commonly used: 1. Inverse-CDF Method, and 2. Acceptance-

Rejection Method.



2.1. GENERATING RANDOM VARIATES

2.1.1 Inverse CDF Method

Any random variates from a given or target density function, f(z), are obtained
by an inverse function of its cumulative density function, F~*(U), if and only if, U is a
standard uniform distribution. The following Lemma is the mathematical formulation

of the inverse CDF Method (Robert & Casella, 2004, p. 39).

Lemma 2.1.1. If U ~ U|0, 1], then the random variable F~*(U) has the distribution
F.

For example, if F'(z) is a non-decreasing and one-to-one function, then

Fy(u) =P(F(X) <u)
= P(X < F(u))
= F(F'(w)

= U.

The general procedure of the inverse transformation in the case of discrete random
variable X is described in the Algorithm 2.1.1 (Ross, 1996, p. 45)

Consider a discrete random variable X ~ P(X = x;) where > °p; = 1 and

P(X=z;)=P(l  <U<YL)=p;

Algorithm 2.1.1 Inverse CDF Method - Discrete Distribution

zg ifU <po

z1 ifpo<U <po+m

r; if 23;11 <UL Zgzopi

10



2.2. VARIANCE REDUCTION TECHNIQUES

2.1.2 Acceptance-Rejection Method

For the purpose of multivariate random variates generation, the Acceptance-
Rejection method is widely used. The general procedure of the Acceptance-Rejection
method is described in the Algorithm 2.1.2 (Ross, 1996, p. 54)

Consider a random variable X ~ p; = P(X = j) where j =1,2,...,c0.

Algorithm 2.1.2 Acceptance-Rejection Method
Step 1. Genereate Y ~ g;

Step 2. Generate U ~ U0, 1]
if U <py/cqgy then
Set X =Y
else
Return to Step 1.
end if

Here, the choice of constant is ¢ = sup f(z)/g(z) (Madras, 2002, p. 21).

2.2 Variance Reduction Techniques

This variance reduction technique is essential for the use of the Fu-Wang algorithm
and the Wang-Lee algorithm. In statistical inference, it is of primary importance to
locate an estimate with a small bias and its minimum variance. This is the foundation
for locating the significant region in the Fu-Wang algorithm. It implies that samples
are drawn from a concentrated area of density function. Drawn samples from the
significant region provide smaller variance rather than from the independent random
sampling.

A direct connection exists between samples drawn from the significant region
and the graphical dignostic tool (see Section 5.3 for a detailed explanation using the

Wang-Lee algorithm).

11



2.2. VARIANCE REDUCTION TECHNIQUES

Two techniques typically used for both variance reduction and sampling efficiency

are Importance Sampling and Stratified Sampling.

2.2.1 Importance Sampling

Importance sampling is “a weighted sampling” (Robert & Casella, 2004, p. 90)
to draw samples from a more important region; samples should be drawn from the
important region as opposed to the negligible region for the optimal sampling. The
following cquations (2.1) and (2.2) are the definition of Importance Sampling and its
optimal importance function (Gentle, 2002, pp.59-60).

Suppose that a function, f(z), on the domain D can be decomposed into any

function, g(z), and its probability function, p(z), subject to > p(z) = 1. Then,

= ; ;= @ z)dx
6= /D f(@)dz = /D (o) (2.1)

where p(z) is the importance function on the domain D. Its optimal choice of impor-

tance function is

o U@
SN ATETE 22

2.2.2 Stratified Sampling

Staratified Sampling is simply one of the techniques used to reduce the variance by
dividing the population into several homogenous sub-populations. By this sampling
technique, several good results are obtained as follows: 1. good representation of
the population, 2. comparison of sub-populations, 3. cost efficiency, and 4. smaller
variance rather than that obtained using simple random sampling (Lohr, 1999, pp. 95—
96).

The following theorem provides the evidence of variance reduction by use of a

stratified sampling (Madras, 2002, p. 33).

12



2.2. VARIANCE REDUCTION TECHNIQUES

Theorem 2.2.1. If n; = na; fori = 1,..., M, then the stratified estimator has

smaller variance than the simple sampling estimator I,,. In fact,

) T I 2
I == T - i = —.[
var(l) = var(T) + nZa (a )

i=1

where a; = P(X € &;) subject to S_0 a; = 1 and S = UM, S;.

i=

13



Chapter 3

Fu-Wang Algorithm

In a multivariate random sample generation from a non-standard distribution in
high dimensions, MCMC methods are determined to be a good solution despite inher-
ent limitations (see Section 1.2). Fu and Wang (2002) initiated development of a new
practical algorithm in order to overcome major difficulties of MCMC. In particular,
difficulties “associated with multi-modality of the underlying distribution, ill-shaped
sample space, as well as convergence of the iterative process.” (p. 6). Wang and Fu
(2007) showed its practical utility on the mixture model with unknown components.
As the Wang-Lee algorithm originates from this Fu-Wang algorithm, it is necessary
to investigate their studies carefully before demonstrating the Wang-Lee algorithm.
In Section 3.1, the Fu-Wang algorithm is clearly identified on each step of sampling
procedure.

(For ease of comparison and enhanced understanding of the Wang-Fu algorithm
and the Wang-Lee algorithm, all notations and terminologies in Chapter 3 are entirely

identical to those used in a study of Wang and Fu (2007).)

14



3.1. SAMPLING PROCEDURE

3.1 Sampling Procedure

3.1.1 Initial Compact Cover

Suppose that a general density function, f(z), up to the multiplicative constant in
d-dimensions is given. The Fu-Wang algorithm begins with setting bounds of support.
It is assumed that bounds of support include the signficant region. Let Co(f) be the
initial compact set subject to Cop C R? and S(f) be the support of f(x). The subscript
on Co(f) will increase by 1 when the sampling procedure is repeated. S(f) is assigned
to Co(f) if and only if S(f) is a bounded support of f(z). If not, it is necessary to
specify the boundary of f(x) as Co(f) = S(f) N [a,b]* where —co < a < b < co.
Regarding the determination of constants, a and b, Wang and Fu (2007) recommend

to use the presumption from recognized properties of f(z) (p. 638).

3.1.2 Discretization

A descretization step is the essential procedure of the Fu-Wang algorithm. The
purpose of discretization is to acquire a discrete distribution of contours (Wang & Fu,

2007, p. 638). This discretization step is a set of procedures as outlined below:

1. Forming a discrete set, S,(f) = {z; € Co(f),j =1,2,...,n}, by a deterministic

or deterministic random sequence of size n.
2. Sorting all f(z;) in descending order, e.g., f(z;) > f(z;) if i < j.

3. Splitting S,,(f) to k contours, E, with a given integer, k, such as E; = {z; :
(i-1)l<j<il}andi=1,2,...,k wherel = n/k and [ € N. That is, [ implies

the number of points in 7" contour, E;.

Figure 3.1 facilitates the comprehension of this discretization step. An illustra-

tion in Figure 3.1 utilizes a standard distribution f(z) with k = 9 contours.

15



3.1. SAMPLING PROCEDURE

1 /()
f«:—_—\_\_y/
______‘_X____I
I N N

x
Figure 3.1: The Fu-Wang Algorithm
4. Evaluating a height of each contour F; such that
— 1 .
fj:ZZf(:cj) i=1,2,...,k (3.1)
z;EE;
5. Calculating a discrete distribution
N - .
P(i) = 1=1,2,....k (3.2)

T
Zj:l f]
In Figure 3.1, the shaded area is quantified to acquire the discrete probability.
In each contour the maximum values of f(zV) and heights are indicated by
dashed and solid lines respectively. Figure 3.1 clearly shows that the heights

in a sequence of contours approximate f(z). This has a similar behaviour of

discrete probability.

3.1.3 Sampling

The sampling procedure carries out the scheme of stratified sampling mentioned
in Section 2.2.2.

Assume that m random samples will be drawn.

16



3.2. DISCUSSION

1. Deciding a sample size of each contour proportional to the discrete probability

such that m; = mPy(i), subject to m = Zf m;andi=1,2,...,k

2. Drawing m; sample points from 4** contour with replacement.

3. Binding up all drawn sample points from each contour into one sequence of

samples.

3.1.4 Visualizing and Updating the Significant Region

Wang and Fu (2007) emphasized the utilization of histograms on all marginal dis-
tributions of f(x) to identify the appropriate significant region (p. 638). The sampling
procedure will be interrupted if the identified significant region is substantially equal
to Cp. If not, another sampling procedure should be conducted until the condition of

significant region is satisfied.

3.2 Discussion

Even though the Fu-Wang algorithm overcomes major limitations of MCMC, it
has several of its own limitations. A study by Wang and Lee (2008) has attempted
to resolve limitations of the Fu-Wang algorithm. (See also the working paper en-
titled: “Efficient Monte Carlo Random Sample Generation through Discretization”,
by Wang and Lee (2008)). The emphasis placed in this working paper is related to
the computational efficiency, in particular the suggestions on how to control in the
low and long tail probability distribution to determine the significant region, and the
establishment of the general usage of this algorithm. (See Chapter 4 for a detailed

explanation of the Wang-Lee algorithm).

1. The Fu-Wang algorithm has an issue with evaluating an accurate integration

under the low probabilistic region or low dimensions due to it being a sampling-
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3.2. DISCUSSION

based simulation study (Fu & Wang, 2002, p. 21). It is well-known that a nu-
merical analysis provides numerically accurate results in low dimensions rather
than a sampling-based study. Once the numerical analysis is not applicable, it
is preferred to use the exact probability rather than the approximate probabil-
ity in a sampling-based study. In practice it is not possible to find the exact
probability function from the real data. The Fu-Wang algorithm does not find
the exact probability; rather it locates the approximate discrete probability. In
addition, it is not an accurate boundary of the significant region on the low
prohabilistic region even though the significant region is identified by this sam-
pling procedure due to its intuitive determination of boundaries. It is worthy to
mention that incidences of no observations do not necessarily mean that there
is no probability in the sampling-based study. Since rare samples are drawn
from the low tail probabilistic area, this possibility may be overlooked in this
sampling algorithm. Consequently, the imprecise construction of the discrete
probability, as opposed to the representation of the true density function, arises

from this loss of the potential or plausible significant region.

. When there is no information about the properties of distribution, it is necessary
to use the intuitive determination of the significant region in this algorithm.
Hence, there exists the possibility of a wrong statistical inference if the shape

of distribution is ill-shaped or multi-modal.

. A study by Wang and Fu (2007) use the idea of a cut-off point on the density
function f(zll) to determine the significant region. This idea is well-described
in Figure 3.2. Since the distribution has several modes and a long and low tail, it
is difficult to identify the significant region intuitively. A loss of computational
efficiency is significant if the cutoff point is too high as most of total computing

time is necessarily spent on the iterative generation of random variates. The
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total running time of this algorithm is measured and shown in Table 6.8, Sec-
tion 6.7. Therefore, the lack of control regarding the significant region leads
to the inverse relationship between cost efficiency and numerical accuracy. The
mprecise discrete probability leads to the loss of the potential significant region
as previously mentioned.

yl fx)

e — =

e ": —:—:_—_—_—: s Py

cutoff ===

Figure 3.2: The Fu-Wang Algorithm with Cutoff

4. Currently, there is no criterion to set a proper cut-off point. Therefore, another
risk exists due to the determination of a cut-off point in cases where the distri-
bution is multi-modal and has a long and low tail probability. This results in
a computatibnal impracticality because it is only possible in theory to compute
the finite number of shaded rectangles in the tail. The number of contours is

fixed in advance on its implementation. Figure 3.2 shows this explanation.

5. An optimal result from the Fu-Wang algorithm is achieved by the number of
contours, “a value of between 200 and 500 for a density of five dimensions or
lower, and a value between 1,000 and 100,000 for a density of higher dimensions”
(Wang & Fu, 2007, p. 24). It is doubtful that the number of contours is in
direct proportion to the number of dimensions. As of yet, the sufficiency of

computational resources and the matter of dimensionality are unresolved.
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Chapter 4

Wang-Lee Algorithm

The initiative for the development of the Wang-Lee algorithm originates from the
following factors: 1. cut-off point on f(zV]) corresponding to a significant region on
Su(f), 2. control of the low probabilistic region, 3. accurate estimation of discrete
probability function, and 4. computational efficiency. These factors strongly moti-
vated the modification and development of the Fu-Wang algorithm.

The Wang-Lee algorithm consists of five procedures: initialization, discretization,
contourization, two-stage sampling, and visualization. Key features of the Wang-Lee
algorithm are briefly discussed here in rank order reflecting the appropriate signifi-
cance to the success of the algorithm.

The appropriate sample is verified by the visualization step. Several meaningful
modifications contribute to the contourization step. In particular, the Wang-Lee al-
gorithm faciliates computational efficiency related to its unique horizontal approach
for acquiring the approximate discrete probability {P(i)}5.;. The trial method em-
ploys the cut-off point to determine the significant region by the experiment on the
last partition. Moreover, a more accurate discrete probability function, which is close
to the true density function, is estimated by the manipulation of the last partition

regarding the large proportion of low probability. Finally, the fixed number of par-
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4.1. INITIALIZATION

titions regardless of the number of dimensions is suggested to estimate the discrete

probability function.

4.1 Initialization

The initialization step is easily overlooked. Initialization is important as it has
direct connections with the numerical accuracy of the estimates. In a Monte Carlo
study, Madras (2002) made a record that “found that the accuracy of our estimate

172 where n was the number of observations” (p. 5). In this

was proportional to n~
thesis, n indicates the number of discrete base points in the Wang-Lee algorithm. In
the simulation studies in Chapters 5 and 6, 1 x 107 discrete base points are employed
in all illustrations and applications regardless of the number of dimensions and the
model complexity.

With initialization, two computational difficulties are considered. One is the com-
puter hardware specification and the other is the size of a vector which the statistical
software provides.

The capability of computation is a significant consideration because a discrete
base point in d dimensions consist of a set of d points from every coordinate, which
is expressed as 29l = (z1,29,...,24). A set of n discrete base points are then saved
on the memory of the computer that is the RAM. When the RAM is not sufficient,
the computer will use the SWAP area on the hard disk and its computing time
will be immense due to the additional time of data transference between RAM and
the hard disk, in addition to pure arithmetic time. This requirement necessitates a
capability to store a large amount of points and an advanced programming technique
to manipulate this multidimensional data matrix of n-by-d discrete base points.

The analyses of simulated data in Section 5.2.5 and genetic data in Section 6.6

by the Fu-Wang algorithm demonstrate this immense computing time. Both of these
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4.2. DISCRETIZATION

examples have 24 parameters into which the discrete base points need to be allocated.
Hence, there is a substantial memory requirement of 1.92G'B for storing discrete base
points and manipulating 107-by-24 data matrix efficiently.

This feature exemplifies the substantial advantages of the Wang-Lee algorithin,
primarily, the unrestricted dimensionality. The Wang-Lee algorithm manipulates
only indices of array (or data matrix) for the sampling procedure. One consideration
of this manipulation is that the maximum length of a vector up to 1 or 2 x 10°
For this specification see Memory Limits in R, R Development Core Team (2008a).
Hence, the stipulation that advanced programming techniques and skills are required
to manipulate total discrete base points with this vector system.

Regarding the initialization of sample size, m = 103 is optimal to characterize the

density function f(z) by the repetitions of simulations.

Algorithm 4.1.1 Initialization
Require:

f(z) a given or target density function with an analytical form.
m « sample size

n « discrete base points

k « partitions

last.p «+— weight on the last partition

4.2 Discretization

The purpose of this discretization procedure is to obtain the dense discretized
sampling space S, (f) which contains the significant region of f(z). This sampling
space S,(f) is used to query indice of a sample by the utilization of approximate
discrete probability {F, (i)}, later. This idea is clearly linked to the concept of

importance sampling as shown in Section 2.2.1. A good sampling necessitates that
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4.2. DISCRETIZATION

samples concentrate on the significant region of the density function f(z) without
regard to the negligible region. The acquisition of a dense and highly concentrated
sampling region is crucial in the accurate estimation of density function f(z).

This discretization procedure of the Wang-Lee algorithm is identical to the initial
compact cover step of the Fu-Wang algorithm in Section 3.1.1. The strategy of how
to construct the compact cover is explained with more detail as follows: In a given
density function f(x), assume that Co(f) is the initial compact set subject to Cy C R¢
and S(f) is the support of f(z).

1. Set Co(f) = S(f) if f(z) has a bounded support.

2. Determine the constants a; and b; where —co < a<b< oo fori=1,2,...,d
with d dimensions if f(z) does not have a bounded support. Then, set Co(f) =
S(f) N a, b

3. Ensure that the significant region of f(z) is the subset of Cy(f).

In practice, it is difficult to be aware of the properties of f(x) so that the determination
of constants (@ and b in i dimension which contains the significant region) is arbitrary
work. This limitation is discussed in Section 3.2 when f(z) is ill-shaped and multi-
modal.

Subsequent to the specification of the safe boundaries on the sampling space S(f),
the Wang-Lee algorithm generates and accumulates all discrete base points zl after
trimming all zero values of f(z¥), where j = 1,2,...,n. This accumulation of dis-
crete base points is repeated until a given initial number of n discrete base points is
obtained. All discrete base points 2V are, then, eliminated if f(zll) < 5 x 10732
due to the specification of GNU R, R treats the double type of float values less than
5x 107324 as 0 For this specification see Numerical Characteristics of the Machine R De-
velopment Core Team (2008b). The discrete base points will be generated as equals as

the number of discrete base points are eliminated. This procedure contributes to the
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computational speed of the Wang-Lee algorithm when compared to the acquisition

of a dense and highly concentrated sampling space by the Fu-Wang algorithm.

Algorithm 4.2.1 Discretizing S(f) to S,(f)-
while nrow(f(X))=n do

Generation Step
for i=1toddo

X — x NU(az,bJ

nXi nxl;

end for
Evaluating f (7;>§d)
if f(X) >0 then
ng/elz the indice
else
Repeate Generation Step recursively
end if
end while
X — X + f(X)

nx(d+1) nxd nx1

return S,(f) = nx()d<+1)

4.3 Contourization

The contourization step is the core of the Wang-Lee algorithm. The object of
contourization is to get possession of the approximate discrete probability for the
next sampling procedure. Wang and Fu (2007) note two properties of the contouriza-
tion: 1. an intermediate tool to identify the significant region by transforming f(z)
into a monotone discrete probability, and 2. provide information about the approx-
imate modes by the first contour (p. 639). The Wang-Lee algorithm appropriates

these properties from the Fu-Wang algorithm. The modification of this contouriza-
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4.8. CONTOURIZATION

tion procedure derives computational efficiency and shows the possibility of how to
control the significant region. This contourization procedure consists of two steps,

the partitioning and the approximate discrete probability.

4.3.1 Partitioning

The Wang-Lee algorithm conveys greater efficiency via the horizontal approach
for partitioning on the discretized sample space S,(f) than the Fu-Wang algorithm
does.

Estimating the target density function f(z) utilizing the Fu-Wang algorithm is
considered as a vertical approach on the discretized sample space S,,(f). The Fu-Wang
algorithm initially divides the discretized sample space S,(f) into equally-spaced &k
contours, and then calculates the level of each contour by the utilization of equal
number of points [ in the ith contour as described in Section 3.1.2. This algorithmic
procedure is clearly shown in Figure 3.1 and described in Section 3.1.2.

In contrast, the Wang-Lee algorithm employs a horizontal approach on the discrete
sample space S,(f) and only values of f(zU]). First, the Wang-Lee algorithm saves the
indices of sorted f(z¥) in descending order. This small indice technique contributes
to the computational efficiency for querying the discrete points as the final samples
later.

The Wang-Lee algorithm then establishes levels of k partitions to determine the
domain of %k partitions on the discretized sample space S,(f). The recommended
levels of £ partitions are chosen as the mid-point in & equi-distant vertical interval on
the range of f (:z:m) for computational convenience. This functional distinction equates
to the elimination of a procedure from the Fu-Wang algorithm — the calculation of
levels of k contours. In essence, equation (3.1) in Section 3.1.2 is removed from the
Fu-Wang algorithm.

Figure 4.1 is displayed here for convenience of the reader and to illustrate with
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4.3. CONTOURIZATION

clarity the differences and subsequent advantages associated with this approach to
partitioning. An illustration in Figure 4.1 applies the standard normal distribution
f(z) with & = 9 partitions as the as Figure 3.1. The different directional approach
of the Wang-Lee is clearly distinguished in Figures 4.1 compared to Figure 3.1 in

Section 3.1.2.

cutoff] 5 — |

Figure 4.1: The Wang-Lee Algorithm

In Figure 4.1, the dashed lines imply that the equally divided intervals on the
range of f(zV). The solid lines indicate the level of i** partition, which is set as the
mid point in the it* interval, and specifies the area of ith partition on the discretized
sample space S, (f). The shaded area under the solid line will be employed to obtain
the approximate discrete probability.

A nature of the directional shift for contourizing the discretized sample space
S.(f) contains the different number of discrete base points zV! in each partition
E;(zU)). In contrast, the Fu-Wang algorithm has the equal number of [ discrete
base points 29! over all partitions. (See also procedure 3 in Section 3.1.2). Then,
the k partitions on the discretized sample space S,(f) are dynamically determined

respectively corresponding to the levels of k partitions such that

hi < E7($m) < hi—i—l (41)
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4.3, CONTOURIZATION

where h; is the level of i*" partition established by the mid-point of every interval
on the range of f(2U!). This approach suggests the tentative criterion regarding the
cut-off point on f(z1) later — the level of last partition — to manage the significant
region on the discretized sample space S,(f) by the last partition.

Controversy exists in the setting of the cut-off point on f(z¥) since the value of
cut-off point is in direct proportion to the length of the range of f(zll); that is, the
length between maximum and minimum of f(zl!). This will be explained in greater
depth in Section 4.3.2.

It is clearly evident that the number of f(z]) between the successive levels of
k partitions is equivalent to the number of discrete base points in each partition
E;(zU). This feature leads to another computational efficiency. Ergo a function
hist() in R (or different function names on other statistical software) performs both
tasks simultaneously: building the levels of k& partitions and counting the number of
f(z1) on every partition.

In simulation studies in Chapters 5 and 6, the number of partitions, k = 10°, is
specified. A large proportion of partitions returns to zero value. This is significant
to interpreting the shape of distribution f(z) and the location of high probabilistic
region since the information of shape about the target density function f(z) is carried
into a sequence of E;(zl!) by this contourization. That the partitions have zero values
of numbers of discrete base points zV! is an indication that the values of a density
are dropping rapidly or that the region is negligible for the sampling. Figure 4.1
facilitates comprehension of the interpretation of distribution shape.

The contourization procedure is summarized as follows:
1. Save the indices of sorted f(2!) in descending order.

2. Set the level h; of i partition as the mid point in equi-distant occurrences on

the range of f(zV!)
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4.8. CONTOURIZATION

3. Establish the domain of & partitions on a discretized sample space S,(f) such

4. Count the the number of f(z¥) in the ith partition F;

Algorithm 4.3.1 Contourization with k& partitions

for j=1tondo
if 7> 7 then
Fabh) > f(abh)
end if
end for

fori=1to &k do

By = Zle (maxf(:r[j])}:minf(mm))

n; = u*(E’i) = {2V : hy < flzl) < hi}
end for

return n; = n(E;)

4.3.2 Approximate Discrete Probability Function

The approximate discrete probability {P;(k)}~_, in the Fu-Wang algorithm is de-
fined as the equation (3.2) in Section 3.1.2. In the Wang-Lee algorithm, the approxi-

mate discrete distribution is implemented in a different way as follows:

h’i t]
Pk(l):—‘k“—ﬁ—'—, Z:}.,Q,..,k‘—‘l
Zj:l hin;
o, (4.2)
Pk(i):wk—zz—, i=k O<w<l
Zj:l hin;

where n; is the number of f(z¥!) and h; is the level of 4 partition, i = 1,2,...,k,

respectively, and w = 0.5 is a standard weight.
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The superiority of the Wang-Lee algorithm arises from the appropriate weight on
the last partition due to the consideration of low probability in the tail of distribution
f(2¥). Typically, the last partition is overestimated as much as the difference between
the area A and the shaded area B in Figure 4.2. This results from the establishment

of a standard unit rectangle for the approximation.

Figure 4.2: Overestimation Probability on Last Partition

The illustration in Figure 4.3 clearly shows the impact of the overestimation and

its control on the last partition Ey.

Figure 4.3: Overestimation and After Controlled

The left panel in Figure 4.3 represents the uncontrolled case of probability on the

last partition Ey. It is clearly evident that inappropriate samples are drawn from the
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4.4. TWO-STAGE SAMPLING

negligible area. This phenomenon is apparent when the cut-off point on f (xm) in the
Fu-Wang algorithm is established too low in a mixture model or a hierarchical model.
(See also Figure 5.6 in Section 5.3). The necessity of manipulation on the probability
of the last partition is clear.

Currently, the Wang-Lee algorithm sets the weight w = 0.5 on the probability of
the last contour Ej, as an experiment for further research. In considering about the
weight, the quantity could be approximately close to the half of the last unit rectangle
(as equivalent as the area of B—A in Figure 4.2). The quantity of weight is tested
for all of the examples and applications in Chapters 5 and 6. Some examples require
manipulation regarding the weight to draw the appropriate samples. In Section 5.3, a
practical guide will illustrate the selection of appropriate weight on the last partition

and its consequence.

Algorithm 4.3.2 Approximate discrete probability function P;(k)

fori=1to k do

end for
P W X Pi

fori=1to k do
Py(E;) = pi(E;)

1 pi(B)

end for

return CDF of {5(E;)}e,

4.4 Two-Stage Sampling

The Wang-Lee algorithm follows the identical sampling procedure as the Fu-Wang
algorithm. Assume that m random samples are drawn. Since a partition E; is re-

garded as a stratum in the Wang-Lee algorithm, U¥_| E; = S,(f) and E; N E; = () for
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Vit i=1,2... k

1. Deciding a sample size of each contour proportional to the discrete probability

such that m; = mP,(i), subject to m = Zf m;andi=1,2,....k

2. Drawing m; sample points from 5% partition with replacement.

3. Binding up all drawn sample points from each partition into one sequence of

samples.

The Fu-Wang algorithm and the Wang-Lee algorithm have the same foundation for
this sampling procedure. However, the inverse CDF technique to query the indice of
discrete base points zU! is implemented by the utilization of complete vectorization

technique in the Wang-Lee algorithm.

Algorithm 4.4.1 Two-Stage sampling

for i=1to kdo
for j=1ton; do
m; ~U(0,1)
Querying m; from n;
end for
end for
m=>,m;

return a sample of size m

4.5 Visualization

The utilization of all marginal distribution of f(z) for all dimensions is the effec-
tive way of diagnosing whether or not the determination of appropriate samples is

completed from the significant region as described in Section 3.1.4.
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4.6. R MODULE IMPLEMENTATION

When the significant region of f(z) is well identified within the initial compact
support Cy(f), the drawn sample is appropriate for use in the inference. However, the
adjustment on the initial compact support Cy will be required if the significant region
is the subset of the initial compact support Co(f). The technical use of visualization

is described for the use of graphical diagnostic in Section 5.3.

4.6 R Module Implementation

The next R program code is a generalization of the Wang-Lee algorithm.

# A General Procedure in Wang-Lee Algorithm

f .name <~ function(
# Initialization
n.discrete.pnts=le7, # Number of discrete base points
n.cnts=led, # Number of partitions
n=le3d, # Number of samples
last . weight=0.5, # Weight on last contour
)4
# Generating base discrete points in the significant region
vars <~ runif(n.discrete.pnts, 0, 1);
density <— # Defining the target distribution
# Creating D-dimeional discretized compact sample space
sample. space <— data.frame(var.1[, var_2, ...] , density=density
)i

# Trimming zeros
density <- density [which(density>0)];

# Sorting by decending order
density .ind <- order(density, decreasing=TRUE);

# Contourization
lebergue . measure <- hist (density, breaks=seq(from=min(density), to=max(

density), length.out=n.cnts+1), plot=FALSE);

# Discrete Probabilities on partitions
get.pdf <— rev(lebergue.measure$counts * lebergue.mecasure$mids);

# Weighting the last partition
get.pdf{n.cnts] < last.weight*get.pdf|n.cnts];
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# Normalizing CDF

nmlzd. cdf <- ¢(0, cumsum(get.pdf)/sum(get.pdf));

# Sampling by inverse CDF index searching

rnd. variates = runif(n);

p.sample. size <— hist(rnd.variates , breaks=nmlzd.cdf, plot=FALSE)$
counts;

valid .samples <— which(p.sample.size >0);

sample. cnt <— mapply (sample, MoreArgs=list (replace=TRUE), rev(lebergue.
measure$counts), p.sample.size);

cum. puts.ind <- c¢(0, cumsum(rev(lebergue.measure$counts)));

cum. pnts.ind <— cum.pnts.ind[—(n.cnts+1)];

sample. list <— mapply(”"+”, as.list (cum.pnts.ind), sample.cnt);

sample.ind <— unlist (sample. list);

# Saving Final samples
sample. space <- sample.space [density .ind [sample.ind] ,];

}

# Simulation
f.name(n. discrete.pnts=1le7, n.cnts=le5, n=le3);
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Chapter 5

Simulation Study

5.1 Simulation Plan

This chapter features various attributes of the Wang-Lee algorithm which are in-
terpreted in the context of the Wang-Lee algorithm using representative distributions.
For the convenience of the reader, many of the illustrations in this chapter are de-
rived from Fu and Wang 2002 study. Other source illustrations are classic examples
from recent literature which challenges the limitations of MCMC. Each representative
illustration has been selected with care for the express purpose of comprehensively
delineating the unique features of the Wang-Lee algorithm as follows: 1. procedural
description, 2. numerical accuracy, 3. identification of multimodes, 4. freedom from
the need for reparameterization or additional adaptation, and 5. computational effi-
ciency in high dimensions. A practical guide for a graphical diagnostic is also provided
to facilitate greater insight and furnish details pertinent to this methodology.

Controlling of the simulation parameters is substantiated using examples on a
case-by-case basis. The default parameters on the simulation in Chapter 5 and Chap-

ter 6 are as follows:

1. 1 x 107 discrete base points, n.
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2. 1 x 10° partitions, k.
3. 1 x 10% samples, m.
4. Weight on the last partition, w = 0.5.

All programs in this simulation are written in GNU software, R-2.6.2, provided by
R Development Core Team (2008c), and subsequently tested on the Linux (Ubuntu
8.04, Hardy) system with GCC 4.2.4 (x86_64-linux-gnu). The hardware specifications
are as follows: Dual Core AMD Opteron(tm) Processor 275 (2193.745 MHz), 7992
MiB Memory with SWAP 3153 MiB, and 1024 KB L2 Cache stystem.

5.2 Case Studies

5.2.1 Bivariate Beta Distribution

This example will incontrovertibly exhibit the operation of the Wang-Lee algo-
rithm; its numerical accuracy and its graphical coincidence between the theoretical
results and simulation. For this purpose, a simple bivariate beta distribution of two
independent random variables is studied such that X; ~ Be(2,2) and X, ~ Be(3,1)

up to normalizing constant as equation 5.1 (Fu & Wang, 2002, p. 13).

flzy,z) =x1(1 —21)22, 0< X, X, <1 (5.1)

In obtaining a sample of size m = 1 x 103, it is critical to ascertain the sampling
space S,(f). As most of the samples will be obtained from the significant region,
a failure to appropriately identify the sampling region results in an invalid sample.
In this example, the information regarding the sampling space is presently provided
as [0,1] x [0,1]. This is a case of compact support; the initial compact support

being specified as Co(f) = Sa(f) = [0,1] x [0,1]. Then, n = 1 x 107 discrete base
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points are generated to discretize the initial compact support, Co(f). k = 1 x 10°
partitions are used to contourize the evaluated density function, f(z!). That is, the
discretized sampling space S, (f) is sectionalized with k partitions corresponding to
the midpoint in each equi-distant interval on the range of f(zV!). These k partitions
distingusish the configuration of the monotone discrete distribution and the domain
of discretized sampling space. The weight on the last partition w is set by 0.5 to
eliminate the consequences inherent to sampling from the negligible region. The
question of weight (as previously discussed in Section 4.3.2) will be demonstrated by
the empirical approach in Section 5.3. Subsequent to the establishment of the discrete
probability function is the two-stage sampling procedure.

The first two sample moments are investigated and contrasted with the values
found by the Fu-Wang algorithm. The numerical result from the Wang-Lee algorithm

closely approximates the theoretical standards. These results are listed in Table 5.1.

Table 5.1: Mean and Standard Deviation of Equation (5.1)

Statistics E(Xl) E(XQ) SD(Xl) SD(XQ)

Theory | 0.0500 | 0.7500 | 0.2236 | 0.1936
Fu-Wang | 0.5073 | 0.7572 | 0.2258 | 0.2001

Wang-Lee | 0.4922 | 0.7448 | 0.2149 0.1985

Investigation of the marginal histograms of X; and X, in Figure 5.1 validates
whether or not the significant region is contained within the initial compact support
Cy. Thus, sufficient evidence prevails to establish that no adjustment is required on
the inital compact support Cy. A scatter plot, a surface plot, and two histograms
of the marginal distributions of two random variables X; and X, are provided in
Figure 5.1. On the histograms, the solid and dashed lines indicate the fitted line from

the drawn sample and the theoretical density curve respectively. By a graphical and
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numerical comparison, it is evident that the Wang-Lee algorithm renders the relevant

sample for the two dimensional beta distribution.

Figure 5.1: Scatter, Contour Plot, and Histograms of Equation (5.1)

5.2.2 Dirichlet Distribution

A dirichlet distribution of three random variables, (X, X, X3) ~ D(0.5,2.5,4.5,6.5),
is found from Fu and Wang’s 2002 study, written in the analytic form up to the nor-

malizing constant with 0 < z; + 22+ 23 < 1 (p. 14).

fz1, 22, 23) = 27%%23 %235 (1 — 21 — 25 — 23)%° (5.2)

The Wang-Lee algorithm unequivocally secures the pertinent sample from this multi-

dimensional dirichlet distribution. The drawn sample from this distribution is exam-
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ined for the numerical accuracy and graphical coincidence between theorical results
and simulation. Since the marginal distribution of the multidimensional dirichlet dis-
tribution is the beta distribution, the simulation result can be contrasted. The the-
oretical marginal distrbutions are found as X7 ~ Be (0.5,13.5), X ~ Be (2.5,11.5),
X3 ~ Be(4.5,9.5). Two sample moments from both the simulation and theory are

compared in Table 5.2.

Table 5.2: Mean and Variance of Equation (5.2)

MEAN

VARIANCE

Theory Fu-Wang Wang-Lee

Theory Fu-Wang Wang-Lee

X1 | 0.0357  0.0352 0.0359 0.0022  0.0022 0.0023
Xo | 0.1785  0.1749 0.1725 0.0097  0.0095 0.0096
X3 | 0.3214  0.3169 0.3203 0.0145  0.0160 0.0160

The graphical coincidence between the theoretical density curve and the fitted line
in the a sample is represented in Figure 5.2. On the histograms, the solid and dashed
lines indicate the fitted line from the drawn sample and the theoretical density curve
respectively. As the significant sampling region is located within the initial compact
support, no modification to the initial compact support Cjy is required. Thorough ex-
amination of the graphical diagnostic and numerical comparison establish the validity
of the Wang-Lee algorithm to originate the relevant sample from the multidimensional

dirichlet distribution.
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Figure 5.2: Scatter Plot and Histograms of Equation (5.2)
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5.2.3 A Bimodal Example

In 1993, West provided a density of two parameters 7, and s

(1 (1 = m2))" (21 — m1))*(1 = my (1 = mp) — mo(1 — 7ry)) 77 (5.3)

with n = 45,7 = 5,5 = 3 and 0 < m,m < 1 and, employing this equation 5.3 to
demonstrate the deficiency of MCMC known as — “mixture collapsing” (p. 414) —
attributable to the large proportion of low probabilities between high densities.

The Wang-Lee algorithm is an innovative solution to this type of density function.
A contour plot integrated with a scatter plot and histograms of the marginal distri-
butions of parameters m; and 7y are provided in Figure 5.3. (See also Fig. 1. for the

exact contours and weights in West, 1993, p. 415; Figure 1. in Oehlert, 1998, p. 165).

Figure 5.3: Scatter, Contour Plot, and Histograms of Equation (5.3)
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Monitoring several modes remains the major impediment associated with the
MCMC algorithm as pointed out in Section 1.2. This can be imputed to the in-
capacity of MCMC to identfy the complete range of the posterior mode (Celeux et
al., 2000, p. 957). This capacity to capture the modes by the Wang-Lee algorithm is
significant for data exploration. Confirmation has been verified by repeated simula-
tions on a mixture model of various numbers of components with diverse variances
and correlations. The expanded example is illustrated in Section 5.2.4.

The Wang-Lee algorithm provides supplementary numeric information relative to
the approximate mode. This attribute is derived by the contourization procedure
described in Section 4.3. This information is expedient to the approximation of the
maximum value of density function when it is not evident from the graphical analysis
as in the histograms in Figure (5.3). The information of approximate modes is listed

in Table 5.3.

Table 5.3: Mean, Standard Deviation, and Modes of Equation (5.3)

Statistics Fu-Wang Wang-Lee

Mean | 0.5107 0.4672 | 0.5264 0.4858

SD 0.3805 0.3825 | 0.3820 0.3808

0.9258 0.8804 | 0.9225 0.8803
MODE
0.1178 0.0764 | 0.1191 0.0741

5.2.4 A Multimodal Example

The previous three examples illustrated the validity of the Wang-Lee algorithm
in rendering the appropriate sample in low dimensions with the compact support.
Section 5.2.4. will illustrate the efficient utilization of the Wang-Lee algorithm on the
unbounded support.

A Gaussian mixture model as equation (5.4) is frequently used to demonstrate
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various adaptive MCMC method to reveal the deficiencies of the standard MCMC
(See Fu & Wang, 2002, pp. 16-17; W. R. Gilks, Roberts, & Sahu, 1998, p. 1051; and
Liang, Liu, & Carroll, 2007, p. 311).

(5.4)
1 1
3 6 —09 1 3 0 01

The parameters employed in this illustration are identical to those specified in the
study of Liang et al. (2007)(p. 311).

The initial compact support Cp(f) will be designated by information regarding
mean and variance from each mixture component as no other information on the
support in this model exists. Since the first and second components have u = (-8, —8)
and p = (6,6) respectively and its spread are both (1, 1), the sampling space S(f)
is determined as 3 — X0y = =8 =3 x 1= —1land up +3x 0y =6+3 x 1 =9.
Therefore, initial compact support is Co(f) = [-11, 9] and proceeds to the sampling
procedure.

Subsequent to sampling on the initial compact support, the analysis of histograms
of all marginal distributions signify that the adjustment on the intial compact support
1s essential as the significant region is not a subset of Cp. It is revised as Cy(f) =
[—12,11] x [-12, 11] after ¢ times of repetitions. These repetitions are to be continued
until such time as no further graphical nor numerical changes are found.

The mean, standard deviation, and approximated modes of a mixture are provided

in Table 5.4.
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Table 5.4: Mean and Standard Deviation of Equation (5.4)

Statistics Fu-Wang Wang-Lee

MEAN |-0.7010 -0.7831 | -0.6237 -0.6386

SD 5.8425 5.7940 | 5.8929 5.8664

-8.0378 -8.0457 | -7.9717 -7.9559
MODE

6.0460 5.9658 | 6.0130  5.9598

A contour plot, a scatter plot and histograms of all marginal distributions are
shown in Figure 5.4 (See also Figure 3 Contour plots in Liang et al., 2007, p. 312).
Consequently, it is unequivocally illustrated that a drawn sample by the Wang-Lee
algorithm is appropriate to project this Gaussian mixture model. As well, the re-

dundancy of reparameterization or proper adaptation in the Wang-Lee algorithm is

illustrated.
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Figure 5.4: Scatter, Contour Plot and Histograms of Equation (5.4)

5.2.5 Simulated Data

The example in this section illustrates the computational efficiency and precision
of the numerical approximation of the Wang-Lee algorithm in high dimensions.

"This example was originally used to test the congruity of the Fu-Wang algorithm
and examine the SLC190 genetic data set (See Wang & Fu, 2007, pp. 643-645). The
analysis of the SLC190 Genetic data will be illustrated in Section 6.6.

In this data analysis, the Bayesian hierarchical mixture model is utilized with an
unknown number of sub-populations identical to the equation (1.1) in Section 1.1.1.

As established in Section 1.1.1 and 1.1.2, the model complexity and analytically
non-closed form of integration results in the failure of the standard MCMC algorithm.
Section 5.2.5 will substantiate that the Wang-Lee algorithm definitively resolves the
mathematical and computational challenges of the standard MCMC algorithm.

The presumptions of the simulated data and model specifications are identical to
Wang and Fu’s 2007 study (See Wang & Fu, 2007, p. 643).

The simulated data is a random sample of size of N = 200 from the mixture of
Ni(p = 3,02 = 1), Na(po = 6,0% = 1), and N3(p = 9, 0% = 1) with the probabilities,
wy = 0.64, wy = 0.32, and w3 = 0.04 respectively.

The density function of the mixture of K sub-populations is designed as identical
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to the equation (1.1) in Section 1.1.1. Equal variances of all sub-populations are
assumed. Prior information is synonymously applied such that pX ~ N(ug.03),
0% ~IG(a, B8), and w¥ ~ D(v) with a = 2, 3 = (R, /6)?, and v = 1.

The likelihood function and full posterior density are expressed as the equation 1.2
and the equation 1.4 respectively in Section 1.1.2.

When the number of sub-population is set by K. = 4, the number of parameters
to be estimated is 21. The applied specification of compact support is u¥ € [0, 12)%,
0% €[0.1,5]¥ and w¥ € [0, 1)¥.

The significant region is verified by the repeatd simulations with manipulation
of the weight on the last partition until the explicit and appropriate histograms of
marginal distributions are achieved and no further modifications to the numerical
results. The appropriate weight is found as w = 0.01 in this example.

Table 5.5 and 5.6 include the estimated marginal posterior distribution with re-
gard to the number of component K and approximated posterior modes, means and

standard deviations are provided respectively.

Table 5.5: Prior and Posterior distribution of K from Equation (1.4)

K 1 2 3 4

Prior 0.25 0.25 0.25 0.25

Fu-Wang | 0.0100 0.0120 0.5500 0.4280

Wang-Lee | 0.0170 0.0260 0.6660 0.2910
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Table 5.6: Parameters, Posterior Means and Standard Deviations of p® and w?® for

K = 3 from the Equation (1.4)

K=3 Fu-Wang Wang-Lee
TRUE | MEAN SD |MEAN SD
pd=3 | 3.0205 0.1668 | 2.9952 0.3873
ps =6 | 58742 0.2447 | 5.8802 0.4206
pi=9 | 9.5504 0.6554 | 9.6219 0.6758
w? =064 | 0.5970 0.0511 | 0.5848 0.0704
w3 =0.32 | 0.3620 0.0507 | 0.3659 0.0542
wi =0.04 | 0.0408 0.0214 | 0.0491 0.0671
o3 1.0808 0.2049 | 1.0972 0.4487

Histograms of the marginal distributions are listed in Figure 5.5 (See also Figure

6. in Wang & Fu, 2007, p. 645)
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Figure 5.5: Histograms of pf=2 , and wX=3 from Equation (1.4)

High computational efficiency is achieved using the Wang-Lee algorithm rather
than the Fu-Wang algorithm. Comparison of the computing time is provided in
Table 5.7, Section 5.2.6. The Wang-Lee algorithm shows a computational time that is
five times faster than the Fu-Wang algorithm in 21 dimensions of Bayesian hierarchical

model.
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5.2.6 Computing Times

Running time of each algorithm is measured by proc.time() function in R. It pro-
vides the user, system, and total time from the computing system (Sce the definitions
and specifications in Running Time of R in R Development Core Team, 2008d).

In computations wherein the dimension is less than four, it is apparent that the
difference in computing time is minimal. The computational efficiency is incontestable

when the dimension exceeds 20.

Table 5.7: proc.time() in Chapter 4

Fu-Wang Wang-Lee

Time (sec) Dim
User System Total User System Total

Egn (5.1) 2 81.550 6.270 87.818 59.450 3.320 62.750
Egn (5.2) 3 21.920 4.040 25.962 20.360 3.560 23.889
Eqn (5.3) 2 61.080 6.770 67.851 46.450 3.970 50.415
Eqgn (5.4) 2 738.650 7.200  746.107 | 810.080 6.320  816.910

Eqn (1.4) 21 |19936.72 183.64 20120.72 | 3409.290 79.080 3489.345

5.3 Practical Guide with Graphical Diagonistic

This section provides the practitioners with a practical guide for implementation
of the Wang-Lee algorithm for use in real application. The multimodal example used
in Section 5.2.4 is revisited for the purpose of providing the practical standards to
identify a verification of appropriateness regarding the drawn sample obtained using
the Wang-Lee algorithm.

As mentioned in Section 4.5, the interaction between a sampling procedure and
a graphical diagnostic is a critical step in determining the significant region on the

discretized sampling space S,(f). When the significant region is correctly identified
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within the compact support Cy(f), the drawn sample is expected to be accepted as
the appropriate sample. However, this is not always the case; hence it is necessary
to verify the appropriateness of the drawn sample. Figure 5.6 illustrates a failure to

obtain a reasonable sample.
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Figure 5.6: Contours, k& = 30; Weight on Last partition, w = 0.5

There are several possible contributing factors that may result in a poor sample.
In consideration of programming, it is possible that there is a logical error in the
program itself, despite the absence of compile-errors or run-time errors. Such errors
are not easily found. It is essential to implement the logically correct program.

Another factor to consider is the situation of an inappropriate sample despite a
proper adjustment to the significant region on the sampling space S,(f) and correct
program implementation. A potential resolution for this factor involves the number of
partitions. This problem occurred frequently during repeated simulations, when sta-

tistical models in the Bayesian paradigm were applied. Mixture model, Hierarchical
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model or well-separated multimodal density function all generate similar challenges.
This is common to all statistical models when density or posterior distribution have
a proportionately long tail with low probability. Caution must be exercised to define
a significant region when the statistical nmodel has an appreciable potential for a long
tail with low probability.

The implication is that a large proportion of low probability region is found in
the last partition; that is, the negligible sampling region is also considered as the
significant sampling region. This is an indication that the probability on the last
partition is overestimated. This result arises from a characteristic of the Wang-Lee
algorithm, which is the horizontal approach for contourizing f(z). Issues concerning
this overestimation are addressed and discussed in Section 4.3.2.

This practical guide provides suggestions and techniques to assist with computa-
tional and interpretational obstacles with regard to the overestimation of probability
on the last partition. Fundamental to the Wang-Lee algorithm is the elimination of
the influence from the insignificant region. Visualization is crucial; explicit examina-
tion of the tails of distribution on the histogram is vitally important.

To illustrate, if the tails of distribution end within the compact support, it is
logical to counsider that the sample is appropriate. If the histogram is not fitted
accurately, this issue can be resolved by increasing the number of partitions. Since
the partitions characterize the target density f(z), the number of partitions enhances
the capability of this algorithm to estimate the approximate discrete probability.

Simulation studies in this thesis use a number of 1 x 10° partitions as a default.
Increasing the number of partitions provides a reasonably accurate approximation
of target density. This neccessitates greater computing resources. Cost efficiency is
inversely proportional to computer hardware requirements.

Alternatively, a superior solution to addressing an inappropriate sample arising

from an ill-fitted histogram is to weight the last partition without increasing the total
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number of partitions. This is pivotal; controlling the weight on the last partition

minimizes the redundancy of the last partition. This method is applied to all examples

in Chapter 5. The default is set to 0.5 as the Wang-Lee algorithm set the mid point as

the level in the last partition for computational convenience. A visual representation
5

of the weight on the last partition is described in Section 4.3.2. Figure 5.7 and 5.8

shows the change on the significant region correponding to the weights.

el 1

Figure 5.7: Contours, k = 30; Weight on Last partition, w = 0.3

It is obvious that the samples from the insignificant region are reduced as the

weight on last contour decreases.
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Figure 5.8: Contours, k = 30; Weight on Last partition, w = 0.1

When the low probability in the tail of the histogram is eliminated, the sample

from the significant region becomes appropriate.
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Chapter 6

Applications

In Chapter 5, several classic examples were utilized to substantiate the unique
characteristics of the Wang-Lee algorithm. To corroborate the efficacy of the Wang-
Lee algorithm, applications based on the Bayesian paradigm using a nonlinear model,
a hierarchical model, and a mixture model are illustrated here. Chapter 6 develops
the functional advantages of the Wang-Lee algorithm — explicitly, freedom from re-
strictions such as the conjugate priors, the intractable mathematical form, restriction
in dimensions, and reparameterization. This is consummated through comparison of
computational algorithms for resolution of real applications. Primacy of the Wang-

Lee algorithm is incontrovertibly relevant.

6.1 Space Shuttle Challenger Data

Data in Dalal, Fowlkes, and Hoadley’s (1989) study was employed to validate the
relationship between a probability of O-ring failure and the temperature at flight by
a logistic model for the resolution of shuttle risk management (pp. 945-952).

This data is utilized to establish the independent Metropolis-Hastings algorithm
on the logistic regression model in the study of Robert and Casella (2004) (pp. 281-
282).



6.1. SPACE SHUTTLE CHALLENGER DATA

(For the purpose of comparisons in a simulation study, all notations, the model

specification, and prior information in this section are identical as those used in Robert

& Casella, 2004, pp. 281-282, the data is located in Table 1.1. p. 15).

Y; ~ Blp(z)), plz) = ST FT)

= 1
1+ exp(a + Bz) (6.1)

where y; is the response and p(z) is the probability of an O-ring failure at temperature
x. Its prior is

1 144
mo(a|b)mg = Be“e_e /b

with &, MLE from data, b = eftv , and v = 0.577216 (Robert & Casella, 2004,
pp. 281-282).

Utilizing only the information provided, the Wang-Lee algorithm is adminis-
tered to the analytic form of basic full posterior distribution without further repa-
rameterization and adaptation. The full posterior density function has the form,
L(w, B|data)w(c, 3), then the default simulation values are applied to estimate o and
g.

The estimates of o and § are listed in Table 6.1. These estimates are consisi-
tent with others (See MLE from Dalal et al., 1989, p. 949; Metropolis-Hasting(M-H)
Algorithm in Robert & Casella, 2004, p. 283).

Table 6.1: « and 3 of Equation (6.1)

Algorithm | MLE M-H Wang-Lee

Statistics | MEAN | MEAN | MEAN VARIANCE

o 15.043 1 15.0 | 15.1444 1.4284

I5 -0.2322 | -0.235 | -0.2346 0.0003

The histograms of « and 3 are provided in Figure 6.1 (See also Fig. 7. 3. in Robert
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& Casella, 2004, p. 283).

Figure 6.1: Histograms of Equation (6.1)

6.2 Beetle Data

Carlin and Gelfand (1991) employed the observed flour beetle mortality data to
demonstrate the Gibbs sampler with a tailor rejection method (pp. 126-127). This
data is found in Table 3. (Carlin & Gelfand, 1991, p. 126). The original study
was accomplished utilizing the maximum likelihood estimation with the generalized
logit model (Prentice, 1976, pp. 761-768). Subsequently, the Metropolis-Hastings
algorithm was applied to analyze the same data after the Jacobian transformation on
the parameter space in the study of Carlin and Louis (1996) (pp. 176-180).

(For the purpose of comparisons in a simulation study, all notations, the model
specification, and prior information in this section are identical to those used in Carlin
& Louis, 1996, pp. 176-180).

The generalized logit model as

P(death|w) = h(w) = {exp(z)/(1 + exp(z))}™

where w is the independent variable and z = (w — p) /o with unknown p and 2. Its

prior information are m; ~ G(ao, bo), pt ~ N(co,do), 02 ~ ZG(ey, fo) with ag = 0.25,
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bo =4, ¢g = 2, dy = 10, eg = 2.000004, and fy = 1000. The full posterior density is

p(:u’ 0-27 my IY> O(f(}’l/.l,, 027 7711)7!'(#, 027 ml)

k ag—1
oLt = =) e (6.2)

1, p—co m1 1
—( )2_

X exp [— A 70- — ——fon?

To estimate model parameters, the Wang-Lee algorithm generates a sample from
the naive full posterior equation 6.2 without any reparameterization. The sampling
procedure is terminated when the boundaries of compact supports reache [1.76, 1.84],
[0.0100,0.0333], and [0.1353, 1.2214], for u, o and m1 respectively. The simplicity and
independent sampling is appealing to many practitioners. The Wang-Lee algorithm
is reputed as a coherent and convenient alternative to MCMC.

The estimates of u, ¢ and m1l are listed in Table 6.2. These estimates are consisi-
tent with those that others have found (See MLE from Prentice, 1976, p. 765; Gibb
Sampler(G-S) in Carlin & Gelfand, 1991, p. 127; Metropolis-Hastings algorithm(M-H)
in Carlin & Louis, 1996, p. 179).

Table 6.2: Means, Standard Deviations, and Modes of u, o, m; from Equation (6.2)

Wang-Lee Other Algorithms
Statistics
1% g my 2 g my
MEAN | 1.8163 0.0168 0.3128 | 1.818 0.016 0.279 MLE
SD 0.0096 0.0030 0.0977 | N/A N/A N/A N/A

MODE | 1.8172 0.0163 0.2915 | 1.81 -4.04 (0.0175) -1.09 (0.3362) | Gibbs

2.5% 1.7951 0.0117 0.1743 | 1.78 -4.35(0.013) -1.61 (0.199

)
50% 1.8170 0.0165 0.2939 | 1.81 -3.96 (0.019) -0.98 (0.374) | M-H
97.5% | 1.8341 0.0241 0.5706 | 1.83 -3.6 (0.27 ) -0.25 (0.779)
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The histograms of p, 0 and m1 are provided in Figure 6.2 (See Fig. 3. in Carlin

& Gelfand, 1991, p. 127; Figure 5. 6 in Carlin & Louis, 1996, p. 179)).
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Figure 6.2: Histograms of u, o, ml from Equation (6.2)

6.3 Dugong Data

Carlin and Gelfand (1991) employed Sirenian species dugong data to exemplify
the failure of Gibbs sampler when the conjugacy does not exist in Bayesian analysis
on the growth curve, and applied a tailored rejection method for successful imple-
mentation of Gibbs sampler (pp. 124-125, the data is provided in Table 1. p. 124).
This data is also used to manifest self-regenerative (SR) algorithm compared with
other MCMC algorithms (Sahu & Zhigljavsky, 2003, pp. 412-413). Dugongs data is
one of the standard examples in OpenBUGS (For this see Dugongs: nonlinear growth

curve Spiegelhalter, Thomas, Best, & Lunn, 2007a).



6.3. DUGONG DATA

Recently, Malefaki and Iliopoulos (2008) used the dugongs data to demonstrate
the necessity of adaptation on the given density (pp. 1218-1219).

(For consistency of comparison in a simulation study, all notations, model speci-
fication, and prior information in this section are identical to those utilized Malefaki
& Iliopoulos, 2008, pp. 1218-1219).

The growth curve is
vy~ N(a =38y i=1,...,n (6.3)

where o, 8, and 7 > 0. Its prior information is & ~ N(0,7;)I(a > 0), 8 ~
N, 7;1)1(8 > 0), v ~ U(0,1), and 7 ~ G(k, k) with 7, = 75 = 10~* and &k = 1073
The likelihood function of parameters «, 3,7, and 7 and its naive posterior density

function are as follows:

n

g T .
L(a, B, 7, Tlyr: Y, - - ) o< 727FF 1e:w{—§ dwi—a+ 7Y (64)

i=1

T(0ly1s Y2, - - Yn) X f(Y1, Y2, - - -, YalO)p()p(B)p(7)p(7)

T (l’2 Tgﬁz
S Lo 6.5
2 2 ) (6:5)

o< L(Oly1, Y2 -+ - s Yn) X exp(—7k —

xI(a>0,>0,7>0,0<~v<1)
The Wang-Lee algorithm is straightforwardly applied to the full posterior distribution;
further parameterization is not required.

The numerical values in Table 6.3 from the Wang-Lee algorithm are consistent
with other algorithms. (See Gibbs Sampler(G-S) from Carlin & Gelfand, 1991, p. 125;
OpenBUGS in Dugongs: nonlinear growth curve, Spiegelhalter et al., 2007a). Also,
“the least-squares estimates, 0.981, —0.028, and 1.932, obtained by Ratkowsky (1983,
p. 96)” (Carlin & Gelfand, 1991, p. 125).
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Table 6.3: Means and Modes of «, 3, v of Equation (6.5)

Wang-Lee OPENBUGS LSE

a | 2.6601 (0.9783) | 2.652 (0.9753) | 0.981
MEAN | 3] 0.9791 (-0.0210) | 0.9729 (-0.0274) | -0.028

~ | 0.8642 (1.8509) | 0.8623 (1.8345) | 1.932

Wang-Lee G-S

a | 2.6710 (0.9824) 0.975
MODE | 8 | 0.9668 (-0.0337) -0.014
v | 0.8770 (1.9646) 1.902

‘The histograms of «, 3, and «y are provided in Figure 6.3 (See Fig. 1. in Carlin &
Gelfand, 1991, p. 124; Fig. 4. (a) and (b) in Malefaki & Iliopoulos, 2008, p. 1219).
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Figure 6.3: Histograms of 1, o, m1 from Equation (6.5)
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6.4 British Coal Mining Data

Previously in this thesis, the Wang-Lee algorithm has been implemented to only
those cases of low dimensions (less than four parameters). The following three ap-
plications will demonstrate that the Wang-Lee algorithm provides results consistent
with other statistical algorithms notwithstanding high dimensions. This section il-
lustrates a case of five dimensions using the data from British coal-mining disasters,
1851-1962 (Tanner, 1996, pp. 147-149, and the data is found in Table 6. 1. p. 148).

Carlin, Gelfand, and Smith (1992) carried out research for obtaining the modes of
marginal posterior distributions of a three-stage hierarchical model by Gibbs sampler
(pp. 393-400). The features of the Fu-Wang algorithm were demonstrated utilizing
this example (for the purpose of comparisons in a simulation study, all notations,
model specification, and prior information in this section are identical to those used
in Fu & Wang, 2002, pp.18-20).

Fu and Wang (2002) postulated the model specification as follows: X; ~ Poi(6t;),
t=1,2,...,K, X; ~Poi(A\;), t =k +1,..., N at the first stage. They expressed the

log-likelihood function analytically as equation (6.6) to find the approximate mode.

L(k,0,)) = (ixi—1/2> log 6 + <i xi—1/2> log A — k0 — (n — k), (6.6)

Gzl

where k € (1: N), § € (0,00), and A € (0,00). The prior information is x ~ U(1, N),
8 ~ G(1/2,a), and A ~ G(1/2,3) at the second stage and o ~ ZG(2,1) and B ~

ZG(2,1) at the third stage. The full log-posterior distribution is
f(r, 0.0 a,8) =1k, 0,\) +1.5loga+ 1.5logf— (0 + 1a— (A+1)8. (6.7)

The boundaries of compact support are applied as follows: & € (30 : 50), 6 € [2.2,4],
A€[0.6,1.4], a € [0,2] and § € [0,4] (Fu & Wang, 2002, pp. 17-18).
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The mode information is contained in Table 6.4. See Gibb Sampler in Carlin et

al. (1992, p. 397).

Table 6.4: Approximated MLE, Means, Standard Deviations, and Modes of &, 0, A,

a, and g from Equation (6.7)

Wang-Lee

K 0 A «@ Jéj

AMLE | 41  3.0858 0.8945 N/A N/A

MEAN | 40.0160 3.0765 0.9118 0.6250 1.2815

SD 24778  0.2826 0.1133 0.3667 0.7608

MODE 41 2.9957 0.8995 0.3905 0.7629

Gibbs Sampler

K 8 A o Jé)

MODE 41 3.06 0.89 N/A  N/A

The marginal posterior distributions are shown as Figure 6.4 (See also Figure 7. in

Fu & Wang, 2002, p. 21; Fig. 1. in Carlin et al., 1992, p. 395).
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Figure 6.4: Histograms of o, 3, A, , and 6 from Equation (6.7)

6.5 Nuclear Pump Data

Previous application of five dimensions has established that the Wang-Lee algo-
rithm is capable of presenting estimates consistent with other MCMC algorithms in

low and moderate dimensions. In the next application, the validity of the Wang-Lee
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algorithm will be affirmed by challenging a real application consisting of ten dimen-
sions.

Gaver and O’Muircheartaigh (1987) employed the failure of pump data to explain
the failure rate of individual pumps for reliability management by employing the
parametric empirical Bayesian model (pp. 1-14). It is also utilized for the illustration
of Gibb Sampler in the hierarchical model in the study of Robert and Casella (2004)
(pp. 385-387).

(For the purpose of comparisons in a simulation study, all notations, model spec-
ification, and prior information in this section are identical to those used in Robert
& Casella, 2004, pp. 385-387, corresponding data is found in Table 10. 1. p. 386.)

The model is described as follows: the number of failures p; ~ Poi(A\;t;) with
1 <1 < 10 and its priors are \; ~ G(«, f) and 3 ~ G(v,d) with & = 1.8, v = 0.01,

and ¢ = 1. The full posterior has the form as

T( A1,y A0Bltr, - - - t10s D1y - - -, P10)
10 (6.8)
- H{(/\iti)pie—(ti-l-,@))\i } gi0etr—1-80
=1
This simulation study is slightly altered by adopting different priors in advance of
launching the Wang-Lee algorithm procedure. The priors are taken as o = 0.54,
v = 2.20, and § = 1.11 because the prior information is subjective on the basis
of a researcher’s conviction regarding the problem if a true Bayesian approach is
considered (Dagpunar, 2007, pp. 169-170).
The numerical values in Table 6.5 from the Wang-Lee algorithm are consistent

with other algorithms ( See Bayes in Dagpunar, 2007, p. 168; OpenBUGS in Pumps:

conjugate gamma-Poisson hierarchical model Spiegelhalter et al., 2007b).
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6.5. NUCLEAR PUMP DATA

Table 6.5: Rates, Modes, Means, and Standard Deviations of Pumps );, ¢ =

1,2,...,10 from Equation (6.8)

Wang-Lee Dagpunar | OPENBUS

PUMP | RATE | MODE MEAN SD Bayes MEAN

A 0.0530 | 0.0586 0.0581 0.0249 | 0.0581 0.0598
A2 0.0636 | 0.0645 0.0903 0.0708 | 0.0920 0.1015
As 0.0795 | 0.0775 0.0883 0.0376 | 0.0867 0.0889

Aq 0.1113 | 0.1147 0.1135 0.0291 0.114 0.1156
As 0.5725 | 0.4185 0.5509 0.3121 0.566 0.6043
A6 0.6043 | 0.5318 0.6061 0.1343 0.602 0.6121
A7 0.9523 | 0.2370 0.6705 0.4739 0.764 0.899
Ag 0.9523 | 0.1199 0.6810 0.4737 0.764 0.9095
Ag 1.9047 | 2.0381 1.4448 0.6743 1.470 1.587
A1o 2.0992 | 2.0105 1.9467 0.4044 1.958 1.995

Histograms are listed in Figure 6.5 (See also Figure 8. 2. Posterior generated by

Gibbs sampling by MAPLE in Dagpunar, 2007, p. 170).
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6.6. SLC 190 GENETIC DATA

o
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Figure 6.5: Histograms of X;, ¢ =1,2,...,10 from Equation (6.8)

6.6 SLC 190 Genetic Data

The dimension-free characteristic of the Wang-Lee algorithm has been compre-
hensively illustrated in previous applications. Significant emphasis has been placed
on the high computational efficiency of the Wang-Lee algorithm when applied to in-
stances wherein the number of dimensions is greater than or equal to 10. For this
endeavor, the number of parameters to be estimated is 21. The computing time for
all applications in Chapter 6 are reported in Table 6.8.

This application is a follow-up study of the simulated data analysis in Section 5.2.5.
It originated from hypotheses testing of two statistical models, the decision regarding
the number of genotypes, in Roeder’s 1994 study. He analyzed the SLC190 data by
the utilization of graphical diagnostics to test and identify the total components in a
mixture model regarding difficulties arising from the generalized likelihood ratio test
and model selection (pp. 487-495, data is found in Table 1. 492). For this data, the
Fu-Wang algorithm is applied with the equivalent model and priors specification on
a Bayesian hierarchical mixture model with unknown sub-populations (to faciliate
comparisons in a simulation study, all notations, model specification, and prior infor-

mation in this section are identical to those used in Wang & Fu, 2007, pp. 645-647).
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6.6. SLC 190 GENETIC DATA

Implementing the Wang-Lee algorithm, the statistical model and priors infor-
mation are identical to those used in Section 5.2.5. The likelihood function and
the full posterior distributions are identical to the equation (1.2) and (1.4) respec-
tively. The different conditions are the specification of the compact support such that
p® € [0,71%, 0% € [0.1,1]% and wX € [0,1)% and the prior K = (0.2,0.3,0.3,0.2).

Table 6.6 and Table 6.7 include the estimated marginal posterior distribution
concerning the number of component K and approximated posterior modes, means

and standard deviations are provided respectively (See MLE in Roeder, 1994, p. 492)

Table 6.6: Prior and Posterior distribution of K from Equation (1.4)

K 1 2 3 4

Prior 0.2 0.3 0.3 0.2

Fu-Wang 0 0.238 0.404 0.358

Wang-Lee | 0.005 0.311 0.408 0.276

Table 6.7: Parameters, Posterior Means and Standard Deviations of p® and w?® for

K = 3 from the Equation (1.4)

K=3 Fu-Wang Wang-Lee

MLE MEAN SD | MEAN SD

pud =223 | 2.2443 0.1441 | 2.2503 0.2335
ps=3.79 | 3.5760 0.4791 | 3.6173 0.4878
u3 =577 | 5.3852 0.5785 | 5.4520 0.6664

wd =0.774 | 0.7261 0.1699 | 0.7304 0.1663
wi =0.202 | 0.2239 0.1536 | 0.2159 0.1466
w3 =0.024 | 0.0498 0.0409 | 0.0535 0.0648

o3 0.4071 0.0861 | 0.4163 0.0914
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Histograms of the marginal distributions are listed in Figure 6.6 (See also Figure

9 and Figure 10 in Wang & Fu, 2007, p. 648).
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6.7 COMPUTING TIMES

Figure 6.6: Histograms of pf=3, 0%=% and w/=3 from Equation (1.4)

Comparison of the computing time is provided in Table 6.8, Section 6.7. In this ap-
plication it is remarkable that the Wang-Lee algorithm is established at approximately
eight times faster in 21 dimensions of Bayesian hierarchical model when compared to

the Fu-Wang algorithm.

6.7 Computing Times

In real time applications, there is little difference in computing time for cases of less
than 5 dimensions between the Fu-Wang algorithm and the Wang-Lee algorithm. In
dimensions greater than 5, significant computational efficiency is found to be evident.

All running times are listed on Table 6.8.
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Table 6.8: proc.time() in Chapter 6

Fu-Wang Wang-Lee
Time (sec) Dim
User System  Total User System  Total
Eqn (6.1) 2 182.310  35.790  218.099 | 181.390 34.370 215.752
Eqn (6.2) 3 130.570  24.110  161.694 113.55 20.640 134.19
Eqn (6.5) 3 122,570  23.290 145.854 92.250  20.220 112.473
Eqn (6.7) 5 69.370  13.090  82.445 60.580 9.770 70.348

Eqn (6.8) 10 | 102.940  25.240 128.202 | 81.850  18.010  99.874

Eqn (1.4) 21 | 25871.86 190.28 26063.04 | 3577.530 17.660 3595.237
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Chapter 7

Summary and Further Research

This thesis improves the discretization-based Monte Carlo algorithm of Fu and
Wang (2002) for a random variate generation from a complicated form of high di-
mensional distributions. The essence of the Wang-Lee algorithm is the approximation
of the discrete probability function of partitions derived from the discretized sample
space and the discrete inversion of multivariate cumulative density of partitions by a
two-stage sampling scheme.

From the perspective of computational practice, the Wang-Lee algorithm con-
tributes to the computational efficiency of the Fu-Wang algorithm by the shift of
direction on contourization. This efficiency is amplified by the proposition of adjust-
ment on the probability of the last partition. This is illustrated by examples and
applications in Chapters 5 and 6. The dimension-free, non-iterative procedures and
the ease of implementation of this algorithm enhances the scope of functional applica-
tions for computational statisticians. Provision of the generalized R program with the
practical guide enables immediate utilization of this algorithm by other researchers.

In consideration of statitstical inference, a fundamental asset of the Wang-Lee
algorithm is the inherent capability of detecting multimodes in a mixture model.

Additional advantages include abundant statistics of interest and the analytical func-
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tional form without the parameterization or other proper adaptation. Particularly,
in Bayesian framework the normalizing constant is not necessary. The independent
random variates by the Wang-Lee algorithm enable the construction of a confidence
interval as well. These assets compensate for the recognized limitations ascribed to
the standard MCMC algorithms.

To be circumspect when applying the Wang-Lee algorithm, a particular caution
is urged in the utilization of graphical diagnostics for a validation of the relevant
sample from the significant region and establishment of the correct sampling space.
Careful attention is required in eliminating the consequences of overestimation on the
region of a large proportion of low tail probability. This facilitates the more accurate
construction of approximate discrete probability function and contribution to the high
performance computation.

A number of questions remain for future development of the Wang-Lee algorithm.

Further research is required in the following areas:

1. The optimal number of partitions k: Since the approximate discrete proba-
bility function characterizes the configuration of distribution based on the num-
ber of partitions, it is considered to distinguish the optimal number of parti-
tions to quantify the discrete probability function regardless of the number of
dimensions. In example 5.2.5, application 6.5, and application 6.6, the opti-
mal histograms of marginal distributions and samples are found when & = 10°
higher up to & = n. The implication is that the number of partitions is insuffi-
cient to precisely characterize the approximate discrete probability function in
high dimensions (greater than ten). As previously stated, a greater incidence of
partitions generates a more concise approximation though the loss of computa-
tional efficiency. A designation of the appropriate weight on the last partition

is the provisional trial for the resolution of this concern.

2. Using the parallel algorithm: Currently, computational technology is pro-
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gressing with a multicore system or a high-performance distributed computing
system. The performance of parallel computing and its impacts are clearly
shown (See Figure 2 Vera, Jansen, & Suppi, 2008, p. 390). The optimal parallel
algorithm design is important, a major source to the utilization of these sys-
tems depending on the number of cores or distributed nodes. A study of parallel

implementation of this algorithm should be considered for further research.

. The integration with the numerical analysis on the last partition: The
probability on the last partition is weighted with the arbitrary constant, w, after
obtaining the approximate discrete probability function. One of the suggestions
for the determination of this weight is the regression analysis between the indice
of sorted discrete base points ¥ and f(z!) in two dimensions. The coefficient
of intercept in this regression line indicates the proportion to the height of the
last partition, and the coefficient of slope is always negative because f (wm)
is sorted in descending order. The weight is determined in the proportion of
the area lower than the regression line to the size of small rectangle of the
partition. The other suggestion is to utilize the numerical analysis such as
the Rieman sums, trapzoidal, or Simpson’s rules in the low probability region
(Robert, 2007, p. 293). A study of finding closer and more accurate discrete

probability function is required for the true density function.

. Quasi-Monte Carlo method: Fishman (2006) briefly introduces the alterna-
tive of Monte Carlo methods to improve both the numerical accuracy and the

the utilization of quasirandom

computational efliciency in high dimensions
numbers (p. 182). The matter of dimensionality and its inverse relationship with
the computational efficiency are the central problem in Monte Carlo method.
This matter is also a consideration with the Wang-Lee algorithm despite com-

putational efficiency in high dimensions. The incorporation of QMC on the
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Wang-Lee sampling algorithm merits further research.
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Appendix A

R Programs

Three sample programs are provided for the case of bounded support, the case
of unbounded support, and application for a simulated data. R programs for other
examples and applications used in this thesis are available upon request.

A.1 Bivariate Beta Distribution

Filename : beta.wl.R [Final Thesis Submission Program]

Date: 2009.07.15

Programmer : Chel Hee Lee

Ezample : Beta Distribution

Paper : Random Discretization Based on Monte Carlo, Fu & Wang 2002
Type : Wang-Lee Algorithm , Bounded Case

NSO W N
i S SR NN

8 rm(list=Is (all .names=TRUE) ) ;

9

10 # Wang—Lee Algorithm Definition

11 wanglee <~ function(n.discrete.pnts=le7, n.cnts=1led, n=1c3, last.weight
=0.5, n.analysis="TRUE”, g.hist="TRUE", g.plot="TRUE", seed

=584479233, ... ){
12
13 cat (7 ssxxx Program Description swaksok \1” ) ;
14  cat(”Filename : beta.wl.R \n");
15 cat(”"Description : Beta Distribution with Wang-Lee Algorithm\n”);
16 cat(" Affiliation : Statistics, University of Manitoba \n”);
17 cat(”Supervisor : Dr. Liqun Wang, wangll@cc.umanitoba.ca \n”);
18  cat(”Programmer : Chel Hee Lee, umlee@cc.umanitoba.ca, gnustats@gmail
.com \n\n");
19
20  cat(paste(”Program Launching Time : 7, Sys.time(),”\n\n” ));
21

22 # Random Number Specification

23  set.sced(seed);

24 cat{paste("Random Seed = 7, seed, "\n\n"));
25

26  # Given parameters
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27
28
29
30
31
32
33
34
35

36
37
38
39
40
41
42

59
60
61
62
63
64
65
66
67
68
69
70

71
72
73

A.l1. BIVARIATE BETA DISTRIBUTION

alpha <— ¢(2, 3);
beta <— c¢(2, 1);

# Forming a discretized base
xl <~ runif(n.discrete.pnts, 0, 1);
x2 <- runif(n. discrete.pnts, 0, 1);

cat {7 sorkxx Simulation Configuration sk \n” )
cat (paste(”"Number of Discrete Base Points = ”, n.discrete.pnts, "\n"))

cat(paste(”"Number of Partitions = ", n.cnts, "\n”));
cat(paste(”Weight on Last Partition = ", last.weight, ”\n”));

cat(paste("A Size of Sample drawn = ", n, "\n\n”));

cat (" Given Values on Parameters \n”);
for (ind in 1:2){
cat(paste(”alpha”, ind, ” = 7, alpha[ind], ” beta”, ind, ” = ", beta

} [ind], "\n"));
cat("\n\n");

# Defining the target distribution
density <- dbeta(xl, alpha[l], beta[1])=*dbeta(x2, alpha[2], beta[2]);

# Compact Region
monte.space <~ data.frame( xl=xl, x2=x2, density=density );
rm( list=c(”"x17, "x2"));

cat (paste(” Discretization procedure is completed at ”, Sys.time(),”\n\

n” ));

cat ("x#x%x Trimming Information *#x*x \n”);

density <— density| which(density > 0) |;

cat (paste(”Number of trimmed zeros in the density = 7, n.discrete.pnts
—length (density), "\n”));

cat (paste(”Number of remained discrete base points = 7, length (density
). 7 Remaining Rate = (7, 1 — (n.discrete.pnts—length(density))/
length(density),” )\n\n"));

cat ("sx#s*x Quantiles of Density After Trimming sk \n” )

print (summary(density));

chk.quantile <~ seq (0.1, 1, 0.1);

print (quantile (density, chk.quantile));

cat (”\n\n");

# Sorting by decending order
density.ind <- order(density, decreasing=TRUE);

# Contourization
lebergue . measure <— hist (density, breaks=seq(from=min(density), to=max

(density), length.out=n.cnts+1), plot=FALSE);

# CDF

get.pdf <- rev(lebergue.measure$counts * lebergue.measure$mids);
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75
76
7
78
79

80
81
82
&3

84
85
36

87
88
89
90
91

92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114
115

116
117
118
119
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get.pdf[n.cnts] <— last.weight % get.pdf[n.cnts];
nmlzd. cdf <- ¢(0, cumsum(get.pdf)/sum(get.pdf));

# Sampling

rnd . variates = runif(n);

p.sample.size <— hist (rnd.variates, breaks=nmlzd.cdf, plot=FALSE)$
counts;

valid .samples <— which(p.sample.sizec >0);

cat (7 swaskorx Analysis of samples  skxxk \n”);
cat (paste{”Number of Partitions used for sampling = ”, length(valid.
samples), ”\n\n”));

# Searching indices from the sample space

sample. cnt <~ mapply (sample, MorcArgs=list (replace=IRUE), rev(lebergue
.measure$counts), p.sample.size);

cum. pnts.ind <- ¢ (0, cumsum(rev(lebergue.measure$counts)));

cum. pnts.ind <— cum.pnts.ind[—(n.cnts+1)];

sample. list <— mapply ("+*, as.list (cum.pnts.ind), sample.cnt);

sample.ind <— unlist (sample. list);

rm(list=c(”lebergue.measure”, "p.sample.size”, "rnd.variates”, ”sample
.cnt”, "cum. pnts.ind”, "sample.list”));

# Saving the final samples
monte.space <— monte.space [density . ind [sample.ind] ,];

cat{paste(”Sampling procedure is completed at *, Sys.time(),”\n\n” ));

# Numerical Analysis

numeric. analysis <— function(){
cat (" sxxxx Numerical Aanlysis sk \n” ) ;
meanMarginal <~ sapply (monte.space, mean);
sdMarginal <— sqrt( sapply(monte.space, var) );
return (list (MEAN=meanMarginal , SD=sdMarginal));

}

# Graphical Analysis (Histogram)

graphic.hist <— function(){
parameters <— names(monte.space);
true . beta.shapel <— alpha;
truc.beta.shape2 <— beta;

for(p.ind in 1:(length(parameters)—1)){

graphic.cmd <— gsub(” ”, 77, paste(”postscript(file='heta.wl.x", p
Jnd, Tleps’)7));

eval (parse(text=graphic.cmd));

hist .cmd <— gsub(” 7, 7", paste(” with (monte.space, hist(x”, p.ind,

", prob=TRUE, freq=FALSE, xlim=c(0,1), breaks=30, xlab=

expression(”, p.ind,”), main=""));"));

eval(parse(text=hist .cmd));

lines (density (monte.space[,p.ind]), lty=1);

x <— rbeta(nrow(monte.space), true.beta.shapel[p.ind], true.beta.
shape2[p.ind]);
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curve(dbeta(x, shapel=true.beta.shapel[p.ind], shapc2=truec.beta.
shape2([p.ind]), lty=5, col="blue”, add=TRUE);
dev. off () ;
cat(paste(”Histogram of 7, p.ind, "is generated\n\n"));
}
}

# Graphical Analysis (8D, Contour Plot and Surface)
graphic.plot <— function () {

library (MASS) ;

postscript (file="beta.wl.plot.eps”);

contour. level <— with(monte.space, kde2d(x1, x2));
with (monte.space, plot(xl, x2, pch="+", main=""));
contour (contour. level , add=TRUE) ;

dev.off () ;

cat (" Plot is generated\n”);

postscript (file="beta.wl.surfacc.ceps”);

persp(contour.level , phi=5, theta=40, xlab="x1", ylab="x2", zlab="
density”, main="");

dev.off ();

cat (" Perspective Plot is generated\n”);

b

# Printing Numerical and Graphical Analysis
if(n.analysis="TRUE" ) {

print ( result<—numeric. analysis () );

mu <~ 0;
sd <— 0;
for (ind in 1:2){

mu[ind] <- (alpha[ind])/(alpha[ind]+beta[ind]);
sd[ind] <~ sqrt( (alpha[ind]+beta[ind])/((alpha[ind]+beta[ind]+1)=*
(alpha[ind]+beta[ind]) "2) );

# Calculating differences
for (ind in 1:2){
cat(” Theorctical TRUE Mean and Standard Deviation\n”);
cat(paste("MU[”, ind, "] : ", mu[ind], "\n"));
cat(paste("SD[”, ind, ] : 7, sd[ind], "\n"));

cat (paste(” Absolute Value of Difference between theoretical
solution and simulation result\n”));

cat(paste("DIFFM”, ind, " = ", abs(result$MEAN[ind]—mu[ind]), *\n”
)) s

cat(paste(”DIFFSD”, -ind,” = ", abs(result$SD{ind]-sd[ind]), *\n\n*
))s
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178

if (g. hist=="TRUE" ) {
graphic. hist ();

}

if (g.plot = "TRUE"){
graphic.plot();

}

cat (paste(”The program is terminated at

7, Sys.time(),”\n\n” ));

179 # Simulation on July 15, 2009, Final thesis submission
180 wanglee(n. discrete.pnts=le7, n.cnts=leb, n=le3, n.analysis="TRUE", g.

hist="TRUE" , g.plot="TRUE");
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A.2 Multimodal Example

1 # Filename : mm.miz. wl.R [Final Thesis Submission Program]

2 # Date: 2009.07.15

3 # Programmer : Chel Hee Lee

4 # Ezample : Three—Components Normal Mizture Model Density

5 # Paper : Stochastic Approzimation in Monte Carlo Computation, Faming
Liang 2007

6 # Type : Wang-Lee Algorithm , Unbounded Case.

7

8 rm( list=Is (all .names=TRUE)) ;

9

10 # Wang-Lee Algorithm Definition

11 wanglee <~ function(n. discrete.pnts=le7, n.cnts=le5, n=le3, last .weight
=0.5, n.analysis="TRUE", g.hist="TRUE", g.plot="TRUE", sced
=584479233, ... )}{

12

13 cat(” #x*xx Program Description sk \n” ) ;

14 cat(”Filename : mm.mix.wl.R \n”);

15 cat (" Description : Three—Component Mixture Model Density with Wang-Lee

Algorithm\n\n");
16 cat(” Affiliation : Statistics, University of Manitoba \n”);
17 cat(”Supervisor : Dr. Liqun Wang, wangll@cc.umanitoba.ca \n”);
18  cat(”Programmer : Chel Hee Lee, umlee@cc.umanitoba.ca , gnustats@gmail
.com \n\n");
19
20 cat(paste(”Program Launching Time : *, Sys.time(),”\n\n” ));
21

22 # Random Number Specification

23 set.sced (sced);

24 cat(paste("Random Seced = 7, seced, "\n\n"));

25

26 # Given parameters

27 mu <- list (c(-8,-8), c(

28 cov <— list (matrix(c (1,
ncol=2), matrix(c(1, 0,

29 w<—c(1/3, 1/3, 1/3);

30

31  # Forming a discretized base

32  x < runif(n.discrete.pnts, -12, 11);

33 y <~ runif(n.discrete.pnts, —12, 11);

; €(0,0));
;0.9,1), ncol=2), matrix(c(1,-0.9,-0.9,1),
0, 1), ncol=2));

6
0

34

35 cat (Tswwskx Simulation Configuration sxskkx\n" ) ;

36 cat(paste("Number of Discrete Base Points = ”, n.discrete.pnts, \n”))
37  cat(paste("Number of Partitions = ", n.cnts, "\n”));

38  cat(paste(”Weight on Last Partition = ", last.weight, "\n”));

39 cat(paste(”A Size of Sample drawn = ", n, "\n\n"));

40

41 cat(”Given Values on Parameters \n"):

42 for( ind in 1:3){

43 cat(paste("mu”, ind, " =7, mu{[ind]], 7, cov”, ind, ” =", cov[[ind
I, 7w’ ind, 7 =7, w([ind]], "\n"));

n
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}

cat("\n”);

# Defining the target distribution
library (mnormt) ;
density <— 0;
for (ind in 1:3){
density <~ density + w[ind]s*dmnorm(cbind (x,y), mean=mu[[ind]],
varcov=cov [[ind]]) ;
}

# Compact Region
monte.space <— data.frame(x, y, density=density);
rm(list=c("x”, "y"));

cat (paste(” Discretization procedure is completed at ”, Sys.time(),”\n\

n” ));

cat ("xsxkx Trimming Information ssx**x \n”);
density <— density| which(density > 0) |;

cat (paste(”"Number of trimmed zeros in the density = 7, n.discrete.pnts
—length(density), "\n"));

cat (paste(”Number of remained discrete basc points = 7, length(density
), 7 Remaining Rate = (7, 1 — (n.discrete.pnts—length(density))/

length(density ) ,” )\n\n”));

cat {"x#x+x Quantiles of Density After Trimming ssssss\n”);
print (summary(density));

chk.quantile <~ seq (0.1, 1, 0.1);

print (quantile (density, chk.quantile));

cat (7\n\n");

# Sorting by decending order
density.ind <- order(density, decreasing=IRUE);

# Contourization
leberguc . measure <— hist (density, brecaks=seq(from=min(density), to=max
(density), length.out=n.cnts+1), plot=FALSE);

# CDF

get.pdf <~ rev(lebergue.measure$counts * lebergue.measure$mids);
get.pdf[n.cnts] <— last.weight*get.pdf[n.cnts];

nmlzd . cdf <— ¢(0, cumsum(get.pdf)/sum(get.pdf));

# Sampling

rnd . variates = runif(n);
p.sample. size <— hist(rnd.variates, breaks=nmlzd.cdf, plot=FALSE)$
counts;

valid.samples <— which(p.sample.size >0);
cat (7 sskkx Analysis of samples sk \n7 ) ;

cat (paste(”"Number of Partitions used for sampling = 7, length(valid.
samples), "\n\n"));
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# Searching indices from the sample space

sample. cnt <~ mapply (sample, MorecArgs=list (replace=IRUE), rev(lchergue
.measure$counts), p.sample.size);

cum. puts.ind <~ ¢(0, cumsum(rev(lebergue.mecasurc$counts)));

cum. pnts.ind <~ cum.pnts.ind[—(n.cnts+1)];

sample. list <— mapply(”+", as.list (cum.pnts.ind), sample.cnt);

sample.ind <- unlist (sample. list);

rm( list=c(”lebergue.measure”, "p.sample.size”, "rnd.variates”, " sample
.cnt”, 7cum. pnts.ind”, "sample. list”)});

# Saving the final samples
monte.space <— monte.space [density.ind [sample.ind] ,];

cat(paste(”Sampling procedure is completed at ", Sys.time(),”\n\n” ));

# Numerical Analysis
numeric. analysis <~ function(){
cat ("sxxxx Numerical Aanlysis sxssx\n");
meanMarginal <— sapply (monte.space, mean);
sdMarginal <- sqrt( sapply(monte.space, var) );
modeMarginal <— monte. space [1:5 ,];
return(list (MEAN=meanMarginal, SD=sdMarginal, MODES=modeMarginal)};

}

# Graphical Analysis (Histogram)
graphic. hist <— function(){
parameters <— names(monte.spacec);

for(p.ind in parameters){
cat(paste(” Generating histogram of parameter ”, p.ind, "\n"));
graphic.cmd <— gsub(” ", ””, paste(” postscript(file="mm. mix.wl.”,
p.ind, ”".eps’)”));
eval(parse(text=graphic.cmd));
hist .cmd <~ gsub(™ ”, 7", paste(”with(monte.space, hist(”, p.ind,
7, freq=FALSE, breaks=30, xlab=expression(”, p.ind, ”), main
=)
eval (parse(text=hist.cmd));
dev.off();
cat{paste(”Histogram of 7, p.ind, ”is generated\n\n”));
}

}
# Graphical Analysis (3D, Contour Plot and Surface)

graphic.plot <~ function(){
library (MASS) ;
postscript ( file="mm. mix.wl. plot.cps”);
contour. level <— with (monte.space, kde2d(x, y));
with (monte.space, plot(x, y, pch="+", main=""));
contour{contour. level , add=TRUE);
dev.off () ;
cat(”Plot is generated\n");

postscript ( file="mm. mix.wl.surface.eps”);
persp(contour.level , phi=50, theta=25, xlab="x", ylab="y
density”, main="");

" zlab="
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}

dev.off();
cat{” Perspective Plot is generated\n”);

}

# Printing Numerical and Graphical Analysis
if(n.analysis="TRUE" ){
print(results <— numeric. analysis());

}

if (g. hist="TRUE” ) {
graphic. hist () ;
}

if(g.plot = "TRUE"){
graphic.plot ();

}

cat (paste(”The program is terminated at ”, Sys.time(),”\n\n” ));

158 # Simulation on July 15, 2009, Final thesis submission
159 wanglee (n.discrete.pnts=1e7, n.cnts=le5, n=le3, n.analysis="TRUE’ , g.

hist="TRUE", g.plot="TRUE");
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A.3 Analysis of Simulated Data

1L # Fiename : sim.wl.R [Final Thesis Submission Program]

2 # Date: 2009.07.15

3 # Programmer : Chel Hee Lee

4 # Ezample : Simulated Data Analysis

5 # Paper : A Practical Sampling Approach for o Bayesian Mizture Model
with unknown number of components, Wang & Fu 2007

6 # Type : Wang-Lee Algorithm, Unbounded Case, Weight on the last
partition = 0.01

7

8 rm(list=Is (all .names=TRUE)) ;

9

10 # simdatal.dat from Dr. Ligun Wang is obtained.

11y <= ¢f

12 3.1915, 2.8172, 1.8725, 2.506, 2.5985, 1.7248, 5.174, 2.7769, 3.1158,
2.9531, 3.861, 5.7123, 8.4547, 5.7908, 5.6474, 5.8743, 6.1627,

13 1.7415, 4.3249, 3.0679, 2.4846, 3.9713, 2.4585, 4.873, 3.4631, 1.7466,
4.4115, 2.4463, 6.0181, 6.3941, 5.0767, 6.24, 5.2174, 6.0573,

14 3.7421, 1.0362, 3.2593, 1.7827, 3.8634, 1.7535, 2.8219, 3.2525, 1.6263,
4.4871, 3.351, 6.9188, 5.2242, 6.0306, 6.5917, 6.0615, 10.2171,

15 2.4285, 2.208, 5.4172, 3.6766, 1.5599, 2.9871, 2.7607, 1.1206, 4.4464,

3.3576, 2.2471, 5.0953, 6.9116, 5.7103, 7.8891, 6.4244, 11.1226,

16 3.9134, 1.2488, 4.9344, 2.0437, 3.9133, 2.4061, 2.0549, 2.2965, 1.831,

2.8951, 2.2239, 5.405, 5.9909, 6.4078, 5.731, 5.265, 9.4228,

17 2.1151, 3.3802, 2.1846, 2.6896, 2.1516, 1.6863, 2.6114, 2.5205, 3.4408,

0.9359, 7.0336, 6.5152, 5.2028, 6.5696, 6.3673, 6.9836, 8.8344,

18 3.9715, 2.8945, 3.0672, 3.8539, 1.7031, 4.8339, 3.9571, 3.8157, 3.462,
2.8373, 6.7621, 5.1288, 7.6193, 4.939, 5.0319, 4.7349, 8.7945,

19 3.5875, 3.7998, 3.0324, 3.5942, 3.6814, 2.883, 2.8602, 2.9211, 2.9814,
4.6747, 7.4489, 6.2629, 6.4936, 5.7563, 4.7399, 5.7748, 10.2841,

20 2.8289, 1.8612, 3.5162, 3.8315, 3.45, 2.187, 3.7803, 2.803, 3.0786,
4.4198, 6.4474, 5.1275, 5.0068, 6.3206, 6.5225, 5.3424,

21 4.1786, 2.0207, 4.0041, 4.1895, 3.8442, 1.3753, 2.7833, 2.9003, 4.3425,
2.0897, 6.1193, 6.7926, 5.8599, 4.6238, 4.6644, 7.7007,

22 2,593, 3.1973, 2.9382, 3.4159, 2.2244, 3.873, 3.2114, 2.7942, 1.825,
4.6523, 7.3492, 5.9558, 6.091, 5.02, 6.9515, 7.0805,

23 2.8709, 4.3748, 3.4252, 3.6591, 2.4982, 3.7074, 3.5931, 3.3729, 3.1594,
0.1834, 6.4623, 5.3437, 6.2259, 5.3119, 6.9811, 4.3184

24 ),

25

26 wl.base <~ function(data=y, n.d.pnts.cmp=2.5¢6, n.cmps=4, n.cnts=le5, n
=le3, prior.k=c(0.25, 0.25, 0.25, 0.25), seed=1905042700, ...){

27

28 cat (7 wwEkk Program Description wkkkk \n”);

29  cat(”Filename : sim.wl.R \n");

30 cat (" Description : Bayesian Normal Mixture with equal variance and
unknown number of components for Simulated Dataset with Wang—Lee
Algorithm \n”);

31  cat(” Affiliation : Statistics, University of Manitoba \n");

32 cat(”Supervisor : Dr. Liqun Wang, wangli@cc.umanitoba.ca \n”);

33 cat(”Programmer : Chel Hee Lee, umlee@cc.umanitoba.ca, gnustats@gmail
.com \n\n");
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cat (paste(”Program Launching Time : 7, Sys.time(),”\n\n” ));

cat( "\n#xskx Data Analysis ssxs+\n\n" );
data.length <— length(data);

data.min <~ min(data);

data.max <— max(data);

data.range <— data.max — data.min;
data.sum <~ sum(data);

data.SS <— sum(data”2);

cat( paste(”Minimum = ", data.min, 7, Maximum = *, data.max, ” Range =
7, data.range, "\n\n") );

cat( ”Set Hyper paramecters from Data Analysis.\n” );

h.mu <~ (data.min + data.max)/2;

h.var <~ data.range2;

h.alpha < 2;

h.beta <~ ceiling ((data.range/6)"2);

cat( paste(”Hyper Mu = ", h.mu, ”, Hyper Variance = ”, h.var, "\n”) );

cat( paste(”Alpha = 7, h.alpha, ” Beta = ”, h.beta, "\n\n") );

mu.min <~ data.min;

mu.max <— data.max;

mu.range <— mu.max — nwu.min;

var . min <— 0.1;

var .max <— 5;

var.range <— var.max — var.min;

w.min <— 0;

w.max <— 1;

w.range <— w.max — w.min;

set.seed (sced);

cat(paste("Random Seed = 7, seed, "\n”));

cat (paste(”Number of Mixture Components = ”, n.cmps, ”\n”));

cat{paste(”"Mean: Lower Limit = ”, mu.min, ”, Upper Limit = 7, mu.max,
"\n7));

cat{paste(” Variance : Lower Limit = 7, var.min, 7, Upper Limit = 7,
var.max, "\n"));

cat (paste(” Weight : Lower Limit = ”, w.min, ", Upper Limit = ", w.max,
"An\n”));

cat (paste(” Total discrete base points(n.d.pnts) = ”, n.cmps =* n.d.pnts
.emp, "\n”"));

cat (paste("Numbe of contours = ", n.cnts, "\n”));

cat(paste(”\n Prior for Number of Components \n"));

print (prior.k);

cat(paste(”Size of samples drawn = 7, n, "\n”));

cat (paste(”Data Analysis and Initial Values are sect up at ”, Sys.time

0, "\n\n"));
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82  cat("Now the program is starting a discretization\n\n");
83

84 # Defintion of Discrete Base Point Generator

85  generator <~ function(add.pnts){

86

87 # Generating Random Discretized Points

88 mu.on.k <- matrix(runif(add. pnts*ind.cmp, mu.min, mu.max), ncol=ind.
cmp) ;

89 if(ind.cmp !'= 1){ # mul < mu2 < mud <

90 mu.on.k <— t(apply(mu.on.k, 1, sort)):

91 }

92 var.on.k <~ matrix(rep(runif(add.pnts, var.min, var.max), ind.cmp),
ncol=ind .cmp) ;

93 w.on.k <- log(matrix(runif(add.puts*ind.cmp, w.min, w.max), ncol=ind
.cmp) )

94 w.on.k <— w.on.k/rowSums(w.on.k);

95

96 # Formula Setting

97 cmp.gamma <— log(ind.cmpgamma(ind.cmp) "2) — 0.5xind.cmpxlog(2%pixh.
var) + log(prior.k[ind.cmp]);

98 if (ind.cmp = 1){

99 log.likelihood <- (—0.5)xdata.lengthxlog(var.on.k)—0.5/var.on.kx*(

data.SS —2xdata.sumsmu.on.k + data.lengthsmu.on.k"2);
100 log. posterior <- log.likelihood + cmp.gamma ~ 0.5/h.vars(mu.on.k-h
.mu)"2-(h.alpha+1)*log(var.on.k) — h.beta/var.on.k;

101

102

103 log.likelihood <~ (—0.5) * data.length * log(var.on.k[,1]);

104 for( d.ind in 1:data.length){

105 norm.den <~ w.on.k+exp( —0.5/var.on.k * (data[d.ind]-mu.on.k)"2 );

106 log.likelihood <- log.likelihood + log(rowSums(norm.den));

107 }

108 log.posterior <— log.likelihood + cmp.gamma — 0.5 /h.varsrowSums ( (mu.
on.k-h.mu) "2) ~ (h.alpha+1)*log(var.on.k[,1]) — h.beta/var.on.k
[,1];

109 return (data. frame (MEAN=mu.on.k, VARIANCE=var.on.k, WEIGHTI=w.on .k,
log.likelihood=log.likelihood , log.posterior=log.posterior ,
posterior=0, I=ind.cmp));

110} # generator()

111

112 # Data Structure for Compact Region
113 library(R. utils);

114 monte.space <— data.frame();

115 monte.tmp <- data.frame();

116

117 for ( ind.cmp in 1:n.cmps){
118

119 s.iter <— 0

120 add.more <— n.d.pnts.cmp;
121

122 while (add . more > 0){

123

124 s.iter <— s.iter-+1;

125
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# First generation

space.cmd <— gsub(” 7, "”, paste(”s.space”, ind.cmp, ”.”, s.iter,”
<— generator (add. pnts=add.more);” ));

eval (parse(text=space.cmd));

# Inflating log.posterior to posterior

inflate .cmd <— gsub(” 7, ””, paste(”s.space”, ind.cmp, .7, s.iter
,"8posterior <— exp(s.space”, ind.cmp, ".”, s.iter, "$log.
posterior);”));

eval (parse(text=inflate .cmd));

# Filtering in the significant rTegion

filter .cmd <~ gsub(” 7, 7", paste(”s.space”, ind.cmp, ".”, s.iter,
7 <— s.space”, ind.cmp, 7.”, s.iter, ”[which(s.space”, ind.cmp
, 7.7, s.iter ,"$posterior > 0), ]:7));

eval(parse(text=filter .cmd));

more.cmd <~ gsub(” ”, 7 paste(”add.more <— add.more — nrow(s.
space”, ind.cmp, .7, s.iter ,”);”));

eval (parse(text=more.cmd));

}

pnt.cmd <— gsub(” 7, ”7, paste(”space”, ind.cmp, "< data.frame()”))
H

eval (parse (text=pnt.cmd));

# Creating the sample space in the significant region
for( i in l:s.iter){
spacec.cmd <— gsub(” 7, 7”7, paste(”space”, ind.cmp, "<— rbind(space
7, ind.cmp, 7, s.space”, ind.cmp, 7.7, i.7)"));
eval(parse(text=space.cmd));
rm.cmd <- gsub(” ”, 7, paste("rm(s.space”, ind.cmp, 7.7, 1,7);7))
;
eval (parse(text=rm.cmd));

}

c.cmd <— gsub(” ", ””, paste(”"n.rows <— nrow(space”, ind.cmp,”)”));
eval (parse(text=c.cmd));

cat(”\n”);
cat (paste(n.rows, 7 base points in 7, ind.cmp,”th component are
cumulated in the significant region\n”));

# MLE and AMLE

cat (paste (" \n#*x%* The MLE and AMLE in 7, ind.cmp, " th component *x
%k \n”));
search.cmd <— gsub(” ”, 77, paste(”"max.ind <— which.max(space”, ind.

cmp,”8log. likelihood) ;7)) ;
eval (parse (text=search.cmd));

mle.cmd <— gsub(” ", 7”, paste(”space”,ind.cmp,” [max.ind ,];"));
print (eval(parse(text=mle.cmd)));
cat("\n ”);
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# Mode of Log—Posterior FEstimator and its Joint mode

cat (paste(” \n###x+ The Mode of log—posterior in 7, ind.cmp, " th
component s#kkx \n”));

search.cmd <— gsub(” ”, 7”7, paste(”max.ind <~ which.max(space”, ind.
cmp,”$posterior);”));

eval (parse(text=search.cmd));

mle.cmd <~ gsub(” ”, "", paste(”space”,ind.cmp,” [max.ind ,];"));

print (eval(parse(text=mle.cmd)));

cat(”\n 7);

# Adding KEY -index for searching and querying

key .cmd <— gsub(” "? . paste(”space”, ind.cmp,” <— data.frame(
space” , ind.cmp, ", KEY=seq(nrow(space”, ind.cmp,”)));” ));

eval(parse(text=key.cmd));

# Saving Objects

size.cmd <— gsub(” *, ””, paste(”object.size(space”,ind.cmp,”

cat (paste(” Object size of space ”, ind.cmp, ” is 7,
size.cmd)), "\n” ));

save.cmd <— gsub(” ", ”” paste(”saveObject(space”, ind.cmp, 7, file
=’space”, ind.cmp, ”.RData’);”) );

eval (parse (text=save.cmd));

"))

)
eval(parse(text=

# Creating Monte Compact Space

monte.cmd <— gsub(” 7, ””, paste(”monte.tmp”, ind.cmp,” <— data.
frame(evaluates=space”, ind.cmp,”$log. posterior, cmp.id=space”,
ind.cmp, "8I, KEY=space”, ind.cmp, "$KEY);"));

eval(parse(text=monte.cmd) ) ;

save.monte.cmd <~ gsub(” 7, ”” | paste(”saveODbject {monte.tmp” ,ind.cmp
” s

7, file="monte.tmp” ,ind.cmp,” .RData’)”));
eval(parse(text=save.monte.cmd));

cat (paste(” Object Size of Monte Space”, ind.cmp,” is ", object.size(
monte.space),”\n" ));

# Removing Objects for saving memory
rm.cmd <— gsub(” 7, "”, paste(”rm(space”, ind.cmp,”)”));
eval(parse(tex=rm.cmd));

}

cat (paste(” Discretization is completed at ", Sys.time(), ”"\n MLE and
AMLE are found. \n\n”));
rm( list=Is (all .names=TRUE) ) ;

}

wl.sampling.control <— function(n.cmps=4, n.cnts=le5, n=le3, control=1,
p.last=0.01, ...){

library (R. utils);
monte.space <— data.frame() ;

cat (paste(”\n Proportion used in last contour = ”, p.last,” \n\n"” ));
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A.3. ANALYSIS OF SIMULATED DATA

211 for(ind.cmp in 1:n.cmps){

212 load.cmd <~ gsub(” 7, "7, paste(”monte.tmp” ,ind.cmp,” <— loadObject
(’monte.tmp” , ind.cmp,”.RData’);” ));

213 eval(parse (text=load.cmd));

214 monte.space.cind <— gsub(” ?, 7”7  paste(”monte.space <— rbind (monte.
space , monte.tmp” ,ind.cmp,”);”));

215 eval(parse (text=monte.space.cmd)) ;

216}

217

218  n.d.pnts <-— nrow(monte.space);
219 n.pnts.cnt <~ n.d.pnts/n.cnts;

221 chk.quantile <~ seq (0.1, 1, 0.1);

[¥¥]

# Posterior Information

cat ("#xx+x Quantiles of Log Posterior sk \ 07 )
print (summary(monte. space$evaluates)) ;

print (quantile (monte.space$evaluates, chk.quantile));
cat(”\n”);
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229  # Inflate log wvalue to the original values (taking ezponent)
230 monte.space$cvaluates <— with (monte.space, exp(evaluates));

232 # Posterior Information

233 cat("#xx+x Quantiles of Posterior sk \n" )

234 print (summary(monte. space$evaluates));

235  print(quantile (monte.space$evaluates, chk.quantile) )
236 cat("\n");

238 # Sorting all log—posterior points by descending order

239  monte.space <~ with (monte.space, monte. space [order(evaluates ,
decreasing=TRUE) ,]) ;

240

241 # Saving mode information

242 mode. info <— monte.space |1 ,];

243

244  # Contourization

245 lebergue . measure <— with(monte.space , hist (evaluates , breaks=seq(from=
min(cvaluates), to=max(evaluates), length.out=n.cnts+1), plot=

FALSE));

246

247 cat(”"\ns#xxx Analysis of Contours sx##%\n”);

248 cat(paste(”Height in a contour in LOG = ”, log(lebergue.measurc$mids
[2] —lebergue . measure$mids [1]) ,”\n”));

249 cat(paste(” Height (Midpoint) in a contour = ”, lebergue.measurc$mids
[2] —lebergue . measure$mids[1],7\n"));

250  cat(paste(”Number of points in last contour = 7, lebergue . measure$
counts [control] ,” \n”));

251  cat(paste(”The proportion to be climinated on points if neccessary = "
; lebergue.mcasure$counts[control] /nrow(monte.space) ,” \n”));

252

253  # Normalized CDF

254  get.pdf <— rev(lebergue.measure$counts * lebergue. measure$mids) ;
255
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A.8. ANALYSIS OF SIMULATED DATA

# Consider low probability in the tails
get.pdf[n.cnts] <— get.pdf[n.cnts|*p.last;
nmlzd . cdf <— ¢(0. cumsum(get.pdf)/sum(get.pdf));

# Sampling from the range covering all components

rnd . variates = runif(n);
p.sample.size <— hist(rnd.variates, breaks=nmlzd.cdf, plot=FALSE)$
counts;

valid .samples <~ which(p.sample.size >0);

cat ("sssxxk Analysis of sampleskssx*\n");
cat (paste(”The number of contours containing sample points = 7, length
(valid .samples), "\n"));

# Searching index from original sample space

sample. cnt <— mapply (sample, MoreArgs=list (replace=IRUE), rev(lebergue
.measure$counts), p.sample. size);

cum. pnts.ind <— ¢(0, cumsum(rev(lebergue.measure$counts)));

cum.pnts.ind <- cum.pnts.ind[—(n.cnts+1)];

sample. list <— mapply ("+", as.list (cum.pnts.ind), sample.cnt);

sample. ind <— unlist (sample. list);

monte.space <— monte.space [sample.ind, ];

cat (paste(”**#*xMarginal Posterior Distribution of Component Ksssxx"))

print (table (monte.space$cmp. id)/length (monte. spaceSomp.id));

# Matching and Querying
query .space <— split (monte.space, monte.space$cmp. id);

for ( ind.cmp in 1:n.cmps){
load.cmd <— gsub(” 7, 7", paste(”space”, ind.cmp,” <— loadObject {’
space” ,ind.cmp,” .RData’) ;7 ));
eval(parse(text=load.cmd));

if (mode. info$cmp. id = ind.cmp){
p.mode.cmd <— gsub(” 7, 7”7, paste(”p.mode <~ space” ,mode. info$cmp.
id ,” [mode. info$SKEY, [7));
eval (parse(text=p.mode.cmd)) ;

# Mode of log—posterior and its joint mode
cat (paste(”\n #xxx*xx Joint Mode for Log—Posterior is found at *,

mode. info8cmp.id , "th component. xxxxx \n"));
print(p.mode) ;
cat("\n”);
}
query.cmd <— gsub(” 7, "" . paste(”space”, ind.cmp,”<— space”, ind.

emp, "[query.space$’”, ind.cmp, " ’SKEY,]"));
eval (parse (text=query.cmd));

# Saving samples from spaces

save.samples <— gsub(” 7, 7", paste(”sample”,ind.cmp,” <~ saveObject
(space” ,ind.cmp,” ., file='sample” ,ind.cmp,” .RData’);")});
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301 eval (parse(text=save.samples));
302 )

303  cat(paste(”\nQuerying procedure for all spaces is completed.\n" });
304 cat(paste(”Sampling procedure is completed at 7, Sys.time(),”\n\n” ));

305 rm(list=ls(all.names=TRUE));
306 }

307

308 wl.analysis<— function(n.cmps=4){
309 library (R. utils);

310

311 # Numerical Analysis

312 for(ind.cmp in 1:n.cmps){

313 sample.cmd <— gsub(” 7, 77, paste(”sample.ind <— loadObject (’sample”
, ind.cmp,” .RData’)” ));

314 eval (parse (text=sample.cmd) ) ;

315

316 if (nrow(sample. ind )==0){

317 cat (paste(” There is no drawed samples in this ", ind.cmp, ”
component in a mixture\n”));

318

319 else{

320 meanMarginal <— sapply (sample.ind, mean);

321 sdMarginal <— sqrt( sapply(sample.ind, var) );

322 cat (paste(” \nx*#+** Numerical Information on ”, ind.cmp, "th
component #kx%x\n”"));

323 print ( list (MEAN=meanMarginal, SD=sdMarginal));

324

325 vars <— names(sample.ind);

326 vars <— vars|[—(length(vars)—3):—length(vars)]

327 print(vars);

328

329 for ( v.ind in vars) {

330 file.cmd<— gsub(” "7, 7”7, paste(” postscript(file="sim.wl.K.”, ind.cmp,

7, v.ind, 7.eps’);"));
331 eval(parse(text=file.cmd));

332 hist.cmd<— gsub(” 7, ”?, paste(” hist (sample.ind$”, v.ind, 7, freq=FALSE

? »

breaks=40, main=" ', xlab=" Component.K=", ind.cmp,

)57));
333 eval(parse(text=hist.cmd));
334 dev.off();

335

336 cat(paste(” All Histograms are created in ”, ind.cmp, ” th
component \n\n”));

337 rm(sample. ind);

338 }

339

340 cat(paste(”\nNumerical Analysis for all spaces is completed at ”

time () ,”\n” ));
341  cat(paste(”"The program is completed at ”, Sys.time(),”\n\n” ));
342  rm(list=Is(all.names=TRUE));
343 }
344
345 # Simulation on July 15, 2009, Final thesis submission
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A.8. ANALYSIS OF SIMULATED DATA

346 wl.base(data=y, n.d.pnts.cmp=2.5¢6, n.cmps=4, n.cnts=1e5, n=led, prior.k
=c(0.25, 0.25, 0.25, 0.25));

347 wl.sampling.control(n.cmps=4, n.cnts=le5, n=led, p.last=0.01);

348 wl.analysis (n.cmps=4);

349

350 rm( list=Is (all .names=TRUE) ) ;
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