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Abstract

In cold regions the production of fraztl ice in supercooled turbulent water has a profound

impact on the design, operation and maintenance of water resources infrastructure. Studies

on frazil ice formation are therefore important and imperative for ice engineering. This study

mainly focuses on the development of mathematical models for frazil ice formation and

evolution, which is an important part of modeling ice formation in a river.

A general mathematical model is formulated that includes the modeling of flow and

turbulence, heat transfer, and frazil ice transport in open chan¡rel flow. ln addition the

methodologies to model the physical processes of ice formation are described. Three

mathematical models to simulate the supercooling process and frazil ice evolution were

developed based on the general mathematical model and frazll ice dynamics. A

zero-dimensional mathematical model was able to simulate water temperature history, frazil

ice number evolution in the well-mixed water and the varied size distribution of frazil ice

during the supercooling process. A vertical one-dimensional mathematical model was able to

simulate water temperature variation with time at the different water depths, velocity and

turbulent intensity distribution over the water depth, and the vertical distribution of frazil ice

number concentration. The variation of mean size of fraztl ice particle is also simulated. An

extended one-dimensional mathematical model was developed from the vertical

one-dimensional model by including the size distribution of frazil ice and the complicated

physical processeS. The three mathematical models developed are calibrated and verified

using experimental data.
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General Description

CHAPTER 1 General Description

1.1 lntroduction

The formation of ice in rivers and waterways is a natural phenomenon in cold regions, but

sometimes it can create engineering challenges and affect the design, operation and

maintenance of hydraulic facilities. The associated problems include floods produced by ice

jams, negative effects on hydropower operation, inland navigation, water diversion, the

environment, and river morphology. Accurate (theoretical) river ice forecasts could be a

great asset in dealing with these problems since such forecasts would provide the necessary

time to schedule procedures to mitigate the adverse effects on the operations of the various

river structures. With adequate warning, procedures could be implemented in an orderly and

effective manner. Additionally, emergency measures such as an evacuation or a flood

fighting effort might be instituted in a timely m¿ìnner.

lce research has drawn the attention of research engineers and scientists. Generally ice
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General Description

research is divided into two areas: the study of river ice and the study of sea ice, both of

which involve similar physical processes although salinity and strongly nonlinear waves are

involved in the formation of sea ice. This study will be confined to the formation of river ice.

River ice phenomena include the formation, evolution, transport, accumulation, and

deterioration of various forms of ice (Shen, L996).

River ice processes involve complex interactions between the hydrod5mamics, mechanics,

and the thermal dynamics. Several reviews of river ice processes and the state-of-research

are available (e.g., Ashton, 1986; Gerard, 1990; Prowse, L993; Beltaos, 1995; and Shen,

1996), in which it is stated that the studies of frazil ice formation and anchor ice formation

are very limited, and that more attention and effort are required in these two areas.

Frazil ice is defined as a fine, small, needle-like structure or thin, flat, circular plates of ice

suspended in water (USA CRREL, lgg7),and it is the origin of almost all the others forms

of river ice (Ettema et al., 1984). Early studies of frazil ice usually focused on the

supercooling process, nucleation, frazll ice growth and evolution both from an experimental

and a mathematical perspective. Mathematical modeling has been useful in predicting the ice

formation and its corresponding consequences, while the experimental study often provided

useful data for the development of the mathematical models and for elucidating unclear

mechanisms about ice formation.

Mathematical Modeling of Frazil lce Form.ation and Evolution



General DescrÍption

1 .2 Physical Processes of Frazil lce Formation

The process of frazrl ice formation can be characterized by several physical processes

including initial seeding, secondary nucleation, flocculation and break up, and buoyancy

removal. All of these processes are fundamental for ice formation and their mechanisms are

important for mathematical formulation of ice formation. The process of ice formation can

be reflected and illustrated by the supercooling process, which shows the water temperature

variation during ice formation.

1.2.1 Supercool¡ng Process

In the presence of a low ambient air temperature, the heat loss from a water surface exceeds

the heat gain. As a result, the water temperature drops to the freezingpoint. With the heat

loss continuing at the water surface, the water becomes supercooled (i.e., T<0 0C), and then

frazlI ice starts to form. The formation of frazll ice releases latent heat to the water; the

maximum point of supercooling occurs when the heat loss from the water surface just

exceeds the heat produced by frazil ice formation. Subsequently, the water will warm up

gradually because the heat released from frazil ice production exceeds the heat loss from the

water surface. Finally, the mixhrre of water and ice will reach an equilibrium state T". A

typical supercooling process is depicted in figure 1.1.
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l.2.2lnitiation of Frazil lce

The initial formation of frazil ice begins when turbulent water is supercooled and the water

is seeded with ice crystals from the atmosphere (Svensson and Omstedt, Igg4). This

phenomenon is usually referred to as heterogeneous nucleation, which requires the presence

of a foreign particle to serve as the nuclei. Heterogeneous nucleation is commonly observed

in nature, while homogeneous nucleation, not requiring any foreign paficles, is not realized

in any natural water body since it only occurs for water temperatures less than -38 oC. Frazil

ice usually starts to appear at the nucleation temperature T¡ as indicated in figure 1.1.

The amount of the initial f:azil ice produced most likely depends on the amount of seeding

of foreign particles. Foreign particles usually come from a mass transfer process whereby

seed crystals are introduced from the atmosphere into the water column. The sources of the

seed crystals are the wind and the air-borne water droplets created by splashing, wind spray,

and air-bubbles bursting that freeze in the air and drop back into ttre flow as ice particles

(Osterkamp, L978; Daly, 1984).

1 .2.3 Secondary Nucleation

Secondary nucleation is responsible for the production of small crystals and is the cause of

the rapid proliferation of frazil ice particles. Three mechanisms have been identified by Denk

and Botsar is (L972),by which secondary nuclei could be generated by the parent crystal: (1)

the growth and the detachment of surface irregularities; (2) the ordering of the solute

Mathematical Modeling of Frazil lce Formation and Evolutíon



General Description

molecules near the surface of the parent crystal, which leads to a high local super-saturation

and induces primary nucleation; and (3) the uptake of impurities by the growing parent

crystal which sufficiently reduces the impurity concentration near the crystal surface such

that primary nucleation becomes locally possible. The last two mechanisms are unlikely

sources of secondary nuclei because of the high level of super-saturation (supercooling)

required for primary nucleation and because the possible numbers of nuclei produced by

these mechanisms would not be sufficient to explain observations (Mercier, 1984). In any

case, at a low super-saturation the first mechanism is the main source of secondary nuclei

(Ottens et al., 1972).

Evans et al. (I974a, b) demonstrated experimentally that the rate of production of the

secondary nuclei in agitated crystallizers is removal-limited, that is, it depends on the rate of

the detachment of surface irregularities rather than the rate of growth of the irregularities.

They indicated that fluid shear and collisions of the crystals with hard surfaces (including

other crystals) could cause the detachment of the surface irregularities.

It is commonly agreed that the dominant mechanism of secondary nucleation for frazil ice

crystals is collision breeding. The rate of production of the nuclei depends on: the rate of the

collisions between the crystals; on the energy associated with each collision; and to a lesser

extent on the super-saturation and the impurity concentration (Mercier, 1984).
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'|.2.4 Flocculation and Break up

The mechanism of flocculation is not yet well understood although the process of sintering is

usually used to explain the mechanism (Daly, L994). Sintering apparently results from the

tendency_of crystals to minimize their surface free energy. Martin (1981) has determined the

bonding time required for small spheres and dis.ks in the sintering process to be on the order

of 0.01 seconds. This is sufficiently fast to account for the observed flocculation of frazil ice

particles in turbulent water. Mercier (1984) in his simulation assumed that turbulent shear

and the differential rates of rising were the two mechanisms causing collision of crystals for

sintering. Figure 1.2 shows the sintered ice block observed by Clark and Doering (200Ð.

Break up of a larger frazil bloc may happen when it collides between or with solid

boundaries, but it seems that flocculation is more significant than the break up process.

1.2.5 Buoyancy Removal

Frazil ice particles in water are subjected to a buoyancy force, drag force, and turbulent

mixing action. Therefore, their movements in water are determined by a combination of

these actions. For smaller frazil particles, the turbulent mixing is dominant and keeps the ice

particles entrained in the water. As the crystals grow and flocculate together, they may reach

a size where their buoyancy force overcomes the turbulent transport and the crystals will

float to the surface. On the other hand, the surface ice may break up and be resuspended in

the water. The relative time that ice floats on the water surface compared to ice being at

depth in a flow is scarcely known. Buoyancy is primarily effective for the removal of larger
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ice particles.

1.3 The Evolution of Fraztl lce Particles

1.3.1 Frazil lce Morphology

Various shapes of ftaztl ice, such as flat disked shapes, six-pointed stars, hexagonal plates,

spheres, and small pieces of dendrite ice have been observed in laboratory experiments and

in field observations. These various shapes come from a complex interaction between the

imposed heat transfer conditions and the intrinsic crystallography of ice (Daly, 1984).

However, it is commonly agreed that the dominant shape of ice crystals during the

supercooling period in a turbulent water body is a flat disk.

Hanley and Rao (1982) indicated that needle shaped frazlI ice forms only when the

turbulence level of the water is low. Needle-shaped particles were also observed in a natural

river setting by Osterkamp and Gosink (1982). Clark and Doering QO02) observed needle

shaped ice that formed in the counter-rotating flume at the Hydraulics Research and Testing

Facility (figure 1.3), and reported that typically such particles form near the surface, but are

quickly entrained in the flow through turbulence. Hexagonal plates have also been observed

both in the laboratory (Clark and Doering,2002) and in the field (Osterkamp and Gosink,

1982).
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The different irregular shapes of ice particles observed were dependent on the degree of

supercooling, the turbulence intensity and the depth of particle nucleation. Figure 1.4 shows

several examples of irregular ice particles.

1.g.zSize Range of Fraz¡l lce Disks

Crystal size varies considerably during ice formation (Daly, 1991). During seeding, the

typical dimension of the seeding crystals is about 10-s to 10-a m in diameter. When frazil ice

starts to form the typical size ranges from 10-5 to 10-2 m while the typical dimension of frazil

flocs is 10-3 to 10-1 m (Svensson and Omstedt,1994; Daly, 1984).

It has been observed that flat disks have a thickness to diameter ratio ranging from 1:5 to

1:100 (Arakawa, 1954). Daly and Colbeck (1986) investigated the aspect ratio of fuazll

crystals grown in a laboratory flume and found that the ratio of diameter to thickness was

about 10, and it gradually decreased along the flow. According to Daly (1984), the

diameter-to-thickness ratios range from 5 to 100. Frazil ice crystals apparently maintain their

disk shape up to a diameter of 3O0 ¡tm, which seems to be the maximum disc size limited by

instability (Daly, 1934).

1.3.3 Frazll lce Size Distribution

Once frazil ice is initiated in turbulent water, the ice crystals will grow in size and in number

and the size distribution will vary with time. Some experiments (Bukina, 1967; Mercier,
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1984; Daly and Colbeck, 1986; Ye and Doering, 2004; Clark and Doering, 2004) have been

conducted to study the size distribution of frazll ice in turbulent water.

Bukina (L967) conducted an experiment in a_ crystallization tray with the turbulence

generated by an agitator to determine the size distribution of the ice crystals, and from which

an equation for the distribution was developed

nu(2r) =L1zr¡t expb(zr), (1.1)

where r is the radius of the frazil ice, nb is the number of ice particles, and b

coefficient characterizing the position of the maximum of the crystal distribution curve.

equal to a value of -L4.L on the average.

Mercier.(1984) summarized some observations of suspended particle distributions in natural

water and suggested that the particle size distribution can be described by an equation with

the following form

is

II

s,(t)=!rf =al-b, (r.2)

where g^(l) is the number density distribution (number of particles per unit fluid volume,

per unit particle length), dc"(l) is the number concentration (number of particles per unit

fluid volume) for a particle length scale t-d% to l+d/r: a and, b are constants

(b -4.O). Svensson and Omstedt (1994) suggested a parameter ür,o, representing the

flocculation/break up process in their mathematical model and calibrated the parameter with

a value of 0.001 based on Mercier's (1984) suggested spectrum.
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A log normal distribution has been found by experiments to be a good approximation for the

size distribution of individual frazil ice discs (Daly and Colbeck, 1986; Horjen, L994; Ye and

Doering, 2004; and Clark and Doerin9,2004).

Daly and Colbeck (1986) carried out a series of experiments to examine the dynamic size

distribution and the concentration of frazll ice crystals in a CRREL flume. They found that

the measured crystal size ranged from about 35 ¡rm to 0.5 mm. The mean of the size

distributions was generally above 0.1 mm. As noted, they observed that the size distribution

could be approximated by a log normal distribution. A different mean and a different

standard deviation were given for each experiment, but a general formulation was not noted.

Horjen (1994) formulated the size distribution according to Daly and Colbeck (1986) resulrs

AS

(1.3)

where fl,*n(d,,") represents the number of particles per unit volume and per unit increment

of particle size (spectral size distribution), log lt denotes the logarithmic mean (expected)

value, s' is the logarithmic variance, i.e., the logarithm of the particle diameter is in the

interval of [log¡r-3s, log¡r+3s]. (The square root s of the variance is the standard

deviation). If d, arñ. drare the diameter of the smallest and largest particles of frazil ice,

respectively, then

fln*n(d,,", = *n[-å
(Iogd,,"- log¡r)' I_-----------;-l'

s')
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þ=,[dJ4

' = frrcg@.,1d,).

Ye and Doering (2004) showed that the frazil ice distribution by volume can be represented

approximately by a lognormal distribution, which is concluded from their experimental data

analysis. The instantaneous mean diameter of frazil ice and the standard deviation were

formulated in terms of the flow Reynolds number, ftazll ice concentration, etc.

Clark and Doering (200Ð conducted a series of experiments in a counter-rotating flume

using an improved, frazil ice observation system, which was able to observe paficles as

small as 0.055 mm. They found that a lognormal distribution fit the experimental data quite

well at different times during the supercooling prõcess (see figure 1.5). The variation of the

mean size of the frazil ice was also given as shown in figure 1.6, and it is mathematically

formulated in chapter 6 of this thesis. However, a mathematical description of the standard

deviation is not given.

1.4 Brief Review of Mathematical Models Devetopment on

Frazil lce Formation

The study of frazil ice formation has become one of the most important tasks in the field of
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ice engineering because frazil ice is the origin of most forms of river ice. Therefore frazil ice

modeling is the most basic portion of the modeling of ice formation in rivers.

The most important factors in frazll ice formation are the seeding rate, the heat transfer rate

and the turbulence level of the water. Some mathematical models (Daly, 1984; Mercier, L9g4;

Svensson and Omstedt, L994: Hammar and Shen, 1995) have been developed to simulate

frazil iceformation in water. These models are briefly introduced in the following sections.

1.4.1 Daly (1984)

Based on the Randolph and Larson (I97I) theory of crystallization,Daly (1984) developed a

descriptive and predictive crystal distribution model. The model can be described by two

equations: the crystal number continuity equation and the heat balance equation. These two

equations are linked by the growth and the secondary nucleation rate of the ice crystals,

which are dependent on both the heat balance and the crystal size distribution. In theory, the

equations can be solved if the various required boundary and initial conditions are known.

However, Daly (1984) also noted that the equations a¡e dimensionally incompatible and

strongly nonlinear.

1.4.2 Mercier (1984)

Mercier (1984) extended the work of Daly (19S4) and formulated a kinetic model of frazil

ice growth and verified it against experimental data. In his model, the transport equation for
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a one-point, joint scalar probability density function (PDF) is employed to incorporate fast,

nonlinear reaction kinetics into a general transport model. In addition, a stochastic algorithm

for simulating the differential sedimentation and the radial diffusion was developed. A

Monte carlo technique was applied to solve the PDF transport equation.

1.4.3 Svensson and Omstedt (1994)

In Svensson and Omstedts' model, frazil ice particles are classified into several discrete

radius intervals, within which all the particles are assumed to be of an equal radius. The

number of particles in each group is assumed to be a function of initiat seeding, ice particle

growth, secondary nucleation, flocculation/break up, and gravitational removal. Ice particle

growth is determined by the heat transfer rate between the water and the ice particles.

Secondary nucleation is simulated in terms of the collisions between the particles and

flocculation is considered based on a sintering mechanism. Gravitational removal is assumed

to have more effect on the larger particles. The number continuity equation, which describes

the evolution of the particle size distribution from an initial stage, together with the overall

heat transfer equation, are both solved to obtain the frazil ice numbers in the subsequent time

step.

1.4.4 Hammar and Shen (1995)

Hammar and Shen's model is comprised of three differential equations: the mean flow

equation, the frazil concentration equation, and the water temperature equation. In their
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model frazil ice particles are assumed to be thin circular disks with a constant ratio of 1:10

(thickness to the face diameter). The frazil ice size distribution is described using eight

logarithmically spaced size groups. The size of the groups range from 4Fm to I.432 mm

(radius); the seed crystals and secondary nucleation are assumed to occur in the lowest size

group. The formulation of frazll ice evolution includes thermal growth, secondary nucleation,

and flocculation. The flow turbulence was simulated by a typical k-e model and all the

equations are finally solved using ttre PHONIEX commercial software.

1.5 Research at Hydraulics Research and Testing Facilities

Because of the significant effect of ice on hydraulic facilities in Manitoba, especially on

hydropower stations, the Hydraulics Research and Testing Facility (HRTF) at the University

of Manitoba started to explore some of the intriguing questions related to frazil ice formation

using the unique counter-rotating flume available at the I{RTF. Numerous experimental

studies and some mathematical modeling have been undertaken. (Doering and Morris, 2002

clark and Doerin g,2002,2004;Ye and Doering, 2004;clark and Doerin g,2006)

Doering and Morris (2002) developed a digital image processing system to characterize

fraztl ice. The system used cross-polarized light and a CCD camera coupled to a frame

grabber to acquire gray-scale images of frazil ice particles. The digital images were

manipulated by ttre processing system to derive a binary image showing the frazil ice
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particles. The binary images were subsequently analyzed to characterize the particles. Based

on this system aftazllice distribution was identified.

Clark and Doering (2002) recognized several different types of fraztl ice formations using an

updated version of the above digital image processing system. They found that needle

shaped particles occurred fi¡st, followed by disk-shaped particles, stars, and hexagons. The

maximum size of uniform frazil disks was observed to be about 5 mm in diameter, after

which they become unstable, non-uniform, and jagged. They also found that the size

distribution of frazil ice can be well described by a lognormal distribution at different times

during supercooling. The variation of the mean size of the ice particles seems to follow a

common tendency, which increases in the principal supercooling process and reaches a

plateau in the period of residual supercooling (Clark and Doerin g,2004).

Ye and Doering (2004) conducted more than forty experiments to examine the effect of

different hydraulic parameters on the supercooling process and fraztl ice evolution. In

addition, a mathematical model was developed to model the supercooling process and frazil

ice evolution.

Clark and Doering (2006) conducted a series of experiments in a counter rotating flume at

the Hydraulics Research and Testing Facility, University of Manitoba. A high-precision

thermometer and recently improved digital image processing system were used to acquire
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data from these experiments, which will hopefully aid in the development of numerical

models. The effects of air temperature, water velocity, and bottom roughness on the

formation of ftazll ice are discussed. It is concluded that a lognormal distribution appears to

provide a reasonable fit to the observe d, fraztlparticle size distributions.

1.6 Objectives of this Research

Although a lot of effort has been put into the study of frazll ice formation by ice researchers,

there is still more that needs to be done. The mathematical model developed previously have

some shortcomings such as not considering all of the physical processes of ice formation, or

were not verified by experimental data, etc. Therefore, comprehensive mathematical models

are required and needed to be experimentally verified in order to be used in practice. The

counter-rotating flume at the HRTF has provided a lot of experimental data for model

calibration and verification.

The objectives of this research are:

a) to develop a zero-dimensional mathematical model which considers the cornplicated

physical processes of ice formation to simulate the supercooling process and the evolution

of frazil ice number during the supercooling process;
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b) to develop a vertical one-dimensional mathematical model to simulate the vertical

distribution of flow turbulence and hazll ice number concentration;

c) to develop an extended one-dimensional mathematical model by combining the

zero-dimensional and one-dimensional model;

to investigate the effects of different turbulence models on frazil ice formation; and

to compare simulation results from the mathematical model with experimental data.

d)

e)

1 .7 Thesis Organization

This document is orgarized to eight chapters. In chapter 2, a general mathematical model is

formulated based on the. theories of open channel flow, heat transfer and mass transfer.

Chapter 3 introduces some methodologies for modeling the different physical processes of

frazil ice formation. In chapter 4 a zero-dimensional mathematical model is developed and

used to simulate frazil ice formation in a well-mixed water body. Chapter 5 presents a

mathematical model with the vertical space dimensions considered that simulates the

supercooling process and the distribution of frazil ice number during the supercooling process.

In chapter 6 an extended mathematical model is formulated by considering the size

distribution of frazil ice and the physical processes of ice formation. Chapter 7 investigates the

effects of different turbulence models onfrazil ice formation. Finally in chapter 8 the work of

this study is summarized and some conclusions are presented and some recommendations for

future study are also suggested.

Mathematical Modeling of Frazil lce Formation and Evolution 17



General Description

Temp. T oC

Principal supercooling

T'= OoC'TN

Nucleation point
'{'"

Max. supercooling point

Figure l.L Typical supercooling processes.

Figure L.2 
^nobserved 

sintered ice mass (Clark and Doering,2004).
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Figure 1.3 Needle ice formed in the counter-rotating flume at the HRTF (Clark and Doering,

2002).

Figure 1.4 Inegularly shaped particles (Clark and Doering,2002).
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CHAPTER 2 A General Mathematical Model for Frazil

lce Evolution ln Turbulent Water

2.1 lntroduction

The process of frazil ice formation, involving flow turbulence, heat transfer between ice

particles and the ambient flow, and the transport of frazil ice in water, is a very complicated

phenomenon. Theoretically, frazil ice formation can be categorized as a typical two-phase

flow problem. The modeling of two-phase flow has been a very prevalent and challenging

subject in the field of computational fluid mechanics over the past decades (R. Scardovelli

and S. Zaìesl<t,lggg).

Different approaches have been developed to formulate two-phase flow (Tryggvason et al.,

200L). The main focus has been on the treatment of the interface that separates the phases:

Since the detailed knowledge of the position of the phase interface is not always known and

it is very costly to obtain it computationally, the so-called homogenized or averaged mixture
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models are put forward as an altemative to the interface methods (Ishii, 1975). The system of

governing equations for such models is obtained by the volume and time averaging of the

single phase equations. The averaging of the single phase equations results in additional

terms, which describe the interaction between the two phases.

In the fraztl ice formation process, frazil ice concentration is usually very small both in a

natural water body and in the experiments. It has been found that the frazil crystal

concentrations range from about 10a to 106 crystals/m3 in a natural river (Schaefer, 1950;

Oskerkamp and Gosink,1982), and from 1.8x105 to 9.82x10s crystals/m3 in a laboratory

flume (Daly and Colbeck, 1986). The upper limit of frazil concentration formed in a

supercooled water stream is of the order of 0.5Vo by weight (Tsang, 1986). Therefore, the

assumption that the influence of frazil ice on flow turbulence can be neglected appears

reasonable. The density difference between the water and the frazll ice is quite small and the

relative velocity of the frazil ice to the ambient water is also quite small, so the flow

equations are only considered in the modeling of fraztl ice formation.

2.2 Modeling of the Flow and the Turbulence

The flows in most nafural rivers are turbulent flow and can be described by time dependent

Navier- Stokes equations (i.e., N-S equations). N-S equations can be solved directly with

supercomputers; however, it is very time-consuming and sometimes not necessary if the
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detailed turbulence structure is not of interest. The mean-flow equations that are derived by

statistically averaging the N-S equations are usually used for turbulent flow simulations. The

derived Reynolds equations are no longer closed when the Reynolds stress term is

introduced, therefore a turbulence model is necessary to close the system.

2.2.1 Flow Equations

The continuity equations for the mean flow can be written as,

ðU, 
=0.

ð4

The momentum equation can be described by,

(2.r)

(2.2\

where p,n is the density of the mixture, p,n= p*+(p,- p)ZCo , p, and p* are the

densities of ice and water, respectively, U i is the 4, component of the mean velocity,

ara " the Reynolds stress, P* is the mean water pressure, y is the molecular viscosity,

vt is the kinematic eddy viscosity, and g ¡ is the jft gravity component.

2.2.2 Turbulence Modeling

Generally, two approaches are suggested to deal with the Reynolds stress term and close the

system mathematically. One is the eddy viscosity approach and the other is the stress

equation approach. The latter is rarely applied to open channel flow. The eddy-viscosity

model is formulated based on the assumption that the turbulent stresses are proportional to
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the mean velocity gradients, which is analogous to the viscous stresses in a laminar flow. A

variety of turbulence models have been suggested (Rodi, 2000) for the eddy viscosity

concept such as the zero-equation model, the one-equation model, the two-equation ft-e

model, the two-equation k-kl model, etc. The k-e two-equation model is the most

commonly used turbulence model for the simulation of open charurel flow

2.2.2.1The two-Equation /<-e Model

The turbulent energy Æ characteúzes the intensity of the fluctuating motion and represents

the velocity scale of the fluctuation. The kequation and the e equation in the /c-e

model are as follows,

**r,+=+lr+l+r+c-e (2.3)àt 'àr, âa [oo ôx, 
J

#. u,#= 
"",(i#l*t' itr*c)-c,,+ (z'4)

where fr is the turbulent kinetic energy and e is the energy dissipation rate, P is the

generation of turbulent energy, P =v,(Y.Yl+ , G'[ âr, òx, )ðx,

production/destruction, G =r,gé+* t p' -po â-C I
\or dz oc po u, )' 

o' is the

ice, po is the density of the water, and v, is the eddy viscosity,

water temperature, C is the concentration of the fraztl ice,

(,,=r,l),

or and oc

is the buoyant

density of the frazil

Z is the

are the
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PrandtUSchmidt number. Several empirical constants such as Cr, Cr", Cr", oo and oêare

included in the above equations, and the values of these constants as recommended by

Lauder and SpaldingG9TÐ are given in Table 2.1.

Table 2.L Valuès of the constants in k - e model

cr,

0.09 r.44 1.92 1.0

Now the mean flow equations together with the k - e model become a closed system, and

the system can be numerically solved with the proper boundary conditions.

The mathematical formulation for the flow (equations (2.1), (2.2)) and turbulence (equation

(2.3)) can be simplified into two-dimensional or one-dimensional cases (horizontal or

vertical direction) according to what terms can be neglected in the controlling equations in

terms of physical importance.

2.2.2.2 Zero-Equation Model

In a relatively simple turbulence model, i.e., a zero-equation model, the eddy viscosity can

be easily obtained from the expressions of k and e. The typical distribution of the eddy

viscosity in an open channel flow is given by Nezu and Nakagawa (L993). Several

expressions for k and e are available (Nezu and Nakagawa, 1993) in the zero-equation

model. A typical vertical distribution of the turbulent energy dissipation in an open channel

Mathematical Modeling of Frazil lce Formation and Evolutíon
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flow is described by (Mercier,1984; Hammar and Shen, 1995)

çr¡=Èçr_+,

The turbulent kinetic energy can be approximated by

2-

k(z\ = Ltr- ' 't .
0.3 ' H'

where z. is the friction velocity,

measured from the bed, and H

turbulence model I in this study.

The eddy-viscosity is

is the Karman constant, z is

the water depth. Hereafter,

(2.s)

(2.6)

the vertical distance

this model is called

K

is

I É(r-z\1'
vr=c,þ$f1 -cp u*Kz[,+)

*l'-+J 00e

Normally taking Cp = 0.09 then

t2
v, =CuL,,E

,, = hu.",(r- ft) =,.* 
[t 

- å )

(2.7)

(2.8)

(2.e)

Another zero-equation model was suggested by Nezu (L977) and is called twbulence model

II in this study. The expressions for Æ and e are
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k(,, ( -r"\
Ë=a.78exn[: ) 

(2.10)

and ry"=r,(+\''' "*r(+) rr.,,r

yielding,

v, =cpl=r,ffr*l'''u."*v(-3). (z.rz)

Taking Cu =0.09 and E = 9.8 (if Reynolds number is about 104 - 10s ), then

vr =o.2oet(zH)ttzu.e-[;) e.r3)

These two simple turbulence models are usually used in the vertical one-dimensional

mathematical model to simulate the flow and turbulence characteristics.

2.3 Modeling of the Heat Transfer in Turbulent Water

Frazil ice formation results from the comprehensive heat transfer process between the water

and its ambient environment (air, and river bank, etc.), and between the water and the

exsisting frazil ice. The water temperature variation can be modeled based on the thermal

dynamics of frazil ice and the turbulent heat transfer at the water surface. The thermal

dynamics of frazil ice is a key factor in the modeling of the water temperature.

The turbulent heat convection equation for water is given by
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t+u,
àtt #=+[(î.ä)#) så+s/, (2.r4)

where U, is the i,o component of the mean velocity, v is the molecular viscosity, v, is

the kinematic eddy viscosity, and o, are PrandtVschmidt numbers, P, is Prandtlnumber,

Z is the water temperature, Sr, S¡ are source terms due to the heat loss at the channel

boundaries and the latent heat release from the frazll growth. The term ,S/ can be

determined by frazil thermal dynamics.

2.4 Modeling of Frazil lce Formation and Transport

Once frazil ice formation is initiated in supercooled turbulent water, more frazil ice particles

are produced as the water temperature is lowered. Due to the turbulent mixing and buoyancy

effect, frazil ice will be distributed throughout the water depth and will be carried

downstream by the flow These phenomena can be mathematically described by the

following mass advection-diffusion equation

ò'o *u,òt' +=*[t;É)#]-'. *.s"0 
*s/¡o.,r , (2.15)

where U, it th" 4o component of the mean velocity, o, is turbulent Prandtl number for
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lrazll ice concentration, E is the turbulent Schmidt number, Ck is the volumetric

concentration of the frazll ice in the kft size fractiort, õtis the frazil buoyant velocity of the

k'h size fraction, S.o is the source term due to the thermal growth of the frazil ice and

S Jto,,t, is the source/sink term due to secondary nucleation and flocculation. The

determination of these two terms ,S.u and S¡,.,¿ will be discussed in the chapters 5 and 6

when the specific mathematical model is formulated.

The mathematical formulation for water temperature (equation (z.ruÐ and frazil ice

transport (equation (2.15)) can be simplified into two-dimensional or one-dimensional cases

(horizontal or vertical direction), when only a certain space of ice formation is of interest.

2.5 Boundary Conditions

A general mathematical model for frazll ice formation was formulated in the above section.

Boundary conditions are needed in order to find numerical solutions. Usually there are four

boundary conditions for the unknown variables, i.e., inflow, outflow, rigid wall and free

surface conditions.

2.5.1 lnflow and Outflow Boundaries Conditions

At ttre inflow boundary, prescribed values are given to all the dependent variables. The

outflow conditions depend on the control structure of the outflow. A zero normal gradient of
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a dependent variable such as velocity, water temperature, and concentration of frazll ice are

applied at the outflow.

2.5.2 Free Surface Boundary Cond¡tion

For all the variables except for the turbulent energy dissipation rate€, usually a zero flux or

specific amount of flux at the water surface is enforced. The expression for e suggested by

Celik and Rodi (1984) and presented by Nezu (1993) is usually applied for the free boundary

condition, i.e.,

^ _kï',t* - o*H

in which, fr* is the value of ft at the water surface,

constant with a value of 0.18.

,L2k, = ,-¡¿i =333u? and €, =' 
,lcu

where r is the Karman constant.

(2.t6)

H is the water depth, and a* is the

2.5.3 Rigid Wall Condition

The boundary condition at the bed or the banks of the river are usually not specified at the

wall itself in an open channel simulation, but rather at the first grid point zi , (z* = zu. lv ).

and the zero flux boundary condition is used for the water temperature and the frazil ice

concentration. The following relations for k and e are specified at the flust grid point

outside the viscous layer,

3
u+

t
çZr
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2.6 Model Applicability in a Counter-Rotating Flume

A general mathematical model is formulated based on open charnel flow theory. The model

is then used to simulate the flow turbulence, the water temperature variation, and frazil ice

formation in a counter-rotating flume at the Hydraulics Research and Testing Facility at the

University of Manitoba.

The counter-rotating flume is specially designed to simulate frazll ice formation in an open

channel flow. It has improved the flow characteristics over the circular flume used by Tsang

(1994) where only the bed rotated. The flow in a counter-rotating flume is driven by a bed

and walls that rotate in opposite directions and at a proper rate to minimize the effect of a

secondary current created by centrifugal forces. The velocity calibration to determine the

rates of counter-rotation was completed by Clark and Doering (2006). The flume is located

in a temperature controlled cold room creating an ideal environment for frazil ice formation.

The flow with respect to the bed in the counter-rotating flume simulates prototype open

channel flow in a river.

The flow in open channels is driven by a pressure gradient 
* , r.".,the gravity component

along the channel. When applying the open channel flow equations to a counter-rotating

flume, the bed and wall effect can be considered as boundary conditions if three-

dimensional flows are considered. When a vertical one-dimensional model is considered, the
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pressure gradient term + can be intentionally used to simulate the resultant force
dx.

produced by the walls and the bed, similar to how Omstedt (1985a) used the pressure

gradient to simulate the force from a propeller in his experiments. This term should be

calibrated in order to allow the flow to reach a steady state.

The temperature of the water in the flume is measured with a high resolution thermometer,

which is recorded by a data acquisition system. The temperature data is useful for the

calibration of the model. Fruzil ice is detected by using a cross-polarized lighting technique

(Doering and Morris,2003; Clark and Doering,2004). A high resolution CCD camera is

used to collect images of the frazlI ice and these digital images are used to determine the

fraziL ice characteristics. The detailed descriptions of the counter-rotating flume and the

algorithms used to detect the frazil ice were introduced by Monis and Doering (2003), Clark

and Doerin g (200Ð and Ye and Doering (2004).
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CHAPTER 3 Mathematical Modeling of the Physical

Processes of Frazil lce Formation

3.1 lntroduction

As described in previous chapters, the physical process of fraztl ice formation consists of the

initial seeding, secondary nucleation, flocculation/break up and buoyancy removal. To better

. model ftazll ice formation it is necessary to understand the basic theory of each process, and

to develop mathematical formulation for these mechanisms.

3.2 Seeding

Seeding is required to start heterogeneous nucleation, and therefore it is an important factor

for frazil ice formation. The source of seeding could be from mass transfer between water

surface and air, crystal dust washed off from large crystal, or microscopic crystals fallen into

the melt (Andreas Muller, 1978). However, it is difficult to quantify and to measure

experimentally due to its extensive origins. In mathematical simulation, seeding should be
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defined to initiate the simulation process, and it usually considers the seeding as a calibration

parameter in most mathematical models, including this one.

3.3 Thermal Growth of lce Particles

The growth rate of ice particles depends on the transfer rate of the latent heat from the

particles to the ambient turbulent flow. The heat transfer rate from ice particles to the

turbulent flow is influenced by many factors and also varied for different ranges of

turbulence. Since the density of the ice particles is different from that of the water, the ice

particles are subject to gravitational and inertial forces that give them a gravitational motion

relative to the water, but it has been found that the translational motion caused by inertia and

gravity can be neglected in determining the heat transfer (Daly, 1984).

The rate of heat transfer from an ice particle surface to the water body per unit area, q, can

be estimated as

(3.1)q= h*(T,-T).

The heat transfer coefficient, hn, caÍL be expressed in its dimensionless form as a Nusselt

number defined by

Nr=T,
Kw

(3.2a)

where k, is the conductivity of the water. Equation (3.2a) can be rearranged to give
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h*= N,9. Q.zb)*"1

The face radius of an ice particle is used as the characteristic length (Daly 1984).

The Nusselt number depends on the flow conditions and the particle size (Daly, 1984). It is

defined as the ratio of the actual heat transfer to that due to conduction alone. In this study an

actual Nusselt number is used instead of the turbulent Nusselt number that was used by

Hammar and Shen (1995). A detailed discussion of the Nusselt number and the turbulent

Nusselt number can be found in Daly's report (1984).

The actual Nusselt number is defined by the turbulent Nusselt number, N*, multiplied by

the term *" = L i.e., Nu =Nnm" . This relationship can be derived by comparing/îl

equations (49), (50) and (60) (Daly 1984) with the equations given in Daly's (1984) summary.

The formulation for the turbulent Nusselt number developed by Batchelor (1980) and Wadia

(1974), which is summarizedby Daly (1984), is described as follows

and

Nu =l4l.o.t 7Pr% 7r m. .+' \m ) Pr7'

No =(#)." tffY ir #.m' <to,

where *. = '/^, is the ratio between the face radius of an ice particle and the Kolmogorov/Tl'

Iength scale.

For large particles, i.e., m* >l

(3.3)

(3.4)
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if dr*.%<looo (3.s)N u, =,'[[#).o 8oøf o3s (#Y]

and

(3.6)N n =t t[[# 
). 

0.80a]2a1r.¡u 
] 

ir d.,*.% > 1000 ,

where 
", =J'% is the turbulence intensity, and, Uis the mean flow velocity. It should be

noted thatwhen m. increases, N,. decreases, while N, increases.

3.3.1 Thermal Growth of a Single lce Particle

Disk shapedfrazil ice is the most dominant shape of frazll ice formed. If the size of afrazll

disk is defined by its radius r , the ice particle growth rate can be modeled by (Daly, 1984)

+=4e,-r*), (3.1)
dt P,L'

where h, is the heat transfer coefficient and can be calculated from equation (3.2b).

Equation (3.7) will be used herein to simulate the mean size variation during the

supercooling process.

3.3.2 Thermal Growth of lce Particles in Volumes

The ice volume produced per unit time by thermal growth can be computed from the

following

dM 
= Qi*

dt p,L,
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*Ør,(t-u)r)= e,,-eo*,

in which, p is the density of water, t is the latent heat of the water, Z is the ambient

water temperature, M is the volume concentration of the frazil ice, Q,* is the total heat

transfer between the ice and water, and Qo, is the heat exchange between the water and the

air and is given by Q"* = Q(T" -T) , Q is the heat transfer coefficient and is constant for a

given air temperature and wind speed. However, Qo. can also be computed from the

cooling rate of the water neglecting the heat transfer from a river bank

eo,,= pcr#, (3.9)

where C p is the specific heat of the water, *rO #is the cooling rate measured from the

Z-r history curve.

3.4 Secondary Nucleation

The mechanism of secondary nucleation has been studied by several researchers (Daly, 1984;

Mercier, 1984; Svensson and Omsted, 1994). Accordingly, some mathematical

representations have been formulated already based on a limited understanding; although

this complicated process was not well characterized. These formulations have been used in

some mathematical modeling of frazil ice formation. The formulation given by Svensson and

Omsted (L994) is used in this study.

(3.8b)
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3.4.1 Daly's Formulation

Based on the kinetics of secondary nucleation, a theoretical formulation of the secondary

nucleation rate was suggested by Daly (1984) as follows

(3.10)

where N, is the secondary nucleation rate, {, is the rate of the energy transfer, which can

be determined by the different mechanisms of collision. ,SN is the product of two firnctions

Ft arrrl Fr. F, represents the number of particles produced per unit of collision energy and

.8, represents the number of particles surviving to become crystals. SN largely depends

on the supercooling of the water and less on the level of turbulence (Daly 1984).

The expression for i, is giuen by Daty (1984) based on the collision between particles and

the collision between particles and the boundary, however, a description for S" is not

presented as it is hard to determine.

3.4.2 Evan et al. and Mercier's Formulation

The procedure put forward by Evans et al. (1974a, b) for the secondary nucleation is

summarized by Mercier (1984) and adopted in his model. Furthermore, Hammar and Shen

(1995) used Mercier's formulation in their mathematical model to simulate frazil ice

formation.
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Formulation by Evan et al. (1974) is derived based on the fact that breeding is the primary

mechanism of secondary nucleation. The number of nuclei produced by the collision

between particles of size v, and v, is

v¡¿/2 v¡-tt2

Içv,,v)= J I tr,(r_,,r,) dvdv,,
v¡,v2 v¡-tt2

where l(v,,v,) is the number of nuclei produced per unit time, vi and v, are the

volumetric sizes of the colliding particles, Z is the number of nuclei produced per unit

collision energy, and Cu(r,,r,) is ttte rate of the collision energy transferred to the crystals

per unit volume of fluid (it can be expressed in terms of the collision frequency and the

collision efficiency). The collision frequency function is the collision probability of two

non-interfering particles of size u, and v, in a unit time. Typically the turbulent shear and

the differential rising are the main contributors for Cu(r,,r,), which is given by

(3.1r)

c u (v,,v,) = 0.5p, ffi{, p|, *,,,,,)' (îJ'' r,, *

o.oooru[l ø!v,, *,1''l 
I,,," 

*u"'')' u-lr(u,)s(v,). 
(3'12)

e is the mean energy dissipation rate, y is the kinematic viscosity

b=0.00661K,t4, K, is the kurtosis of the velocity derivative (Mercier 1984),

are the frazil ice number density functions. The collision efficiency ftrnctions for the

differential rising and the turbulent shear, Eo, and {0, respectively, are introduced to

account for the particle interference effects, which are evaluated.according to the procedure

described by Pearson et al. (1984).
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3.4.3 Svensson and Omstedt's Formulation

A simple formulation for secondary nucleation was suggested by Svensson and Omstedt

(1994) based on the assumption that breeding by collision is the dominant process. Consider

the relative movement of a particle in a volume Â, in a time interval dt , 

_ 
L, =(J,tt4zdt , for

which U. is the crystal velocity relative to the fluid. A collision frequency for n, particles

in a radius interval i 'can then be formulated as

fj"r, - n\,n, / dt, (3.13)

where ã is the average number of particles per unit volume. The relative velocity is

assumed to be related to the turbulent fluctuations and gravitational rise, u, = rltl', *U',* ,

where ,,=(/rr)'(%Y'd, note rhare is the rurbutenr dissiparion rare, v is the

kinematic viscosity, d is the particle diameter, and (J *, is the rise velocity of fraztl ice in

water. If a calibration factor is introduced by setting an upper limit on i, th"n

(3.r4)

The upper limit n** is introduced because the frequency of the collisions may be reduced

since the concentration of frazil ice is increasing in the supercooling process and it will

dampen the flow turbulence. It seems logical to limit " AV the calibration factor n,** as

this will restrict the collision frequency. Then a coefficieît ü,j, which represents the rate of

secondary nucleation, can be formulated as follows

t='*"[å n,,i,^ 
).

n^.
e. - ---!-
'dt
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3.5 Flocculation and Break up

Modeling flocculation is not easy since its mechanism is not clear yet (Daly, 1991). Sintering

is considered the primary mechanism of flocculation. Some simple formulations are given

and applied in the mathematical modeling by Svensson and Omstedt (1994) and Hammar

and Shen (1995).

3.5.1 Svensson and Omstedt's Formulation

Svensson and Omstedf. (1994) assumed that the transport to larger scales is the net effect of

flocculation, and it is more effective for larger particles. A linear relation was suggested

(Svensson and Omstedt, 1994) to describe the flocculation in the principal supercooling

process

þ,=üo*L,'rr

where þ, is the rate of flocculation of the frazil ice particles, and üp, is a

parameter.

(3.16)

calibration

3.5,2 Hammar and Shen's Formulat¡on

According to Mercier's (1984) stochastic coagulation theory, Hammar and Shen (1995) put

forward a method to calculate the flocculation for frazil ice particles. For the particles in

i'h size artd j'o size group, the expected number of instantaneous collisions per unit volume
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per unit time is

F,= B(v,,v,)E(v,,v¡)QiQ¡, e.L7)

where Q, and Qj are the number concentrations of the i'h and j'h size particles,

respectively. If each collision per unit volume reduces the local number concentration in the

i'å and the j't' size group by one, then it will create a new particle in the volume

vn*=vi+vj-vs", by merging, where vr,. is the volume contributed to secondary nuclei

production. It is assumed that the merged particles will be distributed to the two neighboring

size groups. Based on conservation of volume, a fraction f -('o*'-'*o)/

is assigned to the k'h size and a fraction (l-f ) is assigned to (k+l)'h size group.

\When the merged particle size is larger than the size of the last

fraction ¡=v*"u"r/ of F, isassigned tothe m't'sizegroup.' ./ v,,

u -u nr"
ti H '

The removal per unit time and volums is A*u'¿" 0/o,_ror. 
The removal per unit time and

volume is thus:

where y, is the rate of the buoyancy removal, and H is the depth of the well mixed flume.

uP'

eis

grou

size size group ¡ø, then the

3.6 Buoyancy Removal

Svensson and Omstedt (1994) assumed that buoyancy force removes some particles located

throughout the volume A*U,u"dt in a time step dt, where A* is the water surface area.

(3.18)
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Note thatUn,"=30r|'2, where 4 is the radius of the disc (Daly, lg84). It should be

recognized in the calculation of the rise velocity (U 
^" 

=30r,''2 ) that the units for the radius

and the rise velocity are cm and cmls, respectively.
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CHAPTER 4 A Zero-Dimensional Model of Frazil lce

Formation and Evolution

4.1 lntroduction

A zero-dimensional model lor frazll ice formation and evolution is developed based on the

assumption that the water is well-mixed and that flow stratification can be neglected, and as

such that vertical spatial resolution is not required.

The model formulated in this chapter is based on combination of Daly's (1984) model and

Svensson and Omstedt's (1994) model. The physical process of the initial seeding, ice

particle gtowth, secondary nucleation, flocculation/break up and buoyancy removal are

implemented in this model. Furthermore, several modifications and improvements are made

including the use of a variable Nusselt number related to the flow turbulence, the

modification of the coefficient for secondary nucleation and buoyancy removal and the

introduction of an additional coefficient for the secondary nucleation to allow for the

formation of larger ice particles. This model can simulate the supercooling process, the
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variation of frazll number with time, and the size distribution of frazil ice.

4.2 Model Formulation

The model formulated consists of two equations: a general heat balance equation and a

number continuity equation. If the size range of fraztl ice particles is divided into ¡/

discrete radius intervals, then all the particles are assumed to be of an equal radius in each

interval. The overall heat transfer for the water and the frazil ice particles is described by

and

¡1 N-l

|{ocr{t- M)D = -eo,,+\e,dt i=r

dM 
=H*, (7.-n.

dt p,L,' t "

(4.r)

(4.2)

where Qo* = Q(T"-T) = P*c p#l*r.*^,, Q, = h*i(Ti-T), and h., = h*,\n,

h*=N{*. Q, is the release of heat due to the freezing for the radius interval*Ip'

i(i=1...N-1), ni is the number of crystals in the interval class i, 4 is the active

freezing frazil ice area, k, is the thermal conductivity, and I is the characteristic length of

the ice particle. N is the total number of bins into which the frazil ice is discretized. h*, is

the heat transfer coefficient for all the ice particles in the interval class i , H*¡ is the heat

transfer coefficient for all the ice particles, and h* is the heat transfer coefficient.

¡f-t
H,¡=2h*,,

d=l
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The number continuity equation describes the dynamic evolution of the fuaztl ice number as

suggested by Daly (1984)

(4.3)

where n, is the crystal size distribution along the crystal size axis r and. at atime t , Di

is the death function which allows for the sudden disappearance of the crystals such as the

break up of crystals, B, is the birth function whictr accounts for the sudden appearance of

crystals due to initial seeding and secondary nucleation, G is the growth rate of the ice

particles, Y is the extemal convective velocity, and r is the radius of an ice particle.

When the frazil ice particles are divided into several groups with the same size, and the

physical processes such as the initial seeding, ice particle growth, secondary nucleation,

flocculation and gravitational removal are considered, Daly's general equation can be

simplified to the equation used in Svensson and Omstedt's (1994) model, which is easier to

understand from a physical perspective.

ln the model developed in this chapter, an additional parameter Ç¡ is introduced into the

secondary nucleation term in the equation of Svensson and Omstedt (1994) to allow for the

formation of larger ice particles. It is assumed that secondary nucleation is a source for the

smallest radius interval and a sink for the rest. The number of the smallest ice particles

increases due to collisions, whereas the number of larger particles should be reduced by the

+.!ror,)+ D,- B,*v(\r,) = o,
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rutio of ( correspondingly, therefore,

+ --$.o,,,) -(,d,n,uI 
[¡=t )

(l<t<N) (,=l) (2<i<N) (l

change in number second¿ry nucleation

- þ,n, + õ\,_rn,_,

< i < N -t) (2 < i < N)

flocculation/break up

-T¡n¡ -T¡ft¡+Ti_rni4.

(l < i < N) (I s i < N)(2< i < N)

gravity crystal growth

(4.4)

& j , þ,, T¡, t¡ are the coefficients to describe secondary nucleation, flocculation/break up,

gravitational removal, and ice particle growth, respectively. These coefficients are

determined in the following sections.

4.2.1 lnitial Seeding

As described in chapt er 3, acertain number of particles are evenly presented in each interval

at the time when supercooling begins. The number of frazil ice particles from the point of

initial seeding is one factor to be calibrated in the simulation.

4.2.2 lce Particle Growth

The ice volume produced per unit time by the ice particle growth for the interval i can be

calculated as

(4.s)

where .,{ is the active freezing area per ice particle. The area of a frazil ice particle's edge,

i.e-, 2tt4t,, is considered as the active freezing area for a disk shaped ice particle, where f,

#=w,lrr,-rr#,
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is the thickness of an ice particle. The Nusselt number, N,, can be calculated from the

methods introduced in chapter 2.By considering the volume difference between the ice

particles in the neighboring radius interval, the number of ice particles to be moved to the

higher radius interval can be calculated. Hence the parameteÍ Ti in equation (4.5) is

a
,,=#,= w,7(r,-r) 4

P,L,L,,
(4.6)

whereÂ,, is the difference in the particle volumes for the two neighboring radius intervals.

4.2.3 Secondary Nucleation

The formulation suggested by Svensson and Omstedt (1994) is used in this model.

Accordingly the coefficient of a,, the rate of secondary nucleation, can be formulated as

follows

n^.
d,=J.
'dt

(4.7)

Ç, is introduced to the secondary nucleation term to allow for larger ice particles. It can be

determined from ( =VrlV, (i=Z....N), where V, is a single particle volume in the first

interval and V, is the single particle volume for other intervals.

4.2.4 Flocculation/Break up

A relationship suggested by Svensson and Omstedt (1994) is implemented in this model as

follows
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þ,=doo,L, (4.8)'rl

whete ü¡¡o, is a calibration parameter.

4.2.5 Buoyancy Removal

An expression derived by Svensson and Omstedt (1994) is modified and used to calculate

the buoyancy removal factor. The factor is assumed to be proportional to the frazil ice

concentration as shown

y,=uï" M .'H

4.3 Discretization of the Govern¡ng Equation

The number continuity equation (4.4) can be discretized and reorganized into the following

equation. A detailed derivation is shown in Appendix A.

fn,{r+arl Iol?(,*o,rl=, (4.s)

l'.^.1
ln*(t + Lt))

where

It+ tt1B,+y,+cr)0 -Ltar? -Ltar7 I
A=l 0 -Lt(c,+õþ,)0 I+Lt((ar+ þr+Tz*t) 0 

I

L , 0 -Lt(r*-,t+ 6Br-r¡e * nt(ia** /").1
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n,(t) - Lt ( p, + Tt + r t) (Q - Ðn,(t)) + N\ a, (Q - Ðn, {ù)
j=2

D_ nr(t) - N ((a, + þ, + Tz * r z) (t - Ðnz(t)) + Lt (I - 0) (r, + õ8,) n,(r¡ | .

Then the frazil ice number at the subsequent time step can be obtained from equation (4.9).

Combining equation (4.1) with

(4.10)

Q, = Q(T, -T) = c rp 
dydrl,ootingrare, ana \Q, =2n/*4(T, -T), then

o, - o,(-', 
o #1,"",,,,,","*En''-u"' - 

") .pc,(r- M)

The water temperature can be calculated from l(r * dt) =T(t) + dT .

4.4 Model Programm¡ng

The above algorithm was programmed using MAILAB@. Forty intervals were selected to

discretize for the frazil ice size. A time step of 1 second was used. The program readily

converges because a differential method with an implicit scheme was used, the flow chart for

the programming is shown in figure 4.1.
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4.5 Application of the Model

ln order to apply the model, the range of frazll size and the size distribution must

determined. The critical size of frazll ice is considered to be the minimum size

simulation, which is calculated according to Lal Mason's et al. (1969) survival theory

flrst be

in the

where y.o is the ice-water interfacial tension, T" is the equilibrium temperature of the

ice-water mixture. The critical size of frazll ice is on the order of 4 pm (Mercier 1984). The

maximum size of a frazll ice particle typically ranges from 1-5 mm (Clark and Doering,

2OO4); herein it is taken as 5 mm.

The size distribution suggested by Mercier (1984) is used

2vTr'=;i:(Tj)'

s,(t) = lnf = aFb .

(4.11)

(4.12)

During the simulation, &¡¡o, is the most likely factor to control the distribution of frazil ice

size, which was already calibrated in term of the size distribution spectra, with a value of

0.0001 proposed by Svensson and Omstedt (1994); this calibrated value will be used in this

model.

There are two additional parameters in this model: the initial seeding and the parameter n ** .

The initial seeding is governed by many factors such as the mass transfer between the air and
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the water surface, the impurities in water, etc. Therefore, it can vary for different

experiments. Parameter nffi\was introduced to limit secondary nucleation by constraining

the collision frequency between ice particles. An effort has been made in the present model

to find a general value for the parameter n* in order to avoid the specification of two

variables in the simulation, but it was found that it is difficult to use only one value of no^

for all experiments. This is probably because the parametet nr,a* is affected by turbulence

intensity and it will be investigated hereinafter based on the simulations results. The data

from Carstens (1966) and Clark and Doering (200q are used to check the validity of the

present model.

4.5.1, Carstens'Data

The two cases presented by Carstens can be regarded as well-mixed flows. Table 4.1 gives

the flow parameters and the heat loss rates for Carstens' experiments. dp, = 0.0001 is used

for both cases. fl**=1.5x106 and fl**=8x10s were used for case I and case II,

respectively. The initial seeding of the total frazil ice number takes the values of 40000 and

32000 for these two cases, respectively.

Table 4.L Parameters of Carstens' (1966) Experiments

U K t Cooling
Case tm/sl lnltszl ¡m2ls31 rate

["c/min]

H

lcml

I
II

0.50 0.00096 0.00120 0.0240 20

0.33 0.00048 0.00038 0.0078 20
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Figure 4.2 shows the simulated and measured water temperature history for Carstens Case I.

The simulation fits the experimental data quite well and supports the validity of the

simulation model. Figure 4.3 shows the frazil ice concentration va¡iation with time; it

increases during supercooling so as to provide enough latent heat to balance the heat loss

from the water surface. Figure 4.4 shows that the total number of frazll ice particles

increases much faster during the principal period of supercooling (t < 400 s) than during the

residual period of supercooling (t > 400 s). The size distribution of frazil ice at different

times during the experiment is shown in figure 4.5. h seems that the smaller frazil, ice

particles increase faster than do the larger particles. Figures 4.6 to4.9 show the results for

Carstens Case II, which indicates the same tendency as figures 4.2 to 4.5 and suggested that

the model can provide reasonable predictions.

4.5.2 Clark and Doering's Data

To further examine the applicability of the present model, the experimental data from Clark

and Doering (200Ð was used. Their experiments were conducted in a counter-rotating flume

and the turbulence was generated by shear as in open channel flow. Since water depth (0.15

m) used in their experiments w¿ìs very small, and the temperature was measured at only one

point, it was assumed in this simulation that the well-mixed water condition is a reasonable

assumption. Table 2 gives the parameters for their four experiments. dy* =0.0001 (same

as for Carstens'data) was used to model the frazil ice distribution as suggested by Svensson
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and Omstedt (1994). Different values of the initial seeding and the n** parameter were

used in their simulations, and these values are summarized in table 4.2. The detailed results

from the simulation of the experiment conducted on Dec 18 is given and discussed herein.

The results are shown in figures 4.I0 to 4.13.

Table 4.2Parumeters of Clark and Doering's (2004) Experiments

U
Case [m/s]

H Tai, Cooling

[cm] ['C] rate

IoC/trour]

d.

lmml

Dec 18

Dec 17

Dec23
Nov 5

-10.0

-15.0

-7.5

-10.0

0.234

0.437

0.063

0.r42

0.7

0.6

0.6

0.6

15

15

15

15

3.5

3.5

3.5

3.5

Note: d, is the absolute roughness

Table 4.3 S ummar ization of C alibrated Parameters

Case

Initialfl** 
seeding

Coolins
Gr

rate

Ioc/min]
Case I
Case II
Dec 18

DecLT

Dec23

Nov 5

1500000

800000

150000

200000

2000

2000

40000

32000

3200

12000

4800

6400

0.0200

0.0078

0.0039

0.0073

0.0010

0.0024

0.0876

0.1030

0.1340

0.t757

0.1340

0.1350

The predicted water temperature (figure 4.10) closely matches that obtained by Clark and

Doering (2004). Figure 4.11 shows that the simulated frazil ice concentration increases

during the supercooling. Figure 4.12 shows the variation of the total frazil ice number with

Mathematical Modeling of FrazíI lce Formation and Evolution 55



A Zero-Dimensional Model of Frazil lce Formation and Evolution

time during the supercooling process. The total frazil ice number from the simulation

predictions are larger than those observed. The discrepancy probably occurs because the

fraztl ice particle detection system can not recognize very small particles, as well as the

larger particles can not be counted accurately due to the overlapping that occurs in

two-dimensional digital images of frazll ice particles. Figure 4.13 shows the simulated

distribution of ftazll ice at different times. It is clear that the small and intermediate size of

the ice particles is dominant at different times during the supercooling process.

Figures 4.I4 to 4.16 show the predicted frazil size distribution compared with the

experimental data (the ba¡) and a lognormal distribution; these figures show that the shapes '

of the distribution curves are generally consistent among the three results. The falling limb

of the size distribution for the simulation is not inconsistent with that from the experimental

data and a standard lognormal distribution. Nevertheless, there is some difference in the

rising limb for the size distribution and it indicates that the size distribution used in this

simulation may not adequately simulate the number of small ice particles. A lognormal

distribution, which was suggested by Daly and Colbeck (1986), and Clark and Doering

(2004), should be considered to simulate the size distribution of fuazll ice as long as the

standard deviation is defined.

4.5.3Initial Seeding and n*

The six simulations listed in table 4.3 were used to develop relationships for the initial
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seeding and parametet n** as a function of the turbulent intensity; this would be useful in

helping to choose the values for these two parameters in the practical application of this

mathematical model.

Figure 4.17 shows the relationship between the initial seeding and the turbulence intensity;

the initial seeding is inversely proportional to the turbulence intensity, and is defined as

o, =JTi/r, where k is the kinematic energy, and, (l is the average velocity. Figure 4.18

gives the relationship between the parameter n-o and the turbulence intensity. If the two

relationships were fit with a straight line, the values of R2 are above 0.80. These relations

give some general guidance for helping to calibrate these two parameters in the practical

application of this model.

4.5.4 Sensitivity Analysis

To investigate the sensitivity of the two calibrated parameters, the initial seeding and the

parameter nr^x, to the supercooling process, additional simulations were performed using

this model for Carstens' Case I. The number of the seeding particle was assumed evenly

distributed in each size groups in the simulation. As expected, if the other parameters don't

change, increasing the initial seeding will decrease the maximum supercooling and will

shorten the duration of the principal period of supercooling as shown in figure 4.19. The

variation of the parameter ft* also influenced the supercooling process in terms of
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affecting secondary nucleation. An increase of the parameter n** reduced the maximum

amount of supercooling and shortened the duration of the principal supercooling process as

shown in figure 4.20.
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Initialize all the variables

Loop for time

For i=1:total_time

Calculate water temperature

and frazil concentration

I-oop for groups of fraz il ice

Forj=1;¿6¡ul *ou'

Call functions to calculate the

coeff,rcients A, þ,7,õ

Calculate the number of frazil ice at

new time steps in different groups

End the Loop for groups of

frazil ice

Save the variables: water temperature,

frazil ice numbei concentation

End the Loop for time

Figure 4.1Flow chart of the MAILAB program
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CHAPTER 5 A Vertical One-Dimensional Model of
Frazil lce Growth and Evolution

5.1 lntroduction

In a river the flow is not always well-mixed and therefore the flow turbulence is not

uniformly distributed throughout the water depth. Vertical stratification and mass transport

should therefore be considered in such cases. The distribution of water temperature and frazil

ice concentration throughout the water depth is an important factor infrazll ice evolution and

anchor ice formation. Therefore, the development of a vertical one-dimensional model is

necessary. This vertical one-dimensional model considers the interaction among the flow

turbulence, heat transfer and frazil ice transport. The goveming equations are solved by

using implicit differential schemes. The vertical distributions of the flow, the turbulence

parameters, as well as the frazil concentration are simulated in this model.

The one-dimensional model developed in this chapter is used to simulate the formation of
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ftazll ice in a counter-rotating flume. The results are then compared with the experimental

data. This model was developed from Hammar and Shen (1995) model and from Omstedt

and Svensson's (1984) model.

5.2 Mathematical Formulation

Assuming the mean vertical flow velocity is negligible and the flow is horizontally

homogeneous, then the flow can be treated as one-dimensional turbulent flow. This

assumption is reasonable in laboratory experiments, but may not always be true in a natural

river. However, it can be approximately applied to river flow and some basic information

about the ice formation can be obtained.

The governing equations for the mean flow can be simplified from equation 2.2, they then

take the form

au ò(, .au\ laP
- =_ l(v.+v). l- - :". (5.1)dt dz\ dz) p*dx

In a similar way, the heat transfer and the frazil icenumber can be described by
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and (5.3)

where z is the vertical space coordinate (positive upwards), / is the time coordinate, lll, is

the frazil ice rise velocity, p* is the density of water, and Z is the \ryater temperature. vr

is the kinetic eddy viscosity while u is the molecular viscosity. Since v is usually much

smaller than v, it can be neglected in the simulation. on and or are the turbulent

Prandtl and Schmidt numbers for frazil ice number and the temperature, while P, and

S, are Prandtl and Schmidt numbers, respectively. n is the frazll ice number. The mean

flow is driven by a pressure gradient denoted UV P in open channel flow. The source
dx

terms, because of ice formation, are denoted by G, andc,,, respectively. G, represents

the latent heat released during ice growth, and G" represents the number of ice particles

produced during ice formation. These two terms can be calculated as follows (Hammar and

Shen,1995; Svensson and Omstedt, 1984)

G, = Anq(p*Co)-' , (5.4)

wherc q is the heat transfer for a single ice particle, Co is the specific heat of the water,

and p, is the density of the water. {. is the active area of frazil ice. Gn is given by

#=.*[[;É)#) w,*+Gn

G,= Arq(p*L)-t lvi,

where I{ is the volume of a single ice particle.

(s.5)

The physi,cal processes of secondary nucleation, flocculation, and breakup are not included
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in this model formulation. The distribution of frazil ice size during the supercooling process

is also not considered, while a varied mean diameter of the fraztl ice is used in the simulation

instead of using a constant mean diameter as was done by Omstedt (1985a). The evolution of

the mean size of fraztl ice in the supercooling process can be calculated according to Daly

(1984) and Mercier (1984)

dD^ -2!"-¡7 -r).dt p,L' '

where D,n is the mean diameter of the frazrl ice, T" is the

water-ice mixture, and h*is the heat transfer coefficient.

(s.6)

equilibrium temperature of the

5.2.1 Thermal Growth of lce Particles

The thermal growth of the ice particles can be calculated using the same method described in

section 3.3

5.2.2 Turbulence Model

If the effects of frazlI ice concentration and water temperature on turbulence are neglected, a

simple turbulence model can be used instead of the two equation fr - e model that is

described by equations2.5 and2.6.

The friction velocity u.* carrbe computed by u.=tl(rL)i, where / is a friction factor

which has the form
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or

# 
=zrlg(R^f:) - 0.8 (smooth bed)

Rh is the hydraulic radius and Q is the Reynolds number.

5.2.3 Boundary and lnitial Conditions

Since the frame of reference for this simulation is the bed of the counter-rotating flume, all

the boundary conditions are implemented in terms of open channel flow. The boundary

conditions at the surface are specified according to

I

T =-2.0uos( -,0-, =.'+ì (roughbed)."13.7r(4Rh) R,Jf ) 
'

where Fno ir the net heat loss from the water surface. At the lower boundary condition, a

zero flux condition is used for all of the variables, except for the velocity. The velocity at the

fust near wall node is set with the aid of the law of the wall, which reads

U*= /*n(z*)+8, inwhich B=5.1, r=0.4 and r*='u/, =50-100.

The initial flow velocity is set to the measured velocity and the initial temperature is set to

0oC. The initial frazil number is set to zero except for the seeding at the water surface.

(s.7\

(s.8)

(s.e)

(s.10)

(5.11)and
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5.3 Discretization Scheme

The governing equations (5.1), (5.2), and (5.3) can be discretized using differential schemes,

and the details of which are shown in Appendix B.

Note, for equation (5.6)

D^(t+Lt)=D,,(t)*ZOr)1-T(t+Lt)). (5.12)
P,L

All of the equations have boundary conditions that consist of a closed system and can be

solved numerically.

5.4 Model Programming

The algorithm introduced above is programmed in MAILAB@. The flow chart is shown in

figure 5.1.

5.5 Model Application

5.5.1 Carstens'data

Case I presented by Carstens (1966) is considered flust to calibrate the model developed in

this chapter. The flow parameters and the heat loss rates for Carstens' experiments are given

Mathematical Modeling of Frazil lce Formation and Evolutíon 75



AVertical One Dimensional Model of Frazil Ice Growth and Evolution

in Table 4.1.

Some of the simulation results using Carstens data are shown in figures 5.2 to 5.7 . Figure 5.2

shows a comparison between the turbulence parameters that are simulated from-Flammar and

Shen's (1995) model and those simulated in this model. The results for these two models are

very close, except for the kinetic energy close to the water surface. The difference between

these two models is likely because the fr-e turbulence model used by Hammar and Shen

(1995) requires the boundary conditions at the water surface, which impacts the distribution

of the kinetic energy. As Mercier (1984) suggested, the simple turbulence model applied in

his (and this) model gives a comparable distribution to t}re k-e model but is much easier

to solve. In figure 5.3, the simulated results of water temperatures at different depths are

plotted with observed data from Carstens' experiment. The temperature goes down a bit

lower and the maximum supercooling occurs roughly one minute later than that of the

experimental data. The lag time can be estimate dby Tr, =rtÁ o*= 
1 min , where lo,, is

the average eddy diffrrsivity (Mercier, 1934). This can be explained with reference to the

turbulence model that predicts the maximum level of fr and e close to the bottom of the

flume where the concentration of the particles is at their minimum (Hammar and Shen,

1995). Figure 5.4 shows the comparison of mean water temperature variation between this

model and Hammar and Shen's (1995) model, a discrepancy apparently exists because

different Nusselt numbers are used to compute the thermal growth of frazil ice in the two

models, as well as the size distribution and the physical processes of secondary nucleation
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and flocculation/breakup are not considered in this model.

The temperature distribution throughout the water depth is shown in figure 5.5. Figure 5.6

shows the relative vertical frazil number profiles. The relative vertical frazll number for n, is

defined as n,ln,in which ;=["ro'/, is the depth-averaged value dof n,. During a

/ J"oY

cooling down period of supercooling, the frazil ice numbers near the water surface are

smaller than that at the rest of the water depth, while during a warming up period of

supercooling, the frazil ice numbers at the water surface are larger than other the water

depths. This is because the buoyant force overcomes the effect of turbulence mixing as the

ice particles become larger. Figure 5.7 shows how the mean diameter of frazil ice varies with

time. The diameter of frazil ice increases during the period of primary supercooling and

becomes nearly constant during the residual period of supercooling indicating that the heat

loss from the water surface and the heat gained from frazil ice formation are in equilibrium.

5.5.2 Clark and Doering's Data

The data from Clark and Doering's (2004) experiments were also used to examine the

accuracy of the model developed herein. If a well-mixed case is assumed for their

experiments, the simulation results from a vertical one-dimensional model will differ slightly

from the experimental data. The parameters used in their two typical experiments are given

tnTable 4.2.
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The simulation results for the experiment conducted on Dec. 17 are shown in figures 5.8 to

5.11 and the results for Dec 18 are shown in figures 5.12 to 5.15. The water temperature

variation at different depths is given in figures 5.8 and 5.I2 for both experiments,

respectively. It seems that the gradient of the water temperature throughout the water depth

is very small, and it probably reflects the strong level of turbulence that usually occurs in a

well-mixed water mass. The relativefuazil ice number distribution is shown in figures 5.9

and 5.13, and the same tendency is observed as was in Carstens' (1966) experiment. During

the warm up period of supercooling, the surface ftazll ice number is larger than the rest of

'the water depth. The evolution of the mean size of frazll ice in the supercooling process

generally matches the observed data from the experiment (figures 5.10 and 5.I4). The total

volume of the frazll ice from the simulation is similar to that of the experimental findings

(figures 5.11 and 5.15), however there are still some differences. Possible reasons for the

differences include: (a) that not all the ice particles formed in the experiment are detected by

the image processing technique; and (b) that the use of only the mean size of afrazl| particle

does not adequately represent the real situation that occurred during the experiment.

5.5.3 Application of the Model to the Downstream Location of the Limestone

Generating Station

Limestone Generating Station is located on the Nelson River in Northern Manitoba, and is

the largest hydroelectric station in Manitoba Hydro's system. Every winter frazll ice forms a

short distance downstream from the dam, and at the same time an anchor ice dam forms at
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Sundance Rapids, an atea 3 kilometers downstream of the generating station. Since the frazil

ice attached to the bed is usually the main mechanism for anchor ice growth, an investigation

of fuaziI ice formation is a very important portion of the study of anchor ice formation and

the associated rise in water level at the anchor ice dam.

The mathematical model developed by Lianwu Liu el al. (2009 has been recently used to

investigate ice formation at the downstream location of the Limestone Generating Station.

Since the model is a depth-averaged two-dimensional plane model, it can not give the

vertical distribution of the frazll ice concentration and the water temperature. The vertical

one-dimensional model developed in this chapter could function as a supplement to Lianwu

Liu's model to investigate the vertical variation of the water temperature and frazil ice

concentration downstream of the Limestone Generating Station.

Figure 5.16 shows an aerial view downstream of Limestone Generating Station. The width

for the reach from downstream of generating station to Sundance Rapids is about 1500 m,

and the bottom slope is approximately O.LVo. The highest discharge \ryas approximately 4500

m3ls, and lowest discharge was approximately 2000 m3ls in the winter of 1999. The average

discharge of 3000 m3ls is used in this simulation. The average temperature during the winter

is about -15 o c and the cooling rate of the water column is

dr/ _co(T -T ),,*7¿r= -u \^ ^ 
7Or r, = 3.84x10-t oc/sec, where Co is a coefficient from about 15 to

25 Wm2 ' oC. Accordingly, the flow parameters can be computed as shown in table 5.1.
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Table 5.1Flow parameters for the downstream of Limestone Generating Station

Water Depth H

lml
Average Velocity U Friction Velocity U* Reynolds Number

lmisl lm/sl

1.87 1.59 0.116 6.9x106

The initial seeding of frazil ice was taken as used in Lianwu Liu's (2004) model, and the

mean size of the ice particle varied in this model while it stays constant in Lianwu Liu's

(2004) model with a default value of 2x10-3 m in diameter. The results from this model are

shown in figures 5.17 to 5.21. These figures show that the water temperature and frazil ice

volumetric concentrations have almost the same magnitude as obtained by Lianwu Liu et al.

(2004), although their model only predicts the depth- averaged values.
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Initialize all the variables and flow parameters

specification

Loop for time

For i=1:tot¿l_time

Calculate friction factor

and friction velocity

Module to

solve flow

equation

Calculate the velocity

distribution over depth

Module to

solve heat

convection

equation
Module to

solve the mass

transport

equation

Save and update variable

End the l-oop for time

Figure 5.1 Flow chart of the MAILAB program
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Figure 5.16 Aerial view of the area from the Limestone Generating Station to Sundance

Rapids.
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Figure 5.17 Water temperature variation with time at water depth=0.9m.
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CHAPTER 6 An Ertended Mathematical Model of
Frazil Evolution in A Counter-Rotating

Flume

6.1 lntroduction

The model in this chapter was extended from the one dimensional model that was developed

in the previous chapter by adding the size distribution of the frazll ice instead of using only

the mean size of the ice particles. As well, the physical processes of seeding, secondary

nucleation, flocculation/break up, and buoyancy removal are considered in this extended

model. Seeding is a prerequisite for the initialization of frazil ice. Once the frazTL ice regime

is established, a small ice particles acts as a nucleus for further growth of an ice particle. The

correspondingly large ice particles breed many smaller ice particles through collisions, and

this process is known as secondary nucleation and was described in chapter two. The frazil

ice size distribution varies with time and is influenced by flocculation and break-up.

Buoyancy moves ice particles to the water surface forming surface ice or frazil slush. All of

these processes are important physical factors for the modeling of ftazll ice evolution. The

Mathematícal Modelíng of Frazil lce Formation and Evolution 92



An Extended Mathematical Model of Frazil Ice Evolution in A Counter-Rotating
Flume

model developed in this chapter is used to simulate frazll ice formation in a counter-rotating

flume and the results from the model are then compared with the data from experiments

conducted in the counter-rotating flume.

6.2 Mathematical Formulation

The governing equations for the mean flow take the same form as those in the vertical one-

dimensional model developed in the previous chapter, while the equations for the heat

transfer and the frazll ice number equation are slightly different with respect to the source

terms, because the size distribution of hazlL ice is considered and frazil ice is divided into

several size groups

ar_ð((v.*v'larl**
t-e[[ ",- I )ð, )-"'

*--*[[;t)*) ",**o^

(6.1)

(6.2)

The source terms, because of the ice formation, are denoted by G, and G, , respectively.

The term G, represents the latent heat from the ice formation in all group sizes, and the

term C1 represents the production of ice particles in different size groups through

complicated physical processes such as secondary nucleation, flocculation, etc. These two

terms can be calculated as follows (Hammar and Shen, 1995; Svensson and Omstedt ,1984)
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G, =),4,n.q,,(P*c o)-' ,

m=L

(6.3)

(6.4\

where q,, is the heat transfer for a single ice particle, Ç is the specific heat of water, P*

is the density of water, 4, is the active area of frazll ice and N is the number of groups

that the frazll ice has been divided into. Gn is given by

o, =(þ*,",) - (ü,nk,, - þ,on,n # õþ,n-rn,,-t -t^n,n +r,n-lnm-l

(m=l) (2<m< ¡/) (l<nSN-l) (2<m<N) (lSrnl,lV)(2<rrclV)

where &,, ,;":;;"ï" -" ï"JÏ to u",",,0;;; I""onu., nucreation,

flocculation/break up, and ice particle growth respectively. The expressions for these

coefficients and for their information are given in sections 4.2.2 to 4.2.5. The turbulence

characteristics are modeled in the same way as described in section 5-2.2-

6.2.1 Frazil Size Distribution

The size distribution according to Mercier (1994) is used in this model. Although a

lognormal distribution seems to be a more reasonable representation for the frazil ice

distribution (Daly and colbeck, 1986; Clark and Doering,2004), both the mean and standard

deviation are needed. The mean size of ftazll ice could be simulated according to frazil

thermal growth, but the variation of the standard deviation has not been defined. Therefore,

more research is needed to parametenze the lognormal distribution.
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6.2.2 Boundary and lnitial Conditions

At the upper boundary of the flow, the same boundary conditions as used in section 5.2.3 can

be applied for the flow velocity, turbulence characteristics and the water temperature. The

boundary condition for frazil ice number is

Y-ð:," =Ø^n^.on dz
(6.s)

The initial flow velocity is set to the measured velocity and the initial temperature is set

OoC. The initial frazil number is set to zero except for the seeding at the water surface.

6.3 Different¡at¡on Scheme of the Governing Equation

The kinematic eddy viscosity is related to the turbulent kinetic energy and the turbulent

dissipation rate. The same expression for v, and its derivative as used in chapter 5, which

is described in Appendix B, are applied herein, and then equations (6.1), (6.2) and (6.4) can

be discretized into differential equations. A detailed derivation is shown in appendix C.

All of the resultant equations and their suitable boundary conditions consist of a closed

soluble system. A MATLAB@ based program was developed to solve the three equations

simultaneously.
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6.4 Model Programm¡ng

The algorithm that is introduced above is programmed in MAILAB@. The flow chart is

shown in figure 6.1.

6.5 Model Application

6.5.1, Data from Mercier

A mathematical model was developed by Mercier (1984) to simulate the water temperature

variation in the supercooling process, and the vertical distribution of frazil ice. The results

from this model are compared with the results from Mercier's model (1984). The parameters

used in Mercier's model are given in Table 6.1.

Table 6.L. Parameters of Mercier's model (1984)

U H u* Cooling

fm/sl [cm] [m/s] rate

IoClsec]
500 0.1 0.00016

Figure 6.2 shows the variation of water temperature with time at different water depths. The

two results agree well except during the warming up period. The difference observed in the

warming up period is perhaps induced by using a different formulation to simulate the

secondary nucleation and flocculation/break up in the two models, which would produce

slightly different number of frazil ice, and subsequently affect the water temperature during
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the warming up period. The vertical water temperafure profile is depicted in figure 6.3.

Figure 6.4 shows how the number of frazil ice particles changes with time at a wateî depth

of 4 m, and it indicates that there is a different increase rate for different size of ice particles.

The oscillation of the curve at the beginning is presumably due to a numerical instability.

The size distribution of frazil ice at a water depth of 3 m is given in figure 6.5, and it shows

that the peak of the curve has shifted to larger ftazll ice size as the time of supercooling

increases.

6.5.2 Carstens'Data

The flow of Carstens' experiment can be considered as a well-mixed flow (Hammar and

Shen, 1995) because the water depth was small and turbulence was produced by a propeller.

Therefore, the simulation results from Hammar and Shen's (1995) model and the model

developed in this chapter are slightly different from Carstens' experimental results because

the two models consider the effect of the vertical stratification of the turbulence parameters.

The flow parameters and the heat loss rates for Carstens' experiments are given in Table 4.1.

In figure 6.6, the water temperatures at the different water depths are plotted with Carstens'

experimental observations. The water temperature goes down a bit lower and the maximum

supercooling occurs roughly one minute later than the experimental result. It illustrates that

the peak of the supercooling is reached later and it has a larger magnitude for the case of

vertical transport than for the case of complete mixing. The lag time can be estimated by
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Trr=Ê/o'" =, -rr(Mercier, 1984). Figure 6.7 shows the mean water temperature from

this model and from Hammar and Shen's model (1995). The temperature distribution

throughout the water depth is shown in figure 6.8 and a significant cooling zone is observed

close to the water surface. Figure 6.9 shows the relative vertical frazil number profiles at

t=400 s. The relative vertical frazil number for tr,, is defined as n,n I n , in which

fr^udy /
n = J "' - /a is the depth-averaged valued of n,n. The frazil ice numbers on the surface

/ J"¿Y

are larger than the rest of the water depths for all the frazil ice particles due to the effect of

buoyancy removal and seeding. The size distribution of frazil ice at a water depth of 0.12 m

at the different times during the experiment is shown in figure 6.10. It is observed that the

dominant ftazllicesize is the intermediate size. Figure 6.11 shows that the variationof the

total number of frazil ice particles with time at a water depth 0.16 m, and it also indicates

that the number of frazil ice particles in all the size group increases with supercooling time.

6.5.3 Clark and Doering's Data

Clark and Doering's (2004) experiments, which were conducted in a counter-rotating flume,

were also used to investigate the applicability of the present model. Table 4.3 gives the

parameters used in their experiments.

The simulation results for the experiment conducted on Dec. 17 are shown in figures 6.12 to

6.15. The water temperature variation with time at different depths is given in figure 6.12.
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The maximum supercooling from the simulation is a little lower than the value from the

experiment and the time to reach the maximum supercooling is slower by approximately

Trr=ÊÁ*" =1.3 min in the simulation (fo", is the average eddy diffr.rsivity). The figure

6.L2 also shows that the gradient of the water temperature throughout the water depth is very

small, which reflects the strong influence of the turbulence on the heat transfer. The size

distribution of the frazil ice at a water depth of H=0.12 m at different times during the

experiment is shown in figure 6.13. The sintering of larger frazil ice particles can be

observed from the tail of the distribution curve. Figure 6.14 shows how the total number of

frazll ice particles changed with time at a water depth of 0.12 m. It also shows that the frazil

ice numbers increase during the principal supercooling period and eventually reach a plateau

during the residual supercooling period. The vertical distribution of the frazil ice number is

shown in figure 6.15, and shows the same tendency as observed in Carstens' (1966)

experiment.

6.5.4 Application of the Model to Downstream of the Limestone Generating Station

This extended vertical one-dimensional model was also used to simulate the water

temperature variation and the vertical frazll ice distribution in the area downstream of the

Limestone Generating Station on the Nelson River. The same flow and thermal parameters

as introduced in section 5.5.3 were used in this simulation. The results from this model are

shown in figures 6.16 to 6.18. Figure 6.16 shows the supercooling process for the water

column in the river. The principal supercooling process lasts about one and a half hour, and it
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is much larger than the flow in the experiment. Figure 6.18 and 6.19 give the vertical

distribution of fraztl ice volume concentration, and indicate that the volume concentration of

frazil ice is larger in the area close to the water surface than the rest of the water column.

The results of the water temperature and the frazll ice concentration are close to those

obtained by Lianwu Liu et aI. (2004).
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Figure 6.L Flow chart of the MAILAB program.
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CHAPTER 7 Effects of Different Turbulence Models

on the Simulation of The Supercooling

Process and lce Formation

7.1 lntroduction

Fruzil ice usually forms in turbulent supercooled water and the turbulence significantly

influences the heat transfer, frazll ice transport, and the distribution of the frazll ice in the

\¡/ater body. Therefore properly simulating turbulence is very important in modeling frazrl

ice formation and evolution. In this chapter, three different turbulence models are used to

investigate turbulence characteristics and their effects on the supercooling process and on the

frazil ice formation process. Only the results from the vertical one-dimensional mathematical

model in chapter five are given and analyzed herein. However it could be applied to the

extended mathematical model in chapter 6.
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T.2Turbulence Models

There are several turbulence models that have been developed so far to simulate the

characteristics of turbulence as introduced in chapter two. Three of these models are briefly

introduced and then used in this study. Two of the models (turbulence model I and II) are

given in an explicit expression in terms of the turbulent energy dissipation rate and the

turbulent kinetic energy. The other is the typical ft-e model and it is extensively used to

simulate the turbulence characteristics in open channel flow.

7.2.1The Two-Equation k-e Model

The two equations k-e model was given in equations 2.3 and 2.4.These two equations

together with equations 5-1, 5-2, and 5-3 can be numerically solved simultaneously.

Discretizing equation (2.3), and (2.4) using the same differential techniques as used in

chapter 5, then,

-vr(i, ¡)Ltk1i+r.j-D+((^¿)' + Lt(vr,.j+tr -vr1i,;¡) +ZLtvrr,.,.,)0,,*,,r,

-(Ltçvrr,,,*tt-vr<,,¡t)+vrr,.,r!t)kri+r,j+r) = Lz26,,kç.¡¡ (7.r)

+ (Lz)z Lto o(\,.¡t * Gr,,,r- r,,,r, )
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-v r (i, i) Nk<¡*r. ¡ -tt + ( (A¿ )' * Lt (v r <,. ¡ *tt - v, 
1,. ¡ ¡) + 2 Ltv r G. j )) k *ur.,,

- (Lt çv r r,,, *r¡ - v, 
1,. ¡ ¡) + v r r,., rlrt)&,*,. j*,, - 612 o ok1i. ¡ t

+ (Lz)z Lro r ?- (r r, n,, ¡., * c r,G <,. ¡, - c r"€ a,. ¡ ¡)l(.. .. '(r,./,

(7.2)

where P(,,jr=rrr,¡r(

vr(¡.j)=Cry '
"(i, i)

The same method used above can be applied to equations (5.1), (5.2), and (5.3). Finally a

closed system can be obtained, and the system can be solved numerically with the proper

boundary conditions as given in equations (5.9), (5.10) and (5.11). Some coefficients used in

thre k-e equation are given in table 2.1. The term Q,,r, is neglected in this simulation

since the concentration of fraztl ice is very small.

7 .2.2 Zero-Equation Model

Two simple turbulence models were introduced in chapter 2, one of which (turbulence model

I) has already been used in chapters 4, 5, and 6. Herein another simple turbulence model

(turbulence model II) is applied to the turbulence simulation. Typical expressions for fr and

t were suggested by Nezu (1977) and were given by equations 2.10 and 2.11. The

kinemetic eddy viscosity is expressed

J, U,,r, =vr,,.ffi?;- and

v, = c p | = r,T r* r''' r." *r(#).

U(,.j*r)-Ur,,,,

Lz
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Typically, Cr=0.09 and if the Reynolds number is around 104 -105, then taking

E =9.8 (Nezu, 1977), yields,

v r = 0.2098(zH )'t' u.e-t 
[; )

Therefore, 
+ = 0.1049 z-ttz H',u*e* 

[; )- 
t .209821t2 H-'''u*"- 

[; )

The same procedure as shown in chapter 5 can be applied to equations (5.1), (5.2), and (5.3)

to simulate the flow, the water temperature, and thefrazll ice number variation.

7.3 Results and Discussions

The three turbulence models are applied to the experiment of Carstens case I. Some results

are plotted in figure 7 .I to 7.6. Figure 7.1 shows the vertical velocity distribution from the

three turbulence models used in this simulation and from Hammar and Shen's (1995) model.

Figure 7.2 and figure 7.3 show the vertical distribution of the turbulence kinetic energy and

the turbulent dissipation rate. In general, the results are close, although some slight

differences exist in the region close to the water surface and close to the bottom. It indicates

that all three turbulence models can be used to calculate the velocity field and the turbulence

characteristics if only one dimensional model along vertical direction is of interest. Figure

7.4 shows the comparison of the water temperature history in the supercooling process from

the three turbulence models and from Hammar and Shen's (1995) simulation. Figure 7.5

shows how the mean fraztl ice size varies with time. The variation of the total frazil ice
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volume in the supercooling process is shown in figure 7 -6. AII of the simulation results in the

frazil ice formation from the three turbulence models generally have the same trend.

The results of the velocity distribution, the turbulence kinetic energy and the energy

dissipation rate from the three turbulence models are slightly different. The two simple

turbulence models seem to overestimate or to underestimate the turbulence kinetic energy

and energy dissipation rate in the areas close to the water surface and or close to the bottom

of the flume. The reason for this is there is no boundary condition applied in the simple

turbulence models, and the impact of boundary layers can not be reflected throughout the

water depth. The /c - e model can consider the impact of the boundary condition and gives

a more reasonable solution. A small difference exists between the results from Hammar and

Shen's (1995) model and this model, even though both use the fr-s turbulence model.

This is probably caused by neglecting the gradient of ftazil ice concentration and water

temperature in the turbulence equation (2.4)

The results conceming the water temperature and frazil ice volume variation with time in the

supercooling process are also slightly different for the three turbulence models, but in

general, the simple turbulence models are good enough to be used to simulate frazll ice

formation and evolution compared to the complicated k- e equations if only the variables

alone vertical direction is of interest.
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CHAPTER 8 Summary and Future lMorks

8.1 lntroduction

The formation of ice in rivers has created engineering challenges with respect to the design,

operation and maintenance of hydraulic facilities. Therefore, a significant amount of

research has been carried out to study ice formation. Since frazll íce is the origin of almost

all the others forms of river ice (Ettema et al., 1984), research tnto frazll ice formation has

been very important. The study of frazil ice formation has mainly focused on the

supercooling process, nucleation, ice particle growth, and evolution, from both laboratory

experimentation and mathematical modeling perspectives.

8.2 Summary

Zero-dimensional model

In this study a general mathematical model was formulated based on open channel flow

theory. A zero-dimensional mathematical model for the formation and evolution of frazil ice
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was developed based on Daly's (1984) frazil ice dynamics, and Svensson and Omstedt's

(1994\ model. The model considers several physical processes such as initial seeding, ice

particle growth, secondary nucleation, flocculation and break up, and buoyancy removal. In

this model, initial seeding was treated as a calibration factor since it has not been

mathematically defined yet. Ice particle growth was modeled based on its heat transfer to the

surrounding water, and an actual Nusslet number was used according to Daly's (1984)

description instead of using the turbulent Nusslet number in the simulation of thermal ice

growth (Hammer and Shen, 1995). Secondary nucleation was simulated based on the theory

that Svensson and Omstedt (lgg4) suggested. The processes of flocculation/break up and

buoyancy removal were modeled according to Svensson and Omstedt's (1994) formulation.

The interaction of these physical processes during frazll ice evolution was modeled through

the determination of different parameters. Water temperature, frazil ice concentration, and

frazil ice number variation were simulated. In addition, the size distribution of frazil ice was

simulated based on the method suggested by Svensson and Omstedt (1994), which was

originally described by Mercier (1984). The model was calibrated with existing experimental

data, namely, Carstens (1966) and Clark and Doering (200Ð. A good fit was developed

between the simulated and the observed experimental data.

A vertical one-dimensional model

A vertical one-dimensional model for the formation and the evolution of frazil ice was also

developed in this study, and was applied to simulate frazil ice formation under different
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cases. First, the turbulence characteristics such as turbulent kinetic energy and turbulent

dissipation rate were simulated from a simplifìed turbulence model, and then the water

temperature and ftazll ice number were modeled both in spatial and temporal space. The

vertical one-dimensional model only considers the multiplication of frazil ice particles

without including the other physical processes such as secondary nucleation, flocculation, or

break up. The evolution of the mean size of the frazil ice was simulated and used for the

computation of heat production from frazil ice growth. This vertical one-dimensional model

was calibrated with existing experimental data from Carstens (1966) and Clark and Doering

(2004). A good fit was observed between the simulated data and observed experimental data.

Finally, this model was applied to simulate the frazil ice formation on the downstream of

Limestone Generating Station with promising results.

An extended vertical one-dimensional model

A vertical one-dimensional mathematical model to simulate the formation and evolution of

frazil ice was extended by considering the effects of secondary nucleation and

flocculation/break up on ftazll ice formation. Sècondary nucleation, flocculation/break up,

and the size distribution of frazil ice were modeled in the same way as in the

zero-dimensional model. The simulation results of water temperature variation during the

supercooling process from this model were compared with Mercier's (1984) results; an

acceptable agreement was observed. Furthermore, Carstens' (1966) experimental data and

Clark and Doering's data (2004) were also used to calibrate and verify the model-developed.
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The model was also used to simulate the frazll ice formation in the downstream of

Limestone Generating Station in the Nelson River; reasonable results were obtained.

Effect of three turbulence models on frazil ice formation

Three turbulence models, including two simple turbulence models and a k-e model were

used in a vertical one-dimensional model to simulate frazlL ice formation and evolution, and

then applied to Carstens case I. The aim was to investigate how these turbulence models

affect the modeling accuracy of frazll ice formation and evolution. The results of the vertical

distribution of velocity, turbulence kinetic energy, turbulent dissipation rate, mean size

variation of frazil ice, and the total volume of frazll ice produced were compared among the

three turbulence models. It was found that the two simple turbulence models can generate

results comparable to the more complicated k - e model.

8.3 Conclusion

The following conclusions can be drawn from this study.

Ð. A zero-dimensional model was developed that can predict water temperature

variation, frazîl ice number evolution (in different size groups), ice growth,

secondary nucleation, flocculation/break up, and buoyancy removal. Two calibration

parameters (initial seeding and n,*,) were used in the development of the

zero-dimensional model. Specifically, the zero-dimensional model showed that:

Mathematícal Modeling of Frazil lce Formation and Evolutíon t22



Summarv and Future Works

the total number of frazll ice particles increases during the primary period of

suprercooling then remains constant during the period of residual supercooling;

an increase in the initial seeding or of the parameter fl,* shortens the

supercooling process and reduces the maximum amount of supercooling;

the size distribution for frazil ice suggested by Svensson and Omstedt (L994)

appears reasonable, although there were some differences from a measured size

distribution; and

d. a zero-dimensional mathematical model can provide reasonable estimates of

frazil ice formation in a well mixed water body, and can provide, therefore,

preliminary information with regard to the ice formation.

The stratification of a flow and its turbulence characteristics can be well modeled by

a one-dimensional vertical model, and subsequently that ftazll ice formation can be

simulated by considering only the thermal growth of frazll ice particles, thereby

neglecting other complicated physical processes. In such a simulation, only the mean

size of fraztlice particles was predicted. For this case the model showed that:

a. the water gets more supercooled in the area close to the water surface than the

rest of the water depth;

b. the gradient of the vertical water temperature distribution depends on the

turbulent intensity; and

c. the simulation of the mean size of frazll ice fits well with experimental data, and

provided a way to find the variation of the mean frazil ice particle size during the

b.

iÐ.

Mathematical Modeling of Frazil lce Formation and Evolution 123



Summary and Future Works

iii).

supercooling process.

Complicated physical processes such as secondary

and buoyancy removal can be successfully

one-dimensional model. Such a model shows that:

nucleation, flocculation/break up

implemented into a vertical

a. there is a notable gradient for the frazll ice number distribution over the water

depth for smaller and larger fraztl ice particles due to the effects of seeding on the

water surface and buoyancy forces;

b. the frazil ice size distribution at different times and water depths can be modeled

based on Svensson and Omstedt's (1994) formulation in the extended

one-dimensional vertical model;

c. different trends in different experiments that probably depend on the intensity of

flow turbulence; and

d. the total number of ftaztl. ice particles for different size groups and water depths

seems to increase during the primary supercooling period for all size groups.

iv). Two simple turbulence models can achieve results comparable to a more complicated

k - e model. Therefore, two simple turbulence models can be used instead of a

k - e model in the simulation of frazil ice formation in a vertical one-dimensional

model. The advantage of using two simple turbulence models is the ability to avoid

solving complicated equations
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8.4 Suggest¡ons and Recommendations of Future Work

The study of the growth and evolution of frazll ice is a very difficult topic in ice engineering

because it involves thermal dynamics, fluid mechanics, and mass transportation. Although

this study has explored and simulated some important aspects of frazil ice growth and

evolution, there are still research gaps that need attention in the future.

Ð. The mechanism of secondary nucleation and flocculation/break up are not fully

understood, more research is required to formulate these two important physical

processes.

Initial seeding is a very important factor in ice formation, and it is treated as a

calibration factor in most mathematical models. More studies are required to quantity

the amount of initial seeding.

A lognormal distribution is considered a reasonable description for the size

distribution of frazll ice in the supercooling process. The mean of the distribution has

been well simulated in this study, but the variation of standard deviation is still

unknown. More experiments are required to generalize the variation of the standard

deviation.

Ttree mathematical models have been developed in this study, but there are some

limitations for each model since the formulation of the mathematical models are

based on specific assumptions. A zero-dimensional mathematical model is suitable

for a well-mixed flow whereas a vertical one-dimensional model and an extended

iÐ.

iiÐ.

iv).
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vertical one-dimensional model are suitable for the flow in which the vertical mean

velocity can be neglected. [n rivers, these two assumptions are not always true. A

mathematical model to simulate frazil ice formation in open charurel flow that

considers the variation of air temperature is required.

v). The turbulence intensity strongly influences the frazil ice formation and evolution

during the supercooling process; therefore an exact measurement of turbulence

intensity distribution in a counter-rotating flume is needed for future research.
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Appendix A Discretization of Governing Equation

For Zero-Dimensional Model

The number continuity equation (4-7) canbe written in the following form

#=Lo,',- þ,\-rt\-rt\

+ = -Çarrr- þrnr+ 6þr\-Tznz-tznz+îtry

. (4.1)

+ = -(a *n* + õB r-rn*-, - T unu + r N-tnN-l

Discretizing the left hand side of equation (4.1) using an Euler forward scheme, yields

dn, _n,(t+Lt)-n,(t) . @.2)dt Lt

Setting n.=(1-0)n,(t)+0n,(t+Âr), 0<e<L yields an implicit scheme if 0=1, and an

explicit scheme if g =0. Otherwise the scheme is semi-implicit. Then the equation becomes
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n,(t+Lt)-/¡,(f) _+
^, 

- i o,(ïn,(t+Ar)+(l -fin,Ø)-(þ,+Tt*tt)@rq(r+Âr)+(l -7)n,(t))
.- )J--

n'(t+L!)-n,(t) 
=-(ar(hn,Q+u¡+(t-l)n,(t))-(pr+yr+tr)(hnr(t+Lt)+(L-l)nr(t))+

Lt - ¿\ \, ¿ .L z/\ ¿\

(6p, + t,) (0 n,(t + tt) + (I - 0)n,(t))

n*(t+At)-n*(t) 
=-(d*(en*çi+tt)+(r-|)n*(r))+(ôB"-,rî*-r)(hn*_,(t+^r)+(1 -|)nr_r(t))N

- T* (?nr(r + 
^r) 

+ (1 - 0)n* (t))

By combining the terms, the above equations become

(t + N ( p | + y, + r,)0 ) ryç + nt¡ - Nla, (0 n, {t + tù) +qØ - Lt ( Þ, + T, + t,) ((r - ÐryØ) +

o,io,(e-Øn j(ù)

-N(r,+68,)0n,(t+Ar)+(l+^l(Çar+ þr+y"+t.)0)ryG+At)=n"(t)-N(Çur+ þr+Tz+h)(t-Øn"(t))+
Lt(t-0)þ,+ õ8,)ryQ)

-N("r-r+68*_r)0nr_,(r+^/)+(1+ N((ar+y)0)nr(t*Lt)=nr_,(¡)-N(Çar+7r)((t-A)n"(r))+
Lt (t - 0) (î N _' + 6B n _) n * _r(t)

IfA is used to replace the above form, thenmÌ "
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^{'^-:}="
(A.3)

where

and

-Ltur9
-Lt(r,+õB)0

0

I+ ttlÇar+ þr+Tz+rz)
:

-d;(r *_r+ õB*_r)0 ,.-:,:.:^,1

"{

,r,(t) - N ( þ, + Tt + Í t) (e - Ðn1r¡ ) + ari a, (0 - Ðn, {ù)
j=2

n,(t) - N (( u, + þ, + Tz * t z) (Q - Ðnz(t)) + Lt (t - 0) (r, + 6 B,) n,(t)

:

n * _,(t) - N (( o * + y *) (G - e)n, (t))+ Ar(1 - g) ( r * _, * õ B * _,) n, _,(t)

Then the frazílice number at the subsequent time step can be obtained from equation (4.3).
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for Vertical One-Dimensional Model

The kinetic eddy viscosity is related to the turbulent kinetic energy and the turbulent

dissipation rate as shown in equation 2.7. Turbulent energy and turbulent dissipation rate are

given in equations 2.8, and 2.9, respectively.

The derivative of v, with respect to z is

ò', 
- or-(r-4\.òz 't. h)

Noting that u* is independent of z, then the governing equations (5.1), (5.2),

become,

òu àv,òtJ.. ò'u lap- (, zkz\ au...ò2u rap*

- 
= ------l-- r r t 

- 

- - 
-----!- 7 I l, 

- ------:- lr¡ 

- 

r r r

ðt àzò2",òzz pðx t- h)-'-ò2",ð2, pðx

òr = L òv, òr *ytg:I*c^ =]-( t -ror\r.{*tt9}1*t-ðt orðzðz orò2" ' or[ /r )-ð, oròz' t

òn _ I ðvrðn,v, ð2n, n _ | (,- 2kz

ðr- ",8 ðr- % ò¿ 
-rt'n -o,[."- h

,.!*!-!-*.!*c.
dz. oc dz- dz

(8.1)

and (5.3)

(8.2)

(8.3)

(8.4)
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z

U(ij+l)

u(i-lj) u(ii) U(i+l j)

u(ij-l)

Figure 8.1 Schematic of t-z plane

Discretizing equations (8.2), (8.3), and (8.4) using an explicit differential scheme fo, p
ðt

and an implicit scheme t", 
# ^"0 #, 

where the inside of the parenthesis can be the

variables U, Tor n,yields

A0 
= 

0<,*,,¡l -0r,,¡l A0 - 0r,*,,,*,r -Ot,*,,;l 420 
= 

0r,*r,¡*rr -2Or,nr,;i *0r,*,,¡-r¡

àt- Lt -) ar- L, ' ðt-T'

Substituting the differential schemes into equations (8.2), (8.3), and (8.4), gives

-vrvt(Jç*r.,-r,*( {u)' * t t ( t -T\r.* \
\ 

- (' h )" 
Zv'Lt)u<"'i>

-[*r[- -ni)".*",o,)uì+'j+,) ='Lr'u,,.,, í * 
(B's)

Mathematical Modeling of Frazil lce Formatíon and Evolution L37



Discretization of Governing Equation for Vertical One Dimensional Model

(8.6)

(8.7)

-v r 
^t\ 

i +,. i-,, 
* 

[ 
f a. I' o r + 

^z ^t(o 
- +)". + zv, tt)\ *,. i,

-(**(r -+)". +v,Lt){*,,,,, = Lzzo7r1,.,, + G,Lzz Lto,

-v,Ltnç+r.¡-,, * 
[f 
*i' o, + nztt(n -+)". +Zv,Lt -õ ^Lzvto ̂)n,u,.,,

-(* * (r - +)". + v, Lt + ø nLz Lt o n)n,.,, r.,, = Lzz o, n,,,,., + G,Lzz Lt o

Equations (8.5), (8.6), and (8.7) can be rewritten in the form of an upper open tri-diagonal

matrix, respectively, using equation (8.7) as an example.

For simplification, assume

A\,nr.¡-rl = -vr\t

AAu,,, =( r*>' * *o,( o -+\r.+ zv.l, )\''r'// (. \.. h) ' 
)

Á4,*'in,) = -[*o' 
I 
r -T)^ +v,Lt)

then,

A4,*r.¡-rrT<,+t,j-l) * A4,*r,jlT(,*r.¡l* 4,*r.¡+r¡{i+r,7+r¡ = Lz'Tr,,rr+GrLz2Lto,

Equation (8.8) can be written in the form

(8.8)
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4r.rTo,, + 4^rr'Io.r¡ + \r,rtT<r.,) = &zT*2r+ ÇAt No, ; (i-1, i4)
\z.z¡T<z..zt + \rt¡\rr, + 4^orTo,o¡ = M\r.r)+ C+L¿ N6r ; (i=1' j=3)

4rr',To,r, + 4ror%,0, + \trÏ,rr, = &'\r.o)+ CîL¿ Nor ; (i=1, j=4)

o

a

a

a

\rr.tT<r,-t> * 4r.,-rt\2.,-tt + \r.rTont = M\rr-r) +q\zz N6r ; @1, j=+1)

The same derivation process can be applied to equation (8.5) and to equation (8.6).
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Appendix C Discretization of Governing Equation for

An Ertended Vertical One-Dimensional

Model

The expression for v. and its derivative used in chapter five as described in equation (2.7),

(8.1) are applied herein, therefore the equations (5.1), (6.1), and (6.2) take the following forms

(c.1)

(c.2)

(c.3)

àU àV* àU ò2U 1 AP (I t t. w 
-l 

a-
i^---ðt ðz òz 'ðz' pð* \.

òT 1 òv^àT v- à'T - 1
_ 

= 
-------J_ - 

-L ---l-- J- l_J_ 7 

-ðt or òz òz o, ð2" ' o,

àn* 
= 

L ðv, ðn^ 
+!zð'n_,^, +G =_ðt onòz ðz ocðz' n 

I

_ ¿Kz

h

(z
I r--
(,

r(
-l r-

_?

("

;t
1

6n

ò'u-:--;-rel
, )u.

_Zrc2
h

'2t

a'l
=--:òz

vr
or

,+

-+-,'(

ãn-

ðz

-+l
¿

AT
r -l-

òz

\¿
)u.-

:\ òU')u. 
*

Zrzl i

- 
ltt* -

h)

Zrc2\
- 

- 
lthl

! aP,

pðx

f

t *G,

'\2afl^
L2

ðx

1a
pc

,T
++(z-

'\2
"4flr2noz

I

ò'T
-:- 

"ðz

vr
oc -w.9?+c.

dz

Discretizing equations (C.1), (C.z),and (C.3) using the same differential schemes f". *òt

and an implicit scheme fo, p *d {9, and substituting the differential schemes intoòz ðz' '

equations (C.1), (C.2), and (C.3), gives
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-v,Lt(rç*r.,-,, *[ra.l ' + tztt(rc -+)". +zv,tt)u,u,,,,

- 
[ 
*t ( " =T)", * v, tt)u,*,. 

i +;r¡ = 112 (r,,.,, - ; *

-v,Ltrça.¡-,, *[t*l' o, + tztt(" -+)". +zv,Lt){,",,,

- 
[ 

*t 
[ " 

- T)". * r, o,)r,u,, 
i+, ) = Lz' o,\,. 

¡ ¡ + G, kz Lt o,

(c.4)

(c.5)

-r;Lt?^u.u,-,, *[t*l 2 o, + d,zLt(" T)u* +Zv,Lt -Ø,Lz'to,)n*,,.,,,, 
(c.6)

- 
[ 
*t 

[ " 
-+)". + v, Lt + õ naz Lt o,)r**,.r.,, = a,zz o rn ̂

1i. 
¡ ¡ * G nuz? Lt o n

The source terms in the equations are important for the convergence of the solution, and it

should be treated in the right way. The explicit scheme is used for the source terms in equation

(C.4) and (C.5), while the semi-implicit scheme is used for equation (C.6), hence G" can be

written in different forms for the different ftazil size groups

o, =(þ*,n,(i, i))-L,ry(i +1, i) -c,rq(i +1, i); (m =L)

Gn=-(d^n,,(i+I, j)- þ*n^(i+1, j) + õB^-rn^-,(i, j) -t^n,,(í+1, j)*t,o-tn,o-,(i, j)
, (1<m<N-1)

Gn=-(a*n*(i+1, j)+68*-rn -r(i, j) +t*-rn*-r(i, j); (m= N)
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Substituting G, into equation (C.6), the equations become

-vrttry(,+r,i-,) *(ru>'o, * *o,(* -+)". +2v,Lt -ø,Lzrto, + B,+t,)",,.,.r,

-[*or (" -+)a. +vr*t +Ø,Lz'to nJ*,,.',.,, = a,z2o7ny¡ ,, *(äo,r,)r*'o,o,,

(m=L)

-vrvtn^r,*r.r-,, *[t*l 2 o, + LzLt(" -+)u" +2vrvt -ØnLzLton + a^+ þ-+r*]n-,*,,r,

-[*t[" -+)". +v'Lt *''*o' 
;h. ; ; 

k;o'ryr''¡t + (õþ'' + r 
^) 

n^(Lzz Lto')

-[*o'[" -T)". +v,Lt +õ.a.*to. 
),*,,*,,,*,,
(m= N)

For simplification,

AAu,.,, =(r*f o,* *o, ( " - T)"" + 2v, Lt - õ,LzLt o, + B, + r,) rr, m = L)

A\,*,.¡¡= 
[ro.l' 

o, * *o, 
[ " 

- T)", + zv, Lt - Ø,LzNo, + a m + Þ ^ 
*, ̂ )rnr t < m< N) (c.8)

4,*,.¡> =(r*r' o,* *or(,.- +)". +2v,Lt -d ^LzNo,* 
t" 

) 
(for m = N)

-v, Ltn*,,*,, r-,, * 
[ 

f *i 2 o, + LzLt(" -+)u. + 2v, Lt - 6,LzLt o n * e y)r*,*,.,,

= Lz2 o rn r r,.,, + (õþ * _, * r u -t) {tz' tto,¡

44,*r,¡-r', = -Vr&t (c.7)

4,*,. i *,t= - 
[*ot [ " 

-T)". *u.o' 
)

r42

(c.e)
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Discretization of Governing Equation forAn Extended Vertical One-Dimensional Model

then,

A4,*r,j-rln^(t+l,j-l) *A4,*t.¡ln,n1i+t.7¡ + A\,*r,¡*r¡n.(¡+t,i+l) = L'zzn*6¡+Gr\z2Ltor, (C'10)

where
lV

r'' - F - -- /t^- .-^ -1\u, - /;a,r, (for m=l)
t-1

G,=(6Þ,,+T,,)n^ (for r<m< N)

G^=(õþ*-t+tN-r)nN-, ffg, !<m< N) o, 6r a, 61 6r ar or -

The same derivation process can be applied for equation (C.a) and for equation (C.5). All of

the resultant equations and their suitable boundary conditions consist of a closed soluble

system. A MATLAB@ based program was developed to solve the three equations

simultaneously.
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