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Abstract

In cold regions the production of frazil ice in supercooled turbulent water has a profound
impact on the design, operation and maintenance of water resources infrastructure. Studies
on frazil ice formation are therefore importaqt and imperative for ice engineering. This study
mainly focuses on the development of mathen;atical models for frazil ice formation and
evolution, which is an important part of modeling ice formation in a river.

A general mathematical model is formulated that includes the modeling of flow and
turbulence, heat transfer, and frazil ice transport in open channel flow. In addition the
methodologies to model the physical processes of ice formation are described. Three
mathematical models to simulate the supercooling process and frazil ice evolution were
developed based on the general mathematical model and frazil ice dynamics. A
zero-dimensional mathematical model was able to simulate water temperature history, frazil
ice number evolution in the well-mixed water and the varied size distribution of frazil ice
during the supercooling process. A vertical one-dimensional mathematical model was able to
simulate water temperature variation with time at the different water depths, velocity and
turbulent intensity distribution over the water depth, and the vertical distribution of frazil ice
number concentration. The variation of mean size of frazil ice particle is also simulated. An
extended one-dimensional mathematical model was developed from the vertical
one-dimensional model by including the size distribution of frazil ice and the complicated

- physical processes. The three mathematical models developed are calibrated and verified

using experimental data.
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General Description

| CHAPTER 1 General Description

1.1 Introduction

The formation of ice in rivers and waterways is a natural phenomenon in cold regions, but
sometimes it can create engineering challenges and affect the design, operation and
maintenance of hydraulic facilities. The associated problems inciﬁde floods produced by ice
jams, negative effects on hydropower operation, inland navigation, water diversion, the
environment, and river morphology. Accurate (theoretical) river ice forecasts could be a
great asset in dealing with these problems since such forecasts would provide the necessary
time to schedule procedures to mitigate the adverse effects on the operations of the various
river structures. With adequate warning, procedures could be implemented in an orderly and
effective manner. Additionally, emergency measures such as an evacuation or a flood

fighting effort might be instituted in a timely manner.

Ice research has drawn the attention of research engineers and scientists. Generally ice
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research is divided into two areas: the study of river ice and the study of sea ice, both of
which involve similar physical processes although salinity and strongly nonlinear waves are
involved in the formation of sea ice. This study will be confined to the formation of river ice.
River ice phenomena include the formation, evolution, transport, accumulation, and

deterioration of various forms of ice (Shen, 1996).

River ice processesl involve complex interactions between the hydrodynamics, mechanics,
and the thermal dynamics. Several reviews of river ice processes and the state-of-research
are available (e.g., Ashton, 1986; Gerard, 1990; Prowse, 1993; Beltaos, 1995; and Shen,
1996), in which it is stated that the studies of frazil ice formation and anchor ice formation

are very limited, and that more attention and effort are required in these two areas.

Frazil ice is defined as a fine, small, needle-like structure or thin, flat, circular plates of ice
suspended in water (USA CRREL, 1997), and it is the origin of almost all the others forms
of river ice (Ettema et al., 1984). Early studies of frazil ice usually focused on the
supercooling process, nucleation, frazil ice growth and evolution both from an experimental
and a mathematical perspective. Mathematical modeling has been useful in predicting the ice
formation and its corresponding consequences, while the experimental study often provided
useful data for the development of the mathematical models and for elucidating unclear

mechanisms about ice formation.
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1.2 Physical Processes of Frazil Ice Formation

The process of frazil ice formation can be characterized by several physical processes
including initial seeding, secondary nucleation, flocculation and break up, and buoyancy
removal. All of these processes are fundamental for ice formation and their mechanisms are
important for mathematical formulation of ice formation. The process of ice formation can
be reflected and illustrated by the supercooling process, which shows the water temperature

variation during ice formation.

1.2.1 Supercodling Process

In the presence of a low ambient air temperature, the heat loss from a water surface exceeds
the heat gain. As a result, the water temperature drops to the freezing point. With the heat
loss continuing at the water surface, the water becomes supercooled (i.e., T<0 0C), and then
frazil ice starts to form. The formation of frazil ice releases latent heat to the water; the
maximum point of supercooling occurs when the heat loss from the water surface just
exceeds the heat produced by frazil ice formation. Subsequently, the water will warm up
gradually because the heat released from frazil ice production exceeds the heat loss from the
water surface. Finally, the mixfure of water and ice will reach an equilibrium state Te. A

typical supercooling process is depicted in figure 1.1.

Mathematical Modeling of Frazil Ice Formation and Evolution 3



General Description

1.2.2 Initiation of Frazil Ice

The initial formation of frazil ice begins when turbulent water is supercooled and the water
is seeded with ice crystals from the atmosphere (Svensson and Omstedt, 1994). This
phenomenon is usually referred to as heterogeneous nucleation, which requires the presence
of a foreign particle to serve as the nuclei. Heterogeneous nucleation is commonly observed
in nature, while homogeneous nucleation, not requiring any foreign particles, is not realized
in any natural water body since it only occurs for water temperatures less than -38 °C. Frazil

ice usually starts to appear at the nucleation temperature Ty as indicated in figure 1.1.

The amount of the initial frazil ice produced most likely depends on the amount of seeding
of foreign particles. Foreign particles usually come from a mass transfer process whereby
seed crystals are introduced from the atmosphere into the water column. The sources of the
seed crystals are the wind and the air-borne water droplets created by splashing, wind spray,
and air-bubbles bursting that freeze in the air and drop back into the flow as ice particles

(Osterkamp, 1978; Daly, 1984).

1.2.3 Secondary Nucleation

Secondary nucleation is responsible for the production of small crystals and is the cause of
the rapid proliferation of frazil ice particles. Three mechanisms have been identified by Denk
and Botsaris (1972), by which secondary nuclei could be generated by the parent crystal: (1)

the growth and the detachment of surface irregularities; (2) the ordering of the solute
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molecules near the surface of the parent crystal, which leads to a high local super-saturation
and induces primary nucleation; and (3) the uptake of impurities by the growing parent
crystal which sufficiently reduces the impurity concentration near the crystal surface such
that primary nucleation becomes locally possible. The last two mechanisms are unlikely
sources of secondary nuclei because of the high level of super-saturation (supercooling)
required for primary nucleation and because the possible numbers of nuclei produced by
these mechanisms would not be sufficient to explain observations (Mercier, 1984). In any
case, at a low super-saturation the first mechanism is the main source of secondary nuclei

(Ottens et al., 1972).

Evans et al. (1974a, b) demonstrated experimentally .that the rate of production éf the
secondary nuclei in agitated crystallizers is removal-limited, that is, it depends on the rate of
the detachment of surface irregularities rather than the rate of growth of the irregularities.
They indicated that fluid shear and collisions of the crystals with hard surfaces (including

other crystals) could cause the detachment of the surface irregularities.

It is commonly agreed that the dominant mechanism of secondary nucleation for frazil ice
crystals is collision breeding. The rate of production of the nuclei depends on: the rate of the
collisions between the crystals; on the energy associated with each collision; and to a lesser

extent on the super-saturation and the impurity concentration (Mercier, 1984).
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1.2.4 Flocculation and Break up

The mechanism of flocculation is not yet well understood although the process of sintering is
usually used to explain the mechanism (Daly, 1994). Sintering apparently results from the
tendency of crystals to mipimize their surface free energy. Martin (1981) has determined the
bonding time required for small spheres and disks in the sintering process to be on the order
of 0.01 seconds. This is sufficiently fast to account for the observed flocculation of frazil ice
particles in turbulent water. Mércier (1984) in his simulation assumed that turbulent shear
and the differential rates of rising were the two mechanisms causing collision of crystals for
sintering. Figure 1.2 shows the sintered ice block observed by Clark and Doering (2004).
Break up of a larger frazil bloc may happen when it collides between or with solid

boundaries, but it seems that flocculation is more significant than the break up process.

1.2.5 Buoyancy Removal

Frazil ice particles in water are subjected to a buoyancy force, drag force, and turbulent
mixing action. Therefore, their movements in water are determined by a combination of
these actions. For smaller frazil particles, the turbulent mixing is dominant and keeps the ice
particles entrained in the water. As the crystals grow and flocculate together, they may reach
a size where their buoyancy force overcomes the turbulent transport and the crystals will |
float to the surface. On the other hand, the surface ice may break up and be resuspended in
the ‘water. The relative time that ice floats on the water surface compared to ice being at

depth in a flow is scarcely known. Buoyancy is primarily effective for the removal of larger
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ice particles.

1.3 The Evolution of Frazil Ice Particles

1.3.1 Frazil ice Morphology

Various shapes of frazil ice, such as flat disked shapes, six-pointed stars, hexagonal plates,
spheres, and small pieces of dendrite ice have been observed in laboratory experiments and
in field observations. These various shapes come from a complex interaction between the
imposed heat transfer conditions and the intrinsic crystallography of ice (Daly, 1984).
However, it is commonly agreed that the dominant shape of ice crystals during the

supercooling period in a turbulent water body is a flat disk.

Hanléy and Rao (1982) indicated that needle shaped frazil ice forms only when the
turbulence level of the water is low. Needle-shaped particles were also observed in a natural
river setting by Osterkamp and Gosink (1982). Clark and Doering (2002) observed needle
shaped ice that formed in the counter-rotating flume at the Hydraulics Research and Testing
Facility (figure 1.3), and reported that typically such particles form near the surface, but are
quickly entrained in the flow through turbulence. Hexagonal plates have also been observed
both in the laboratory (Clark and Doering, 2002) and in the field (Osterkamp and Gosink,

1982).
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The different irregular shapes of ice particles observed were dependent on the degree of
supercooling, the turbulence intensity and the depth of particle nucleation. Figure 1.4 shows

several examples of irregular ice particles.

1.3.2 Size Range of Frazil Ice Disks

Crystal size varies considerably during ice formation (Daly, 1991). During seeding, the
typical dimension of the seeding crystals is about 10 to 10 m in diameter. When frazil ice
starts to form the typical size ranges from 107 to 10? m while the typical dimension of frazil

flocs is 107 to 10! m (Svensson and Omstedt, 1994; Daly, 1984).

It has been observed that flat disks have a thickness to diameter ratio ranging from 1:5 to
1:100 (Arakawa, 1954). Daly and Colbeck (1986) investigated the aspect ratio of frazil
crystals grown in a laboratory flume and found that the ratio of diameter to thickness was
about 10, and it gradually decreased along the flow. According to Daly (1984), the
diameter-to-thickness ratios range from 5 to 100. Frazil ice crystals apparently maintain their

disk shape up to a diameter of 300 um , which seems to be the maximum disc size limited by

instability (Daly, 1984).

1.3.3 Frazil ice Size Distribution
Once frazil ice is initiated in turbulent water, the ice crystals will grow in size and in number

and the size distribution will vary with time. Some experiments (Bukina, 1967; Mercier,

Mathematical Modeling of Frazil Ice Formation and Evolution 8



General Description

1984; Daly and Colbeck, 1986; Ye and Doering, 2004; Clark and Doering, 2004) have been

conducted to study the size distribution of frazil ice in turbulent water.

Bukina (1967) conducted an experiment in a crystallization tray with the turbulence
generated by an agitator to determine the size distribution of the ice crystals, and from which
an equation for the distribution was developed

n,(2r)= %(21‘)3 exp”®”, (1.1)
where r is the radius of the frazil ice, n, is the number of ice particles, and b is a
coefficient characterizing the position of the maximum of the crystal distribution curve. It is

equal to a value of -14.1 on the average.

Mercier (1984) summarized some observations of suspended particle distributions in natural
water and suggested that the particle size distribution can be described by an equation with

the following form

_dC,() _

o al™, (1.2)

8. (D)
whére g,(1) is the number density distribution (number of particles per unit fluid volume,
per unit particle length), dC, (I)is the number concentration (number of particles per unit
fluid volume) for a particle length scale I —dl 5 to l+d% ; a and b are constants
(b =4.0). Svensson and Omstedt (1994) suggested a parameter «,, representing the

flocculation/break up process in their mathematical model and calibrated the parameter with

a value of 0.001 based on Mercier’s (1984) suggested spectrum.
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A log normal distribution has been found by experiments to be a good approximation for the
size distribution of individual frazil ice discs (Daly and Colbeck, 1986; Horjen, 1994; Ye and

Doering, 2004; and Clark and Doering, 2004).

Daly and Colbeck (1986) carried out a series of experiments to examine the dynamic size
distribution and the concentration of frazil ice crystals in a CRREL flume. They found that
the measured crystal size ranged from about 35um to 0.5 mm. The mean of the size
distributions was generally above 0.1 mm. As noted, they observed that the size distribution
could be approximated by a log normal distribution. A different mean and a different

standard deviation were given for each experiment, but a general formulation was not noted.

Horjen (1994) formulated the size distribution according to Daly and Colbeck (1986) results

as

logd. —lo 2
nnwn(dice):exp(—%(og = g1) ] (1.3)

A

where n,,(d,,) represents the number of particles per unit volume and per unit increment

of particle size (spectral size distribution), logu denotes the logarithmic mean (expected)

value, s is the logarithmic variance, i.e., the logarithm of the particle diameter is in the

interval of [logu—3s, logu+3s]. (The square root s of the variance is the standard
deviation). If d, and d,are the diameter of the smallest and lafgest particles of frazil ice,

respectively, then
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lOglu:(logcz'l~l—logcz’2% (1.4)
or u=.d/d,
sz%log(dz/dl).

Ye and Doering (2004) showed that the frazil ice distribution by volume can be represented
approximately by a lognormal distribution, which is concluded from their experimental data
analysis. The instantaneous mean diameter of frazil ice and the standard deviation were

formulated in terms of the flow Reynolds number, frazil ice concentration, etc.

Clark and Doering (2004) conducted a series of experiments in a counter-rotating flume
using an improved frazil ice observation system, which was able to observe particles as
small as 0.055 mm. They found that a lognormal distribution fit the experimental data quite
well at different times during the supercooling process (see figure 1.5). The variation of the
mean size of the frazil ice was also given as shown in figure 1.6, and it is mathematically
formulated in chapter 6 of this thesis. However, a mathematical description of the standard

deviation is not given.

1.4 Brief Review of Mathematical Models Development‘ on

Frazil lce Formation

The study of frazil ice formation has become one of the most important tasks in the field of
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ice engineering because frazil ice is the origin of most forms of river ice. Therefore frazil ice

- modeling is the most basic portion of the modeling of ice formation in rivers.

The most important factors in frazil ice formation are the seeding rate, the heat transfer rate
and the turbulence level of the water. Some mathematical models (Daly, 1984; Mercier, 1984;
Svensson and Omstedt, 1994; Hammar and Shen, 1995) have been developed to simulate

frazil ice formation in water. These models are briefly introduced in the following sections.

-1.4.1 Daly (1984)
Based on the Randolph and Larson (1971) theory of crystallization, Daly (1984) developed a
descriptive and predictive crystal distribution model. The model can be described by two
equations: the crystal number continuity equation and the heat balance equation. These two
equations are linked by the growth and the secondary nucleation rate of the ice crystals,
which are dependent on both the heat balance and the crystal size distribution. In theory, the
equations can be solved if the various required boundary and initial conditions are known.
However, Daly (1984) also noted that the equations are dimensionally incompatible and

strongly nonlinear.

1.4.2 Mercier (1984)
Mercier (1984) extended the work of Daly (1984) and formulated a kinetic model of frazil

ice growth and verified it against experimental data. In his model, the transport equation for
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a one-point, joint scalar probability density function (PDF) is employed to incorporate fast,
nonlinear reaction kinetics into a general transport model. In addition, a stochastic algorithm
for simulating the differential sedimentation and the radial diffusion was developed. A

Monte Carlo technique was applied to solve the PDF transport equation.

1.4.3 Svensson and Omstedt (1994)

In Svensson and Omstedts’ model, frazil ice particles are classified into several discrete
radius intervals, within which all the particles are assumed to be of an equal radius. The
number of particles in each group is assumed to be a function of initial seeding, ice particle
growth, secondary nucleation, flocculation/break up, and gravitational removal. Ice particle
growth is determined by the heat transfer rate between the water and the ice particles.
Secondary nucleation is simulated in terms of the collisions between the particles and
flocculation is considered based on a sintering mechanism. Gravitational removal is assumed
to have more effect on the larger particles. The number continuity equation, which describes
the evolution of the particle size distribution from an initial stage, together with the overall
heat transfer equation, are both solved to obtain the frazil ice numbers in the subsequent time

step.

1.4.4 Hammar and Shen (1995)
Hammar and Shen’s model is comprised of three differential equations: the mean flow

equation, the frazil concentration equation, and the water temperature equation. In their
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model frazil ice particles are assumed to be thin circular disks with a constant ratio of 1:10
(thickness to the face diameter). The frazil ice size distribution is described using eight
logarithmically spaced size groups. The size of the groups range from 4 um to 1.432 mm
(radius); the seed crystals and secondary nucleation are assumed to occur in the lowest size
group. The formulation of frazil ice evolution includes thermal growth, secondary nucleation,
and flocculation. The flow turbulence was simulated by a typical k—¢& model and all the

equations are finally solved using the PHONIEX commercial software.

1.5 Research at Hydraulics Research and Testing Facilities

Because of the significant effect of ice on hydraulic facilities in Manitoba, especially on
hydropower stations, the Hydraulics Research and Testing Facility (HRTF) at the University
of Manitoba started to explore some of the intriguing questions related to frazil ice formation
using the unique counter-rotating flume available at the HRTF. Numerous experimental
studies and some mathematical modeling have been undertaken. (Doering and Morris, 2002;

Clark and Doering, 2002, 2004; Ye and Doering, 2004; Clark and Doering, 2006)

Doering and Morris (2002) developed a digital image processing system to characterize
frazil ice. The system used cross-polarized light and a CCD camera coupled to a frame
grabber to acquire gray-scale images of frazil ice particles. The digital images were

manipulated by the processing system to derive a binary image showing the frazil ice
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particles. The binary images were subsequently analyzed to characterize the particles. Based

on this system a frazil ice distribution was identified.

Clark and Doering (2002) recognized several different types of frazil ice formations using an
updated version of the above digital image processing system. They found that needle
shaped particles occurred first, followed by disk-shaped particles, stars, and hexagons. The
maximum size of uniform frazil disks was observed to be about 5 mm in diameter, after
which they become unstable, non-uniform, and jagged. They also found that the size
distribution of frazil ice can be well described by a lognormal distribution at different times
- during supercooling. The variation of the mean size of the ice particles seems to follow a
common tendency, which increases in the principal supercooling process and reaches a

plateau in the period of residual supercooling (Clark and Doering, 2004).

Ye and Doering (2004) conducted more than forty experiments to examine the effect of
different hydraulic parameters on the supercooling process and frazil ice evolution. In
addition, a mathematical model was developed to model the supercooling process and frazil

ice evolution.

Clark and Doering (2006) conducied a series of experiments in a counter rotating flume at
the Hydraulics Research and Testing Facility, University of Manitoba. A high-precision

thermometer and recently improved digital image processing system were used to acquire
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data from these experiments, which will hopefully aid in the development of numerical
models. The effects of air temperature,b water velocity, and bottom roughness on the
formation of frazil ice are discussed. It is concluded that a lognormal distribution appears to

provide a reasonable fit to the observed frazil particle size distributions.

1.6 Objectives of this Research

Although a lot of effort has been put into the study of frazil ice formation by ice researchers,
there is still more that needs to be done. The mathematical model developed previously have
some shortcomings such as not considering all of the physical processes of ice formation, or
were not verified by experimental data, etc. Therefbre, comprehensive mathematical models
are required and needed to be experimentally verified 1n order to be used in practice. The
counter-rotating flume at the HRTF has provided a lot of experimental data for model

calibration and verification.

The objectives of this research are:
a) to develop a zero-dimensional mathematical model which considers the complicated
physical processes of ice formation to simulate the supercooling process and the evolution

of frazil ice number during the supercooling process;
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b) to develop a vertiéal one-dimensional mathematical model to simulate the vertical
distribution of flow turbulence and frazil ice number concentration;

¢) to develop an extended one-dimensional mathematical model by combining the
zero-dimensional and one-dimensional model;

d) to investigate the effects of different turbulence models on frazil ice formation; and

e) to compare simulation results from the mathematical model with experimental data.

1.7 Thesis Organization

This document is organized to eight chapters. In chapter 2, a general mathematical model is
formulated based on the. theories éf open channei flow, heat transfer and mass transfer.
Chapter 3 introduces some methodologies for modeling the different physical processes of
frazil ice formation. In chapter 4 a zero-dimensional mathematical model is developed and
used to simulate frazil ice formation in a well-mixed water body. Chapter 5 presents a
mathematical model with the vertical space dimensions considered that simulates the
supercooling process and the distribution of frazil ice number during the supercooling process.
In chapter 6 an extended mathematical model is formulated by considering the size
distribution of frazil ice and the physical processes of ice formation. Chapter 7 investigates the
| effects of different turbulence models on frazil ice formation. Finally in chapter 8 the work of
this study is summarized and some conclusions are presented and some recommendations for

future study are also suggested.
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Figure 1.1 Typical supercooling processes.

Figure 1.2 An observed sintered ice mass (Clark and Doering, 2004).
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Figure 1.3 Needle ice formed in the counter-rotating flume at the HRTF (Clark and Doering,
‘ 2002).

Figure 1.4 Irregularly shaped particles (Clark and Doering, 2002).
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Figure 1.5 Distribution of frazil ice at different times (Clark and Doering, 2004).
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Experiment 1 - Variation of Mean Diameter with Time
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Figure 1.6 Variation of mean size of frazil ice particles (Clark and Doering, 2004).
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CHAPTER 2 A General Mathematical Model for Frazil
Ice Evolution In Turbulent Water

2.1 Introduction

The process of frazil ice formation, involving flow turbulence, heat transfer between ice
particles and the ambient flow, and the transport of frazil ice in water, is a very complicated
phenomenon. Theoretically, frazil ice formation can be categorized as a typical two-phgse
flow problem. The modeling of two-phase flow has been a very prevalent and challenging
- subject in the field of computational fluid mechanics over the past decades (R. Scardovelli

and S. Zaleski, 1999).

Different approaches have been developed to formulate two-phase flow (Tryggvason et al.,
2001). The main focus has been on the treatment of the interface that separates the phases:
Since the detailed knowledge of the position of the phase interface is not always known and

it is very costly to obtain it computationally, the so-called homogenized or averaged mixture
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models are put forward as an alternative to the interface methods (Ishii, 1975). The system of
governing equations for such models is obtained by the volume and time averaging of the
single phase equations. The averaging of the single phase equations results in additional

terms, which describe the interaction between the two phases.

In the frazil ice formation process, frazil ice concentration is usually very small both in a
natural water body and in the experiments. It has been found that the frazil crystal
concentrations range from about 10* to 10° crystals/m3 in a natural river (Schaefer, 1950;
Oskerkamp and Gosink, 1982), and from 1.8x10° to 9.82x10° crystals/m’ in a laboratory
ﬂumé (Daly and Colbeck,i 1986). The upper limit of frazil concentration forrﬁed in a
supercooled water stream is of the order.of 0.5% by weight (Tsang, 1986). Therefore, the
assumption that the influence of frazil ice on flow turbulence can be neglected appears
reasonable. The density difference between the water and the frazil ice is quite small and the
relative velocity of the frazil ice to the ambient water is also quite small, so the flow

equations are only considered in the modeling of frazil ice formation.

2.2 Modeling of the Flow and the Turbulence

The flows in most natural rivers are turbulent flow and can be described by time dependent
Navier- Stokes equations (i.e., N-S equations). N-S equations can be solved directly with

supercomputers; however, it is very time-consuming and sometimes not necessary if the
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detailed turbulence structure is not of interest. The mean-flow equations that are derived by
statistically averaging the N-S equations are usually used for turbulent flow simulations. The
derived Reynolds equations are no longer closed when the Reynolds stress term is
introduced, therefore a turbulence model is necessary to close the system.

2.2.1 Flow Equations

The continuity equations for the mean flow can be written as,

U,
—+t=0. 2.1
= 2.1)

The momentum equation can be described by,

o Ui T e T

7

: 1% — U, 2.2
e 2.2)

U, 3U, 1 0P, 3 ( v, —]
+U + +8;»
where p, is the density of the mixture, p,, = pw+(p,.—pw)2Ck , p; and p, are the
densities of ice and water, respectively, U, is the i, component of the mean velocity,

uu; is the Reynolds stress, B, is the mean water pressure, v is the molecular viscosity,

\%

. is the kinematic eddy viscosity, and g, is the i gravity component.

2.2.2 Turbulence Modeling

Generally, two approaches are suggested to deal with the Reynolds stress term and close the
system mathematically. One is the eddy viscosity approach and the other is thé stress
-equation approach. The latter is rarely applied to open channel flow. The eddy-viscosity

model is formulated based on the assumption that the turbulent stresses are proportional to
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the mean velocity gradients, which is analogous to the viscous stresses in a laminar flow. A
variety of turbulence models have been suggested (Rodi, 2000) for the eddy viscosity
concept such as the zero-equation model, the one-equation model, the two-equation k—&
model, the two-equation k—kl model, etc. The k—g two-equation model is the most

commonly used turbulence model for the simulation of open channel flow

2.2.2.1 The two-Equation k—& Model
The turbulent energy k characterizes the intensity of the fluctuating motion and represents
the velocity scale of the fluctuation. The kequation and the £ equation in the k—¢

model are as follows,

ok ok d|v, ok

—+U, — —4— +P+G- 2.3

o Bx[akax] ToTe @3)
Je de 0 (v, de € g
—+U,—= +C,—(P+G)-C,, — 2.4
o "o, Bx,(d Bx] l":k( +0)-C k @4

where k is the turbulent kinetic energy and € is the energy dissipation rate, P is the

- dU, .
generation of turbulent energy, P=v, oU, +—1 aU"_ , G is the buoyant
ox; Ox; |ox;

J il

production/destruction, G :V,g(ia—T L PP o€

» p, is the density of the frazil
or 0z Oc P, az

2

ice, p, is the density of the water, and v, is the eddy viscosity, (v, =C, k—),T is the
£

water temperature, C is the concentration of the frazil ice, o, and o, are the
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Prandtl/Schmidt number. Several empirical constants such as C,, C., C,,, 0, and o, are

included in the above equations, and the values of these constants as recommended by

Lauder and Spalding (1974) are given in Table 2.1.

Table 2.1 Values of the constants in k—& model

C,u Cle C2€ O'k Ge
0.09 144 1.92 1.0 1.3

Now the mean flow equations together with the k—& model become a closed system, and

the system can be numerically solved with the proper boundary conditions.

The mathematical formulation for the flow (equations (2.1), (2.2)) and turbulence (equation
(2.3)) can be simplified into two-dimensional or one-dimensional cases (horizontal or
-vertical direction) according to what terms can be neglected in the controlling equations in

terms of physical importance.

2.2.2.2 Zero-Equation Model

In a relatively simple turbulence model, i.e., a zero-equation model, the eddy viscosity can
be easily obtained from the expressions of k and &. The typical distribution of the eddy
viscosity in an open channel flow is given by Nezu and Nakagawa (1993). Several
expressions for k and & are available (Nezu and Nakagawa, 1993) in the zero-equation

model. A typical vertical distribution of the turbulent energy dissipation in an open channel
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flow is described by (Mercier, 1984; Hammar and Shen, 1995)

7 2.5)

The turbulent kinetic energy can be approximated by

_ul oz
k(z)=——( E)’

03 (2.6)

where u, is the friction velocity, k is the Karman constant, z is the vertical distance

measured from the bed, and H is the water depth. Hereafter, this model is called

turbulence model I in this study.

The eddy-viscosity is
k2
V=G, —, Q.7)
2 2
{3*3(1_}51"]] C |
vy =C, = =Ly 1-= |. 2.8
TR W _2) 009" Z( H] @8
Kz H
Normally takingC, =0.09  then
C z z
Ve =—uxz| 1-= |=ukz| 1-= |. 2.9
"7 009" z( H] ! Z( H) @

Another zero-equation model was suggested by Nezu (1977) and is called turbulence model

I in this study. The expressions for k and & are
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k) _ 4.786xp( %j (2.10)
e(z)*H 2 Y -3z
and ———=F|— exp| — 2.11
e 1(1_1 ] p % ( )
yielding,
k? 4.78* o -z
VT:C#—;:—-—_—C#T(ZH) u*exp ‘E‘ R (2.12)

Taking C,=0.09 and E =9.8 (if Reynolds number is about 10* ~ 10%), then
vy =0.2098(zH ) *ue xp [_EZ ] (2.13)

These two simple turbulence models are usually used in the vertical one-dimensional

mathematical model to simulate the flow and turbulence characteristics.

2.3 Modeling of the Heat Transfer in Turbulent Water

Frazil ice formation results from the comprehensive heat transfer process between the water
and its ambient environment (air, and river bank, etc.), and between the }water and the
exsisting frazil ice. The water temperature variation can be modeled based on the thermal
dynamics of frazil ice and the turbulent heat transfer at the water surface. The thermal

dynamics of frazil ice is a key factor in the fnodeling of the water temperature.

The turbulent heat convection equation for water is given by
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aT T o (v, v)or
LI/ | LA LA 2.14
o o [(0' P,]axj] o2 @19

where U, is the i, component of the mean velocity, v is the molecular viscosity, v, is
the kinematic eddy viscosity, and o, are Prandtl/Schmidt numbers, P. is Prandtl number,
T is the water temperature, S,, § ; are source terms due to the heat loss at the channel

boundaries and the latent heat release from the frazil growth. The term S ; can be

determined by frazil thermal dynamics.

2.4 Modeling of Frazil Ice Formation and Transport

Once frazil ice formation is initiated in supercooled turbulent water, more frazil ice particles
are produced as the water temperature is lowered. Due to the turbulent mixing and buoyancy
effect, frazil ice will be distributed throughout the water depth and will be carried
downstream by the flow. These phenomena can be mathematically described by the

following mass advection-diffusion equation

4 c

oC, .. 9C, 9 ((v, v oc, ac,
U —8 = || -o +S S , 215
ot +U; ot  ox ((0' S, }axj k o, o F9s0ck ( )

where U, is the i, component of the mean velocity, ¢, is turbulent Prandtl number for

c
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frazil ice concentration, S, is the turbulent Schmidt number, C, is the volumetric
concentration of the frazil ice in the k™ size fraction, @, is the frazil buoyant velocity of the
k™ size fraction, S, is the source term due to the thermal growth of the frazil ice and
Soer 18 the source/sink term due to secondary nucleation and flocculation. The

determination of these two terms S, and S,,, will be discussed in the chapters 5 and 6

when the specific mathematical model is formulated.

The mathematical formulation for water temperature (equation (2.14)) and frazil ice
transport (equation (2.15)) can be simplified into two-dimensional or one-dimensional cases

(horizontal or vertical direction), when only a certain space of ice formation is of interest.

2.5 Boundary Conditions

A general mathematical model for frazil ice formation was formulated in the above section.

Boundary conditions are needed in order to find numerical solutions. Usually there are four

boundary conditions for th@ unknown variables, i.e., inflow, outflow, rigid wall and free
* surface conditions.

2.5.1 Inflow ahd Ouﬁlow Boundaries Conditions

At the inflow boundary, prescribed values are given to all the dependent variables. The

outflow conditions depend on the control structure of the outflow. A zero normal gradient of
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a dependent variable such as velocity, water temperature, and concentration of frazil ice are

applied at the outflow.

2.5.2 Free Surface Boundary Condition

For all the variables except for the turbulent energy dissipation rate €, usually a zero flux or
specific amount of flux at the water surface is enforced. The expression for £ suggested by
Celik and Rodi (1984) and presented by Nezu (1993) is usually applied for the free boundary
condition, i.e.,

372
= kW

Y o H

w

E

(2.16)

in which, k, is the value of & at the water surface, H is the water depth, and «, is the

constant with a value of 0.18.

2.5.3 Rigid Wall Condition

The boundary condition at the bed or the banks of the river are usually not specified at the
wall itself in an open channel simulation, but rather at the first grid point z, (z" =zu./v).
and the zero flux boundary condition is used for the water temperature and the frazil ice
concentration. The following relations for k and & are specified at the first grid point

outside the viscous layer,

k1=—14—uf=3.33uf and g =-——,

N <

where x is the Karman constant.
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2.6 Model Applicability in a Counter-Rotating Flume

A general mathematical model is formulated based on open channel flow theory. The model
is then used to simulate the flow turbulence, the water temperature variation, and frazil ice
formation in a counter-rotating flume at the Hydraulics Research and Testing Facility at the

University of Manitoba.

The counter-rotating flume is specially designed to simulate frazil ice formation in an open
channel flow. It has improved the flow characteristics over the circular flume used by Tsang
(1994) where only the bed rotated. The flow in a counter-rotating flume is driven by a bed
and walls that rotate in opposite directions and at a proper rate to minimize the effect of a
secondary current created by centrifugal forces. The velocity calibration to determine the
rates of counter-rotation was completed by Clark and Doering (2006). The flume is located
in a temperature controlléd cold room creating an ideal environment for frazil ice formation.
The flow with respect to the bed in the counter-rotating flume simulates prototype open

channel flow in a river.

The flow in open channels is driven by a pressure gradient aaﬂ , 1.e., the gravity component
X

along the channel. When applying the open channel flow equations to a counter-rotating

flume, the bed and wall effect can be considered as boundary' conditions if three-

dimensional flows are considered. When a vertical one-dimensional model is considered, the
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w

X

pressure gradient term can be intentionally used to simulate the resultant force
produced by the walls and the bed, similar to how Omstedt (1985a) used the pressure

gradient to simulate the force from a propeller in his experiments. This term should be

calibrated in order to allow the flow to reach a steady state.

The temperature of the water in the flume is measured with a high resolution thermometer,
which is recorded by a data acquisition system. The temperature data is useful for the
calibratibn of the model. Frazil ice is detected by using a cross-polarized lighting technique
(Doering and Morris, 2003; Clark and Doering, 2004). A high resolution CCD camera is
used to collect images of the frazil ice and these digital images are used to determine the
frazil ice characteristics. The detailed descriptions of the counter-rotating flume and the
algorithms used to detect the frazil ice were introduced by Morris and Doering (2003), Clark

and Doering (2004) and Ye and Doering (2004).
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Pp— Mathematical Modeling of the Physical
Processes of Frazil Ice Formation

| 3.1 Introduction

As described in previous chapters, the physical process of frazil ice formation consists of the
initial seeding, secondary nucleation, flocculation/break up and buoyancy removal. To better
-model frazil ice formation it is necessary to understand the basic theory of each process, and

to develop mathematical formulation for these mechanisms.

3.2 Seeding

Seeding is required to start heterogeneous nucleation, and therefore it is an important factor
for frazil ice formation. The source of seeding could be from mass transfer between water
surface and air, crystal dust washed off from large crystal, or microscopic crystals fallen into
the melt (Andreas Muller, 1978). However, it is difficult to quantify and to measure

experimentally due to its extensive origins. In mathematical simulation, seeding should be
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defined to initiate the simulation process, and it usually considers the seeding as a calibration

parameter in most mathematical models, including this one.

3.3 Thermal Growth of Ice Particles

The growth rate of ice particles depends on the transfer rate of the latent heat from the
particles to the ambient turbulent flow. The heat transfer rate from ice particles to the
turbulent flow is inﬂuenced by many factors and also varied for different ranges of
turbulence. Since the density of the ice particles is different from that of the water, the ice
particles are subject to gravitational and inertial forces that give them a gravitational motion
relative to the water, but it has béen found that the translational motion caused by inertia and

gravity can be neglected in determining the heat transfer (Daly, 1984).

The rate of heat transfer from an ice particle surface to the water body per unit area, g, can

be estimated as
q=h,(T,-T). (3.1
The heat transfer coefficient, #,, can be expressed in its dimensionless form as a Nusselt

number defined by

hl
N, =" | 3.2
=7 ‘ (3-22)

k4
w

where £, is the conductivity of the water. Equation (3.2a) can be rearranged to give
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h,=N, k“’. (3.2b)

w MT

The face radius of an ice particle is used as the characteristic length (Daly 1984).

The Nusselt number depends on the flow conditions and the particle size (Daly, 1984). It is
defined as the ratio of the actual heat transfer to that due to conduction alone. In this study an
actual Nusselt number is used instead of the turbulent Nusselt number that was used by
Hammar and Shen (1995). A detailed discussion of the Nusselt number and the turbulent

Nusselt number can be found in Daly’s report (1984).

The actual Nusselt number is defined by the turbulent Nusselt number, N, , multiplied by
the term m = %7 ,ie, N,=N,m" . This relationship can be derived by comparing
equations (49), (50) and (60) (Daly 1984) with the equations given in Daly's (1984) summary.
The formulation for the turbulent Nusselt number developed by Batchelor (1980) and Wadia

(1974), which is summarized by Daly (1984), is described as follows

N, =( 1 J+0.17Pr% if < (3.3)
m oo
3
and N, :( L )+o.55(Pﬁf it —L <m <10, (3.4)
m m Pr%

where m' = %7 , 1s the ratio between the face radius of an ice particle and the Kolmogorov

length scale.

" For large particles, i.e., m’ >1
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3
N, =1_1K L )+0.80a§'°35(P—£J}/J if ogm” <1000 (3.5
m m
and
1 . 4
N, =1,1K;)+O.80a2'24(Pr)/’/3} if om % >1000, (3.6)

where o =V 2% is the turbulence intensity, and U is the mean flow velocity. It should be

* - . -
noted that when m increases, Nu,, decreases, while N, increases.

3.3.1 Thermal Growth of a Single Ice Particle
Disk shaped frazil ice is the most dominant shape of frazil ice formed. If the size of a frazil

disk is defined by its radius r, the ice particle growth rate can be modeled by (Daly, 1984)

dr h
=2 (T =T, 3.7
dt piL(l W) ( )

where &, is the heat transfer coefficient and can be calculated from equation (3.2b).
Equation (3.7) will be used herein to simulate the mean size variation during the

supercooling process.

3.3.2 Thermal Growth of Ice Particles in Volumes
The ice volume produced per unit time by thermal growth can be computed from the

following

am’ 9,

e 3.8
da  pL G5
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d

or —
dt

(pC,(1-M)T)=Q,,- 0, (3.8b)
in which, p is the density of water, L, is the latent heat of the water, 7 is the ambient
water temperature, M is the volume concentration of the frazil ice, Q,, is the total heat
transfer between the ice and water, and @, is the heat exchange between the water and the
air and is given l;y Q,, =0, —T), ¢ is the heat transfer coefficient and is constant for a
' given air temperature and wind speed. However, Q_  can also be computed from the
cooling rate of the water neglecting the heat transfer from a river bank
ar

| Qo =PC— (3.9)

where C, is the specific heat of the water, and %"; is the cooling rate measured from the

T —t history curve.

3.4'Secondary Nucleation

The mechanism of secondary nucleation has been studied by several researchers (Daly, 1984;
Mercier, 1984; Svensson and Omsted, 1994). Accordingly, some mathematical
representations have been formulated already based on a liﬁited uﬁderstanding; although
this complicated process was not well characterized. These formulations have been used in
some mathematical modeling of frazil ice formation. The formulation given by Svensson and

Omsted (1994) is used in this study.
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3.4.1 Daly’s Formulation
Based on the kinetics of secondary nucleation, a theoretical formulation of the secondary

nucleation rate was suggested by Daly (1984) as follows

N, =(E,:,J+E.,2+E.,3+...)SN (6,,€,etc), (3.10)

where N, is the secondary nucleation rate, E, is the rate of the energy transfer, which can

be determined by the different mechanisms of collision. S, is the product of two functions
F, and F,. F, represents the number of particles produced per unit of collision energy and
F, represents the number of particles surviving to become crystals. S, largely depends

on the supercooling of the water and less on the level of turbulence (Daly 1984).

The expression for E.n. is given by Daly (1984) based on the collision between particles and

the collision between particles and the boundary, however, a description for S, is not

presented as it is hard to determine.

3.4.2 Evan et al. and Mercier’s Formulation

The procedure put forward by Evans et al. (1974a, b) for the éecondary nucleation is
summarized by Mercier (1984) and adopted in his model. Furthermore, Hammar and Shen
(1995) used Mercier’s formulation in their mathematical model to simulate frazil ice

formation.
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Formulation by Evan et al. (1974) is derived based on the fact that breeding is the primary

mechanism of secondary nucleation. The number of nuclei produced by the collision

between particles of size v, and v;is

I(v,.,vj):VITVTZZCE(YI.,VJ.)dv,.dyj, (.11

Vietr2 Vies2

where I(v,v;) is the number of nuclei produced per unit time, v, and v, are the

volumetric sizes of the colliding particles, Z is the number of nuclei produced per unit
collision energy, and C, (v,.,v j) is the rate of the collision energy transferred to the crystals
per unit Volu'me of fluid (it can be expressed in terms of the collision frequency and the
collision efficiency). The collision frequency function is the collision probability of two
non-interfering particles of size v, and v, in a unit time. Typically the turbulent shear and

the differential rising are the main contributors for C, (v,., y j) , which is given by

3/2
Cy (vi,vj) =O.5pl.;-vf—;{b(v}’3 +vj.’3>5 [5} E,+
{ J

3 (3.12)
o.ooam[fw\v?” + vf’ﬂ (2 +v12Y’ Ed,} g(v)gw,).
Po

€ 1is the mean energy dissipation rate, v is the kinematic viscosity of water,

b=0.0066/K."*, K,is the kurtosis of the velocity derivative (Mercier 1984), and g(v,)
are the frazil ice number density functions. The collision efficiency functions for the
differential rising and the turbulent shear, Ed, and E,, respectively, are introduced to
account for the particle interference effects, Whigh are evaluated according to the procedure

described by Pearson et al. (1984).
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3.4.3 Svensson and Omstedt’s Formulation

A simple formulation for secondary nucleation was suggested by Svensson and Omstedt
(1994) based on the assumption that breeding by collision is the dominant process. Consider
the relative movement of a particle in a volume A, in atime intervalds, A, =U rmr’dt, for

which U, is the crystal velocity relative to the fluid. A collision frequency for n, particles

in a radius interval i -can then be formulated as

Foows ~nAm; 1 dt, (3.13)
where n is the average number of particles per unit volume. The relative velocity is
assumed to be related to the turbulent fluctuations and gravitational rise, U, =/U}+U?_,

(1 B le Vs . o .
where U, —( A 5) ( A ) d, note thate is the turbulent dissipation rate, v is the

kinematic viscosity, d is the particle diameter, and U, is the rise velocity of frazil ice in

water. If a calibration factor is introduced by setting an upper limit on n, then

Z:mm(ini,ﬁm]. (3.14)

i=1
The upper limit hmax s introduced because the frequency of the collisions may be reduced
since the concentration of frazil ice is increasing in the supercooling process and it will

dampen the flow turbulence. It seems logical to limit n by the calibration factor 7mx as

this will restrict the collision frequency. Then a coefficient «;, which represents the rate of

secondary nucleation, can be formulated as follows

a. = (3.15)

J

n,
dr
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3.5 Flocculation and Break up

Modeling flocculation is not easy since its mechanism is not clear yet (Daly, 1991). Sintering
is considered the primary mechanism of flocculation. Some simple formulations are given

and appliéd in the mathematical modeling by Svensson and Omstedt (1994) and Hammar

and Shen (1995).

3.5.1 Svensson and Omstedt’s Formulation

Svensson and Omstedt (1994) assumed that the transport to larger scales is the net effect of
ﬂocculaﬁon, and it is more effective for larger particles. A linear relation was suggested
(Svensson and Omstedt, 1994) to describe the flocculation in the principal supercooling

process

7

B =0y, (3.16)

h
where [, is the rate of flocculation of the frazil ice particles, and «,, is a calibration

par ameter.

3.5.2 Hammar and Shen’s Formulation
According to Mercier’s (1984) stochastic coagulation theory, Hammar and Shen (1995) put
forward a method to calculate the flocculation for frazil ice particles. For the particles in

i"size and j™ size group, the expected number of instantaneous collisions per unit volume
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per unit time is

F, =B, v)EW,v))é;, (3.17)
where ¢, and ¢, are the number concentrations of the i" and j™ size particles,
respectively. If each collision per unit volume reduces the local number concentration in the
i" and the j" size group by one, then it will create a new particle in the volume
Voo =V; HV; =V, by merging, where v, is the volume contributed to secondary nuclei
production. It is assumed that the merged particles will be distributed to the two neighboring
size groups. Based on conservation of volume, a fraction f = Ve _V"‘"‘g%,k L=V, of F,

+

th

is assigned to the k" size group, and a fraction (1- f ) is assigned to (k+1)" size group.
When the merged particle size is larger than the size of the last size group m, then the

fraction f = v’"e’% of F, isassigned tothe m" size group.
3.6 Buoyancy Removal

Svensson and Omstedt (1994) assumed that buoyancy force removes some particles located

throughout the volume A U, dt in a time step drf, where A_ is the water surface area.

sw’ rise

The removal per unit time and volume is AU et ‘A Hds* The removal per unit time and
volume is thus:
U,
== 3.18
=y (3.18)

where 7, is the rate of the buoyancy removal, and H is the depth of the well mixed flume.

Mathematical Modeling of Frazil Ice Formation and Evolution 43



Mathematical Modeling of Physical Processes of Frazil Ice Formation

Note thatU,, =307, where r, is the radius of the disc (Daly, 1984). It should be

recognized in the calculation of the rise velocity (U, =307"*) that the units for the radius

and the rise velocity are cm and cm/s, respectively.
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pp— | A Zero-Dimensional Model of Frazil Ice
Formation and Evolution

4.1 Introduction

A zero-dimensional model for frazil ice formation and evolution is developed based on the
assumption that the water is well-mixed and that flow stratification can be neglected, and as

such that vertical spatial resolution is not required.

The model formulated in this chapter is based on combination of Daly’s (1984) model and
Svensson and Omstedt’s (1994) model. The physical process of the initial seeding, ice
particle growth, sécondary nucleation, flocculation/break up and buoyancy removal are
implemented in this model. Furthermore, seyeral modifications and improvements are made
including the use of a variable Nusselt number related to the flow turbulence, the
modification of the coefficient for secondary nucleation and buoyancy removal and the
introduction of an additional coefficient for the secondary nucleation to allow for the

formation of larger ice particles. This model can simulate the supercooling process, the
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variation of frazil number with time, and the size distribution of frazil ice.

4.2 Model Formulation

The model formulated consists of two equations: a general heat balance equation and a
number continuity equation. If the size range of frazil ice particles is divided into N
discrete radius intervals, then all the particles are assumed to be of an equal radius in each

interval. The overall heat transfer for the water and the frazil ice particles is described by

d - N-1
—(PCA-MD) =0, + 3,0, (4.1)
i=1
and
dM _H,,
— ="M (T,-T), 4.2)
. plL
dT N-l
where O, =¢(1,-T)= prp Et— » O =h,T-T), H, = Ehwi ,and h,=hAn,,
coolingrate i=l
N,k : . o
h,= ——“Z—i”— . Q. is the release of heat due to the freezing for the radius interval

i(i=1...N-1), n, is the number of crystals in the interval class i, A is the active -
freezing frazil ice area, k, is the thermal conductivity, and ! is the characteristic length of
the ice particle. | N is the total number of bins into which the frazil ice is discretized. h, is
the heat transfer coefficient for all the ice particles in the interval class i, H,, is the heat

transfer coefficient for all the ice particles, and 4, is the heat transfer coefficient.
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The number continuity equation describes the dynamic evolution of the frazil ice number as

suggested by Daly (1984)

anc +i(Gn0)+Di_Bi+V(‘7:nc)=O’ “4.3)
ot dr

where n_ is the crystal size distribution along the crystal size axis r and atatime ¢, D,
is the death function which allows for the sudden disappearance of the crystals such as the
break up of crystals, B, is the birth function which accounts for the sudden appearance of
crystals due to initial seeding and secondary nucleation, G is the growth rate of the ice

particles, V, is the external convective velocity, and r is the radius of an ice particle.

When the frazil ice particles are divided into several groups with the same size, and the
physical processes such as the initial seeding, ice particle growth, secondary nucleation,
flocculation and gravitational removal are considered, Daly’s general equation can be
simplified to the equation used in Svensson and Omstedt’s (1994) model, which is easier to

understand from a physical perspective.

In the model developed in this chapter, an additional parameter {, is introduced into the
secondary nucleation term in the equation of Svensson and Omstedt (1994) to allow for the
- formation of larger ice particles. It is assumed that secondary nucleation is a source for the'
smallest radius interval and a sink for the rest. The number of the smallest ice particles

increases due to collisions, whereas the number of larger particles should be reduced by the
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ratio of { correspondingly, therefore,

dn, Y
{3 —
P E,ajn’j —Gogn, = Bm+ 0P n., —¥m —Tm AT n .
=2 .

(I<isN) i=1 2<i<N) (1€isN-1) 2<i€N) (I1<i<N)(A<£isN)2=<i<N)

change in number  secondary nucleation flocculation/break up gravity crystal growth

(4.4)
o, B., 7., T, are the coefficients to describe secondary nucleation, flocculation/break up, .
gravitational removal, and ice particle growth, respectively. These coefficients are

determined in the following sections.

4.2.1 Initial Seeding
As described in chapter 3, a certain number of particles are evenly presented in each interval
at the time when supercooling begins. The number of frazil ice particles from the point of

initial seeding is one factor to be calibrated in the simulation.

4.2.2 ice Particle Growth
The ice volume produced per unit time by the ice particle growth for the interval i can be

calculated aS

oV, k An,
—t=N ¥ (T -T)—==+, 4.5
5 7 ) )P:L.- 4.5)

where A, is the active freezing area per ice particle. The area of a frazil ice particle’s edge,

le., 2mrt,

i

is considered as the active freezing area for a disk shaped ice particle, where ¢,
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is the thickness of an ice particle. The Nusselt number, N, , can be calculated from the

methods introduced in chapter 2. By considering the volume difference between the ice
particles in the neighboring radius interval, the number of ice particles to be moved to the

higher radius interval can be calculated. Hence the parameter 7, in equation (4.5) is

v
r=9 _n Ry A (4.6)
Am; ! pLA,; .

where A ; is the difference in the particle volumes for the two neighboring radius intervals.

4.2.3 Secondary Nucleation
The formulation suggested by Svensson and Omstedt (1994) is used in this model.

Accordingly the coefficient of «;, the rate of secondary nucleation, can be formulated as

follows

a; =

nA,
—k. 4.7
7 4.7)

¢, is introduced to the secondary nucleation term to allow for larger ice particles. It can be
determined from {,=V,/V, (i=2..N), where V, is a single particle volume in the first

interval and V, is the single particle volume for other intervals.

4.2.4 Flocculation/Break up
A relationship suggested by Svensson and Omstedt (1994) is implemented in this model as

follows
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£
ﬂi :aﬂoc— ’ (4‘.8)

h

where @, is a calibration parameter.

4.2.5 Buoyancy Removal
An expression derived by Svensson and Omstedt (1994) is modified and used to calculate
the buoyancy removal factor. The factor is assumed to be proportional to the frazil ice

concentration as shown

Y, =—2e M.

4.3 Discretization of the Governing Equation

The number continuity equation (4.4) can be discretized and reorganized into the following

equation. A detailed derivation is shown in Appendix A.

n (¢ + Af)
Y e el (4.9)

;zN (t+A0)

where

1+ At(B, +7,+1,)0 —Ata,0 —Ate, 0
A 0 —At(T,+8B)0 1+ Ao, + B, +7,+7,) 0
0 O —AK(T,,_, + oB,_)0 1+ At({;xN +7y)
and
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()= At(B, +7,+7,)(A-0m )+ Ay o, (A-0)n,(1))

D={n,0)—At(§a, + B, + 7, +7,) (1 -0)n, (1)) + At(1—-0) (1, + OB, ) m, ()

My ()= At (et + 7y, ) (L= )y (D) + At(1—=0) (T, + 8By, )y, (8)

Then the frazil ice number at the subsequent time step can be obtained from equation (4.9).

Combining equation (4.1) with

0, =9, -T)=C,pdl/

coolingrate

N-1 N-1
;and Y 0 = nh A(T,~T), then
i=1 i=1 .

daT

-C p==

( "pdt
dT = dt

coolingrate  j=

+ NZI nh AT — T)']
=]

oC. (=M (4.10)

The water temperature can be calculated from T(t+df)=T()+dT .

4.4 Model Programming

The above algorithm was programmed using MATLAB®. Forty intervals were selected to
discretize for the frazil ice size. A time step of 1 second was used. The program readily
converges because a differential method with an implicit scheme was used, the flow chart for

the programming is shown in figure 4.1.
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4.5 Application of the Model

In order to apply the model, the range of frazil size and the size distribution must first be
determined. The critical size of frazil ice is considered to be the minimum size in the

simulation, which is calculated according to Lal Mason’s et al. (1969) survival theory

2y T
=M (—), . 4.11
=L (]; =) | (4.11)

where ¥,, is the ice-water interfacial tension, 7, is the equilibrium temperature of the
ice-water mixture. The critical size of frazil ice is on the order of 4 pum (Mercier 1984). The

maximum size of a frazil ice particle typically ranges from 1-5mm (Clark and Doering,

2004); herein it is taken as Smm.

The size distribution suggested by Mercier (1984) is used

_dC,() _

o al™. 4.12)

8,
During the simulation, ¢, is the most likely factor to control the distribution of frazil ice
size, which was already calibrated in term of the size distribution spectra, with a value of

0.0001 proposed by Svensson and Omstedt (1994); this calibrated value will be used in this

model.

There are two additional parameters in this model: the initial seeding and the parameter n_,_.

The initial seeding is governed by many factors such as the mass transfer between the air and
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the water surface, the impurities in water, etc. Therefore, it can vary for different

experiments. Parameter n_, was introduced to limit secondary nucleation by constraining
the collision frequency between ice particles. An effort has been made in the present model
to find a general value for the parameter n_,_ in order to avoid the specification of two
variables in the simulation, but it was found that it is difficult to use only one value of n__
for all experiments. This is probably because the parameter n_  is affected by turbulence
intensity and it will be investigated hereinaftér based on the simulations results. The data
from Carstens (1966) and Clark and Doering (2004) are used to check the validity of the

present model.

4.5.1 Carstens’ Data
The two cases presented by Carstens can be regarded as well-mixed flows. Table 4.1 gives

the flow parameters and the heat loss rates for Carstens’ experiments. ;. =0.0001 is used
for both cases. n_, =1.5x10° and n_ =810’ were used for case I and case II,
respectively. The initial seeding of the total frazil ice number takes the values of 40000 and

32000 for these two cases, respectively.

Table 4.1 Parameters of Carstens' (1966) Experiments

U K € Cooling - H
Case [m/s] [mzlsz] [m2/s3] rate [cm]
[°C/min]

I 0.50 0.00096 0.00120  0.0240 20
II 033 0.00048 0.00038  0.0078 20
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Figure 4.2 shows the simulated and measured water temperature history for Carstens Case 1.
The simulation fits the experimental data quite well and supports the validity of the
* simulation model. Figure 4.3 shows the frazil ice concentration variation with time; it
increases during supercooling so as to provide enough latent heat to balance the heat loss
from the Water surface. Figure 4.4 shows that the total number of frazil ice particles
increases much faster during the principal peyiod of supercooling (t < 400 s) than during the
residual period of supercooling (t > 400 s). The size distribution of frazil ice at different
times during the experiment is shown in figure 4.5. It seems that the smaller frazil ice
particles increase faster than do the larger particles. Figures 4.6 to 4.9 show the results for |
Carstens Case II, which indicates the same tendency as figures 4.2 to 4.5 and sﬁggested that

the model can provide reasonable predictions.

4.5.2 Clark and Doering’s Data

To further examine the applicability of the present model, the experimental data from Clark
and Doering (2004) was used. Their experiments were cqnducted in a counter-rotating flume
and the turbulence was generated by shear as in open channel flow. Since water depth (0.15
m) used in their experiments was very small, and the temperature was measu_rgd at only one
point, it was aésumed in this simulation that the well-mixed water condition is a reasonable

assumption. Table 2 gives the parameters for their four experiments. @, =0.0001 (same

as for Carstens' data) was used to model the frazil ice distribution as suggested by Svensson

Mathematical Modeling of Frazil Ice Formation and Evolution 54



A Zero-Dimensional Model of Frazil Ice Formation and Evolution

and Omstedt (1994). Different values of the initial seeding and the n__ parameter were
used in their simulations, and these values are summarized in table 4.2. The detailed results
from the simulation of the experiment conducted on Dec 18 is given and discussed herein.

The results are shown in figures 4.10 to 4.13.

Table 4.2 Parameters of Clark and Doering’s (2004) Experiments

U H Tar  Cooling d
Case [m/s] [cm] [°C] rate [mm]
[°C/hour]
Dec 18 0.7 15 -10.0 0.234 3.5
Dec 17 0.6 15 -15.0 0.437 3.5
Dec 23 0.6 15 -7.5 0.063 3.5
Nov 5 0.6 15 -10.0 0.142 3.5

Note: d; is the absolute roughness

Table 4.3 Summarization of Calibrated Parameters

Initial Cooling

Case i Seeding rate %
[°C/min]
Case ] 1500000 -~ 40000 0.0200 0.0876
CaseII 800000 32000 0.0078 0.1030
Dec 18 150000 3200 0.0039 0.1340
Dec 17 200000 12000 0.0073 0.1157
Dec 23 2000 4800 0.0010 0.1340

Nov 5 2000 6400 0.0024 0.1350

The predicted water temperature (figure 4.10) closely matches that obtained by Clark and
Doering (2004). Figure 4.11 shows that the simulated frazil ice concentration increases

during the supercooling. Figure 4.12 shows the variation of the total frazil ice number with
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time during the supercooling process. The total frazil ice number from the simulation
predictions are larger than those observéd. The discrepancy probably occurs because the
frazil ice particle detection system can not recognize very small particles, as well as the
larger particles can not be counted accurately due to the overlapping that occurs in
two-dimensional digital images of frazil ice particles. Figure 4.13 shows the simulated
distribution of frazil ice at different times. It is clear that the small and intermediate size of

the ice particles is dominant at different times during the supercooling process.

Figures 4.14 to 4.16 show the predicted frazil size distribution compared with the
experimental data (the bar) and a lognormal distribution; these figures show that the shapes -
of the distribution curves are generally consistent among the three results. The falling limb
of the size distribution for the simulation is not inconsistent with that from the experimental
data and a standard lognormal distribution. Nevertheless, there is some difference in the
rising limb for the size distribution and it indicates that the size distribution used in this
simulation may not adequately simulate the number of small ice particles. A lognormal
distribution, which was suggested by Daly and Colbeck (1986), and Clark and Doering
(2004), should be considered to simulate the size distribution of frazil ice as long as the

standard deviation is defined.

4.5.3 Initial Seeding and n__

The six simulations listed in table 4.3 were used to develop relationships for the initial
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seeding and parameter n__  as a function of the turbulent intensity; this would be useful in
helping to choose the values for these two parameters in the practical application of this

mathematical model.

Figure 4.17 shows the relationship between the initial seeding and the turbulence intensity;
the initial seeding is inversely proportional to the turbulence intensity, and is defined as
oy = \/Z—k/U , where k is the kinematic energy, and U is the average velocity. Figure 4.18
givesw the relationship between the parameter np. and the turbulence intensity. If the two
relationships were fit with a straight line, the values of R® are above 0.80. These relations
give some general guidance for helping to calibrate these two parameters in the practical

application of this model.

4.5.4 Sensitivity Analysis

To investigate the sensitivity of the two calibrated parameters, the initial seeding and the
parameter n_,_, to the supercooling process, additional simulations were performed using
this model for Carstens’ Case 1. The number of the seeding particle was assumed evenly
distributed in each size groups in the simulation. As expected, if the other parameters don’t
change, increasing fhe initial seeding will decrease the maximum supercooling and will

shorten the duration of the principal period of supercooling as shown in figure 4.19. The

variation of the parameter n__ also influenced the supercooling process in terms of
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affecting secondary nucleation. An increase of the parameter n_, reduced the maximum
amount of supercooling and shortened the duration of the principal supercooling process as

shown in figure 4.20.
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( Initialize all the variables ]

A 4

Loop for time }

For i=1:total_time J
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Calculate water temperature
and frazil concentration
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L For j=1:total_group
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coefficients ¢, ,B Vs o

A 4

Calculate the number of frazil ice at
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!
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End

Figure 4.1 Flow chart of the MATLAB program
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Figure 4.4 Total number of frazil ice vs. time (Carstens' case I).
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Figure 4.8 Total number of frazil ice vs. time (Carstens' case II).
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Figure 4.10 Water temperature vs. time (Clark and Doering, 2004).
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5 T T T T T ¥ ¥
45} -~ Simulation N
—— Lognormal distribution
4 R

el
3

t=800s .

Measured mean = 1.7293
Std. dev. = 1.2107

Percentage (%]
N
(35

Frazil ice diameter [mm]

Figure 4.15 Frazil ice size distributions (t=900s) (Clark and Doering, 2004).

Mathematical Modeling of Frazil Ice Formation and Evolution

66



A Zero-Dimensional Model of Frazil Ice Formation and Evolution

5 - T 1 T T T T T
45} —&~ Simulation A
—— Lognormal distribution
4 - -]
35}k t=1200s -

(A1)
T
/]

Measured mean = 1.9057
Std. dev. = 1.3286

Percentage [%)]
- N
(4] N o
[l
1 I 1

-
T
L

05F -

U 1 T
0 1 2 3 4 5 6 7 8
Frazil ice diameter [mm]

Figure 4.16 Frazil ice size distributions (t=1200s) (Clark and Doering, 2004).
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CHAPTER 5 A Vertical One-Dimensional Model of
Frazil lce Growth and Evolution

5.1 Introduction

In a river the flow is not always well-mixed and therefore the flow turbulence is not
uniformly distributed throughout the water depth. Vertical stratification and mass transport
should therefore be considered in such cases. The distribution of water temperature and frazil
ice concentration throughout the water depth is an important factor in frazil ice evolution and
anchor ice formation. Therefore, the development of a vertical one-dimensional model is
necessary. This vertical one-dimensional model considers the interaction among the flow
turbulence, heat transfer and frazil ice transport. The governing equations are solved by
using implicit differential schemes. The vertical distributions of the flow, the turbulenée

parameters, as well as the frazil concentration are simulated in this model.

The one-dimensional model developed in this chapter is used to simulate the formation of
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frazil ice in a counter-rotating flume. The results are then compared with the experimental
data. This model was developed from Hammar and Shen (1995) model and from Omstedt

and Svensson's (1984) model.

5.2 Mathematical Formulation

Assuming the mean vertical flow velocity is negligible and the flow is horizontally
homogeneous, then the flow can be treated as one-dimensional turbulent flow. This
assumption is reasonable in laboratory experiments, but may not always be true in a natural
river. However, it can be approximately applied to river flow and some basic information

about the ice formation can be obtained.

The governing equations for the mean flow can be simplified from equation 2.2, they then

take the form

oU 0 U\ 1 0P
LA Ay L") 5.1
ot az((VT +v) az] p, ox O

In a similar way, the heat transfer and the frazil ice number can be described by

oT _d((vy v |dT
— =T+ = I+G 5.2
ot az[(cfp,jaz ]+ g ©2)
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and a—”:i([v—u-‘f-]@—)—m .6, (5.3)
ot odz|\o, S, oz 0z

where z is the vertical space coordinate (positive upwards), ¢ is the time coordinate, W, is

the frazil ice rise velocity, p, 1is the density of water, and T is the water temperature. Vv,

is the kinetic eddy viscosity while v is the molecular viscosity. Since v is usually much

smaller than v, it can be neglected in the simulation. &, and o, are the furbulent_

Prandtl and Schmidt numbers for frazil ice number and the temperature, while P. and

S, are Prandtl and Schmidt numbers, respectively. n is the frazil ice number. The mean

flow is driven by a pressure gradient denoted by a;j: in open channel flow. The source
terms, because of ice formation, are denoted by G, andG,, respectively. G, répresents
the latent heat released during ice growth, and G, represents the number of ice particles
produced during ice formation. These two terms can be calculated as follows (Hammar and
Shen,1995; Svensson and Omstedt, 1984)

G, = Ang(p,C,)", (5.4)
where g is the heat transfer for a single ice particle, C, is the specific heat of the water,
and p, isthe density of the water. A, is the active area of frazil ice. G, is given by

G, =Ang(p, L) IV, (5.5)

where V, is the volume of a single ice particle.

~ The physical processes of secondary nucleation, flocculation, and breakup are not included
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in this model formulation. The distribution of frazil ice size during the supercooling process
is also not considered, while a varied mean diameter of the frazil ice is used in the simulation
instead of using a constant mean diameter as was done by Omstedt (1985a). The evolution of
the mean size of frazil ice in the supercooling procéss can be calculated according to Daly

(1984) and Mercier (1984)

dD, ) h,
dt p.L

13

T,-T), (5.6)

where D, is the mean diameter of the frazil ice, 7, is the equilibrium temperature of the

water-ice mixture, and £, is the heat transfer coefficient.

5.2.1 Thermal Growth of Ice Particles
The thermal growth of the ice particles can be calculated using the same method described in

section 3.3

5.2.2 Turbulence Model
If the effects of frazil ice concentration and water temperature on turbulence are neglected, a
simple turbulence model can be used instead of the two equation k-& model that is

described by equations 2.5 and 2.6.

1
The friction velocity u. can be computed by u,=U (—g)2 , where f is a friction factor

which has the form
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1

1 -
—=2log(R, f?)-0.8 (smooth bed) 5.7
Jf h
1 k, 2.51
or —\/—_f—,——Z.Ollog( 371 4Rh)+ R, \/?) (rough bed). (5.8)

R,

(1

is the hydraulic radius and R, is the Reynolds number.

5.2.3 Boundary and Initial Conditions
Since the frame of reference for this simulation is the bed of the counter-rotating flume, all
the boundary conditions are implemented in terms of open channel flow. The boundary

conditions at the surface are specified according to

v, Yo, (5.9)
0z -
Ve, (5.10)
o, 9z
v, oT
d X _F, KpC,), 5.11
an o5y = oG 5.11)

where F, is the net heat loss from the water surface. At the lower boundary condition, a
zero flux condition is used for all of the variables, except for the velocity. The velocity at the
first near wall node is set with the aid of the law of the wall, which reads

U, =Y In(z")+B, inwhich B=5.1, k=0.4and z+=z“% =50~100.

The initial flow velocity is set to the measured velocity and the initial temperature is set to

0°C. The initial frazil number is set to zero except for the seeding at the water surface.
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5.3 Discretization Scheme

The governing equations (5.1), (5.2), and (5.3) can be discretized using differential schemes,

and the details of which are shown in Appendix B.

Note, for equation (5.6)

hW
p.L

{

D,(t+At)=D, (t)+2At ~T(t+Ar)). (5.12)

All of the equations have boundary conditions that consist of a closed system and can be

solved numerically.

5.4 Model Programming

The algorithm introduced above is programmed in MATLAB®. The flow chart is shown in

figure 5.1.

- 5.5 Model Application

5.5.1 Carstens’ data
Case I presented by Carstens (1966) is considered first to calibrate the model developed in

this chapter. The flow parameters and the heat loss rates for Carstens’ experiments are given
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in Table 4.1.

Some of the simulation results using Carstens data are shown in figures 5.2 to 5.7. Figure 5.2
shows a comparison between the turbulence parameters that are simulated from Hammar and
Shen’s (1995) model and those simulated in this model. The results for these two models are
very close, except for the kinetic energy close to the water surface. The difference between
these two models is likely because the k—¢ turbulence model used by Hammar and Shen
(1995) requires the boundary conditions at thev water surface, which impacts the distribution
of the kinetic energy. As Mercier (1984) suggested, the simple turbulence model applied in
his (and this) model gives a comparable distribution to the k—& model but is much easier
to solve. In figure 5.3, the simulated results of water temperatures at different depths are
plotted with observed data from Carstens' experiment. The temperature goes down a bit
lower and the maximum supercooling occurs roughly one minute later than that of the
experimen£a1 data. The lag time can be estimated by T, = %m ~1 min, where I",, 1s
~ the average eddy diffusivity (Mercier, 1984).  This can be explained with reference to the
turbulence model that predicts the maximum level of & and € close to the bottom of the
flume where the concentration of the pafticles is at their minimum (Hammar and Shen,
1995). Figure 5.4 shows the comparison of mean water temperature variation between this
model and Hammar and Shen's (1995) model, a discrepancy apparently exists because

different Nusselt numbers are used to compute the thermal growth of frazil ice in the two

models, as well as the size distribution and the physical processes of secondary nucleation
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and flocculation/breakup are not considered in this model.

The temperature distribution throughout the water depth is shown in figure 5.5. Figure 5.6

shows the relative vertical frazil number profiles. The relative vertical frazil number for #,is

~ - |nud
defined as n,/n, in which » =J Ha J- g is the depth-averaged valued of n,. During a
uay

cooling down period of supercooling, the frazil ice numbers near the water surface are
smaller than that at the rest of the water depth, while during a warming up period of
supercooling, the frazil ice numbers at the water surface are larger than other the water
depths. This is because the buoyant force overcomes the effect of turbulence mixing as the
ice particles become larger. Figure 5.7 shows how the mean diameter of frazil ice varies with
time. The diameter of frazil ice increases during the period of primary supercooling and
becomes nearly constant during the residual period of supercooling indicating that the heat

loss from the water surface and the heat gained from frazil ice formation are in equilibrium.

5.5.2 Clark and Doering’s Data

The data from Clark and Doering’s (2004) experiments were also used to examine the
accuracy of the model developed herein. If a well-mixed case is assumed for their
experiments, the simulation results from a vertical one-dimensional model will differ slightly

from the experimental data. The parameters used in their two typical experiments are given

in Table 4.2.
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The simulation results for the experiment conducted on Dec. 17 are shown in figures 5.8 to
5.11 and the r¢sults for Dec 18 are shown in figures 5.12 to 5.15. The water temperature
variation at different depths is given in figures 5.8 and 5.12 for both experiments,
respectivély. It seems that the gradient of the water temperature throughout the water depth
is very small, and it prpbably reflects the strong level of turbulence that usually occurs in a
well-mixed water mass. The relative frazil ice number distribution is shown in figﬁres 5.9
and 5.13, and the same tendency is observed as was in Carstens’ (1966) experiment. During
the warm up period of supercooling, the surface frazil ice number is larger than the rest of
" the water depth. The evolution of the mean size of frazil ice in the supercooling process
generally matches the observed data from the experiment (figures 5.10 and 5.14). The total
volume of the frazil ice from the simulation is similar to that of the experimental findings
(figures 5.11 and 5.15), however there are still some differences. Possible reasons for the
differences include: (a) that not all the ice particles formed in the experiment are detected by
the image processing technique; and (b) that the use of only the mean size of a frazil particle

does not adequately represent the real situation that occurred during the experiment.

553 Application of the Model to the Downstream Location of the Limestone
Generating Station

Limestone Generating Station is located on the Nelson River in‘Northern Manitoba, and is
the largest hydroelectric station in Manitoba Hydro’s system. Every winter frazil ice forms a

short distance downstream from the dam, and at the same time an anchor ice dam forms at
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Sundance Rapids, an area 3 kilometers downstream of the generating station. Since the frazil
ice attached to the bed is usually the main mechanism for anchor ice growth, an investigation
of frazil ice formation is a very important portion of the study of anchor ice formation and

the associated rise in water level at the anchor ice dam.

The mathematical model developed by Lianwu Liu el al. (2004) has been recently used to
investigate ice formation at the downstream location of the Limestone Generating Station.
Since the model is a depth-averaged two-dimensional plane model, it can not give the
vertical distribution of the frazil ice concentration and the water temperature. The vertical
one-dimensional model developed in this chapter could function as a supplement to Lianwu
Liu’s model to investigate the vertical variation of the water temperature and frazil ice

concentration downstream of the Limestone Generating Station.

Figure 5.16 shows an aerial view downstream of Limestone Generating Station. The width
for the reach from downstream of generating station to Sundance Rapids is about 1500 m,
and the bottom slope is approximately 0.1%. The highest discharge was approximately 4500
m®/s, and lowest discharge was approximapely 2000 m’/s in the winter of 1999. The average
discharge of 3000 m%/s is used in this simulationf The average temperature during the winter
is about -15 °C and the «cooling rate of the water column is

ar/ -G (T -T) _ 50 . .
/1 =0 0 DCH = 3.84x10™ "C/sec, where C, is a coefficient from about 15 to

25 W/m® - °C. Accordingly, the flow parameters can be computed as shown in table 5.1.
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Table 5.1 Flow parameters for the downstream of Limestone Generating Station

Water Depth H Average Velocity U Friction Velocity U« Reynolds Number
[m] [m/s] [m/s]

1.87 1.59 0.116 6.9%10°

The initial seeding of frazil ice was taken as used in Lianwu Liu’s (2004) model, and the
mean size of the ice particle varied in this model while it stays constant in Lianwu Liu’s
-(2004) model with a default value of 2><10'3 m in diameter. The results from this model are
shown in figures 5.17 to 5.21. These figures show that the water temperature and frazil ice
volumetric concentrations have almost the same magnitude as obtained by Lianwu Liu et al.

(2004), although their model only predicts the depth- averaged values.

Mathematical Modeling of Frazil Ice Formation and Evolution 80



A Vertical One Dimensional Model of Frazil Ice Growth and Evolution

Initialize all the variables and flow parameters

specification
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Loop for time

For i=1:total_time
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Calculate water temperature
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A 4

End the Loop for time }

End

Figure 5.1 Flow chart of the MATLAB program
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Figure 5.8 Variation of water temperature with time at different depths.
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Figure 5.16 Aerial view of the area from the Limestone Generating Station to Sundance

Rapids.
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Figure 5.17 Water temperature variation with time at water depth=0.9m.
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Figure 5.20 Vertical distribution of frazil ice volume concentration at t=10000 s.
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Figure 5.21 Vertical distribution of frazil ice volume concentration at t=20000 s.
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CHAPTER 6 An Extended Mathematical Model of
Frazil Evolution in A Counter-Rotating
Flume

6.1 Introduction

The model in this chapter was extended from the one dimensional model that was developed
in the previous chapter by adding the size distribution of the frazil ice instead of using only
the mean size of the ice particles. As well, the physical processes of seeding, secondary
nucleation, flocculation/break up, and buoyancy removal are considered in this extended
model. Seeding is a prerequisite for the initialization of frazil ice. Once the frazil ice regime
is established, a small ice particles acts as a nucleus for further growth of an ice particle. The
correspondingly large ice particles breed many smaller ice particles through collisions, and
this process is known as secondary nucleation and was described in chapter two. The frazil
ice size distribution varies with time and is influenced by flocculation and break-up.
Buoyancy moves ice particles to the water surface forming surface ice or frazil slush. All of

these processes are important physical factors for the modeling of frazil ice evolution. The
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model developed in this chapter is used to simulate frazil ice formation in a counter-rotating
flume and the results from the model are then compared with the data from experiments

conducted in the counter-rotating flume.

6.2 Mathematical Formulation

The governing equations for the mean flow take the same form as those in the vertical one-
dimensional model developed in the previous chapter, while the equations for the heat
transfer and the frazil ice number equation are slightly different with respect to the source
terms, because the size distribution of frazil ice is considered and frazil ice is divided into

several size groups

oT d((v, v )oT
=T+ = G 6.1
or az((o;+l’,]az] r D
on, of(vy Vv lon on
Lidd —_—— 4 - m _W m G_ . 6.2
ot Bz((dn+8n]8z ] " 0z O 2

The source terms, because of the ice formation, are denoted by G, andG,, respectively.
The term G, represents the latent heat from the ice formation in all group sizes, and the
term G, represents the production of ice particles in different size groups through
complicated physical processes such as secondary nucleation, flocculation, etc. These two

terms can be calculated as follows (Hammar and Shen, 1995; Svensson and Omstedt ,1984)
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N
Gy =Y An.4.(p,C,)" (6.3)

m=1

where ¢, is the heat transfer for a single ice particle, C, is the specific heat of water, p,,
is the density of water, A, is the active area of frazil ice and N is the number of groups
that the frazil ice has been divided into. G, is given by

N
Gn = (Zal nl J - Camnm - :B mnm + 5ﬁ m—lnm—l - Tmnm + 7‘-m—l nm—l
=2

(m=1) @<ms<N) I<m<N-1) @sms<N) (l<m<N)Y@<m<N) (6.4)

secondary nucleation flocculation/break up crystal growth

where o, , B,, T, are the coefficients to describe the secondary nucleation,
flocculation/break up, and ice particle growth respectively. The expressions for these
coefficients and for their information are given in sections 4.2.2 to 4.2.5. The turbulence

characteristics are modeled in the same way as described in section 5.2.2.

6.2.1 Frazil Size Distribution

The size distribution according to Mercier (1994) is used in this model. Although a
lognormal distribution seems to be a more reasonable representation for the frazil ice
distribution (Daly an(i colbeck, 1986; Clark and Doering, 2004), both the mean and standard
deviation are needed. The mean size of frazil ice could be simulated according to frazil
thermal growth, but thé variation of the standard deviation has not been defined. Therefore,

more research is needed to parameterize the lognormal distribution.
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6.2.2 Boundary and Initial Conditions
At the upper boundary of the flow, the same boundary conditions as used in section 5.2.3 can
be applied for the flow velocity, turbulence characteristics and the water temperature. The

boundary condition for frazil ice number is

——— =0 N, . (6.5)

The initial flow velocity is set to the measured velocity and the initial temperature is set to

0°C. The initial frazil number is set to zero except for the seeding at the water surface.

6.3 Differentiation Scheme of the Governing Equation

The kinematic eddy viscosity is related to the turbulent kinetic energy and the turbulent
dissipation rate. The same expression for v, and its derivative as used in chapter 5, which
is described in Appendix B, are applied herein, and then equations (6.1), (6.2) and (6.4) can

be discretized into differential équations. A detailed derivation is shown in appendix C.

All of the resultant equations and their suitable boundary conditions consist of a closed
soluble system. A MATLAB® based program was developed to solve the three equations

simultaneously.
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6.4 Model Programming

The .algorithm that is introduced above is programmed in MATLAB®. The flow chart is

shown in figure 6.1.

6.5 Model Application

6.5.1 Data from Mercier

A mathematical model was developed by Mercier (1984) to simulate the water temperature
variation in the supercooling process, and the vertical distribution of frazil ice. The results
from this model are compared with the results from Mercier’s model (1984). The parameters

used in Mercier’s model are given in Table 6.1.

Table 6.1. Parameters of Mercier’s model (1984)

U H Ux Cooling
[m/s] [cm] [m/s] rate

[°C/sec]

1 500 0.1 0.00016

Figure 6.2 shows the variation of water temperature with time at different water depths. The
two results agree well except during the warming up period. The difference observed in the
warming up period is perhaps induced by using a different formulation to simulate the
secondary nucleation and ﬂocculation/break up in the two models, which would produce

slightly different number of frazil ice, and subsequently affect the water temperai:ure during ‘
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the warming up period. The vertical water temperature profile is depicted in figure 6.3.
Figure 6.4 shows how the number of frazil ice particles changes with time at a water depth
of 4 m, and it indicates that there is a different increase rate for different éize of ice particles.
The oscillation of the curve at the beginning is presumably due to a numerical instability.
The size distribution of frazil ice at a water depth of 3 m is given in figure 6.5, and it shows
that the peak of the curve has shifted to larger frazil ice size as the time of supercooling

increases.

6.5.2 Carstens' Data

The flow of Carstens' experiment can be considered as a well-mixed flow (Hammar and
Shen, 1995) because the water depth was small and turbulence was produced by a propeller.
Therefore, the simulation results from Hammar and Shen’s (1995) model and the model
developed in this chapter are slightly different from Carstens' experimental results because
the two models consider the effect of the vertical stratification of the turbulence parameters.

The flow parameters and the heat loss rates for Carstens’ experiments are given in Table 4.1.

In figure 6.6, the water temperatures at the different water depths are plotted with Carstens'
experimental oBservations. The water temperature goes down a bit lower and the maximum
supercooling occurs roughly one minute later'than the experimental result. It illustrates that
the peak of the supercooling is reached later and it has a larger magnitude for the case of

vertical transport than for the case of complete mixing. The lag time can be estimated by
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I,.= % =1 min (Mercier, 1984). Figure 6.7 shows the mean water temperature from
Ave

this model and from Hammar and Shen’s model (1995). The temperature distribution
throughout the water depth is shown in figure 6.8 and a significant cooling zone is observed
close to the water surface. Figure 6.9 shows the relative vertical frazil number profiles at
t=400 s. The relative vertical frazil number for n, is defined as n,/ n, in which

- d
n= I Pt J- is the depth-averaged valued of r_. The frazil ice numbers on the surface
uay

are larger than the rest of the water depths for all the frazil ice particles due to the effect of
buoyancy rerﬁoval and seeding. The size distribution of frazil ice at a water depth of 0.12 m
at the different times during the experiment is shown in figure 6.10. It is observed that the
dominant frazil ice size is the intermediate size. Figure 6.11 shows that the variation of the
total number of frazil ice particles with time at a water depth 0.16 m, and it also indicates

that the number of frazil ice particles in all the size group increases with supercooling time.

6.5.3 Clark and Doering’s Data
Clark and Doering’s (2004) experiments, which were conducted in a counter-rotating flume,
were also used to investigate the applicability of the present model. Table 4.3 gives the

parameters used in their experiments.

The simulation results for the experiment conducted on Dec. 17 are shown in figures 6.12 to

6.15. The water temperature variation with time at different depths is given in figure 6.12.
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The maximum supercooling from the simulation is a little lower than the value from the
‘experiment and the time to reach the maximum supercooling is slower by approximately
1,.= %m =~1.3 min in the simulation (I",, is the average eddy diffusivity). The figure
6.12 also shows that the gradient of the water temperature throughout the water depth is very
small, which reflects the strong influence of the turbulence on the heat transfer. The size
distribution of the frazil ice at a water d¢pth of H=0.12 m at different times during the
experiment is ‘shown in figure 6.13. The sintering of larger frazil ice particles can be
observed from the tail of the distribution curve. Figure 6.14 shows how the total number of
frazil ice particles changed with time at a water depth of 0.12 m. It also shows that the frazil
ice numbers increase during the principal supercooling period and eventually reach a plateau
during the residual supercooling period. The vertical distribution of the frazil ice number is
shown in figure 6.15, and shows the same tendency as observed in Carstens’ (1966)

experiment.

6.5.4 Application of the Model to Downstream of the Limestone Generating Station

This extended vertical one-dimensional model was also used to simulate the water
temperature variation and the vertical frazil ice distribution in the area downstream of the
Limestone Generating Station on the Nelson River. The same flow and thermal parameters
as introduced in section 5.5.3 were used in this simulation. The results from this model are
shown in figures 6.16 to 6.18. Figure 6.16 shows the supercooling process for the water

column in the river. The principal supercooling process lasts about one and a half hour, and it
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is much larger than the flow in the experiment. Figure 6.18 and 6.19 give the vertical
distribution of frazil ice volume concentration, and indicate that the volume concentration of
frazil ice is larger in the area close to the water surface than the rest of the water column.
The results of the water temperature and the frazil ice concentration are close to those

obtained by Lianwu Liu et al. (2004).
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Figure 6.1 Flow chart of the MATLAB program.
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ciarterr  Effects of Different Turbulence Models |
on the Simulation of The Supercooling
Process and Ice Formation

7.1 Introduction

Frazil ice usually forms in turbulent supercooled water and the turbulence 'significantly
influences the heat transfer, frazil ice transport, and the distribution of the frazil ice in the
water body. Therefore properly simulating turbulence is very important in modeling frazil
ice formation and evolution. In this chapter, three different turbulence models are used to
investigate turbulence characteristics and their effects on the supercooling process and on the
frazil ice formation process. Only the results from the vertical one-dimensional mathematical
model in chapter five are given and analyzed herein. However it could be applied to the

extended mathematical model in chapter 6.
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7.2 Turbulence Models

There are several turbulence models that have been developed so far to simulate the
characteristics of turbulence as introduced in chapter two. Three of these models are briefly
introduced and then used in this study. Two of the models (turbulence model I and II) are
given in an explicit expression in terms of the turbulent energy dissipation rate and the
turbulent kinetic energy. The other is the typical k—& model and it is extensively used to

simulate the turbulence characteristics in open channel flow.

7.2.1 The Two-Equation k—¢ Model
The two equations k—¢& model was given in equations 2.3 and 2.4. These two equations

together with equations 5-1, 5-2, and 5-3 can be numerically solved simultaneously.

Discretizing equation (2.3), and (2.4) using the same differential techniques as used in
chapter 5, then,

. . 2
-V (i, ])Atk(m,j—l) + ((AZ) + At(VT(i,jH) —Vea )t 2AWT(:‘.]) ) k(i+1,j)
A2
’f(At (VT(i. j+) _VT(i, j)) +VT(i. j)At ) k(i+1, j+hy Az o.kk(i, ) (7' 1)

+ (Az)*Ato, (Qi,n +G ) —8(,.,1.))
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€
The same method used above can be.applied to equations (5.1), (5.2), and (5.3). Finally a
closed system can be obtained, and the system can be solved numerically with the proper
boundary conditions as given in equations (5.9), (5.10) and (5.11). Some coefficients used in

the k—& equation are given in table 2.1. The term G, ;, is neglected in this simulation

since the concentration of frazil ice is very small.

7.2.2 Zero-Equation Model

Two simple turbulence models were introduced in chapter 2, one of which (turbulence model
I) has already been used in chapters 4, 5, and 6. Herein another simple turbulence model
(turbulence model II) is applied to the turbulence simulation. Typical expressions for k and
e were suggested by Nezu (1977) and were given by equations 2.10 and 2.11. The

kinemetic eddy viscosity is expressed

k? 4.78* -z
VT = C,u —é— = C.U —El—(zH)mu*e XP[—}—I‘\).
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Typically, C,=0.09 and if the Reynolds number is around 10°~10’, then taking

E =98 (Nezu, 1977), yields,
v, =0.2098(zH )" *u.e xp (_ﬁzj

oV,
z

Therefore,

=0.10497 2 H 2y ¢ Xp(—;—lz— )_ 0209822 Hy.¢ Xp[:}?z ] - -

The same procedure as shown in chapter 5 can be applied to equations (5.1), (5.2), and (5.3)

to simulate the flow, the water temperature, and the frazil ice number variation.

7.3 Results and Discussions

The three turbulence models are applied to the experiment of Carstens case I. Some results
are plotted in figure 7.1 to 7.6. Figure 7.1 shows the vertical velocity distribution from the
three turbulence models used in this simulation and from Hammar and Shen’s (1995) model.
Figﬁre 7.2 and figure 7.3 show the vertical distribution of the turbulence kinetic energy and
the turbulent dissipation rate. In general, the results are close, althoughb some slight
differences exist in the region close to the water surface and close to the bottom. It indicates
that all three turbulence models can be used to calculate the velocity field and the turbulence
characteristics if only one dimensional model along vertical direction is of interest. Figure
7.4 shows the comparison of the water temperature history in the supercooling process from
the three turbulence models and from Hammar and Shen’s .(1995) simulation. Figure 7.5

shows how the mean frazil ice size varies with time. The variation of the total frazil ice
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volume in the supercooling process is shown in figure 7.6. All of the simulation results in the

frazil ice formation from the three turbulence models generally have the same trend.

The results of the velocity distribution, the turbulence kinetic energy and the energy
dissipation rate from the three turbulence models are slightly different. The two simple
turbulence models seem to overestimate or to underestimate the turbulence kinetic energy
and energy dissipation rate in the areas close to the water surface and or close to the bottom
of the flume. The reason for this is there is no boundary condition applied in the simple
turbulence models, and the impact of boundary layers can not be reflected throughout the
water depth. The k—& model can consider the impact of the boundary condition and gives
a more reasonable solution. A small difference exists between the results from Hammar and
Shen’s (1995) model and this model, even though both use the k—¢& turbulence model.
This is probably caused by neglecting the gradient of frazil ice concentration and water

temperature in the turbulence equation (2.4)

The results concerning the water temperature and frazil ice volume variation with time in the
supercooling process are also slightly different for the three turbulence models, but in
general, the simple turbulence models are good enough to be used to simulate frazil ice
foﬁnation and evolution compared to the complicated k—¢€ equations if only the variables

alone vertical direction is of interest.
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CHAPTER 8 Summary and Future Works

8.1 Introduction

The formation of ice inrivers has created engineéring challenges with respect to the design,
operation and maintenance 6f hydraulic facilities. Therefore, a significant amount of
research has been carried out to study ice formation. Since frazil ice is the origin of almost
all the others forms of river ice (Ettema et al., 1984), research into frazil ice formation has
been very important. The study of frazil ice formation has mainly focused on the
- supercooling process, nucleation, ice particle growth, and evolution, from both laboratory

experimentation and mathematical modeling perspectives.

8.2 Summary
Zero-dimensional model
In this study a general mathematical model was formulated based on open channel flow

theory. A zero-dimensional mathematical model for the formation and evolution of frazil ice
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was developed based on Daly’s (1984) frazil ice dynamics, and Svensson and Omstedt’s
(1994) model. The model considers several physical processes such as initial seeding, ice
particle growth, secondary nucleation, flocculation and break up, and buoyancy removal. In
this model, initial seeding Was treated as a calibration factor since it haS not been
mathematically defined yet. Ice particle growth was modeled based on its heat transfer to the
surrounding water, and an actual Nusslet number was used according to Daly’s (1984)
description instead of using the turbulent Nusslet number in the simulation of thermal ice
growth (Hammer and Shen, 1995). Secondary nucleation was simulated based on the theory
that Svensson and Omstedt (1994) suggested. The processes of flocculation/break up and
buoyancy removal were modeled according to Svensson and Omstedt’s (1994) formulation.
The interaction of these physical processes during frazil ice evolution was modeled through
the determination of different paramgters. Water temperature, frazil ice concentration, and
frazil ice number variation were simulated. In addition, the size distribution of frazil ice was
simulated based on the method suggested by Svensson and Omstedt (1994), which was
originally described by Mercier (1984). The model was calibrated with existing experimental
data, namely, Carsiens (1966) and Clark and Doering (2004). A good fit was developed

between the simulated and the observed experimental data.

A vertical one-dimensional model
A vertical one-dimensional model for the formation and the evolution of frazil ice was also

developed in this study, and was ap'plied to simulate frazil ice formation under different
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cases. First, the turbulence characteristics such as turblilent kinetic energy and turbulent
dissipation rate were simulated from a simplified turbulence model, and then the water
temperature and frazil ice number were modeléd both in spatial and temporal space. The
vertical one-dimensional model only considers the multiplication of frazil ice particles
without including the other physical processes such as secondary nucleation, flocculation, or
break up. The evolution of the mean sige of the frazil ice was simulated and used for the
computation of heat production from frazil ice growth. This vertical one-dimensional model
was calibrated with existing experimental data from Carstens (1966) and Clark and Doering
(2004). A good fit was observed between the simulated data and observed experimental data.
Finally, this model was applied to simulate the frazil ice formation on the downstream of

Limestone Generating Station with promising results.

An extended vertical one-dimensional model

A vertical one-dimensional mathematical model to simulate the formation and evolution of
frazil ice was extended by considering the effects of secondary nucleation and
flocculation/break up on frazil ice formation. Séconda.ry nucleation, flocculation/break up,
and the size distribution of frazil ice were modeled in the same way as in the
zero-dimensional model. The simulation results of water temperature variation during the
supercooling process from this model were compared with Mercier’s (1984) results; an
acceptable agreement was observed. Furthermore, Carstens’ (1966) experimental data and

Clark and Doering’s data (2004) were also used to calibrate and verify the model developed.
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The model was also used to simulate the frazil ice formation in the downstream of

Limestone Generating Station in the Nelson River; reasonable results were obtained.

Effect of three turbulence models on frazil ice formation

Three turbulence models, including two simple turbulence models and a k —& - model were
used in a vertical one-dimensional model to simulate frazil ice formation and evolution, and
then applied to Carstens case I. The aim was to investigate how these turbulence models
affect the modeling accuracy of frazil ice formgtion and evolution. The results of the vertical
distribution of velocity, turbulence kinetic energy, turbulent dissipation rate, mean size
variation of frazil ice, and the total volume of frazil ice produced were compared among the

three turbulence models. It was found that the two simple turbulence models can generate

results comparable to the more complicated k—& model.

8.3 Conclusion

The following conclusions can be drawn from this study.
i). A zero-dimensional model was developed that can predict water temperature
variation, frazil ice number evolution (in different size groups), ice growth,
secondary nucleation, flocculation/break up, and buoyancy removal. Two calibration

parameters (initial seeding and n_, ) were used in the development of the

 zero-dimensional model. Specifically, the zero-dimensional model showed that:
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a. the total number of frazil ice particles increases during the primary period of

suprercooling then remains constant during the period of residual supercooling;

an increase in the initial seeding or of the parameter n_, shortens the

supercooling process and reduces the maximum amount of supercooling;

the size distribution for frazil ice suggested by Svensson and Omstedt (1994)

“appears reasonable, although there were some differences from a measured size

distribution; and
a zero-dimensional mathematical model can provide reasonable estimates of
frazil ice formation in a well mixed water body, and can provide, therefore,

preliminary information with regard to the ice formation.

The stratification of a flow and its turbulence characteristics can be well modeled by
a one-dimensional vertical model, and subsequently that frazil ice formation can be
simulated by considering only the thermal growth of frazil ice particles, thereby
neglecting other complicated physical processes. In such a simulation, only the mean

size of frazil ice particles was predicted. For this case the model showed that:

the water gets more supercooled in the area close to the water surface than the
rest of the water depth;
the gradient of the vertical water temperature distribution depends on the
turbulent intensity; and
the simulation of the mean size of frazil ice fits well with experimental data, and

provided a way to find the variation of the mean frazil ice particle size during the
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supercooling process.

iii).  Complicated physical processes such as secondary nucleation, flocculation/break up
and buoyanéy removal can be successfully implemented into a vertical
one-dimensional model. Such a model shows that:

a. there is a notable gradient for the frazil ice number distribution over the water
depth for smaller and larger frazil ice particles due to the effects of seeding on the
water surface and buoyancy forces;

b. the frazil ice size distribution at different times and water depths can be modeled
based on Svensson and Omstedt’s (1994) formulation in . the extended
one-dimensional vertical model;

c. different trends in different experiments that probably depend on the intensity of

- flow turbulence; and

d. the total number of frazil ice particles for different size groups and water depths
seems to increase during the primary supercooling period for all size groups.

iv). -Two simple turbulence models can achieve results comparable to a more complicated
k—¢& model. Therefore, two simple turbulence models can be used instead of a
k—¢& model in the simulation of frazil ice formation in a vertical one-dimensional
model. The advantage of using two simple turbulence models is the ability to avoid

solving complicated equations.
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8.4 Suggestions and Recommendations of Future Work

" The study of the growth and evolution of frazil ice is a very difficult topic in ice engineering
because it involves thermal dynamics, fluid mechanics, and mass transportation. Although
this study has explored and simulated some important aspects of frazil ice growth and
evolution, there are still research gaps that need attention in the future.

i). The mechanism of secondary nucleation and flocculation/break up are not fully
understood, more research is required to formulate these two important physical
processes.

ii). Initial seeding is a very important factor in ice formation, and it is treated as a
calibration factor in most mathematical models. More studies are required to quantity
the amount of initial seeding.

iii). A lognormal distribution is considered a reasonable description for the size
distribution of frazil ice in the supercooling process. The mean of the distribution has
been well simulated in this study, but the variation of standard deviation is still
unknown. More experiments are required to generalize the variation of the standard
deviation.

iv).  Three mathematical models have been developed in this study, but there are some
limitations for each model since the formulation of the mathematical models are

based on specific assumptions. A zero-dimensional mathematical model is suitable

for a well-mixed flow, whereas a vertical one-dimensional model and an extended
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vertical one-dimensional model are suitable for the flow in which the vertical mean
velocity can be neglected. In rivers, these two assumptions are not alwéys true. A
mathematical model to simulate frazil ice formation in open channel flow that
considers the variation of air temperature is required.

v).  The turbulence intensity strongly influences the frazil ice formatior; and evolution

during the supercooling process; therefore an exact measurement of turbulence

intensity distribution in a counter-rotating flume is needed for future research.
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Appendix A Discretization of Governing Equation
‘ For Zero-Dimensional Model

The number continuity equation (4.7) can be written in the following form

dr =2
dn
72 = =G0, = Byn, + 8By, — Vo1, —Tyn, + Ty
4
(A1)
dn ;
TZN— = =G0y + 0By 1y — Yty + Ty Tty

Discretizing the left hand side of equation (A.1) using an Euler forward scheme, yields

.‘.1_”_'= n(t+At)—n(t)

[

dt At

(A2)
Setting n, =(1-0)n,(t)+0n,(t+Ar), 0<6<1 yields an implicit scheme if 6=1, and an

explicit scheme if 6 =0. Otherwise the scheme is semi-implicit. Then the equation becomes
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n[(t+AAti—n!(t) _ iaj (an(t-i-At)+(1—9)n,-(t))"(ﬁ1 +7,+7,)(0n,(t + A +(1-0)n, (1))
j=2
nz(H"AAti —m@® :—Caz (Onz(t+At)+(1—9)n2(l‘))“(ﬂ2 +7, +12)(9n2(t+At)+(1—9)n2(t))+

(8B, +7,)(6n,(t + Ay + (1-0)n, (1))

ny(E+At)—n, (1)

v oty (Ony (2 + AL + (1= 0)ny (1)) +( By, +Ty_y ) (Ony_ (¢ + AL +(1—O)ny_ (1))
— ¥y (Ony (¢ + A +(1-60)n, (1))

By combining the terms, the above equations become

N
(L+28(B, +7, +T)0)m(t + A = Ar Y. ot (O (£ + At)) =, (1) — At (B, +7, +7, ) ((1-O)m (1)) +

=2

Atiaj (a-0)m,»)

i=2

—At (T, + 0P, ) Oy (2 + Ar) + (1+ At(Set, + B, + 1, +7,)0) my (t+ Ar) = ny (8) — At (S0, + By + ¥, +7, ) (1= 0Dy (1)) +
At(1-0) (1, + OB, ) ny (D)

—At (Tyoy + OBy ) Ony_ (¢ + A+ (L+ At(Gery, + ¥y )0) my (4 At) = ny_ () — At (Lot + 7y ) (L—O)Iny (1)) +
At(1—0)(Ty_ + By, )y (D)

n (¢t +At)

n,(t+At) .
I Aq =D is used to replace the above form, then

ny (t+Af)
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n (¢ +Af)
t+At
alREFAL_p (A3)
ny (t+Ar)
where -
1+At(B +y, +1,)0 —Ata,0 —Ata,,0
A 0 -At(T, +0B)0 1+ A1, + B, +7, +T,) 0
0 0 —At(Ty_ +B,_,)0 _ 1+At(Say, +7y)
and

m(©) = At (B +7,+7) (A0 () + ArY o, (1-6)n, (1))

j=2

D={n,®)—~At({o, + B, +7, +7,) ((1-0)n, (1)) + Ar(1- 6) (7, +6f,)n, (1)

Py ()~ At (Lot + 7, (A= 0)n, () + At(1—0) (7, + 8By, Yy, ®]

Then the frazil ice number at the subsequent time step can be obtained from equation (A.3).
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Appendix B Discretization of Governing Equation
for Vertical One-Dimensional Model

The kinetic eddy viscosity is related to the turbulent kinetic energy and the turbulent
dissipation rate as shown in equation 2.7. Turbulent energy and turbulent dissipation rate are

given in equations 2.8, and 2.9, respectively.

The derivative of v, with respect to z is

Vr _ 1 (1_3?_] (B.1)

0z h

Noting that u, is independent of z, then the governing equationé (5.1), (6.2), and (5.3)

become,
LAY e
It —;T(kf-"f) ie w
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UG,j+D

UG-1) | UG UGi+1,)

UG,j-1)

\ 2

Figure B.1 Schematic of t-z plane

90

Discretizing equations (B.2), (B.3), and (B.4) using an explicit differential scheme for a5

90 9”0

and an implicit scheme for >, and Pt where the inside of the parenthesis can be the
Z 74

variables U, Tor n,yields

_aQ - O, DIl O, I @ - ()(i+1, 1) —()(i+l, ) 9%0 - Ogs, j+) "2()(i+1, I + 0, J=
a A % Az T (Az)? '

'Substituting the differential schemes into equations (B.2), (B.3), and (B.4), gives

2k
~VrAtU gy oy + ((AZ)Z +AzAt (k - Tz )u* +2v At jU(i-rl,j)

B.5
Lo ®5)

2kz
—(AzAt(k——};—)u*""VrAt )U wy =AU 5y - P o
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VAT oyt [(AZ)ZGT +AzAt (k - *2‘2?' J“ +2v, A )Ylm.j)
(B.6)
2kz 2 2
—| AzAt| k e +Vp AL (T, 0 = A0 T+ GrAZ Aoy,
VAt i+ ((Az)2 o, +AzAt (k - % )u* +2v, At -, AzAfC, Jn L)
(B.7)

—(AzAt(k —%’j—zju +V, At +0,AzALG, Jn(m, oy =AZ0pn; L +G AP AIG

Equations (B.5), (B.6), and (B.7) can be rewritten in the form of an upper open tri-diagonal

matrix, respectively, using equation (B.7) as an example.

For simplification, assume

AA,,, = —V,Af
Ay = [(AZ)Z +AzA (k *%lkﬁ)u* + ZVTAt)
A ey = “(AZN (k - ZTkz )u* +V, At )

~ then,

— A2 2
AA([+1,j—1)]Ei+l,j-—l) + AA(i+1,j)Yzi+l,j) + AA(i+l.j+l)TEi+l,j+l) - AZ ]zi,j) -{'-GTAZ AZKG'T (Bg)

. Equation (B.8) can be written in the form
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Aoy Ty + Ao Do) + Ao 3 Ty = AT o+ GAC NG, 5 (=1, 2)
- AA T + Ay Ty + ARy T o = AT, o+ G AT NG, 5 (=1, 5=3)
ABy Ty + A8, T o + A8y T 5 =Ty o+ G AT NG, 5 (=1, j=4)

AA(zﬂ—z)]Zzn—z) +AA(2,71—1)7(12,n—1) +A‘4(2,n)722ﬂ) = Azzzzl,n—l) +GrA22AtO'T ; (=L, j=nr1)

\

The same derivation process can be applied to equation (B.5) and to equation (B.6).
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appenaixc - Discretization of Gov_erning Equation for
An Extended Vertical One-Dimensional
Model

The expression for v, and its derivative used in chapter five as described in equation (2.7),

(B.1) are applied herein; therefore the equations (5.1), (6.1), and (6.2) take the following forms

gj_;:gl’l_a_U.f.v ﬂ__l_éf_)‘i= K'-ZKZ u oU +V BZU__I_BPW (C 1)
o8 9z 9z 9 p ox | 9z Tor pox '

oT 1 9v, oT v, 3T 1 2kz) oT v, 0T -
=T LG e k- 4G C2

o o, 0z 0z 0,9 | oy (K h )u % o, 2

2 2
on, _ 1 dv; dn, +LT_B nzm_*_ani o 2KZ " on, Vi o nzm W, anm+Gn 3)
o8 o, 0z 9z O, 02 o, dz O, oz 0z
90

Discretizing equations (C.1), (C.2), and (C.3) using the same differential schemes for —

a0 9’0
0z and 972’

and an implicit scheme for and substituting the differential schemes into

- equations (C.1), (C.2), and (C.3), gives
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VAU iy iy +((Az)2 + AzAt(K —2—:5}* +2v, At ]U

(i+1, )
2 1 9P €9
KZ : w
‘(AZN(KT‘TJ“*“"VTN JU(i+l,i+l) =Az°U ) "o ox
: 2k
VAl o +[(AZ)20—T +AzAL (’C _TZ ]u* + 2‘_’TAt )T(’iﬂ.f)
) (C.5)
_(AZAt(K ‘—;—CI_—Z— ju* el ]Izm,jﬂ) =Az’07 T, ;) +Gr Az Atoy
S 2Kz
VA g oy +| (A2) Op +AZAE K‘—T U +2v, At -0, AzAt0, |y
(C.6)

2
—-(AzAt(K ——%)u* +V, At +@,AzALO, Jnm(‘.ﬂ‘ oy =020, +G,AZALC,

The source terms in the equations are important for the convergence of the solution, and it
should be treated in the right way. The explicit scheme is used for the source terms in equation

(C.4) and (C.5), while the semi-implicit scheme is used for equation (C.6), hence G, can be

written in different forms for the different frazil size groups

N ) .
Gn =(2alnl(i’ J)] ’)81’11(1""1, j)—Tlfll(i+1, ]), (m :1)
= .

G,=-Co,n (i+1, )= Bn G+1, )+ 8B,.n, G, )—T,n, G +1, j)+T, n, G, j)
(<m<N=1)

G, =—Coun, (i+1, j) +0By_ny G, D+Ty iy (G, j);  (m=N)
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Substituting G, into equation (C.6), the equations become
2 2Kz
VAt o iy t| (A2) O + AZAT K—T U+ 2 AL~ AzALG, + B+ T, 1y )

, ) N
—-(AZAt(K— —%)u* +Vv, At+0,A7At0, ]nl(iﬂ‘jﬂ) =AZ’om; +[ E on J(AzzAtO'n)
=2

(m=1)

2k
VAt +(( AZ)’6, +Az At(K—Tz)u* +2v, At—-0,AzAt0, +a, + B, +T,, ]nm (+1.)

—(AzAt[K - % )u* +V, At +®,AzAtC, ]nm(l.ﬂ_ iy = A0y +(8B,,+7,,)n, (A’ Ato,)
(I<m<N)

2
VAt iy + ((AZ)ZO'T +AzAL [K‘ - ——Z—z— )u* +2v, At -0, AzAt0, + 0y, ]nN L)

2k '
—(AzAt(K—TZ)u* +V, At +@,AzAt0, )nmﬂ, iy =AZP0pny (OB +Ty ) (AAt,)
(m=N)

For simplification,

AByy ) =Vyt (C.7)

AA,, = (M) oy +AzAr K—’& u. +2v, At —-@,AzAt0, + B, +1, ] (for m=1)

1AA ., =| (A0, + AzAt k=252 )y L v Ai— AAiG, +ar, + B, +z‘mij( for 1<m< N) (C.8)

AA(MJ) =| (Az)* 0, +AzAt K'—-—Z—ISE u. + 2V, At —@,AzAz0, +aN) (for m=N)

Al joy = (AZN (’f - 2—122 )u* +Vv AL ) (C.9)
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then,
) Ca2
AA;,, = i, j1) T4 1A, iyt jy T4 VA 1 ey Pongint, jay = Az°n,; j)+GnAZ Aoy, (C.10)

where G, = Za,n, (for m=1)
=2

G, =(8B, +7,)n, (for l<m<N)

G, =(8B,_ +Ty )y, (for l<m<N) 0, Oy O Oy O, Oy 0.

The same derivation process can be applied for equation (C.4) and for equation (C.5). All of
the resultant equations and their suitable boundary conditions consist of a closed soluble

system. A MATLAB® based program was developed to solve the three equations

simultaneously.
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