
A Dependency-B ased Parser Evaluation
Method

Wei Xiao

A t hesis
presented to the University of Manitoba

in partial fdfihnent of the
requirements for the degree of

Mas ter of Science
in

Corn put er Science

Winnipeg, Manitoba, Canada, 1997

@Wei Xiao 1997

National Libmy Bibliothëque nationale
du Canada

Acquisitions and Acquisitions et
Bibliographie Services services bibliographiques

The author has granted a non-
exclusive licence allowing the
National L~brary of Canada to
reproduce, loan, distn'bute or sell
copies of this thesis in microfom,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts fkom it
may be printed or otherwise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, diskiiuer ou
vendre des copies de cette thèse sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantieIs
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

THE OF MANITOBA

COPYRIGHT PERMISSION PAGE

A The&/Practicum sabmitted to the Facuity of Graduate Studies of The University

of Mnnitoba in partiai fuffillment of the nquircments of the dcgree

oc

Pei mro 1997 (c)

Permission bas been grnnted to the Library of The Ubiversity of Manitoba to lend or seIl
copier of thn thairlpmcticum, to the Nationai Libmry of Canaàa to microfilm thU thesb

and to lead or sel1 copies of the mm, and to Disscrîatiom Abstracts Internationd to publish
an abstract of this thesidpracticum.

The author m e m a other publication rights, and neither tbb thesis/practicum nor
esteosive txtiricts from it may In printed or otherwise reproduced without the author's

written permission.

I hereby declare that 1 am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions
or individuals for the purpose of scholady research.

1 further authonze the University of Manitoba to reproduce this thesis by pho-
tocopying or by ot her means, in totd or in part, at the request of other institutions
or individuals for the purpose of scholady reseach.

The University of Manitoba requires the signatures of ail persons using or pho-
tocopying this thesis. Please sign below, and give address and date.

Abstract

As the emergence of broad-coverage parsers, the "automated quantitative parser
evaluation" becomes more important to parser researches. Dependency-based parser
evduation method, one of automated quantitative parser evaluation met hod, is
based on dependency syntax theory and provides a better solution to parser eval-
uation problem than other evaluation schemes.

This t hesis explores the area of dependency-based parser evaluation. Several pro b-
lems are addressed. Among t hose are evaluat ion metrics, modification tools, and
evaluation for ambiguous sentences.

An experiment of the dependency-based evaiuation method is aiso perfomed. The
result is reported in this thesis.

Acknowledgement s

1 would Like to thonk my supe~sor , Dr. Dekang Lin for his guidance, advice.
and encouragement over the years. 1 cm not acknowledge his influence enough. 1
would also Like to thank Dr. David Scuse and Kevin Russell for their comments
and constructive criticisrn,

1 wodd like to t h a d my wife Yongmei, for her moral support and encouragement.
Finally, 1 wish thank my parents and sister without whose encouragement I would
not have reached this point.

Contents

1 Introduction 1

. 1.1 The Orgaaization of the Thesis 3

2 Related Works 5

2.1 Parsing Algorithms and Broad-Coverage Parsers 5
. 2.1.1 Parsing Algorithms 6

-
2.1.2 Broad-Coverage Parser System 1

. 2.2 Treebank 10
. 2.3 The Crossing-Bracket Criterion 11

. 2.3.1 Evduation Metrics 11
. 2.3.2 Pre-process 13

. 2.4 The Exact Match Criterion 15

. 2.5 The Problems of Constituency-Based Evaluation 16

3 The Dependency Based Evaluation Method
. 3.1 Dependency Theory

. 3.1.1 Dependency Syntâx

. 3-12! Dependency versus Constituency

. 3.1.3 Syntax versus Semantics in Dependency Syntax

. 3.2 Dependency-based Evaiuation

. 3.2.1 The Representation of Dependency Trees

. 3.2.2 Evduation Metrics

vii

. 3.2.3 Select ive Evaluation 33

3.2.4 Transforming Constituency Trees into Dependency Trees . . 34

3.2.5 Advantages of the Dependency-Based Evaluation 40

4 A Modification Tool for Dependency Trees 42

. 4.1 The Objective 42

4.2 Rule . 44

. 42.1 Pattern 4l

. 4.2.2 Action 46

5 Impiementation and Experimental Results 55

. 5.1 Class Dependencyk and EvduationMetrics 56

. 5.2 Tree Modifying Algorithm 57

. 5.2.1 Build initial matches 60

. 5-23 Applyactions 62

. 5 -3 Class ModificationModule 66

. 5.4 ExperirnentalResults 68

6 Evaluation for Ambiguous Sentences 71

. 6.1 Representation of Multiple Pane Trees 51

. 6.2 Evaluation Metrics 73

. 6.3 The Problem of Modigng Parse Forests 75

7 Conclusion 77
.. 7.1 Summary r t

. 7.2 FutureWork 78

A Sample parse trees from treebanks

B OMT notations

List of Tables

3.1 Dependency relations of some const mctions. M indicates modifier
. and H indicates head.. 23

3.2 The dependency structure of the sentence: "The computer wiU send
. the fdes to a printer" 3s

3.3 The dependency relations of the sentence: "The computer will send
. the files to a printer". 38

. 5.1 The experimental results 69

. 6.1 Hamming Distance, Recall and Precision 74

List of Figures

. 2.1 An example of crossing-brackets 12

. 2.2 recd-precision 14

. 2.3 An example of misguided scores 16

. 2.4 A sample analysis of the evaluation metrics 17

. 2.5 A sample derivation tree of XTAG and its phrase tree 18

. 3.1 The dependency versus constituency 21

3.2 The semantic structure (a). dependency syntactic structure (b) and
constituency syntactic structure (c) of the sentence: "John broke the

. windowwithastonen . .. 26

3.3 The answer and key for the sentence: 'The computer will send the
. files to a printer" 32

. 3.4 A subset of Magennan's Head Table 35

. 3.5 An example for the Head Assignment algorithm 36

. 3.6 A example of a Relation Table 37

. 3.7 ThestructureofXP 35

3.8 The X-bôr tree and derived dependency relations of the sentence
. "The computer will send the file to a printern 39

3.9 The dependency structures of [the legal rights] and [the [legal rights]] 40

. 4.1 A pattern and its match 47

4.2 Using niles to transform (a) to (b) and vice verse . The structures
circled by dotted lïne are the matches of the patterns of the corne-

. sponding rules 50

Transfonn dXerent analyses of coordinate structures. Tree A and
Tree B are two elIided dependency tree for the sentence: "He stood
up and gave me lettern. - . . -
One example of the dependency tree modification
Normaiization of pre-infinival 'to' , . . .

The architecture of the dependency tree
The Object Model which uses Rumbaugh OMT notation (see Ap-
pendix B)
The dependency tree of the sentence: "The cornputer wiil send the
files to a printer'' and a rule pattern. Dl, D2, ... are used to identify
the nodes of trees. , .
The example of the Tree Modi&ing Algorithm
The Object Model which uses Rumgaugh OMT notation

Two possible parses for YBying plones could be dangerousn
An example for modifying a parse forest. The subtrees match the
condition are represented by dotted Lhes - . . .

Associations in OMT ,
Composition (aggregation) in OMT
CIassification in OMT .

Chapter 1

Introduction

The task of an automatic quantitative parser evaluation is to provide a quantitative

measure of the accuracy of parsers. This information c m be derived by applying

parsers to a large number of natural Ianguage sentences. With the emergence

of broad-coverage parsers, researchen have shown an increasing interest in parser

evaluation. Parser evaluation wodd provide a standard for:

a The compaxison of different parser systerns. Since parsers are critical com-

ponents in natural language processing systems, determining the differences

between parsers, and which parser should be considered for use ore important

in solving naturd language problems.

a The improvement of a particular system. A quantitative evduation is also

important in the further development of a particular paxser. Since a pârser is a

complex system, it is hard to determine how a specific change to a component

of the parser affects the whole system. Evaluation based on a Iarge test data

set can help parser developers to estimate if the change harrns, or improves

the general performance of the passer. In addition, the information derived

CHMTER 1. INTRODUCTION -I -

from the evaluation d o w s the researchers to focus on the areas that have the

greatest impact on parser performance.

The problem of evaluating parsers can be divided into two subproblems: establish-

ing standard parses and comparing parser generated parses against t his standard.

Generdy parser evaluators use the hand-andyzed passes, or treebanks, as the

standard to judge parser generated parses. However, the method of the comparison

is stiIi open for discussion.

Two types of comparison schemes have been proposed: the const ituency- based eval-

uation (Black [l] and Mageman [l?]) and the dependency-based evaluatioo (Lin

[12]). The main ciifference between them is the syntactic representations of their

parses. The former adopts constituent trees to represent both t reebanks a d parser

generated parses, and the latter uses dependency trees. Constituency-based evalua-

t ion met hods score parsers by comparing constituent boundaries found in t reebank

panes and parser generated parses; in contrast, the dependency-based evduation

method compares the dependency relations of parses.

The dependency-based method provides a bet ter solution to the pôrser evaluation

problem t han the constituency-based met hod. Two main rnents of dependency-

based evaluation are:

The purpose of parsing is usually to facilitate semantic interpretation. Since

the semantic structure is embedded in the dependency syntactic structure,

the scores of the dependency evaluation are more relevant to how useful a

parse is than t hose of the constituency-based evaluation.

a There are many acceptable ways to analyze some syntactic structures in dif-

ferent parsers. One of the difficdt issues in parser evaluation is how to treat

these different analyses without bias. A modification tool, which is easy to

apply in the dependency-based evaluation method, can modify dependency

structures before evaluation to minimize the differences.

This work is based on Lin's evaluation scheme [12]. In the thesis, the eariier

dependency-based evduation scheme is extended in various aspects:

0 Besides the Hamming Distance-based measure used in [12], the met ric "recall-

precision" is introduced to describe two aspects of the system performance:

complet eness and accuracy.

a The modifj&g operation in the old evaluation scheme is extended to modify

mult i- layer dependency tree.

a The problem of the evaluation for ambiguous sentences is also examined.

Furthemore, an experiment is performed to demonstrate the feasibility of the

scherne.

1.1 The Organization of the Thesis

Chap ter 2 reviews modern broad-coverage parser systems and constituency- based

evaiuation cntena which are commonly used in parser evaluations.

Chapter 3 examines the dependency-evaluation method by describing the represen-

t at ion of parses and the metrics of evaluation.

CEiAPTER 1. INTRODUCTION 4

The modification tool for the evduation is presented in Chapter 4. Chapter 5 de-

scribes the implementation of the system, foilowed by the experimental results.

Chapter 6 discusses some issues of the evaluation of mbiguous sentences, and

Chapter 7 swnmarizes the results of the thesis, and suggests possible future axeas

of study.

Chapter 2

Related Works

The first section of this chapter gives a simple survey of parsing algorithms and

the state-of-art broad-coverage parser systems. The second section out lines the

concept of the treebank which is used to judge parser generated parses in automatic

evduation. The rest of the chapter reviews the early work on automatic quantitative

evaluation methods. Two constituency-based automatic evaluat ion methods have

appeared in the literature so far: the Crossing-Bracket Criterion and the Exact

Match Criterion. The main idea of these eduat ion criteria is to evaiuate parsers

by cornparhg the constituent boundanes identified by the parsers to those implied

in the t r e e b d s .

2.1 Parsing Algorithms and Broad-Coverage Parsers

The task of parsing is to determine if a sentence is syntactically well forrned and? if

so, to fuid one or more structures for the sentence [20]. Mmy natural Laaguage un-

derstanding systems rely on a parser as the first step in processing an input sentence.

There are a number of parsers to have been developed and those parsers are based

on diEerent Linguist ic formalisms and parsing algorit hms.

2.1.1 Parsing Algorit hms

Parsing algorithm is the cornputational "devicen which encodes the linguistic knowl-

edge to parse natural language sentences [15]. The foIlowing are a few exarnples of

the most popuiar paxsing algonthms used among broad-coverage parsers.

Chart parsing algorithm was h s t presented by Cocke, Kasami and Younger (196'7).

The main idea of the &onthm is to store intermediate results of parsing in a chart

or matrix to cope with redundancy in the pacsing search space [6]. A chart enables

a parser to keep a record of structures it has already found and information about

goals it has adopted. The storage of intermediate results is a time versus space

trade-off and turns out to be a key to efficient parsing.

A message passing algorithm was proposed by Lin [16]. The aigorithm uses a net-

work to encode grammar. The nodes in gramrnar network represent grammatical

categories and links represent the structural relationships between grammatical cat-

egories. An input string is parsed by passing messages in the grarnmar network.

The message passing algorithm is similar to chart parsing; but the function of chart

is distributed over the nodes in the network.

Anot her popular parsing algorit hm is Augmented Transition Network (ATN) [23].

Unlike message passing network, ATN can be considered as a finite-state autornata

which is augmented with register variable and hinctional constrains. The parser

examines the words of on input string from the left and start to transit over arcs

Erom initial state. The string is grammatical if the final state can be reached.

2.1.2 Broad-Coverage Parser System

Based on early work on natural language parsing, researchers recently expand their

efforts to employ new grammatical theones and parsing technologies to build broad

coverage parsers for general language.

PRINCIPAR

One example of broad-coverage parsers is the PRINCIPAR system [14, 151. The

PRINCIPAR is a principle-based parser, which makes use of Govermnent-Binding

Theory. While rule-based grammars use a large nurnber of rules to describe pat-

terns in a language, GB theory describes these patterns by using more fundamentai

and general principles. The PRINCIPAR states the GB principles in terms of lin-

guistic concept such as barrier, governrnent and movement, which are relationships

between nodes in syntactic structures.

In the PWCIPAR, the GB principles are directly applied to the description of

structures. A structure for the input sentences is only constructed alter its descrip-

tion bas been found to satisfy all the principles.

The parser is implemented by a message passing dgorithm. The gramrnar is en-

coded in a network. The nodes in the network are computing agents. They corn-

municate each other other by passing messages through the Links in the network.

The p ~ c i p l e s are implemented as a set of constrains that must be satisfied during

the propagation and process of messages. The constrains are attached to nodes and

Links in the network-

S t at ist ical techniques in parsing

Many b road-coverage parsers have begun involving s t atis t ical technology t O solve

paising problem. IBM statistical parser is a well-known example (Black [2]). The

grammar of the paner is a feature-based probabilistic context-free grammar (P-

CFG). h a P-CFG, probabilities axe assigned to each production in the grammar,

where the probability assigned to a production, X + Yi ... Y,, represents the prob-

ability that the non-termina X is rewritten as &.Yn in the puse of a sentence.

The probabilities can be assigned automatically by using a large manually parsed

corpse (treebank) to train the grammat. The statistical task of the parser is to

probabilisticdy train the grammar in order that the parse selected as the most

likely one by the parser is a correct parse. The task of the parser is to find the most

likely parser in terms of CFG. It is suggested that the use of a large treebank allows

the development of sophisticated statistical models that should outperform the tra-

ditional approach of using human intuition to develop paxse preference strategies [2].

Another broad-coverage parser XTAG [5] dso combine statistics strategy with

rule-based grammar. XTAG is based on the Tree Adjoining Gramrnar Formal-

ism (LTAG). LTAG is a lexicaiized mildy-context sensitive tree rewriting system

CHAPTER 2. RELATED WORKS

t hat is related to dependency grammars and categoricai grammars [II].

The grammar is encoded by trees in a Tree Database. The parsing of a sentences

includes two steps. In the tree-selection step, the parser selects a set of elemen-

tary trees from the Tree Database for each lexical item in the sentence. In the

t ree-grafting step, the selected trees axe composed by substitut ion and adjunct op-

erat ions.

The XTAG generates parse trees which are ranked by combination of heuristic,

which are expressed as stntctural preference for the derivation of parse trees. In

addition, the statistical information about usage frequency of the trees is used to

improve the performance of the parser. This information is collected by parsing

the Wall Street Journd, the IBM manual, and the ATIS corpus. XTAG consists of

a statistics database which contains Lequencies of each tree in the Tree Database.

In the time of parsing, the parser WU first pick the most frequently used trees in

the Tree Database.

Using dependency in parsing

One trend in the development of broad coverage parsers is to make use of depen-

dency. The X-bar structure of the PRINCIPAR requires that al1 phrases must have

a head, which is used in almost the same way as in dependency theories. The XTAG

uses LTAG formalism and generates derivation trees which capture the dependency

between words.

Collins also developed a statistical parser, in which standard probability estimation

techniques are extended to calculate probabilities of dependencies [4]. In Coilins'

parser, dependencies between pair of words are assigned probabilities and each

parse tree can be mapped to a dependency tree. The probability of a parse tree

is calculated in terms of the probabilities of the dependency relations in the corre-

sponding dependency tree.

2.2 Treebank

The probiem of parser evaluation is to determine whether or not a parser gener-

ated parse is correct, and if not, how accurate it is. Early parser evaluation was

performed by human evaluators who examined the passes of test sentences and re-

ported the accuracy rate of a parser. However, human judgment is inconsistent and

not a very reliable measure. This rneans that even if the same parse is evaluated

twice by the same evaluator, the results may not be identical; similady if the same

parser is evaluated by different evaluators with different standards and judgrnents,

the results wiil not be identical.

In automatic evaluation methods, human evaluators are replaced by a treebank.

A treebank is a sizable corpus of sentences which have been manuaily, or semi-

automatically parsed. By definition, a treebank parse for any given sentence is

considered to be the "correct parsen, and is used to judge a parser generated parse.

There are some well-known treebanks, such as UPem [22], Lancaster [2], and Su-

sonne [XI; which are widely used in parser evaluation, statistical parser testing,

and training. Appendix A shows some sample parses of those treebanks.

CHAPTER 2. RELATEI) WORKS II

Of course, a treebank may also be internally inconsistent, because it is produced

by hand. Unlike human evduaton, the treebankers' standards and judgments are

available for review. It is possible to control the quality of the t r e e b d , and to

increase its consistency rate to an acceptable level. One way to improve consistency

is to have multiple andysts to annotate the same data. In [17], the consistency rate

of the treebank was raised fiom 50% to 90% by applying this method.

2.3 The Crossing-Bracket Criterion

The Crossing-Bracket Criterion was first proposed ut DARPA Speech and Naturd

Language Workshop to r d participating parsers. It has also b e n used by other

researchers to measure the performance of t heir parsers.

This criterion compares only the constituent boundaries of parser generated parses

and t reebanlc parses, and ignores t heir labels and part -of-speech t ags.

2.3.1 Evaluation Metrics

The Crossing-Bracket Critenon consists of two sets of rnetrics. The first set of met-

rics includes only one measure: the n u b e r of crossing-brackets violations which is

defined as follows:

The span of a constituent is defined as the string of words which it dominates,

denoted by a pair of indices (i, j) where i is the index of the leflmost word in the

constituent, and j is the index of the nghtmost word. A single crossing-brackel vi-

olation is constituency A with the span (i, j) in a parser generated tree, if there is

C'NAPTER 2, RELATED WORKS

constituency B with the span (i', j') in its tnebank and i < a'' < j < j'.

For example, in Figure 2.1, the pame to be evaluated has two crossing-brackets.

3 b c d c f a b c d c f

Figure 2.1: An example of crossing-brackets

According to Magerman [17], the crossing-bracket violation, itself, is a weak mea-

sure. Consider the example:

treebank : [[A l 1 Dallas members] Cwoted Cvith Roberts]]

evaïuated parse: [A U Dallas members ooted vith Roberts]

the number of crossing-bracket violations: O

The evaluated parse is a very poor parse but yields a perfect score. Thus the num-

ber of crossing-bracket violations has to be combined with the second set of the

metrics recal1 and precision in order to provide an adequate measure of parser

performance.

The concepts of r e c d and precision were adapted from the field of Information

Retrieval. In the Crossing-Bracket Critenon, al1 constituents in a parser generated

parse and its corresponding treebank parse can be classified as three categories:

CHAPTER 2. RELATED WORKS 1 3

the correct constituent: any constituent in both the treebank tree and the

parser generated tree

the possible constituent: any constituent in the treebank tree

the actual constituent: any constituent in the parser generated parse tree

For a parser generated parse, recall and precision can be computed in terms of

correct, possible, and actual const ituents:

the total number of conect constituents
pren'siort =

the total number of actual constituents

the total number ofcorrect constituents
recall =

the total nurnber of possible constituents

Figure 2.2 shows a sample of the recd-precision analysis.

Precision is the percentage of the constituents in the parser generated parses which

match the constituents in the corresponding treebank parses, and r e c d is the per-

centage of the constituents in the treebank parses which match the constituents in

the parser generated paxses.

Recall and precision characterize the different aspects of the performance of pârsers.

Recall addresses the completeness of parsers and the precision addresses the accu-

racy. While recdl increases, precision tends to decrease and vice versa.

Before the evaluation of a pxser, the Crossing-Bracket Criterion erases from input

parses a11 instances of: auxiliaries, 'not', pre-iofinitival 'to', nul1 categories, posses-

treebank:

[LThe odds] Lfavor [[a speciai s e s s iod Chore Cthan lilrely] 1 [early L i a [the ye

ar1131111

parse :

[[The odds] [favor [a [special s e s s iod [Chore t h d l ïkely] Ceasly [in the yea

r111111

treebank only:

Ca speciai sess iod

[than likely]

Cthe par]

parse only:

Cspeciai sess iod

[more t h d

Recall = 8/11 = 72.727272727272734%

Precision = 8/10 = 80.0%

Figure 2.2: recall-precision

CHMTER 2- RELATED WORKS

sive ending('s and '), and d word-externd punctuation marks.

The elements such as auxiliazies, 'net' and 'to' can be analyzed in many differ-

ent ways in different syntax theories. The eraoure of these elements d o w s the

evaluation criterion no bias towards different theories.

2.4 The Exact Match Criterion

Li [l?], Magerman presented the Exact Match Cntenon to evaluate his SPATTER

statistical parser. The measure of this criterion is the percentage of the sentences

which are correctly parsed. A parse tree is considered to be correct if and only if ev-

ery constituent, constituent label, and part of speech tag in the parse tree matches

those in the treebank analysis.

There are strong arguments against the Exact Match Criterion. It is difficult to

reach a consensus about a constituent label or part-of-speech tag set between dif-

ferent parsers. In this method, a single error, as weil as multiple senous errors, are

treated alïke, since d errors in the parse ore counted only once. The degree of the

correctness of a parse should be taken into account, since it decides how useful the

parse is.

2.5 The Problems of Constituency-Based Eval-

uat ion

In the Crossing-Bracket Criterion, it is not n e c e s s d y tnie that a parse tree, which

has higher evaluation scores, is closer to the correct parse than other parse trees.

A very poor paxse may be assigned a high score. In [12], Lin gave a few examples

in which the method produces misguided scores (see Figure 2.3). It is obvious that

parse a has a lot more in common with the treebad than parse 6; however, parse

a has much lower scores thaa parse b in t e m s of precision, recail and the uumber

of crossing-bracket S.

of crossing btackets=3; recall=60%; precision=63.6X

of crossing brackets=O; recall=lOOX; precision=To%

Figure 2.3: An example of misguided scores

Another problem is that the method is too sensitive to the granulazity of a parse.

Treebank parses axe constmcted as "skeleton parsesn because not ail constituents

will aiways figure in a treebank parse. Therefore, the parse generated by a parser

is usually more detded in its representation than a treebank parse. For example,

in the Lancaster t reebank, some intemal noun-p hrase structures are considered t O

be nonessential, and are omitted by treebankers. The UPenn treebank parses are

even more shdow than the Lancaster treebank. The UPem ignores ail internal

noun phrase structures, including the internal structures of multiple conjoined noun

phrases. Hence, the bracketing is Bat for the following phrase:

(NP the recent California earthquake and hurricane in the Carolinas)

Unfortunately, the parses which are produced by a paner system are more detailed

than the treebank parses. The cornparison of the parse to a skeleton represeota-

tion renders a misleadingly low precision score. In Figure 2.4. the two spurious

Treebank :

[He [said Cevideace [obtained [in [violation Lof [the legal rights [of

citizensll3331311

Parse:

[He [said [evidence [obtained [in [violation [of Etthe [le@ rightsll

[of citizens111113111

Sparioas constituents in the parse:

[the legal rights]

[legai rightsl

Recall = 9/9 = 100 .O%

Precision = 9/11 = 81.81818181818183'/,

Crossiag = O

Figure 2.4: A sample analysis of the evaluation metrics

constituents [legal rights] and [the legal rights] are reasooable analyses, and a good

evaluation method shodd not penalize a parse with a fmer gonulady than the

treebank.

Derivation Tree

had [amap]

Parse Tree

Figure 2.5: A sample derivation tree of XTAG and its phrase tree

Alt hough most broad coverage parsers are cons t it uency-based, a bw broad-coverage

parsers, such as XTAG [5], use derivation t rees as the primaq synt ax structure, and

the phrase structures are derived £rom derivation trees. A sample of a derivation

tree and its phrase tree is shown in Figure 2.5 [5]. A derivation tree represents

the derivation history of a parse and actually captures the dependency relations

between words. Evaluating derivat ion trees would provide more direct measures of

this type of parsers, than evaluating phrase trees.

Chapter 3

The Dependency Based

Evaluation Method

With the emergence of broad-coverage parsers, the improvement of parser evalu-

ation becomes a n important ta&. According to the early studies of the parser

evduation [l, 12: 15, SI, an ideal eduation criterion should fulfill the following

requirement s:

An evaluation criterion must be based on the comparison with manuaily.

or semi-automaticdy, created parses; the comparison must be conducted

automaticdy, because of large volume of data.

a An evaluation method should not only tell us the degree of the performance

of a parser, but also should focus on the errors, so that the evaluator can

explain and remedy them.

a An ideal evaluation should be theory neutral; this rneans that an evaluation

d e r i o n should not have a prior bias towards any particular parser.

The development of the dependency-based evaluation method is IargeIy motivated

by these demands. This method uses dependency syntactic structures (also called

dependency trees) as the forma1 syntactic representation in bot h treebanks and

parser generated panes; therefore, a parser is scored by comparing dependency re-

lations, while the constit uency met hods compare const it uency boundaries.

3.1 Dependency Theory

This section details the dependency syntax, which the dependency- based e d u a t ion

met hod is based on. As is weU known, there are two diametricdy opposed met hods

in syntactic analysis: dependency syntax and constituency syntax. Constituency

syntax, also known as "Phrase Structure Syntax" , tends to insist on taxonomy, i.e.,

classification and distribution. Dependency syntax is based on relations between

ultimate syntactic units, and therefore, it tends to be concerned with meaningful

links, i-e. semantics [18]. Figue 3.1 shows the dependency syntactic structure and

the constituency syntactic structure for the sentence: "The computer will send the

files to a printern.

For a long time, constituency theories dominated English syntaw theories and de-

pendency theories received Little attention from English linguists. However, the

feasibility of dependency syntax in English has been recognized recently and the

present researches in theoretical syntax have shown an increase of the interest in

dependency syntax [18].

C H U T E R 3. THE DEPENDEiVCY BASED EVALUATIOIV METHOD 21

Figure 3.1: The dependency versus constituency

3.1.1 Dependency Syntax

In dependency theory, a wocd is both the smallest unit and the largest unit of the

syntax. The only means to represent the syntactic structure of natural language

sentences is binary directed syntact ic relations between words. According to Meltuk

[Ml, t hese relations should be:

ant isymmet ric (or directed)

if X -r Y, then i (X + Y). The direction of a relation enable us to dis-

tinguish a phrase pair like "minority studentn versus %tudent minorityn; we

have a relation 'student -, minority' for the first phrase, and 'minofity -t

student ' for the second.

antireflexive

-(X + X), since no word can be Linearly affected under its own influence.

Another important feature of the relation is that it can be labeled according to its

relation type, in order to distinguish one fiom another. In dependency theories,

this kind of relations is called syntactic dependency relations. The terms, 'modifier'

and 'head', are often used to refer to the two members of a dependency relation;

'modifier' depends on 'head', or conversely, 'head' governs 'modifier'. An important

question here is how to identi& one member of a relation as the head. The mos t

general answer is that it is the head that provides the link between the modifier and

the rest of the sentence, rather than vice versa [9]. Table 3.1 presents dependency

analyses of some cons t mct ions.

The above observation leads to the foilowing notion of syntactic structure: a set

of words Linked by syntactic relations. In addition, this syntactic structure must

fulfill t hree conditions [9] :

For any well-formed natural sentence:

One and only one word does not depend on another word. This word is the

head of the sentence.

AU other words depend directly on some other words

CHMTER 3. THE DEPENDENCY BASED EVALCTATION iV1ETHOD 23

1 modifier

cornplement

subject

adjective

prep. obj.

determiner

head

verb

verb

noun

preposit ion

nom

relation type

complement

sub ject

adjunct

complement

specifier

see(H) a man(M)

I(M) s 4 H)
red(M) hat (8)

in(H) the park(M)

the(M) park(H)

Table 3.1: Dependency relations of some constructions. M indicates modifier and

H indicates head.

No word depends directly on more than one other word

a Adjacency Principle: if word A directly depends on word B and word C is

between A and B, then the head of C is A or B or some other word between

A and B. The Adjacency Principle illustrates an important property in word-

order.

In the mathematical sense, the syntactic structure of a natural sentence is a rooted

tree in which nodes are the words of the sentence and arcs show the relationships

arnong them. The root of the tree is the word which is the head of the sentence.

Therefore, t his syntactic structure is c d e d a Dependency Tkee.

3.1.2 Dependency versus Constit uency

Dependency gramKians such as Hudson and MelCuk argued that dependencies

are bet ter suited for describing a syntactic structure rather t han constituencies are.

There are some advantages to use of syntactic dependencies [IO, 181:

Words which need to be related directly to one another can be related in a

dependency syntax. However, in a constituency syntax, phrase nodes u s u d y

intervene. For instance, in Figure 3.1, the relation between the verb 'send7

and the preposition 'toY, that the verb selects lexicdy, is a direct dependency.

In constituency structure the verb 'send' is the sibling of phrase node 'PT7 and

%O' is the child of 'P'. The verb 'send' and the preposition 'to7 have o d y an

aunt-niece relation,

Word-order rules can be formulated in a dependency more easily; especidy

in languages such as Japanese and Welsh, in which the head dways follows

or precedes its depeudents.

Syntactic dependency structures and semantic structures are very close. Lf

word A depends on B in syntax, then A often sernanticaIly depends on B.

Alt hough constituency is still the main syntax to be used in naturd language pro-

cessing, dependency syntax has become a serious alternative. Some recent develop-

ments in syntactic theory have shown an increase in the role of phrase head. One

of the typicd examples is the X-bar theory which is widely used in broad-coverage

parsers. Ln the X-bar theory, every phrase is required to have a head which is used

in almost the same way as in dependency theories. For example, in [N [Det a] [-4dj

cute] puppy [p with big ears]], the head is the word 'puppy'. The phrases or words

a], [.rqi cute] and with big eus] are cded modifiers of the head [N puppy].

The meaning of the phrase is largely determined by its head.

3.1.3 Syntax versus Semantics in Dependency Syntax

One ment of the dependency syntax is t hat its syntactic structure closely mat ches

its semantic structure. In dependency relations, modifiers supply mers for the slots

in the semantic representations of heads [8]. Let us compare the semantic structure

and dependency syntactic stmct m e for the sentence: "John broke the mindow wit h

a stonen, which are shown in Figure 3.2. The semantic structure can be seen as the

semantic representation of the verb 'break' which is a frame specifying a vaxiety of

slots. The modifiers 'John' and 'window' fill the agent and target slots, respectively.

In addition, 'stone' and 'break' are Linked (indirectly) by 'with'. AIt hough the two

structures are not completely ident ical, the syntact ic dependency structure may

be seen as at least very neady in step with the semantic structure [9]. As can be

seen in Figure 3.2, in the constituency syntactic stmcture, the verb 'break' is not

directly related to the Mers of its semantic slots.

3.2 Dependency-based Evaluat ion

Unlike the constituency-based evaluation, the dependency-based evduations adopts

dependency trees to represent both treebanlc parses and parser generated parses.

In the rest of this thesis, a treebank dependency tree will be c d e d "a keyn and a

parser generated dependency tree will be referred to as "an answer". Evaluations

are based on the cornparison between the keys and their corresponding answers.

As mentioned in the last section, a dependency tree is a set of words which are

linlced by dependency relations. Thus, the evaluation score is computed in terms

Figure 3.2: The semantic structure (a), dependency syntactic structure (b) and

constituency syntactic structure (c) of the sentence: "John broke the window with

a stone",

of the difference in the dependency relations between the key and answer on a

word-by-word basis.

3.2.1 The Representat ion of Dependency Trees

To implement a dependency-based evaluation, a dependency tree should be repre-

sented by an appropriate data structure. The following hierarchy is used as the

representation of a dependency tree:

a dep-tree: (word-slot , word-dot, ... , word-slot)

word-dot : (word-token, wordsense)

a wordsense: (root , category, dependency-link)

O root: the root form of the word; e.g. the verb 'has' has the root form 'have'

a category: the part of speech tag of the word; i.e. N, V, and so on

O dependency-link: (head category position [relation type])

position: < or > or << or >> or . . .

a relation type: specif ier or complement or adjunct or sub ject or . . .

A dependency tree consists of a List of word-dots. Each word-slot specifies the

dependency relation between one word and another word in the sentence, and has

a word-token which is followed by a wordsense. The dependency Li& specifies the

association between two wordsenses. The first and second elements in the depea-

dency iink are the word-token and the category of the head of the word.

The third element indicates the position of the head relative to thîs word. %y defi-

nit ion, a position couid be 5 - * <,or > where n can be any integer except O.
n n

> - > means the nth occurrence of the word "head" after the word, and < . .. < - - 4
n n

means the nth occurrence of the word "headn before the word. A dependency link

alSO be '* or '? ' . '* ' indicates that the mord is the head of the sentence.

and '?' indicates that the head of the word is unknown (or empty). The last ele-

ment, 'kelat ion typen, is opt iond.

The above representation is denved from the dependenq tree representatioo in

[El. It uses a hierarchic J stmcture instead of the flat structure in [12]. One reason

for the change is that the hierarchical structure can be easily extended to accom-

modate the parse trees of arnbiguous sentences, which wiIl be discussed in Chapter

6.

For the sentence in Figure 3.1, Table 3.2 presents its sample tree which is used in

the dependency-based evaluation.

(The ('the1 AT

(computer (' computer l EN1

(will ('ail1 Vn

(sead (' send1 W I

(the ('the' AT

(files ('file l H l 2

(t 0 ('ton P

(a ('a1 AT

(printer ('printer EiïI

(comput er

(send

(send

(*11 1

(files

(send

(send

(printer

(t 0

Table 3.2: The dependency structure of the sentence: "The computer will send the

files to a printer"

3.2.2 Evaluation Metncs

Once the key and answer are both represented as the dependency structuresl the

evaluation can be conducted by comparing the word-slots in the answer to the cor-

responding word-slots in the key, one-by-one.

CHAPTER 3. THE DEPENDENCY BASED EVUOATION tMETHOD 29

Ln the dependency-based evaluation, the primary evaiuation measure for sys tem

performance is the error rate and the secondary metrics are recall and precision.

The computation of these measures depends on the types of word-slots in answers.

The word-dots in an answer can be cIassified as follows:

a correct: the dependency link of the word-dot is equal to the dependency Li&

of the corresponding word-slot in key

incorrect: the dependency link of the word-slot does not match the depen-

dency link of the corresponding word-dot in key

a missing: the dependency Link of the word-slot is empty and it is filled in key

a spurious: the dependency link of the word-slot is filied a d it is empty in key

noncommittal: the word-dots both in the answer and in the key have empty

dependency link

There are two modes to determine if two dependency Links are equal: the general

mode and the exact match mode. In the general mode, two dependency Links are

equal when they have the sarne word-token and position value (in the other wordso

t hey point to the same head). However, for two equd dependency Links in the exact

match mode, their relation types should match, as well as their word-tokens and

positions,

The error rate

Since a dependency tree can be considered as a sequence of discrete elements, Lin

has proposed the use of the Hamming Distance to describe how close the answer

and the key are to each other [12]. The following is the definition of Hamming

CHAPTER 3. THE DEPENDENCY BASED EVMUATION METNOD 30

Distance:

For any two comsponding word-dots in the answer and the key, the Hamming dis-

tance between the word4ots is the minimal number otsteps of operations needed tu

make one slot equivalent to another one.

Three operations are defined for computing the H d n g Distance:

a addition: add m y dependency link to a word-dot

a delet ion: delete any dependency iïnk from a word-dot

a substitution: replace a dependency Link in a word-slot wit h another one

The value of the Hamming Distance between two dots can be 1 or O. In addition,

for a spetific slot in an answer, an error count is defined as the Hamming Distance

between the dot and the corresponding word-dot in the key. Any missing, spurious,

and incorrect word-slots will be counted as 1, and any correct and noncommittal

word-dots mili be counted as O. The error count of an ctnswer is the sum of the

Hamming Distance between each word-dot in the answer and its corresponding dot

in the key.

Thus the error rate is calculated as foilows:

the e r r m count of answers
error rate =

the total number of words in answers

Recall and precision

Besides the Hamming Distance-based measure used in [12], recall and precision

are also added to the metrics. The concept of the recall and precisioo metrics

CHAPTER 3. THE DEPENDENCY BASED E V U UATION L W T H O D 31

was adapted fiorn the DAWA parser evaluation method. The use of r e c d and

precision has two advantages:

They measure two different aspects of a performance: completeness (recdl)

and accuracy (precision) .

They present a positive view of system performance, which encourages parser

researchers to submit t heir systems for evaluat ion.

The formulas to compute recall and precision are as follows:

the total number of corred slots
preez'sion =

the total number of corred, s p r i o v s and incorrect slots

the total number of correct d o t s
recall =

the total number of correct, missing and incorrect slots

To compare the answer and its key in Figure 3.3, the scores of the answer are:

error rate = 5/9 = 0.56

recail = 4/9 = 0.44

precision = 4/6 = 0.67

One controversid point in the error rate metric is how to handle incorrect errors.

Error rate treats an incorrect error the same as the spurious and missing ooes. It

is argued that recall and precision view "incorrect" as a blend of "missingn and

"spurious" [3]; a parser did not simply produce the wrong dependency link, but

also produced a spurious link on the one hand and a missing link on the other

hand; therefore, the error rate metrics should view the system in the same way as

r e c d and precision did. To be consistent with recall and precision, an alternative

is that only two operations are used to compute the Hamming Distance: addition

and deletion. Thus, the error count for an incorrect slot is 2, since one substitution

must be repiaced by one deletion and one addition.

key :

(The ('theD AT

(cornputer ('cornputer'

(v i n (cuCUD

(s end ('sendD

(the ('theJ

(files ('fileD

(to ('to'

(a ('aD

(printer ('printerJ

ansuer :

(The ('theD

(computer ('computerD 8lli

(wiïï ('uil.lD VH

(send ('sendD

(the ('theD AT

(f iles (*fileD WI1

(to (tto' P

(a ('aJ AT

(printer ('printerD 61111

incorrect

incorrect

missing

missing

miss h g

Figure 3.3: The aaswer and key for the sentence: "The computer will send the files

to a printern.

CHMTER 3. THE DEPENDENCY BASED EVM UATION iMETHOD 33

3.2.3 Select ive Evaluat ion

Evaluation users may be interested in some of the specific s yntactic structures. The

dependency- based evaluat ion met hod c m select ively evaiuate the performance of

parsers in regard to those structures. The idea of selective evaluation is to compute

metrics in terrns of conditions. Only the word-dots which match the condition are

compared.

A condition can be a Iogical expression. Besides 'and', 'or7 and 'not', an expression

can have other operators such as 'type'. A word-dot is tested to be tme by 'type X'.
if its dependency Link has the relation type X. For example, if a word-slot matches

'(or (type complement) (type adjnnct))', its dependency Link is of the type

'complement ' or 'adjunct '. The evaluation algorithm is given as lollows:

evaluate (ansuer, key , condit ion)

€

for each aord in the sentence{

Let K be its uord-slot in key and A be its word-slot

in answer

if K or A satisfies the condition€

if A is correct slot

#,of,correct = #,of,correct + 1

if A is incorrect $lot

#,of,incorrect = #-of-incorrect + 1

if A is missing slot

#,of,missing = #,of,missbg + 1

if A is spnrioas slot

#,of,spurions = #,of,spurious + 1

1

enor-connt = #,of ,incorrect + #,of ,missing + #,of ,sparious

CHMTER 3. THE DEPENDENCY BASED EVALUATION iVfETHOD 34

Therefore, if we want know how a parse handles the subject relation, we can assign

' (type sub j) to the logicd expression of evaluate.

3.2.4 Tkansforming Constituency Tkees into Dependency

D e e s

Since rnost broad-coverage parsers use the constit uency syntau, it is n e c e s s q to

find a way to t ransform constituency trees into dependency trees, in order to ap ply

t his met hod to a constituency-based parser.

The dependency tree and the constituency tree can be transformed into each other

by a mechanicd procedure, which involves some reorgaoization [SI. Convert ing

a dependency tree to a constituency tree is straightforward. For each word in

a dependency tree, a phrase consists of the word plus al1 the words that modify

it. However, an additional mechaaism is required to represent this information to

identify the head of a phrase. The rest of the section d l explain the conversion

£rom constituency trees into dependency trees.

'Ikee Head Table

The Tree Head Table is proposed by Mageman [17] to assign lexical heads to the

constituents for a P-CFG parses. A Tree Head Table for a specific grommar is a

set of deterrninistic rules which have the following syntax:

CHAPTER 3. THE DEPENDENCY BASED EVAL UATION METHOD 3.5

(parent-label direct ion a-list -of -category-tags-and-labels)

where a parent label is the label of the constituent whose lexical head is being

assigned; direction indicates whether or not the children of this constituent are

processed left-to-~ght or right-to-left; the remainder of each rule consists of an or-

dered List of part-of-speech tags and constituent labels, which might occur as the

children of the constituent . The prïorities of tags or labels in the List decrease frorn

left to right. In addition, any tag or label appearing in the List has a higher priority

value than those which are not in the List, The lexical head of a constituent is

identified as the lexical head of the child whose label (or tag, if the child is not a

constituent) has the highest prio~ty. In the case of two children having the same

priority level, if the parent label is marked as left-to-right, then the leftmost one

is selected; otherwise, the nghtmost one is selected.

rule 1 : S right-to-left S V Ti Tn Tg N J Fa REX22 ...
rule 2 : N right-to-left N NNJ NNU .., NN1 ...
rule 3 : V left-to-right V ... W I VM ...

Figure 3.4: A subset of Magerman's Head Table.

The example in Figure 3.5 illustrates this process. Based on a subset of the rules

in Magerman's Tree Head Table in Figure 3.4, the assignment algorithm works

bottom-up. For [N The computer], the noun 'cornputer' has a higher priority than

'the' since NN1 is in the right hand List of d e 2 , but AT is not. For the same

reason, [N the files] has the lexical head 'file', and [N a printer] has the lexical head

'printer'. Now, consider [v wiil send the files to a printer]. In rule 3, W I appears

on the left side of VM; therefore 'send' is selected as the lexical head. Finally, since

the priority of N is lower than that of P in d e 1, 'send' becomes the head of the

sentence.

Figure 3.5: An example for the Head Assignment algorithm

After the assigning of a lexical head to each constituent in a passe tree, dependency

relations con be derived as follows: the lexical head of a constituent governs the

lexical head of its child constituent or its chitd word, if the child is not a constituent.

Relation Table

To add the type of dependency relations during derivation, a Relation Table is used.

Figure 3.6 shows an example of a relation table.

Like the Tree Head Table, a Relation Table includes a set of rules. The left hand

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 37

side of d e s is the tag of the lexical head of a constituent, and the right hand

side is a set of triples in which the first element is the label of the constituent, the

second is the tag of the modifier of the lexical head, and the last one is the type of

relationship t hot could be assigned to the modifier-head pair.

BI1 -- (II AT spec)

V - (S BlO1 sub j) CVP EX1 cmpl) (PP P cmpl)

11 ---- (P E cmpl)

Figure 3.6: A example of a Relation Table

The first d e in Figure 3.6 means that if the tag of a lexicd head is NN1, the

constituent to which the lexicd head is assigned is N, and a modifier of the head is

AT, then the type of dependency relation between the 1exica.I head and its modifier

is "spec". Based on the above relationship table and the constituent tree in Figure

3.4, the dependency relations can b e n presented in Table 3.3.

Conversion fiom PRINCIPAR Parse Trees to Dependency Trees

Most of modem linguistic formalisms, such as the Government-Binding Theory,

have the notion of the head of a constituent. For parses that are created with such

theories, no extra effort is needed to identify the head of coostituents.

For example, in the parse trees produced by PRINCIPAR 191, a constituent is

represented in the XP structure which is given in Figure 3.7. X is a variable and

could be N, 1, P, etc- Ln an XP, the X represent the head of a constituent. The

CHAPTER 3. THE DEPENDENCY BASED EVAL UATION METHOD 138

HODIFIER

The

conputer

w i l l

the

fi les

t o

a

print er

KEAn RELATIOI TYPE

compter spec

ssnd sab j

send pred

files spec

send *pi

send ad jn

priater spec

t o c-1

Table 3.3: The dependency relations of the sentence: "The computer will send the

files to a printer".

complements, adjuncts and specifiers a e the modifiers of the head.

Xbar Adjuncts

X Complements

Figure 3.7: The structure of XP

For the same sentence: "The computer will send the files to a printer", Figure 3.5

shows its parse tree and the derived dependency tree.

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 39

DET

l r 1'
1

ïhe N

PP [to]

cornputer

Pbar

HODIFIER

The

comput er

send

the

files

to

a

print er

he

HEAD

comput er

uill

v i l 1

f i l e s

send

s end

print er

to

files

RELATIOIP TYPE

spec

sub j

pred

spec

-'PI

ad jn

spec

-pl

Figure 3.8: The X-bar tree and derived dependency relations of the sentence YThe

computer will send the file to a printer*.

CHMTER 3. THE DEPENDENCY BASED EVALUATION METHOD 40

3.2.5 Advantages of the Dependency-Based Evaluation

Some advantages of dependency-based parser evaluation axe as Eollows:

1. According to [El, the metrics are intuitively meaningfui, since the semantic

dependency is embedded in the syntactic dependency. Therefore, the metrics are

more relevaat to how useful a parse is than the metrics in the DARPA evaluation.

2. In the DARPA evaluation method, a system may be ranked low precision, if it

has a finer granularity than the treebank. However, the dependency-based evaha-

tion is less sensitive to the ganularity of a parse tree. For the example of Figure 2.4,

two analyses [the legal rights] and [the [legal rights]] result in the same dependency

structure (see Figure 3.9). Thus such differences are ignored by the dependency-

based evaluation.

e
[the legai rights]
a

[the [Iegal righis]]

Figure 3.9: The dependency structures of [the legai nghts] and [the [legal rights]]

3. Error rate itsnlf is an error based metric, and it helps paner researchers focus on

errors which a parser bas made. Furthennoce, a selective evaluation of a particular

type of phenomena is easy to apply to a dependency tree, and it will provide much

useful information to analyze the performance of a parser.

4. In the XTAG parser, which is described in the last chapter, a denvation tree

is equivalent to a dependency tree, except that it is unlabeled. This method pro-

vides a direct measure to evduate the derivation structure, instead of its secondary

Chapter 4

A Modification Tool for

Dependency Trees

The function of the modification tool is to manipulate dependency trees by princi-

ples which are defined by evaluators. This chapter explores rvhy dependency trees

in parser evaluation need to be modified, and explains how the modification tool

works.

4.1 The Objective

One of the biggest problems encountered by parser evaluators is the difficulty of

defining standard parse trees for measuring the outputs of the different pusers. In

Table 3.3 and Figure 3.8 for the sentence: uThe compte r will send the files to a

printer" , two dependency trees treat the dependency relation between the auxiliary

'will' and main verb 'send' differently. In Mageman's Tree Head Table, [vvr send]

is considered to have a higher prionty than [v,w WU]; therefore, 'will' is the modifier

of 'send'. But the PRINCIPAR selects 'will' as the lexical head and 'send' depends

on 'will'. Both analyses are valid within their own theories.

English grammas appear to disagree strongly with each other as to the elements

of even the simplest sentences. For example, while it is generdy accepted that the

main verb of a sentence governs i ts subject , some grammaxians also argue that the

verb may depend on its subject, since the subject controls the fom of the verb [lS].

O t her differences include the treat ment of the conjunction, 'not ', pre-infini t iva14 to7,

and so on.

An ideal evaluation method shouid d o w discrepancies among grammatical theories,

and only measure parsers according to each theory, not prefer one and discriminate

agains t ot hers.

In the DARPA evduation method, the elements involving some cont roversial struc-

tures are erased. However, this affects the accuracy of evaluation, and not al1 such

phenornena can be eliminated. In contrast , the dependency-based evaluat ion pro-

vides a modification tool which is able to transform one dependency structure into

anot her, by following pre-defined d e s . Before the evaluation of dependency trees?

each dependency tree is revised so as to remove the allowable differences among the

parses.

The modification tool provides d e s to transfomi dependency trees. The concept

of the d e s is denved from the modifjring operations in [12]. While the modifying

operation is used to modify a dependency Link, the d e is extended to modify a

m d t i-layer sub-dependency t ree.

Each d e constitutes a "pattern" part and an "action-listn part. The syntax of

rule is:

(IF pattern)

(TEEH action-list)

1

The function of a rule is to search a dependency tree to find any subtree to match

the pattem and modify it, by the actions in the action-iist.

4.2.1 Pattern

The pattern is implemented as a tree. The node of a pattern tree contains a logic

expression which is called a node-expression. The node-expression is used to eval-

uate the word-slots in a dependency tree. The arc of a pattern tree is labeled by

another logic expression which is cailed Link-expression. The function of the link-

expression is to evaluate the dependency links in a dependency tree.

Besides the relational operators 'and', 'or' and 'net', the expressions con have four

other operators 'cat' , 'string', 'type7, and 'pos'. The first two operators are used

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 45

in a nodeexpression md, 'type' and 'pos' are for Iink-expressions. These operators

are defined as follows:

if X is a regular expression, then

0 (cat X) is true if the evduated word-dot has a category to match X

0 (string X) is tme if the word-slot has a root form to match X

0 (type X) is true if the dependency Li& has a relation type to match X

(pos Y) : Y cas be 'pre' or 'post'

(pos pre) is true if the head is before the modifier in the dependency link

(pos post) is true if the head is &ter the modifier in the dependency Li&

A subtree matches a pattern, if and only if:

0 the subtree has the same configuration as the pattern tree

each ivord-dot LV in the subtree is evaluated to be true by the node-expression

of the corresponding node N in the pattern. If W is not the root of the

pattern, then the dependency link in W is evaluated to be tme by the corre-

sponding link-expression in the pat tem.

In the modification tool, a pattern con be easily represented by a LISP-like list,

such as:

(root

(f irst-chiid

(first-grandchild second ,grandchild...)

second-child

CHAPTER 4. A MODLFlCATlON TOOL FOR DEPENDENCY TREES 46

where each node in the Iist contains its node-expressiont as well as the Erik-expression

of the arc between the node and the parent of the node. The foilowing is the gram-

mar of pattern:

Terminal-symbols=(IODE-EXP , LI=-EXP , regnlar-ezpression, and, or,
not, cat, string, tppe, pre, post, t, 1, (3

Bontermirral-spbals={Pattera, Root, Forest, Subtree, lode, Eode-expression,

LW-expsessiod

Pattern -> (Root (Forest))

Forest -> Subtree Forest I Subtree

Subtree -> gode (Forest) 1 Eode

Root -> (BODE-EXP lode-expression)

Bode -> ((IODE-EXP Ilode-erpression)(LIaK-W Lînù-expression))

Bode-expression -> (not (Bode-expression))

I(and (Bode-erpression)(Rode-expression))

I (or (Hode-expression) (Bode-expression))

1 (cat reguiar-expression)

I (string regular-expression)

I t

LW-expression -> (not (LM-expression))

I (and (LM-expression) (LM-expression))

I (or (Linh-expression) (Liok-expression))

I (type regalar-expression)

I (pos pre) I (pos post)

Figure 4.1 shows a sample of a pattern and its match.

4.2.2 Action

An action is a modification to dependency relations such as 'isolate', 'delete?, 'con-

vert', and 'transfer'. The arguments for an action specify the relative position of

(al V7

Figure 4.1: A pattern and its match

CHAPTER 4- A MODIFICATION TOOL FOR DEPENDENCY TREES 48

nodes in a subtree. Its syntax is a sequence of numbers sepaxated by a dot. For

example, O represents the root of a subtree; 0.2 represents the second child of the

root and so on. The foiiowing actions have been defined:

(delete X Y): removes the dependency link between X and Y, where X is the head

of Y

(single'hansfer X Y 2): when Z is the modifier of Y and Y is the modifier of X,

the action tramfer Z to X. Thus 2 becomes the modifier of X. The action includes

the following steps:

r remove the dependency Link between Y and Z

add the dependency Li& between X and Z

(transfer X Y) : is Like single'ïransfer, but it transfers all modifiers of Y to X

(invert X Y): when a dependency relation (X, Y) is inverted, the modifier Y

becomes the head of the head X. In meanwhile, the head of X becomes the head of

Y

reverse the dependency link between X and Y, where X is the head and Z is

the modifier

r remove the dependency link betweeo the head of X and X

r if X is not the head of the sentence, add the dependency link between the

head of X and Y

r if X is the head of the sentence, Y becomes the head of the sentence after the

direction is reversed.

(isolate X): The action cemoves a node which is not the head of sentence from

dependency tree. The foUowing steps take place while executing "isolate":

CHAPTER 4. A MODIFICATION TOOL FOR DEPEIvDENCY TREES 49

a (transfer the head of X X)

a (delete the head of X X)

The remainder of this section uses a few examples to illustrate how the modifica-

tion d e works. It is mentioned earlier that there may be two different analyses for

the dependency relation between the auxiliaxy and the main verb. Those different

analyses can be transformed into each other by using the niles specified in Figure

Let us consider the coordinate structure which is another controversid structure

in dependency theories. Figure 4.3 illustrates two possible dependency trees of the

sentence: "He stood up and gave me the lettern. We are able to transform one

dependency tree to another, as shown in Figure 4.3.

Figure 4.4 shows another example. Ln the adverb dause 'If you invite me', some

grammars treat the verb 'invite' as the head of the clause; however, other grammars

rnay consider that 'if' should be the head of 'invite'. The d e s in Figure 4.4 can

eliminate the discrepancy among t hose grammars.

The action "isolaten provides a similar function to the erasure in the DARPA
evaluation method. For example, in Figure 4.5 , pre-infinival 'to' can be either the

modifier of 'want', or the modifier of 'do'. Using the d e :

m i e A

(

(IF ((IODE-EXP t)

(((BODE-EXP (cat TO)) (LI=-EXP t))

CHAPTER 4. A iMODLFICATION TOOL FOR DEPENDENCY TREES 50

rale C

(

(IF ((IODE-EXP (cat VR) 1

(((IODE- W (cat W I 1 (LI=-EXP t 1 1

(((IODE-EXP t) (L I I I I - W (type sobj)))

1

1

Figure 4.2: Using rules to transform (a) to (b) and vice verse. The structures

circled by dotted Line are t he matches of the patterns of the corresponding niles.

CHAPTER 4. A iMODfFICATION TOOL FOR DEPENDENCY TREES 51

Figure 4.3: Transform different analyses of coordinate structures. Tree A and Tree

B are two ellided dependency tree for the sentence: "He stood up and gave me

letter".

CHAPTER 4. A MODIFICATION TOOL FOR DEPEiVDENCY TREES 52

rale B

(

(IF ((IODE-&XP (cat Camp))

(((IODE-W[P Ccat V) (LIm-EXP (type head))

1

1

('IREII (invert O 0.1)

1

1

Figure 4.4: One example of the dependency tree modification

CHAPTER 4. A MODIFICATZON TOOL FOR DEPENDENCY TREES 53

the two structures are transformed to an identical fonn,

A set of d e s , c d e d a modification module, can be defined for a particular gram-

mas. For an input parse, each rule is fired in a sequence. Since a d e may produce

new subtrees which match the pattern of the d e or other d e s , the process of

modi&ing is repeated until each d e in the module can not find a matched subtree.

[V want] r0 COI do] 1

[V want] P O to] [V do]

Figure 4.5: Normalization of pre-inhival 'toT

The modification tool can also be applied to other natural l aquage processing

systems. If the systems require a conversion from relating dependency syntact ic

structures to semantic structures, it is possible to rnake use of the rules to formuiate

the general conversion. For example, in Figure 3.2, the filler of the 'instrument'

slot of the verb is not related to the verb by a dependency link. The following nile

removes the preposition 'with', so that a direct relation can be built between the

verb and its filler:

CHAPTER 4. A MODFICATION TOOL FOR DEPENDENCY TREES 54

(

(IF ((IODE-EXP t)

(C (IODE-EXP (cat P)) 1) (LIIK-EXP (type adjn)

1

1

1

(TEEH (isolate 0.1)

1

1

Chapter 5

Implement at ion and

Experimental Result s

The dependency base evaluation system is implemented by ob ject-oriented method-

ologies. As is weU known, object-oriented met hodology focuses init i&y on the data

that a system manipulates to do its job. In the evduation system, such data are

dependency trees, word dots, dependency Links and so on.

Two basic concepts in object-oriented methodologies are object and class. An ob-

ject is a concrete entity that has attributes and behaviors. A class represents an

abstraction of objects that share a cornmon structure and common behaviors. In an

Ob ject-Oriented programming laquage, a class is a data structure whose physical

format is hidden behind a type definition. It embodies a set of formal properties

(or attributes) and is manipulated by a set of methods (or operations).

One of the features of object-oriented method is abstraction [19]. In contrast with

procedurd abstraction, the abstraction on which Ob ject-Oriented technology is

based is data abstraction. This is the key to the method's success in ensuring

extendibility and reusability.

5.1 Class DependencyTree and Evaluat ionMet rics

Figure 5.1: The architecture of the dependency tree

There are four main abstractions in the structure of dependency t rees: dependency

tree, word-slot , wordsense, and dependency link (see Figure 5.1); t herefore t here are

four classes called DependencyTree, WordSlot, WordSense, and DependencyLink.

The simplified class templates are shown as follows:

class DependencyTree

attribut es :

aordlist : a list of UordSlot objects

class YordSlot

attributes :

aordtoken : a string which contains the mord-token of the mord

aordsense : a pointer to a YordSense object

class VordSense

attribates :

root : a string which c o n t a s the root of the mord

category : a string uhich contains the category of the mord

dependencylink : a pointer to the DependeacyLinlt object of the aord

class DependencyLinb

attribates :

relationtype : a string which contains the type of the dependency link

head : a pointer to a YordSense object which is the head of dependency

link

The object model of these classes, which uses Rumbaugh OMT notation [7], is

shown in Figure 5.2. WordSlot is a part of DependencyTree and WordSense is

a part of WordSlot. DependencyLink is an associatioo between two WordSense

ob jects.

The evaluation metric concept is implemented by the class Evaluat ionMet rics. its

operation evaluate compares two ob jects of DependencyTree and yields evaluation

results.

5.2 Tree Modifying Algorithm

It was mentioned in the previous chapter that the dependency tree modification is

based on d e s which search aU matches in dependency trees in terms of rule patterns

and modify those matches by actions. This section presents a Tree Modifying

Algonthm. We make use of two foLiowing definitions in the algorithm. Let X be a

node in a rule pattern:

C H U T E R 5. LMPLEMENTATION AND EXPERIMENTAL RESULTS

RecallPrecision

#of oonect slots
#of incorrect slots
#of missing siois
#of spurious slots

Dependency Link u
Figure 5.2: The Object Model which uses Rumbaugh OMT notation (see Appeodir

B)

O IinkMatch: the LinkMatch of X is a node N (or called wordslot) in a de-

pendency tree which matches the nodeexpression of X, the dependency Li&

of N matches the link-expression of the branch between X and the parent of

X, and the head of N matches the node-expression of the paent of X. Note

that the root of a pattem does not have linkMatch.

O subtreeMatch: the subtreeMatch o f X is a subtree L of a parse tree which

m e t s the bllowing condit ions:

- if X is a leaf node, its linkMatch is its subtreeMatch.

- each child of X has one subtreeMatch which is a child of the root of L.

- if X is not the root of the pattern tree, the root of L is a LinkMatch of

X

In other words, the subtree L matches the subpatterntree which includes X

and ali pattern tree nodes under X . In addition, the root node of L should

be the linh-Match of X when X is not the root of pattern tree.

Let us use the dependency tree and the rule pattern in Figure 5.3 as an example.

The LinkMatches and subtreeMatches of the pattern nodes are given as following,

trees ore represented in LISP-like lists.

P4's lhkHatch : € D8, 02)

subtreenatch : ((D8), (D2) 3

P3's linknatch : (DS)

subtreeHatch : ((DS (D8)) 1

P2'slinknatch : { D S , D 4 , D 8 >

subtreenatch : ((D2) (D4), (D8) 1

Pl's subtreenatch : ((Dl (D2 D5 (D8))). (Dl CD4 DS (D8)))>

Figure 5.3: The dependency tree of the sentence: "The cornputer will send the files

to a printern and a d e pattern. Dl, D2, ... aie used to identify the nodes of trees.

To simplifjr the algorithm, we also make the following assumption: the d e writers

have to ensure that if the node in a dependency tree is the linkMatch of X, the

node can not be the LinkMatch of the X's sibling nodes.

The main idea of the dgorithm is that each pattern node rnakes use of two local

mernories to store the information about al1 its linkMatches and subtreeMatches for

an input dependency tree. The two mernories are called LinkMatchList and Sub-

treeMatchList, respectively. This information c m be looked up to avoid computing

these matches more than once.

5.2.1 Build initial matches

For a dependency tree, a d e generates the initial LinkMatchList and SubtreeMutch-

List of its pattern nodes fiom bottom to up. After a node finds its al1 linkMatches,

the subtreeMatches of the node (except leaf nodes) can be computed in terms of the

node's linkMatches and its children's subtreehlatches as indicated in the following

C H U T E R 5. WLElMENTATrON AND EXPERIMENTAL RESULTS

Algorithm l(node X computes its subtreeMatches)

n is # of X's children;

Si is SubtreeMatchLîst of the i th child of X'S; S U C ~ as {til, ti2, ..., t,},

where each element is the subtreeMatch of the child;

for each t in SI

if X is oot the root or parent-t is a X's linkMatch

recursivesearch(k, T)

if there is no tk in Sk which is t is brother

char T and return stopsearch

for each t k in Sk which is tis brother

add t k to T

i f k = n

subtreeMatch=make-t ree(T)

Save subtreeMutch into X's SubtreeMatchList

remove tk from T and return

return stopsearch

ret uni

make-tree(T)

concatenate each t in T to build a larger subt re

Each action of a d e can be decomposed into a sequence of removing or adding

a dependency link. When each dependency link is added to or removed from the

dependency tree, a d e updates the local mernories of its pattern nodes at the same

time, as shown in the following algorithm.

Algorithm 2 (add a dependency Li&)

postiterate each pattern node except the root

n = modif iera f -dependenqIink

if n is a linkMatch

save n to LinkMatchList

l i s t a f subtrees = computerubtreeMatch(n)

add l i s t a f -subtrees to SubtreeMatchList

if 1ist-o fsubtrees is not empty

send Iisto f subtrees to its parent

Algorithm 3 (parent node receive l i s t a f subtrees)

l i s t a f subtrees'=computesubtreeMatch(list~ f ~rubtrees)

add l i s t a f dubtrees' to SubtreeMatch List

if listafsubtrees' is not empty and node is not the root

l i s t a f sub trees=I i s t~ f -.subtreest

send l i s t a f subtrees to parentnode

In the dg0nth.m~ above, the functionalities of two compte-subtreeMatch are simi-

lar to that of aigorithm 1. The cmputesubtreeMatch in algorithm 2 considers n

as an ody element in node's LinkMatchList and returns all new generated sub-

treehlatches, whereas the second cmputesubtreeMatch uses Iist ,o f subtrees as

Si of the child node which sends l i s t a f subtrees.

Algorithm 4 (remove a dependency fi&)

postiterate each pattern node except the root

n = modifier& f dependencylink

if n is in LinkMatchList

remove n from LinkMatchList

for each subtree in SubtreeMatchList

if root-O f subtree = n

rernove subtree from Subtreelbfatch List

h = headaf-dependencylink

if h is not null

send h to parent 220de

Algorithm 5 (parent node receives h)

for each subtree in SubtreeMatchList

if root-O f subtree = h

remove su btree from SubtreeMatch List

h' = parents f subtree

if h' is not null and node is not the mot

h = h'

send h to its parent

Let us use the example in Figure 5.4 to illustrate the algorithm. Suppose the

IinkMatches of the nodes of two mle patterns are:

Rule 1 Rule 2

patte*

action
action

singleTransfer(0 0.1 O. 1.1)

The dependenq tree before the modification The depeadency tree after the modifiaiion

D5 D6 D7 D8

Figure 5.4: The example of the Tree Modifying Algorithm

The pattern nodes of two d e s are postiterated to initiaüze their SubtreeMatchList.
After the initialization, the SuotreeMatchList of the pattern nodes becomes:

Pi3 SubtreeHatchList :€ CDS) >
Pl4 SnbtreeHatchList:((D6))

Pl2 SubtreeHatchList:< (D3 (D5 D6)) 3

Pli SubtreeHatchList:< (D2 (D3 (D 5 D6))) 3

PZ1 SubtreeHatchList:i 3

P22 SubtreeHatchList:()

P23 SubtreeHatchList: ((D4) >

If Rule 1 is applied first, it picks up the first element in its pattern root's SubtreeMatchLi-sl

(0 2 (03 (0 5 D6))) and modifies this subtree by two steps: remove 0 5 + 0 3 and

add 0 5 + 0 2 . While 0 5 -, 0 3 is being removed from the dependency tree, each

non-root node in Rule I and Rule 2 checks if 0 5 is in its LinkMatchList, and if

so, the node recomputes LinkMatchList and SubtreeMatchList. In this example,

as 0 5 is the node P23's linkbfatch, Pl3 removes D5 from its Linkbf utchList and

(0 5) from its SubtreelWatchList. In the meantirne, Pl3 notifies its parent Pl2 by

sending it a message which contains 0 3 . Pl2 removes its subtreeMatch according

to the receiving message. Then Pl2 continues to send 0 2 to Pl 1 and Pl 1 removes

the element in Pl 1's SubtreeiMatch List,

WhiIe 0 5 + 03 is being added to the dependency tree, each non-root node of

Rule 1 and Rule 2 checks if 0 5 is its new linkMatch. Suppose D5 is the P Z ' S
IiakMatch. P22's two mernories become:

P22 aiso sends its new subtreeMatch (0 5) to P21 and P21 generates new sub-

treeMatch (02 (0 5 04)). Rule 2 picks up this subtree and removes 0 5 + 0 2

by foilowing the same process. Then the SubtreeMatchList of two rule's pattern

roots are empty and the modification process stops. Findy, the mernories of the

pattern nodes are:

Pi3 LinlsHatchList :<)
P 13 SubtreeHat chList : < 3

Pi4 LinkHatchList :< D6)
Pl4 SubtreeHatchList : i (Oô))

Pl2 LïnkXatchList :< D3 3

Pl2 SubtreeHatchList : €)

Pl1 SubtreeHatchList : i 1

P22 SubtreeHatchList : i)

P22 SubtreeHatchList : i)

P23 LinkHatchtist :< (D4))

P23 SubtreeHatchList : i CD41)

PSI SubtreeHatchList : < 1

5.3 Class Modificat ionModule

In the system, the modification rno&.de, rule, pattern and pattern nodes are im-

plemented as classes. The object mode1 of these classes is in Figure 5.5. The class

r Rule

Figure 5.5: The Object Mode1 which uses Rumgaugh OMS notation

RootNode and NonRootNode are derived h m the base class PatternNode- The

class NonRoot Node has two at tributes: LinkMatchList and SubtreeMatchList . The
LinkMatchList is a list of the refereoces of li&latches and SubtreeMatchList
includes a List of the references of subtreeMatches. The ceference is used to refer

to the corresponding IinkMatch or subtreeMatch. In the class RootNode, the at-

tribute SubtreeMatchList is a list of the references of the subparsetrees which

match the whole pattern. The algotithms in the last section are implemented in

the operation buildInitialMatches, addDependencyLink and rernoveDepen-
dencyLink of the class Rule. The Tree Modifying Algorithm is implemented in

the class ModificationModule operation modify:

modif ~(DependencyTree tree)

i

for each r u l e in rule-list

mie. baildInitialHatches (tree)

for each tnle in uhich the pattern root has non-empty SnbtreeHatchList (

vhi le(mie -piclrSubparsetree) {

action-sequ~cs=translatsAction;

/* translate to a ssqnence of removing or adding a dependency link */
for sach add or remove in action,sequence(:

tree.addDependency&ink or tree.removeDependencyL~

for each rnle in d e - l i s t

rule-addDependecyLiak or rnLe.removeDependecyLinlt

1

The evaluation system is coded in C++ on a Unix platform. To simplify the

implementation of the Tree Modifying Algorithm, we make one assumptioo: if

several sibling nodes of a dependency tree axe the LinkMatches of the same pattern

node, only one of those sibling nodes is considered as the LinkMatch, and others are

ignored. the assump t ion largely reduces the complexi ty of the implement at ion and

the system is still able to fulfill all modification requirements we have encountered.

5.4 Experimental Results

An experiment of the evaluation system is perfomed to evaluate the PRINCIPAR

[14]. The treebank used for the experiment is from the SUS ANNE Corpus Re1 3.0.

The SUSANNE Corpus was developed by University of Sussex. Release 3.0 was

completed in 1994. The SUSANNE Corpus comprises an approximately 130,000-

word subset of the Brown Corpus of American English, annotated in accordance

wi th the SUS ANNE scherne.

CHAPTER 5. IMPLEA!IENTATION AND EXPERIMENTAL RESULTS 69

The SUS ANNE corpus has 64 mes which are classified into 4 types:

A: press reportage

G: belles letters, biography, memoirs

J: learned (rnainly scientific and technical) writing

N: adventure and Western fiction

In the experiment, ive pick up two files kom each type and each file has about -1000

tvords. Both SUSANNE parses and PRINCIPAR parses are transforrned into de-

pendency trees before evaluation. The result of the experiment is given in Table 5. l.

file

A0 1

A02

GO1

GO2

JO1

JO2

NO 1

NO2

- -

of words error rate precision

Table 5.1 : The experiment al result s

The evaluation is perfonned in the general mode. The relation types of dependency

links and the categories of words are ignored and two dependency links are consid-

ered to be equivalent as long as they have the same word as head.

The eight mes are from four different domains. According to the experiment, the

scores of the eight files are very close. PRINCIPAR performs quite consistent ly

across four different domains.

Chapter 6

Evaluation for Ambiguous

Sentences

In Chapter 3, the evaluation method works only if its naturd language sentence has

only one corresponding parse tree. However, some sentences may be stmcturally

ambiguous. Tberefore, there can be more than one parse tree associated with such

a sentence. Consider the ambiguous sentence: "Flying planes could be dangerous":

Figure 6.1 shows its two possible pases.

In this chapter, severai issues in the evaluation of ambiguous sentences are discussed.

6.1 Representat ion of Multiple Parse Trees

Because the answer and the key of a sentence may consist of more than one parse

tree, the previous dependency tree representation has to be extended to accom-

modate multiple parse trees. The modified representation hierarchy is shown as

adjn su bj

[A t&ing] [N plane] [Aux ean] [A dangernus]

Figure 6.1: Two possible parses for '%ying planes codd be dangerousn

0 dep- tree: (word-dot , word-slot ,. .. , word-dot)

a word-slot: (word-token, wordsense, wordsense, ...)

a wordsense: (root, category, dependency-link, dependency-link, ...)

0 root: the root form of the word

0 category: the part of the speech tag of the word

dependency-link: (head category position [relation type])

0 dependency-link: * I ?

0 position: < or > or << or >> or . . .

0 relation-type: specif ier o r complement or adjuc t or sub ject or . . .

CHAPTER 6. EVAL UATiON FOR ilR/IBIGUO US SEIVTEIVCES 73

In the above hierarchy, a word-slot inchdes a set of wordsenses, and a wordsense

has a set of dependency Links; whereas in the earlier representation, a word-slot

has only one wordsense, and a wordsense h a . only one dependency link. Therefore,

all possible parse trees of a sentence can be packed into a single representation.

This representation can be called a paxse forest which is equivalent to the share

parse forest used by PRINCIPAR [14]. The following is the parse forest sample for:

UBying planes could be dangerous" :

6.2 Evaluat ion Metrics

After the answer and key are represented by parse forests, it is straightforward to

ext end the recall- precision met rics accordingly.

Based on the general criterion of recd-precision , the formulas of precision and

r e c d for multiple parses are presented as follows:

& wwd slots size(intersedion(K, A))
recaff = Cari K (s ~ ~ (I <))

CHAPTER 6. EVAL OATrON FOR AMBIGU0 US SENTEiVCES

could

> codd ALK) K
dangerous (> be Be pred)

(< plane N adjn)

(< could Aux subj)

(< be Be subj)

(< be Be)

(> could Aux)
*

(> be Be pred)

(< plane N adjn)

(< codd Aux su bj)

(> codd Aux)

(> b e Be pred)

Recall = 5/7 = 71 -4% Precisioa = 5/8 = 62.5%

Table 6.1: Hamming Distance, Recd and Precision

For example, using the parse forest in the last section as the key and the following

one as the answer, the evduation metrics can be computed as shom in Table 6.1.

(

(flying (flying A (C planes K adjn)) 1

(planes (plane II (< conld Aux subj)

(< be Be subj)))

(could (can A u *
(< be Be)))

(be (be ~e (> coald AUXI

*) 1

(dangerous (dangerous A (> be B e pred)))

1

CHAPTER 6. EVMUATION FOR AMBiGUOUS SENTENCES

6.3 The Problem of Modifying Parse Forests

In contrast to the evaluation metrics, the modification tool in a parse forest is diffi-

cult to implement. A d e modifies a portion of one dependency tree, if it matches

the given condition. In a parse forest, there is no way to determine if a set of de-

pendency Links belong to one single parse tree. Therefore, a rule rnay change some

dependency Links which it does not intend to change.

For example, the sentence: "1 saw a m m with a dog and a catn has two possible

readings. One indicates that a person saw a man and a cat: onother shows that a

person saw a man and the man has a cat and a dog. Pane A a ~ d porse B in Figure

6.2 are associated with two readings respectively. The modification rde is used to

build direct links between a verb and its complements, when a conjuncture aode

intervenes. While parse A is not afFected by the d e , B is transforrned to B' by the

d e and parse forest D is derived by packing A and B'. On the other hand, C is

the parse forest which packs A and B and the rule transforms C to C'. As reader

may notice, C? is not equal to D. Lo the other words,

modify (pack(A, B)) # pack(modi f y (A) , modi fy (B))

While D is the expected result , parse forest C' does not represent the meaning of

the onginal two parse trees.

The modifying parse forest needs to be further studied. One possible solution is

to use the tree structure to represent the parses of an ambiguous sentence for the

modification and then pack them ioto a forest just before the evaluation.

R o l e :

(

(IF ((IDDE-EXP <cat V I)

< < (IODE-EIP (cat

1

I

1

(ïH€T (transfer O 0.1)

1

1

Con j 1 1 (LIla-€XP t 1 1

(delete O 0.1)

Figure 6.2: An example for modifq-ing a parse forest. The subtrees match the

condition are represented by dot ted lines

Chapter 7

Conclusion

This chapter summarizes the thesis and suggests some future works.

7.1 Siimmary

This thesis studies the area of the dependency-based parser evaluation. Like other

evaluation methods, the dependency-based evaluation uses t reebanks as a standard.

However, t his met hod adopts dependency trees as formal syntactic representat ions

of treebank parses and parser getterated parses. The evaluation metrics are de-

rived by comparing the dependency relations in treebank parses to parser generated

parses. Besides the primary metric error rate, the other two metrics, recall and pre-

cision, are also introduced into the method, since recall and precision represent two

important characteristics (completeness and accuracy) of the performance. These

metrics c m be extended to handle ambiguous sentences.

The modification tool presented in the thesis can transform dependency trees to

CNAPTER 7- CONCLUSION

normalize different parsers according to a set of d e s .

Furthermore, the experiment which is based on a corpus (16,000 words) demon-

strates that the method is technicdy feasible in parser evaluation.

7.2 Future Work

As mentioned in the last chapter, future study of the modification tool needs to be

performed in order to modify parse forests directly.

Another area of potential research is to assign weights to errors according to their

severeness. Different errors have different impacts on the ùnalysis of a particular

sentence. It may be necessary for evaluation metrics to take this difference into

account.

Appendix A

Sample parse trees from

treebanks

A sample parse from Lancaster ïreebank

[Fa If,CS

LN you-PPY NI

[V were-VBDR using,WG

[N a-AT1 shared- JJ f older-NNl NI VI Fa]

C h ,

[V include, WC

[N the-AT f olloving,J J N] V] : - :

A sample parse from UPenn

A sample parse from Sussane

CSn

VBR

J J

TO

wov

iihen vhen

suff i c i e n t l y

accurat e

and and

complete

measurements

are be

available

p o s s i b l e

set set

CS [Fa:t [Rq:t .Rq:t]

suff iciently [Np : S.

accurat e [JJ&.

[J J+ .
c o m p l e t e . JJ+I JJâ]

measurement .Np:s]

[Vab . Vab]

available [J :e . J:e]Fa:t]

[Ni:S.Ni:S]

[Vcb .
. Vcb]

p o s s i b l e

[Ti:s[Vi .

. v i l

NN2

II

AT

JJ

CC

JJ

NN2

IO

AT

NN1c

CC

NNlc

NN2

IO

NNlc

YF

l i m i t s limit [Np : o. Np : O]

on on CP:p*

the the [Np .
thermal thermal [JJB.

and and C U + .

electrical electrical . J J+] J J&]

characterist ics characteristic .
of of [Po *

the the fNp .
surface surface [NNicâ.

and and [NNlc+.

subsurface subchyphen>surface

materials material

of o f [Po.

moon moon . Nns] Po] Np] Po] Np] P :pl Ti : s] S]

+. - 01

Appendix B

OMT notations

W y one

Optiad(zem or more)

Many(zao or more)

One or more

Figure B.1: Associations in OMT

ilPPENDIX B. OMT NOTATIOlVS

Figure B .2: Composition (aggregat ion) in O MT

Figure B.3: Classification in OMT

Bibliography

[l] E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Grishan, P. Harri-

son, D. Hindle, R. Ingria, F. Jelinek, J. Klavms, M. Liberman, M. Marcus,

S. ROU~OS, B Santorini, and T. Strzalkowski. A Procedure for Quantitatively

Cornpaxhg the Syntactic Coverage of English G r m a r s . In Proceedings of

Speech and Naturai Language Workshop, pages 306-311. DARPA, February

1991.

[2] Ezra Black, John LafFerty, aad Salim Roukos. Development and evaluation of a

broad-coverage probabilist ic grammar of English-language computer maouals.

In Proceedings of A CL-92, pages 185-192, Newark, Delaware, 1992.

(31 Nancy Chinchor. MUC-5 Evaluation Metrics. In Proceedings of the 5th lessag sage

Understanding Con ference, pages 69-78. ARPA, 1993.

[4] Michael CoUins. A New Statistical Parser Based on Bigram Lexical Depen-

dencies. In Proceedings of ACL-96. 1996.

[5] Chnsty Doran, Dania Egedi, Beth AM Hockey, B. Srinivas, and Martin Zaidel.

XTAG System - A Wide Coverage Grarnmar for English. In Proceedings of

COLING-94, pages 922-928. Kyoto, Japan, 1994.

[6] Gerald Gazdar. Na tural Language Processing in LISP. Addison- Wesley Pub-

iishing Company, 1989.

[7] Ian Graham. Object Onented Methods. Addison-Wesley Publishing Company,

1994.

[8] Richard Hudson. Constituency and dependency. Linguistics, 18: 1'79-198, 1980.

(91 Richard Hudson. Word Grammar. Basil Blackwell Ltd, 1984.

[IO] Richard Hudson. English Word Grammar. B a d Blackwell Ltd, 1990.

[l l] Joshi, A. Levy, and M. Takashi. Tree adjunct grammar. Journal of C o m p t e r

und System Sciences, 1974.

[12] Dekang Lin. A Dependency-based Method for Evaluating Broad-coverae

Parsers. ln Proceedings of IJCAI-95.

[13] Dekang Lin. Govertament-Binding Theory and Principle-based Parsing, 1994.

[14] Dekang Lin. P RINCIPAR-An Efficient, Broad-coverage, Principle- based

Parser. In Proceedings of COLING-94, pages 482488. Kyoto, Japan, 1994.

[15] Dekang Lin. Principle-based parsing without overgeneration. h Proceedings

of ACL-93, pages 112-120. Columbus, Ohio, 1994.

[16] Dekaog Lin and Randy Goebel. Context-Free Grâmmar Paning by Message

Passing. In Proceedings of the First Conference of the Pucifi Association for

Computational Linguistics, pages 203-21 1 , Vancouver, British Columbia, 1993.

[l i] David M. Magerman. Naturai Language P a r s i q as Statistical Pattern Recog-

nition. PhD thesis, Stanford University, 1994.

[18] Igor A. Melcuk. Dependency Syntaz: Theory and Practice. State University

of New York Press, 1988.

[19] Berttran Meyer. Object-Oriented AppIications. Prentice Hall, 1993.

[2O] S Pertridc. Parsing. In AI Encyclopedia, pages 1099-1109. 1992.

[21] Geoffrey Sampson. The Susanne Corpus, 1994.

['Z] Beatrice Santorini. Bracketing Guidelines for the Penn Treebank P roject, 199 1.

1231 Rajjan Shinghal. Formai Concepts in Artificial Intelligence. Chapman Sc Hall,

1992-

