W3 e

A Dependency-Based Parser Evaluation

Method

Wei Xiao

A thesis
presented to the University of Manitoba
in partial fulfilment of the
requirements for the degree of
Master of Science
in
Computer Science

Winnipeg, Manitoba, Canada, 1997

©Wei Xiao 1997

i+l

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
Street . Waelli
Ottawa ON K1A ONe Ottowa ON K14 01
Canada Canada
Your fiie Votre référence
Our fie Notre réfdrence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette these.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimeés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

0-612-23555-6

Canada

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

BRAER

COPYRIGHT PERMISSION PAGE

A DEPENDERCY-BASED PARSER EVALUATION METHOD

BY

WEI XIAO

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of

MASTER OF SCIENCE

Wei Xiao 1997 (¢)

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertations Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

i

[hereby declare that [am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions
or individuals for the purpose of scholarly research.

[further authorize the University of Manitoba to reproduce this thesis by pho-
tocopying or by other means, in total or in part, at the request of other institutions
or individuals for the purpose of scholarly research.

11l

The University of Manitoba requires the signatures of all persons using or pho-
tocopying this thesis. Please sign below, and give address and date.

13
i
{
!

i
g
r
;
3
4
|
r

Abstract

As the emergence of broad-coverage parsers, the “automated quantitative parser
evaluation” becomes more important to parser researches. Dependency-based parser
evaluation method, one of automated quantitative parser evaluation method, is
based on dependency syntax theory and provides a better solution to parser eval-
uation problem than other evaluation schemes.

This thesis explores the area of dependency-based parser evaluation. Several prob-
lems are addressed. Among those are evaluation metrics, modification tools, and

evaluation for ambiguous sentences.

An experiment of the dependency-based evaluation method is also performed. The
result is reported in this thesis.

v

Acknowledgements

I would like to thank my supervisor, Dr. Dekang Lin for his guidance, advice,
and encouragement over the years. I can not acknowledge his influence enough. I
would also like to thank Dr. David Scuse and Kevin Russell for their comments

and constructive criticism.

I would like to thank my wife Yongmei, for her moral support and encouragement.
Finally, [wish thank my parents and sister without whose encouragement [would

not have reached this point.

Rtk maiiie ok il di

BRadekie _~ A st A

Contents

Introduction 1
1.1 The Organization of the Thesis 3
Related Works 5
2.1 Parsing Algorithms and Broad-Coverage Parsers 3
2.1.1 Parsing Algorithms L. 6
2.1.2 Broad-Coverage Parser System T
2.2 Treebank e e 10
2.3 The Crossing-Bracket Criterion 11
2.3.1 Evaluation Metrics 11
232 Pre-process it 13
2.4 The Exact Match Criterion 15
2.5 The Problems of Constituency-Based Evaluation 16
The Dependency Based Evaluation Method 19
3.1 Dependency Theory. 20
3.1.1 Dependency Syntax 21
3.1.2 Dependency versus Constituency 23
3.1.3 Syntax versus Semantics in Dependency Syntax 25
3.2 Dependency-based Evaluation_.. 25
3.2.1 The Representation of Dependency Trees 26
3.2.2 Evaluation Metrics 28

BRI TR R L

3.2.3 Selective Evaluation
3.2.4 Transforming Constituency Trees into Dependency Trees . .

3.2.5 Advantages of the Dependency-Based Evaluation

4 A Modification Tool for Dependency Trees

4.1
4.2

The Objective,
Rule @ . e e e e e
421 Pattern e e e e e e

4.2.2 Action e e e e e e e e e e e e e e e

5 Implementation and Experimental Results

5.1

5.2

5.3
5.4

Class DependencyTree and EvaluationMetrics
Tree Modifying Algorithm
5.2.1 Build initial matches
5.22 Applyactions Lo Lo ..
Class ModificationModule _........
Experimental Results

6 Evaluation for Ambiguous Sentences

6.1
6.2
6.3

Representation of Multiple Parse Trees

Evaluation Metrics e

The Problem of Modifying Parse Forests

7 Conclusion

7.1
7.2

iy

Summary e e e e
Future Work

A Sample parse trees from treebanks

B OMT notations

34
40

42
42

44

71
71
73
(&}

i

{t

79

82

S TR TR TR AR P G L AN W L L e T

List of Tables

3.1 Dependency relations of some constructions. M indicates modifier

and H indicateshead.
3.2 The dependency structure of the sentence: “The computer will send
the files to a printer”
3.3 The dependency relations of the sentence: “The computer will send
the filestoaprinter”.
5.1 The experimentalresults
6.1 Hamming Distance, Recall and Precision

viil

23

[
o

38

74

e L S e & b R

List of Figures

I I RN R
G = WY o~

&
—

3.4
3.5
3.6
3.7
3.8

3.9

An example of crossing-bracketso 12
recall-precisiono 14
An example of misguidedscores 16
A sample analysis of the evaluation metrics. 17
A sample derivation tree of XTAG and its phrase tree 18
The dependency versus constituency 21

The semantic structure (a), dependency syntactic structure (b) and
constituency syntactic structure (c) of the sentence: “John broke the
window withastone”. L. 26

The answer and key for the sentence: “The computer will send the

files to a printer™. L. e e e e 32
A subset of Magerman’s Head Table. 35
An example for the Head Assignment algorithm 36
A exampleof a Relation Table 37
The structureof XP L. oL, 38
The X-bar tree and derived dependency relations of the sentence

“The computer will send the file to 2 printer”. 39

The dependency structures of [the legal rights] and [the [legal rights]] 40

Apatternanditsmatch, 47

Using rules to transform (a) to (b) and vice verse. The structures
circled by dotted line are the matches of the patterns of the corre-
sponding rules. o Lo, 50

ix

E
]
b

4.3

B.1
B.2
B.3

Transform different analyses of coordinate structures. Tree A and
Tree B are two ellided dependency tree for the sentence: “He stood
up and gavemeletter”.

One example of the dependency tree modification
Normalization of pre-infinival ‘to”

The architecture of the dependency tree

The Object Model which uses Rumbaugh OMT notation (see Ap-
pendix B)

The dependency tree of the sentence: “The computer will send the
files to a printer” and a rule pattern. D1, D2, ... are used to identify
the nodesoftrees.

The example of the Tree Modifying Algorithm
The Object Model which uses Rumgaugh OMT notation

Two possible parses for “flying planes could be dangerous™

An example for modifying a parse forest. The subtrees match the
condition are represented by dotted lines

Associations in OMT
Composition (aggregation) im OMT
Classification in OMT

51

53

56

58

. s g

Chapter 1

Introduction

The task of an automatic quantitative parser evaluation is to provide a quantitative
measure of the accuracy of parsers. This information can be derived by applying
parsers to a large number of natural language sentences. With the emergence
of broad-coverage parsers, researchers have shown an increasing interest in parser

evaluation. Parser evaluation would provide a standard for:

e The comparison of different parser systems. Since parsers are critical com-
ponents in natural language processing systems, determining the differences
between parsers, and which parser should be considered for use are important

in solving natural language problems.

e The improvement of a particular system. A quantitative evaluation is also
important in the further development of a particular parser. Since a parser is a
complex system, it is hard to determine how a specific change to a component
of the parser affects the whole system. Evaluation based on a large test data
set can help parser developers to estimate if the change harms, or improves

the general performance of the parser. In addition, the information derived

1

[SV]

CHAPTER 1. INTRODUCTION

from the evaluation allows the researchers to focus on the areas that have the

greatest impact on parser performance.

The problem of evaluating parsers can be divided into two subproblems: establish-
ing standard parses and comparing parser generated parses against this standard.
Generally parser evaluators use the hand-analyzed parses, or treebanks, as the
standard to judge parser generated parses. However, the method of the comparison

is still open for discussion.

Two types of comparison schemes have been proposed: the constituency-based eval-
uation (Black [1] and Magerman [17]) and the dependency-based evaluation (Lin
[12]). The main difference between them is the syntactic representations of their
parses. The former adopts constituent trees to represent both treebanks and parser
generated parses, and the latter uses dependency trees. Constituency-based evalua-
tion methods score parsers by comparing constituent boundaries found in treebank
parses and parser generated parses; in contrast, the dependency-based evaluation

method compares the dependency relations of parses.

The dependency-based method provides a better solution to the parser evaluation
problem than the constituency-based method. Two main merits of dependency-

based evaluation are:

e The purpose of parsing is usually to facilitate semantic interpretation. Since
the semantic structure is embedded in the dependency syntactic structure,
the scores of the dependency evaluation are more relevant to how useful a

parse is than those of the constituency-based evaluation.

CHAPTER 1. INTRODUCTION 3

e There are many acceptable ways to analyze some syntactic structures in dif-
ferent parsers. One of the difficult issues in parser evaluation is how to treat
these different analyses without bias. A modification tool, which is easy to
apply in the dependency-based evaluation method, can modify dependency

structures before evaluation to minimize the differences.

This work is based on Lin’s evaluation scheme [12]. In the thesis, the earlier

dependency-based evaluation scheme is extended in various aspects:

e Besides the Hamming Distance-based measure used in [12], the metric “recall-
precision” is introduced to describe two aspects of the system performance:

completeness and accuracy.

e The modifying operation in the old evaluation scheme is extended to modify

multi-layer dependency tree.

o The problem of the evaluation for ambiguous sentences is also examined.

Furthermore, an experiment is performed to demonstrate the feasibility of the

scheme.

1.1 The Organization of the Thesis

Chapter 2 reviews modern broad-coverage parser systems and constituency-based

evaluation criteria which are commonly used in parser evaluations.

Chapter 3 examines the dependency-evaluation method by describing the represen-

tation of parses and the metrics of evaluation.

CHAPTER 1. INTRODUCTION 4

The modification tool for the evaluation is presented in Chapter 4. Chapter 5 de-
scribes the implementation of the system, followed by the experimental results.

Chapter 6 discusses some issues of the evaluation of ambiguous sentences, and
Chapter 7 summarizes the results of the thesis, and suggests possible future areas

of study.

?

Chapter 2

Related Works

The first section of this chapter gives a simple survey of parsing algorithms and
the state-of-art broad-coverage parser systems. The second section outlines the
concept of the treebank which is used to judge parser generated parses in automatic
evaluation. The rest of the chapter reviews the early work on automatic quantitative
evaluation methods. Two constituency-based automatic evaluation methods have
appeared in the literature so far: the Crossing-Bracket Criterion and the Exact
Match Criterion. The main idea of these evaluation criteria is to evaluate parsers
by comparing the constituent boundaries identified by the parsers to those implied

in the treebanks.

2.1 Parsing Algorithms and Broad-Coverage Parsers

The task of parsing is to determine if a sentence is syntactically well formed and, if

so, to find one or more structures for the sentence [20]. Many natural language un-

derstanding systems rely on a parser as the first step in processing an input sentence.

(a1}

[

L SRR AR T

S T T T AAGOE, SR

CHAPTER 2. RELATED WORKS 6

There are a number of parsers to have been developed and those parsers are based

on different linguistic formalisms and parsing algorithms.

2.1.1 Parsing Algorithms

Parsing algorithm is the computational “device” which encodes the linguistic knowl-
edge to parse natural language sentences [17]. The following are a few examples of

the most popular parsing algorithms used among broad-coverage parsers.

Chart parsing algorithm was first presented by Cocke, Kasami and Younger (1967).
The main idea of the algorithm is to store intermediate results of parsing in a chart
or matrix to cope with redundancy in the parsing search space [6]. A chart enables
a parser to keep a record of structures it has already found and information about
goals it has adopted. The storage of intermediate results is a time versus space

trade-off and turns out to be a key to efficient parsing.

A message passing algorithm was proposed by Lin [16]. The algorithm uses a net-
work to encode grammar. The nodes in grammar network represent grammatical
categories and links represent the structural relationships between grammatical cat-
egories. An input string is parsed by passing messages in the grammar network.
The message passing algorithm is similar to chart parsing; but the function of chart

is distributed over the nodes in the network.

Another popular parsing algorithm is Augmented Transition Network (ATN) [23].

Unlike message passing network, ATN can be considered as a finite-state automata

STV AT AL Bl T R L NS T TR TR e B TR R S
A oin

-~1

CHAPTER 2. RELATED WORKS

which is augmented with register variable and functional constrains. The parser
examines the words of an input string from the left and start to transit over arcs

from initial state. The string is grammatical if the final state can be reached.

2.1.2 Broad-Coverage Parser System

Based on early work on natural language parsing, researchers recently expand their
efforts to employ new grammatical theories and parsing technologies to build broad

coverage parsers for general language.

PRINCIPAR

One example of broad-coverage parsers is the PRINCIPAR system [14, 15]. The
PRINCIPAR is a principle-based parser, which makes use of Government-Binding
Theory. While rule-based grammars use a large number of rules to describe pat-
terns in a language, GB theory describes these patterns by using more fundamental
and general principles. The PRINCIPAR states the GB principles in terms of lin-
guistic concept such as barrier, government and movement, which are relationships

between nodes in syntactic structures.

In the PRINCIPAR, the GB principles are directly applied to the description of
structures. A structure for the input sentences is only constructed after its descrip-

tion has been found to satisfy all the principles.

The parser is implemented by a message passing algorithm. The grammar is en-

coded in a network. The nodes in the network are computing agents. They com-

TR LT IR

CHAPTER 2. RELATED WORKS 8

municate each other other by passing messages through the links in the network.
The principles are implemented as a set of constrains that must be satisfied during

the propagation and process of messages. The constrains are attached to nodes and

links in the network.

Statistical techniques in parsing

Many broad-coverage parsers have begun involving statistical technology to solve
parsing problem. IBM statistical parser is a well-known example (Black [2]). The
grammar of the parser is a feature-based probabilistic context-free grammar (P-
CFG). In a P-CFG, probabilities are assigned to each production in the grammar,
where the probability assigned to a production, X — Y;...Y;, represents the prob-

ability that the non-terminal X is rewritten as Y;...Yn in the parse of a sentence.

The probabilities can be assigned automatically by using a large manually parsed
corpse (treebank) to train the grammar. The statistical task of the parser is to
probabilistically train the grammar in order that the parse selected as the most
likely one by the parser is a correct parse. The task of the parser is to find the most
likely parser in terms of CFG. It is suggested that the use of a large treebank allows
the development of sophisticated statistical models that should outperform the tra-

ditional approach of using human intuition to develop parse preference strategies [2].

Another broad-coverage parser XTAG [5] also combine statistics strategy with
rule-based grammar. XTAG is based on the Tree Adjoining Grammar Formal-

ism (LTAG). LTAG is a lexicalized mildly-context sensitive tree rewriting system

e

3

CHAPTER 2. RELATED WORKS 9

that is related to dependency grammars and categorical grammars [11].

The grammar is encoded by trees in a Tree Database. The parsing of a sentences
includes two steps. In the tree-selection step, the parser selects a set of elemen-
tary trees from the Tree Database for each lexical item in the sentence. In the
tree-grafting step, the selected trees are composed by substitution and adjunct op-

erations.

The XTAG generates parse trees which are ranked by combination of heuristic,
which are expressed as structural preference for the derivation of parse trees. In
addition, the statistical information about usage frequency of the trees is used to
improve the performance of the parser. This information is collected by parsing
the Wall Street Journal, the IBM manual, and the ATIS corpus. XTAG consists of
a statistics database which contains frequencies of each tree in the Tree Database.
In the time of parsing, the parser will first pick the most frequently used trees in

the Tree Database.

Using dependency in parsing

One trend in the development of broad coverage parsers is to make use of depen-
dency. The X-bar structure of the PRINCIPAR requires that all phrases must have
a head, which is used in almost the same way as in dependency theories. The XTAG

uses LTAG formalism and generates derivation trees which capture the dependency

between words.

Collins also developed a statistical parser, in which standard probability estimation

CHAPTER 2. RELATED WORKS 10

techniques are extended to calculate probabilities of dependencies [4]. In Collins’
parser, dependencies between pair of words are assigned probabilities and each
parse tree can be mapped to a dependency tree. The probability of a parse tree
is calculated in terms of the probabilities of the dependency relations in the corre-

sponding dependency tree.

2.2 Treebank

The problem of parser evaluation is to determine whether or not a parser gener-
ated parse is correct, and if not, how accurate it is. Early parser evaluation was
performed by human evaluators who examined the parses of test sentences and re-
ported the accuracy rate of a parser. However, human judgment is inconsistent, and
not a very reliable measure. This means that even if the same parse is evaluated
twice by the same evaluator, the results may not be identical; similarly if the same
parser is evaluated by different evaluators with different standards and judgments,
the results will not be identical.

In automatic evaluation methods, human evaluators are replaced by a treebank.
A treebank is a sizable corpus of sentences which have been manually, or semi-
automatically parsed. By definition, a treebank parse for any given sentence is
considered to be the “correct parse”, and is used to judge a parser generated parse.
There are some well-known treebanks, such as UPenn [22], Lancaster {2], and Su-
sanne [21]; which are widely used in parser evaluation, statistical parser testing,

and training. Appendix A shows some sample parses of those treebanks.

A T L R

Rhal S L .

i i)

CHAPTER 2. RELATED WORKS 11

Of course, a treebank may also be internally inconsistent, because it is produced
by hand. Unlike human evaluators, the treebankers’ standards and judgments are
available for review. It is possible to control the quality of the treebank, and to
increase its consistency rate to an acceptable level. One way to improve consistency
is to have multiple analysts to annotate the same data. In [17], the consistency rate

of the treebank was raised from 50% to 90% by applying this method.

2.3 The Crossing-Bracket Criterion

The Crossing-Bracket Criterion was first proposed at DARPA Speech and Natural
Language Workshop to rank participating parsers. It has also been used by other

researchers to measure the performance of their parsers.

This criterion compares only the constituent boundaries of parser generated parses

and treebank parses, and ignores their labels and part-of-speech tags.

2.3.1 Evaluation Metrics

The Crossing-Bracket Criterion consists of two sets of metrics. The first set of met-
rics includes only one measure: the number of crossing-brackets violations which is
defined as follows:

The span of a constituent is defined as the string of words which it dominates,
denoted by a pair of indices (i,7) where i is the index of the leftmost word in the
constituent, and j is the indez of the rightmost word. A single crossing-bracket vi-

olation is constituency A with the span (1,j) in a parser generated tree, if there is

TR S T

e gEERERTE T DT ETWES T Ty T

CHAPTER 2. RELATED WORKS 12

constituency B with the span (¢',j') in its treebank and i < ' < j < j'.

For example, in Figure 2.1, the parse to be evaluated has two crossing-brackets.

mm o m
a b c d e f a b c d e f

treebank : [abl cd [e £]
evalunated parse: a [bc]l [del £
crossing-bracket: {[b ¢], [a,bl} and {[d e],[e,f]}

Figure 2.1: An example of crossing-brackets

According to Magerman [17], the crossing-bracket violation, itself, is a weak mea-

sure. Consider the example:

treebank: [[All Dallas members] [voted [with Roberts]]
evaluated parse: [All Dallas members voted with Roberts]

the number of crossing-bracket violations: O

The evaluated parse is a very poor parse but yields a perfect score. Thus the num-
ber of crossing-bracket violations has to be combined with the second set of the

metrics recall and precision in order to provide an adequate measure of parser

performance.

The concepts of recall and precision were adapted from the field of Information
Retrieval. In the Crossing-Bracket Criterion, all constituents in a parser generated

parse and its corresponding treebank parse can be classified as three categories:

R SNpaa—

:

CHAPTER 2. RELATED WORKS 13

® the correct constituent: any constituent in both the treebank tree and the

parser generated tree
® the possible constituent: any constituent in the treebank tree

® the actual constituent: any constituent in the parser generated parse tree

For a parser generated parse, recall and precision can be computed in terms of

correct, possible, and actual constituents:

the total number of correct constituents
the total number of actual constituents

precision =

the total number ofcorrect constituents
the total number of possible constituents

recall =

Figure 2.2 shows a sample of the recall-precision analysis.

Precision is the percentage of the constituents in the parser generated parses which
match the constituents in the corresponding treebank parses, and recall is the per-

centage of the constituents in the treebank parses which match the constituents in

the parser generated parses.

Recall and precision characterize the different aspects of the performance of parsers.
Recall addresses the completeness of parsers and the precision addresses the accu-

racy. While recall increases, precision tends to decrease and vice versa.

2.3.2 Pre-process

Before the evaluation of a parser, the Crossing-Bracket Criterion erases from input

parses all instances of: auxiliaries, ‘not’, pre-infinitival ‘to’, null categories, posses-

T A R AL

CHAPTER 2. RELATED WORKS 14

treebank:

[{The odds] [favor [[a special session] [[more [than likely]] [early [in [the ye
ar]111111

parse:

[[The odds] [favor [a [special session] [[[more than] likely] [early [in the yea
r]11111]

treebank only:
[a special session]
[than likely]
[the year]
parse only:
[special session]

[more than]

Recall = 8/11 = T72.727272727272734%
Precision = 8/10 = 80.0%

Figure 2.2: recall-precision

:
!
!
1
I
;

CHAPTER 2. RELATED WORKS 15

sive ending(’s and ’), and all word-external punctuation marks.

The elements such as auxiliaries, ‘not’ and ‘to’ can be analyzed in many differ-
ent ways in different syntax theories. The erasure of these elements allows the

evaluation criterion no bias towards different theories.

2.4 The Exact Match Criterion

In [17}, Magerman presented the Exact Match Criterion to evaluate his SPATTER
statistical parser. The measure of this criterion is the percentage of the sentences
which are correctly parsed. A parse tree is considered to be correct if and only if ev-
ery constituent, constituent label, and part of speech tag in the parse tree matches

those in the treebank analysis.

There are strong arguments against the Exact Match Criterion. It is difficult to
reach a consensus about a constituent label or part-of-speech tag set between dif-
ferent parsers. In this method, a single error, as well as multiple serious errors, are
treated alike, since all errors in the parse are counted only once. The degree of the

correctness of a parse should be taken into account, since it decides how useful the

parse is.

FUONREINAL T

S T T RS e

CHAPTER 2. RELATED WORKS 16
2.5 The Problems of Constituency-Based Eval-

uation

In the Crossing-Bracket Criterion, it is not necessarily true that a parse tree, which
has higher evaluation scores, is closer to the correct parse than other parse trees.
A very poor parse may be assigned a high score. In [12], Lin gave a few examples
in which the method produces misguided scores (see Figure 2.3). It is obvious that
parse a has a lot more in common with the treebank than parse b; however, parse

a has much lower scores than parse b in terms of precision, recall and the number

of crossing-brackets.

treebank:
(I [saw [[a man] [with [[a dogl and [a catl]]] [in [the parkl]l]

parse a:
[I [saw [[a man] [with [[a dog]l and [a cat] [in [the park]]]]1]]

of crossing brackets=3; recall=60%; precision=63.6Y%

parse b:
[I (saw [a man] with [a dog] and [a cat] [in [the park]]]]

of crossing brackets=0; recall=100%; precision=70%

Figure 2.3: An example of misguided scores

Another problem is that the method is too sensitive to the granularity of a parse.

Treebank parses are constructed as “skeleton parses” because not all constituents

ST TR ST TV RWELLY

e ALl o

s wWamey L

CHAPTER 2. RELATED WORKS 17

will always figure in a treebank parse. Therefore, the parse generated by a parser
is usually more detailed in its representation than a treebank parse. For example,
in the Lancaster treebank, some internal noun-phrase structures are considered to
be nonessential, and are omitted by treebankers. The UPenn treebank parses are
even more shallow than the Lancaster treebank. The UPenn ignores all internal
noun phrase structures, including the internal structures of multiple conjoined noun
phrases. Hence, the bracketing is flat for the following phrase:

(NP the recent California earthquake and hurricane in the Carolinas)

Unfortunately, the parses which are produced by a parser system are more detailed
than the treebank parses. The comparison of the parse to a skeleton representa-

tion renders a misleadingly low precision score. In Figure 2.4. the two spurious

Treebank:
[He [said [evidence [obtained [in [violation [of [the legal rights [of
citizens]]111111]

Parse:
[Be [said [evidence [obtained [in [violation [of [[the [legal rights]]
[ot citizens]]11]11]1]]

Spurious constituents in the parse:
[the legal rights]
[legal rights]

Recall = 9/9 = 100.0%

Precision = 9/11 = 81.81818181818183%

Crossing = 0

Figure 2.4: A sample analysis of the evaluation metrics

constituents [legal rights] and [the legal rights] are reasonable analyses, and a good

CHAPTER 2. RELATED WORKS 18
evaluation method should not penalize a parse with a finer granularity than the

treebank.

(had] §

ﬂ\ NP
(1 [yesterday] [map] /\

N VP Ad

[a] v/\
A

[had [amap] yesterday

Derivation Tree Parse Tree

Figure 2.5: A sample derivation tree of XTAG and its phrase tree

Although most broad coverage parsers are constituency-based, a few broad-coverage
parsers, such as XTAG [5], use derivation trees as the primary syntax structure, and
the phrase structures are derived from derivation trees. A sample of a derivation
tree and its phrase tree is shown in Figure 2.5 [5]. A derivation tree represents
the derivation history of a parse and actually captures the dependency relations
between words. Evaluating derivation trees would provide more direct measures of

this type of parsers, than evaluating phrase trees.

S T T T AR EONGS T F SN

Chapter 3

The Dependency Based
Evaluation Method

With the emergence of broad-coverage parsers, the improvement of parser evalu-
ation becomes an important task. According to the early studies of the parser

evaluation [1, 12, 17, 2], an ideal evaluation criterion should fulfill the following

requirements:

® An evaluation criterion must be based on the comparison with manually,
or semi-automatically, created parses; the comparison must be conducted

automatically, because of large volume of data.

e An evaluation method should not only tell us the degree of the performance
of a parser, but also should focus on the errors, so that the evaluator can

explain and remedy them.

® An ideal evaluation should be theory neutral; this means that an evaluation

criterion should not have a prior bias towards any particular parser.

19

ST

YT T TEEIORTRS T AT I

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 20

The development of the dependency-based evaluation method is largely motivated
by these demands. This method uses dependency syntactic structures (also called
dependency trees) as the formal syntactic representation in both treebanks and
parser generated parses; therefore, a parser is scored by comparing dependency re-

lations, while the constituency methods compare constituency boundaries.

3.1 Dependency Theory

This section details the dependency syntax, which the dependency-based evaluation
method is based on. As is well known, there are two diametrically opposed methods
in syntactic analysis: dependency syntax and constituency syntax. Constituency
syntax, also known as “Phrase Structure Syntax”, tends to insist on taxonomy, i.e.,
classification and distribution. Dependency syntax is based on relations between
ultimate syntactic units, and therefore, it tends to be concerned with meaningful
links, i.e. semantics [18]. Figure 3.1 shows the dependency syntactic structure and
the constituency syntactic structure for the sentence: “The computer will send the

files to a printer”.

For a long time, constituency theories dominated English syntax theories and de-
pendency theories received little attention from English linguists. However, the
feasibility of dependency syntax in English has been recognized recently and the
present researches in theoretical syntax have shown an increase of the interest in

dependency syntax [18].

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 21

\ ANk

[AT The] [NNI computer] VM will] [ATthe] NNI files] (o] [ATa] [NNI printer}

ANV A

[AT The] (NI compotes] (M will] {VVI send] (ATthe] NNIfles] [Wio] [ATa] [NNI printer]
Figure 3.1: The dependency versus constituency

3.1.1 Dependency Syntax

In dependency theory, a word is both the smallest unit and the largest unit of the
syntax. The only means to represent the syntactic structure of natural language
sentences is binary directed syntactic relations between words. According to Melé¢uk

[18], these relations should be:

AR P A SoSai el el R

AR

e SURNALL

i AR L 1 4

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD

ty
N

@ antisymmetric (or directed)
if X - Y, then ~(X « Y). The direction of a relation enable us to dis-
tinguish a phrase pair like “minority student” versus “student minority™; we
have a relation ‘student — minority’ for the first phrase, and ‘minority —

student’ for the second.

@ antireflexive

—(X — X), since no word can be linearly affected under its own influence.

Another important feature of the relation is that it can be labeled according to its
relation type, in order to distinguish one from another. In dependency theories,
this kind of relations is called syntactic dependency relations. The terms, ‘modifier’
and ‘head’, are often used to refer to the two members of a dependency relation;
‘modifier’ depends on ‘head’, or conversely, ‘head’ governs ‘modifier’. An important
question here is how to identify one member of a relation as the head. The most
general answer is that it is the head that provides the link between the modifier and
the rest of the sentence, rather than vice versa [9]. Table 3.1 presents dependency

analyses of some constructions.

The above observation leads to the following notion of syntactic structure: a set
of words linked by syntactic relations. In addition, this syntactic structure must
fulfill three conditions [9):

For any well-formed natural sentence:

® One and only one word does not depend on another word. This word is the

head of the sentence.

o All other words depend directly on some other words

-

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD

modifier head relation type | example
complement | verb complement | see(H) a man(M)
subject verb subject I(M) see(H)
adjective noun adjunct red(M) hat(H)
prep. obj. | preposition | complement | in(H) the park(M)
determiner | noun specifier the(M) park(H)

Table 3.1: Dependency relations of some constructions. M indicates modifier and

H indicates head.

e No word depends directly on more than one other word

e Adjacency Principle: if word A directly depends on word B and word C is
between A and B, then the head of C is A or B or some other word between
A and B. The Adjacency Principle illustrates an important property in word-

order.

In the mathematical sense, the syntactic structure of a natural sentence is a rooted
tree in which nodes are the words of the sentence and arcs show the relationships
among them. The root of the tree is the word which is the head of the sentence.

Therefore, this syntactic structure is called a Dependency Tree.

3.1.2 Dependency versus Constituency

Dependency grammarians such as Hudson and Mel¢uk argued that dependencies
are better suited for describing a syntactic structure rather than constituencies are.

There are some advantages to use of syntactic dependencies [10, 18]:

el oo

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 24

o Words which need to be related directly to one another can be related in a
dependency syntax. However, in a constituency syntax, phrase nodes usually
intervene. For instance, in Figure 3.1, the relation between the verb ‘send’
and the preposition ‘to’, that the verb selects lexically, is a direct dependency.
In constituency structure the verb ‘send’ is the sibling of phrase node ‘P’, and
‘to’ is the child of ‘P’. The verb ‘send’ and the preposition ‘to’ have only an

aunt-niece relation.

e Word-order rules can be formulated in a dependency more easily; especially
in languages such as Japanese and Welsh, in which the head always follows

or precedes its dependents.

e Syntactic dependency structures and semantic structures are very close. If

word A depends on B in syntax, then A often semantically depends on B.

Although constituency is still the main syntax to be used in natural language pro-
cessing, dependency syntax has become a serious alternative. Some recent develop-
ments in syntactic theory have shown an increase in the role of phrase head. One
of the typical examples is the X-bar theory which is widely used in broad-coverage
parsers. In the X-bar theory, every phrase is required to have a head which is used
in almost the same way as in dependency theories. For example, in [5 [pe: a] [14;
cute| puppy [p with big ears]], the head is the word ‘puppy’. The phrases or words
[Det 2], [44i cute] and [p with big ears] are called modifiers of the head [v puppy].
The meaning of the phrase is largely determined by its head.

cadi il iel AR

Lad

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 25
3.1.3 Syntax versus Semantics in Dependency Syntax

One merit of the dependency syntax is that its syntactic structure closely matches
its semantic structure. In dependency relations, modifiers supply fillers for the slots
in the semantic representations of heads [8]. Let us compare the semantic structure
and dependency syntactic structure for the sentence: “John broke the window with
a stone”, which are shown in Figure 3.2. The semantic structure can be seen as the
semantic representation of the verb ‘break’ which is a frame specifying a variety of
slots. The modifiers ‘John’ and ‘window’ fill the agent and target slots, respectively.
In addition, ‘stone’ and ‘break’ are linked (indirectly) by ‘with’. Although the two
structures are not completely identical, the syntactic dependency structure may
be seen as at least very nearly in step with the semantic structure [9]. As can be
seen in Figure 3.2, in the constituency syntactic structure, the verb ‘break’ is not

directly related to the fillers of its semantic slots.

3.2 Dependency-based Evaluation

Unlike the constituency-based evaluation, the dependency-based evaluations adopts
dependency trees to represent both treebank parses and parser generated parses.
In the rest of this thesis, a treebank dependency tree will be called “a key” and a
parser generated dependency tree will be referred to as “an answer”. Evaluations

are based on the comparison between the keys and their corresponding answers.

As mentioned in the last section, a dependency tree is a set of words which are

linked by dependency relations. Thus, the evaluation score is computed in terms

i,
|
;

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 26

(b) break
John window with
the stone
(© §
/\ 2
NP VP
cT /\ 7\
the window with NP
a stone

Figure 3.2: The semantic structure (a), dependency syntactic structure (b) and
constituency syntactic structure (c) of the sentence: “John broke the window with

a stone”.

of the difference in the dependency relations between the key and answer on a

word-by-word basis.

3.2.1 The Representation of Dependency Trees

To implement a dependency-based evaluation, a dependency tree should be repre-
sented by an appropriate data structure. The following hierarchy is used as the

representation of a dependency tree:

e dep-tree: (word-slot, word-slot, ... , word-slot)

LT pr gyt 2

&

[RV]
-1

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD

e word-slot: (word-token, wordsense)

wordsense: (root, category, dependency-link)

root: the root form of the word; e.g. the verb ‘has’ has the root form ‘have’

category: the part of speech tag of the word; i.e. N, V, and so on

®

dependency-link: (head category position [relation type])

dependency-link: * or ?
® position: < or > or << or > or ..

relation type: specifier or complement or adjunct or subject or .

A dependency tree consists of a list of word-slots. Each word-slot specifies the
dependency relation between one word and another word in the sentence, and has
a word-token which is followed by a wordsense. The dependency link specifies the
association between two wordsenses. The first and second elements in the depen-

dency link are the word-token and the category of the head of the word.

The third element indicates the position of the head relative to this word. By defi-
nition, a position could be < --- < or > --- > . where n can be any integer except 0.
e, o’ e, ——
n n
> --- > means the nth occurrence of the word “head” after the word, and < ... <
S e
n n
means the nth occurrence of the word “head” before the word. A dependency link
can also be ‘*’ or ‘?’. ‘%’ indicates that the word is the head of the sentence.
and ‘?’ indicates that the head of the word is unknown (or empty). The last ele-

ment, “relation type”, is optional.

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 28

The above representation is derived from the dependency tree representation in
[12]. It uses a hierarchical structure instead of the flat structure in [12]. One reason
for the change is that the hierarchical structure can be easily extended to accom-

modate the parse trees of ambiguous sentences, which will be discussed in Chapter

6.

For the sentence in Figure 3.1, Table 3.2 presents its sample tree which is used in

the dependency-based evaluation.

(The (‘the’ AT (computer HNN1 < spec)))
(computer (‘computer’ KN1 (send wI < subj)))
(will (‘will’ V.| (send W < pred)))
(send (“send’ I (*)))

(the (‘the’ AT (tiles NI < spec)))
(tiles (‘tile’ NN1 (send wr > cmpl)))
(to (‘to’ P (send wIr > cmpl)))
(a (ca’ AT (printer HNN1 < spec)))
(printer (‘printer’ HEI (to P > cmpl)))

Table 3.2: The dependency structure of the sentence: “The computer will send the

files to a printer”

3.2.2 Evaluation Metrics

¢ Once the key and answer are both represented as the dependency structures, the

‘ evaluation can be conducted by comparing the word-slots in the answer to the cor-

responding word-slots in the key, one-by-one.

FY T i L et l ot A A

Te TR R

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 29

In the dependency-based evaluation, the primary evaluation measure for system
performance is the error rate and the secondary metrics are recall and precision.
The computation of these measures depends on the types of word-slots in answers.

The word-slots in an answer can be classified as follows:

e correct: the dependency link of the word-slot is equal to the dependency link

of the corresponding word-slot in key

e incorrect: the dependency link of the word-slot does not match the depen-

dency link of the corresponding word-slot in key
e missing: the dependency link of the word-slot is empty and it is filled in key
e spurious: the dependency link of the word-slot is filled and it is empty in key

e noncommittal: the word-slots both in the answer and in the key have empty

dependency link

There are two modes to determine if two dependency links are equal: the general
mode and the exact match mode. In the general mode, two dependency links are
equal when they have the same word-token and position value (in the other words,
they point to the same head). However, for two equal dependency links in the exact
match mode, their relation types should match, as well as their word-tokens and

positions.

The error rate

Since a dependency tree can be considered as a sequence of discrete elements, Lin
has proposed the use of the Hamming Distance to describe how close the answer

and the key are to each other [12]. The following is the definition of Hamming

- ———re €

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 30

Distance:

For any two corresponding word-slots in the answer and the key, the Hamming dis-
tance between the word-slots ts the minimal number of steps of operations needed to

make one slot equivalent to another one.

Three operations are defined for computing the Hamming Distance:

e addition: add any dependency link to a word-slot
e deletion: delete any dependency link from a word-slot

e substitution: replace a dependency link in a word-slot with another one

The value of the Hamming Distance between two slots can be 1 or 0. In addition,
for a specific slot in an answer, an error count is defined as the Hamming Distance
between the slot and the corresponding word-slot in the key. Any missing, spurious,
and incorrect word-slots will be counted as 1, and any correct and noncommittal
word-slots will be counted as 0. The error count of an answer is the sum of the

Hamming Distance between each word-slot in the answer and its corresponding slot

in the key.

Thus the error rate is calculated as follows:

the error count of answers
the total number of words in answers

error rate =

Recall and precision

Besides the Hamming Distance-based measure used in [12], recall and precision

are also added to the metrics. The concept of the recall and precision metrics

|
%

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 31

was adapted from the DARPA parser evaluation method. The use of recall and

precision has two advantages:

e They measure two different aspects of a performance: completeness (recall)

and accuracy (precision).

e They present a positive view of system performance, which encourages parser

researchers to submit their systems for evaluation.

The formulas to compute recall and precision are as follows:

the total number of correct slots
the total number of correct, spurious and incorrect slots

prectsion =

the total number of correct slots
the total number of correct, missing and incorrect slots

recall =

To compare the answer and its key in Figure 3.3, the scores of the answer are:

error rate = 5/9 = 0.56
recall = 4/9 = 0.44
precision = 4/6 = 0.67

One controversial point in the error rate metric is how to handle incorrect errors.
Error rate treats an incorrect error the same as the spurious and missing ones. It
is argued that recall and precision view “incorrect” as a blend of “missing” and
“spurious” [3]; a parser did not simply produce the wrong dependency link, but
also produced a spurious link on the one hand and a missing link on the other
hand; therefore, the error rate metrics should view the system in the same way as
recall and precision did. To be consistent with recall and precision, an alternative
is that only two operations are used to compute the Hamming Distance: addition
and deletion. Thus, the error count for an incorrect slot is 2, since one substitution

must be replaced by one deletion and one addition.

A banidl

T W ERMNAY SR -ce AR ALl ANT ML

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 32

key:

(The

(‘the’

(computer (‘computer’

(will
(send
(the
(files
(to
(a

(printer

answer:

(The
(computer
(will
(send
(the
(files
(to

(a

(printer

(‘will’
(*send’
(‘the’
(“tile’
(‘to’
(‘a’

(‘printer’

(‘the’
(‘computer’
(‘will’
(‘send’
(‘the’
(‘file’
(‘to’

(ca’

(‘printer’

AT
). 54

VI

AT

AT
NNI

AT

AT
N1

AT
§NI

(computer
(send
(send
(*))
(tiles
(send
(send
(printer

(to

(computer
(will
(%))
(7))
(files
(7))
(7))
(printer

(to

). b1

wI

Vvl

§Nl

NN1

NN1

NNI

NNt

A

spec)))
subj)))
pred)))

spec)))
cmpl)))
cmpl)))
spec)))
cmpl)))

spec)))
subj)))

spec)))

spec)))
cmpl)))

incorrect
incorrect

missing

missing

missing

Figure 3.3: The answer and key for the sentence: “The computer will send the files

to a printer”.

T T T TR R AR S T T T

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 33
3.2.3 Selective Evaluation

Evaluation users may be interested in some of the specific syntactic structures. The
dependency-based evaluation method can selectively evaluate the performance of
parsers in regard to those structures. The idea of selective evaluation is to compute

metrics in terms of conditions. Only the word-slots which match the condition are

compared.

A condition can be a logical expression. Besides ‘and’, ‘or’ and ‘not’, an expression
can have other operators such as ‘type’. A word-slot is tested to be true by ‘type X',
if its dependency link has the relation type X. For example, if a word-slot matches
‘(or (type complement) (type adjunct))’, its dependency link is of the type
‘complement’ or ‘adjunct’. The evaluation algorithm is given as follows:

evaluate(answer, key, condition)
{
for each word in the sentence{
Let K be its word-slot in key and A be its word-slot
in answer
if K or A satisfies the condition{
if A is correct slot
#_of_correct = #_of_correct + 1
if A is incorrect slot
#_of_incorrect = #_of_incorrect + 1
if A is missing slot
#_of _missing = #_of _missing + 1
if A is spurious slot

#_of_spurious = #_of_spurious + 1

}

error_count = #_of_incorrect + #_of_missing + #_of_spurious

P r—

3
2
)
:
,

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 34

precision = #_of_correct/(#_of_correct + #_of_spurious + #_of_incorrect)
recall = #_of_correct /(#_of_correct + #_of_missing

+ #_of_incorrect)

Therefore, if we want know how a parse handles the subject relation, we can assign

‘(type subj)’to the logical expression of evaluate.

3.2.4 Transforming Constituency Trees into Dependency

Trees

Since most broad-coverage parsers use the constituency syntax, it is necessary to
find a way to transform constituency trees into dependency trees, in order to apply

this method to a constituency-based parser.

The dependency tree and the constituency tree can be transformed into each other
by a mechanical procedure, which involves some reorganization [8]. Converting
a dependency tree to a constituency tree is straightforward. For each word in
a dependency tree, a phrase consists of the word plus all the words that modify
it. However, an additional mechanism is required to represent this information to
identify the head of a phrase. The rest of the section will explain the conversion

from constituency trees into dependency trees.

Tree Head Table

The Tree Head Table is proposed by Magerman [17] to assign lexical heads to the
constituents for a P-CFG parses. A Tree Head Table for a specific grammar is a

set of deterministic rules which have the following syntax:

t
i
:

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 35
(parent~label direction a-list-of-category-tags-and-labels)

where a parent label is the label of the constituent whose lexical head is being
assigned; direction indicates whether or not the children of this constituent are
processed left-to-right or right-to-left; the remainder of each rule cousists of an or-
dered list of part-of-speech tags and constituent labels, which might occur as the
children of the constituent. The priorities of tags or labels in the list decrease from
left to right. In addition, any tag or label appearing in the list has a higher priority
value than those which are not in the list. The lexical head of a constituent is
identified as the lexical head of the child whose label (or tag, if the child is not a
constituent) has the highest priority. In the case of two children having the same
priority level, if the parent label is marked as left-to-right, then the leftmost one

is selected; otherwise, the rightmost one is selected.

rule 1 : S right~to-left S V Ti Tn Tg N J Fa REX22 .
rule 2 : N right-to-left N NNJ NNU .., NN1
rule 3 : V left-to-right V ... WI VM ...

Figure 3.4: A subset of Magerman’s Head Table.

The example in Figure 3.5 illustrates this process. Based on a subset of the rules
in Magerman’s Tree Head Table in Figure 3.4, the assignment algorithm works
bottom-up. For [y The computer], the noun ‘computer’ has a higher priority than
‘the’ since NN1 is in the right hand list of rule2, but AT is not. For the same
reason, [y the files] has the lexical head ‘file’, and [y a printer] has the lexical head
‘printer’. Now, consider [y will send the files to a printer]. In rule 3, VVI appears

on the left side of VM; therefore ‘send’ is selected as the lexical head. Finally, since

v

Ry

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 36

the priority of N is lower than that of P in rule I, ‘send’ becomes the head of the

sentence.
S
/[WIM\
N v
[NNI computer] [Visead]

(AT The] ~ INNIcompuer] VM wil] [VVI send] [ATte] [NNIfie] (ilw] [ATa] NN printer]

Figure 3.5: An example for the Head Assignment algorithm

After the assigning of a lexical head to each constituent in a parse tree, dependency
relations can be derived as follows: the lexical head of a constituent governs the

lexical head of its child constituent or its child word, if the child is not a constituent.

Relation Table

To add the type of dependency relations during derivation, a Relation Table is used.

Figure 3.6 shows an example of a relation table.

Like the Tree Head Table, a Relation Table includes a set of rules. The left hand

LU} & VR

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 37

side of rules is the tag of the lexical head of a constituent, and the right hand
side is a set of triples in which the first element is the label of the constituent, the
second is the tag of the modifier of the lexical head, and the last one is the type of
relationship that could be assigned to the modifier-head pair.

NN1 --—— (N AT spec)
V —— (S NE1 subj)(VP NN1 cmpl)(VP P cmpl)
II -~ (P N cmpl)

Figure 3.6: A example of a Relation Table

The first rule in Figure 3.6 means that if the tag of a lexical head is NN1, the
constituent to which the lexical head is assigned is N, and a modifier of the head is
AT, then the type of dependency relation between the lexical head and its modifier
is “spec”. Based on the above relationship table and the constituent tree in Figure

3.4, the dependency relations can been presented in Table 3.3.

Conversion from PRINCIPAR Parse Trees to Dependency Trees

Most of modern linguistic formalisms, such as the Government-Binding Theory,
have the notion of the head of a constituent. For parses that are created with such

theories, no extra effort is needed to identify the head of constituents.

For example, in the parse trees produced by PRINCIPAR 9], a constituent is
represented in the XP structure which is given in Figure 3.7. X is a variable and

could be N, I, P, etc. In an XP, the X represent the head of a constituent. The

T I a—Tre

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 38

MODIFIER BEAD RELATION TYPE
The computer spec
computer send subj
vill send pred
the files spec
files send cmpl
to send adjn
a printer spec
printer to cmpl

Table 3.3: The dependency relations of the sentence: “The computer will send the

files to a printer”.

complements, adjuncts and specifiers are the modifiers of the head.

XpP

Specifier /‘“\

Xbar Adjuncts

X Complements

Figure 3.7: The structure of XP

For the same sentence: “The computer will send the files to a printer”, Figure 3.8

shows its parse tree and the derived dependency tree.

Dkl i Ll

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD

/w\
Drr Nbar I VP [send]
PP [to]
computer
Pbar
v [fles}]
send DET Nbar P DET N’bar
the N 1o a N
files printer
MODIFIER HEAD RELATION TYPE
The computer spec
computer will subj
send wvill pred
the files spec
tiles send cmpl
to send adjn
a printer spec
printer to capl

39

Figure 3.8: The X-bar tree and derived dependency relations of the sentence “The

computer will send the file to a printer”.

S T T NIRRTV R MY T

TR THITS LNy T L A L RN R

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD 40
3.2.5 Advantages of the Dependency-Based Evaluation

Some advantages of dependency-based parser evaluation are as follows:
1. According to [12], the metrics are intuitively meaningful, since the semantic
dependency is embedded in the syntactic dependency. Therefore, the metrics are

more relevant to how useful a parse is than the metrics in the DARPA evaluation.

2. In the DARPA evaluation method, a system may be ranked low precision, if it
has a finer granularity than the treebank. However, the dependency-based evalua-
tion is less sensitive to the granularity of a parse tree. For the example of Figure 2.4,
two analyses [the legal rights] and [the [legal rights]] result in the same dependency
structure (see Figure 3.9). Thus such differences are ignored by the dependency-

based evaluation.

[he legal rights] (the [legal rights]]

Figure 3.9: The dependency structures of [the legal rights] and [the [legal rights]]

3. Error rate itself is an error based metric, and it helps parser researchers focus on
errors which a parser has made. Furthermore, a selective evaluation of a particular
type of phenomena is easy to apply to a dependency tree, and it will provide much

useful information to analyze the performance of a parser.

4. In the XTAG parser, which is described in the last chapter, a derivation tree
is equivalent to a dependency tree, except that it is unlabeled. This method pro-

vides a direct measure to evaluate the derivation structure, instead of its secondary

TR L YTRIR Y Y

AR LR LR 1Y a .y §

CHAPTER 3. THE DEPENDENCY BASED EVALUATION METHOD

phrase structure.

41

3
H
b
.
i

Chapter 4

A Modification Tool for
Dependency Trees

The function of the modification tool is to manipulate dependency trees by princi-
ples which are defined by evaluators. This chapter explores why dependency trees
in parser evaluation need to be modified, and explains how the modification tool

works.

4.1 The Objective

One of the biggest problems encountered by parser evaluators is the difficulty of
defining standard parse trees for measuring the outputs of the different parsers. In
Table 3.3 and Figure 3.8 for the sentence: “The computer will send the files to a
printer”, two dependency trees treat the dependency relation between the auxiliary
‘will” and main verb ‘send’ differently. In Magerman’s Tree Head Table, [vv send]

is considered to have a higher priority than [vas will]; therefore, ‘will’ is the modifier

42

j
ﬁ

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 43

of ‘send’. But the PRINCIPAR selects ‘will’ as the lexical head and ‘send’ depends

on ‘will’. Both analyses are valid within their own theories.

English grammars appear to disagree strongly with each other as to the elements
of even the simplest sentences. For example, while it is generally accepted that the
main verb of a sentence governs its subject, some grammarians also argue that the
verb may depend on its subject, since the subject controls the form of the verb [18].
Other differences include the treatment of the conjunction, ‘not’, pre-infinitival ‘to’,

and so on.

An ideal evaluation method should allow discrepancies among grammatical theories,

and only measure parsers according to each theory, not prefer one and discriminate

against others.

In the DARPA evaluation method, the elements involving some controversial struc-
tures are erased. However, this affects the accuracy of evaluation, and not all such
phenomena can be eliminated. In contrast, the dependency-based evaluation pro-
vides a modification tool which is able to transform one dependency structure into
another, by following pre-defined rules. Before the evaluation of dependency trees,

each dependency tree is revised so as to remove the allowable differences among the

parses.

?
i
i
t

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 44

4.2 Rule

The modification tool provides rules to transform dependency trees. The concept
of the rules is derived from the modifying operations in [12]. While the modifying
operation is used to modify a dependency link, the rule is extended to modify a

multi-layer sub-dependency tree.

Each rule constitutes a “pattern” part and an “action-list” part. The syntax of

tule is:

(IF patterm)
(THEN action-list)

The function of a rule is to search a dependency tree to find any subtree to match

the pattern and modify it, by the actions in the action-list.

4.2.1 Pattern

The pattern is implemented as a tree. The node of a pattern tree contains a logic
expression which is called a node-expression. The node-expression is used to eval-
uate the word-slots in a dependency tree. The arc of a pattern tree is labeled by
another logic expression which is called link-expression. The function of the link-

expression is to evaluate the dependency links in a dependency tree.

Besides the relational operators ‘and’, ‘or’ and ‘not’, the expressions can have four

other operators ‘cat’ , ‘string’, ‘type’, and ‘pos’. The first two operators are used

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 45

in a node-expression and, ‘type’ and ‘pos’ are for link-expressions. These operators
are defined as follows:

if X is a regular expression, then
o (cat X) is true if the evaluated word-slot has a category to match X
o (string X) is true if the word-slot has a root form to match X
o (type X) is true if the dependency link has a relation type to match X

@ (pos Y) : Y can be ‘pre’ or ‘post’
(pos pre) is true if the head is before the modifier in the dependency link
(pos post) is true if the head is after the modifier in the dependency link

A subtree matches a pattern, if and only if:

e the subtree has the same configuration as the pattern tree

@® each word-slot W in the subtree is evaluated to be true by the node-expression
of the corresponding node N in the pattern. [f W is not the root of the
pattern, then the dependency link in W is evaluated to be true by the corre-

sponding link-expression in the pattern.

In the modification tool, a pattern can be easily represented by a LISP-like list,

such as:

(Toot
(first_child
(first_grandchild second_grandchild...)

second_chilad

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 46

where each node in the list contains its node-expression, as well as the link-expression
of the arc between the node and the parent of the node. The following is the gram-

mar of pattern:

Terminal-symbols={NODE-EXP, LINK-EXP, regular-expression, and, or,
not, cat, string, type, pre, post, t,), (}
Nonterminal-symbols={Pattern, Root, Forest, Subtree, Node, Node-expression,

Link~expression}

Pattern -> (Root (Forest))
Forest -> Subtree Forest | Subtree
’ Subtree -> Node (Forest) | Node
Root ~> (NODE-EXP Node-expression)
Node ~> ((NODE-EXP Node-expression)(LINK-EXP Link-expression))

Node-expression ~> (not (Kode-expression))

2 | (and (Node-expression){(Node~-expression))
[(or (Bode-expression)(Node-expression))
| (cat regular-expression)
| (string regular-expression)
| t

Link-expression ~> (not (Link-expression))

[(and (Link-expression)(Link-expression))
[(or (Link-expression)(Link-expression))
| (type regular-expression)

| (pos pre) | (pos post)

Figure 4.1 shows a sample of a pattern and its match.

4.2.2 Action

An action is 2 modification to dependency relations such as ‘isolate’, ‘delete’, ‘con-

vert’, and ‘transfer’. The arguments for an action specify the relative position of

Damatad o g, Dalan 4

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES

b
’ * ol
m ,l /_\

WTTel MNowomi DM will OViea] -TATRl WM R (o] | (ATa (NI prner

..........

et V¥) [VVIsend]
lmxmgy//n\\<\ “Wb//\\\m#
(ca NN*) (string in) [NNIfiles] [llo]
the patier tree the matched subtree

pattern: ((NODE-EXP (cat V#))

(((NODE-EXP (cat NN+))(LINK-EXP (type cmpl}))

((NODE-EXP (string in)) (LINK-EXP t))
)

Figure 4.1: A pattern and its match

47

i
!
f

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 48

nodes in a subtree. Its syntax is a sequence of numbers separated by a dot. For
example, 0 represents the root of a subtree; 0.2 represents the second child of the
root and so on. The following actions have been defined:

(delete X Y): removes the dependency link between X and Y, where X is the head
of Y

(singleTransfer X Y Z): when Z is the modifier of Y and Y is the modifier of X,
the action transfer Z to X. Thus Z becomes the modifier of X. The action includes

the following steps:
e remove the dependency link between Y and Z
e add the dependency link between X and Z

(transfer X Y): is like singleTransfer, but it transfers all modifiers of Y to X
(invert X Y): when a dependency relation (X, Y) is inverted, the modifier Y
becomes the head of the head X. In meanwhile, the head of X becomes the head of
Y

o reverse the dependency link between X and Y, where X is the head and Z is

the modifier
e remove the dependency link between the head of X and X

¢ if X is not the head of the sentence, add the dependency link between the
head of X and Y

e if X is the head of the sentence, Y becomes the head of the sentence after the

direction is reversed.

(isolate X): The action removes a node which is not the head of sentence from

dependency tree. The following steps take place while executing “isolate”:

k Son 7200 LA A

T T SRR

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 49

e (transfer the head of X X)

o (delete the head of X X)

The remainder of this section uses a few examples to illustrate how the modifica-
tion rule works. It is mentioned earlier that there may be two different analyses for
the dependency relation between the auxiliary and the main verb. Those different
analyses can be transformed into each other by using the rules specified in Figure

4.2.

Let us consider the coordinate structure which is another controversial structure
in dependency theories. Figure 4.3 illustrates two possible dependency trees of the
sentence: “He stood up and gave me the letter”. We are able to transform one

dependency tree to another, as shown in Figure 4.3.

Figure 4.4 shows another example. In the adverb clause ‘If you invite me’, some
grammars treat the verb ‘invite’ as the head of the clause; however, other grammars
may consider that ‘if’ should be the head of ‘invite’. The rules in Figure 4.4 can

eliminate the discrepancy among those grammars.

The action “isolate” provides a similar function to the erasure in the DARPA
evaluation method. For example, in Figure 4.5 , pre-infinival ‘to’ can be either the
modifier of ‘want’, or the modifier of ‘do’. Using the rule:

rule A
(
(IF ((NODE-EXP t)
(((RODE-EXP (cat TQ))(LINK-EXP t))

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 50

(Tree A) cmpl
cnpl copl
pec - /\ /—\
AT Tl [Nicooper] VM wil] Wisd] | (ATte] [NNI@es) (Owf [ATaf (NN prioer]
““. "
ke l """"" A
‘ 77 N\ATN kA

-

-
~ -

..........

: (Tree B) .
; R /'_\
{ e TN Y
{ (ATThe| NNIcompmer! (VM will IVVI snd] | [ATte] [NND files] (of [ATa] [NNT qrineer)
T
: rule A rule B
((
(IF ((NODE-EXP (cat Vs) (IF ((WODE-EXP (cat VVI))
¢ (((NODE-EXP (cat VVI))(LINK-EXP (type pred))) (C(NODE-EXP (cat VM) (LINK-EXP t)))
))
))
i))
3 (THEF (invert O 0.1) (transfer 0.1 0) (THEF (invert 0 0.1)
E))
;))
3
E rule C
: C
E (IF ((NODE-EXP (cat VM))
g (((NODE-EXP (cat VVI))(LINK-EIP t))

(((NODE-EXP t) (LIBK-EXP (type subj)))
)

)
(THER (singleTransfer 0 0.1 0.1.1)
)

Figure 1.2: Using rules to transform (a) to (b) and vice verse. The structures

circled by dotted line are the matches of the patterns of the corresponding rules.

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 51

(Tree A) nA (TeeB) . i
NN\
[Vstood] - [Conjand] [V gave] Vsood] [Cogjand] [V gave]
e B
rule A rule B
((¢
(IF ((NODE-EXP (cat Comj)) (IF ((BODE-EXP (cat V))
(((BODE-EXP (cat V))(LIBK-EXP (pos pre))) (((NODE-EXP (cat Conj))(LINK-EXP (type conj)))
)))
)))
))
(THEN (invert 0 0.1) (THEN (invert O O.1)

})

Figure 4.3: Transform different analyses of coordinate structures. Tree A and Tree
B are two ellided dependency tree for the sentence: “He stood up and gave me

letter”.

S T TR T

ravsaRaS.yyrmeem e TR e AT IR T e o T o, T

Hit ok Bl — O

iy

Figure 4.4: One example of the dependency tree modification

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 52
e adjn
o e T //—_A
/ RSN ™
{ [Comp If] ~[N you] >, [V invite] * N mei[L] IN O [T wil (N come]
\‘___—" ‘\\ ’
rule A rule B
<. (Comp If] .- "(N youl “\[V ivie] ' N mel [J (NN @ will [N comel
rule A rule B
((
(IF ((NODE-EXP (cat V)) (IF ((NQDE-EXP (cat Comp))
(((NODE-EXP (cat Comp)) (LINK-EXP (type head))) (((NODE-EXP (cat V))(LINK-EXP (type head)))
))
))
))
(THER (invert 0 0.1) (THEN (invert 0 0.1)
))
))

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES 53

)
(THEN (isolate 0.1)
)

the two structures are transformed to an identical form,

A set of rules, called a modification module, can be defined for a particular gram-
mar. For an input parse, each rule is fired in a sequence. Since a rule may produce
new subtrees which match the pattern of the rule or other rules, the process of

modifying is repeated until each rule in the module can not find a matched subtree.

/A nile A
[V want] [TOto] [V do] \ /\

[V want] [TOto] [Vdo]
AN —

[V want] [TOto] [V do]

Figure 4.5: Normalization of pre-infinival ‘to’

The modification tool can also be applied to other natural language processing
systems. If the systems require a conversion from relating dependency syntactic
structures to semantic structures, it is possible to make use of the rules to formulate
the general conversion. For example, in Figure 3.2, the filler of the ‘instrument’
slot of the verb is not related to the verb by a dependency link. The following rule
removes the preposition ‘with’, so that a direct relation can be built between the

verb and its filler:

N

CRR R)

Rl L

CHAPTER 4. A MODIFICATION TOOL FOR DEPENDENCY TREES

(IF ((NODE-EXP t)
(((NODE-EXP (cat P))(LINK-EXP (type adjn)))

)

)
(THEN (isolate 0.1)

)

54

[

Chapter 5

Implementation and

Experimental Results

The dependency base evaluation system is implemented by object-oriented method-
ologies. As is well known, object-oriented methodology focuses initially on the data
that a system manipulates to do its job. In the evaluation system, such data are

dependency trees, word slots, dependency links and so on.

Two basic concepts in object-oriented methodologies are object and class. An ob-
ject is a concrete entity that has attributes and behaviors. A class represents an
abstraction of objects that share a common structure and common behaviors. In an
Object-Oriented programming language, a class is a data structure whose physical
format is hidden behind a type definition. It embodies a set of formal properties

(or attributes) and is manipulated by a set of methods (or operations).

One of the features of object-oriented method is abstraction [19]. In contrast with

55

- R ETPLEEETT

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 56

procedural abstraction, the abstraction on which Object-Oriented technology is
based is data abstraction. This is the key to the method’s success in ensuring

extendibility and reusability.

5.1 Class DependencyTree and EvaluationMetrics

fdependency tree word-slot! wordsensel
dependency link

worictse?
dependency link2

__{VWUdﬁbtl wordsense 3

Figure 5.1: The architecture of the dependency tree

There are four main abstractions in the structure of dependency trees: dependency
tree, word-slot, wordsense, and dependency link (see Figure 5.1); therefore there are
four classes called DependencyTree, WordSlot, WordSense, and DependencyLink.

The simplified class templates are shown as follows:

class DependencyTree
attributes:

wordlist : a list of WordSlot objects

class WordSlot
attributes:
wordtoken : a string which contains the word-token of the word

wordsense : a pointer to a WordSense object

;

-]

[+ 1]

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

class WordSense

attributes:
root : a string which contains the root of the word
category : a string which contains the category of the word

dependencylink : a pointer to the DependencyLink object of the word

class DependencyLink
attributes:
relationtype : a string which contains the type of the dependency link
head : a pointer to a WordSense object which is the head of dependency
link

The object model of these classes, which uses Rumbaugh OMT notation [7], is
shown in Figure 5.2. WordSlot is a part of DependencyTree and WordSeunse is
a part of WordSlot. DependencyLink is an association between two WordSense

objects.

The evaluation metric concept is implemented by the class EvaluationMetrics. [ts
operation evaluate compares two objects of DependencyTree and yields evaluation

results.

5.2 Tree Modifying Algorithm

[t was mentioned in the previous chapter that the dependency tree modification is
based on rules which search all matches in dependency trees in terms of rule patterns
and modify those matches by actions. This section presents a Tree Modifying
Algorithm. We make use of two following definitions in the algorithm. Let X be a

node in a rule pattern:

el] 1 Sl I TERITTT T TRTRTRETe MY VALY N Y T

B e & JHLA ol ol

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

DependencyTree

I+

evaluate

WordSlot

WaordSense

depens on

DependencyLink

Figure 5.2: The Object Model which uses Rumbaugh OMT notation (see Appendix

B)

EvalvationMetrics

aperation:
evaluate

0

ErrorRate RecallPrecision
error count #of correct slots
of words #of incorrect slots

#of missing slots
#of spurious slots

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 39

¢ linkMatch: the linkMatch of X is a node N (or called word-slot) in a de-
pendency tree which matches the node-expression of X, the dependency link
of N matches the link-expression of the branch between X and the parent of
X, and the head of N matches the node-expression of the parent of X. Note
that the root of a pattern does not have linkMatch.

e subtreeMatch: the subtreeMatch of X is a subtree L of a parse tree which

meets the following conditions:
— if X is a leaf node, its linkMatch is its subtreeMatch.
— each child of X has one subtreeMatch which is a child of the root of L.
— if X is not the root of the pattern tree, the root of L is a linkMatch of

X

In other words, the subtree L matches the subpatterntree which includes X
and all pattern tree nodes under X. In addition, the root node of L should

be the linkMatch of X when X is not the root of pattern tree.

Let us use the dependency tree and the rule pattern in Figure 5.3 as an example.
The linkMatches and subtreeMatches of the pattern nodes are given as following,

trees are represented in LISP-like lists.

P4’s linkMatch : {D8, D2 }
subtreeMatch : { (D8), (D2) }

P3’s linkMatch : {D5 }
subtreeMatch : { (D5 (D8)) }

P2’s linkMatch : {D2, D4, D8 }

subtreeMatch : { (D2), (D4), (D8) }
P1’s subtreeMatch : { (D1 (D2 D5 (D8))), (D1 (D4 D5 (D8)))}

i,
i
;i

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 60

dependency tree Dl 41
[VVI send] ruke pagerm :
- = / \
D2 D3 s P2 B
[NN1 computer] VM will] [NNT files] (1o} {cat NN 1) fearl
t
- D7 D8
(AT The] [AT the] NN printer] P4
(cat NN1)
D9
[ATa)

Figure 5.3: The dependency tree of the sentence: “The computer will send the files

to a printer” and a rule pattern. D1, D2, ... are used to identify the nodes of trees.

To simplify the algorithm, we also make the following assumption: the rule writers
have to ensure that if the node in a dependency tree is the linkMatch of X, the
node can not be the linkMatch of the X's sibling nodes.

The main idea of the algorithm is that each pattern node makes use of two local
memories to store the information about all its linkMatches and subtreeMatches for
an input dependency tree. The two memories are called LinkMatchList and Sub-
treeMatchList, respectively. This information can be looked up to avoid computing

these matches more than once.

5.2.1 Build initial matches

For a dependency tree, a rule generates the initial LinkMatchList and Subtree Match-
List of its pattern nodes from bottom to up. After a node finds its all linkMatches,
the subtreeMatches of the node (except leaf nodes) can be computed in terms of the

node’s linkMatches and its children’s subtreeMatches as indicated in the following

a0 Rt Sl il alhe RAle L0

¢34

TY

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

algorithm.

Algorithm 1(node X computes its subtreeMatches)
compute_subtreeMatch
n is # of X’s children;

S: is SubtreeMatchList of the ith child of X's; such as {tu, ti, ..., £, }

where each element is the subtreeMatch of the child;
for each ¢ in Sy

if X is not the root or parent_t is a X's linkMatch

tl =t

T = {t.}

k=2

recursive search(k, T')

recursive_search(k,T)
if there is no ¢ in Si which is #{s brother
clear T and return stop_search
for each ¢ in S; which is t}s brother
add tp to T
fk=n
subtreeMatch=make_tree(T)
save subtreeMatch into X’s SubtreeMatchList
remove {; from 7 and return
if recursive search(k + 1, T)=stop_search
return stop_search
remove t; from T

return

make_tree(T)

E__,
3
L
3
.
>

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 62

concatenate each ¢ in T to build a larger subtree

5.2.2 Apply actions

Each action of a rule can be decomposed into a sequence of removing or adding
a dependency link. When each dependency link is added to or removed from the
dependency tree, a rule updates the local memories of its pattern nodes at the same

time, as shown in the following algorithm.

Algorithm 2 (add a dependency link)
postiterate each pattern node except the root
n = mod: fier_of _dependencylink
if n is a linkMatch
save n to LinkMatchList
list_of _subtrees = compute_subtreeMatch(n)
add list_of subtrees to SubtreeMatchList
if list_of _subtrees is not empty
send list_of subtrees to its parent
Algorithm 3 (parent node receive list_of _subtrees)
list of _subtrees'=computesubtreeMatch(list_of _subtrees)
add list_of _subtrees’ to SubtreeMatchList
if list of _subtrees’ is not empty and node is not the root
list_of _subtrees=list of subtrees’

send list_of _subtrees to parent_node

In the algorithms above, the functionalities of two compute_subtreeMatch are simi-

lar to that of algorithm 1. The compute_subtree Match in algorithm 2 considers n

|
E

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 63

as an only element in node’s LinkMatchList and returns all new generated sub-

treeMatches, whereas the second compute_subtreeMatch uses list_of _subtrees as

S; of the child node which sends {ist_of _subtrees.

Algorithm 4 (remove a dependency link)
postiterate each pattern node except the root
n = modi fier_of_dependencylink
if n is in LinkMatchList
remove n from LinkMatchList
for each subtree in SubtreeMatchList
if root.of .subtree =n
remove subtree from Subtree MatchList
h = head of .dependencylink
if & is not null
send h to parent_node
Algorithm 5 (parent node receives k)
for each subtree in SubtreeMatchList
if root_of -subtree = h
remove subtree from SubtreeMatchList
k' = parent.of _subtree
if A’ is not null and node is not the root
h=~h

send h to its parent

Let us use the example in Figure 5.4 to illustrate the algorithm.

linkMatches of the nodes of two rule patterns are:

P12 LinkMatchList:{ D3 }

Suppose the

AL

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

Rule |
tem
s P11
P12
P13 P14
action

singleTransfer(0 0.1 0.L1I)

The dependency tree before the modification

DI
D2
D3 M
0
DS D6 D7 D8

Rule2
pattem
P2l
0] 0
m 3
action
delete(0 0.1)
The dependency tree after the modification
DI
D2
D5Q p D4
D6 D7 D8

Figure 5.4: The example of the Tree Modifying Algorithm

64

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 65

P13 LinkMatchList:{ D5 }
P14 LinkMatchList:{ D6 }

P22 LinkMatchList:{ }
P23 LinkMatchList:{ D4 }

The pattern nodes of two rules are postiterated to initialize their Subtree Match List.
After the initialization, the SubtreeMatchList of the pattern nodes becomes:

P13 SubtreeMatchList:{ (D5) }

P14 SubtreeMatchList:{ (D6) }

P12 SubtreeMatchList:{ (D3 (DS D€)) }

P11 SubtreeMatchList:{ (D2 (D3 (D5 D6)})} }

P21 SubtreeMatchList:{ }

P22 SubtreeMatchList:{ }
P23 SubtreeMatchList:{ (D4) }

[f Rule 1 is applied first, it picks up the first element in its pattern root’s Subtree Match List
(D2 (D3 (D5 D6))) and modifies this subtree by two steps: remove D5 — D3 and
add D5 — D2. While D5 — D3 is being removed from the dependency tree, each
non-root node in Rule 1 and Rule 2 checks if D5 is in its LinkMatchList, and if
so, the node recomputes LinkMatchList and SubtreeMatchList. In this example,
as D35 is the node P13’s linkMatch, P13 removes D5 from its LinkMatchList and
(D5) from its SubtreeMatchList. In the meantime, P13 notifies its parent P12 by

sending it a message which contains D3. P12 removes its subtreeMatch according
] to the receiving message. Then P12 continues to send D2 to P11 and P11 removes

' the element in P11’s SubtreeMatchList.

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 66

While D5 — D3 is being added to the dependency tree, each non-root node of
Rule 1 and Rule 2 checks if D5 is its new linkMatch. Suppose D5 is the P22’s

linkMatch. P22’s two memories become:

P22 LinkMatchList :{Dp5}
P22 SubtreeMatchList:{ (DS) }

P22 also sends its new subtreeMatch (D5) to P21 and P2l generates new sub-
treeMatch (D2 (D5 D4)). Rule 2 picks up this subtree and removes D5 — D2
by following the same process. Then the SubtreeMatchList of two rule’s pattern
roots are empty and the modification process stops. Finally, the memories of the

pattern nodes are:

P13 LinkMatchList :{}

P13 SubtreeMatchList:{ }

P14 LinkMatchList :{ D6 }
P14 SubtreeMatchList:{ (D6) }
P12 LinkMatchList :{ D3}
P12 SubtreeMatchList:{ }

P11 SubtreeMatchList:{ }

P22 SubtreeMatchList:{ }
P22 SubtreeMatchList:{ }
P23 LinkMatchList :{ (D4) }
P23 SubtreeMatchList:{ (D4) }
P21 SubtreeMatchList:{ }

5.3 Class ModificationModule

In the system, the modification module, rule, pattern and pattern nodes are im-

plemented as classes. The object model of these classes is in Figure 5.5. The class

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS

ModificationModule

0

Figure 5.5: The Object Model which uses Rumgaugh OMT notation

RootNode and NonRootNode are derived from the base class PatternNode. The
class NonRootNode has two attributes: LinkMatchList and SubtreeMatchList. The
LinkMatchList is a list of the references of linkMatches and SubtreeMatchList

Rule
pattern
action-list
operation:
addDependencyLink
removeDependencyLink
PatternNode
SubtreeMatchList
Root Node NonRcotNode
LinkMatchList

rule-list

opration:

modify

67

includes a list of the references of subtreeMatches. The reference is used to refer

to the corresponding linkMatch or subtreeMatch. In the class RootNode, the at-
tribute SubtreeMatchList is a list of the references of the subparsetrees which
match the whole pattern. The algorithms in the last section are implemented in
the operation buildInitialMatches, addDependencyLink and removeDepen-
dencyLink of the class Rule. The Tree Modifying Algorithm is implemented in

the class ModificationModule operation modify:

modify(DependencyTree tree)

{

for each rule in rule-list

rule.buildInitialMatches(tree)

for each rule in which the pattern root has non-~empty SubtreeMatchList {

P = i e, § e S

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 68

while(rule.pickSubparsetree) {
action-sequence=translateAction;
/* translate to a sequence of removing or adding a dependency link */
for each add or remove in action_sequence{
tree.addDependencyLink or tree.removeDependencyLink
for each rule in rule-list
rule.addDependecyLink or rule.removeDependecylLink

The evaluation system is coded in C++ on a Unix platform. To simplify the
implementation of the Tree Modifying Algorithm, we make one assumption: if
several sibling nodes of a dependency tree are the linkMatches of the same pattern
node, only one of those sibling nodes is considered as the linkMatch, and others are
ignored. the assumption largely reduces the complexity of the implementation and

the system is still able to fulfill all modification requirements we have encountered.

5.4 Experimental Results

An experiment of the evaluation system is performed to evaluate the PRINCIPAR
[14]. The treebank used for the experiment is from the SUSANNE Corpus Rel 3.0.

The SUSANNE Corpus was developed by University of Sussex. Release 3.0 was
completed in 1994. The SUSANNE Corpus comprises an approximately 130,000-
word subset of the Brown Corpus of American English, annotated in accordance

with the SUSANNE scheme.

OO O TN :

T TR ARA Y I el A P RN Wt BT TVEEEETT T T T TR WA TR -

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 69
The SUSANNE corpus has 64 files which are classified into 4 types:

@® A: press reportage
@ G: belles letters, biography, memoirs
® J: learned (mainly scientific and technical) writing

@ N: adventure and Western fiction

In the experiment, we pick up two files from each type and each file has about 2000
words. Both SUSANNE parses and PRINCIPAR parses are transformed into de-

pendency trees before evaluation. The result of the experiment is given in Table 5.1.

file | # of words | error rate | recall | precision
A0l | 2195 19.91 77.21 | 82.94
A02 | 2203 20.74 76.96 | 81.50
GO1 | 2221 25.62 71.12 | 82.17
G02 | 2266 23.35 73.59 | 81.99
JOo1 | 2200 23.27 75.29 | 79.04
Jo2 | 2089 23.98 75.09 | 78.40
NO1 | 2287 23.61 70.98 | 81.44
NO2 | 2206 23.75 71.57 | 82.11

Table 5.1: The experimental results

The evaluation is performed in the general mode. The relation types of dependency
links and the categories of words are ignored and two dependency links are consid-

ered to be equivalent as long as they have the same word as head.

TR TR T Y T T T T LT YT

Blabd

JTACTRRS VPR -

PO TOXTTR N

Rt B

CHAPTER 5. IMPLEMENTATION AND EXPERIMENTAL RESULTS 70

The eight files are from four different domains. According to the experiment, the
scores of the eight files are very close. PRINCIPAR performs quite consistently

across four different domains.

SR — e A e

Chapter 6

Evaluation for Ambiguous

Sentences

In Chapter 3, the evaluation method works only if its natural language sentence has
only one corresponding parse tree. However, some sentences may be structurally
ambiguous. Therefore, there can be more than one parse tree associated with such
a sentence. Consider the ambiguous sentence: “Flying planes could be dangerous™;

Figure 6.1 shows its two possible parses.

In this chapter, several issues in the evaluation of ambiguous sentences are discussed.

6.1 Representation of Multiple Parse Trees

Because the answer and the key of a sentence may consist of more than one parse
tree, the previous dependency tree representation has to be extended to accom-

modate multiple parse trees. The modified representation hierarchy is shown as

71

|
|
E

CHAPTER 6. EVALUATION FOR AMBIGUOUS SENTENCES

(parse A) subj
gl 7 N
[V fly] [N planej [Aux can] [Be be] [A dangerous]
(parse B)
adjn
[A flying] [N plane] {Aux can] [Be [A dangerous]

Figure 6.1: Two possible parses for “flying planes could be dangerous™

follows:

e dep-tree: (word-slot, word-slot,..., word-slot)

e word-slot: (word-token, wordsense, wordsense, ...)

e wordsense: (root, category, dependency-link, dependency-link, ...)
e root: the root form of the word

e category: the part of the speech tag of the word

o dependency-link: (head category position [relation type])

e dependency-link: * | ?

e position: < or > or << or > or ..

e relation-type: specifier or complement or adjunct or subject or ..

sttt LR LAL

- TN M N

CHAPTER 6. EVALUATION FOR AMBIGUOUS SENTENCES 3

In the above hierarchy, a word-slot includes a set of wordsenses, and a wordsense
has a set of dependency links; whereas in the earlier representation, a word-slot
has only one wordsense, and a wordsense has only one dependency link. Therefore,
all possible parse trees of a sentence can be packed into a single representation.
This representation can be called a parse forest which is equivalent to the share
parse forest used by PRINCIPAR [14]. The following is the parse forest sample for:
“flying planes could be dangerous™:

(

(flying (fly V (< can Aux subj))

(flying A (< planes N adjn)))
(planes (plane ¥ (< flying V cmpl)

(< could Aux subj)))

(could (can Aux *))
(bve (be Be (> could Aux)))
(dangerous (dangerous A (> be Be pred)))

)

6.2 Evaluation Metrics

After the answer and key are represented by parse forests, it is straightforward to

extend the recall-precision metrics accordingly.

Based on the general criterion of recall-precision , the formulas of precision and

recall for multiple parses are presented as follows:

precisian - Zall word slots size(intersection(K, A))
2 au a(size(A))

Y all word stots Stze(intersection(K, A))
e k(5ize(K))

recall =

CHAPTER 6. EVALUATION FOR AMBIGUOUS SENTENCES

SEARY TR NS RN A TSR T T T T

word K A intersection(A, K)
flying (< plane N adjn) (< plane N adjn) (< plane N adjn)
(< can Aux subj)
planes (< flying V cmpl) (< could Aux subj) | (< could Aux subj)
(< could Aux subj) | (< be Be subj)
could * * *
(< be Be)
be (> could Aux) (> could Aux) (> could Aux)
*
dangerous | (> be Be pred) (> be Be pred) (> be Be pred)
SUM 7 8 5

Recall = 5/7 = 71.4% Precision = 5/8 = 62.5%

Table 6.1: Hamming Distance, Recall and Precision

For example, using the parse forest in the last section as the key and the following
one as the answer, the evaluation metrics can be computed as shown in Table 6.1.

(
(flying (flying A (< planes N adjn)))
(planes (plane ¥ (< could Aux subj)
(< be Be subj)))
(could (can Aux *
(< be Be)))
(be (be Be (> could Aux)
*))
(dangerous (dangerous A (> be Be pred)))
)

-]
(1]

CHAPTER 6. EVALUATION FOR AMBIGUOUS SENTENCES

6.3 The Problem of Modifying Parse Forests

In contrast to the evaluation metrics, the modification tool in a parse forest is diffi-
cult to implement. A rule modifies a portion of one dependency tree, if it matches
the given condition. In a parse forest, there is no way to determine if a set of de-
pendency links belong to one single parse tree. Therefore, a rule may change some

dependency links which it does not intend to change.

For example, the sentence: “I saw a man with a dog and a cat” has two possible
readings. One indicates that a person saw a man and a cat: another shows that a
person saw a man and the man has a cat and a dog. Parse A and parse B in Figure
6.2 are associated with two readings respectively. The modification rule is used to
build direct links between a verb and its complements, when a conjuncture node
intervenes. While parse A is not affected by the rule, B is transformed to B’ by the
rule and parse forest D is derived by packing A and B’. On the other hand, C is
the parse forest which packs A and B and the rule transforms C to C’. As reader

may notice, C’ is not equal to D. In the other words,

mod: fy(pack(A, B)) # pack(modify(A), modi fy(B))

While D is the expected result, parse forest C’ does not represent the meaning of

the original two parse trees.

The modifying parse forest needs to be further studied. One possible solution is
to use the tree structure to represent the parses of an ambiguous sentence for the

modification and then pack them into a forest just before the evaluation.

I a4 At et & abaii

N e

ST T T RORAMR U ARE D Tl Ty

e BTt v -

CHAPTER 6. EVALUATION FOR AMBIGUOUS SENTENCES

(parse A)
[V see| (Det a] [N man] [P with] al (N dosl [Conj and] ([Det af ([N caff
(parse B)
cmpl
SN L e T T e

IN 0 [V se¢] [Det a] [N man] [P withh [Det a] (N dogl (Conj and] ([Det al (N catl

-

N n [V see] [Det a] [N man] (P withh [Det a] [N dog] (Conj andl [Det al [N cul

(parse forest C” = modify(C))

TN N ——————

IN 10 [V scel] [Det a] [N man] [P withl [Det a] [N dogl (Conj andl [Det a] [N catf
(parse B'= modify(B))

IN 1l [V sce] [Det a] [N man] (P with) [Det al [N dog] [Conj and] ([Det a] [N catf

(parse forest D = pack(A. B7)

N 1 [V sec|] (Det a] [N man] [P with) [Det a] [N dog] ({Comj and] ([Det af ([N catf
Rule:

(IF ((NDDE-EXP (cat V))
(C(NODE-EXP (cat Conj))(LINK-EXP t))
)

)
(THEN (transfer 0 0.1) (delete O 0.1)
)

Figure 6.2: An example for modifying a parse forest. The subtrees match the

condition are represented by dotted lines

Chapter 7

Conclusion

This chapter summarizes the thesis and suggests some future works.

7.1 Summary

This thesis studies the area of the dependency-based parser evaluation. Like other
evaluation methods, the dependency-based evaluation uses treebanks as a standard.
However, this method adopts dependency trees as formal syntactic representations
of treebank parses and parser generated parses. The evaluation metrics are de-
rived by comparing the dependency relations in treebank parses to parser generated
parses. Besides the primary metric error rate, the other two metrics, recall and pre-
cision, are also introduced into the method, since recall and precision represent two
important characteristics (completeness and accuracy) of the performance. These

metrics can be extended to handle ambiguous sentences.

The modification tool presented in the thesis can transform dependency trees to

7

2 ARETAEPRE BT, T T

» SPE OO

VR W I R

2T NET VRS Y

CHAPTER 7. CONCLUSION 78

normalize different parsers according to a set of rules.

Furthermore, the experiment which is based on a corpus (16,000 words) demon-

strates that the method is technically feasible in parser evaluation.

7.2 Future Work

As mentioned in the last chapter, future study of the modification tool needs to be

performed in order to modify parse forests directly.

Another area of potential research is to assign weights to errors according to their
severeness. Different errors have different impacts on the analysis of a particular
sentence. [t may be necessary for evaluation metrics to take this difterence into

account.

SN

<o RSEERGTET TTNE W L iU e s ST T e

O TEOTTRR el TR RGTH Yl 1

Appendix A

Sample parse trees from

treebanks

A sample parse from Lancaster Treebank

[Fa If_CS
[N you_PPY N]
[V were_VBDR using_VVG
[N a_AT1 shared_JJ folder NN1 N]V]Fa]
.-,
[V include_VVC
[N the_AT following_JJ NJV]:_:

A sample parse from UPenn

(s (NP I)

APPENDIX A. SAMPLE PARSE TREES FROM TREEBANKS

(VP made
(NP a list
(PP of

(SBAR (WHNP who)

(s (NP T)
could
(VP come))))))

A sample parse from Sussane

CSn When when
RR sufficiently
JJ accurate

cc and and
JJ complete

NN2 measurements
VBR are be
JJ available

YC +, -
PPH1 it it
VMo will will
VBO be be
JJ possible

TO to to

VVov set set

[(S[Fa:t[Rq:t.Rq:t]
sufficiently (Np:s.
accurate [Ji%.

(JJ+.

complete .JI+133%]
measurement .Np:s]
[(Vab.Vab]

available [J:e.J:e]Fa:t]

[Ni:S.Ni:S]

[Veb.

.Veb]

possible [J:e.J:e]
[(Ti:s[Vvi.

.Vi]

APPENDIX A. SAMPLE PARSE TREES FROM TREEBANKS

NN2
II
AT
JJ
ccC
JJ
NN2
IO
AT
NNic
cC
NNic
] NN2
I0
NNic

:
\T'
;
k
’!

limits 1limit ([Np:o.Np:o]

on on (p:p.

the the (Np.

thermal thermal [JJ&.

and and [JI+.

electrical electrical .JJ+]3J&]

characteristics characteristic

of of [Po.

the the (Np.

surface surface [NNic%.

and and [NNic+.

subsurface sub<hyphen>surface .NN1ic+]NN1ick]
materials material

of of [Po.

moon moon .Nns]Po]Np]Po]lNp]P:plTi:s]S]
+. - .0]

81

ST TEEE R A A O L e

SN T A i ARSI TRR T TR T

Appendix B

OMT notations

(a)Association

Association Name

[cus2]

[omet =

{b)Multiplicity of associations

o o]

1+

Exactly one
Optional(zero or more)

Many(zero or more)

One or more

Figure B.1: Associations in OMT

A . A

APPENDIX B. OMT NOTATIONS

Class-1

Class-2

Figure B.2: Composition (aggregation) in OMT

Sup:rclass

Subelass Subclass

Figure B.3: Classification in OMT

83

B T TP S

s

ke i

Bibliography

[1] E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Grishman, P. Harri-

son, D. Hindle, R. Ingria, F. Jelinek, J. Klavans, M. Liberman, M. Marcus,
S. Roukos, B Santorini, and T. Strzalkowski. A Procedure for Quantitatively
Comparing the Syntactic Coverage of English Grammars. In Proceedings of
Speech and Natural Language Workshop, pages 306-311. DARPA, February
1991.

Ezra Black, John Lafferty, and Salim Roukos. Development and evaluation of a
broad-coverage probabilistic grammar of English-language computer manuals.

In Proceedings of ACL-92, pages 185-192, Newark, Delaware, 1992.

Nancy Chinchor. MUC-5 Evaluation Metrics. In Proceedings of the 5th Message
Understanding Conference, pages 69-78. ARPA, 1993.

Michael Collins. A New Statistical Parser Based on Bigram Lexical Depen-
dencies. In Proceedings of ACL-96. 1996.

Christy Doran, Dania Egedi, Beth Ann Hockey, B. Srinivas, and Martin Zaidel.
XTAG System - A Wide Coverage Grammar for English. In Proceedings of
COLING-94, pages 922-928. Kyoto, Japan, 1994.

84

4 B v g

BIBLIOGRAPHY 85

[6] Gerald Gazdar. Natural Language Processing in LISP. Addison-Wesley Pub-
lishing Company, 1989.

[7] lan Graham. Object Oriented Methods. Addison-Wesley Publishing Company,
1994.

[8] Richard Hudson. Constituency and dependency. Linguistics, 18:179-198, 1980.
[9] Richard Hudson. Word Grammar. Basil Blackwell Ltd, 1984.
[10] Richard Hudson. English Word Grammar. Basil Blackwell Ltd, 1990.

[11] Joshi, A. Levy, and M. Takashi. Tree adjunct grammar. Journal of Computer
and System Sciences, 1974.

[12] Dekang Lin. A Dependency-based Method for Evaluating Broad-coverage
Parsers. In Proceedings of [JCAI-95.

[13] Dekang Lin. Government-Binding Theory and Principle-based Parsing, 1994.

[14] Dekang Lin. PRINCIPAR—An Efficient, Broad-coverage, Principle-based
Parser. In Proceedings of COLING-94, pages 482-488. Kyoto, Japan, 1994.

[15] Dekang Lin. Principle-based parsing without overgeneration. In Proceedings
of ACL-93, pages 112-120. Columbus, Ohio, 1994.

[16] Dekang Lin and Randy Goebel. Context-Free Grammar Parsing by Message
Passing. In Proceedings of the First Conference of the Pacific Association for
Computational Linguistics, pages 203-211, Vancouver, British Columbia, 1993.

[17] David M. Magerman. Natural Language Parsing as Statistical Pattern Recog-
nition. PhD thesis, Stanford University, 1994.

BIBLIOGRAPHY 86

[18] Igor A. Melcuk. Dependency Syntaz: Theory and Practice. State University
of New York Press, 1988.

[19] Berttran Meyer. Object-Oriented Applications. Prentice Hall, 1993.

[20] S Pertrick. Parsing. In Al Encyclopedia, pages 1099-1109. 1992.

[21] Geoffrey Sampson. The Susanne Corpus, 1994.

[22] Beatrice Santorini. Bracketing Guidelines for the Penn Treebank Project, 1991.

[23] Rajjan Shinghal. Formal Concepts in Artificial [ntelligence. Chapman & Hall,
1992.

