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Abstract 

This thesis generaked the concept of stop-loss transforms, an important 

concept in risk theory [6], to the nth stop-loss transforms. Some useful proper- 

ties of the nth stop-loss transforms were discovered and a recursion formula for 

the nt h stop-loss t r d o r m s  was established. Also, the maintenance properties 

of the nth stop-loss order under convolution, compound and mixture opera- 

tions were proved. FinaUy the results mentioned above were applied to the 

study of losses Li ( i  = 1,2, . . .), maximal aggregate loss L and ruin probabiliq 

+(u). Some inequalities for the expectation of Li and L were given, and a 

relationship between the daim amount random variable and ruin probability 

was found. 

Key Words: dassical risk model, homogeneous Poisson processes, surplus 

process, stop-loss transform, stop-loss order, ruin probability. 
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O Introduction 

Decision making is essentially a problem about how t o  put actions in order. Generally 

there are some actions caiied alternatives for a decision-maker to choose. What  the 

decision-maker needs to do is to choose one action that  hefshe prefers mostly from 

the alternatives. If there is an  order of preference among the alternatives beforehand, 

then to obtain the  most preferred action is extremely easy. 

Each action corresponds to a perspective. In fact, a decision-maker prefers an  action 

according to whether he/she prefers the perspective corresponding to that action. The 

perspectives are generally uncertain, especially in economic problerns. Since we usu- 

ally express perspectives by random variables, so the  order between the alternatives 

can be reduced to the order between random variables. 

The theory of partial order on a family of random variables is useful broadly, in 

queuing theory, reliability theory, economics as well as in actuarial science. For an 

insurance Company, each contract of insurance brings a risk with it. .A claim may 

occur some time in t he  future and the amount of the  d a i m  is a nonnegative randcm 

variable which is called a risk. The  partial orders on a family of risks are called risk 

orders. The theory of risk orders is useful in risk theory and in optimal reinsurance. 

The stop-loss order discussed in this thesis is one type of risk orders. 

This thesis is based upon the works of Goovaerts e t  al. [6] and Gerber e t  al. (41. 

Many kinds of partial order were discussed in 161. The  stop-loss order is one of them. 

The classical risk mode1 was studied in, but not lirnited to [2]-[5]. Two results from 

[4] will be quoted in this thesis. In this thesis, the concept of stop-loss transforrns 
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in [6] wiU be generalized to the nth stop-loss transforms (n  = 0,1,2, - O ) ,  denoted 

by @'(z), n c ' ( x )  etc.. with the stop-loss transforrns in [6] as a special case when 

n = 1. Many interesting properties of the nth stop-loss transforms and a recursion 

formula for ll$)(z) will be given. In t his t hesis the nth stop-loss order on a family of 

random variables will be studied, We denote t hat random variable X is less t han the 

random variable Y in the meaning of nth stop-loss order by X <el( , )  Y .  In practical 

applications we concern the distribution function or survival function of a random 

variable, rather than the random variable itself. From the practical viewpoint there 

is no difference between two random variables with the same distribution or  survival 

function. Consequently, a partial order on a family of distribution functions(or sur- 

vival functions) brings a partial order to a family of random variables, and vice versa. 

Froni now on we will not distinguish these partial orders. For example, if we denote 

the distribution function, survival function of X and Y by F (x ) ,  F ( z )  = 1 - F ( x )  and 

G ( x ) ,  G ( x )  = 1 - G(z) respectively, then we consider the following three inequalities 

- 
to be equivalent to each other: X cal(,) Y, F G and F G . Based on 

the final symbol, t h e  concept of the stop-loss order can be generalized to a family of 

monotonous decrease functions. 

In this thesis the maintenance properties of the nt  h stop-loss order under the opera- 

tions of convolution, compound and mixture will be proved. In [6] the maintenance 

properties of the la t  stop-loss order were proved. But the method used in this thesis 

for proving the properties is different from that in [6]. 

Finaily, the results mentioned above will be used to study the losses Li( i  = 1,2, - - )  



(for the definition of Li see (2.12)), maximal aggregate loss L and ruin probability 

$(TL) (see (2.5)). The concepts of stoploss transform and stop-loss order will be in- 

troduced to a family of nonnegative monotonous decrease functions. We will derive 

the  relationship between the stop-loss transform of X and Li (see (3.28)), some in- 

equalities for the expectation of Li and L (see (2.26), (2.27) , (2.33), (2.34)), and the 

relationship between claim random variable and the ruin probability ( s e  theorem 

(2.13)). 



1 Stop-Loss Transforms and Stop-Loss orders 

1.1 S top-loss transforms and recursion formula 

The concept of stop-loss transforms and its properties play an important role in this 

thesis. At first we generalize the concept of stoploss transforms in [6] as follows. 

Definition 1.1 Suppose random variable X is nonnegative with its distribution func- 

tion being F(x), its survival function being F ( x )  = 1 - F(z), and E(Xn) < m. Let 

where 

for x 5 u, 
(x - u)+ = 

z - IL, for z > u,  

As a function of u,  n(")(u), n = 1,2, will have domain [O, 00).  We cal1 function 

n(*)(u) the nt  h stop-loss transform of X (or i ts distribution function F ( x )  and survival 

function F(z)). When we need to indicate of which nth stop-loss transform it is, 

we wiU add subscript to it. For example, the nth stop-loss transforms of .Y ( its 

distribution function and survival function are F ( x )  and F ( x )  respectively) is denoted 

by II$'(u), nF)(.) or I$)(u) (the three are considered no difference ). It is easy to 

see that the concept of stop-loss transform in [6] ( see page 25, definit ion 3.1.4 in [6] 

) is the special case of definition 1.1 when n = 1. 



The foliowing coroilary t hen becomes obvious. 

Remark 1.2 II(")(0) = E(Xn), n = 1,2, and lI(O)(0) = 1. 

Example 1.3 Prove that  

-='- 
( u )  = F( r )dx .  

Proof. Let n = 1 in ( 1.1) and take integration by parts, we have 

Note that in the above proof we used the following equation: 

lim (x - u ) F ( z )  = 0. 
24- 

When E ( X )  < oo, the  above equation always holds (see proposition 1.4. Letting 

n = 1 in proposition 1.4, we get the above equation). For convenience to  use later, 

we prove a more general result as fotlows: 

Proposition 1.4 If nonnegative random variable X has a finite nth  moment, then 

where F ( x )  is the  survival function of X. 

Proof. Because t he  n th  moment of X is finite, we have 



Hence 

00 

lirn (x - u)" 'F( i )  < iim z n 4 r )  < >il y n d F ( y )  = O. 
x+ O0 x+aO 

Example 1.5 Suppose E(X2) < oo, then 

E ( X 2 )  = 2 1- II$)(u)du. 

By using integration by parts and then (1.4) ( let u = O in (1 A ) ) ,  we have 

In the above proof we  interchange the order of integration and use our results from 

Example 1.3 to complete the proof. 

The following recursion formula for the n th  stop-loss transforms is significant for some 

later results. 

Theorem 1.6 

To prove this theorem we need the foilowing lernma which has its own meaning and 

can be used in other occasions. 

Lemma 1.7 Suppose F ( x )  is a distribution function. If function f (x, y )  satisfies the 

follow ing condit ions: 



(b) When Au is in some neighborhood of 0, Say (-&,a) , we have 

where nonnegative function g(x) is Stieltjes integrable on [O, u] with respect to the 

distribution function F(x), i.e. 

'(x7y) I= O. Then ( c )  Lm 1 -  
12-+O x - y 

That is, we could place the derivative of the  left-hand side of ( 1 . T )  into the  integration 

of which the upper limit is variable u. 

Proof. According to the definition of derivative we have 

= lim f (x, u + A u ) d F ( z )  

where A and B express the first and the  second lirnit above, respectively. From 

condition (b) we know that the integrand in A satisfies the  condition of Lebesgue7s 

convergence theorem, so the lirnit can be taken into the integration, that is 



From condition (c) we have 

.+AU f (x, u + AU) U + AU - x 
= iim l 1 

Au40 U + A U - X  " AU l d F ( 4  

.+Au f(x, u + Au) < lim 1 1 d F ( x )  = 0.1 
u + A u - x  

Now we prove theorem 1.6. 

Because of E ( X n )  < oo, we know 

I?(*)(oo) 

If the following equation holds, 

d 

integrating both sides of (1.9) from u to m, we would then have 

That is, 

By (1.8) we have 

We need only then to prove (1.9) true. 



At first we prove (1.9) for n > 1. We set /(x, y) = (x - y)" in lernrna 1.7. Then the  

condition (a)  of lernma 1.7 holds. Furthermoïe, 

I f (xl u + Au) - f (t, U )  (x - U -  AU)^ - (2 - u)" 
1 = 1  AU I 

n! 
where Ck = 

k! (n  - k)!' 

If x and u both take values in  finite intervals, without loss of generality, we assume 

the interval is [O, A], and 1 Au 15 1, then the right-hand side of above equation is 

bounded. If we let G denote this bound, then we can take G as g ( x )  in lemma 1.7 

and the condition (b )  of lemrna 1.7 holds. Furthermore, 

f (x1 Y) lim 1 - I =  lim lx-yin-'=O for R >  1. 
12-y/+o x - y 12 - vl+O 

So the condition (c) also holds. 

In the following we use lemrna 1.7 to prove formula (1.9) for n > 1. In lemma 1.7, 

the  interval of integration is O to u ,  but now we need the interval of integration to  be 

u to  oo. We begin as follows: 



where I (u )  denotes the sum and J ( u )  denotes the integral a t  the right-hand side 

above . Taking derivative of I ( u )  and J ( u )  respectively, we have 

And by lemma 1.7, 

Ccmbine (1.10) and (1.11) we have 

That is formula (1.9) which holds for n = 2,3, - O .  So theorem 1.6 also holds for 

n = 2,3 ,  -. In the following we check theorem 1.6 directly for n = 1. Taking 

integration by parts, 

Thus theorem 1.6 holds for n = 1. The proof of theorem 1.6 is complete. 1 

Corollary 1.8 A distribution function F(z )  (or survival function F(x)) and its nth 

stop-loss transform (n  is an  arbitrary nonnegative integer) are deterrnined by each 

other. 



( 0 )  
- 

Proof. When n = 0, nF ( x )  = F(x) = 1 - F(x) .  Corollary 1.8 becomes true. When 

n 2 1, frorn (1.6) we know that l$'(x) is determined by l$-''(x). And by (1.9), we 

have 

Then we arrive at our conclusion by induction. 1 

1.2 S top-loss orders and t heir propert ies 

Definition 1.9. We Say that X is less than Y in the meaning of the nth stop-loss 

order, denoted by .Y Car(,) Y. if 

E(x') 5 E ( Y ~ ) ,  k = 1 , 2 , - - - , n  - 1. 

n$)(u) 5 np)(u), VU 2 o. 

When n = 0, the formula (1.12) disappears and formula (1.13) becomes 

When n = 1, then formula (1.12) is trivial and formula ( 1-13) becomes 

Now we study a class of functions with certain properites. Suppose function u(t), 

-m < x < m satisfies: U(*+' ) (Z)  exists except at a finite number of points, and 

Let 

LI, = {u(x) : u(x) satisfies (1. i4)),  n = 0,1,2,  . 

11 



Obviously, Un+l c li,, that  is, classes of functions decrease with respect t o  n, n = 

O, 1,2,*-. 

Inequali ty ( 1.14) implies t hat 

u(IC)(x) > O, when k is odd, 

U ( ~ ) ( X )  5 O ,  when k is even. 

Let 

w ( 5 )  = - u ( - x ) ,  U E un- 

Then for an arbitrary real number x and nonnegative integer k <_ n + L, we have 

Jk) (x) = (- l ) ( k + l ) p  (-t.) 2 O. (1.15) 

Let 

It is easy to see that if we let u ( x )  = -w(-x), where w ( x )  E W,, then 

u ( ~ ) ( z )  = (- 1 )k+lw(k'(-x), 

(-1)("-')u(~)(2) = (-l)2kyt(k)(-x) 2 0, 

so u(x) E Un. Hence we reach a conclusion that there is an one to one correspondence 

between the elements of Un and kVn. 

The following theorem and its proof are similar to that  of theorem 4.2.1 in [6j. But 

here we d d  one sufficient and necessary condition, (1 -1 7), and the proof becomes 

more clear than that  in [6]. 

Theorem 1.10 X <+, Y, if and only if 



if and only if 

Proof. First we prove the equivalence of (1  -16) and (1.17). Suppose inequality (1.16) 

holds, we want to prove (1.17) holds. Let u ( x )  = - w ( - z ) ,  then u ( x )  E Un. Hence 

by(1 .l6) we have 

E [ u ( - X ) ]  > E [ u ( - Y ) ] .  

That is 

Hence inequali ty ( 1.17) holds. Similarly we can deduce ( 1.16) from ( 1.17). 

In the following we prove .Y <+) Y ( 1 .li). 

(e): Suppose ( 1  -17) holds. Let 

w(x) = [(x - u)+jk,  u 2 O, 1 5 k < n. 

k(k- 1).--(k-i+ l)(s - u)("-') , f o r x > u ,  

0, for x < .u. 

and Vi > k, -oo < x < oo, w(')(x) = 0. 

Since w(~)(x) 2 O for ô11 positive integer k, we have w(x) E Wn. By the assumption 

of (1.17) we have 



That is 

Let k take value From 1 to n - 1, and let u = O, we see that the inequalities (1.12) 

liold; let k = n, we go to (1.13). So, .Y Y by definition. 

(+ ) Suppose W ( ~ ) ( Z )  2 OJk = 1,2, n + 1, t h e o  we have the following expansion 

of w(x) 

W(X) = 

We prove formula (1.18) at  first. Taking integration by parts, we have 

xn 
- - - - w ( ~ ) ( o )  + 1 = (1 - t ln-l dw(n-1) 

n ! (n - l ) !  ( t )  

Removing the terms on  the right-hand side except w(x),  we go to  ( 1.18). Now suppose 

X Y we want to prove E [ w ( X ) ]  5 E [ w ( Y ) ] .  By (1.18) we have 



(On the right-hand side above the upper lirnit of integration can be expanded from 

X to oo, because (x - u)+  = O when u > z). 

By X <si(n) Y ?  we know that 

and 

From the above we see that the right-band side of the final inequality is just E [ w ( Y ) ] .  

We then have 

E[w(X)I  5 E[w(Y) I -  I 

Proposition 1.11. Suppose E ( X )  = E ( Y ) .  If X <si(i) Y then 

v a r ( X )  5 uar(Y) .  

Proof. From (1.5) we know 

E ( x ~ )  = 2 J* O n$)(y)dy 5 2JIw np)(y)dy = E(Y').  

Hence, by E ( X )  = E(Y), 

v a r ( X )  = E ( X ~ )  - [E(X)12 5 E(Y*)  - [ E ( Y ) ] ~  = v a r ( Y ) .  

Theorem 1.12. If X <+) Y, then 



Proof. Because of the decreasing property of LI, with respect to n,  when m > n, we 

have CI, c Un. By t heorem 1.10 we arrive a t  our desired conclusion. 1 

But if X Y, then for n < m, it is not required to have X Y. This can 

be seen from the foliowing example. 

Example 1.13. Suppose 

then we have 
1, f o r O s u < 1 / 2 ,  

0.5, for 112 5 u < 1, 

0, for 1 < u, 

and 
1, for0 5 u < 113, 

0.8. for 113 5 u < 1, 

O ?  for 1 5 u, 

(see figure 1.1). We see that F x ( u )  > F y ( u ) ,  when 113 < u < 1/2. We can conclude 

that X Y does not hold. On  the other hand, we have 

and when 1 /3 5 u < 112, 



Figure 1.1: The survival functions of X and Y in Example 1.13 



When O 5 u < 113, we have 

F x ( r ) d r  < /U ~,(r)dz. 1% - 
So JT Fx(z)dx 5 Jü Fy(x)dz, Vu 2 0, and .>i < , L ( ~ )  Y by definition. We see that 

.Y <il(l) Y holds, but X <.i(o) Y does not hold in this example. 

Proposition 1.14. If E ( X )  5 E(Y)  and 3 c 2 O such that 

F x ( x )  i fi(x), forx 5 c, 

Fx (x) 2 Fv(x), for 2 > c. 

Then X Y. 

Proof. Let 

then we have 

- 
h t ( z )  = - F y ( t )  - [-Fx(x)j = Fy(2) - F x ( x ) -  

And by conditions (1.19) and (1.20) we have 

h ' ( x )  2 0 ,  for z 5 c, 

h'(x) $ O, for r > c, 



Figure 1.2: A plot of L$)(z) - n$'(z) in Proposition 1.14 



and 

From the above figure of h(x) we conclude that h(x) 2 O, Vx 2 O. Otherwise, if 

h(x) < O for some 11, then there must be an intersection point of h(x) with the x-axis, 

Say, a t  point xo, xo < xl, and hf(x)  5 O must hold for Vz 2 IO, that means h(oo) = O 

can not be  held. See figure 1.2 for the graph of h(x). Now from h(x) 2 O, Vx 2 O , 

we have 11$)(4 5 @(x),  V5 2 O. SO we have X <si(1) Y by definition. 1 

We can interpret proposition 1.14 more easily by diagram (see figure 1.3). By 

conditions (1.19) and (1.20) we know that  the curves of Fx(x) = 1 - F x ( r )  and 

- 
Fy(x) = 1 - Fy(x) intersect a t  x = c, as shown in figure 1.3. CVe know also that  

E ( X )  equals the area under the curve of Fx(z) and E ( Y )  equals the area under the 

curve of F Y ( u ) .  Therefore, by the condition of E ( X )  5 E(Y) ,  we can conclude that  

the area of 4 in the figure 1.3 must be less than the area of B. Hence, for arbitrary 

u 2 0, the area on t h e  right-hand side of z = u and under the curve of F x ( x )  

must be less than that under the curve of F y ( x )  (marked by a shadow). That is 

n$'(u) 5 @'(u), Vu 2 O, which is desired for proposition 1-14. 

Proposition 1.15. if E ( X )  5 E(Y) ,  and 3 a,b,O 5 a 5 b < oo such that 



Figure 1.3: The survival functions of X and Y in Proposition 1.14 



Proof. Similar to the proof of proposition 1.14, we need to show 

h ( ~ )  = ng)(r) - nX)(x) 2 o. 

We have 

By conditions (1.21) and (1.22) we know that when x < a ,  h l ( x )  2 O and h l ( x )  

rnonotonously increases; when a < x < 6, h l ( x )  monotonously decreases; when x 1 6. 

h l ( x )  increases again, and 

(The  graph of h l ( z )  is shoivn in figure L .4.). There rnust be a point c,  such that 

a < c < b, and h t ( x )  2 O, Qr 5 c; h l ( r )  5 O Vx > c. Furthermore, as we have seen 

in the proposition 1.14, we have 

and  

lim h(x) = 0. 
2+00 

The figure of h ( x )  is the same as that in the proposition 1.14. Hence we have X <.i(l) 

Y as in the proposition 1.14. 1 

When X and Y are both continuous, denoting the distribution density function by 

fx ( x )  and . f y ( x )  respectively, then the conditions (1 -21) and (1 2 2 )  are equivalent to: 

f x ( ~ )  I f y ( x ) ,  f o r s  5 a o r x  2 6, 



Figure 1.4: A plot of Fy(x) - F'(x) in Proposition 1.15 



and 

jX(x) 2 jy(x), for a < x < 6.  

When X and Y both are discrete, assuming their domain is {x i ,  i = I l - ,  =) and 

t heir probability functions are Px (xi) and PY(xi)  respectively, t hen conditions ( 1 .% 1 ) 

and (1.22) are equivalent to 

Example 1.16. Suppose Xi has a Binomial(1 .p i )  distribution. i = 1,2 ,  O < 

pl < p2 < 1. Denote d = pz - pl. And suppose X l ( a )  has the distribution of a 

Binomial(1, pl + a ) ,  X 2 ( a )  has the  distribution of a Binomial(1, pz - a ) ,  X I  ( a )  and 

X 2 ( a )  are independent, where O 5 a < f .  Let 

Then X ( a )  is monotonously increasing with respect to a in the l a t  stop-Ioss order 

meaning. That  is, if O 5 al 5 a 2  < d l2 ,  then 

Proof. By (1.23) we have 

E ( X ( a ) )  = E ( X l ( 4 )  + E ( X 2 ( 4 )  

= p l  + a + p z  - a  = p l  + p z .  

Hence we have 



T h e  probability distribution of X ( a )  is: 

Pr(X(a)  = 0) = Pr(.Yl(a) = O, >;*(a) = 0) = [ l  - ( p l  + a)][l - (p, - a)] 

= (1 - a - p ~ ) ( l  + a - p l ) .  (1.25) 

P r ( X ( a )  = 1) = Pr(Xl (a )  = O, &(a) = 1) + Pr(Xi(a) = l o  X&) = 0) 

= (1 -a  - p ~ ) ( p ~  - a )  + ( p l  f a ) ( l  + a - ~ 2 ) -  ( 1.26) 

Pr(.Y(a) = 2 )  = P r ( & ( a )  = 1, &(a) = 1 ) = (pl + a)(pz - a). ( 1.17) 

With the condition of O 5 a 5 d / 2 ,  by( 1 .XI)-( 1-27) it is easy to  verify that Pr (X(a)  = 

0) and P r ( X ( c . )  = 2) are increasing in n , Pr(.Y(a) = 1 ) is decreasing in a. Therefore. 

formula (1.24) is obtained by proposition 1-15. 1 

Combining with proposition 1.1 1, the  example 1.16 says: if t h e  sum of success prob- 

abilities in two Bernoulli experiments is a constant. i.e. pl + pz = constant (this 

means the expectation of success number in the two experiments is a constant), then 

we can conclude that the closer of pl and p,, the bigger of the  variance of success 

number of the two experiments (this number is a random variable). 

Example 1.17. Suppose Fx(x )  and Fy(x) are two Iife distribution functions, t he  

corresponding force of mortality is denoted by m x ( x )  and m y ( x )  respectively. If 

there is a real number c such that 

mx(x )  < m+), for x 5 cl 

m x ( x )  > my(+), for x > c, 

and 



Then X Y. 

Proof. Let 

We shail show that there exists a real number s such that 

H(x) 5 0, for x 5 s, 

H(x) 10, for x > S .  

Then the conclusion desired follows from proposition 1.14. 

Using the relationship between the survival function and its force of mortality we 

have 

From this and (1.28) we know that H ( z )  < O when x 5 c. 

From ( 1-30) we have 

Hence H ( x )  can not be negative forever and must become positive a t  some point, 

therefore we know that there is at least one point t  2 c such that H ( t )  2 0. Let 

In the following we show this s satisfies ( 1.3 L ). 

Since H ( z )  is a continuous function, we have s > c and H ( s )  2 O by the definition of 

S. That  is 



Suppose x > s, from (1.29) and s > c, we then have 

T herefore 

We can see the features of H(x) in figure 1.5 where H ( x )  is shown as t he  difference 

- - 
Fy (x) - F X ( x ) .  In addition, according to the definition of s we know that H ( x )  5 

O for r 5 S. 1 

The  following example shows that the  2d stogloss order will order random variables 

more widely than the  la' stop-loss order. In general, if m > n then the mth stop-loss 

order will order random variables more widely than the n th  stoploss order. This is 

confirmed by theorern 1.12. 

Example 1-18. Let X and Y be two random variables with probability distributions 

as follows 

and 

We have, 8 
( 3 -  21, for TL < 2, 

U 
E[(x  - u)+] = ( 1 - 6,  for 2 5 u < 6, 

0, for u 3 6. 



Figure 1.5: The survival function of X and Y in Example 1-17 



Figure 1.6: The lut  stop-loss transforms of X and Y in Example 1.18 



Figure 1.7: The 2" stop-loss transforms of X and Y in Exampie 1.18 



8 
( 3 -  u, for u < 1, 

*5 521 
for I < u < 3, 

I O' for u 2 3. 

We can see that 

We also can see that 

Hence neither X <,1(1) Y nor Y .Y holds. On the  other hand, we have 

16 '28 
3 .  r2-Y"+- for u < 2, 

I 
E { [ ( X  - u)+12J = { - 2u + 6, for 2 5 u < 6 ,  

I 0. for u >_ 6, 

and 16 13 

I "' - _u + -, for u < 1. 
3 3 

( 0 ,  for u > 3. 

We can check t hat E{[(Y - u)+12) 5 E { [ ( X  - u)+12}, Vu 2 O (see Figure 1.6 and t .7). 

In addition, since E ( X )  = E(Y)  = we can show that Y X, by definition 1.9. 

Therefore we can conclude that the 2" stop-loss order can order random variables X 

and Y but the lut stop-loss order can not. 

Next we show the maintenance properties of t he  nth stop-Ioss order. 

Theorem 1.19. The nth stop-loss order is maintained under the surnrnation of 

independent random variables. That is, if 



where k is a positive integer, then 

k k 

It was proved in (61 that the 1'' stop-loss order is maintained under the summation 

of independent random variables (see page 30 of [6] ,  theorern 3 2 . 2 .  ). Theorem 1.19 

is its generalization and the met hod used here for proving the t heorem is completely 

different from the method in [6]. 

Proof. We first prove theorem 1-19 for k = 2. 

Suppose dYl and -Y2 are independent, Yl and V2 are independent and 

We now use theorem 1.10 to prove (1.34). By theorem 1.10, V w ( x )  E Wn, we need 

only to prove 

E[w(X,  + .Y,)] <_ E[w(YI + &)]- 

Let 

wi(x? t )  = w ( x  + t ) ,  ( 1 35) 

where t is a real number. Since w ( z )  E W,,, from the definition of I.V, we have 

Again by the definition of W,, we know that for a fixed t ,  w i ( x ,  t )  is a function of x 

and belongs to W,. From XI YI, and by theorem 1.10, we can have that 



Further, let 

Since w(')(z) 1 0, we have 

Hence w Z ( x )  E W,. From this and the condition X2 we have 

L x -  w(y + r)dFyl(y)]dFx,(r)  = i D O  w 2 ( 4 d F x 2 ( 4  = E b r ( - W I  

Taking the integration of the both sides of (1.36) with the distribution function 

dFx,(t), we have 

Combine (1.39) and (1.38) to arrive at 

This is simply E p w ( X I  + X I ) ]  5 E[w(& + fi)]. Next by mathematical induction we 

can conclude that (1 34) holds. 4 

Theorem 1.20. The n t  h stop-loss order is maintained under a compound operation. 

That is, suppose X I ,  X 2 ,  -, YI, Y2, O,  and integer valued, NI, NI are al1 independent 

random variables. In addition, NI and N2 have identical probability distribut ions. 

Let 



t hen 

Si <ii(n) SI .  

Proof. According to theorem 1.10, it is sufficient to prove that 

V w E CVn, E[w(Sl)] 5 E[w(S2)]-  

In fact we have, 

The last equation holds because XI, X2, , .Yn and NI are independent. Next , using 

theorem 1 19 we have 

Notice Ni and N2 have identical probability distributions, so we have 

Theorem 1.21. The nth stop-loss order is maintained under a mixture operation. 

Thot is, suppose random variable a 2 O has distribution function H ( a ) .  When a 

34 



is given. X ,  and Y, have distribution function F ( t ,  a) and G(t ,  a)  respectively and 

satisfy X ,  <.l(,) Y,. Let 

Proof. When a is given, the stop-loss transforms of X ,  is 

Taking integration by parts, the equation above becomes 

From X, <.+) Y,, V a  2 0, for V a  2 O, we have 

Using expression (1.42), for u = 0, ( 1.43) becornes 

Integrating the above formula with distribution function H(a), we have 



Exchanging the order of integration, we have 

Note t hat, 

Similarly, we have 

Then we have 

That is 

Combine (1.45) and (l .46),  we have F ( t )  G(t).  1 

An important special case is when a takes values in (1.2, - , n). Deoote 

1 ,  for a! = i, 
Ii = { 

0, for a # i. 

and P r ( a  = i )  = pi, where i = 1,2, , n,  O 5 pi < 1, C:='=, pi = 1 .  From t heorem 



where F ( z .  i) and G(r ,  i) are the distribution functions of Xi and Yi respectively. The  

formula (1.47) can also be written as 

1.3 Generalization 

Now let's generalize the concept of the nth stop-loss transforrns (given by definition 

1.1) and the concept of the n th  stoploss order (given by definition 1.9) to t h e  class of 

general noiinegative monotonous decreasing functions on [O, 00). ( For monotonous 

increasing function, assuming it has a finite iimit at m, the same approach would be 

derived. ) 

Suppose function H ( x )  2 O ( O  5 x < oo) is monotonously decreasing, H(0)  > O 

and H ( 2 )  is continuous from the right side. Without loss of generality. we assume 

lim,,, H ( x )  = O (otherwise, replace H ( x )  by H * ( r )  = H ( x )  - H ( o o ) ) .  Then H ( z )  

has similar properties as that of a survival function : nonnegative, rnonotonously 

decreasing and lia,, H(x )  = O. There maybe only one difference between them, 

that is, H(0)  5 1 does not hold al1 the time. But there is no trouble with this 

difference when we generalize the stop-Ioss transforms of survival functions to the 

stop-loss transforms of H ( x ) ,  and furthermore, generalize the stop-loss order of the 

family of survival functions to the farnily of nonnegative and monotonously decreasing 

functions. 



Looking back at the definition 1 . 1 ,  for n 2 1 we have 

In this iotegration, the measure introduced by F x ( x )  or by  Fx(x) is used. Because 

- 
F x ( 0 )  5 1, the measure of set ( O ,  oo) is equal to  or less than 1. The rneasure of 

( O ,  oo) introduced by H ( x )  equals to H(0) .  This may be greater than 1, but  a t  least 

it is finite. We can define the stop-loss transforrns of H ( x )  similar to  definition 1.1. 

According to (1.49), replacing F x ( x )  in (1.49) by H ( z ) ,  leads us to t he  following 

defini tion: 

Definition 1.22. Suppose function H ( x )  2 0, O 9 x < ao is monotonous decreas- 

ing, and l i ~ , ,  H ( x )  = O .  V u 3 O for nonnegative integer k, let 

l I g ) ( u )  = - La(z - u ) ~ ~ H ( z ) ,  ( 1.50) 

asçuming the iotegral of the right-hand side of (1.50) is finite. FIE)(,) is caUed the 

kth stop-loss transform of H ( x ) .  Siniilar to theorem 1.6, we can prove the  following 

theorem related to II$)(,). 

Theorem 1.6' 

(To prove t his theorem we only need to note t hat the  function H ( x )  is corresponding 

to the  function F ( x )  in theorem 1.6.). 

Now we generalize the concept of the nth stop-loss order to  the farnily of nonnegative 

mono tonous decreasing functions. Let 

fl = { H ( x ) ,  x 2 O : H ( x )  3 O monotonous decreasing and lim H ( x )  = 0 ) .  (1 .51)  
2-eiO 



Definition 1.23. Suppose H(x), G(x) E 0. We Say that H ( x )  is less than G(x) in 

the meaning of kth stogloss order, denoted by H ( x )  G ( x ) ,  if the kth stop-loss 

traosforms of H ( x )  and G(x) exist, and 

( u )  ( )  V u 3 O. ( 1.53) 

( In  formula ( 1.53) we note that the  direction of the inequality is opposite to t hat in 

definition 1.9. since here both of the integrations on both sides of ( 1.52) are negative.) 

At first we look for the relationship between the stoploss transforms of @(u)  and 

those of X. 

Suppose X 2 O, E(.Yn) < oo. From (1.1) we know that lTg'(u) E Q. Then from 

(1.50) we have 

assuming the integral at the right-band side of (1.54) is finite. When n = O, we have 

When k = O, we have 

(0 )  

ny) ( u )  = - d[llg'(x)] = l lg i (u) .  ( 1.56) 

In general, the relationship between the transforrns of II$' and those of X are stated 

in the following theorem. 



Theorem 1.24. Suppose E ( x n + & )  < oo, then 

Proof. By formula ( 1  -54) and ( 1.9), we have 

In the fourth equation above the following expression is used 

lim llg-')(t)(t. - u ) ~ + '  = O ,  V u to be fixed . 
2-w 

The formula (1.58) holds when E ( X n C b )  < 00, that is 

It gives us 



Hence, we have 

and 

nX' <,,,) nX', 

n, k = 0 , I ,  -. 

Proof. By definition 1.22 we have 

n y  <,(,) n p .  

if and only if 

00 

xid[nly")(r)] > J t i d [ l I p ) ( z ) ]  i = l ,%:  - - , k - 1, ( 1.60) 
O 

and 

Taking k = i, u = O, in formula (1.57), we have 

Sirnilarly we have 



Therefore formula ( 1.60) is equivalent to  

E(x"+') 5 E(Y"+'), i = 1 , 2 , - - - . k  - 1. 

Since E ( X J )  < E(Yi),  j = 1 y 2, , n,  we have 

E ( x ~ )  5 E ( Y ~ ) ,  j = 1 , 2 , - - - ' n  + k - 1. 

On the  ot  her hand, by theorem 1.23 we have 

and 

Formula (1.61) holds if and only if 

By definition, X <.q,+r) Y if and only if (1.62) and (1.63) hold. 1 

The concept of weak nth  stop-loss order is given as follows: 

Definition 1.26. Suppose H ( z ) ,  G(x) E 0. We say that H(x )  is less than G(x) in 

the meaning of weak nth stop-loss order, denoted by H G if 

We can see t hat if condition ( 1.52) is removed in the definition of n t  h stop-loss order, 

then the  definition of weak nth  stop-loss order follows. The weak oth stop-loss order 

and weak l a t  stop-loss order are no differente from the ot" and 1" stop-loss order, 

respect ively. 



Proposition 1.27. If H <,.l(,) G, then H <,.l(,) G, V m > n. 

Proof. By definition, we need only from (1.64) to reason that 

First we prove ( 1.65) for rn = n + 1. Using theorem 1.6 and ( 1.64) we have 

By matheniatical induction we can get proposition 1.27. 1 



2 The applications of stop-loss order in ruin prob- 

ability 

2.1 Surplus processes and the distribution of deficit 

We denote insurer's surplus at time t by U(t) ,  t 3 0 and assume that the premium 

rate is a constant c and paid continuously. Furthermore, we let the insurer's initial 

surplus be U ( 0 )  = u >_ O. Let S ( t )  denote the aggregate daims up to time t.  Then 

the basic model for surplus processes is as follows: 

We Say the model (2.1) is basic because in this model the time value of money ( the 

interest factor) and other factors that could influence the insurer's surplus (such as 

expenses, dividends, etc. ) are ignored. 

The aggregate claims up to time t ,  S(t ) ,  are determined by the number of claims that 

occurred in [O, t )  denoted by !V( t ) ,  and the amount of each claim. In classical risk 

theory, { i V ( t ) ,  t 2 O) is a homogeneous Poisson process with constant parameter 

A. {N( t ) ,  t 2 O)  is caUed the claim number process. We now denote the amount 

of the ith claim by Xi and assume X i ,  i = 1,2, , are independent and identically 

distributed. This thesis is based on these assumptions. As a result, {S(t),  t 2 O), 

called the aggregate claims process, can be expressed as : 

From the assumptions above we know that  {S( t ) ,  t 2 0) is a compound Poisson 



process. Formula (2 .1)  can be rewritten as 

Let 

T = min{t : t 2 O ,  U ( t )  < 0 ) .  (2.4) 

If the  set in (2 .4 )  is empty, that is U ( t )  2 O, V t 2 O, we let T = m. That  is. we let 

min0 = oo by convention. The random variable T is called ruin time and may take 

the value of m. Let 

+(u)  = Pr(T < oo 1 U ( 0 )  = u ) .  (2 .5 )  

This is the probability of ruin when the initial surplus equals u. 

Because { N ( t ) ,  t  > O )  is a homogeneous Poisson process, and the amount of claims 

are i.i.d., the aggregate claims in every one unit time interval are 2.i.d.. and have t h e  

same distribution as that of 

where the random variable N ( l )  has a Poisson distribution with parameter A.  As a 

result we have 

E [ S ( l ) ]  = X E ( X ) .  (3.7) 

Suppose c > A E ( X ) .  That is, the prernium paid in one unit time is greater than the  

expected value of claims in the same period. We denote 

and t herefore 



where B is security loading. From c > X E ( X )  we know 0 > O. Taking the expectation 

of the both sides of (2.3) and using the properties of a compound Poisson process, we 

have 

E[Gr(t)] = u + ct - At E ( X )  = u + BtA E ( X ) .  

By 0 > O we can see that 

Lm E [ U ( t ) ]  = a. 
t-00 

(2.1 1 )  

Though (2.11) holds, ruin may occur in a finite period. We iilustrate this by figure 

2.1. In this figure, Tl, TI, are the times a t  which claims occur. T4 is the first time 

when the surplus is below zero. That is, T4 is the ruin time defined by formula (2.4). 

At a ruin time T we always have U ( T  - 0) 2 O and W(T) < 0. 

Now we study the  surplus process in the situation of u = O. By moving the t-axis 

up u units in figure 2.1, we get figure 2.2. In figure 2.2, Tl,  T2, denote the times 

a t  which claims occur. But now T2 is the  ruin time a t  which a deficit occurs. Let's 

denote T; = T2. In figure 2.2 we also see U(T3)  < U(T2).  So, T3 is the time a t  which 

a new deficit occurs. Denote Tc = T3. Similarly we have Tj  = T4) and so on. We call 

the time of the i th  new deficit occurrence, i = 1.2, - S. Denote TG = O and let 

L = U )  - ( T , )  if Tc < oo, i = L,2, . 

Then Li is the difference between 1 U ( y )  1 and 1 (I(T-;_,) 1. We call Li the ith deficit. 

We should also note that Li is defined only when T;' < oo. Therefore, when we 

speak of the probability (or expectation ) of Li later, we will mean the conditional 

probability (or expectation ) under the condition of < m. 



Figure 2.1: A sample path of U ( t )  with initial surplus u 



Figure 2.2: A plot of Li with initial surplus u = O 



From the  assumption of { N ( t ) ,  t 3 O) being a hornogeneous Poisson process, we 

know that  the  length of time intervals between two claims are independent and have 

a cornmon exponential distribution. In addition, by the  assumption of t h e  classical 

risk model, the sequence of the claim amounts are also a series of independent and 

ident icaliy distributed randorn variables. Hence, the surplus process beginning a t  the  

time when a new deficit occurs is independent of the process before this time, and 

has the  same probability law as  the  process beginning a t  t = O. If we move the  

ceordinate  original point to o'(T;, U(T;)) ( see figure 2.3. T h e  new CO-ordinate axes 

are marked by dotted lines), and view the  surplus process beginning a t  T; in the new 

CO-ordinate system(now the initial surplus is zero), then from the  analysis above we 

know tha t  this process is independent of the process before T; and that  they have 

the same probability law. Therefore in the two CO-ordinate systems, the new one  and 

the  original one, both the time at which the first deficit occurs and the amount of 

claim a t  this time are independent and identically distributed. Hence T; - T; and 

Ti  = Ti" - Tc are independent a n d  identically distributed, as are  L1 and Lz. We can 

analyze the  process beginning a t  Ti in a similar fashion. We can iiow conclude that:  

and 

LI, L2, , i.i.d. 

((2.14) means that  if Tm < m then LI, L2,-, L,i.i.d.), and tha t  



Figure 2.3: Sample paths of U ( t )  and U'( t t )  with initial surplus u = O(t '  is measured 

from the time when the first deficit occurs) 



We introduce another new random variable, the total number of deficits, denoted by 

hl 

M =max(n :  Tl < oo). (2.16) 

By the following proposition we know t hat random variable M has a geometric dis- 

tribution with parameter d~(0) .  

Proposition 2.1. 

Proof. 

The second equation above holds since T,' - T,'-,, n = 1,2, * - .  are i . i .d. .  fi  

From the fact of (2.14) we know that to get the distributions of Li .  i = 1.2, - - - .  
we only need to study LI = U(T;). Dickson, D.C.M., and Water, H.R. (1992) [2], 

Gerber, H.U., Goovaerts, M.J. and Kaas, R. (1987) [4], Dufresne, F. and Gerber, 

H.U. (1986) ['JI, etc. studied the distributions of U(T; - 0) and U(T;) .  Here we quote 

two results from [4]. By sur notations the two results can be expressed as follows: 

(4 

where 0 is the security loading. 



It should be noted that @(O)  is determined by 0 only. That  is. & ( O )  does not depend 

on the claim random variable X (the amount of each da im has the same probability 

distribution as X ) and the claim number process { N ( t ) ,  t > O) when 6 is given. 

By using formula (2.18) we can rewrite the probability distribution of iLI, (2.17), as 

follows: 

The second result from [4] is 

(b). L1, L2, - - -  are i . i .d. and independent of M ,  

=O, 1,2 , -O* .  

the cornmon (conditional) survival 

function of Li is 

here X is d a i m  random variable. Denote the nth stoploss transform of Li under the 

condition of T,' < oo by I'$)(Z 1 Tt  < oo), that is 

Since L1, Lz7 - are i.i.d. , t heir stop-loss transforms are the same as that of LI. The 

formula (2.20) can be rewritten as 

Since the deficit depends on the claim random variable, we will mark it when it is 

needed. For example, if  the claim random variable is X ,  then we denote the n th  

deficit by L,(X).  

Example 2.2. Denote the random variable having an exponential distribution wit h 

parameter p tÿ e,. We Say that if T; < oo, then Li (e,) has the same distribution as 
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e, - 

Proof. By using the formula (2.20) we have 

1 ='- 00 

pr(Ll(e,) > x 1 T: < oo) = - 1 ~ . , ( y ) d y  = p / ë W d y  = ëm. a 
E(e,) x 

1 
Proposition 2.3. Suppose E(.Y) = -. If 

P 

t hen 

t hen 

Proof. The left-hand side of (2.22) is reduced from the  inequality of 

On the right side, the condition lIg1(z) 5 l l k y ( ~ ) ,  V 2 1 0 ,  irnpiies 

By taking integration of both sides from O to oo, and using formula (1.5) we get 

(2.22). The proof of (2.23) is similar. 1 

Proposition 2.4. 



Proof. From (2.20) and (1.5) we 

In the last equation the formula (1.5) is used. 1 

1 
Corollary 2.5. Suppose E ( X )  = -. If 

P 

t hen 

t hen 

1 
E I L l ( X )  1 T; < oo] 2 -. 

P 

Proof. The  inequality (2.26) can be achieved by (2.25) and (2.22) . The inequality 

(2.27) can be achieved by (2.25) and (2.23). 1 

Proposition 2.6. 

Proof. Wben n = O, from (2.21) we have 



This means that (2.28) holds. In the following we use mathematical induction to 

prove that (2.25) holds for an  arbitrary nonnegative integer n. 

Assume that (2.28) holds for n = k, that is 

When n = k + 1, according to theorem 1.6, we have 

Substituting (9.29) into the  right-hand side of (2.30) gives us 

For the last equation we use t heorem 1.6. According to the principle of mat  hematical 

induction we conclude that  (2.28) holds for an  arbitrary nonnegative integer. 1 

2.2 The relationship between the order in daims and the 

order in ruin probabilities 

We will now apply the  results we achieved for u = O to the study of general ruin 

probability J>(u), where u 2 O. For thk  ,.-irpose we need to review figure 2.1 again. 

For clarity, we mark L I ,  L2, in figure 2.1, then figure 2.1 becomes figure 2.4. In 

figure 2.4 we have u > O, T; is not a ruin time but ratber the first time a t  which a 

loss occurs. That  is, 

U ( t )  2 u, when t < T;, but U(T;) < u. 



If O 5 U(T;), then Li is not a deficit, it is a loss defined as Li = u - U(T;) .  

La, L J ,  are Iosses that  occur successively after the first loss LI. For example, 

2 = U T )  - U T )  I f  Lr(7';) 2 O then L2 is a new loss after L1, but ruin (and 

hence deficit ) does not occur at  this time. 

Let 

where 1b1, the total number of deficits occurring in the situation of u = O. iLI now 

becornes the total number of the losses that makes the surplus process reach a lower 

point than it has been ever before ( in figure 2.4, M = 3) .  Thus L is the maximal 

aggregate loss. We also note that 

P r ( L  = O )  = Pr(T; = oo) = 1 - $(O) = - 
1;e 'O- 

Thus L  has a positive probability at  zero. 

Proposition 2.7. 

Proof. Because Li! L2, LS, - -  are i.i.d. and independent of Ad, given T; < oo, and 

when T; =oo, L = O ,  we have 



Figure 2.4: Losses occuring in the sample path of U ( t )  with initial surplus u 



From (2.20), we have 

(At the last equation (1.5) is applied). We also note that 

8 
P r ( M  > 1) = Pr(T; < m) = - 

1 +O' 

and using (2.19) we have 

1 + 8  
E(iZ1 1 T; < oo) = E ( M  1 M 2 1) = -. 

8 

Hence, we can see that 

1 
Corollary 2.8. Suppose E ( X )  = -. If 

P 

t hen 

t hen 

Proof. By proposition 2.7 and formula (2.22) the corollary 2.8 follows imrnediately. 

1 
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Under the condition of u 2 O, ruin occurs if and only if L > u. As a result we have 

11(u) = P r { L  > u 1 U ( 0 )  = u), (2.36) 

where $(u) is a function on [O, 00). From now on we will cal1 $ ~ ( u )  the ruin probability 

function. Ruin probability also depends on the claim random variable. We will mark 

it when needed. For example, if the daim random variable is X,  then we denote the 

ruin probability function as $ J ~ ( U ) .  

From (2.36) we see that  @(u) 3 O, monotonous decreasing and l i ~ , ,  @(u)  = 0. 

So $(u)  belongs to R (R  is defined by (1.51)). Thus we can define the n th  stop- 

loss order and weak n th  stoploss order on the farnily of ruin probability functions. 

Limiting the definitioos 1.22 and 1.26 on the family of ruin probability functions 

and considering only the influence of the claim random variable on ruin ( suppose the 

initial surplus and the claim number process are the  same), we introduce the following 

two definitions: 

Definition 2.9. For nonnegative integer k, assume ( J o x k d l h . ( x )  (< 00. We say 

tliat ruin probability function djx(u) is less than T,!J~(U) in the tneaiiing of the kth 

stop-loss order, denoted by tlx <.i(k) *, if (2.37) and (2.38) hold. 

and 

Definition 2.10. For nonnegative integer k, assume 1 Jo x k d & ( z )  I< oo. We say 

that  ruin probability functioo k ( u )  is less than *(u) in the meaning of weak kth 
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stop-loss order, denoted by ii>x <w.i(i) dy. if (2.38) holds. 

At first we illustrate the meaning of introducting stop-loss order and weak stoploss 

order on the family of ruin probability functions. 

Proposition 2.11. Suppose ?,bi >i E, i = 1,2, and iL1(0) = iLz(0), functions ti)t(x) 

and &(x) intersect a t  finite points, denoted by xi < xz < < xk. If there is an  

integer n > O such tha t  ~x y y ,  then the following inequality holds: 

Proof. LVe use the  method of reduction to absurdity to prove this proposition. If  

(2.39) does not hold, since x k  is the largest intersection point of ~ i ( x )  and S)3(x ) ,  we 

can Say that  

So, for u 2 xh we have 

and 

By induction and use theorern 1.6' we have 

This is contrary to +x <wal(n, 1 

Applying proposition 2.1 1 to ruin probability functions, we can assume that  the 

initial surplus is u > O and two ruin probability functions I l i ( u )  and &(u) satisfy 
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the conditions of proposition 2.1 1. Only if the initial surplus satisfies u 2 XI we have 

i l d u )  < ~ 2 ( 4 -  

In the  following we compare the two surplus processes. Suppose t here are t wo surplus 

processes defined as: 

and 

And suppose { & ( t ) ,  t > 0) and { N 2 ( t ) ,  t > 0) a r e  hornogeneous Poisson processes 

with the  same parameter A. For process U l ( t ) ,  t he  claims XI, -Y2, - , are i i d .  and 

distributed as X; for process U 2 ( t ) ,  t h e  claims YI, Y2, -, are i.i.d. and distributed as 

Y. For process Lii@), i = 1,2, denote the first time of loss occurrence, the losses, t h e  

total number of losses and the maximal aggregate loss by 2"'. La(n = I , ? ,  -), Mi 

and L' respectively. We prove the following lemma first: 

Lemma 2.12. Suppose two surplus processes & ( t )  and U2(t) as defined by (2 .40)  

and (2.41) satisfy E ( X )  = E(Y).  If 

t hen 

Proof. Let h ( u )  be the ruin probability of U i ( t )  and 8; be the security loading, 

i = L,2 . Since E(.Y) = E ( Y )  and the  two clairn number processes have the same 



parameter A t  we have 

Furt hermore, 

By (?.19), we know tha t  Mi (i = 1,2) are distributed identically. By (2.3 l ) ,  we have 

we need only to prove that under the conditions of T" < m, i = 1,2, 

By theorem 1.9, we need only to prove that Lk <al(,-l) LI, m = 1,2, (under the  

conditions of Ti* < oo, i = 1,2; otherwise, there would be no L: t o  sum). Further, we 

need only to prove Li L:, since L i  has the same distribution as Lf , i = 1,2. 

By (2.28) and (2.31) we have 



The condition X <,Q,) Y implies that 

and 

By formulas (2.46)-(2.49) and E ( X )  = E ( Y )  we have 

and 

Formulas (2.50) and (2.51) imply that Lm <.i+i) Lm. 1 

Theorem 2.13. Suppose E ( X )  = E(Y).  If 

t hen 

A (u) <ar(n-i)  P ~ ( u ) ,  

here P i ( u )  is the ruin probability function of Ui(t) ,  i = 1,2. 

Proof. Notice that 

our conclusion can be arrived at irnmediately. 1 
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In [6] (pages 65-66) it  is said that X Y impiies tLi(u) 5 t,b2(u), Q u  > 0, but 

X Y does not imply & ( u )  5 tl>)(u), V u 2 O. From theorem 7.13 we see that 

X <ai(2)  Y does imply +, (u)  ~ , b ~ ( u ) .  Therefore theorern 2-13 generalized the 

result of [6]. 

2.3 Further remark 

Ruin probability is an important topic in risk theory. Various transformations of a 

random variable (or equivalently its distri but ion funct ion and survival funct ion) and 

the theory of partial order are interesting and useful in many fields. 

This thesis began by introducing the concept of the nth  stop-loss transforms of non- 

negative monotonous decrease function, and exarnined extensively their properties. 

As a result, the relationship between z da im random variable and ruin probability 

was established. The relationshi~ between the nth stop-loss order and other kinds 

of order that appeared in economics, queuing theory and reliability theory was not 

discussed. These topics as well as the introducing of new transforms and their orders 

are worth further examination. 
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