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Abstract

This thesis generalized the concept of stop-loss transforms, an important
concept in risk theory {6], to the nth stop-loss transforms. Some useful proper-
ties of the nth stop-loss transforms were discovered and a recursion formula for
the nth stop-loss transforms was established. Also, the maintenance properties
of the nth stop-loss order under convolution, compound and mixture opera-
tions were proved. Finally the results mentioned above were applied to the
study of losses L; (i = 1,2, ---), maximal aggregate loss L and ruin probability
¥(u). Some inequalities for the expectation of L; and L were given, and a
relationship between the claim amount random variable and ruin probability

was found.

Key Words: classical risk model, homogeneous Poisson processes, surplus

process, stop-loss transform, stop-loss order, ruin probability.
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0 Introduction

Decision making is essentially a problem about how to put actions in order. Generally
there are some actions called alternatives for a decision-maker to choose. What the
decision-maker needs to do is to choose one action that he/she prefers mostly from
the alternatives. If there is an order of preference among the alternatives beforehand,

then to obtain the most preferred action is extremely easy.

Each action corresponds to a perspective. In fact, a decision-maker prefers an action
according to whether he/she prefers the perspective corresponding to that action. The
perspectives are generally uncertain, especially in economic problems. Since we usu-
ally express perspectives by random variables, so the order between the alternatives

can be reduced to the order between random variables.

The theory of partial order on a family of random variables is useful broadly, in
queuing theory, reliability theory, economics as well as in actuarial science. For an
insurance company, each contract of insurance brings a risk with it. A claim may
occur some time in the future and the amount of the claim is a nonnegative randcm
variable which is called a risk. The partial orders on a family of risks are called risk
orders. The theory of risk orders is useful in risk theory and in optimal reinsurance.

The stop-loss order discussed in this thesis is one type of risk orders.

This thesis is based upon the works of Goovaerts et al. [6] and Gerber et al. (4]
Many kinds of partial order were discussed in [6]. The stop-loss order is one of them.
The classical risk model was studied in, but not limited to [2]-[5]. Two results from

[4] will be quoted in this thesis. In this thesis, the concept of stop-loss transforms



in [6] will be generalized to the nth stop-loss transforms (n = 0,1,2,---), denoted
by Hg?)(z), f[(;?)(:r) etc.. with the stop-loss transforms in {6] as a special case when
n = 1. Many interesting properties of the nth stop-loss transforms and a recursion
formula for HS?)(J:) will be given. In this thesis the nth stop-loss order on a family of
random variables will be studied. We denote that random variable X is less than the
random variable Y in the meaning of nth stop-loss order by X <, n) Y. In practical
applications we concern the distribution function or survival function of a random
variable, rather than the random variable itself. From the practical viewpoint there
is no difference between two random variables with the same distribution or survival
function. Consequently, a partial order on a family of distribution functions(or sur-
vival functions) brings a partial order to a family of random variables, and vice versa.
From now on we will not distinguish these partial orders. For example, if we denote
the distribution function, survival function of X and Y by F(z), F(z) = 1 — F(z) and
G(z), G(z) = 1 — G(z) respectively, then we consider the following three inequalities
to be equivalent to each other: X <y ) Y, F <um) G and F <si(n) G . Based on
the final symbol, the concept of the stop-loss order can be generalized to a family of
monotonous decrease functions.

In this thesis the maintenance properties of the nth stop-loss order under the opera-
tions of convolution, compound and mixture will be proved. In [6] the maintenance
properties of the 1% stop-loss order were proved. But the method used in this thesis

for proving the properties is different from that in [6].

Finally, the results mentioned above will be used to study the losses L;(z = 1,2,--")



(for the definition of L; see (2.12)), maximal aggregate loss L and ruin probability
¥(u) (see (2.5)). The concepts of stop-loss transform and stop-loss order will be in-
troduced to a family of nonnegative monotonous decrease functions. We will derive
the relationship between the stop-loss transform of X and L; (see (2.28)), some in-
equalities for the expectation of L; and L (see (2.26), (2.27) , (2.33), (2.34)), and the
relationship between claim random variable and the ruin probability (see theorem

(2.13)).



1 Stop-Loss Transforms and Stop-Loss orders

1.1 Stop-loss transforms and recursion formula

The concept of stop-loss transforms and its properties play an important role in this

thesis. At first we generalize the concept of stop-loss transforms in (6] as follows.

Definition 1.1 Suppose random variable X is nonnegative with its distribution func-

tion being F(z), its survival function being F(z) = 1 — F(z), and E(X") < co. Let

N (u) = E{(X —u)4]*}, u>0,n=1,2,---, (1.1)

where

NOu) = Flu) = | — F(u). (1.2)

As a function of u, [1™(u),n = 1,2,--- will have domain [0, 00). We call function
[1™)(u) the nth stop-loss transform of X (or its distribution function F(z) and survival
function F(z)). When we need to indicate of which nth stop-loss transform it is,
we will add subscript to it. For example, the nth stop-loss transforms of X ( its
distribution function and survival function are F(z) and F(z) respectively) is denoted
by l’[g?)(u), H(;f)(u) or I'[%')(u) (the three are considered no difference ). It is easy to
see that the concept of stop-loss transform in [6] ( see page 25, definition 3.1.4 in [6]

) is the special case of definition 1.1 when n = 1.



The following corollary then becomes obvious.
Remark 1.2 [I"(0) = E(X"), n = 1,2,--- and [1°(0) = 1.
Example 1.3 Prove that
O (y) = /°° F(z)dz. (1.3)
Proof. Let n =1 in (1.1} and take integration by parts, we have

N0() = E[(X - u)4]

:/:o(:z:-udF - [ @~ wdF(z)
~(z - u)F(z) |2, + um‘ﬁ( )dz
=/u°°7(x)dz. :

Note that in the above proof we used the following equation:

lim (r — u)F(z) = 0.

T~0

When E(X) < oo, the above equation always holds (see proposition 1.4. Letting
n = | in proposition 1.4, we get the above equation). For convenience to use later,

we prove a more general result as follows:

Proposition 1.4 If nonnegative random variable X has a finite nth moment, then
Jim (z - u)"F(z) =0, Vu>0, (1.4)

where F(z) is the survival function of X.

Proof. Because the nth moment of X is finite, we have

lim ["yrdF@) =o0.



Hence

Jim (= - w)"Fl2) < Jim ="F(2) < lim [~ y"dF(y) = 0.y

z

Example 1.5 Suppose E(X?) < oo, then

E(X?) =2 /°° % (u)du. (1.5)

0

Proof.

E(X?) = /0°° PdFx(z) = —/Ow 2dFx(z).

By using integration by parts and then (1.4) ( let © =0 in (1.4)), we have

E(X?) = 2/°° cFx(z)dz = -zfow(ﬂ(x)/: dyldz

// Fx(r)dzdy = / [Im

In the above proof we interchange the order of integration and use our results from

Example 1.3 to complete the proof. g

The following recursion formula for the nth stop-loss transforms is significant for some

later results.

Theorem 1.6

M (u) = n/oo ne—Yz)dz, n=1,2,---. (1.6)

u

To prove this theorem we need the following lemma which has its own meaning and

can be used in other occasions.

Lemma 1.7 Suppose F(z) is a distribution function. If function f(z,y) satisfies the

following conditions:

of(z,y)
Oy

exists,

(2)



(b) When Au is in some neighborhood of 0, say (—a,a) , we have

| flz.u+ 8) = f(z,u)
Au

| < g(z),

where nonnegative function g(z) is Stieltjes integrable on [0, u] with respect to the

distribution function F(z), i.e.
/ * g(2)dF(z) < .
0

(¢) lim If(J-',y)

|z—y|—-0 T —yYy

|= 0. Then

d df(z,u)
= [/ f(z, u)dF( )]_/0 LR (a). (1.7)

That is, we could place the derivative of the left-hand side of (1.7) into the integration
of which the upper limit is variable u.

Proof. According to the definition of derivative we have

[ fz i)

= lim -—{/ " fle,u + Au)dF(z) —/O"f(z,u)dp(x)}

Au—0 Au
T v f(z,u+ Du) - f(z,u) . utdu f(z u+ Au)
= Jim, ] R AP+ i, [ SRR
= A+ B,

where A and B express the first and the second limit above, respectively. From
condition (b) we know that the integrand in A satisfies the condition of Lebesgue’s

convergence theorem, so the limit can be taken into the integration, that is

A= j af(:” 0S(2:u) gy,



From condition (c) we have

1Bl =1 Jim [0 LERE B p
o [ b

Now we prove theorem 1.6.

Because of E(X™) < oo, we know

U— o0

lim /°°(x — w)*dF(z) < Jim /°° " dF(z) = 0.

So,

™ (00) = lim /w(x — u)*dF(z) = 0.

[f the following equation holds,

L {1e(w) = —nIT-(w)

du ’
integrating both sides of (1.9) from u to oo, we would then have

/oo iH(“)(:z:)d:z: = —n /oo *=1(z)dzr.

dl’ u

That is,

™ (00) - ™ (u) = —n / = =1 (z)dz.

u

By (1.8) we have

M(u) = n / ¥ I (2)dz.

u

We need only then to prove (1.9) true.

(1.8)



At first we prove (1.9) for n > 1. We set f(z,y) = (z — y)* in lemma 1.7. Then the

condition (a) of lemma 1.7 holds. Furthermore,

flz,u+ Au) — f(z,u) = (z —u—Au)* —(z —u)"

| Au - Au |

= 'A—[ Cl(z — u)* " Du + Ci(z — u)™ (L) +

+(—1)*Ck(z = u)* B (Au)* + - + (-1)"(Lu)"] |

n
< In(z—uw)* [+ Y Chlz —u |79 Au |7,
k=2

n!

kT
where C5 = Hn R

If £ and u both take values in finite intervals, without loss of generality, we assume
the interval is [0, A], and | Au |< 1, then the right-hand side of above equation is
bounded. If we let G denote this bound, then we can take G as g(z) in lemma 1.7

and the condition (b) of lemma 1.7 holds. Furthermore,

lim | f(z.y) |= lim |z—y|*'=0 for n > I.
|z—1]|—0 -y |z—y|—0

So the condition (c) also holds.
In the following we use lemma 1.7 to prove formula (1.9) for » > 1. In lemma 1.7,

the interval of integration is 0 to u, but now we need the interval of integration to be

u to co. We begin as follows:

0™ (u) = /°°(z - u)"dF(z)

u

= °°(I —wdF(z) — [ (z - u)dF(a)

= j °° > _1)*Ckz Rk dF / (z — u)"dF(z)



= S (~DFCEHEXH) - [*(z ~ u)dF(2)

k=0

= I(u) - J(u),

where [(u) denotes the sum and J(u) denotes the integral at the right-hand side

above . Taking derivative of [(u) and J(u) respectively, we have

L Iw) = Yo (~DAChkut E(X™)

=-—n E(—l)‘C,‘;_lu‘E(X""I“) (1.10)

=0
- —n /Ow(x — u)™'dF(z).

And by lemma 1.7,

d © u
duJ( = 2%[/0 (z — u)"dF(z)] = —n_/(; (z —u)*"'dF(z). (L.11)

Ccmbine (1.10) and (I.11) we have

%H(")(u) = —n(/om(.r — u)"dF(z) — /0"(-_n — w1 F(2)]

=—n /m(x ~ w)*UF(z) = —nlID(w).
That is formula (1.9) which holds for n = 2,3,--.. So theorem 1.6 also holds for

n = 2,3,~--. In the following we check theorem 1.6 directly for n = 1. Taking

integration by parts,

M) = [ (2 -uw)dF(z) = {~(z — w)F(z)} [ /°° F(z)dz

Thus theorem 1.6 holds for n = 1. The proof of theorem 1.6 is complete. g

Corollary 1.8 A distribution function F(z) (or survival function F(z)) and its nth
stop-loss transform (n is an arbitrary nonnegative integer) are determined by each

other.

10



Proof. When n = 0, H;?)(:r) = F(z) =1 — F(z). Corollary 1.8 becomes true. When
n > 1, from (1.6) we know that Hg‘)(z) is determined by H(F’-‘_”(x). And by (1.9), we

have

. L d_,
0§ (z) = —=—M3(2).

ndr

Then we arrive at our conclusion by induction. g

1.2 Stop-loss orders and their properties

Definition 1.9. We say that X is less than Y in the meaning of the nth stop-loss
order, denoted by X <, Y, if

E(X*)<EXYY, k=1,2,---,n—1. (1.12)

M%) (w) < M§(w), Vu>0. (1.13)

When n = 0, the formula (1.12) disappears and formula (1.13) becomes

FX(“) S T:'-Y(U), Yu Z 0.
When n = 1, then formula (1.12) is trivial and formula (1.13) becomes

/m Fx(z)dr < /oo Fy(z)dz, Yu>0.

u
Now we study a class of functions with certain properites. Suppose function u(z),

—00 < z < oo satisfies: u(™*1)(z) exists except at a finite number of points, and
(=) u®)(z) >0, Vr,k=1,2,---,n+1. (1.14)

Let
Un = {u(z) : u(z) satisfies (1.14)},n = 0,1,2, ---.

11



Obviously, U,y.1 C U,, that is, classes of functions decrease with respect to n, n =
0,1,2,---

Inequality (1.14) implies that
u®(z) >0, when k is odd,

u®(z) <0, when k is even.

Let

w(z) = ~u(—z), u € U,.

Then for an arbitrary real number z and nonnegative integer k£ < n + 1, we have

w®(z) = (=1)*E(_z) > 0. (1.15)
Let
W, = {w(z) : w(z) satisfies (1.15)}.
[t is easy to see that if we let u(z) = —w(—z), where w(z) € W,, then

ul(z) = (=1)**'w®(-z),
(-1)*Hu®(z) = (-1)*w®(-2) 2 0,
so u(z) € U,. Hence we reach a conclusion that there is an one to one correspondence

between the elements of U,, and W,,.

The following theorem and its proof are similar to that of theorem 4.2.1 in [6]. But
here we add one sufficient and necessary condition, (1.17), and the proof becomes

more clear than that in [6].
Theorem 1.10 X <y, Y, if and only if

Bfu(—X)] 2 Eu(-Y)], Vue Un, (1.16)

12



if and only if

Efw(X)] < E[w(Y)]. Yw € W,. (1.17)

Proof. First we prove the equivalence of (1.16) and (1.17). Suppose inequality (1.16)
holds, we want to prove (1.17) holds. Let u(z) = —w(—z), then u(z) € U,. Hence
by(1.16) we have

Elu(=X)] > E[u(=Y)]-

That is

E[-w(X)] 2 E[-w(Y)].

Thus

Elw(X)] < Efw(Y)].
Hence inequality (1.17) holds. Similarly we can deduce (1.16) from (1.17).
In the following we prove X <,yn) ¥ <> (1.17).

(<): Suppose (1.17) holds. Let
w(z) = [(z —u)s*, u>0,1 <k <n

Then Vi < k, —00 < z < o0,

k(k=1)---(k—i+ 1)z —u)", forz>u,
w(i)( )=
0, for r < u.
and Vi > k, —0o < z < 00, wi(z) = 0.
Since w*)(z) > 0 for all positive integer k, we have w(z) € W,.. By the assumption
of (1.17) we have
Efw(X)] < E[w(Y)].

13



That is

E{[(X —u)4[} < E{[(Y — u)4]}.

Let k take value from 1 to n — I, and let u = 0, we see that the inequalities (1.12)

hold; let k£ = n, we go to (1.13). So, X <,n) Y by definition.
(= ) Suppose w'*)(z) > 0,Vk = 1,2,---n + 1, then we have the following expansion

of w(x)

w(z) =Y w"‘)([) / (x EZ " e, (1.18)

k=0

We prove formula (1.18) at first. Taking integration by parts, we have

-[) (I_'t) dw (n)()

z . d
(= nl) )] o — [ w0 S E
‘"’(0 +/ i__l)r w™ (8)dt

w™ (0 +/ (z —¢)" dw(“-”(t)

(n—1)!

(")
w +/ dw(t
kl k!

(n)
wk' * + w(z) — w(0).

k=1

Removing the terms on the right-hand side except w(z), we go to (1.18). Now suppose

X <,(n) Y we want to prove E[w(X)] < E{w(Y)]. By (1.18) we have

X (X —u)"
Elw(X)=F ——-—-—dw(") u
[w(X)] [& Xk [ (w)]
_i“’(" © g xt + £ / (X +dw(">(u)]
i K

14



(On the right-hand side above the upper limit of integration can be expanded from

X to oo, because (z — u); =0 when u > ).

By X <) Y, we know that
E(‘Xk)SE(Yk)v k:O,l,—--n,

and

E{[(X —w)s]"} < E{[(Y —u)4]"}, Vu20.

So,

= w™(0) . = E{[(Y —u)+]"} | ()
E(Y )_;_/0 dw'™ (u).

Elw(X)] < ) o ~

=0

From the above we see that the right-hand side of the final inequality is just Ef{w(Y’)].
We then have

Efw(X)] < E{w(Y)].a
Proposition 1.11. Suppose E(X) = E(Y). If X <) Y then
var(X) < var(Y).
Proof. From (1.5) we know
B =2 [T 1Py <2 [7 0P ()dy = E(Y?).
Hence, by E(X) = E(Y),
var(X) = E(X?) — [E(X) < E(Y?) = [E(Y)] = var(Y).
Theorem 1.12. If X <,yn) Y, then

X <si(m) Y, Vm >n.

15



Proof. Because of the decreasing property of U, with respect to n, when m > n, we

have U,, C U,. By theorem 1.10 we arrive at our desired conclusion. g
But if X <,im) Y, then for n < m, it is not required to have X <y, Y. This can
be seen from the following example.
Example 1.13. Suppose
Pr(X =1/2)=Pr(X =1) =03,
Pr(Y =1/3) =02, Pr(Y =1)=03.

then we have
(1, for0 <u<1l1/2,

Fx(u)=4{05 forl/2<u<]l,

0, for 1 < u,

and
(1, for0 <u<1/3,

Fy(u)=¢08, forl/3<u<l,

L 0, for | < u,

(see figure 1.1). We see that Fx(u) > Fy(u), when 1/3 < u < 1/2. We can conclude

that X <,y Y does not hold. On the other hand, we have

/oo Fx(z)dr = /oo Fy(z)dr =0, whenu> 1,

u u

/oo Fx(r)dz < /m Fy(z)dz, whenl/2<u<|l,
and when 1/3 < u < 1/2,

/u Fx(z)de =5 —u+05x5=7-u,

/°° Fy(z)dz = 0.8 x (1 —u) = g - %u > /°° Fx(z)dz.

u

16



1 L i
0.8 -F-Y(u)
0.5 O Fxlu) ...
> U
: 1 i

Figure 1.1: The survival functions of X and Y in Example 1.13
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When 0 < u < 1/3, we have

/m Fxlz)dz < /°° Fr(z)dz.

u

&

So [P Fx(z)dz < [&° Fy(r)dr, Yu >0, and X <401) Y by definition. We see that
X <401) Y holds, but X <) Y does not hold in this example.

Proposition 1.14. If E(X) < E(Y) and 3 ¢ > 0 such that

Fx(z) < Fy(z), forz <c, (1.19)

Fx(z) 2 Fy(z), forz >c. (1.20)

Then X <al(1) Y.

Proof. Let
hz) = MP(z) ~ P(e) = [~ Fr(wdu— [~ Fx(u)du,

then we have

h'(z) = ~Fy(z) — [-Fx(z)] = Fy(z) — Fx(z).

And by conditions (1.19) and (1.20) we have

’

h(z)>0, forz<eg,

h'(:r:) <0, forz>c

(See figure 1.2). We then have
h(0) = /°° Fy(u)du — /°° Fx(u)du = E(Y) ~ E(X) >0,
0 0

18



Figure 1.2: A plot of Hg)(x) — H‘;)(x) in Proposition 1.14
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and

h(co) = lim A(z) = lim [~ Fy(u)du— lim [~ Fy(u)du=0.

From the above figure of h(z) we conclude that h(z) > 0, Vz > 0. Otherwise, if
h(z) < 0 for some z;, then there must be an intersection point of A(z) with the z-axis,
say, at point Iy, To < Z1, and k' (z) < 0 must hold for Vz > z¢, that means h(oco) =0
can not be held. See figure 1.2 for the graph of ~A(z). Now from h(z) > 0, Vz > 0,
we have 1{)(z) < T{(z), Vz > 0. So we have X <) Y by definition. g

We can interpret proposition 1.14 more easily by diagram (see figure 1.3). By
conditions (1.19) and (1.20) we know that the curves of Fx(z) = | — Fx(z) and
Fy(z) = 1 — Fy(z) intersect at r = ¢, as shown in figure 1.3. We know also that
E(X) equals the area under the curve of Fx(z) and E(Y) equals the area under the
curve of Fy(u). Therefore, by the condition of E(X) < E(Y), we can conclude that
the area of A in the figure 1.3 must be less than the area of B. Hence, for arbitrary
u > 0, the area on the right-hand side of £ = u and under the curve of Fx(z)
must be less than that under the curve of Fy({z) (marked by a shadow). That is

) (u) < I (u), Vu > 0, which is desired for proposition 1.14.
Proposition 1.15. If E(X) < E(Y), and Ja,b,0 < a < b < oo such that

dFx(z) £ dFy(z), forz<aorz2b, (1.21)

dFx(z) 2 dFy(z), fora<z<b. (1.22)

Then X <al(1) Y.
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Figure 1.3: The survival functions of X and Y in Proposition 1.14



Proof. Similar to the proof of proposition 1.14, we need to show
h(z) = IP(z) - IY(z) > 0.
We have
h'(z)= —Fy(z) — [-Fx(z)] = Fy(z) — Fx(z) = /:[dFy(x) — dFx(z)].

By conditions (1.21) and (1.22) we know that when z < a, A'(z) > 0 and h'(z)
monotonously increases; when a < z < b, h'(z) monotonously decreases; when z > b,

r . .
h (z) increases again, and

lim h'(z) = /0°° dFy(z) -/0“’ dFx(z)=1—1=0,

T—r0o0

(The graph of h'(z) is shown in figure [.4.). There must be a point ¢, such that
a <c<b and h'(z) >0, Vz < ¢ h'(z) < 0 Vz > c. Furthermore, as we have seen

in the proposition 1.14, we have

and

lim A(z) = 0.

T—+Q0

The figure of h(z) is the same as that in the proposition 1.14. Hence we have X <,

Y as in the proposition 1.14. g

When X and Y are both continuous, denoting the distribution density function by

fx(z) and fy(z) respectively, then the conditions (1.21) and (1.22) are equivalent to:

fx(z) < fy(z), forr<aorz>b,
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Figure 1.4: A plot of Fy(z) — Fx(z) in Proposition 1.15
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and

fx(z) 2 fr(z), fora<z<b.

When X and Y both are discrete, assuming their domain is {z;, z = 1,2,---} and
their probability functions are Px(z;) and Py(z;) respectively, then conditions (1.21)
and (1.22) are equivalent to

Px(z;) < Py(z;), forz;<aorz; 26

Px(z;) > Py(z;:), fora <z;<b.
Example 1.16.  Suppose X; has a Binomual(l,p;) distribution, : = 1,2, 0 <
p1 < p2 < 1. Denote d = p, — p1. And suppose Xi{a) has the distribution of a

Binomzal(l,p, + a), Xz(a) has the distribution of a Binomzal(1, p, — a), X;(a) and

X2(a) are independent, where 0 < a < ;—[. Let
X(a) = Xi(a) + Xz(a). (1.23)

Then X(a) is monotonously increasing with respect to « in the 1% stop-loss order

meaning. That is, if 0 < oy < az < d/2, then

X(a1) <aq) X(az) (1.24)

Proof. By (1.23) we have
E(X(a)) = E(Xi(a)) + E(X2(a))
=pta+p:—a=p+p2

Hence we have
E(X(a1)) = E(X(az2))-
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The probability distribution of X (a) is:

Pr(X(a)=0)= Pr(Xi(a) =0,X3(a) =0) = [l = (p1 + a)|[l — (p2 — a)]
=(l-a-p)(1 +a—~py). (1.25)

Pr(X(a) = 1) = Pr(Xi(e) = 0, Xz(a) = 1) + Pr(Xi(a) = 1, Xa(a) = 0)
=(l-a-p)(pz —a) +(pr +a)(l +a —ps). (1.26)

Pr(X(a) =2) = Pr(Xi(a) = I, Xs3(a) = 1) = (p + a)(p2 — ). (1.27)

With the condition of 0 < a < d/2, by(1.25)-(1.27) it is easy to verify that Pr(X(a) =
0) and Pr(X(a) = 2) are increasing in a, Pr(X(a) = 1) is decreasing in a. Therefore.
formula (1.24) is obtained by proposition 1.i5. g

Combining with proposition 1.11, the example 1.16 says: if the sum of success prob-
abilities in two Bernoulli experiments is a constant, i.e. p; 4+ p» = constant (this
means the expectation of success number in the two experiments is a constant), then
we can conclude that the closer of p; and p,, the bigger of the variance of success

number of the two experiments (this number is a random variable).

Example 1.17. Suppose Fx(z) and Fy(z) are two life distribution functions, the
corresponding force of mortality is denoted by mx(z) and my(z) respectively. If

there is a real number ¢ such that

mx(z) < my(z), forz <c, (1.28)
mx(z) > my(z), forz > ¢, (1.29)

and
E(X) < E(Y). (1.30)
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Then X <si(1) Y.

Proof. Let

We shall show that there exists a real number s such that

H(z) <0, forz<s,
(1.31)

H(z) >0, forz>s.

Then the conclusion desired follows from proposition 1.14.

Using the relationship between the survival function and its force of mortality we

have

H(z) = Fy(2) - Fx(2) = exp(— [ my(t)dt) - exp(~ [ mx(t)dt)

0

From this and (1.28) we know that H(z) < 0 when z <c.

From (1.30) we have
/O°° H(z)dz = /0°° Fy(z)dz — /0°° Fx(z)dz = E(Y) - E(X) > 0. (1.32)

Hence H(zr) can not be negative forever and must become positive at some point,

therefore we know that there is at least one point ¢ > ¢ such that H(¢) > 0. Let
s=inf{t: H(t) 2 0}. (1.33)

In the following we show this s satisfies (1.31).

Since H(z) is a continuous function, we have s > c and H(s) > 0 by the definition of
s. That is
[ t)dt} > e t)dt}.
exp{~ [ my(t)dt} 2 exp{~ [ mx(t)at}
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Suppose z > s, from (1.29) and s > ¢, we then have
exp{— /z my(t)dt} > exp{—/ myx(t)dt}.
Therefore

H(z) =exp{- [ my(t)dt}yexp{— [ my(t)dt}

— exp{— /0' mx(t)dt}exp{—/az mx(t)dt} >0, Vz>s.

We can see the features of H(z) in figure 1.5 where H(z) is shown as the difference

Fy(z) — Fx(z). In addition, according to the definition of s we know that H(z) <
0forr<s.g

The following example shows that the 2" stop-loss order will order random variables
more widely than the 1*¢ stop-loss order. In general, if m > n then the mth stop-loss
order will order random variables more widely than the nth stop-loss order. This is

confirmed by theorem 1.12.

Example 1.18. Let X and Y be two random variables with probability distributions

as follows
Pr(X=2)=2, Pr(X=6)=~
61 6?
and
Pr(Y =1)=1, Prv=3)="2
= _6, r = —6-
We have, 8
——u, foru<?2,
3
E[(X —u)y]= 1—%’ for 2 < u <6,
0, for u > 6.
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Figure 1.5: The survival function of X and Y in Example 1.17
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Figure 1.6: The 1t stop-loss transforms of X and Y in Example 1.18
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Figure 1.7: The 2" stop-loss transforms of X and Y in Example 1.18

30



g——u, for u < 1,
E[(Y —u)y] = ;—Fu, for ] <u <3,
0, for u > 3.
We can see that
2 5
E[(X = 2)4] =5 < = = B(Y - 2)4]

We also can see that

E[(X =3)¢] > E[(Y —3)¢] =0.

Hence neither X <,1) Y nor Y <) X holds. On the other hand, we have

92
(uz——?u-i-:;i, for u < 2,
1
E{[(X —u)]?*} =4 guz - 2u + 6, for 2 < u <6,
L 0, for u > 6,
and 2
'uz—lgu+':—3, for u < 1.
3 3
. 2 5 15 )
E{[(Y—u)+]}=<gu -Su+ for | <u <3,
. 0, for u > 3.

We can check that E{[(Y —u).]?} < E{[(X —u)+]*}, Vu > 0 (see Figure 1.6 and 1.7).
In addition, since £(X) = E(Y) = — we can show that Y <,z X, by definition 1.9.
Therefore we can conclude that the 2 stop-loss order can order random variables X

and Y but the 1% stop-loss order can not.
Next we show the maintenance properties of the nth stop-loss order.

Theorem 1.19. The nth stop-loss order is maintained under the summation of

independent random variables. That is, if

X“ <:l(n) Yiv i=1727"'ks
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where k is a positive integer, then

k k
Z-xi <sl(n)ZY;9 n=0’ lv2v"°' (1'34)

i=1 i=1
It was proved in [6] that the 1% stop-loss order is maintained under the summation
of independent random variables (see page 30 of [6], theorem 3.2.2. ). Theorem 1.19
is its generalization and the method used here for proving the theorem is completely

different from the method in [6].
Proof. We first prove theorem 1.19 for k = 2.

Suppose X; and X, are independent, Y; and Y; are independent and
X <al(n) Y;, 1=1,2, n>0.

We now use theorem 1.10 to prove (1.34). By theorem 1.10, V w(z) € W,, we need

only to prove
E[w( X, + X3)] < E[w(Y: + ¥)]-
Let

wy(z,t) = w(z +1t), (1.35)

where ¢ is a real number. Since w(z) € W,, from the definition of W,, we have

k

d
le(:c,t) =w®z+t)>0, k=1,---,n+1.

Again by the definition of W,,, we know that for a fixed ¢, wi(z,t) is a function of z

and belongs to W,. From X; <,() Y1, and by theorem 1.10, we can have that
/; w(z + t)dFx, (z) = Efwi1(X1,t)] £ E[wn(1h,1)] =_/0 w(z + t)dFy,(z). (1.36)
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Further, let

wsy(z) = Efwy (Y, 2)] =/0 w(y + z)dFy.(y). (1.37)
Since w®)(z) > 0, we have
wi¥(z) = /°° w®(y + 2)dFy, (z) 20, k=1,2,---.n+1.
(¢]

Hence w,(zr) € W,. From this and the condition X; <,in) Y2 we have

[ wl+ 9)dFr@ldfr(z) = [~ wae)dFr(e) = Elw(X:)]

< Blwa(W)] = [T ([ wly + 20y, 0)]dFr ()

(1.38)

Taking the integration of the both sides of (1.36) with the distribution function

dFx,(t), we have
LU wly+ 0dPx @ldF®) < [T wl + 0dR@)ldFe().  (139)
Combine (1.39) and (1.38) to arrive at

fm[/ y+tde.(y]de,t)</ [/ w(y + 2)dFy, (y)]dFy, (t)

This is simply E[w(X; + X,)] € E[w(Y; + Y3)]. Next by mathematical induction we

can conclude that (1.34) holds. g

Theorem 1.20. The nth stop-loss order is maintained under a compound operation.
That is, suppose X1, X2,~-+, Y1, Y2, -+, and integer valued, Ny, NV, are all independent
random variables. In addition, V; and N, have identical probability distributions.

Let

Ny N2
= inv 52 = z K

=1 i=1
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If

-Yi <ll(n) };'v 1= [7 2,4,

then

S1 <ai(n) Sa- (1.40)
Proof. According to theorem 1.10, it is sufficient to prove that
YweW,, Ew(S) < E[w(S,).
In fact we have,

Efw(51)] = E[E[w(S51) | M]]

=S Efw(S:) | Ny = n]Pr(N; = n)

n=0

= Z E'[w(XI + .¥2 + -4 X,,) I IV]_ = n]Pr(Nl = n)
n=0

=3 Elw(X: + Xz + -+ Xu)]Pr(N, = n).
n=0

The last equation holds because X1, X5, <<+, X, and N; are independent. Next, using

theorem 1.19 we have
ElXi+Xo+---+ Xa] S EYi+ Yo+ -+ Y]
Notice N; and N; have identical probability distributions, so we have

Efw(S)] < 3 E[w(Vi + Y+ - + Ya)]Pr(M = n)

n=0

= S Elw(Y, + Y 4+ Ya)l Pr(N; = n)

n=0
= E(w(S:)]-a
Theorem 1.21. The nth stop-loss order is maintained under a mixture operation.

That is, suppose random variable @ > 0 has distribution function H(a). When «
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is given, X, and Y, have distribution function F'(¢,«) and G(¢, @) respectively and

satisfy X, <gn) Ya- Let

3
I

/0°° F(t.a)dH(a),

Q0

G(t,a)dH(a).

2
n
&~

Then

F(t) <awm) G(2). (L.41)
Proof. When a is given, the stop-loss transforms of X, is
Hg?l(u) = /uw(z —u)kdF(z, a).
Taking integration by parts, the equation above becomes
0% (u) = k/um(x — u)*1F(z, a)dz. (1.42)

From X, <,n) Ya, Ya > 0, for Va > 0, we have

I (0) < MP(0), k=1,2,--,n—1, (1.43)
M) () < M) (u), Vu >0, (1.44)

Using expression (1.42), for © =0, (1.43) becomes
k/m ¥ VF(z,a)dz < Is:/co *1G(z, a)dz.
0 0
Integrating the above formula with distribution function H(«), we have

X R kT ® P ks
k/o [] z F(z,a)dde(a)Sk/o /0 251Gz, a)dzdH(a).
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Exchanging the order of integration, we have
/ = k* 1 / ¥ F(z, a)dH(a)|dz < / * kg 1 / “ Tz, a)dH(a))dz.
0 0 1] 0
Note that,
/°° F(z,a)dH(a) = | — /om F(z,a)dH(a) = | — F(z) = F(z).
1)
Similarly, we have
/0°° G(z,a)dH(a) = G(z).

Then we have

/0 = k2t 1 F(z)de < /0 " k2*1C(z)dz.
That is

n®o) < n¥), k=1,2,---,n—1. (1.45)
Repeating the steps above for (1.44), we have

N () < P w), vu>o. (1.46)

Combine (1.45) and (1.46), we have F(t) <, G(t). g

An important special case is when «a takes values in {1,2,---,n}. Denote

I, fora=1,
[,'=

0, fora#:.

and Pr(a =1) = p;, where 1 = 1,2,~-~-,n, 0 < p; <1, X%, p; = 1. From theorem

1.21 we know that if X; <,(n) Y¥;, 1=1,---,n, then

>_piF(2,i) <) Y piGl(z, 1), (1.47)

=1 i=1
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where F(z,:) and G(z,1) are the distribution functions of X; and Y; respectively. The

formula (1.47) can also be written as

Z [ X; <sl(n) Z L;Y;. (1.48)
i=1

i=1

1.3 Generalization

Now let’s generalize the concept of the nth stop-loss transforms (given by definition
1.1) and the concept of the nth stop-loss order (given by definition 1.9) to the class of
general nonnegative monotonous decreasing functions on [0,00). ( For monotonous
increasing function, assuming it has a finite limit at co, the same approach would be

derived.)

Suppose function H(r) > 0 (0 < r < oo) is monotonously decreasing, H(0) > 0
and A(r) is continuous from the right side. Without loss of generality, we assume
limy—o H(z) = 0 (otherwise, replace H(z) by H*(z) = H(z) — H(oo)). Then H(z)
has similar properties as that of a survival function : nonnegative, monotonously
decreasing and lim,_.o H(z) = 0. There maybe only one difference between them,
that is, H(0) < 1 does not hold all the time. But there is no trouble with this
difference when we generalize the stop-loss transforms of survival functions to the
stop-loss transforms of H(z), and furthermore, generalize the stop-loss order of the
family of survival functions to the family of nonnegative and monotonously decreasing

functions.
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Looking back at the definition 1.1, for n > 1 we have

Hg‘;(u) — ./uoo(l- - u)"dFX(;L') — _/m(x _ u)nd.Fx(I). (149)

In this integration, the measure introduced by Fx(z) or by Fx(z) is used. Because
Fx(0) < 1, the measure of set (0,00) is equal to or less than 1. The measure of
(0, 00) introduced by H(z) equals to H(0). This may be greater than 1, but at least
it is finite. We can define the stop-loss transforms of H(z) similar to definition 1.1.
According to (1.49), replacing Fx(z) in (1.49) by H(z), leads us to the following

definition:

Definition 1.22. Suppose function H(z) > 0, 0 < r < oo is monotonous decreas-

ing, and lim,_,o, H(z) = 0. ¥ u > 0 for nonnegative integer k, let

M (u) = —/m(z: — w)*dH(z), (1.50)

u

assuming the integral of the right-hand side of (1.50) is finite. Hg)(u) is called the
kth stop-loss transform of H(z). Similar to theorem 1.6, we can prove the following

theorem related to [‘[;’;’(u).

Theorem 1.6’

ng’;’(u)=n/ neYz)dz, n=1,2,--

u

(To prove this theorem we only need to note that the function H(z) is corresponding

to the function F(z) in theorem 1.6.).

Now we generalize the concept of the nth stop-loss order to the family of nonnegative

monotonous decreasing functions. Let
Q2 ={H(z),z20: H(z) > 0 monotonous decreasing and lim H(z) = 0}. (1.51)
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Definition 1.23. Suppose H(z), G(z) € Q. We say that H(z) is less than G(z) in
the meaning of kth stop-loss order, denoted by H(z) <,ix) G(z), if the kth stop-loss

transforms of H(z) and G(z) exist, and

/mx*dH(z) > jmz‘dc(x), i=1,2, k-1, (1.52)
0 (4]
M (v) < 1¥(w), Yu>o. (1.53)

(In formula (1.52) we note that the direction of the inequality is opposite to that in

definition 1.9, since here both of the integrations on both sides of (1.52) are negative.)

At first we look for the relationship between the stop-loss transforms of HS?)(u) and

those of X.

Suppose X > 0, E(X™) < oo. From (1.1} we know that [Ig?)(u) € Q. Then from
(1.50) we have

%) = = [ (z - wHdng )] (1:54)

assuming the integral at the right-hand side of (1.54) is finite. When n = 0, we have

ng‘(}(,,(u) = —/um(z —u)*d[1Q(z)] = _/°°(x — u)*dF(z)

u

= E{[(X —u).J*} = 0% (u). (1.55)
When k£ = 0, we have
MG () = - [~ dN(2)] = ME(w). (1.56)

In general, the relationship between the transforms of Hg?) and those of X are stated

in the following theorem.
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Theorem 1.24. Suppose E(X™**) < oo, then

nt® — 08wy, vue>o.

u(n ( ) C:-pk

Proof. By formula (1.54) and (1.9), we have

e (1)
- - / (z — u)d (z)] = n/m(.r — W)Y (2)d

[T gV @z -

+1

k+1

n

TS /.,m(r — u)**d[E " (z)]

n!

1 n
5 (u).
n+k

In the fourth equation above the following expression is used

lim I Y(z)(z — u)**t =0, Vu to be fixed .

T—r 00

The formula (1.58) holds when E(X™**) < oo, that is

/0 Z Y d Py (y) < oo.

It gives us

lim / =ty (y) = 0.

T—00 Jp
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Hence, we have
lim 7™ (z)(z - )+

T—r OO

< Jim o [ (y - 2" dFx(y)

T—vO0

< lim [y dFe(y) = 0.0
Corollary 1.25. X <,nk) Y if and only if
E(‘Xj)SE(Y'J)’ j=112a°"-n’7

and

HS?) <sl(k) H("), (1.59)
nk=0,1,---
Proof. By definition 1.22 we have

HS?) <al(k) s,

if and only if

/0°° 24 (z)] > /°° SdP(z)] i=1,2,--k— 1, (1.60)
o
and
0%, (w) < 08 (), vu>o. (1.61)
X Y

Taking & =z, ©u =0, in formula (1.57), we have

@ oy L ommigy L o ng
HH(P(O) - Coti Tx™(0) = Coti EXT)-

Similarly we have

5] R TS PP i
nn‘;’(o)'cgﬁn" (0)—C:+£E(Y ).
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Therefore formula (1.60) is equivalent to
E(X™) < E(Y™), i=1,2,--- . k—1.
Since E(X’) < E(Y?), j=1,2,+++,n, we have
E(X)<EY?, j=1,2,---.n+k—1.
On the other hand, by theorem 1.23 we have

k 1 n+k
Mo () = =T (),

n+k
and
1 n
0w (1) = =—Ty 5 ()
Y n+k

Formula (1.61) holds if and ounly if

M) < 18 (w), vu>o0.

By definition, X <,n+k) Y if and only if (1.62) and (1.63) hold. g

The concept of weak nth stop-loss order is given as follows:

(1.62)

(1.63)

Definition 1.26. Suppose H(z),G(z) € Q. We say that H(z) is less than G(z) in

the meaning of weak nth stop-loss order, denoted by H < ) G if

N (u) < T8 (w), Yu>0,n=01,-

(1.64)

We can see that if condition (1.52) is removed in the definition of nth stop-loss order,

then the definition of weak nth stop-loss order follows. The weak 0t* stop-loss order

and weak 1°* stop-loss order are no differente from the 0** and 1** stop-loss order,

respectively.
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Proposition 1.27. If H <, G, then H <,um) G, Vm > n.

Proof. By definition, we need only from (1.64) to reason that
() < NE(w), Vu20.
First we prove (1.65) for m = n + 1. Using theorem 1.6 and (1.64) we have
Hg““u)z(n+lkﬁwﬂg%rﬁz

<(n+1) [ 1§ (2)dz

°

=8 (w), Yu>o.

By mathematical induction we can get proposition 1.27. g
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2 The applications of stop-loss order in ruin prob-

ability

2.1 Surplus processes and the distribution of deficit

We denote insurer’s surplus at time ¢ by U(t), ¢ > 0 and assume that the premium
rate is a constant ¢ and paid continuously. Furthermore, we let the insurer’s initial
surplus be U(0) = u > 0. Let S(t) denote the aggregate claims up to time t. Then

the basic model for surplus processes is as follows:
Ult)=u+ct—5(t), t>0. (2.1)

We say the model (2.1) is basic because in this model the time value of money ( the
interest factor) and other factors that could influence the insurer’s surplus (such as

expenses, dividends, etc. ) are ignored.

The aggregate claims up to time ¢, S(¢), are determined by the number of claims that
occurred in [0,t) denoted by N(t), and the amount of each claim. In classical risk
theory, {NV(¢), ¢ > 0} is a homogeneous Poisson process with constant parameter
A. {N(t), t =2 0} is called the claim number process. We now denote the amount
of the ith claim by X; and assume X;, ¢ = 1,2,---, are independent and identically
distributed. This thesis is based on these assumptions. As a result, {S(t), ¢t > 0},

called the aggregate claims process, can be expressed as :

N(t)
SH)=Xo+ Xo+ -+ Xnp = 2 Xao (:

i=1

[§)
(3]
g

From the assumptions above we know that {S(¢), ¢ > 0} is a compound Poisson
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process. Formula (2.1) can be rewritten as

N(t)
Uty=u+ct~— D Xi, t>0. (2.3)
=1
Let
T=min{t: t >0, U(t) < 0}. (2.4)

[f the set in (2.4) is empty, that is U(t) >0, V¢ > 0, we let T = oo. That is, we let
min @ = oo by convention. The random variable T is called ruin time and may take

the value of co. Let

P(u) = Pr(T < oo | U(0) = u). (2.5)
This is the probability of ruin when the initial surplus equals u.

Because {N(t), t > 0} is a homogeneous Poisson process, and the amount of claims
are i.i.d., the aggregate claims in every one unit time interval are i.:.d.. and have the
same distribution as that of

NQ)

Sy =73 X, (2.6)

=1

where the random variable N(1) has a Poisson distribution with parameter A. As a
result we have

E[S(1)] = AE(X). (2.7)
Suppose ¢ > AE(X). That is, the premium paid in one unit time is greater than the

expected value of claims in the same period. We denote

C
6=/\E(X)_1’ (2.8)
and therefore
c= (1 +0)AE(X). (2.9)
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where @ is security loading. From ¢ > AE(X) we know @ > 0. Taking the expectation
of the both sides of (2.3) and using the properties of a compound Poisson process, we

have

E[U(t)] = u + ct — AtE(X) = u + 8AE(X). (2.10)

By 8 > 0 we can see that

lim E[U(2)] = co. (2.11)

Though (2.11) holds, ruin may occur in a finite period. We illustrate this by figure
2.1. In this figure, Ty, T3, <~ are the times at which claims occur. Ty is the first time
when the surplus is below zero. That is, 74 is the ruin time defined by formula (2.4).

At a ruin time T we always have U(T — 0) > 0 and U(T) < 0.

Now we study the surplus process in the situation of u = 0. By moving the t-axis
up u units in figure 2.1, we get figure 2.2. In figure 2.2, T}, T3, <~ denote the times
at which claims occur. But now 73 is the ruin time at which a deficit occurs. Let’s
denote T} = T,. In figure 2.2 we also see U(T3) < U(T3). So, T3 is the time at which
a new deficit occurs. Denote T; = T;. Similarly we have Ty = T}, and so on. We call

T; the time of the :th new deficit occurrence, : = 1,2, +--. Denote 7§ = 0 and let
Li=U(TL,) = U(T7), fT7 <oo,i=1,2. (2.12)

Then L; is the difference between | U(T;) | and | U(T,) |. We call L; the ith deficit.
We should also note that L; is defined only when 77 < oo. Therefore, when we
speak of the probability (or expectation ) of L; later, we will mean the conditional

probability (or expectation ) under the condition of T < co.
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Figure 2.1: A sample path of U(¢) with initial surplus u
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U(t)

Figure 2.2: A plot of L; with initial surplus u = 0
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From the assumption of {N(t), ¢ > 0} being a homogeneous Poisson process, we
know that the length of time intervals between two claims are independent and have
a common exponential distribution. In addition, by the assumption of the classical
risk model, the sequence of the claim amounts are also a series of independent and
identically distributed random variables. Hence, the surplus process beginning at the
time when a new deficit occurs is independent of the process before this time, and
has the same probability law as the process beginning at ¢ = 0. If we move the
co-ordinate original point to O'(T7,U(Ty)) ( see figure 2.3. The new co-ordinate axes
are marked by dotted lines), and view the surplus process beginning at 7} in the new
co-ordinate system(now the initial surplus is zero), then from the analysis above we
know that this process is independent of the process before 77 and that they have
the same probability law. Therefore in the two co-ordinate systems, the new one and
the original one, both the time at which the first deficit occurs and the amount of
claim at this time are independent and identically distributed. Hence T; — 77 and
Ty = Ty — Ty are independent and identically distributed, as are L; and L,. We can

analyze the process beginning at 75 in a similar fashion. We can now conclude that:

T:=Tr,, n=12---iid. (2.13)

and

Ly,Lyy---,t2.d. (2.14)

((2.14) means that if T; < oo then L, Lj,---, Lyi.i.d.), and that

$(0) = Pr(T: = Tr_, < 00 | U(0) = 0,T7_, < o0). (2.15)
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Figure 2.3: Sample paths of U(¢) and U'(t') with initial surplus u = 0(¢' is measured

from the time when the first deficit occurs)
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We introduce another new random variable, the total number of deficits, denoted by
M

M = max{n: T, < oo} (2.16)

By the following proposition we know that random variable M has a geometric dis-

tribution with parameter ¥(0).

Proposition 2.1.
Pr(M =m) = [(0)]™[L - 9(0)], m=0,1,--. (2.17)

Proof.
Pr(M = m)

=Pr(Ty <00, T} =Ty <00, -+, T — Ta_y <0, Ty = 00 | U(0) = 0)

= ﬁ Pr(T; — Tr_, < 00 | U(0) = 0)Pr(Tr,, = o0 | U(0) = 0)

k=1

=[»(0)]™[1 — %(0)].

The second equation above holds since T — T7_;, n =1,2,--- are t.i.d.. g

-1
From the fact of (2.14) we know that to get the distributions of L;, ¢ = 1.2,--

we only need to study L, = U(T}). Dickson, D.C.M., and Water, H.R. (1992) [2],
Gerber, H.U., Goovaerts, M.J. and Kaas, R. (1987) [4], Dufresne, F. and Gerber,
H.U. (1986) {3], etc. studied the distributions of U(T} —0) and U(Ty). Here we quote

two results from [4]. By our notations the two results can be expressed as follows:

(a)-
1

¥(0) = Pr(Ty < o0 | U(0) = 0) = 1+

(2.18)

where 0 is the security loading.
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[t should be noted that y(0) is determined by 8 only. That is, ¥(0) does not depend
on the claim random variable X (the amount of each claim has the same probability

distribution as X ) and the claim number process {N(t), ¢ > 0} when @ is given.

By using formula (2.18) we can rewrite the probability distribution of M, (2.17), as

follows:
Pr(M =m) = ()" g m =012 (2.19)
== 1+6° L+6 ST -
The second result from [4] is
(b). Ly, La,--- are i.i.d. and independent of M, the common (conditional) survival
function of L; is
Pr(L, > |T-<oo)——l—/°°?( \d 2.20)
1 z 1 - E(X) . yjay, ( .

here X is claim random variable. Denote the nth stop-loss transform of L; under the

condition of 77 < oo by I (z | T < o0), that is
N0 (z | Tr < ) = E{[(Li — 2)4]" | T7 < 0}, n=1,2,.-

Since Ly, La,--- are 2.2.d. , their stop-loss transforms are the same as that of L,. The

formula (2.20) can be rewritten as

nY(z). (2.21)

l
M (z | Ty < o) = (X

Since the deficit depends on the claim random variable, we will mark it when it is
needed. For example, if the claim random variable is X, then we denote the nth
deficit by L.(X).

Example 2.2. Denote the random variable having an exponential distribution with
parameter i by e,. We say that if T} < oo, then L,(e,) has the same distribution as
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€u-
Proof. By using the formula (2.20) we have

l

Pr(Li(ey) >z |T7 < ) = E(e.)

/m F.,(y)dy = p /m e dy = e g
cpe |
Proposition 2.3. Suppose E(X) = Py If

M (z) < M(z), V>0,

then
l 2 .
FSEX) < (2.22)
If
M (z) > T8(z), Yz >0,
then
2
B(X?) > = (2.23)
m
Proof. The left-hand side of (2.22) is reduced from the inequality of
E(X?) 2 [E(X)].
On the right side, the condition I1%(z) < (<), ¥ = > 0, implies
M (z) = /°° Fx(u)du < MY(z) = /°° e du = :—:e"“’. (2.24)

By taking integration of both sides from 0 to oo, and using formula (1.5) we get
(2.22). The proof of (2.23) is similar. g

Proposition 2.4.

E[Ly(X) | T} < o] = féfx))
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Proof. From (2.20) and (1.5) we
E[Ly(X) | T; < oo]
=/0°° P{L\(X)> z | T} < co}dz

=/0°° E_(lﬂ/; Fx(y)dydz
1

_ ® @ _E(X?)
“E(X)/o M (=)= = 5%

[n the last equation the formula (1.5) is used. g

Corollary 2.5. Suppose E(X) = —. If

\
n

my'(z) < M(z), Vz >0,

then
3 < EIL(X) | T <oo] < . (2.26)
If
0% (z) > M), vz >0,
then
ELL(X) | T} <o0] 2 . (2.27)
Proof. The inequality (2.26) can be achieved by (2.25) and (2.22) . The inequality
(2.27) can be achieved by (2.25) and (2.23). g
Proposition 2.6.
H(L':)(.7:|T{<oo)=(—1-l%, V>0,n=0,1,2---. (2.28)
Proof. When n = 0, from (2.21) we have
(x| T < o0) = HE(XZ))((I)) Vz>0.
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This means that (2.28) holds. In the following we use mathematical induction to

prove that (2.28) holds for an arbitrary nonnegative integer n.

Assume that (2.28) holds for n = k, that is

r[(k+1)(l.)
(k) - _ ____.X Yr> 2.29
When n = k + 1, according to theorem 1.6, we have

D& | T < 00) = (k+ 1) /°° My | T; < o0)dy. (2.30)

Substituting (2.29) into the right-hand side of (2.30) gives us

k+1
(k+1) - (k+1)
0 (z | T7 < o0) = k+1E(X/ I
_ @ L
(k+2)E(X)’ -

For the last equation we use theorem 1.6. According to the principle of mathematical

induction we conclude that (2.28) holds for an arbitrary nonnegative integer. g

2.2 The relationship between the order in claims and the

order in ruin probabilities

We will now apply the results we achieved for u = 0 to the study of general ruin
probability (u), where © > 0. For this ;.urpose we need to review figure 2.1 again.
For clarity, we mark L;, Ls,--- in figure 2.1, then figure 2.1 becomes figure 2.4. In
figure 2.4 we have u > 0, Ty is not a ruin time but rather the first time at which a

loss occurs. That is,

U(t) > u, when ¢t < T}, but U(T]) < u
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If 0 < U(Ty), then L, is not a deficit, it is a loss defined as L, = u — U(TY).
Ly, Ly, +++ are losses that occur successively after the first loss L,. For example,
L, = U(T}) — U(T;). If U(T;) > 0 then L, is a new loss after L,, but ruin (and

hence deficit) does not occur at this time.

Let
0, TT = oo,
L= { o (2.31)
z L,’, Tl- < o0,
=1

where M, the total number of deficits occurring in the situation of u = 0. M now
becomes the total number of the losses that makes the surplus process reach a lower
point than it has been ever before ( in figure 2.4, M = 3). Thus L is the maximal

aggregate loss. We also note that

Pr(L =0) = Pr(T; = o) = 1 — $(0) = 0.

6 >
1+46
Thus L has a positive probability at zero.

Proposition 2.7.

E(X?)

(L) = WE(X)

(2.32)

Proof. Because L;,L;, L3,--- are i.i.d. and independent of M, given T} < oo, and

when 77 = oo, L =0, we have

E(L) = Pr(T; < oo)E[fz L; | T} < o]

i=1

= Pr(T; < 00)E(M | T} < ) E(L, | Ty < oo).
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Figure 2.4: Losses occuring in the sample path of U(¢) with initial surplus u
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From (2.20), we have

E(L, | T} < o) =/0°° Pr(Ly > z | T} < oo)dz
E(X?)

__ [ nw _
= E(X)/o M (=)= = om0y

(At the last equation (1.3) is applied). We also note that

. ]
Pr(M >1)=Pr(T; < oo0) = 56
and using (2.19) we have
- L+8

Hence, we can see that

L 1+0E(XY) _ E(XY)
EL) =193 3Ex) ~ 206(X) "

1
L f

Corollary 2.8. Suppose E(X) = —
U

M (z) < M(z), Yz >0,

then
1 1
—< <
20u — EB(L) < Ou
If
MY (z) > 08(z), Yz >0,
then
E(L) > 1
— 0#'

(2.33)

(2.34)

Proof. By proposition 2.7 and formula (2.22) the corollary 2.8 follows immediately.
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Under the condition of u > 0, ruin occurs if and only if L > u. As a result we have
¥(u) = Pr{L > u | U(0) = u}, (2.36)

where ¥(u) is a function on [0, o). From now on we will call ¢(u) the ruin probability
function. Ruin probability also depends on the claim random variable. We will mark
it when needed. For example, if the claim random variable is X, then we denote the

ruin probability function as ¥ x(u).

From (2.36) we see that ¥(u) = 0, monotonous decreasing and lim, . ¥(u) = 0.
So ¥(u) belongs to Q (Q is defined by (1.51)). Thus we can define the nth stop-
loss order and weak nth stop-loss order on the family of ruin probability functions.
Limiting the definitions 1.22 and 1.26 on the family of ruin probability functions
and considering only the influence of the claim random variable on ruin ( suppose the
initial surplus and the claim number process are the same), we introduce the following

two definitions:

Definition 2.9. For nonnegative integer k, assume | f3° z*dyy(z) |[< co. We say
that ruin probability function ¥x(u) is less than ¥y (u) in the meaning of the kth

stop-loss order, denoted by ¥x <uu) ¥y, if (2.37) and (2.38) hold.
./mxide(x)zfmzidwY(x)’ izovla"":k—lv (2'37)
0 0

and

M) (w) < 0 (u), Yuxo0. (2.38)

Definition 2.10. For nonnegative integer k, assume | J5° z*dyy (z) |< oo. We say
that ruin probability function ¥ x(u) is less than ¥y (u) in the meaning of weak kth
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stop-loss order, denoted by ¥x <uwak) ¥y . if (2.38) holds.

At first we illustrate the meaning of introducting stop-loss order and weak stop-loss

order on the family of ruin probability functions.

Proposition 2.11. Suppose ¥; € 2, ¢ = 1,2, and ¢,(0) = ¥,(0), functions ¥y(z)
and ¥a(z) intersect at finite points, denoted by z; < z; < --- < zi. If there is an

integer n > 0 such that ¥x <y.) ¥y, then the following inequality holds:
Pi(z) < Ya(z), YVz> z. (2.39)

Proof. We use the method of reduction to absurdity to prove this proposition. If
(2.39) does not hold, since z; is the largest intersection point of ¥1(z) and (z), we

can say that
(z) > Ya(z), Vz> z)!

So, for u > z; we have
M (u) = ¢1(u) > wa(u) = OP(u),
and

08)(w) = [~ ale)dz > [ bale)dz = 1) (w).

By induction and use theorem 1.6" we have
0 (e ]
5 () = n/u ne=(z)dz > n/u 1Y (2)dz = I ().

This is contrary to ¥x <wsi(n) ¥y- I

Applying proposition 2.11 to ruin probability functions, we can assume that the
initial surplus is ¥ > 0 and two ruin probability functions ¥, (u) and ¥(u) satisfy
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the conditions of proposition 2.11. Ouly if the initial surplus satisfies u > z; we have
Y1(u) < Yp(u).
In the following we compare the two surplus processes. Suppose there are two surplus

processes defined as:
Ni(¢)
U(t) =u+ct - Z X, (2.40)

i=1

and
N, (t)
Us(t) =u+ect— >, X: (2.41)

i=1

And suppose {Ny(t), t > 0} and {N(t), t > 0} are homogeneous Poisson processes
with the same parameter A. For process U,(t), the claims X, X,,---, are t.i.d. and
distributed as X; for process U,(t), the claims Y3, Yz, -- -, are 1.i.d. and distributed as
Y. For process U;(t), i = 1,2, denote the first time of loss occurrence, the losses, the
total number of losses and the maximal aggregate loss by T*. Li(n = 1,2,---), M;
and L' respectively. We prove the following lemma first:

Lemma 2.12. Suppose two surplus processes U;(t) and U,(t) as defined by (2.40)

and (2.41) satisfy £(X) = E(Y). If
X <sl(n} Yv (2'42)

then

L <sl(n-1) L} n=1,2,---. (2.43)

Proof. Let 1;(u) be the ruin probability of U;(¢) and 8; be the security loading,

: = 1,2 . Since £(X) = E(Y) and the two claim number processes have the same
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parameter A, we have

C [

= l=———1l= =4 . 2.44
b1 AE(X) : AE(Y) L=0;=0 (2.44)
Furthermore,
1 1
= = = _ 2.45
¥1(0) [+0; 1+ 6, ¥2(0) (2.45)

By (2.19), we know that M;(: = 1,2) are distributed identically. By (2.31), we have

0, T = oo,
Ll = { M;
Z L,In, T < oo,
m=1
0, T? = oo,
L2 = { M,
Y L2, T <oo.
Since m=t
g

1 = 2 - = —
Pr(L'=0) = Pr(L* = 0) = 1,

we need only to prove that under the conditions of T < o0, i = 1,2,

M| Mg
Z L,ln <sl(n-1) Z Lfn.

m=1 m=1
By theorem 1.9, we need only to prove that L., <,n—1) L%, m = 1,2,--- (under the
conditions of T% < oo, i = 1,2; otherwise, there would be no L}, to sum). Further, we
need only to prove L} <n-1) L?, since L, has the same distribution as Lj, i = 1,2.

By (2.28) and (2.31) we have

%z | T < )_.M k=0.1.2 (2.46)
L! 0o _(k+1)E(X)1 =Y, L4 ) &
(k+1)
(k) 2 _ Iy (=) _
HL¥ (z|T*" <) = ———(k+ DEY)’ k=0,1,2,---. (2.47)
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The condition X <) Y implies that
I§)(0) = E(X*) < E(Y*) =0{(0), k=0,1,2,---,

and

() < (), vz>0.

By formulas (2.46)-(2.49) and E(X) = E(Y) we have

E[(L}) | T < 00] =MH (0] T < 00) = o)
! T (k+ 1)E(X)
00 _ sy e

=E[(L§)le2‘ < w]" k=07l727'°'1n—21

and

n¥'(z) . 1)
nE(X) =~ nE(Y)

n‘g}*"(z | T < o0) = = [I(L'%—l)(.r | T% < ).

Formulas (2.50) and (2.51) imply that L}, <,(m-1) L. §

Theorem 2.13. Suppose E(X) = E(Y). If
X <g(n) Y,
then
D1(u) <ai(n-1) Y2(u),

here ;(u) is the ruin probability function of U;(t), : =1, 2.

Proof. Notice that

wi(u) = Pr(L* > u),

our conclusion can be arrived at immediately. g
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In [6] (pages 65-66) it is said that X <,y Y implies ¢1(u) < ¥2(u), Vu > 0, but
X <2 Y does not imply #;(u) < ¥o(u), Yu = 0. From theorem 2.13 we see that
X <2y Y does imply ¥1(u) <up) ¥2(u). Therefore theorem 2.13 generalized the

result of [6].

2.3 Further remark

Ruin probability is an important topic in risk theory. Various transformations of a
random variable (or equivalently its distribution function and survival function) and

the theory of partial order are interesting and useful in many fields.

This thesis began by introducing the concept of the nth stop-loss transforms of non-
negative monotonous decrease function, and examined extensively their properties.
As a result, the relationship between a claim random variable and ruin probability
was established. The relationship between the nth stop-loss order and other kinds
of order that appeared in economics, queuing theory and reliability theory was not
discussed. These topics as well as the introducing of new transforms and their orders

are worth further examination.
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