
The University of Manitoba

Department of Mechanícal EngÍneerlng

COUPLED THERMOELASTOPLASTIC

FINITE ELEMENT ANALYSIS

OF AXISYMMETRIC STRUCTURES

by

Andrzej Banas

A Thesís

Submítted to the Faculry of Graduate Studies

ín Partíal Fulfilrnent of the Requirements

for the Degree

Master of Scíence

NI

ld¿,t'!!¡@*.-..?s{

{Þ ¡åé,t{íff}&Â

l,¡¡¡iL¿rríL

Arrgust , 1984



COUPLED THERMOELASTOPLASTIC FINITE ELEMENT

ANALYSIS OF AXISYMMETRIC STRUCTURES

BY

ANDRZEJ BANAS

A thesis submitted to the Faculty of Graduate Studies of
the University of Manitoba in partial fulfillment of the requirenrents

of the degree of

MASTER OF SCIENCE

o '1985

Permission has bee¡r granted to the LIBRARY OF THE UNIVER-

SITY OF MANITOBA to lend or sell copies of this thesis. to

the NATIONAL LIBRARY OF CANADA to microfitnr this

thesis and to lend or sell copies of the fìlm, and UNIVERSITY

MICROFILMS to publish an abstract of this thesis.

The author reserves other publicatiolr rights, and neither the

thesis nor extensive extracts from it may be printed or other-

wise reproduced without the author's writte¡r permission.



ABSTRACT

A temperature-displacement formulation of the coupled theory

of quasi-static isotropic thermoelastoplasticity has been proposed

along with the finite element solution procedure. The unknowns in the

finite element nodel are: nodal displacements, nodal temperatures, and

sampling points' values of índependent stress components and

equivalent plastíc strains. The theory r¡ras írnplemente<l in the form of

the two-dimensional code TTEPAPT designed to perform analyses in

axisymmetric geometries. The preliminary assessment of the approach

included three example cases.
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CHAPTER 1

MOTIVATION AND OBJECTIVES OF THIS I,¡ORK

During the past decade the research effort directed towards

designing more comprehensive and more realistic models of the

behaviour of engineering materials and structural components increased

drarnatically. Development in aerospace, nuclear, and other tech-

nologically advanced fields require neù/, more detaíled, more accurate,

and more reliable predictive tools for application in analysis and

design. As a result the finite element method (FEM), introduced some

tT¡Ienty fíve years ago, witnessed further development. I,ühi1e serving

both as a means for testing new modelling concepts and as a primary

tool in computer aided design (Ca¡), it became the most established

nurnerical technique in many engineering disciplines. The tendency to

broaden the scope of applications opened the way to finite element

codes capable of modelling various nonlínearities ancl couplings

between distinct physical fields. 0ther developments included:

trends to automation and robustness, increased sophístication in

numerical approach to the solution of systems of símultaneous

equatíons, and studies aimed at deeper understanding of the nature of

discrete field approximatíon.

In the areas of solid and structural mechanics the potential

and attractiveness of the fínite element rnethocl have been especíally

I
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recognized after its successful applications to more complex problems,

such as analyses of systems in which there ís concurent interest in

both thermal and mechanical behaviour. Stress analyses of structural

and machine components designed to serve at elevaËed temperatures are

nowadays routine procedures in industry. A typical application in-

volves temperature analysis preceding the actual stress analysis which

often includes a model for inelastic rnaterial behaviour. Variable

material propertÍes are assigned to various parts of the analysed

structure on the basis of the prevíously found temperature field, and

the entire analysis ís trsually performed wíth the help of a commer-

cia11y avaílable FE code.

The rationale of this approach ís, that modelling compli-

cations are rarely rewarded wíth more meaningful predictions,

ídentificatj-on procedures for complex models of material behaviour are

difficult, and that realÍstic analytical representation of in-service

boundary conditíons calls for further mo<lels and/or experiments. As a

result, the methodologíes popular with many FEM practitioners put

forward demands of rnodelling conservatism and stress the need for

simplified but reliable models.

There exists, however, another noticeable trend in the ongoing

development of FEM for solid and structural mechanícs applications.

It stems from the basic recognition that there ís a growíng number of

problems of current interest in many technological disciplines which

presenËly lack appropriate models for their analyËÍcal studíes" Areas

such as mechanics of metal forming and fabrícatíon processes, micro-

mechanics of flow and fracture processes in heterogenous media,
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predictíon methods of ín-servíce life and deformation, and many others

have recognízed the need for and embarked on the development of nert/

deforination models. As a rule, these new models aim at better repre-

sentation of the role materj-a1 flow plays in the overall response.

Despíte the fact that such nonelastic models do not yet offer com-

pletely satisfactory means for prediction of material behaviour in

various possible environments, theír use in finite element analyses of

structural components, is increasing. However, while novel constitut-

íve modelling concepts often emphasise the links between macroscopíc

deformation and the flow mechanisms responsible for lt, the inter-

dependence between mechanical aspects of deformation and thermal stale

of material is rarely paid the attention it deserves " Mechanistic

models, which strive to fit the ample information from material

science into the framework of phenomenological rnodelling, seem to

neglect largely the evidence of passive thermomechanical coupling,

i.e. the fact that changes in strain and/or stress fíelds might result

ín changes of thermorlynamíc state of materíal. Thís happens in

defiance of íncreasíng awareness that for many technological problerns

tr^/o \^ray coupling between thermal and def ormation states ís of

ímportance.

stability analysis at metal forming, catastrophic shear at

machíníng, and fatígue are only a few examples of such problems t55].

The existence of coupled thermomechanical phenomena in the field of

solid fueled rockets rÁras reported to be a motivatíng force for the

development of ne\^/ constitutive equations and ínnovative computatíon

methods t201. Possible relevance of coupled thermomechaníca1 analysis
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to a variety of other problems, such as fault analysis of nuclear

reactors' damping of so1íd wave propagation, deformaËion localization

after bifurcation, and generation of residual stresses, r^las also

independently stated [20r50,36] .

As seen from the above examples, the need for methods capable

of simultaneously handling deformational and thermal aspects of

material behaviour, is clear. rn this context, a ful1y coupled

thermomechanical analysis by the FE technique naturally appears as a

viable alternative to traditional approaches. The idea of such a

coupled analysis is not ne\^r, but varíorrs development efforts in this

area did not yet resrrlt in a unified and systematíc approach. Despite

sígnifícant advances in understanding the physícs of phenomena

responsible for the passive thermomechanical coupling, a general and

simple enough phenomenologÍcal model díd not emerge. Consequently,

the results obtained wíth various models are difficult to compare, and

the relevance of particular forms of coupling terms included ín

analysis has not been systematically studied and is difficult to

ASSESS "

In view of these facts, the problem of coupling the

traditional finíte element heat conduction and elastoplastÍ-c stress

analyses is approached in this thesis. The primary objective is to

show how the occurence of passíve thermomechanical coupling may be, at

least in principle, taken into account. To achíeve this objective a

simple temperature-dísplacement formulation ís proposed in the

simplified setting of sma11 deformation theory and rate independent

ísotropic hardening plastícity. The formulation is implemented in the
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form of a code named TEPAP (Thermo-Elasto-Plastic Analysis Program),

developed for the two-dimensional axisymmetric case, and ernployíng

quadrilateral four-to-nine-nodes ísoparametric elements. The

secondary objective is to gain some insight ínto the question of the

proposed formulation feasibility for applications in the area of

stress analysis at elevated temperatures. To achieve this secondary

objective three test cases are studied with the aim of assessing the

effects of coupling terms in the model.

As the final point, the research topic undertaken in this

thesís ought to be considered an integral part of the long term effort

of the Thermomechanics Laboratory of the university of Manitoba, to

develop improvecl methodologies of Finite Element Analyses.
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LITERATURE SURVEY

The effects, broadly

solíds have been of interest

termed thermomechanical couplings in

to researchers from several dísciplines

for many years. Abundant líterature exists on the topics relevant to

the subject. Since the purely physical aspects of the said phenomena

are not of main interest ín this work, most of the revíer^led publíca-

tions come from the areas of continuum and computational mechanics.

The current understandÍng of the physical basís of the coupled thermo-

mechanical effects is only briefly discussed. Finally, the revíew of

theoretical and numerical works is of necessíty restricted to those

publications which were studied by the author in the course of this

thesis vtork.

2.1 Li tere ture on Thermomechanícal Cou 1íD ng Theorv and Modelline

The classical reference sources on the thermomechanics of

solidsr e.B. Boley and I¡Ieiner t6l or Fung [15], usually contain

general dÍscussions of the phenomenological origins of coupled

therrnomechanical effects. I.Ihile layíng ground for future clevelopments

in this area, they tend to concentrate on thermoelastic problems.

Newer monographs on thermoelasticity, e.g. Nowinski [50], offer

6



7

extensive bíbliographies on the subject of coupled thermoelastic

phenomena, and a11or,r to conclu<le that nowadays their basic f eatures

are faírly well understood. rn fact, fo1lowíng an earl-y paper by

Danilovskaya If3], several analytical and many numerical solutíons of

specífic initial/boundary value problems have been reported, and neür

solutions are appearing along with the índications of nel¡r possible

applications.

As discussed by rnany authors [14r28,49], the fÍrst quantita-

tive experimental results in support of the relevance of. the thermo-

mechanical coupling during inelastic deformation were obtained by

Farren and Taylor (1925) and Taylor and Quinney (1934). Their

measurements of heat evolution during plastic deformatíon have shown

that for strains over 10% only about I0% of the work of deformatíon is

stored in a metal, while about 907. of the work leaves it as heat t401.

These results were later used by many authors as important guidance in

the constructíon of models of coupled thermoplastic behaviour

lI4r28,3Ir32l, and are also employed ín thís work for thís purpose.

Later developments in material science offered more precí-se explana-

tion of energy storage, concluding that "energy stored inside a

crystal is almost completely made up of strain energy of the total

length of dislocatíons introduced by straÍn-hardening, while the

energy storage due to point defects produced by dislocation ínter-

section makes up a small fraction of the total" t40]" since that

time, understanding of the microstructural mechanisms responsible for

the coupled thermomechanical phenomena has advanced sígníficantly, and

a good tutorial review on the physícal approach to their interpreta-
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tion may be found for example in the v/ork of Klepaczko 1271. rt

contains a general classification of the thermomechanical couplings in

metals based on the microstructural interpretation of macroscopic

effects. According to this classification, couplíng effects should be

divided into tr¡ro groups. The f irst group involves the ef f ects

attributed to the movements of an Ídeal crystal lattice and/ or to the

presence of immobile lattíce defects. These effects include both the

active and the passive thermoelastic couplings (".g. a possibility of

in<lucing stresses by applied temperature fie1d, and inducing tempera-

ture fields by applied stressíng, respectively), and the thermoelastic

energy dissipation, giving rise to the hysteresis effect during a

cyclic loading/unloading process within the elastic range. The second

group, corresponding to couplings known as thermoplastic ín the

phenomenological terminology, includes effects resultíng from the

movement of structural defects. The passive thermoplastic couplÍng

effects belonging to this group may be of tr¡ro types. The direct

thermoplastic coupling, also known aa adiabatic coupling in metal

plasticity, is associated with heat generatíon in the vicínity of a

slip band. This coupling results ín adiabatic yíe1d stress being

lower than ísothermal yield stress, and affects the hardening ability

of metals at low temperatures. The indirect thermoplastic coupling

reflects the experimentally observed sensitivíty of yield stress in

polycrystallíne metals to the hístory of temperature changes duríng a

deformation process.

The early attempÈs to consider the passive thermoplastic

corrpling ef f ects wíthín the contínuum mechanics f ramework r^rere
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summarized by Naghdi t451. These works were followed by the publica-

tions of Dillon [14], Kratochvil and Di11on 1281, and others. I,lhile

solutions of specifíc boundary problems Ì,rere not attempted in any of

these works, the observable trend \^ras an increasing tendency to

present the proposed theories using the new advances of thermodynamícs

of continuum medía. rn particular, the proposed general Èheory of

thermodynamics with internal state variables lI21 enabled reinterpre-

tation of many previously obtained results within a ner^r thermodynamic

framework. Also, following the publícation of the fundamental work by

Green and Naghdi [18] on a general theory of elastic-plastic continu-

um, many researchers such as Lee [30], began presentíng their theories

within a general setting of continuum medíum undergoing finite strains

and rotations.

Later theoretical developments took many dírections. Despite

the lack of agreement on what should constítute the thermodynamíc

framework for neTr constitutíve theories, many authors attempted to

generalize the previously proposed models to consistently include the

thermomechanical coupling effects" The series of works by Lehmann

[3]-37ì may serve as examples of such serious undertakings. 0ther

authors stressed a greater need for more comprehensive and realistic

phenomenological- models, built in such a \ray as to índicate experi-

mental procedures leading to ídentification of materíal response

parameters I291, oï suggested maintaining mícrostructural Ínterpre-

tations of additional variables (..g. internal state varíables)

introduced in the morlels [5,49].
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The mathematical aspects of coupled thermoplasticity formula-

tion based on the Zieglerts orthogonality principle 16z1 rÁrere

ínvestigated by Ylróz and Raniecki 1431441, leacling ro the conclusion

that the existence and uniqueness of the posed problem ís assured in a

wide range of material parameters. A review of the developments on

theoretical and applied plasriciry published in Ig72 tS+1 reporred a

number of solutions to various thermoplastic boundary value problerns

íncludíng some coupled ones. The rack of a satisfactory

thermodynamical theory of nonequilibríum processes, persistíng even

today, seems to be responsible for an active search for ner4/ vrays of

phenomenological macroscopic descriptions of the thermomechanical

effects ín solids. some of the authors, e.g. Guelin and Boisserie

Itll go as far as to question the origins hitherto assigned to

coupling terms ín the energy balance equation, and speculate on the

need for rnajor revísions.

2.2 ï,í f er tlrre on the Finite Element Aool ication to Coupled

The rmoelastop 1as ticí ty

The ease of íncluding the active thermoelastic coupling into

fínite element codes basecl on linear elastícity has been recognized

almost at the start of the finíte element method appearance [63]. rts

ability to correctly predict both thermal distortions and thermal

stresses in the statíca1ly loaded structural and machine components

subjected to temperature gradients had to be appreciated. The early

variational formulations of such problems, however, resisted straíght-
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forward extensions to include transient mechanical and thermal

behaviours. The appropriate variational formulation of coupled linear

thermoelasticíty, proposed by Nickell and sackmann [46], for the first

time allowed a finite element solution of coupled transíent problems.

An alternative approach proposed rater by Keramidas and ring l26j

claimed sírnplificatÍons in the variational formulation. One of the

fírst attempts to consíder coupled therrnoelasticity finite element

formulation in a general non-línear setting r^ras pursued by Oden Isz1.

usíng integral energy balances, equivalent to what is nor,r called the

Galerkin approach, he considered therrnoelastic behaviour ínvolving

both material and geometrical non-linearities.

I'Iith the introduction of the finite element inelastíc stress

analyses by Yarnada et a1. [61], various demands, mainly,from nuclear

industries, quickly stimulated extensions of the technique to include

thermal effects. The success of these formulations 123,64J placed

even stronger demands f.or more complex material constitutive models

and improved numerics in order to handle larger structures and

transient scenarios such as those consídered in the studíes of nuclear

reactor core accidents. A new generation of finite element procedures

evolved featuring ful1y non-linear kínernatics, couplíngs introduced by

temperature dependencies of material properties, and material rate

effects \L12r23,39r42,58r641. some of these procedures gained

suffÍcient acceptance to be included as textbook material [3,53,63].

Along v/ith thís development of finite element techniques for

non-linear structural analysis, the focus has shifted from the details

of formulatíon (no longer varÍatíonal) to the search for effective
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numerical solution algorithms [ 38 ,40 ,5 I , 59, 60 ] . Successful usage of

the techníque ín non-structural applications and availability of more

and more powerful computers helped to rener¡r the ínteresË in the

formulation and solution of problems involving coupled fields.

Coupled thermomechanics of solids r¡ras not one of them, however.

Published papers concerned with coupled thermomechanical analysís are

scarce and evídently lack the common theoretícal background on which

their rnodels are based. chung and Yagawa [11] postulated the validíty

of Gibbs thermodynamics over short tíme intervals, and arrived at an

incremental numerical scheme for the ca.lculation of transient response

of thermoplastic material. Rebello and Kobayashí t56] employed a

thermodynamic process formalism combined with a constitutive equation

postulated for dislocatíon densíty, in order to predict

thermovíscoplastic behaviour during compression of bulk metal. Other

authors also atternpted coupled thermomechanical rnodelling employed ín

analyses of metalformíng operations. Material flow effects r¡rere,

however, most often modelled with the use of viscous non-Ner¡rtonian

fluids, rather than elastoplasticity.

Fína11y, it should be mentíoned that on several ocassÍons

doubts \¡rere expressed by various authors with respect to the necessity

of passive thermomechanical coupling being íncluded into finite

element models of inelastic behaviour of some materials at elevated to

high tenperatures. The reason quoted was suspected insignifícance of

such effects due to the distínctly different time scales of mechanical

and thermal processes in such cases.



CHAPTER 3

PHYSICAL MODEL AND ITS SIMPLIFYING ASSU}4PTIONS

The physícal system under consideration consísts of a

structural component (or its part) made from a so1íd crystaline

material, exposed to a thermal environment and to mechanical loading.

The nature of the thermal environment is not explicitly stated, but ít

is assumed that it represents an energy source (or sink) whose

ínteraction with the system has the net effect of energy transfer

through a heat flux mechanism. Exposure to mechanical loading implies

a mechanical power flux as another form of energy exchange between the

system and the neighbouring media" Consideríng these t\^ro fluxes as

the only possible means of energy exchange wíth surround.ings covers

quite a broad scope of situations of interest in engineering

applícatÍons" They include structural components totally or partially

submerged in fluids and símultaneously subjected to the action of
pressure and convective/radiative heating or cooling. The rnodel also

addresses more idearized situations, such as those involvíng parts of
the component external surface subjected to prescribed histories of

temperature and motíon, since they also may be interpreted in terms of

energy beíng exchanged either as heat or as mechanical work.

rn order to further focus the attention on the thermo-
mechanical aspects of the behaviour of the system under consideration,

l3
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a purely thermomechanical approach to modelling interactions between

the system and its surroundíngs is also adopted for modellíng of all

phenomena wíthin the system. The following simplifying assumptions in

regard to the physical model express this point of víew in a general

r¡IAy:

(i) All non-thermal influences of environment on the

thermomechanical response of component material

are absent.

(ii¡ Non-thermomechanical phenornena takíng place within

the system and resultíng ín macroscopic deforma-

tion or termperature changes may be included in

the model with the provision that they are

represented by prescribed energy sources,

explícit1y dependent on tírne and/or. position.

The first assumption excludes from consideration all non-

thermal aging phenomena (such as corrosíon or neutron radiation damage

of material microstructure) that otherwise would be manifested by

altered mechanicaL and/ ot therrnophysical properties of the component

material.

AssrrmpÈion (ii) leads to a sirnplified paÈtern of energy flow

within the system, as it is schematically depicted in FIGURE 1. The

only types of energy stored wíthin the system that need to be

considered are the (rnacroscopic) kinetic and internal energíes with
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mechanical power flux and heat flux as theír correspondíng mechanisms

of exchange with the environment. Of the t\,ro internal sources of

energy supply, one (gravitational energy) may affect the kinetic

energy balance on1y, while the other one (elecLromagnetic energy) is

able to directly contribute to the creation (or destruction) of both

kinetic and ínternal energies currently stored within the system. As

a result, the physical model may encompass distributed forces of

gravitational and electromagnetic origin, Joule rs and ínductance

heating, etc. Implications of some further assumptions on the pattern

of energy flow within the system will be discussed along r,rith the

details of the mathematical model in CIIAPTER 4.

The following assumptions are put forward to simplify the

description of events taking place during component material evolutíon

in time, while subject to thermal envíronment and mechanical loading:

(iíi) at the outset of the process the component

material ís in its virgin, stress- and strain-free

sLate, and remains ín thermal equilibrium,

(iv¡ during the evolution process the continuity of the

component materíal ís preservedr and the process

itself is quasi-static,

(n) the temperature levels (thermal regimes) and the

stress regimes attained during the process are

such that phase transformations, phase migrations

and material composítion changes do not occur,
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(vi) material thermomechaníca1 response during the

evolution process exhibits features of rate

insensitivíty and classícal history dependence,

(vií) the (macroscopic) deformation of

material remains small in the

clr'-splacements of indívidual material

displacement gradients remain srnal1

evolutíon process.

the component

SCNSC

points

during

that

and

the

These assumptions will be explained belor,r in some detail, with

an attempt to further ídentÍfy the scenarios falling within the scope

of the restricted physical model.

From the physical point of view, assumptions (iv) (vii)

restrict considerations to sufficiently homogeneous materials under-

going slow changes and justify rnodelling of processes occuring at room

and elevated temperatures. Fracture and wave phenomena are explicitly

excluderl by vírtue of assumption (iv¡, while assumption (v) renders

solute phase rnigratÍon and solid phase transformation processes absent

or insignífícanL. Diffusion-1ike phenomena (such as moísture

ínfÍltration or solid diffusíon under combíned action of temperature

and stress) which would ímply both an additional energy transfer

mechanism and deforrnation índuced by the solute phase concentration

gradÍent' are noË modelled. similarry, phase transformations and

theír influences on borh deformation (transformation índuced straíns)

and thermal sËate of the material (absorption or liberatíon of latent
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heat energy ín the phase transition zones) are excludecl from

consideratíon. rn addítion assumptíons (i) and (v) indicate that al1

dimensional changes exhibited by the component material should be

regarded as the combined effect of free thermal expansion and stress

induced straining.

For most crystalline solids plastic deformatíon (i-.e. yíelding

in the sense of permanent deformation) is attríbuted to a flow pïocess

of crystallíne lattice defects, which are normally described ín terms

of development and propagatíon of díslocations [5 ] , while the

restorable lattice distortion is identified with reversible elastic

straining. The total deforrnatlon may be ínterprete<l as a composition

of those tr.ro ef fects [5r3] ,32]. They rnay be, in the first approx-

í-matíon, consÍdered as independent of each other [5,31,32] and the

composítion itself becomes additive when deformatíons and their

gradients remaín small. The plastic straín may then be defined to be

that component of ínefastic strain which occurs during ',zero time"

loading which denotes a loadíng input to be short enough to negate any

time dependent strain, but long enough to eliminate rate dependent

material properties [2]. Limiting consideratíon to such defined

plastic straíning is then equívalent to assumíng that the mechanical

response of the considered materíal is rate insensitíve*. Accordíng

to Lehmann [36]' when both thermal and mechanical responses are

¿ The usual notion of rate sensítivity exhibíted by the mechanical
response of a given material Ís concerned wlth the relationship
between the rate of applied loading and the rate of strain con-
sidered as mechanical response. The deformation process is said to
be rate insensitive whenever different loadíng rates imply the same
responses, with the possibilíty of varíant response rates I29J.
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considered, the notíon of material raLe insensitivity should include

(rate dependent) effects due to transient heat conduction. Material

rate insensitivity understood in such an extended sense sti1l excludes

effects lfke creep, relaxation, aftereffect and defect. annealing

phenomena [29r371. A classical case of history dependent material

response ís saíd to occur when the materíal memory for the past

deformation is nonfading, i.e. when prÍor deformation permanently

changes materíal response parameters [29]. The nonfadÍng matería1

memory is r¡ell represented by subsequent hardeníng (softeníng) of some

metals at low homologous temperatures [291.

As one may surmise from the above discussíon, assumptíons

(iii), (v) and (vi) ímpose quíte restrictive measures on the general

scenario of situatÍons which can be represented in the developed

mathematícal mode1. In partícular, without explícitly excluding

crystallíne non-meta11ic maÈeria1s, they effectively restríct the

applícabilíty of the proposed model to representlng the idealized

behavi-our of annealed metals at 1ow homologous temperatures tszl.

rn the contínuum approach to modellíng a real material

containing dislocatÍons, voids and other microstructural features is

replaced by a hornogenízed effectíve medíum. The classical ísotropic

hardening plasticíty theory offers the simplest mathematical model of

inelastic behaviour which features both the material rate insensitÍv-

ity and the classical case of response dependence on prior deformation

history Í291. such an approach, consistent with the other assump-

tions, sti1l leaves room for various effects coupling mechanical and.

ther:rnal behavíours to be included in the model. sínce the physical
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processes underlyíng these couplíngs are diversified, the problern of

their modelling is approached from the purely phenomenological point

of víew in the next chapÈer. There, it is shown that the approach

taken aids Ehe interpretaËion of the energetics of thermoelastoplastíc

behavíour corresponding to the proposed physical model.



CHAPTER 4

MATHEMA TICAL FORMULATION OF THE PROBLEM

Pre ímin iderations and Notation

The solid medium under consíderatíon is assumed to occupy a

reg íon R of a three-dímensional Euclidean space, where a space-

Cartesian coordinate system x, (í = I1213) is defined. Relative

s coorrlínate system the posítíons of material particles are

esented by their Cartesian coordinates x., and their displacement

by the Cartesían component" ti = ur(x, 'x2'x3' Ë). In

ce with the prevíous assumptions the medium is said to undergo

linearizednltesimally) smal1 deformations. As a result, the

tics nay be used in all considerations, obvíatíng the need to

uish positions in the initial (reference) and the current

ormed) configurations, and to <lifferentiate between material

iangean) and spatial (Eulerian) descriptions of motion" Adopting

:indicial notation for Cartesían vectors and tensors, the basic

tÍc relationship, í.e. the relation between strain and

ement vector components, may be written as:

e k". +
¿ LtJij
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u. .)
.'1tI

(4.1.1)
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the indicies

resT,ect to the

following commas denote partial dífferentiatÍon

índicated coordinates. In addítion, all indices

ted ín monomial terms ate to be summed over their adrnissible

according to the Einstein summation convention' Temporal

rentiation is denoted by a dot placed over

íty, and a typical rate expressíon becomes:

the differentiated

lrir,j * ij,r) å,'r.,i * 'i,i) (4.r .2)
e ..

r_J

e the particle I s velocítY is:

v.
1

u.
l_

(4.1.3)

e convective effects cannot be accounted for within the assumed

inguish between naterial and localk, one does not have to dist

diff erent iat ion .

The basic constitutive kínematic assumption, underlyíng the

ire t.heoretical and numerical

concerned with the additive

formulatíon presented in this thesis '

clecomposition of the total strain

(p1astÍc) Parts:or into elastic and ínelastíc

1J

(e)
1J

*e (e)
íj

(4.r .4)

an immediate conclrrsion, the addítíve decompositíon of the strain
oor rate (or strain rate tensor) e

1J
follows:
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ê e
(
1

e
j

) + ;fl>
1J

(4.1.s)
aJ

The following sections are devoted to the presentation of the

theoretical background necessary for the development of the coupled

temperature-displacement formulatíon of the thermoelastoplastic

analysis. Physíca1 interpretations, which are helpful in understand-

ing the phenomenologícal nature of the thermomechanical couplíngs, are

atternpted whenever possíb1e. The derived equations are applícable to

axisymmetrical analysis ín the cylindrícal coordinate system after

replacing the Cartesían components of vectors and tensors with their

contravariant cylindrical components, and replacing the partíal dif-

ferentiation with the covariant dífferentiation in that system tl5l.

The transition to the physical components, usually employed in

practÍcal finite element analyses, ís then fairly straightforward to

accomplísh.

4 2 Bal ance Principles of Con t inuum Thermomechanics

The balance prínciples of interest ín continuum

thermomechanics are conservation of mass, balance of linear momentum,

balance of angular momentum and balance of energy. Their global

(integral) forms refer to any arbítrary portíon of the body under

consideration, and may be summarized as follows:

(i) Conservation of Mass:

d Í pdV
dt

V
0 (4.2 "r)



(ií) Balance of Linear Momentum:

d j ov. dV
V1dt
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(4.2.2)
V

pbrdV+/tids
S

p(r+b. v. )¿v +

(iíi) Balance of Moment of Momentum:

d
dt J e.., x.pb. dV + J e... x.t. dS

v r-JKJ o s r.JKJ K
(4.2 "3)dVpv.f e.., x.

V lJK J k

(iv¡ Balance of Energy (Fírst Law of Thermodynamics):

d I
V

In the above equations all íntegrations extend over the volume

v or the boundary surface s of an arbitrary portion of the region R

occupied by the body, and the symbols used denote:

p - mass density,

x. - spatíal coordinates of body particles,

v,. = å* - velocity field of body particles,11

b_. - distributed body forces per unit mass,1

ti - surface tractions (distributed surface forces per unit area),

e - internal energy densíty,

r - rate of ínternal energy generation per unit mass,

q - influx of internal energy through the surface S,

e.., - Dermutatíon tensor.
1-'l K

Equations (4.2"L-4) represent balance principles for the

classical model of contínuum and invoke a simple model for the

production and the exchange of momenta and energy.

dr p(e + ltrr.rr)dv = I
V

! (t,v.+q)dS (4.2"4)
stt
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In thermomechanics, the energy stored in the system is assumed

to be the sum of the (macroscopic) kínetic and ínternal energies. The

net production of these energies can be aecornplíshed through

conversions wíth the gravitational and electromagnetic energies,

represented in the energy balance equation (4.2"4 ) by the net

production Íntegral with volumetríc densíty o(brv. + r))*. Sími1ar

production integrals appear in the linear and the angular momentum

balances, indícating possible contributions of gravitational and

electromagnetic fields to momenta changes.

In addition to the net productions, the changes of energy and

momenta stored wíthin the material volume V, may take place through

exchanges with surrounding media, represented by the boundary

integrals in balance equations. The transfer mechanisms of línear

momentum and ínternal energy require addítíonal models to relate the

surface densities ti and q to quantities independent of the surface

orientatíon. Irtrhen the tractíon vector ti is referred to a surface

whose exterior normal has the components ri, the Cauchyts stress

princíp1e defines the stress tensor through the relationshíp:

t. = o..n.1 1JJ (4.2.s)

Volumetric sources of kinetic energy pbivi may be of gravitational
or electromagnetic orígin, whíle the äeñsity of int.ernal energy
production pr accounts for conversions between internal and
electromagnetíc energies (see FIGURE l). By specifying b., and r as
functíons of position and time, without regard to the pr'esence of
other bodies or theír parts nearby, the effects of mutual
gravitation and mutual radiation are excluded t571"
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Sinilarly, the internal energy transported across a unit area

of the same surface rnay be related to the ínternal energy flux vector

Ç, through the relationshíp:

q = -qin.

pr dV

independent of each

transfer processes

(4.2.6)

(4.2.8)

other, but

within the

Assuming further that internal energy transport involves mainly the

transport of thermal energy (as a subclass of internal energy), vector

q. becomes the heat flux*.-1

The balance of energy in equation (4.2.4) may be transformed

to the more convenient form [15]:

(4 .2.7 )

representíng balance of internal energy alone.

substracting (4.2.7) from (4.2.4), a separate balance of

kinetic energy ís deríved:

d Í dV

åtl'"uu=l s..v. .dV + f1J lrJ 
V

+¡qdS
S

+!
S

t.v.dS1l_dV
1dt

.1
0(7 v-v- )dV = -"1

V
o..v

1J 'i
+ .f ob. v.

v 1l-V

Equations (4.2.7-B) are obviously not

offer addítional insight ínto the energy

* rnternal energy flux q* may take the form of a heat flux and other
types of fluxes. Mígrätíon of díslocations and diffuston of solute
species are examples of internal energy fluxes that do not
constÍtute heat flux t301.
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system. Interpretation of these equations ín terms of the transport

of internal and kinetic energies índícates the manner in which mutual

conversíon between them takes place in the body. Clearly, the first

integral on the right-hand-síde of the equation (4.2.7), represents

that part of the kínetic energy stored within the volume V which is

being converted ínto the internal energy. The conversion process

takes place 1oca1ly, whenever stress povrer oijrirj becomes positive

sornewhere in the body. Negative value of oijtí,j indícates Lhe

opposite process of loca1 creation of kínetic energy at the cost of

internal energy decrease.

The mutual conversíon process described above lies at the

bottom of what is termed the passive thermomechanícal coupling. Since

this conversíon is known to be only partially reversible, gíving rise

to internal dissipatíon phenomena, the problem of how to determíne

which part of the converted kínetic energy is stored in the form of

recoverable ínternal energy, arises. The díffí-culty of tackling

ínternal díssipation exclusively on the basis of continuum approach

rnay be in part attríbuted to the fact that no uníversal balances for

internal energy subclasses (such as straín and thermal energies) are

available and consequently, the forms of their mutual conversions have

to be postulated.

The pattern of internal transfer of energy wíthín the body is

simplífíed in the case of a quasí-static process. By definítion, a

quasi-statíc thermomechanical process takes place whenever velocities

of all the body particles vary slowly enough to justífy disregarding

their acceleratíons. This condition is, however, equivalent to the



assumption that kinetíc energy density

during the process. Understandably'

conserved in the global sense:

remains

the kínetic
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time-invariant

energy is then

v.v.1t_
1

z

d

.lpedV=,|p(b
VV

(| o'r.,, ) dv = o (4 .2.e)
dr

V

and the global balance of energy takes the form:

d ,V, * r) dv + J (trv, + q) dSl-1 s

(4.2.10)
dt

All the kinetic energy net production and net exchange with the

surrounding is ínstantaneously converted into the net production and

net exchange of the internal energy. The thermomechanical process is

transient only wíth respect to internal energy changes, while the

motion of the body ís approxímated as steady state'

The loca1 (differential) forms of the balance principles are

easíly derived from the global statements (4.2.1-4) through subsequent

transformations of all surface integrals into volume íntegrals (using

relationships G.2.5-6) and applyíng the divergence theorem), and

taking advantage of the arbitrariness of material volume V and assumed

continuity of all field variables t15l'

The moment of momentum balance equation (4,2.3) may then be

shown to lead to the requirement of stress tensor symmetry:

6-. = o.,r-J Jl
(4.2"1r)
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while, ín the quasi-static case, equations (4.2.2) and (4.2.4) yield

loca1 equilíbrium and ínternal energy balance equations:

o.. + ob.lJ rJ 1
0 (4.2.12)

(4 .2 "14)

de
dr o.,v, . * pr - q.].J lrJ '1r1 (4 .z.tE)x

I^Jithín the f ramework of sma11 def ormation theory and

linearízed kinematics, and under the prevíous1y stated assumptions,

the mass of the body is always conserved both globaly and locally.

The mass conservation equation (4.2.1) becomes an identity, and the

densíty field must be prescríbed, usrrally as a function of posítion

only:

p

p P(x )
1

Equatíon (4.2.I4) is then used Ínstead of the local mass conservation

(1oca1 continuity) equation.

In general, the local balancing approach reduces the nurnber of

scalar functional balance equations from eight to four, addíng four

independent algebraic equaríons represenred by (4.z.rr) and (4.2.L4).

* Using the syffnetry
definition of the
verified that

property of the stress tensor (4.2.II) and the
strain tensor rate (4.1.2) it may be easily

e (4.2.r5)ijog. .v.lJ ltJ 1j
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The simple forms of these equations al1ow the elimínation of mass

densíty p from further consideratíon, and the retention of only six
índependent cornponents of the stress tensor, namely o1l, o22, o33,

or2, ot, and orr'

4.3 Seconrl Law of The vnam]-cs and Balance of En troDy

The second 1aw of thermodynamics is usually postulated ín

continuum mechanics ín the form of the Clausius-Duhem inequaliÈy [15]:

d I
odr /psdV).r prdV+/

S
åo ot (4.3.r)

V

where s denotes the specÍfic entropy (i.e. entropy per unit mass), o

ís the absolute temperature, and g = T + To, with To and r being the

reference temperature and temperature change, respectívely.

The ínequality (4.3.i) is often regarded as a form of generar

constraint imposed on every conceivable physical process that may

involve both reversible and irreversible phenomena. Then, it may be

utílized to derive restrictions which must be obeyed by any postulated

constituti-ve relationships. Asíde from this, ínequality (4.3.1) may

be considered as an "íncomplete" balance of entropy. rn view of the

earlíer stated assumptions, the heat flow q which represents the only

mode of ínternal energy exchange between the material volume V and its
surroundings is also consídered to be the sole mechanism of entropy

exchange. The entíre net entropy supply across area s per unít tíme

is represented by the surface íntegral in equation (4.3"1). Therefore

V
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introducing the

density yr the

equaLion:

notion of ínternal (írreversible) entropy production

according to theentropy of the body is balanced

d JPsdV= *q ¿s
vdt

V

ydV+ T

S

(4.3.2)
V

Since any irreversible generatíon of entropy is always

accompanied by some changes of internal energy (see FIGURE I and

References [ 15] and t5Z 1 ¡, it is conveníent to relate the

corresponding phenornena" The entropy production density may be

represented as the sum of three terms:

Y= å,o -
I
ã qi.o (4.3.3 )

accounting for the irreversibilíty assocíated with:

- the conversion of kinetic energy into internal energy,

internal energy (i.e. heaÈ) propagation withÍn the body,

- volumetric supply of internal energy from ínternal sources

The internal

llzl, may be

conversion of

dissípation function D, introduced by Coleman and Gurtín

aimed at accounting for the irreversible rnode of the

kinetíc energy into internal energy. It may therefore

passive thermomechanicalbe expected to

coupling ín the

directly contríbute to the

f.nternal energy balance.
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IntroducÍng (4.3.3), (4.2.5) and (4.2.6) inro (4.3.1) and

(4.3.2), and applying the dívergence theorem, the global forms of the

clausius-Duhem inequality and the entropy balance equation become:

,t
io (o-åeio,i)dv>o (4.3.4)

d /PsdV= I
0dt Í

V

( D + Pr - qirí) dV (4.3.s)
V

The 1ocal forms of (4.3.4) and (4"3.5) are:

D - I q.o > olJ -1 ,1 -
(4 .3.6)

dsp0ã;=D+or-Qí,i (4.3"7)

Equation (4.3.7) wíll

constitutive theory of

be later employed ín the presentation of the

therrnoelastoplastic behavÍour.

4.4 tituti ations of Isot ro ic Thermoelasto 1as ticit
The irreversible nature of phenomena involvíng inelastic and

nonisothermíc deformations makes it expedíent to employ a thermo-

dynarníc framework for constítutive modelling of real materíals and

processes. rn particular, a thermodynamíc formalism seems to be

essential for formulation of the theory whÍch pays special attentíon
to the effects usually consídered secondary, and therefore neglected,

in order to systematize the developnent of the constitutive rnodel(s).
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The choice of such a thermodynamic formalisrn to be ernploye<l is not an

easy task, for the therrnodynamícs of írreversíb1e (non-equilíbrium)

phenomena continues to remain a controversial area, where "there are

nearly as many approaches as authors in the fleld" t36].

An approach to the thermodynamic descriptíon of írreversible

behaviour of materials, whích al1ows it to remaín wíthin the

phenomenological framework of continuum mechanics, but appears to be

able to cover quite a wide range of physical phenomena, was developed

in a series of recent works by Lehmann 131.r32r33,34r35r36,371. His

approach combines t\,ro thermodynamic formalisms previously used in

thermornechanics of solids. These are the state variable and thermo-

dynamíc process approaches. The theory ís based on the fundamental

assumptíon that each (infinítisemal) materíal element mây be treated

as a 1oca1 thermodynamic system t36]" As a result, the postulated

constitutíve relations in general consist of both equations of sEate

and relationships derived from the process description. Since

Lehmannts approach clearly delineates the role which the thermo-

mechanical couplings play in a constitutive rnodel for a solid

materíal, Ít will be used here for the presentatíon of the simplest

case of isotropíc thermoelastoplasticÍty. The development of

equatíons of state, deríved within the scope of the thermodynamic

state variables approach, will be followed by the development of

evolution equations origínatíng from the thermodynamíc process

descríptíon. The díscussíon on the constitutive rnodelling of the

passive thermornechanical coupling, which appears ín the internal

energy balance equation, could then be fol1owed.
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4.4.1 Ecuatíons of State

The thermodynamíc state f ormalism T¡ras developed as an

extension of the classical therrnodynamícs to the non-homogenous

systems remaining close to the thermodynamíc equí1íbrium, usíng the

notíons of thermodynamic state and state variables as prirnítive

concepts of the theory l3r r32l . The assumptÍon regardíng the

treatment of materíal elements as local thermodynamic systems leads to

the description of state by instantaneous values of a finíte number of

independent fíeld variables. I'Ihen other state varíables are

introduced, they are always related to the set of independent state

variables through algebraíc equations known as equations of state.

The decision in regard to the number and nature of independenÈ

state variables ls based on by virtue of the intended generalíty of

the constitutive theory. rt is usually preceeded by quesËioni-ng which

physical quantíties may be uníquely associated wíth a given thermo-

dynamic state. For example, the classíca1 model of thermoelastic

behaviour requires one scalar and one tensorial (of second rank)

independent state variable to descríbe the thermal and deformational

aspects of thermodynamíc state. The specific entropy s or the

absolute temperature 0 is the most frequent choice for the thermal

state índepenclent varíable, while the deformational state is usually

descrÍbed by the independent components of either the stress tensor

o+ ¡ or the elastic strain tensor .Í:). rn the case of ínelasticrJ -ij
deformation, changes ín the internal material structure occur in

addítion to thermal and dimensíona1 changes (on the macroscopie

scale), indicating a need for addítional scalar anð./or tensoríal state
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varíables. The ísotropic hardeníng rnodel of plastíc flow, exclusively

used in further considerations, is based on one ad<lítíonal scalar

variable K' which may be íntroduced either as the strain-hardeníng or

as the work-hardening parameter* [8 ,r9 ,29 r 53 ] . The simplest

plasticíty model aecountíng for hardening anisotropy (kinernatic

hardening model) would requíre extending the set of independent state

variables to include the independent components of another symmetrical

tensor of rank two.

If the efastíc strain te 
(e)

rnsor ei¡'r the absolute temperature 0,

and the work-hardening parameter K are selected as independent state

variables, than all other state variables, such as the specific

internal energy e, specific entropy s or stress tensor oij, become

functíons of the independent components of rÍ?), as well as 0 and K.'r.J
Then, the derivation of the constitutíve relatíonships ís best

facilitated by the use of the specÍfíc free energy (also ca11ed

Helmholtz function) rp, whích ís formally defined as:

Q(e
( e
j

)
e r) = e(e

(e)
ij' 0 r) - 0 s(e

(e)
íj'1 o' r) (4.4.r)

Açgqrding to Lehmann [:t1, neíther the inelastÍc strain tensor
eli'nor the total strain tensor E.¡¡ does qualífy as a state
.råJi"¡t", and rherefore 

"rr,r*-bãiJ;i"dj in the ser of
independent state variables. The reason quoted is the
experimental evidence índicating a possibílíty of attaíning very
different states of hardeníng correspondíng to the same values of
ínelastic (or total) strains. usage of either the straín- or thework-hardening parameter depends on the postulated evolution
equat ion "
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Its tirne derívative may be computed either as

dq
dt

de_
dr o*å S

go
dË

(4 .4.2)

or as

gE-
dt

.a !¿

^ (e)
de. .

1J

'(e)
1-l

_?9.
â0

arþ

ðr
a

+ 0+ K (4.4.3)

Elimínating the internal energy and entropy rates of change in (4.4.2>

with the use of balance equatíons (4.3.3) and (4.3.7) leads to the

f ollowing equation:t:

p 4r-
dt

'(e)oij t ij
, .(p)
T o..Ê..lJ AJ

-psO-D (4.4 .4)

Assumíng further, that

assocíated with plastic

elastic povrer component),

internal energy díssipation is exclusíve1y

not includedeformations (i.e. that D

comparison of (4.4.3) and

does

(4.4 .4 ) yields :

t ij p
arl

^ (e)
de.

r_J

(4.4 .s)

a{,

a0
(4 .4.6)

'(p)o..e.^.lJ T-J
-D p

a{., a

K (4.4 .7 )
ôrc

Using the ídentíty (4.2.15)
decomposition (4.1.5)

* and the straín rate tensor
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Equations (4.4.5) and (4.4.6) defíne the dependent state variabl"" oij

and s as functions of índependent state varíables, and are known as

therqíq and caloric equations of s tate . respectively.

Equation (4.4.7) involves quantities other than state

varíables, and accordíng to Lehmann [:01, should be consídered as the

additional thermodynamíc requirement (the other being Clausíus-Duhem

inequalíty) wíttr whích the thermodynamic process description should be

compatíble.

To make use of the thermic and caloric equatíons of state the

specific free energy funcríon t(rÍ;),0, r) does not have to be

explicitly specified. It would be sufficient to postulate the

explicit forms of rhe dependencies "rr,.Íi),0,*) and s(rÍ;',0,r). rn

practice, however, another dependent state variable, known as the

specífíc heat capacity at constant elastíc strains and internal

parameters, and defined as

(e)
âs(e o, rc)

a0
(4.4.8)

is postulated (from experímental measurements, for example) ínstead of

the specífíc entropy s. Equation (4.4.8), although distínct from

(4.4"6), is also sometimes called the caloric equation of state.

The prevíousIy assumed independence of elastlc deformatíons on

the plastíc behaviour (see CIIApTER 3) implíes no couplíng betr^reen the

state variable".Í:) rnd rc Ín the specifíc free energy functÍon1J

V(rÍ;),r,*). This, in rurn, teads ro rhe additive decomposírion

c ". 
(rÍ;), o, *) = o

u
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ü(e
( e
j

) ,0, r) ,r,(')(.Í!',r, +{, (p) (O,r) (4.4 .e)1

where U

energy.

derived

(e)
denotes the thermoelastic

Then, the thermic equation

component of the specific

of state (4.3"5) takes the

free

form

in thermoelasticity. For

there is:

the isotropic thermoelastíc

behaviour

E (e)
ô + E (e)

lTu tij 1$ <r-t )oo
(4.4.10)o..

1J tkk(1+v)(l-2v i.j ij

where 6,. is the Kronecker's delta with values of I for í=j and zero1J

otherwíse.

The thermoelastic constants: Youngrs modulus E, Poissonfs ratio vr

and the coeffícient of thermal expansion s ârê in general functions of

instantenous temperature, and To is the t.emperature of the straÍn free

reference state. Equation (4.4.r0), known as the Duhamel-Neumann form

of the generalized Hookers law [5r501 may be conveniently rewritten

as

6,.
1J

c
(e)
ij rs (e (e) (ttr)

) C
(e)
íj rs (t (p) (ttr) ) (4.4"11)rs e rS e ers rS rS

where the elastic stiffness fourth rank tensor C
(e)
ij rs l_s

C
(e)
ij rs

Ev
Tl+vXT:U vt 6. . ð

1J du<o . ô.1r JS
+ ô. ô. )1S -l r-

(4.4 .12)rs

and the (apparent) therrnal strain ís:

(ttr¡
ij ô..

1J
e o (o - r

o )o ij =aT (4.4.r3)
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4.4.2 Constitutive Relations Result ins from the Thermodvnamíc

Process Description

Despite the appeal of the thermodynamíe state variables

approach ít becomes clear that the phenomenologícal descriptíon of

inelastíc features of deformation exclusívely on the grounds of that

theory (".g. by postulati-ng the explicít form of the Helmholtz free

energy as a function of state variables) is inadequate [31]. Further

varíables are required to describe processes which occur ín the non-

equilibrium systems. These may be gradíents or rates of change of the

state varíab1es, or any other quantíty needed to specify processes

occurin¡1 in the material. Such quantities are ca11ed process

varíables and are governed by (process) evolution equations whích may

ínvolve both state and process variables [:t1.

According to Lehmann [36], the required constítutive

relationships in process descriptíon of coupled therrnoplasticity

consist of:

(i) the evolution laws for the dependent external

process varíables A1 and rij (conjugated to the

lndependent external process variables 0 and oij ).

(ii) the evolutÍon laws for the ínternal process

variables (where the internal state variable r is

selected as the only internal process variable for

isotropic har:dening plasticity).
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(iii ¡ the evolution law for the specific entropy

producti.on.

Following the símplified but common approach, which originates

from the therrnodynamics of homogeneous processes, all the evolutíon

laws, with the exception of the constitutive equation for the heat

flux gí, are postulated in the form of ordinary differential

equations* (possibly subject to auxilliary conditions). I^líth the

absence of experimental evídence to the contrary, ít is usually
assumed that heat flux q, ís independent of the hÍstory of past defor-

mation (..g. qí is not a functíon of *), and the evolution equations

for the internal staËe variables are independent of the temperature

gradient I4:1. Also, the evolution law for the specific entropy

production ís sometimes replaced by the equivalent statement regarding

the internal dissipation rate D (see equation (4.4.3)).

The evolution law for the heat flux Çí, knor¿n as the heat

conduction 1aw, will be assumed to be:

qi k0 ti (4.4 "14)

& Lehmann defines the rate-ínsensítíve thermomechanical process, as
one for which all the evolutÍon laws are of the equilibrium type,i.e. for which the rates of the dependent process variabres arerelated to the rates of independent process varíables, [36]. Thís
conditíon expressed mathematically states that all evoluËíon lawsmust take the form of homogenous ordínary dífferential equationsín the time domain. rn thís sense the rate-independent ísothermalplastícity becomes rate-dependent in non-isothermal conditíons.
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r,/here the thermal conductivity k of the ísotropic materíal may be a

function of temperature.

In víew of the separation of the total straÍn into elastic and

inelastlc parts and identífícation of the elastic strain tensor as an

índependent state varíab1e the evolution equation for the strain

tensor may be concerned with the evolution of Ehe plastic strain

components on1y. This evolutíon law, known as a flow rule_, is usually

postulated in the form of the normqllty_coqdltíon:

t âF ifF
âo ij

ifF'(p)e .'.
1J

0 and À>0

0 and À<0 (4.4.15)0

0 if F<0

whích assumes existence of a convex yield surface F = 0 ín

deviator space. It states that when the stress state of

point comes into contact with this yield surface,

outward normal

the stress

a material

result ingthe

plastic strain íncrement is along

contact t151. The yíe1d surface

degree wíth respect to the stress

widely used form for the isotropic

Huber and Hencky (known also as Lhe

ís usually assumed

deviator components,

plasticíty is due

J, flow theory):

the at the point of

to be of second

and the most

to von Mises,

F(orr, r, tl = å "i¡ "i, - å "l (4.4.16)
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The deviatoric stress tensor is defíned as

ol, = r..1J r-.1

I
5 okk ô ij (4.4.17)

and o denotes the
v

ield stress which for non-isothermal plasticity

ís a function of both the hardeníng parameter r and the temperature:

o o (rro) (4 .4. rB )v I'

It is assume<l that a relationshlp between oy, r and

deríved from the data obtained in a seríes of isothermal

tests" The evolution equation for the hardeníng parameter K,

0 can be

tensí1e

known as

the hardeníng rule provides, along wíth the temperature O, a

cdescrlption of the

f1ow. Selecting K

hardening rule is:

changing size of the yield surface during plasti

as the work-hardeni ng parameter. the appropriate

K ":.;Íf 
)

1J ].J
(4.4.t9)*

rt is known that for the von Mises-Iluber-Hencky yíeld surface

equivalent formulation of ísotropíc hardening plasticity

obtaíned if the straín-hardening hypothesis is employed

(4.4.16)

may be

Is3,63 ] .

* I{ith the usual assumption of

rhere ís rÍl)
aJ

incompressíbility of plastic deforma-

tion e
(p)
kk 0 * ,i,o)0.. * .Íf )'r KK l_-'l l_-1

e
(p)'
ij

o:.åÍf ) =lJ T-J
- t - . .'l(p)'

ij - 3 okkoi¡/ti.i "..;Í1).l-J t-J
(o o..

1J
;Ít)'

aJ

andK-
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Then, the only internal variable ís selected in the form of the

st raín-hardening (Odqvist) Darameter -(p)
e , also known as the

equívalent plastic strain. The corresponding straín-hardening rule

may be considered as the definition of the equivalent plastic straín

rate:

:(p) ,2 '(p)'(p),1/2e\P7 = (ãe\l'ell')''' (4.4.20)

The work-hardening parameter K seems to be more often employed

ín the theoretical development of plasticity theory Í43,44r621, while

the equivalent plastic strain appears to be more convenient in the

computational plasticity formulations.

Both of these hardening parameters will be employed in further

presentatlon of the constítutive theory and numerÍcal formulatíon of

Èhe boundary value problem. To avoid confusíon, it should be

stressed, however, that only one scalar hardenÍng parameter is

necessary to consider ín isotropic plasticity.

Ðuring plastic straining there is F 0 and À > 0 (see

4.4.15) , and the proportionality factor ís determined from the

consístency condítion [23] :

resulting frorn the fact that

through the stress poínt.

function are:

sr
ô0 ðt<

(4.4 "2t)
AF

at any ínstant the yÍeld surface passes

The partíal derivatíves of the yield

âFô-^-'- t. .iJr. . 11
1J

+
a

0+ r=0
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âF o:.
1J

1-- 5 ottoi¡ (4.4 "22)âo
o ijíj

AF

âr
2

5

2

5

o
ðs

v
yaK (4.4.23)

AF
ðs

v
y ð0

(4.4 .24)a0
o

and equations (4.4.11) and (4.4.15) yield:

o C
(e)
ij rs

(e rl- ^t
'(th)'-e )rS

* ðfî)
].J rs (. (e) (th)

) (4 "4.25)íj rS rS rS -e rS

Then, substituting (4.4.19) and (4.4.22-25) into (4.4.2I), and solving

f or ),, gives

(e) a '( ttr¡ ¿1
l_

e

1

)
rS

(e) (tn¡ 2
äo

v
v ô0

o

0C
11

(e e ) q!.
11

+ (e -e )o g

I rs rs rS rs -lJ

4 3 âou 
^(e)9 ov ãi- - ti¡t" qij

I
o rS

(4.4.25)

In order to obtain a more coíncíse expressíon for I it ís convenienË

to consider addítional moduli. They will be introduced in Section

4.5.1, and wíll enable L to be expressed as a línear combinatíon of

total straín and temperature rates.

The final constitutíve relatíon that has to be considered is a

statement regarding the functional form of the ínternal energy

dissipation rate D (or equívalently specific entropy productíon).

Not\,rithstanding the fact that such relationshíp forms a part of the

thermodynamíc process descríption, it ís convenient to discuss ít
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separately, along nith other coupling effects appearíng in the energy

balance equation.

4.4 .3 Colrn 1i tì Effec ts in the Enersv Ba lance Equatíon

To make ful1 use of the ínternal energy balance (4.2.13) one

has to be able to effectively compute the tíme rate of the specifíc

ínternal energy p (de/dt). The thermodynamíc framework, outlined ín

the previous sections, makes ít possíble through associating ínternal

energy rates due Ëo the temporal changes of independent state

varíables with changes of other (state or process) variables, whích

are post.ulated by the constitutive relationships. The ínternal energy

rates correspondíng to the rates of individual índependent state

varíables can often be assigned further physícal interpretatíons as

rates of the subclasses of ínternal energy whích may lead to the

identíficatíon of their mutual conversions and. arriving at their

separate balances.

For the case ín which one scalar internal state variable K,

the elastic strain rate eÍ:).rd temperature o selected as independent
r_J

external state variables, the time rate of the specific internal

energy pe also treated as a state varíable, is:

de âe
l-T")de. ,

r_J

'(e)tij +p *F+ ðe.p# (4.4.27 )p dr p

The additive decomposítion of the free energy (4.4.9) renders a

energy:similar decomposÍtion of the ínternal
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e(e
(e)
ij ,err) e

(e) (e (e)
ij ,0) + e

(p) (o,rc) (4.4.28)

Upon using the definition

equatlons (4 .4.5-B ) , it ís

components of p(de/dt) are:

of Helmholtz free energy (4.4.1) and

that the resPectiveeasy to verífy

âeO;;F
1J

'(e)e
1J

p
a.(")
;Ð

1J

'(e)¿..
r-J

(o..
1J

.lþ,:Íî, (4.4.2e)

'#å
a (4.4.30)oc0'e

âe _?.e-

âr

(p).
;ÍT'-D-pok,#,; (4.4.31 )p

âr
K=p K = 9..

1J

Subsriruring (4.4.27-31) and (4.4.27) in|o the internal energy balance

equation (4 .2 .13 ) r,¡111 Yield :

pc
a

0=0 þ;Í;' . D + po * tflr; * o' - eí,i (4.4.32)
e

Equation (4.4.32) is called coupled heat conductíon equatíon, and it

appears in símilar forms in the works of Kratochvíl and Di11on 1281,

Ranieckí and Sawczuk t55l and Mróz and Raníecki t431. The former two

works offer an ínterpretation of the term p(ae/Arc)l as the rate of

internal energy being sËored on the mícrolevel. Proceedíng further

wírh rhis rype of interpretatíon, the term pIae/ttÍ;)1;Í;' mav be

Ídentifíed as the rate of ínternal energy stored within the crystal

lattice¡ i.€, elastic straín energy rate, while p(a./aO)Ër may be

termed the rate of internal energy stored as thermal energy.
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Then, euqation (4.4.32)

thermal energy, wÍth its rate of

nay be ínterpreted as the balance of

storage equal to

following modes

a

pc- 0. The balance'Ê
equation

changes:

(4.4.32) índícates rhe of therrnal energy

exchange r¿ith the surroundings to be represented by the

heat flux q. ;

converslon with electromagnetic

(excluding the klnetlc energy) to

volumetric densíty pr;

and other energies

be represented by the

converslons with the other two subclasses of internal

energy (Í.e. with the elastic straín energy and energy

stored on the microscale).

The latter conversíons are represented in the coupled heat conducÈíon

equatíon (4.4.32) by the first three terms on the right hand síde.

The reversible conversíon between thermal and elastic straín energies

ls accounted for through the heat of elastic deformation. which may be

computed using (4.4.10), as:

ôq..
1-l ;f:)

r-J
= 0{ c

/\âo

lii"'o + 
ãõ- 

(o - ro) lu."â0

âcÍ:)
11rS
ae -o(s-T)6ors rÌ;Í:)

r_J
+

0

le
(")
rS (4.4.33)
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and which represents the (passíve) thermoelastic couplíng effect [15].

The conversion between therrnal and stored on the microscale energies

is a partially reversible and partíal1y írreversible process. rts
reversíble aspect ís represented in the balance equation (h,4.32) by

the heat of lastíc deformatÍon pe(a/âo)(a{,/a*)1, whíle rhe inrernal

díssípation rate D accounts for the írreversíble conversíon [43]. The

írreversibilíty of the ínternal dissipation process reflects the fact

that only part of the energy stored on the rnícroscale and converted

ínto thermal energy nay be converted back to its prevíous form.

Equations (4.4.29) and (4.4.31) nay be víewed as separare

balances of the elastic strain energy and energy stored on microlevel.

They do not provide any essentíally nerár information, because the

explicír forms of rhe funcrions "(")(.f!),ol and .(n)qr,0), or

equivalenrly û(")(rÍ;',r, and *(n),r,0), \¡/ere nor posrulared.

Nevertheless, the above mentioned equations, along u¡ith the coupled

heat conductíon equation (4.3.32), a1low a clear realization of the

mutual converslons between the ínternal energy subclasses. FIGURE 2

schernatically illustraÈes these processes, ínterprets the individual

terms in the balance equatíons (4.4.29, 3r-32), and ídentifíes the

various types of (passíve) thermomechanícal couplings arisíng within

Ëhe employed phenomenologícal descríptlon.

At this point, Ít ís hrorthwhÍle to note that the coupled heat

conductíon equaÈLon (4.4.32> is still ín quite a general form.

Neíther the constítutíve relations resulting from the thermodynamíc

process deseription nor the explicit form of the thermic equation of
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state lrere used ín its derívation. rn particular, no specific

assuuption regarding ínelastic behaviour, except the assunpti.on

(4.4.28) concerníng the lack of direct coupling between elastic and

inelastic deformations, r¡tas involved.

The final constitutíve relaÈionship to be postulated concerns

the internal dissípation rate D. It should be however, considered in

close connection wíth the heat of plastic deformatíon

po(a/ao)(a{,/ar)1, in view of the fact rhat some aurhors rrear rhese

quantíties together as a thermoplastic coupling in the energy

equation.

rt should be recognized that to posLulate a general but

adequate rnodel for the rate of conversion between internal energy

sËored on the mícrolevel and thermal energy is a difficult task. Many

simple approaches attempt to make use of experimental observatíons.

They lead to the following conclusions:

(1) heat ís generated when matería1 is undergoing

deviatoric deformations It+¡ t

(ii) only parr of rhe inpur plastic por¡rer 
"r, åÍT) 

o ,"
it is dissipated as heatstored, whíle

l14,30l.

most of

. (p)
o..e..
ull

t ) 0 may be concluded on rhe basis of (4.3.6) anð, (4.4.t4).



The latter observaEíon, known

ll4r28r49f, may form a basis for

dissipatíon rate:
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Taylor-Farren-Quínney effect

simple model of the internal

(4.4.34)

as

a

D 8". .;Í1)- lJ r-J

where the positíve factor g uray be, in general, a functíon of both the

absolute temperature 0 and the internal state variable r:

F t(o,r) (4.4.3s)

As quoted by many contemporary authors [17r30r40], the original

research by Taylor and Farren, and raylor and Quínney suggest that the

value of the factor I remains between 0.9 and unity.

A revíew of selected models of thermoplastíc coupling ín the

coupled heat conduction equatíon are summarized in Table I. rt

indÍcates that most models use variatíons of equation (4.4.3h) as

constitutive postulates. All the reviewed rnodels of thermoplastic

coupling pertain to símp1e nnodels of plastíc behavíour, and are

represented by no more than one scalar ínternal variable. However,

some of the therrnodynamic frameworks wíthin which the models were

developed (often not clearly stated) are not identícal to the one

adopted in this thesís. rn partícular, it Ís worthy mentioning that
some of the quoÈed models [43r44r55] were arrived at by employíng

Zíeglerrs orthogonalíty princíple in order to obtain the functional
forms of the variables conjugated to the internal state variables.
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The approach to the modelling of nonisoËhermal behavíour of

símple fsotropically hardeníng elastoplastic material as was taken by

Lehmann [3Lr32r33r34r35136,37j also differs to some extent from that
pursued ín this work. Advocatíng the idea of distínguíshíng between

the ínternal state and process variables, he proposes to negrect the

heat of plastic deformation (by postulating o*(l)(0,rc) = r). Ar rhe

same time, by employing the constitutÍve relationshíp (4.4.34) ín the

consistency equation (4.4.7), he concludes that the evolutíon equatíon

for the ínternal varíable r should be

I = (t - t)o '(p)
ij €ij (4.4.36)

which ís dífferent from the equation (4.4.r9) as postulated earlíer.

According to Raniecki and sawczuk, the reversíble heat of
plastíc deformation can usually be neglected in the applied
ËhermoplasticÍty, resulting in the entropy and the specific heat for
an elastoplastíc material having the same form as in the case of an

elastic solid tss1. Followíng thís approach and at the same tÍme

accepting the evolution equation (4.4.19), one only needs to assume a

constant value of the factor t in equatíons (4.+.34_35) to remain

consistent wíth the adopted thermodynamic framework. The consístency

condirion (4.4.7) is then satÍsfíed if

,r(n). ,"(P).o{f -=0fr i=o(r-sl"r:iÍl) G.4.37)

where E const for all values of 0 and K. Assurníng a value of E

close to unity one

Quinney effect.

conforms to the basic feature of the Taylor-Farren-
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4.5 TemperaÈure-Displacement Fo rmulation of the Boundarv

Value Problem

4.5.I Reoresen tation of the Cons titut ive Relatíonshi ft s ln the Forms

Conwen ent for the Value Problem Formulation

The objectíve of this section is to express the previously

presented constitutive relationships in the forms suitable for easy

inclusÍon into the formulatÍon of the couple<l temperature-displacement

boundary value problem correspondíng to t.he physícal model described

in CHAPTER 3. The alm 1s to extend the temperature-displacement

formulatíon of the coupled línear thermoelastícíÈy lnto Ehe ranfle of

inelastic materlal behaviour, represented by the fsotropíc plasticity

nodel of sectíon 4.4. Assurning the total straín component" .ij and

the excess temperature T (over the uniform temperature To at the

reference state) as the basic Índependent varíables, the ínitía1

thrust míght be to attempt to express all the relevant constitutive

relationshíps through these varíables and Èheir temporal derívatives

å.,* an¿ å. rt ís a known fact, however, that the aclopted model of the1J

Prandtl-Reuss material* precludes such a possíbilíty and forces one to

leave the stress components in certain expressions. Henceforth, the

ímmediate task becomes to elimÍnate both the elastíc and plastic

strain tensors and theír rates and to express the stress rate tensor

The Prandtl-Reuss material is defined as the rnaterlal for
the partial derivatíve of the yÍeld functíon F with respect
stress tensor oi. becomes (af/aor.¡ = oij.

whích
to the

ú



as a linear combínation of eíj an¿ Í lr,42lz

a

o..
1J

= .Íilì:*, - uÍîo,th)i

To accomplísh thís,

equatlon (4.4.25>.

a
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(4.5.2)

loading and

(4.5.1)

where aÍ;lì denotes a generalized elastoplasÈíc sriffness Eensor, and

gÍÎo'¡h) is a generalized rhermal modulí tensor.U
A suitable procedure of deriving the explicit expressions for

.Í;lì ""d ßÍ;p) comprises rhe followíng sreps:

(í) Decompose the total straín tensor rate as:

;.. =;f:) * iåff)r-J r-J "r-J
where the integer number j equals O for elastic

unloading, and I for plastic and neutral. loadíng, i .e.

tíj'( ii ) Express

j

lforF=0andl)0

0forF=0andl(0

0forF<0

(4. s.3 )

Here, F denotes the yíeld function gíven by equatíon (4.4.L6),

while À is the proportionality factor ín the norrnality condítion

(4.4.15). r wí11 be explicitly expressed later as a línear

combinatíon of å.. arr¿ ì.
r_J

the stress rate tensor as a linear combinatíon of
a

Tand'(p)e..
1J

it ís convenient to further develop the

Then ít rnay be directly calculated that
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cl:) ; (rh) _ ð.. ¡.(e)
r_J rs rs l-J rs ' rs e

(ttr)
)rS

C
(e)
ij rs

(o (e) +o ( tn¡ )t (4.5.4)rs rS

r¿here

(e) aDÍ:)
1J rs
AT

(4.s.s)crS o..
1J

o(ttr¡
rS [a+ ôq

îT (r+r )lo (4.s.6)
o rs

rr,¿ nÍ1) is the erastíc].J rs
ísotropic elasticity takes

*
compliance tensor, whích for the

the form [64] z

D
(e) I+vE' (0. 6.' 1r JS

+ô oj.) -*e..0r, a.l rs (4.5 .7 )ij rs t_s

Using (4.5.2-4) the equatíon (4.4.25) becornes:

c
(e)
ij rs Ie

..(p)- le-rs (o
(e) (ttr) a (4.s.8)9..

r-J
*s )rlrS rs rS

(iii¡ Express the product ,^(e) .(p)
lu.. Ê- lJrS rS in equation (4.5.8) as a linear

combínation of the rates å ij and
a
T

To accomplish Èhis, one has

factor I as a function of the

equation (4.5.4) ínto (4.4.26) ,

to express the

and

proportionallty
a

T. SubstitutÍngrates

there

e íj
ís:

* The elastic stiffnçss,a4d compliance tensors are related through
the identirv: tìiítoiir" = 1/2(ô.16." * 6í"ojr).
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(e)
íj rs

I

íj
a

e tcÍ:) o: . (o(')
r_J rs 1--l rs

( ttr¡ ) *4 oJy
âo alrc g *a v

rs rS
âTT- (e)

ij rs
rr43
..s f ;- s
1-'l rs Y Y

âo
v

âr

(4.s.e)
c a

Changíng the duurny índices ín (4.5.9) , and prernultiplyíng by

tÍ;1"";", the normalíty condition (4.4.15) gives the desíred result:

.Íiì""å""¿.cfi]" r å," -(a
(e) +c ( ttr¡ )r 2

T
âoo vCrar

(e)
ij rs ot T

cÍ:);(n) =
r_J rs rs

rs rs rs

t[îì"",1r";"*å";#

(4.s.10)

Equation (4.5.10) could be dlrectly

the- convenience of a more concise

quantitíes are introduced:

substituËed into (4.5.8), but for

notatíon the fo1lowíng auxilíary

- hardening modulus:

âo
-4Jvh=tovãÉ (4.s.1t)

- auxílíary hardening modulus:

s=h.F.,liì"";r"; (4.5.12)
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- YamadaIs olasti c stiffness tensor [ 6l I :

c
(p)
ij rs

cÍ1) o' o.'-cÍ9)]'lmn mn kI lclrs
= å .Í;ì"";"",:r.[î]"t[îì"",h";"*å";p

(4.s.r3)

- coeffícíent of yíe1d stress variatÍon with tenperature:

2
5

âo
o v otrs âo

v
AT

(p)
cI-= v âT 12

s5ovrs .Íiì""ir"; * I "
3âo ot (4 .5.r4)

v
ôr

rs
v

Now, equation (4.S.10) rnay be written as:

c
(e)
íj rs;!l)=cl?ì-; -rcrs 1-1 rs rs

(p)
ij rs (o (e) *o ( ttr¡ ) * cÍ:l- '(!)lf (4.s.r5)

]-J rS rSrS rs

and (4.5.8) becomes:

a (e)
íj rs

(p)
ij rs

a

r(cÍ:)" - jrÍTl")("Í:, * "lln,,- jc )e rs

_ icÍ:) o(r)1¡- l_-l rs rs (4.s.16)

comparing equations (4.5.1) and (4.5.r6), the elastoplasric sriffness

tensor may be identífied as:

C
(.p )
i-j rs =c (e)

ij rs - jc (p)
ij rs (4 .5.r7 )

and the generalized thermal rnoduli tensor as:

ß Í:p' th)
1J

( 
"P)ij rs ,.1:, * "::n,) - jrÍ;]".::, (4.s.i8)
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Ín general depend on

parameter K. The latter enters

,!91'tn) rhroush the insrantenous-1J

íts derivatives ôoy rr,d ôoy.

AT âr

and the work-hardeníng

coefficienrs cÍ:P) and
1J rs

the yield stress o and
v

It should be noted

the ínstantenous

that both C

temperature

useful relationshíps can

convenient expressíon of

equation (4.4.32), are:

f:o) and
1J rs

T, stress

(ep, th)
ij

o..
1J

the

of

into

values

If one decides to use the sErain-hardening parameter

rather than r, as it ís preferred in most numerical formulations,

hardening modulus defínition has to be altered. Then, defíníng

-(p)e-

the

. 4 2\h = t "r ;Í0, 
4'5're)

instead oÍ. (4.5.11), the second terms in the denomínators of (4.4.26),

(4.5.9) and (4.5.10) should undergo the appropriate changes. However,

all derived relationships and oËher introduced expressíons renain

intact.

Using the auxÍ1íary introduced, a

Some of them,

terms i-n thethe coupling energy balance

be

quantíties

derived.

number of other

useful ín the

^(e) '(e)(/., e
r_-'l rs rs f:o);

r-J rs rs + jlc (p)
a )+cc

(p)
ij rs ")*

(
ot

(e)
ij rs

(4.5.20)

(p)
ij)+o li (4 .s.zt)

o(n) 1;rSs rS

obtained by substituting (4.5.2) ínto (4.5.15) and usíng (4.5.17), and

'(p)
r_J

of;],cf1l";,"
''Í;l,.l|l",.l:'* "

(ttr)
rS
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obtained frorn (4.5.15), by changing the dummy índíces and premultfply-

tng both sides by DÍ;¿1.

usíng equatíon (4.5.20) the thermoelastic coupling term

(4.4.33) nay be expressed as:

0
âoii.(e)
ãõ- 'ii (r + r0)( (e)

0rS '::n') {cÍj"Tl ;rj+

'Í;n') . .Í;Ì""Íl',tt

+

jtc (p)
íj rs

(
ü,

t_
( e) + (4.s.22>

J

The thermoplastic

(4.4.32) (assumíng

becomes :

+ of P) I o: .f1J-lJ

couplíng term Ín the energy balance equation

that heat of plastic deformation is neglected)

D = i r"i: !ÍT) = : r,oÍiìr.lll"oij i," - r'Í;ìr.[i]s(
(e)

ctrs
(ttr)

0rs+

) (4.5.23)

The above expression could be further sirnplified, íf the product

oÍ?)r"-1, vrere expressed by the components of elastic strain tensor]-J KI ].J

.Íi'. However, in the derivation proeedure follor,red ín this section

an attempÈ ís made to exclude the components of strains (but not their

rates) frorn the formulation. Henceforth, the appearance of the

quantíty o!. in equation (4.5.23) is preferred to {i'.
Thus far in the presentation of the constltutive relations in

thís section no use rÁras made of the explicít expressíons f or the

elastic stiffness and compliance tensors (4.4.12) and (4.5.7>.
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Neíther Ì{as the assumption regardíng íncornpressibilíty of plastic
deformation directly utilízed.

The latter assumption, which uray be expressed as

;Il'= .[l' 0 (4.5.24)

when considered in conjunction with the

leads to the conclusíon that the trace

remaín zero duríng plastic straínlng.

normality condirion (4.4.15)

of the stress deviator must

oi.r. 0 (4.s.2s>

A number of simplifications aríse Ín the prevíously presented

relatíonships, íf equarions (4.4.I2), (4.4.16>, (4.5.1) and (4.5,25)

are taken lnto consideration. For example, it may be dírectly ver-
ified that:

cÍ:) ol . = .l o,r-Jrs u l+v rs (4.5.26)

cÍ:) o!.lJrs aJ
ot = *-o' o'I+v rs rs

3E

'GÑ)
(4.s.27 )rs

(e)
0
rS = #,5b,*0," * {¡c$u>";" (4 .5.28)
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c
(e)
ij rs

(e)
0rs + '::t'r = frtå,*",* * a * ffr, * ro)J or, +

*å.#,"i, (4.5.2e)

s = h . r1*rr #, = r!r,'r*, * 2fu¡r (4 . s.30 )

,E12
.ÍTl" =å,*,'oijol" =,å,'-*Ti= ,i,

' É)* zrt*Ð
otrS

(4. s.31 )

ðov
(

or
p
s

) 3 AT tõrs (4.5.32)ôo 3E

=å',* tG;t
^ \P,/
de

2o
v

^ 
= å,*";"å," - ?'rio-r,#,"" * þrf, (4. s.33 )

c
(p)
íj rs

,E r2

,"::,.4:n,, =l*U---r-
;ö'26;;'

<*lo: .f, a-l
(4.5.34)

âo
v

^(e) (p)- 3 Eu., 0' -ijrs "rs 2o l+v-v
lT _--'âo__ 3E "ij

=å,,* t(l+vt
â"tP'

(4.s.3s)
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E

oÍ:]..j1) = (=1-r
í j k1 -klrs '2 o,,'

2 1+v g'. ,
r_J

o' (4.s.36)
Ðo
_J_
,;(n)

+ 3Emvt rS

3E

D
(e) 

^(p) _t
i3kl'klrs "i3

2 1+v gl
âo .3E+-' 2(l+v)

rs (4 .s .37 )
Y

,;(r)

'Í;ì,.ÍT]","::, * .::n))
3E

_ tG+:l
âo 3E

ftr 
* 71;;¡

3t'
l+ v_

E
)q

1J
(4.s.38)

2o 3E

D
(e)
ij k1.Íil"(,::) * "lln)>"i: ( v 2(1+v) a

TI
2(1tv)

3E3 ôo
+ 3EzGlY

^-(p)de (4.5.3e )

(
c.

1

p) 6
âo

v
ATol .

1-l
v (4.5.40)j Ðo

v +
3E

,;(n)
2(l+v)

The above stated equations result in much simpler expressions

for the sËress rate tensor &,,, prastíc strain rate tensor ;(n)- -i¡ loLe LsrrÞvl tíj 
'

proportionality factor À and both the thermoelastic and thermoplastic

terms, than those derived before. Table 2 contalns the summary of the

respective expressíons in the símplified forms, obtained with the help



of equations

relationships

(4.5.26-40). These

whích are required

the boundary value

6l

are the forms of the constitutive

ín the temperature-dísplacement

problem to be used in the nexr
formulation of

section.

A brief examinatíon of the content of Table 2 confírms the
earlier expressed assertions that the constítutlve theory of ísotroplc
thermoplasticíty adopted in this thesís requires the followÍng
material property data obtaíned from ísothermal tests:

(í) uniaxial yield stress dependence on the accumur-ated plastÍc
strai-n (t.e. equatíon (4.4.18)) which can be deríved from the
stress-strain data obtained in a seríes of tensíle tests at
different temperatures using vÍrgin materLal specimens,

(ii¡ varíatíons of young's modulus and poíssonrs ratio (or any

other tvro elastíc constants for ísotropÍc rnateriar) with
temperature,

(iii¡ variarion of

temperature,

the coefficient of thermal expansion with

(iv) variations of the specific heat at constant elastic straín and

thermal conductivity wÍth temperature.

The yield stress dependence on the accumurated plastic strai-n
Ís assumed to be valid irrespectÍve of the loadíng path followed in
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the process of plastic stral-níng. The coefficients of yield stress

varíatíons with plastic strain and temperature:

Ðo

HI v
^-(p)de

(4 . s.41 )

and

H" (4.s.42)

are assumed to be possible to obtaín from (4.4.18) by direct differ-

entíatíon, and in addÍtíon, Hr is assumed to be a monoËonically

increasing function o, -(P)**. The details of carculating H' and H"

for the particular form of the stress-sÈrâin relationshíp wí11 be

díscussed later in conjunctÍon wíth the numerícal formulation.

Finally, as one may notice from Table 2, the shear

(Kírchhoff's) modulus G and the compressíbilíty (¡uft) modulus K seem

to be more convenient to use than Youngrs modulus E and Poissonrs

ratio v. However, íf only Youngrs modulus but not poissonrs ratio

exhibíts temperature dependence, then there is:

(4.s.43)

and the expressions ín Table 2 render further símplifícations.

âo_v
AT

lac IaK laE_=€_-=__GAT KAT EAT

L The symbol H" is íntroduced here after Mondkar and Powell- 1421.

I{r > 0 for all values of -(p) excludes a possibillty of strain
softening. Hovrever, for most materials wíth well defined
i-sothermal hardening behavlour there is H" ( 0, whích accounts
for a thermal softening.

**
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4.5.2 Differential Formulation

The differenEial (1ocal, strong) formulatíon of the boundary

value problem for the thermoelastoplastic nateríal makes use of Lhe

loca1 forms of the momentum and ínternal energy balances, constítutíve

relatíonships and appropríate boundary and initial conditions. The

temperature-displacement approach deslgnates the excess temperature

and the components of the displacement vector to be the prímary

dependent varíables. It tends to exclude other variables from the

formulation. some of those varíables, líke the density and certain

stress tensor components have been elirnÍnated prevíously (see Section

4.2), and are given by the equarions (4.2.11) and (4.2.L4). Some

others, like the heat flux g, and the components of the total strain

tensor É - . - are easy to elimínate through the use of the constitutivelJ',

equation (4.4.14) and the kinematic relations (4.1.r-2), respectively.

In contrast to the purely thermoelastíc case, however, the remainíng

components of the stress tensor, as well as the internal state

variable;(p), were impossible to eliminate from the rate forms of the

constítutive relatíonships (stated in Table 2) and must remain a part

of the present formulation. Therefore, the corresponding rate

equations for år, and ;(n) musr be considered rogerher wÍrh rhe

momentum and energy balance equations.

The local equílibríurn equation (4.2.L2), representing the

local balance of momentum, may be writren ín the rate form as:

aas.. + ob.
1-l r -'l 1

0 (4.s.44)
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The rate form ís preferred, because it allows easy

(4.5.1 ) and

elírnination of Ëhe

(4.L.2), and taking

equation (4.5.44)

stress rate tensor. Usíng

advantage of the symnetry

yíelds:

equations

of the tensor ^("P)ti¡kl'

r.Íilì.iu,rr,: (s (ep, th)
íj r) +

a

ob.'1 0 (4.5.4s)
'i

The local balance of energy (4.4.32) may be written ín the fo1lowíng

forrn by neglecting the heat of plastic deformation and usíng the rate

expressions for the heat of elastic deforrnatíon and internal dis-

sipatÍon as given ín Table 2:

(p" + Ðf=-Bijii:-Qí,i* pr (4.5.46)
e

where

o
J
G

AG

í=joy H" AT rE - å-ffitr + ro>lH' + 3G (4.s.47 )

B íj BÍ
1

e, th)
j (r+ro) - j #lõ rr-åSrt*rs)Joj, (4.s.4s)

The expressions

coeffÍcíents Hf

respectívely.

ror .Í;ll, uÍ; "n' are sraÈed in rable 2, and rhe

and H" are defined by equarions (4.5.4t) and (4.5.+Z¡,

Expresslng the strain

rates, using the constítutive

rate tensor through the displacement

and utillzing theequatíon (4.4.14),
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synnetry of B ij' yields

( oc. + î)f + trjJr, j = ( KT .)
r1 ¡a

+ pr (4.5.49)

Equations (4.5.45) and (4.5.49) represent the system of four

coupled partíal differentíal equatíons for the dísplacernent vector

components u. and the excess temperature T. They are assumed to be

valid within a closed region R of the space which is saíd Ëo be

occupíed by the solíd medium under considerat.ion and íncludes the

regionts boundary ÐR.

The boundary conditlons in coupled thermomechanics are usually

stated separately for the mechanícal and thermal varÍables. Following

thÍs traditíonal approach, four types of boundary condítions wí11 be

considered:

(i) Displacernent boundary condirion:
a-a..u. + a. - 0IJJ 1 on ARu

(4. s.50 )

(íi) Pressure boundary conditíon:

o..n. =1JJ Dn.^1 on âR (4.s.51)
o

(iif¡ Temperature boundary conditíon:

T=t on ÐRt (4.5.s2)

(iv) Heat flux boundary conditíon:

on ôRq
(4.5.s3)



r^/here the portíons ,R' and ,Rs, and .R1' and .Rq, of the boundary are

rnutually exclusíve, and their correspondíng logícal sums represent the

entire boundary, í.e.

aR Oan =ø âRuU âRo = AR
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(4.s.s4)
u o

AR

Furthermore, the followíng barred quantities denote fields prescrÍbed

on the corresponding portions of the boundary:

T

preserlbed

- prescribed

- prescribed

- prescribed

prescríbed

- prescribed

constants

pressure rate

temperature

heat ínflux

heat transfer coefficíent

bulk fluíd temperature

The coefficíents ãr, and ã, al1ow consrderation of the so called skew

dísplacement boundary conditl-ons [3,4], The quantitie" ei, h and f_

may be, in general, prescribed functions of local temperature. zeto

initíal boundary condí-tions at the insÈant t = 0 wíll be considered

for the variables ri, T, oij and -(p). They reflect the earlier
stated assumptions with regard to the absence of preloadíng, uniform

initlal temperature distributíon o - T0, and the virgin state of

matería1.

âRrnano = Ø ôRr u ,*o =

â" 'C'u-1
p

T

q

h

@



As mentioned at Èhe beginning of

equations (4.5.45) and (4.5.49) musr

appropriate equatíons for the undetermÍned

;(l). These are:

this sectíon, the

be complemented by

componenÈ" of oíj, and
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field

the

for

o = .ÍTil;u, - uÍlo'.n,ü

3G

H' + 3G
r (4.s.ss)

(4.s.I)1j
and

-(p) 2e - =;-Àory
5 rg. - ,',,
GðTIIa

o!.u. +r-J 1 t -'l
o (Hr + 3c)
v

The latter equaríon follows direcrly from the definírÍo'or l(p) given

by (4.4.20).

The final poínt requiríng clarífication ís concerned wíth the

purely mathematÍcal aspect of the posed problem. The mathematícal

formulation presented ín thís section did not address the difficultíes

assocíated r¿íth the exístence of the ínequality constraínts (in the

form of the normality conditÍon (4.4.15)). Since they are known to be

tractable ín numerícal formulatíons, the díscussion of hor¡ to handle

them ís postponed to a later section.

4 .5.3 Inr al FormulatÍon

The local formulatíon of the boundary value problern presentecl

in the prevíous sectlon could be consídered a basis for an approximate

formulation, obtaíned as a result of a certaín discretization process.

Such procedures are often used when finit.e dífference forrnulations are

desírable, but may also lead to finíte element models tg]. The latter
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arer howevert more conveniently deríved through other approaches whose

common feature is the use of some kind of integral statement as a

starting point in the search for an approximate solution. Many well

known approaches, including variational formulations and formulations

based on the prínciple of vírtual work, may be stated índependently

from the latter approximate solution procedures in the form of a

system of integral equations equívalent in some sense to the governing

differential equations and boundary conditíons of the 1ocal formula-

tion. More often, however, the derivatíon of an íntegral formulation

is directly inspired by the intended approximate formulation. Conse-

quently, ít is presented in such a T.\ray as to show how ít naturally

lends itself to the possibílity of problern discretízation.

The Íntegral formulation of the coupled thermoelastoplastic

problem formulated 1ocal1y in the previous section will be considered

here in the context of the future finite element approximation. The

approach employed is known under many names, such as weíghted resídual

method, conjugate approxímation method, and projective method. The

basic motivatíon is Èo distribute the errors resulting from the

approximate only fulfillment of the governing equations and boundary

conditions, over the volume of the region R and the surface area of

its boundary âR. In the formulatíon pursued here, and terned the weak

formulation ín the classification of weíghted residual method by

Zienkiewicz t63] and others, the integral statement corresponding to a

particular dífferential equation an<l íts associated boundary

condítíons, takes the form:
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JewdV =
V

satisfaction of the essential boundary

wdS

Here, e is the error functíon in the donaín V, beíng a result of non-

exact satisfaction of the governing differential equatíon, ez is the

error function on the boundary s2, being a result of non-exact

satisfaction of the natural boundaqy conditions*, and w ís a weighting

(or test) function. The error eI, resulting from the non-exact
*

condítions

! ,t
s2-

(4.s.s6)

on the remaínÍng

part st of the boundary s, is not taken into consideratíon in the

statement (4.5.56). The present approach requires that essential

boundary conditíons be ínvoked separately, preferably on the discrete

rnodel directly.

rn the local formulatíon presented in section 4.5.2, equatíon

(4.5.50) represents essentíal boundary conditíon, and equatíon

(4.5.51) natural boundary condition, associated r¿ith the equation

(4.5.45). similarly, equatíon (4.5.52) represents essentíal boundary

condition and equation (4.5.53) - natural boundary condition

assocíated wíth the coupled heat conductíon equation (4.5.49).

Denoting the approximations of the displacement and excess

temperature fields by tli and i, respectively, the error functlons

corresponding to equarions (4.5.45) and (4.5.49) and to rhe boundary

¿ The procedure of Ídentiflcation of natural and essential boundary
conditions is the following:
rf the differenttal operator in the governíng differential
equation contaíns at most m-th order derívatíves, then the order
of the clerívatives in the essential boundary condÍtions ls at most
m-l. The boundary condÍtíons involvíng higher order derívatives
represent natural boundary condÍtions [3].
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conditlons (4.5.51) and (4.5.53) are:

,,, = {cfllìåu,, - uÍio'.n)f ),j +
a

ob.'l- (4.s.57 )

"T (pc + Y ) T * urjor,j - (ki,i), (4.s.s8)
Ê

.-or
a

e C
("p)
ij klû, . -B(el,th)i*Krl ]-J õorjl"j (4. s. se )o

e =-(kt + ã.1-a n.
1 -ñrt-r ) (4 . s.60 )q l_ o

Introducing the test functions u* and T*, the weak fornulatíon of the

coupled thermoelastoplastíc problem becomes:

V
c u ¿

1
dV=.fe

S
o

u*dSol_ (4 . s.61 )u

I
V

erT*dV = I e

S
q

qT*dS (4.5.62)

where v is the volume integratíon domain corresponding to the region

R, and so and so are the surface integratíon domaíns corresponding to

the âR and ôR portions of the boundary, respectively.oq
Application of the Gauss-Green-ostrogradskirs (divergence)

theorem yields:

Í
V

(c

( C
("P)
ijkl oo,, - uÍ;o't¡r)f),i'îdu

_J

S

(up)
ij kl tkr l

(ep, th)
ij ds-/

V
f )"*1rJ dV

6

B i)u*n.'aJ (cÍ;fìûk,1 - ßÍ;0,'n,

(4.s.63)
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(4.5.64)

(4.s.sB),

the weak

q

Substítution of (4.5.59) and

T*n dS
,1 1

(4.s.60)

leads to the following

into (4.5.57) and

transformed form of

V

( KT
V

. ) .r
r1 r1

kî

1

ki*dv
ò

. T*. dv
rl- r1

respectívely,

formulation:

, ^(tP)*
í "i3kl'k dV-"fB

V
dV=.f

V
j

¿uî
t_

rh( ep,
ij

¿.ul
tI IrJ

) :
Tu . uTdSl- t-

otr.
:
pn-t

S

dV

q

(4.5.65)

.f (pc + i)îT*dV + ¡ ti .T*.dV + J 8..r1. .T*dv =
v . v ,1 ,1 v ]_J lrJ

-r
S

q

tõr"i * tr(î - î-)lr*ds + !
V

(4 .5.66)

The transformed form of the weak formulation is preferrable to the

orígína1 form gíven by equations (4.5.57-62) because it imposes

reduced smoothness requirement on the trial functions ûí and t. At

the same tíme a hígher degree of smoothness is required from the test

functions u* and T*. The important point, however, is the following:

rf equations (4.5.65-66) hold for sufficíently many choices of rhe

test functions uf and r*, which satisfy the homogenous essentÍal

boundary conditíons (í.e. rrf = 0 on ôR, and T* = 0 on aRr), then they

are equivalent to equatíons (4.5.45) and (4.5.49) with the correspond-

ing boundary conditions (4.5.51) and (4.5.53), for suffícíently smoorh

solutíons û and î.
l-

*dvrTp
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Therefore, spatía1 díscretization of the weak equations

(4.5.65-66) may be achieved by approxímaring the region R by Ê., and

then approxiurating the fields ri and T defined on R through the

functions ûr and t defined on ñ.. specific choices for ñ., and ir* andt_ - --r *^'- *i --'*

f may lead to finite element approxímations.

Irrhen the test functíons are selected identical to the trial

functions, i.e. when uf = üi

resulrs [4,63].

and T* = î, the Galerkin approach

As the final point in the discussion of global formulation, ít

ís necessary to recall that equatíons (4.5.61) and (4.5.62) do not

fu11y descríbe the considered problem. They rnust be supplemented by

the constítutíve equations (4.5. I ) and (4.5.52) , the inequality

representing the criterÍon of transition between loading and unloading

states, and the appropriate initial and essential boundary conditíons.



CHAPTER 5

FINITE ELEMENT APPROXIMATI ON AND SOLUTION

5.1 Finite E lement Aoor oxímation

The fínite erement method is sometimes viewed as a general
procedure of transformÍng "contínuous" mathenatical models into
"discretízed" ones. The first step of the dÍscretizatíon process
conslsts of partitÍoníng the domain of interest into a number of non-
overlapping subregíons, called finíte elements. Associated with thÍs
dívision Ís a set of nodal points located on erernent boundaries and/or
wlthin their interiors. The second step fnvolves approximating
varíatíons of the contrnuous physical quantítíes over erementar_

subregions through (usually linear) functÍons of theír nodal values.
These nodal values become the basic parameters of the drscretized
problem. The apprícatíon of the outlined procedure to the previously
formulated mathematical rnodel of coupled thermomechanícal behaviour Ís
subject of the followíng sections.

domaín leads to the discrete rnodel

ordínary differentlal equations,

índependent variable.

5.1.1 Isoparametríc Elements

Among the many dífferent types of finíte elements proposed

untíl now the concept of ísoparametric element, originated by Taig and

73

ín the form

and tíme

of a set of

becornes the

spatía1

coupled

only

Dfscretlzation of the
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further developed by rrons, Zienkiewicz, and theír coworkers [63],
offers a very convenient r^ray of constructíon and numerical

implementation of rnultinode hígh order elements, for whÍch curved.

boundaríes are a11owed. Regions with curved and/or irregurar
boundaríes may be then accurately represented ín the discrete model.

This is accomplished through indÍvidual parame trization of each

elernent domain, while employíng the same set of functions which are

later used for approximating problem variables.
The parametrizatíon of elemental domaín may be achieved by

assigning a loca1 nondj.mensionalized (natural) coordínate system 
o 

ao

it' with the origin at the centroid of the element. rf the reference
(global) coordinates x. are assumed to be polynomíal functions of the
isoparametric (loca1) coordinates Ei

+
1

+g+"i + 
"i3 E,x.

l a Eijk j k a ij k1 j E Et k (s.1.1)

where .ijk = 0 for j = k, "i,tt = 0 for j = k = 1 = O, and additional
constraints are imposed on the coefficÍera" rrjn 

"rd ui¡k1 in order to
keep their number equal to the number of nodar coordínates, the
assignmenË of the local coordÍnates of nodes fully defines the
ísoparametric transformation (5. l. l).

¿ In the natural coordinate system aîy point whoseordínates are xj is represented by the numbers f< I. r- - * ii'
reference

such that
co-

lurl
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Thís well documented procedure results in the representatíon

of the Ísoparametric transformation (5.1.1) in the form:

x.
1

*Í")rrj )*rr. (s.1.2)

where xr. denote the global coordinates of the r-th node (r = 1,...,N)

of the e-th elernent, and uf") 
"r" the interpolation (shape) functions

for this element, which are defined ín the elemental natural

coordinate systen.

If one restrícts one's consíderations to two-dimensional

quadrilateral elements, then the lsoparametric transformation (5.1.2)

nay be víewed as a mapping of a unit square -1 ( g, ( l, -l ( g, ( I

ínto the region of the Euclídean space occupied by the element r¿hích

appears irregular in the xr-coordinates. The shape functions derived

for a four-nodes, straight-sides ísoparametric quadrilateral element

are [3,4]:

N
(e) (EIE2> =frt+ErrEl)(r +Erz'z) (5.1.3)I

r¿here Efi (i = Ir2) are the local coordínates or the

the local node numberÍng ís done according to FIGURE 3,

coordinates are tll = EIZ = EZz = E4I = I and tr, = t3l

-1, and the shape functions (5.t.3) become:

f-th node. If

the loca1 node

E 32 t42

*Í")r E,Ez) = å(r + rr)(r + 6r¡

N
(e) (EL,E.) =å(1 - El)(t + sr¡2

(e)
N

3
(E,Er) = å(t - st )(t - ,r¡
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rÍ", E,Ez, = å,r + sl)(r - Er¡

The element described above furnishes

varíab1e along each of the constant

quadratic varíation may be accomplished

(s.1.4)

linear variation of a field

loca1 coordinate lines. A

andf or interior nodes. The quadratíc

"Serendípity" farníly t0:1 has eight nodes

through addition of mídside

elemenÈ belongíng to Èhe

located as shown ín FIGURE

4. The shape functíons derlved for íts corner nodes have the form:

llÍ"'( E,E2) å,t * trrtr)(l + EtzEz)(Erl Er + ErzE2 - t)

I 1,2,3,4 (5.1.5)

while those deríved for the nidside-nodes are:

*Í")c E,E2, = å,t * Errtr)(1 + EL|E)G E
2 t 2

2 E
2

E
2

1
)I1 T2

I 5 6 7rB (5.1.6)

For the

and the

1ocal node numberíng as índícated in Figure l,

tll = Elz = Ezz = E4L = E5z = Egl = l,
Ezl = E3l = 832 = E42 = E6L = E72 = -l and

E5l=E6z=E7t=EBz=0,

shape functions (5.1.5-6) becorne:

there is

,vÍ',, E,E2) = å,t + Er)(l + sr¡qr, + Ez- r)



(e) (Er,Er, = å,1 - tt)(t + e)G Er + E2 - r)N

N
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I = 1 ,2r3r4

2

(e)
3

(EL,E., = årr - Et)(r - er)G Et - Ez - 1)

*Í")r E|Ez, = f<l + r1)(r - E])(EL - Ez - r)

.Í")r E,Er) = å,t + Ez)rt - ,1, (s.1.7)

rá")r E,E2> = |rr - q r)G - El)

rÍ')c E,Ez) = å,t - Ez)cr - rf l

rá")( E,Er) = å,t * rr) e - tl) (s.r.7)

The quadratic element of the Lagrangian family of the

isoparametric two-dimensíonal elements includes an additional node

located at the orígin of the local coordinate system t6:1. The shape

functíon correspondíng to the nínth node has the form:

*á")cE,E2) = (t - tl>o - el>

*Í")tE,Ezl = f<r * rrrrr)(r * EtzEzL(u' Er + Erzlz - r) * þn (e,,E2)

= å,t * trrgr)(l + E

(s.t.B)

and the shape functions corresponding to other nodes have to be

modífíed ro yleld:

,zEz) Err Er ErzEz
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Er2E) 0*f")( Er,Ezr = |rt +t E )(t +II I
2Erttr trrEll - þ, r r, , t )2

= lr, * Errcr)(t * EtzEz)(r - ErrE? - ErrEl)(ur1 Er+ ErzE2)

I 5r6r7 r8

(s.1.9-i0)

Quadrílateral ísoparametric elements rnay be degenerated to triangular

elements by coalescing the nodes of one edge. In such a case the

shape functfons requíre further rnodifícations which are minor for the

linear type elements and more extensive for the quadratic ones. The

details of these modifications are given by Bathe t3].

The three types of ísoparametric quadrilateral elements

described above, as well as the straight edge triangular element

obtained by collapsing arly t!'ro adj acent nodes of the linear

quadrilateral element, r^rere incorporated ín the finite element program

TEPAP which was wrítten in the course of this thesis research. The

suitabílity of the isoparametric element concept to the formulation of

the spatlally discretized model of thermoelastoplastíc solid will be

further explored in the following section devoted to the discrete

model equatíonsr set-up.

5.1.2 Derív ation of Discrete Model Eouations

According to the previously outlined procedure for

isoparametric fíníte elements, the field varíables ín every element

can be approxímated with the use of the same shape functions which
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r^/ere employed for parametrization of the spatial dornain. The

formulatíon of the thermoelastoplastic problem, whích r¡ras presented in

Sectíon 4.5, consísted of two integral and two differentíal equations,

(4.5 .65-66) , (4.5. I ) and (4.5.55 ) . It involved four fields :

dísplacement ri, excess temperature T, sLress oij and equivalent.

plastíc strain ;(n). This formulatÍon indícates the possíbility of

enforclng the assumed tríal solutíons ri and T to obey the integral

equatíons (4.5.65-66) while usíng the remaining equatíons (4.5.1) and

(4.5.55) for determinÍng the required values of oij rrr¿.'(p). Such an

approach ís motivated by the dísplacement forrnulation of elastic and

thermoelastic problems when the stresses do not appear in the íntegral

statements (4.5.65) and (4.5.66) at all. Then, ít may be shown that

there are certaín interior points withín isopararnetric elements where

the stresses computed from known displacements and temperatures

(according to the Duhamel-Neumann constitutive equatíon analogical to

(4.5.1)) exhibit the highest accuracy [3,4,63]. Furthermore, these

interior locations r+ithin isoparametric elements coincide with the

"sampling points" required in the Gauss-Legendre procedure of

numerical evaluation of integrals whích may be used when solving for

displacements and temperatures.

By adopting the above described approach to elastoplastic

problems one fíxes the locations of poínts where stresses and plastic

strains are determined, 14r53r63]" In the case of the thermoelasto-

plastíc problem this leads to the set of discrete variables consisting

of Èhe nodal displacement components and nodal excess temperatures

eomplemented by the values of stresses and equivalent plastic strains
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at the Gauss-Legendre sampling poínts*. Equations (4.5.51) and

(4.5-52) are then enforced only at these points, and the yield

condiÈíon Ls also checked there on1y.

Followíng the standard practice [3r4,63], the díscrete rnodel

equatíons will be derived for a síng1e element. The governíng

equatíons for the entire mesh may then be easily obtained by

ídentifying nodal couplings wíth other elements nodes. Thís assembly

procedure, often referrecl to as the dírect stiffness method, could be

íntroduced more formally through the use of the Boolean connectivity

matríces TSI 1.

The tría1 solutions for the displacernent û, and ternperature t

in the e-th element are assumed in the forms:

ur(t't2) I
(e) (t 

' 
Er)"Í;) (s.1.11)=I\f

(e) (e) (5.1.12)T(E?82) N (r )rI It 2 I

rnserting equations (5.r.11) and (5.r.12) ínro rhe GalerkÍn form of

the equations (4.5.65) and (4.5"66), written for a single element,

yields:

E

^("p) 
t*,1')

ti¡t t ,\
.(")'NÍ"' ,.,tu -ñl tir

J
u Í;o' 

th ) *( e ).i
Jax iIj

(e) e
u dV

(s.1.13)

(e) AN
(p)
I ( )I dV Í

(e)
u(e)V

r..oË.nft),r(u)¿v(")
V\EJ l,"ri"'*Íe)"(e)u'(e)

* The Gauss-Legendre sampling points do not usually coíncide with
the element nodes.
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(pc * i)Nj')ìr*f")tf")ou (e) +l .$r"'#' (e)
dV

(e)
(e)

ô
(e) J

V V

+! 'rr#'Í:' N
(e)

T
(e)¿u(") *

l,.ro*Í" 
)1(e )*(e)rj")¿t {")

(e) I I
V

/ (hr - - ã>rÍ")r(e)ur(e) +l prN
(e)

T
(e)

dV
(e) (s.l.t4)

(e) (e) I I
S V

The volume integrations in the above equations extend over the

elemental volume u("), whíle the surface íntegrations are performed.

over the external surface ,(e) of the element. The elemental matrix

quantities may be defíned as folows:

tanqent _qt_iff ngsq rnqtrix :

K
(e)
ij rJ

. . r*1') ,r!")

l,.,.liliË'il'
(e) (s.1.rs)

thermal expansívíty matrix:

AN
(e)

uÍil=-, ß
(ep,th)
i-j

I
N

(e) ou(e) (s.1.16)
(e) ôx J

V
j

rate of external forces vector:

(
1

e
I

) = ! pb.

v(u) 
1

o (e)F "r pn*f')av (e)

S
(e) l-

NI dS
(e) (5.r.17)
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eralized thermal ca acitance matr

.15) = r. .(0". * i>rl")
v(e,¡

*j") uu
( e ) (s.1.18)

thermal conductance

S
(e)
IJ _J

V

- gÍ:l "i" uu(e)Ðx. ilx.
l_l

+ I
s(")

n*Í e ) N
(e)or(e)

(e) J (s.1.1e)

thermomechanical couplíng matrix:

ô,je)

*Íil = ! B -ñ. N

J

(e)
dV

(e) (s.1.20)
u(e)

íj I

-rAtê of heat eration vector:

a
(e)

I e.llf " )av (e ) +! (hi- - ãllrf'>uu1" (s.1.21)I (e) (e)
V S

Substituting expressions (5. i. 15-21) into equatlons (5.1.13) and

(5.r.14), and using the symmetry property of aÍ;lì, one obtains:

"Íï','.Í;ì,ijj) * u
(e):(e)
itJ tJ 'Íi 

) )=o (5 .r.22)

(e)
)tf")c.f;)Í5"' * r13"5"' . *Íil;Í:' a I 0 (s.i"23)
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where IrJ = lr...rN and írj = Lr2 for plane problerns, and irj = Ir2r3

for three-dimensional Prob1ems.

Since the foregoíng equatíons must hold for arbítt"tV ,rl!) trra

tÍ"), it follor,rs that for any e-th element:

(e)
ij rJ

a (e
jJ

)+n (e)
iIJ

a

T
(e) (e)

iI
(5.r.24)K u F

J

nj;l;j5) . c
(e) :(e )tJ +S (e)

IJ T
(e)

a
(e) (s.1,25)IJ J I

í.e. for an elernent having N nodes there are N temperature and Nxn

displacemenÈ equations, where n denotes the number of dísplaceurent

field components.

It should be mentíoned that the above equations were derived

under an additíona1 assunption concerníng the interactíon of elements.

It has been assumed that the surface íntegrals over element ínterfaces

vanished due to the cancelation of identical terms contríbuted to the

assembled equations by adjacent elements.

Marrices -Í;ìr,uÍ;1, -j;l and.Í:) depend on the current

1ocal values of stress, effective plastic strain and temperature.

Thermal conductance matrix Sf!) 
""a the vector of heat generation rate

OÍt' also depend on the current local temperature values in view of

the temperature dependencíes of thermal conductivity k and heat

transfer coefficient h. These addítional couplings may be

conveníently accounted for in the numerícal formulatíon when the

Gauss-Legendre method is ernployed for approxímate evaluatíon of volume

and surface íntegrals. The integrands must then be evaluated only at
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the Gauss-Legendre samplíng points [3r4], and the values of stress,

these poínts areeffective plastic

requíred.

Denoting

strain and temperature only at

the 1ocal coordinates of the K-th sarnpling point

= 1, ... rn) one needs towiÈhin an

evaluate:

l-soparanetríc element by t rI(, ( r

the required independent variables aË thís poínt:

r* = nf.){c )r
(e) (s.1.26)

rK I

o ij r = oi¡(t rK ) (s ,t .27 )

;Ío) - . (p) 
{e ,*) (s.r.28)

the requÍred maÈería1 propertíes at thís point:

oyK = or{.[P), tr) (s.l.2e)

q = K(r*)
E(rK)

(s"l.30)

G* = G(T*)
E (rK)

m + "CÇtl
(s.1.31)

a* = o(T*) (s.1.32)
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k* = k(T*) (5.1.33)

crK = c, (T") (s.1.34)

and theÍr derívatíves

\i

GK

a K
AT

(s.1.3s)
T=T

K

â G

âT (s.1.36)
T=T

K

oK= âq (5"1.37)
âT

T=T
K

âo

ri

\i

J
,;(r)

(5.1.38)
T=T6,;(l)=;(l)

âo I

=vl,t 
I

:(p)-- (p)¿-Þ
K

(s.l.3e)
T=TK'

Then, Ít is possible to compute the values o, a(eR) *(eprth)
'ì: [ír' ß ìji' -^'' ' urj*

and !* at the sampling poínts, following the expressíons stated in

Table 2, and (4.5.47-48).

In order to apply the Gauss-Legendre method for the evaluatíon

of the surface íntegrals the samplíng points have to be located on the

elementsf boundaries but otherwise the procedure remains identical.
g

Then it may be necessary to sample the values of pressure rate p,

prescribed heat flux g¡ heat transfer coefficíent h and bulk fluid

temperature T_ on the boundaries.
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The detalls of element matrices evaluation by the Gauss-

Legendre procedure will be discussed in the following sectÍon for the

case of axisymmetric problems " Realizing that the volume and the

surface integrals are computed as weíghted sums of theír respective

integrands at samplíng points enables one to envisage the manner ín

which the sarnpling point values of stress o..K and effective plastic

strarn e[p) are couplecl wírh rhe nodal values, "l;) "r,a rf"), in rhe

díscrete model. The nodal equations (5.23-24) for the given element

are coupled wÍth the following equatíons, valid at M samplíng points

(K=1, . . .,M) of the e-th element:

e)
a (rN(I )a

q - ^(eP)- 'i3ttr
rK

âN
(e)
Ig íjK âx

r,rf") cu ,*)îÍ" 
)

ð*1 î[i,- u Í;Ë"h)nÍ') cu ,o >îf" ) (s.1.40)

(5.1.41)

ij K

:-(
c-K

+

3G*
)p

(tr*)
;(e)iI(Hi + 3cK)yKa

qGK
G"

j

!E
Hi + 3GK

which result frorn (4.5.1), (4.5.55), (5"1.11) and (5"1.12).

lühíle the element nodal equatíons (5.1.24-25) are subject to

the assemblíng procedure whích result in couplings between nodes not

shared by one element, equations (5.f.40-41) ínvolve couplíngs between

nodal varlables of one elernent only. The reason for this is that ín

contrast to the f orrner equations, the latter \^/ere not derived f rom

integral statements. As a resulÈ, the discrete model encompases

weaker couplings between stresses and effective plastic straíns at
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adjacent sampling points Èhan those between displacernents and

üemperatures at adjacent nodes.

In summary, the discrete model equations consist of Nx(n+l )

nodal equations (5. t.24-25) and 2MxN", sarnpling poínt equatíons

(5.1.40-41), where lu1 denotes number of sampling points in one element

and N
e1

ís the total number of elements"

By referring to equatíon (4.5.3) which checks the yield

conditíon (and determínes the value of j) at the sampling points, the

values of the yfeld functíon F* and the proportionality factor À* at

the K-th sampling are computed as follows:

t*=åo I
3

2 (s.t.42>i:roi:* oyK

2G* ,"l ")(E rK )
rÍi )I

K z
3

)2
g

( o (Hi + 3cK)
ijK ðxj

yK

f'- Hi
(e) (e)

+

å "r*,1¿ + 3G*)
N I (E

rK)t I (s.1.43)

5.1.3 Díscrete Model For Axísymmetríc Problens

Analyses of axisymmetríc problerns are most conveniently

performed using the system of cylindrical coordínates r, ê and z, and

assumíng that all fíelds are functíons of r- and z-coordínates only.

All the relationships derived up to thís point for the Cartesían

components of vectors and tensors could be restated in cylindrical
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coordinates, while employíng the general tensoría1 notatíon for

curvílinear coordinate systems t15]. However, for the sake of

notational simplicity, ít is convenient to utilize, from now on, the

matríx language used in most of the líterature on finite elements.

Vectors and tensors will be represented through their physical

components in cylíndrícal coordinates, and the required relatíonshíps

involving partial derivatíves will be stated explicitly.

Since all the second and fourth order tensors employed in the

previous sectíons r^rere symmetrical (in the sense that o. . =lJ = oji'

^-^-u,. = u = Cr._^ C.,_--, etc.), in the rnatrix notation they]-Jrs rs].J Jirs ijsr'
could be represented by 6xl column vectors and 6x6 square matríces,

respectively. For axisymmetric problems further siurplifications

arise, because only non-zero components need to be considered.

The non-zero components of the dísplacement vector for

axisymmetric problems are ul and u, and it may be represented by the

2xl column vector:

(5.1.44)

The non-zero components of any symmetrical second order tensor

correspond to the paírs of indicíes: TEr 00, zz and rz. The physical

components of the sËraÍn tensor are represented by the 4xI column

vector {e} related to the displacernent vector {u} through the matríx

differential operator Iv l:

t,,, = [ "'
1",
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e
a

ðr

0

I
r

0rr

e
a

l:]
{e}

zz àz
V {u} (s.1.4s)

e
e

00 0

2e a â

tz ôr ðz

The physíca1 components of the temperature gradient

related to temperature through the gradient operator

form a 2xl vector

{v }q

a

âr
{vt} = T {oo} T (5.1.46)

a

àz

The isoparametric elements described in Section 5. i.1 become

the appropriate ring elements with the z-axís as the syrunetry axis.

The set of shape functions may be ordered to form the components of a

column vector:

t¡r(")l ruf") nj"l rÍ")lt (s.r.47 )

rt.ru tlf") (r=1,...,N) are given by eirher (5.r.4) or (5.1.7-8). The

dísplacements and temperature approximations wíthin a given element

may be represenËed as:





9r

âN
(e)

AN
(e)

âN
(e)

I 2 N

rHÍ" ) l
ôr âr âr

(5.1.s2)
AN

(e)
AN

(e)
AN

(e)
I 2 N

ðz àz ðz

The elernent matríces expressing material properties of

índividual elements may be constructed in complete analogy to

equations (5.1.15-21), using constítuEíve matrices summarized in Table

3, and marríces tNÍ")1, ,*Í"", tnÍ")l and trÍ"',, províded by rhe

equations (5.t.47-48) and (5.t.51-52).

To facilitate the integration in the natural coordinates, the

differentíation with respect to cylindrical coordinates musË be

replaced with appropriate operations in the ísoparametric domain.

Using the chain rule, one obtaíns 1,3 14 r53r 63 ] :

a a àz ðz â

ðr -1 aEl
1

¿82 3El ðEr
tj 1 det Ij ]

(s.l.s3)

a

àz
ð ðr âr ô

aE2 aE2 ¡Er ¿E2

where the Jacobían of ísoparametríc transforrnation ís given by

âr
atl

àz
¡El

ôr ðz
IJ ( E I E 2 )1

¿82 aE2

(5.1.s4)
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Equatíon (5.1.53) must be utílized r^rhen computíng the shape functíon

derivatíves with respect Èo the cylindrical coordinates, as required

by the equations (5.t.51-52).

Finally, for evaluation of element integrals one needs to know

how to determine the components of an outward unít vector normal to

the elementrs boundary surface, and the volurne and surface differ-

entials transformed to isoparametríc coordínates.

The outward unit vector, normal to the external surface of an

axísynrmetric ring elementr mây be split into the radíal and axía1

componenËs nr and nr, tangent fo r- and z-coordinate lines, respect-

ively. I,rlhen the boundary surface ís given by fhe equation El = jl ,

Èhese components may be expressed as:

"'l
nl
')

Er
ar1
aEzl

àrl
TÇ)

(s.r.ss)
( ðr
TÇ)

*( â z
)¿E2

and the differentíal surface area is:

dS
(e) 2rr ( âr

) + ( àz
2

) ¿Ez (s.1.56)
¿EZ AE

2

trIhen the boundary surface is given by the equation E2 = !1, the radial

and axial components of the outward unit normal become:

ðz
n E 2

âElr
âr âr

z a
ft

¡E I
) . (ff;)

Er

(s.r.s7)
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and the differential surface area is

(e) 2 2

)dS 2¡r ( ôr
) + (

àz (s.i.sB)¡t I ðt ¿El
t

The elementary differentíal volume may be expressed ín natural

coordinates as:

dV
( e ) = 2rr det Ij )atraq, (s.1.s9)

Using the aforementioned equations, the elemental stiffness, thermal

expansivíty, thermal conductance, Ehermal capacítance and

thermomechanical coupling matrices, as well as the rate of external

forces and the rate of heat generation vectorsr mây be constructed for

axisymmetric problems set up in the cylindrical coordinates. Table 4

contains the respectÍve expressíons written ín matrix notation. The

symbol X used there refers to the assembly of element matrices rather
m

than to their summation.

The Gauss-Legendre procedure of numerical íntegration in a

natural coordinaËe system [3,4], yíelds the following expressions for

volume and surface integrals evaluation:

t 1(r,z)¿Y (e) +1

=2r J
-1

+1

I
-1

F( Er E )r (E,E 
z)det [¡ (E, E 2) I au,aE,

M

V
(e)

'n*irt*t 
t E,*, t r*) r( E rK, E 2*)det I j ( E tr E 2K) ] (s.1.60)
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(e) +l
=¿ft J

-1
î(t, +l)r(g, +t)rt- rr-

,¡(Er tl) 2
ðz(E, +1 ) ^t-t-'z aErf(r,z)ds +

(e) ¿tl
S

Mr ðr ft1 +1 ãz(E +1)

'n*:rttitt 
g r*, tl )'( E g,11 )

2 I 2
+¡El atl

for E^ = a1¿-

(e )
+l

2rl
-1

âr +l E
2 2

àz t I t
2 2f f(r,z)dS f (tt, E)r(yt,6r¡

ðE
+ dt

2
S
(e) 2

¿82

MI a r + t E àz +l,E^)_Z

'n*:r"rl'ttt' tzrc ) r(+r' E zK)
2 2 2

¿82
+

¿82

for E- =*1I-

(s.r.6l)

Ilere, f(r,z) denotes an arbitrary function of the cylindrical co-

ordinates r and z, an¿ F(E1,E2) = F(r(tl,E2),2(f'Ur)) is íts natural

counterpart. The integrands of both types of integrals are sampled at

a number of points located within their integration domaíns, and

multiplied by respecLive rreighting factors I,f* and !ü{. The locations

of sampling poínts and the numerical values of weighting factors are

determined for a given order of integration [3,4r63]. I{hen the same

order ís used for both volume and surface integration, the respective

numbers of sarnpling points are related Èhrough the formula: M = M'xM'.

5.2 Computational Solution Algorithrn

The spatially

behavíour, presented

discretized nodel of thermoelastoplastic solid

in Section 5.1, consisted of the system of non-
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Linear oridinary dífferential equatÍons, summarÍzed ín Table 4, and

rhe addítional inequalities aimed at determíníng whether yielding

takes place at some preselected points in the structure. Numerícal

solution of the ínitía1 value problem cannot be accomplished by

straightforward applicatíon of the standard methods developed for the

systems of oridínary differential equations. Instead, the

discretization in the time domain must be combined with a procedure

for handling the ínequalíty constraints, One basíc difficulty is

associated with the fact that. activatÍon and/or deactivation of an

inequalíty constraint is always acconpaníed by díscontinuous changes

of some of the system's parameters" Another diffículty results from

the solution's essential dependence on the history of material

response (known as solutionrs path dependence), and requires that any

acceptable solution algorithm assures that the unknown path cor-

responding to the exact solution is followed closely 1,421.

Among several approaches to solvíng elastoplastic problems the

incremental procedures utílizing iterative methods are most wídely

used, 14r42r53r581. The solution i-s advanced through tíme ín fÍnite

steps, and computations pertaining to each step involve tr^ro phases:

solving the nodal equatlons, and state determínation* 1421. In the

context of the temperature-dÍsplacement formulation pursuit ín thís

thesis, the nodal equatlons are solved during the fírst phase,

J The meaning of the term "state" used ín thís Section (and common
ín the 1íterature on computational plastícity) is broader than
that used ín section 4.4. The state determination phase íncludes
computations ínvolving relationships, such as yíeld conditíon,
which orí-ginate frorn the thermodynamfc process description.
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yíe1díng temperature and displacement Íncrements, while the second

phase is concerned with determinatlon of ner^r stresses and equivalent

plastic strains and assuring that yield conditions at the samplÍng

poínts are satísfíed. Sínce the incremental equations beíng dealt

with in both phases of the solution process are non-1inear, iteratlons

are in general required. Ilowever, when an explicít tíme íntegration

scheme ís used during the state determínatfon phase, one iterative

cycle aimed at improving the satísfactíon of nodal equations may be

sufficíent [4].

The following subsectíons deal with the formulatíon of

íncremental equations and the algoríthm proposed for their solutíon.

5.2,I Nodal Incremental Ecuat ions and Their Solution

Letrs assume that the soluti-on of the spatíal1y discretized

problem, represented by the equations gíven in Table 4, the ínequality

constraints and the appropríate ínitial conditions are available

(exactly or approximately) at a given instant t. Ustng left super-

scripts to denote the time at which a quantity occurs, the followÍng

values are assumed to be known:

nodal displacements

nodal temperatures

Ë
1U

TÌ

stresses t{o} at the tntegratÍon points

equivalent plastíc strains t.-(n) at the integration points

indicators of plastic (or neutrat) loading tj at the

integration points

t{



The temperatures at integration poínts rnay be easí1y calculated

their nodal values.

Time discretization of the nodal equations appearing in

4 requires approxímatíons of Èhe time derivatives tÛt and

and unity.

ínterval Ât

97

from

Table

{t}.

(s.2.1)

(s .2.2)

The

are

Restrictíng conslderation to two-1evel schemes, the o-method

successfully used in finite elenent inelastic and non-linear heat

transfer problems [4,58ì may be employed for this purpose.

The nodal displacements and temperatures at the instant t + 
^t

are approxímated as:

t+0t*at{u} = t{u} +

t*Ât{t} = t{T} *

Â¿

At

oz are between zero

varíatíons over the

t+o

ÂrI " 
trll

^Âr- {r}

where the parameters o1 and

dísplacements and temperatures

assumed to be linear, i.e.

t+0 A¡ t
{u} (1-ol) {u}+a

t+o
^t t2 {T} = (l_a2)

1 t+Â¡ {u}t

{t} + o, t+À¿ {r}

(s.2.3)

(5 "2.4)

It is worth noting that when the parameters ol and o2 assume the

values of 0 and l, the Euler forward (explicit) and back¡^rard

(implicit) schemes resulË. Additionaly, if o1 and oZ equal l, the

Crank-Nícholson (trapezoídal, midpoint) scheme i" o¡t"iiu¿. 
2
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tr'Ihen the increments of nodal displacements and temperatures

over the tíme step At are introduced:

{au1
t+at {u} - t

{u} (s .2.5)

{ar1
t+^t t{r} - {r} (5.2.6)

equatíons (5.2.1-2) yield:

t*a I ^r {ú} = f, rour (5 .2.7 )

t*o
2

At
{t} = þ ,ott (s.2.8)

t+olat
{U}=t{U}*or{ÂU} (5.2.e>

t+o2Ât
{T}=t{r}*s2{^T} (5.2. 10)

The incremental nodal equations are postulated ín the form:

t+o, Ât t*o
2^r

t+o, At
tKl rÛl + tEl tÍl {F} (s.2.11)

t+o1 
^t {u} + tcl

t*s
2 ^r

t*o
2

Ar t*e
2 ^rtnl ttl + tsl {r} {Q}

(5.2.12)

I^Iith the use of equations (5.2.7-r0) they could be conveniently

written as:
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l::,1

t*o
1
Ar

IK] tEl {F}

^t
tRl [c] + crat[sl

t+e 
2^ Ë

{Q}

t0l

t0l

t0l

¡tlsl

t{ u]

t (s.2.13)
{r}

It is undersrood that the assembled marrices IK], IE], IR], tCl and

tS] are evaluated usíng the sampling point values

t*o
2 ^tT,

t*a ra t t*s
{q}, ^r (p) t*a

^tI
and I

e j.

llhile evaluatíng the nodal vectors

t*o I ^t 
t*o

{F} and
2 ^t {Q},

the rates b and i rr" sampled at the instant t+ol^t, while the values

of rr t-, q and t are evaluated at time t+o2^t.

The matríx equation (5.2.13) represents a set of nonlínear

algebraic equatí-ons. They are usually linearized to enable ÍteratÍve

solution. The solution of the linearized nodal equations represents

the fírst phase of computatíons performed duríng one iterative cycle.

The quantities assocíated with the sampling points are not affected in

this phase of computation. Their corrected values calculated duríng

the state determinatÍon phase may be, however, utilized during the

nodal equations solution phase of the next iteration cycle.

lthen a simple solutíon strategy based on the Newton-Rapshon

rnethod ís adopÈed [4, 53 ] , the íncrements of nodal quantíties

corresponding to the i-th iÈeration cycle are decomposed as:
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{^u}

{ ÀT}

(i)-l 
t(il 
t

{^u}

{ar1

(i-t ¡

(i-t ¡
+

{ôu1

{ ôT}

rt>l

,rr-]
(s.2.t4>

where the ríght superscrípts refer to the iteration cycle number and

the 1ínearized equations solved ín the i-th cycle (i=1r...rn.) are:

(i-t¡ (i-t ¡ (i) t*a I ^ttKl IE] { ôu} {F}

=Àt
tRl

(i-t¡
tcl

(i-t ¡ *o ¡tlsl (i-t ¡ {ôT}
(i) t*e

^r2 2 (i-t ¡
{Q}

tKl
(i-t¡

tEl
(i-i ¡

{au1
(i-t ¡

tRl
(i-t ¡ tcl

(i-t ¡+crÂtISJ (i-t¡
{Àr}

(i-t ¡

t0l t0l t
{u}

(s.2.15)

t0l arltlsi (i-t¡ t {r}

In the first Íteration cycle it is assumed that {^U}
(0) = {0} and

{or} 
(0) 

= {O} . The starting values of temperatures, stresses

equivalent plastic strains and plastic (or neutral) loading índicators

are assumed equal Eo the final values calculated in the previous time

srep, í.e. t+atr(0) - tr, t+Âtror(0) = t{o}, t+at-(n)(0) = t;(n),

r+¡t. (0) t.- --j'-'= -j. The number of iteration cycles r"y" depends on the

criterion employed for the termination of the iterative process.
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In the equatíon (5.2.13) the second rnatrix terrn on the ríght

hand síde represents the out-of-balance forces and heat inputs

resultlng frorn the approximate satisfactlon of the nodal incremental

equations in the prevíous iteration. The tangent matrix is updated in

every cycle of computatÍon. The rnodifíed NewËon-Raphson scheme,

símpler from the computational point of view, does not. require

updating of the tangent rnatríx, which remains unaltered duríng all

Íteration cycles performed during tíme-step computations I53].

If the modified Newton-Raphson scheme Ís irnplemented with the
Ivalues of pararneters ol = 1 and u, = i, then the tr'ro most widely used

types of lncremental equations, the fuI1y implicit Euler scheme and

the Crank-Nicholson scheme, are obtained for uncoupled elasËoplasEic

and heat conduction problems, respectívely.

5.2.2 Stats Dgt€¡lqinar-ion

Given the approxí.mate values of .nodal dísplacements and

temperatures at times t and t+^t, i.ê. t{u}r t{r}r t*ot{u}(i) = t{U} +

{au} 
(i) 

"rrd 
t+At{T} (í) - t{r} + {^T} 

(i), rhe approxi.mare values of

stresses and effeclive plastic straíns at tirne t+^t are computed

duríng the state determination phase of the í-th Íteration cycle. The

newly compured values t+^t{o¡ (i) and t+^t-(p) (i) r,'"t ref lect a

possible appearance (or dl-sappearance) of plasÈÍc flow during the time

interval Ât, and to assure that detected yielding constraints the

stress path to the yield surface.
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A símple state determinatíon algoríthm for ísotroplc thermo-

elastoplasticity was developed on the basis of analogical algoríthms

proposed for isothermal elasÈoplastic problems 14rl9l. The algorithrn

employs explícit íntegration scheme for state variables (i.e. stresses

and effectíve plastic strain) and uses a sÍnple subíncrementatíon

technique [4r60] to enhance the control of stress path over the tlme

Ínterval t. However, the main difference between this and other

state determínation algorithrns Ís in the use of a smooth represent-

atíon of the isothermal stress-straln relatlonship, which obviates the

need to explicitely identify the elastoplastic transition 1,231.

The concept of smooth representatíon of uníaxial isothermal

stress-strain relationshíp is both physically justífied (plastic

deformatíon occurs in the subyield state), and computatlonally vÍable.

AetivaÈíon of plastíc st¡aining becomes possíb1e at any tírne during

the history of deformation, and the tvro-parameter 1-(l) and T) farníly

of yield surfaces, constructed from the uníaxia1 isothermal stress-

straín curves, includes the degenerated surface represented by the

point or, = or, = oOO = or" = 0 in the stress space. purely elastic

straining starts upon the fírst unloading, when the point representíng

the stress state (in the stress space) leaves the vírgin yíeld

surface. A family of secondary yield surfaces ís followed after the

fírst reloadíng, etc.

A conveni-ent analytícal form of the farnily of isothermal

stress-straín curves r¡ras proposed by Hsu et al. [10,231 2
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ú (e) Ee (5.2. r6)o r/nv \7
J {l+[ E fì

ÌI.(1 -Ë )okink + E e

where Èhe curve parameters, kink stress o, and plastic modulus Er, are

temperature dependent and are indícated in FIGURE 5. Sínce an

analytical ínverslon of (5.2.16> to the form; =;(o.,) is not
v

possible, the uniaxial relationship

e

g
v

E
*s (p) (5.2.17 )

must be used in lterative calculation of Ëhe yield stress for given

values or r and ;(n) '

o = õy(;(P) . þ, (s.2.18)
v

I,lhen a secondary yield surface origínates upon reloadíng, as shown in

FIGURE 6, its analytícal representation l-s given by the equatÍon

(5.2.16), provided the values of ;(l) and okirrk are replaced by

-(p) , *
e - -ey ana okink.

The'procedure of state determínation aL an element sampling

point may be summarized as follows:

The quantities known at the starÈ of calculations are:

t strains at time t and approximate strain
Íncrements over the time step 

^t"

'¡e), {Àe}



104

tT
T temperature at time t and approximate

temperature increment over the time step 
^t,

t
{o} '

t-
e

(p ) t.
J stresses, equívalent plastíc strain and plastic

strain indicator at time t,

e equivalent plastíc straín accumulated up to the
last unloading.

v

The sequence of computations is the followíng:

(i) calculate the stress increment assuming elastíc behavíour lrr2l:

{Âs*} t+^t Ic(e) J {ar¡ ¡+Àt
{B

(e,th)
)^T (s.2.1e)

(ií) Calculate the tríal stresses

{ o*} t{o} * {Âo*}

and trial effective stress:

6* 3 *t .n

]' {o
*t

2
{o ) (5 .2 "20)

(1íí) Fínd the value of the yleld stress correspondíng to t+ÂtT 
".rdt-(p) (i.e. followíng the assumption on purely elastíc

behaviour o;(n) = 0), by solvíng ireratively

o
o o
v v ,t;(n) + Y)

a.rÂ tE (s .2.2r)
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. t+^t r+^t- t+ar-,uslng okírrk, tr and ö' .

If secondary ( tertiary, etc.

initíated by reloading (i.e.

valres of t;(n) and E*Âto.
KlNK

replaced by

) yield

when e
v

surface was already

>0 and tj = I ), the

(5.2.16) should bein equation

r-(
ê

p ) ç

and v

t+^t t+ÂtE t+^tE 
'o. , * e

Kl NK y t+^tE - ¡*Âtg, ' respectívely.

(iv) Ifo*(o

Then set

the step ís elastic (neutral loading or unloadirg).
v

t+^t
{o} {o*} (5 "2.22)

t+at;(r) _ t-(p) (5 "2.23)

ç _ t-(p) (s .2 "24)v

t.
J 0 (5 "2 "2s)

and return.

Ifo*)o contínue.
v

If t5 = 1 yieldíng continues on the same yield surface, and p-

to (vi).

ft tj = 0 a new yield surface has to be initiated" In order to

accomplish this, compute

(.' )
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Ë-g 3
z

t {o'} T {o'} (5.2.26)

and find the new value of e
(new)

v
from the relatíonshíP

t-
o q

v
, t-(p) (new) t; 

\\e- -ey -¡+¡a'l (5 .2.27 )

usíng the new value .t "[i;i) equal to

o
(new)
kink =o (old)

kínk *s (new) t+1tE t+^tE 
'

v t+^t- t+AË-,
11'

(5.2.28)

(ví) Subdívíde the sLrain and temperature increments, {Âe} and AT,

ínto M increments:

{ôe} = fr to.r (s .2.2e>

ot=frar (s.2.30)

(vii) For each i-Ëh time-step subincrement (i=1,...rM) compute

{ ôe
(p)

] = i, ,t.(r), (i-t)i0.1
tß

(p,th)
]
(i-t¡ 6r) (s.2.31)

2
3 {ôe

p m-
Ì'{ôe p )+ (i-t ¡-1n¡ (5 .2.32)

{o} lc
(ep) (i-t ¡ {6e} {ß

(ep, th)
]
(i-t) ôT+

(i-1 ) {o} (s.2.33)

where the values of stresses and

time r + iar are denoted by (t){ol
-i¡-

effective plastic strain aE

.rd (i);(n).

(í)
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The subscrípts appearing on the right hand sides of constitut-

ive matrices ín equatíons (5.2"31-33) indicate the values of

temperatures, stresses and effective plastíc straíns, at which

they are evaluated.

Sínce the stresses (t){o} do noE satisfy the yield surface

equatíon at tlme t + i^t, l.e.
M

3 (i)
2 Ì

r (í) {o'} # "'rr");(n), 
(t)r) (s "2.34)o

an elastic correctíon (presumíng no change of

consÍdered. Assuming the corrective term as

(i);tp)) 
may be

(i)
{ôo1 = -. (í)

{o' } ( 0 I (i)
<< i) (s.2.3s)c

the value of c
(í) is obtained from the conditíon

3
T (

(i)
{o'} T i)

{o t T
) (

(í)
{o'} "(t){s,}) = "rrrrt);(n), 

(i)r)
c

and it may be directly calculated as:

o , 
(r);(r), (i)r) (i)

( l- )
o

c I I -lL(i )-
(5 .2.36)

2 {o'} {o'} o

Then, the corrected value of stress is:

(i)
g

- __J_(r); )
(i){o}corr-(i)1o1_(l (r)

{o' } (s .2 "37 )
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IMPLEMENTA TION OF THE COUPLED THERMOELASTOPLASTIC

ANALYSIS IN THE FORM OF THE ITEPAP' CODE

Program TEPAP (lherrno-Elasto-Plasric Analysis Program),

written in standard FORTRAN IV, was developed as an implernentatíon of

the theory presented in CHAPTERS 4 and 5. rt ís intended to carry the

coupled thermo-elasËo-plastic fÍnite element stress and heat

conduction analyses for two-eimensíonal solíds under the assumptions

discussed in CHAPTER 3. At present only the case of axisymmetric

analysis has been implemented, and the iterative schemes proposed for

refinement of nodal variables and quantities evaluated at lntegration

sanpling poínts are not íncluded" However, extensions to plane straín

and plane stress cases are quite straightforward, and the existing

version of the TEPAP code includes provísíons for such addítíons.

Implementation of the iteratÍve schemes suggested Ín CHAPTER 5 would

probably ínvolve more progranrning effort, but it rníght prove

worthwhile when attempting to reduce the dependence of code results on

the time rnarching ímposed by the user.

In the followíng sectíons the structure of TEPAP code and some

ímplementation detaíls are bríefly discussed. rn víew of its length

(in excess of 3000 lines) ttre code listing is not provÍded.

r09
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6.L Code 0r ization and Structure

The basic layout of the TEPAP code follows the concepts of a

finíte element program organizatíon as outlined by Bathe and lnlilson

t41. The equation solver for the non-symmetric systems of linear

eqrrations is adopted from the chapter on Fínite Element Programming

written by Taylor and included ín Zienkíewiczfs nonograph t631.

The advanced prograrnming features described in these

references, and implemented in TEPAP include: dynamíc storage

allocation, variable column height (skyline) storage of system

matríces, a method of identifícation and eliminatíon of constrained

degrees of freedom, and several others. since the code ís íntended

f.or solvíng middle-sízed problernsr the data storage and solution

process are arrangecl to use the core memory on1y. The dynarnic storage

allocation feature relíeves the user from the necessity of declaríng

large matrices ín one or more routínes. rnsEead of this, a1l the

matrices are stored vectoríally, and the lengths of individual vectors

are case dependent and calculated once for a given input. Core memory

ís allocated by the user through declaration of one large pool array.

Declaration of insufficíent core storage results ín an error message,

whích provídes ínformation on the correct storage requiremenÈ. This

feat.ure combíned with the option of runníng the code in the data check

mode allows for easy and quick debugglng of new case data.

TEPAP code ís structured modularly ln arL effort to separate

the functions it performs. The functíonal structure of the main

program is illustrated in FTGURE 7, and indícates the separatlon of

the data input phase from the solution phase. The former handles
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h andinput of all data

I ¡¿hích have to
@'

except the specificatíon

be supplied as functíons

of parameters
!-
Pr It

of time and location on the

boundary in the forrns of individual, case dependent routines. During

the solution phase a time-step loop ís executed and each passage

ínvolves a check of the yielding zone extent. In a case of i-ncorrect

assumptíon appropriate correctlon is made, and all the calculatíons

pertaining to the current time-step are repeated.

The subroutine tree depicted in FIGURE 8 indicates

schematically the cross-communlcation arnong all the code subprograms.

They nay be classified as either the general routínes índependent of

the type of finite element employed, or those developed specífically

for linear and quadratic 2-D isoparametríc elements. Intro<luction of

such a classífication allows easy extensíons of TEPAP by either

íncludíng rnore complex constítut.íve rnodels or by adding neÌ,r types of

finite elements while leaving the codets basic structure intact.

6.2 Implementation Details

The routines developed for four-to-nine-node isoparametric

elernents enable both fu11 and reduced integratíon over elemental

volumes and surfaces. The fu11 volume íntegrat-ion requires nine and

four samplings over (rrz)-dornain for quadratic and 1ínear elements,

respectively. The fu11 surface integration requíres three or tr^ro

samplings over a one-dimensional domaín. Reduced integratíons ínvolve

appropriately fewer samplíngs.

No elemental matrÍces are permanently stored in core, instead

they are computed at every time step and assembled ínto the global

system matrix and global RHS-vector.
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The active column profíte (or skylíne) storage scheme used in

the code recognizes the fact that the matríx of coefficíents ín the

system of linear equations ín the finite element analysis (here called

the global system rnatrix) has not only banded form, but the locations

of non-zero elements differs greatly from column to column. The non-

zeto elements, whích are most dístant from the rnatríx dÍagonal, form

the skylíne of the matríx and it ís ímperative that al'l zero elements

outside the skyline be excluded frorn the equation solution"

The required parts of the upper and lower triangular portions

of the system matrix are stored, respectívely, by columns and ror^rs as

t\Àro vectors. Two addirional ínteger vectors of lengths equal to the

number of equatíons ín the system, have to be used for storing

individual column heíghts and addresses of the dÍagonal elements.

Despite the lack of symmetry of the system matrix, íts proflle, whlch

Ís determined by the topology of the finite elernent mesh, may always

be assumed to be symmetric. For this reason there is no need to store

separately the ror¡r lengths of the lower triangular portíon of the

system matrix. The zero elements within the skyline of the system

matrix must be, however, stored and operateril upon, since they often

become non-zero elements during the matrix reduction process [4].

The handling of essential boundary conditions, whích were left

unaccounted for in the integral formulation presented in CHAPTER 4, ís

in many cases not difficulÈ. rn the TEpAp code the nodal excess

temperatures and the nodal dísplacernent components may be requested to

have zero values, and the r-component of the dísplacement of a node
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may be requíred to be proportional to the z-component. physícally,

these constraínts represent isothermal nodes and rol1er supports

arbítrarly oriented on the (rrz)-plane.

The elimination of constrained degrees of freedom ís

accomplished during the ínput phase using an integer array of

constraint type identifiers. If a nodal degree of freedom ís fully

constrained (".g. constant temperature or zero displacement in either

r- or z-direction) the equation corresponding to ít ís not formed

during the assembling process, rn the case of a skew roller support,

the roles of master and slave degrees of freedom must be assigned. In

TEPAP the displacement component in the dírection of s1íding is

assumed as the active (master) degree of freedom, while the component

along the direction orthogonal to slidíng is treated as fully

constrained (slave). The stíffness matrix of the element wíth the

rol1er node must be appropriately urodifiecl. The array of identifiers

may then be filled with equation numbers corresponding to

unconst.rained degrees of freedom wíth zero entries representíng

elíminaLed temperatures and dísplacement components.

A systern of linear algebraíc equations is solved at each time-

step by the Gaussían eliminatíon technique. Díagonal dornínance of

system matrices allo¡vs one to avoid searches for pÍvotíng elements and

renumberÍng of equations.
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EXAMPLE CASES

In the course of the develooment of the TTEPAP' code a number

of test cases r¡/ere prepared and used to va1ídate the individual parts

of the program. The tests, whích are not reported here, involved

comparísons between 'TEPAPT predictions and the known solutions of

elastíc, elastoplastic and heat transfer oroblems lZl, Zgl. The

numerical examples discussed in this chaoter were aimed at assessing

'TEPAPt capability to solve coupled thermomechanical problems as well

as at providíng some insight into the effects resulting frorn the

ínclusion of the passive thermoelastíc and thermoplastic couplings in

the models. To the best of the authorfs knowledge, this approach has

not been atternpted by any other exísting analytical rnodel.

7.r Thermal Shock on Ceramic Tube

Hsu and Gillespie [24] .ott"ídered the thermoelastic response

of a silicon carbide thick wall tube whose outsi-de surface was thermally

insulated, and whose internal surface was suddenly subjected to

convective heatíng. Assumíng temperature independent material proper-

ties they derived. analytical solutíons for temperature and stress fields

during ther¡na1 shock transients in an infinítely long cylinder. These

solutions were used for comparíson with the results of 'TEPAPT simula-

tions obtained with the FE model presented in FIGURE 9.

TT4
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The followíng geometric and material properti-es data were used

in the computatíons:

tube outsíde diameter

tube ínside díameter

Youngrs modulus

virgin yield stress

Poissonrs ratío

linear thermal
expansion coeff.

mass density

specífíc heat capacíty

thermal conductivity

d = 4 ín = .1016 m
o

d =3in=.0762n1

E = 54x106 p"i = 3.7232xr011 Pa

o = 18.65x10
v

v = 0.31

-6s = 2.6x10

3 Ipsí = 1.2859x10 Pa

rlor = t+.ogxto-6 tlx

p = 193.5 ]-b/f.r. = 3.1*lo6 g/*33

", = 0 .34 Btr/(tb.or¡ =

k = 4l .6 Btu/(trr.tr.of¡
= 72.01 I^r/(rn.k)

The tube was assumed

37 .78oC. The butk

t47oor = 7gB.B9oc,

to inítially rernain at a temperature To

temperature of the hot f1uíd was assumed

and the heat transfer coefficient as h

1.4226J (g.K)

o
100

as T

129 .7 9

F

@

Bru/ (hr .rt?ol) = 735 .n w /(r2 .r) .

The comparison between analytícal and tTEPAPr solutions (for

the case when thermoelastic couplíng ln the heat conductíon equation

ís neglected) are presented for time ínstants t =.158 s and t = .790

s in FIGURES 10, 11 and L2. The temperatures and tangential stresses

predicted by 'TEPAP' agree well with the corresponding analytical

solutions. Poorer agreement between axial stresses appears as the

result of the tube top and bottorn being axially constraíned in order

to simulate the plain strain condition t241. The axíar end-load
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effect ís pronounced because only one layer of elements rras used to

model the fu1l lengÈh of the tube. rf more axial layers were used ín

the FE model the axíal restraínt effect would appear more local-ized.

The temperature and stress dístributions predicted by TTEPAP I

at t = ls, wíth and without taking the thermoelastic couplíng ín the

heat conductíon equatíon ínto account, are compared in Table 6. Both

the temperature and stress fields are only minutely affected by the

inclusion of the passive thermoelastic coupling ín the mode1. The

dífferences between coupled and uncoupled solutíons are smaller than

the respectíve discrepancíes between uncoupled solutions predicted by

tTEPAPt and tTEPSAT another FE code available for thermoelasto-

plastic analyses 1231. TTEPSA' predíctions of temperature and stress

fields are shown ín Table 7.

7.2 Semí - ínf inite Soae,e Srr b .I ected to Suddenlv Imoo sed Convective

Heatins (Second Danilovskava's Problern)

Among the first initial/boundary value problems studied in the

theory of dynamic thermoelasticity r¡/as the (first) Danilovskayats

problem concerning a linear elastic half-space subjected to a uniform

sudden temperature change on íts boundíng plane whích was assumed to

remain traction free tr:1. This problem, along with íts rnodifíed

versíon involving half-space suddenly exposed to a high ambient

temperature through a boundary layer of finite thermal conductance

(ttre second Danilovskaya's problern), were among the most extensively

studied thermoelastic problems, in both uncoupled and coupled

formulations 16,26,46r501. An approxínate analytical solution
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(confirmed by the finite element results) to the couplecl dynamic

version of the second Danilovskayars problem was reported by Nickel

and Sackman 1461, and contrasted with the dynamic uncoupled case.

Following the formulatíon presented in Reference 146l the

second Danilovskaya's problem may be cast in the dimensionless form:

a2i,
)-

â-rrzâT
=-+- -2 ãZ

at

z for 0(21-')
èz

(7.2"r-2)
and0(E(-

ô
2i

âT€
_2

ðz
ât

ü (z,o)
z =0 for0(2(- (7.2.3)

aü (0, r)
&r"(0,Ë) = #- - ito,-t) = 0 for0(E(- (7.2.4)

*9Ð=nttco,t¡ -t-J forO<¿< @ (7 .2.5)

where equatíons (7.2.3) represent initial conditions, and equations

(7 .2.4-5) represents boundary conditions.

The dimensionless parameters are defined as:

z
c

I p(K + G)z (7.2.6)5

c
t e

k 1r+fc¡r (7 .2.7 )
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c
lLK+Tc

u e p(K +
4 (7 .2.8)z kaT 3K 3

G u
0

z

o
o

zz (7 .2.e)zz 3KeT
0

0-T
=07 to to (7.2"t0)

0 -T 0
T

T
@ @ (7.2.rr)

T
0

T
0

H-
ñ (7 .2.t2>

pc
e

p(K +
3

c)

9 12 o2ro
ô

4
(7.2.r3)

pc (K +
3

c)
e

where all quantities used in the right-hand sides of these equatíons

are defined in the NOMENCLATURE. The appropriate regularity

requírements at Ínfinity are assumed to supplement the boundary

condÍtions [26,46].

The uncoupled case corresponds Èo the thermomechanical

couplíng parameter ô = 0. Nickell and Sackman used three values for

thís couplíng parameter ô = 0, ô = 0.36 and 6 = 1.0, and two values of

the dímensionless heat transfer coefficíent E = 0.5 and E = 5.0 ín

their studies, while assuming î- = 1" They presented temperature,

dísplacement and stress histories at the location corresponding to Z =

1. lühile theír displacement and stress solutions, obtained within the
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framework of dynamic therrnoelastícity theory, could not be verified

with TTEPAP' (whose modelling capability is restrícted to quasístatic

processes), the temperature solution in the uncoupled case offered

t.hís possibílíty. In additíon to temperatures verification for ô = 0,

the effect of thermomechanical coupllng on the temperature predictions

in the quasistatic case, which does not seem to have been reported in

published literature, has been assessed with the use of TTEPAPt.

The semí-ínfiníte space was approxirnated by a finite length

and finite radius cylinder, modelled with 20 ring elements equally

spaced ín the axial dírectÍon, as shown in FIGURE 13. To conform to

the dímensionless coef f icients ô = I .0, -If 0.5, and T- = I ,

representing one of the sets enployed 1n Nickell and Sackmann

calculations, and to assure at the same tíme that the assumed cylinder

length L = 20 m \Áras represented by the dimensionless value Ï >> t, the

following fíctítious material properties were used in the simulatíon:

Youngts modulus
2E=5Pa

Poíssonts ratío v
I
5

0línear thermal expansion coeffícÍent C[
-t5K

mass density p=
_?

l.O kg.m -

specífíc heat capacíty 1 J.kg -1c
€

oK

-l -1thermal conductivíty k = lrl.n K

-I
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Assuming further that T0 = lK, 0- = 2K, and ñ = 0.5 W.m-2.K l, the

dímensionless time and distance become I = t and 2 = z, in additlon to

g = I and E = 0.5. The interface of the first and the second.

elements, located lm away from the semi-space boundíng surface (see

FIGURE 13), is then represented by the coordinate Z = l,

The temperature history at this position, predícted by tTEPAPI

for the described above ínput data, is depÍcted in FTGURE 14 along

with the predictíon for 6 = 0 whích hras practically identícal to that

of Reference l+01. The results of another case study shown in Figure

15 correspond to E = 0.5, î- = 1.0 and ô = 2.0, and were obtaíned from

the 'TEPAP'run usíng a = f.0 K-1, TO = 0.5K, whíle leaving the

remaining data unchanged.

The TTEPAP' simulation of the uncoupled case indicates that

the fínite elemenE approxímation of the semí-infinite space geometry

is good for the consídered values of parameters. The predicted

temperatures are strongly affected by the presence/absence of the

couplíng term ín the heat conductíon equation, despite the neglect of

inertia effects. The temperatures predícted by the quasístatic theory

tend to be bounded frorn above by the uncoupled solution and from below

by the solution computed accordíng to the dynamic coupled theory.

The absence of the thermal wave whích appears Ín the dynamic

coupled solutíon 146l seems to be responsible for the monotoníca1ly

increasing temperatures during transients predicted by the coupled

quasistatic model. In the studied case the neÈ contributi-on of the

passive thermoelastic couplíng is that of a heat sink whose intensity
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may be characterized by the dímensionless number ô. The predicted

magnítudes of dísplacements and stresses r¡/ere however too small (in

partícular when compared to the corresponding values of the dynarnic

solution) to draw meaníngful conclusíons with regard to these fíelds'

dírect effects on the temperatrrre distríbutions.

7.3 Initial Stage of Hydrostatic Extrusíon

In thís study, motivated by the publlcation of Iwata et al.

1251, a thermoelastoplastic analysís of the inÍtial non-steady state

hydrostatíc extrusion process \Àras carried out.

The process in which a materíal is subjected to high

hydrostatic pressure and forced out through a díe is of continuing

hígh ínterest to the metalworking technology 1,251, and it represents a

perplexing probleur f or modelling. I,rIíthin the capability of 'TEPAP'

code a number of ímportant features of the process could noÈ be

modelled: large bulk and Localized deformations of the bi1let,

fríctíonal forces and heat generatíon at the die contact surfaces,

rate dependent effects of material deformation (partícularly írnportant

for high speed extrusion), etc. Practical considerations (concerns

with execution times, lack of codets resLart capabí1ity) dictated

further símplÍficatíons, and resulted in assuming a rather crude

fíníte element model depicted in FIGURE 16.

The workpiece (¡ittet) was nodelled as an assembly of 32

eight-nodes elements forming a mesh of IZL nodes. For comparison, the

model employed by Iwata et al used 181 triangular constant strain

elements, and Ll2 nodes. The boundary condítions for the stress
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analysis part r^rere assumed identical to those índlcated in the

frictionless axísymmetric studies by rwata et aI, i.e. prescrÍbed

hydrostatic pressure acting on the free surfaces at the die enÈrance,

and sliding supports along the bíllet-die ínterface were assumed. At

the díe exit the dísplacernent vector of node 25 (see FIGURE 16) vras

constraíned to have axial direction, in an attempt to realist.ically

model an uncertaín detaí1 of the boundary condltíons specificatíon in

Reference [25]. The other surfaces of the billet r¡rere considered

traction free and the s1íding supports were assumed along the

centreline. For the thermal part of the problem a uniform temperature

of zOoC r^7as assumed to be maintaíned in the workpiece prior to its

deformatíon, and adiabatic wa11 conditíons were assumed on all billet

surfaces throughout the transient.

The bi11et material \¡ras assumed to be pure annealed copper

wiÈh the following temperature independent material properties:

Youngrs modulus
3 -2 T2

E 12.5x10 kG.mm .l226xIO Pa

hardeníng modulus Ht = 55.0 kG.mm
-2 .5396x10 9

Pa

virgin yíeld stress -2 8
g 8.0 kc .nm " 7848x10 Pa
v

Polssonrs ratio v = 0.34

línear thermal
expansion coeff.

0 = 0.277xI0-5 K-1
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mass density g = 8.94x106 -3g.m

specifíc heat capacíty -l -t
c = 0.381 J.g .K

Ê

thernal conductivity -l -lk = 388.0 I^I .n '.K '

Numerical simulatíons ürere conducted using TTEPAP ' , for the pressure
I

rate p = 100 MPa/s, and for both uncoupled and coupled (wíttr E = 0)

thermoelastoplastíc models. It rrras found that no signíficant plastic

straíning takes place during the first 0.1 x of the transient, and

consequently, the first four tíme steps l^rere marched with At = 0.025

s. The value Ât = 0.00125 s \¡Ias used in the simulations for times t )

0.1 s, after iË was found not to lead to any notíceable ínstabilitíes.

Reduced Gaussion integration (M' = 2, see Section 5.1.3) was

employed in all calculatíons which Trere continued untíl the press.rt" p

= 57.0 MPa was attained. Attempts to contínue the calculations past

this point. resulted in nonphysical predictions and \^rere abandoned.

Excessive and divergent deformations and varying temperatures

predicted for the applied pressure range p > Sl.0 MPa suggest that the

limít of model valídity has been reached.

The predicted axial displacements of nodes 1 and 9 (made

dimensionless by díviding them by the radíus of the undeformed billet)

are compared ín FIGURE L7 with the correspondí-ng (dirnensionless)

average axíal dísplacement of the back face of the billet reported in

the Reference t251. According to 'TEPAPT predictíons, the incíplent

bend in the applied pressure dísplacement curves occurs at the
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pressure p-50 MPa, which is lower than that of õ *75 Mpa reported by

rwata et a1. Thís discrepancy may be attributed to differences

between both the rnodels and solutíon algorithrns. The coristant straín

triangles could be expected to resulE in a generally stíffer behaviour

than isoparametric elements used in conjunctíon wíth the reduced order

Gauss lntegration. The reduced integration employs fewer number of

sanplÍng points per element than the ful1 integration and is

recommended for isoparametríc elements [3r4r63], but results in poorer

resolution of stresses and plastic straíns and nay lead to excessÍve

underestimation of integrated quantities such as stiffness. The

representation of the stress-strain relatíonship used in tTEPAPt (the

smooth stress-strain curve) should also be expected to result in

earlier materíal plastícization than the bílínear representation used

fn Reference IZS1.

This effect could have played significant role ín the

slmulatíons díscussed, since only the moderate value of the exponent n

= 20 (ín the analytical representation of the smooth stress-strain

curve (5.2.16)) was used. The close resemblance of the smooth stress-

straín curve to the bilinear representation is achieved for large

values of n, but these necessítate the usage of very snal1 load

increments in the elastoplastic transítion regime and have to be

avoided. Fína1ly, the dístinct r^rays of computing stresses and

effective plastic strains (at nodes, by averaging the values

calculated for surroundlng tríangles, in Reference [25], and at

integratíon sampling points in tTEpAp 
' ), along with possible

differences in boundary conditíons, could also be víewed as factors

contributíng to dífferences in predictions.
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The displacenents, strains and stresses computed during

TTEPAPt simulations were not noticeably affected by the inclusion of

the passive thermomechanÍcal coupling in the model. The analysís of

temperatures predicted for the coupled cases explaíns the former

finding: The maximum increase of a 1ocal temperature did not exceed

1.08 K durÍng the entire transient, and was much too low to result in

any sígnÍficant additional thermal strains and/or stresses. The rate

índependent rnodel of mechanical behaviour (wíttr the absence of

temperature dependent material properties) results in the same stress

and straÍn values predícÈed for a given value of applied (external)

pressure, irrespectfve of its rate of change. The rnodel indicates

that for the applied pressure rate as high as 100 MPa/s, the internal

dissípation rate is sti11 too low to lead to considerable 1oca1

temperature increases. The ternperatures of nodes 58 and 72 (tne nodes

which exhíblted the highest temperatrrre rises) are ploted versus time

ín Figure 18. The slow ternperature íncreases duríng the first phase

of the transient correspond to the prevailing contribution of

thermoelastic heatíng, when the compressíve stresses result in

negative dillatlon, and the negative sign of the strain tensor trace

rii (see equation (4"5.46>). The more rapíd heatíng follows local

yielding, which for these nodes occured at pressure p - 35.0 MPa.

Therrnoplastic dissipatíon then dominates and the net heatíng rate is

controlled by the heat outflow through conduction.



CHAPTER B

CONCLUSIONS AND RECOM}4ENDATIONS

The following conclusíons can be drawn from the investígation

pursued in this thesis:

(í) The coupled theory

plastícity adrnits

problem consistíng

of quasistatic

the formulatíon

isotropic

of the

thermoelasto-

boundary value

of the balance equations for linear

for themomentun and thermal energy, constitutive equations

and one scalar internal staterates of stress

the inequality

tensor variable,

deterrnining extent of yielding, and the

unknown

vector,

and the

appropriate

fields in

initial and boundary condítions. The

such a formulation are: dísplacemenË

stress tensor,temperature, independent components of

internal state variable employed.

(ii¡ The Finite Element Method represents a plausible solution tool

for the formulated non-linear boundary value problem of the

coupled thermoelastoplasticity. A proposed computatíonal

algorithm has been proven to perform well for the linear

thermoelastic problems. The implementation of its símplified

versíon (code 'TEPAPt) has been successfully employed for the

L26
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solution of one essentially two-dimensional problem in coupled

thermoelas top las t ícity "

(iií) A very limíted assesment of the relevance of passíve thermo-

mechanical coupling is possible on the basis of the results of

numerical simulations. The dimensionless number

ô
Pc (3K+4c)

z7x2 o2ro

e

seems to represent a good measure of the sígnificance of

thermoelastíc coupling, when compared with uníty. For the

Ëhermal shock on ceramic tube case, when almost no effect of

the couplíng \¡ras detected 1n the simulatÍons, the value of

this parameter may be calculated as ôs0.0247. The effect of

thermoplastic couplings in the energy equation has not been

systematically studied, but the appearance of the thermo-

plastÍc heating (due to transformation of plastÍc strain

energy into heat) upon onset of yielding rras clearly

demonstrated. It seems that this effect would be more pro-

nounced Ín the latter stage of the studied process. Extension

of the rnodel into thls range would requíre, ho\^rever,

reformulation of the theory wíthin a general setting of non-

linear kinematics.

The limited scope of thís thesis investigatíon índicates

improvements, generalizations and more extensive

and desirable. The followíng topics of further

numerous areas where

studíes are possible

research are particularly,recommended:
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(i) Studíes of the numerícal aspects and practícal performances of

the computational solution algorithms, particularly with

respect to the numerícal condítíoning of the systems of

equatíons, the selection of the most suitable iteration

schemes for both the solution of nodal incremental equations

and the state determinatíon stages, and the effects of time-

stepping on numerical stabilíty and accuracy.

(ii) Extension of the constitutive rnodelling of material behaviour

to include ne!/er, more realístíc, and preferably physícally

based models, encompassing the rate and memory effects.

(íií) Extensíon of the presented theory and boundary value problem

case of solid continuum undergoingformulation to the general

fínite straining and rotations.

Mode1líng and systematic símulation studies of the problems

from areas where the passive thermomechanical effects are

belíeved to be important, or even critical, for the proper

understandíng of the physícal phenomena (metalworking, micro-

mechanics, fracture, and other branches of mechanics mentioned

in the discussion ín CI{APTER I ) "

(ív)
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Physical interpretation
of scalar internal
variable used, and

additional assumptions

no internal variables;
incompressibility during
plastic deformation and
deviatoric plastic strains
responsí-ble for internal
dissiparíon assumed

no internal varíables;, \
plastic work rate o, *ê -,t?'
used as " 
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1J r-l

variable characterizes
inelastic def ormatí-on
at adiabaEíc loading

r - scalar internal
state varíable
specified as the
dislocation density
evolution equation
for rt | \
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YK = o..€.-." ur_J
X - dislocation

energy per unit
length (constant)

Author
(year)

Dillon (1963)

Lee (1969)

Need and Batterman

Table l. Summary Overview of Thermoplastic Models Used by Various Authors.
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r< - scalar internal state
variable distinct frorn
work hardeníng parameter
evolution equation for r:
¿ = (r-¿)o..Ëfl)- 1--l 1-l

Physical interpretation
of scalar internal
variable used, and

additional assumptions

r - scalar internal state
variable distínct from
work hardeníng parameter
evolution equation for r<:

,å = '(o...0) "..;Íl)lJ- lJ aJ
to(o-.,, O) - integrating

II " tactor

rc - scalar internal state
variable describing state
of (osotropic) hardening.

Yield function is assumed
AS:

F(o, , r'tf rK r o) = 0,
and evotütion equation
for r is assumed as:

"âFK = l__
Ðn

). - proportionalíty
factor

Author
(year)

Raníecki
and

Sawczuk
(1e7s)

Lehmann
(Le7 s)

l{,162 and Raníecki
(Le7 6)
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Table 2. Summary of Constitutive Rate Equations Resulting from the

Theory of Coupled Isotropic Thermoelastoplasticity.

(continued on next page)

o..
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Table 2 (continued)

0

ðo. .
r-J

ô0
I
c

r_J

"âG
= - (uÍ;"n'*: ffi'"i5 )(r + to)ð íj

j
ov
G

AG

âT

Comment: The temperature dependent elastic constants are the shear
and compressibility modulii :

Ç= E
2(l + v)
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Table 3 Summary of Fundamental Constitutive Matríces for Thermo-

elastoplastic Isotropic Axisymmetric Solid.

(continued on next page)

Elastíc Stíffness

K+ 4
G K- 2
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G
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K- )
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0

0
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K- 2
G K+ 4 K- 2

lc
(e) 3 3 5
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G K- 2 K+ 4

0

G

3 5 3
0 0 0

Plastic Stiffness

(p) 2

lc
4G {o'} {o'} T

))(! or) (H' + 3c)

Elastoplastíc Stiffness
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(.P ) lc

(e) I - jtc (p)

Elastíc Thermal Moduli
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Pl_astic Thermal Modulí
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o
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G
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o
v
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AT {o'}
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Table 4. Summary of Discrete Model Equations.

(continued on next page)

NODAL EOUATIONS FOR THE E NTIRE ASSEMBLY OF ELEMENTS

trltÛl + tEl{Í} = {F}

tnl rÛl + tcl{i} + tsltrl = {Q}

where

tKl =¡[r (e) l=r, t [H
T

C
("P)

I [n ]¿v
(e)

e u(e)
u u

e

tEl=rln (e) I = -¡ I
e u(e)

lH,rl
T

{
(ep, th)

) {Nr )T¿v(")ß
e

tnl =x[n (e) l=¡ t
e u(e)

{Nr} {B 
(el ) rr In,r] av 

(" )
e

tcl =xtc (e) l=x t ( p". + v) {Nr} {nr}Tav(")
e e u(e)

tsl = f, [s(e)] = ¿ { .k["rjrlnr]¿v(u) + ¡ r rrtxrl{Nr}ds(b)
e eu(e) bs(b)

{F}=x{F (e)
Ì=¡ j pln lrtËl¿v(") * ¡tb I tN,,lr; {r,} ¿s 

( b)
e e

V
(e) (b)

S

{Q}=x{q (u)]=r, pr{N-}¿v(")+¡ ,,. (hr -ãltrv-l¿r(b)
e u(e) 

r u ,(u) 
@ ' 'r'

e

{U}=x{u (e

e

{r}=x{T )
e
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Table 4 (Continued)

SAMPLING POINI E QUATIONS FOR EACH SAÌ,IPLING POINT

{ Ì C
(ep)

1 H
u {u

( e
) {ß

(ep, th)
]{N

T {r
( e

]o
T

g
e

( p ) 2G
{o Ì

T
ln I tå"1

q
J
G

ðG-""
AT lttf(u)l+ Nr2

5 o (rr'! + 3c) u H' + 3G
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Table 5. Brief Functional Description of TEpAp subprograms

ADDBAN adds element contríbutions to global system matríx (e.g.
upper or lower triangular components of the global
system matríx) and g1oba1 system RHS-vector

ADDRES calculates addresses of
system matrix

díagonal elements in the g1obal

BODAQ4 reads in boundary data and computes identifiers of
natural boundary conditions

CL evaluates fundamental constitutíve matrices (see Table
3) at a given point of an element

CLEAR clears matrices

COLHT updates column height of the g1oba1 system matrix

DOT calculaËes scalar procluct of two gíven vectors

EFS calculates effective stress or effectíve straín rate

ELAS evaluates elastic stiffness matrix

ELDAQ4 reads ín elemental data; assernbles connecti-on

connectivity matrices; calculates column heights
bandwidth

and

and

ERROR prints messages when allocated core memory is exceeded



L46

Table 5 (continued)

FHTCl evaluates heat transfer coeffícient at a given boundary

locatl-on

FTSUR calculates surroundings' (bulk fluid) temperature at a

gíven boundary locatíon

HEFLUl calculates prescríbed normal to the boundary component

of heat flux vector at a given boundary locatíon

INT locates a given value

range of tabulated
interpolation )

of a parameter in an

values (to enable

appropriate
a linear

NODATA reads andl or generates initial nodal coordÍnates and

temperatures; calculates equation numbers and stores
them in the ídentification arrayi identifÍes code

numbers of skew displacernent boundary conditions and

stores them ín the identification array

PRESS 1 calculates external pressure rate at a given boundary

locatíon

Q4 manages elemental operations for linear and quadratic
quadrilateral ísoparametic elements

Q4CALT determínes addresses of starting elements of variables
required in Q4

QUAD4 calculates elemental matrices for linear and quadratic
quadrílateral isoparametríc elements

evaluates shape function matrices and its derivatives
with respect to the g1oba1 coordinates at a given poínt
of línear quadrilateral isoparametric element

SHAPEQ4
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Table 5 (contínued)

SHAPE2 extends the computatíons performed by SIIAPEQ4 to rhe

case of quadratíc quadrilateral lsoparametric element

SIG calculates yield stress at given temperature and

accumulated effective total straín

SlGY calculates yield stress at given temperature and

accumulated effective plastic strain

SIDEV calculates mean stress and stress deviator components

STDG calculates interpolat.ion matrices for displacements,
temperatures, strains and temperature gradíents

TANMOD calculates tangent modulus at given temperature and

accumulated effective total straín

TEMPQ4 calculates initial temperatures at element sampling
points

UACTCL solves system of simultaneous linear equatíons ín
using compacted, actíve column storage scheme

core

UPST calculates control parameters indicating current stress
state on effectíve stress vs effectÍve strain curve;
corrects the predicted stress vector íncrement by

enforcíng the yield condition

lIRITE prints nodal values of temperature and displacements

* case dependent subprogram to be supplied by the code user.



Table 6 Temperature and Stress Predictlons for the Thermal Shock on

the Ceramic Tube Case Study - Comparison between Uncoupled

and Coupled SÍmulatlons with 'TEPAPT.
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convers¡on w¡th
kinetic energy:
elastic power

conversion with
kinetic energy:
plastic power

heat of thermoelastic
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FIGURE 2: schematic presentation of Internal Energy Balance ina Thermoeìastoprastic Materiar Erenent (åt urãà-rtnthis thesis).
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no

START

READ nodal data, ârìd
set equation numbers

in lD arra
READ elemental data

Establish addresses of
non-zero inputs to the
global system matrix
and RHS-vector.

Data check mode ?

Assemble the
system matrix
RHS-vector.

global
and

Solve system of linear
equat ions.

Calculate elementa
stresses, effective Plas-
tic strains, and other
control parameters.

Yielding zone correct ? Update nodal and
elemental variables.

Last time steP ?
Assume corrected
extent of yield zone,

yes

step calculations
lnitiate new time-

no

yes

END

FIGURE 7: Flow Chart of 'TEPAP' Main Program'
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TEPAP.T-
ERROR

NODATA

ADDRES

UACTCL DOT

WRITE

CLEAR

Q4CALL

Q4 ADDBAN

BODAQ4 ELDAQ4 TE PQ4 QUADQ4 STRQ4

COLHT SH A

I

PQ4 STRI NC

PRESS

HEFLU

FHTC

FTSUR

SHAPE2 UPST

SDTGQ4

CL

¡NT

EFS

STDEV

ELAST

SIG

SIGY

TANMOD

FIGURE 8: Subprograms' Tree for 'TEPAP' .
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FIGURE 9: FE Model used in the Thermal Shock on the Tube case study.

ts
Ln
o\



:r --r '--: lr
--¿

I

1

j
l
l

I
I
I
l
I

I
1

l
j

I

I

J

l
l
I

I

I
l
I
i

I
t
t
I

r
I'

f.¡t'
+

i
È

I
i

t

---. t=.' 15.S
¡

ti
THEF¡lrìL : H0r: F r.ì1.{ T qE I É. E'Fll4 ! r: Tl-lF:E

'_l r-1

È
t¡l
L

lri
l--

L¡l
J
:J

=r¡l

H

ï

t=. ì:9 s

ìenrp+r rtur È.¡. L:r.1.,-ui ated i:.¡,..' 'ÏEF'Hi'
.l tl- .-.,1 l - .-.r_.ii d .r¡l_..a ,j! ..., ¡ (, 

'{.{=r¡ -.,,i r 'l l,:,¡r,r': ::l,f-1.
t-'rtì t i F¡tr-r: .,i.F,'J'l'l t t;:'i I i tr+:-: rÞF.'r+-

=:prì 
t 'I EFHF ' ¡.al c r: I at i ûrr:: .

it rr¡*¡lsl¡n1Ê=i IerrpÈr'itut'È i.ã 'läf-
.i¡etl ¿;:

T -T/T,
'-{ i9 7

+

t_- trÈ.1F, F-'- |

I
i
i
ï

i
. i-i;:'t-r . .:,!. ,_t u , .,'l ar il

It I ¡1Fl 11. T f'rl.{LF:.-1 F Èfr I l.r i
-i . tlt1l --1

FI GU RE l0: Temperatures Predicted for the Thermal Shock on the
Ceramic Tube Case Study.

F(¡
!



i

I

I

I

t
I

I

I

tt
I

I

It..
f-
I

'f -1

I

I

I

-.1

I

I

I

I

.,1

I

i

I

I

.l
I

i

I

I

fHEFlHql,_ .:!tr-ìrf ,il{ -l..Jf if:.FjÊlll'l ïr_rEE
ß?È

i.--r

i¡l.J
t-.
;1

u
1:r

')r
a.+
t.4
t¡l)
,l

i.ì
=t!s

'ã rjt

" B3û

H,rop :.:t FÈ_:;j;¿:<,:rIc¡_iI+t*'J br.r' TEPÈF'
årÈ .,:'rTjF,3tL,J t.rr.tfr i.hÉ i::5U1i; çri'
:r-,, .¡ - r I 1... i -. - _..t ì

i,:,t-ri:.ri,ir-1 ¡ i¡, j -{,:'tti.J l:.,+:= -:F,tê -

ierrt'ÏfFÈP' rrlcr.rl 1fir,¡1¡.
! i m¿rr: i *rr I *:s l-rÉ,ßf,r 'r t re;-: r :: de f -
I lrÉu ,4\ :

+'...t=ù .; _1

6* = 6r"/ O¿ET"

l-v
,rJlr-ì

t= .15H s
+ -..

a r-.1Ê

I

I

!

t-

I

¡

I
l

I

_l

+ +

'l t f.t

.,:,:._i,-r ¡ .rr:¡1¡._,

IrI¡lEt.l: I'ltll-f-: j Fr-rlIrìi

ì ilÛ ii

FIGURE ll: Tangential Stress Predjctions for the Thermal Shock
on the Ceramic Tube Case Study.

F
l¡
æ



r!rEFif,rQt", :,:t{ù[f: irf] rt.{E ç[FitlttIr:: TLTIIE
Ê::.rB

(.t
t¡J
g
ts
(/,

J
'f,.

,:t

t11

ü1
t¡l
J
I

E

l=

. ü?ß

+

H:{iåì :<tre:ige; {åLcul.3ted t,,r 'IEPÊF"
årÈ i ¡:,¡rrpårÉd r.t i th i irÉ r*:<r.t I t¡ ¡ t i{Su
å.lIf i-.¡ I l!:.-.F¡1È : j*l .
i.,:.rr t i ria'r.i:j: .ari,J j,: t t*,1 I 1.,r; -= 1 ¿p r'.t:t+ri f
'IEPfiF' ,: il,: r-'l 1t irr,s.
I-limerr::ir,nle¡s -r¡: ial ÊtrÊaa. t= ¡1*f ined
.f:<:

brt¡ 6../gF
{llB

+

+

B . Êra8
t +

l-

+

I

I+
+ + +

-.14 1É

¡5'îir . i:t r:¡ lf rli . lliÊ,¡ù , :-rú¡,1ì

l-¡ I l'lEfli. T r rt'.lt E! I -'r:tF T I r :

- IEìL:ìL! I . ir û t:-l r:ì

FIGURE l2: Axial stress Predictions for the Thermal shock on the
Ceramic Tube Case Study.

H
rJl
\o





.3øAB

.2508

c
E
t¡l
F.

ùi
ta
l¡I
_lz
C]

ç.,
z.
l¡l
=
H

.2rløB

.159ø

. I fiq!ø

. ø5gs

ø .àFiøît(t.øøøØ .?øøø .4Aøø 68AO .s08ø 1.0000 l.?åBø 1.40øg l.6Bg0 1.ss8ø 2.øtìBB

DII,IEI.ISIONLESS T IHE

FIGURE l4: Temperature Predictions for the Second
Problem Case Study with ô=.|.

Dan i I ovs kayar s

ts
o\
H

I --¿¿

DELTR'l.g

SEDONN DÊI.I I LOiSKgYÊ' S PROBLE14

3

2---

unc oup I ed ther¡ rlr
quasistatic coupled theory
dynamic coupled theory

DimensIonIes= ter'perature¡ at
the location corresponding to
the dinrensienles¡ distance
frcm the surface equ.el trr unit!r
are plotted v¡. dimensionles6
tine.

1-
2-



¿

trELTÊ=2 . O

îEC0r.¡D DÊNIL0UStiÊi',Ê', S FRnELEt4

at
to
f rom
ål'e

time.

Dinrensionless temper¡tures
the l oc at i c'rr c rr r resF ond i nÐ
the d¡mcrr::icnle::E dis tance
tlre :ut face equal t,.r urii l-y
plotted us. dimensionless

urìc oup I ed thec, ry
quasist¡tic coupled theory

1-.)-

.3EBø

e50ø

IL
E
t¡l
F

vi()
t¡.|
J
a
(/\

l¡l

F

.ZÊLt0

.ISøO

.løçJø

ssca

u . uL4rlrJ
B , gtßø . î0sr_t .4888 .6096 ,8000 1.4øøß 1.2n0Ê

D I I,IEI-IS I ÛNLE:ìS T IlIE

1.4ßBÊt 1,6(ì06 l.gø08 2.Ê848

FIGURE t5: Temperature Predictions for the Second Danilovskaya's
Problem Case Study with ô=2.

ts
o\
l.J



163

f

hydrostatic
pressure

ll'rllllrtlltr'lttl

rigid
die

lrrl

1

2

4

o-
ø-U'-o-
cL_

o-
o-
3h_
o_
E'>ì:

113

114
115
116
17

118
119

12U-

121 z

FIGURE I6 FE Model used in the Axisymnetric txtrusìon Case
S tudy .



4ø.øø

3R .8Ð
L4
J

É
lI
È

J
fL
çJ

Ê
J
cr

x
cr

29.øø

IB.BA

È . gtrS

a . Fa00 l Surj .3080 .ICL¡Ð .60t0
TIHE IS]

FIGURE l7: App'lied Pressure - Djmensionless Billet Disp]acement
Predictions for the Ax'isymnetric Extrusion Case Study.

F
o\
â.

Ref.t25l-F

.HI'TROSTgTIC E'lTRUSIOH I.IODELL TNÊ

I, TEPfrP'
node rl

,TEPÊP'
node 19

Dinrensionless axial displaccments(di=placements divided hy the un-deformed brllet råiliuE) of nodeErl årrd *9: predicted by ,TEF,ÊF,
are cc¡mp¡red uith the re=ult= re-pcirtcd bv Ir¿ata et al tASl.



2 I . ¿Br¡B

2 l. LìEtr,irl

¡[i . tÉiLrrå

(J

l¡l
fi::'
t-
'¡
Cr.uù
E
L¡J
t-

ä€l 606IJ

?Ã,4øâfr

.)ã aâùÀ

¿11 . VL:lrltþl
.1çÊû .3ßÈ1rl .45Sr_t Éß0û

TII.IE IS]

FIGURE IB: Temperature Hìstories for the Axisymmetric Extrusion
Case Study.

F
o\
Ln

node r¡5

norle ;72

H','¡RflîTRTIC E:ìTELl-1IOii l4OnILLII{r]

Ten'E ¿ ratu res g red i c ted t,y ' TEPIiP'
at n¡,les rî8 anrl r7i, asrr.rmirrg
n¡.a:-: i n¡ur¡ hÈåt gefre rèt 1 on ,luÈ tc,
tl-rÈr'm'lfil¡st ic ':o'rpI ing.




