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ABSTRACT

A temperature—displacement formulation of the coupled theory
of quasi-static isotropic thermoelastoplasticity has been proposed
along with the finite element solution procedure. The unknowns in the
finite element nodel are: nodal displacements, nodal temperatures, and
sampling points' wvalues of independent stress components and
equivalent plastic strainé. The theory was implemented in the form of
the two-dimensional code 'TEPAP' designed to perform analyses in
axisymmetric geometries. The preliminary assessment of the approach

included three example cases.
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CHAPTER 1

MOTIVATION AND OBJECTIVES OF THIS WORK

During the past decade the research effort directed towards
designing more comprehensive and more realistic models of the
behaviour of engineering materials and structural components increased
dramatically. Development in aerospace, nuclear, and other tech-
nologically advanced fields require new, more detailed, more accurate,
and more reliable predictive tools for application in analysis and
design. As a result the finite element method (FEM), introduced  some
twenty five years ago, witnessed further development. While serving
both as a means for testing new modelling concepts and as a primary
tool in computer aided design (CAD), it became the most established
numerical technique in many engineering disciplines. The tendency to
broaden the scope of applications opened the way to finite element
codes capable of modelling various nonlinearities and couplings
between distinct physical fields. Other developments included:
trends to automation and robustness, increased sophistication in
numerical approach to the solution of systems of simultaneous
equations, and studies aimed at deeper understanding of the nature of
discrete field approximation.

In the areas of solid and structural mechanics the potential

and attractiveness of the finite element method have been especially




recognized after its successful applications to more complex problems,
such as analyses of systems in which there is concurent interest in
both thermal and mechanical behaviour. Stress analyses of structural
and machine components designed to serve at elevated temperatures are
nowadays routine procedures in industry. A typical application in-
volves temperature analysis preceding the actual stress analysis which
often includes a model for inelastic material behaviour. Variable
material properties are assigned to various parts of the analysed
structure on the basis of the previously found temperature field, and
the entire analysis is usually performed with the help of a commer-
cially available FE code.

The rationale of this approach is, that modelling compli-
cations are rarely rewarded with more meaningful predictions,
identification procedures for complex models of material behaviour are
difficult, and that realistic analytical representation of in-service
boundary conditions calls for further models and/or experiments. As a
result, the methodologies popular with many FEM practitioners put
forward demands of modelling conservatism and stress the need for
simplified but reliable models.

There exists, however, another noticeable trend in the ongoing
development of FEM for solid and structural mechanics applications.
It stems from the basic recognition that there is a growing number of
problems of current interest in many technological disciplines which
presently lack appropriate models for their analytical studies. Areas
such as mechanics of metal forming and fabrication processes, micro-

mechanics of flow and fracture processes in heterogenous media,




prediction methods of in-service life and deformation, and many others
have recognized the need for and embarked on the development of new
deformation models. As a rule, these new models aim at better repre-
sentation of the role material flow plays in the overall response.
Despite the fact that such nonelastic models do not yet offer com-
pletely satisfactory means for prediction of material behaviour in
various possible environments, their use in finite element analyses of
structural components, is increasing. However, while novel constitut—
ive modelling concepts often emphasise the links between macroscopic
deformation and the flow mechanisms responsible for it, the inter-
dependence between mechanical aspects of deformation and thermal state
of material is rarely paid the attention it deserves. Mechanistic
models, which strive to fit the ample information from material
science into the framework of phenomenological modelling, seem to
neglect largely the evidence of passive thermomechanical coupling,
i.e. the fact that changes in strain and/or stress fields might result
in changes of thermodynamic state of material. This happens in
defiance of increasing awarenéss that for many technological problems
two way coupling between thermal and deformation states is of
importance.

Stability analysis at metal forming, catastrophic shear at
machining, and fatigue are only a few examples of such problems [55].
The existence of coupled thermomechanical phenomena in the field of
solid fueled rockets was reported to be a motivating force for the
development of new constitutive equations and innovative computation

methods [20]. Possible relevance of coupled thermomechanical analysis



to a variety of other problems, such as fault analysis of nuclear
reactors, damping of solid wave propagation, deformation localization
after bifurcation, and generation of residual stresses, was also
independently stated [20,50,36].

As seen from the above examples, the need for methods capable
of simultaneously handling deformational and thermal aspects of
material behaviour, is clear. In this context, a fully coupled
thermomechanical analysis by the FE technique naturally appears as a
viable alternative to traditional approaches. The idea of such a
coupled analysis is not new, but various development efforts in this
area did not yet result in a unified and systematic approach. Despite
significant advances in understanding the physics of phenomena
responsible for the passive thermomechanical coupling, a general and
simple enough phenomenological model did not emerge. Consequently,
the results obtained with various models are difficult to compare, and
the relevance of particular forms of coupling terms included in
analysis has not been systematically studied and is difficult to
assess.

In view of these facts, the problem of coupling the
traditional finite element heat conduction and elastoplastic stress
analyses is approached in this thesis. The primary objective is to
show how the occurence of passive thermomechanical coupling may be, at
least in principle, taken into account. To achieve this objective a
simple temperature-displacement formulation is proposed din the
simplified setting of small deformation theory and rate independent

isotropic hardening plasticity. The formulation is implemented in the




form of a code named TEPAP (Thermo-Elasto-Plastic Analysis Program),
developed for the two-dimensional axisymmetric case, and employing
quadrilateral four-to-nine-nodes isoparametric elements. The
secondary objective is to gain some insightvinto the question of the
proposed formulation feasibility for applications in the area of
stress analysis at elevated temperatures. To achieve this secondary
objective three test cases are studied with the aim of assessing the
effects of coupling terms in the model.

As the final point, the research topic undertaken in this
thesis ought to be considered an integral part of the long term effort
of the Thermomechanics Laboratory of the University of Manitoba,lto

develop improved methodologies of Finite Element Analyses.




CHAPTER 2

LITERATURE SURVEY

The effects, broadly termed thermomechanical couplings in
solids have been of interest to researchers from several disciplines
for many years. Abundant literature exists on the topics relevant to
the subject. Since the purely physical aspects of the said phenomena
are not of main interest in this work, most of the reviewed publica-
tions come from the areas of continuum and computational mechanics.
The current understanding of the physical basis of the coupled thermo-
mechanical effects is only briefly discussed. Finally, the review of
theoretical and numerical works is of necessity restricted to those

publications which were studied by the author in the course of this

thesis work.

2.1 Literature on Thermomechanical Coupling Theory and Modelling

The classical reference sources on the thermomechanics of
solids, e.g. Boley and Weiner [6] or Fung [15], usually contain
general discussions of the phenomenological origins of coupled
thermomechanical effects. While laying ground for future developments
in this area, they tend to concentrate on thermoelastic problems.

Newer monographs on thermoelasticity, e.g. Nowinski [50], offer




extensive bibliographies on the subject of coupled thermoelastic
phenomena, and allow to conclude that nowadays their basic features
are fairly well understood. In fact, following an early paper by
Danilovskaya [13], several analytical and many numerical solutions of
specific initial/boundary value problems have been reported, and new
solutions are appearing along with the indications of new possible
applications.

As discussed by many authors [14,28,49]}, the first quantita-
tive experimental results in support of the relevance of the thermo-
mechanical coupling during inelastic deformation were obtained by
Farren and Taylor (1925) and Taylor and Quinney (1934). Their
measurements of heat evolution during plastic deformation have shown
that for strains over 10Z only about 10% of the work of deformation is
stored in a metal, while about 90% of the work leaves it as heat [40].
These results were later used by many authors as important guidance in
the construction of models of coupled thermoplastic behaviour
[14,28,31,32], and are also employed in this work for this purpose.
Later developments in material science offered more precise explana-
tion of energy storage, concluding that "energy stored inside a
crystal is almost completely made up of strain energy of the total
length of dislocations introduced by strain-hardening, while the
energy storage due to point defects produced by dislocation inter-—
section makes up a small fraction of the total” [40]. Since that
time, understanding of the microstructural mechanisms responsible for
the coupled thermomechanical phenomena has advanced significantly, and

a good tutorial review on the physical approach to their interpreta-




tion may be found for example in the work of Klepaczko [27]. It
contains a general classification of the thermomechanical couplings in
metals based on the microstructural interpretation of macroscopic
effects. According to this classification, coupling effects should be
divided into two groups. The first group involves the effects
attributed to the movements of an ideal crystal lattice and/or to the
presence of immobile lattice defects. These effects include both the
active and the passive thermoelastic couplings (e.g. a possibility of
inducing stresses by applied temperature field, and inducing tempera-
ture fields by applied stressing, respectively), and the thermoelastic
energy dissipation, giving rise to the hysteresis effect during a
cyclic loading/unloading process within the elastic range. The second
group, corresponding to couplings known as thermoplastic in the
phenomenological terminology, includes effects resulting from the
movement of structural defects. The passive thermoplastic coupling
effects belonging to this group may be of two types. The direct
thermoplastic coupling, also known as adiabatic coupling in metal
plasticity, is associated with heat generation in the vicinity of a
slip band. This coupling results in adiabatic yield stress being
lower than isothermal yield stress, and affects the hardening ability
of metals at low temperatures. The indirect thermoplastic coupling
reflects the experimentally observed sensitivity of yield stress in
polycrystalline metals to the history of temperature changes during a
deformation process.

The early attempts to consider the passive thermoplastic

coupling effects within the continuum mechanics framework were




summarized by Naghdi [45]. These works were followed by the publica-
tions of Dillon [14], Kratochvil and Dillon [28], and others. While
solutions of specific boundary problems were not attempted in any of
these works, the observable trend was an increasing tendency to
present the proposed theories using the new advances of thermodynamics
of continuum media. In particular, the proposed general theory of
thermodynamics with internal state variables [12] enabled reinterpre-
tation of many previously obtained results within a new thermodynamic
framework. Also, following the publication of the fundamental work by
Green and Naghdi [18] on a general theory of elastic-plastic continu-
um, many researchers such as Lee [30], began presenting their theories
within a general setting of continuum medium undergoing finite strains
and rotations.

Later theoretical developments took many directions. Despite
the lack of agreement on what should constitute the thermodynamic
framework for new constitutive theories, many authors attempted to
generalize the previously proposed models to consistently include the
thermomechanical coupling effects. The series of works by Lehmann
[31-37] may serve as examples of such serious undertakings. Other
authors stressed a greater need for more comprehensive and realistic
phenomenological models, built in such a way as to indicate experi-
mental procedures leading to identification of material response
parameters [29], or suggested maintaining microstructural interpre-
tations of additional wvariables (e.g. internal state variables)

introduced in the models [5,49].
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The mathematical aspects of coupled thermoplasticity formula-
tion based on the Ziegler's orthogonality principle [62] were
investigated by Mrdz and Raniecki [43,44], leading to the conclusion
that the existence and uniqueness of the posed problem is assured in a
wide range of material parameters. A review of the developments on
theoretical and applied plasticity published in 1972 [54] reported a
number of solutions to various thermoplastic boundary value problems
including some coupled ones. The lack of a satisfactory
thermodynamical theory of nonequilibrium processes, persisting even
today, seems to be responsible for an active search for new ways of
phenomenological macroscopic descriptions of the thermomechanical
effects in solids. Some of the authors, e.g. Guelin and Boisserie
[17] go as far as to question the origins hitherto assigned to

coupling terms in the energy balance equation, and speculate on the

need for major revisions.

2.2 Literature on the Finite Element Application to Coupled

Thermoelastoplasticity

The ease of including the active thermoelastic coupling into
finite element codes based on linear elasticity has been recognized
almost at the start of the finite element method appearance {63]. Its
ability to correctly predict both thermal distortions and thermal
stresses in the statically loaded structural and machine components
subjected to temperature gradients had to be appreciated. The early

variational formulations of such problems, however, resisted straight-—
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forward extensions to include transient mechanical and thermal
behaviours. The appropriate variational formulation of coupled linear
thermoelasticity, proposed by Nickell and Sackmann [46], for the first
time allowed a finite element solution of coupled transient problems.
An alternative approach proposed later by Keramidas and Ting [26]
claimed simplifications in the variational formulation. One of the
first attempts to consider coupled thermoelasticity finite element
formulation in a general non-linear setting was pursued by Oden [52].
Using integral energy balances, equivalent to what is now called the
Galerkin approach, he considered thermoelastic behaviour involving
both material and geometrical non-linearities.

With the introduction Qf the finite element inelastic stress
analyses by Yamada et al. [61]{ various demands, mainly.from nuclear
industries, quickly stimulated extensions of the technique to include
thermal effects. The success of these formulations [23,64] placed
even stronger demands for more complex material constitutive models
and improved numerics in order to handle larger structures and
transient scenarios such as those considered in the studies of nuclear
reactor core accidents. A new generation of finite element procedures
evolved featuring fully non-linear kinematics, couplings introduced by
temperature dependencies of material properties, and material rate
effects [1,2,23,39,42,58,64]. Some of these procedures gained
sufficient acceptance to be included as textbook matefial [3,53,63].

Along with this development of finite element techniques for
non-linear structural analysis, the focus has shifted from the details

of formulation (no longer variational) to the search for effective
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numerical solution algorithms [38,40,51,59,60]. Successful usage of
the technique in non-structural applications and availability of more
and more powerful computers helped to renew the interest in the
formulation and solution of problems involving coupled fields.
Coupled thermomechanics of solids was not one of them, however.
Published papers concerned with coupled thermomechanical analysis are
scarce and evidently lack the common theoretical background on which
their models are based. Chung and Yagawa [11] postulated the validity
of Gibbs thermodynamics over short time intervals, and arrived at an
incremental numerical scheme for the calculation of transient response
of thermoplastic material. Rebello and Kobayashi [56] employed a
thermodynamic process formalism combined with a constitutive equation
postulated for dislocation density, in order to predict
thermoviscoplastic behaviour during compression of bulk metal. Other
authors also attempted coupled thermomechanical modelling employed in
analyses of metalforming operations. Material flow effects were,
however, most often modelled with the use of viscous non—-Newtonian
fluids, rather than elastoplasticity.

Finally, it should be mentioned that on several ocassions
doubts were expressed by various authors with respect to the necessity
of passive thermomechanical coupling being included into finite
element models of inelastic behaviour of some materials at elevated to
high temperatures. The reason quoted was suspected insignificance of
such effects due to the distinctly different time scales of mechanical

and thermal processes in such cases.




CHAPTER 3

PHYSTCAL MODEL AND ITS SIMPLIFYING ASSUMPTIONS

The physical system wunder consideration consists of a
structural component (or its part) made from a solid crystaline
material, exposed to a thermal environment and to mechanical loading.

The nature of the thermal environment is not explicitly stated, but it

is assumed that it represents an energy source (or sink) whose

interaction with the system has the net effect of energy transfer
through a heat flux mechanism. Exposure to mechanical loading implies
a mechanical power flux as another form of energy exchange between the
system and the neighbouring media. Considering these two fluxes as
the only possible means of energy exchange with surroundings covers
quite a broad scope of situations of interest in engineering
applications. They include structural components totally or partially
submerged in fluids and simultaneously subjected to the action of
pressure and convective/radiative heating or cooling. The model also
addresses more idealized situations, such as those involving parts of
the component external surface subjected to prescribed histories of
temperature and motion, since they also may be interpreted in terms of
energy being exchanged either as heat or as mechanical work.

In order to further focus the attention on the thermo-

mechanical aspects of the behaviour of the system under consideration,
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a purely thermomechanical approach to modelling interactions between
the system and its surroundings is also adopted for modelling of all
phenomena within the system. The following simplifying assumptions in
regard to the physical model express this point of view in a general

way:

(i) All non-thermal influences of environment on the
thermomechanical response of component material

are absent,

(ii)  Non-thermomechanical phenomena taking place within
the system and resulting in macroscopic deforma-
tion or termperature changes may be included in
the model with the provision that they are
represented by prescribed energy sources,

explicitly dependent on time and/or. position.

The first assumption excludes from consideration all non-
thermal aging phenomena (such as corrosion or neutron radiation damage
of material microstructure) that otherwise would be manifested by
altered mechanical and/or thermophysical properties of the component
material.

Assumption (ii) leads to a simplified pattern of energy flow
within the system, as it is schematically depicted in FIGURE 1. The
only types of energy stored within the system that need to Be

considered are the (macroscopic) kinetic and internal energies with




mechanical power flux and heat flux as their corresponding mechanisms
of exchange with the environment. Of the two internal sources of
energy supply, one (gravitational energy) may affect the kinetic
energy balance only, while the other one (electromagnetic energy) is
able to directly contribute to the creation (or destruction) of both
kinetic and internal energies currently stored within the system. As
a result, the physical model may encompass distributed forces of
gravitational and electromagnetic origin, Joule's and inductance
heating, etc. Implications of some further assumptions on the pattern
of energy flow within the system will be discussed along with the

details of the mathematical model in CHAPTER 4.

The following assumptions are put forward to simplify the

description of events taking place during component material evolution

in time, while subject to thermal environment and mechanical loading:

at the outset of the process the component
material is in its virgin, stress— and strain-free

state, and remains in thermal equilibrium,

during the evolution process the continuity of the

component material is preserved, and the process

itself is quasi-static,

the temperature levels (thermal regimes) and the
stress regimes attained during the process are
such that phase transformations, phase migrations

and material composition changes do not occur,
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(vi) material thermomechanical response during the
evolution process exhibits features of rate

insensitivity and classical history dependence,

(vii) the (macroscopic) deformation of the component
material remains small in the sense that
displacements of individual material points and
displacement gradients remain small during the

evolution process.

These assumptions will be explained below in some detail, with
an attempt to further identify the scenarios falling within the scope
of the restricted physical model.

From the physical point of view, assumptions (iv) - (vii)
restrict considerations to sufficiently homogeneous materials under-—
going slow changes and justify modelling of processes occuring at room
and elevated temperatures. Fracture and wave phenomena are explicitly
excluded by virtue of assumption (iv), while assumption (v) renders
solute phase migration and solid phase transformation processes absent
or insignificant. Diffusion—-like phenomena (such as moisture
infiltration or solid diffusion under combined action of temperature
and stress) which would imply both an additional energy transfer
mechanism and deformation induced by the solute phase concentration
gradient, are not modelled. Similarly, phase transformations and
their influences on both deformation (transformation induced strains)

and thermal state of the material (absorption or liberation of latent
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heat energy in the phase transition =zones) are excluded from
consideration. 1In addition assumptions (i) and (v) indicate that all
dimensional changes exhibited by the component material should be
regarded as the combined effect of free thermal expansion and stress
induced straining.

For most crystalline solids plastic deformation (i.e. yielding
in the sense of permanent deformation) is attributed to a flow process
of crystalline lattice defects, which are normally described in terms
of development and propagation of dislocations [5], while the
restorable lattice distortion is identified with reversible elastic
straining. The total deformation may be interpreted as a composition
of those two effects [5,31,32]. They may be, in the first approx~
imation, considered as independent of each other [5,31,32] and the
composition itself becomes additive when deformations and their
gradients remain small. The plastic strain may then be defined to be
that component of inelastic strain which occurs during "zero time"
loading which denotes a loading input to be short enough to negate any
time dependent strain, but long enough to eliminate rate dependent
material properties [2]. Limiting consideration to such defined
plastic straining is then equivalent to assuming that the mechanical
response of the considered material is rate insensitive*. According

to Lehmann [36], when both thermal and mechanical responses are

* The usual notion of rate sensitivity exhibited by the mechanical
response of a given material is concerned with the relationship
between the rate of applied loading and the rate of strain con-
sidered as mechanical response. The deformation process is said to
be rate insensitive whenever different loading rates imply the same
responses, with the possibility of variant response rates [29].
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considered, the notion of material rate insensitivity should include
(rate dependent) effects due to transient heat conduction. - Material
rate insensitivity understood in such an extended sense still excludes
effects 1like creep, relaxation, aftereffect and defect annealing
phenomena [29,37]. A classical case of history dependent material
response is said to occur when the material memory for the past
deformation is nonfading, i.e. when prior deformation permanently
changes material response parameters [29]. The nonfading material
memory is well represented by subsequent hardening (softening) of some
metals at low homologous temperatures [29].

As one may surmise from the above discussion, assumptions
(iii), (v) and (vi) impose quite restrictive measures on the general
scenario of situations which can be represented in the developed
mathematical model. In particular, without explicitly excluding
crystalline non-metallic materials, they effectively restrict the
applicability of the proposed model to representing the idealized
behaviour of annealed metals at low homologous temperatures [37].

In the continuum approach to modelling a real material
containing dislocations, voids and other microstructural features is
replaced by a homogenized effective medium. The classical isotropic
hardening plasticity theory offers the simplest mathematical model of
inelastic behaviour which features both the material rate insensitiv—
ity and the classical case of response dependence on prior deformation
history [29]. Such an approach, consistent with the other assump—
tions, still leaves room for various effects coupling mechanical and

thermal behaviours to be included in the model. Since the physical
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processes underlying these couplings are diversified, the problem of
their modelling is approached from the purely phenomenological point
of view in the next chapter. There, it is shown that the approach
taken aids the interpretation of the energetics of thermoelastoplastic

behaviour corresponding to the proposed physical model.




CHAPTER 4

MATHEMATICAL FORMULATION OF THE PROBLEM

Preliminary Considerations and Notation

The solid medium under consideration is assumed to occupy a

séd region R of a three—dimensional Euclidean space, where a space-~
edycartesian coordinate system x, (i = 1,2,3) is defined. Relative
is coordinate system the positions of material particles are
esented by their Cartesian coordinates Xy and their displacement
by the Cartesian components u, = ui(xl,xz,x3,t). In
rdance with the previous assumptions the medium is said to undergo
lnitesimally) small deformations. As a result, the linearized
matics may be used in all considerations, obviating the need to
nguish positions in the initial (reference) and the current
:fmed) configurations, and to differentiate between material
?angean) and spatial (Eulerian) descriptions of motion. Adopting
ndicial notation for Cartesian vectors and tensors, the basic

matic relationship, i.e. the relation between strain and

acement vector components, may be written as:

) (4.1.1)

20
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. the indicies following commas denote partial differentiation
re

. respect to the indicated coordinates. In addition, all indices

ated in monomial terms are to be summed over their admissible

e according to the Einstein summation convention. Temporal

orentiation is denoted by a dot placed over the differentiated

aﬁtity, and a typical rate expression becomes:

1,° ) 1
; = =(v + v 4,1,2
€ Z(Ui,j uj,i) 2( i ;) ( )

v, = u (4.1.3)

n¢e convective effects cannot be accounted for within the assumed
mework, one does not have to distinguish between material and local
me’differentiation.

The basic constitutive kinematic assumption, underlying the
tife theoretical and numerical formulation presented in this thesis,

concerned with the additive decomposition of the total strain

1sor into elastic and inelastic (plastic) parts:

€ = g,.  + €§e) (4.1.4)

an immediate conclusion, the additive decomposition of the strain

L]
0T rate (or strain rate tensor) €53 follows:
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o= ele) () (4.1.5)
ij i

J i3

The following sections are devoted to the presentation of the
theoretical background necessary for the development of the coupled
temperature-~displacement formulation of the thermoelastoplastic
analysis. Physical interpretations, which are helpful in understand-
ing the phenomenological nature of the thermomechanical couplings, are
attempted whenever possible. The derived equations are applicable to
axisymmetrical analysis in the cylindrical coordinate system after
replacing the Cartesian components of vectors and tensors with their
contravariant cylindrical components, and replacing the partial dif-
ferentiation with the covariant differentiation in that system [15].
The transition to the physical components, usually employed in

practical finite element analyses, is then fairly straightforward to

accomplish.
4,2 Balance Principles of Continuum Thermomechanics
The balance principles of interest in continuum

thermomechanics are conservation of mass, balance of linear momentum,
balance of angular momentum and balance of energy. Their global
(integral) forms refer to any arbitrary portion of the body under

consideration, and may be summarized as follows:

(i) Conservation of Mass:

“— S pdvV = 0 (4.2.1)




23

(ii) Balance of Linear Momentum:

-_— pVi dav. = pbi dav + tidS (4.2.2)
\ \ S

(iii) Balance of Moment of Momentum:

= +
eijkxjpvkdv J eijkxjpbkdv S eijk

f x.t, dS (4.2.3)
v \' S '

ik

(iv) Balance of Energy (First Law of Thermodynamics):
é-f (e + l-v v,)dV = 5 p(r+b,v.)dV + s (t,v,+q)dS (4.2.4)
at I P 2°PViV4 o iV iViTd M
\ \' S
In the above equations all integrations extend over the volume

V or the boundary surface S of an arbitrary portion of the region R

occupied by the body, and the symbols used denote:

p ~— mass density,

X, - spatial coordinates of body particles,

v, = Gi ~ velocity field of body particles,

bi - distributed body forces per unit mass,

ti - surface tractions (distributed surface forces per unit area),
e =~ internal energy density,

r - vrate of internal energy generation per unit mass,

g - influx of internal energy through the surface §,

— permutation tensor.

Equations (4.2.1-4) represent balance principles for the
classical model of continuum and invoke a simple model for the

production and the exchange of momenta and energy.
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In thermomechanics, the energy stored in the system is assumed
to be the sum of the (macroscopic) kinetic and internal energies. The
net production of these energies can be accomplished through
conversions with the gravitational and electromagnetic energies,
represented in the energy balance equation (4.2,4) by the net
production integral with volumetric density p(bivi + f))*. Similar
production integrals appear in the linear and the angular momentum
balances, indicating possible contributions of gravitational and
electromagnetic fields to momenta changes.

In addition to the net productions, the changes of energy and
momenta stored within the material volume V, may take place through
exchanges with surrounding media, represented by the boundary
integrals in balance equations. The transfer mechanisms of 1linear
momentum and internal energy require additional models to relate the
surface densities ts and q to quantities independent of the surface
orientation. When the traction vector t; is referred to a surface

whose exterior normal has the components n the Cauchy's stress

i!

principle defines the stress tensor through the relationship:

n. (4.2.5)

Volumetric sources of kinetic energy pb,v, may be of gravitational
or electromagnetic origin, while the éeﬁsity of internal energy
production pr accounts for conversions between internal and
electromagnetic energies (see FIGURE 1). By specifying b; and r as
functions of position and time, without regard to the presence of
other bodies or their parts nearby, the effects of mutual
gravitation and mutual radiation are excluded [57].
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Similarly, the internal energy transported across a unit area
of the same surface may be related to the internal energy flux vector

qi through the relationship:

q = -q;n; (4.2.6)

Assuming further that internal energy transport involves mainly the
transport of thermal energy (as a subclass of internal energy), vector
9 becomes the heat flux*.

The balance of energy in equation (4.2.4) may be transformed

to the more convenient form [15]:

o,.v, .dV + f pr dV + s qdS (4.2.7)
J
v S
representing balance of internal energy alone.
Substracting (4.2.7) from (4.2.4), a separate balance of

kinetic energy is derived:

d 1

i L e(G vvIav = s oijvi’jdV + S pbyv.dV + o t.v.dS (4.2.8)
v \ \ S

Equations (4.2.7-8) are obviously not independent of each other, but

offer additional insight into the energy transfer processes within the

Internal energy flux q; may take the form of a heat flux and other
types of fluxes. Migration of dislocations and diffusion of solute
species are examples of internal energy fluxes that do not
constitute heat flux [36].
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system. Interpretation of these equations in terms of the transport
of internal and kinetic energies indicates the manner in which mutual
conversion between them takes place in the body. Clearly, the first
integral on the right-hand-side of the equation (4.2.7), represents

that part of the kinetic energy stored within the volume V which is

being converted into the internal energy. The conversion process
takes place locally, whenever stress power oijvi 1 becomes positive
-
somewhere in the body. Negative value of 05574 i indicates the
’

opposite process of local creation of kinetic energy at the cost of
internal energy decrease.

The mutual conversion process described above lies at the
bottom of what is termed the passive thermomechanical coupling. Since
this conversion is known to be only partially reversible, giving rise
to internal dissipation phenomena, the problem of how to determine
which part of the converted kinetic energy is stored in the form of
recoverable internal energy, arises. The * difficulty of tackling
internal dissipation exclusively on the basis of cdntinuum approach
may be in part attributed to the fact that no universal balances for
internal energy subclasses (such as strain and thermal energies) are
available and consequently, the forms of their mutual conversions have
to be postulated.

The pattern of internal transfer of energy within the body is
simplified in the case of a quasi-static process. By definition, a
quasi-static thermomechanical process takes place whenever velocities
of all the body particles vary slowly enough to justify disregarding

their accelerations. This condition is, however, equivalent to the

|
|
|
|
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1

assumption that kinetic energy density 5 Vv remains time—invariant

i
during the process. Understandably, the kinetic energy is then

conserved in the global sense:

d 1 _
a;‘é (i-pvivi) dv = 0 (4.2.9)

and the global balance of energy takes the form:

-g—t—\f’ pe AV =/ p(byvy + ¥ &V + S (t;v; + @) dS (4.2.10)
All the kinetic energy net production and net exchange with the
surrounding is instantaneously converted into the net production and
net exchange of the internal energy. The thermomechanical process is
transient only with respect to internal energy changes, while the
motion of the body is approximated as steady state.

The local (differential) forms of the balance principles are
easily derived from the global statements (4.2.1-4) through subsequent
transformations of all surface integrals into volume integrals (using
relationships (4.2.5-6) and applying the divergence theorem), and
taking advantage of the arbitrariness of material volume V and assumed
continuity of all field variables [15].

The moment of momentum balance equation (4.2.3) may then be

shown to lead to the requirement of stress tensor symmetry:

0.. = O, (4.2.11)




28

while, in the quasi-static case, equations (4.2.2) and (4.2.4) yield

local equilibrium and internal energy balance equations:

g.. . + pbi = 0 (4.2.12)

p 5 = 0..vV + por - q, i (4.2.13)*%

Within the framework of small deformation theory and
linearized kinematics, and under the previously stated assumptions,
the mass of the body is always conserved both globaly and locally.
The mass conservation equation (4.2.1) becomes an identity, and the

density field must be prescribed, usually as a function of position

only:

p = p(xi) (4.2.14)

Equation (4.2.14) is then used instead of the local mass conservation
(local continuity) equation.

In general, the local balancing approach reduces the number of
scalar functional balance equations from eight to four, adding four

independent algebraic equations represented by (4.2.11) and (4.2.14).

* Using the symmetry property of the stress tensor (4.2.11) and the

definition of the strain temsor rate (4.1.2) it may be easily
verified that

¢ (4.2.15)
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The simple forms of these equations allow the elimination of mass
density p from further consideration, and the retention of only six

g

independent components of the stress tensor, namely o g

11> 722> 733

9190 993 and o,,.
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4.3 Second Law of Thermodynamics and Balance of Entropy

The second law of thermodynamics is usually postulated in

continuum mechaniecs in the form of the Clausius-Duhem inequality [15]:

-% or dV + [ %-q ds (4.3.1)
S

where s denotes the specific entropy (i.e. entropy per unit mass), @
is the absolute temperature, and g = T + TO, with T0 and T being the
reference temperature and temperature change, respectively.

The inequality (4.3.1) is often regarded as a form of general
constraint imposed on every conceivable physical process that may
involve both reversible and irreversible phenomena. Then, it may be
utilized to derive restrictions which must be obeyed by any postulated
constitutive relationships. Aside from this, inequality (4.3.1) may
be considered as an "incomplete” balance of entropy. In view of the
earlier stated assumptions, the heat flow q which represents the only
mode of internal energy exchange between the material volume V and its
surroundings is also considered to be the sole mechanism of entropy
exchange. The entire net entropy supply across area S per unit time

is represented by the surface integral in equation (4.3.1). Therefore
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introducing the notion of internal (irreversible) entropy production

density vy, the entropy of the body is balanced according to the

equation:

- 1
EE'I ps dV = f y 4V + 5 d ds (4.3.2)

Since any dirreversible generation of entropy is always
accompanied by some changes of internal energy (see FIGURE 1 and
References [15] and [57]), it is convenient to relate the
corresponding phenomena. The entropy production density may be

represented as the sum of three terms:

0o, + pr) (4.3.3)

accounting for the irreversibility associated with:

— the conversion of kinetic energy into internal energy,
- internal energy (i.e. heat) propagation within the body,

volumetric supply of internal energy from internal sources

The internal dissipation function D, introduced by Coleman and Gurtin
[12], may be aimed at accounting for the irreversible mode of the
conversion of kinetic energy into internmal energy. It may therefore

be expected to directly contribute to the passive thermomechanical

coupling in the internal energy balance.
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Introducing (4.3.3), (4.2.5) and (4.2.6) into (4.3.1) and
(4.3.2), and applying the divergence theorem, the global forms of the

Clausius-Duhem inequality and the entropy balance equation become:

1 1
6 ry (D E-qi@’i) av > 0 (4.3.4)

d 1
PV dV = —— - «eJe
at f ps J o (D + pr qi,i) dv (4.3.5)

The local forms of (4.3.4) and (4.3.5) are:

1
D - 50,20 (4.3.6)
ds _
pe —-——dt =1 + pr — qi i (4.3-7)

»

Equation (4.3.7) will be later employed in the presentation of the

constitutive theory of thermoelastoplastic behaviour.

bob Constitutive Relationships of Isotropic Thermoelastoplasticity

The irreversible nature of phenomena involving inelastic and
nonisothermic deformations makes it expedient to employ a thermo—
dynamic framework for constitutive modelling of real materials and
processes. In particular, a thermodynamic formalism seems to be
essential for formulation of the theory which pays special attention
to the effects usually considered secondary, and therefore neglected,

in order to systematize the development of the constitutive model(s).
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The choice of such a thermodynamic formalism to be employed is not an
easy task, for the thermodynamics of irreversible (non—equilibrium)
phenomena continues to remain a controversial area, where "there are
nearly as many approaches as authors in the field” [36].

An approach to the thermodynamic description of irreversible
behaviour of materials, which allows it to remain within the
phenomenological framework of continuum mechanics, but appears to be
able to cover quite a wide range of physical phenomena, was developed
in a series of recent works by Lehmann [31,32,33,34,35,36,37]. His
approach combines two thermodynamic formalisms previously wused in
thermomechanics of solids. These are the state variable and thermo-
dynamic process approaches. The theory is based on the fundamental
assumption that each (infinitisemal) material element may be treated
as a local thermodynamic system [36]. As a result, the postulated
constitutive relations in general consist of both equations of state
and relationships derived from the process description. Since
Lehmann's approach clearly delineates the role which the thermo-
mechanical couplings play din a constitutive model for a solid
maferial, it will be used here for the presentation of the simplest
case of isotropic thermoelastoplasticity. The development of
equations of state, derived within the scope of the thermodynamic
state variables approach, will be followed by the development of
evolution equations originating from the thermodynamic process
description. The discussion on the constitutive modelling of the
passive thermomechanical coupling, which appears in the internal

energy balance equation, could then be followed.
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4.4.1 Equations of State

The thermodynamic state formalism was developed as an
extension of the classical thermodynamics to the non~homogenous
systems remaining close to the thermodynamic equilibrium, using the
notions of thermodynamic state and state variables as primitive
concepts of the theory [31,32]. The assumption regarding the
treatment of material elements as local thermodynamic systems leads to
the description of state by instantaneous values of a finite number of
independent field wvariables. When other state variables are
introduced, they are always related to the set of independent state

variables through algebraic equations known as equations of state.

The decision in regard to the number and nature of independent
state variables is based on by virtue of the intended generality of
the constitutive theory. It is usually preceeded by questioning which
physical quantities may be uniquely associated with a given thermo—
dynamic state. For example, the classical model of thermoelastic
behaviour requires one scalar and one tensorial (of second rank)
independent state variable to describe the thermal and deformational
aspects of thermodynamic state. The specific entropy s or the
absolute temperature © is the most frequent choice for the thermal
state independent variable, while the deformational state is usually
described by the independent components of either the stress tensor
Uij or the elastic strain tensor eij). In the case of inelastic
deformation, changes in the internal material structure occur in

addition to thermal and dimensional changes (on the macroscopic

scale), indicating a need for additional scalar and/or tensorial state
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variables. The isotropic hardening model of plastic flow, exclusively
used in further considerations, is based on one additional scalar
variable k, which may be introduced either as the strain-hardening or
as the work-hardening parameter* [8,19,29,53]. The simplest
plasticity model accounting for hardening anisotropy (kinematic
hardening model) would require extending the set of independent state
variables to include the independent components of another symmetrical
tensor of rank two.

If the elastic strain tensor eii), the absolute temperature 9,
and the work—hardening parameter k are selected as independent state
variables, than all other state variables, such as the specific
internal energy e, specific entropy s or stress tensor oij’ become

(e)

functions of the independent components of Eij , as well as @ and «.

Then, the derivation of the constitutive relationships 1is best
facilitated by the use of the specific free energy (also called

Helmholtz function) ¢, which is formally defined as:

w(ei?) ii), 0, k) - 0 s(eii), 0, «) (4.4.1)

, 8, k) = e(e

* A%%grding to Lehmann [31], neither the inelastic strain tensor

€, nor the total strain tensor €5 5 does qualify as a state
variable, and therefore cannot be “included in the sget of
independent state wvariables. The reason quoted 1is the

experimental evidence indicating a possibility of attaining very
different states of hardening corresponding to the same values of
inelastic (or total) strains. Usage of either the strain— or the
work—hardening parameter depends on the postulated evolution
equation.
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Its time derivative may be computed either as
dp, _ de _ _ds _ _de
dt dt o dt dt (4.4.2)
or as
dy 3y *(e) Y 2 ay
a—tin = PRSI S— Pl 49 + e 45
qt . ey €17 + v 0 e K (4.4.3)
ij

Eliminating the internal energy and entropy rates of change in (4.4.2)

with the use of balance equations (4.3.3) and (4.3.7) leads to the

following equation¥*:

dy *(e) +(p) .
°ac T 9i5%45 * ij€i§) T pSO - D (4.4.4)
Assuming further, that internal energy dissipation is exclusively

associated with plastic deformations

‘(i.e. that D does not include

elastic power component), comparison of (4.4.3) and (4.4.4) yields:

= oY
€,
13
3
s = -t (4.4.6)
*(p) Y o
Gijeij o=k (4.4.7)
* Using the identity (4.2.15) and the strain rate tensor

decomposition (4.1.5)
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Equations (4.4.5) and (4.4.6) define the dependent state variables %44
and s as functions of independent state variables, and are known as

thermic and caloric equations of state, respectively.

Equation (4.4.7) involves quantities other than state
variables, and according to Lehmann [36], should be considered as the
additional thermodynamic requirement (the other being Clausius-Duhem
inequality) with which the thermodynamic process description should be

compatible.

To make use of the thermic and caloric equations of state the

(e) K)

specific free energy function w(e does mnot have to be

explicitly specified. It would be sufficient to postulate the

(e) o (e )

explicit forms of the dependencies o €55 k) and s(e ,0,k). 1In

ij
practice, however, another dependent state variable, known as the

specific heat capacity at constant elastic strains and internal

parameters, and defined as

( ) Bs(ei:), 0, K)

c =c, (e ij »0,k) = 0 56

(4.4.8)

is postulated (from experimental measurements, for example) instead of
the specific entropy s. Equation (4.4.8), although distinct from
(4.4.6), is also sometimes called the caloric equation of state.

The previously assumed independence of elastic deformations on
the plastic behaviour (see CHAPTER 3) implies no coupling between the

(e)

state variables sij and k in the specific free energy function
e

(e (e)
1]

.. »0,c). This, in turn, leads to the additive decomposition
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1l 0,0 = D 0y + 4 Ple,0) (4.4.9)

1] 1]
where w(e) denotes the thermoelastic component of the specific free
energy. Then, the thermic equation of state (4.3.5) takes the form
derived in thermoelasticity. For the isotropic thermoelastic

behaviour there is:

E () , . E _(&)_ Eg (e-T )8, (4.4.10)

%93 T () (1-2v)°kk  °ij T+v ©1j =2y 13

where 6ij is the Kronecker's delta with values of 1 for i=j and zero
otherwise.

The thermoelastic constants: Young's modulus E, Poisson's ratio v,
and the coefficient of thermal expansion o are in general functions of
instantenous temperature, and TO is the temperature of the strain free

reference state. Equation (4.4.10), known as the Duhamel-Neumann form

of the generalized Hooke's law [5,50] may be conveniently rewritten

as:
_ ~(e) (e) _  (th), _ .(e) _ () _ (th)
913 Cijrs (ers €rs ) = Cijrs (ers €rs €rs ) (4.4.11)
where the elastic stiffness fourth rank tensor C(e) is

ijrs

(e) _ Ev _ E
Cijrs (1+v)(1-2v) 6ijsrs 2(1+v) (Girsjs * 6issjr) (4.4.12)
and the (apparent) thermal strain is:
e??h) =a(06~T)6,, =al §,. (4.4.13)
1] o ij ij
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4.4.2 Constitutive Relations Resulting from the Thermodynamic

Process Description

Despite the appeal of the thermodynamic state variables
approach it becomes clear that the phenomenological description of
inelastic features of deformation exclusively on the grounds of that
theory (e.g. by postulating the explicit form of the Helmholtz free
energy as a function of state variables) is inadequate [31]. Further
variables are required to describe processes which occur in the non-
equilibrium systems. These may be gradients or rates of change of the
state variables, or any other quantity needed to specify processes
occuring in the material. Such quantities are called process
variables and are governed by (process) evolution equations which may
involve both state and process variables [31].

According to Lehmann [36], the required constitutive

relationships 1in process description of coupled thermoplasticity

consist of:

(1) the evolution laws for the dependent external

process variables q; and ¢ (conjugated to the

1]
independent external process variables © and Uij)‘
(ii) the evolution laws for the internal process

variables (where the internal state variable « is
selected as the only internal process variable for

isotropic hardening plasticity).
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(iii) the evolution law for the specific entropy

production.

Following the simplified but common approach, which originates
from the thermodynamics of homogeneous processes, all the evolution
laws, with the exception of the constitutive equation for the heat
flux q9;» are postulated in the form of ordinary differential
equations* (possibly subject to auxilliary conditions). With the
absence of experimental evidence to the contrary, it is usually
assumed that heat flux a; is independent of the history of past defor-
mation (e.g. a4 is not a function of k), and the evolution equations
for the internal state variables are independent of the temperature
gradient [43]. Also, the evolution law for the specific entropy
production is sometimes replaced by the equivalent statement regarding
the internal dissipation rate D (see equation (4.4.3)).

The evolution law for the heat flux 455 known as the heat

conduction law, will be assumed to be:

(4.4,14)

e
He

Lehmann defines the rate~insensitive thermomechanical process, as
one for which all the evolution laws are of the equilibrium type,
i.e. for which the rates of the dependent process variables are
related to the rates of independent process variables, [36]. This
condition expressed mathematically states that all evolution laws
must take the form of homogenous ordinary differential equations
in the time domain. 1In this sense the rate~independent isothermal
plasticity becomes rate—dependent in non-isothermal conditions.
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where the thermal conductivity k of the isotropic material may be a
function of temperature.

In view of the separation of the total strain into elastic and
inelastic parts and identification of the elastic strain tensor as an
independent state variable the evolution equation for the strain
tensor may be concerned with the evolution of the plastic strain
components only. This evolution law, known as a flow rule, is usually

postulated in the form of the normality condition:

F if F=0 and A0
30, . —
ij
é§§) = < 0 if F=0 and A<0 (4.4.15)
0 if F <O

which assumes existence of a convex yield surface F = 0 in the stress

deviator space. It states that when the stress state of a material
point comes into contact with this yield surface, the resulting
plastic strain increment is along the outward normal at the point of
contact [15]. The yield surface is usually assumed to be of second
degree with respect to the stress deviator components, and the most
widely used form for the isotropic plasticity is due to von Mises,

Huber and Hencky (known also as the Jy flow theory):

(4.4.16)
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The deviatoric stress tensor is defined as

1
' = - L
oij oij 3 Ukkaij (4.4.17)

and oy denotes the yield stress, which for non-isothermal plasticity

is a function of both the hardening parameter k and the temperature:

o =0 _(k,0) (4.4.18)
y y

It is assumed that a relationship between ¢ , k and © can be
derived from the data obtained in a series of isothermal tensile
tests. The evolution equation for the hardening parameter «, known as

the hardening rule provides, along with the temperature ©, a

description of the changing size of the yield surface during plastic

flow. Selecting « as the work-hardening parameter, the appropriate

hardening rule is:

¢ = o (4.4.19)
1] 13
It is known that for the von Mises~Huber—Hencky yield surface (4.4.16)

equivalent formulation of isotropic hardening plasticity may be

obtainéd if the strain-hardening hypothesis is employed [53,63].

* With the usual assumption of incompressibility of plastic deforma-

. (p) _ .o (p) _1 (p (»)' _ () °

tion €1k 0, there is eij =3 Sy Gij + eij = eij , and k =
°(p) 1 *(p)! °*(p)!' *(p)

' = S — = 3

%13%13 (oij 3 Ukkaij)eij %13%17 %13%15 °




Then, the only internal variable is selected in the form of the

strain—hardening (Odqvist) parameter ;(p) also known as the

equivalent plastic strain. The corresponding strain—hardening rule
may be considered as the definition of the equivalent pléstic strain
rate:

2 é%’)ég))”z (4.4.20)

The work—hardening parameter k seems to be more often employed
in the theoretical development of plasticity theory [43,44,62], while
the equivalent plastic strain appears to be more convenient in the
computational plasticity formulations.

Both of these hardening parameters will be employed in further
presentation of the constitutive theory and numerical formulation of
the boundary value problem. To avoid confusion, it should be
stressed, however, that only one scalar hardening parameter is
necessary to consider in isotropic plasticity.

During plastic straining there is F = 0 and » > 0 (see
4,4,15), and the proportionality factor is determined from the

consistency condition [23]:

g S50 o 4,4,21
30, . ¢ K K 0 ( )
1]

resulting from the fact that at any instant the yield surface passes
through the stress point. The partial defivatives of the yield

function are:
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oF . 1
= = - = . 022
30 . . %13 %5 73 kklij (4.4.22)
1]
3o
F 2
3: = -5 JM (4.4.23)
1o
oF 2 y
56 - T 7F Uy 35 (4.4.24)
and equations (4.4.11) and (4.4.15) yield:
s _ele) o Ly _ e(th) s (e) (e)_ (th)
C'ij Cijrs (ers Acrs €rs ) + Cijrs (ers €rs ) (4.4.25)

Then, substituting (4.4.19) and (4.4.22-25) into (4.4.21), and solving

for A, gives

90
® L) L] 2 L]
CF?) (e - e(th)) !, + C??) (s(e) *e(th)) !, - To —L 9

) = —Lirs rs rs i ijrs rs rs ij 3 'y 30

30
%'03 — + Cg?) ol. ol
y 9K ijrs "ij “rs
(4.4.25)

In order to obtain a more coincise expression for A it is convenient
to consider additional moduli. They will be introduced in Section
4.5.1, and will enable X to be expressed as a linear combination of
total strain and temperature rates.

The final constitutive relation that has to be considered is a
statement regarding the functional form of the internal energy
dissipation rate D (or equivalently specific entropy production).
Notwithstanding the fact that such relationship forms a part of the

thermodynamic process description, it is convenient to discuss it
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separately, along with other coupling effects appearing in the energy

balance equation.

4.4.3 Coupling Effects in the Energy Balance Equation

To make full use of the internal energy balance (4.2.13) one
has to be able to effectively compute the time rate of the specific
internal energy p (de/dt). The thermodynamic framework, outlined in
the previous sections, makes it possible through associating internal
energy vrates due to the temporal changes of independent state
variables with changes of other (state or process) variables, which
are postulated by the constitutive relationships. The internal energy
rates corresponding to the rates of individual independent state
variables can often be assigned further physical interpretations as
rates of the subclasses of internal energy which may lead to the
identification of their mutual conversions and arriving at their
separate balances.

For the case in which one scalar internal state variable K,
the elastic strain rate ;§§) and temperature @ selected as independent

external state variables, the time rate of the specific internal

energy pe also treated as a state variable, is:

de _ de *+(e) Jes der
) it - ) - (e) sij + p —-eae + p —a-K-K (4.4.27)
ij

The additive decomposition of the free energy (4.4.9) renders a

similar decomposition of the internal energy:
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e(e(j) 9,k) = e(e)(e§§),e) + P (o, 0) (4.4.28)
Upon using the definition of Helmholtz free energy (4.4.1) and

equations (4.4.5-8), it is easy to verify that the respective

components of p(de/dt) are:

. (e) . 30
p 22— 28 - ol @) | - gty ( >) (4.4.29)
36.? 1] ae.? J 1
ij ij
e 5 - 0 (4.4.30)
Y = PG Tt
(p)
de °* de " *(p)

de ° _ = - 3 (3 4.4.31

P o K p ™ K Gijeij D po Y ( ) ( )

Substituting (4.4.27-31) and (4.4.27) into the internal energy balance

equation (4.2.13) will yield:

30., (e) 9 ay

pcee =9 —=l 56 °ij + D+ po — ( )K - q (4.4.32)

Equation (4.4.32) is called coupled heat conduction equation, and it

appears in similar forms in the works of Kratochvil and Dillon [28],
Raniecki and Sawczuk [55] and Mrdz and Raniecki [43]. The former two
works offer an interpretation of the term p(s%e/3x)x as the rate of

internal energy being stored on the microlevel. Proceeding further
(e)} (e)
1] ij

identified as the rate of internal energy stored within the crystal

with this type of interpretation, the term p[3e/de may be

lattice, i.e. elastic strain energy rate, while p(3e/30)0 may be

termed the rate of internal energy stored as thermal energy.
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Then, euqation (4.4.32) may be interpreted as the balance of
thermal energy, with its rate of storage equal to pc.©. The balance

equation (4.4.32) indicates the following modes of thermal energy

changes:

- exchange with the surroundings to be represented by the

heat flux 43

- conversion with electromagnetic and other energies

(excluding the kinetic energy) to be represented by the

volumetric density pr;

- conversions with the other two subclasses of internal

energy (i.e. with the elastic strain energy and energy

stored on the microscale).

The latter conversions are represented in the coupled heat conduction
equation (4.4.32) by the first three terms on the right hand side.
The reversible conversion between thermal and elastic strain energies

is accounted for through the heat of elastic deformation, which may be

computed using (4.4.10), as:

an. .(e) (e) da
© 90 eij = ol - Cijrs[a + 36.(6 - To)]srs
aC(e)
—Lirs | (e) 2(e) 4.4.33
M 90 [ers = a(o - To)srs]}eij (4.4.33)
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and which represents the (passive) thermoelastic coupling effect [15].

The conversion between thermal and stored on the microscale energies
is a partially reversible and partially irreversible process. Its
reversible aspect is represented in the balance equation (4.4.32) by

the heat of plastic deformation pe(a/ae)(aw/an);, while the internal

.dissipation rate D accounts for the irreversible conversion [43]. The
irreversibility of the internal dissipation process reflects the fact
that only part of the energy stored on the microscale and converted
into thermal energy may be converted back to its previous form.

Equations (4.4.29) and (4.4.31) may be viewed as separate
balances of the elastic strain energy and energy stored on microlevel.
They do not provide any essentially new information, because the
explicit forms of the functions e(e)(egﬁ),e) and e(p)(p,e), or
equivalently ¢(e)(e§§),e) and w(p)(g,e), were not postulated.
Nevertheless, the above mentioned equations, along with the coupled
heat conduction equation (4.3.32), allow a clear realization of the
mutual conversions between the internal energy subclasses. FIGURE 2
schematically illustrates these processes, interprets the individual
terms in the balance equations (4.4.29, 31-32), and identifies the
various types of (passive) thermomechanical couplings arising within
the employed phenomenological description.

At this point, it is worthwhile to note that the coupled heat
conduction equation (4.4.32) is still in quite a general form.
Neither the constitutive relations resulting from the thermodynamic

process description nor the explicit form of the thermic equation of
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state were used in its derivation. In particular, no specific
assumption regarding inelastic behaviour, except the assumption
(4.4.28) concerning the lack of direct coupling between elastic and
inelastic deformations, was involved.

The final constitutive relationship to be postulated concerns
.the internal dissipation rate D. It should be however, considered in
close connection with the heat of plastic deformation
pe(a/ae)(aw/am)é, in view of the fact that some authors treat thése
quantities together as a thermoplastic coupling in the energy
equation.

It should be recognized that to postulate a general but
adequate model for the rate of conversion between internal energy
stored on the microlevel and thermal energy is a difficult task. Many
simple approaches attempt to make use of experimental observations.

They lead to the following conclusions:

(1) heat is generated when material is undergoing

deviatoric deformations [14];

. %*
(ii) only part of the input plastic power oij€§§) is

stored, while most of it is dissipated as heat

[14,30].

~~
tae 3
N’

2 0 may be concluded on the basis of (4.3.6) and (4.4.14),

[
Lo
He
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The latter observation, known as Taylor-Farren—Quinney effect

[14,28,49], may form a basis for a simple model of the internal

dissipation rate:

D = fo,. 0P (4.4.34)

where the positive factor ¢ may be, in general, a function of both the

absolute temperature © and the internal state variable k:

£ = &£(8,k) (4.4.35)

As quoted by many contemporary authors [17,30,40], the original
research by Taylor and Farren, and Taylor and Quinney suggest that the
value of the factor ¢ remains between 0.9 and unity.

A review of selected models of thermoplastic coupling in the
coupled heat conduction equation are summarized in Table 1. 1t
indicates that most models use variations of equation (4.4.34) as
constitutive postulates. All the reviewed models of thermoplastic
coupling pertain to simple models of plastic behaviour, and are
represented by no more than one scalar internal variable. However,
some of the thermodynamic frameworks within which the models were
developed (often not clearly stated) are not identical to the one
adopted in this thesis. 1In particular, it is worthy mentioning thaf
some of the quoted models [43,44,55] were arrived at by employing
Ziegler's orthogonality principle in order to obtain the functional

forms of the variables conjugated to the internal state variables.
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The approach to the modelling of nonisothermal behaviour of
simple isotropically hardening elastoplastic material as was taken by
Lehmann [31,32,33,34,35,36,37] also differs to séme extent from that
pursued in this work. Advocating the idea of distinguishing between
the internal state and process variables, he proposes to neglect the
heat of plastic deformation (by postulating pw(p)(G,K) = k). At the
same time, by employing the constitutive relationship (4.4.34) in the

consistency equation (4.4.7), he concludes that the evolution equation

for the internal variable k should be

e = (1 - g)oi.; (4.4.36)

e~
Qg
~

which is different from the equation (4.4.19) as postulated earlier.
According to Raniecki and Sawczuk, the reversible heat of
plastic deformation can usually be neglected in the applied
thermoplasticity, resulting in the entropy and the specific heat for
an elastoplastic material having the same form as in the case of an
elastic solid [55]. Following this approach and at the same time
accepting the evolution equation (4.4.19), one only needs to assume a
constant value of the factor £ in equations (4.4.34-35) to remain

consistent with the adopted thermodynamic framework. The consistency

condition (4.4.7) is then satisfied if

(p) (p)
T 8. e - (p) 4.37
v K=p== « p(1 5)°ij€ij (4.4.37)
where § = const for all values of © and Ke Assuming a value of ¢

close to unity one conforms to the basic feature of the Taylor-Farren-—

Quinney effect.
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4.5 Temperature-Displacement Formulation of the Boundary

Value Problem

4,5,1 Representation of the Constitutive Relationships in the Forms

Convenient for the Boundary Value Problem Formulation

The objective of this section is to express the previously
presented constitutive relationships in the forms suitable for easy
inclusion into the formulation of the coupled temperature-displacement
boundary value problem corresponding to the physical model described
in CHAPTER 3. The aim is to extend the temperature-displacement
formulation of the coupled linear thermoelasticity into the range of
inelastic material behaviour, represented by the isotropic plasticity
model of Section 4.4. Assuming the total strain components e.. and
the excess temperature T (over the uniform temperature TO at the
reference state) as the basic independent variables, the initial
thrust might be to attempt to express all the relevant constitutive
relationships thfough these variables and their temporal derivatives

eij and T. It is a known fact, however, that the adopted model of the
*

Prandt1-Reuss material precludes such a possibility and forces one to

leave the stress components in certain expressions. Henceforth, the

immediate task becomes to eliminate both the elastic and plastic

strain tensors and their rates and to express the stress rate tensor

* The Prandtl-Reuss material is defined as the material for which

the partial derivative of the yield function F with respect to the

= !
stress tensor oij becomes (BF/Boij) oij'
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as a linear combination of ;. and T [1,42]:

ij
. (ep)- - (ep,th)e
3 — 4'501
%135 T Cijrifia T Bijy T ( )
where Cé;ﬁi denotes a generalized elastoplastic stiffness tensor, and
B;;p’th) is a generalized thermal moduli tensor.

A suitable procedure of deriving the explicit expressions for

(ep) (ep) . ) )
Cijkl and Bij comprises the following steps:

(i) Decompose the total strain tensor rate as:
S (4.5.2)
1] 1] 1]

where the integer number j equals 0 for elastic loading and

unloading, and 1 for plastic and neutral loading, i.e.

1 for F =0 and » > 0
i = O for F =0 and A < 0 (4.5.3)
0O for F QO

Here, F denotes the yield function given by equation (4.4.16),
while A is the proportionality factor in the normality condition
(4.4.15). A will be explicitly expressed later as a linear
combination of ;. and T.

ij

(ii) Express the stress rate tensor as a linear combination of eij’
e??) and T.
1]

To accomplish this, it is convenient to further develop the

equation (4.4.25). Then it may be directly calculated that
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(e) (th) C.. (e(e) - e(th))
1Jrs rs ijrs "rs rs
(e) e (e) o{EM) Y5 (4.5.4)
rs
where
(e) _ aniiis (4.5.5)
%rs oT  %ij o
(th) do
ars [a +wﬁ(T + TO)]('srS (4.5.6)
%
and D(Jis is the elastic compliance tensor , which for the

isotropic elasticity takes the form [64]:

=
.~
. (O
~r
i
~
O
O
(=]

) —-%—51.5 (4.5.7)

Using (4.5.2-4) the equation (4.4.25) becomes:

. - (E) . _ .'(P) (e) (th)
15 = Cijrs lepg = depg (e * )T] (4.5.8)
(iii) Express the product JC(e) «(p)

in equation (4.5.8) as a 1linear
1Jrs €rs

combination of the rates eij and T.

To accomplish this, one has to express the proportionality
factor A as a function of the rates s 1j and %. Substituting
equation (4.5.4) into (4.4.26), there is:

* The elastic stlffnsss asd compliance tensors are related through

th : = + .
e identity "kl kl 1/2(Gir6jS Gissjr)

L Mww...,.___‘j
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(e) , (e) , , (&) (th) 2 30 o
Cijrsaij Ts [Cijrs ij( rs rs ) 3 SEZ 1T
A= — (4.5.9)
Cg?z oi,o + %-03 90
jrs ij rs ™
Changing the dummy indices in (4.5.9), and premultiplying by
Ci?iscés’ the normality condition (4.4.15) gives the desired result:
e  , ~(e) o _ , (e) (th)yey _ 2 30 (e) _, &
ijmn mn leklrs[srs (ars * %rs )T] 3 0y CijrscrsT
C(e) ;(p) - 3T
ijrs rs (e) , 4 3 30
Cklmnoklcmn + §'°y oK
(4.5.10)
Equation (4.5.10) could be directly substituted into (4.5.8), but for
the convenience of a more concise notation the following auxiliary
quantities are introduced:
— hardening modulus:
a0
ho=a o X (4.5.11)
9 "y 3
— auxiliary hardening modulus:
(e)
= + ! ! o Js
S h Cklmnoklomn (4.5.12)
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- Yamada's plastic stiffness tensor [61]:

cte) o' o cle)
¢(® _ Zijmm i1 kirs =1 c(,) ot ot c{®)  (4.5.13)
ijrs (e) 4 3 S "ijmn mn k1l klrs
C o'+ ——X-

klmn kl mn 9 y oK

— coefficient of yield stress variation with temperature:

0
(p) '% o 3T rs 12 %0
aP’ = Y = =25 —Lg (4.5.14)
rs C(e) ol o'+ 5_03 3o S 3 "y T rs
klmn 'kl mn 9 'y EEX

Now, equation (4.5.10) may be written as:

C(e) '(P) C(P) ; [C(P) (a (e) (th)) + (e) (P)]T

! (4.5.15)
1Jrs rs ijrs rs ijrs 1Jrs rs
and (4.5.8) becomes:
. (e) (p) (e) (p) (e) , (th)
oij (Cijrs - 1Jrs)€ - [(ClJrS - 1Jrs)( ars )
(e) (P)
1Jrs rs 1T (4.5.16)

Comparing equations (4.5.1) and (4.5.16), the elastoplastic stiffness

tensor may be identified as:

clep) _ cle) - 3c c(P) (4.5.17)
rs ijrs ijrs

and the generalized thermal moduli tensor as:

B(ep,th) - (ep)( (e) (th)> (e) oP)

: (4.5.18)
j ijrs 1Jrs %rs

fote
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It should be noted that both Ci??; and B(ep,th) in general depend on

the instantenous temperature T, stress c.j and the work-hardening

e
parameter k. The 1atter enters into the coefficients C( P) and
(ep,th) ) .

1J through the 1nstantenous values of the yield stress Gy and
its derivatives z and y

oT K
If one decides to use the strain~hardening parameter E(p)

rather than «, as it is preferred in most numerical formulations, the

hardening modulus definition has to be altered. Then, defining

&

b =-g-0 (4.5.19)

2
Y o, p)

™ |
~

instead of (4.5.11), the second terms in the denominators of (4.4.26),
(4.5.9) and (4.5.10) should undergo the appropriate changes. However,
all derived relationships and other introduced expressions remain
intact.

Using the auxiliary quantities introduced, a number of other
useful relationships can be derived. Some of them, useful in the
convenient expression of the coupling terms in the energy balance

equation (4.4.32), are:

¢{®) (&) _glem)s 4 1el®) (al®) 4 o)y 4 () ((P)1E (4u5.20)

ijrs®rs ijrs®rs ijrs 1Jrs %rs
obtained by substituting (4.5.2) into (4.5.15) and using (4.5.17), and

<) _ (&) () () () (&), ()

(p)
13 ijkl klrs®rs ijkl klrs rs

) 1T (4.5.21)




obtained from (4.5.15), by changing the dummy indices and premultiply-

, (e)
ing both sides by Dijkl'
Using equation (4.5.20) the thermoelastic coupling term

(4.4.33) may be expressed as:

eﬁl sij) - (T + Ty (a (e) (th)){ ( g N
[ngs( i+ a§§h)> + (j]); (p)lT} (4.5.22)

The thermoplastic coupling term in the energy balance equation

(4.4.32) (assuming that heat of plastic deformation is neglected)

becomes

me
e~
O}
~r
i

(e) (p) v oa(e) (p) (e) (th)
= ey jk1 klrsoi €rs [D jk1 klrs( toapg )

e -
Lde

(P) vom
aij ]oijT} (4.5.23)

The above expression could be further simplified, if the product
(e) g!
ijkl 13
(e)

€1 ° However, in the derivation procedure followed in this section

were expressed by the components of elastic strain tensor

an attempt is made to exclude the components of strains (but not their

rates) from the formulation. Henceforth, the appearance of the

(e).

. 1 . . .
quantity o4 in equation (4.5.23) is preferred to 1

Thus far in the presentation of the constitutive relations in
this section no use was made of the explicit expressions for the

elastic stiffness and compliance tensors (4.4.12) and (4.5.7).
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Neither was the assumption regarding incompressibility of plastic

deformation directly utilized.
The latter assumption, which may be expressed as

°(p) (p)
N S = (4.5.24)

when considered in conjunction with the normality condition (4.4.15)
leads to the conclusion that the trace of the stress deviator must

remain zero during plastic straining.

Gik =0 (4.5.25)

A number of simplifications arise in the previously presented
relationships, if equations (4.4.12), (4.4,16), (4.5.7) and (4.5.25)

are taken into consideration. For example, it may be directly ver-

ified that:

(e) o' = =B
fas %l T Taons (4.5.26)
20
ey , , E_, ., " v\2 _3E
r—————— - * L 7

Cijrscijors 1+v'rs rs ( 3 ) 2(1+v) (4.5.27)

(e) 1-2v, ° 3 _ltvy .
%rs 3 ( ) Ss ST( rs (4.5.28)

i
|
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(e) , (e) (th), _ E 3 1-2y %k 3
Cijrs(ars ta )= 1_2\)[3,]?( 7 )3 Tt (T 130)]5,j +
B3 1ty
‘ T+v TC & )oij (4.5.29)
20 20 g
(-Ey?
(p) 1, E |2 ., 3.2 T+v o
Cijrs S(1+V) ]!-j orS = (20 ) 0 N 3E Uij OrS (4.5031)
~(5) 2(1+v)
de P
o
(p) 3
p) _ 3T ,
%ts ~ 20 a0 3E s (4.5.32)
v -—;%—) 2(1+v)
de P
20 dg
1 E , _ yi E 3 1ty Vi
A S {1+v0rs€rs 3 [l+v 8I( E )qy + T 1T} (4.5.33)
( E .2
(p) (e (th), _3 1+v 5 14y,
Ciirs s’ T % ) T2 g L 3w COF % (4.5.34)
_( ) 2(1+\))
de P
30
(e) (p) _ 3 E aT .
Cijrsars 20, 1+v 30, _3E % 3 (4.5.35)
e I EE)

d¢
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_E_
(e) (p) .3 .2 1+v L
13k1 klrs - (20 ) 30 + 3E oijors (4.5.36)
Y ~—_—‘(L) 2(1+9)
de P
3E
(e) (p) 2(1+v) ,
Pijki%1rs®ty T Be , _3E ‘s (4.5.37)
—:%~) 2(1+v)
e P
3E
ple) o(p) ( (e) . (th)y _ 2(1+v) l+yy
ijk1 Cetrs s ¥ g ) 2, , JE aT( )i. (4.5.38)
_( ) 2(1+\))
(p
20 ___3~E.“.__
(e) (P) (a (e) + a(th))cv = ( y)2 2(1+v) 9 [2(l+\)2]
17k1%1rs ij 3 b0, , OE aT = 3F
—_1—) 2(1+v)
aelP (4.5.39)
30
) o T
P) v _ h4
%3 %3 " 9o IR (4.5.40)
— 2(1+\))
ae(p)

The above stated equations result in much simpler expressions
for the stress rate tensor oij’ plastic strain rate tensor e§?)

proportionality factor A and both the thermoelastic and thermoplastic

terms, than those derived before. Table 2 contains the summary of the

respective expressions in the simplified forms, obtained with the help
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of equations (4.5.26-40). These are the forms of the constitutive

relationships which are required in the temperature-~displacement
formulation of the boundary value problem to be used in the next
section.

A brief examination of the content of Table 2 confirms the
earlier expressed assertions that the constitutive theory of isotropic
thermoplasticity

adopted in this thesis requires the following

material property data obtained from isothermal tests:

(i) wuniaxial yield stress dependence on the accumulated plastic
strain (i.e. equation (4.4.18)) which can be derived from the
stress-strain data obtained in a series of tensile tests at

different temperatures using virgin material specimens,

(ii) variations of Young's modulus and Poisson's ratio (or any

other two elastic constants for isotropic material) with

temperature,

(iii) wvariation of the coefficient of thermal expansion with

temperature,

(iv) variations of the specific heat at constant elastic strain and

thermal conductivity with temperature.

The yield stress dependence on the accumulated plastic strain

is assumed to be valid irrespective of the loading path followed in
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the process of plastic straining. The coefficients of yield stress

variations with plastic strain and temperature:

3o
H' = —'_'_‘(X)— (4.5.41)
de P
and
3o *
H" = '?rl (4.5.42)

are assumed to be possible to obtain from (4.4.18) by direct differ-—
entiation, and in addition, H' is assumed to be a monotonically
increasing function of ;(p)**. The details of calculating H' and H"
for the particular form of the stress—strain relationship will be
discussed later in conjunction with the numerical formulation.
Finally, as one may notice from Table 2, the shear
(Kirchhoff's) modulus G and the compressibility (bulk) modulus K seem
to be more convenient to use than Young's modulus E and Poisson's

ratio v. However, if only Young's modulus but not Poisson's ratio

exhibits temperature dependence, then there is:

S R E T (4.5.43)

and the expressions in Table 2 render further simplifications.

* The symbol H" is introduced here after Mondkar and Powell [42].

#*%  H' > 0 for all values of ;(p) excludes a possibility of strain
softening, However, for most materials with well defined

isothermal hardening behaviour there is H" < 0, which accounts
for a thermal softening.
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4.5.2 Differential Formulation

The differential (local, strong) formulation of the boundary
value problem for the thermoelastoplastic material makes use of the
local forms of the momentum and internal energy balances, constitutive
relationships and appropriate boundary and initial conditions. The
temperature-displacement approach designates the excess temperature
and the components of the displacement vector to be the primary
dependent variables. It tends to exclude other variables from the
formulation. Some of those variables, like the density and certain
stress tensor components have been eliminated previously (see Section
4.2), and are given by the equations (4.2.11) and (4.2.14). Some
others, like the heat flux q and the components of the total strain
tensor Eij’ are easy to eliminate through the use of the constitutive
equation (4.4.14) and the kinematic relations (4.1.1-2), respectively.
In contrast to the purely thermoelastic case, however, the remaining
components of the stress tensor, as well as the internal state
variable E(p), were impossible to eliminate from the rate forms of the
constitutive relationships (stated in Table 2) and must remain a part
of the present formulation. Therefore, the corresponding rate
equations for ;ij and E(p) must be considered together with the
momentum and energy balance equations.

The local equilibrium equation (4.2.12), representing the

local balance of momentum, may be written in the rate form as:

o + pb, =0 (4.5.44)
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The rate form is preferred, because it allows easy elimination of the

stress rate tensor. Using equations (4.5.1) and (4.1.2), and taking

advantage of the symmetry of the tensor Ci;ii, equation (4.5.44)
yields:
(ep)* (ep,th)e .
- + = 4.5.45
(Cijkluk,l),j (Bij T)’j b, =0 ( )

The local balance of energy (4.4.32) may be written in the following
form by neglecting the heat of plastic deformation and using the rate
expressions for the heat of elastic deformation and internal dis-

sipation as given in Table 2:

(pce + ?)T == Bijeij - qi’i + pr (4.5-46)
where
%y
S - H" - G T _1 3
Y =39 i ae - [E - gar(T + Tl (4.5.47)
_ (e,th) . 236 16
Bij = B (T+Ty) -3 grs3e [6-5 7T+ Tg)loj;  (4.5.48)

(ep) (e, th)

The expressions for C.. s B.. are stated in Table 2, and the
ijkl ij

coefficients H' and H" are defined by equations (4.5.41) and (4.5.42),
respectively.
Expressing the strain rate tensor through the displacement

rates, using the constitutive equation (4.4.14), and utilizing the
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symmetry of B.., vields

ij

(pc_+ DT + Bijdi,j = (T ) * e (4.5.49)

Equations (4.5.45) and (4.5.49) represent the system of four
coupled partial differential equations for the displacement vector
components u, and the excess temperature T. They are assumed to be
valid within a closed region R of the space which is said to be
occupied by the solid medium under consideration and includes the
region's boundary 3R.

The boundary conditions in coupled thermomechanics are usually
stated separately for the mechanical and thermal variables. Following

this traditional approach, four types of boundary conditions will be

considered:

(i) Displacement boundary condition:

o]

. .u, +a, =0 on 3R (4.5.50)
ijj i u

(ii) Pressure boundary condition:

oijnj = - png on aRo (4.5.51)

(iii) Temperature boundary condition:

T =T on 3R (4.5.52)

(iv) Heat flux boundary condition:

qn, =q + h(T - Tw) on aRq (4.5.53)
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where the portions uRu and “Ro’ and uRT and uRq, of the boundary are

mutually exclusive, and their corresponding logical sums represent the

entire boundary, i.e.

]

il
=

aRu n :;R(7 aRuU R = 3R

(4.5.54)

[
=

R

aRT n aRq aRT U aRq

Furthermore, the following barred quantities denote fields prescribed

on the corresponding portions of the boundary:

a..,z. — prescribed constants
ij’7i
5 — prescribed pressure rate
T - prescribed temperature
a — prescribed heat influx
h - prescribed heat transfer coefficient
Tm = prescribed bulk fluid temperature

The coefficients ;ij and Ei allow consideration of the so called skew

displacement boundary conditions [3,4]. The quantities ai’ h and T

o0

may be, in general, prescribed functions of local temperature. Zero

initial boundary conditions at the instant t = 0 will be considered

for the wvariables Uss T, Uij and ;(p). They reflect the earlier

stated assumptions with regard to the absence of preloading, uniform
initial temperature distribution © = Ty, and the virgin state of

material.
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As mentioned at the beginning of this section, the field
equations (4.5.45) and (4.5.49) must be complemented by the

appropriate equations for the undetermined components of o,., and for

ij
E(p). These are:
. (ep)e (ep,th)s
= - 4,5.1
%45 T Cijri®ia T Bijy T ( )
and
AR T
-(p) _2 _ 3G . G 3T .
c =

510

’

—— e 1]
y o (H" + 36) %i3%,5 Y E 3¢ T (4.5.55)

fhe latter equation follows directly from the definition of ;(p) given
by (4.4.20).

The final point requiring clarification is concerned with the
purely mathematical aspect of the posed problem. The mathematical
formulation presented in this section did not address the difficulties
associated with the existence of the inequality constraints (in the
form of the normality condition (4.4.15)). Since they are known to be
tractable in numerical formulations, the discussion of how to handle

them is postponed to a later section.

4,5.3 Integral Formulation

The local formulation of the boundary value problem presented
in the previous section could be considered a basis for an approximate
formulation, obtained as a result of a certain discretization process.
Such procedures are often used when finite difference formulations are

desirable, but may also lead to finite element models [8]. The latter

|
|
i
|
|
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are, however, more conveniently derived through other approaches whose
common feature is the use of some kind of integral statement as a
starting point in the search for an approximate solution. Many well
known approaches, including variational formulations and formulations
based on the principle of virtual work, may be stated independently
from the latter approximate solution procedures in the form of a
system of integral equations equivalent in some sense to the governing
differential equations and boundary conditions of the local formula-
tion. More often, however, the derivation of an integral formulation
is directly inspired by the intended approximate formulation. Conse-
quently, it is presented in such a way as to show how it naturally
lends itself to the possibility of problem discretization.

The integral formulation of the coupled thermoelastoplastic
problem formulated locally in the previous section will be considered
here in the context of the future finite element approximation. The
approach employed is known under many names, such as weighted residual
method, conjugate approximation method, and projective method. The
basic motivation is to distribute the errors resulting from the
approximate only fulfillment of the governing equations and boundary
conditions, over the volume of the region R and the surface area of
its boundary 3R. In the formulation pursued here, and termed the weak
formulation in the classification of weighted residual method by
Zienkiewicz [63] and others, the integral statement corresponding to a
particular differential equation and its associated boundary

conditions, takes the form:
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JewdV = [ e,wdS (4.5.56)

v 82

Here, ¢ is the error function in the domain V, being a result of non-—
exact satisfaction of the governing differential equation, g9 1is the
error function on the boundary SZ’ being a result of non—exact

*
satisfaction of the natural boundary conditions , and w is a weighting

(or test) function. The error €15 resulting from the non-exact

*
satisfaction of the essential boundary conditions on the remaining

part S1 of the boundary S, is not taken into consideration in the
statement (4.5.56). The present approach requires that essential
boundary conditions be invoked separately, preferably on the discrete
model directly.

In the local formulation presented in Section 4.5.2, equation
(4.5.50) represents essential boundary condition, and equation
(4.5.51) natural boundary condition, associated with the equation
(4.5.45). Similarly, equation (4.5.52) represents essential boundary
condition and equation (4.5.53) =~ natural boundary condition
associated with the coupled heat conduction equation (4.5.49).

Denoting the approximations of the displacement and excess

temperature fields by ﬁi and T, respectively, the error functions

corresponding to equations (4.5.45) and (4.5.49) and to the boundary

The procedure of identification of natural and essential boundary
conditions is the following:

If the differential operator in the governing differential
equation contains at most m—th order derivatives, then the order
of the derivatives in the essential boundary conditions is at most
m-l. The boundary conditions involving higher order derivatives
represent natural boundary conditions [3].
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conditions (4.5.51) and (4.5.53) are:

®u ~ (Cijiink 1 Bgip’th)%),‘ + Dﬁi (4.5.57)
ep = (oc_ + P+ Byghy g = T ) L - (4.5.58)
€, = [Cijﬁi"k 1 Bi?p’th)f + Séij]nj (4.5.59)
eq =7 I +ap)n, - w(f-1T) (4.5.60)

Introducing the test functions ui and T*, the weak formulation of the

coupled thermoelastoplastic problem becomes:

* = *
é euuidV é eauidS (4.5.61)
o
i) eTT*dV = [ ¢ T*dS (4.5.62)
q
v Sq

where V is the volume integration domain corresponding to the region
R, and S0 and Sq are the surface integration domains corresponding to
the 3R0 and aRq portions of the boundary, respectively.

Application of the Gauss-Green-Ostrogradski's (divergence)

theorem yields:

(ep)n _ gfep,th)a "
: (Cigk1be,1 ™ By T) quidv
(ep). _ o(ep,th)as _ (ep). _ q(epsth)ay o
f (c; kb, 1 T 81 T)u 0 ds f (cy ki, 1~ Bij T)u.,jdV

G

(4.5.63)
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and

kT .) ,T*dV = f kT .T%n.dS - f kT .T%.dv 4.5.64
,{,. ( ,1),1 é s 1 n1 \j; s1 4,1 ( )
q

Substitution of (4.5.59) and (4.5.60) into (4.5.57) and (4.5.58),

respectively, leads to the following transformed form of the weak

formulation:
(ep): (ep,th)2 > *
T % - ’ % = % - %dS
S Cijkluk,lui,jdv J Bij Tui,jdV S pbiuidV I3 pniuid
v \Y v S0
(4.5.65)

+ P)TT*AV + 5 kT .T*.dV + ; B,.&, .T*AV =
{] (DCE Y) {7 y1 ,1 ‘J]. 13 1,3

= = f [q,n, + h(T - T )]T*dS + f prT*dv (4.5.66)
g 1 ® v

q
The transformed form of the weak formulation is preferrable to the
original form given by equations (4.5.57-62) because it imposes
reduced smoothness requirement on the trial functions ﬁi and T. At
the same time a higher degree of smoothness is required from the test
functions u% and T*. The important point, however, is the following:
Lf equations (4.5.65-66) hold for sufficiently many choices of the
test functions u? and T*, which satisfy the homogenous essential
boundary conditions (i.e. ui = 0 on aRu and T* = 0 on aRT), then they
are equivalent to equations (4.5.45) and (4.5.49) with the correspond-

ing boundary conditions (4.5.51) and (4.5.53), for sufficiently smooth

solutions ﬁi and T.
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Therefore, spatial discretization of the weak equations
(4.5.65-66) may be achieved by approximating the region R by R, and
then approximating the fields us and T defined on R through the
functions ﬁi and T defined on R. Specific choices for ﬁ, and ﬁi and
T may lead to finite element approximations.

When the test functions are selected identical to the trial

functions, i.e. when u? = ﬁi and T* = T, the Galerkin approach

results [4,63].

As the final point in the discussion of global formulation, it
is necessary to recall that equations (4.5.61) and (4.5.62) do not
fully describe the considered problem. They must be supplemented by
the constitutive equations (4.5.1) and (4.5.52), the inequality
representing the criterion of transition between loading and unloading

states, and the appropriate initial and essential boundary conditions.




CHAPTER 5

FINITE ELEMENT APPROXIMATION AND SOLUTION

5.1 Finite Element Approximation

The finite element method is sometimes viewed as a general
procedure of transforming “continuous" mathematical models into

"discretized” ones. The first step of the discretization process

consists of partitioning the domain of interest into a number of non-

overlapping subregions, called finite elements. Associated with this

division is a set of nodal points located on element boundaries and/or

within their interiors. The second step involves approximating

variations of the continuous physical quantities over elemental

subregions through (usually linear) functions of their nodal values.

These nodal values become the basic parameters of the discretized

problem. The application of the outlined procedure to the previously

formulated mathematical model of coupled thermomechanical behaviour is

subject of the following sections. Discretization of the spatial

domain leads to the discrete model in the form of a set of coupled
ordinary differential equations, and time becomes the only

independent variable.

5.1.1 Isoparametric Elements

Among the many different types of finite elements proposed

until now the concept of isoparametric element, originated by Taig and

73
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further developed by Iroms, Zienkiewicz, and their coworkers [63],
offers a very convenient way of construction and numerical
implementation of multinode high order elements, for which curved
boundaries are allowed. Regions with curved and/or irregular
boundaries may be then accurately represented in the discrete model.
This is accomplished through individual parametrization of each
element domain, while employing the same set of functions which are
later used for approximating problem variables.

The parametrization of elemental domain may be achieved by
assigning a local nondimensionalized (natural) coordinate system * to
it, with the origin at the centroid of the element. If the reference
(global) coordinates X; are assumed to be polynomial functions of the

isoparametric (local) coordinates Ei

X, =a, +a, g, +a Ej«‘:

+ + L N ] .]-.l
I B R A0 R 550 L ST IR L LI 3] (5.1.1)

where aijk =0 for j = k, aijkl =0 for j = k =1 =0, and additional

constraints are imposed on the coefficients a,, and a,, in order to
, i

ijk jk1
keep their number equal to the number of nodal coordinates, the

assignment of the local coordinates of nodes fully defines the

isoparametric transformation (5.1.1).

* In the natural coordinate system any point whose reference co-

ordinates are X; 1is represented by the numbers €;» such that |£i|
< 1.
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This well documented procedure results in the representation

of the isoparametric transformation (5.1.1) in the form:

_ (e)
X, = N; (Ej)in (5.1.2)

where Xr4 denote the global coordinates of the I-th node (I = 1,...,N)
of the e-th element, and Nie) are the interpolation (shape) functions
for this element, which are defined in the elemental natural
coordinate system.

If one restricts one's considerations to two-dimensional
quadrilateral elements, then the isoparametric transformation (5.1.2)
may be viewed as a mapping of a unit square -1 S_gl <1, -1 S_gZ.S 1
into the region of the Euclidean space occupied by the element which

appears irregular in the xi-coordinates. The shape functions derived

for a four-nodes, straight-sides isoparametric quadrilateral element

are [3,4]:

(e) 1
NP7 ,8y) = 3 (1 + B )L + Ep,Ey) (5.1.3)

where E1q (i = 1,2) are the local coordinates or the I~-th node. If
the local node numbering is done according to FIGURE 3, the local node

coordinates are gll = E12 = 522 = g41 = 1 and 521 = 631 = 532 = 542 =

-1, and the shape functions (5.1.3) become:

W (e ,E) = 1+ g1+ ¢,)

( ), 1
NyS7 (8, Ey) = (1 = g1 + &)

(e) _ 1
Ng (51,52) = (1 - g0 - gy)
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(e) =1 -
N, (8,8 =2(1 + )01 £,) (5.1.4)

The element described above furnishes 1linear variation of a field
variable along each of the constant local coordinate lines. A
quadratic variation may be accomplished through addition of midside
and/or interior nodes. The quadratic element belonging to the
"Serendipity” family [63] has eight nodes located as shown in FIGURE

4. The shape functions derived for its corner nodes have the form:

(e) _1 _
NI (El’£2) - 4(1 + EIlgl)(l + 51252)(511£1 + glzgz l)
I =1,2,3,4 (5.1.5)
while those derived for the midside-nodes are:
(e) _1 -
I=25,6,7,8 (5.1.6)

For the local node numbering as indicated in Figure 1, there is

B11 T %12 T By T &y T E5y = Egy = 1,
P21 T 831 T E3p T Byp T 8g = Eyp = -1 and
50 = %g2 = By T Bgy = 05

and the shape functions (5.1.5-6) become:

1
5,5 = 0+ DA + £+, - 1)




M L8, = - £ (- + gy - 1)

Nge)(gl,gz) = %{1 SEDA - (-8 - - 1)

NeS(E,E,) = 2 EDA - £ - 8, - 1)

N§G’<£1’€2> - %<1 + g0 - 5%) (5.1.7)
Née)(il,iz) = 31 - £ - £5)

8 e = 21 - £ - &)

Née)(gl’gz) _ %(1 + e - EZ) (5.1.7)

The quadratic element of the Lagrangian family of the
isoparametric two-dimensional elements includes an additional node
located at the origin of the local coordinate system [63]. The shape

function corresponding to the ninth node has the form:

2 2
(£1,8,) = (1 - £DA - £)

N;e? (5.1.8)

and the shape functions corresponding to other nodes have to be

modified to yield:

(e) _1 1
Ny e s Ey) = (1 58 )L+ B8 0B8] + BpoEy = 1)+ NG (E,E)

-1 -
=G e DU+ e E)E B ELE, I=1,2,3,4
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2

2 1

p ~F

(e) 21 _
NI (51,52) 2(1 + 51151)(1 + 51252)(1 511
=21+ (L + (a1 - 2 - 2 * )
=3 £1181 £128 Er181 7 B2/t 8 18 T Ep0by

I=5,6,7,8

(501.9—'10)

Quadrilateral isoparametric elements may be degenerated to triangular
elements by coalescing the nodes of one edge. In such a case the
shape functions require further modifications which are minor for the
linear type elements and more extensive for the quadratic ones. The
details of these modifications are given by Bathe [3].

The three types of disoparametric quadrilateral elements
described abéve, as well as the straight edge triangular element
obtained by collapsing any two adjacent mnodes of the 1linear
quadrilateral element, were incorporatea in the finite element program
TEPAP which was written in the course of this thesis research. The
suitability of the isoparametric element concept to the formulation of
the spatially discretized model of thermoelastoplastic solid will be

further explored in the following section devoted to the discrete

model equations' set—up.

5.1.2 Derivation of Discrete Model Equations

According to the previously outlined  procedure for
isoparametric finite elements, the field variables in every element

can be approximated with the use of the same shape functions which
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were employed for parametrization of the spatial domain. The

formulation of the thermoelastoplastic problem, which was presented in
Section 4.5, consisted of two integral and two differential equations,
(4.5.65-66), (4.5.1) and (4.5.55). It involved four fields:
displacement u;, excess temperature T, stress Gij and equivalent
plastic strain g(p). This formulation indicates the possibility of
enforcing the assumed trial solutions us and T to obey the integral
equations (4.5.65-66) while using the remaining equations (4.5.1) and
(4.5.55) for determining the required values of 943 and ;(p). Such an
approach is motivated by the displacement formulation of elastic and
thermoelastic problems when the stresses do not appear in the integral
statements (4.5.65) and (4.5.66) at all. Then, it may be shown that
there are certain interior points within isoparametric elements where
the stresses computed from known displacements and temperatures
(according to the Duhamel-Neumann constitutive equation analogical to
(4.5.1)) exhibit the highest accuracy [3,4,63]. Furthermore, these
interior 1locations within isoparametric elements coincide with the
"sampling points"” required in the Gauss-Legendre procedure of
numerical evaluation of integrals which may be used when solving for
displacements and temperatures.

By adopting the above described approach to elastoplastic
problems one fixes the locations of points where stresses and plastic
strains are determined [4,53,63]. 1In the case of the thermoelasto-
plastic problem this leads to the set of discrete variables consisting

of the nodal displacement components and nodal excess temperatures

complemented by the values of stresses and equivalent plastic strains




*
at the Gauss-Legendre sampling points . Equations (4.5.51) and

(4.5.52) are then enforced only at these points, and the yield
condition is also checked there only.

Following the standard practice [3,4,63], the discrete model
equations will be derived for a single element. The governing
equations for the entire mesh may then be easily obtained by
identifying nodal couplings with other elements nodes. This assembly
procedure, often referred to as the direct stiffness method, could be
introduced more formally through the use of the Boolean connectivity
matrices [57].

The trial solutions for the displacement ﬁi and temperature T

in the e—th element are assumed in the forms:

(e) Ya (e)

u;(g),89) = (g)5€5)u (5.1.11)

- (e) (e)

Inserting equations (5.1.11) and (5.1.12) into the Galerkin form of

the equations (4.5.65) and (4.5.66), written for a single element,

yields:
(e) (e) (p)
pocter) DR @ o) (o) e medp M (o) )
V(e) ijkl axl YKk axj Yi1 V(e) ij J °J an il
=r pBiN§E)u§§)dv(E) s pn N(e) iﬁ) (e) (5.1.13)
V(e) g(e)
*

The Gauss-Legendre sampling points do not usually coincide with
the element nodes.
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anie) aN(e)
1 (e + N ge)TJN§e)T§e)d © 4 ai § e) v L _p(e)gyle)
V(e) V(e) i
ante) (o) (
STI e (e) e) (e) ( ) = (e) (e) (e) (e),.(e)
+ f( Biy o, Ereanl 1P i +r 0 ST N as
yle J S(e)
=5 (T - 5)N§G)T§e)ds(e) + f prN§e)T§e)dV(e) (5.1.14)
S(E) V(e)

The volume integrations in the above equations extend over the

(e)

» while the surface int

(e)

elemental volume V
over the external surface §

quantities may be defined as folows:

tangent stiffness matrix:

(e) (ep )3N(E) o) (e)
K., = C ———dV (5.1.15)
ij1J (e) 1Jkl 9%, 90Xy
\Y
- thermal expansivity matrix:
( y aN(e)
e (ep,th) I néed gy le)
1IJ ( )813 ax. J dv (5.1.16)
v © J
-~ rate of external forces vector:
iI il i
V(e) S(e)

of the element.

egrations are performed

The elemental matrix
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- generalized thermal capacitance matrix:

(e) =€) (&), (e)
CIJ (pce + y)NI NJ dv (5.1.18)
y(e)
- thermal conductance matrix:
(e) (&)
aN aN
(e) i i S(e) (5.1.19)
~ thermomechanical coupling matrix:
(e)
N
(e) 7@ (e
Ritg By ox, ax. Ny (5.1.20)
y(e)
- rate of heat generation vector:
Qie) = prNée)dV(e) + 5 (hT_ q)N(e) (e) (5.1.21)
y(e) g(e)

Substituting expressions (5.1.15-21) into equations (5.1.13) and

(5.1.14), and using the symmetry property of Cé;ii’ one obtains:
(e) (e) =(e) (e)x(e) _ (e)
(KleJ jJ + ElIJ J ) = (5.1.22)

(e)(C(e) (e) 4 gledple) | plersle) _ ((e),y

1J J 1J J 11J%7 (5.1.23)




where 1,J = 1,¢¢e,N and i,j = 1,2 for plane problems, and i,j = 1,2,3

for three—-dimensional problems.

e)

. (
Since the foregoing equations must hold for arbitrary U and

(e)

, it follows that for any e-th element:

(e) +(e) (e)s(e) _ _(e)
Kijra%ys * BTy T i (5.1.24)
R§§}a§§) + C%ﬁ)%ge) + S§§)T§E) = Q§e) (5.1.25)

i.e. for an element having N nodes there are N temperature and Nxn
displacement equations, where n denotes the number of displacement
field components.

It should be mentioned that the above equations were derived
under an additional assumption concerning the interaction of elements.
It has been assumed that the surface integrals over element interfaces
vanished due to the cancelation of identical terms contributed to the
assembled equations by adjacent elements.

(e) (e) _(e) (e)

Matrices KijIJ’ E 13 RjIJ and CIJ depend on the current

local values of stress, effective plastic strain and temperature.
e .
Thermal conductance matrix Sij) and the vector of heat generation rate
(e) , .
QI also depend on the current local temperature values in view of
the temperature dependencies of thermal conductivity k and heat
transfer coefficient h. These additional couplings may be
conveniently accounted for in the numerical formulation when the

Gauss—-Legendre method is employed for approximate evaluation of volume

and surface integrals. The integrands must then be evaluated only at
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the Gauss-Legendre sampling points [3,4], and the values of stress,
effective plastic strain and temperature only at these points are
required.

Denoting the local coordinates of the K-th sampling point

within an isoparametric element by & (r = 1,¢e.,n) one needs to

rK?

evaluate:

- the required independent variables at this point:

- n(e (e)

TK = NI (ng)TI (5.1.26)

o'in = oij(ng) (5.1-27)

Eép) = E(p)(ng) (5.1.28)

- the required material properties at this point:

o = cy(gép),TK) (5.1.29)
E(TK)

K = XI) = s =] (5.1.30)
E(TK)

GK = G(TK) = T V(TK)] (5.1.31)

%y = a(TK) (5.1.32)
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kpy = k(TK) (5.1.33)

Ck = CE(TK) (5.1.34)

and their derivatives

Ky = 3K (5.1.35)
aT T=T
K
w_ 3G
GK T AT = (5.1.36)
K
.2
ay = =% - (5.1.37)
K
30
HY = —_ (5.1.38)
ac (P ~(p)_~(p)
T"TK, € g
3o
Hy = ETX.T=T ;(p)=g(p) (5.1.39)
K? K

Then, it is possible to compute the values of Cg?giK, B§§§’th), Bin
and ?K at the sampling points, following the expressions stated in
Table 2, and (4.5.47-48).

In order to apply the Gauss-Legendre method for the evaluation
of the surface integrals the sampling points have to be located on the
elements' boundaries but otherwise the procedure remains identical.
Then it may be necessary to sample the values of pressure rate ;,

prescribed heat flux a, heat transfer coefficient h and bulk fluid

temperature T on the boundaries.
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The details of element matrices evaiuation by the Gauss-~
Legendre procedure will be discussed in the following section for the
case of axisymmetric problems. Realizing that the volume and the
surface integrals are computed as weighted sums of their respective
integrands at sampling points enables one to envisage the manner in
which the sampling point values of stress o, and effective plastic

ijK
(e)

are coupled with the nodal values, uge) and TI , in the

strain e i1

=(p)
K
discrete model. The nodal equations (5.23-24) for the given element

are coupled with the following equations, valid at M sampling points

(X=1,..+.,M) of the e~th element:

BN(e)(g
_clep) 1 rk’s(e)_ ,(ep,th) (e) s (e)
ijkK ijk1K 3% kI Bin N; (grk)TI (5.1.40)
(e)
o). % Lo e e
K UyK(Hk + 3GK) ijK axj il
g
.._XK_ LU "
G TR e
* R ¥ 30, NTOE L ITy (5.1.41)

which result from (4.5.1), (4.5.55), (5.1.11) and (5.1.12).

While the element nodal equations (5.1.24-25) are subject to
the assembling procedure which result in couplings between nodes not
shared by one element, equations (5.1.40-41) involve couplings between
nodal variables of one element only. The reason for this is that in
contrast to the former equations, the latter were not derived from
integral statements. As a result, the discrete model encompases

weaker couplings between stresses and effective plastic strains at
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adjacent sampling points than those between displacements and
temperatures at adjacent nodes.

In summary, the discrete model equations consist of Nx(n+l)
nodal equations (5.1.24-25) and 2MxNel sampling point equations
(5.1.40-41), where M denotes number of sampling points in one element

and Ne is the total number of elements.

1
By referring to equation (4.5.3) which checks the yield

condition (and determines the value of j) at the sampling points, the

values of the yield function FK and the proportionality factor AK at
the K~th sampling are computed as follows:
1 1 2
F T e 1 1 —— (5.1.42)
K2 %5k%9k 3 %K
(e)
o 26, o AN ) ‘(&)
K 2 2, ijK T ox, il
= +
(Fogg) (Hg + 36) J
o
yK e" - ur
+  ° T N yrie) (5.1.43)
I K'71 the

2 '
3 Oyx (g + 36)

5.1.3 Discrete Model For Axisymmetric Problems

Analyses of axisymmetric problems are most conveniently
performed using the system of cylindrical coordinates r, & and z, and
assuming that all fields are functions of r— and z-coordinates only.
All the relationships derived up to this point for the Cartesian

components of vectors and tensors could be restated in cylindrical
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coordinates, while employing the general tensorial notation for
curvilinear coordinate systems [15]. Howevgr, for the sake of
notational simplicity, it is convenient to utilize, from now on, the
matrix language used in most of the literature on finite elements.
Vectors and tensors will be represented through their physical
components in cylindrical coordinates, and the required relationships
involving partial derivatives will be stated explicitly.

Since all the second and fourth order tensors employed in the
previous sections were symmetrical (in the sense that oij = cji’
CijrS = Crsij = CjirS = Cijsr’ etc.), in the matrix notation they
could be represented by 6xl1 column vectors and 6x6 square matrices,
respectively. For axisymmetric problems further simplifications
arise, because only non-zero components need to be considered.

The non-zero components of the displacement vector for

axisymmetric problems are uy and u, and it may be represented by the

2x1 column vector:

{u} = (5.1.44)

The non-zero components of any symmetrical second order tensor
correspond to the pairs of indicies: rr, 00, zz and rz. The physical
components of the strain tensor are represented by the 4xl column
vector {e} related to the displacement vector {u} through the matrix

differential operator [Vs]:




ZZ 9z r

{e} = = = [v ] {u} (5.1.45)
1 €
€00 T 0 4,
3 3
2e s 3 3%
L - L —

The physical components of the temperature gradient form a 2xl vector

related to temperature through the gradient operator {Vq}:

{VT} = T=1{V}T (5.1.46)
3 q
3z

The isoparametric elements described in Section 5.1.1 become
the appropriate ring elements with the z-axis as the symmetry axis.

The set of shape functions may be ordered to form the components of a

column vector:
(e) T

N7y = [Nie) Née) cee Née)] (5.1.47)

(e)

where NI (I=1,...,N) are given by either (5.1.4) or (5.1.7-8). The

displacements and temperature approximations within a given element

may be represented as:
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. — -1 r 1T ar .
a (eI 0 0 {uie)} [Nl(le)]T 0 w'e)y
a | = 0 aeT {u;e)} =
T 0 0 w(e)T me), 0 {Née)}T ey

(5.1.48)

while the strain and temperature gradient fields are approximated as:

tey = (v 11Ty = w1l (5.1.49)
tvry = v 3Ty = ey (e, (5.1.50)
q T T
The matrices [Hie)] and [H;e)] are computed explicitly as:
[ (e (e) ]
BNl o BNZ o o
ar ar o
(e) (e) (e)
BNl 3N2 BNN
0 0 .. T
(e) 3z 9z 9z
[Hu ]
(e) (e)
N N,
1 0 2 0 .. 0
r r
(e) (e) (e) (e) (e)
BNl '3N1 Eﬂg__ 3N2 BNN
ar 0z or 2z . 3z

(5.1.51)
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B ]
aNge) aNge) aNée)
(e) or ar ar
[8,°7] = (5.1.52)
aNfe) aNée) aNée)
B 9z 9z 3z a

The element matrices expressing material properties of
individual elements may be constructed in complete analogy to
equations (5.1.15-21), using constitutive matrices summarized in Table
3, and matrices [Nie)], {Née)}, [Hie)] and [Hée)], provided by the
equations (5.1.47-48) and (5.1.51-52).

To facilitate the integration in the natural coordinates, the
differentiation with respect to cylindrical coordinates must be
replaced with appropriate operations in the isoparametric domain.

Using the chain rule, one obtains [3,4,53,63]:

[ 2] A (32 _3z ] [ a_]
. ;317" A 1 2 1 (5.1.53)
J T det(jl -1
a2 o _ax o 2
3z | T3 2, g, ot

ar 9z
3%, 3E,
[j(al,zz)] = (5.1.54)
ar 9z
852 352
L
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Equation (5.1.53) must be utilized when computing the shape function
derivatives with respect to the cylindrical coordinates, as required
by the equations (5.1.51-52).

Finally, for evaluation of element integrals one needs to know
how to determine the components of an outward unit vector normal to
the element's boundary surface, and the volume and surface differ-
entials transformed to isoparametric coordinates.

The outward unit vector, normal to the external surface of an
axisymmetric ring element, may be split into the radial and axial
components n, and n,, tangent to r- and z-coordinate lines, respect-
ively. When the boundary surface is given by the equation g, = +1,

these components may be expressed as:

2z

n g 3g
o= 21 > 2 (5.1.55)

n \/(ar + (Bz ) _ 9or

z 9, 9E, 3L,

and the differential surface area is:
' 2 2
(e) _ V/ or 3z

ds = 2qr (952) + (352) dg, (5.1.56)

When the boundary surface is given by the equation gy = +1, the radial

and axial components of the outward unit normal become:

3z

= \/ar 5 . 5 a (5.1.57)
oy o, (82 ar
n, (agl) (agl) 3
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and the differential surface area is

(e) ar 2L 0z )
as(®) - o (EEI) + (3%2) dg, (5.1.58)

The elementary differential volume may be expressed in natural

coordinates as:

av'®) = oy det[j1dg,dz, (5.1.59)

Using the aforementioned equations, the elemental stiffness, thermal
expansivity, thermal conductance, thermal capacitance and
thermomechanical coupling matrices, as well as the rate of external
forces and the rate of heat generation vectors, may be constructed for
axisymmetric problems set up in the cylindrical coordiﬁates. Table 4
contains the respective expressions written in matrix notation. The

symbol % used there refers to the assembly of element matrices rather
m

than to their summation.
The Gauss-Legendre procedure of numerical integration in a

natural coordinate system [3,4], yields the following expressions for

volume and surface integrals evaluation:

(e) +1 +1
i) f(r,Z)dV =2r 5 f f(gl’gz)r(gl’EZ)det[j<gl’£2)]dgld52
(e) -1 -1
v
M —

K=1
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+1 ar(g, +1) dz(g, +1)
fooEGe,2as'® = 2r s F(r, +Der, D]l b LT 2 g
1, 1,- 3E g 1
(e) -1 1 1
S
M' . ar(g1 +1) 9 az(g1 +1) 2
= ZnKilwI'(f(ElK’j-_l)r(glK’i—l) [’“Tg‘;““] + [--—.a-£—;~—~—]
for 52 = +1
+1 ar(+1,£,) 3z (+1,&,.)
s emas’®) = 2w Eer, e [l ¢ 21
g 9t 2
(e) -1 2 2
S
M ar(+1 +1
_p K= 72rkI =K 3E, 3,
for gl = tl
(5.1.61)

Here, f(r,z) denotes an arbitrary function of the cylindrical co-
ordinates r and z, and f(gl,gz) = f(r(gl,gz),z(gl,gz)) is its natural
counterpart. The integrands of both types of integrals are sampled at
a number of points located within their integration domains, and
multiplied by respective weighting factors We and Wﬁ. The locations
of sampling points and the numerical values of weighting factors are
determined for a given order of integration [3,4,63]. When the same
order is used for both volume and surface integration, the respective

numbers of sampling points are related through the formula: M = M'xM'.

5.2 Computational Solution Algorithm

The spatially discretized model of thermoelastoplastic solid

behaviour, presented in Section 5.1, consisted of the system of non-
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linear oridinary differential equations, summarized in Table 4, and
the additional inequalities aimed at determining whether yielding
takes place at some preselected points in the structure. Numerical
solution of the initial value problem cannot be accomplished by
straightforward application of the standard methods developed for the
systems of oridinary differential equations. Instead, the
discretization in the time domain must be combined with a procedure
for handling the inequality constraints. One basic difficulty is
associated with the fact that activation and/or deactivation of an
inequality constraint is always accompanied by discontinuous changes
of some of the system's parameters. Another difficulty results from
the solution's essential dependence on the history of material
response (known as solution's path dependence), and requires that any
acceptable solution algorithm assures that the unknown path cor-
responding to the exact solution is followed closely [42].

Among several approaches to solving elastoplastic problems the
incremental procedures utilizing iterative methods are most widely
used, [4,42,53,58]. The solution is advanced through time in finite
steps, and éomputations pertaining to each step involve two phases:
solving the nodal equations, and state determination* {42}, In the
context of the temperature-—displacement formulation pursuit in this

thesis, the nodal equations are solved during the first phase,

The meaning of the term "state" used in this Section (and common
in the literature on computational plasticity) is broader than
that used in Section 4.4. The state determination phase includes
computations involving relationships, such as yield condition,
which originate from the thermodynamic process description.
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yielding temperature and displacement increments, while the second
phase is concerned with determination of new stresses and equivalent
plastic strains and assuring that yield conditions at the sampling
points are satisfied. Since the incremental equations being dealt
with in both phases of the solution process are non-linear, iterations
are in general required. However, when an explicit time integration
scheme is used during the state determination phase, one iterative
cycle aimed at improving the satisfaction of nodal equations may be
sufficient [4].

The following subsections deal with the formulation of

incremental equations and the algorithm proposed for their solution.

5.2.1 Nodal Incremental Equations and Their Solution

Let's assume that the solution of the spatially discretized
problem, represented by the equations given in Table 4, the inequality
constraints and the appropriate initial conditions are available
(exactly or approximately) at a given instant t. Using left super-—

scripts to denote the time at which a quantity occurs, the following

values are assumed to be known:

t
- mnodal displacements U,
- nodal temperatures t{T}
t .
- stresses {0} at the integration points
X . . t=(p) , , .
- equivalent plastic strains e at the integration points

t
— indicators of plastic (or neutral) loading j at the

integration points
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The temperatures at integration points may be easily calculated from
their nodal values.

Time discretization of the nodal equations appearing in Table
4 requires approximations of the time derivatives {U} and {T}.
Restricting consideration to  two—level schemes, the a-method
successfully used in finite element inelastic and non—-linear heat
transfer problems [4,58] may be employed for this purpose.

The nodal displacements and temperatures at the instant t + At

are approximated as:

t+o At
A K
By =ty + {0} Ae (5.2.1)

t+a At

t+At 2

{ty = Y1)+ {T} At (5.2.2)

where the parameters oy and a, are between zero and unity. The
displacements and temperatures variations over the interval At are

assumed to be linear, i.e.

t+a At

L tHit

1 ul | (5.2.3)

(1-a1)t{u} +a

t+a, At

2 +At
{1} that

i)

It

(1-a2)t{T} + {T} (5.2.4)

It is worth noting that when the parameters @, and a, assume the

values of O and 1, the Euler forward (explicit) and backward

(implicit) schemes result. Additionaly, if @, and ©, equal 1, the
2

Crank-Nicholson (trapezoidal, midpoint) scheme is obtained.
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When the increments of nodal displacements and temperatures

over the time step At are introduced:

(avy = Aty - Y (5.2.5)

EFAL ry — Erpy (5.2.6)

{AT}

equations (5.2.1-2) yield:

t+a1At . 1

{U} = ZE'{AU} (5.2.7)
t+a2At . 1

{T} = ZE'{AT} (5.2.8)
t+a1At t

{U} = "{U} + al{AU} (5.2.9)
t+a2At N

{T} = “{T} + az{AT} (5.2.10)

The incremental nodal equations are postulated in the form:

t+alAt . t+a2At . t+a1At

[K] {U} + [E] {T} = {F} (5.2.11)
t+0t1 At . t+oa, At . t+ot2At t+a2At

[R] {U} + [C] {T} + [S] {T} = {Q}

(5.2.12)

With the use of equations (5.2.7-10) they could be conveniently

written as:
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t+alAt
K] [E] {AU} {F}
= At
t+a2At
[R]  [C] + a,at[S] (AT} {Q}
[0] [0] tuy
- . (5.2.13)
[0] At[s] (T}

It is understood that the assembled matrices [X], [E], [R], [C] and
[S] are evaluated using the sampling point values

t+a, At t+o

) 1At trag 8ty tta, At

T, {o}, € and je
While evaluating the nodal vectors

tha, At tta, At
{F} and {Q1,

— EN

the rates b and p are sampled at the instant t+alAt, while the values

of r, Tw, q and h are evaluated at time t+a,At.

2

The matrix equation (5.2.13) represents a set of nonlinear
algebraic equations. They are usually linearized to enable iterative
solution. The solution of the linearized nodal equations represents
the first phase of computations performed during one iterative cycle.
The quantities associated with the sampling points are not affected in
this phase of computation. Their corrected values calculated during
the state determination phase may be, however, utilized during the
nodal equations solution phase of the next iteration cycle.

When a simple solution strategy based on the Newton—-Rapshon
method is adopted [4,53], the increments of nodal quantities

corresponding to the i-th iteration cycle are decomposed as:
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) (apy 47D oy

. = . + . (5.2.14)
{AT}(l) {AT}(l—l) {GT}(l)

where the right superscripts refer to the iteration cycle number and

the linearized equations solved in the i-th cycle (i=1,...,nc) are:

g —— e w——

. . . [ t+a, At ]
k]G30 gy G- tsuy (P L
1= at
(r] -1 [C](1_1)+a2At[S](l—l) sy EragAt o)
k] gD fawy 471
[R](i—l) [C](i—l)+a2At[S](i_l) ar3 3D
B -]
[0] [0] {U}
(5.2.15)
[0] a,acfs] D ity
In the first iteration cycle it is assumed that'{AU}(O) = {0} and
{AT}(O) = {0}. The starting wvalues of temperatures, stresses

equivalent plastic strains and plastic (or neutral) loading indicators

are assumed equal to the final values calculated in the previous time

step, e t+AtT(0) = tT, t+At{G}(0) _ t t+AtE(p)(0) ) t;(p)

+
t Atj(o) = tj. The number of iteration cycles n

{0},

’

eye depends on the

criterion employed for the termination of the iterative process.
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In the equation (5.2.13) the second matrix term on the right
hand side represents the out—of-balance forces and heat inputs
resulting from the approximate satisfaction of the nodal incremental
equations in the previous iteration. The tangent matrix is updated in
every cycle of computation. The modified Newton-Raphson scheme,
simpler from the computational point of view, does not require
updating of the tangent matrix, which remains unaltered during all
iteration cycles performed during time-step computations [53].

If the modified Newton-Raphson scheme is implemented with the
values of parameters a; = 1 and ay = %3 then the two most widely used
types of incremental equations, the fully implicit Euler scheme and
the Crank-Nicholson scheme, are obtained for uncoupled elastoplastic

and heat conduction problems, respectively.

5.2.2 State Determination

Given the approximate values of nodal displacements and

t+At{U}(i) -

t t t
temperatures at times t and t+At, i.e. (U}, {T}, {U} +

(1) and't+At{T}(i) = t{T} + {AT}(i), the approximate values of

{aU}
stresses and effective plastic strains at time t+At are computed
during the state determination phase of the i-th iteration cycle. The

t+At{o}(i) and t+AtE(P)(i)

newly computed values must reflect a

possible appearance (or disappearance) of plastic flow during the time
interval At, and to assure that detected yielding constraints the

stress path to the yield surface.
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A simple state determination algorithm for isotropic thermo—
elastoplasticity was developed on the basis of analogical algorithms
proposed for isothermal elastoplastic problems [4,19]. The algorithm
employs explicit integration scheme for state variables (i.e. stresses
and effective plastic strain) and uses a simple subincrementation
technique [4,60] to enhance the control of stress path over the time
interval t. However, the main difference between this and other
state determination algorithms is in the use of a smooth represent-
ation of the isothermal stress—strain relationship, which obviates the
need to explicitely identify the elastoplastic transition [23].

The concept of smooth representation of uniaxial isothermal
stress—strain relationship is both physically justified (plastic
deformation occurs in the subyield state), and computationally viable.
Activation of plastic straining becomes possible at any time during
the history of deformation, and the two-parameter (;(p) and T) family
of yield surfaces, constructed from the uniaxial isothermal stress-
strain curves, includes the degenerated surface represented by the

point O = %%, T % T 9, = 0 in the stress4space. Purely elastic
straining starts upon the first unloading, when the point representing
the stress state (in the stress space) leaves the virgin yield
surface. A family of secondary yield surfaces is followed after the
first reloading, etc.

A convenient analytical form of the family of isothermal

stress—strain curves was proposed by Hsu et al. [10,23]:
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6 =5 (g) = —17a (5.2.16)
171

where the curve parameters, kink stress °y and plastic modulus E', are
temperature dependent and are indicated in FIGURE 5. Since an
analytical inversion of (5.2.16) to the form e = ;(oy) is not

possible, the uniaxial relationship

[

ag
Ez-+ ;(p) (5.2.17)

must be used in iterative calculation of the yield stress for given

—(p):

values of T and ¢

o =73 (E(P) + 31) (5.2.18)
g y = .2,

When a secondary yield surface originates upon reloading, as shown in

FIGURE 6, its analytical representation 1is given by the equation

. -(p)
(5.2.16), provided the values of ¢ and Oy ink
-(p)_ *
€ €y and kink®

are replaced by

The " procedure of state determination at an element sampling

point may be summarized as follows:

The quantities known at the start of calculations are:

{e}, {Ae} - strains at time t and approximate strain

increments over the time step At,
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T - temperature at time t and approximate

temperature increment over the time step At,

stresses, equivalent plastic strain and plastic

strain indicator at time t,

ey - equivalent plastic strain accumulated up to the

last unloading.

The sequence of computations is the following:

(i) Calculate the stress increment assuming elastic behaviour [1,2]:

(5.2.19)
(ii) Calculate the trial stresses
-t *
{o*} = "{o} + {Ao*}
and trial effective stress:
- %! 1
ok = ; fo 1T{a" 3 (5.2.20)
+A
(iii) Find the value of the yield stress corresponding to t tT and

tZ(p) (i.e. following the assumption on purely elastic

behaviour A;(p) = 0), by solving iteratively

g
g =8 (t’g(P) + _.__X._)

(5.2.21)
y y tHAty




(iv)

(v)
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. t+At t+At t+ALt
using Oy ink? E and

E'.

If secondary (tertiary, etc.) vyield surface was already

t
initiated by reloading (i.e. when €y >0 and j = 1), the

values of tZ(P) and t+At0kink in equation (5.2.16) should be

replaced by
LA

and y
+ +
t+At t AtE trity

o + €
. - + ’
kink v t+AtE t AtE,

respectively.

If o S_cy the step is elastic (meutral loading or unloading).

Then set

EFAL 61 = (0%} (5.2.22)

t+AtE(p) - tg(p)

(5.2.23)

e = 5 (5.2.24)

y

t, '

j=0 (5.2.25)
and return.
If o* > 9 continue.
If tj = 1 yielding continues on the same yield surface, and go
to (vi).

t.

If " = 0 a new yield surface has to be initiated. In order to

accomplish this, compute
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t- 3
Vz't{o'}T{c'} (5.2.26)
and find the new value of (new) from the relationship
t
t- _ t=(p) _ (new) a
g oy( € ey + €;KEE) (5.2.27)
, (new)
using the new value of Opink equal to
+At_ t+AL
(new) _ cy(old) + E(new) t E E! (5.2.28)
kink kink y t+At, _ thhtg, e

(vi) Subdivide the strain and temperature increments, {Ae} and AT,

into M increments:

{8e} = %'{Ae} (5.2.29)
(5.2.30)

8T = AT

=i~

(vii) For each i-th time-step subincrement (i=l,...,M) compute

t8e Py = 2= (1c P gey — (pPo )y "D, (5.2.31)
(1z(p) _ V% (52 (P Trss(’y 4 G-Dz(p) (5.2.32)
(i){o} - [C(ep)](i*l){as} _oqplepeth) - G159 33

where the values of stresses and effective plastic strain at
time t + iAt are denoted by (1){0} and (1)E(p).

M
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The subscripts appearing on the right hand sides of constitut-

ive matrices in equations (5.2.31-33) indicate the values of
temperatures, stresses and effective plastic strains, at which

they are evaluated.

(1)

Since the stresses {c} do not satisfy the yield surface

equation at time t + iAt, i.e.
M

%'(i){o'}T Doy 4 oi((i)é(p),(i)T) (5.2.34)

. i -—
an elastic correction (presuming no change of ( )e(p)) may be

considered. Assuming the corrective term as

66y = - o1y 0 < 1y (5.2.35)

the value of c(l) is obtained from the condition

2 (BT - Wiy Dieny - Diony) - o2 ((DP),
and it may be directly calculated as:
o ((i);(P) (i)T) (i)O
(1 _, _ __y ’ -1 - X
Lo T ~ ! o= (5.2.36)
5 {0} {o7} g
Then, the corrected value of stress is:
(i)c
() ggyeorr o Doy = (1 = Xy Wy (5.2.37)

(i)g
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(viii) The final values of stresses and effective plastic strains

are:

tHAt, 4 - (M){U}corr (5.2.38)

trat=(p) _ ()=(p) (5.2.39)




CHAPTER 6

IMPLEMENTATION OF THE COUPLED THERMOELASTOPLASTIC

ANALYSIS IN THE FORM OF THE 'TEPAP' CODE

Program TEPAP  (Thermo-Elasto-Plastic Analysis Program),
written in standard FORTRAN IV, was developed as an implementation of
the theory presented in CHAPTERS 4 and 5. It is intended to carry the
coupled thermo-elasto-plastic finite element stress and heat
conduction analyses for two-eimensional solids under the assumptions
discussed in CHAPTER 3. At present only the case of axisymmetric
analysis has been implemented, and the iterative schemes proposed for
refinement of nodal variables and quantities evaluated at integration
sampling points are not included. However, extensions to plane strain
and plane stress cases are quite straightforward, and the existing
version of the TEPAP code includes provisions for such additions.
Impleﬁentation of the iterative schemes suggested in CHAPTER 5 would
probably involve more programming effort, but it might prove
worthwhile when attempting to reduce the dependence of code results on
the time marching imposed by the user.

In the following sections the structure of TEPAP code and some
implementation details are briefly discussed. In view of its length

(in excess of 3000 lines) the code listing is not provided.
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6.1 Code Organization and Structure

The basic layout of the TEPAP code follows the concepts of a
finite element program organization as outlined by Bathe and Wilson
[4]. The equation solver for the non-symmetric systems of linear
equations is adopted from the chapter on Finite Element Programming
written by Taylor and included in Zienkiewicz's monograph [63].

The advanced programming features described in these
references, and implemented in TEPAP include: dynamic storage
allocation, variable column height (skyline) storage of system
matrices, a method of identification and elimination of constrained
degrees of freedom, and several others. Since the code is intended
for solving middle-sized problems, the data storage and solution
process are arranged to use the core memory only. The dynamic storage
allocation feature relieves the user from the necessity of declaring
large matrices in one or more routines. Instead of this, all the
matrices are stored vectorially, and the lengths of individual vectors
are case dependent and calculated once for a’given input. Core memory
is allocated by the user through declaration of one large pool array.
Declaration of insufficient core storage results in an error message,
which provides information on the correct storage requirement. This
feature combined with the option of running the code in the data check
mode allows for easy and quick debugging of new case data.

TEPAP code is structured modularly in an effort to separate
the functions it performs., The functional structure of the main
program is illustrated in FIGURE 7, and indicates the separation of

the data input phase from the solution phase. The former handles
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input of all data except the specification of parameters B, a, h and
fw, which have to be supplied as functions of time and location on the
boundary in the forms of individual, case dependent routines. During
the solution phase a time-step loop is executed and each passage
involves a check of the yielding zone extent. In a case of incorrect
assumption appropriate correction is made, and all the calculations
pertaining to the current time—step are repeated.

The subroutine tree depicted in FIGURE 8 indicates
schematically the cross-communication among all the code subprograms.
They may be classified as either the general routines independent of
the type of finite element employed, or those developed specifically
for linear and quadratic 2-D isoparametric elements. Introduction of
such a classification allows easy extensions of TEPAP by either
including more complex constitutive models or by adding new types of

finite elements while leaving the code's basic structure intact.

6.2 Implementation Details

The routines developed for four-to-nine-node isoparametric
elements enable both full and reduced integration over elemental
volumes and surfaces. The full volume integration requires nine and
four samplings over (r,z)-domain for quadratic and linear elements,
respectively. The full surface integration requires three or two
samplings over a one-dimensional domain. Reduced integrations involve
appropriately fewer samplings.

No elemental matrices are permanently stored in core, instead
they are computed at every time step and assembled into the global

system matrix and global RHS-vector.
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The active column profile (or skyline) storage scheme used in
the code recognizes the fact that the matrix of coefficients in the
system of linear equations in the finite element analysis (here called
the global system matrix) has not only banded form, but the locations
of non-zero elements differs greatly from column to column. The non-
zero elements, which are most distant from the matrix diagonal, form
the skyline of the matrix and it is imperative that all zero elements
outside the skyline be excluded from the equation solutiom.

The required parts of the upper and lower triangular portions
of the system matrix are stored, respectively, by columns and rows as
two vectors. Two additional integer vectors of lengths equal to the
number of equations in the system, have to be used for storing
individual column heights and addresses of the diagonal elements.
Despite the lack of symmetry of the system matrix, its profile, which
is determined by the topology of the finite element mesh, may always
be assumed to be symmetric. For this reason there is no need to store
separately the row lengths of the lower triangular portion of the
system matrix. The zero elements within the skyline of the system
matrix must be, however, stored and operated upon, since they often
become non-zero elements during the matrix reduction process [4].

The handling of essential boundary conditions, which were left
unaccounted for in the integral formulation presented in CHAPTER 4, is
in many cases not difficult. In the TEPAP code the nodal excess
temperatures and the nodal displacement components may be requested to

have zero values, and the r-component of the displacement of a node
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may be required to be proportional to the z-component. Physically,
these constraints represent isothermal nodes and roller supports
arbitrarly oriented on the (r,z)-plane.

The elimination of constrained degrees of freedom is
accomplished during the input phase wusing an integer array of
constraint type identifiers. 1If a nodal degree of freedom is fully
constrained (e.g. constant temperature or zero displacement in either
r— or z-direction) the equation corresponding to it is not formed
during the assembling process. In the case of a skew roller support,
the roles of master and slave degrees of freedom must be assigned. In
TEPAP the displacement component in the direction of sliding is
assumed as the active (master) degree of freedom, while the component
along the direction orthogonal to sliding is treated as fully
constrained (slave). The stiffness matrix of the element with the
roller node must be appropriately modified. The array of identifiers
may then be filled with equation numbers corresponding to
unconstrained degrees of freedom with zero entries representing
eliminated temperatures and displacement components.

A system of linear algebraic equations is solved at each time-
step by the Gaussian elimination technique. Diagonal dominance of

system matrices allows one to avoid searches for pivoting elements and

renumbering of equations.




CHAPTER 7

EXAMPLE CASES

In the course of the develovment of the 'TEPAP' code a number
of test cases were prepared and used to validate the individual parts
of the program. The tests, which are not reported here, involved
comparisons between 'TEPAP' predictions and the known solutions of
elastic, elastoplastic and heat transfer problems [21, 23]. The
numerical examples discussed in this chapter were aimed at assessing
'"TEPAP' capability to solve coupled thermomechanical problems as well
as at providing some insight into the effects resulting from the
inclusion of the passive thermoelastic and thermoplastic couplings in
the models. To the best of the author's knowledge, this approach has

not been attempted by any other existing analytical model.

7.1 Thermal Shock on Ceramic Tube

Hsu and Gillespie [24] considered the thermoelastic response
of a silicon carbide thick wall tube whose outside surface was thermally
insulated, and whose internal surface was suddenly subjected to
convective ﬁeating. Assuming temperature independent material proper-
ties they derived analytical solutions for teﬁperature and stress fields
during thermal shock transients in an infinitely long cylinder. These
solutions were used for comparison with the results of 'TEPAP' simula-

tions obtained with the FE model presented in FIGURE 9.
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The following geometric and material properties data were used

in the computations:

-~ tube outside diameter dO =4 in = ,1016 m
— tube inside diameter di =3 in = .0762 m
- Young's modulus E = 54x106 psi = 3.7232x1011 Pa
- virgin yield stress 0y = 18.65x10° psi = 1.2859x10° Pa
— Poisson's ratio v = 0.31
-6 o -6
- linear thermal a = 2,6%x10 1/ F = 4.68x10 1/
expansion coeff.

. 3 6 3
- mass density p = 193.5 1b/ft” = 3,1x10 g/m
- specific heat capacity c, = 0.34 Btu/(1b.°F) = 1.4226J (g.X)
- thermal conductivity k = 41.6 Btu/(hr.ft.oF)

= 72.01 W/(m.k)

It

0
The tube was assumed to initially remain at a temperature TO = 100 F

37.78°C. The bulk temperature of the hot fluid was assumed as Tw
1470°F = 798.8900, and the heat transfer coefficient as h = 129.79
Btu/(hr.£t2°F) = 735.91 W/(n’.K).

The comparison between analytical and 'TEPAP' solutions (for
the case when thermoelastic coupling in the heat conduction equation
is neglected) are presented fof time instants t = .158 s and £ = .790
s in FIGURES 10, 11 and 12. The temperatures and tangential stresses
predicted by 'TEPAP' agree well with the corresponding analytical
solutions. Poorer agreement between axial stresses appears as the
result of the tube top and bottom being axially constrained in order

to simulate the plain strain condition [24]. The axial end~load
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effect is pronounced because only one layer of elements was used to
model the full length of the tube. If more axial layers were used in
the FE model the axial restraint effect would appear more localized.
The temperature and stress distributions predicted by 'TEPAP'
at t = ls, with and without taking the thermoelastic coupling in the
heat conduction equation into account, are compared in Table 6. Both
the temperature and stress fields are only minutely affected by the
inclusion of the passive thermoelastic coupling in the model. The
differences between coupled and uncoupled solutions are smaller than
the respective discrepancies between uncoupled solutions predicted by
'"TEPAP' and 'TEPSA' - another FE code available for thermoelasto-

plastic analyses [23]. 'TEPSA' predictions of temperature and stress

fields are shown in Table 7.

7.2 Semi-infinite Space Subjected to Suddenly Imposed Convective

Heating (Second Danilovskaya's Problem)

Among the first initial/boundary value problems studied in the
theory of dynamic thermoelasticity was the (first) Danilovskaya's
problem concerning a linear elastic half-space subjected to a uniform
sudden temperature change on its bounding plane which was assumed to
remain traction free [13]. This problem, along with its modified
version involving half-space suddenly exposed to a high ambient
temperature through a boundary layer of finite thermal conductance
(the second Danilovskaya's problem), were among the most extensively
studied thermoelastic problems, in both uncoupled and coupled

formulations [6,26,46,50], An approximate analytical solution
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(confirmed by the finite element results) to the coupled dynamic

version of the second Danilovskaya's problem was reported by Nickel
and Sackman [46], and contrasted with the dynamic uncoupled case.

Following the formulation presented

in Reference {[46] the
second Danilovskaya's problem may be cast in the dimensionless form:

821-lz BZGZ aT
) = + 'l for 0<z<K =
3z ot
(7.2.1-2)
9 and 0 < &t < =
32,1, ] _3_:2 . s 3 uz
-2 ot 3zat
9z
Bﬁz(z,O) )
GZ(E,O) = °T = T(z,0) =0 for 0 < Z < = (7.2.3)
su_(0,£) )
czz(O,t) = Py - T(0,t) =0 for 0 { t < o (7.2.4)
A100.8) — frico,¢e) - 7] for 0 < £ < w (7.2.5)
where equations (7.2.3) represent initial conditions, and equations
(7.2.4-5) represents boundary conditions.
The dimensionless parameters are defined as:
Ce’ A
zZ = x p(X + E-G) z (7.2.6)

(7.2.7)
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¢ K +%c —
2 7 kaT, T 3K P(K + 5 C)u, (7.2.8)
el — ZZ
zz  3KaT (7.2.9)
0
o - T
T=—5 > - %“ (7.2.10)
0 0
- 9 Ty T,
T == =T (7.2.11)
0 0
H - - (7.2.12)
pc VD(K + 3 G)
9 KzazTO
§ = A (7.2.13)

where all quantities used in the right-~hand sides of these equations
are defined in the NOMENCLATURE. The appropriate regularity
requirements at infinity are assumed to supplement the boundary
conditions [26,46].

The uncoupled case‘ corresponds to the thermomechanical
coupling parameter 8§ = 0. Nickell and Sackman used three values for
this coupling parameter § = 0, § = 0.36 and § = 1.0, and two values of
the dimensionless heat transfer coefficient H = 0.5 and H = 5.0 in
their studies, while assuming Tm = 1, They presented temperature,
displacement and stress histories at the location corresponding to Z =

I. While their displacement and stress solutions, obtained within the
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framework of dynamic thermoelasticity theory, could not be verified
with 'TEPAP' (whose modelling capability is restricted to quasistatic
processes), the temperature solution in the uncoupled case offered
this possibility. In addition to temperatures verification for & = 0,
the effect of thermomechanical coupling on the temperature predictions
in the quasistatic case, which does not seem to have been reported in
published literature, has been assessed with the use of 'TEPAP'.

The semi-infinite space was approximated by a finite length
and finite radius cylinder, modelled with 20 ring elements equally
spaced in the axial direction, as shown in FIGURE 13. To conform to
the dimensionless coefficients § = 1.0, H = 0.5, and Tm = 1,
representing one of the sets employed in Nickell and Sackmann
calculations, and to assure at the same time that the assumed cylinder

length L = 20 m was represented by the dimensionless value T >» 1, the

following fictitious material properties were used in the simulation:

2
- Young's modulus E = §-Pa
Poi ' i ' 1
— Poisson's ratio v =3
-1
=~ linear thermal expansion coefficient a = 0.5K
. -3
- mass density p = 1.0 kgem
‘e . -1 -1
— specific heat capacity c, = 1 J.kg K
1 —_

- thermal conductivity k = lW.m .K
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0.5 W.m_z.K—l, the

Assuming further that Ty = 1K, o_ = 2K, and h
dimensionless time and distance become t = t and Z = z, in addition to
§ = 1 and H = 0.5. The interface of the first and the second
elements, located Im away from the semi-space bounding surface (see
FIGURE 13), is then represented by the coordinate T = 1.

The temperature history at this position, predicted by 'TEPAP'
for the described above input data, is depicted in FIGURE 14 along
with the prediction for 8§ = 0 which was practically identical to that
of Reference [46]. The results of another case study shown in Figure
15 correspond to H= 0.5, Tm = 1.0 and § = 2.0, and were obtained from
the 'TEPAP' run using a = 1.0 K_l, Ty = 0.5K, while leaving the
remaining data unchanged.

The 'TEPAP' simulation of the uncoupled case indicates that
the finite element approximation of the semi-infinite space geometry
is good for the considered values of parameters. The predicted
temperatures are strongly affected by the presence/absence of the
coupling term in the heat conduction equation, despite the neglect of
inertia effects. The temperatures predicted by the quasistatic theory
tend to be bounded from above by the uncoupled solution and from below
by the solution computed according to the dynamic coupled theory.

The absence of the thermal wave which appears in the dynamic
coupled solution [46] seems to be responsible for the monotonically
increasing temperatures during transients predicted by the coupled
quasistatic model. In the studied case the net contribution of the

passive thermoelastic coupling is that of a heat sink whose intensity
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may be characterized by the dimensionless number §. The predicted
magnitudes of displacements and stresses were however too small (in
particular when compared to the corresponding values of the dynamic
solution) to draw meaningful conclusions with regard to these fields'

direct effects on the temperature distributions.

7.3 Initial Stage of Hydrostatic Extrusion

In this study, motivated by the publication of Iwata et al.
[25], a thermoelastoplastic analysis of the initial non-steady state
hydrostatic extrusion process was carried out.

The process in which a material 1is subjected to high
hydrostatic pressure and forced out through a die is of continuing
high interest to the metalworking technology [25], and it represents a
perplexing problem for modelling. Within the capability of 'TEPAP'
code a number of important features of the process could not be
modelled: large bulk and localized deformations of the billét,
frictional forces and heat generation at the die contact surfaces,
rate dependent effects of material deformation (particularly important
for high speed extrusion), etc. Practical considerations (concerns
with execution times, lack of code's restart capability) dictated
further simplifications, and resulted in assuming a rather crude
finite element model depicted in FIGURE 16.

The workpiece (billet) was modelled as an assembly of 32
eight-nodes elements forming a mesh of 121 nodes. For comparison, the
model employed by Iwata et al used 181 triangular constant strain

elements, and 112 nodes. The boundary conditions for the stress
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analysis part were assumed identical to those indicated in the
frictionless axisymmetric studies by Iwata et al, i.e. prescribed
hydrostatic pressure acting on the free surfaces at the die entrance,
and sliding supports along the billet-die interface were assumed. At
the die exit the displacement vector of node 25 (see FIGURE 16) was
constrained to have axial direction, in an attempt to realistically
model an uncertain detail of the boundary conditions specification in
Reference [25]. The other surfaces of the billet were considered
traction free and the sliding supports were assumed along the
centreline. For the thermal part of the problem a uniform temperature
of 20°C was assumed to be maintained in the workpiece prior to its
deformation, and adiabatic wall conditions were assumed on all billet
surfaces throughout the transient,

The billet material was assumed to be pure annealed copper

with the following temperature independent material properties:

3 -2 i2
- Young's modulus E = 12.5%10" kGomm = ,1226x10 "~ Pa

- hardening modulus H' = 55.0 kG.mm > = .5396x10° Pa
-2 8
- wvirgin yield stress Gy = 8.0 kG.mm = .7848x10 Pa
~ Poisson's ratio v = 0.34
, -5 -1
- linear thermal a = 0.,277x10 K

expansion coeff.
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- mass density p = 8.94x106 g.m“3
s . R

- specific heat capacity ¢, = 0.381 J.g .K
_ -1 -1

- thermal conductivity k = 388.0 Wem ~.K

Numerical simulations were conducted using 'TEPAP', for the pressure
rate ; = 100 MPa/s, and for both uncoupled and coupled (with £ = 0)
thermoelastoplastic models. It was found that no significant plastic
straining takes place during the first 0.1 x of the transient, and
consequently, the first four time steps were marched with At = 0.025
s. The value At = 0.00125 s was used in the simulations for times t >
0.1 s, after it was found not to lead to any noticeable instabilities.

Reduced Gaussion integration (M; = 2, see Section 5.l1.3) was
employed in all calculations which were continued until the pressure 5
= 57.0 MPa was attained. Attempts to continue the calculations pést
this point resulted in nonphysical predictions and were abandoned.
Excessive and divergent deformations and varying temperatures
predicted for the applied pressure range E > 57.0 MPa suggest that the
limit of model validity has been reached.

The predicted axial displacements of nodes 1 and 9 (made
dimensionless by dividing them by the radius of the undeformed billet)
are compared in FIGURE 17 with the corresponding (dimensionless)
average axial displacement of the back face of the billet reported in
the Reference [25]. According to 'TEPAP' predictions, the incipient

bend in the applied pressure - displacement curves occurs at the
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pressure 5-50 MPa, which is lower than that of 5 ~ 75 MPa reported by
Iwata et al. This discrepancy may be attributed to differences
between both the models and solution algorithms. The constant strain
triangles could be expected to result in a generally stiffer behaviour
than isoparametric elements used in conjunction with the reduced order
Gauss integration. The reduced integration employs fewer number of
sampling points per element than the full integration and is
recommended for isoparametric elements [3,4,63], but results in poorer
resolution of stresses and plastic strains and may lead to excessive
underestimation of integrated quantities such as stiffness. The
representation of the stress—strain relationship used in 'TEPAP' (the
smooth stress—-strain curve) should also be expected to result in
earlier material plasticization than the bilinear representation used
in Reference [25].

This effect could have played significant role in the
simulations discussed, since only the moderate value of the exponent n
= 20 (in the analytical representation of the smooth stress—strain
curve (5.2.16)) was used. The close resemblance of the smooth stress-—
strain curve to the bilinear representation is achieved for large
values of n, but these necessitate the usage of very small load
increments in the elastoplastic transition regime and have to be
avoided. Finally, the distinct ways of computing stresses and
effective plastic strains (at nodes, by averaging the values
calculated for surrounding triangles, in Reference [25], and at
integration sampling points in 'TEPAP'), along with possible
differences in boundary conditions, could also be viewed as factors

contributing to differences in predictions.
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The displacements, strains and stresses computed during
'TEPAP' simulations were not noticeably affected by the inclusion of
the passive thermomechanical coupling in the model. The analysis of
temperatures predicted for the coupled cases explains the former
finding: The maximum increase of a local temperature did not exceed
1.08 K during the entire transient, and was much too low to result in
any significant additional thermal strains and/or stresses. The rate
independent model of mechanical behaviour (with the absence of
temperature dependent material properties) results in the same stress
and strain values predicted for a given value of applied (external)
pressure, irrespective of its rate of change. The model indicates
that for the applied pressure rate as high as 100 MPa/s, the internal
dissipation rate is still too low to lead to considerable local
temperature increases. The temperatures of nodes 58 and 72 (the nodes
which exhibited the highest temperature rises) are ploted versus time
in Figure 18, The slow temperature increases during the first phase
of the transient correspond to the prevailing contribution of
thermoelastic heating, when the compressive stresses result in
negative dillation, and the negative sign of the strain tensor trace

€ (see equation (4.5.46)). The more rapid heating follows local

ii
yielding, which for these nodes occured at pressure p ~ 35.0 MPa.

Thermoplastic dissipation then dominates and the net heating rate is

controlled by the heat outflow through conduction.
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CHAPTER 8

CONCLUSIONS AND RECOMMENDATIONS

The following conclusions can be drawn from the investigation

in this thesis:

The coupled theory of quasistatic isotropic thermoelasto-
plasticity admits the formulation of the boundary value
problem consisting of the balance equations for linear
momentum and thermal energy, constitutive equations for the
rates of stress tensor and one scalar internal state variable,
the inequality determining extent of vyielding, and the
appropriate initial and boundary conditions. The unknown
fields in such a formulation are: displacement vector,
temperature, independent components of stress tensor, and the

internal state variable employed.

The Finite Element Method represents a plausible solution tool
for the formulated non-linear boundary value problem of the
coupled thermoelastoplasticity. A proposed computational
algorithm has been proven to perform well for the linear
thermoelastic problems. The implementation of its simplified
version (code 'TEPAP') has been successfully employed for the
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solution of one essentially two-dimensional problem in coupled

thermoelastoplasticity.

(iii A very limited assesment of the relevance of passive thermo-

mechanical coupling is possible on the basis of the results of
numerical simulations. The dimensionless number

27K2 2T

0
- pc€(3K+4~GT
seems to represent a good measure of the significance of
thermoelastic coupling, when compared with unity. For the
thermal shock on ceramic tube case, when almost no effect of
the coupling was detected in the simulations, the value of
this parameter may be calculated as 6% 0.0247. The effect of
thermoplastic couplingé in the energy equation has not been
systematically studied, but the appearance of the thermo-
plastic heating (due to transformation of plastic stréin
energy into heat) wupon onset of yielding was clearly
demonstrated. It seems that this effect would be more pro-
nouﬁced in the latter stage of the studied process. Extension
of the model into this range would require, however,
reformulation of the theory within a general setting of non-

linear kinematics.

The limited scope of this thesis investigation indicates
numerous areas where improvements, generalizations and more extensive
studies are possible and desirable. The following topics of further

research are particularly.recommended:
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Studies of the numerical aspects and practical performances of
the computational solution algorithms, particularly with
respect to the numerical conditioning of the systems of
equations, the selection of the most suitable iteration
schemes for both the solution of nodal incremental equations
and the state determination stages, and the effects of time-

stepping on numerical stability and accuracye.

Extension of the constitutive modelling of material behaviour
to include newer, more realistic, and preferably physically

based models, encompassing the rate and memory effects.

Extension of the presented theory and boundary value problem
formulation to the general case of solid continuum undergoing

finite straining and rotations.

Modelling and systematic simulation studies of the problems
from areas where the passive thermomechanical effects are
believed to be important, or even critical, for the proper
understanding of the physical phenomena (metalworking, micro-
mechanics, fracture, and other branches of mechanics mentioned

in the discussion in CHAPTER 1).
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Table 1. Summary Overview of Thermoplastic Models Used by Various Authors.
Author Physical interpretation Rate of internal Model for internal Model for heat of
(year) of scalar internal energy being dissipation rate plastic
variable used, and stored on the D deformation
additional assumptions microlevel < 3 oY
. (p) D@‘-é-é- (‘5‘9-)
pe -
Dillon (1963) no internal variables; 0 c..ég?) = c!.é!gp) 0
incompressibility during 4 o
plastic deformation and
deviatoric plastic strains
responsible for internal
dissipation assumed
Lee (1969) no internal variables; (l—g)o..ég?) go..ég?) 0

plastic work rate o..ég?) 14 4
used as a (process) ¢ - factor varying slowly from
variable characterizes about 0.9 to unity with
inelastic deformation increasing plastic flow
at adiabatic loading

Need and Batterman |« — scalar internal Ac..ég?) (l-A)o..égP) éx oh
state variable 4 o 30
specified as the A — increasing with temperature
dislocation density factor representing the ratio Where-%%-=~%— X

evolution equation
for k:

.« _ °(P)
XK = Gijeij
y — dislocation

energy per unit
length (constant)

of rates of energy stored on the
microscale to kinetic energy
converted into internal energy
during adiabatic inelastic
deformation

LET




Author Physical interpretation Rate of internal Model for intermal \ Model for heat ;;\
(year) of scalar internal energy being dissipation rate plastic
variable used, and stored on the D deformation
additional assumptions microlevel o 3 P
(» P05 5
Je p) K
e ax 3
. . _ , . Ap) _ Y
Raniecki k — scalar internal state x(ks 8k 05 €4 ™ 0 =
and variable distinct from where the factor I 3 (p)
Sawczuk work hardening parameter x(k,8) is proposed where - y = 3 _ 3y p
(1975) evolution equation for «: to be evaluated in LI A P P3¢
an experimental is the variable conjugated to the
e _ -(p) . . .
¢« = w(o,.,0) g,..¢€.," program internal state variable .; it should
ij ijij . f ATy
. A be determined from the equation:
m(ci.,e) - integrating )
J factor 7(8,k) - G—sg w(e,k) = X(K,e)
Lehmann k — scalar internal state K = (l-g)oi.égP) Eai.éi.(p) 0
(1975) variable distinct from J (J) 3]
work hardening parameter because from py P) - ¢k it follows that
evolution equation for «:
(p) (p) (p)
. - (p) e . 3y 3 3 . _ e
= (1- -t = -8 =
k = ( g)cljelj o K [p ™ e 5 (p - e = «
Mréz and Raniecki | x — scalar internal state | (g — e-ﬁl K oi'éiP) - 1K \ 0 T
(1976) variable describing state 36 4 30
of (osotropic) hardening. ' (p)
Yield function is assumed | where 7 = 7(6,k) = p~§£ = 520 is the state equation for

as:
F(o,.,m,k,0) = 0,

and evoldtion equation

for x« is assumed as:

oF

am

A — proportionality
factor

K = A

0
the variable ¢ - powe%Kconégggted to th? %nternal state
variable k, and either y(e.. ,0,k) or ¥ P (8,k) is known
functio?ﬁ) Another possibiiity is to postulate

D = D(¢,5’,¢,k,0) as the convex plastic potential, and
to use ilegler's orthogonality principle [62] to obtain:
_ a0
i 3K

Table 1 (continued)
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Table 2. Summary of Constitutive Rate Equations Resulting from the
Theory of Coupled Isotropic Thermoelastoplasticity.

(continued on next page)
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Table 2 (continued)

3G
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ij e (e,th) . 3T . »
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o
.SZ 3G EX.?%._ " ud
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The temperature dependent elastic constants are the shear

Comment:
and compressibility modulii:

E
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Table 3. Summary of Fundamental Constitutive Matrices for Thermo=
elastoplastic Isotropic Axisymmetric Solid.

(continued on next page)

Elastic Stiffness

p—

4 2 2

K+36 K-36 K-%56 0
_2 4 _2

(&) K-36 K+3G K-%56 0

[cC"771 =

-2 _2 4

K-36 K-%56 K+36 0

0 0 0 G

Plastic Stiffness

(p) ug? T
[c'P’] = {c"} {o"}

P

Elastoplastic Stiffness

[C(ep)] - [C(e)] - j[c(p)]

Elastic Thermal Moduli

1 K

(e,th), _ Ba 1 XK T _
{8 } = [3K(a + T (T + TO)) 3K ar 1o} {1311 {1}

13
GaT{O}

Plastic Thermal Moduli
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Table 3 (continued)

Elastoplastic Thermal Moduli

(p(eP EN)y o glesth)y g (psth),

Thermoelastic Coupling Moduli

3y = gl v 1)

Thermoplastic Coupling Moduli

(P) — 3G - _1_ 3_(_;_ '
B°77) = g (¢ T 3T (T + Ty)){a'}

Thermoplastic Heat Capacity

g - -y 3G
_ G_oT ., _ 113G
Y=oy w8 -gar (T T))

Thermoelastoplastic Coupling Moduli

{B(ep)} - m(e) (p)

B} - {87}

where

= o}
{o} [Orr Gzz 0@9 rz

61 = a -3 1mHe

1y =11 1 1 0]t
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Table 4. Summary of Discrete Model Equations.

(continued on next page)

NODAL EQUATIONS FOR THE ENTIRE ASSEMBLY OF ELEMENTS

[K]1{0} + [E]{T} = {F}

[R1{0} + [CI1{T} + [SI{T} = {Q}

where

[K] =

[E] =

[R] =

{F}

{Q}r =

{U}r =

{T} =

[S(e)

(e)

{F*77}

{Q(e)

{u(e)

{T(e)}

il

s 1 w1 e m jav®
e V(e) u u

-z s [HU]T{e(ep’th)}{NT}Tdv(e)

e V(e)
r o o Jav (e
e V(e)
Por Coe + ) gy vy Tav(®)
e V(e)
r ! k[HT]T[HT]dV(e) + 1 s E{NT}{NT}ds(b)
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: 1 ooln 1TBrav(® + 5 g (v 175 nyas P
e yle) " b ((b)
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Table 4 (Continued)

SAMPLING POINT EQUATIONS FOR EACH SAMPLING POINT

63 = 0Py 1 () - plePr ey 3 Tei(e),

[e)
¥ 3G _ .
G T (e)

2(p) _ 2G e, T e T e
= {o'} [Hu]{u b+ ST 3G N} {T 7}

€ 2
%< o (H' + 3G)
3 9,¢




ADDBAN

ADDRES

BODAQ4

CL

CLEAR

COLHT

DOT

EFS

ELAS

ELDAQ4

ERROR

Table 5.

Brief Functional Description of TEPAP Subprograms

adds element contributions to global system matrix (e.g.

upper or lower triangular components of the global

system matrix) and global system RHS—-vector

calculates addresses of diagonal elements in the global

system matrix

reads in boundary data and computes identifiers of

natural boundary conditions

-evaluates fundamental constitutive matrices (see Table

3) at a given point of an element

clears matrices

updates column height of the global system matrix

calculates scalar product of two given vectors

calculates effective stress or effective strain rate

evaluates elastic stiffness matrix

reads in elemental data; assembles connection and

connectivity matrices; calculates column heights and

bandwidth

prints messages when allocated core memory is exceeded
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Table 5 (continued)

*
FHTC1 evaluates heat transfer coefficient at a given boundary
location
*
FTSUR calculates surroundings' (bulk fluid) temperature at a

given boundary location

%
HEFLU1 calculates prescribed normal to the boundary component

of heat flux vector at a given boundary location

INT locates a given value of a parameter in an appropriate
range of tabulated values (to enable a linear

interpolation)

NODATA reads and/or generates initial nodal coordinates and
temperatures; calculates bequation numbers and stores
them in the identification array; identifies code
numbers of skew displacement boundary conditions and

stores them in the identification array

*

PRESS1 calculates external pressure rate at a given boundary
location

Q4 - manages elemental operations for linear and quadratic

quadrilateral isoparametic elements

Q4CALL determines addresses of starting elements of variables

required in Q4

QUAD4 calculates elemental matrices for linear and quadratic

quadrilateral isoparametric elements

SHAPEQ4 evaluates shape function matrices and its derivatives
with respect to the global coordinates at a given point

of linear quadrilateral isoparametric element
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Table 5 (continued)

SHAPE2 extends the computations performed by SHAPEQ4 to the

case of quadratic quadrilateral isoparametric element

SIG calculates yield stress at given temperature and

accumulated effective total strain

SIGY calculates yield stress at given temperature and

accumulated effective plastic strain

SIDEV calculates mean stress and stress deviator components

STDG calculates interpolation matrices for displacements,

temperatures, strains and temperature gradients

TANMOD calculates tangent modulus at given temperature and

accumulated effective total strain

TEMPQ4 calculates initial temperatures at element sampling
points
UACTCL solves system of simultaneous linear equations in core

using compacted, active column storage scheme

UPST calculates control parameters indicating current stress
state on effective stress vs effective strain curve;
corrects the predicted stress vector increment by

enforcing the yield condition

WRITE prints nodal values of temperature and displacements

* case dependent subprogram to be supplied by the code user.




Table 6.

and Coupled Simulations with 'TEPAP'.

Temperature and Stress Predictions for the Thermal Shock on

the Ceramic Tube Case Study - Comparison between Uncoupled

Axial Stress (Pa)

Radial Temperature (°C) Radial Stress (Pa)  Hoop Stress (Pa)
Position
D C D C D C D C
0.7937 768.292 768.422 0.406E+6 U.405E+6 0.560E+8 0.558E+8 {.708E+8 §.705E+8
0.7713 773.219 773.349 0.132E+7 0.132E+7 0.4z6E+8 0.425E+8 0.563E+8 0.581E+8
0.7787 776,425 776.553 0.182E+7 0.182E+7 0.340E+8 0.339E+8 0.503E+8 0.500E+8
0.7963 780.389 780.513 0.231E+7 0.230E+7 0.235E+8 0.234E+8 0.402E+8 0.400E+8
0.8037 782,892 783,012 0.254E+7 0.254E47 0.170£+8 0.169E+8 {.339E+8 0.3376+8
0.8213 785.970 786. 083 0.273E+7 0.2726+7 0.901E+7 0.894E+7 0.261E+8 0.259E+8
0.8287 787.861 787,969 0.277€+7 0.277E+7 3419847 0.413€+7 0.214E+8 0.212E+8
0.8463 790,159 790.25% 0.275E+7 0.274E+7 - 159847 - 163647 0.156E+8 0.154E+8
0.8537 791.540 791,634 0.267E+7 0.266E+7 -.500E+/ -.502E+7 0.121E+8 0.119E+8
0.8713 793.187 793.272 0.251E+7 0.250E+7 -.900k+7 - 900E+7 0.793E+7 0.777E+7
0.8787 794.158 794,237 0.236E+7 0.2356+7 -.113E+8 - 113E+8 0.547E+7 0.534E+7
0.8%63 795.287 795.358 0.212E+7 8.211E+7 - 139E+8 -, 139E+8 0.262E+7 0.251E+7
0.9037 795.941 796 (16 0.192E+7 0,191E+7 -.154E+8 ~ . 153E+8 0.972E+6 0.87GE+6
0.9213 796.677 796.736 0.164E+7 0.163E+7 -.169E+8 -.169E+8 -.BB7E+6 -.972E46
0.9287 797,092 797.147 0.142E+7 0.14lE+7 -. 175848 - 177648 -.194E+7 -, 201E+7
0.9463 797.540 797.590 0.1126+7 0.112E47 -.186E+8 -, 165E+8 -.307E47 -313E+7
0.9237 797.781 797.827 0.901E+6 0.896E+6 -.150E+8 -.189E+8 - 367647 - 373847
0.9713 798.017 798.061 0.603E+6 0.59%E+6 -.193E+8 -, 192E+8 — ., 427E47 -, 432847
b.97287 798.126 798,168 0.3BHE+6 U.366E+6 -.153E+8 -, 197848 - 4E5E+7 - 459E+7
0. 798.199 798.240 0.102E+6 0. 101E+s - 19k - 191E+8 - 473E+7 477847

871




the Ceramic Tube Case Study - Comparison between Uncoupled

Simulations with 'TEPAP'

and 'TEPSA',

Radial Temperature (°C) Radial Stress (Pa) Hoop Stress (Pa) Axial Stress (Pa)
Position

TEPAP TEPSA TEPAP TEPSA TEPAP TEPSA TEPAP TEPSA
0.7500 766.10 766.56 .
§.7537 768.29 0. 4U6E+6 0.800E+6 0.560E+8 0.490E+8 0.708E+8 0.643E+8
0.7713 773.22 0.132E+7 0.BOUE+6 0.426E+8 0.490E+8 0.583E+8 0.643E+8
0.7750 774.63 775.12 .
0.7787 97643 0.182E+7 0.200E+7 0.340E+8 0.284E+8 0.503E+8 0.449E+8
0.7963 760.39 0.231E+7 0.200E+7 0.235E+8 0.284E+8 0.402E+8 0.449E+8
6.8000 781.50 781.89
0.8037 782.89 0.254E+7 0.257E+7 0.170E+8 0.127€+8 0.339E+8 0.298E+8
0.8213 785.97 0.273E+7 0.257E+7 0.901E+7 0.127€+8 0.261E+8 0.298E+8
0.8250 786.83 787.12 84E+8
0.8267 287,86 0977647 0.270E47 0.419E+7 0.115E+7 0.214E+8 0.184
0.8463 790,16 0.775E47 0.270E+7 - 159E+7 0.115E+7 0.156E+8 B,184E+8
0.8500 790.81 790.94
0.8537 791.54 0.267€+7 3.254E+7 - 500E+7 -, 699E+7 0.121E+8 0.101E+8
0.8713 793.19 0.251E+7 0.254E+7 -.900E+7 -.699E47 0.793E+7 0.101E+8
0.8750 793.66 793.67 _
0.6787 794.16 0.236E+7 0.220E+7 - 113E+8 -.124E+8 0.547E+7 0.428t*7
0.8963 795.29 0.212E+7 0.220E+7 - 139648 -, 124E+8 0.262E+7 0,429E+7
0.9000 79568 795.56 , »
0.9037 795.94 0.192E+7 0.175E+7 - 154E+8 -.159E+8 0.972E+6 0.3@§E+6
0.9213 7%6.68 0.164E+7 0.175E+7 -.169E+8 - 159E+8 -.887E+6 0.366E+6
8.9250 796.89 796.76 i _
0.9287 797,109 0.142647 0.125€+7 - 178E+8 -.179E+8 - 194E+7 --;125*7
0.9463 797.54 0. 112E+7 0.125E+7 - 186E+8 -.179E+8 - 307847 -.213k¢7
0.9500 797.67 797.50 . -
0.9537 797.7% 0.501E+6 0.740E% - 190E+8 -, 189E+8 -.367E47 ~37%E
0.9713 798. 02 B.6063E46 0. 740E+6 -.193E+8 - 1E9E+8 - 427E+7 -.35%k47
0.9750 798.08 797.94 o
0.9787 798.13 §.362E+6 U.241E+6 -, 193E+8 -.190E+8 - 495K+ "?ZEE’Z
0.9963 75,20 0.102E+ 0.241646 - 192648 - 130E+8 - 473847 - AZEr7
1. 0000 798.20 798.05
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FIGURE I: Schematic Presentation of Energy Balance in a Solid Material
Element (adopted from Rutkowski [571).
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conversion with conversion with
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FIGURE 2: Schematic Presentation of Internal Energy Balance in

a Thermoe1astop1astic Material Element (as used in
this thesis).
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FIGURE 3: Four-nodes Isoparametric Element.
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FIGURE 4: Nine-nodes Isoparametric Element.
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and .
Ok ink 2NCEy




154

START
I

READ nodal data, and

set equation numbers
in ID array.

READ elemental data. |

Establish addresses of
non-zero inputs to the
global system matrix
and RHS-vector.

I

yes

Data check mode ?

no

Assemble the global

— o system matrix and
RHS-vector.

Solve system of linear
equations.

1
Calculate elemental
stresses, effective plas-
tic strains, and other
control parameters.

|

Yielding zone correct ?

yes

Update nodal and
elemental variables.
no ]

es
Y Last time step ?

Assume corrected
extent of yield zone. no|
Initiate new time-

step calculations.

-1 END [

FIGURE 7: Flow Chart of 'TEPAP' Main Program.
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FIGURE 8: Subprograms' Tree for 'TEPAP'.
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FIGURE 9: FE Model used in the Thermal Shock on the Tube Case Study.

9¢T




TTGMLESS TEMFER

TIMEHN

LERER ' '
x‘. -~ x
b=, 188 s
b el
+ o *
N e THERMOEL
L3838 F o -

o
-1
0
-d

.
o
T
%]
&
[ T Ty e Y e g s

calcutations=
Mmenzi1onleszs temperature

sned as

1
1
1
|
_-1
1
]
!
1
1
4
i

£

i

7T

TIMEHZTNHLED S

FIGURE 10: Temperatures Predicted for the Thermal Shock on the
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LST




>

LTREEZ

HUF

DIMEMZIONLESS

2

=
a3

2

a1

)

~4

FIGURE 11:

DIMEHTIONL O #aDTH

Tangential Stress Predictions for the Thermal Shock
on the Ceramic Tube Case Study.

r v . - oo e . g e iy 1
|
i
| !
L THERMGL THOCY OW THE TERAMIC TURE |
_______________________________________ 4
i |
| Hoop strs calculated by "TEPRP i
. Are - Oomp A 1ttt ihe pesulis of {
I N . 4o P
i Hzu Lnd H B
'?' Tan b mcigs ur '
L sent 'TEFAP 4
} Dimenszionlessz hoop strezs iz def-
i e ted as: e |
| + LETRE . Vs = d [~ s
[ ' 6;e==E&m/ -y |
Lo _ 4
| . t= 188 5 - |
i . e |
l e {
| ; e — } ' ' : -
| — , . ; —
! !
' . a
i Fo R R S e T
{" A i It 1 _j
S SR LSRRGS L ARG BT AEN LBy

8GT




~

TRE

-~

<
N

T ARIRL
B

POV

LIM-LE

THERMGL THOCK O THE CCRAQMIC TURE

calculated by  TEPAR'

with the results of Hsu
247,

vl dotted liwes vepr

caleulatinns.,

Bimensinnleses axial =trezzs iz dafinen

aF:

a1t

= o ETs
x;' 6.11 l--v°

FIGURE

} ; ‘ l
7. c ; v
; . g L *
-
+

+ +
1 . | ‘.
= ts LRENAD R

GIMENTIONLEST 2RDIUT

12: Axial Stress Predictions for the Thermal Shock on the
Ceramic Tube Case Study.

5 DR VR Ay S E—

box

o

6ST




160

*Apn1s asey
Wwd|qo4d S,eAeysAo|Lueq puodaS ayj ul pasn |3poy 34 €1 JUN9I4

10L\ 66 6

408 L6

cor 00t 86




3000 T e s o v Pty T T : A ,
g 1
SECOND DANILOVSIKAYAR’'S PROBLENM
LEEBA 0 TTTTT T T T oo ST s s s e B
2 1_'__'_,_.--’ d
+ Dimensionless temperatures at 1
the location corresponding to 1
. the dimensiocnless distance DELTA=1.8 2,-—'“! 1
QL 2Ae8 fram the surface equal to unity - 3
5 are plotted vs. dimensionless 4
— L time. e —
) f ~ -
44 : 1 - uncoupled thecry T 4
W 95pg k 2 - quasistatic coupled theory T 4
é | 3 - dynamic coupled theory . e B e 3
o ST e ;
o T e 4
« a T e
z 3 . o —
li_" -1@‘;19 - . o A
Lod b T
) L .
.0500 + E
- 4
L 7 ]
9.8‘3@@ ke NS NS I U Sy | PSR AT 2l Pt PUFT AR WU ST bbbk ddbidns } BTN o S PO ST ST Y Loasid dd s et bddt dndendind
2.00080 .2800 L4209 .6008 .3080 1.a000 1.200208 1.40809 1.6009 1.80880 2.9808

DIMENSIONLESS TIME

FIGURE 14: Temperature Predictions for the Second Danilovskaya's
Problem Case Study with §=1,

191




ICAB rvrrrrrrr YT T T PP [ PP P T [ rrrerrrr Py ey T y
SECOHWD DANTLOVSKRYR'S FROBLENM
QEGBF 00 0 TTTTTTTToms oo s ossssmoemeeee . 3
- Dimensionless temperatures at _/ 1
b the location corresponding to DELTR=Z .8 _,./""" 1
. 3 the dimensionless distance from - 1
o ,2e00 F the surface equal to unity are E
o 3 plotted vs. dimensionless time, :
— I - 4
g : 1 - uncoupled theory T _E .- ]
o : 2 -~ quasistatic coupled theory e PSR {
Woo,1520 F ///’,// P p
L - -
3 I . L
—- L / - -
2 L _.,-»/ —~ -
¥ .iaaa b e P 4
- b e -
- -~
~ - - .
P i
b - ~ o
-
.8509 - /,/# . ]
3 ,-"" — - |
L -
/”:J' 9
6 .00Es e .,.X/TAA ...... [IPUNPITWE DIPUTSTPINE O Er | PPN BN P B Lobtstas NP S ]
8.000@ mpeds st .4008 60849 .5a0a 1.2a9a 1.2008 1.400Q 1.6000 1.8@88 2.00800

DIMENSIONLESS TIME

FIGURE 15: Temperature Predictions for the Second Danilovskaya's
Problem Case Study with 6=2,

91




163

hydrostatic
pressure

e T T

N

hydrostatic pressure

28 3 z

FIGURE 16: FE Model used in the Axisymmetric Extrusion Case
Study.
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Predictions for the Axisymmetric Extrusion Case Study.
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