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Abstract

The objective of this thesis is the design of complex wave digital filters (CWDFs) using the
pipelineable unitary (PU) algorithm. The advantages of this method are the following:
1. The PU structure can be used for both normalized and denormalized representations
of complex adaptors used in the realization of complex wave digital filters with a constraint
that denormalized form can not be used without muiltipliers.
2. The PU algorithm allows for the decomposition of high order digital filters into a
cascaded connection of simple PU building blocks.
The calculation of quantified coefficients is done using the Discrete Fourier Transform
(DFT).
At the end, discussion and comparison of frequency responses for each type of realized
CWDF has been provided with regard to one another and also with regard to the nominal
frequency response of each of these CWDFs. it has been observed that filter design
using PV algorithm with the two-port cross adaptor gave better results then two-port adaptor
realization used in [4]. Also, this type of adaptor has only one coefficient to work with, namely

B and B*which differ only by the sign of the real part.
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Chapter |

Introduction

A digital filter is best described as a digital system designed for the purpose of filtering

discrete-time signals. implementation of a digital filter can be done in software or with

dedicated hardware or by combining software and hardware.

For example, the implementation of software digital fiiters can be done easily using simple

programming on a digital signal processor (DSP) unit.

The advantages over analog filters are the following:

1. Small physical size.

2. High reliability.

3. Various kinds of noise do not affect the digital system which means that environmental
signals would not affect systems performance [13].

4. Tolerance of components (temperature, aging, etc.) is vastly improved since component
values do not change over time.

5. Very simple procedures are required if the characteristics of a digital filter such as a
programmable filter or an adaptive filter {13] must be altered to suit new system or signal

requirements.

The digital filter or digital system of interest for this thesis is a complex wave digital filter

(CWDF) with the following properties:

1. Pipelineable {17]. This means that due to the decomposition of the digital filter into
smaller substructures that are pipelined we can save computation time because

one computation sequence can be started before the previous one has finished




(before the end of the loop). These pipelined substructures are referred to as pipelined
cascades.
Pipelineability provides for tasks from multiple instances to be performed at the same time.
This is not fully equivailent to parallelism because in parallel structures only tasks at the
same instance are performed at the same time.

2. Complex.

3. Lossless.

Circuit derivation has been achieved with use of the PU algorithm [1] and modified for the WDF
structures by Fettweis {2]. This algorithm is based on the iterative interchange of the h and f
polynomials foilowed by the extraction of a QUARL, until a zeroth order section has been
obtained. Calculations are done for a few different types of adaptors in both normalized and
denormalized form using the Discrete Fourier Transform (DFT) for the polynomial calculations.
The purpose of this thesis is to obtain the formuiae for the Cross Adaptor [20] that can be used
in the PU algorithm as a basic building block, and to show its advantages over a different type
of adaptor [4] (the normalized parallel two-port adaptor), with respect to sensitivity, accuracy
and ease of impiementation.

V. Cheng [4] has used the normalized parallel two-port adaptor with unimodular multipliers to
obtain PU blocks, whereas the structure shown in this thesis does not require any unimodular
multipliers, except for the final section of the PU structure.

The Cross Adaptor was introduced by Schiitte [20] who derived it from the parallel two-port

adaptor using two additional unimodufar mulitipliers.

The problem is obtaining efficient formulae easy to implement in the actual design and to

check that all the properties of the filters and the cross adaptors themselves comply with the



theory and practice of wave digital filters.

In the Chapter 2 a theoretical overview of the necessary equations for this thesis is given. Also,
the representation of two-port adaptors is discussed and given.

In the Chapter 3 formulae for the adaptors used in the design chapter are shown, diagrams of
the corresponding adaptors and the frequency response equations as a resuft of the overall
structure are given.

Also, a time-domain calculation is presented with a block diagram that makes the pipelineability
of the derived structure obvious.

Equivalencies between normalized and denormalized cross adaptors are obtained and
implementation steps for the PU algorithm are explained.

Chapter 4 deals with the design examples and results using different numbers of bits of
precision for the calculated coefficients.

Chapter 5 contains the conclusions based on the previous chapters.




Chapter li

Theory Of Lossless Two-Port Networks

In this chapter, theoretical formulae necessary for the design of CWDFs are derived and

discussed. Equations are derived from real lossless filters using voltage wave

formulae by Fettweis [2].

2.1 Wave Variables and Scattering Coefficients
For the two-port network of Figure 2.1 we can define the following variables
A=V, +Ri . B =V -R 2.1)

i =1, 2 (for a two-port network)

where R, is an arbitrary port reference, and A; is an incident, and B; a reflected voltage

wave. V,and |, are the voltage and current defined for each port.

Iy L
2 o -> —o
v, A, Two-Port Network B2 \;1
B, A,

Figure 2.1 Two-Port Network




For a two-port(Fig. 2.1) the incident and reflected waves can be reiated by

B, Ay
= T (2.2a)
Ay B,
Th T
where T= is the transfer matrix. (2.2b)
T,, T
21 2
Alternatively,
B, A Su 52
= § where S = 2.3)
B, Ay Sa Sp

is the scattering matrix for a two-port network shown in Fig. 2.1.

For further work in this thesis it is important to show the relationship between the

scattering matrix S and the transfer matrix T. Using Eq. (2.2) and Eq. (2.3) the following

holds:
(Su Slz) _ 1 (le Tn'Tn'le'Tzl)
S, Sy, T, \! -T,, (2.4a)
and
Tu lz) - ‘L.(SH'SZI_SH'SZZ Su) 2.4b)
'l'2l 'l‘22 S21 -S,, l




2.2 Two-Port Networks as Represented by Belevitch

In this thesis it is necessary to use the equations for the Scattering and Transfer matrices as
given by Belevitch in the polynomial form. Instead of voltage waves incident and reflected power

waves are used:

o o ViR o VimRek _
= = 1

Belevitch has used three polynomials and a unimodular constant, namely, f, h, g and . Using

1,2 (2.5)

these polynomials the matrices S and T can be expressed as:

S = i (h c-f.) T = (o-g.h)
g \f -o-h/ ' oh g (2.6)

where the polynomials f, g, h and a unimodular constant ¢ must satisfy the following conditions:
1) f = f(y). g = g(v), h = h(y) can be either complex or real polynomials and y is a complex
frequency variable. The paraconjugate is defined through the complex conjugate with the

following expression:

fo(w)=f*(-y") 2.7

where the subscript asterisk represents the paraconjugate and the superscript asterisk
represents the complex conjugate.

If we apply the Bilinear Transformation to y,
-i

z-1 l-2
=

(2.8)



the following is obtained (see [22]):

f, (z‘ ') =z™f"(z*%) ., 2. (z") =z "g(z%) , h, (z'l) =z ™H(z*) (2.9)
m is the degree of the highest degree polynomial in the scattering matrix, S.
2) The three polynomials f, h and g must satisfy the losslessness condition given by the

Feldtkeller equation
(gh?= b+ dhH? . w=j¢ (2.10)

or by using analytic continuation:
gg. =hh ff, 2.11)

3) g(y) is a Hurwitz polynomial with all its zeros in the left-hand y-plane, with g(z')

having all its zeros outside the unit circle in the z-1-plane.

4) ¢ is a unimodular constant; i.e o] = 1 where | | denotes the complex modulus.

5) For f/g which is the transmittance, and for h/g, which is the reflectance, the following must be

satisfied:

<l (2.12)

8

for y on the imaginary axis or z1 on the unit circle (this follows from Eq. 2.10). Thisis a

condition that states that both of these functions, transmittance and reflectance are passive.
6) At transmission zeros with Rey >0, itis necessary that

hl

~*>]

Bl

<l

h
- (2.13)

g

7




A given transfer function can be realized by identifying it either with f/g, called the

transmittance, or with h/g, called the reflectance.

2.3 The Cascade Connection

The cascade connection of two lossless two-ports is considered. Because of the equations that
are used for the PU algorithm in the next chapter, equations for the cascade connection of two

lossless two-ports are derived using the scattering coefficients of the transfer matrices:

Bla\ = l cl.gl ha'). A'b =T. AZ:

Alal fn ox.ha g;. BZa ' BZa ’

Bs _ l.(cb'gb'hb _ A - T(AZb)

Awl  f\% e 8/ By " By, (2.15a, b)

where a and b stand for two-port networks Na and Nb. From Figure 2.2. it is obvious that

V.=V L= -1, andwith R = R [2], A, =B, and B,= A (2.16)

2 b ' 2a 1b 1b



A, B,, N Ay Bz
—_— — —» _—
B s — < »— o

ly + * lyy
N, R, Va Vi Ry N,
o——ap———] ot O— <
-«— «— «— e
B, An By A,

Figure 2.2 Cascade Connection of Two Two-Port Networks

From Eq. 2.15 and Eq. 2.16 we can calculate the transfer matrix for the overall two-port

network of two cascaded two-ports by simply muitiplying their transfer matrices to obtain

| (08 b
T=TT =~ . where 2.17)
: f U'h-g
¢ =c0, , f=1fLf , g=ggroh.h +h = h-g+o,g.h (2.18)

For the PU algorithm it is important to determine equations for the T, matrix if the T and T,
matrices are known. in other words, extracting T, yields

T, = (TN Lt (2.19)

The first step is the extraction of a constant two-port T, to obtain a factor z' from Eq. 2.19.

The required factor is obtained by setting h,(0)=0 which yields
9



B evaluated at z! =0 (2.20)

Because h/g is a reflectance hence bounded inside of the unit circle in the z-!-plane this
can be achieved. Also, remember that the network stays lossless because the extraction

coefficient is also a lossless element.

T = (T“ T'z) R L L .(Tn e 2.21)
Ty Tn Tn'Tzz‘ le'th Ty T,
Therefore from Eq. 2.17, Eq. 2.19 and Eq. 2.21
G, =0
fb = f'(Tna'Tzza" lea'Tzla)
= (2.22)
B = b ( TZI:) +8T,
hy= hTy +&(-Tp,,)
T
and the extraction factor is - (@) = -Lz'(O) (2.23)
g0) Tm

On the following pages specific values for the extraction factor are used based on the different

types of constant two-ports that are going to be calculated. Also, the following sections and

their PU equivalents must be introduced.

2.4 QUARL element and Unimodular Multiplier section
For further work in this thesis it is necessary to show the QUARL element and the

Unimodular Muttiplier in the form required for the PU structure.

10



A very important two-port is a quasi-reciprocal line, the QUARL[4]. The QUARL does not have
the same delay in both directions, but the sum of the delays equals the delay of the

corresponding Unit Element UE [4]. This is shown in Figure 2.3.

B, A, B, A
@ (®)

Figure 2.3 (a) Unit Element (b) QUARL element
The scattering and transfer matrices for a QUARL are given, respectively, by

01 1)
S = ( l ) , T = _L.(Z 0} (2.24a)
z' o S110 1

The unimodular multiplier section is a two-port element that can be used with a real two-port

network to create a complex two-port network [21]. It is shown in Figure 2.4 .

A, 8,

O P O
elx

B, A,

Figure 2.4 Unimodular Multiplier Section

The scattering and transfer matrices are also given for the unimodular muitiplier section:

S = (0 ""u) . Ts= (""u 0) (2.24b)
1o 0 1

11



2.5 Realization of Compiex Wave Digital Filters

For the constant complex two-port network shown in Figure 2.5

oy O
A
\ . A,
o—— —- o
B, B,

Figure 2.5 Complex Two-Port Network

with Scattering matrix from Eq 2.6

] (h of )
S = — *
g \f -oh
where coefficients f, g, h and o satisfy all conditions discussed earlier in this chapter,

the following equations can be obtained:

For constant complex g, h, f and ¢, they can be chosen as follows:

re@re9) (2.25)

where 01 is included in the angle of B to obtain the desired forms in the following

development.

Then gg,. =hhg ff, becomes

= Al-1 (226)
f 26

(227

1= (jn])2+(lfl)*> from which follows |f| = «/l-(l[il)2

and thus ;.
f = «Jl - 1’2-eje2

12



where 92 is arbitrary.

Then the scattering matrix S becomes

] Al - (im )2,e'j'(92"91)
N1-(lpl )z-ej'ez -3'.ej'e‘ (2.28a)

{ e (0+9) «[I_-_rz-e-j' (©2-9)

_ (2.28b)
[ I - -ej'ez rel

This is a very important equation for further work in this thesis. It gives us flexibility to

determine different types of adaptors based on simply altering the angles ¢, 6; and 6,.

In the next few sections discussion and analysis of these different types of adaptors will be

shown, based on Eq. 2.28b and different values of ¢,0, and 8,. Depending on different choices

for these angles, different adaptors are derived which will be used in the PU algonthm.

13




2.6 Complex Wave Digital Cross Adaptor—Normalized and Denormalized
Forg = 0 andé, = 0 we obtain

rd -
S -

- ) 2.29
J1-¢ reit @29

Eq. 2.29 is the scattering matrix of the normalized complex wave digital cross adaptor [20].

Now if a diagonal similarity transformation (5] is used to scale (denormalize) the matrix S,

where the scaling matrix D is:
1 0

} . Dl=|g ! (2.30)

——

Jl-r2

1 0

0 l-r2

the following is obtained

i 1 0 .
D-SD! AR { l (-re‘" | ) @.31)
. S. = . . o = R R
o Ji-7 {1_ 2 it l 2 i -r pel?

By introducing the substitution
p = -r? (2.32)

the new scattering matrix S is of the form

s - B 1]=(01)_(|o)
t-clgly* -y \t -6/ (2:33)

14




Eq. 2.33 represents the complex cross adaptor in the denormalized form. A symbolic

representation of this adaptor is given in Figure 2.6. An important thing to note is that the two

coefficients p and -§* are different only with regard to the sign of their real parts. This means
that there is only one coefficient to quantize. A constraint to consider in this case is that

these coefficients must have magnitude less than unity {5]. R, and R, are real [20].

s e e Ty | - Q
A B
- >< o,
[« — aE— < o —C
8, B A,
@)
O PO- > J g + - \\ - <
A, AN ~_/ g
(\ ) B *

(®)
Figure 2.6 (a) Symbolic Representation of Complex Cross Adaptor,

{b) Signal-flow Diagram of Complex Cross Adaptor

The important thing is to see if this structure satisfies pseudolosslessness. Obviously it is not

unitary because S.S=I where S. is the paraconjugate-transpose of S and | is the identity

matrix.

15




Choose:
g= (D)

This is the condition for pseudolosslessness where G is diagonal matrix with G, = 1 and
!

G = —— .
1-(lgh
81— (lply? l B !
sTes= || }'0 — '[l dob? ) "¢ @34
] t-(lph? ’
Hence G, > 0, is equivalent to
(Igly*<t (2.35)

The port references R, and R, are given by R, = 1/G, and R, = 1/G,.

2.7 Complex Wave Digital Adaptor Represented in terms of a Real Wave Digital

Adaptor

If 6,= -¢ and 8, = 0 inEq. 2.28b, then

S -r | r2 (' Y ) -T l - r2
= = .
. . i (2.36)
/\h - Pttt it 0 e 1-2 r

The Eq. 2.36 is the matrix of a normalized complex wave adaptor. it is obvious that this matrix
can be represented as a product of two matrices: a unimodular multiplier matrix and a

normalized two-port parallel adaptor matrix.

16



(2.37)

Substituting r=cos8 and ¢ = 0, the normalized real two-port adaptor scattering matrix is obtained:

-cosd sinf )

\ sing cosh (2.38)

Note: An ideal transformer in the analog domain is equivalent to a normalized digital parallel
two-port adaptor. Both forms of the adaptor can be used for the purpose of the PU algorithm but
since the objective is to keep the development as general as possible, general formula will be
used. In this way it is easy to compare it with other types of CWDFs.

A symbolic representation for the digital equivalent of the ideal normalized transformer is shown in

Figure 2.7 [4].

E B
R, | II | R, °

i

l

e

¢
s

Figure 2.7 Normalized Parallel Two-Port Adaptor

Now, just as in the previous section a scaling factor is introduced:

/1 0\ -t L+t

D-sD'!= R 2.39
\0 e'J"}\l—r r } ¢ )

where

(2.40)

)
"
)
T | e
-‘N




and S is given by Eq. 2.37.

The result of this scaling is a product of a unimodular multiplier matrix and the

denormalized real parallel two-port adaptor as shown by the following equation:
1 o ( ol r)
S = | o
\o e \l-r r (2.41)
where S is a denormalized scattering matrix.

If r is replaced with y, the usual formula for the real two-port adaptor is obtained for the
second matrix in Eq. 2.41. Figure 2.8 shows the real digital parallel two-port adaptor

which is an equivalent of the denormalized ideal transformer.

o ———— - —_Q
A, B
2
O~ - 3 <
B, Y A,

Figure 2.8 Real Parallel Two-Port Adaptor

The scattering matrix for the two-port adaptor is

qo
S = ( ! ”) (2.42)
-1 v

13




In the next chapter the focus is on the PU algorithm and the application of the transfer
matrices of the constant sections discussed above. Also, a process for obtaining the
frequency response will be given together with a brief overview of the DFT that is used to
calculate the adaptor coefficients. it is important to note that the two-port adaptors that
were calculated and explored in this chapter are not the only ones that could have been

obtained using Eq. 2.28b.

However for the purpose of this thesis the adaptors determined above are sufficient for the

examples that have been considered.

19



3.1 PU Algorithm

Chapter i

PU Realization

In this chapter the PU synthesis algorithm [1], {4] is described. To apply the PU algorithm

to a two-port network with polynomials f, g, and h, equations from Section 2.2 are used.

After obtaining the elements of the unknown matrix in the first step the interchange of the

polynomials f and h for the next computational step is required. At the end of the second

extraction block there has to be a QUARL section as described in the previous chapter.

The QUARL section reduces the order of the polynomials at each step by one.

Specifically, the two extractions will force the factor z1in f, g. and h allowing a QUARL

to be extracted. In the Figure 3.1 the basic building block for the PU structure with a

QUARL section is shown.

A,

o—vo—| > z! o— —— A
Normalized Normalized
B, Adaptor Adaptor
\

o—at— /O O

a —‘\/ i\ eiea

2 Normalized 3

: < —<¢ \O Adaptor
A A,
o— PO 0 Oo—®-{ p————o—C

Figure 3.1 Basic Building Bfock for PU Algorithm with the Final Section

The interchange of the f and h polynomials is in the digital domain whereas in the analog

domain it requires two three-port circulators [4].

20



In the next sections the extraction of the PU building blocks for each of the adaptors that was

discussed in the previous chapter will be derived.

3.2 Complex Wave Adaptor From a Real Adaptor and a Unimodular Multiplier

In this section the equations obtained in Chapter 2, namely, Eq. 2.41 and Eq. 2.17

through Eg. 2.23 are used.

The transfer matrix corresponding to Eq.(2.28) with ¢=0, 6,=0 is given by

l J'el . j'el
T= le " -re (3.1)

(TV' = - \ 3.2)
\Tl/ . g i G
-J.
Jio e ]
If «/ -1 = sind is chosen, it can be seen that
-j8
(T.)'l = -_l-. ¢ 9 cose (3 3)
sinf -cosﬂ-e-’. 'y ’

Now, the Eq. 3.3 is applied to Eq. 2.19 to obtain polynomials f,, g, and h,,.

21



.j.0| _ -j-Ol
h=¢ “h+rg, g=re “-hrg , (3.4)

for b, =0 , ret = XD herer < ’EQ

0) 20)

and@, = arg(h(o)) +n. (3.5)
g(0)
Now, after interchanging polynomials f and h for the next step
fn =0y . B, = and g, = g (3.6)
where subscript n denotes new value of the polynomials used for the next computational step.

V. Cheng [4] has used a different mathematical approach and a starting matrix equation to
obtain a real parallel two-port adaptor and extracted a unimodular multiplier section. The
reason for pointing this out and extracting equations for the real two-port adaptor is that
the results of this thesis can be compared not only to different types of complex two-port
adaptors but also to the results that V. Cheng [4] obtained using the equivalent of a

normalized ideal transformer for the extraction of PU blocks.

In the next section formulas are derived that are the focal point of this research, the complex

cross adaptor in normalized and denormalized form.

22




3.3 Complex Cross Adaptor-Normalized and Denormalized

From the Eq. 2.28b and the formulas calculated in the previous chapter following is obtained:

1 ( I -r-cj")
T = . G.7

f it
l—rz -r-e |

In Eq. 3.7 T is the transfer matrix of the Normalized Complex Cross Adaptor.
The same steps are used to obtain the inverse of the matrix in Eq. 3.7 as in the previous

section.

= _‘__{ ! “’“\ (3.8)

JTTZ \r-e'j'. i /

For clear distinction let us label the transfer and inverse transfer matrices as

T,, and (T, )".

Using Eq. 2.19 the following is derived

-— - l_
T, = (Tpu) T (3.9)
and caiculate the polynomials f,, hy, and g in the same fashion as done in the Section 3.2.

23




h = hegre (3.10)

&= hre . g @3.19)
f = J1-2f (3.12)
6= @ (3.13)

Eq. 3.13 was included just for completeness, but as will be seen in the following sections

the only equations of concern are Eq. 3.10 through Eq. 3.12.

The extraction factor for the normalized complex cross wave adaptor is

ret = b forz'=0 (3.14)
g

with the same conditions as in Section 3.2.

All the necessary equations from this section will be implemented in the PU computational

algorithm at the end of this chapter with an explanation of the computational steps.

Now, the formula will be derived for the denormalized complex cross adaptor using the

same steps as for the normalized one.

24




The normalized cross adaptor can be represented as a product of two real multipliers

and the denormalized complex cross adaptor as shown in Figure 3.2.

>y

—5}1“
X

B

o
y%

Figure 3.2 Normalized Cross Adaptor Represented by Denormalized Cross
Adaptor and Two Real Multipliers

Note: This is useful for the representation of PU building blocks, because the symbolic
representation of the denormalized complex cross adaptor has been aiready defined.
Two diagonal matrices D, and D, are defined in terms of the two real multipliers:

1 0

D=0l
fioz

and D, =

1 o
(3.15)
0 Ji-¢
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The equation of the normalized complex cross adaptor can be calculated from Eq. 3.15 and

Figure 3.2.

(3.16)

ret «/:2
Jl_:z re

Also, it is obvious that D, = (D,)"'

These are the equations needed for the different types of PU building blocks.
The next section deals with a review of the Discrete Fourier Transform as a tool that will
be used for the representation of the palynomials of the two-ports used in the PU

decomposition algorithm.

The formulae for the denormalized two-port adaptor are not given because if satisfactory
results are obtained for the normalized cross adaptor, the same rule is in effect for the
denormalized complex adaptor represented by the normalized cross two-port adaptor. In

other words representation of this adaptor as a part of the PU building block can be
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realized in the same fashion as in Figure 3.2 using two real multipliers k and k*'.

3.4 DFT and PU Algorithm
In this thesis the DFT-sample representation of the f, g and h polynomials is used.
For a polynomial p(z‘ ') samples along the unit circle are defined by

j22

p.= plw) Cow=e N k=01, N 3.17)

with N being the degree of the polynomial plus one and the inverse DFT yields the

coefficients of the polynomial, specifically the zeroth coefficient

_ |

With DFT-sample procedure order reduction is effected implicitly {4], and hence does not

require actual degree reduction.

Now, the PU computational aigorithm for the normalized complex cross adaptor using the

DFT-sample representation is described.

For the polynomials f, g, h and N the order of the filter plus one, the following algorithm
is used:

1. Compute samples on the unit circle

£ = flw) , g=gw) . b=nl¥), w=e ko= 0,1, N-1.
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2. For the ith extraction step where i goes from 1 to 2N:

Let rodt = ?:(((;)—)) which is the extraction factor

N-1 N-1
- l - l -
where h(0) = ﬁ R_ZO hk and g(0) = ﬁ k;) &

3. Update all samples as per the derived formulae (:= denotes assignment):

f, = Nl-rf

B = hereTteg
= hegrd!
S

where n in the subscript denotes new, calculated values.
4. Interchange fkn and h_ .

5. If i is even, reduce the order of h and f by dividing the DFT samples by w*

fk
*‘u“}; v e T

w
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6. Return to the beginning of the loop at the step number 2 with the next i until

i>2-N

7. The extraction factor r fori = 2N should be 1.
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3.5 Frequency Response Based on the Basic PU Building Block
For the frequency response the same approach is used as in [4]. The frequency response is

calculated from the product of 3 by 3 transfer matrices determined from the caiculated
two-port cross adaptors. This is a direct method of obtaining the frequency response. The PU

structure as a product of 3 by 3 matrices is shown in Figure 3.3.

B, Ay 8,
o— - —«-——O ........ Qe %
Normaliz
A, ed Cross B8,
Adaptor | [ .« .. .. ‘
je
Normaliz Normaliz el
ed Cross ed Cross
B | Ada Ay A,
ptor Adaptor
o—a— ot —— o—a—] —«O—m-o
ceie

Figure 3.3 PU structure as a product of 3 by 3 matrices

Far exampie if the normalized complex cross adaptor is used then a typical 3 by 3 transfer

matrix T; of the PU building block would be:

I 1 . 0

vi- (rZi_l)z 0 0 . Pai 1 0 0)

SRS 2i-1 : . 00 [j (3.19a)
(i) 0 By , | ~@) 0 o fi- ()

To obtain the frequency response of the entire structure the product of all the extraction

N+1
blocks is needed, namely T = n T, where N is the order of filter and (3.19b)

i=1

2
' 1-(rm+l) 0 0 1 0 0
- ———————— * - . .-B
Tagr = =0 I B[]0 O (3.19¢)
b- (’2N+1) 0 BZN+1 1 0 0 o-ed®



From Figure 3.3 we can see that the last section consists of one two-port cross adaptor

and the multiplier section where Pis the multiplier coefficient for the N+1 step.

Also, it is obvious that the final 3 by 3 matrix can be simplified to a 2 by 2 matrix since
A, = B; .

Using Eq. 2.4a and the given condition the following 2 by 2 scattering matrix is derived:

(B1\ _ | T+ Ty Ty (Tn’“ TSI) - Tzs'(Tsz+ TSI) Ay
Bz) T+ Ty [Tt T Ty (Tzz+ TZI) - Ty (le + Tn) Ay (3-20)
or
1 (h of | 1 rn*’Tsl Ty (T + Tay) = Ty (Tap + Tyy) (3.21)
g \f -oh/ T+ T [Tzt Tu Tiy (Tzz* TZI) - Ty (Tn" T
From the Eq. 3.21 the following relationships can be seen:
-1 -
g(z ) = Tzz* ’l‘21 (3.22a)
fz!) = T+ T, (3.22b)
hz!) = T+ Ty, (3.220)

As discussed in the Chapter 2 based on what the system requirements are, either the

frequency response of the transmittance or reflectance is calculated.

) (")

The transmittance is given by——[ and the reflectance by ;
gz g(z")
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3.6 Time Domain Representation

In this section the basic building blocks are used for the filter realization in the form of a

scattering matrix in order to calculate the frequency response from the time domain.

As shown in Figure 3.3, any filter of given order N can be presented as a structure

of N PU building blocks with the N+1th element at the end represented by two complex or
two rea! unimodular multipliers and a two-port adaptor.

If the computational steps of the PU algorithm are accurate the last elements will be

unimodular.

In this section a basic block and a final section are used to realize the filter in the time
domain. The impulse response is obtained by applying an impulse function at the input and by
setting the values in the delays equal to zero. This will give us a general rule and the
equations necessary to build a filter of any order using this approach. Of course, any higher
order fiiter would have more computational steps and involve more equations, hence requiring
more time. In the next chapter the values of the calculated § coefficients will be used for a
3rd-order complex digital filter and an 8th order fiiter to obtain the corresponding time domain
responses.

To represent a PU building block and the last multiplier in the time domain the z' delay

operator in the digital domain is replaced with a T time domain section in Fig. 3.1 and Fig. 3.3.

Since the normalized complex cross adaptor was used in Fig. 3.3, the focus will be on the

realization with denormalized two-ports with two real multipliers.
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Note: The Normalized Cross Adaptor is equvalent to the Denormalized Cross Adaptor and two

real multipliers.

Bz nz A." an
o= @ —4——@-——«-—-0 o—a——
Aln
. L (O ]
T fi»o
| _._O_ .,
m, m2
B‘ Az 811'
0—07 B1 —4—& — -0 O——e—0——0
n1
(a)
82
A|
— FO-O—
m e°
B, A,
o— -© 8 _‘_( ).__( } >— 2]
n oet®
(b)

Figure 3.4 (a) PU Building Block-Time Domain, (b) Final Two-Port Section

Now, for the impulse function at the input, the values for the delays are zeros ata t = 0 and
there will be an initial value at the input which will be zero fort = 1, 2, ... n. where t denotes
time.

33



To calculate the necessary values for the circuit from the Figure 3.4a and Figure 3.4b the
signal-flow diagram of the complex cross adaptor from the Figure 2.6b is used.
From the Figure 2.6, a matrix equation can be extracted for each PU building block in

Figure 3.4a and for the final section from the Figure 3.4b as follows:

b, 100100100100010100100H°1l

b, =010.00l.0l0.0m10.l-ﬂ'10.p1lO.Onlo‘az
00 o1 -p-|op, 1

b, 00 m BJ10 P2 1] 0 milo o 1f{o o t]lo 0 t]]a]

(3.23)

The quantized values of m,'s and n,'s, where k = 1, 2, ...n+1, must satisfy

mi—>t— and nsi-(|g]) (3.24)

which utilizes the passive quantization approach for an inverse pair of multipliers as shown
by Fettweis [2].

For the final section from the Fig3.4.b, the values for the final m and n are given by £q.3.24
and for the final multiplier e/® the value for the two examples considered in Chapter IV is one.

It is important to set up the starting conditions properly and to observe, from the Figure 3.4a,

the relation between each of the corresponding values of the PU building blocks, namely:

and a, = b (3.25)




where n denotes the new value.

The time domain operation can be explained by using a block diagram. Let p be the highest
degree of the given scattering matrix polynomials. Then there are p delays and the structure of

the filter realization can be organized as shown in Figure 3.5.

b?(“ .:(‘) bz'ﬂ aam) b.@*
m 1 T oam * : Block
a, b, 3, b6} a,0*N
- ‘ | p+l
b:,'“" Block 1 "j T ]’* b | Blockp LA I
To—o- 22« e % <+———| Section ot
a1M=input1 1% delay ph delay a,"*V=input2

Figure 3.5 Time Domain Block Diagram
For each time instant t, start the calculation with the p+1t" block. Then b,®*") and b,®*"

are calculated from a,¢*") and a,(r*") (usually zero) using Figure 3.4b, the flow graph

for the cross adaptor Figure 2.6b and the final multipliers, as mentioned earlier in Section 3.6.
Next, the calculations determined by block p are carried out in accordance with Figure 3.4a

and the flow graph for the cross adaptor.
The inputs are a,® = output of the (p-1)th delay, a,® = b,(+1) and a,Fl=b,+1);
The output b3® is the input to the pth delay (which will be the input a,®*" at the next time

instant), and outputs b, = a,®-1) and b, = a5(-1) are inputs for block (p-1).
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The calculations continue until block 1 is reached where a,(") is input1 of the filter.

The initial values in the delays are usually set to Zero. For the impulse response for the
transmittance input1 is set equal to the unit impulse and input2 is set to zero for all times. The
frequency response is obtained from the Fast Fourrier Transform of the impulse response

at the b,.

In the next chapter we will give practical examples and realizations with different types
of adaptors that were calculated in the Chapters 2 and 3 in the both the digital and the

time domains.
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Chapter IV

Results and Examples

In this chapter results that are obtained by practical implementation of the formulae from the
previous two chapters are presented using a MATLAB software package.

The input data used for the examples presented in this chapter is from V. Cheng's M.Sc. thesis
[4], and has been modified to satisfy certain conditions that apply when dealing with complex
cross adaptors.

The difference between nominai and quantized values for the coefficients is shown with respect
to the output resuits where quantization was done using 8, 12 and a 16 bit precision for the
values of the multiplier coefficients (the betas).

In the next following sections resuits for an 8th order band-pass filter with real coefficients and
a 3rd order band-pass filter with complex coefficients are observed.

Also, the time domain realization of the PU building blocks as explained in Section 3.6 of the
previous chapter is discussed. The example of the aforementioned 3rd order complex filter will

be observed with regard to the time domain representation.
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4.1 The 8™ Order Real Band-Pass Filter
For the 8th order filter [4] in this example there was no changes with regards to the input values
of the polynomials f, g and h.

The input values for the f, h and g polynomials are given in the Table 4.1.

f zeros magnitude angle/pi
constant 0.00090521 0
1 1 0.430034232
2 1 -0.430034232
3 0 0
4 0 0
5 1 0.32053856
6 1 -0.32053856
7 0 0
8 0 0
h zeros magnitude angle/pi
constant 0.938442112 0
1 1 0.351732711
2 1 -0.351732771
3 1 0.361097966
4 1 -0.365109797
5 1 0.385182449
6 1 -0.385182449
7 1 0.398308216
8 1 -0.398308216
r_ggros magnitude angle/pi
constant 0.880673595637835194 0
1 1.008341527656365750 |-0.399341528997245882
2 1.008341527656365750 0.399341528997245882
3 1.008545764020980650 | -0.350675396462379855
4 1.008545764020980650 0.350675396462379855
5 1.023795851013025390 | -0.364509517733878304
6 1.023795851013025390 0.364509517733878304
7 1.023471807530125960 |-0.385806739150357242
8 1.023471807530125960 0.385806739150357242

Table 4.1 Input values for the 8th order real band-pass filter
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The values for the 8s in the polar form and for the quantized gs are given in the Table 4.2.

I Betas-polar form angle/pi Betas-Quantized angle/pi
1 0.93844211023174 0.00 0.93847656250000 0.00
2 0.00 0.00 0.00 0.00
3 0.38203499663707 1.00 0.38208007812500 1.00
4 0.00 0.00 0.00 0.00
5 0.99487953032633 0.00 0.99487304687500 0.00
6 0.00 0.00 0.00 0.00
7 0.38309650100188 -1.00 0.38305664062500 -1.00
8 0.00 0.00 0.00 0.00
9 0.99585818070986 0.00 0.99584960937500 0.00
10 0.33406509098134 0.00 0.33398437500000 0.00
1 0.36064086441341 1.00 0.36059570312500 1.00
12 0.13647990908653 1.00 0.13647460937500 1.00
13 0.93225326923054 0.00 0.93237304687500 0.00
14 0.95546782599597 0.00 0.95556640625000 0.00
15 0.14097091745874 0.00 0.14086914062500 0.00
i6 0.40285264681603 1.00 0.40283203125000 1.00
17 0.01185567766788 0.00 0.01196289062500 0.00
i8 1.00000504152195 0.00 1.00000000000000 0.00

Table 4.2. Results for the 8™ order filter

An important observation is that angle values for the non-quantized muitiplier coefficients (8s)
have their values rounded off in this table to -1, 0 or +1. This is valid because the filter is real.
Real computational values are slightly different from the rounded values but do not affect the
realization of the filter using compiex cross adaptors. Now using these values the frequency
response, attenuation and magnitude, are presented for the 8th order real band-pass filter using
both the nominal and the quantized muitiplier coefficients. The values for the inverse multipliers

were not given because they are simply calculated from the values of the
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Attenuation/dB

corresponding Bs.
In the following three figures, Figure 4.1, Figure 4.2 and Figure 4.3, the nominal and the

quantized plots for the 8th order example are shown.

Attenuation Response 8th Order BP
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Figure 4.1.a Frequency response plot for the 8™ order filter-Quantized to 12 bits




in the following figure we give the nominal frequency response.
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Figure 4.1.b Frequency response plot for the 8™ order filter-Nominal
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Attenuation/dB

In the following figure the frequency response with the 18-bit precision is shown. For each of

these plots 800 discrete time instances were collected.

Attenuation Response 8th Order BP
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Figure 4.1.c Frequency response plot for the 8™ order filter-Quantized to 16 bits
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The last frequency response shown has 8-bit precision. It is obvious that for the value of the

transmission zero the attenuation value is different than for the other three plots.
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Figure 4.1.d Frequency response plot for the 8™ order filter-Quantized to 8 bits
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The important difference can be seen when the ripples for both quantized and nominal plots are

compared because the quantized one is no longer lossless regardless of the number of the bits.

Ripple Response 8th Order BP
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Figure 4.2a Ripple response for the 8™ order filter-Quantized to 12 bits
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It is obvious from Figure 4.2.a that after using quantized coefficients the ripple plot represents

the ripple of a lossy filter. After seeing the figure with the nominal value this is obvious.

Ripple Response 8th Order BP
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Figure 4.2.b Ripple response for the 8™ order filter-Nominal
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Figure 4.2.c represents the ripple using quantized coefficients with the 16-bit precision, hence
obtaining the ripple plot closer to the nominal value than the 12-bit one, but the difference is not

very noticeable.
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Figure 4.2c Ripple response for the 8™ order filter-Quantized to 16 bits
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Figure 4.2.d represents the ripple using quantized coefficients with 8-bit precision, and the

ripple plot derived is much lossier than the other two plots with the quantized coefficient values.

Ripple Response 8th Order BP
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Figure 4.2d Ripple response for the 8™ order filter-Quantized to 8 bits
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The difference between these plots and giots obtained in {4] is a noticeable one with regard to
the ripple plots, where even 8-bit precision for the cross adaptor in this thesis gave better resuits

than 12-bit precision in [4].

Magnitude Response 8th Order BP
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Figure 4.3 Magnitude representation for the 8™ order filter
Also, for the 8-bit precision in {4] the program temminated abruptly requiring recalculation of f, g
and h with higher precision whereas this program gave satisfactory results.
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4.2 The 3™ Order Complex Band-Pass Fifter

For the 3™ order complex filter input values for the f, g and h were changed slightly

from those in [4].The f constant was set to 1 and the constant factors of h and g were scaled
accordingly. In addition, the phase of g was modified to make the final multiplier in the

realization equal to one. The input values for the f, h and g polynomials are given in the

Table 4.3.
f zeros magnitude angle/pi
constant 1 0

1 1.2395398055922130300 | -0.35250172859245779120
2 6.5571344746207005200 | -0.32828367713287778720
3 0.9737902670856363880 | -0.38138581580702775920

h zeros magnitude angie/pi
constant| 5§51.21541611546160320 | -0.11737612550597118200
1 1 -0.34615340690000000020
2 1 -0.31883573410000000020
3 1 -0.36435118300000000020
ﬂ zeros magnitude angle/pi
constant| 527.83556101667584810 0.0293412000

1 1.0340581281849684080 | -0.31527422385588782490
2 1.0416657544134990300 | -0.34774492509166970300
3 1.0124727238645185820 | -0.36632202873911906100

Table 4.3 Input values for the 3™ order complex band-pass filter

The values for the coefficients and for the quantized coefficients are given in the polar form in
the Table 4.4.
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Betas-polar form

angle/pi

re{p}
Quantized 12 bits

im{g}
Quantized 12 bits

0.957560092158142

-0.1467164718192946

0.857666015625

0.425781250000

0.04770248295612563

-0.0621712438456876

0.046875000000

0.009277343750

0.9982523291165384

-0.8088364869473473

-0.823486328125

-0.564208984375

0.101258747195149

-0.2819933514063858

0.063864843750

-0.078369140625

0.9942150314273052

0.5332730477632998

-0.103759765625

0.988769531250

0.9147984726785162

0.6187713663468710

-0.334960937500

0.851806640625

0.3146996680549092

-0.3226698425773926

0.166503906250

-0.267089843750

DN | N |-

1.002913755688828

-0.0000558942372640

1

0.00

Table 4.4 Results for the 3™ order complex filter

As can be seen, the difference between this and the previous example is that angles are no

longer ones and zeros and have non-zero values.

Now, as in the previous section, these resuits are used to obtain the necessary plots.

In the following three figures, Figure 4.4, Figure 4.5 and Figure 4.6, we present the attenuation

versus frequency plot, ripple and magnitude plots for the 3" order complex filter.

Also, the frequency response and the ripple for the nominal values of coefficient and the

corresponding magnitude is shown because, as for the 8™ order real filter example, the only

noticeable difference is for the ripple frequency response, where the nominal value represents

a lossless filter and the quantized one represents a lossy one but for consistency in this thesis all

three plots are included.
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In the next figure we give the frequency response of the 3* order complex filter with the

quantized values for the coefficients with 12-bit precision and the same number of instances as

for the 8th order real fiiter.
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Figure 4.4a Frequency response for the 3™ order complex filter-Quantized to 12-bits
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In the Figure 4.4b the frequency response of the 3" order complex filter with the nominal values
for the coefficients is shown and the difference between this one and the quantized ones is not

significant as expected.
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Figure 4.4b Frequency response for the 3" order complex filter-Nominal

§2



In the Figure 4.4c the frequency response of the 3™ order complex filter with the quantized

values for the coefficients with 16-bit precision is shown, and as discussed no significant change

was noticed.
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Figure 4.4c Frequency response for the 3™ order complex filter-Quantized to 16-bits
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For the 8ht order filter when 8-bit precision was used for the values of the quantized coefficients,

the frequency response had different values at the transmission zero points. With the 3" order

filter this is not the case.
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Figure 4.4d Frequency response for the 3™ order complex filter-Quantized to 8-bits
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In Figure 4.4 we have obtained the same frequency response as in [4] except that for the
passband in this thesis (the quantized ripple) for the complex cross adaptor gives better results

than in [4].
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Figure 4.5a Ripple response for the 3™ order filter-Quantized to 12-bits
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As for the 8™ order filter, the ripple response of the 3" order filter obtained using the nominal
value of the coefficients is shown for the purpose of comparison with the ripple plots obtained

using quantized values of the coefficients.
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Figure 4.5b Ripple response for the 3" order filter-Nominal



The ripple plot with 16-bit precision shown in Figure 4.5c is not significantly different from the 12-
bit precision plot.

The difference is noticeable when compared to the ripple plot using nominal values.

Ripple Response 3rd Order Complex BP
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Figure 4.5¢ Ripple response for the 3™ order filter-Quantized to 16-bits
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Attenuation/dB

o
®

The ripple plot with 8-bit precision shown in Figure 4.5d differs from both quantized and

nominal plots significantly, both by shape and by the lossiness.
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Figure 4.5d Ripple response for the 3™ order filter-Quantized to 8-bits
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The last figure given for this example is the magnitude response of the 3™ order complex

filter.

Magnitude Response 3rd Order Complex BP
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Figure 4.6 Magnitude response for the 3" order complex filter
Further discussion and comparison with results obtained in [4] and a sensitivity issues will be

provided at the end of this chapter.
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The conclusion based on the previous two chapters is that the complex cross adaptor gives
good results after using quantized values of the multipliers (8s) and the inverse muitiplier pairs.

Further discussion will be given in the next chapter.

4.3 Time Domain Realization and the Examples

In this section the approach determined in Section 3.6 is used and applied to the 3" order
complex fiiter and an 8™ order filter observed in the previous section in an attempt to obtain the
time domain response of the given filter using the PU building blocks from Figure 3.4.a and
Figure 3.4.b. A general computational algorithm was designed that was used in this section to
obtain the resuit regardless of the fiiter order or the polynomials of the lossless filter.

The same coefficients are used for both methods of obtaining the frequency responses of

the 8™ and 3™ order digital filters. The frequency response that was obtained, based on the
unit sample applied at the input of each of the filters produced ripple characteristics

similar to those obtained in Sections 4.1 and 4.2.

Note: Since the attenuation and magnitude frequency responses for the time domain were
essentially the same as those of the digital domain we will not present their plots.

As mentioned above, both plots for the digital and the time domain were made using the

quantized coefficients.



attenuation/dB

In the next figure the ripple frequency response of the-87 order real band-pass filter is

given.
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Figure 4.7.a Ripple response for the 8™ order filter-Time Domain (12 bits)
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The final plot of this chapter has been presented in the next figure which represents the

ripple frequency response of the 3" order complex filter.

3rd order BP filter-Ripple
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Figure 4.7.b Ripple response for the 3" order complex filter-Time Domain (12 bits)
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As mentioned above, the time domain ripple frequency response with the quantized multiplier

coefficients (Bs) resembles the nominal values of the digital filters from the previous two sections

of this chapter,

With regard to the results from Sections 4.1 and 4.2 the following was concluded:

1. Using the quantized coefficients with 8-bit precision shows deviation from the higher
quantized values and the nominal one. When this result is compared to the resuit from [4]
it is satisfactory allowing even for the 8-bit implementation.

2. The filter realized using cross adaptor in the PU aigorithm is less sensitive than the realization
presented in [4].

In the next chapter the final conclusions are presented based on the findings and the results

obtained from the previous chapters and materials mentioned in the reference section.

Also, a discussion of pipelineability will be given and the possible practical implementation

of the above results and formulae in the fields of VLSI and DSP.
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Chapter V

Conclusions

A realization structure and a design for complex and real lossless two-port filters using the PU
structure was given. The implementation of the PU blocks using the complex cross adaptor was
used. The advantage over other techniques using two-port adaptors [4] was that only one
coefficient was used in the realization of the adaptor.

Two types of the complex cross adaptors were used, both normalized and denormalized.

It is important to notice that the denormalized adaptor was used with two real muiltipliers as a
equivalent of the normalized adaptor. Also, the necessary relationship between the two was
calculated and implemented in the computation part, which proves to be an advantage over
some other pipelineable structures [4] in the sense that denormalized unit can be used in
combination with an inverse pair of real mullipliers. The importance of this is significant when
the ripple frequency responses were compared and the complex cross adaptor represented
by a denormalized cross adaptor and two multipliers, gave a response that was much

closer to the nominal value, hence being less sensitive. In addition, calculations for the time
domain were implemented on the PU blocks used for the digital domain calculations and the
output results were more than satisfactory, being very close to the nominal value and to their

digital domain counterparts.




The time domain calculations were useful in providing a more descriptive way of presenting the
computational steps used in the basic PU building blocks with complex cross adaptors and pairs
of inverse real multipliers. These are advantages that can be applied in the field of VLSI
implementation because of the lower number of independent coefficients, which decreases
computational and design overhead. The results were calculated using quantized coefficients
with different precision producing satisfactory resuits as mentioned above. The other advantage
is that this structure does not require outside complex multipliers to preserve planar rotation,
because everything is done internally inside of the two-port adaptor. Also, the way these formula
and computation steps were implemented provides an easy way of creating a filter of any order.
A very important feature to notice is that this entire work is done using fully pipelineable
structures, hence further increasing the computational speed of the actual filter and the design
process. Pipelineability provides for the operations of the processor to be fragmented into
sequential tasks that are performed in parallel. This can be seen from the time-domain
realization where delays are being used for the next computational step before present one has
completed. The slowest task is the one that determines the computational speed in this case and
the overall delay of the procedure is the sum of the all delays related to the individual tasks. This
parallelism enables the accumulation and retrieving of the next instruction at the same time.
Many research articles actually deal with the design and the theoretical approach to pipelineable
structures [17], [18], [19] so we will not address this topic any further in this concluding chapter.
New content and the advantage of the approach derived in this thesis can be seen in the DSP
implementation that each step has both the multiplication and the addition step in each of the
computing cycles. Also, only one coefficient is used, hence making the implementation easier.
The recommendations for future work could be in the sense of further exploration of the various
two-port realizations of digital filters using PU building blocks to obtain those most suitable for
VLSI designs or further work on the topic of the cross adaptors used as building blocks with
increased computation speed and easier implementation.
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APPENDIX

Mapping from the v-domain to the z-domain



The scattering matrix (in the y-domain) for lossless two ports has the representation

S = L_(h(w) c-fly))

g(y) \Ry) -o-h(w) (A.1a)

where ¢ is a unimodular constant (joj=1), f, g, and h are polynomials and g is a Hurwitz

polynomial.
f.(¢)=f*(-y+), similarly for h., and f, g and h satisfy

gg.=hh.+ff.

(A.1b)
From the above equation it follows that n=deg g, [=deg h, m=deg f satisfy in<n .
The polynomials can be represented in the form
n m . ]
g = Y g = D Gy bhw= ) hy (A-2)
1=0 i=0 1=0
where g;, f; and h; are constants.
Define g(z) = (z+ 1)"g(y) with y = -1
z+ 1
1§ 1 ;
= (z+ D™ N e
(z+1D Z & (Z+ l)
1=0
n
= Z §i-z‘ where the E‘ are new constants. (A.3a)
1=0
Similarly,
{A.3b)

m
fz) = (z+ 1) ™ Z £
i=0




Thus Rw) maps to .t.'(_zl
8(y) &2)

by definition f.(y) = f*(-¢*)

m m

= Yl = ) fenY

i=0 i=0
Consider the mapping of f.(y):

m
@ rtm =@ Y e |
1i=0

Also,

f.@= i (l\l
rA

'

m f 1 i
= n iZ-
= @) Z}O e (2]

Obviously Eq. A.5 is equvalent to Eq. A6.

The same approach is used for h.(y) and h.(2).

Therefore

so L[ ol
2)
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z-1

z+

f{z) - chgz)

(A.4)

(A.5)

(A.6)

(A7)




All the zeros of E(z) are inside the unit circle in the z-plane and clearly Eq. A.1b is
satisfied.

To express the polynomialis in terms of Z1, multiply the numerators and the denominator in S

by z (n = deg g(2) ).

Denote the polynomials in ! by a “hat”.

Then
A A
f.z") = 2" £*(z%) a8
and
s = | 4,/11(2'1) cf(} t)
ez Y -ehiz ) (A.9)
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