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Abstract 

The objective of this thesis is the design of cornplex wave digital filters (CWDFs) using the 

pipelineable unitary (PU) algorithm. The advantages of this method are the following: 

1. The PU structure can be used for both nomalized and denomalized representations 

of cornplex adaptors used in the realization of complex wave digital filters with a constraint 

that denomalized f o m  can not be used without multipliem. 

2. The PU algorithm allows for the decomposition of  high otder digital fitters into a 

cascaded connedion of simple PU building blocks. 

The calculation of quantified coefficients is done using the Oiscrete Fourier Transfomi 

(Dm.  

At the end, discussion and cornparison of frequency responses for each type of realized 

CWOF has k e n  provided with regard to one another and also with regard to the nominal 

frequency response of each of these CWDFs. It has been observed that filter design 

using PU algorithm with the two-port cross adaptor gave better results then two-port adaptor 

realization used in [4]. Also, this type of adaptor has only one coefficient to work with, narnely 

fl and p* which differ only by the sign of the real part. 

iii 



Ackno wledgments 

1 would like to eqress my sincere gratitude to Professor Dr. G.O. Martens for his help 

during course of ais research. Since I came to Canada fiLe years ago, during my 

undergraduate and graduate studies, tie was more than a Professor and Advisor to me, 

he was my fnend. 

Also special thanks to Dr. Gordon Scarth for his help in the field of Digital Faers. 

This thesis is dedicated to my parents, 

Nadeilda and Aleksandar 



TABLE OF CONTENTS 

... ............................................................................................................ ABSTRACT .III 

............................................................................................. ACKNOWLEDGMEN TS iv 

.............................................................................................. TABLE OF CONTENTS v 

................................................................................................... 1 . INTRODUCTION 1 

.................................................. II . THEORY OF LOSSLESS TWO-PORT NETWORKS 4 

................................................................ 2.1 Wave Equation and Scattering Coefficients 4 

............................................................. 2.2 Two-Port Networks Represented by Belevitch 6 

....................................................................................... 2.3 The Cascade Connedion -8 

.................................................... 2.4 QUARL Element and Unimodular Multiplier Section 10 

.............................................................. 2.5 Realization of Complex Wave Digital Filters 12 

............................ 2.6 Complex Wave Digital Cmss Adaptor-Nonalized and Denomalbed -14 

..................... 2.7 Complex Wave Digital Adaptor Represented by Real Wave Digital Adaptor 16 

............................................................................................... 111 PU REALKATION 20 

....................................................................................................... 3.1 PU Algorithm 20 

............................................................ 3.2 Complex Wave Adaptor from a Real Adaptor 21 

.............................................. 3.3 Cornplex Wave Adaptor -Norrnalized and Denomalized 23 

.......................................................................................... 3.4 DFT and PU Algorithm 27 

........................................ 3.6 Frequency Response Based on the Basic PU Building Block 30 

................................................................................ 3.6 Time Domain Representation -32 



IV RESULTS AND EXAMPLES ................................................................................ -37 
th ........................................................................ 4.1 The 8 Order Real Band-Pass Fiiter 38 

rd 4.2 The 3 Order Cornplex Band-Pas Filter ................................................................. -49 

.............................................................. 4.3 Time Domain Realization and the Examples 60 

................................................................................................... V CONCLUSIONS 64 

......................................................................................................... REFERENCES 66 



Chapter l 

Introduction 

A digital filter is best descFibed as a digital system designed for the purpose of fiftering 

discrete-time signals. lmplementation of a digital filter can be done in software or with 

dedicated hardware or by cornbining software and hardware. 

For example, the implementation of software digital filters can be done easily using simple 

programming on a digital signal processor (DSP) unit. 

The advantages over analog filters are the following: 

1 . Small physical size. 

2. High reliability. 

3. Various kinds of noise do not affect the digitai system which means that environmental 

signals would not affect systerns performance [13]. 

4. Tolerance of components (temperature, aging, etc.) is vastly improved since component 

values do not change over time. 

S. Very simple procedures are required if the characteristics of a digital fiiter such as a 

programmable filter or an adaptive filter 11 3) must be altered to suit new system or signal 

requirements. 

The digital filter or digital system of interest for this thesis is a cornplex wave digital filter 

(CWDF) with the following properties: 

1. Pipelineable (1 71. This means that due to the decomposition of the digital filter into 

smaller substntctures that are pipelined we cari save cornputation time because 

one cornputation sequence can be started before the previous one has finished 



mefore the end of the loop). These pipelined substrudures are referred to as pipelined 

cascades. 

Pipelineability provides for tasks from multiple instances to be perfonned at the same time. 

This is not fully equivalent to parallelism because in parallel structures only tasks at the 

same instance are perfonned at the same time. 

2. Cornplex. 

3. tossless. 

Circuit derivation has been achieved with use of the PU algorithm [Il and modified for the WDF 

structures by Fettweis (21. This algorithm is based on the iterative interchange of the h and f 

polynomials foilowed by the extraction of a QUARL, until a zeroth order section has been 

obtained. Calculations are done for a few different types of adaptors in both normalized and 

denomalized form using the Discrete Fourier Transfomi ( D m  for the polynomial calculations. 

The purpose of this thesis is to obtain the fomulae for the Cross Adaptor [20] that c m  be used 

in the PU algorithm as a basic building block, and to show its advantages over a different type 

of adaptor [4j (the nomalized parallel two-port adaptor), with respect to sensitivity, accuracy 

and ease of irnplementation. 

V. Cheng [4j has used the normalized parallel two-port adaptor with unimodular multipliers to 

obtain PU blocks, whereas the structure shown in this thesis does not require any unimodular 

multipliers, except for the final section of the PU structure. 

The Cross Adaptor was introduced by Schiitte [20] who derived it from the parallel two-port 

adaptor using two additional unimodufar muftipliers. 

The problem is obtaining efficient fomiulae easy to implement in the actual design and to 

check that al1 the properties of the filters and the cross adaptors themselves comply with the 



theory and pradice of wave digital firters. 

In the Chapter 2 a theoretical overview of the necessary equations for this thesis is given. Also, 

the representation of two-port adaptors is discussed and given. 

In the Chapter 3 fomulae for the adaptors used in the design chapter are shown, diagrams of 

the corresponding adaptors and the frequency response equations as a resuit of the overall 

structure are given. 

Also. a tirnedomain calculation is presented with a block diagram that makes the pipelineability 

of the derived structure obvious. 

Equivalencies between nomalized and denonnalized cross adaptors are obtained and 

implementation steps for the PU algorithm are explained. 

Chapter 4 deals with the design examples and results using different nurnbers of bits of 

precision for the calculated coefficients. 

Chapter 5 contains the conclusions based on the previous chapters. 



Chapter I l  

Theory Of Lossless Two-Port Networks 

In this chapter, theoretical fomulae necessary for the design of CWOFs are denved and 

discussed. Equations are derived from real lossless fiiters using voltage wave 

fomulae by Fettweis 121. 

2.1 Wave Variables and Scattering Coefficients 

For the Wo-port network of Figure 2.1 we c m  define the following variables 

(2- 1  ) = Vi + Ri Ii 0, = Vi - Ri li 

i = f 1 2  (for a two-port network) 

where R, is an arbitrary port reference, and A, is an incident, and Bi a refleded voltage 

wave. Vi and 1, are the voltage and current defined for each port. 

Figure 2.1 Two-Port Network 



For a two-port(Fig. 2.1) th incident and reflected waves can be related by 

is the transfer matrix. 

Aitemativ ely , 

is the scattering matrix for a two-port network shown in Fig. 2.1. 

For further work in this thesis it is important to show the relationship between the 

scattering matrix S and the transfer matrix T. Using Eq. (2.2) and Eq. (2.3) the following 

and 



2.2 Two-Port Networûs as Represented by Belevitch 

In this thesis it is necessary to use the equaüons for the Scattering and Transfer matrices as 

given by Belevitch in the polynomial fom. Instead of voltage waves incident and reflected power 

waves are used: 

2-JR. 2-JR. 

Belevitch has used three polynornials and a unimodular constant, narnely, f ,  h, g and a. Using 

these polynornials the matrices S and T can be expressed as: 

where the polynomials f, g, h and a unimodular constant o must satisfy the following conditions: 

1) f = f(yr), g = g(w), h = h(y) can be either complex or real polynomials and yr is a complex 

frequency variable. The paraconjugate is defined through the complex conjugate with the 

following expression: 

where the subçcript asterisk represents the paraconjugate and the superscript asterisk 

represents the complex conjugate. 

If we apply the Bilinear Transformation to y, 



the following is obtained (see [22)): 

m is the degree of the highest degree polynomial in the scattering matrix, S. 

2) The three polynornials f, h and g must san'sfy the Iosslessness condition given by the 

Feldtkeller equation 

( I g b 2 =  ( 1 h l ) ~ + ( 1 4 ) ~  , v.=j-b 

or by using analytic continuation: 

gg* =hh*+ ff* 

3) g(v) is a Hurwitz polynomial with ail its zeros in the left-hand yplane, with g(rl) 

having al1 its zeros outside the unit urcle in the rl-plane. 

4) a is a unimodular constant; i.e loi = 1 where 1 1 denotes the complex modulus. 

5) For flg which is the transmittance, and for Mg, which is the reflectance, the following must be 

satisfied: 

for yr on the imaginary axis or r1 on the unit circle (this follows from Eq. 2.1 0). This is a 

condition that states that both of these functions, transmittance and reflectance are passive. 

6) At transmission zeros with Reyi >O, it is necessary that 



A given transfer function can be realized by identifying it either with f/g, called the 

transmittance, or with h/g, called the reflectance. 

2.3 The Cascade Connection 

The cascade connedion of two Iossless two-ports is considered. Because of the equations that 

are used for the PU algorithm in the next chapter, equations for the cascade connection of two 

lossless two-ports are derived using the scattering coefficients of the transfer matrices: 

(2.1 Sa, b) 

where a and b stand for two-port networks Na and Nb. From Figure 2.2, it is obvious that 

Va = Vlb , Ia= - Il,, , and with Ra= E$ [2]. % = Blb and Bt = A,, (2.16) 



Figure 2.2 Cascade Connection of Two Two-Port Networks 

From Eq. 2.15 and Eq. 2.16 we can calculate the transfer matrix for the overall two-port 

network of two cascaded two-ports by simply rnultiplying their transfer matrices to obtain 

where 

For the PU algorithm it is important to determine equations for the Tb matrix if the T and Ta 

matrices are known. In other words. extracting Ta yields 

T~ = (T')-~-T (2.1 9) 

The Rrst step is the extraction of a constant two-port Ta to obtain a factor r1 from Eq. 2.19. 

The required factor is obtained by setting h,(O)=O which yields 

9 



Because h/g is a reflectance hence bounded inside of the unit circle in the rl-plane this 

can be achieved. Also, remernber that the network stays lossless because the extraction 

coefficient is also a lossless element. 

Therefore frorn Eq. 2.17, Eq. 2.1 9 and Eq. 2.21 

a,, = a 

and the extraction factor is 

On the following pages specific values for the extraction factor are used based on the different 

types of constant two-ports that are going to be calculated. Also, the following sections and 

their PU equivalents must be introduced. 

2.4 QUARL element and Unimodular Multiplier section 

For further work in this thesis it is necessary to show the QUARL element and the 

Unimodular Multiplier in the form required for the PU structure. 



A very important two-port is a quasi-reciprocal Iine, the QUARL[4]. The QUARL does not have 

the same delay in both directions, but the sum of the delays equals the delay of the 

corresponding Unit Elernent UE (41. This is shown in Figure 2.3. 

Figure 2.3 (a) Unit Element (b) QUARL element 

The scattering and transfer matrices for a QUARL are given, respectively, by 

The unimodular multiplier sedon is a two-port element that can be used with a real two-port 

network to create a compfex two-port network (211. It is shown in Figure 2.4 . 

Figure 2.4 Unimodular Multiplier Section 

The scattering and transfer matrices are also given for the unimodular multiplier section: 



2.5 Realization of Compkx Wave Digital Fitters 

For the constant complex two-port network shown in Figure 2.5 

Figure 2.5 Complex Two-Port Network 

with Scattering matrix from Eq 2.6 

where coefficients f, g, h and a çatisfy al1 conditions discussd earlier in this chapter, 

the following equations can be obtained: 

For constant complex g, h, f and a, they can be chosen as follows: 

where 01 is included in the angle of P to obtain the desired forms in the following 

developrnent. 

Then gg, =hh,+ ff, becornes 

and thus 



where 0, is arbitrary. 

Then the scattering matrix S becornes 

This is a very important equation for further work in this thesis. It gives us flexibility to 

detemine different types of adaptors based on simply altering the angles +,O, and O2 

In the next few sections discussion and analysis of these different types of adaptors will be 

shown, based on Eq. 2.28b and different values of +,O1 and 62. Depending on different choices 

for these angles, different adaptors are derived which will be used in the PU algorithm. 



2.6 Cornplex Wave Digital Cross Adaptor-NomulÛed and Denomlized 

For 0, = O and 0, = O we obtain 

Eq. 2.29 is the scattering matrix of the normalized complex wave digital cross adaptor (201. 

Now if a diagonal similafity transformation [S] is used to scale (denomalize) the matrix S. 

where the scaling matrix D is: 

the following is obtained 

By introducing the substitution 

the new scattering rnatrix S is of the fonn 



Eq. 2.33 representç the complex cross adaptor in the denormalized f o n .  A symbolic 

representation of this adaptor is given in Figure 2.6. An important thing to note is that the two 

coefficients p and 4' are different only with regard to the sign of their real parts. This means 

that there is only one coefficient to quantize. A constraint to consider in this case is that 

these coefficients must have magnitude l e s  than unity (51. RI and R2 are real 1201. 

Figure 2.6 (a) Symbolic Represenbtion of Compkx Cross Adaptor, 

(b) Signal-flow Diagram of Complex Cross Adaptor 

The important thing is to see if this structure satisfies pseudoloçslessness. Obviously it is not 

unitary because S. S 4  where S. is the paraconjugate-transpose of S and I is the identity 

matrix . 



Choose: 

G =  ( ~ - 1 ) ~  

This is the condition for pseudolosslessness where G is diagonal matrix with G, = 1 and 

Hence G, > O, is equivalent to 

The port references RI and R, are given by R, = llGl and & = 110, 

2.7 Complex Wave Digital Adaptor Represented in ternis of a Real Wave Digital 

Adaptor 

If 8, = - + and O2 = 8, in Eq. 2.28b, then 

The Eq. 2.36 is the matnx of a normalized complex wave adaptor. It is obvious that this matrix 

can be represented as a product of two matrices: a unimodular multiplier matnx and a 

nomialized two-port parallel adaptor rnatrix. 



Substituting r=cosû and ( = O. the normalized real two-port adaptor scattering matrix is obtained: 

Note: An ideal transformer in the analog domain is equivalent to a nonnalized digital parallel 

two-port adaptor. 60th foms of the adaptor can be used for the purpose of the PU algorithm but 

since the objective is to keep the development as general as possible. general formula will be 

used. In this way it is easy to compare it with other types of CWDFs. 

A symbolic representation for the digital equivalent of the ideal nonnalized transformer is shown in 

Figure 2.7 14). 
1 I 

Figure 2.7 Nomulized ParaIlel TwoPort Adaptor 

Now. just as in the previous section a scaling factor is intmduced: 



and S is given by Eq. 2.37. 

The result of this scaling is a product of a unirnodular mulà'plier matrix and the 

denormalized real parallel two-port adaptor as shown by the following equation: 

where S is a denormalized scattering rnatrix. 

If r is replaced with 7, the usual formula for the mal tw-port adaptor is obtained for the 

second matnx in Eq. 2.41. Figure 2.8 shows the real digital parallel twsport adaptor 

which is an equivalent of the denormalized ideal transformer. 

Figure 2.8 Real Parallel Two-fort Adaptor 

The scattering matrix for the two-port adaptor is 



In the next chapter the focus is on the PU algorithm and the application of the transfer 

matrices of the constant sections discussed above. Also, a process for obtaining the 

frequency response will be given together with a &nef ovewiew of the DFT that is used to 

calculate the adaptor coefficients. It is important to note that the two-port adaptors that 

were calculated and explored in this chapter are not the only ones that coufd have been 

obtained using Eq. 2.28b. 

However for the purpose of this thesis the adaptors deterrnined above are suffident for the 

examples that have been considered. 



Chapter 111 
PU Reaf ization 

3.1 PU Algorithm 

In this chapter the PU synthesis algorithm [l J ,  [4] is descnbed. To appIy the PU algorithm 

to a two-port network with polynomials f, g, and h, equations from Section 2.2 are used. 

After obtaining the elements of the unknown matrix in the first step the interchange of the 

polynornials f and h for the next computational step is required. At the end of the second 

extraction block there has to be a QUARL section as described in the previous chapter. 

The QUARL section reduces the order of the polynomials at each step by one. 

Speciflcally, the two extractions will force the factor r1 in f. g. and h allowing a QUARL 

to be extracted. In the Figure 3.1 the basic building block for the PU structure with a 

QUARL section is shown. 

Figure 3.1 Basic Building Block for PU Algorithm with the Final Section 

The interchange of the f and h polynomials is in the digital domain whereas in the analog 

domain it requires M o  three-port circulators [4]. 

20 



In the next sections the extraction of the PU building blcrcks for each of the adaptors that was 

discussed in the previous chapter will be derived. 

3.2 Complex Wave Adaptor Ftom a Real Adaptor and a Unimodular Multiplier 

In this section the equations obtained in Chapter 2, namely, Eq. 2.41 and Eq. 2.17 

through Eq. 2-23 are used. 

The transfer matrix correspunding to Eq.(2.28) with &O, %=O is given by 

If JE2 = sin0 is chosen. it can be çeen that 

Now, the Eq. 3.3 is applied to Eq. 2.19 to obtain polynomials fbr gb and h,. 



j.01 - -MO) = for h, (0)=0 Fe - - MO) 1 and$ = +IL 
&O) 

Now, after interchanging polynomials f and h for the next step 

fbn = hb , k = 'b and = % 

where subscript n denotes new value of the polynornials used for the next computational step. 

V. Cheng [4] has used a different mathematical approach and a starting matrîx equation to 

obtain a real parallel two-port adaptor and extracted a unirnodular multiplier section. The 

reason for pointing this out and extracting equations for the real two-port adaptor is that 

the results of this thesis can be compared not only to different types of cornplex ho-port 

adaptors but also to the results that V. Cheng (41 obtained using the equivalent of a 

normalized ideal transformer for the extraction of PU blocks. 

In the next section formulas are denved that are the focal point of this research, the complex 

cross adaptor in normalized and denormatized form. 



3.3 Complex Cross Adaptor-Nonnalùed and Denormalized 

Frorn the Eq. 2.28b and the formulas calculated in the previous chapter following is obtained: 

In Eq. 3.7 T is the transfer rnatrix of the Normalized Complex Cross Adaptor. 

The same steps are used to obtain the inverse of the matnx in Eq. 3.7 as in the previous 

section. 

For clear distinction let us label the transfer and inverse transfer matrices as 

and (T@)- ' . 

Using Eq. 2.19 the following is derived 

and calculate the polynomials f,, h, and gb in the sarne fashion as done in the Section 3.2. 



Eq. 3.13 was included just for completeness, but as will be seen in the following sections 

the only equations of concern are Eq. 3.10 through Eq. 3.12. 

The extraction factor for the normalized complex cross wave adaptor is 

with the same conditions as in Section 3.2. 

Al1 the necessary equations from this section will be implemented in the PU cornputational 

algorithm at the end of this chapter with an explanation of the computational steps. 

Now, the formula wilf be derived for the denomalized complex cross adaptor using the 

same steps as for the nomalized one. 



The norrnalized cross adaptor can be represented as a product of two real multipliers 

and the denorrnalized complex cross adaptor as shown in Figure 3.2. 

Figure 3.2 Nonnaiized Cross Adaptor Represented by Denonnalked Cross 
Adaptor and Two Real Muttipliers 

Note: This is usefui for the representation of PU building blocks, because the symbolic 

representation of the denorrnalized complex cross adaptor has been already defined. 

Two diagonal matrices 0,  and D2 are defined in ternis of the two real multipliers: 



The equation of the nomalized complex cross adaptor can be cslculated from Eq. 3.15 and 

Figure 3.2. 

Also. it is obvious that D , = (D,)- ' 

These are the equations needed for the different types of PU building blocks. 

The next section deals with a review of the Discrete Fourier Transfonn as a tool that will 

be used for the representation of the polyr~omials of the two-ports used in the PU 

decomposition algorithm. 

The formulae for the denormalized two-port adaptor are not given because if satisfactory 

results are obtained for the nomalized cross adaptor, the same rule is in effect for the 

denomalized complex adaptor represented by the normalized cross two-port adaptor. In 

other words representation of this adaptor as a part of the PU building block can be 



realized in the same fashion as in Figure 3.2 using two real muHipliers k and ka'. 

3.4 DFT and PU Algorithm 

In this thesis the DFT-sarnple representation of the 1, g and h polynomials is used. 

For a polynornial p(i ') sarnples along the unit Orde are defined by 

with N being the degree of the polynomial plus one and the inverse DFT yields the 

coefficients of the polynomial, specifically the zeroth coefficient 

With DFT-sample procedure order reducti-on is effeded irnplicitly M. and hence does not 

require actual degree reduction. 

Now, the PU computational algorithm for the norrnalized cornplex cross adaptor using the 

DFT-sample representation is described. 

For the polynomials 1, g, h and N the order of the filter plus one, the following algorithm 

is used: 

1. Compute sarnples on the unit circle 



2. For the ith extraction step where i goes from 1 to 2N: 

Let = - - h(") which is the extraction factor 
&3tO) 

N- 1 N- 1 

where h(0) = -- ' h, and g(0) = -- 
N N 

k = O  k = O  

3. Update al1 samples as per the derived fomulae (:= denotes assignment): 

where n in the subscript denotes new, calculated values. 

4. Interchange f, and 8 . 

5. If i is even, reduce the order of h and f by dividing the DFT samples by wk 



6. Return to the beginning of the loop at the step number 2 4 t h  the next i until 

i>2-N 

7. The extraction factor r for i = 2N should be 1. 



3.5 Frequency Response Bosed on the Basic PU Building Btock 

For the frequency response the same approach is used as in [4]. The frequenq response is 

calculated from the product of 3 by 3 transfer matrices determined from the calculated 

two-port cross adaptors. This is a direct method of obtaining the frequency response. The PU 

structure as a product of 3 by 3 matrices is shown in Figure 3.3. 

Figure 3.3 PU stnicture as a product of 3 by 3 matrices 

For example if the normalized complex cross adaptor is used then a typical 3 by 3 transfer 

matrix Ti of the PU building block would be: 

To obtain the frequency response of the entire structure the product of al1 the extraction 

N +  1 

blocks is needed. narnaly T = n Ti where N is the order of Rtter and (3.19b) 



From Figure 3.3 we can se0 that the last section consists of one No-port cross adaptor 

and the multiplier section where cieis the multiplier coeffuAant for the N+1 step. 

Also, it is obvious that the final 3 by 3 matrix can be simplified to a 2 by 2 matrix since 

4 = B 3 .  

Using Eq. 2.4a and the given condition the following 2 by 2 scattering matrix is derived: 

From the Eq. 3.21 the following relationships can be seen: 

f(z-') = T12+Tl ,  

h ( i l )  = T32 + T,, 

As discussed in the Chapter 2 based on what the system requirernents are, either the 

frequency response of the transmittance or reflectance is calculated. 

h ( i  ') ') and the reflectance by - The transmittance is given by- 
B k  '1 &-l) 



3.6 Time Dornain Representation 

In this section the basic building blocks are used for the filter realization in the f o m  of a 

scattering rnatrix in order to calculate the frequency response from the time domain. 

As shown in Figure 3.3, any filter of given order N cari be presented as a structure 

of N PU building blocks with the N+1 th elernent at the end represented by two cornplex or 

two real unimodular rnultipliers and a two-port adaptor. 

If the computational steps of the PU algorithm are accurate the last elements will be 

unimodular. 

In this section a basic block and a final section are used to realize the filter in the time 

domain. The impulse response is obtained by applying an impulse function at the input and by 

setting the values in the delays equal to zero. This will give us a general rule and the 

equations necessary to build a filter of any order using this approach. Of course, any higher 

order filter would have more computational steps and involve more equations, hence requiring 

more time. In the next chapter the values of the calculated 8 coefficients will be used for a 

3rd-order complex digital filter and an 8th order fiiter to obtain the corresponding time domain 

resporises. 

To represent a PU building block and the last multiplier in the time domain the r1 delay 

operator in the digital domain is replaced with a T tirne domain section in Fig. 3.1 and Fig. 3.3. 

Since tha normalized complex cross adaptor was used in Fig. 3.3, the focus will be on the 

realization with denormalized ho-ports with two real rnultipliers. 

32 



Note: The Normalized Cross Adaptor is equvalent to the Denormalized Cross Adaptor and two 

real multipliers. 

Figure 3.4 (a) PU Building Block-Tirne Domain, (b) Final Two-Port Section 

NOW, for the impulse function at the input. the values for the delays are zeros at a t = O and 

there will be an initial value at the input which will be zero for t = 1, 2. ... n. where t denotes 



To calculate the necessary values for the circuit from the Figure 3.4a and Figure 3.4b the 

signal-flow diagram of the complex cross adaptor from the Figure 2.6b is used. 

Frorn the Figure 2.6, a matrix equation can be extracted for each PU building block in 

Figure 3.4a and for the final section from the Figure 3.4b as follows: 

The quantized values of m i s  and n,'s, where k = 1.2, ... n+1. rnust satisfy 

which utiiizes the passive quantization approach for an inverse pair of multipliers as shown 

by Fettweis 121. 

For the final section from the Fig3.4.b. the values for the final m and n are given by Eq.3.24 

and for the final multiplier eie the value for the two examples considered in Chapter IV is  one. 

It is important to set up the starting conditions properly and to observe, from the Figure 3.4a, 

the relation between each of the corresponding values of the PU building blocks, narnely: 

a3 = b2n and a, = b I n  



where n denotes the new value. 

The tirne dornain operation can be explained by using a block diagram. Let p be the highest 

degree of the given scattering matrix polynomials. Then there are p delays and the structure of 

the fitter realization can be organized as shown in Figure 3.5. 

Figure 3.5 Tirne Domain Block Diagram 

For each time instant t. start the calculation with the p+lm block. Then b1w1) and b(p*l) 

are calculated from a,@+') and aZ@+l) (usually zero) using Figure 3.4b. the flow graph 

for the cross adaptor Figure 2.6b and the final multipliers. as mentioned earlier in Section 3.6. 

Next, the calculations determined by block p are camed out in accordance with Figure 3.4a 

and the fi ow graph for the cross adaptor. 

The inputs are a,@) = output of the (p1)th delay, a@ = b1W)  and a3(p)=4@+O; 

The output b3(@ is the input to the pth delay (which will be the input at the next time 

instant), and outputs b1@) = a$~-l) and = a,@-V are inputs for block (pl). 



The calculations continue until block 1 is reached where a,(') is inputl of the filter. 

The initial values in the delays are usually set to zero. For the impulse response for the 

transmittance inputl is set equal to the unit impulse and input2 is set to zero for al1 times. The 

frequency response is obtained from the Fast Foumer Transfomi of the impulse response 

at the b2 

In the next chapter we will give pracücal examples and realizations with different types 

of adaptors that were calculated in the Chapters 2 and 3 in the both the digital and the 

tirne domains. 



Chapter N 

Results and Examples 

In this chapter results that are obtained by practical irnplementation of the formulae from the 

previous two chaptes are presented using a MATLAB software package. 

The input data used for the examples presented in this chapter is from V. Cheng's M.Sc. thesis 

(41, and has been modified to satisfy certain conditions that appiy when dealing with complex 

cross adaptors. 

The difference between nominal and quantized values for the coefficients is shown with respect 

to the output results where quantization was done using 8, 12 and a 16 bit precision for the 

values of the multiplier coefficients (the betas). 

In the next following sections resuits for an 8th order band-pass filter with real coefficients and 

a 3rd order band-pas filter with complex coefficients are observed. 

Also, the time dornain realization of the PU building blocks as explained in Section 3.6 of the 

previous chapter is discussed. The example of the aforementioned 3rd order cornplex filter will 

be observed with regard to the time domain representation, 



4.1 The 8* Order Real Band-Pass Fiiter 

For the 8th order filter [4] in this example there was no changes with regards to the input values 

of the polynomials f, g and h. 

The input values for the f, h and g polynomials are given in the Table 4.1. 

fzeros 1 magnitude ! anglelpi 
constant 

1 

g zeros magnitude 1 anglelpi 
constant 0.8806735956378351 94 O 

1 1 .O08341 527656365750 -0.399341 528997245882 
2 1 .O08341 527656365750 0.399341 528997245882 

0.00090521 
1 

anglelpi 
O 

0.351 73271 1 
-0.351 732771 

r 

h zeros 
constant 

1 
I 

2 

Table 4.1 Input values for the 8th order mal band-pass filter 
38 

O 
0.430034232 

magnitude 
0.9384421 12 

1 
1 



The values for the 6s in the polar form and for the quantized ps are given in the Table 4.2. 

I Betas-polar form ang le/pi Betas-Quantized anglelpi 
1 0.9384421 10231 74 0.00 0.93847656250000 0 .O0 

Table 4.2. Results for the 8* order filter 

An important observation is that angle values for the nonquantized multiplier coefficients (Ps) 

have their values rounded off in this table to -1, O or +l. This is valid because the filter is real. 

Real computational values are slightly different from the rounded values but do not affed the 

realization of the filter using complex cross adaptors. Now using these values the ffequency 

response, attenuation and magnitude, are presented for the 8th order real band-pass filter using 

both the nominal and the quantized multiplier coefficients. The values for the inverse muhipliers 

were not given because they are simply calculated fmrn the values of the 
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corresponding gs. 

ln the following three figures. Figure 4.1. Figure 4.2 and Figure 4.3. the nominal and the 

quantized plots for the 8th order example are shown. 

Attenuation Response 8th Order BP 

Figure 4.1 .a Frequency response plot for the order filter4uantized to 12 bits 

20 -. .............-.... '. ----- . ------ .... --"'--""..;"--~ 
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1 I 1 1 I 
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Nomalized Frequency 



In the following figure we give the nominal frequency response. 

Attenuation Response 8th Order BP 

I 
I I I AAA 1 I t I I 

O. 1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 
Nomalized Frequency 

Figure 4.1.b F requency response plot for the 8h order filterNominal 



In the foll-ng figure the frequency response with the 16-bit precision is shown. For each of 

these plots 800 discrete time instances were colleded. 

Attenuation Response 8th Order BP 

Figure 4.l.c Frequency response plot for the 8m order fiiterQuantized to 16 bits 



The last frequency response shown has &bit precision. It is obvious that for the value of the 

transmission zero the attenuation value is different than for the other three plots. 

Attenuation Response 8th Order BP 

- 
1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 

Nomalized Frequency 

Figure 4.1.d Frequency response plot for the 8& order filterQuantirad to 8 bits 



The important difference can be seen when the ripples for both quantized and nominal plots are 

compared because the quantized one is no longer lossless regardles of the number of the bits. 

Ripple Response 8th Order BP 

Figure 4.2a Ripple response for the 8* order filter-Quantized to 12 bits 



It is obvious from Figure 4.2.a that after using quantized coefficients the ripple plot represents 

the npple of a lossy filter. After seeing the figure with the nominal value this is obvious. 

Ripple Response 8th Order BP 
1 I l 1 ! 1 1 I I 

._.._____.f*__--.--..---.-.-.-......~...... 
'-'4 



Figure 4.2.c represents the ripple using quantized coefficients with the 16-bit precision. hence 

obtaining the npple plot doser to the nominal value than the 12-bit one. but the difference is not 

very noticeable. 

Figure 4 . 2 ~  Ripple response for the 8m order fiiterQuantUad to 16 bits 



Figure 4.2.4 represents the npple using quantized coefficients with &bit predsion. and the 

ripple plot denved is rnuch lossier than the other two plots with the quantized coefficient values. 

Ripple Response 8th Order 8P 
21 i 1 I I 1 I I 1 I I 

Figure 4.2d Ripple response for the 8* order filterQuantized to 8 bits 



The difference between these plots a n d m  obtained in [4] is a noticeable one with regard to 

the flpple plots, where even 8-bit precision for the cross adaptor in this thesis gave better resuits 

than 12-bit precision in [4]. 

Magnitude Response 8th Order BP 

0.4 0.5 0.6 0.7 O. 8 O. 9 1 
Nonalized Frequency 

Figure 4.3 Magnitude representation for the 8* order filter 

Also, for the &bit precision in 141 the program tenninated ab~pt ly  requiring recalculation off, g 

and h with higher precision whereas this program gave satisfadory results. 
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4.2 The 3'd Oder Complex Band-Pass Fifter 

For the 3d ofder complex filter input values for the f, g and h were changed slightly 

from those in [4].The f constant was set to 1 and the constant factors of h and g were scaled 

accordingly. in addition, the phase of g was modified to make the final multiplier in the 

realization equat to one. The input values for the f ,  h and g polynomials are given in the 

Table 4.3. 

f rems 
consta nt 

Table 4.3 Input values for the 3" order complex band-pass filter 

1 

magnitude 
1 

anglelpi 
-0.1 17376125505971 18200 
-0.3461 5340690000000020 
-0.31 88357341 0000000020 
-0.364351 1 8300000000020 

h zeros 
constant 

i 
2 
3 

g zeros 
constant 

1 
2 
3 

The values for the coefficients and for the quantized coefficients are given in the polar f o m  in 

the Table 4.4. 

angldpi 
O 

magnitude 
551 -21 54161 1546160320 

1 
1 
1 

magnitude 
527.835561 01 66758481 0 
1.0340581 281 849684080 
1 .O41 66575441 34990300 
1 .O124727238645185820 

angletpi 
0.029341 2000 

-0.31 527422385588782490 
-0.34774492509166970300 
-0,3663220287391 19061 O0 



ang le/pi re{ P l  im{P) 
Quantized 12 bits Quantized 12 bits 

-0.1 4671 6471 81 92946 0.85766601 5625 0.425781 250000 
-0,0621 71 2438456876 0.046875000000 0.009277343750 
-0.8088364869473473 -0.823486328125 -0.564208984375 
-0.281 993351 4063858 0.063964843750 -0.0783691 40625 
0.5332730477632998 -0.1 03759765625 0.988769531 250 
0.61 8771 366346871 O -0.334960937500 0.851 806640625 
-0.3226698425773926 0.166503906250 -0.267089843750, 

Table 4.4 Results for the 3d order complex fiiter 

As can be seen, the difference between this and the previous exampte is that angles are no 

longer ones and zems and have non-zero values. 

Now, as in the previous section, these results are used to obtain the necessary plots. 

In the following three figures, Figure 4.4, Figure 4.5 and Figure 4.6, we present the attenuation 

venus frequency plot. ripple and magnitude plots for the 3* order complex filter. 

Also, the frequency response and the ripple for the nominal values of coefficient and the 

comsponding magnitude is shown because, as for the 8m order real filter example. the only 

noticeable difference is for the ripple frequency response, where the nominal value represents 

a lossless filter and the quantized one represents a lossy one but for consistency in this thesis all 

three plots are included. 



In the ne* figure we give the frequency response of the 3d order complex filter with U\e 

quantized values for the coefficients with 12-bit preusion and the same number of instances as 

for the 8th order reaf filter. 

Attenuation Response 3rd Order Cornplex BP 
I 1 I 1 I t 1 1 I 

1 I I I I 1 

-0.8 -0.6 -0.4 4.2 O 0.2 0.4 
Normalized Frequency 

Figure 4.4a Frequency response for the 3d order cornplex fifterQuantized to 12-bits 



In the Figure 4.4b the frequency response of the 3* order complex filter with the nominal values 

for the coefficients is shown and the difference between this one and the quantized ones is not 

significant as expeded. 

Attenuation Response 3rd Order Cornplex 8P 
1 1 1 I 1 i I I 1 

I 1 I I 1 I 

-0.8 -0.6 -0.4 -0.2 O 0.2 0.4 
Nomalized Frequency 

Figure 4.4b Frequency response for the 3* order complex filter-hlominal 



In the Figure 4 . 4 ~  the fraquency response of the 3* order complex filter with the quantized 

values for the coefficients with 16-bit precision is shown. and as discussed no signifiant change 

was noticed. 

Attenuation Response 3rd Order Complex BP 
I r I 1 1 I 1 r I 

1 I I I 1 I 

-0.8 -0.6 -0.4 -0.2 O 0.2 0.4 
Norrnalized Frequency 

Figure 4 . 4 ~  Frequency response for the 3" order complex filterQuantized to 16-bits 



For the 8ht order filter when &bit precision was used for the values of the quantized coefficients, 

the frequency response had different values at the transmission zero points. With the 3m order 

filter this is not the case. 

Figure 4.4d Frequency response for the 3" order complex fiiter-Quantized to 8-bits 
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45 

40 

35 

30 

m 
w 
2 25 
O .- 
Y Cu 
3 

5 20 
u 

3 

15 

10 

5 

1 1 r 1 1 I i 1 1 

# 

- ..................... ............-........ iiiiiiiiiiiiiiiiiii 

-- .............. ' ................... ..-L 

-. ........................-..... -. . 

-..... . . . .  ....... ................. 

-..... ................ . . . . . . . . . .  

-. ................................ -...--- 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .__ . . . . . . . .  ..................-...... .......................... .............................. -.. ................. i.................. " 0 .  ... ^ - 

... ....... . .  .. .......................................-.....................-......................;..... ..-.......... 

I 1 I f I L 
O 1 1 I 

-0.8 -0.6 4.4 -0.2 O 0.2 0.4 0.6 0.8 1 - 1 
Normalized Frequency 



In Figure 4.4 we have obtained the same frequency response as in (41 except thet for the 

passband in this thesis (the quantized ripple) for the complex cmss adaptor gives better results 

than in [4], 

Ripple Response 3rd Order Complex BP 

Nomalized Frequency 

Figure 4.5a Ripple response for the P order filter-Quantized to 12-bits 



Ripple Response 3rd Order Cornplex BP 
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Figure 4.5b Ripple response for the 3* order filer-hlominal 



The ripple plot with 16-Mi precision shown in Figure 4 . 5 ~  is not significantly different from the 12- 

bit precision plot. 

The difference is noticeable when compared to the ripple plot using nominal values. 
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Figure 4 . 5 ~  Ripple response for the 3d orcler filterQuantked to 16-bits 



The npple plot with &Bi precision shown in Figure 4.5d differs fmm both quantized and 

nominal plots significantly. &th by shape and by the lossiness. 

Ripple Response 3rd Order Complex BP 
I I l 1 I 
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Figure 4.5d Ripple response for the 3m order filterQuantized to O - b i t s  



The last Rgure given for this example is the magnitude response of the 3* order complex 

filter. 

Figure 4.6 Magnitude response for the 3d order corn plex filter 

Further discussion and cornparion with resutts obtained in [4] and a sensitivity issues will be 

pmvided at the end of this chapter. 
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The conclusion based on the previous two chapters is that the complex cross adaptor gives 

good results after using quantized values of the rnultipliers (Ps) and the inverse multiplier pairs. 

Further discussion will be given in the next chapter. 

4.3 Time Domain Realization and the Examples 

In this section the appmach detennined in Section 3.6 is used and applied to the 3d order 

cornplex filter and an 8m order filter observed in the previous sedion in an attemp? to obtain the 

time domain response of the given fiiter using the PU building blocks from Figure 3.4.a and 

Figure 3.4.b. A general computational algorithm was designed that was used in this section to 

obtain the result regardles of the filter order or the polynornials of the lossless filter. 

The same coefficients are used for both methods of obtaining the frequency responses of 

the 8L" and 3" order digital filten. The frequency response that was obtained. based on the 

unit sarnple applied at the input of each of the filters produced ripple characteristics 

similar to those obtained in Sections 4.1 and 4.2. 

Note: Since the attenuation and magnitude frequency responses for the time domain were 

essentially the same as those of the digital dornain we will not present their plots. 

As mentioned above, both plots for the digital and the tirne dornain were made using the 

quantized coefficients. 



In the next figure the ripple frequency response of the* oder mal band-pass filter is 

given. 

Ripple Response 8th Order BP 
2 I 1 ! 1 

- - .. .- 

Figure 4.7.a Ripple response for the order filter-Time Domain (1 2 bits) 
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The final plot of this chapter has been presented in the next mure mich represents the 

ripple frequency response of the 3m order complex filter. 

Figure 4.7.b Ripple response for the 3" order complex filter-Time Domain (12 bits) 



As mentionecl above, the tirne domain ripple frequency response with the quantized multiplier 

coefficients (ps) resernbles the nominal values of the digital fiiters from the previous two sections 

of this chapter. 

With regard to the results from Sections 4.1 and 4.2 the following was conduded: 

1. Using the quantized coetficients with 8-bit precision shows deviation from the higher 

quantized values and the nominal one. When this result is compared to the result from [4] 

it is satisfactory allowing even for the &bit implementation. 

2. The filter realized using cross adaptor in the PU algorithm is less sensitive than the realization 

presented in [4]. 

In the next chapter the final conclusions are presented based on the findings and the results 

obtained from the previous chapters and materials rnentioned in the reference section. 

Also, a discussion of pipelineability will be given and the possible practical implementation 

of the above results and formulae in the fields of VtSl and DSP. 



Conclusions 

A realization structure and a design for complex and real losstess two-port filters using the PU 

structure was given. The irnplementation of the PU blocks using the cornplex cross adaptor was 

used. The advantage over other techniques using two-port adaptors [4) was that only one 

coefficient was used in the realization of the adaptor. 

Two types of the complex cross adaptors were used, both normalized and denomalized. 

It is important to notice that the denormalized adaptor was used with two real rnultipliers as a 

equivalent of the normalized adaptor. Also, the necessary relationship between the two was 

calculated and irnplemented in the computation part, which proves to be an advantage over 

some other pipelineable structures (41 in the sense that denormalized unit can be used in 

combination with an inverse pair of real muhipliers. The importance of this is significant when 

the ripple frequency responses were compared and the cornplex cross adaptor represented 

by a denomalized cross adaptor and two muitipliers, gave a response that was much 

closer to the nominal value, hence k i n g  less sensitive. In addition, calculations for the time 

domain were implemented on the PU blocks used for the digital domain calculations and the 

output results were more than satisfadory, being very close to the nominal value and to their 

digital domain counterparts. 



The time domain calculations were useful in pmviding a more descriptive way of presenting the 

computational steps used in the basic PU building blocks with cornplex cross adaptors and pairs 

of inverse real muitipliers. These are advantages that can be applied in the field of VLSl 

implernentation because of the lower number of independent coeffkients, which decreases 

computational and design overhead. The results were calculated using quantized coefficients 

with different precision producing satisfadory results as mentioned above. The other advantage 

is that this structure does not require outside complex muttipliers to preserve planar rotation, 

because everything is done intemally inside of the two-port adaptor. Also, the way these formula 

and computation steps were implemented provides an easy way of creating a filter of any order. 

A very important feature to notice is that this entire work is done using fully pipelineable 

structures, hence further increasing the computational speed of the adual filter and the design 

process. Pipelineability provides for the operations of the processor to be fragmented into 

sequential tasks that are perfomed in parallel. This can be seen from the timedomain 

realization where delays are being used for the next computational step before present one has 

completed. The slowest task is the one that detemines the computational speed in this case and 

the overall delay of the procedure is the surn of the al1 delays related to the individual tasks. This 

parallelism enables the accumulation and retneving of the next instruction at the same time. 

Many research artides adually deal with the design and the theoretical approach to pipelineable 

structures [17J, (1 81, 119) so we will not address this topic any further in this concluding chapter. 

New content and the advantage of the approach denved in this thesis can be seen in the DSP 

implementation that each step has both the multiplication and the addition step in each of the 

computing cycles. Also, only one coefficient is used, hence making the implementation easier. 

The recommendations for future work could be in the sense of further exploration of the vanous 

two-port realizations of digital fiiters using PU building blocks to obtain those most suitable for 

VLS! designs or further work on the topic of the cross adaptors used as building blocks with 

inueased computation speed and easier implementation. 
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APPENDIX 

Mapping from the r-domain to the z-domain 



The scattering matrix (in the Homain) for lossless two ports has the representation 

(A. 1 a) 

where a is a unimodular constant (lal=l), f, g, and h are polynomials and g is a Hurwitz 

polynomial. 

f.(w)=P(-v*), similarly for tt, and f, g and h satisfy 

From the above equation it follows that n=deg g, I=deg h, m=deg f satisfy kpln . 

The polynornials can be represented in the form 

wfiere g,, fi and hi are constants. 

= c &zi where the are new constants. 

i = O  
Similarly, 

m 

(A. 1 b) 



by definition f.(iy) = f^(-yr*) 

Consider the mapping of f.(yr): 

Also, 

Obviously Eq. A S  is equvalent to Eq. A.6. 

The same approach is used for h&) and d.(z). 

Therefore 



All the zeros of p z )  are inside the unit circle in the z-plane and clearly Eq. A.1 b is 

To express the polynomials in ternis of rl, muhiply the numerators and the denominator in S 

by P (n = deg 22) ). 
Denote the polynomials in rt by a 'bat". 

and 
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