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ABSTRACT

Electrical Impedance Computed Tomography (EICT) seeks to create an image of the con-
ductivity distribution inside a body, based on boundary measurements. This thesis studies
one class of EICT algorithms with iterative characters—the error function minimization al-
gorithms—whose features have not been fully explored. Research shows that these algo-
rithms can reconstruct images from under—determined problems, while the algorithms with
Newton—Raphson-like procedures cannot do. With the use of the sparse matrix technique
and the Point Iterative Point Accumulative scheme, the algorithms are capable of dealing
with large amount of data generated from three—dimensional EICT systems. Compared with
other algorithms, they are relatively insensitive to measurement errors. Acceleration
schemes based on imaging processing techniques are introduced to improve the speed of
convergence and the quality of images. Designing excitation patterns is a key issue of EICT
systems. This thesis suggests two approaches, with sensitivity analysis and graph theory,
to design better excitation patterns. Such designs do not require excitation patterns to be up-
dated during the imaging procedure. Searching for a proper finite element mesh depends
on the true conductivity distribution of individual problems. This thesis proposes a proce-
dure of starting an algorithm with a coarse mesh and switching to a finer mesh later to reduce
computing time, and to find a mesh that is suitable for a particular problem. The contradic-
tion between image resolution and reconstruction speed is also discussed in this thesis. An
alternate method, associated with the error function minimization algorithms, is introduced
to increase resolution economically. It solves electrical field potentials with a pre—designed
mesh, but improves element conductivities by interpolating conductivity distribution within
each element. Simulations in two— and three-dimensions using the discussed algorithms are
conducted. Excitation pattern effects on three—dimensional images are specially addressed.
A set of principles for industrial applications is then presented and a real EICT system is de-

scribed.
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CHAPTER 1

INTRODUCTION

In recent years, Electrical Impedance Computed Tomography(EICT) has received increas-
ing attention. Progress in image reconstruction algorithms has been achieved and applica-
tions in biomedicine and in geophysics have been reported[4, 13, 37]. EICT offers the ad-
vantages of reduced biological hazard and less expensive hardware. As a result, it can be
used as an alternative means for continuous monitoring in medical or environmental applica-

tions.

1.1 Electrical Impedance Computed Tomography

Electrical impedance methods have been used in geological and mineral prospecting appli-
cations for a long time[38]. Such methods is to employ an artificial source of current which
is introduced into the ground through point electrodes or long-line contacts. By measuring
potentials at other electrodes in the vicinity of the current flow, it is then possible to deter-
mine an effective or apparent resistivity of the subsurface.

Electrical impedance methods have also been applied in the medical field to measure certain
overall cardiac parameters, such as intrathoracic fluid volumes, based on large conductivity
contrasts in the human body (due mainly to the salinity differences between fluids contained
within and between various organs). Henderson and Webster[13] built an “Impedance Cam-
era” system to display isoadmittance contours of the chest under the assumption that the cur-
rents injected into the body flowed in a ray—like manner. Current through each electrode ar-
ranged on a patient’s back was recorded, and the corresponding impedance of the volume
was calculated for contour display. Although this technique does not account for current
spread throughout inhomogenerous body organs and so cannot yield detailed images, the in-

formation could be a significant diagnostic tool, particularly in cases of pulmonary edema.




EICT is a development of the traditional electrical impedance measurement methods. It at-
tempts to image the electrical impedance (or resistivity/conductivity) distribution inside a
body using electrical measurements on its boundary. When a current is injected into a body
through its surface, potential distribution on the surface is measured.

The main differences between EICT and traditional electrical impedance measurement
methods are that: first, the distribution of the conductivity inside a body is not in any pre-
sumed pattern ( currents do not flow in a ray-like pattern as for X-ray tomography ); and
second, the target model is not constructed based on lumped-elements, i.e. not network mod-

els, but by electrical field estimations.

1.2 Developments on EICT Models and Algorithms
Price[31] first introduced the term EICT in 1978, indicating the application possibilities for
EICT in medical science and proposing network models for an EICT medical system. How-

ever, such models, as shown in Figure 1.1, were proven to be too simple to represent the elec-

e
T

Figure 1.1 Network models proposed by Price for EICT

trical current behaviour within the body. The algorithm Price suggested for the reconstruct-
ing conductivity distribution produced images of low quality[2].

Wexler, Fry and Neuman[41] investigated the problem and pointed out that part of the reason
for the poor image quality, with the prior proposal and some other related methods, was that
they all assumed that the current injected into the body followed ray—like paths. In fact, true

current paths depend on the conductivity distribution inside the body, which is unknown at



the outset. The effect of contact and spreading resistance, thus included, lowers the quality
of measurements that need to be accurate in order to produce fine tomographic detail.

To describe the current flow path in a continuous medium correctly, electric field equations,
i.e. the Poisson or the Laplace equations at low frequencies, must be employed in EICT algo-
rithms. As the method considered to be most suitable for the problems not only in the field
with arbitrary geometry but also of the inhomogeneous field, the Finite Element Method
(FEM) is appropriate to calculate potential distributions during the EICT imaging process[4,
22]. Wexler, Fry and Neuman[41] and Murai and Kagawa[27] therefore introduced finite
element models for this method and discussed the conductivity distribution estimation pro-
cedure from electric field solution and network sensitivity theory, respectively. They indi-
cated that the estimation of electrical conductivity distribution within the body is an inverse
and nonlinear problem. As aresult, an iterative approach had to be implemented for image
reconstruction.

With improvements of EICT, Tamburi, Roeper, and Wexler[37] applied their algorithm to
the mapping of an effluent plume in the vicinity of a leaking landfill site. Woo et al. [44]
using simulation and human body experiments demonstrated that average lung resistivity
can be measured with an EICT system using the modified Newton-Raphson algorithm. For
the purpose of environmental protection, Atomic Energy of Canada Ltd. has proposed and
is testing an initial prototype of an EICT system, to image saturation levels for monitoring

buffer material in high-level radioactive waste repositories[35, 36].

1.3 Applications of EICT
Although EICT is still in a research and development phase, many successful experiments

and applications indicate its potential for future use within the industry.

1.3.1 Environmental monitoring

With the end of the Cold War, stored nuclear material and wastes in the United States and




Russia have become a recognized threat to our environment. Reportedly, “during the Cold
War, a corner of Washington state was home to the plutonium industry. Cleaning up the dead-
ly mess is now providing the biggest environmental challenge ever”. There are 14 US nu-
clear weapon industries spread over 14 main locations in the United States. Hanford, Wash-
ington is estimated to have two—thirds of the highly radioactive waste. From 1945 to 1986,
an estimated 190,000 cubic meters of highly radioactive waste and 760 billion litres of less
radioactive liquid waste and toxic chemicals were stored, dumped or poured into ground
there. From the nuclear pollution point of view, people in North America and Russia are liv-
ing on the most polluted places on Earth. Long—term monitoring is needed while the clean-
ing up of waste proceeds. EICT may provide an economical, safe, and convenient way to
conduct monitoring. Atomic Energy Canada Ltd. is building an EICT system for such a pur-
pose. The simulation and primary experimental results are in conformity with the theoretical
calculations.

1.3.2 Medical applications

EICT has potential for use in medical applications, due mainly to impedance differences be-
tween different tissues and organs. Table 1.1 shows the impedance differences between
some typical parts of the human body at low frequencies.

Breast cancer diagnosis Approximately 1 in 12 Canadian women will develop breast can-
cer over their lifetimes. Every year some 9000 Canadian women develop breast cancer (
about 74 per 100,000 )[47]. Although curable, particularly when detected at an early stage,
breast cancer kills 4300 Canadian women per year ( about 33 per 100,000 ) and is the major
cause of cancer deaths among women. Because it tends to occur earlier in life than other
cancers, and earlier than other major causes of death — such as cardiovascular disease—,
breast cancer has been shown to be the greatest cause of early loss of life among Canadian
women. In many western countries, the yearly incidence is between 75 and 95 cases per
100,000 women and increasing. It is one of the leading causes of death in women over 30

years of age.




Table 1.1

Resistivity of body tissues at low frequencies

Tissue Resistivity
Blood 208
Liver 506
Heart 216
Lung 744
Fat 2060
Skeletal 643

* Mean resistivity in Ohm.cm

The means to prevent breast cancer has not been found. Mammography used to be consid-
ered as the only reliable method of detecting nonpalpable cancers, and could detect many
small breast cancers in the early stages when they may still be curable. However, there are
questions on its reliability now. Besides, mammography involves radiation, and is expensive
to apply in clinical bases. Inrecent years, there has been a great interest in developing alter-
native techniques for breast cancer imaging. Potentially fruitful areas for research are: digi-
tal mammography, applications of digital imaging process and pattern recognition tech-
niques in digital mammography, and digital diagnosis.

EICT is one such area which may be able to provide inexpensive and less hazardous diagno-
sis of breast cancer in its early stage. Research has been carried out in measuring the imped-
ance of breasts[18]. The resistivity of cancer tissue is about 20 times higher than that of nor-
mal breast tissue. Simulation results in two—dimensions show that a tumor area covering 1%
of the cross—sectional breast model area produces more than 4% of the variation in voltage
magnitude at the surface electrodes when compared to voltages for a normal breast. As a

relatively new breast cancer detection approach, EICT may provide earlier detection than



is currently possible. This technique would also be effective on young women[18].
Other possible diagnoses Based on the discussion above on the possible medical applica-
tions of EICT, we can see the potential for diagnosing other lung diseases, or monitoring
heart movement dynamically, when X-ray based techniques cannot be used.

1.3.3 Mine detection

There are still dangerous places on the Earth as a result of major wars. In Cambodia, for ex-
ample, life is continuously threatened by underground mines. It was reported that 6 to 10
million explosive mines can still be found in rural areas, making shortage of cultivatable land
there even more critical. Traditional detection methods cannot solve this problem because
most of the mines are covered with plastic materials. EICT is considered to be the only way
possible to clear that land. In Canada, there are unexploded underground ordnance at Suf-
field, Alberta. It would take years to clean them up using traditional methods. The Depart-
ment of National Defence has tried to find efficient approaches to detecting those ordnances.

Again, EICT might be a way to distinguish metal and plastic-covered ordnance from soil.

1.4 Purposes of This Thesis Research

Although significant progress has been made in EICT algorithms and systems, this method
is still in its research stage as arelatively new image—generating technique. EICT’s potential
applications in environmental and medical areas demand more thorough studies related to
industrial settings. This thesis describes research conducted on EICT algorithms as well as
problems arising from practical EICT systems. It seeks to formulate a set of theoretical and
practical principles on which to base an industrial (medical/environmental) EICT machine.
1.4.1 Studying EICT algorithms

Algorithm development has been the major research area of EICT. For EICT algorithms
with iterative features, those using Newton—Raphson-like procedures have been studied the
most. Such algorithms give faster convergence rates than other iterative algorithms. How-

ever, the large matrix inversion restricts the algorithm’s ability to deal with large, three—di-



mensional imaging systems, which is important in practical applications. This thesis investi-
gates alternate types of iterative EICT algorithms that do not use Newton-Raphson-like
procedures and have not been fully studied. The sparse—matrix technique and the Point Itera-
tive Point Accumulative method for field solutions[33] can be introduced in these algorithms
to enhance their ability to handle large, three-dimensional systems. Previous comparisons
of different algorithms showed that the speed of convergence of this type of algorithm is
slow. Improvements on the convergence rate, therefore, are sought in this thesis.

There are other EICT algorithms[1, 11, 12, 39, 401, such as backprojection. Some of the al-
gorithms assume that current flows in a ray—like manner, while others do not have iterative
characters. Research on those algorithms is beyond the scope of this thesis. We have focused
only on iterative algorithms which produce solutions from electric field equations directly
without any assumption about the paths of injected current.

1.4.2 Research on EICT’s resolution

EICT is currently considered to be a low-resolution technique. Little work has been done
to investigate the causes of this problem and possible improvements. Two causes of low res-
olution are discussed in this thesis. One is that the number of electrodes in an EICT system
limits the number of unknown element conductivities. The average element size of a finite
element mesh therefore cannot be designed fine enough to accommodate the actual sizes of
small objects existing in the region to be examined or to describe the sharp edges of objects.
The other cause is that the precision of measured boundary potentials cannot reflect small
changes caused by variations in conductivity distribution.

This thesis tries to find an another way to increase the resolution of EICT image under limited
measurements. It also includes research to improve image quality in areas where boundary
measurements are sensitive to the conductivity changes.

1.4.3 Investigating modelling effects on algorithm success and image quality

Most of the previous simulation results using different EICT algorithms were obtained by

assuming congruency between the objects and a finite element mesh. Such an artificial situa-



tion in image reconstruction makes the simulation results less realistic. In practice, the
shapes of objects and contrasts between objects and background are unknown. As a result,
the proper mesh suitable for a particular problem is unknown in advance. It is impossible
to design a finite element mesh that exactly covers the shape of the objects. This thesis inves-
tigates the effects of non—congruence ( i.e. when the edges of a finite element mesh do not
describe target objects exactly ) on the success of EICT algorithms and the quality of EICT
images. Schemes to search for a suitable mesh for each individual EICT imaging problem
are proposed.

1.4.4 Three-dimensional imaging simulations with EICT

Most of the reported simulations and experiments with different EICT algorithms dealt with
images reconstructed using two—dimensional finite element models. It is believed that the
principles of algorithms which are successful in two—dimensional imaging would be easily
extended to the three—dimension space. However, there are specific requirements to be satis-
fied in three-dimensional EICT imaging which have to be discussed if an EICT system is
to be realized. Industrial applications of EICT require images recovered from solid three—di-
mensional electrical field models by appropriate algorithms within a reasonable computing
time. In most applications, excitations/measurements on all six sides of a three—dimensional
body are not allowed. For example, mine detection problem is one of such cases where it
is a problem to reconstruct object images in a three—dimensional body with excitations/mea-
surements available only on the top two—dimensional surface. Breast cancer diagnosis with
EICT is also such a problem since it allows excitations/measurements placed on five sides
of a breast, if, for the simplicity, recovering the breast as a cube. There has been limited dis-
cussions and research on the effects of the limited excitations/measurements in three—dimen-
sional EICT imaging. Another feature of EICT in three dimensions is the complexity of fi-
nite element models. Since the amount of data to be processed in a three—dimensional EICT
system is much larger, compared with those in a two-dimensional system, the finite element

model cannot be as complicated as that in a two-dimensional problem. This thesis simulates



three—dimensional problems with solid finite element models, and studies image quality
with incomplete excitations/measurements.

1.4.5 Designing excitation patterns

Design of excitation pattern is important to the success of EICT algorithms. Previous work
focused on searching for better current injection patterns which induce the maximally mea-
surable boundary potentials[10, 17]. Since the best excitation patterns depend on the known
conductivity, these kinds of designs result in on-line data processing and hence difficulties
in eliminating contact resistances. This thesis discusses the relationships between the image
quality and the convergence speed with different excitation patterns. Methods of designing
excitation patterns which do not depend on the a priori knowledge of the true image are de-
sirable. Better excitation patterns can be decided before an EICT algorithm begins, and the
original approaches to eliminating contact resistance will not be affected.

1.4.6 Outline of the thesis

In the first and second chapters, this thesis presents a general review on the research and
applications of EICT and important previous work done in developing efficient iterative
EICT algorithms. Error function minimization algorithms are selected as the algorithms,
since they are suitable for EICT three—dimensional imaging. It is also pointed out in Chapter
2 that the speed of convergence should not be taken as the only factor when EICT algorithms
are evaluated.

In Chapter 3, the thesis proposes the use of a multi—port resistive network as the discretized
model for EICT to eliminate discretization effects introduced by numerical methods when
EICT algorithms are used in continuous conductivity distribution imaging. Then, network
theory can be used in guiding the analysis of EICT problems, such as the excitation/measure-
ment effects of various EICT methods. Graph theory and sensitivity analysis based algo-
rithms are developed for excitation/measurement pattern designs of EICT systems. The net-
work recovery shows an important feature of the error function minimization algorithms:

under-determined problems can be handled, which the algorithms with Newton-Raphson




like procedures cannot solve. The thesis also discusses the possibility of, and schemes for
placing the limited number of electrodes more efficiently, to reveal interior details of inter-
est.

Chapters 4 and 5 explain the causes of a slow convergence rate of error function minimiza-
tion algorithms and propose improvements to speed up convergence. An image processing
technique based method, i.e. peak detection method, is then introduced to predict possible
positions of target objects. An adaptive modification scheme and an acceleration factor are
put into the element conductivity updating procedure to speed up convergence. Simulation
results show significant improvements in convergence speed and image quality. The sharp
edges of objects can be better recovered. The image processing technique combined with
the function minimization method, gives an alternate way to improve solutions in EICT in-
verse problems.

The design of a finite element mesh used by EICT algorithms also affects both the conver-
gence speed and the image quality. To date, there has never been complete discussions on
such issues. Chapter 6 addresses the relationships between the finite element meshes and
the final solutions. It suggests the use of different meshes in evaluating field potentials and
in updating conductivity distribution. The method discussed in this chapter resolves the con-
troversy of finer finite element meshes and limited numbers of electrodes used in an EICT
system. It can greatly improve the image quality without increasing computational effort.
The effect of finite element mesh refinement on solution uniqueness is also discussed. A
procedure is proposed to make use of various mesh densities in the EICT imaging process
to find a suitable mesh for a particular problem. Such a procedure avoids using a too fine
mesh at the beginning of a solution process and keeps rapid convergence speed to a preset
limit until an educated initial guess for a better mesh is reached.

Chapter 7 discusses two— and three—dimensional imaging procedure with EICT algorithms.
A solid finite element model in three dimensions is set up for the purpose of three—~dimen-

sional simulations. With the help of network models, the effects of excitations/measure-
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ments on image quality in two- and three-dimensional imaging are addressed. EICT algo-
rithms cannot be employed in an industrial system unless its robustness is tested. In Chapter
7, anumber of simulations are carried out to determine how image quality is affected by the
boundary distortion effect and the measurement random error effect. It is demonstrated that
error function minimization algorithms and improvements introduced in this thesis are rela-
tively robust.

Chapter 8 summarizes the results of research which the thesis discovers and builds on the
findings of Chapter 3 to 7 by giving a set of guidelines for designing EICT systems by indus-
trial applicants. As anexample, the EICT system developed and tested by the Atomic Energy
Canada Ltd. is described in this chapter.

There are still many issues that need to be discussed. Chapter 9 presents the conclusions

learnt in this thesis work and proposes possible research topics to be performed in the future.
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CHAPTER 2

EICT ALGORITHM SUMMARY

Most EICT algorithms are nonlinear reconstruction algorithms with iterative characters.
Starting from an initial guess of a given conductivity distribution, an algorithm is applied
to update conductivity in a way that creates a steady improvement in the agreement between
predicted and measured data. The main issues in such algorithms are stability and speed of
convergence. In the past decade, efforts have been made to develop EICT algorithms with
faster convergence speed and to devise other schemes to improve image quality[4, 15, 46].
Optimal reconstruction algorithms are still under development.

Most of the iterative EICT algorithms currently used employ the Poisson (Laplace) equation
to describe the continuous electrical field problems and solve potential distributions with the
Finite Element Method (FEM) . They can be classified into two types: one solves the electri-
cal field equations by applying different boundary conditions to the body, and searches for
the true conductivity distribution by minimizing the specified error functions with a least—
square technique; the other connects conductivity distribution changes with the transfer im-
pedance for a pair of current and voltage electrodes by network sensitivity theory[27], and
improves the estimated conductivity distribution iteratively with Newton-Raphson-like
procedures. In this thesis, we call the first type “Error Function Minimization Algorithms”;

and the second type, “Matrix Inversion Algorithms”.

2.1 The Finite Element Method

One of the main differences between traditional electrical impedance measurement methods
and EICT is that the latter uses electric field equations to govern this inverse problem without
assuming electric current paths in advance. FEM is the numerical method used in solving

electric field equations to obtain the potential distributions inside the region of interest under
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an assumed conductivity distribution and boundary conditions.
2.1.1 Numerical solution of the Poisson’s equation with the FEM
The Poisson equation is given by

_V.kVp = f (2-1)
where «, ¢,and fare the conductivity, potential distributions, and current source distribu-
tions within the region. The first step of the FEM divides the region of interest up into many
smaller regions called elements. The total region is then described on an element—by—ele-

ment basis. The most common shape for individual elements is the triangle or quadrilateral.

Figure 2.1 shows a two-dimensional region with quadrilateral elements.

YA
el
’_‘ j-th node
fawuee) -]
o= /
B e, i—th element
X
o
0

Figure 2.1 Anarbitrary region divided into quadrilateral elements
The FEM uses the variational principle, in which the field is represented using a piecewise
continuous function and the variational integral is minimized with respect to the residual or
functional to best approximate the actual field. A complete description of the variational
method is given by Mikhlin[22].
When the total region is divided into smaller elements, the values of conductivity «, within
each element are assumed to be constant. The field ¢ is given by
n
¢ = D aixyp; (2-2)
i=1

where a,(x,y) , known as a shape function in the FEM, is the interpolation polynomial defined
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over the x—y surface for node i, and n is the total number of nodes within the element. Equa-

tion (2-2) then can be written as
¢ = a'p= ¢'a (2-3)
The appropriate functional for the solution of the Poisson’s equation is

F = ” )2+( )2] dxdy - 2f ¢h ds — 2” of dxdy (2-4)

where h is the Neumann condition on the boundary. To find the minimum, (2-4) is differen-

tiated with respect to the variational parameter ¢ and set to zero. Then,

3 I 8¢3(ay 9 9 = 2-5
” 5 5 o ¢]dxd -2¢f¢hds—2a¢ L(,bfdxdy—O( )

Substituting (2-2) into (2-5) and differentiating with respect to the new variational parame-

ter ¢, , we have

S _ 2”,; [a¢a( A 2) drdy — ZLh% ds — 2”Bf%’_ dxdy = 0 (2-0)

ap; ax ag, o,
Since
_aﬂ=ai ()=aai a(a)=3ai
ap; 0x ox ay ay
and
ap aa1 acy
—_ = — —@y +
% Lot P $2

(2-6) can be reduced to

da; daa; do; oa; daa; oa;
Ij l¢z J¢1 ) axl + (3yl¢i+ ay]¢j+ ) l] dxdy

- 2[ hads — 2[[ fa; dxdy = 0 i,j = 1,2, ..n 2-7
B B

The first integral yields a square n x n matrix where n is the number of variational nodal
points and the latter two integrals can be summed to yield a vector of length n. The resulting

set of linear equations can be put in standard matrix form as
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Sp = b (2-8)

where

sij = ] j kG4 9% 0% 0%, gy (2-9)
B 0x 0Ox dy dy

b

f haids + f j fa; dxdy ij = 1,2, ..n  (2-10)
B B

and ¢, are the unknowns to be solved.
The problem now is to perform the integrations. One approach is to map a standard square
element into a general quadrilateral before integration. The transformation
4 4
x = YalEmx oy = > aEny: (2-11)
i=1 i=1
is used to map the square element in local coordinates to the general quadrilateral in global

coordinates as shown in Figure 2.2.

A7 y*
1 7e AR '
1 2 3 X
r —
0 1 0 '

Figure 2.2 Transformation from local to global coordinates

The shape functions for the standard element in &-5 space are

a = (1-8)(A-n) = 1-E-n+é&y
a = §1-n) = E-&y
as = &y
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as = (1-8) = n+é&y (2-12)

To integrate (2-9), we then introduce new variables of integration

X = X(E,ﬂ) y = }’(5,77)

To map the element in local space to global space, the Jacobian transformation is introduced

as
ox  ox
_ o(x,y) _ o an (2-13)
d(xi, 1) 9 9y
& on

Then, (2-9) can be simplified as

j Lf(x,y) dxdy = f L;*f & m),yEm] W dgdy  (2-14)

The values of %Z—i and —2—0;4' can then be determined by
29

9a; ox (2-15)
ox o0&

da; | = VI oy [ / VI

3y %

Now, we have a desired result to perform the integration over a square element.

2.1.2 Gaussian quadrature

Many numerical quadrature schemes are available for finite integration over a standard inter-
val. Gaussian quadrature method[4], which can integrate a polynomial of degree 2m—1 ac-
curately with m sampling locations, is employed in this thesis.

In one dimension, the Gaussian quadrature formula for estimating an integral of a func-
tion AZ) on the interval -1 <& < 1 takes the form

+1

f f&) dE = > WHAE) (2-16)
i=1

-1

where £; is some pointslocated in the interval. W, isaweightassociated with the i—th point,
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and m is the number of points. The weights and points are found by supposing that £ is a
polynomial of degree 2m—1 and then computing the points and weights that guarantee an
exact result for such a polynomial. When m is even, all points come in #+ pairs with individ-
ual points in each pair having equal weight. When m is odd, & = 0 is one of the points
and the remaining points again come in pairs having equal weights. If &) = £, +f& , then

+1

f fE) & =26 = Wify @-17)

-1

which requires that & = 0 and W, = 2. If A& = fi+fE+f£E2+£E° , then

+1

f RE) dE =2fo+2H/3 = 2Wi(fy + HED) (2-18)

-1

5
which requires that &, & = + L and W, W, = 1. Similarly,if A& = Z f& , then

j=0

o)

+1
f &) d& = 2fo+2%+ 2’—;‘- = 2W1(fo + /o1 +FiED) + Wafy (-19)
-1

whichrequires that & & = =+ \/.2_ , & =0,and W, W, = g, W, = % . The results

of these calculations for one-dimensional integration are summarized in Table 2.1.
For multiple integration in two or three dimensions, the Gaussian quadrature formulas are
generalizations of those in one dimension:

+1+1

ij

-1-1

and
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Table 2.1

Gaussian quadrature weights and locations

# of points Locations Weights W,
1 & =0 2
1
2 &, & = = “/“5‘ 1
£y 5
3 =z
3 &, & = £ \/g 9
8
Ez =0 9
+1+1+1
j f f hE.n.§) dEdgdg = > WWWihEinCo (2-21)
ij.k

-1-1-1

The same locations and weights may be used in each of directions &, #, & .

2.1.3 Higher-order and three-dimensional elements
Higher—order approximations may be obtained by adding more nodes to the elements. Then,
the degree of approximation can be improved from linear to quadratic by taking 9-node

quadrilaterals as shown in Figure 2.3 (a). The higher—order elements used in the FEM can

(a) Higher—order element in two dimensions (b) Linear element in three dimensions

Figure 2.3 Higher—order and three-dimensional elements
give better results for problems with curved boundaries. However, increasing the number
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of nodes in each element means increasing the number of unknowns in the whole system.
More computational effort is then needed.

A simple element of the FEM in three dimensions can be created by adding depth to a two—di-
mensional element without changing the shape. The standard element in three~dimensions
is the linear element with 8 nodes as shown in Figure 2.3 (b).

The complete mathematical derivations for these elements may be found in standard refer-

ences[4].

2.2 Error Function Minimization Algorithms

An error function minimization algorithm defines an error function based on potential distri-
bution solutions from an initial assumption of conductivity distribution. The conductivity
distribution is updated by minimizing the error functions with a least-square technique.
Such algorithms include the Wexler algorithm[41], the Kohn-Vogelius algorithm[19], and
other algorithms[4]. The main differences between these algorithms are at the element con-
ductivity updating step. This thesis will focus the discussions on the algorithms of Wexler
and Kohn-Vogelius in this chapter.

2.2.1 Algorithms of Wexler and Kohn-Vogelius

Wexler, Fry, and Neuman presented their algorithm in 1985, and Kohn and Vogelius reported
ona very similar one in 1986. Considering their similarities, only the procedure of the Wex-
ler algorithm is discussed in details.

To perform an EICT algorithm, a grid of electrodes has to be established over the surface
of the body to be studied. (The surface would be the ground in the geophysical situations,
or the surface of the human body in the medical applications) The basic principle of the EICT
algorithm is that the surface voltages measured under a given current density are characteris-
tic of a particular conductivity distribution inside the body. By injecting and extracting cur-
rent at a pair of electrodes arranged at the surface of the body, and by guessing at the conduc-

tivity distribution, one can calculate a potential distribution throughout the body and, of
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course, at the surface. In the Wexler algorithm, such calculation is performed by solving the
Poisson equation, as described in (2-1), for continuously inhomogeneous media. Since the
inverse problem with a single excitation configuration will not, in general, produce a unique
solution, the measured potentials on the surface induced by this particular excitation are not
sufficient to give an acceptable image of the interior. Therefore, a sequence of linearly inde-
pendent excitations is necessary. The set of surface potentials corresponding to the sequence
of excitations is obtained by solving equation (2-1) using the non-homogenous Neumann

boundary condition
0
k2L _ (2-22)
on

where h is current density on the surface of the body.
Assuming a given conductivity distribution, the required energy functional for solving (2-1)

is
F=I/€V¢-V¢ dv — 2J¢f dv (2-23)

Using the Rayleigh-Ritz discretization procedure described in (2—4)

equation (2-23) becomes

F = QTIICVQ-VQ_T dv ¢ - QQTIgf dv (2-24)
Differentiating with respect to the field unknowns yields

OF r

i 2|kVa-Va' dv ¢ - 2| aof av (2-25)

which if equated to zero and rearranged becomes

f Va-Va dv ¢ = f of dv (2-26)

or as we have seen in (2—-8)

S¢ = b
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where
S = IIC,'VCZ,'-V&J' dv (2_27)

and
b, = Ia,-f;- dv (2-28)

Equation (2-26) is a system of linear equations that can be solved for the discretized field
with different approaches.

Expanding (2-26) along row i and solving for the i—th unknown gives

fa,- f dV—Z[IIC,‘Vd,‘-Vaj dv] ¢j
J

i = [k; (Va;-Vay) dv 2
The conductivity and source may also be expressed as
k = kla = d'k
f=fa=df (2-30)
so that (2-29) is now
Dlaa; av fi- 1Y [(Va; - Vapay dvedg;
¢ = -2 j_k (2-31)

z f(Val- . Vai)ak dVICk
k

As the shape functions are known, the required integrals are pre—calculated into equivalent
weighting factor arrays. Thus, (2-31) is simplified to
2 Vi fi= 2 1 Wikl
J

JJ#L k (2-32)
2. Wik
k

i =

If the conductivity is defined as constant throughout each element, (2-32) reduces to
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2 Vi fi-ki Y, Wi
J kel (2-33)
IC,'Z Wij
k

¢ =

With ¢ known, the electric field intensity is given by

E - -V¢ (2-34)
Then, the current density distribution can be determined by

J = kE = —kVg (2-35)
which is Ohm’s Law in point form.
Because the initial guess of the conductivity is unlikely to correspond to what was actually
inside the region when measurements were taken, the calculated and measured potentials
will disagree. Then, (2-1) is solved again using the measured surface voltages ( potentials
), i.e. the Dirichlet boundary condition

P(s) = g (2-36)
where g(s) is the boundary potential distribution.

The disagreement in potential distributions throughout the entire region from the Neumann

boundary condition and from the Dirichlet boundary condition can be described as
ew = > f J+&Vp) - (J+kVp) dv (2-37)
x A4

This is a least-squares residual form, where x refers to current excitations. Taking the inner

product
ew = zf KV - Ve + 2%V - T+3-3) dv (2-38)

It shows the difference between the Dirichlet boundary condition solution and the Neumann
boundary condition solution.

Substituting (2-30) into (2-38) gives
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Ew = ZI «'aVep - VoaTk + 2oV - J+J-J) dv (2-39)

X

A new conductivity distribution can be computed by minimizing (2-39) over the region as

D[ I-V$ av
Kt = —ZJCIVV¢-V¢ — (2-40)
that is
aeW 22] @V - VoaT dwc+2zj aVe -Jdv=0  (2-41)
and simplified to
ZL(@_V¢-V¢QT-dv K = —ZLQV(])-Jdv (2-42)

which again represents a linear system.
Solving (2-42) for the conductivity at the i—th node produces
Z [,ad-Vodv-3 > [, @Vg) - (Voapdy «;

K = x jj#i (2_43)
> |, @Vg) - @ Ve)dv

Using (2-30) the x~component of the field gradient becomes

99 a_g-ig _ ¢Ti’% Z%qu (2-44)

The y- and z—components are generated in a similar manner, and thus (2-43) is written as

o, aa,, aa,, 8a; da,, dayday,  oa da,
- et T, _._+ d - } + ) d
E[E fva(x it eyl VP um] E 2[_;_ E S o oy o oz VP Pk j
X m

X ],j#l

aay 0Q,, am aa,, da; da,
2, my
[z z j (ax ax dy dy * 3z dz Dot (2_45)

K;

Since the current density is not known in advance, it must be determined prior to employing
(2-45) in a conductivity calculation. Initially, a conductivity distribution is assumed and us-

ing (2-30), the x—component of the current density can be expanded as
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dp ag da;
Jy = —K‘g = —zaj—é;lcj = —%;aj;;gbllcj (2-46)

J

Performing similar expansions for J and J, allows (2-46) to be written as

R aaI dam day dap aal Say dam aal dam
E E E + d =) 4 A
f aﬂjx 3 ox 3 ay az 5z ) dvgml - aﬂ}( Fr. 8y 3y prar ) « ‘¢t¢m]"l

X e

Ba A 9a day, 3ay aam
Z ZZ f Gt "’Zy " T A (2-47)
which, through the use of weighting factors, simplifies to

DD D Wi/ = > > > Wi @i/ 1]

nl _ X j I m B>l m (2—48)
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Further simplification is possible by employing constant valued conductivity elements. In

Kol
i

this case, (2-42) describes a pure diagonal form and (2-48) reduces to

222 2 Wi k"
IR (2-49)

l o ZZZWlm‘Pﬂ)m
x I m

The ¢ represents a field derived using natural Neumann boundaries while ¢ isderived from

either total Dirichlet boundaries or from a combination of Neumann and Dirichlet boundary
conditions. (2-48) and (2-49) are the point forms for solving a new conductivity distribu-
tion.

The important advantage of this method is that it transfers the difference to the interior, rather
than to the boundary as in the Newton—Raphson-like methods. This yields a sparse—matrix
for using efficient finite element method schemes, such as the Point-Iterative Point—Accu-
mulative method[33]. In addition, the conjugate gradient method used in this algorithm
avoid solving large system matrices. Figure 2.4 shows the flow chart of the Wexler algo-
rithm.

In the Kohn-Vogelius algorithm, the error term is given by

24



initializex

:ﬂ

solve Neumann problem

¢

solve Dirichlet problem

output image

Figure 2.4 Flow chart of the Wexler and Kohn~Vogelius algorithm

calculatex

€xv = . f ®2J; + KTVP)? dv (2-50)

x v
The conductivity updating procedure is described as
Z | o 2 av

y'H-] — X —;' (2—51)
o (2 |, Vo Ve dv)

Similarly as in the Wexler algorithm, the formula for updating element conductivity after

an iteration step is derived as
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The algorithm iteratively refines the conductivity estimation until acceptable agreement is
achieved. At that point, it is assumed that the correct conductivity is known.

2.2.2 Related imaging algorithms[4]

A variant of the Wexler and Kohn—Vogelius algorithms arises by considering the error term

as
€r(@) = %Z f (@72 J; + aiKVY dv (2-53)
x JV

where aT= (ay, ay, ... a, ) is an m—vector of constant a;. The element conductivity updating

formula is

DI U dv [k Vg2 av

K2 = X (2-54)
2y Vel av [k U dv
X

The major difference between (2-54) and the Wexler and Kohn—Vogelius formula is that «;
is only defined implicitly by (2-54), since the conductivity appears on the right hand side of
the equation inside the integrals. Thus, it is an implicit formula for the updated conductivi-

ties.

2.3 Matrix inversion algorithms

2.3.1 The transfer impedance algorithm

Most of the previous discussions and comparisons on EICT algorithms leads to matrix inver-
sion algorithms[46] as the next step. In 1985, Murai and Kagawa suggested aN ewton—Raph-
son-like method for EICT, based on network sensitivity and transfer impedance theory[27].
Consider a domain V with conductivity «(x,y,z). The potential ¢(x,y,z) in V is governed by

the Laplace equation
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V.Y = 0 (2-55)
with the boundary condition

IC(S)% =J (2-56)
on
where J is an electrical current density prescribed at the surface. When the conductivity dis-

tribution changes from x(x, y,z) t0 k(x,y,2) + Ak(x,y,7) , the transfer impedance change AZ for

the pair of current and voltage electrodes (A,B) and (C,D) ( Figure 2.5 ) can be given as

L
-
L
e
Figure 2.5 Problem description
AZ = — I AICV¢ (x) ) Vy (’C"'A’C)dv (2-57)
v Iy Iy

The problem is to find the conductivity distribution (x, y, z) + Ax(x, y, z7) from the measured po-
tential distribution for the applied current distribution over the surface or from the measured
impedance Z over the surface. The term Vip(x + Ax) in (2-57) is then expanded with respect
to Ax and the higher order terms are neglected. (2-57) can be expressed as

AZ = _ j AICV¢ (x) . Vy (k) dv (2-58)
v Iy Iy

Therefore, the iterative procedure is described as follows:

AZ® _ 7% _7m0 _ _ ] AICV¢ ) ] V’/J (K)dV (2-59)
v Iy Iy

where Z * is the measured transfer impedance and z® is the updated transfer impedance based
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on the conductivity distribution @ at the n-th iteration. Z» can be calculated

as Z" =¢cpfl, or Z¥ =vy,,/1, . If the conductivity is constant over each element, we have

AZW = 7% _ g _ _ Z SiiAkc P (2-60)
J
where
Sie — j Vo &) Wy (K)de (2-61)
vi g Iy

and it is evaluated by the finite element method.

The algorithm then can be described as follows:

Step (1) Assume an initial conductivity distribution;

Step (2) Calculate AzZ®™ for each electrode pair (A,B) and (C,D);

Step (3) Calculate the coefficient matrix and solve the small change of conductivity distribu-
tion;

Step (4) If the total conductivity change is smaller than a pre—set number, the convergence
is achieved and the procedure stops; otherwise, a new conductivity distribution is assumed
by &=k +Ac” and then step (2) through step (4) are repeated.

2.3.2 The output least-squares algorithm

The transfer impedance algorithm proposed by Murai and Kagawa needs to calculate the en-
tire finite element mesh with the standard Newton—Raphson method. In 1987, Yorkey, Web-
ster and Tompkins[46] published a modified Newton—Raphson method with an output least—
squared approach which tries to minimize the sum of the squares of the difference between
measured and predicted data.

Then, errors to be minimized is the output error function. It is
1
€y(K;) = ) (-9, (f-¢0) (2-62)

where ¢, is the measured voltage vector, and f is a function mapping a resistivity distribu-

tion r into a set of measured boundary voltages. To minimize (2-62), we differentiate
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¢ with respect to r and set the result equal to zero

ey’ = [F1If-¢,] =0 (2-63)
By expanding the left hand side of (2-63), and by keeping the linear terms and neglecting
higher order terms, we have an approximate matrix form for updating conductivities

At = —[[F ()OI E (DR - ol (2-64)
(2-64) defines an iterative procedure to find the real resistivity distribution r*. At the n—th
iteration, (2-64) is solved and new distribution is estimated by r = r® + Ar® .
The derivation of the above formulas is known as either the modified Newton—-Raphson

method, or the Gauss-Newton method. Its convergence performance is well known. When

9. is formed in the presence of additive zero~mean independent noise, the method becomes
the nonlinear least-squares estimation.

Similar to the algorithm of Murai and Kagawa, Yorkey’s algorithm employs the Laplace
equation to describe the resistivity distribution in continuous media and the FEM to calculate
the surface potential distributions. To simplify Jacobian matrix computations, associated
with the standard Newton—Raphson method, they derived a simple formula to form individu-
al Jacobian matrix entries with network compensation theory[15]. The simulation results
show that the algorithm possesses the convergence property of the Newton—Raphson meth-

od, but is quite sensitive to measurement noise[15].

2.4 Algorithm Comparisons

The major comparisons in other research work focused on the convergence rate of different
algorithms[46]. There are other aspects, which affect the performance of an EICT algorithm,
that ought to be thoroughly addressed. In general, error function minimization algorithms
deal with sparse matrices and conductivity distribution is updated on a finite element basis;
while matrix inversion algorithms generate dense Jacobian matrices and the conductivity

distribution is updated according to boundary measurements directly. These important dif-
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ferences were neglected in previous work when EICT algorithms are compared. When these
factor are considered, convergence speed may not be the only dominant factor when an EICT
algorithm is evaluated. The comparisons made in this chapter are brief reviews of previous
work. Further investigations will be conducted later and characteristics of error function
minimization algorithms will be discussed in Chapter 7 of this thesis.

2.4.1 Convergence speed

Previous comparisons between the two methods discussed above indicate that matrix inver-

sion algorithms have faster convergence speed in terms of iterations[46]. If the norm of the

error term is defined as

z | Kexacr~Kcar |
Error = ( - )M (2-47)

Z I Kexaer |

i

where M is the total number of elements, the convergence speeds of these two algorithms
can be compared in Figure 2.6 (b) by plotting the errors for the example shown in Figure 2.6

(a). The cause of the slow convergence speed of the error function minimization algorithms
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Figure 2.6 Comparisons on convergence speed with different EICT algorithms

is due to the fact that these algorithms take the difference between Dirichlet and Neumann
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boundary condition solutions as the driving force. The difference becomes smaller as the
reconstructed image approaches to the true picture. In fact, only in the first iteration do the
error function minimization algorithms give a significant improvement in element conduc-
tivity, as we can see from Figure 2.6 (b).

2.4.2 Potentials in large system applications

It has been pointed out that matrix inversion scheme results in dense matrix systems[41].
This can be a serious problem in three-dimensional imaging since the inversion of dense ma-
trices results in longer computing times and larger storage space. The conductivity/resistiv-
ity updating procedures with evaluations of Jacobian matrix also require pre—setups.

In contrast to matrix inversion algorithms, error function minimization algorithms generate
sparse matrices, such as the Wexler algorithm does, and the Point-Iterative and Point-Accu-
mulative algorithm[9] can be used when Dirichlet and Neumann boundary conditions are
solved using the FEM at each iteration. The element conductivity updating procedures are
all on point forms, i.e. new estimation of conductivity distributions is calculated in scalar
basis. Then, algorithms do not have difficulties in processing the large amount of data asso-
ciated with a three—dimensional system.

2.4.3 Contact and spreading resistance effects

To eliminate contact resistance effects, error function minimization algorithms do not re-
quire the use of measured potentials at active current injection sites when the Dirichlet
boundary condition problem is solved. Yorkey’s algorithm, and similar ones, automatically
exclude those potentials when the impedance at active ports are not used.

2.4.4 Algorithm stability and initial conductivity distribution assumption

The first guess for the conductivity distributions affects the final image qualities. The exam-
ple in Figure 2.7 (a) were shown in Yorkey’s work[46] as an example for which the Wexler
algorithm did not converge. They suggested that the algorithm tried to image objects in the
central areas. In this thesis, simulations with different initial guesses of the conductivity dis-

tribution were conducted. When the initial guess is chosen as 1.0 everywhere, error started
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Figure 2.7 Comparisons on algorithm stabilities with different initial guess distributions

increasing but went down again later ( Figure 2.7 (c) ). When the initial guess s 3.0, the algo-
rithm converged smoothly ( Figure 2.7 (b) ). From this example, we can see that error func-
tion minimization algorithms do not have a bias to make conductivity distribution improve-

ment only at the central part of a body. Therefore, Yorkey’s conclusion appears to be

incorrect.
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CHAPTER 3

EICT FOR LUMPED NETWORKS

The numerical methods, such as the FEM, for the solution of fields introduce truncation (or
discretization) error. In effect, the transformation of a continuum (e.g. field) representation
introduces error that is incidental to the image recovery process. In order to demonstrate the
imaging procedure, while excluding extraneous truncation error, we consider the inverse
problem associated with a network formulation. In doing this, we will use a procedure, paral-
lel to that of the continuum problem, in order to uncover all unknown conductance values.
Definitions and terms used later in this thesis will be discussed first in this chapter. Then,
a network model for the EICT algorithm is defined. The recovery capability of EICT sys-
tems, with error function minimization algorithms and excitation/measurement effects on
image quality, are investigated using network methodology. Finally, the possibilities and
corresponding schemes for optimal design of excitation patterns in a topological sense are

presented.

3.1 Definitions and Terms

3.1.1 Excitation/measurement patterns

An excitation patternin an EICT problem is a set of currents injected into and extracted from
the body to be imaged.

A measurement pattern in an EICT problem is a set of measured potentials induced by one
excitation pattern. The pattern using all measured boundary potentials (including active
sites that include the effects of contact and spreading resistances) as a boundary condition
for a Dirichlet boundary condition problem is called the always pattern; the pattern discard-
ing the potentials at active excitation points but using those points when not active is called

as the sometimes pattern; and the pattern without using the potentials at all excitation points
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is called as the never pattern. Figure 3.1 shows two excitation patterns and their correspond-

10 9 8 7

Excitation patterns:
pattern 1 (Ex1):3,4and 6,7
pattern 2 (Ex2) : 12and 11

Measurement patterns:

Ma (Ex1) = {1,2,3,4,6,7,8,9,10,11,12}
Ma (Ex2) = Ma (Ex1)

Ms (Ex1) = {1,2,5,8,9,10,11,12}

Ms (Ex2) = {1,2,3,4,5,6,7,8,9,10}

Mn (Ex1) ={1,2,5,8,9,10}

Mn (Ex2) = Mn (Ex1)

Figure 3.1 Excitation patterns and measurement patterns
Ma, Ms, and Mn are always, sometimes, and never patterns, respectively.

ing measurement patterns applied to a network with 12 available electrode positions.

An always pattern will be denoted as M,, a sometimes pattern as M, and an never pattern
as M, to represent the three measurement patterns correspondingly in the rest of the thesis.
3.1.2 Determinacy of EICT

The determinacy of EICT is defined as the ratio of the number of the independent measure-
ments to the number of unknowns.

3.1.3 Determining the maximal number of independent measurements

The number and the location of the electrodes used in each excitation pattern are important
to the success of an EICT algorithm. The selections of the numbers and the positions of exci-
tation patterns are a problem dependent and rely on experience[27] to certain extend.
Suppose there are N nodes as measurement nodes ( i.e. electrode sites ) in a network. When
the N nodes arenumbered as 1, 2, ..., N, an N-1 port network can be constructed by assigning
node N as the reference node and forming porti withnodei(i=1,2, ..., N~1 ) and node N,
as shown in Figure 3.2 (a). If bipole excitations (each excitation pattern uses two nodes) are

used, there are N-1 independent excitation patterns. Table 3.1 also shows the possible com-
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Table 3.1
Possible excitation combinations

Injection node Extraction node
1 2,3,..,N-1,N
2 3,4,..,N-1,N
N-2 N-1,N
N-1 N

binations of injection and extraction nodes. The total number of possible excitation pairs

can be calculated as

E,=(N-1+1D(N-1)/2 =NN-1)/2 G-D
For each excitation pattern, N-1 independent voltages can be measured. Then, the total pos-
sible number of voltage measurements will be

M,=WN-1E,=N-1DNN-1)/2 (3-2)
which is the possible number of measurements an EICT system can provide. Consider the
reciprocity and the superimposition of a linear passive multi-port network, there are approx-
imately N%2 linearly independent measurements that can be used to reconstruct a net-
work[7], if always or sometimes patterns are used. Table 3.2 shows the total number of inde-
pendent measurement combinations when the N—port network is constructed in the way we

described above. For always pattern, we have

M,=N(N-1)/2 (3-3)
For ’sometimes patterns

M;=N-1)(N-2)/2 (34

and for never patterns
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Table 3.2
Total independent measurement combinations

' Always patterns Sometimes patterns
Excitation node pair | Measurement node pair | Excitation node pair | Measurement node pair
LN (1,N), @N), ..., N=1,N) [N 2, N), BN), ..., (N=1,N)
2,N @2, N), BN), ..., (N-1,N) 2,N 3,N), (4N), ..., (N-1, N)
N-2,N (N-2,N), (N-1,N) N-2,N (N-1,N)
N-1,N (N-1,N) N-I,N
M, =(N-1-2E,)E, (3-5)

where E;, (E, <N-1) is the number of excitation pairs. It should be noticed that when N—1

excitations are used, M,, is zero.

For any K < N (K > 0 ), the combinations are shown in Table 3.3. The available number

Table 3.3

Measurements with K independent excitation patterns

Always patterns Sometimes patterns
Excitation node pair | Measurement node pair | Excitation node pair | Measurement node pair
1’ N (17 N)’ (Z!N)’ very (N_'17 N) 1: N (2, N)7 (3,N)9 ey (N'_l’ N)
2,N (2,N), BN), ..., N-1,N) 2,N (3,N), (4N), ..., N=1,N)
K,N (K, N), ... (N-1,N) K,N (K+1, N), ...(N-1, N)
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of independent measurements for the sometimes patterns is
K
Ms=—12-{—(N—2+N—1~K)=3(2N—K—3) (3-5)

It should be pointed out that this number is the maximum that K excitation patterns can pro-
vide. If the selection of the reference node changes, M could be smaller.

3.1.4 Over-determined and under—determined problems

Assume C to be the number of unknown elements, and My, belongs to { M,, Mg, M, }. If
we use D as the determinacy, the problem with the determinacy D = My, / C greater than 1
is over—determined, and the problem with the determinacy D = M,/ C less than 1 is under—

determined.

3.2 Multi-Port Resistive Network Recovery With EICT Algorithms
3.2.1 Multi-port resistive network as the discretized model to study EICT imaging
There are many possible reasons causing an EICT algorithm to fail in reconstruction of a tar-
getimage. Itis very difficult to isolate specific causes of a such failure when an electric field
problem is solved, since numerical methods used to solve the field potentials introduce errors
to the imaging procedure as well. For this reason, the network analogy helps to isolate the
issues because it is somewhat simpler. We can derive the network recovery formulas in a
similar manner.
Consider the multi—port resistive network shown in Figure 3.2. The nodal equation system,
with the port current injections as shown, is

YV = J (3-6)
where Y is the nodal admittance matrix, V is the vector of unknown node potentials and J
is the current source vector. It should be noticed that port currents are applied at a subset of
boundary nodes in the network. If port voltages ( i.e. node potentials at boundaries ) are
applied, (3-6) becomes

YV = 0 (3-7)
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(a) N-1 independent ports of an N-terminal network
(b) A resistive network model
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(c) A resistive network model for
three—dimensional imaging, each
branch containing a conductor

(d) A multi-port resistive network
with N nodes on each sides

Figure 3.2 Resistive network models of EICT

'V here consists of both known and unknown node potentials.

The problem is to find the branch conductances by applying port currents and measuring port
voltages. First, an initial guess at all branch conductances has to be imposed. When a port
current is applied, all port voltages can be measured. For each branch from node i to node

j(i,j=1,2,..), Ohm’ law can be written as
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(3-8)

gifvi=v) = ji
where g;; is the branch conductance, v; and vj are node voltages of the branch, and Jijis the

branch current. For all port excitations, the least-squares residual form is

r o= Z Z[gij(vi —v)—jiyl? (3-9)

X bij
which can be minimized by taking the derivative with respect to branch conductance and

setting it to zero

a .
P . oy = 2 2[gifvi—=v) —jilvi-vp) = 0 (3-10)
8 ij X
S0,
Z givi—v)* = ij(vi ) (3-11)

The unknown branch conductance can then be solved by
> jfvi-v)

T A (3-12)
8 Z(Vi_vj)z
X

The branch current is unknown and has to be estimated in advance before (3-12) is
employed. It can be obtained by (3-6) with the assumed branch conductances. (3—12) then

becomes
z(ﬁi —Vp8i(vi—v))

o=
! Z(Vi —vp?
X

(3-13)

where v; and v; are derived from an assumed set of network conductance values, g;;, under
an applied boundary voltage; while v; and ¥; are based on the same network under an applied
boundary current.

The procedure described above is based on the Wexler algorithm in a network recovery.
Table 3.4 shows the system equation similarities between the conductivity distribution imag-

ing and the branch conductance recovery with this algorithm. It demonstrates that branch



Table 3.4

Comparisons of EICT algorithms between the field case and the network case

Field case Network case
System
Equation % =t Yvo=1J
; ap
N.B.C.* -V.-kV¢ = f K(s) ol h(s) YV = J
D.B.C.* -V-kVg = f @) = gl YV =0
Ohm’SylaW J = kVp J,'j = g;,( Vi—V; )
ZJV:‘J.V¢ dv Z],_,( V,'—Vj)
X X
K = HF————— gj = = —————
o u2
Updating gfv;w"v‘f’ @ ;(V' K

Equations Z [, 7 av ZJQ

S G S— y 1/2 8 = ( — /2
ZI,,,.V‘/’ -V dv Z(Vi‘“vj)z
X X

Error Z(’ce_’cc)z Z(ge—gc)2
-t !

e =

¢ o
Norms Z K2 Z g’
1

{

*N.B.C. and D.B.C. represent the Neumann and the Dirichlet boundary conditions, respectively

conductance identification of a linear multi—port resistive network with unknown lumped
elements, as shown in Figure 3.2(d), is a parallel procedure to the finite element conductivity
recovery. A multi—port resistive network can, therefore, be taken as a discretized model to
study EICT imaging problems. To apply an EICT algorithm to the network recovery prob-
lem, the structure of the network should be pre-specified. Then, all the branch conductances
will be recovered after an initial guess of branch conductances is assigned to each branch.
The specification of the equivalent network structure here is the correspondent procedure
of designing a finite element mesh in conductivity distribution imaging. By performing an

error function minimization algorithm in a network recovery problem, the effects of trunca-
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tion errors associated with the field analysis do not exist, since the recovery procedure is not
contaminated by discretization.
3.2.2 Network models and their recoveries in simulation

Figure 3.3 shows a resistive network and the recovered one after 500 iterations with 6 speci-

1000 ? 1900 ? 1000 1000 1000 1000

excitations

b. Recovered network after 500 iterations
with the Wexler algorithm

a. Original network with 6 excitation patterns
Figure 3.3 A network recovery example with EICT method

fied excitation patterns using the Wexler algorithm. There are 24 unknown branch conduc-
tances, 12 available voltage measurement nodes ( i.e. 12 electrodes can be placed at those
portterminals ) in the network. The number of independent ports of the network is 11. There-
fore, for always patterns, the maximum number of independent measurements
is 12 x 11/2 =66 ;for sometimes patterns, itis 11 x 10/2 =55 . The smallest number of
excitations needed to reconstruct this network as an over—determined problem can also be
calculated by E,..2 X 12-3-E,,)/2 = 24 for sometimes patterns, which is approxi-
mately 3. When 6 excitations are used, K=6,80 M,=6(2 x 12-6-3)/2=45 and the deter-
minacy is slightly less than 2. When the excitation patterns used are less than the maximal

number of independent excitations, the use of never patterns is possible.

If we add more layers with the same configuration to the network, as shown in Figure 3.2(c),
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an EICT three—dimensional network model can be built up.

The recovery of a multi—port resistive network shows the problem with the Wexler algorithm
in a similar manner: slow speed of convergence in terms of the number of iterations. It also
shows that the algorithm converges perfectly to the original network values although many
iterations are needed, which verifies the argument of the use of networks to simplify the stu-

dies on EICT systems and algorithms.

3.3 Discussing Excitation Pattern Effects on Network Recovery
3.3.1 Recovering capabilities of EICT systems

According to what we have previously calculated, always patterns or sometimes patterns
give approximately N2 independent voltage measurements for N electrodes if the maximal
number of independent excitation patterns are applied. At most N2/2 unknown branch con-
ductances can be recovered with an EICT algorithm. This gives plenty of data to use the
least-squares technique to obtain unique solutions[27] and also indicates recovering poten-
tials offered by an EICT system. Determinacy describes such potentials. The question is
whether the determinacy is the only factor which determines the recovering capability when
anetwork with C unknown branch conductances is given; or whether an EICT algorithm can
recover a network accurately as long as N2/ 2> C.

Over-determined problems The determinacy here is greater than 1. Figure 3.4 shows two
recovered networks with different excitation patterns applied to the same example in Figure
3.3 (a). As the determinacy decreases, the computing time increases. The results indicate
that the more excitations used, the fewer the number of iterations required. However, the
computing time will increase dramatically as the number of excitation patterns goes up since
the forward problem (evaluating the node potentials with updated branch conductances) in
an EICT algorithm has to be solved twice for each excitation pattern at every iteration. (See
the flow chart in Chapter 2.) In practice, it takes time to make a set of measurements for each

excitation pattern. When more excitation patterns are needed, it is difficult to keep the mea-
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a. 4 excitation patterns after 50 iterations b. 6 excitation patterns after 50 iterations

Figure 3.4 Number of excitationpatterns effects on speed of convergence

surement conditions unchanged, especially in a medical case. The trade—off between the
speed of convergence and the number of excitation patterns raises the questions that whether
the maximal number of excitation patterns are needed when C < N2/2, and that under what
conditions, fewer excitations may be used to reconstruct a network without losing accuracy.
If we apply the same number of excitation patterns to the same problem shown in Figure 3.4
again, but all patterns are put on the one side of the network, the whole network cannot be
recovered even if the determinacy is kept same as 2. It shows that the positions of excitation
patterns are important to the success of EICT algorithms.

Under-determined problems When determinacy is less than 1, the problem becomes un-
der—determined. Ithas been pointed out that the number of data needed to recover a network
with N branches has to be greater than N when matrix inversion algorithms are used[27].
There is no discussion on the issue of under—determined problems in previous work. What
we want to see here is whether the error function minimization algorithms behave the same
way as the matrix inversion algorithms do. The practical significance of studying the recov-
ering capability in an under—determined problem is that the number or the positions of appli-
cable electrodes might be limited in an EICT system, while the objects to be imaged in a body

is relatively small so that finer network with more branches is needed. Therefore, more un-
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knowns in a well designed model have to be solved using the EICT system; or that not the
complete set of measurement potentials can be used in order to eliminate contact resistance
effects.

This problem can be discussed with the network model for three—dimensional imaging. Us-
ing the configuration shown in Figure 3.2 (b), an example can be constructed as shown in
Figure 3.5. There are top, first and second layers in the network. There are to-
tal 24 x 3 +16 x 2 =104 unknown branch conductances. Electrodes are all positioned at the
top. The 6 excitation patterns as shown in Figure 3.3 (a) with sometimes measurement pat-
terns give 6(2 X 16-6-3)/2=69 independent measurements.

There are two aspects we can see from this under-determined example. First, the algorithm
manages to recover the top and first layer of the network, although there are serious errors
at the bottom. This suggests that part of the network can be recovered with higher accuracy
in an under—determined problem if such parts are close to the area where the excitation/mea-
surement patterns are arranged, while the entire network is left un—recovered. Second, the
total error tends to decrease in the first few iterations, which indicates that a recovered net-
work with lower accuracy can possibly be found in an under—determined problem.

The example reveals an important feature of error function minimization algorithms: they
can recover a sub—network in an under—determined problem but leave the rest of the network
untouched. Itis worth discussing such a feature of the algorithms because, in practical EICT
imaging systems, the conductivity distribution can only be represented exactly by an “infi-
nitely fine mesh” which results in most of the problems being under—determined. As aresult,
when the number and position of electrodes are restricted, the finite excitations and measure-
ments, with error function minimization algorithms, can produce part of the solution which
may give enough information for the areas of interest, i.e. focus the total number of excita-
tions/measurements to image the specified areas.

This example shows again that the recovery capability of EICT algorithms in an under—det-

ermined problem depends upon the location of the excitation patterns. The question is how
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the maximal number of independent excitation patterns is arranged.

Measurement pattern effects The measurement pattern effects are mainly on the determi-
nacy and the contact resistances. Sometimes patterns slightly reduces the number of inde-
pendent measurements if bipolar excitations are used, and never patterns can cause an EICT

problem to become under-determined when large number of excitations is used. Figure 3.6

€rror norms

0.5

never pattern

sometimes pattern|

“dea.. .

A

0.1 always pattern

0 iteration
1 11 21 31 41 51 61 71 81 91 101

Figure 3.6 Comparisons on recovering errors with different measurement patterns

shows the comparisons on speeds of convergence with different measurement patterns under
the same excitation patterns as in the example in Figure 3.3(a).

The relative positions between excitation and measurement sites affect the quality of recov-
ered network as well. Take the example in Figure 3.5. If more layers is added to the network,
Figure 3.7 shows errors in each layer. If the measurements are placed on the bottom layer
(layer 6 ), the error plots does not change much, which indicates that such measurements
are redundant although it contributes to the increase of the determinacy; but if measurements
are placed on the side of the second layer, the recovered network has better quality, which
shows the effectiveness of higher determinacy.

To eliminate the contact resistance problem, sometimes patterns are the better choice for an

EICT problem since such patterns give almost the same number of maximal independent
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measurements as always patterns do.

3.3.2 Sensitivity analysis of EICT

Measured potentials from each pair of injection and extraction electrodes represent a “view”
in a particular “angle” to the network. The position of an excitation pattern decides the part
of the region that can be “seen”. Since the number of measured potentials provided by each
excitation pattern is fixed, the number of excitation patterns results in over—determined or
under-determined problems, and the positions of excitation patterns decide if they are effec-
tive to all port measurements.

From the previous examples, we have seen that under the same determinacy, different com-
binations of excitation patterns give images with varying qualities. For each excitation pat-
tern, the measurements should only be taken from the positions where the information pro-
vided by the excitation pattern can be “felt”. On the other hand, when the total excitations
are not well arranged to make all measurements sensitive, the network may not be recovered

properly even if the determinacy is greater than1. It suggests that after the number and posi-
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tions of electrodes are decided in an EICT system, the arrangement of excitation patterns
should cover two aspects: (a) make the problem over-determined; and (b) make each port
measurement sensitive to at least one of the excitations.

If the first condition cannot be satisfied, the total excitation patterns have to be able to pro-
vide a sub-region where the network can be recovered reliably, i.e. to make the problem ov-
er-determined in the sub-region. Sensitivity analysis can help to decide such regions.
Sensitivity analysis relates to one of the importantissues in an inverse problem, which is how
much changes of internal parameters ( branch conductances ) of a network can be measured
at ports of a network using devices with finite precision. These changes decide how much
detail can be recovered in a reconstructed network. This problem depends upon the parame-

ters and structures of the network to be recovered. For the example in Figure 3.8, the mea-

._>
areal *’ o T

(]
’
’

(a) Example 1 (b) Example 2

Figure 3.8 Examples of measurement sensitivity
surements made in area I may not reflect any change induced by the branch conductances
in area I, or vise versa. While in the case shown in Figure 3.8 (b), it may not be possible
to recover a network at all with the excitations arranged on one side of the network even if
the determinacy is higher than 1, but the network could be recovered if other excitation/mea-

surement arrangements with even lower determinacy.
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Strictly speaking, sensitivity analysis is performed in a network with known parameters.
However, the parameters of a network is the solution in EICT problems. What will be shown
later is how sensitivity analysis can be used to determine a reliable region in EICT problems.
Definition of relative sensitivity Consider a network function T(N)[7]. The relative sensi-
tivity, or simply the sensitivity, of T with respect to a parameter x in the network is defined

as

s - L x (3-14)
ax T

For the multi—port resistive network discussed here, the network function T is the transfer

impedance Zij, which represents the ratio of the voltage at port j induced by the current at

porti(i,j=1,2,..),ie.

7. = Y (3-15)
L Ii

If the excitation current at port i is unchanged but a voltage change at port j is measured due

to the parameter changes inside the network,

AT = -A;‘ﬁ = AV, (3-16)
i

when I; = 1A atall ports. Then, the total change of port voltage induced by all possible

changes of branch conductances is

AVJ = £Ag1+£T-—Ag2 + ..+ iT—Ag,, = zi‘-/—Agl (3“17)
81 2 ag 0g;

i
where g; is branch conductance. If we only give branch k a disturbance Agy, then

AV, = %Agk (3-18)

If the precision of the voltage measurement is J ,
AV, = T g =0 (3-19)
0gk

has to be satisfied for a single branch conductance if the conductivity change is expected to
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be measured. (3-19) also gives a way to estimate the relative sensitivity for each individual

branch under a particular excitation pair, i.e.

T _ AV (3-20)

08k Agi
Incremental network method in sensitivity calculation Sensitivities of the network pa-
rameters to a specified network function can be found by the incremental network ap-
proach[7]. Following the rules to construct an incremental network[7], we can obtain the
corresponding incremental network for the network model of Figure 3.8 (b), as shown in Fig-

ure 3.9 . The analysis result of the incremental network can be used to determine the partial

pattern II c d
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* ° * ° *
\_/ \_/
4
3 b h
’ 4 *’

—
1 2 3 pattern I € f pattern 11
. four measurement ports corre-
The incremental network sponding to one excitation

Figure 3.9 Construction of incremental network

derivatives.

When the background conductances and the structure of the network are known, partial de-
rivatives of each branch conductance at every port under a particular excitation pattern can
be simulated by giving branch conductance a small displacement.

Determination of excitation patterns with sensitivity theory With the approaches above,
one can find the regions where sensitivities are higher than a threshold. The significance of
knowing this can be addressed as follows:

(a) For a particular excitation pattern, how many branches can be affected by the injected
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current; and

(b) For a network with fixed topological structure, design the excitation/measurement pat-
terns to make most of the branches sensitive to at least one pair of port measurements.
Assume the minimal measurable voltage change at a port is ¢ . It could be induced by a
single branch close to the port, or by a group of branches far from the port. Only the region

where the result is reliable to a specific excitation pattern can be determined. Figure 3.10

sensitivity

% side excitation

position

Figure 3.10 Sensitivities for branch 1 to 4under 2 excitations

shows the sensitivity changes at the port a and b with branch 1 to 4 under the excitation pat-
tern I (side excitation ) and the pattern IT ( cross excitation ). The sensitivities decrease rapid-
ly as the position of a single branch goes away from the measurement port for side excitation;
while for cross excitation, the change is less steep. It suggests that the cross excitation tends
to reveal more information in the central part of the network.

To check if all excitations selected are effective, one can calculate the weakest sensitivity

of the network for all excitations. They should make the weakest sensitivity felt by measure-

ment, i.e.
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AV = Ay = (3-21)

Vi

The entire region where port measurements are sensitive to the branch changes for this exam-

ple is shown in Figure 3.11. This is the largest region that side excitation patterns can pro-

a a

Figure 3.11 Reliable region with side excitations

vide. This diagram explains why only the top two layers can be recovered with reasonable
accuracy in the three-dimensional network model example. Interpreting of the above dia-
gram can be explained as that if there is only one branch conductance which is different from
the rest of branches with one unit, the furthest branch value can be “felt” by the one measure-
ment. This is corresponding to the weakest sensitivity of the network for all excitation pat-
terns which determine the limit of one design of the excitation patterns.

We can draw some preliminary conclusions from the sensitivity analysis in EICT problems.
1. Determinacy is not the only factor which determines the recovery capability of an EICT
system. The reliable region produced by the arrangements of excitation patterns is more im-
portant.

2. The maximal number of recoverable branches depend on the positions of excitation pat-
terns, which can be designed with sensitivity analysis. The patterns, using the electrodes

close to each other, recover branches near to ports, while patterns using more separated elec-
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trodes reflect more information away from the measurement ports.

3. In an under—determined problem, a sub-network can be reconstructed if all excitations
are arranged to generate a reliable region.

4. Not all the excitations are needed for all EICT problems. The patterns only reflecting in-
formation on the branches close to ports may generate redundant measurements. The pat-
terns whose effective regions are covered by others can be thrown away.

5. Although fewer excitation patterns may slow down the speed of convergence, it may still
save computing time in an imaging procedure, specially if we consider the large time con-
sumed for every excitation in the forward problem at each iteration.

3.3.3 Accessibility of EICT

In the sensitivity discussions, we have shown that it is possible to arrange excitation patterns
with a pre-designed network. In this section, an alternative approach with graph theory is
shown to achieve the similar result.

From the previous examples, we know that the determinacy is not the only factor controlling
convergence speed and image quality. As a solvability problem, the network parameter re-
covery is not only determined by possible measurements applied to a network, but also by
its topological structure. To describe the topological solvable feature, we now introduce the
accessibility to the EICT in network recovery. First, we define that a node of a network is
called accessible if that node can be taken as a measuring point.

Theorem 1 Let g be a conductance between two nodes 1 and 2 in a network N. Suppose
that certain nodes in N are accessible and certain others are not. The cut sets of 1 or 2 not
including any accessible nodes of N donot exist. Then measurement of g is possible if and
only if all paths (except the go branch) from 1 to 2 contains at least one accessible node in
NI[7].

Figure 3.12 shows an example of this theorem. It is clear from the theorem 1 that there is
a minimal number of nodes needed to make one branch measurable. Mayeda etc. [21] gave

two algorithms (we call them component accessible algorithms) to find such nodes. The fun-
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Figure3.12 Example of accessibility theorem

damental concept of these algorithms is to find a set of nodes such that, to each path including
a particular branch, there is at least one node in this set belonging to the path. The example
in Figure 3.12 gives the minimal number of nodes which is needed to determine the branch
a.
An algorithm to select the minimal number of nodes for the certain measurements to access
all branches in a network can be described as follows:
Algorithm 1

Step 1 Set an incremental node set A;

Step 2 Select a tree T in the network N;

Step 3 Select a branch and record its two connecting nodes i and j;

Step 4 Find a new set B, which contains the minimal number of accessible nodes fori and
j using a component accessible algorithm;

Step S Perform A = A U B (OR operation);

Step 6 Repeat Step 3 to 5 till all the branches of N have been examined. Then, set A con-
tains the minimal number of accessible nodes of N for all branches.
If a set of accessible nodes are already known, the following algorithm can examine if all
the branches in the network are measurable.
Algorithm 2

Step 1 Set the known accessible node set Ny;
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Step 2 Examine every branch in the network N to get its minimal number of accessible
node set Ny, using a component accessible algorithm;

Step 3 If the branch examined is measurable, save it in set B,; otherwise, save it in set By;

Step 4 Repeat Step 2 and 3 till all the branches of N have been examined;

Step 5 If B, is empty, all branches can be measured with this particular accessible node
set; otherwise, only the branches in set By, are measurable.
Using Algorithm 2, one can easily prove that, for the excitation/measurement patterns
applied only on the top in the example of Figure 3.5, some of the measurements are redun-

dant, and the branches on the third layer or below are not measurable (Figure 3.9). This is

Top

1
2
' ‘
4
5
6

Layers
\ Branches

~

Figure 3.13 Branches not accessible in the three—~dimensional network model

a similar result to what obtained with the sensitivity analysis. To make all branches measur-
able and to obtain faster speed of convergence, side excitations and measurements have to
be added into the network about every two layers.

In practice, the accessible node set may be extendable. In this case, the Algorithm 2 can be
performed first, then, by comparing the accessible node set N, and the node set of non—mea-
surable branches, new nodes can be added into N, to make some branches measurable which
we believe important.

3.34 Optifnal excitation patterns in topological sense

By applying the graph theory, selection of minimal number of nodes can also be used to de-
cide “optimal excitation patterns” which make the number of measurable branches maximal.

This can be realized by performing the Algorithm 1 first to find the set of minimum number
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of accessible nodes, then deleting the nodes not available from measurements. This “opti-
mal” pattern is in the topological structure sense, which can be decided before the EICT pro-
cedure starts. Using the algorithm mentioned here, the excitation patterns and the positions
of measurements can be easily arranged without increasing the determinacy.

By sensitivity analysis, a better set of excitation patterns can be pre—designed before an EICT

algorithm starts.

3.4 Discussion

In this chapter, multi—port networks are used as discretized models to discuss the features
of EICT algorithms and excitation/measurement pattern effects on recovery ability of EICT
systems. The use of such models eliminates the truncation errors introduced by numerical
methods in field calculations, simplifies the discussions on EICT algorithms, and clearly de-
scribes the excitation/measurement relationships based on the network and graph theory.
Important contributions of this chapter can be summarized as follows:

1. The error function minimization algorithm can deal with both over— and under—deter-
mined problems, which the matrix inversion algorithms cannot do.

2. By applying sensitivity and accessibility analyses to a network with pre—designed struc-
ture, two approaches are presented to find a reasonable set of excitation patterns before an
algorithm starts that either recovers an over—determined problem economically, or recovers
a sub-network in an under-determined problem, which sub—network includes most of the
information interested. In general, the EICT recovery problem is under—determined and the
goal of this technique is to find a sub-network (sub-region) that includes information to be
interested.

Considering the similarity between finite element discretization and the lumped element of
networks, the approaches of designing excitation patterns can be easily extended to the two—
and three—dimensional imaging. It is new to use sensitivity and graph theories in the EICT

imaging. There are further issues open for discussions. More research is needed in future
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to investigate the relationship between quality of image and the arrangement of excitation

patterns.
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CHAPTER 4

IMPROVEMENTS TO
ERROR FUNCTION MINIMIZATION ALGORITHMS

Existing error function minimization algorithms are considered as slowly convergent algo-
rithms in terms of number of iterations[46]. A long flat “tail” in the error norm plot, as shown
in Figure 2.2 (b), can often be seen, especially in cases where objects are far from boundaries.
Itis difficult to judge from such convergence performance if the algorithms will actually con-
verge or not. Slow convergence not only requires more computational resources, but also
creates more chances for measurement errors to spread out in the entire region and to con-
taminate a recovered image. In this chapter, the relatively long image recovery process with
the Wexler algorithm will be first demonstrated, then the causes of the slow convergent rate
of error function minimization algorithms will be discussed. Finally, a modification scheme
with an adaptively—controlled acceleration factor to speed up convergence with the Wexler
algorithm willbe introduced. The scheme predicts new element conductivities based on pre-
vious conductivity changes, and corrects the prediction with the minimization technique.
The improvement is a general procedure which can be implemented in different error func-

tion minimization algorithms, and discuss both successful and failed simulation examples.

4.1 An Example Using the Wexler Algorithm

Figure 4.1 shows a sequence of images recovered using the Wexler algorithm in the example
shown in Figure 2.2(a) after 50, 100, and 200 iterations, respectively . There are 64 squared
quadratic elements in the mesh, and 9 Gauss points in each element. It is at these Gauss
points that functions are sampled in order to evaluate the required integrals. 16 electrodes
are arranged around the mesh boundary, and 8 pairs of current injections/extractions are

applied. The measured potentials at the active injection/extraction electrodes are not used
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Figure 4.1 An example with the Wexler algorithm
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to eliminate contact resistance effects when the Dirichlet boundary condition problem is
solved. According to the formula derived in Chapter 3, there are 64 unknowns and 84 inde-
pendent measurements corresponding to the 8 excitation patterns. Figure 4.1 shows that ele-
ment conductivities are improved slowly but correctly towards their true values during the
imaging procedure. The error norm reduces significantly only at the early stage of the proce-

dure and thereafter at a very slow pace (Figure 4.1(e)).

4.2 Improvements on Error Function Minimization Algorithms

4.2.1. Error function minimization effects on convergence speed

Error function minimization algorithms minimize the total error for all applied excitation
patterns at each iteration. Equation (2-31) shows the new element conductivity calculation
formula based on the previous element conductivity and the calculated and measured poten-
tials. From the equations in Chapter 2, it is clear that after the first several iterations the “driv-
ing forces” ( the difference between calculated potentials and measured and the difference
between the true conductivity distribution and the predicted ) become smaller and smaller
as the solutions approach to the true image. If the errors are in an acceptable range, this meth-
od is complete in recovering an image. Unfortunately, the recovered image at such an early
stage is normally far from acceptable. In addition, the elements in the central part of the re-
gion “sense” even weaker “driving forces”. The long flat “tail” in the error norm plot reflects
the growing difficulties of determining the correct conductivity values of the elements far
from boundaries.

4.2.2. General improvements in error function minimization algorithms

According to the discussions above, disturbance is needed after the error rate starts decreas-
ing to make the “driving forces” stronger for the purpose of fast convergence. As the ele-
ments far from boundaries are not sensitive to the “driving forces”, the modification should
impose fast improvements on conductivity to the elements far from boundaries, not to those

close to boundaries.
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The fundamental idea here is to use the element conductivity changing rate given by the first
several iterations as the maximal changing rate to predict the new element conductivity for
every successive element in imaging procedure. The algorithm starts in its original way, and
the conductivity changes for each element in the first several iterations are restored. Then,
at each following iteration, compare the element conductivity change at the previous step
with that currently given by the error function. When the two changes have the same sign,
which means that the new change is along the same direction towards the true conductivity
value, the previous conductivity change of this element is taken as the conductivity improve-
ment at this step, but not the one calculated from (2-31). When they have different signs,
which means that the previous change brings in more errors and is not suitable for the predic-
tion at the next step, the new conductivity value is taken from error function minimization
procedure ((2-31) in the Wexler algorithm ). This happens when the previous change is too
large and tends to go in the wrong direction, therefore, the error function minimization is
needed to correct the convergence direction. The reason for us possibly to do this is that very
likely, the iterations at early stage provide a rough solution and correct convergence direc-
tions for most of the element conductivities. Future changes of most element conductivities
are possibly along the same direction as well.

With this improvement, the error function minimization guarantees the convergence direc-
tion by the least squared technique, while the use of the conductivity changes from the pre-
vious iterations gives the maximally possible conductivity change rates to speed up the con-
vergence. Figure 4.2 demonstrates the error behaviour when the above improvement is
applied to the example shown in Figure 4.1. In the first 10 iterations, the original Wexler
algorithm is conducted. The improvement starts affecting from the 11—th iteration, and the
error is reduced significantly. However, when the modification is more than enough aggres-
sively, more errors are introduced. Then, the error minimization function starts working and
tries to bring the algorithm back to the right convergency direction.

If we rewrite element conductivity at each iteration as
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By storing A« after n—th iteration (i= 1, 2,... ), we can compare Ax/*' with Ax/ accord-
ing to (4-4). If we call Ax/' from (4-4) as (Ax')' , then, the algorithm becomes:

If Ac/' and (Ax/')" have different signs, then Ac/™' = (Ax/™)'

otherwise, Ax/™' = Ax/.

After the modification discussed above is implemented, new element conductivity is not al-
ways determined by error function minimization, but instead, by previous changes in ele-
ment conductivity to obtain larger error minimization rate. Such replacement will be contin-
uously performed till a disturbance is induced for the error function. At this point, there is
more strength for the error function minimization, therefore, a new element conductivity is
predicted again by the updating formula based on error function minimization.

'To make the improvement work more effectively, an acceleration factorw (w > 1) can be in-

troduced to the element conductivity change at each iteration, i.e. change (4-1) into
’Cin+1 = Kkl + a)A/c,-”“ (4-5)
and the updating formula now is
2y I-Vo av
X
2.0, Vo Vo av
X

k" = ko (- - &) (4-6)
Combine this with the previously discussed scheme, the complete modification of the algo-
rithm 1is:

If Acm' and (Ax/")' have different signs, then Ax/' = @ (A ;

otherwise, Ak = Ax/.

We call the improvement the acceleration scheme. Figure 4.3 gives the new flow chart of
the improved Wexler algorithm.

At some point, increasing w will cause the recovered image to converge to the true picture
in an oscillatory fashion similar to what is shown in Figure 4.2. To make the factor perform
more effectively, its value should be changeable during image recovery. At the beginning

of the algorithm, the factor can be set larger to force the algorithm to converge in the correct
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Figure 4.3 Flow chart of the improved Wexler algorithm

66



direction. Later on, as the recovered images are close to the true picture, large changes in
element conductivity might cause large error for an error minimization function to correct.
For this purpose, an adapted control scheme is implemented, which automatically adjusts
the acceleration factor based on the potential differences between the Dirichlet boundary
condition solution and Neumann boundary condition solution.

It is noticeable that @ can also be smaller than 1. In this case, the convergence procedure
is more stable because it makes the element conductivity change more conservatively. Then,
of course, the speed of convergence becomes even slower.

Figure 4.4 shows three error plots with different w values.
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Figure 4.4 Acceleration effects on the convergence speed

The choice of the starting point for the acceleration scheme ( i.e. the number of iterations
needed to switch on the scheme ) and its effectiveness are problem dependent. One sugges-
tion is to pre-set up a number before the algorithm starts (there could be other principles).
If the potential difference between the Dirichlet boundary condition problem and the Neu-
mann boundary condition problem for the elements which are close to the boundaries in-

creases right after the scheme is switched on, the pre—set up number is probably too small.
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The algorithm can be designed to automatically switch off the scheme and re—set the starting
point. In general, if the objects are far from boundaries and if there are larger contrasts be-
tween the objects and the background, the method is more useful. In the case that the objects
are close to the boundaries, the scheme may not even be needed because the positions of the
objects have already decided that the algorithm can converge quickly. With the improve-
ments proposed here, the example in Figure 4.1 is tested again. The acceleration scheme

starts to be effective after the 5-th iteration. Figure 4.5 shows the recovered image of the

Figure 4.5 Improved convergence behaviour
with the algorithm modification

example in Figure 4.1 using the Wexler algorithms with the improvements after 20 iterations.
It has almost the same quality as the one after 100 iterations with the original algorithm.
From the derivation of the improvement, it is clear that the improvement is in fact a general
modification to error function minimization algorithms. Similar modifications can be easily
introduced into other error function minimization algorithms to achieve what we have shown
here.

The significance of the combination of the error function minimization and the acceleration
factor scheme is to speed up a class of EICT algorithms which have attractive potentials in

three~dimensional EICT applications. The method used here applies the error function
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minimization and acceleration scheme alternatively. They work together and constrain each
other to keep the image recovering procedure proceeding efficiently in the right direction.
Therefore, the acceleration scheme can be taken as a predictor for the algorithm, while the
error function minimization is a corrector for the acceleration at different iterations. The
method is different from the Equipotential Line method[46] in which the correction made
to obtain a final image is conducted by matrix inversions and the imaging recovering proce-
dure stops after one iteration with an image which may, very likely, include unacceptable
eITOrS.

The problem with the acceleration scheme is the difficulty to decide where the scheme
should be applied, i.e. to separate the element conductivities which need to be improved
greatly and which need not. The checking on the elements close to the boundaries cannot
provide enough information to prevent this problem. When the contrast between the objects
and the background are relatively low, or for the elements not too far from the boundaries,
the wrong convergence direction could be picked up and exaggerated. In this case, it takes

even longer time for the error minimization function to get rid of the errors.
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CHAPTER 5

A PEAK DETECTION METHOD
FOR ERROR FUNCTION MINIMIZATION
ALGORITHMS IN EICT

The speed of error function minimization algorithms can be accelerated by predicting some
of the element conductivities according to differences obtained in the early stages of an
image recovery procedure. The problem associated this approach is the difficulty of deter-
mining exactly where the prediction should be applied, a determination that is crucial to the
success of the algorithm with the improvement. In this chapter, an image processing tech-
nique based method, the peak detection method, is proposed to solve this problem. Similarly
to the previous improvement methods, the method is initially “trained” by an approximate
solution given soon after an algorithm starts. Instead of checking conductivity changes for
each element, this method takes the entire body as a whole and finds the areas where objects
most likely to exist. Simulation results show great improvements in the speed of conver-
gence and quality of images, especially in the cases where significant contrasts between the
background and objects exist. The improvements demonstrate how an image processing

technique can be combined with a minimization approach in an inverse problem.

5.1 Possible Use of Image Processing Techniques in EICT Algorithms

As we have seen before, error function minimization algorithms cannot give an acceptable
image with sharp edges in areasonable time period. What they can produce is the image with
“hills” of conductivity corresponding to the location of objects. How close the “heights of
hills” come to their true values depends on the unknown conductivity distribution. The
“hills” appear regardless of whether the computation is completed for several iterations or

for several hundred iterations[23], i.e. the conductivity improvement directions for each in-
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dividual element are given at a very early stage of computation. If one takes the image with
“hills” generated in the first several iterations as a “trainer” for an algorithm, detecting the
“peaks” of “hills” will tell the algorithm “hill” areas, which very likely, include objects with
different conductivity distributions from the background. Picking the local maximum ( or
minimum ) element conductivity values in every “hill” area detects the peaks accordingly.
Then, the algorithm can modify the element conductivities with the acceleration scheme in-

troduced in Chapter 4 in the neighborhood of each peak.

P
edge
a.Original image b. Represented image
with smoothed edges
T 1 edge

-l . - - b e e

¢. Cross—section of a hill d. Modified cross—section of a hill

Figure 5.1 Image with sharp edges

Now, the neighborhoods have to be defined, where the modifications can be applied. In Fig-
ure 5.1, an image with sharp edges in (a) is normally represented by an image with smoothed
edges as shown in (b). Various image restoration methods can be used to restore the image
in (b) to an image very similar to that in (a). However, it is difficult to do so in the case of
(c), especially when the “hill” is quite “flat”. The smoothed image is actually the cross—sec-
tion (Figure 5.1 c.) of one particular “hill” produced by an error function minimization algo-
rithm at the i-th iteration. According to this feature, the neighborhood corresponding to a
specific peak (point P in Figure 5.1 b.) can be determined as follows:

Assume the element conductivity at P to be «, and the background conductivity as «; , then
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for the elements «, , if

Kp=Kn _ 05 (5-1)
Kp—Kp
i.e.
Axp - Ak, < 0.5Akp (5-2)

then «, will be replaced by
kK, = kn+@ Ak, (5-3)

for the i~th iteration, where w is the acceleration factor as defined in Chapter 4. Then, the
image obtained after i~th iterations is shown in Figure 5.1 d. The sharp edge is then brought
into the image but the size of the object is smaller than the original one with center element
conductivity values higher. The image in (c) is much closer to the true solution in (a), there-
fore, image restoration techniques can restore the original image much easier and more clear-
ly with this image. This detection—modification can be repeated every several iterations, de-
pending on the errors introduced by the modification. If the errors keep decreasing, the
modification can be applied at every iteration. Otherwise it is switched off and the improved
element conductivities are calculated by the original error function minimization algorithm
to bring the solution back to the correct direction.

In practice, a body to be studied may have several regions with different local maximal con-
ductivities. The peaks corresponding to the regions including higher conductivity contrasts
to the background, or with larger areas; or corresponding to the regions close to the bound-
aries, will appear earlier as an algorithm goes on. Therefore, the peak detection should be
applied in every iteration, but only the areas with detected peaks, are modified at one itera-
tion. In general, the modification is applied in different regions at different iterations accord-
ing to the sensitivities of individual elements to the boundary measurements. The conditions
to apply the peak detection and modification should finally be decided by sensitivity analy-

sis.
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5.2 The Peak Detection Method in EICT

The method now can be described as follows:

Step 1 Start an error function minimization algorithm with its conductivity updating scheme;
Step 2 After the element conductivities are updated, with the error function minimization
algorithm at the i~th iteration, save the element conductivity change A« with respect to the
background for every element;

Step 3 Peaks inside the whole region are detected by finding the local maximal conductivity
changes. To avoid detecting the maximal values induced by numerical errors, filtering tech-
nique should be applied before the peak detection. In the areas where the peak conductivity
changes Ax, exceeds a pre—set number (which can be some percentage of the background
conductivity value), the modification described in (5-1) through (5-3) is applied; otherwise,
the element conductivity keeps the value calculated from the error function minimization
scheme. If the average potential difference between in the neighborhood of the local peak
calculated and measured increases after last modification, the modification is not applied,
which means that the previous modifications have made the conductivity values close to
their true ones in this particular local area;

Step 4 If a peak conductivity detected cannot satisfy the condition in Step 3 after a certain
number of iterations, it is probably that peak is corresponding to an object not sensitive to
the boundary measurements. The modification can be applied continuously, starting from
this iteration and stopping when the average potential difference between the calculated and
measured increases.

Step 5 Repeat Step 2 to Step 4 until an acceptable error is achieved.

5.3 Simulation Results
Figure 5.2 and 5.3 show results from two examples with the peak detection method. The
error function minimization algorithm used to test this method is the Wexler algorithm. The

finite element mesh used in these examples is a 16 x 16 mesh with squared element. The
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(a) Original image
Contrast : 1:5

(b) Recovered image
with the Wexler
algorithm
after 20 iterations

(c) Recovered image
with the peak
detection method
after S iterations

Figure 5.2 An example with peak detection algorithm — objects close to the boundaries
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Figure 5.2 An example with peak detection algorithm — objects close to the boundaries

recovered images have much better qualities than those obtained without using the peak de-
tection method. The computing time is also significantly reduced. From the error norm plots
in the second example, we can see clearly that when the method is in its “training” duration,
the error keeps the same as the original methods; when the modification is applied based on
what it has “learnt”, the error is reduced. Also, we can see that the modification on the ele-
ment conductivity of the two objects with higher contrast(1:5) is applied after the first itera-
tion and is turned off after the 5—th iteration; while the modification on the element conduc-
tivity of the object with lower contrast(1:3) appears after the 5—th iteration.

Itis possible to run the simulations with a finer finite element mesh now since the peak detec-
tion method greatly reduces the number of iterations. This also makes it possible to recog-
nize smaller objects, or objects with complicated boundaries, inside a body because of the
relatively smaller element sizes used. We have tested the algorithm with the original image
as shown in Figure 5.4 (a) with different contrasts. With the Wexler’s algorithm, the image

reconstructed after 20 iterations (Figure 5.4 (b)) does not tell anything, while the peak detec-
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(a) Original image
Contrast : 1:2:5

(b) Recovered image
with the Wexler
algorithm
after 20 iterations

(c) Recovered image
with the peak
detection method
after 5 iterations

Figure 5.3 Anexample with the peak detection method — objects with different contrasts and sizes
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Figure 5.3 Anexample with the peak detection method — objects with different contrasts and sizes
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Figure 5.3 Anexample with the peak detection method — objects with different contrasts and sizes

tion method enhances the image (Figure 5.4 (c)) which is very close to the original picture.

5.4 Discussion on The Peak Detection Method

Ten years have passed since the first error function minimization algorithm, the Wexler’s al-
gorithm, was published[41]. The slow convergence rate that this type of algorithm suffers
has prevented wider applications of EICT systems for three—dimensional imaging. The
cause of the slower convergence rate in error function minimization algorithms is that the
least squared technique only tries to minimize the errors but not necessarily make the error
become zero. In the problem where sharp edges of objects have to be recovered, algorithms
based on this technique cannot produce satisfactory images.

An image processing technique based method is proposed here to improve the convergence
speed and image quality. With this method, we are able, for the first time, to recover sharp

edges of objects using an error function minimization algorithm. For the recovery problem
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that needs more details, this method allows to use finer finite element meshes without experi-
encing the unbearably long computing time. Thus, it helps increase the resolution ability
with this type of EICT algorithms. The success of using such a method in an EICT problem
shows the possibilities of introducing artificial intelligence or image processing techniques
into an inverse problem. The distinguishability of this method initially depends on the distin-
guishability of an error function minimization algorithm. It works as long as peaks can be
detected from a “dirty” image generated by an error function minimization algorithm. This
feature is more important when smaller(insensitive) objects are detected.

The peak detection and the associated modification schemes in the method are only executed
once in each iteration in the conductivity updating procedure. They do not introduce too
much extra computing time in the image recovery procedure. There might be a misunder-
standing that the peak detection method is similar to the edge detection technique in image
processing, but itis not. An edge detection technique needs a known threshold for the origi-
nal image which is impossible to know prior to an EICT algorithm before it completes the
computation. In addition, the edge detection does not give correct grey level values ( which
corresponds to the element conductivity here). As aresult, the peak detection method is ac-
tually a combination of the least squared technique and an edge detection strategy.

This method requires the measurements around most of the boundaries in an EICT system;
otherwise, faulty detections can occur in areas which are far from effective measurement
sites. This problem will be discussed in detail later in EICT applications in three—dimension-
al imaging.

There are some open issues related to the application of this method in EICT systems. One
important topic associated with the algorithm is the evaluation of resolution ability. Several
methods, such as the point spreading method, are available to compare the resolution of
images reconstructed with or without the peak detection method. More research should be
done to give a complete conclusion on the resolution improvement. The example in Figure

5.4 demonstrates a simple way for such research. When a unit conductivity change from
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the background is given to one single element, the image reconstructed by an EICT algo-
rithm can be taken as the “response” to such change. A complicated distribution is the super-
imposition of single changes. The image corresponding to the complicated distribution is
then the superimposition of the “responses”. By comparing the “responses” from different
algorithms, improved resolution ability can be evaluated.

Other interesting topics for further research are suggested as follows. The criteria used for
peak detection can be defined more precisely so that the convergence procedure can be opti-
mized for individual problems. The criteria to stop modification can also be different from
what is suggested here, especially when some prior knowledge on the conductivity range in
a practical problem are available before an EICT algorithm starts. Sensitivity and distin-

guishability with this method need more thorough discussions.
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CHAPTER 6

FINITE ELEMENT MESH EFFECTS
ON IMAGE QUALITY AND ALGORITHM CONVERGENCE

The limited number of electrodes is proven to restrict the resolution of images. One of the
important features of error function minimization algorithms is that, with the Point Iterative
Point Accumulative method, one mesh can be used in the forward problem and another in
the conductivity updating procedure. By implementing two meshes in these algorithms,
image quality can be improved efficiently under the same measurement conditions.

The image quality and convergence speed of an EICT algorithm are greatly influenced by
two factors: how the algorithm starts and how a finite element mesh is designed[15, 46].
However, the initial distribution that controls how an algorithm starts, and a perfect finite
element mesh to represent the detailed distribution, are not known in advance. Instead of
starting an algorithm with a fine mesh, which may be redundant for a particular problem, we
describe a procedure, in this chapter, that starts with a coarse mesh and ends with a proper
mesh to obtain an image with expected accuracy. Compared with the direct use of fine
meshes, this procedure greatly reduces computing time. We will also discuss the effects of
finite element mesh designs on EICT images. This problem has been noted[4], but methods

of dealing with it have not been suggested.

6.1 The Finite Element Mesh Effects on EICT Imaging

A finite element mesh affects image quality and convergence speed mainly in two ways.
6.1.1 Mesh effects on solution uniqueness

When the FEM is used to evaluate a potential distribution in EICT, it is desirable to have finer
mesh to make the final image include more details of the original conductivity distribution.

However, small element size in a fine mesh results in large number of unknown element con-
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ductivities, which increases the computing time and requires large storage space. In addi-
tion, the number of independent measurements in a practical EICT system is limited by the
number of applicable electrodes. If an over-determined problem is expected, therefore,
small element size in a finite element mesh may not be allowed. This limits the recognition
capabilities of the EICT technique.

It could happen with a relatively coarse mesh in an over—determined problem that an EICT
algorithm fails to produce a unique image no matter how excitation patterns are arranged.

In the example shown in Figure 6.1 (a), the edges of the recovered image can possibly be

(a) Anoriginal image with a 4 x 4 mesh (b) A recovered image of (a)

(c) An original image with an 8 x 8 mesh (d) A recovered image of (c)
Another example of “Ghost”

Figure 6.1 Examples of “Ghost”
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blurred in the four neighboring elements for any combination of excitation patterns. This
is the so called “Ghost” phenomenon in EICT problem[4]. Such phenomenon can also be
caused by objects insulated inside a region as in Figure 6.1 (c) . In these cases, an algorithm
may still converge, but to a wrong solution as shown in the Figure 6.1 (d). It should be
pointed out that the “Ghost” phenomenon is different from an under—determined problem.
In an under—determined problem, images far from satisfactory are due to the lack of “views”,
provided that the finite element mesh is good enough to describe the true image with reason-
able accuracy; but here, the unacceptable result is caused by the wrong design of a mesh
which cannot describe enough details to represent the image. It is related to modelling is-
sues.

6.1.2 Mesh effects on algorithm convergence

Although a coarse mesh may not guarantee the uniqueness of solutions, it saves recovery

efforts greatly. Figure 6.2 shows three finite element meshes with different element sizes.

(a) a4 x 4 mesh (b) an 8 x 8 mesh (c) al6 x 16 mesh

Figure 6.2 Examples with different meshes

When the same image is recovered using these three meshes, an algorithm converges more
quickly with the coarser mesh ( 4 elements on each side) than it does with a finer mesh ( 8
or 16 elements on each side ). This is due to the fewer number of unknowns and the shorter
path between objects and boundaries ( as we discussed the accessibility before ) in a coarser

mesh.
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The three examples in Figure 6.2 were conducted with the Wexler algorithm on a Sun Sparc
2 computer. The coarsest mesh ( Figure 6.2 (a) ) generates the best image ( almost the same
as the original image ) in the shortest time, while the densest mesh (Figure 6.2 (c)) produces
the worst image in terms of quality ( Figure 6.3 (c) ) in the longest time if the determinacy
was kept the same. Figure 6.4 shows the CPU times used when an image is recovered with
one of the three meshes in 50 iterations. As may be seen, the simulation time increases dra-
matically as the elements become smaller.

In the example of Figure 6.2, the coarsest mesh actually provides the best picture, because
of the assumption of congruency between the object and the finite element mesh. If the con-
gruency cannotbe satisfied (itis impossible to have such congruency in practical situations),
as shown in Figure 6.1 (a), the 4 x 4 mesh cannot work as well as it does here. Even though,
the coarser mesh still tries to converge towards the true image at the early stage as shown
in Figure 6.3 (d). The reason for the finer meshes’ not working well in this case can be ex-
plained as the “redundancy”. It reflects another problem: a finer mesh is not the best choice
atall times. When an image can be described by a coarse mesh instead of a fine one, the use

of fine mesh means to synthesize a simple system with a complicated model.

6.2 Image Quality Improvement by Conductivity Interpolations

Ideally, the smallest object that an EICT system would be able to recognize is in or greater
than the average finite element size that an algorithm uses. The compromise has been dem-
onstrated in image quality and convergence speed between meshes with different fineness.
Using an non—unique mesh to save the computing effort is not realistic because the positions
of objects are not known. Then, is it possible for a relatively coarser mesh to produce finer
image without increasing determinacy (i.e. the number of excitations/measurements is kept
unchanged)?

The potential distributions in the forward problem of an EICT algorithm are evaluated by

the FEM. More accurate results can be achieved by using higher order elements with more
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a. Original image
Contrast : 1:5

b. Recovered image
with 8 x 8 mesh
after 150 iterations

¢. Recovered image
with 16 x 16 mesh
after 400 iterations

Figure 6.3 Simulation results of the example in Figure 6.2 (a)
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Figure 6.4 CPU time used for the three mesh cases in 50 iterations
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Gauss points even larger size of elements have to be used. It is at these points that the inte-
grals are evaluated. Therefore, the limited number of electrodes will not affect the accuracy
of field calculations. Itis the element conductivity (orimage quality) that is affected the most
by the element size of a finite element mesh.

Examine the error function minimization algorithms more closely, one can see that

(a) A finite element mesh is only used in evaluating the potential distributions. The evalua-
tion procedure is independent of the conductivity updating procedure;

(b) The element conductivity updating formula is actually in the point form, as (2-43) repre-
sents. Conductivity at any point of the region can be interpolated by node potentials. The
assumption of a constant conductivity distribution within an element is the case of using the
conductivity at the central point of an element to represent the conductivity distribution in
the rest of an element.

(c) The potential at any point inside an finite element can be calculated based on the node
potentials and shape functions.

These analyses tell us that a finite element mesh used to solve the field problem does not have
to be the same as the mesh used to update element conductivities. A “finer mesh” is naturally
allowed in the element conductivity updating procedure if an error function minimization
algorithm is employed. Then, itis possible to improve image quality without increasing de-
terminacy and computing effort.

If we call the element used for calculating the potential distributions the “potential element”,
while the element used for updating the conductivity distributions the “conductivity ele-
ment”, we can represent a potential element with any number of conductivity elements to
improve the accuracy. For example, if a potential element is represented with four smaller
conductivity elements, the central point of the potential element can be used and the potential
at that point can be calculated ( Figure 6.5 ). Then, the mesh has been refined for the conduc-
tivity updating procedure. Four instead of one conductivities (x; , j=1, 2, 3, 4) representing

the conductivity distribution will be computed with (2-9) in every potential element. In this
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case, the accuracy is doubled approximately.

The scheme to choose the element mesh is not unique. The numbers and the positions of
k; for each potential elementi(i=1,2,...) can vary in different problems. A simple scheme
is to make the new conductivity points in the refined mesh the same as those representing
a higher order potential element since node potentials at such points are calculated anyway.
Gauss points of higher order potential element are a natural choice for this purpose. Then,
the conductivity updating formula becomes (2-46).

With this approach, coarser mesh with higher order elements are used to solve the potential
distributions according to the measured boundary potentials and injected currents, while ele-
ment conductivity is updated at each Gauss point inside every element. In a two—dimension-
al problem, if the quadratic element with 9 Gauss points is used to perform the integration,
the Gauss points are available to update an element conductivity, i.e. each element conduc-
tivity can be represented by 9 different values. Ateachiteration, better evaluation of conduc-
tivity distribution is achieved, and therefore, the potential distribution calculated in the next
iteration will be closer to the true solution. The accuracy is then increased up to 2 or 3 times.
It is almost equivalent to the use of a finite element mesh with half the size of the original
mesh.

By applying this conductivity mesh interpolating scheme, with almost the same accuracy,
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one can solve a problem with 64 unknown using an 8 x 8 element mesh, instead of solving
a problem with 256 unknown using a 16 x 16 element mesh in both the potentials evaluation
and conductivity updating procedures. The updating procedure with mesh refinery is only
performed once at each iteration. It does not cost anything compared with increasing the
fineness of a finite element mesh. The algorithm therefore is more efficient in producing
images with sharp edges, and more reliable in the cases that there is no congruency between
the objects and the finite element mesh.

Figure 6.6 shows an example that compares the images reconstructed with/without the inter-
polation. The image quality is greatly improved with the interpolation scheme.

In conclusion, the element conductivity mesh interpolation method produces images of
higher quality with a given number of available independent measurements. The savings
in computing time and storage space are significant. For matrix inversion algorithms, it
would be difficult to apply this scheme because the updating procedures in these algorithms
cannot be separated from the potential calculation procedure.

The realization of this scheme using different meshes shows another good feature of the error
function minimization algorithms. It works equally efficiently whether there are sharp edges
in an image or not.

In the equation derivation, the interpolation ignores the coupling effect from the neighboring
Gauss points, but will not affect the applications of the peak detection and modification

method.

6.3 Find Better Initial Distributions with Coarser Finite Element Meshes
It has been known that a mesh with proper fineness is important for an EICT algorithm to
recover an image of good quality. The question here is how to obtain a suitable mesh for a
particular problem.

6.3.1 Initial guess effect

It has been shown that a better initial guess on conductivity distribution normally gives an
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a. Original image Contrast 1:4

b. Recovered image with
interpolation using the
peak detection method

c.Recovered image without
interpolation using the
peak detection method

Figure 6.6 Comparisons on image quality with conductivity mesh interpolation
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e. Recovered image in relieved form without interpolation

Figure 6.6 Comparisons on image quality with conductivity mesh interpolation
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image with better quality[15]. However, a “better initial guess” cannot be known before the
algorithm starts since it is actually a solution not far from the true one. Previous work on
the mesh designs always employs a fixed finite element mesh through the entire image re-
covery procedure. In fact, more than one finite element meshes can be used to fit into the
set of data obtained from the electrodes. During the imaging procedure, the image produced
first by a former mesh becomes an initial guess for the successive mesh.

In general, the constant conductivity distribution assumed at the beginning of an EICT algo-
rithm may not be a good one. A bad initial guess affects the solution of an EICT algorithm
in three ways: (a) makes the imaging procedure diverge; (b) slows down the speed of conver-
gence; (c) gives an unclear picture.

The convergence period will be greatly reduced if a coarse mesh is used first to obtain an
approximate solution, then a finer mesh is used to reach the true image, provided the coarse
mesh makes an algorithm try to converge towards the true solution when the meshes are
switched.

From the examples shown in Figure 6.1, we can see that the first guess brings the maximal
error (maximal potential difference) after an algorithm starts. Even a very coarse mesh gives
a correct convergence direction[25] although such mesh cannot represent an image with
great details. In the cases that edges of objects are not too different from the element sides,
or there is no sharp edge changes, a relatively coarse mesh will generate an image with ac-
ceptable errors. If we use a coarser mesh to start imaging with part of the excitation/measure-
ment patterns, the algorithm will try to converge towards the true image at least in the first
several iterations. Images generated by coarser meshes after the first several iterations may
not be good enough as a final solution, but will be certainly good enough as an educated ini-
tial guess for a finer mesh. This indicates that the image generated by a coarser mesh can
be taken as an initial guess for the desired finite element mesh. There should be no doubt
that such initial guess is also better than the constant initial guess because it is the image re-

covered from the measured information related to the particular problem.
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6.3.2 Generating a better initial guess with coarser mesh

The convergence of an EICT algorithm can be faster if the algorithm starts with a relatively
coarser mesh to obtain a better initial guess for the finer mesh. In the example shown in Fig-
ure 6.1 (a), the algorithm starts with the 4 x 4 mesh. During the first several iterations, the
algorithm tries to converge to the true image. When the potential difference between the
measured and calculated distributions increases, the coarse mesh is switched to the expected
8 x 8 mesh. The element conductivity of the new finite element mesh is assigned by interpo-
lating the conductivity distribution obtained from the coarse mesh elements. More excita-
tions/measurements are also added in to prevent the determinacy from being affected. The
image from the coarser mesh is now the initial distribution for the 8 x 8 mesh. The computa-
tion time for each iteration is longer because of the increased number of unknown excita-
tions. Such procedure can be repeated by switching into an even finer mesh, saya 16 x 16
mesh. Whenever switching occurs, there will be an average potential difference induced be-
cause of the errors between a coarser mesh and a finer mesh. Therefore, this scheme induces
the potential difference to strengthen the driving force and to make the algorithm converge
in the correct direction. The improvement on the convergence speed and the image quality
is significant when a coarser mesh is used at the beginning. When the algorithm used the
4x 4mesh for 200 iterations and 10 and 5 iterations with the 8 x 8 and 16 x 16 meshes respec-
tively, the total computer time is 14 + 5 + 22 = 41 minutes, while it takes 150 minutes to run
the algorithm with a 16 x 16 mesh only for 50 iterations. The computer time saved is about

90% to obtain images with similar qualities.

The scheme of obtaining better initial guess for a finer mesh

Step 1 Apply excitation patterns and make measurements using the mesh that an EICT sys-
tem desires to use, or even a mesh finer than the one the system expects to use;

Step 2 Use part of the excitation patterns and the corresponding measurements to start an

EICT algorithm with a coarser mesh whose nodes are the subset of the nodes of the designed
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mesh, as shown in Figure 6.7. The initial guess on the conductivity distribution can be set

1 2 3 4 .. I'=1  2'=3
(a) The expected mesh with applicable electrodes (b) A coarser mesh using part of excitations/
measurements

Figure 6.7 Using part of excitations/measurements with coarsermesh
as constant;
Step 3 When the potential difference between solutions with Dirichlet boundary condition
and Neumann boundary condition is smaller than a previously set number (or the difference
begins to increase), take the present conductivity distribution as the educated initial guess
for the proper mesh ( finer mesh ) to be expected.
Step 4 Add the rest of the excitation/measurement patterns into the excitation/measurement

sets, and start the algorithm with the finer mesh again till a reasonable solution is achieved.

Before an EICT algorithm begins, the mesh with proper element size is unknown. Therefore,
in Step 3, the condition for an algorithm to switch from a coarser mesh to a finer one does
nothave to be satisfied in all problems because the coarser mesh may be already good enough
for an algorithm to generate a good image. In this case, the coarser mesh is the suitable mesh
for the particular problem and the result generated by this mesh is the final image the system
can provide. The strategy to use this method is to keep using the coarser mesh as long as
possible since the computing time consumed with a coarser mesh is much Iess than that with
a finer mesh.

This method is independent of algorithms used in an EICT system. It produces more accu-
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rate result in fewer iterations. When an algorithm with this scheme finishes, the suitable
mesh for one particular EICT problem is found.

The way this method induces the potential differences is different from that the optimal cur-
rent excitation pattern method does[10]. In the optimal current excitation pattern method,
the pattern has to be updated as the imaging recovering procedure proceeds because the best
pattern depends on the true conductivity distribution. The method finding an educated initial
guess on the conductivity distribution does not try to find a better set of excitation patterns,
but to make use of the errors among different meshes. When a different mesh is used, the
number of excitations might be changed to provide enough number of independent measure-

ments. This can be done before an image procedure begins.
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CHAPTER 7

EICT IN TWO- AND THREE-DIMENSIONAL IMAGING

The final goal of a practical EICT imaging system is to recover a reliable final image inside
a three—dimensional body using limited surface measurements. As pointed out in Chapter
1, most of the reported simulations and experiments with different EICT algorithms dealt
with the reconstruction of images in two—dimensional slices using two—dimensional finite
element models. In some cases, such models can describe a three—dimensional problem
properly; but they cannot fully represent the behaviour of a complicated three-dimensional
system in most medical/industrial applications.

In general, there are two aspects of three dimensional imaging which cannot be discussed
thoroughly in two—-dimensional modelling. First, there are fewer choices in element shapes
to form finite element meshes in three-dimensional imaging. The large number of un-
knowns in a three-dimensional system restricts element complexity when computing time
is considered. Second, a complete set of boundary measurements is not possible in many
practical problems. The proper arrangement of excitation patterns is more critical for images
with good quality.

In this chapter, the effects of excitation pattern and boundary measurement on image quality
in two—dimensional imaging will be first demonstrated. A simulation example for a medical
application is presented to show the flexibility of error function minimization algorithms.
Then, finite element models in three—dimensional imaging is discussed. And finally, three—
dimensional image quality under particular excitation pattern arrangements is specially ad-

dressed.

7.1 EICT in Two-Dimensional Imaging

The finite element mesh we use here is shown in Figure 7.1. The square mesh has eight sec-
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Figure 7.1 A finite element mesh

ond-order quadratic elements on each side. There are total 289 potential nodes and 64 ele-
ments in the mesh. 32 electrodes are placed around the boundary and 8 excitation patterns
are applied.

7.1.1 Excitation pattern designs

We discussed this topic with sensitivity and accessibility in Chapter 3. An adaptive current
injection scheme[10], which modifies the distribution of injected current on the boundary
at each iteration, can be used to achieve an optimal excitation pattern to distinguish objects
from the background under a certain measurement accuracy requirement. As the recovered
image approaches the true solution, the optimal excitation pattern for that particular problem
can finally be determined.

Two problems with this pattern should be addressed. One is that the excitation patterns might
be changed during the imaging procedure, which requires fast data processing ability from
the EICT system. The other is the optimization results in a current injection distribution
around the boundaries, i.e. there are more active sites for each excitation pattern. The poten-
tials at those active nodes have to be discarded for the purpose of eliminating the contact re-
sistance effects. As the number of active potential nodes increases, the remaining un—active
potential nodes may not be able to provide enough independent measurements. It could ruin

the results improved by applying the optimal excitation patterns. Further more, the use of
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optimal excitation patterns improves the convergence behaviour only in the first few itera-
tions but not as well afterwards[15]. In a practical EICT system, the speed of the devices
might be restricted, and the contact resistance effect is more significant. Therefore, it may
not be realistic to search for and to implement optimal excitation patterns while an image
is under recovery.

Asstudied in Chapter 3, itis impossible to choose efficient parameter—related excitation pat-
terns before an EICT algorithm starts because proper excitation patterns depend on the un-
known conductivity distributions. However, based on sensitivity or accessibility analysis
according to the similarities between the network conductance recovery and the conductiv-
ity distribution imaging, the excitation patterns can be pre—defined after a finite element
mesh is specified.

Assume the finite element mesh as shown in Figure 7.1. Sensitivity at port AB correspond-
ing to excitations can be calculated. If we use the horizontal axis for the positions of elements
of the central line, and the vertical axis for the sensitivity measured from the specified excita-
tion pattern, Figure 7.2 shows similar features that we found in a resistive network recovery.
Then, the excitation patterns should be arranged in this way to find sensitivity related reliable
regions in the sense of sensitivity: a. more cross patterns (every two rows / columns / layers)
because more details would be revealed from measurements induced by such patterns and
less measurement noise would be involved; and b. some corner patterns.

If we represent each element of a finite element mesh with the network model shown in Fig-
ure 1.1 (a), the mesh is changed into a network with one element covering several branches.
Although the equivalent network for a finite element mesh is not unique, but it uses the same
potential nodes, where the field is evaluated. After the conversion, the accessibility discus-
sion in a field case becomes a measurable problem of a network. Then, the theory developed
fornetwork recovery can be directly applied to obtain similar conclusions. The previous pro-
posed algorithms for determining accessibility can also be employed. When branch conduc-

tances, corresponding to some element conductivities, in the entire mesh are accessible, the
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algorithm gives the fastest convergence speed. When the maximal number of independent
measurements is limited by the number and positions of electrodes, optimal excitation pat-
terns in the topological ( or sensitivity ) sense can be pre—designed. The reason for designing
excitation patterns with sensitivity or accessibility theory is that better patterns are deter-

mined in advance so that the contact resistance elimination will not be affected.
7.1.2 Boundary measurement effects

Measurement error effects introduced by boundary distortion In a practical medical
case, electrode positions for measured potentials on the surface might be displaced by the
body movement. Most of EICT algorithms will fail to produce any image in this case[46].
We discuss this effect in detail with an example using the peak detection method. The simu-
lation is designed by assuming that the “measured data” on the stretched sides are taken from
the potentials at inner nodes calculated from the exact solution. The original image is the
one shown in Figure 6.1 with the contrast of 1:5. When two sides along the Y—axis are
stretched for 1/16 of the total length of one side of the boundary (half length of one element
side), the recovered image is stretched in the same direction and about the same ratio as
shown in Figure 7.3 (b). Some conclusions from the simulation results can then be drawn:
(1) If the stretching becomes more significant, the stretched image loses its original shape
completely.

(2) When different measurement patterns are applied, the image obtained by applying al-
ways patterns is most seriously affected. This is due to the maximal potential changes at ac-
tive excitation sites. When stretching takes place, the potentials used at active excitation
sites introduce the largest difference between the correct values and those affected by the
stretching.

(3) The part of image which is closest to the stretched boundary is distorted the most, while
the parts which are far from the stretched boundary remains un-affected (see the two sides
in the image along the X—axis).

This example demonstrates the insensitivity of error function minimization algorithms to
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a. Recovered image without distortion

b. Recovered image
with two sides distorted

Figure 7.3 Measurement error effects introduced by boundary distortion

boundary measurement errors. It shows that error minimization algorithms are relatively
robust to boundary displacements. When the boundary of a body to be examined is slightly
stretched, algorithms can still manage to generate an image not too different from the true
solution. In clinical situations, if the stretching made by body movement is known in ad-
vance, the distorted image can be restored more easily.

Measurement error effects introduced by device precision Matrix inversion algorithms
are known to be sensitive to measurement noises[27]. It can be a very ill-conditioned prob-

lem in a practical EICT system, especially when the objects inside the body are far from the
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boundary. Now, we will see how error function minimization algorithms behave when mea-
surement errors, due to device precision are introduced. A uniquely distributed random
noise is added to the calculated boundary potentials from the true solution to model the mea-
surement errors in a real system. Suppose the exact boundary potential at node p to be Vp,
The actual boundary potential Vp’ with measurement error at this node then becomes

vV, = V,(1+X(p)) (7-1)
where X(p) is a unique distributed random variable in [- 6 , 6 1( é >0). If an original
image is as shown in Figure 7.4 (a), we add errors to measurements by changing é from 0
to 0.1. Figure 7.4 (c) to (f) give two recovered images with different 6 . Simulations show:
(1) The algorithm manages to converge to the true image when 6 <0.1;
(2) Distortions occur when measurement errors are introduced;
(3) Always patterns is a better choice to eliminate measurement errors;
(4) Measurement errors have more sever effects on images when an algorithm runs for along
time because the errors spread out gradually from boundary to the entire region. Algorithm
acceleration by any means, such as the peak detection method, will help reduce the damage.
This problem deserves being discussed more thoroughly. It is not only related to the signal—
noise ratio, but also to the contrast of the image and the true conductivity distribution. The
conclusion at this stage is that the error minimization algorithms are more robust to the mea-
surement errors than matrix inversion algorithms.
Measurement device designs for boundaries in irregular shapes In practical situations,
boundaries of a body to be examined are normally in irregular shapes. Instead of modelling
the irregular boundary with different shapes of finite elements, we can apply the EICT algo-
rithms in a larger region with boundaries in regular shapes and include the boundaries in ir-
regular shapes as part of the image. Figure 7.5 shows an example for this proposal.
Relations between efficiency and image quality We use the Wexler and the Yorkey algo-
rithms to discuss this problem briefly. The main difference between these two algorithms

is that the Yorkey algorithm minimizes the errors between the calculated potentials and mea-
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(a) Original image
Contrast: 1:5

(b) Recovered image with

6 =00
iteration = 10
with the peak detection

(c) Recovered image with

é = 0.005
iteration = 20
with the peak detection

Figure 7.4 Effects of measurement precision on image quality
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(d) Recovered image with
é = 0.1

iteration = 20
with the peak detection

(e) Recovered image with
d = 005

iteration = 20
with the peak detection

(f) Recovered image with

0 =01
iteration = 20
with the peak detection

Figure 7.4 Effects of measurement precision on image quality
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a. Original image
Contrast: 1:5

original body

b. Recovered image
with the Wexler algorithm
iteration = 50

¢. Recovered image
with the peak detection method;
iteration = 50
modification is effective at
iteration = 20 and iteration = 30,
respectively

Figure 7.5 Example of irregular shape processing in EICT
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sured potentials on the boundaries, while the Wexler algorithm minimizes the errors between
those potentials at individual elements. For the former algorithm, the inner element conduc-
tivity information has to be mapped into the output minimization function correctly, so that

the algorithm deals with smaller sizes of excitation/measurement sets, and the recovering



procedure can be faster. From the system identification (or network synthesis) point of view,
the availability of mapping information into the output measurements requires all element
conductivities in a mesh to be “measurable”. If this cannot be satisfied (i.e. the mesh is not
“measurable”), the solution from the Yorkey algorithm may not be unique. The Wexler algo-
rithm does not need to map the inner element conductivity information into the boundary
measurements. Itis, in theory, able to identify all element conductivities whether the whole
mesh is “measurable” ornot. Such algorithms, of course, require more efforts (i.e. long con-
vergent period) to generate an image.

7.1.3 Simulation results of thorax in two—dimensional EICT imaging

The finite element mesh used in an EICT system does not have to be congruent with objects
inside the body. In fact, it is impossible to make it congruent in a real system. Previous work
used the finite element mesh shown in Figure 7.6 (a)to solve the thorax problem. In this sec-
tion, we demonstrate how error function minimization algorithms solve this problem with
different recovering finite element meshes. Three finite element meshes, with 90,120, and
160 elements, respectively, are used to recover the image. Figure 7.6 (b) gives a sample of
the mesh used in the simulation. There is no congruency between the mesh and the objects
in the body with any one of these meshes. The boundary of the chest is irregular. 32 elec-
trodes are placed around the chest to collect measurement data. 8 pairs of excitation patterns
are applied. The sometimes patterns are used to eliminate the contact resistance effects.

All the meshes give similar images of the examined chest (Figure 7.7 (a)—(c))). We can see
clearly the positions of lungs, heart, and back bone. The total errors are less than 5%. The
largest error of element conductivities is 20% of the original values. Figure 7.7 (d) and ()
give the plot of the conductivity comparisons at two cross—sections of the thorax. If an even
finer mesh is used, the image quality does not improve significantly. Only are smoother
boundaries of objects achieved. This is the numerical manifestation of the physical measure-
ment limitations. The imaging procedure stops when the difference of boundary potentials

between the measured and the calculated is smaller than a pre—set number. Further improve-
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(a) Finite element mesh for thorax image problem used in previous work

(b) A sample of finite element mesh used for the thorax simulation

Figure 7.6 Finite element models of thorax
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(a) Recovered image
with coarse mesh

(b)Recoveredimage
with finer mesh

Figure 7.7 Simulation results of thorax
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Figure 7.7 Simulation results of thorax
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Figure 7.7 Simulation results of thorax

ments on image quality may be made by image restoration techniques and other image pro-

cessing methods.

7.2 Finite Element Models Used in Three-Dimensional Simulations

7.2.1 Solid FEM model with linear elements

One way to create a finite element mesh for three-dimensional EICT imaging is to form a
three-dimensional mesh with linear elements. A linear element has the simplest shape and
least number of nodes. It is, therefore, easier to obtain an over—determined problem with
such elements under the limited number of independent measurements and to save comput-
ing time as well as storage space for the large amount of data to be processed. Figure 7.8

shows the three-dimensional model we use in this thesis. The six sides of the body V to be
examined are called top, bottom, left, right, front, and rear, respectively. There is an 8 x 8

square mesh at each layer of the body. The number of layers used in a particular problem
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Figure 7.8 Finite element mesh with linear element in EICT three dimensional imaging

can vary.
7.2.2 Solid FEM model with higher-order elements

It is possible to use higher—order elements to design a three—dimensional finite element
mesh. More computing power is needed to process the complicated mesh and large amount
of data. This thesis will not discuss this problem. We believe that the principles and conclu-
sions established by the mesh with linear elements will be applicable to the mesh with high-

er—order elements.

7.3 Effects of Excitations/Measurements on Three—-Dimensional Imaging
Normally, a complete set of boundary measurements are available in two—dimensional EICT
imaging. In three-dimensional EICT imaging, it is not always possible to have such a com-
plete set because the measurements on some sides of a body cannot be made. The main issue
associated with this feature in three—dimensional imaging is the reduced determinacy and
the lower effectiveness of excitations/measurements placed on some of the six sides. There

are more chances in three~dimensional imaging to deal with an under—determined problem.
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7.3.1 Electrodes on top only

This is the most difficult case in three-dimensional imaging since the system with such exci-
tation arrangements provides the least number of independent measurements. It often results
in an under—determined problem. The mine detection problem belongs to this case. Figure

7.9 shows an example with the excitation/measurement patterns applied only on the top.
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(a) Original image (b) Recovered image after 500 iterations
Contrast 1:5

Figure 7.9 Three—dimensional imaging with top only excitations/measurements available

Four layers are used and the total number of unknown element conductivities is 256. If 8
excitations on the top layer is applied and sometimes measurement patterns are taken, there

are 8 x (81 -2 ) = 632 possible independent measurements, and 8 x ( 32 -2 ) =240 < 256
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independent measurements used to recover the image. The problem is under—determined.

The algorithm used is the Wexler algorithm without improvements. Figure 7.10 shows the
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Figure 7.10 Error of the example in Figure 7.9

errors of the example in Figure 7.9.

The main effect of such arrangement is the low sensitivities of elements in deeper layers.
As demonstrated in previous chapters, no matter how many excitation patterns is applied and
how many measurements are obtained, only layers close to the top can be recovered reliably.
First, only can objects in the shallow layers ( close to the top layer where excitation/measure-
ment patterns are applied ) be recovered with reasonable accuracy. Secondly, errors in differ-
ent layers are quite different, i.é. errors in shallow layers decrease while those in deeper lay-
ers increase. Thirdly, the total error starts increasing after a certain number of iterations.
We have seen a very similar case in network recovery. This reflects the insensitivity of con-
ductivity distributions in deeper layers to the far positioned excitation/measurement pat-
terns.

If objects inside the body exist in even deeper layers, the top only excitations/measurements
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cannot detect anything at all. If some electrodes are applied on the boundary every two lay-
ers, the images in deeper layers can be of much better quality.

The reason fornot using the improvements developed in Chapter 4 and Chapter 5 in three—di-
mensional simulations is that the higher possibility of faulty detection in the layers which
are not sensitive to the measurements. The significant errors in deeper layers with the top
only excitations/measurements make it meaningless to apply the peak detection method and
acceleration factor in those layers. One way to get rid of the faulty detection in deeper layers
is to apply the peak detection method layer by layer and modifications are only made in those
layers which can be controlled by the applied excitations/measurements, i.e. which are sensi-
tive to the measurements.

7.3.2 Electrodes on four sides

This kind of problem has higher determinacy. When EICT is used to monitor the thorax of
ahuman body, electrodes can be placed on the four sides, front, rear, left, and right, surround-
ing the body. Figure 7.11 and Figure 7.12 show the imaging results and error norm plots with
four side excitations/measurements applied. There are three objects inside the body, which
represent the two lungs and the heart, respectively. 8 layers are used in the three—dimensional
model. 24 excitation pairs are placed around the body between the second and the third, the
fourth and the fifth, and the sixth and the seventh layers, respectively. There are 24 x ( 32
~2 )= 720 independent measurements versus 64 x 8 = 512 unknowns. Itis an over—deter-
mined problem. The images in middle layers are recovered with reasonable accuracy. Com-
pared with what we have seen in Figure 7.10(b), the middle layer images have better quality,
while the images on the top and at the bottom are recovered poorly since there is less informa-
tion available from these two layers.

7.3.3 Electrodes on five sides

The reason that this case is discussed is that the detection of breast cancer with EICT is a
similar case. As shown in Figure 7.13, only the measurements on the bottom are not possible.

Considering the shape complexity and variations of a breast (in the case of chest imaging,
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Figure7.11 Three—dimensional imaging with four side excitations/measurements available
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Figure 7.13 Working model design
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the shape of the chest is close to rectangular), modelling a breast in three-dimensional imag-
ing would be too costly. Therefore, we suggest, as we have discussed in the previous section,
to build a device which has simpler shape for the electrode placement, and filled with some
homogeneous materials with known conductivity (salty water, for example) between the
boundaries of the real body and the device. Such device is then taken as the working model
for EICT imaging.

Following the discussions on the four side excitations/measurements, we know that images
with better quality can be obtained when the five side patterns are available. The problem
is normally over—determined. Figure 7.14 gives an example with a smaller object inside a

body, while excitations/measurements on top, left, right, front, and rear are applied.
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(b) Recovered image after 500 iterations

Figure 7.14 Three—dimensional imaging with five side excitations/measurements
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CHAPTER 8

EICT SYSTEM DESIGN AND APPLICATIONS

Previous studies of algorithm improvements, mesh effects, and excitation designs show that
a workable EICT system with error function minimization algorithms is possible. In this
chapter, the fundamental principles that can be used to build an EICT system with error func-
tion minimization algorithms are first presented based on the results obtained from previous
chapters. Then, as a practical example, a nuclear waste monitoring system currently under

testing at Atomic Energy Canada Ltd is described.

8.1 Design Principles For EICT Systems

A set of principles to realize an EICT system for industrial purposes is proposed as follows.
8.1.1 Problem descriptions

In general, an EICT system with an error function minimization algorithm may be designed
for a particular image problem, for example, mine detection and breast cancer diagnosis.
The geometry and boundaries of the body and the number of applicable electrodes are known
inadvance. Some additional parameters are also available, such as background conductivity
values, possible maximal (minimal) conductivity values, and the approximate positions of
some objectsin the body. The problem then is to decide whether a two— or three—dimensional
" model should be used.

8.1.2 Designing an EICT system

Step 1 Designing the working model for the system

Since the geometry of abody to be examined could be very complicated, it is sometimes easi-
er to build a working model for the system to perform the EICT imaging by actually applying
excitation/measurement patterns on the boundaries of the working model. A working model

has simple shapes with low conductivity material filling between the boundaries of the mod-
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el and the body. The reconstruction region then becomes larger and the filling material is
part of the image. If the shape of the body is simple enough to model, the working model
is not necessary.

Step 2 Designing the finite element meshes

Design two finite element meshes according to possible electrode positions. One is coarse,
while the other fine. The sizes of individual elements should be determined based on the
expected distinguishing accuracy. As wehave discussed, the use of sometimes measurement
patterns is good at eliminating the contact resistance. The approximate number of indepen-
dent measurements for this pattern with N electrodes is about N%/2. Then, for a cubic mesh
as shown in Figure 7.7, if the length of each side of the mesh is L and the length of each side
of one element is 1, the expected element size can be calculated as 1> L / (N23/ 2).

Step 3 Designing excitation/measurement patterns

Assume an arrangement of electrodes and perform the sensitivity analysis with the pre—de-
signed mesh. It is suggested to arrange electrodes as evenly as possible surrounding the
boundaries of the working model. Since the change of excitation pattern arrangement is not
practical in most of the cases, it is better to make as many measurements as possible unless
the system restricts one to do so. Two types of excitation patterns are recommended for a
two-dimensional problem according to the accessibility theory. First, each excitation pat-
tern uses a pair of electrodes which are right across, as shown in Figure 8.1 (a). Secondly,
each excitation pattern uses a pair of electrodes which covers a “corer” of the entire region,
as shown in Figure 8.1 (b). Such patterns can approximately make most of the elements ac-
cessible at least for a coarser mesh. Then, the combination of these different excitations can
be used to obtain a set of “semi—optimal” current patterns for the problem in topological
sense. In the case that objects have relatively fixed sizes and positions, a standard set of exci-
tation patterns can be set up after a series of trial cases is performed.

Step 4 Performing EICT imaging with the coarse mesh

The coarse mesh is first used to generate a trial image. If the average potential difference
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(a) Excitation pattern with each pair across (b) Excitation pattern with each pair covers a corner

Figure 8.1 Recommended excitation patterns

keeps going down as the iteration procedure proceeds, the mesh is the one which is suitable
for this problem, and the trial image is the final one. If the average potential difference starts
going up after a certain number of iterations, the mesh cannot represent the problem properly.
Then, stop the imaging procedure and store the result.

Step 5 Performing imaging with finer mesh

A finer mesh is then switched on to continue the procedure. The stored result from the coarse
mesh now becomes the initial guess of the conductivity distribution for the finer mesh. It
would be better if this new mesh can be modified with elements of different sizes when the
previous coarse mesh has given a blurred picture. In this case, smaller elements can be
pléced around the area where the object boundaries might be. Add more excitation patterns
in and start the imaging procedure again. Repeat Step 4 and Step 5.

Step 6 Solving the under—determined problem

If the finer mesh still cannot provide a satisfactory image in Step 5, the problem can be treated
as being under-determined. In the case that more electrodes can be added in, go to Step 2
and repeat the previous procedure. Otherwise, re-arrange the electrodes according to the

method we discussed in Chapter 3 and Chapter 7 to make part of the region over—determined,
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then go to Step 2.

8.1.3 Software recommendations

It is difficult to solve a three-dimensional EICT problem in a body with arbitrary shapes.
The body with complicated geometry requires powerful software to calculate the field solu-
tions in three—dimensions. There are some commercially available three—dimensional solv-
ers to build three-dimensional finite element models for complicated geometry. One of them
is [-DEAS from SDRC, which can create many three-dimensional shapes with a very user

friendly interface.

8.2 An EICT Nuclear Waste Monitoring System in AECL

A nuclear waste monitoring system was built by AECL, Atomic Energy Canada Ltd., and
has been under test for about a year. The preliminary results show good agreement between
the theoretical solutions and the images generated from the EICT system. This is encourag-
ing to apply this technique in a practical environmental protection problem.

8.2.1 Background in nuclear waste monitoring

Current approach of measuring the in—situ properties of Reference Buffer Material (RBM)
at the Underground Research Laboratory (ULR), Atomic Energy Canada Ltd., is by taking
direct measurements. The instruments are installed and readings are taken directly at their
point of installation. There is great certainty in these measurements since the location of the
measurements is precisely known, and the measurement is taken as directly as possible.
However, since the scale of the currently performed experiments is so large, a corresponding
large number of instruments has to be installed in order to get fine enough resolution of detail.
This affects the results of the measurements since these instruments influence the measured
properties of the system as a whole. As well, there is a great difficulty in accessing the instru-
ment after installation and as a result, instruments often cannot be repaired, replaced, or
maintained.

As a remote sensing technique, EICT provides an alternative way to measure ground water
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infiltration of reference buffer material. In AECL, itis tested to be used to study components
in Canadian Nuclear Waste Management Program’s Concept of storing high—level radioac-
tive waste by measuring saturation levels in buffer material since impedance values relate
directly to saturation levels. The RBM is the primary engineered boundary between high-le-
vel radioactive waste and the sensitive biological systems, and fluid transported by ground
water is the primary means of carrying the contaminates between these systems. Itis critical
to the Canadian Nuclear Waste Management Program to be able to study ground water flow
in RBM to verify the Concept.

8.2.2 Problem description and system design

The region to be studied is a cylinder with measuring points contacting to the depth of 240
meters underground. A data acquisition system has been constructed along with a laboratory
experimental apparatus to verify that measurements can be taken and valid results can be
determined by this approach. The method works through injecting current into one or more
electrode pairs in contact with the buffer and measuring voltages at all electrodes[35, 36].
Two finite element meshes, one coarse and one fine, are designed for this EICT system. The
element used in both meshes is quadratic element with 9 Gauss points. There are 32 elec-
trodes arranged on the circular boundary with 10 of them to be taken as excitation pairs. With
the sometimes pattern in measurement, for the coarse mesh, there are 10x (32-2) =300
independent measurements corresponding to 113 unknown element conductivities; while
for the fine mesh, the same number of independent measurements are used to recover 196
unknown element conductivities. The preliminary results show good agreement between
the theoretical data and the data from the images recovered with EICT algorithms. It indi-

cates the promising of this technique in environmental applications.

126



CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH

Three—dimensional applications of EICT are the reasons for studying this topic. Efficient
and stable algorithms are important to the success of EICT systems. This thesis carries out
research on finding algorithms which are suitable for three-dimensional EICT imaging by
comparing different algorithms, not only in terms of speeds of convergence but also their
ability to process large amounts of data from three—dimensional systems in a robust manner.
Error function minimization algorithms discussed in this thesis partially meet these require-
ments. The ability of solving under-determined problems using such algorithms is ex-
plained. The cause of slow convergence with error function minimization algorithms is in-
vestigated in detail and new adaptive schemes are introduced to speed up the convergence
process. Excitation effects and design rules for better excitation patterns are initially dis-
cussed, with sensitivity and accessibility analyses using network approaches. Methods of
increasing resolution under limited number of independent measurements and using finite
fineness meshes are proposed and tested. Simulations in two— and three—dimensional prob-
lems are performed. The measurement error effects are discussed with two—dimensional ex-
amples. Excitation effects on image quality in three-dimensional imaging are studied. The
conclusions of these investigations are then summarized in the form of a set of guidelines

for building a successful EICT industrial machine.

9.1 Conclusions
Comparisons of EICT algorithms with iterative characters Previous research focused
on matrix inversion algorithms and evaluated different algorithms mainly by comparing

speed of convergence in terms of iterations.
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1. Matrix inversion algorithms

These algorithms use Newton-Raphson-like procedures to obtain acceptable solutions.
Dense matrices cannot be avoided with these algorithms, which restricts the algorithms abil-
ity to deal with large three-dimensional systems.

Matrix inversion requires that the number of independent measurements be larger than the
number of unknown element conductivities. As the number of electrodes may be limited
in an EICT system, necessary compromise for such a condition results in a relatively coarse
finite element mesh. Thus, these algorithms, in general, cannot recover an image with de-
sired details.

Since the internal information is mapped onto the boundary measurements, matrix inversion
algorithms are more sensitive to measurement noise or boundary distortions. Such mapping
is efficient only when the entire mesh to be imaged is accessible.

Most simulations with matrix inversion algorithms have been done by assuming some de-
gree of congruency between the objects and finite element meshes. Therefore, the testing
condition is artificial rather than practical since it is impossible to design a mesh to accom-
modate completely unknown objects.

2. Error function minimization algorithms

The speed of convergence of EICT algorithms should not be used as the only factor for algo-
rithm evaluations, especially when the algorithms have different objectives. Compared with
matrix inversion algorithms, error function minimization algorithms have more advantages
which have not been fully studied.

Error function minimization algorithms do not result in dense matrices. Sparse matrices
from such algorithms make it possible for the algorithms to process large amounts of data
from three—dimensional systems.

Most importantly, error function minimization algorithms can solve under-determined
problems which are more realistic in applications. In the real world, an EICT problem with

a limited number of measurements is always under—determined in the sense of representing
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infinite details in a continuous field problem with finite models. Therefore, error function
minimization algorithms are more suitable to the naturally occurring problems.

Error function minimization algorithms calculate new element conductivities one element
at a time. They are thus more robust for measuring errors and boundary distortion.
Simulations without congruency between objects and finite element meshes are successfully
performed and image qualities are compared.

Algorithm improvement The least squared technique proposed for the error function mini-
mization algorithm is good at providing the convergence direction for the algorithm and
keeping a currently best solution. By combining image processing and function minimiza-
tion techniques, improvements and modifications to EICT so that they speed up the conver-
gence procedures. Two proposed schemes in this thesis have proven to be efficient and reli-
able.

Network models for EICT Network recovery with error function minimization algorithms
help identify problems from EICT algorithms and systems. They can also be used to discuss
the characteristics of EICT systems.

Numerical and topological features represent two aspects of an imaging system. Numerical
features depend on the system’s parameters, while topological features of the system, which
have been neglected previously, reflect the structure information which is not parameter de-
pendent.

Sensitivity and accessibility analyses are essentially employed in this thesis to study EICT
with network methodology. Reliable convergence regions can then be identified according
to different EICT problems. Effective excitation patterns, which do not need to be changed
during the imaging procedure, are determined based on such regions.

Resolution improvement with mesh interpolation When the number of independent mea-
surements is limited, image resolution with these algorithms can still be improved by inter-
polating the element conductivity values in updating procedures without increasing the com-

plexity of meshes and computation effort. With the methods introduced in this thesis, a
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proper mesh can be found for each individual imaging problem.
System design A set of guidelines for building a successful EICT industrial machine is also

proposed in this thesis.

9.2 Future work

Future research on EICT algorithms and systems can be addressed as follows:

1. The limitations of the EICT systems with error function minimization algorithms need
more study.

2. Sensitivity analysis should be further investigated and be employed in the peak—detection
method to decide, more intelligently, the regions where updating element conductivity
should be accelerated.

3. The peak detection method in three—dimensional imaging needs to be implemented.

4. The improved image resolution with the peak detection method needs to be evaluated
more thoroughly.

5. More tests, in simulation and in experiments, are needed to verify the guidelines proposed
in this thesis for building a successful EICT system.

6. Measurement effects, such as skin effect (e.g. in breast cancer detection), need to be dis-
cussed.

7. More investigations are needed to explore the relationships between the sensitivity/acces-
sibility and excitation/measurement patterns so that better final image can be obtained.

8. Network recovery proves that the principles and algorithms of EICT can be used in fault
diagnosis of printed circuit boards. Research can be performed to investigate the possibili-

ties and limitations.
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