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ABSTRACT

Electrical Impedance Computed Tomography (EICT) seeks to create an image of the con-

ductivity distribution inside a body, based on boundary measurements. This thesis studies

one class of EICT algorithms with iterative characters-the error function minimizational-

gorithms-whose features have not been ñrlly explored. Research shows that these algo-

rithms can reconstruct images from under-determined problems, while the algorithms with

Newton-Raphson-like procedures cannot do. With the use of the sparse matrix technique

and the Point Iterative Point Accumulative scheme, the algorithms are capable of dealing

with large amount of data generated from three-dimensional EICT systems. Compared with

other algorithms, they are relatively insensitive to measurement errors. Acceleration

schemes based on imaging processing techniques are introduced to improve the speed of

convergence and the quality of images. Designing excitation pattenns is a key issue of EICT

systems. This thesis suggests two approaches, with sensitivity analysis and graph theory,

to design better excitation patterns. Such designs do not require excitation pattems to be up-

dated during the imaging procedure. Searching for a proper finite element mesh depends

on the true conductivity distribution of individual problems. This thesis proposes a proce-

dure of starting an algorithm with a coarse mesh and switching to a finer mesh later to reduce

computing time, and to find a mesh that is suitable for a particular problem. The contradic-

tion between image resolution and reconstruction speed is also discussed in ttris thesis. An

alternate method, associated with the error function minimization algorithms, is introduced

to increase resolution economically. It solves elecfical field potentials with a pre-designed

mesh, but improves elementconductivities byinterpolating conductivity distribution within

each element. Simulations in two- and three-dimensions using the discussed algorithms are

conducted. Excitation pattern effects on three-dimensional images are specially addressed.

A set of principles for industrial applications is then presented and a real EICT system is de-

scribed.
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CHAPTER 1

INTRODUCTION

In recent years, Electrical Impedance Computed Tomography(ElcT) has received increas-

ing attention. Progress in image reconstruction algorithms has been achieved and applica-

tions in biomedicine and in geophysics have been reported[4, 13,3]1. EICT offers the ad-

vantages of reduced biological hazard and less expensive hardware. As a result, it can be

used as an altemative means for continuous monitoring in medical or environmental applica-

tions.

1.1 Electrical Impedance Computed Tomography

Electrical impedance methods have been used in geological and mineral prospecting appli-

cations for a long time[38]. Such methods is to employ an artificial source of current which

is introduced into the ground through point electrodes or long-line contacts. By measuring

potentials at other electrodes in the vicinity of the current flow, it is then possible to deter-

mine an effective or apparent resistivity of the subsurface.

Electrical impedance methods have also been applied in the medical ñeld to measure certain

overall cardiac parameters, such as intrathoracic fluid volumes, based on large conductivity

contrasts in the human body (due mainly to the salinity differences between fluids contained

within and between various organs). Henderson and Webster[ 1 3] built an "Impedance Cam-

era" system to display isoadmittance contours of the chest under the assumption that the cur-

rents injected into the body flowed in a ray-like manner. Current through each electrode ar-

ranged on a patient's back was recorded, and the corresponding impedance of the volume

was calculated for contour display. Although this technique does not account for current

spread throughout inhomogenerous body organs and so cannot yield detailed images, the in-

formation could be a significant diagnostic tool, particularly in cases of pulmonary edema.



EICT is a development of the traditional electrical impedance measurement methods. It at-

tempts to image the electrical impedance (or resistivity/conductivity) distribution inside a

body using electrical measurements on its boundary. When a current is injected into a body

through its surface, potential distribution on the surface is measured.

The main differences between EICT and traditional electrical impedance measurement

methods are that: first, the distribution of the conductivity inside a body is not in any pre-

sumed pattem ( cunents do not flow in a ray-like pattern as for X-ray tomography ); and

second, the target model is not constructed based on lumped-elements, i.e. not network mod-

els, but by electrical field estimations.

1.2 Developments on EICT Models and Algorithms

Price[3 i] first introduced the tenn EICT in 1978, indicating the application possibilities for

EICT in medical science and proposing network models for an EICT medical system. How-

ever, such models, as shown in Figure 1. 1, were proven to be too simple to represent the elec-

Figure 1.1 Network models proposed by Price for EICT

trical current behaviour within the body. The algorithm Price suggested for the reconstruct-

ing conductivity distribution produced images of low quatity[2].

'Wexler, Fry and Neuman [41] investigated the problem and pointed out that part of the reason

for the poor image quality, with the prior proposal and some other related methods, was that

they all assumed that the current injected into the body followed ray-like paths. In fact, true

current paths depend on the conductivity distribution inside the body, which is unknown at



the outset. The effect of contact and spreading resistance, thus included, lowers the quality

of measurements that need to be accurate in order to produce fine tomographic detail.

To describe the current flow path in a continuous medium correctly, electric field equations,

i.e. the Poisson or the Laplaceequations at low frequencies, must be employed in EICT algo-

rithms. As the method considered to be most suitable for the problems not only in the field

with arbitrary geometry but also of the inhomogeneous fîeld, the Finite Element Method

(FEM) is appropriate to calculate potential distributions during the EICT imaging process[4,

221. Wexler, Fry and Neumanl4l] and Murai and Kagawal2Tl therefore introduced finite

element models for this method and discussed the conductivity distribution estimation pro-

cedure from electric field solution and network sensitivity theory, respectively. They indi-

cated that the estimation of electrical conductivity distribution within the body is an inverse

and nonlinear problem. As a result, an iterative approach had to be implemented for image

reconstruction.

With improvements of EICT, Tamburi, Roeper, and Wexler[37] applied their algorithm to

the mapping of an effluent plume in the vicinity of a leaking landfill site. Woo et al. Í441

using simulation and human body experiments demonstrated that average lung resistivity

can be measured with an EICT system using the modified Newton-Raphson algorithm. For

the purpose of environmental protection, Atomic Energy of Canada Ltd. has proposed and

is testing an initial prototype of an EICT system, to image saturation levels for monitoring

buffer material in high-level radioactive waste repositoriesl35, 36].

1.3 Applications of EICT

Although EICT is still in a research and development phase, many successful experiments

and applications indicate its potential for future use within the industry.

1..3.1 Environmental monitoring

With the end of the Cold War, stored nuclear material and wastes in the United States and



Russia have become a recognizedthreatto our environment. Reportedly, "during the Cold

War, a comer of Washington state was home to the plutonium industry. Cleaning up the dead-

ly mess is now providing the biggest environmental challenge ever". There are 14 US nu-

clear weapon industries spread over 14 main locations in the United States. Hanford, Wash-

ington is estimated to have two-thirds of the highly radioactive waste. From 1945 to 1986,

an estimated 190,000 cubic meters of highly radioactive waste and760 billion litres of less

radioactive liquid waste and toxic chemicals were stored, dumped or poured into ground

there. From the nuclear pollution point of view, people in North America and Russia are liv-

ing on the most polluted places on Earth. Long-term monitoring is needed while the clean-

ing up of waste proceeds. EICT may provide an economical, safe, and convenient way to

conduct monitoring. Atomic Energy Canada Ltd. is building an EICT system for such a pur-

pose. The simulation and primary experimental results are in conformity with the theoretical

calculations.

1.3.2 Medical applications

EICT has potential for use in medical applications, due mainly to impedance differences be-

tween different tissues and organs. Thble 1.1 shows the impedance differences between

some typical parts of the human body at low frequencies.

Breast cancer diagnosis Approximately 1 in 12Canadianwomen will develop breast can-

cer over their lifetimes. Every year some 9000 Canadian women develop breast cancer (

about 74per 100,000 )W1. Although curable, particularly when detected at an early stage,

breast cancer kills 4300 Canadian women per year ( about 33 per 100,000 ) and is the major

cause of cancer deaths among women. Because it tends to occur earlier in life than other

cancers, and earlier than other major causes of death - such as cardiovascular disease-,

breast cancer has been shown to be the greatest cause of early loss of life among Canadian

women. In many western countries, the yearly incidence is between 75 and 95 cases per

100,000 women and increasing. It is one of the leading causes of death in women over 30

years ofage.



Table 1.1

Resistivity of body tissues at low frequencies

Tissue Resistivity

Blood 208

Liver s06

Heart 216

Lung 144

Fat 2060

Skeletal 643

* Mean resistivity in Ohm.cm

The means to prevent breast cancer has not been found. Mammography used to be consid-

ered as the only reliable method of detecting nonpalpable cancers, and could detect many

small breast cancers in the early stages when they may still be curable. However, there are

questions onitsreliabilitynow. Besides, mammographyinvolves radiation, andis expensive

to apply in clinical bases. [n recent years, there has been a great interest in developing alter-

native techniques for breast cancer imaging. Potentially fruitful areas for research are: digi-

tal mammography, applications of digital imaging process and pattem recognition tech-

niques in digital mammography, and digital diagnosis.

EICT is one such area which may be able to provide inexpensive and less hazardous diagno-

sis of breast cancer in its early stage. Research has been carried out in measuring the imped-

anceofbreastsl18]. Theresistivityofcancertissueisabout20timeshigherthanthatofnor-

mal breast tissue. Simulation results in two-dimensions show that a tumor area c oveitng l7o

of the cross-sectional breast model area produces more than 47o of the variation in voltage

magnimde at the surface electrodes when compared to voltages for a normal breast. As a

relatively new breast cancer detection approach, EICT may provide earlier detection than



is currently possible. This technique would also be effective on young women[18].

Other possible diagnoses Based on the discussion above on the possible medical applica-

tions of EICT, we can see the potential for diagnosing other lung diseases, or monitoring

heart movement dynamically, when X-ray based techniques cannot be used.

1.3.3 Mine detection

There are still dangerous places on the Earth as a result of major wars. In Cambodia, for ex-

ample, life is continuously threatened by underground mines. It was reported that 6 to 10

million explosive mines can still be found in rural areas, making shortage of cultivatable land

there even more critical. Traditional detection methods cannot solve this problem because

most of the mines are covered with plastic materials. EICT is considered to be the only way

possible to clear that land. In Canada, there are unexploded underground ordnance at Suf-

field, Alberta. It would take years to clean them up using traditional methods. The Depart-

ment of National Defence has tried to find efficient approaches to detecting those ordnances.

Again, EICT might be a way to distinguish metal and plastic-covered ordnance from soil.

L.4 Purposes of This Thesis Research

Although significant progress has been made in EICT algorithms and systems, this method

is still in its research stage as a relatively new image-generating technique. EICT's potential

applications in environmental and medical areas demand more thorough studies related to

industrial settings. This thesis describes research conducted on EICT algorithms as well as

problems arising from practical EICT systems. It seeks to formulate a set of theoretical and

practical principles on which to base an industrial (medicaUenvironmental) EICT machine.

1.4.1 Studying EICT algorithms

Algorithm development has been the major research area of EICT. For EICT algorithms

with iterative features, those using Newton-Raphson-like procedures have been studied the

most. Such algorithms give faster convergence rates than other iterative algorithms. How-

ever, the large matrix inversion restricts the algorithm's ability to deal with large, three-di-



mensional imaging systems, which is important in practical applications. This thesis investi-

gates altemate types of iterative EICT algorithms that do not use Newton-Raphson-like

procedures and have not been fully studied. The sparse-matrix technique and the Point Itera-

tive Point Accumulative method for field solutions[33] can be introduced in these algorithms

to enhance their ability to handle large, three-dimensional systems. Previous comparisons

of different algorithms showed that the speed of convergence of this type of algorithm is

slow. Improvements on the convergence rate, therefore, are sought in this thesis.

There are other EICT algorithmsll,ll, 12,39,401, such as backprojection. Some of the al-

gorithms assume that current flows in a ray-like manner, while others do not have iterative

characters. Research on those algorithms is beyond the scope of this thesis. We have focused

only on iterative algorithms which produce solutions from electric field equations directly

without any assumption about the paths of injected current.

1.4.2 Research on EICT's resolution

EICT is currently considered to be a low-resolution technique. Little work has been done

to investigate the causes of this problem and possible improvements. Two causes of low res-

olution are discussed in this thesis. One is that the number of electrodes in an EICT system

limits the number of unknown element conductivities. The average element size of a finite

element mesh therefore cannot be designed fine enough to accommodate the actual sizes of

small objects existing in the region to be examined or to describe the sharp edges of objects.

The other cause is that the precision of measured boundary potentials cannot reflect small

changes caused by variations in conductivity distribution.

This thesis tries to find an anotherway to increase the resolution ofElCTimageunderlimited

measurements. It also includes research to improve image quality in areas where boundary

measurements are sensitive to the conductivity changes.

l.4.3Investigating modelling effects on algorithm success and image quality

Most of the previous simulation results using different EICT algorithms were obtained by

assuming congruency between the objects and a finite element mesh. Such an artificial situa-



tion in image reconstruction makes the simulation results less realistic. In practice, the

shapes of objects and contrasts between objects and background are unknown. As a result,

the proper mesh suitable for a particular problem is unknown in advance. It is impossible

to design a finite element mesh that exactly covers the shape of the objects. This thesis inves-

tigates the effects of non-congruence ( i.e. when the edges of a finite element mesh do not

describe targetobjects exactly ) on the success of EICT algorithms and the quality of EICT

images. Schemes to search for a suitable mesh for each individual EICT imaging problem

are proposed.

1.4.4 Three-dimensional imaging simulations with EICT

Most of the reported simulations and experiments with different EICT algorithms dealt with

images reconstructed using two-dimensional finite element models. It is believed that the

principles of algorithms which are successful in two-dimensional imaging would be easily

extended to the three-dimension space. However, there are specific requirements to be satis-

fied in three-dimensional EICT imaging which have to be discussed if an EICT system is

to be realized. Industrial applications of EICT require images recovered from solid three-di-

mensional electrical field models by appropriate algorithms within a reasonable computing

time. In most applications, excitations/measurements on all six sides of a three-dimensional

body are not allowed. For example, mine detection problem is one of such cases where it

is a problem to reconstruct object images in a three-dimensional body with excitations/mea-

surements available only on the top two-dimensional surface. Breast cancer diagnosis with

EICT is also such a problem since it allows excitations/measurements placed on five sides

of a breast, if, for the simplicity, recovering the breast as a cube. There has been limited dis-

cussions andresearch on the effects of the limitedexcitations/measurements in three-dimen-

sional EICT imaging. Another feature of EICT in three dimensions is the complexity of fi-

nite element models. Since the amount of data to be processed in a three-dimensional EICT

system is much larger, compared with those in a two-dimensional system, the finite element

model cannot be as complicated as that in a two-dimensional problem. This thesis simulates



three-dimensional problems with solid finite element models, and studies image quality

with incomplete excitations/measurements.

1.4.5 Designing excitation patterns

Design of excitation pattern is important to the success of EICT algorithms. Previous work

focused on searching for better current injection pattems which induce the maximally mea-

surable boundary potentials[ 10, I7l. Since the best excitation pattems depend on the known

conductivity, these kinds of designs result in on-line data processing and hence difficulties

in eliminating contact resistances. This thesis discusses the relationships between the image

quality and the convergence speed with different excitation pattems. Methods of designing

excitation pattems which do not depend on the a priori knowledge of the true image are de-

sirable. Better excitation patterns can be decided before an EICT algorithm begins, and the

original approaches to eliminating contact resistance will not be affected.

1.4.6 Outtine of the thesis

In the first and second chapters, this thesis presents a general review on the research and

applications of EICT and important previous work done in developing effrcient iterative

EICT algorithms. Enor function minimization algorithms are selected as the algorithms,

since they are suitable for EICT three-dimensional imaging. It is also pointed out in Chapter

2thatthe speed of convergence should not be taken as the only factor when EICT algorithms

are evaluated.

In Chapter 3, the thesis proposes the use of a multþort resistive network as the discretized

model for EICT to eliminate discretization effects introduced by numerical methods when

EICT algorithms are used in continuous conductivity distribution imaging. Then, network

theory can be used in guiding the analysis of EICT problems, such as the excitationy'measure-

ment effects of various EICT methods. Graph theory and sensitivity analysis based algo-

rithms are developed for excitation/measurement pattern designs of EICT systems. The net-

work recovery shows an important feature of the error function minimization algorithms:

under-determined problems can be handled, which the algorithms with Newton-Raphson



like procedures c¿mnot solve. The thesis also discusses the possibility of, and schemes for

placing the limited number of electrodes more efficiently, to reveal interior details of inter-

est.

Chapters 4 and 5 explain the causes of a slow convergence rate of error function minimiza-

tion algorithms and propose improvements to speed up convergence. An image processing

technique based method, i.e. peak detection method, is then introduced to predict possible

positions of target objects. An adaptive modification scheme and an acceleration factor are

put into the element conductivity updating procedure to speed up convergence. Simulation

results show significant improvements in convergence speed and image quality. The sharp

edges of objects can be better recovered. The image processing technique combined with

the function minimization method, gives an alternate way to improve solutions in EICT in-

verse problems.

The design of a finite element mesh used by EICT algorithms also affects both the conver-

gence speed and the image quality. To date, there has never been complete discussions on

such issues. Chapter 6 addresses the relationships between the finite element meshes and

the final solutions. It suggests the use of different meshes in evaluating field potentials and

in updating conductivity distribution. The method discussed in this chapter resolves the con-

troversy of finer finite element meshes and limited numbers of electrodes used in an EICT

system. It can greatly improve the image quality without increasing computational effort.

The effect of finite element mesh refinement on solution uniqueness is also discussed. A

procedure is proposed to make use of various mesh densities in the EICT imaging process

to find a suitable mesh for a particular problem. Such a procedure avoids using a too fine

mesh at the beginning of a solution process and keeps rapid convergence speed to a preset

limit until an educated initial guess for a better mesh is reached.

Chapter 7 discusses two- and three-dimensional imaging procedure with EICT algorithms.

A solid finite element model in three dimensions is set up for the purpose of three-dimen-

sional simulations. With the help of network models, the effects of excitations/measure-

l0



ments on image quality in two- and three-dimensional imaging are addressed. EICT algo-

rithms cannotbe employed in an industrial system unless its robustness is tested. In Chapter

7, a number of simulations are carried out to determine how image quality is affected by the

boundary distortion effect and the measurement random error effect. It is demonstrated that

errorfunction minimization algorithms and improvements introduced in this thesis are rela-

tively robust.

Chapter 8 summarizes the results of research which the thesis discovers and builds on the

findings of Chapter 3 to7 by giving a set of guidelines for designing EICT systems by indus-

trial applicants. As an example, the EICT system developed and tested by the Atomic Energy

Canada Ltd. is described in this chapter.

There are still many issues that need to be discussed. Chapter 9 presents the conclusions

learnt in this thesis work and proposes possible research topics to be performed in the future.

1l



CHAPTER 2

EICT ALGORITHM SUMMARY

Most EICT algorithms are nonlinear reconstruction algorithms with iterative characters.

Starting from an initial guess of a given conductivity distribution, an algorithm is applied

to update conductivity in a way that creates a steady improvement in the agreementbetween

predicted and measured data. The main issues in such algorithms are stability and speed of

convergence. In the past decade, efforts have been made to develop EICT algorithms with

faster convergence speed and to devise other schemes to improve image quality[4, 15,46).

Optimal reconstruction algorithms are still under development.

Most of the iterative EICT algorithms currently used employ the Poisson (Laplace) equation

to describe the continuous electrical fieldproblems and solve potential distributions with the

Finite Element Method (FEM) . They can be classified into two types: one solves the electri-

cal field equations by applying different boundary conditions to the body, and searches for

the true conductivity distribution by minimizing the specified error functions with a least-

square technique; the other connects conductivity distribution changes with the transfer im-

pedance for a pair of current and voltage electrodes by network sensitivity theoryf27l, and

improves the estimated conductivity distribution iteratively with Newton-Raphson-like

procedures. In this thesis, we call the first type "Error Function Minimization Algorithms";

and the second type, "Matrix Inversion Algorithms".

2.1 The Finite Element Method

One of the main differences between traditional electrical impedance measurement methods

and EICT is that the latter uses electric field equations to govern this inverse problem without

assuming electric current paths in advance. FEM is the numerical method used in solving

electric field equations to obtain the potential distributions inside the region of interest under

t2



an assumed conductivity distribution and boundary conditions.

2.1.1 Numerical solution of the Poisson's equation with the FEM

The Poisson equation is given by

-Y .rcYþ : f (2-r)

where K , Ø , and f are the conductivity, potential distributions, and cuffent source distribu-

tions within the region. The first step of the FEM divides the region of interest up into many

smaller regions called elements. The total region is then described on an element-by-ele-

mentbasis. The most common shape for individual elements is the triangle or quadrilateral.

Figure 2.1 shows a two-dimensional region with quadrilateral elements.

j-th node

i-th element

Figure 2.1 An arbitrary region divided into quadrilateral elements

The FEM uses the variational principle, in which the field is represented using a piecewise

continuous function and the variational integral is minimized with respect to the residual or

functional to best approximate the actual fietd. A complete description of the variational

method is given by Mikhlin[22].

When the total region is divided into smaller elements, the values of conductivity r, within

each element are assumed to be constant. The field @ is given by

ø : io,(*,v)ø, (2-2)
t=1

where a¡(x,y), known as a shape function in the FEM, is the interpolation polynomial defîned
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over the x-y surface for node i, and n is the total number of nodes within the element. Equa-

tion (2*2) then can be written as

a : {E: L'q Q-3)

The appropriate functional for the solution of the Poisson's equation is

, = I|oru,%r,.<þt dxrly - rf"øo ^ - tll"ør ^ø e-4)

where h is the Neumann condition on the boundary. To find the minimum, Q-g isdifferen-

tiated with respect to the variational parameter ø and set to zero. Then,

# ='ll,a*#.X@r¡ ,rx,ty - r#f"ro ^ -'f,ll"ü *0, = o (z-s)

Substitutin g (2-2) into (2-5) and differentiating with respect to the new variational parame-

ter øi , we have

i. = rll,.r##.#Pr: dxrlv - rl,o# ds - 2ll,t*Y, dxctv : o Q-6)

Since

ôþ :qi @:ôoi @:ôaiWi ðx ôx ðy ôy

and

w : *ø, * *ø, +ôx ôx'' ôx

(2-6) canbe reduced to

lL"r#ç,*ffu,* ..)#. <frø,*ffø,* ,þr; dxdy

-rlrha¡ds-zffrn,a.ø o i,j r,2,...,n e-.7)

The first integral yields a square n x n matrix where n is the number of variational nodal

points and the latter two integrals can be summed to yield a vector of length n. The resulting

set of linear equations can be put in standard matrix form as
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SL:þ.

where

s¡' IL'''## . XX'
bij 

luno,a, 
+ 

I I"*, **
and ç, are the unknowns to be solved.

44
x Zot(E,rù*t y Zot$,rùyt

(2-8)

(2-e)

(2-n)

dxdy

The problem now is to perform the integrations. One approach is to map a standard square

element into a general quadrilateral before integration. The transformation

i:l t:t

is used to map the square element in local coordinates to the general quadrilateral in global

coordinates as shown inEigare2.2.

t0

Figure 2.2 Transformation from local to global coordinates

The shape functions for the standard element n E -q space are

d,1 (1-6Xt-Z) : 1-6-rt+Ëtt

a,2:80-rù:€-Ërt

d3 : Ërt
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d,4 : qQ-Ð : nt+Ëtt Q-12)

To integrate (2-9), we then introduce new variables of integration

x:x($,ry) y:y(Ë,rt)

To map the elementin local space to global space, the Jacobian transformation is introduced

AS

(2-13)

Then, (2-9) canbe simplified as

[ [rrø,r> 
rtxdy I Jr.t tx(E,tù,y(E,tù] m d|drt e-r4)

The values of + *td + can then be determined byôx ôy

[#] ",[Ë], , 
Q-ts)

Now, we have a desired result to perform the integration over a square element.

2.1.2 Gaussian quadrature :

Manynumericalquadratureschemesareavailableforfiniteintegrationoverastandardinter-
:

val. Gaussian quadrature method[4], which can integrate a polynomial of degre a zm- I îc-

curatelywithmsamplinglocations,isemployedinthisthesis.

In one dimension, the Gaussian quadrature formula for estimating an integral of a func-

tion Í6) on the interval - 1 < å < 1 takes the form

r1

[x';> dE : f.wiflEù e-t6) 
:IJ-_1 i:l 

:

where f, is some points located in the intewal. w, is a weight associated with the i-th point,

lA, ôx I
J _ ô(x,y) : I ô8, oq 

I": ô(*irÐ:luY ôY 
I

[uC ôr¡ 
-|
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and m is the number of points. The weights and points are found by supposing that / is a

polynomial of degree 2m-l and then computing the points and weights that guarantee an

exact result for such a polynomial. When m is even, all points come in r pairs with individ-

ual points in each pair having equal weight. When m is odd, å = 0 is one of the points

andtheremainingpoints againcomeinpairshavingequalweights. If fÐ = fo+f,E , then

+1
(
I flÐ dE :2fs = wLfs Q-t7)
)
I

whichrequires that f, = 0 and Wt = z. lf "(å) = fo+frË+fr|r+fr|' , then

(2-r8)
+1

I
lXçl dE :2fo+2f2/3 = 2w(fo+fzË?)

J
-t

which requires that f,, 5, = . å and w,, wz = t. Similarly, if Xål = 2¡g , then

+l

IfA dË zfs+zf+*2+ : 2wt(fo+fzËzt+f4Eþ +wzfo (z-ts)
J-'-' " 3 5 '"
-t

whichrequiresthar f,, f, - li , Ëz = 0 ,and w,, wz = ï, r, = l. Theresults

of these calculations for one-dimensional integration are summarized in "lable 2.1.

For multiple integration in two or three dimensions, the Gaussian quadrature fonnulas are

generalizations of those in one dimension:

+l +l
r1
| | sG,ù d1dry Zw¡w¡s6¡,ryì Q-20)
JJ
_l _r tJ

and
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Table2.l

Gaussian quadrature weights and locations

+1 +1 +l

I I Ih(e,ry,e)
-1 -l -1

djdryd|, Zw,wtrvoh($,¡,q¡Er)
i j,k

(2-2r)

The same locations and weights may be used in each of directions f, rl, Ë .

2.1.3 Higher-order and thre+dimensional elements

Higher-order approximations may be obtained by adding more nodes to the elements. Then,

the degree of approximation can be improved from linear to quadratic by taking 9-node

quadrilaterals as shown in Figure 2.3 (a). The higher-order elements used in the FEM can

(a) Higher-order element in two dimensions

12
(b) Linear element in three dimensions

Figure 2.3 Higher--order and three-dimensional elements

give better results for problems with curved boundaries. However, increasing the number

# of points [,ocations Weightsüu,

I E':0 )

,) Et. Ez = *# I

J
Ët. Es : - ,li

Er=o

5

9

8

I
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of nodes in each element means increasing the number of unknowns in the whole system.

More computational effort is then needed.

A simpleelementof theFEMin three dimensions can becreatedby addingdepth to atwo-di-

mensional element without changing the shape. The standard element in three-dimensions

is the linear element with 8 nodes as shown in Figure 2.3 þ).

The complete mathematical derivations for these elements may be found in standard refer-

ences[4].

2.2 Error Function Minimization Algorithms

An error function minimization algorithm defines an error function based on potential distri-

bution solutions from an initial assumption of conductivity distribution. The conductivity

distribution is updated by minimizing the error functions with a least-square technique.

Such algorithms include the Wexler algorithm[41], the Kohn-Vogelius algorithm[19], and

other algorithmsl4]. The main differences between these algorithms are at the element con-

ductivity updating step. This thesis will focus the discussions on the algorithms of Wexler

and Kohn-Vogelius in this chapter.

2.2.l Ngorithms of Wexler and Kohn-Vogelius

Wexler, Fry, and Neuman presented their algorithm in 1985, and Kohn and Vogelius reported

on a very similar one in 1986. Considering their similarities, only the procedure of the Wex-

ler algorithm is discussed in details.

To perform an EICT algorithm, a grid of electrodes has to be established over the surface

of the body to be studied. (The surface would be the ground in the geophysical situations,

orthesurfaceofthehumanbodyinthemedicalapplications) ThebasicprincipleoftheEICT

algorithm is that the surface voltages measured under a given current density are characteris-

tic of a particular conductivity distribution inside the body. By injecting and extracting cur-

rent at a pair of electrodes arranged at the surface of the body, and by guessing at the conduc-

tivity distribution, one can calculate a potential distribution throughout the body and, of
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course, at the surface. In the Wexler algorithm, such calculation is performed by solving the

Poisson equation, as described in (2-1), for continuously inhomogeneous media. Since the

inverse problem with a single excitation configuration will not, in general, produce a unique

solution, the measured potentials on the surface induced by this particular excitation are not

sufficient to give an acceptable image of the interior. Therefore, a sequence of linearly inde-

pendent excitations is necessary. The set of surface potentials corresponding to the sequence

of excitations is obtained by solving equation (2-1) using the non-homogenous Neumann

boundary condition

where h is current density on the surface of the body.

Assuming a given conductivity distribution, the required energy functional for solving (2-1)

is

î_ |r: 
JrcvQ.vQ 

dv - zJQf av

Using the Rayleigh-Ritz discretization procedure described in (2-4)

equation (2-23) becomes

F : ø'[*vq.vdt' dv þ ?4, I qf dv_J _J

Differentiating with respect to the field unknowns yields

u+ : 2[rcys..vq[ av ç - z[qf dvag ¡t' Y('' vL 
- J -

which if equated to zero and rearranged becomes

[ *on.vdr dv Q I* *J_

or as we have seen in (2-8)

(2-22)

(2-23)

(2-24)

(2-2s)

(2-26)

w:þ
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where

and

r¡ 
[ 

*,vo,-Ya¡ dv (2-21)

(2-28)

Equation (2-26) is a system of linear equations that can be solved for the discretized field

with different approaches.

Expanding (2-26) along row i and solving for the i-th unknown gives

lo, f av -\tlrcfia¡ .Ya¡ rlvl Q¡
tJ
" l*t (Ya¡.Ya¡) dv

(2-2e)

The conductivity and source may also be expressed as

K:rcrq:qfrc

r:fu:{l
so that (2-29) is now

(2-3o)

ZI"s¡ o, fi-)tl J{Yai.Ya¡)a* dvrc¡,l4¡
,ijk

Y'
/JNø'Ya¡)a¡, dvrc¡,

(2-31)

k

As the shape functions are known, the required integrals are pre-calculated into equivalent

weighting factor Íurays. Thus, (2-31) is simplified to

Zvu f¡- Z¡lw¡wÀQi
(2-32)

If the conductivity is defined as constant throughout each element, (2-32) reduces to

bi [a¡; av

jjti k

Zwu,¿,
k

J
Q¡

k

21



2v, f¡-*,¡ 2 w,þ¡
, i jjti

.h,Yt s-- (2-33)
rc¡Zw¡¡

k

With p known, the electric field intensity is given by

E:-Vø
Then, the cunent density distribution can be determined by

(2-34)

J : rE : -rcYø (2-3s)

which is Ohm's Law in point form.

Because the initial guess of the conductivity is unlikely to correspond to what was actually

inside the region when measurements were taken, the calculated and measured potentials

will disagree. Then, (2-1) is solved again using the measured surface voltages ( potentials

), i.e. the Dirichlet boundary condition

Q@ : s(s) (2-36)

where g(s) is the boundary potential distribution.

The disagreement in potential distributions throughout the entire region from the \s¡aann

boundary condition and from the Dirichlet boundary condition can be described as

(2-37)

This is a least-squares residual form, where x refers to current excitations. Taking the inner

product

€1ry 
41,@YØ.YQtc+?Jcvø.J+J.J) 

dv Q-38)

It shows the difference between the Dirichlet boundary condition solution and the frfs¡pann

boundary condition solution.

Substituting Qaq into (2-38) gives

€1ry 
4l"Q 

+ rcYQ¡ .Q + rcvç¡ dv
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€,y 
4l "@rqYQ 

.vØ{rc + 2rcrs,Yþ. J + J . J) rlv Q-3s)

A new conductivity distribution can be computed by minimizing (2-39) over the region as

}l,t.vO rlv

K!*t:,Mrø^ (2-40)

that is

# : ,4 
L@va 

.vø{ . dvrc + r4l 
,urr 

. Irtv : 0 Q-4r)

and simplified to

4|J"@vø 
.YØa' .dv rc : 

? [,øvø 
.u, (2-42)

which againrepresents a linear system.

Solving (2-42) for the conductivity at the i-th node produces

ZI,"tl .YQrtv-: > [,{aiYø).(YQa¡)rtv rc¡
x x jjti (2-43)K¡

ZJ,f"yø) . (a¡Yþ)rtv

Using (2-3O) the x-component of the field gradient becomes

+ :4r : {# zffir-ðx ôx'
(2-44)

The y- and z-components are generated in a similar manner, and thus (2-43) is written as !

l'T l.ou.ff* ,,Y* ,,Y,¡ o,ø^, ì,"¿'l 1|,."*r#Y#+.#ø¿ dvúþørc¡

lE¡ =

ì'l)1.a#:+. #+. #tuÐ dúþ., e-4s) 
:

:

Since the current density is not known in advance, it must be detennined prior to employing

(2-45) in a conductivity calculation. Initially, a conductivity distribution is assumed and us- 
:

ng (2-30), the x-component of the cunent density can be expanded as



J, : -*Aø^ðx : 
? 

o,#*, : I 2o,#ø, *, (2-46)

Performing similar expansions for J* and Jrallows (2-46) to be written as

,Ð 1;,,*+ . *T . #-¿ u,r,, -Z-¿'Ð 
Ð 1 ."*++ '#tuù ¿'çþ^Yï*l

rt!+l

¿,Ð T l3#+ . #+ . #y, ^,r.,, (2-47)

which, through the use of weighting factors, simplifies to

ItItI |*r^ñønJlf - > : 2**øø**j,*,1
rcf*t xjlnt j,ß>i I nt (2-48)

>I Zw,,þ,ø,,
xlnt

Further simplification is possible by employing constant valued conductivity elements. In

this case, (2-42) describes a pure diagonal form and (2-48) reduces to

Ki'*l
>:
xjlnt (2-4e):> 2w,,,,øþ*

xlm

The ,õ represents a field derived using natural N[supann boundaries while p is derived from

either total Dirichlet boundaries or from a combination of Neumann and Dirichlet boundary

conditions. (2-48) and (2-49) are the point forms for solving a new conductivity distribu-

tion.

The important advantage of this method is that it transfers the difference to the interior, rather

than to the boundary as in the Newton-Raphson-like methods. This yields a sparse-matrix

for using effrcient finite element method schemes, such as the Point-Iterative point-Accu-

mulative method[33]. In addition, the conjugate gradient method used in this algorithm

avoid solving large system matrices. Figure 2.4 shows the flow chart of the W'exler algo-

rithm.

In the Kohn-Vogelius algorithm, the error term is given by
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solve Neumann problem

solve Dirichlet problem

Figtre2.4 Flow chart of the Wexler andKohn-Vogelius algorithm

The conductivity updating procedure is described as

Eyy 
|l,giJ¡ 

+ *ivø)' dv

ll,Î a'
rcr*' ry@+

Similarly as in the Wexler algorithm, the formula for updating element conductivity after

an iteration step is derived as

(2-s0)

(2-st)



>: II w¡¡mþþ*
xjlm

Kin*l ( I I2w,,,,øþ*
xlm

¡i rci (2-s2)

The algorithm iteratively refines the conductivity estimation until acceptable agreement is

achieved. At that point, it is assumed that the conect conductivity is known.

2.2.2 Related imaging algorithms[4]

A variant of the'Wexler and Kohn-Vogelius algorithms arises by considering the error term

as

(2-s3)

where aT: ( al, ã2, ... ãm) is an m-vector of constant a¡. The element conductivity updating

formula is

rc/2

ZI, vttt rlv | rc¡ tYþ¡t2 dv
x (2-s4)

Z|rtvç,t' dv Jrc-t vJz rtv
x

The major difference between (2-54) and the Wexler and Kohn-Vogelius formula is that r,

is only defined implicitlyby (2-54), since the conductivity appears on the right hand side of

the equation inside the integrals. Thus, it is an implicit formula for the updated conductivi-

ties.

2.3 Matrix inversion algorithms

2.3.1 The transfer impedance algorithm

Most of the previous discussions and comparisons on EICT algorithms leads to matrix inver-

sion algorithms [46] as the next step. In 1 985, Murai and Kagawa suggested a Newton-Raph-

son-like method for EICT, based on network sensitivity and transfer impedance theory[27].

Consider a domain V with conductivity rc(x,y,z). The potentialQ@,y,7) in V is governed by

the Laplace equation

en@) : *+lrroà*+r, * oì*-xO?t dv
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-Y .rcYQ : 0

with the boundary condition

rcG)Y : J
dn

(2-ss)

(2-s6)

(2-s7)

where J is an electrical current density prescribed at the surface. When the conductivity dis-

tribution changes from rc(x,y,z) to rc(x,y,z) + Ltc(x,y,z), the transfer impedance change Lz for

the pair of current and voltage electrodes (A,B) and (C,D) ( Figure 2.5 ) canbe given as

Figure 2.5 Problem description

r vø (r)LZI^Æ
Jv Iø

v*P*
The problem is to find the conductivity distribution r(-r, y, ¿) + Lrc(x,y, z) from the measured po-

tential distribution for the applied current distribution over the surface or from the measured

impedance z over the surface. The term Vglr + Âr) in (2-57) is then expanded with respect

to Âr and the higher order terms are neglected. (2-57) can be expressed as

Lz [ *vØ (rc) . vttt (rc) 
¿vJv Iç Iç

(2-s8)

Therefore, the iterative procedure is described as follows:

Lln):zx-zÍn): - [ nrvø-<*> . vttt (rc) ¿v e-sg)Jv Iø 16

wherez* is the measured transferimpedance andT't is theupdated transferimpedancebased
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the conductivity distribution rc(') at the n-th iteration. Zù can be calculated

Z;^) = AcDf Ia or l') = ltno/I,p . If the conductivity is constant over each element, we have

L/n):Z*_4n): _ f Su.¡"r,,,
J

(2-60)

where

S¡: -
vø (rc) (2-6r)

and it is evaluated by the finite element method.

The algorithm then can be described as follows:

Step (1) Assume an initial conductivity distribution;

Step (2) Calculate Lze for each electrode pair (A,B) and (C,D);

Step (3) Calculate the coefficient matrix and solve the small change of conductivity distribu-

tion;

Step (4) If the total conductivity change is smaller than a pre-set number, the convergence

is achieved and the procedure stops; otherwise, a new conductivity distribution is assumed

by rcr<'*tr : ¡ç!t'> ¡ [¡ç!t') and then step (2) through step (4) are repeated.

2.3.2 The output least-squares algorithm

The transfer impedance algorithm proposed by Murai and Kagawa needs to calculate the en-

tire finite element mesh with the standard Newton-Raphson method. In I 987, Yorkey, Web-

ster and Tompkins[46] published a modified Newton-Raphson method with an output least-

squared approach which tries to minimize the sum of the squares of the difference between

measured and predicted data.

Then, errors to be minimized is the output error function. It is

Iç1,,
t#*'

Q-62)

where4, is the measured voltage vector, and f is a function mapping a resistivity distribu-

tion r into a set of measured boundary voltages. To minimize (2-62), we differentiate

evr/,ù : *o-ro)r$-ø")
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ø with respect to r and set the result equal to zero

€y' [f']1f - Ø"1: O (2-63)

By expanding the left hand side of (2-63), and by keeping the linear terms and neglecting

higher order terms, we have an approximate matrix form for updating conductivities

Lr" : - [r v)]r{ Q\l-t[r, e)]ú(fl) - øol (2-64)

(2-64) defines an iterative procedure to find the real resistivity distribution r*. At the n-th

iteration, (2-64) is solved and new distribution is estimated by r.r'.'r = r¡@ + Lr,r, .

The derivation of the above formulas is known as either the modified Newton-Raphson

method, or the Gauss-Newton method. Its convergence performance is well known. When

Ø" is formed in the presence of additive zero-mean independent noise, the method becomes

the nonlinear least-squares estimation.

Similar to the algorithm of Murai and Kagawa, Yorkey's algorithm employs the Laplace

equation to describe the resistivity distribution incontinuous media andtheFEM to calculate

the surface potential distributions. To simplify Jacobian matrix computations, associated

with the standard Newton-Raphson method, they derived a simple formula to form individu-

al Jacobian matrix enfties with network compensation theory[15]. The simulation results

show that the algorithm possesses the convergence property of the Newton-Raphson meth-

od, but is quite sensitive to measurement noisel15].

2.4 Algorithm Comparisons

The major comparisons in other research work focused on the convergence rate of different

algorithms[46]. There are other aspects, which affect the performance of an EICT algorithm,

that ought to be thoroughly addressed. In general, error function minimization algorithms

deal with sparse matrices and conductivity distribution is updated on a finite element basis;

while matrix inversion algorithms generate dense Jacobian matrices and the conductivity

distribution is updated according to boundary measurements directly. These important dif-
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ferences were neglected in previous work when EICT algorithms are compared. When these

factor are considered, convergence speed may not be the only dominant factor when an EICT

algorithm is evaluated. The comparisons made in this chapter are brief reviews of previous

work. Further investigations will be conducted later and characteristics of error function

minimization algorithms will be discussed in chapter i of this thesis.

2.4.1 Convergence speed

Previous comparisons between the two methods discussed above indicate thatmatrix inver-

sion algorithms have faster convergence speed in terms of iterationsta6l. If the norm of the

error term is defined as

Kexact- Kcal I

Error ( )/M (2-47)
I Krror, I

where M is the total number of elements, the convergence speeds of these two algorithms

can be compared in Figure 2.6 þ) by plotting the errors for the example shown in Figure 2.6

(a). The cause of the slow convergence speed of the enor function minimization algorithms

i
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(a) Original image
ConEast: l:3

57911131517192.1
Iteralion

(b) Enors with different algorithms

Figure 2.6 Comparisons on convergence speed with different EICT algorithms

is due to the fact that these algorithms take the difference between Dirichlet and Neumann
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boundary condition solutions as the driving force. The difference becomes smaller as the

reconstructed image approaches to the true picture. In fact, only in the first iteration do the

error function minimization algorithms give a significant improvement in element conduc-

tivity, as we can see from Figure 2.6 (b).

2.4.2Potentials in large system applications

It has been pointed out that matrix inversion scheme results in dense matrix systems[4l].

This can be a serious problem in three-dimensional imaging since the inversion of dense ma-

trices results in longercomputing times and larger storage space. The conductivity/resistiv-

ity updating procedures with evaluations of Jacobian matrix also require pre-setups.

In contrast to matrix inversion algorithms, error function minimization algorithms generate

sparse matrices, such as the Wexler algorithm does, and the Point-Iterative and Point-Accu-

mulative algorithm[9] can be used when Dirichlet and Neumann boundary conditions are

solved using the FEM at each iteration. The element conductivity updating procedures are

all on point forms, i.e. new estimation of conductivity distributions is calculated in scalar

basis. Then, algorithms do not have difficulties in processing the large amount of data asso-

ciated with a three-dimensional system.

2.4.3 Contact and spreading resistance effects

To eliminate contact resistance effects, error function minimization algorithms do not re-

quire the use of measured potentials at active current injection sites when the Dirichlet

boundary conditionproblemis solved. Yorkey's algorithm, and similarones, automatically

exclude those potentials when the impedance at active ports are not used.

2.4.4 Ngorithm stability and initial conductÍvity dÍstribution assumption

The fust guess for the conductivity distributions affects the final image qualities. The exam-

ple in Figure 2.7 (a) were shown in Yorkey's work[46] as an example for which the Wexler

algorithm did not converge. They suggested that the algorithm tried to image objects in the

central areas. In this thesis, simulations with different initial guesses of the conductivity dis-

tribution were conducted. When the initial guess is chosen as 1.0 everywhere, erïor started
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a. Original image
Contrast : 1:3

b. First guess = 3.0

c. Firstguess= 1.0

Figure 2.7 Comparisons on algorithm stabilities with different initial guess distributions
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Figure 2.7 Compafisons on algorithm stabilities with different initial guess distributions

increasing but went down againlater ( FigureZ.1 (c) ). When the initial guess is 3.0, the algo-

rithm converged smoothly ( Figure 2.7 þ) ). From this example, we can see that error func-

tion minimization algorithms do not have a bias to make conductivity distribution improve-

ment only at the central part of a body. Therefore, Yorkey's conclusion appears to be

incorrect.

33



CHAPTER 3

EICT FOR LUMPED NETWORKS

The numerical methods, such as the FEM, for the solution of fields introduce truncation (or

discretization) error. In effect, the transformation of a continuum (e.g. field) representation

introduces error that is incidental to the image recovery process. In order to demonstrate the

imaging procedure, while excluding extraneous truncation error, we consider the inverse

problem associated with a network formulation. In doing this, we will use a procedure, paral-

lel to that of the continuum problem, in order to uncover all unknown conductance values.

Definitions and terms used later in this thesis will be discussed first in this chapter. Then,

a network model for the EICT algorithm is defined. The recovery capability of EICT sys-

tems, with error function minimization algorithms and excitation/measurement effects on

image quality, are investigated using network methodology. Finally, the possibilities and

corresponding schemes for optimal design of excitation patterns in a topological sense are

presented.

3.1, Definitions and Terms

3.1.1 ExcÍtation/measurement patterns

An excitation patterninan EICT problem is a set of currents injected into and extracted from

the body to be imaged.

Ameasurement paîtern in an EICT problem is a set of measured potentials induced by one

excitation pattern. The patterr using all measured boundary potentials (including active

sites that include the effects of contact and spreading resistances) as a boundary condition

for a Dirichlet boundary condition problem is called the always pattem; the pattem discard-

ing the potentials at active excitation points but using those points when not active is called

as the sometimes pattern; and the pattern without using the potentials at all excitation points
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is called as the never pattern. Figure 3.1 shows two excitation patterns and their correspond-

Excitation patterns:
pattern 1 (Exl) : 3, 4 and 6, 7
pattem 2 (ExZ) : 12 and 11

Measurement patterns:
Ma (Ex 1 ) = {l ,2,3,4,6,7 ,8,9,10,11,12}
Ma (Ex2) = Ma (Exl)
Ms (Ex1) = {1,2,5,8,9,10,11,12}
Ms (Ex2) = {1,2,3,4,5,6,7,8,9,10}
Mn (Exl) : {1,2,5,8,9,10}
Mn (Ex2) = Mn (Exl)

Figure",ii,'ilåïiJf, 
lii:;l,i#::ä:îäJilÍuîì,*r^,terns,respectivery

ing measurement patterns applied to a network with 12 available electrode positions.

An always pattern will be denoted as Mu, a sometime^r pattem as Ms, and an never pattern

as Mn to represent the three measurement patterns correspondingly in the rest of the thesis.

3.L.2 Determinacy of EICT

T}ne determinncy of EICT is defîned as the ratio of the number of the independent measure-

ments to the number of unknowns.

3.1.3 Determining the maximal number of independent measurements

The number and the location of the electrodes used in each excitation pattem are important

to the success of an EICT algorithm. The selections of the numbers and the positions of exci-

tation patterns are a problem dependent and rely on experience[27] to certain extend.

Suppose there are Nnodes as measurementnodes ( i.e. electrode sites ) in anetwork. When

theNnodesarenumberedas 1,2,...,N,anN-lportnetworkcanbeconstructedbyassigning

nodeNasthereferencenodeandformingportiwithnodei(i:1,2,...,N-l )andnodeN,

as shown in Figure 3.2 (a). If bipole excitations (each excitation pattern uses two nodes) are

used, there are N-l independentexcitationpatterns. Table 3.1 also shows thepossible com-
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Table 3.1

Possible excitation combinations

Injection node Extraction node

I 2,3,.,,, N-1, N

') 3,4, ..,, N-1, N

N-2 N-l, N

N-t N

binations of injection and extraction nodes. The total number of possible excitation pairs

can be calculated as

Ep : (N - 1 + l)(N- 1)/2 : N(N - I)/2 (3-1)

For each excitation pattem, N-l independent voltages can be measured. Then, the total pos-

sible number of voltage measurements will be

Mp : (N - t)Ep: (N- l)N(N - r)/2 (3-2)

which is the possible number of measurements an EICT system can provide. Consider the

reciprocity and the superimposition of a linear passive multþort network, there are approx-

imately N2/2 linearly independent measurements that can be used to reconstruct a net-

work[7], rf always or sometimes pattems are used. Thble 3.2 shows the totalnumber ofinde-

pendent measurement combinations when the N-port network is constructed in the way we

described above. For always pattern, we have

Ma: N(N - t)/2

Fot sometimes pattems

Ms: (N - r)Q{ -2)/2

and for never pattems

(3-3)
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Table3.2

Total independent measurement combinations

Always pattems Sometimes pattems

Excitation node pair Measurement node pair Excitation node pair Measurement node pair

1,N l, N), (2,N), ..., (N-1, N) 1,N (2, N), (3,N),..., (N-1, N

2,N 2, N), (3,N),..., (N-1, N 2,N (3, N), (4,N),..., (N-1, N

N_2, N (N-2, N), (N-1, N) N_2, N (N-1, N)

N-I,N (N-1, N) N-l, N

Mn: (N - | -28)En (3-5)

where &' ( En < N-1 ) is the number of excitation pairs. It should be noticed that when N-l
excitations are used, Mn is zero.

ForanyK < N ( K > 0 ), the combinations are showninThble 3.3. The availablenumber

Table 3.3

Measurements with K independent excitation patterns

Always patterns Sometimes patterns

Excitation node pair Measurement node pair Excitation node pair Measurement node pair

l,N 1, N), (2,N), ..., (N-1, N 1,N 2, N), (3,N),..., (N-1, N)

2,N 2, N), (3,N), ..., (N-1, N) 2,N :3, N), (4,N),..., (N-1, N)

K,N (K, N), ... (N-l,N) K,N (K+1, N), ...(N-1, N)
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of independent measurements for the sometimes patterns is

M, : + (N - z+ N- r - rg : {rr* - K -3)" 2', 2'- (3-s)

It should be pointed out that this number is the maximum that K excitation pattems can pro-

vide. If the selection of the reference node changes, M. could be smaller.

3. 1.4 Over-determined and under-determined problems

Assume C to be the number of unknown elements, and M,,, belongs to { Mu, Ms, Mn }. If
we use D as the determinacy, the problem with the determinacy D: Mm/ C greater than 1

is over-determined, and the problem with the determinacy D: Mm/ C less than I is untler-

determined.

3.2 Multi-Port Resistive Network Recovery with EICT Algorithms

3.2.1 Multi-port resistive network as the discretized model to study EICT imaging

There are many possible reasons causing an EICT algorithm to fail in reconstruction of a tar-

get image. It is very difñcult to isolate specific causes of a such failure when an electric field

problem is solved, since numerical methods used to solve the field potentials introduce erïors

to the imaging procedure as well. For this reason, the network analogy helps to isolate the

issues because it is somewhat simpler. We can derive the network recovery fonnulas in a

similar mailler.

Consider the multþort resistive network shown in Figure 3.2. Thenodal equation system,

with the port current injections as shown, is

YV:J (3-6)

where Y is the nodal admittance matrix, V is the vector of unknown node potentials and J

is the current source vector. It should be noticed that port currents are applied at a subset of

boundary nodes in the network. If port voltages ( i.e. node potentials at boundaries ) are

applied, (3-6) becomes

YV:0
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Figure 3.2 Resistive network models of EICT

V here consists of both known and unknown node potentials.

The problem is to find the branch conductances by applying port currents and measuring port

voltages. First, an initial guess at all branch conductances has to be imposed. When a port

current is applied, all port voltages can be measured. For each branch from node i to node

i ( i, j :1,2,... ), Ohm's law can be written as

(a) N-l independent ports of an N-tenninal network

(c) A resistive network model for
th¡ee-dimensional imaging, each
branch containing a conductor
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(b) A resistive network model
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l¡(vi- v¡) : iu (3-8)

where g¡ is the branch conductance, vi ând v¡ âro node voltages of the branch, and j,¡ is the

branch current. For all port excitations, the least-squares residual form is

' : Iltsu(ur- v¡)-i¡)2 (3-e)
x b¡j

which can be minimized by taking the derivative with respect to branch conductance and

setting itto zerc

ôrs
uru,o, 

: 
+2[silv¡-v¡)-i¡J0i-v¡) 

: o

I s¡{ri - r¡)2 : \j,¡r,- r¡)

The unkno*o rr*"lconductanc".* *"o be solved by

li¡{u'-'¡)
n.,-x6''t 

l1i- '¡)2X

(3-10)

(3-11)

(3-12)

The branch current is unknown and has to be estimated in advance before (3-12) is

employed. It can be obtained by (3-6) with the assumed branch conductances. (3-12) then

becomes

)rør- úr1fi¡(v¡-v¡)
x (3-13)

l{.,i-v¡)2
X

where v¡ and v¡ are derived from an assumed set of network conductance values, g¡, under

an applied boundary voltage; while u¡ and ri; are based on the same network under an applied

boundary current.

The procedure described above is based on the Wexler algorithm in a network recovery.

Table 3.4 shows the system equation similarities between the conductivity distribution imag-

ing and the branch conductance recovery with this algorithm. It demonsüates that branch

8¡¡
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Table 3.4

Comparisons of EICT algorithms between the field case and the network case

Field case Network case

System

Equation w=þ W=J

N. B.C.* -Y.rc9Q : f r(s) I
dn

= /¡(s) W=J

D.B.C.* -Y.rcYQ = f d(s) = s(s) W=0

Ohm's law J=rcYþ J¡¡ = S,í v¡-v¡ )

Updating

Equations

K¡

\Lt'va ,,

ZL,,r'YQ dv
8ij

K¡: (
lr,,t'o,

) tlz

Z!,,o, .Yþ dv

o-.ö¡l (
2r

)'/'
10,-,¡'

Enor

Norms

l{rc"-rc)2

I

\G"-e")'
I \i-z
.Lo"

I

*N.B.C. and D.B.C. represent the Neumarm and the Dirichlet boundary conditions, respectively

conductance identification of a linear multþort resistive network with unknown lumped

elements, as shown in Figure 3.2(d), is a parallel procedure to the finite element conductivity

recovery. A multi-port resistive network can, therefore, be taken as a discretized model to

study EICT imaging problems. To apply an EICT algorithm to the network recovery prob-

lem, the structure of the network should be pre-specified. Then, all the branch conductances

will be recovered after an initial guess of branch conductances is assigned to each branch.

The specification of the equivalent network structure here is the correspondent procedure

of designing a finite element mesh in conductivity distribution imaging. By performing an

error function minimization algorithm in a network recovery problem, the effects of trunca-
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tion errors associated with the field analysis do not exist, since the recovery procedure is not

contaminated by discretization.

3.2.2 Network models and their recoverÍes in simulation

Figure 3.3 shows a resistive network and the recovered one after 500 iterations with 6 speci-
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Figure 3.3 A network recovery example with EICT method

fied excitation pattems using the Wexler algorithm. There are24urknown branch conduc-

tances, 12 available voltage measurement nodes (i.e. 12 electrodes can be placed at those

port terminals ) in the network. The number of independent ports of the network is 1 1 . There-

fore, for always patterns, the maximum number of independent measurements

is tz x ll/2 =66 ;for sometimespatterns,itis tt x to/z :55. Thesmallestnumberof

excitations needed to reconstruct this network as an over-determined problem can also be

calculated by E^ro(Z x lz-3-E^hr)f2 > 24 for sometimes patterns, which is approxi-

mately3. When6excitationsareused,K:6,so M" =6(2x tz-6-3)/z:45 andthedeter-

minacy is slightly less than 2. When the excitation patterns used are less than the maximal

number of independent excitations, the use of never patterns is possible.

If we add more layers with the same conñgurationto thenetwork, as shown in Figure 3.2(c),
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an EICT three-dimensional network model can be built up.

The recovery of a multi-port resistive network shows the problem with the Wexler algorithm

in a similar manner: slow speed of convergence in terms of the number of iterations. It also

shows that the algorithm converges perfectly to the original network values although many

iterations are needed, which verifies the argument of the use of networks to simplify the stu-

dies on EICT systems and algorithms.

3.3 Discussing Excitation Pattern Effects on Network Recovery

3.3.1 Recovering capabilities of EICT systems

According to what we have previously calculated, always patterns or sometimes pattems

give approximately N2/2 independent voltage measurements for N electrodes if the maximal

number of independent excitation patterns are applied. At most N2/2 unknown branch con-

ductances can be recovered with an EICT algorithm. This gives plenty of data to use the

least-squares technique to obtain unique solutions[27] and also indicates recovering poten-

tials offered by an EICT system. Determinacy describes such potentials. The question is

whether the determinacy is the only factor which determines the recovering capability when

a network with C unknown branch conductances is given; or whether an EICT algorithm can

recover a network accurately as long as N2 I 2> C.

Over-determined problems The determinacy here is greater than 1. Figure 3.4 shows two

recovered networks with different excitation pattems applied to the same example in Figure

3.3 (a). As the deterrninacy decreases, the computing time increases. The results indicate

that the more excitations used, the fewer the number of iterations required. However, the

computing time will increase dramatically as the number of excitation patterns goes up since

the forward problem (evaluating the node potentials with updated branch conductances) in

an EICT algorithm has to be solved twice for each excitation pattem at every iteration. (See

the flow chart in Chapter 2.) In practice, it takes time to make a set of measurements for each

excitation pattern. 'When more excitation pattems are needed, it is difficult to keep the mea-
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Figure 3.4 Number ofexcitationpatterns effects on speedof convergence

surement conditions unchanged, especially in a medical case. The trade-off between the

speed of convergence and the number of excitation patterns raises the questions that whether

the maximal number of excitation patterns are needed when C <N212, and that under what

conditions, fewer excitations may be used to reconstruct a network without losing accuracy.

If we apply the samenumberof excitationpattems to the sameproblem showninFigure 3.4

again, but all patterns are put on the one side of the network, the whole network cannot be

recovered even if the determinacy is kept same as 2. It shows that the positions of excitation

pattems are important to the success of EICT algorithms.

Under-determÍned problems When determinacy is less than 1, the problembecomes un-

der-determined. It has been pointed out that the number of data needed to recover a network

with N branches has to be greater than N when matrix inversion algorithms are used[27].

There is no discussion on the issue of under-determined problems in previous work. What

we want to see here is whether the error function minimization algorithms behave the same

way as the matrix inversion algorithms do. The practical significance of studying the recov-

ering capability in an under-determined problem is that the number or the positions of appli-

cable electrodes might be limited in an EICT system, while the objects to be imaged in a body

is relatively small so that finer network with more branches is needed. Therefore, more un-
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knowns in a well designed model have to be solved using the EICT system; or that not the

complete set of measurement potentials can be used in order to eliminate contact resistance

effects.

This problem can be discussed with the network model for three-dimensional imaging. Us-

ing the configuration shown in Figure 3.2 (b), an example can be constructed as shown in

Figure 3.5. There are top, first and second layers in the network. There are to-

tal z+ x 3 + 16 x 2 = lo4 unknown branch conductances. Electrodes are all positioned at the

top. The 6 excitation pattems as shown in Figure 3.3 (a) with sometimes measurement pat-

terns give 6(2 x 16-6-3)/2 = 69 independent measurements.

There are two aspects we can see from this under-determined example. First, the algorithm

manages to recover the top and first layer of the network, although there are serious errors

at the bottom. This suggests that part of the network can be recovered with higher accuracy

in an under-determined problem if such parts are close to the area where the excitation/mea-

surement patterns are affanged, while the entire network is left un-recovered. Second, the

total error tends to decrease in the first few iterations, which indicates that arecovered net-

work with lower accuracy can possibly be found in an under-determined problem.

The example reveals an important feature of error function minimization algorithms: they

can recovera sub-network in an under-determined problembut leave therestofthenetwork

untouched. It is worth discussing such a feature of the algorithms because, in practical EICT

imaging systems, the conductivity distribution can only be represented exactly by an "infi-

nitely fine mesh" which results in most of the problems being under-determined. As a result,

when the number and position of electrodes are restricted, the finite excitations and measure-

ments, with error function minimization algorithms, can produce part of the solution which

may give enough information for the areas of interest, i.e. focus the total number of excita-

tions/measurements to image the specified areas.

This example shows again that the recovery capability of EICT algorithms in an under-det-

ermined problem depends upon the location of the excitation patterns. The question is how

45



,,.1'4,ï:,i t; I 
f;:|"'i'l

2371 2019

I

--1

s47t

t26t

zes:

3?s^o^ 
;

"--l
I

20tt
,(

2gg5 t

I
)> znl
)) 1l5o ',

32s(

--1

2429

--- -l
zzti

5475 .

I 15(

lot2 :

I

1261

rr2? 
;

----t
145',

1:?4^ 
;

(b) Recovered network
on the second layer

1457

ïï::l 1:l +l
,rri

+::

1273 10039

0.5

0.4

0.3

0.2

0.1

0

CITOTS

top and first layer

1 11 21 31 41 51 61 71 81 91 101

(c) Errors

iteration

(a) Recovered network
on the top and first layer

20.

lg

----]

r r¡ai
g34 :

-.l

4373

7853

1003f

4373

s07q

955

78s3

1018^ ;

'--t
osii

11387 :

955,

:5^e^ 
'

---l
934',

1109 :

_l

t272

t203

Figure 3.5 An s¡ample of under-determined problem; iteration: 100



the maximal number of independent excitation patterns is arranged.

Measurement pattern effects The measurementpattern effects are mainly on the determi-

nacy and the contact resistances. Sometimes patterns slightly reduces the number of inde-

pendent measutements if bipolar excitations are used, and never patterns can cause an EICT

problem to become under-determined when large number of excitations is used. Figure3.6
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Figure 3.6 Comparisons on recovering errors with different measurement pattems

shows the comparisons on speeds of convergence with different measurement pattems under

the same excitation patterns as in the example in Figure 3.3(a).

The relative positions between excitation and measurement sites affect the quality of recov-

ered network as well. Take the example in Figure 3.5. If more layers is added to the network,

Figure 3.7 shows elrors in each layer. If the measurements are placed on the bottom layer

( layer 6 ), the error plots does not change much, which indicates that such measurements

are redundant although it contributes to the increase of the detenninacy; but if measurements

are placed on the side of the second layer, the recovered network has better quality, which

shows the effectiveness of higher determinacy.

To eliminate the contact resistance problem, sometimes patterns are the better choice for an

EICT problem since such pattems give almost the same number of maximal independent
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measurements as always patterns do.

3.3.2 SensitivÍty analysis of EICT

Measured potentials from each pair of injection and exftaction electrodes represent a "view"

in a particull¡ "angle" to the network. The position of an excitation pattern decides the part

of the region that can be "seen". Since the number of measured potentials provided by each

excitation pattern is fixed, the number of excitation pattems results in over-determined or

under-determined problems, and the positions of excitation pattems decide if they are effec-

tive to all port measurements.

From the previous examples, we have seen that under the same determinacy, different com-

binations of excitation patterns give images with varying qualities. For each excitation pat-

tem, the measurements should only be taken from the positions where the information pro-

vided by the excitation pattern can be "felt". On the other hand, when the total excitations

are not well ananged to make all measurements sensitive, the network may not be recovered

properly even if the determinacy is greater thanl. It suggests that after the number and posi-

0.5

o.4

0.3

0.2

0.1

48



tions of electrodes are decided in an EICT system, the arrangement of excitation patterns

should cover two aspects: (a) make the problem over-determined; and (b) make each port

measurement sensitive to at least one of the excitations.

If the first condition cannot be satisfied, the total excitation patterns have to be able to pro-

vide a sub-region where the network can be recovered reliably, i.e. to make the problem ov-

er-determined in the sub-region. Sensitivify analysis can help to decide such regions.

Sensitivity analysis relates to one of the important issues in an inverse problem, which is how

much changes of internal parameters ( branch conductances ) of anetwork can be measured

at ports of a network using devices with finite precision. These changes decide how much

detail can be recovered in a reconsûucted network. This problem depends upon the parame-

ters and structures of the network to be recovered. For the example in Figure 3.8, the mea-

(a) Example I (b) Example 2

Figure 3.8 Examples of measurement sensitivity

surements made in area I may not reflect any change induced by ttre branch conductances

in area II, or vise versa. While in the case shown in Figure 3.8 (b), it may not be possible

to recover a network at all with the excitations ananged on one side of the network even if
the determinacy is higher than 1, but the network could be recovered if other excitation/mea-

surement arrangements with even lower determinacy.
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Strictly speaking, sensitivity analysis is performed in a network with known parameters.

However, the parameters of anetwork is the solution in ElCTproblems. What will be shown

later is how sensitivity analysis can be used to determine a reliable region in EICT problems.

Definition of relative sensitivity Consider a network function T(N)t71. The relative sensi-

tivity, or simply the sensitivity, of T with respect to a parameter x in the network is defined

AS

For the multi-port resistive network discussed here, the network function T is the transfer

impedance Zij, which represents the ratio of the voltage at port j induced by the current at

porr i (ij : 1, 2, ...), i.e.

V¡,ti:T (3-15)

If the excitation current at port i is unchanged but a voltage change at port j is measured due

to the parameter changes inside the network,

oxATx
ùT'ôxT

^r:+:Lv¡

Lv¡ : #,orr
If the precision of the voltage measurement is ô ,

Lv¡ : #oro=u

when 1¡ IA atallports. Then,thetotalchangeofportvoltageinducedbyaltpossible

changes ofbranch conductances is

\v¡ : #ort#on + .+ #or, : 4*Ior, e-rl)

where g; is branch conductance. If we only give branch k a disturbance Àg¿, then

(3-14)

(3-16)

(3-18)

(3-1e)

has to be satisfied for a single branch conductance if the conductivity change is expected to
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be measured. (3- 1 9) also gives a way to estimate the relative sensitivity for each individual

branch under a particular excitation pair, i.e.

aT _ LV¡

ôgt Lgt
(3-20)

Incremental network method in sensitivity calculation Sensitivities of the network pa-

rameters to a specified network function can be found by the incremental network ap-

proach[7]. Following the rules to construct an incremental network[7], we can obtain the

corresponding incremental network for the network model of Figure 3.8 (b), as shown in Fig-

ure 3.9 . The analysis result of the incremental network can be used to determine the partial
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derivatives.

When the background conductances and the structure of the network are known, partial de-

rivatives ofeach branch conductance at every port under a particular excitation pattem can

be simulated by giving branch conductance a small displacement.

Determination of excitation patterns with sensitivity theory With the approaches above,

one can find the regions where sensitivities are higher than a threshold. The significance of

knowing this can be addressed as follows:

(a) For a particular excitation pattem, how many branches can be affected by the injected
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cuffent; and

(b) For a network with fixed topological structure, design the excitation/measurement pat-

terns to make most of the branches sensitive to at least one pair of port measurements.

Assume the minimal measurable voltage change at a port is ô . It could be induced by a

single branch close to the port, or by a group of branches far from the port. Only the region

where the result is reliable to a specific excitation pattern can be determined. Figure 3.10

sensitivity

side excitation

cross excihtion

rirr .+.i:: r.\i fi;.,.. ..,,.,... position

Figure 3.10 Sensitivities for branch 1 to 4under 2 excirations

shows the sensitivity changes at the port a and b with branch 1 to 4under the excitation pat-

tem l ( side excitation ) and the pattern II ( cross excitation ). The sensitivities decrease rapid-

ly as the position of a single branch goes away from the measurement port for side excitation;

while for cross excitation, the change is less steep. It suggests that the cross excitation tends

to reveal more information in the central part of the network.

To check if all excitations selected are effective, one can calculate the weakest sensitivity

of the network for all excitations. They should make the weakest sensitivity felt by measure-

ment, i.e.
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Lv¡: ¡y,)5=¿
x ¿,

(3-2r)

The entire region where port measurements are sensitive to the branch changes for this exam-

ple is shown in Figure 3.11. This is the largest region that side excitation patterns can pro-

Figure 3.11 Reliable region with side excitations

vide. This diagram explains why only the top two layers can be recovered with reasonable

accuracy in the three-dimensional network model example. lnterpreting of the above dia-

gram can be explained as that if there is only one branch conductance which is different from

the rest of branches with one unit, the furthest branch value can be "felt" by the one measure-

ment. This is corresponding to the weakest sensitivity of the network for all excitation pat-

tems which deterrnine the limit of one design of the excitation patterns.

We can draw some preliminary conclusions from the sensitivity analysis in EICT problems.

1. Determinacy is not the only factor which determines the recovery capability of an EICT

system. The reliable region produced by the arrangements of excitation pattems is more im-

portant.

2.The maximal number of recoverable branches depend on the positions of excitation pat-

terns, which can be designed with sensitivity analysis. The pattems, using the electrodes

close to each other, recover branches near to ports, while pattems using more separated elec-
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trodes reflect more information away from the measurement ports.

3. In an under-determined problem, a sub-network can be reconstructed if all excitations

are ¿uranged to generate a reliable region.

4. Not all the excitations are needed for all EICT problems. The patterns only reflecting in-

formation on the branches close to ports may generate redundant measurements. The pat-

tems whose effective regions are covered by others can be thrown away.

5. Although fewer excitation patterns may slow down the speed of convergence, it may still

save computing time in an imaging procedure, specially if we consider the large time con-

sumed for every excitation in the forward problem at each iteration.

3.3.3 Accessibility of EICT

In the sensitivity discussions, we have shown that it is possible to arrange excitation patterns

with a pre-designed network. In this section, an alternative approach with graph theory is

shown to achieve the similar result.

From the previous examples, we know that the determinacy is not the only factor controlling

convergence speed and image quality. As a solvability problem, the network parameter re-

covery is not only determined by possible measurements applied to a network, but also by

its topological structure. To describe the topological solvable feature, we now introduce the

accessibility to úe EICT in network recovery. First, we define that a node of a network is

called accessible if ttrat node can be taken as a measuring point.

Theorem L Let gq be a conductance between two nodes I and2 in a network N. Suppose

that certain nodes in N are accessible and certain others are not. The cut sets of 1 or 2 not

including any accessible nodes of N do not exist. Then measurement of gs is possible if and

only if all paths (except ft. go branch) from 1 to 2 contains at least one accessible node in

Nt7l.

Figure 3.12 shows an example of this theorem. It is clear from the theorem 1 that there is

a minimal number of nodes needed to make one branch measurable. Mayeda etc. [21] gave

two algorithms (we call them component accessible algorithms) to fînd such nodes. The fun-
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(b,d,g)

(c,e,g)

(b,d,e,f)

Cover nodes

4

Ifa is accessible, the nodes (4,3) or (4,5) have to be accessible

Figure 3. I 2 Example of accessibility theorem

damental concept of these algorithms is to find a set ofnodes such that, to each path including

a particular branch, there is at least one node in this set belonging to the path. The example

in Figure 3.12 gives the minimal number of nodes which is needed to determine the branch

a.

An algorithm to select the minimal number of nodes for the certain measurements to access

all branches in a network can be described as follows:

AlgorÍthm 1

Step I Set an incremental node set A;

Step 2 Select a tree T in the network N;

Step 3 Select a branch and record its two connecting nodes i and j;

Step 4 Find a new set B, which contains the minimal number of accessible nodes for i and

j using a component accessible algorithm;

Step 5 Perform A : A U B (OR operation);

Step 6 Repeat Step 3 to 5 till all the branches of N have been examined. Then, set A con-

tains the minimal number of accessible nodes of N for all branches.

If a set of accessible nodes are already known, the following algorithm can examine if all

the branches in the network are measurable.

Algorithm 2

Step 1 Set the known accessible node set N";
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Step 2 Examine every branch in the network N to get its minimal number of accessible

node set N6 using a component accessible algorithm;

Step 3 If the branch examined is measurable, save it in set B.; otherwise, save it in set Bu;

Step 4 Repeat Step 2 and 3 till all the branches of N have been examined;

Step 5 If Bu is empty, all branches can be measured with this particular accessible node

set; otherwise, only the branches in set Bn are measurable.

Using Algorithm 2, one can easily prove that, for the excitation/measurement pattems

applied only on the top in the example of Figure 3.5, some of the measurements are redun-

dant, and the branches on the third layer or below are not measurable (Figure 3.9). This is

Figure 3.13 Branches not accessible in the three-dimensional network model

a similar result to what obtained with the sensitivity analysis. To make all branches measur-

able and to obtain faster speed of convergence, side excitations and measurements have to

be added into the network about every two layers.

In practice, the accessible node set may be extendable. In this case, the Algorithm2 canbe

performed first, then, by comparing the accessible node set Nu and the node set of non-mea-

surable branches, new nodes can be added into Nu to make some branches measurable which

we believe important.

3.3.4 Optimal excitation patterns in topological sense

By applying the graph theory selection of minimal number of nodes can also be used to de-

cide "optimal excitation patterns" which make the number of measurable branches maximal.

This can be realized by performing the Algorithm 1 fust to fînd the set of minimum number

- Branches
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of accessible nodes, then deleting the nodes not available from measurements. This "opti-

mal" pattern is in the topological structure sense, which can be decided before the EICT pro-

cedure starts. Using the algorithm mentioned here, the excitation patterns and the positions

of measurements can be easily arranged without increasing the determinacy.

By sensitivity analysis, a better set of excitation patterns can be pre-designed before an EICT

algorithm starts.

3.4 Discussion

In this chapter, multi-port networks are used as discretized models to discuss the features

of EICT algorithms and excitation/measurement pattern effects on recovery ability of EICT

systems. The use of such models eliminates the truncation effors introduced by numerical

methods in field calculations, simplifies the discussions on EICT algorithms, and clearly de-

scribes the excitation/measurement relationships based on the network and graph theory.

Important contributions of this chapter can be summarized as follows:

1. The error function minimization algorithm can deal with both over- and under-deter-

mined problems, which the matrix inversion algorithms cannot do.

2.By applying sensitivity and accessibility analyses to a network with pre-designed struc-

ture, two approaches are presented to find a reasonable set of excitation patterns before an

algorithm starts that either recovers an over-determined problem economically, orrecovers

a sub-network in an under-determined problem, which sub-network includes most of the

information interested. In general, the EICT recovery problem is under-determined and the

goal of this technique is to find a sub-network (sub-region) that includes information to be

interested.

Considering the similarity between finite element discretizationand the lumped element of

networks, the approaches of designing excitation pattems can be easily extended to the two-

and three-dimensional imaging. It is new to use sensitivity and graph theories in the EICT

imaging. There are further issues open for discussions. More research is needed in future
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to investigate the relationship between quality of image and the arrangement of excitation

patterns.
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CHAPTER 4

IMPROVEMENTS TO
ERROR FUNCTION MINIMIZATION ALGORITHMS

Existing error function minimization algorithms are considered as slowly convergent algo-

rithms in terms of number of iterations[ 46]. Along flat "tail" in the errornorm plot, as shown

inFigure 2.2(b),canoftenbe seen, especiallyincases whereobjects arefarfromboundaries.

It is difñcult to judge from such convergence performance if the algorithms will actually con-

verge or not. Slow convergence not only requires more computational resources, but also

creates more chances for measurement errors to spread out in the entire region and to con-

taminate arecovered image. In this chapter, the relatively long image recovery process with

the Wexler algorithm will be first demonstrated, then the causes of the slow convergent rate

of error function minimization algorithms will be discussed. Finally, a modification scheme

with an adaptively-controlled acceleration factor to speed up convergence with the Wexler

algorithm will be innoduced. The scheme predicts new element conductivities based on pre-

vious conductivity changes, and corrects the prediction with the minimization technique.

The improvement is a general procedure which can be implemented in different error func-

tion minimization algorithms, and discuss both successful and failed simulation examples.

4.1 Ln Example Using the Wexler Algorithm

Figure 4.1 shows a sequence of images recovered using the Wexler algorithm in the example

shown in Figure 2.2(a) after 50, 100, and 200 iterations, respectively . There are64squared

quadratic elements in the mesh, and 9 Gauss points in each element. It is at these Gauss

points that functions are sampled in order to evaluate the required integrals. 16 electrodes

are arranged around the mesh boundary, and 8 pairs of current injections/extractions are

applied. The measured potentials at the active injection/extraction electrodes are not used

59



a. Original image
Contrast : l:3

b. Recovered image
after 50 iterations

c. Recovered image
after 100 iterations

Figure 4.1 An example with the Wexler algorithm
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Figure 4.1 An example with the Wexler algorithm
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to eliminate contact resistance effects when the Dirichlet boundary condition problem is

solved. According to the formula derived in Chapter 3, there are 64unknowns and 84 inde-

pendent measurements corresponding to the 8 excitation patterns. Figure 4.1 shows that ele-

ment conductivities are improved slowly but correctly towards their true values during the

imaging procedure. The error norm reduces significantly only at the early stage of the proce-

dure and thereafter at a very slow pace (Figure a.1(e)).

4.2 lmprovements on Error Function Minimization Atgorithms

4.2.1. Error function minimization effects on convergence speed

Error function minimization algorithms minimize the total error for all applied excitation

patterns at each iteration. Equation (2-31) shows the new element conductivity calculation

formula based on the previous element conductivity and the calculated and measured poten-

tials. From the equations in Chapter 2, it is clear that after the first several iterations the "driv-

ing forces" ( the difference between calculated potentials and measured and the difference

between the true conductivity distribution and the predicted ) become smaller and smaller

as the solutions approach to the true image. If the errors are in an acceptable range, this meth-

od is complete in recovering an image. Unfortunately, the recovered image at such an early

stage is normally far from acceptable. In addition, the elements in the central part of the re-

gion "sense" even weaker "driving forces". The long flat "tail" in the errornonn plotreflects

the growing difficulties of determining the correct conductivity values of the elements far

from boundaries.

4.2.2. General improvements in error function minimization algorithms

According to the discussions above, disturbance is needed after the error rate starts decreas-

ing to make the "driving forces" stronger for the purpose of fast convergence. As the ele-

ments far from boundaries are not sensitive to the "driving forces", the modification should

impose fast improvements on conductivity to the elements farfrom boundaries, not to those

close to boundaries.
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The fundamental ideahere is to use the element conductivity changing rate given by the first

several iterations as the maximal changing rate to predict the new element conductivity for

every successive element in imaging procedure. The algorithm starts in its original way, and

the conductivity changes for each element in the first several iterations are restored. Then,

at each following iteration, compare the element conductivity change at the previous step

with that currently given by the error function. When the two changes have the same sign,

which means that the new change is along the same direction towards the true conductivity

value, the previous conductivity change of this element is taken as the conductivity improve-

ment at this step, but not the one calculated from (2-31). When they have different signs,

which means that the previous change brings in more errors and is not suitable for the predic-

tion at the next step, the new conductivity value is taken from error function minimization

procedure ((2-3I) in the Wexler algorithm ). This happens when the previous change is too

large and tends to go in the wrong direction, therefore, the error function minimization is

needed to correct the convergence direction. The reason for us possibly to do this is that very

likely, the iterations at early stage provide a rough solution and correct convergence direc-

tions for most of the element conductivities. Future changes of most element conductivities

are possibly along the same direction as well.

With this improvement, the error frinction minimizationguarantees the convergence direc-

tion by the least squared technique, while the use of the conductivity changes from the pre-

vious iterations gives the maximally possible conductivity change rates to speed up the con-

vergsnce. Figure 4.2 demonstrates the error behaviour when the above improvement is

applied to the example shown in Figure 4.1. In the fust 10 iterations, the original Wexler

algorithm is conducted. The improvement starts affecting from the 11-th iteration, and the

error is reduced significantly. However, when the modification is more than enough aggres-

sively, more errors are introduced. Then, the errorminimization function starts working and

tries to bring the algorithm back to the right convergency direction.

lf we rewrite element conductivity at each iteration as
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By storing Ârc,' aftern-th iteration ( i: r,2,... ), we can compare 
^rci.r 

with 
^rci 

accord-

ing to (4-4). If we call Ar,,*, from (4-4) as (^/c,,*r), , then, the algorithm becomes:

If L,rc,"t and 1Âr¡.t¡' have different signs, then Âr,,*' = (Âr,,.'), ;

otherwise, Âr,'*r = LKi .

After the modification discussed above is implemented, new element conductivity is not al-

ways determined by error function minimization, but instead, by previous changes in ele-

ment conductivity to obtain larger error minimization rate. Such replacement will be contin-

uously performed till a disturbance is induced for the error function. At this point, there is

more strength for the error fr¡nction minimization, therefore, a new element conductivity is

predicted again by the updating formula based on error function minimization.

To make the improvement work more effectively, an acceleration factor a (@ > 1) can be in-

troduced to the element conductivity change at each iteration, i.e. change (4-1) into

tcin*r : rci+o,5rc¡'+l

and the updating fonnula now is

(4-s)

Ki'*l : tcin+@ (
2' t .vø rlv
x-Ëç,'vø^-tcl= ) (4-6)

X

Combine this with the previously discussed scheme, the complete modification of the algo-

rithm is:

If Âr,"*t and 1Âr¡.t¡' have different signs, then Âr,n*r = a (ñci,\, i

otherwise, Âr,*t : LKi .

V/e call the improvement the acceleration scheme. Figure 4.3 gives the new flow chart of

the improved Wexler algorithm.

At some point, increasing ø will cause the recovered image to converge to the true picture

in an oscillatory fashion similar to what is shown in Figure 4.2.To make the factor perform

more effectively, its value should be changeable during image recovery. At the beginning

of the algorithm, the factor can be set larger to force the algorithm to converge in the correct
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initialize rc

solve Neumann problem

solve Dirichlet problem

start acceleration?

check signs of calculated and stored r

Figure 4.3 Flow chart of the improved Wexler algorithm



direction. Later on, as the recovered images are close to the true picture, large changes in

element conductivity might cause large error for an error minimization function to correct.

For this purpose, an adapted control scheme is implemented, which automatically adjusts

the acceleration factor based on the potential differences between the Dirichlet boundary

condition solution and Neumann boundary condition solution.

It is noticeable that o) can also be smaller than 1. In this case, the convergence procedure

is more stablebecause itmakes the elementconductivitychange more conservatively. Then,

of course, the speed of convergence becomes even slower.

Figure 4.4 shows three error plots with different ø values.
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Figure 4.4 Acceleration effects on the convergence speed

The choice of the starting point for the acceleration scheme ( i.e. the number of iterations

needed to switch on the scheme ) and its effectiveness are problem dependent. One sugges-

tion is to pre-set up a number before the algorithm starts (there could be other principles).

If the potential difference between the Dirichlet boundary condition problem and the Neu-

mann boundary condition problem for the elements which are close to the boundaries in-

creases right after the scheme is switched on, the pre-set up number is probably too small.
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The algorithm can be designed to automatically switch offthe scheme and re-set the starting

point. In general, if the objects are far from boundaries and if there are larger contrasts be-

tween the objects and the background, the method is more useful. In the case that the objects

are close to the boundaries, the scheme may not even be needed because the positions of the

objects have already decided that the algorithm can converge quickly. With the improve-

ments proposed here, the example in Figure 4.1 is tested agarn. The acceleration scheme

starts to be effective after the 5-th iteration. Figure 4.5 shows the recovered image of the

Figure 4.5 Improved convergence behaviour
with the algorithm modification

example in Figure 4. 1 using the Wexler algorithms with the improvemen ts after 20 iterations.

It has almost the same quality as the one after 100 iterations with the original algorithm.

From the derivation of the improvement, it is clear that the improvement is in fact a general

modification to error function minimization algorithms. Similar modifications can be easily

introduced into other error function minimization algorithms to achieve what we have shown

here.

The significance of the combination of the errorfunction minimization and the acceleration

factor scheme is to speed up a class of EICT algorithms which have attractive potentials in

three-dimensional EICT applications. The method used here applies the error function
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minimization and acceleration scheme alternatively. They work together and constrain each

other to keep the image recovering procedure proceeding efficiently in the right direction.

Therefore, the acceleration scheme can be taken as a predictor for the algorithm, while the

error function minimization is a corrector for the acceleration at different iterations. The

method is different from the Equipotential Line method[46] in which the correction made

to obtain a final image is conducted by matrix inversions and the imaging recovering proce-

dure stops after one iteration with an image which may, very likely, include unacceptable

elTors.

The problem with the acceleration scheme is the difficulty to decide where the scheme

should be applied, i.e. to separate the element conductivities which need to be improved

greatly and which need not. The checking on the elements close to the boundaries cannot

provide enough information to prevent this problem. When the contrast between the objects

and the background are relatively low, or for the elements not too far from the boundaries,

the wrong convergence direction could be picked up and exaggerated. In this case, it takes

even longer time for the error minimization function to get rid of the errors.
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CHAPTER 5

A PEAK DETECTION METHOD
FOR ERROR FUNCTION MINIMIZATION

ALGORITHMS IN EICT

The speed of error function minimization algorithms can be accelerated by predicting some

of the element conductivities according to differences obtained in the early stages of an

image recovery procedure. The problem associated this approach is the difñculty of deter-

mining exactly where the prediction should be applied, a determination that is crucial to the

success of the algorithm with the improvement. In this chapter, an image processing tech-

nique based method, the peak detection method, is proposed to solve this problem. Similarly

to the previous improvement methods, the method is initially "trained" by an approximate

solution given soon after an algorithm starts. Instead of checking conductivity changes for

each element, this method takes the entire body as a whole and finds the areas where objects

most likely to exist. Simulation results show great improvements in the speed of conver-

gence and quality of images, especially in the cases where significant conftasts between the

background and objects exist. The improvements demonstrate how an image processing

technique can be combined with a minimization approach in an inverse problem.

5.1 Possible Use of Image Processing Techniques in EICT Algorithms

As we have seen before, error function minimizationalgorithms cannot give an acceptable

image with sharp edges in a reasonable time period. What they can produce is the image with

"hills" of conductivity corresponding to the location of objects. How close the "heights of

hills" come to their true values depends on the unknown conductivity distribution. The

"hills" appear regardless of whether the computation is completed for several iterations or

for several hundred iterations[23], i.e. the conductivity improvement directions for each in-
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dividual element are given atavery early stage of computation. If one takes the image with

"hills" generated in the first several iterations as a "trainer" for an algorithm, detecting the

"peaks" of "hills" will tell the algorithm "hill" areas, which very likely, include objects with

different conductivity distributions from the background. Picking the local maximum ( or

minimum ) element conductivity values in every "hill" area detects the peaks accordingly.

Then, the algorithm can modify the element conductivities with the acceleration scheme in-

troduced in Chapter 4 in the neighborhood of each peak.

a. Original image b. Represented image
with smoothed edges

c. Cross-section of a hill d. Modified cross-section of a hill

Figure 5.1 Image with sharp edges

Now, the neighborhoods have to be defined, where the modifications can be applied. In Fig-

ure 5.1, an image with sharp edges in (a) is normally represented by an image with smoothed

edges as shown in (b). Various image restoration methods can be used to restore the image

in (b) to an image very similar to that in (a). However, it is difñcult to do so in the case of

(c), especially when the "hill" is quite "flat". The smoothed image is actually the cross-sec-

tion ( Figure 5.1 c.) of one particular "hill" produced by an error function minim aationalgo-

rithm at the i-th iteration. According to this feature, the neighborhood corresponding to a

specific peak (point P in Figure 5.1 b.) can be determined as follows:

Assume the element conductivity at P tobe rco and the background conductivity as r, , then
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for the elements rc, , if

Kp _ Kn <: 0.5
Kp-Ka

i.e.

Lrcp- Ltcn < O.S&rcp

then r, will be replaced by

(s-1)

(s-2)

Kn : Knl o) Ltcn (s-3)

for the i-th iteration, where o is the acceleration factor as defined in Chapter 4. Then, the

image obtained after i-th iterations is shown in Figure 5.1 d. The sharp edge is then brought

into the image but the size of the object is smaller than the original one with center element

conductivity values higher. The image in (c) is much closer to the true solution in (a), there-

fore, imagerestoration techniques canrestore the original image much easierandmoreclear-

ly with this image. This detection-modification can be repeated every several iterations, de-

pending on the errors introduced by the modification. If the errors keep decreasing, the

modification can be applied at every iteration. Otherwise it is switched offand the improved

element conductivities are calculated by the original error function minimization algorithm

to bring the solution back to the correct direction.

In practice, a body to be studied may have several regions with different local maximal con-

ductivities. The peaks corresponding to the regions including higher conductivity contrasts

to the background, or with larger areas; or corresponding to the regions close to the bound-

aries, will appear earlier as an algorithm goes on. Therefore, the peak detection should be

applied in every iteration, but only the areas with detected peaks, are modified at one itera-

tion. In general, the modification is applied in different regions at different iterations accord-

ing to the sensitivities of individual elements to the boundary measurements. The conditions

to apply the peak detection and modification should finally be decided by sensitivity analy-

sis.
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5.2 The Peak Detection Method in EICT

The method now can be described as follows:

Step 1 Start an error function minimization algorithm with its conductivity updating scheme;

Step 2 After the element conductivities are updated, with the error function minimization

algorithm at the i-th iteration, save the element conductivity change ¡r with respect to the

background for every element;

Step 3 Peaks inside the whole region are detected by finding the local maximal conductivity

changes. To avoid detecting the maximal values induced by numerical errors, filtering tech-

nique should be applied before the peak detection. In the areas where the peak conductivity

changes Âr" exceeds a pre-set number (which can be some percentage of the background

conductivity value), the modification described in (5-l) through (5-3) is applied; otherwise,

the element conductivity keeps the value calculated from the error function minimization

scheme. If the average potential difference between in the neighborhood of the local peak

calculated and measured increases after last modification, the modification is not applied,

which means that the previous modifications have made the conductivity values close to

their true ones in this particular local area;

Step 4 If a peak conductivity detected cannot satisfy the condition in Step 3 after a certain

number of iterations, it is probably that peak is corresponding to an object not sensitive to

the boundary measurements. The modification can be applied continuously, starting from

this iteration and stopping when the average potential difference between the calculated and

measured increases.

Step 5 Repeat Step 2 to Step 4 until an acceptable enor is achieved.

5.3 Simulation Results

Figure 5.2 and 5.3 show results from two examples with the peak detection method. The

error function minimization algorithm used to test this method is the Wexler algorithm. The

finite element mesh used in these examples is a 16 x 16 mesh with squared element. The
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(a) Original image
Contrast: 1:5

(b) Recovered image
with the Wexler
algorithm
after 20 iterations

(c) Recovered image
with the peak
detection method
after 5 iterations

Figure 5.2 An example with peak detection algorithm - objects close to the boundaries
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Figure 5.2 An example with peak detection algorithm - objects close to the boundaries

recovered images have much better qualities than those obtained without using the peak de-

tection method. The computing time is also significantly reduced. From the error norm plots

in the second example, we can see clearly that when the method is in its "training" duration,

the errorkeeps the same as the original methods; when the modification is applied based on

what ithas "leamt", the error is reduced. Also, we can see that the modification on the ele-

ment conductivity of the two objects with higher contrast(l:5) is applied after the first itera-

tion and is turned offafter the 5-th iteration; while the modification on the element conduc-

tivity of the object with lower conftast(1:3) appears after the 5-th iteration.

Itis possibletorunthe simulations withafinerfiniteelementmeshnow since thepeakdetec-

tion method greatly reduces the number of iterations. This also makes it possible to recog-

nize smaller objects, or objects with complicated boundaries, inside a body because of the

relatively smaller element sizes used. We have tested the algorithm with the original image

as shown in Figure 5.a@) with differentcontrasts. With the Vy'exler's algorithm, the image

reconstructed after 20 iterations (Figure 5.4 (b)) does not tell anything, while the peak detec-
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(a) Original image
Contrast : l:2:5

(b) Recovered image
with the Wexler
algorithm
after 20 iterations

(c) Recovered image
with the peak
detection method
after 5 iterations

Figure 5.3 An example with the peak detection method - objects with different contrasts and sizes
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Figure 5.3 An example with the peak detection method - objects with different contrasts and sizes

tion method enhances the image (Figure 5.a (c)) which is very close to the original picture.

5.4 Discussion on The Peak Detection Method

Ten years have passed since the fust error function minimization algorithm, the Wexler's al-

gorithm, was publishedl4l]. The slow convergence rate that this type of algorithm suffers

has prevented wider applications of EICT systems for three-dimensional imaging. The

cause of the slower convergence rate in error function minimization algorithms is that the

least squared technique only tries to minimize the errors butnot necessarily make the error

become zerc. lnthe problem where sharp edges of objects have to be recovered, algorithms

based on this technique cânnot produce satisfactory images.

An image processing technique based method is proposed here to improve the convergence

speed and image quality. With this method, we are able, for the fust time, to recover sharp

edges of objects using an error function minimization algorithm. For the recovery problem
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that needs more details, this method allows to use finer finite element meshes without experi-

encing the unbearably long computing time. Thus, it helps increase the resolution ability

with this type of EICT algorithms. The success of using such a method in an EICT problem

shows the possibilities of introducing artificial intelligence or image processing techniques

into an inverse problem. The distinguishability of this method initially depends on the distin-

guishability of an error function minimization algorithm. It works as long as peaks can be

detected from a "dtrty" image generated by an error function minimization algorithm. This

feature is more important when smaller(insensitive) objects are detected.

The peak detection and the associated modification schemes in the method are only executed

once in each iteration in the conductivity updating procedure. They do not innoduce too

much extra computing time in the image recovery procedure. There might be a misunder-

standing that the peak detection method is similar to the edge detection technique in image

processing, but it is not. An edge detection technique needs a known threshold for the origi-

nal image which is impossible to know prior to an EICT algorithm before it completes the

computation. In addition, the edge detection does not give correct grey level values ( which

corresponds to the element conductivity here). As a result, the peak detection method is ac-

tually a combination of the least squared technique and an edge detection strategy.

This method requires the measurements around most of the boundaries in an EICT system;

otherwise, faulty detections can occur in areas which are far from effective measurement

sites. This problem will be discussed in detail later in EICT applications in three-dimension-

al imaging.

There are some open issues related to the application of this method in EICT systems. One

important topic associated with the algorithm is the evaluation of resolution ability. Several

methods, such as the point spreading method, are available to compare the resolution of

images reconstructed with or without the peak detection method. More research should be

done to give a complete conclusion on the resolution improvement. The example in Figure

5.4 demonstrates a simple way for such research. When a unit conductivity change from
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the background is given to one single element, the image reconstructed by an EICT algo-

rithm can be taken as the "response" to such change. A complicated distribution is the super-

imposition of single changes. The image corresponding to the complicated distribution is

then the superimposition of the "responses". By comparing the "responses" from different

algorithms, improved resolution ability can be evaluated.

Other interesting topics for further research are suggested as follows. The criteria used for

peak detection can be defined more precisely so that the convergence procedure can be opti-

mized for individual problems. The criteria to stop modification can also be different from

what is suggested here, especially when some prior knowledge on the conductivity range in

apractical problem are available before an EICT algorithm starts. Sensitivity and distin-

guishability with this method need more thorough discussions.
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CHAPTER 6

FINITE ELEMENT MESH EFFECTS
ON IMAGE QUALITY AND ALGORITHM CONVERGENCE

The limited number of electrodes is proven to restrict the resolution of images. One of the

important features of error function minimization algorithms is that, with the Point Iterative

Point Accumulative method, one mesh can be used in the forward problem and another in

the conductivity updating procedure. By implementing two meshes in these algorithms,

image quality can be improved efficiently under the same measurement conditions.

The image quality and convergence speed of an EICT algorithm are greatly influenced by

two factors: how the algorithm starts and how a finite element mesh is designed[l5, 46).

However, the initial distribution that controls how an algorithm starts, and a perfect finite

element mesh to represent the detailed distribution, are not known in advance. Instead of

starting an algorithm with a fine mesh, which may be redundant for a particular problem, we

describe a procedure, in this chapter, that starts with a co¿use mesh and ends with a proper

mesh to obtain an image with expected accuracy. Compared with the direct use of fine

meshes, this procedure greatly reduces computing time. We will also discuss the effects of

finite element mesh designs on EICT images. This problem has been noted[4], but methods

of dealing with it have not been suggested.

6.1 The Finite Element Mesh Effects on EICT Imaging

A finite element mesh affects image quality and convergence speed mainly in two \ryays.

6.1.1 Mesh effects on solution uniqueness

When the FEM is used to evaluate a potential distribution in EICT, it is desirable to have finer

mesh to make the final image include more details of the original conductivity distribution.

However, small element size in a fine mesh results in large number of unknown element con-
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ductivities, which increases the computing time and requires large storage space. In addi-

tion, the number of independent measurements in apractical EICT system is limited by the

number of applicable electrodes. If an over-determined problem is expected, therefore,

small element size in a finite element mesh may not be allowed. This limits the recognition

capabilities of the EICT technique.

It could happen with a relatively coarse mesh in an over-determined problem that an EICT

algorithm fails to produce a unique image no matter how excitation pattems are arranged.

In the example shown in Figure 6.I (a), the edges of the recovered image can possibly be

(a) An original image with a 4 x 4 mesh (b) A recovered image of (a)

(c) An original image with an 8 x 8 mesh
A¡other example of "Ghost"

(d) A recovered image of (c)

Figure 6.1 Examples of "Ghost"
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blumed in the four neighboring elements for any combination of excitation patterns. This

is the so called "Ghost" phenomenon in EICT problemf4]. Such phenomenon can also be

caused by objects insulated inside a region as in Figure 6.1 (c) . In these cases, an algorithm

may still converge, but to a wrong solution as shown in the Figure 6.1 (d). It should be

pointed out that the "Ghost" phenomenon is different from an under-determined problem.

In an under-detennined problem, images far from satisfactory are due to the lack of "views",

provided that the finite element mesh is good enough to describe the true image with reason-

able accuracy; but here, the unacceptable result is caused by the wrong design of a mesh

which cannot describe enough details to represent the image. It is related to modelling is-

sues.

6.1.2 Mesh effects on algorithm convergence

Although a coarse mesh may not guarantee the uniqueness of solutions, it saves recovery

efforts greatly. Figure 6.2 shows three finite element meshes with different element sizes.

(a)a4x4mesh (b) an 8 x 8 mesh (c) a 16 x 16 mesh

Figure 6.2 Examples with different meshes

When the same image is recovered using these three meshes, an algorithm converges more

quickly with the coarser mesh ( 4 elements on each side) than it does with a finer mesh ( 8

or 16 elements on each side ). This is due to the fewer number of unknowns and the shorter

path between objects and boundaries ( as we discussed the accessibility before ) in a coarser

mesh.
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The three examples in Figure 6.2were conducted with the'Wexler algorithm on a Sun Sparc

2 computer. The coarsest mesh ( Figure 6.2(a) ) generates the best image ( almost the same

as the original image ) in the shortest time, while the densest mesh (Figure 6.2 (c)) produces

the worst image in terms of quality ( Figure 6.3 (c) ) in the longest time if the determinacy

was kept the same. Figure 6.4 shows the CPU times used when an image is recovered with

one of the three meshes in 50 iterations. As may be seen, the simulation time increases dra-

matically as the elements become smaller.

In the example of Figure 6.2, the coarsest mesh actually provides the best picture, because

of the assumption of congruency between the object and the finite element mesh. If the con-

gruency cannotbe satisfied ( it is impossible to have such congruency in practical situations),

as shown in Figure 6.1 (a), the 4 x 4 mesh cannot work as well as it does here. Even though,

the coarser mesh still tries to converge towards the true image at the early stage as shown

in Figure 6.3 (d). The reason for the finer meshes' not working well in this case can be ex-

plained as the "redundancy". It reflects another problem: a finer mesh is not the best choice

at all times. When an image can be described by a coarse mesh instead of a fine one, the use

of fine mesh means to synthesize a simple system with a complicated model.

6.2 lmage Quality Improvement by Conductivity Interpolations

Ideally, the smallest object that an EICT system would be able to recognize is in or greater

than the aveÍage finite element size that an algorithm uses. The compromise has been dem-

onsûated in image quality and convergence speed between meshes with different fineness.

Using an non-unique mesh to save the computing effort is not realistic because the positions

of objects are not known. Then, is it possible for a relatively coarser mesh to produce finer

image without increasing determinacy ( i.e. the number of excitations/measurements is kept

unchanged)?

The potential distributions in the forward problem of an EICT algorithm are evaluated by

the FEM. More accurate results can be achieved by using higher order elements with more
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a. Original image
Contrast: 1:5

b. Recovered image
withSxSmesh
after 150 iterations

c. Recovered image
with 16 x 16 mesh
after 400 iterations

example in Figure 6.2 (a)
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Figure 6.3 Simulation results of the example in Figure 6.2 (a)
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Gauss points even larger size of elements have to be used. It is at these points that the inte-

grals are evaluated. Therefore, the limited number of electrodes will not affect the accuracy

of field calculations. It is the element conductivity (or image quality) that is affected the most

by the element size of a finite element mesh.

Examine the error function minimization algorithms more closely, one can see that

(a) A finite element mesh is only used in evaluating the potential distributions. The evalua-

tion procedure is independent of the conductivity updating procedure;

(b) The element conductivity updating formula is actually in the point form, as (2-43) repre-

sents. Conductivity at any point of the region can be interpolated by node potentials. The

assumption of a constant conductivity distribution within an element is the case of using the

conductivity at the central point of an element to represent the conductivity distribution in

the rest of an element.

(c) The potential at any point inside an fìnite element can be calculated based on the node

potentials and shape functions.

These analyses tell us that a finite element mesh used to solve the field problem does not have

to be the same as the mesh used to update element conductivities. A "finer mesh" is naturally

allowed in the element conductivity updating procedure if an error function minimization

algorithm is employed. Then, it is possible to improve image quality without increasing de-

terminacy and computing effort.

If we call the elementused forcalculating the potential distributions the "potential element",

while the element used for updating the conductivity distributions the "conductivity ele-

ment", we can represent a potential element with any number of conductivity elements to

improve the accuracy. For s¡amplo, if a potential element is represented with four smaller

conductivity elements, the centralpoint ofthe potential elementcanbeused andthepotential

at that point can be calculated ( Figure 6.5 ). Then, the mesh has been refined for the conduc-

tivity updating procedure. Four instead of one conductivities ( ru , j : I , 2,3, 4) representing

the conductivity distribution will be computed with (2-9) in every potential element. In this
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Figure 6.5 Meshes used in potential distribution evaluation
and conductivity updating procedures

case, the accuracy is doubled approximately.

The scheme to choose the element mesh is not unique. The numbers and the positions of

ru for each potential element i ( i : 1, 2, ...) canvary in different problems. A simple scheme

is to make the new conductivity points in the refined mesh the same as those representing

a higher order potential element since node potentials at such points are calculated anyway.

Gauss points of higher order potential element are a natural choice for this purpose. Then,

the conductivity updating formula becomes (2-46).

V/ith this approach, coarser mesh with higher order elements are used to solve the potential

distributions according to the measuredboundary potentials and injected currents, while ele-

ment conductivity is updated at each Gauss point inside every element. In a two-dimension-

al problem, if the quadratic element with 9 Gauss points is used to perform the integration,

the Gauss points are available to update an element conductivity, i.e. each element conduc-

tivify can be represented by 9 different values. At each iteration, better evaluation of conduc-

tivity distribution is achieved, and therefore, the potential distribution calculated in the next

iteration will be closer to the true solution. The accuracy is then increased u p to 2 or 3 times.

It is almost equivalent to the use of a finite element mesh with half the size of the original

mesh.

By applying ttris conductivity mesh interpolating scheme, with almost the same accuracy,
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one can solve a problem with 64 unknown using an 8 x 8 element mesh, instead of solving

a problem with256 unknown using a 76 x 16 element mesh in both the potentials evaluation

and conductivity updating procedures. The updating procedure with mesh refinery is only

performed once at each iteration. It does not cost anything compared with increasing the

fineness of a finite element mesh. The algorithm therefore is more efficient in producing

images with shaqp edges, and more reliable in the cases that there is no congruency between

the objects and the finite element mesh.

Figure 6.6 shows ¿¡ s¡ample that compares the images reconstructed with/without the inter-

polation. The image quality is greatly improved with the interpolation scheme.

In conclusion, the element conductivity mesh interpolation method produces images of

higher quality with a given number of available independent measurements. The savings

in computing time and storage space are significant. For matrix inversion algorithms, it

would be difficult to apply this scheme because the updating procedures in these algorithms

cannot be separated from the potential calculation procedure.

Therealization ofthis schemeusingdifferentmeshes shows anothergoodfeature of the error

function minimization algorithms. It works equally efficiently whether there are sharp edges

in an image or not.

In the equation derivation, the interpolation ignores the coupling effect from the neighboring

Gauss points, but will not affect the applications of the peak detection and modification

method.

6.3 Find Better Initial Distributions with Coarser Finite Element Meshes

It has been known that a mesh with proper fineness is important for an EICT algorithm to

recover an image of good quality. The question here is how to obtain a suitable mesh for a

particular problem.

6.3.1 Initial guess effect

It has been shown that a better initial guess on conductivity distribution normally gives an
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a. Original image Contrast 1:4

b. Recovered image with
interpolation using the
peak detection method

c. Recovered image without
interpolation using the
peak detection method

quality with conductivity mesh interpolation

92

Figure 6.6 Comparisons on image



$:i::riî
qo.oo

e2.intkop

e2.postkop

c. Original image in relieved form

{-*
^<9

X- .o€

d. Recovered image in relieved form with interpolation

e2.postkop

e. Recovered image inrelieved form without interpolation

Figure 6.6 Comparisons on image quality with conductivity mesh interpolation



imagewithbetterquality[15]. However,a"betterinitialguess"cannotbeknownbeforethe

algorithm starts since it is actually a solution not far from the true one. Previous work on

the mesh designs always employs a fixed finite element mesh through the entire image re-

covery procedure. In fact, more than one finite element meshes can be used to fit into the

set of data obtained from the electrodes. During the imaging procedure, the image produced

first by a former mesh becomes an initial guess for the successive mesh.

In general, the constant conductivity distribution assumed at the beginning of an EICT algo-

rithm may not be a good one. A bad initial guess affects the solution of an EICT algorithm

in three ways: (a) makes the imaging procedure diverge; (b) slows down the speed of conver-

gence; (c) gives an unclear picture.

The convergence period will be greatly reduced if a coarse mesh is used first to obtain an

approximate solution, then a finer mesh is used to reach the true image, provided the coarse

mesh makes an algorithm hy to converge towards the true solution when the meshes are

switched.

From the examples shown in Figure 6.1, we can see that the first guess brings the maximal

enor (maximal potential difference) after an algorithm starts. Even a very coarse mesh gives

a correct convergence directionl2S] although such mesh cannot represent an image with

great details. In the cases that edges of objects are not too different from the element sides,

or there is no sharp edge changes, a relatively coarse mesh will generate an image with ac-

ceptableerrors. Ifweuseacoarsermeshtostartimagingwithpartoftheexcitation/measure-

ment pattems, the algorithm will try to converge towards the true image at least in the first

several iterations. Images generated by coarser meshes after the flrst several iterations may

not be good enough as a final solution, but will be certainly good enough as an educated ini-

tial guess for a finer mesh. This indicates that the image generated by a coarser mesh can

be taken as an initial guess for the desired finite element mesh. There should be no doubt

that such initial guess is also better than the constant initial guess because it is the image re-

covered from the measured information related to the particular problem.
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6.3.2 Generating a better initial guess with coarser mesh

The convergence of an EICT algorithm can be faster if the algorithm starts with a relatively

coarser mesh to obtain a better initial guess for the finer mesh. In the example shown in Fig-

ure 6.1 (a), the algorithm starts with the 4 x 4 mesh. During the first several iterations, the

algorithm tries to converge to the true image. When the potential difference between the

measured and calculated distributions increases, the coarse mesh is switched to the expected

8 x 8 mesh. The element conductivity of the new finite element mesh is assigned by interpo-

lating the conductivity distribution obtained from the coarse mesh elements. More excita-

tions/measurements are also added in to prevent the determinacy from being affected. The

image from the coarser mesh is now the initial distribution for the 8 x 8 mesh. The computa-

tion time for each iteration is longer because of the increased number of unknown excita-

tions. Such procedure can be repeated by switching into an even finer mesh, say a 16 x 16

mesh. \Whenever switching occurs, there will be an averagepotential difference inducedbe-

cause of the elrors between a coarser mesh and a finer mesh. Therefore, this scheme induces

the potential difference to strengthen the driving force and to make the algorithm converge

in the correct direction. The improvement on the convergence speed and the image quality

is significant when a co¿ìrser mesh is used at the beginning. When the algorithm used the

4x 4mesh for20}iterations and 10 and 5 iterations with the 8 x 8 and 16 x 16 meshes respec-

tively, the total computer time is 14+ 5 +22:41 minutes, while it takes 150 minutes to run

the algorithm with a 16 x 16 mesh only for 50 iterations. The computer time saved is about

907o to obtain images with similar qualities.

The scheme of obtaining better initial guess for a finer mesh

Step I Apply excitationpatterns and make measurements using the mesh that an EICT sys-

tem desires to use, or even a mesh finer than the one the system expects to use;

Step 2 Use part of the excitation pattems and the corresponding measurements to start an

EICT algorithm with a coarser mesh whose nodes are the subset of the nodes of the designed
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mesh, as shown in Figure 6.7. The initial guess on the conductivity distribution can be set

r 234
(a) The expected mesh with applicable electrodes

l'=l 2'=3

(b) A coarser mesh using part of excitations/
measurements

Figure 6.7 Using part of excitations/measurements with coa¡sermesh

as constant;

Step 3 When the potential difference between solutions with Dirichlet boundary condition

and Neumann boundary condition is smaller than a previously set number (or the difference

begins to increase), take the present conductivity distribution as the educated initial guess

for the proper mesh ( finer mesh ) to be expected.

Step 4 Add the rest of the excitation/measurementpatterns into the excitation/measurement

sets, and start the algorithm with the finer mesh agatntill a reasonable solution is achieved.

Before an EICT algorithm begins, the mesh with proper element size is unknown. Therefore,

in Step 3, the condition for an algorithm to switch from a coarser mesh to a finer one does

not have to be satisfied in all problems because the coarser mesh may be already good enough

for an algorithm to generate a good image. In this case, the coarser mesh is the suitable mesh

for the particularproblem and the result generated by this mesh is the fînal image the system

can provide. The strategy to use this method is to keep using the coarser mesh as long as

possible since the computing time consumed with a coarser mesh is much less than that with

a finer mesh.

This method is independent of algorithms used in an EICT system. It produces more accu-
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rate result in fewer iterations. When an algorithm with this scheme finishes, the suitable

mesh for one particular EICT problem is found.

The way this method induces the potential differences is different from that the optimal cur-

rent excitation pattern method does[10]. In the optimal current excitation pattern method,

the pattem has to be updated as the imaging recovering procedure proceeds because the best

pattem depends on the true conductivity distribution. The method finding an educated initial

guess on the conductivity distribution does not try to find a better set of excitation patterns,

but to make use of the errors among different meshes. When a different mesh is used, the

number of excitations might be changed to provide enough number of independent measure-

ments. This can be done before an image procedure begins.
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CHAPTER 7

EICT IN TWO- AND THREE-DIMENSIONAL IMAGING

The final goal of a practical EICT imaging system is to recover a reliable f,rnal image inside

a three-dimensional body using limited surface measurements. As pointed out in Chapter

1, most of the reported simulations and experiments with different EICT algorithms dealt

with the reconstruction of images in two-dimensional slices using two-dimensional finite

element models. In some cases, such models can describe a three-dimensional problem

properly; but they cannot fully represent the behaviour of a complicated threo-dimensional

system in most medicaVindustrial applications.

In general, there are two aspects of three dimensional imaging which cannot be discussed

thoroughly in two-dimensional modelling. First, there are fewer choices in element shapes

to form finite element meshes in three-dimensional imaging. The large number of un-

knowns in a three-dimensional system restricts element complexity when computing time

is considered. Second, a complete set of boundary measurements is not possible in many

practical problems. The proper arrangement of excitation patterns is more critical for images

with good quality.

In this chapter, the effects of excitation pattern and boundary measurement on image quality

in two-dimensional imaging will be fîrst demonstrated. A simulation example for a medical

application is presented to show the flexibility of error function minimization algorithms.

Then, finite element models in three-dimensional imaging is discussed. And fïnally, three-

dimensional image quality under particular excitation pattern ¿uïangements is specially ad-

dressed.

7.1 EICT in TWo-Dimensional Imaging

The finite element mesh we use here is shown in Figure 7.1. The square mesh has eight sec-
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Figure 7.1 A finite element mesh

ond-order quadratic elements on each side. There are total289 potential nodes and 64 ele-

ments in the mesh. 32 electsodes are placed around the boundary and 8 excitation patterns

are applied.

7.1.1 Excitation pattern designs

We discussed this topic with sensitivity and accessibility in Chapter 3. An adaptive current

injection scheme[lO], which modifies the distribution of injected current on the boundary

at each iteration, can be used to achieve an optimal excitation pattern to distinguish objects

from the background under a certain measurement accuracy requirement. As the recovered

image approaches the true solution, the optimal excitation pattem for that particular problem

can finally be determined.

Two problems with this pattern should be addressed. One is that the excitation patterns might

be changed during the imaging procedure, which requires fast data processing ability from

the EICT system. The other is the optimization results in a current injection distribution

around the boundaries, i.e. there are more active sites for each excitation pattem. The poten-

tials at those active nodes have to be discarded for the purpose of eliminating the contact re-

sistance effects. As the number of active potential nodes increases, the remaining un-active

potential nodes may not be able to provide enough independent measurements. It could ruin

the results improved by applying the optimal excitation patterns. Further more, the use of

injections
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optimal excitation patterns improves the convergence behaviour only in the first few itera-

tions but not as well afterwards[15]. In a practical EICT system, the speed of the devices

might be restricted, and the contact resistance effect is more significant. Therefore, itmay

not be realistic to search for and to implement optimal excitation patterns while an image

is under recovery.

As studied in Chapter 3, it is impossible to choose eff,rcient parameter-related excitation pat-

tems before an EICT algorithm starts because proper excitation pattems depend on the un-

known conductivity distributions. However, based on sensitivity or accessibility analysis

according to the similarities between the network conductance recovery and the conductiv-

ity distribution imaging, the excitation patterns can be pre-defined after a finite element

mesh is specified.

Assume the finite element mesh as shown in Figure 7.1. Sensitivity at port AB correspond-

ing to excitations can be calculated. If we use the horizontal axis for the positions of elements

of the central line, and the vertical axis for the sensitivity measured from the specified excita-

tion pattern, Figure 7.2 shows similar features that we found in a resistive network recovery.

Then, the excitationpatterns shouldbe arranged in this way to find sensitivity related reliable

regions in the sense of sensitivity: a. more cross patterns (every two rows / columns / layers)

because more details would be revealed from measurements induced by such patterns and

less measurement noise would be involved; and b. some conler patterns.

If we represent each element of a finite element mesh with the network model shown in Fig-

ure 1.1 (a), the mesh is changed into a network with one element covering several branches.

Although the equivalent network for a finite element mesh is not unique, but it uses the same

potential nodes, where the field is evaluated. After the conversion, the accessibility discus-

sion in a field case becomes a measurable problem of a network. Then, the theory developed

for network recovery can be directly applied to obtain similar conclusions. The previous pro-

posed algorithms for determining accessibility can also be employed. When branch conduc-

tances, corresponding to some element conductivities, in the entire mesh are accessible, the
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algorithm gives the fastest convergence speed. When the maximal number of independent

measurements is limited by the number and positions of electrodes, optimal excitation pat-

terns in the topological ( or sensitivity ) sense can be pre-designed. The reason for designing

excitation patterns with sensitivity or accessibility theory is that better patterns are deter-

mined in advance so that the contact resistance elimination will not be affected.

7 .1.2 Boundary measurement effects

Measurement error effects introduced by boundary distortion In a practical medical

case, elecfrode positions for measured potentials on the surface might be displaced by the

body movement. Most of EICT algorithms will fail to produce any image in this case[46].

V/e discuss this effect in detail with an example using the peak detection method. The simu-

lation is designed by assuming that the "measured data" on the stretched sides are taken from

the potentials at inner nodes calculated from the exact solution. The original image is the

one shown in Figure 6.1 with the contrast of 1:5. When two sides along the Y-axis are

stretched for Il16 of the total length of one side of the boundary (half length of one element

side), the recovered image is stretched in the same direction and about the same ratio as

shown in Figure 7.3 (b). Some conclusions from the simulation results can then be drawn:

(1) If the stetching becomes more significant, the stretched image loses its original shape

completely.

(2) IVhen different measurement pattems are applied, the image obtained by applying al-

ways pattems is most seriously affected. This is due to the maximal potential changes at ac-

tive excitation sites. When stretching takes place, the potentials used at active excitation

sites innoduce the largest difference between the correct values and those affected by the

stretching.

(3) The part of image which is closest to the stretched boundary is distorted the most, while

the parts which are far from the stretched boundary remains un-affected (see the two sides

in the image along the X-axis).

This example demonstrates the insensitivity of error function minimization algorithms to
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a. Recovered image without distortion

b. Recovered image
with two sides distorted

Figure 7.3 Measurement error effects introduced by boundary distortion

boundary measurement errors. It shows that error minimization algorithms are relatively

robust to boundary displacements. When the boundary of a body to be examined is slightly

stretched, algorithms can still manage to generate an image not too different from the true

solution. In clinical situations, if the stretching made by body movement is known in ad-

vance, the distorted image can be restored more easily.

Measurement error effects introduced by device precision Matrix inversion algorithms

are known to be sensitive to measurement noises[27]. It can be a very ill-conditioned prob-

lem in apracticalElcT system, especially when the objects inside the body are farfrom the

^tI ,*
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boundary. Now, we will see how error function minimization algorithms behave when mea-

surement errors, due to device precision are introduced. A uniquely distributed random

noise is added to the calculated boundary potentials from the true solution to model the mea-

surement errors in a real system. Suppose the exact boundary potential at node p to be Vo.

The actual boundary potential Vo'with measurement error at this node then becomes

vo' VoQ + x(p)) (7-I)

wherex(p)isauniquedistributedrandomvariablein[-ô ,ô ](ô >0). Ifanoriginal

image is as shown in Figure 7.4 (a), we add errors to measurements by changing ô from 0

to0.1. Figure7.4(c)to(f) givetworecoveredimageswithdifferent ô . Simulationsshow:

(1) The algorithm manages to converge to the true image when ô < 0.1;

(2) Distortions occur when measurement errors are introduced;

(3) Always pattems is a better choice to eliminate measurement errors;

(4) Measurement errors have more sever effects on images when an algorithm runs for a long

time because the elrors spread out gradually from boundary to the entire region. Algorithm

acceleration by any means, such as the peak detection method, will help reduce the damage.

This problem deserves being discussed more thoroughly. It is not only related to the signal-

noise ratio, but also to the contrast of the image and the true conductivity distribution. The

conclusion at this stage is that the error minimizationalgorithms ¿ue more robust to the mea-

surement errors than matrix inversion algorithms.

Measurement device designs for boundaries in irregular shapes In practical situations,

boundaries of a body to be examined are normally in irregular shapes. Instead of modelling

the irregular boundary with different shapes of finite elements, we can apply the EICT algo-

rithms in a larger region with boundaries in regular shapes and include the boundaries in ir-

regular shapes as part of the image. Figure 7.5 shows an example for this proposal.

Relations between efficiency and image quality We use the Wexler and the Yorkey algo-

rithms to discuss this problem briefly. The main difference between these two algorithms

is thatthe Yorkey algorithm minimizes theenorsbetween the calculatedpotentials and mea-
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(a) Original image
Contrast: 1:5

(b) Recovered image with

ð:0.0
iteration: l0
with the peak detection

(c) Recovered image with

ð = 0.00s
iteration: 20
with the peak detection

Figure 7.4 Effects of measurement precision on image quality
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(d) Recovered image with

ô = 0.01

iteration: 20
with the peak detection

(e) Recovered image with

ð = 0.0s

iteration = 20
with the peak detection

(f) Recovered image with

ô=0.1
iteration = 20
with the peak detection

Figure 7.4 Effects of measurement precision on image quality
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a. Original image
Contrast:1:5

original body

b. Recovered image
with the Vy'exler algorithm
iteration: 50

c. Recovered image
with the peak detection method;
iteration = 50
modification is effective at
iteration: 20 and iteration : 30,
respectively

Figure 7.5 Example of inegular shape processing in EICT
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Figure 7.5 Example of irregular shape processing in EICT

sured potentials on the boundaries, while the V/exler algorithm minimizes the errors between

those potentials at individual elements. For the former algorifhm, the inner element conduc-

tivity information has to be mapped into the output minimization function correctly, so that

the algorithm deals with smaller sizes of excitation/measurement sets, and the recovering
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procedure can be faster. From the system identification (or network synthesis) point of view,

the availability of mapping information into the output measurements requires all element

conductivities in a mesh to be "measurable". If this cannot be satisfied (i.e. the mesh is not

"measurable"), the solution from the Yorkey algorithm may not be unique. The Wexler algo-

rithm does not need to map the inner element conductivity information into the boundary

measurements. It is, in theory, able to identify all element conductivities whether the whole

mesh is "measurable" ornot. Such algorithms, of course, require more efforts (i.e. long con-

vergent period) to generate an image.

7.1.3 Simulation results of thorax in two-dimensional EICT imaging

The finite element mesh used in an EICT system does not have to be congruent with objects

inside the body. [n fact, it is impossible to make it congruent in a real system. Previous work

used the finite element mesh shown in Figure 7.6 (a)to solve the thorax problem. In this sec-

tion, we demonstrate how error function minimization algorithms solve this problem with

different recovering finite element meshes. Three finite element meshes, with 90,120, and

160 elements, respectively, are used to recover the image. Figure 7.6 (b) gives a sample of

the mesh used in the simulation. There is no congruency between the mesh and the objects

in the body with any one of these meshes. The boundary of the chest is inegular. 32 elec-

trodes are placed around the chest to collect measurement data. 8 pairs of excitation pattems

are applied. The sometimes pattems are used to eliminate the contact resistance effects.

All the meshes give similar images of the examined chest (Figure7.7 (a)-(c))). We can see

clearly the positions of lungs, heart, and back bone. The total errors are less thanS%o. The

largest error of element conductivities is2ÙVo of the original values. Figure 7.7 (d) and (e)

give the plot of the conductivity comparisons at two cross-sections of the thorax. If an even

finer mesh is used, the image quahty does not improve significantly. Only are smoother

boundaries of objects achieved. This is thenumerical manifestationof thephysical measure-

ment limitations. The imaging procedure stops when the difference of boundary potentials

between the measured and the calculated is smaller than a pre-set number. Further improve-
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(a) Finite element mesh for thorax image problem used inprevious work

(b) A sample of finite element mesh used for the thorax simulation

Figure 7.6 Finite element models of thorax
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(a) Recoveredimage
with coarse mesh

(b) Recovered image
with finer mesh

Figure 7.7 Simulation results of thorax
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(c) Recovered image
with fÏnest mesh
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(d) Conductivity comparison on cross-section AA'

Figure 7.7 Simulation results of thorax
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(e) Conductivity comparison on cross-section BB'

Figure 7.7 Simulation results of thorax

ments on image quality may be made by image restoration techniques and other image pro-

cessing methods.

7.2 Finite Element Models Used in Three-Dimensional Simulations

7.2.1 Solid FEM model with linear elements

One way to create a finite element mesh for threo-dimensional EICT imaging is to form a

three-dimensional mesh with linear elements. A linear elementhas the simplest shape and

least number of nodes. It is, therefore, easier to obtain an over-determined problem with

such elements under the limited number of independent measurements and to save comput-

ing time as well as storage space for the large amount of data to be processed. Figure 7.8

shows the three-dimensional model we use in this thesis. The six sides of the body V to be

examined are called top, bottom, left, right, front, and rear, respectively. There is an 8 x 8

square mesh at each layer of the body. The number of layers used in a particular problem
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Figure 7.8 Finite element mesh with linear element in EICT three dimensional imaging

can vary.

7.2.2 Solid, FEM model with higher-order elements

It is possible to use higher-order elements to design a three-dimensional finite element

mesh. More computing power is needed to process the complicated mesh and large amount

of data. This thesis will not discuss this problem. We believe that the principles and conclu-

sions established by the mesh with linear elements will be applicable to the mesh with high-

er-order elements.

7.3 Effects of Excitations/Nteasurements on Three-Dimensional Imaging

Normally, acomplete setofboundarymeasurements are availableintwo-dimensionalEICT

imaging. In three-dimensional EICT imaging, it is not always possible to have such a com-

plete set because the measurements on some sides of a body cannot be made. The main issue

associated with this feature in three-dimensional imaging is the reduced determinacy and

the lower effectiveness of excitations/measurements placed on some of the six sides. There

are more chances in three-dimensional imaging to deal with an under-determined problem.
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7.3.1 Electrodes on top only

This is the most difficult case in three-dimensional imaging since the system with such exci-

tation alrangements provides the leastnumber of independent measurements. It often results

in an under-determined problem. The mine detection problem belongs to this case. Figure

7.9 shows an example with the excitation/measurement patterns applied only on the top.

(a) Original image
Contrast l:5

(b) Recovered image after 500 iterations

Figure 7.9 Threedmensional imaging with top only excitations/measurements available

Four layers are used and the total number of unknown element conductivities is 256. lf 8

excitations on the top layer is applied and sometimes measurement pattems are taken, there

are 8 x ( 81 - 2) : 632possible independent measurements, and 8 x ( 32 - 2) : 2N < 256
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independent measurements used to recover the image. The problem is under-determined.

The algorithm used is the Wexler algorithm without improvements. Figure 7.10 shows the
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Figure 7.10 Enor of the example in Figure 7.9

errors of the example in Figure 7.9.

The main effect of such arrangement is the low sensitivities of elements in deeper layers.

As demonstrated in previous chapters, no matterhow many excitation pattems is applied and

how many measurements are obtained, only layers close to the top can be recovered reliably.

First, only can objects in the shallow layers ( close to the top layer where excitation/measure-

ment pattems are applied ) be recovered with reasonable accuracy. Secondly, errors in differ-

ent layers are quite different, i.e. errors in shallow layers decrease while those in deeper lay-

ers increase. Thirdly, the total error starts increasing after a certain number of iterations.

We have seen a very similar case in network recovery. This reflects the insensitivity of con-

ductivity distributions in deeper layers to the far positioned excitation/measurement pat-

terns.

If objects inside the body exist in even deeper layers, the top only excitations/measurements

- 

top only exc"/m€as.
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cannot detect anything atall. If some electrodes are applied on the boundary every two lay-

ers, the images in deeper layers can be of much better quality.

Thereasonfornotusing the improvements developedin Chapter4and Chapter5 in three-di-

mensional simulations is that the higher possibility of faulty detection in the layers which

are not sensitive to the measurements. The significant errors in deeper layers with the top

only excitations/measurements make it meaningless to apply the peak detection method and

acceleration factor in those layers. One way to get rid of the faulty detection in deeper layers

is to apply the peak detection method layerby layer and modifications are only made in those

layers which canbe controlledby the appliedexcitations/measurements, i.e. which are sensi-

tive to the measurements.

7.3.2Electrodes on four sides

This kind of problem has higher determinacy. When EICT is used to monitor the thorax of

ahumanbody, electrodes can be placed on the four sides, front, rear, left, and right, surround-

ing the body. Figure 7. 1 1 and FigureT .I2 show the imaging results and error norm plots with

four side excitations/measurements applied. There are three objects inside the body, which

represent the two lungs and the heart, respectively. 8 layers are used in the three-dimensional

model. 24excitation pairs are placed around the body between the second and the third, the

fourth and the fifth, and the sixth and the seventh layers, respectively. There are24x (32

-2) : 720 independent measurements versus 64 x 8 :512 unknowns. It is an over-deter-

mined problem. The images in middle layers are recovered with reasonable accuracy. Com-

pared with what we have seen in Figure 7. 10(b), the middle layer images have better quality,

whiletheimages on the top and atthebottom arerecoveredpoorly sincethereis less informa-

tion available from these two layers.

7.3.3 Electrodes on five sides

The reason that this case is discussed is that the detection of breast cancer with EICT is a

similarcase. AsshowninFigureT.l3,onlythemeasurementsonthebottomarenotpossible.

Considering the shape complexity and variations of a breast (in ttre case of chest imaging,
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(a) Original image (b) Recovered image after 300 iterations
Contrast l:5:9

Figure 7. 1 i Tbree-dimensional imaging with four side excitationsimeasurements available
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the shape of the chest is close to rectangular), modelling a breast in three-dimensional imag-

ing would be too costly. Therefore, we suggest, as we have discussed in the previous section,

to build a device which has simpler shape for the electrode placement, and filled with some

homogeneous materials with known conductivity (salty water, for example) between the

boundaries of the real body and the device. Such device is then taken as the working model

for EICT imaging.

Following the discussions on the four side excitations/measurements, we know that images

with better quality can be obtained when the five side patterns are available. The problem

is normally over-determined. FigureT.I4 gives an example with a smaller object inside a

body, while excitations/measurements on top, left, right, front, and rear are applied.
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(a) Original image
Contrast 1:5

(b) Recovered image after 500 iterations

FigareT.l4 Three-dimensional imaging with five side excitations/measurements
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CHAPTER 8

EICT SYSTEM DESIGN AND APPLICATIONS

Previous studies of algorithm improvements, mesh effects, and excitation designs show that

a workable EICT system with error function minimization algorithms is possible. In this

chapter, thefundamental principles thatcanbeused to buildanEICTsystem with errorfunc-

tion minimization algorithms are firstpresented based on the results obtained from previous

chapters. Then, as a practical example, a nuclear waste monitoring system currently under

testing at Atomic Energy Canada Ltd is described.

8.1 Design Principles For EICT Systems

A set of principles to realize an EICT system for industrial purposes is proposed as follows.

8.1.1 Problem descriptions

In general, an EICT system with an error function minimization algorithm may be designed

for a particular image problem, for example, mine detection and breast cancer diagnosis.

The geometry and boundaries of the body and the number of applicable electrodes are known

in advance. Some additional parameters are also available, such as background conductivity

values, possible maximal (minimal) conductivity values, and the approximate positions of

some objects in the body. The problem then is to decide whether a two- or threo-dimensional

model should be used.

8.1.2 Designing an EICT system

Step 1 Designing the working model for the system

Since the geometry of a body to be examined could be very complicated, it is sometimes easi-

er to build a working model for the system to perform the EICT imaging by actually applying

excitation/measurementpattems on the boundaries of the working model. A working model

has simple shapes with low conductivity material filling between the boundaries of the mod-
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el and the body. The reconstruction region then becomes larger and the filling material is

part of the image. If the shape of the body is simple enough to model, the working model

is not necessary.

Step 2 Designing the finite element meshes

Design two finite element meshes according to possible electrode positions. One is coarse,

while the other fine. The sizes of individual elements should be determined based on the

expected distinguishing accuracy. As we have discussed, the use of sometimes measurement

pattems is good at eliminating the contact resistance. The approximate number of indepen-

dent measurements for this pattem with N electrodes is about N2/2. Then, for a cubic mesh

as shown in Figure 7.7,if the length of each side of the mesh is L and the length of each side

of one element is l, the expected element size can be calculated as I >L I (N2/3 / 2).

Step 3 Designing excitation/measurement patterns

Assume an arrangement of electrodes and perform the sensitivity analysis with the pre-de-

signed mesh. It is suggested to arrange electrodes as evenly as possible surrounding the

boundaries of the working model. Since the change of excitation pattern Íuïangement is not

practical in most of the cases, it is better to make as many measurements as possible unless

the system restricts one to do so. Two types of excitation pattems are recommended for a

two-dimensional problem according to the accessibility theory. First, each excitation pat-

tem uses a pair of elecüodes which are right across, as shown in Figure 8.1 (a). Secondly,

each excitation pattern uses a pair of electrodes which covers a "comer" of the entire region,

as shown in Figure 8.1 (b). Such patterns can approximately make most of the elements ac-

cessible at least for a coarser mesh. Then, the combination of these different excitations can

be used to obtain a set of "semi-optimal" cunent patterns for the problem in topological

sense. In the case that objects have relatively fixed sizes and positions, a standard set of exci-

tation pattenns can be setup after a series oftrial cases is perforrred.

Step 4 Performing EICT imaging with the coarse mesh

The coarse mesh is first used to generate a trial image. If the average potential difference
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(a) Excitation pattern with each pair across (b) Excitation pattern with each pair covers a corner

Figure 8.1 Recommended excitation patterns

keeps going down as the iteration procedure proceeds, the mesh is the one which is suitable

for this problem, and the trial image is the final one. If the average potential difference starts

going up after aceftain number of iterations, the mesh cannot represent the problem properly.

Then, stop the imaging procedure and store the result.

Step 5 Performing imaging with finer mesh

A finer mesh is then switched on to continue the procedure. The stored result from the coarse

mesh now becomes the initial guess of the conductivity distribution for the finer mesh. It

would be better if this new mesh can be modified with elements of different sizes when the

previous coarse mesh has given a blurred picture. In this case, smaller elements can be

placed around the area where the object boundaries might be. Add more excitation pattems

in and start the imaging procedure again. Repeat Step 4 and Step 5.

Step 6 Solving the under-determined problem

If the finer mesh still cannot provide a satisfactory image in Step 5, the problem can be fteated

as being under-determined. In the case that more electrodes can be added in, go to Step 2

and repeat the previous procedure. Otherwise, re-Íurange the electrodes according to the

method we discussed in Chapter 3 and Chapter 7 to make part of the region over-determined,
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then go to Step 2.

8. 1.3 Software recommendations

It is difficult to solve a three-dimensional EICT problem in a body with arbitrary shapes.

The body with complicated geometry requires powerful software to calculate the field solu-

tions in three-dimensions. There are some commercially available three-dimensional solv-

ers to build three-dimensional finite element models for complicated geometry. One of them

is I-DEAS from SDRC, which can create many three-dimensional shapes with a very user

friendly interface.

8.2 An EICT Nuclear Waste Monitoring System in ABCL

A nuclear waste monitoring system was built by AECL, Atomic Energy Canada Ltd., and

has been under test for about ayear. The preliminary results show good agreement between

the theoretical solutions and the images generated from the EICT system. This is encourag-

ing to apply this technique in a practical environmental protection problem.

8.2.1 Background in nuclear waste monitoring

Current approach of measuring the in-sifu properties of Reference Buffer Material (RBM)

at the Underground Research Laboratory (ULR), Atomic Energy Canada Ltd., is by taking

direct measurements. The instruments are installed and readings are taken directly at their

point of installation. There is great certainty in these measurements since the location of the

measurements is precisely known, and the measurement is taken as directly as possible.

However, since the scale of the currently performed experiments is so large, a corresponding

large number of instruments has to be installed in order to get fine enough resolution of detail.

This affects the results of the measurements since these instruments influence the measured

properties of the system as a whole. As well, there is a great difficulty in accessing the instru-

ment after installation and as a result, instruments often cannot be repaired, replaced, or

maintained.

As a remote sensing technique, EICT provides an alternative way to measure ground water

r25



infiltration of reference buffer material. In AECL, it is tested to be used to study components

in Canadian Nuclear Waste Management Program's Concept of storing high-level radioac-

tive waste by measuring saturation levels in buffer material since impedance values relate

directly to saturation levels. The RB M is the primary engineered boundary between high-le-

vel radioactive waste and the sensitive biological systems, and fluid transported by ground

water is the primary means of canying the contaminates between these systems. It is critical

to the Canadian Nuclear Waste Management Program to be able to study ground water flow

in RBM to verify the Concept.

8.2,2Problem description and system design

The region to be studied is a cylinder with measuring points contacting to the depth of 240

meters underground. A data acquisition system has been constructed along with a laboratory

experimental apparatus to verify that measurements can be taken and valid results can be

determined by this approach. The method works through injecting current into one or more

electrode pairs in contact with the buffer and measuring voltages at all elecftodes[3S, 36].

Tlvo finite element meshes, one coarse and one fine, are designed for this EICT system. The

element used in both meshes is quadratic element with 9 Gauss points. There are 32 elec-

trodes arranged on the circular boundary with 10 of them to be taken as excitation pairs. With

the sometimøs pattem in measurement, for the coarse mesh, there are 10 x ( 32 - 2) : 300

independent measurements corresponding to 113 unknown element conductivities; while

for the fine mesh, the same number of independent measurements are used to recover 196

unknown element conductivities. The preliminary results show good agreement between

the theoretical data and the data from the images recovered with EICT algorithms. It indi-

cates the promising of this technique in environmental applications.
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CHAPTER 9

CONCLUSIONS AND FUTURE RESEARCH

Three-dimensional applications of EICT are the reasons for studying this topic. Efficient

and stable algorithms are important to the success of EICT systems. This thesis carries out

research on finding algorithms which are suitable for three-dimensional EICT imaging by

comparing different algorithms, not only in terms of speeds of convergence but also their

ability to process large amounts of data from three-dimensional systems in a robust manner.

Error function minimization algorithms discussed in this thesis partially meet these require-

ments. The ability of solving under-determined problems using such algorithms is ex-

plained. The cause of slow convergence with error function minimization algorithms is in-

vestigated in detail and new adaptive schemes are introduced to speed up the convergence

process. Excitation effects and design rules for better excitation patterns are initially dis-

cussed, with sensitivity and accessibility analyses using network approaches. Methods of

increasing resolution under limited number of independent measurements and using finite

fineness meshes are proposed and tested. Simulations in two- and three-dimensional prob-

lems are perfonned. The measurement error effects are discussed with two-dimensional ex-

amples. Excitation effects on image quality in threo-dimensional imaging are studied. The

conclusions of these investigations are then summarized in the form of a set of guidelines

for building a successful EICT industrial machine.

9.L Conclusions

Comparisons of EICT algorithms with iterative characters Previous research focused

on matrix inversion algorithms and evaluated different algorithms mainly by comparing

speed of convergence in terms of iterations.
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1. Matrix inversion algorithms

These algorithms use Newton-Raphson-like procedures to obtain acceptable solutions.

Dense matrices cannot be avoided with these algorithms, which restricts the algorithms abil-

ity to deal with large three-dimensional systems.

Matrix inversion requires that the number of independent measurements be larger than the

number of unknown element conductivities. As the number of electrodes may be limited

in an EICT system, necessary compromise for such a condition results in a relatively coarse

finite element mesh. Thus, these algorithms, in general, cannot recover an image with de-

sired details.

Since the internal information is mapped onto the boundary measurements, matrix inversion

algorithms are more sensitive to measurementnoise orboundary distortions. Such mapping

is efficient only when the entire mesh to be imaged is accessible.

Most simulations with matrix inversion algorithms have been done by assuming some de-

gree of congruency between the objects and finite element meshes. Therefore, the testing

condition is artificial rather than practical since it is impossible to design a mesh to accom-

modate completely unknown objects.

2. E,rror function minimization algorithms

The speed of convergence of EICT algorithms should not be used as the only factor for algo-

rithm evaluations, especially when the algorithms have different objectives. Compared with

matrix inversion algorithms, error function minimization algorithms have more advantages

which have not been fully studied.

Error function minimization algorithms do not result in dense matrices. Sparse matrices

from such algorithms make it possible for the algorithms to process large amounts of data

from three-dimensional systems.

Most importantly, error function minimization algorithms can solve under-determined

problems which are more realistic in applications. In the real world, an EICT problem with

a limited number of measurements is always under-determined in the sense of representing
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infinite details in a continuous field problem with finite models. Therefore, error function

minimization algorithms ¿ìre more suitable to the naturally occurring problems.

Error function minimization algorithms calculate new element conductivities one element

at a time. They are thus more robust for measuring errors and boundary distortion.

Simulations without congruency between objects and finite element meshes are successfully

performed and image qualities are compared.

Algorithm improvement The least squared technique proposed for the error function mini-

mization algorithm is good at providing the convergence direction for the algorithm and

keeping a currently best solution. By combining image processing and function minimiza-

tion techniques, improvements and modifications to EICT so that they speed up the conver-

gence procedures. Two proposed schemes in this thesis have proven to be efficient and reli-

able.

Network models for EICT Network recovery with error function minimizationalgorithms

help identify problems from EICT algorithms and systems. They can also be used to discuss

the characteristics of EICT systems.

Numerical and topological features represent two aspects of an imaging system. Numerical

features depend on the system's parameters, while topological features of the system, which

have been neglected previously, reflect the structure information which is not parameter de-

pendent.

Sensitivity and accessibility analyses are essentially employed in this thesis to study EICT

with network methodology. Reliable convergence regions can then be identified according

to different EICT problems. Effective excitation patterns, which do not need to be changed

during the imaging procedure, are determined based on such regions.

Resolutionimprovementwithmeshinterpolation Whenthenumberofindependentmea-

surements is limited, image resolution with these algorithms can still be improved by inter-

polating the elementconductivity values inupdatingprocedures without increasingthe com-

plexity of meshes and computation effort. With the methods introduced in this thesis, a
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proper mesh can be found for each individual imaging problem.

System design A set of guidelines for building a successful EICT industrial machine is also

proposed in this thesis.

9.2 Future work

Future research on EICT algorithms and systems can be addressed as follows:

1. The limitations of the EICT systems with error function minimization algorithms need

more study.

2. Sensitivity analysis should be further investigated and be employed in the peak-detection

method to decide, more intelligently, the regions where updating element conductivity

should be accelerated.

3. The peak detection method in three-dimensional imaging needs to be implemented.

4. The improved image resolution with the peak detection method needs to be evaluated

more thoroughly.

5. More tests, in simulation and in experiments, are needed to verify the guidelines proposed

in this thesis for building a successful EICT system.

6. Measurement effects, such as skin effect (e.g. in breast cancer detection), need to be dis-

cussed.

7. More investigations are needed to explore the relationships between the sensitivity/acces-

sibility and excitation/measurement patterns so that better final image can be obtained.

8. Network recovery proves that the principles and algorithms of EICT can be used in fault

diagnosis of printed circuit boards. Research can be performed to investigate the possibili-

ties and limitations.
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