The Design and Implementation of Implicit Parameters
to Support Function Polymorphism

by

Jason O. Dueck

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements
for the Degree of

Master of Science
Department of Computer Science

University of Manitoba
Winnipeg, Manitoba

© Jason O. Dueck, 1997

il

National Library Bibliothéque nationale
of Canada du Canada
Acquisitions and Acquisitions et)
Bibliographic Services services bibliographiques
395 Wellington Street 395, rue Wellington
Ottawa ON K1A ON4 Ottawa ON K1A ON4
Canada Canada
Your file Votre référence
Our fle Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propri€té du
copyright in this thesis. Neither the droit d’auteur qui protége cette theése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-23289-1

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

COPYRIGHT PERMISSION

THE DESIGN AND IMPLEMENTATION OF IMPLICIT PARAMETERS
TO SUPPORT FUNCTION POLYMORPHISM

BY

JASON O. DUECK

A Thesis/Practicum submitted to the Facuity of Graduate Studies of the University of Manitoba
in partial fulfillment of the requirements for the degree of

MASTER OF SCIENCE

Jason 0. Dueck © 1997

Permission has been granted to the LIBRARY OF THE UNIVERSITY OF MANITOBA
to lend or sell copies of this thesis/practicum, to the NATIONAL LIBRARY OF CANADA to
microfilm this thesis/practicum and to lend or sell copies of the film, and to UNIVERSITY
MICROFILMS INC. to publish an abstract of this thesis/practicum..

This reproduction or copy of this thesis has been made available by authority of the copyright
owner solely for the purpose of private study and research, and may only be reproduced and
copied as permitted by copyright laws or with express written authorization from the copyright

owner.

Abstract
In a programming language, functions that can be invoked with different numbers of

arguments, different types of arguments, or can return results of different types are called
polymorphic functions. An overview of polymorphism in modern languages is given.

Partial evaluation is a program optimization process which exploits values known at
compile-time with the goal of producing a faster and sometimes smaller program. In the
Safer_C language, variables, parameters, and functions can be assigned an evaluation
time by the programmer. When one or more parameters of a function have an evaluation
time of compile-time, the function may be specialized for their values. Function
specialization is one of the means through which Safer_C will support function
polymorphism. This thesis describes three new developments in this area: 1) Syntax for
declaring implicit formal parameters, 2) Boolean conditions for type inference, and 3)
Type manipulation functions.

An extension of function specialization has been developed which allows functions to
be specialized for types, as well as for values. Compile-time type and value information
may be provided explicitly by the programmer, or it may be described abstractly in an
implicit formal parameter list. An implicit parameter passing mechanism obtains the
types and values described in such lists from the site of each function invocation. The
programmer may place constraints on the specialization process by defining a conditional
type matching expression for any explicit parameter. Such constraints provide a means to
validate type-specific aspects of each function invocation. They also give the compiler a
mechanism to support function overloading. Conditional type matching expressions and
the implicit parameter passing mechanism were made possible through the creation of a
set of compile-time type manipulation functions. These functions accept types as

parameters and return a type or value as their result.

i

Acknowledgments

The last two years have proven to be a very productive and rewarding time for me. Many
people have given me advice and help over my years at this university. While I cannot

begin to name them all, I would like to thank the following individuals:

Dr. Peter King, for serving on my thesis committee and entrusting this young punk with

four teaching assignments.
Dr. James Peters, for serving on my thesis committee.

Dr. Peter Graham and Dr. Brian d'Aurial for their advice and encouragement.
Lynne Romuld, the All Knowing, All Seeing One for answering my endless questions.
And
My supervisor, Dr. Dan Salomon, whose work ethic and dedication to his students has

proven to be an inspiration to me.

Finally, C.B. for her patience and understanding.

I love you, dear.

i

Contents

Abstract i
ACKNOWIEAZIMENLSeeeeeciitieieeeeceecrrresserrenressnness e reernesea s e nnsesseseseemananes iii
List of Tables.............. vi
L. INrOAUCHON. ...cceirreereeeeenrseerenrsreesiesnssescsesssnssessesssessnsassnsasassassssseessssassssnssenserassanes 1
LL. SAfer_C ... etectceeetsetn st sse s s s s s se s w2
1.2. POLlymMOLPhISI......occccrirriieianrisieessicerrersresnssrrenisresserressmsnssssransnnnsasmsnnees 3
2. Survey of Function PolymorphiSm..........cceveevervmieecreererereceeerveeee e cveeens 6
2.1. Ada........... . ceeeeeeaO
2.2, G ceeereeeeceeeacrenernereresssseserenssenessss et b e s s s bbb ea bt e e s b s e et ben e 12
23 ML ettt s e st b e b sa s b e bR s s bt ns 21
2.4, FOTCETWO ...ttt ssssnessesansesesenssssessesassssssaresrsesssnesnsnsnsesnse 25
P TR 231 i (= OOt 30
3. Related Research..........ccccoeevenionmevcecrnueenrecneenreenneenes 36
4. Function Polymorphism in Safer_C/2 ... 39
4.1. Parametric or Inclusion Polymorphism?. etteeresesessinssennernsse e ransseeaaas 39
4.2. ODJECUVESoueereeereerenrercnersesseescsssssssssrnessesressasssssssssssssssssssnesaesssorsasessssessnsnns 41
B.3. OVEIVIEW....cueereereeecrerenosenreniersstsscssssssesssstsnisssesssssnssssasssnssesnssessnnnsansssnsnnses 44
4.4. Implicit Parameters...........ccccouee.... seerreee s ases b s se et s bt e s s s e s e s e eras 46
4.5. Type Manipulation FUNCHORS........cccmiirmreiciictieetccteetcr e aerne e 47
4.5.1. ISTYPECONSISIENL.......c..ocoecieirrienirreerirnseserereseosasasessssssessasesssessssesseses 51
4.5.2. Field and FieldTYPe «.ccoccverereeicririeeienesctncecsstnsessssseseessssssesssesesee 52
4.6. Conditional Type Matching..........cocumimriienerciricneiesreirensensnceeneeessnenaens 53
5. Implementationccocveeeeemneervenersereereneas seesreesreseenessesnasresesranssnanenes 60
5.1. Managing instantiations in a single source file.........cocceceeevvmcrrrrerccenecnne 62
5.2. Managing instantiations in multiple source files..........cccvveemrerrrererrncnnce. 66
LTV 100 00 T oy U U U S 71

iv

Appendix A - Evolution of this work
A.l. Version 1

......

..........

A.2. Version 2

.................................

Appendix B - Sample programs

References

List of Tables

L. List of translation-time type manipulation functions

...

vi

Chapter 1

Introduction

The evolution of computer technology, as we know it, would not have been possible
without the development of high-level programming languages. These languages allow
programmers to think in terms of abstract structures instead of machine instructions. This
makes the program development process faster and easier, and the resulting programs are
usually easier to understand than their assembly language equivalents.

High-level languages have themselves undergone an evolution. Experience and
insight have prompted the creation of a wide array of language features, such as control
abstraction and data abstraction. Indeed, typical programs written in current "state of the
art” languages bear little resemblance to those written in early FORTRAN.

Polymorphism is another of these language features. In conventional typed languages,
every variable or value is assigned one and only one type. These languages are said to be
monomorphic. By contrast, polymorphic languages allow some variables or values to
have more than one type. Polymorphic functions, then, are functions whose parameters
and results may have more than one type [Car 85].

Built-in polymorphic functions and procedures have existed for quite some time. A
good example of a polymorphic procedure is Pascal's write statement. The procedure
write can take any number of parameters; these parameters may be any of the built-in
types. User-defined polymorphic functions are a more recent development.

In monomorphic programming languages, programmers are often required to create
multiple versions of common algorithms (such as sort or search); one for each data type

to which they will be applied. Function polymorphism would allow programmers to

create one "generic"” version of an algorithm, and apply it to many different data types. As
such, their code would be easier to reuse and modify [Cor 88].

This paper will discuss an implementation of function polymorphism which makes
use of implicit parameter passing. This method has been implemented as part of the
Safer_C/2 programming language developed by Salomon [Sal 95a]. Earlier methods will

also be examined, and their limitations discussed.

1.1. Safer_C

The C language, introduced in 1972, has become one of the most popular general-purpose
languages in the world. This is largely due to the efficiency and flexibility of the
language, as well as its expressive power. The C++ language, introduced in 1986 , has
become extremely popular as well. C++ extends the power of C by adding support for
object-oriented programming, operator and function overloading, as well as other
features.

The term Safer_C refers to a series of languages, of which the first two are Safer_C/1
and Safer_C/2. Safer_C/1 is semantically identical to C, but corrects most of its major
syntactic flaws. Safer_C/1 has been designed to be more resistant to compile-time and
run-time errors than C is, without sacrificing its flexibility and power.

This language has been implemented as a translator (written in ANSI C) that accepts
Safer_C/1 code and produces ANSI C code. C was also the target language when C++
was introduced, and helped to facilitate its distribution. In addition, work has begun on a
second translator that will permit programmer-aided conversion of C code to Safer_C/1.
This will allow programmers to switch to using Safer_C/1 without sacrificing their
existing C code.

Safer_C/2 is the second stage of the Safer_C project. This language, which is still

under development, will use Safer_C/1 as a base to which a number of modern language

118

features will be added. The goal of the Safer_C/2 designers is to create a language that is
at least as powerful as C++, but lacks the syntactic flaws that C++ inherited from C.
Safer_C/2, much like Safer_C/1, is being implemented as a translator (written in
ANSI C) which produces ANSI C code. The function-polymorphism method presented in
this paper has been applied to this translator. Many of the examples used in this paper are
written in Safer_C. For an introduction to this language, see the paper by Salomon [Sal

95a].

1.2. Polymorphism

In general, polymorphic languages allow some variables, values, functions, or function

parameters to have more than one type. There are a number of kinds of polymorphism;

most programming languages support at least one of these. The following is a summary

of the most common classifications of polymorphism, as described by Cardelli and

Wegner [Car 85]. For our purposes, these classifications will be described as they apply

to function polymorphism.

® ad-hoc — A function has more than one interface defined for it. These interfaces
allow the function to work with different types and/or numbers of parameters. The
types of the parameters do not have to share a common structure. There are two major
kinds of ad-hoc polymorphism:

l. overloading — The same name is used by the programmer to refer to a number of
different function definitions. The compiler will determine which function to call
from the program context. An example of this is the abs (absolute value)
function in Pascal, where the same name is used to refer to two similar functions
that manipulate different types of data (integers and reals).

2. coercion — The same function is called for every invocation. If the parameters or

result of an invocation are not of the type expected, they are converted to that

type. This can be done statically (by inserting calls to conversion functions into

the invocation) or dynamically (by testing the arguments at run-time).

® universal — A function is defined with a single interface that could be applied to an

unlimited number of types. This function will accept a fixed number of parameters

which share a common structure. Cardelli and Wegner state that a universally

polymorphic function will execute the same code for arguments of any admissible

type [Car 85]. This requires the ability to resolve function and operator overloading at

run-time (using dynamic-binding) and is not often done. Instead, monomorphic

versions of such a function will be instantiated at compile-time (either as specified by

the programmer or automatically by the compiler). Ideally, the compiler should

manage the instantiations and invocations of the monomorphic versions. There are

two major Kinds of universal polymorphism:

L.

parametric — The function has at least one implicit or explicit type parameter.
This parameter is used by the compiler to determine the types of the other
parameters, and may also be used to determine the types of local variables and to
determine which instance of overloaded operators and functions to call inside of
the function. This paper describes the design and implementation of a form of
parametric polymorphism which makes use of partial evaluation techniques to
implicitly obtain the required type information.

inclusion — In some programming languages, one or more types (or classes) may
be defined that are subtypes of another type. In such a language, when a type is
specified in a parameter list, the actual parameter may be a value of that type or
any of its subtypes. In object-oriented programming (OOP) languages, this is
demonstrated by the supertype-subtype relationship. In "pure” OOP environments,
inclusive polymorphic functions are expected to use the object methods of their
parameters to perform operations (such as comparison) on them. In such an

environment, the dynamic-binding of object methods is a viable option.

This summary is not intended to be a complete guide to this subject, as only the most
basic classifications of polymorphism have been included. A number of other
classifications have been proposed since the paper by Cardelli and Wegner was
published. Two recent developments include contextual polymorphism [Dit 94} and

extensional polymorphism [Dub 95].

Chapter 2

Survey of Function Polymorphism

This chapter will examine a number of languages which support function polymorphism.
All but one of these languages are actually in use. The remaining language, ForceTwo,
has been implemented in prototype form. Their approaches to function polymorphism are

discussed, and the advantages and disadvantages of these approaches presented.

2.1. Ada

Ada was developed by CII Honeywell Bull for the United States Department of Defense
[Bar 89]. The first version of Ada was completed in 1980 {DoD 80]. An ANSI standard
version (called Ada 83) was established in 1983, and an ISO version in 1987. A new
version of this language was released in 1995 [Int 94]. This version is referred to as Ada
95 (or Ada 9X). Function polymorphism is achieved in Ada by use of the generic and
attribute mechanisms and function and operator overloading. As the syntax and usage of
these mechanisms has not changed significantly from Ada 83 to Ada 95, both versions
are simply referred to as "Ada" in this thesis.

Ada Generics

In a generic subprogram or package definition, some parts of the definition are specified
to be generic parameters. Generic parameters can be values, types, or even subprograms.
A programmer can then use the definition as a template, and instantiate different versions
of the subprogram or package by explicitly supplying the generic parameters. Consider

the following generic subprogram (from [Bar 89]):

generic
type ITEM is private;
procedure EXCHANGE (X, Y : in out ITEM):;

procedure EXCHANGE (X, Y : in out ITEM) is

T : ITEM;
begin

T :=X; X :=Y¥; Y :=T;
end;

In this example, the type ITEM is a generic parameter. It should be noted that while
the function has been declared, it has not yet been instantiated. To do so, one would have
to code statements like the following:

procedure SWAP is new EXCHANGE(REAL) ;

procedure SWAP is new EXCHANGE(INTEGER);

procedure SWAP is new EXCHANGE(DATE):;

These statements will instantiate three different versions of EXCHANGE; one each for
Real, Integer, and Date-type variables. Each of these instantiations will be called SWAP.
This duplication of names is valid as Ada permits overloading of procedure names,
provided the types or number of parameters are different.

Consider the following generic package (also from [Bar 89]):

generic

MAX : POSITIVE;

type ITEM is private;
package STACK is

procedure PUSH (X : ITEM);

function POP return ITEM;

end STACK;

-—- package body not shown

In this example, a generic Stack package is declared with two generic parameters.
MAX is the maximum size of the stack, and ITEM is the type of the values that it will
store. The following statements will instantiate two different versions of this package:

package REAL_STACK is new STACK(100, REAL);
package INTEGER_STACK is new STACK(50, INTEGER):;

In addition to values and types, Ada will also permit generic subprogram parameters.

This is extremely useful, especially when used in conjunction with overloaded, user-

defined operators. The next example discussed will make use of a generic subprogram
parameter.

Ada Attributes

All variables, types, and subprograms in a programming language have a number of
characteristics which distinguish them. Different data types may have very different
characteristics. For example, scalar types have minimum and maximum values, discrete
types have a certain order, and array types can contain a certain number of values.

In Ada, these characteristics are known as attributes, and they may be referred to in
programs. The syntax used by Ada is T"Aztribute, where T is the name of a variable, type,
or subprogram, and Attribute is the name of the attribute to which one wishes to refer.
The following are some simple examples of Ada attributes:

X 'ADDRESS - First memory address occupied by object X

T'FIRST - Minimum value of type T

T'PRED (X) - Value preceding X of type T

T'SUCC (X) - Value succeeding X of type T

A'FIRST - Lower bound of first index of array type A

A'LAST - Upper bound of first index of array type A
For a complete list of Ada attributes, refer to [DoD 80] or [Bar 89].

The value of an attribute will be determined in one of two ways. If the value is known
at compile time, it will be substituted directly into the object code. If it is not, the attribute
will be represented by a call to a function which will determine the value at run time.

Attributes can be extremely useful when designing generic subprograms, as they
provide a means for the programmer to refer to distinct characteristics of generic data

items. This is demonstrated by the following example (derived from one in [Bar 89]):

generic
type INDEX is (<>);
type ITEM is private;
type COLLECTION is array (INDEX range <>) of ITEM;
with function "<" (X, Y : ITEM) return BOOLEAN;
procedure SORT (C : in out COLLECTION) :;

procedure SORT (C : in out COLLECTION) is
MIN : INDEX;
TEMP : ITEM;

begin
for I in C'FIRST .. INDEX'PRED(C'LAST) loop
MIN := I;
for J in INDEX'SUCC(I) .. C'LAST loop
if C(J) < C(MIN) then MIN := J; end if;
end for;
TEMP := C(I); C(I) := C(MIN); C(MIN) := TEMP;
end for;
end SORT;

This example makes use of both attributes and function parameters. The subprogram
SORT will receive an unconstrained array of type COLLECTTION, whose elements will be
of type ITEM. The range of this array will be the discrete type INDEX, but is unknown.
SORT will also receive a function referred to as "<" which it will use to compare two
values of type ITEM.

In this case, the range of the array is unknown, as is its type. As such, the boundaries
of the two loops are referred to by attributes. These are as follows:

C'FIRST - Lower bound of array

C'LAST - Upper bound of array

INDEX'PRED(C'LAST) - Value preceding upper bound of array

INDEX'SUCC(TI) - Value succeeding I
The latter two attributes were used to allow for a variety of range types. If expressions
such as C'LAST-1 and I+1 had been used instead, this subprogram would only be able
to sort arrays with a range of type Integer.

In order for this subprogram to work, it must be able to compare different values of
type ITEM. To allow for a wide variety of types (including user-defined types), a function

which does so must be supplied when this subprogram is instantiated. This function,

which will actually be an overloaded operator, is referred to as "<" in this subprogram.
Consider the following instantiation:
type DATE_ARRAY is array (POSITIVE range <>) of DATE;
function "<" (X, Y : DATE) return BOOLEAN is
begin
if X.YEAR /= Y.YEAR then
return X.YEAR < Y.YEAR;
elsif X.MONTH /= Y.MONTH then
return X.MONTH < Y.MONTH;
else
return X.DAY < Y.DAY;
end if;
end L :

procedure SORTER is
new SORT (POSITIVE, DATE, DATE ARRAY, "<");

Procedure SORTER will be capable of sorting unconstrained array variables of type
DATE_ARRAY. The POSITIVE ranges of these array variables will be provided when
they are actually declared, and may vary.

The function created to compare two DATE values is called "<", and is actually a
user-overloaded operator. In the generic function body of SORT, the operator used to
compare two ITEM values is also called "<". When SORTER is instantiated, the compiler
will determine which version of "<" it should use. [n our example, it will do this by
comparing the specifications of the available versions of "<" with the one given in the
generic procedure declaration.

Ada gives the programmer some flexibility when defining a function parameter
specification in a generic subprogram. It is possible to specify a default function to use if
one is not provided in the instantiation statement. In fact, there are two ways to do so.
Consider the following two function parameter specifications:

with function "<" (X, Y : ITEM) return BOOLEAN is <>;
with function NEXT (X : T) return T is T'SUCC;

The first statement is similar to the one used in the SORT subprogram definition, but

has "is <>" at the end. If a function is not specified in the instantiation statement, the

10

compiler will automatically bind one with a matching designator and specification, if one
is declared at that point in the program. In other words, the compiler will determine the
actual type of ITEM (in our case, DATE), and will bind the version of "<" which is
declared for DATE at that point.

The second specification is somewhat different, as the “is T'SUCC" part contains
an explicit name for the default parameter. Unlike in the first specification, the binding
will occur at the point of the generic subprogram declaration. For this reason, this method
will work only if the default function is an attribute, has no parameters depending on
formal types, or is itself another formal parameter. The following statement would not
work, because ITEM is not known until an instantiation is performed.

with function "<" (X,Y:ITEM) return BOOLEAN is LESSTHAN;
Discussion
It cannot be said that the generic subprogram mechanism is not expressive or lacks
flexibility. It is quite capable of supporting function polymorphism, as has been
demonstrated. This method, while effective, has a number of shortcomings.

The generic mechanism is a separate program construct which requires its own
syntax. This increases the complexity of programs which use this mechanism. The syntax
in question can be quite verbose, as was demonstrated in the SORT generic subprogram
declaration. Each generic parameter must be described in terms of its general type,
limitations, range, range type, and so on. In fairness, it appears to have been designed this
way to aid error checking.

Another shortcoming is the amount of unnecessary work that a programmer must do
in order to instantiate different versions of generic subprograms. In the SORT example,
the programmer had to specify the types of the range and elements of the array in the
instantiation statement. It would have been a trivial task for the compiler to discover these

types for itself, from the DATE_ARRAY type declaration.

11

One can carry this argument even further, and declare that the entire instantiation
statement is unnecessary. As an alternative, one could call the generic subprogram
directly in the program, and let the compiler create and keep track of the instantiations.
Again, it would be a trivial task for the compiler to determine the type of the array
parameter, and therefore the types of its range and elements.

Attributes seem to be an effective way of referring to instantiation-specific type
characteristics. The syntax of the attribute mechanism is terse but intuitive, which is quite

desirable.

2.2. C++

The C++ language [Str 91] evolved from "C with Classes," a series of languages
developed at Bell Labs by Stroustrup beginning in 1980. The first C++ translator was
implemented by Stroustrup in 1983, although a number of features have been added since
then. Work is currently underway on a joint ANSI-ISO standard. The working draft of
this standard can be viewed at www.cygnus.com/~mrs/wp-draft. Parametric
polymorphism is achieved in C++ through the use of the remplate feature. This feature
makes it possible to define generic classes and functions.
C++ Template Definitions
A C++ template consists of a template header followed by a class or function definition.
Part of the header is a parameter list; this is used to identify the "generic" elements of the
template. The parameters of a class template may be classes, character strings, function
names, and constant values. The parameters of a function template, though, may only be
classes. The following is an example of a class template header:

template <class T, int n>

In this template header, parameter T is a class and parameter n is an integer constant.

C++ Class Templates

Generic classes in C++ are often referred to as container classes, as they provide the

means to store and manipulate data of a particular type in an abstract way. Stacks, lists,
and trees are examples of typical container classes. When objects of a container class are
instantiated, the programmer must explicitly specify the template parameters. Consider

the following Stack container class, adapted from examples given by Stroustrup [Str 91]

and Pohl [Poh 94]:

template <class T> // header (with parameter list)
class stack {
private:
T* data; // array containing data
int top: // "top of stack" offset in array
int maxsize; // maximum size of stack
public:
stack(int size) // constructor
{ data = new T[size];
top = -1;
maxsize = size; }
~stack()
{ delete []data; }
void push(T wvalue)
{ data[++top] = value; }
T pop ()
{ return dataltop--]; }
int full() const
{ return (top == maxsize-1); }

}:

The class parameter list for this template contains a single identifier, T. The

constructor of this class also contains a parameter, size. When objects of class stack

are defined, classes and values must be explicitly supplied for all template and
constructor parameters. For example:

stack<char> sc(100); // 100 element char stack
stack<int> si(500); // 500 element int stack

This will define two stacks from the single template. Stack sc is a char stack of size

100, and s1i is an int stack of size 500. These objects will behave as if they belong to two

13

individual classes, and may be used normally. The following function (adapted from [Poh

94]) makes use of our stack template to reverse an array of n integers:

void reverse(int listf{}, int n)
{

stack<int> stk(n); // stack of n integers
int i; // loop counter
for (i=0; i<n; ++i)
stk.push(list[i]); // push elements onto stack
for (i=0; i<n; ++i)}
list[i] = stk.pop(); // pop off in reverse order
}
C++ Function Templates
Function template definitions are constructed in a manner similar to that of class
templates. Unlike class templates, though, function templates will be instantiated
automatically by the compiler when they are called. For this reason, the types of the
function parameters must involve the classes in the template.

A function template definition will actually contain two parameter lists; one for the
template and one for the function itself. Values for the template parameters will be
determined from the program context and passed implicitly. Values for the function
parameters will have to be specified explicitly, as usual.

Function templates allow programmers to create "generic" versions of common

algorithms, such as sort or search. The following generic sort function, adapted from

[Str 91], demonstrates the use of function templates in conjunction with class templates.

14

// Vector class template
template<class T>
class Vector({

private:
T* v; // array of type T
int sz; // size of the array
public:

Vector (int s)
{ v = new T[sz = s]; }
~Vector ()
{ delete []v; }
T& operator([] (int i) // overload subscript operator
{ return v([il; }
int size() // return the size of the vector
{ return sz; }

}:
// Bubble Sort function template
template<class T> // template parameter list
void sort (Vector<T>& v) // function parameter list
{

int n = v.size(); // size of wvector

int i,73; // loop vars

T temp; // used for swapping

for (i=0; i<n-1; i++)
for (j=n-1; i<j; j--)

if (v[3jl < v[j-1]) // swap
{ temp = v([jl;
v[j]l = v[i-1];
v[j-1] = temp; }

}

Objects of class Vector contain two data items. The first is an array of type T, and
the second is an integer variable containing the size of this array. These data items have
been encapsulated to simplify the use of searching and sorting algorithms. Such
algorithms can call the object method size to determine the size of, and therefore the
upper bound of, the array in question.

The template parameter list of soxt contains a single class, T. The function
parameter list of sort tells us that this function will accept a Vector as a parameter.
When this function is called, the compiler will determine what T is by finding the base
type of the Vector parameter, and will instantiate a version that is capable of sorting
items of class T. The following block of code will instantiate, initialize, and sort the

elements of two vectors.

15

// vector of integers

Vector<int> vecl(3); // wvector with three elements
// array initialization omitted
sort(vecl); // sort wvector

// vector of chars
Vector<char> vec2(4); // vector with four elements

// array initialization omitted

sort(vec2) ; // sort wvector

As with the generic SORT procedure defined in Ada, this function template must be
able to compare different values of class T. The vectors defined above were of classes
int and char, for which the buiit-in operator < is defined. The intended meaning of <
may differ for other classes, such as char*, and will have no meaning at all for user-
defined classes. It is possible to overload operators in C++, but the operands must be
‘classes or enumerated types. Hence, it is not possible to overload < to perform a char-by-
char comparison of strings of type char*. There are a number of ways to get around this
problem.

The first of these is to define a subclass of Vector (called NewVector) which
contains an object method, lessthan, that will perform the comparison operation. In
order to deal with unique and user-defined types, the actual definition of lessthan will
first be placed inside the Comparator class. This allows us to define a generic version
of lessthan for built-in types (such as int), and a special version of lessthan for

each unique or user-defined type (such as char*) that we wish to use. In essence, we

will be using inclusion polymorphism. Consider the following code:

// contains a generic version of lessthan
template<class T>
class Comparator{
public:
inline static lessthan(T& a, T& b)
{ return a < b; } // use the built-in operator

}i

16

// contains a special version of lessthan for char*
class Comparator<char*> {
public:
inline static lessthan(const char* a, const char* b)
{ return strcmp(a,b) < 0; } // call strcmp instead
}i

// class NewVector is a subclass of Vector and Comparator
template<class T>
class NewVector : public Vector<T>,public Comparatoxr<T> {
public:

NewVector (int size) : Vector<T>(size) (}
}:

// Bubble Sort - lessthan function encapsulated
template<class T>
void sort (NewVector<T>& V) // changed to NewVector
{
int n = v.size();
int i,3;
T temp;
for (i=0; i<n-1; i++)
for (j=n-1; i<j; j--)
if (v.lessthan(v([jl,v([j-11)) // changed to lessthan
{ temp = v[jl:
v{jl = v[j-11:
, vij-1l] = temp; }

// create and sort vectors

main()

{
NewVector<int> v1(3); // vector of class int
NewVector<char*> v2(4); // vector of class char*
sort(vl); // uses generic lessthan
sort(v2); // uses char* lessthan

}

This example encapsulated the comparison operation inside the NewVector class,

which allowed sort to access it. When a NewVector object was created, it inherited

the methods defined in both Vector and Comparator. For v1, the lessthan

method defined in the generic Comparator template was inherited. In the case of v2,

the compiler determined that a special Comparator class had been created for the

char* type, so the lessthan method defined within it was inherited instead.

If one does not wish to encapsulate the comparison operation inside the class of the

parameter passed to sort, there are alternatives which use parametric polymorphism.

17

One of these is to explicitly pass an object of class Comparator to the sort function,

as the following example does.

// Bubble Sort - lessthan function passed explicitly
template<class T>
void sort(Vector<T>& v, Comparator<T>& cmp)

// changed to Vector, Comparator
{

int n = v.size();
int i,3;
T temp;
for (i=0; i<n-1; i++)
for (j=n-1; i<j; j--)
if (cmp.lessthan(v([j]l,v[j-11)) // changed to cmp
{ temp = v[j];
v(ijl = v[j-11:
, v[j-1l] = temp; }

// create and sort wvectors

main ()

{
Vector<int> v1(3); // vector of class int
Vector<char*> v2(4); // vector of class char*
Comparator<int> cl; // lessthan of class int
Comparator<char*> c2; // lessthan of class char*
sort(vl,cl); // pass int objects
sort(v2,c2): // pass char* objects

}

This approach works, but is rather inelegant. Objects c1 and c2 of this example are
merely "dummy” objects, used to satisfy the type system. In cases like this, where objects
passed to a function contain methods but no data, we may pass their methods implicitly

instead. The following version of the sort function does just that.

18

// Bubble Sort - lessthan function passed implicitly
template<class T>
void sort(Vector<T>& v) // changed to Vector only
{

int n = v.size();

int i,3;

T temp;

for (i=0; i<n-1; i++)

for (j=n-1; i<j; j--)
if (Comparator<T>::lessthan(v[j],v[3-11))
// changed to Comparator<T>

{ temp = v{jl];
vijl = v[j-11;
v[j-1] = temp; 1}
}
// create and sort vectors
main()
{
Vector<int> v1(3); // vector of class int
Vector<char*> v2(4); // vector of class char*
sort(vl); // pass int vector only
sort(v2); // pass char* vector only
}
Discussion

The template feature of C++ is a reasonably concise and effective method for
implementing parametric polymorphism. It is not without its flaws, however.

One problem stems from the fact that function template parameters are limited to
classes only. In our Bubble Sort example, we had to encapsulate an array along with its
size in the Vector class in order to pass both to the sort function. It would have been
simpler if we could have just passed the "bare" array to the function, and have had the

size of the array passed implicitly. For example:

template <class T, int n>
void sort (T vinl)

{ 7/ code omitted }
main()

int a[(3] = {9, 7, 8};

sort(a);
}

This is not possible in C++, though, because arrays are passed by reference automatically,

without any size information. We must pass the size explicitly, as shown below.

19

template <class T>
void sort(T v[], int n)
{ // code omitted }
main ()
{
int a[3] = {9, 7, 8};
sort(a,3):
}

This is unfortunate, because the compiler could easily find the size of an array when it
finds the type. Once the size is determined, it could be sent to the function instantiation in
a number of ways. Confcrmant arrays in Pascal, for example, pass the size of an array as
a hidden runtime parameter.

In the three Bubble Sort examples, different methods were used to pass an overloaded
function as a parameter to a function template. In the first version, which used inclusion
polymorphism, the 1essthan function was encapsulated inside one of the parent
classes of the NewVector object passed. This was somewhat verbose but reasonable, as
doing so is standard practice in object-oriented programming.

The second and third versions used parametric polymorphism. In the second version,
the function was passed explicitly inside a "dummy" object. This probably would not be
done in practice, as this method is more complex but less convenient than the one used in
the third version.

In the third version, the 1essthan function was passed as an implicit parameter.
The syntax required to do so could be improved, as it is non-intuitive and misleading. In
fact, it does not appear that we are passing a parameter at all. It can be argued that
accessing a method of a "foreign" class is bad practice in object-oriented programming,
but that is exactly what we seem to be doing in this case.

The syntax of the template feature may also be problematic. The same syntax is used
in both function and class template headers, but the template parameter lists differ
(classes only vs. classes, strings, functions, and constants) and the instantiations are done

quite differently (automatically vs. manually). This can cause a considerable amount of

confusion for novice users, unless a great deal of care is taken to read the "fine print” of

the template feature description in a book such as [Str 91] or [Poh 94].

2.3. ML

ML is a functional programming language that was designed for use in theorem proving.
[t was introduced by Gordon, Milner, and Wadsworth in 1977, and used to create their
Edinburgh LCF theorem prover. At present, the version that is most widely used is
Standard ML, developed by Milner in 1984 [Pau 91]. Compilers for this language are
available from a number of sources.

Cardelli and Wegner have described ML as being "the paradigmatic language for
parametric polymorphism” [Car 85]. In this language, it is possible to write functions
without specifying the types of the parameters and result. The only difference between a
monomorphic function definition and its polymorphic equivalent is that the type
information will be omitted from the latter one. In ML, most polymorphic functions

involve pairs, lists, and other data structures. Consider the following two function

definitions:
fun pairself (x : real) = (x.X);
fun pairself x = (x,x);

Function pairself will accept a value, x, and pair it with itself. The first definition is
monomorphic; it accepts a value of type real. The type of x is unspecified in the second
definition, though, so that this version will be able to handle more than one type.

ML Type Schemes

Polymorphism in ML is based on zype schemes, which serve as a form of template for
type checking and type inference. The type scheme of a function is determined and
printed when the function is entered. The type scheme of a monomorphic function is

quite trivial, as is demonstrated by the following definition and response:

fun pairself (x : real) = (x,x%X);
> val pairself = fn : real —> real * real

The response tells us that function pairself accepts a parameter of type real and
produces a pair of values, determined to be of type real as well.

If ML is unable to determine the type of a parameter and/or the result, then the type
scheme of the function will contain a type variable in place of that type. A type variable
is denoted as a string of characters starting with a single quote. Consider the following
definition and response:

fun pairself x = (x,x);
> val pairself = fn : 'a —> 'a * 'a

In this case, the types of the parameter and resulting pair is represented by the type
variable ' a.
A type scheme may contain more than one type variable. Each of the following

functions contain two and three type variables, respectively.

fun f£st (x,y) = x;

>val fst = fn : 'a * 'b —> 'a

fun fstfst z = fst(fst z);

> val fstfst = fn : ('a * 'b) * '¢c —> 'a

Function £st will return the first of a pair of values, possibly of different types. Function
fstfst will return the first value in the first pair of pairs.

ML Type Inference

Standard ML uses a type inference mechanism to determine the types of the arguments
and result in a function definition. When a function is defined, ML will infer unspecified
type information from the program context by following a logical series of steps [Pau 91].
In essence, it will break a function definition down into expressions, and repeatedly apply
type-checking rules to resolve ambiguities. As this process runs, types are assigned to
arguments, overloaded operators, and expressions. Each argument must have the same
type everywhere in the definition. The theory behind the ML type inference mechanism is
discussed by Milner in [Mil 78]. Consider the following example, from {Pau 91]:

[
(18]

fun facti (n,p) =

if n=0 then p

else facti(n-1, n*p);
The expressions n=0 and n-1 both contain integer constants, so ML deduces that n is of
type int and integer subtraction is to be used in n~1. This identifier also appears in the
expression n*p, so p is also of type int and integer multiplication will be used. As p is
returned in the base case of facti, its result type must be int as well. Hence, ML will
respond with the following statement:

> val facti = fn : int * int —> int
In the case of the monomorphic version of pairself, ML would know that x has
already been assigned a type, real. The result of this function would therefore be a pair
of real numbers.

As previously stated, if ML cannot determine the type of an argument or the result, a
type variable will appear in the type scheme. When such a function is called, ML will
substitute the type of the actual argument(s), perform some more type checking, and
instantiate an appropriate version [Car 85]. For this reason, our polymorphic version of
pairself could accept a parameter and return a pair of almost any type. For example:

pairself 4.0;

> (4.0, 4.0) : real * real

pairself 7;

> (7 , 7) : int * int

pairself ("Ozzy", 123);

> (("Ozzy", 123), ("Ozzy", 123})

> : (string * int) * (string * int)

In these three function calls, pairself accepted a real, an int, and a pair as
arguments and returned the expected results.

Discussion

Type schemes, as discussed, seem to work very well. The creation of polymorphic

functions in ML is really a trivial task. This is to be expected, as type schemes are an

integral part of the ML language and the compilation process. As is the case in most

languages, though, it does not do as well when confronted with odd situations. I will
discuss two of these at this time.

The first problematic situation is the declaration and use of references (pointers) to
polymorphic functions. It is possible, in theory, to declare a reference to a polymorphic
function, assign the reference to another, monomorphic function, and then use that
reference to call the monomorphic function indirectly with incompatible parameters. The

following code, which is no longer valid in Standard ML, demonstrates this problem.

fun I x = x;

>val I = fn : 'a — 'a

val fp = ref I;

> val fp = ref fn : ('a —> 'a) ref
ifp 5;

> 5 : int
Function I is the identity function; it returns whatever value (of any type) we send it. The
reference £p is a pointer to I. In ML, the "! " character is used to dereference a pointer.
By calling ! £p with the parameter 5 (an integer), we are actually calling I; this is a valid
call and 5 will be returned. In the next code segment, the assignment of fp is changed to
not. When we do so, we limit the type of the argument and result to bool. Hence, when
we now call ! fp with an integer argument, we cause a run-time type error.

fp := not;
Ifp 5;

This problem has been studied by a number of people, including Tofte {Tof 90]. His
solution, which has been adopted in Standard ML, is to outlaw the creation of
unconstrained polymorphic references. Standard ML contains a special class of weak type
variables which are used by the type inference mechanism to detect such situations. Each
weak type variable may only be assigned, explicitly or implicitly, to a single type in the
same part of the program. The following declaration of £p contains an explicit type
assignment. In this part of the program, £p may only refer to functions with a boolean
parameter and result. When we call ! £p with an integer parameter, a compile-time error

is caused.

val fp = ref (I: bool —> bool);

> val fp = ref £fn : (bool —> bool) ref

fp := not

'fp 5;

> Error
In the following let statement, the type of the weak type variable is determined
implicitly to be bool when not is assigned to £p. Hence, calling ! £p with the
parameter true is valid and will return the value false.

let val fp = ref I

in fp := not; !fp true end;

> false : bool

Another situation which can cause problems involves the use of overloaded functions
(such as + and *). As previously stated, the type inference mechanism will determine the
type of an expression from the program context. If an expression contains an overloaded
function, and the parameters are type variables, then ML will be unable to determine
which version of the function to use and will therefore reject the code containing the

usage. Consider the following function definition, from [Pau 91]:

fun square x = x*x
> Error - Unable to resolve overloading for *

To get around this problem, it is necessary to provide type information explicitly. For
example:

fun square(x : real) = x*x
> val square = fn : real — real

In this case, we have inserted a type constraint on the argument, limiting it to values of
type real. ML is now able to select the real version of function *. Function square

can now be used, albeit in monomorphic form only.

2.4. ForceTwo
ForceTwo is part of a family of imperative languages developed by Cormack and Wright
[Cor 88]. Other languages in this family include Zephyr [Cor 85] and ForceOne [Cor 871;

ForceTwo was created to address some of the limitations in the design and

implementation of these. This language, like the others, was used as a "test bed” for
Cormack's and Wright's ideas on polymorphism and type systems. These ideas were later
expressed in [Cor 90].

Polymorphism is supported in ForceTwo through facilities such as modules,
functions, type generators and type converters, function and operator overloading, and
parameters. Of these, the latter is of the most interest to us. ForceTwo supports four kinds
of parameters:
® monomorphic — the traditional kind, whose type is specified in the function header

and whose value is provided in the function invocation.

& type — the parameter is a type, and is specified explicitly in the function invocation.

The syntax of these parameters is as follows:

ident : type

The parameter name is ident, and type is a keyword.
® query — the parameter is a type, but it is not specified in the function invocation.

Instead, it is obtained from one of the actual parameters. The syntax is as follows:

ident_1 : ? ident_2

This indicates that type ident_2 will be obtained from the actual parameter bound

to ident_1.
® automatic — the name of the actual parameter is specified in the function definition,

instead of in the invocation. The value (if a variable) or version (if a function or
operator) of an automatic parameter will be determined from the program context and
bound when the function is called. Automatic parameters were designed to permit the
implicit passing of function and operator parameters. The syntax is:

auto ident : type_specification

The keyword auto precedes the parameter identifier. The type_specification

can be a simple type (for a variable), or the types of the parameters and result (for a

function). An example of an automatic parameter is presented later.

Cormack and Wright refer to query and automatic parameters collectively as implicit
parameters, as their corresponding actual parameters are not specified in the function
invocation. Instead, the actual parameters are obtained by the compiler, through its type
inference mechanism [Cor 90].

Monomorphic parameters

The following example demonstrates how different kinds of parameters can be used
together to create a polymorphic function. Consider the recursive power function, which
has two parameters. The first (x) is a value of some type, and the second (i) is an integer
exponent. This function will return x to the power of i; this value will be of the same
type as x. To create and call a monomorphic version of power (where x is of type
real), we could write the following:

power: [x: real, i: integer] real ==
if i = 1 then x else power[x, i-1] * x

power(2.5, 2] -- returns 6.25
Type parameters
The definition above contains two monomorphic parameters. If we wanted to create a
more general version of this function, we could add a type parameter, t. This parameter
would have to be specified explicitly in the function invocations. For example:

power: [t: type, x: t, 1: integer] ==

if i = 1 then x else power([t, x, i-1] * x
power [real, 2.5, 2} -- returns 6.25
power [integer, 5, 3] -- returns 125

Query parameters

This example now has two problems. The first, and most obvious, is that our function
invocations now have an extra parameter. They have become more tedious to write, and
look awkward. We can eliminate this by converting t from a type parameter to a query

parameter:

power: [x: ?t, i: integer] t ==
if i = 1 then x else power([x, i-1] * x

power[2.5, 2] -- returns 6.25
power[5, 3] -—- returns 125

The second, less obvious problem, involves the overioaded operator *. ForceTwo
allows operator overloading, so * may refer to integer multiplication, real multiplication,
or some user-defined operation. The compiler simply will not know which version of this
operator it should use in each instantiation of power. In order to allow the static binding
of the appropriate version at compile time, we could make * a parameter:

power: [x: ?t, i: integer, *: [t,tlt] ==
if i = 1 then x else power([x, i-1, *] * x

power[2.5, 2, *] —-— returns 6.25
power [5, 3, *] -- returns 125

*~

The type specification of parameter * indicates that this operator will take two
operands of type t and return a result of that type as well. Unfortunately, we now have to
explicitly specify * in our function invocations.

Automatic parameters
In order to pass this operator implicitly, we should convert it to an automatic parameter:

power: {x: ?t, i: integer, auto *: [t,t]t] t ==
if i = 1 then x else power([x, i-1] * x

power{2.5, 2] -- returns 6.25
power (5, 3] -—- returns 125

In this final version, the type of the function and the operator used are both passed as
implicit parameters. The actual version of * used in the instantiation will be bound at the
site of the function invocation. For this technique to work, a version of * matching the
type specification in the formal parameter list must exist in the scope of the invocation;
this version will be selected by the overloading resolution mechanism. Consider the

following code sequence:

(*: [a: string, b: string] string == concat(a,bl}

power["abc", 3] -—- returns "abcabcabc'

1))ower ["abc", 3] —— not valid

In ForceTwo, the symbols (and) are used to start and end a new scope, respectively.
Inside this new scope, we overload * to perform string concatenation. When we call
power inside this scope with a string parameter, the new version of * will be bound to
its formal parameter and power will return the result shown. Once the scope ends,
though, this version of * will no longer be available.

Discussion

Cormack and Wright feel that polymorphism is best supported through the use of separate
facilities such as modules, functions, parameterized types, overloading, and implicit type
and function parameters. This appears to work; we used a combination of implicit
parameters and overloading to implement the polymorphic power function.

The syntax used in formal parameter lists is terse, but is adequate for declaring
implicit type, function, and value parameters. Different versions of polymorphic
functions will be instantiated by the compiler as needed, as it done in ML, with the
implicit actual parameters determined from the program context. It should be noted that
the effort required to use an overloaded string operator in a polymorphic function was
minimal, especially when compared to the contortions that this author had to perform to
do a similar task with a char* operator in C++.

Unfortunately, this language is not well documented, and development on it has
ceased. Hence, there remain a number of unanswered questions concerning the flexibility
of both the syntax and the type inference mechanism used.
® What syntax is required to pass an array to a subprogram? Is it possible to pass the

size and type of an array implicitly? Is it necessary to encapsulate the array in a

module or define it as a parameterized type in order to do so?

& What syntax is required to pass a record to a subprogram? Is it possible to pass the
types and ranges used in the record implicitly? If so, how is this done?

¢ [s it possible to pass a data item of a parameterized type by reference? If so, what
syntax is required, and how is the unspecified type information determined by the

type inference mechanism?

2.5. Eiffel

Eiffel [Mey 92] was developed by Meyer at Interactive Software Engineering (ISE) in the
late 1980s [Wie 95]. This language was designed as a vehicle for advancing Meyer's

ideas about the construction of robust object-oriented programs [Mey 88], and is intended
for use in large-scale applications. Compilers for this language are available from at least
three sources [Wie 95]. Eiffel is an "almost pure” object-oriented language which uses
generic classes, inheritance, and dynamic-binding to support inclusion polymorphism. By
doing so, it also supports a form of function polymorphism.

Eiffel has many of the same characteristics as other object-oriented languages, but
some of the terminology used (and the reasoning behind it) bears closer examination. It is
said that a class in Eiffel contains a number of features. There are two types of features:
® attributes — Data items defined in a class. Attributes will, as expected, contain the

data that the programmer wishes to store in objects of the class. An attribute may aiso

contain data related to other attributes or abstract data types implemented in a class.

For example, Eiffel has a pre-defined ARRAY class. This class has three attributes

(lower, upper, and count) which contain the lower and upper bounds of the

array, as well as its size. It should be noted that attributes in Eiffel and Ada are

different program mechanisms, although it is possible to use them in similar ways.

For example, the pre-defined class PLATFORM contains attributes related to platform-

specific properties (such as the number of bits used to represent an integer).

30

® routines — Subprograms used to perform some kind of a computation on the
attributes of an object. A routine may be either a function or a procedure. A routine
call may be in the form of an instruction (such as object .print (1)})oran
expression (such as 4-3 where "-" is a routine called on object "4" with "3" as the
parameter). A routine call in expression form may use either prefix or infix notation.

The only difference between a call in expression and instruction form is the syntax

used to denote it in the program.

It should be noted that a routine may be effective or deferred. An effective routine is the
usual type; it is implemented in the same class in which it is defined. For a deferred
routine, only the declaration is provided. It will be up to the descendants of the class to
provide the implementation details.

In a generic class, one or more parameters are used in place of a class name in some
feature definitions. These parameters are supplied explicitly by the programmer whenever
an object of such a class is declared. One commonly-used generic class is the ARRAY
class. It is possible to define arrays that may contain data items of virtually any class. For
example:

int_array : ARRAY([INTEGER];

real_array : ARRAY[REAL];

2d_matrix : ARRAY[ARRAY[INTEGER]];

As mentioned previously, three of the attributes of this class are 1 owexr, upper, and
count. Two important routines of this class are i tem and put. These routines are used

to refer to and assign values to elements of an array. For example:

int_array.put(99,1); -- assign 99 to element 1
real_array.item(5); -- return value of element 5

In some situations, it may be desirable to limit a parameter to a member of a
particular family of classes. This is usually done to ensure that the class passed contains
certain features that may only occur in that family. To do so, one must specify the base

class of that family in the formal parameter list of the generic class. Doing so will ensure

31

that only descendants of that base class will be accepted as parameters. This is known as
constrained genericity.

The Eiffel type system is based on inheritance and conformance. As with other
object-oriented languages, a subclass will inherit all of the features of its base class. It is
possible to redefine these features, and implement any deferred routines that may be
defined in the base class. A class is said to conform to another class if it is a descendent of
that class. In general, class Y may be used wherever class X is specified as long as Y
conforms to X. For a full explanation of Eiffel's conformance rules, refer to chapter 13 of
[Mey 92].

Eiffel uses a combination of generic classes, conformance, and dynamic-binding to
support inclusion polymorphism. Generic classes allow the programmer to create
program constructs that could be used to contain and manipulate data items of more than
one class. In order to manipulate these data items, the routines of a generic class must be
capable of performing class-dependent operations on them (such as comparisons). To
ensure that these operations (actually routines) have been defined, the parameters of a
generic class are generally constrained. The compiler will use the rules of conformance to
perform static type checking of these parameters.

When the routine of a parameter is called, an Eiffel program will use dynamic-
binding to do so. This is necessary because the version of the routine required will depend
on the class (or subclass) of the actual parameter. Because of dynamic-binding, the
compiler will only have to generate one version of each routine defined in a generic class.
It should be noted that an Eiffel compiler may perform static-binding of a routine call if it
determines that only one version of that routine will exist at run-time.

Polymorphic routines are not created explicitly in this language. It is possible to
create a polymorphic function implicitly, though, by defining a routine inside of a generic

class. Consider the following generic class, SORTABLE_ARRAY. This class contains a

routine, sort, which uses the Bubble Sort algorithm to sort an array of an unspecified
type. This example is very similar to the Bubble Sort example discussed in section 2.2.

class SORTABLE_ARRAY[T -> COMPARABLE]

creation
make

feature -- Public
data : ARRAY[T]:;
size : INTEGER;

make(anArray : ARRAY[T]) is
do
data := deep_clone(anArray):
size := data.count;
end; -- make

sort is
local
i, 3
temp
do
from i :=
until 1 =
loop

INTEGER;

o e
3
~e

from j := size
until j = i
loop
if data.item(j) < data.item(j-1) then
temp := data.item(j):
data.put(data.item(j-1), J):
data.put(temp, j-1);
end;
j =3 -1;
end;
i:=1+ 1;
and;
end; -- sort

end -- SORTABLE_ARRAY
The SORTABLE_ARRAY class has four features; two attributes and two routines.
Attribute data is an array of type T, and size will contain the size of the array (an
integer value). Routine make is invoked when the programmer wishes to instantiate an
object of this class; an array is passed to it as a parameter. Routine sort will, of course,

sort the array.

33

This generic class has one parameter, T, which is constrained to be a descendant of

the COMPARARLE class. The COMPARABLE class contains deferred declarations for

1" "

comparison routines, such as "<" and ">". This constraint ensures that the "<" routine
will be available for use in the sorting routine. Many pre-defined classes, like INTEGER,
REAL, and STRING, are descendants of the COMPARABLE class. The following lines
will declare three objects, A, B, and C, of the SORTABLE_ARRAY class:

A : SORTABLE_ARRAY[INTEGER];
B : SORTABLE_ARRAY[REAL 1I;
C : SORTABLE_ARRAY[STRING 1]:;

The following lines will instantiate and sort objects A, B, and C.

1tA.make(<< 1, 2, 3 >>);

!!'B.make(<< 2.5, 6.7, 1.1, 0.5, 7.8 >>);
11C.make(<< "Axl", "Slash", "Duff", "Matt" >>);
A.sort;

B.sort;

C.sort;

A user-defined class may be a parameter for the SORTABLE_ARRAY class as long as it is
a descendant of the COMPARABLE class and contains an implementation for the "<"
routine. The following incomplete COMPLEX definition is an example of such a class.

class COMPLEX
inherit
COMPARABLE
creation
make
feature
real_part : REAL;
imag_part : REAL;
make (re: REAL; im : REAL) is
-~ code omitted
infix "<" (other : like Current) : BOOLEAN is
-- code omitted
end -- COMPLEX

Discussion
It was previously stated that Eiffel is an "almost pure” object-oriented language. The
difference between Eiffel and "pure” OOP languages (like Smalltalk-80) is that Eiffel

uses static type checking instead of dynamic typing. By performing type-checking at

34

compile time, the run-time cost of sending a message is reduced to that of an indirect
procedure call. This combination of static type checking and dynamic binding results in a
language that is both flexible and type-safe. While Eiffel still does not have the run-time
efficiency of statically-bound languages, it is considerably more efficient than Smalltalk-
80 [Cha 89].

Eiffel supports function polymorphism in the context of inclusion polymorphism,
while the other languages examined used variations of parametric polymorphism. As
such, this author will not attempt to compare these methods directly. Instead, this author
will make note of three language characteristics that have relevance to the work presented
in this thesis.

The syntax used in Eiffel is noteworthy in that it employs very few cryptic operators
and symbols. The reserved words of this language tend to be descriptive and meaningful.
In general, this author has found that code written in Eiffel tends to be both readable and
concise, especially when compared to similar programs written in C++.

Eiffel allows the programmer access to information about the data types being used
(much like Ada does through its attributes). High-level information is generally stored as
attributes in the same class as the data type in question. Examples of such high-level
information include the size and bounds of an array. Low-level (and machine-specific)
information is obtained by accessing attributes defined in the PLATFORM class (which is
a base class of all other classes). Through these attributes, the programmer can determine
the number of bits required to store an object, the highest supported character code, and
so on.

In Eiffel, polymorphism has been integrated into the "core” of the language, much
like it was in ML. As such, it requires no special constructs or unnatural syntax. This
author feels that such integration is important, because it allows the programmer to use
polymorphic features without learning new constructs or having to temporarily adopt a

new programming philosophy.

Chapter 3

Related Research

The research described in this paper is fairly unique, as it involves the implementation of
a form of parametric polymorphism in a language which supports evaluation-time
independence [Sal 92]. A number of partial evaluation techniques (most notably function
specialization) are used in the implementation of this language. As such, this research has
been influenced and inspired by recent work in both the areas of polymorphism and
partial evaluation.

Polymorphism

Much of the current work in polymorphism originates from ideas expressed in a paper by
Cardelli and Wegner [Car 85]. In that paper, the authors discuss types, type systems, and
polymorphism in great detail. Most publications in this area still refer to that paper, as it
contains extensive descriptions of most of the basic polymorphism concepts.

A great deal of work has been done on other classifications of polymorphism. One
such classification is contextual polymorphism, developed recently by Ditchfieid
[Dit 94). This method uses type-related declarations and assertions to provide a form of
parametric polymorphism in a modified version of C.

Another recent development is extensional polymorphism, by Dubois, Rouaix, and
Weis [Dub 95]. Extensional polymorphism allows the definition of fully (ad-hoc)
polymorphic generic functions in ML by providing a framework for type-checking them.

A good deal of effort has been put into extending and improving the ML type-
inference system [Mil 78], especially in regards to how it handles problems caused by
imperative programming mechanisms (such as polymorphic references). One such

extension proposed by Tofte [Tof 90] has been included in Standard ML. Leroy and Weis

36

[Ler 91] and Wright [Wri 95] have developed more powerful extensions which provide
improved support for imperative programming. Laufer and Odersky [Lau 94] have
extended this language so that abstract data types may be treated as first-class values.
Harper and Morrisett [Har 95] have recently completed work on a modification of ML in
which run-time type analysis may be used in polymorphic functions to determine type
information. Finally, Ohori [Oho 95] has developed a new ML-style type inference
system based on a second-order record calculus which allows labeled records and labeled
variants.

Smith and Volpano have recently addressed the problem of applying ML-style type-
inference systems to existing imperative languages [Smi 96a]. They have used this work
as a basis for providing polymorphic typing in C [Smi 96b].

Baumgartner and Russo {[Bau 95] have developed an interesting language extension
for C++ in which abstract type hierarchies may be defined independently of class
hierarchies. They believe that, by separating a type definition from its implementation,
programmers will have more flexibility when using subtype (i.e. inclusion)
polymorphism.

Partial Evaluation

An overview of partial evaluation may be found in papers by Jones [Jon 96], Consel and
Danvy [Con 93], and Meyer [Mey 91]. These papers provide a good introduction to the
principles behind partial evaluation, as well as many of the problems that may be
encountered.

The work described in this paper builds upon ideas developed by Salomon [Sal 92]
[Sal 95b] [Sal 96] and implemented in the Safer_C/1 translator. By evaluating source
code at compile-time, the translator is able to eliminate the need for preprocessor
statements, as well as improve the efficiency of the object code produced.

Previous work by this author [Bal 96] has also influenced the research described here.

That report describes an implementation of function specialization for Safer_C. This

37

involved modifying the parse tree representation of function definitions to propagate
known values and then perform other optimizations.

This author has found the work of Andersen [And 92] [Jon 93] to be particularly
useful. He has created an off-line partial evaluator for a subset of C which is capable of
reducing or evaluating expressions, unrolling loops, and specializing functions.

Kleinrubatscher, Kriegshaber, Zochling, and Gluck [Kle 95] have since created a
partial evaluator for Fortran programs. Their partial evaluator works by translating a
Fortran 77 program into an intermediate form, performing a binding-time analysis and
optimizations on it, and then translating it back to Fortran 77 again.

Danvy [Dan 96] has recently published a paper which contains a description of a
type-directed partial evaluator. The concepts behind this partial evaluator are discussed

detail, and have a basis in lambda-calculus.

in

38

Chapter 4

Function Polymorphism in Safer_C/2

In Chapter 2 of this thesis, it was shown that function polymorphism is currently
supported in a number of languages. Parametric polymorphism was used in Ada, ML, and
ForceTwo, inclusion polymorphism in Eiffel, and a mixture of both in C++. The syntax
used to declare and instantiate polymorphic functions varied considerably between these
languages.

This chapter describes some of the mechanisms used by Safer_C/2 to support
function polymorphism. These program mechanisms were developed in consultation with
my supervisor, D.J.Salomon, and have evolved over time. This chapter also describes
many of the design issues that were considered during the development process. Some of
the ideas expressed in this chapter were derived from earlier versions of the design; these

versions are described in Appendix A.

4.1. Parametric or Inclusion Polymorphism?
Before designing the polymorphic features, an elementary question had to be answered:
what types of polymorphism should Safer_C support? As was explained in section 1.2,
there are two types of universal polymorphism. They tend to be used in different
programming environments, and can require very different implementations.

Parametric polymorphism is used in both imperative and functional languages. Static
(i.e. compile-time) type-checking is used to validate the type parameters passed, as well
as all operator and function calls involving variables of these types. In most languages,

different versions of polymorphic functions are instantiated at compile-time as well,

39

using static-binding. There are languages which use some form of dynamic (i.e. run-time)
binding [Har 95] [Mor 91], but this is not often done for parametric polymorphism.

Using static-binding ensures that all of the overhead involved with polymorphic
functions will occur at compile-time. The compiler will determine which type parameters
are being passed and will then instantiate a number of type-specific versions of these
functions. At run-time, these type-specific versions are called where appropriate, in the
same way that monomorphic functions are. The main disadvantage of this method is that
it is costly in terms of size, as the object code generated may contain a number of separate
type-specific versions of each polymorphic function.

Inclusion polymorphism, on the other hand, is used in object-oriented programming
environments. As with parametric polymorphism, static type-checking is used to validate
each of the function calls. With this method, though, the compiler will only create one
version of each polymorphic function in the object code. When such a function is called,
the program will use dynamic-binding to determine type information and to resolve
function and operator overloading.

While this method is efficient in terms of the size of the object code created, the
dynamic-binding process generally imposes some run-time overhead. As such, programs
which make use of this method can be slower than equivalent programs which use
parametric polymorphism [Cha 89].

Is it necessary to choose between these methods”? It appears that both parametric and
inclusion polymorphism are useful, but in different contexts. Inclusion polymorphism
seems to be a logical and elegant method for providing genericity in object-oriented
environments. Parametric polymorphism, as described above, may be used to simplify the
creation of ad-hoc polymorphic functions, both at the application and operating system
level. Hence, this author believes that both should be supported by Safer_C.

As these methods are quite different, they will be implemented independently. The

package of object-oriented features that is currently under development will include

40

support for inclusion polymorphism. This thesis describes the design and implementation

of a form of parametric polymorphism.

4.2. Objectives

From the examination of function polymorphism in other languages, it was determined

that the design produced for Safer_C should satisfy certain criteria. These are presented

below, along with explanations of why each is desirable.

1.

Polymorphic functions should be called and used just like monomorphic functions,
with type, range, and subprogram parameters passed implicitly. As such, the task of
managing their instantiations should fall to the compiler rather than the programmer.

This is the method used in C++, ML, and ForceTwo. Doing so should simplify the
use of such procedures, as all of the "extra” programming work that they require will
be done once, when they are defined.

Allowing the compiler to manage the instantiations could produce more efficient
code, as it may be able to perform optimizations that the programmer cannot. For
instance, some function invocations could involve related parameter types. Instead of
instantiating a version for each type, the compiler could create only one and insert
type-conversion routines into the invocation statements (as is done in ad-hoc
polymorphism). Doing so would reduce the size of the code generated.

Finally, this method will eliminate the minor but nagging problem of having to
create and remember different names for each of the function instantiations. It will be
up to the compiler to determine internal names for the different versions. Such names
will be created by using an encoding ("name mangling") mechanism.

The syntax used to define polymorphic functions should be reasonably terse, intuitive,
and unambiguous.

The syntax used by Ada's generic subprogram mechanism is fairly complex and

verbose; this increases the effort required to define such subprograms. The Safer_C

41

syntax should be kept reasonably terse to minimize the work needed to define
polymorphic functions.

Some of the syntax used by Ada (e.g. "range <>")and C++ (e.g.

" (Vector<T>& v)")is quite cryptic. This author strongly feels that the syntax
used by Safer_C should be unambiguous and intuitive. This will increase the
"readability” of polymorphic functions, and help to avoid confusion.

. Syntactic differences between monomorphic and polymorphic functions should be
limited to their headers.

In Ada and C++, polymorphic functions are defined using a separate program
construct. This increases the complexity of such definitions. It was decided that the
Safer_C syntax should be designed so that a separate program construct is not
required. Instead, the existing function definition statement should be extended to
allow for polymorphic function definitions.

Even with such an extension, there will have to be some syntactic differences
between monomorphic and polymorphic function definitions. Limiting these
differences to the function headers should further simplify the definitions.

. The syntax of a polymorphic function should support type and function parameters,
including user-defined types and overloaded operator parameters.

To support parametric polymorphism, the programmer should be able to
implicitly pass both "simple" types (such as integer or boolean) and user-defined
types (such as arrays, structures, or pointers) to user-defined functions.

Functions almost always have to manipulate their parameters in some type-
specific way. If a function or operator is called from within a polymorphic function,
the compiler must type-check the call and determine which version of a function or
operator is being called. This could be simplified by passing the function or operator

in question as an implicit parameter.

Many functions that have parameters of a user-defined type will refer to some
basic element of that type at some point. There should be some way for the compiler
to determine what these elements are, and there should be a mechanism which would
allow the programmer to access them. This is permitted in Ada through the attribute
mechanism. Examples of such elements are the base type of an array or pointer, the
index type of an array, and the index range of an array.

. The instantiation method used to implement this design should support separate
compilation.

In large programming projects, the source code is often divided between a number
of different text files. These files are compiled separately and the resulting object
modules are linked together to form the complete program. The benefits to doing so
are fairly well known and will not be discussed here.

As has been mentioned, managing the instantiations of polymorphic functions
should be the responsibility of the compiler. This should be done in a way that allows
for separate compilation. In other words, it should be possible to define a
polymorphic function in one source file and call it from others.

For the time being, Safer_C has been implemented as a translator that produces
ANSI C code. This code is then compiled and linked using existing tools. The goal,
then, is not separate compilation but separate translation. Hence, the solution to this
problem must take place at the code generation phase and not at the linking phase.

. The overall style of the design should be consistent with the style of the existing
features of Safer_C.

The syntax used in this design should be similar in style to the existing syntax of
this language. Safer_C has been designed to be unambiguous and easy to read. The
design produced here should use keywords that are distinct and easy to remember.
Most importantly, this design should not require radical changes in the existing

language.

43

Safer_C is a unique language, as it allows the programmer to specify the
evaluation time of most of the elements of a program. At present, Safer_C supports
both translation-time and run-time execution of source code. The design produced

should coexist with, and if possible, exploit this feature of the language.

4.3. Overview

As has been mentioned, Safer_C will allow statements and functions to be evaluated at
either compile-time (also known as translation-time) or at run-time. This is known as
evaluation-time independence [Sal 92].

This unique language feature has a number of benefits. It has been shown that
translation-time statements in Safer_C can be used in the same way that preprocessor
statements are in C; this eliminates the need for a separate preprocessor meta-language
[Sal 95b]. The evaluation of such statements are carried out by the compiler in a partial
evaluation phase. In that phase, a number of partial evaluation techniques (such as
constant folding, loop unrolling, and function residualization) are applied to the parse tree
with the goal of producing a faster and sometimes smaller program [Sal 96].

One of the techniques applied by the partial evaluator is function specialization [Bal
96]. When the values of one or more of the parameters in a function invocation are known
at translation-time, it is possible to create a specialized version of the function in which
such values are propagated throughout the function body. After performing constant
folding and loop unrolling on the specialized function, it will generally execute faster
than the original version.

Function polymorphism has been supported in Safer_C by extending function
specialization so that functions may be specialized for types, as well as values. A
polymorphic function may be defined through the use of type parameters. A type
parameter differs from a normal parameter in that it is a type that is passed at translation-

time, instead of a value passed at run-time. When provided with type parameters, the

partial evaluator will perform type substitution and manipulation operations on the
function to create a specialized version.

Type parameters may be passed to a function explicitly or implicitly. In both cases,
the compiler will use this type information to create a specialized (monomorphic) version
of the polymorphic function. This is known as instantiating a function. It is these
specialized versions which will actually be included and called in the resulting program;
the original function is used only as a template.

Normally. the keyword tran is used in the type specification of a formal parameter
to indicate that its value should be passed at translation-time (e.g. x :: tran int).In
this design, all type parameters are, by default, translation-time parameters. For this
reason, the tran keyword may be omitted from formal type parameter specifications.

By default, all of the parameters in a conventional parameter list are explicit. The

following function, therefore, should be passed a type parameter explicitly at translation-

time:
<<swap>> :: func (T :: type
X :: ->T
Yy :: =>T
) void
block
temp :: T !! used for swapping
temp := x@
x@ := y@
y@ := temp
end

This function will swap the values referenced by two parameters, x and y. Both of these
parameters are pointers to type T, which is also a parameter. This function would be used

in the following manner:

<<main>> :: func () int
block
a, b :: int

c, d :: float
!'! variable initializations omitted
swap(int, &a, &b)
swap(float, &c, &4)
end

45

In this case, the compiler would instantiate two versions of swap; one for type int and
one for type £loat.

Ideally, the programmer should not have to pass type information explicitly. Doing so
is both inconvenient and unnecessary, as the compiler could easily determine the types of
the actual parameters at translation-time. For this reason, an implicit parameter passing
mechanism has been developed for Safer_C.

A number of different mechanisms were actually considered. The design described
here was the third developed; the previous two are discussed in Appendix A. To gain a
deeper understanding of the design issues faced during the development process, first-
time readers are encouraged to read the appendix before proceeding further. To allow the
reader to compare these designs, the following sections and the appendix share some

common examples.

4.4. Implicit Parameters
As has been stated, every parameter in a conventional parameter list is passed explicitly.
To allow for the declaration of implicit parameters, it has been decided that programmers
should be able to partition a formal parameter list into an "implicit” and an "explicit”
section. This is done by preceding each section with the keywords imp1l and expl,
respectively. If a function requires no implicit parameters, then both keywords should be
omitted.

When such a function is called, every parameter in the expl section must be
provided in the actual parameter list. The compiler will use a type unification algorithm
[Aho 86] to determine what the actual implicit parameters are and then instantiate an

appropriate version of the function. Consider the following version of the swap function:

46

<<swap>> :: func (impl T :: type
expl x :: ->T
Y :: —>T
) void
block
temp :: T !! used for swapping
temp := x@

x@ := y@
y@ := temp
end

<<main>> :: func () int

block
a, b :: int
c, :: float

!! variable initializations omitted
swap(&a, &b)
swap(&c, &4)
end
In this version, only the explicit parameters are listed in the actual parameter lists. The
type parameter, T, is now an implicit parameter. As before, the compiler will instantiate
two different versions of this function. It should be noted that implicit parameters are not

limited to types; values may be passed implicitly as well.

4.5. Type Manipulation Functions

The swap function examined previously is unique, as the two explicit parameters are of

the same type. In addition, the only operation that is performed on these parameters is

assignment.
In real programming situations, polymorphic functions will almost never be this
simple. These functions may be complicated by any number of the following factors:

@ They may contain type-specific operators and function calls. The programmer may
wish to ensure that these operators and functions are defined for the actual type
parameters.

® Type conversions may be required which involve at least one of the type parameters.

The programmer may want to ensure that such conversions are possible.

47

® The programmer may wish to place constraints on the types of the parameters. For
example, she may want to ensure that a parameter is an ordinal, an array, a struct, etc.

® If one of the actual parameters is an array, the programmer may wish to have the
index range and base type passed implicitly.

To deal with these situations, the developers of Safer_C have created a number of

translation-time type manipulation functions. These functions will be evaluated as the

function in which they are used is being instantiated. These functions may be used in a

number of ways:

Functions returning a type may be used to initialize an implicit type parameter or a
type variable. For example, they may be used to determine the type of a variable or
the return type of the function. Two such functions are WidestType and
BaseType.

#® Functions returning a boolean may be used as conditions in type matching
expressions. These expressions are described in section 4.6. Two such functions are
IsArrayType and IsTypeConsistent.

¢ Some functions may return values. These are generally used to determine information
about one of the parameters. Two such functions are SizeOf and HighBound.

Table 1 contains the names, type signatures, and meanings of all of the type manipulation

functions currently proposed for Safer_C. Some of these functions are based upon Ada

attributes, while others are derived from type manipulation functions used by compilers

for type-checking. A number of these functions will be examined at length in section 4.6.

48

Table 1. List of translation-time type manipulation functions

Function name

Type signature

Meaning

StructCompat(T1,T2)

(Type x Type - Boolean)

Are types T1 and T2 structurally
compatible?

NameCompat(T1,T2)

(Type x Type > Boolean)

Do types T1 and T2 have the
same name?

SameTypes(T1,T2)

(Type x Type <> Boolean)

Are the argument types T1 and
T2 the same type or synonyms
for the same type?

AssignableTypes(T1,T2)

(Type x Type => Boolean)

Is a variable of type T2
assignable to a variable of type
T1?

PromotableTypes(T1,T2)

(Type x Type > Boolean)

Is a value of type T2 promotable
to a value of type T1? A value of
a numeric type can be promoted
to a value of a wider type.

ConvertibleTypes(T1,T2)

(Type x Type = Boolean)

Is a value of type T2 convertible
to a value of type T1? A value of
one type is convertible to a value
of another type if a conversion
function is built-in or supplied by
the user.

IsOrdinalType(T)

(Type -> Boolean)

Is the argument type an ordinal
type?

IsNumericType(T)

(Type > Boolean)

Is the argument type a numeric
type?

IsRangeType(T)

(Type - Boolean)

Is the argument type a range
type?

IsPointerType(T)

(Type > Boolean)

Is the argument type a pointer
type?

IsArrayType(T)

(Type => Boolean)

Is the argument type an array
type?

IsStructType(T)

(Type -> Boolean)

Is the argument type a structure
type?

IsUnionType(T)

(Type > Boolean)

Is the argument type a union
type?

IsEnumType(T)

(Type = Boolean)

Is the argument type an
enumerated type?

IsSignedType(T)

(Type -> Boolean)

Is the argument type a signed, as
opposed to unsigned, numeric

type?

49

IsTypeConsistent(expr)

(Any => Boolean)

This function evaluates to true if
the argument expression is type
consistent. This function is
usually used to test whether an
operator or function exists for
certain types. Rather than
providing a complex description
of the types of the parameters and
the desired result, it simply
requests that the type-consistency
checker be run on its argument,
and returns true or false
depending on the success or
failure of that check.

WidestType(T1,T2)

(Type x Type -> Type)

Return the widest type of T1 and
T2. Types T1 and T2 must be
numeric types. The numeric
types are ranked by wideness
according to the precision of the
numeric value they can hold.

NarrowestType(T1,T2)

(Type x Type -> Type)

Return the narrowest type of T1
and T2. Types T1 and T2 must
be numeric types. This function
mirrors the function WidestType.

SizeOf(T)

(Type - Integer)

Return the size in bytes needed to
store a variable of type T.

TypeOf(V)

(Any > Type)

Return the type of the variable V.

BaseType(T)

(Type > Type)

Return the base type of type T.
Type T must be a compound type
such as an array type or a pointer

type.

IndexType(T)

(Type -> Type)

Return the index type of an array
type.

FieldType(T.I)

(Type x Integer - Type)

Return the type of the [-th field
of T, a structure type.

Field(I)

(Integer -> Field)

Refers to the [-th field of a
structure variable. This would be
used in place of the field name
when the actual name is
unknown.

LowBound(T)

(Type > T)

Return the lower bound of a
range type.

HighBound(T)

(Type 2> T)

Return the upper bound of a
range type.

50

While the merits of each function will not be discussed individually, two design decisions

were important enough to deserve an explanation.

4.5.1. IsTypeConsistent

While function IsTypeConsistent may seem somewhat awkward to use in practice,
this function plays a very important role in polymorphic function definitions.
IsTypeConsistent is used to ensure that an operator or function has been defined
for certain parameter and result types.

As currently designed, IsTypeConsistent requires an expression as its
parameter. It will type-check the expression to determine if the operator/function used in
it is valid for the types of its operands/parameters and result. Two other designs were
considered for this function:

1. One version would require a standard parameter list consisting of an
operator/function, some parameter types, and a result type.

2. Another version would also require an expression for its parameter, but the expression
would contain type names instead of variable names.

In the end, it was decided that the current design would require the least effort to

implement and understand, and would require approximately the same effort to use.

Ensuring the Existence of Required Functions and Operators

Two other languages have mechanisms which perform a role similar to that of

IsTypeConsistent. In an Ada generic subprogram definition, the type signature of

required functions should be specified explicitly [DoD 80]. Ada generic subprograms

were examined in section 2.1 of this thesis. For the following generic function to be

instantiated, the < function must have been declared for the type parameter, T, and have a

return type of BOOLEAN:

51

generic
type T is private;
with function "<" (U, V : T) return BOOLEAN is <>;
function MAX (A, B : T) return T:;
In CLU, a generic procedure or cluster definition must explicitly state the name and type
signature of each procedure that the type parameter will provide [Ghe 87]. The following
generic cluster definition ensures that the 1essthan procedure has been defined for
type parameter T and returns a boolean result:

set=cluster [T: type] is create, insert, delete
where T has lessthan: proctype(T,T) returns (bool)

A different approach was taken when designing IsTypeConsistent. Both of the
above mechanisms used specialised syntax; IsTypeConsistent uses none. Instead of
explicitly stating the type signature of an operator or function, a Safer_C programmer
would use the operator or function in an expression. The type signature would be
obtained and tested implicitly.

In practice, IsTypeConsistent has turned out to be both flexible and easy to use.
Assume that x is a formal (value) parameter of a polymorphic function. The following
invocation of IsTypeConsistent will ensure that the < operator has been defined for
the type of x:

IsTypeConsistent(x < x)

Additionally, by using the result of the < operation in a boolean expression (formed with
the && operator), we may indicate that the result type should be boolean:

IsTypeConsistent((x < x) && 1)

4.5.2. Field and FieldType

For a time, the Safer_C designers did not provide a means to access or determine the
(unknown) internal characteristics of a structure parameter. It was considered unlikely
that a programmer would want to "blindly" pass a structure to a function and expect the

function to deal with it properly (with the possible exception of output functions). For

52

this reason, neither of the earlier designs (described in Appendix A) were given this
capability.

There could be situations, though, when a programmer may find such a capability
useful. For this reason, functions FieldType and Field have been defined.
FieldType may be used to determine the type of one of the fields of a structure, while
Field may be used to refer to the field itself. FieldType requires a structure type and
a field number as parameters, while Field only requires the field number. In this
context, "field numbers” refer to the order in which fields appear in a structure definition.

Consider the following definitions:

B :: type := struct { a :: int 11 field 1
b :: float It field 2
c :: long int } !! field 3
A :: B !! A is a variable of type B

Assume that A is passed to a function, and that B itself is passed as a type parameter. If
the formal parameter names of A and B are X and Y, respectively, then the fields of this
structure could be referred to in the following manner:

templ :: FieldType(Y, 1 'l type int

)
temp2 :: FieldType(Y, 2) It type float
temp3 :: FieldType(Y, 3) Il type long int

X.Field(1) =1
X.Field(2) := 3.14
X.Field(3) := 40000

It should be noted that a number of other designs have been considered for this purpose.
While Field and FieldType have been included here, the designers still consider
their syntax to be experimental. As such, these functions may not appear in the final

release of Safer_C/2.

4.6. Conditional Type Matching
Many of the type manipulation functions were designed to allow the programmer to place

constraints on the types of the actual parameters. This may be done for two reasons:

53

1. The programmer may want to ensure that a function can only be called if the actual
parameters are certain kinds of types (such as numeric types). This may be useful if
the function contains operator/function calls which are only defined (or have the same
intended meaning or usage) for those types.

2. The programmer may want to overload the name of a polymorphic function by
creating several versions which manipulate different types in different ways.
Conditional type matching would give the compiler a means to choose between the
different versions when an invocation is made.

To facilitate this, each explicit parameter may be accompanied by a boolean type

matching expression. Such expressions will be evaluated during the function instantiation

process; this process will only succeed if each expression evaluates to true. The syntax
used is:

type_expression where boolean expression
For example:

root :: T where IsPointerType(T) and
~~ IsNumericType (BaseType(T))

This boolean expression will evaluate to true if root is a pointer to a numeric data item.
While the boolean expression in this example was somewhat complex, it has been found
that in practice, such expressions will often consist of a single function call. It should be
noted that "~~" is a statement continuation marker in Safer_C.

When designing this feature, the Safer_C designers considered using the more precise
phrase "such that" instead of "where". In the end, it was decided that "where"
would probably be less cumbersome to use.

A number of examples will now be presented to illustrate how type manipulation
functions are used, in conjunction with conditional type matching, to support function

polymorphism in Safer_C.

54

Example 1
Function square will return the square of its parameter, x. The type manipulation
function IsTypeConsistent is used to ensure that the operator "*" is defined for the
type of the parameter.
<<square>> :: func (impl
T :: type
expl
X :: T where
~~ IsTypeConsistent(x * x)
) T
block
return (x * x)
end
Function invocations would take the following form:

square(2) 'l returns 4
square(1.5) 'l returns 2.25

[f the operator "*" were overloaded to perform string concatenation, the following
function call would be valid as well:

square("ab") 't returns "abab"
Example 2
This example is somewhat more complex, as max will accept two parameters of
(potentially) different types and return the greatest of them. Function IsNumericType
is called two times to ensure that the actual parameters in the invocation are of numeric
types. It is not necessary to check that ">" is defined for the parameters, because this
operator is valid for all numeric types. As the precision of the types of the parameters
may vary, WidestType is used to determine the result type of this function.

Note that since the evaluation time of max has been specified as being translation-
time (tran), its function body would actually be substituted in place of the function

invocation by the partial evaluator. The rationale for doing so is discussed in section A.1.

55

<<max>> :: tran func (impl

type

type

type := WidestType(T1l,T2)

N =
TR
e er e

prRrEAA

:: T1 where
~~ IsNumericType (T1)
:: T2 where
~~ IsNumericType(T2)

0]

) W
body
return (a > b ? a : b)
end

The following are valid function invocations:

max(11, 99) !l returns 99, an int
max(3.14, 5.0) 1! returns 5.0, a float
max(11, 40000) 1! returns 40000, a long int

The following invocation would not be valid:

max(11, "abc") !! "abc" is not numeric
Example 3
Function sort will perform a Bubble Sort operation on a one-dimensional array of any
size and base type. This function uses IsArrayType and IsTypeConsistent to
ensure that data is indeed an array, and that the "<" operator has been defined for its
base type. This function also employs LowBound, HighBound, and IndexType to
determine the upper and lower boundaries of its index range. Finally, BaseType is used
to determine the base type of the array.

It should be noted that LowBound was used in this example for the sake of
completeness; the lower bound of all arrays in Safer_C (as in C) is 0. This may, however,

change in future versions of the language.

56

<<sort>> :: func (
impl
T :: type
I :: type := IndexType(T)
lo :: tran int := LowBound(I)
hi :: tran int := HighBound(I)
B :: type := BaseType(T)
expl
data :: T where
~~ IsArrayType(T) and
~~ IsTypeConsistent(datal[lo] < datalhil)
) void
block
i, 3 2 I 1 loop vars
temp :: B 1 used for swapping
for (i := lo; i < hi; i++)
for (j := hi; i < j; j--)
if (datal[j] < data[j-1]) !! swap
temp := datal[jl
datal[j] := datal[j-11}
data[j-1] := temp
endif
endfor
endfor

end
This function would be used in the following manner:

al :: [0..99] double 't declare first array
a2 :: [0..999] ->char !l declare second array
1! array initializations omitted

11 overloading of "<" for ->char omitted

sort(al) !'! sort first array
sort(a2) !l sort second array
Example 4

In the example below, the previous function has been overloaded so that the base type of
the array is a structure, not a simple type. The array must be sorted on a "key" field; the
field number (described previously) is passed as an explicit translation-time parameter, F.
BaseType is used to determine the structure type (S), and Field is used to refer to the
key field in both the function header and body. IsStructType is used to ensure that
the base type of the array is a structure; this will help the compiler to distinguish between

the two versions of sort during the instantiation process.

57

<<sort>> :: func (

impl
T :: type
I :: type := IndexType(T)
lo :: tran int := LowBound(I)
hi :: tran int := HighBound(I)
S :: type := BaseType(T)
expl
data :: T where
~~ IsArrayType(T) and
~~ IsStructType(S) and
~~ IsTypeConsistent (data[lo] .Field(F)
~— < datal[hi] .Field (F))
F :: tran int
) void
block
i, j :: I 1l loop vars
temp :: S 1! used for swapping
for (i := lo; i < hi; i++)
for (j := hi; 1 < j; j--)
if (data[j].Field(F) < data([j-1].Field(F))
temp := datalj]
data[j] := data[j-1]
data[j~-1] := temp
endif
endfor
endfor
end

If both versions of sort were defined in the same program, the following code would be
valid:

'l structure type sl has four fields

sl :: type := struct { key :: int 1l key is field 1
a,b,c :: char }

1!l structure type s2 has two fields

s2 :: type := struct { 4 :: float
key :: float } !! key is field 2

al :: [0..99] double !! array of double

a2 :: [0..999] int 1t array of int

a3 :: [0..5] sl 1! array of struct sl

a4 :: [0..19] s2 1! array of struct s2

'l array initializations omitted

sort(al) 1! call first version

sort(a2) ! call first version

sort(a3, 1) 11 call second version

sort(a4, 2) 1! call second version
Example §

The function in this example will perform matrix addition on a pair of two-dimensional

arrays, A and B. Their sum will be stored in another two-dimensional array, C. These

58

arrays must be of the same type, T1. They may have any size and base type; as before,
IsTypeConsistent is used to ensure that the "+" operator is defined for the base
type.

In Safer_C (as in C), a two-dimensional array is actually an array of arrays. By
applying the BaseType function to T1 (which is actually a one-dimensional array type),
the compiler will obtain another array type, T2. At this point, LowBound, HighBound,
and IndexType may be applied to T1 and T2 to obtain the dimensions of the matrices.

As before, LowBound is used to obtain the low bounds of each "dimension” for the sake

of completeness.
<<add_matrices>> :: func (
impl
T1 :: type
lol :: tran int = LowBound (IndexType(Tl))
hil :: tran int = HighBound (IndexType(T1l))
T2 :: type = BaseType(T1)
lo2 :: tran int = LowBound (IndexType(T2))
hi2 :: tran int = HighBound (IndexType(T2))
expl
A, B, C :: T1 where
~~ IsArrayType(Tl) and
~~ IsArrayType(T2) and
~~ IsTypeConsistent(Af{lol] [lo2] + B[lol]l[lo2})
) void
block
X, y :: int
for (x := lol; x <= hil; x++)
for (y := lo2; y <= hi2; y++)
Clx]l [yl := A[x][y] + BIx][yl
endfor
endfor
end

The following code will declare and then add two different pairs of matrices:

ml :: type := [0..9][0..12] int

m2 :: type := [0..5][0..99] float

a, b, ¢ :: ml

X, Y, 2 :: m2

'l array initializations of a, b, x, y omitted
add_matrices(a, b, c)

add_matrices(x, vy, zZ)

59

Chapter 5

Implementation

This chapter describes the implementation of the mechanisms described in sections 4.3 to

4.6. The implementation process was divided into a number of steps; these are described

here in the order in which they were performed. While the implementation was not trivial,

it was fairly straightforward and, for the most part, presented no serious technical

challenges.

One of the objectives of this project was to implement the design in such a way that

separate compilation will be supported. Doing so in the context of the Safer_C language

(and translation process) raised a number of implementation issues. These issues are

presented separately in section 5.2.

1.

The implementation steps were:

Modify the scanner and the parser

A number of changes were required to the scanner and parser to support the syntax
described in sections 4.4 and 4.6. Three new keywords (imp1l, expl, and where)
were added to the language. The grammar was modified to allow partitioned formal
parameter lists, implicit parameter initializations, and to accept conditional type
matching expressions.

Modify partial evaluator

As stated in section 4.3, function polymorphism was to be implemented as a form of
function specialization using translation-time type substitution and manipulation. The
partial evaluator was modified to permit such specializations. Section 5.1 describes

how the instantiations are managed.

60

'.Jl

As part of this step, a version of the type unification algorithm described by Aho,
Sethi, and Ullman [Aho 86] was implemented. This algorithm was adapted to work
with the type tree structure used by the Safer_C translator, and extended to work with
values of ordinal types.

When this step was completed, t