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Abstract 

in a progmnming language, functions that can be invoked with different numbea of 

arguments, different types of arguments, or can r e m  resuits of different types are caiied 

polymorphic hnctions. An overview of polymorphism in modem languages is given. 

Partial evaiuation is a program optimization process which exploits values known at 

compile-time with the goal of producing a faster and sometimes smaller program. in the 

Safer-C language, variables, parameters, and functions can be assigned an evaiuation 

time by the programmer. m e n  one or more parameters of a function have an evaluation 

time of compile-the, the hinction rnay be specialized for their values. Function 

specialization is one of the means through which Safer-C wiil support function 

polymorphism. This thesis describes three new developments in this area: 1) Syntax for 

declaring implicit formai parameters, 2) Boolean conditions for type inference, and 3) 

Type manipulation functions. 

An extension of function specialization has been developed which dows functions to 

be specialized for types, as weli as for values. Compile-thne type and value information 

may be provided explicitly by the programmer, or it may be described abstractly in an 

implicit formal parameter List. An Unplicit parameter passing rnechanism obtains the 

types and values described in such Lists from the site of each function invocation. The 

programmer may place constraints on the specialization process by defining a conditional 

type matchhg expression for any explicit parameter. Such constraints provide a means to 

validate type-specific aspects of each function invocation. They also give the compiler a 

mechanism to support function overloading. Conditionai type matchuig expressions and 

the implicit parameter passing mechanism were made possible through the creation of a 

set of compile-time type manipulation functions. These Eûnctions accept types as 

pararneters and retum a type or value as their result. 
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Chapter 1 

Introduction 

The evolution of cornputer technology, as we know it. would not bave k e n  possible 

without the development of high-level programmiog languages. These languages allow 

programmers to think in terms of abstract structures instead of machine instructions. This 

makes the program development process faster and easier, and the resulting programs are 

usudy easier to undentand than their assembly language equivalents. 

High-level languages have themselves undergone an evolution. Experience and 

insight have prompted the creation of a wide array of language features, such as control 

abstraction and data abstraction. Indeed, typical programs wntten in current "state of the 

art" languages bear Little resemblance to those written in early FORTRAN. 

Polymorphism is another of these language features. ln conventional typed languages, 

every variable or value is assigned one and only one type. These languages are said to be 

monornorphic. By contrast, polymorphic languages allow some variables or values to 

have more than one type. Polymorphic functions, then. are hnctions whose parameters 

and results may have more than one type [Car 851. 

Built-in polymorphic functions and procedures have existed for quite some time. A 

good example of a polymorphic procedure is Pascal's write statemeat. The procedure 

write can take any number of parameten; these parameters may be any of the built-in 

types. User-defmed polymorphic functions are a more recent development. 

In rnonomorphic prograrnming languages, programmers are often required to create 

multiple versions of common algorithms (such as sort or search); one for each data type 

to which they wiil be applied. Function polymorphism would allow programmers to 



create one "generic" version of an algocithm, and apply it to many different data types. As 

such, their code would be easier to reuse and modify [Cor 881. 

This paper wiii discuss an implementation of function polyrnorphism which makes 

use of implicit parameter passing. This method has been implemented as part of the 

Safer-Cf2 programmhg language developed by Salomon [Sd 95a]. EarLier methods wili 

aiso be examined, and their limitations discussed. 

1.1. Safer-C 

The C language, introduced in 1972, has become one of the rnost popular general-purpose 

languages in the world. This is largely due to the efficiency and flexibility of the 

language, as weil as its expressive power. The C++ language, introduced in 1986 , has 

become extremely popular as well. CU extends the power of C by adding support for 

object-orieated programming, operator and function overloading, as weU as other 

features. 

nie term Safer-C refers to a series of languages, of which the fmt two are Safe-1 

and Safer-C/2. Safer-C/1 is semanticaily identical to C, but corrects most of its major 

syntactic flaws. Safer-Cil has been designed to be more resistant to compile-time and 

run-time errors than C is, without sacrificing its flexibility and power. 

This language has been implemented as a translator (written in ANSI C) that accepts 

Safer-Cl1 code and produces ANS1 C code. C was also the target language when C++ 

was introduced, and helped to facilitate its distribution. In addition, work has begun on a 

second translator that wiU permit programmer-aided conversion of C code to Safer-C/1. 

This wiil allow programmers to switch to using Safer-C/1 without sacrificing their 

existing C code. 

Safer-C/2 is the second stage of the Safer-C project. This language, which is still 

under development, will use Safer_C/l as a base to which a number of modem language 



featues wiii be added. The goal of the Safer-U2 designers is to create a language that is 

at least as powemil as C++, but lacks the syntactic flaws that Ctt inhented from C .  

Safer-U2, much Like Safe-1, is king implernented as a translator (written in 

ANS1 C) which produces ANSI C code. The function-polymorphism method presented in 

this paper has been appiied to this translator. Many of the examples used in this paper are 

written in Safer-C. For an introduction to this language, see the paper by Salomon [Sal 

9Sa]. 

1.2. Polymorphism 

in general, polymorphic languages d o w  some variables, values, functions, or function 

parameters to have more than one type. There are a number of kinds of polymorphism; 

most programming languages support at least one of these. The following is a summary 

of the most common classifications of polymorphism, as described by Cardeili and 

Wegner [Car 851. For our purposes, these classifications will be described as they apply 

to function polymorphism. 

ad-hoc - A function has more than one interface defmed for it. These interfaces 

aiiow the function to work with different types and/or numbers of parameters. The 

types of the parameten do not have to share a cornmon structure. There are two major 

kinds of ad-hoc polymorphism: 

L. overloading - The same narne is used by the programmer to refer to a number of 

different function defitions. The compiler wiii detennine which function to c d  

from the program context. An example of thk is the abs (absolute value) 

fuaction in Pascal, where the same name is used to refer to two similar functions 

that manipulate different types of data (integers and reals). 

2. coercion - The same function is caiied for every invocation. If the parameters or 

result of an invocation are not of the type expected, they are converted to that 



type. This cm be done staticaiiy (by inserting caiis to conversion functions into 

the invocation) or dynamicaiiy (by testkg the arguments at an- the) .  

universal - A function is defmed with a single interface that could be applied to an 

unlimited number of types. This function wüi accept a hxed number of parameters 

which share a cornmon structure. Cardeiii and Wegner state tbat a universally 

poiymorphic function wiiI execute the same code for arguments of any admissible 

type [Car 851. This requires the ability to resolve hinction and operator overioadhg at 

run-time (using dynamic-binding) and is not often dom. Instead, monomorphic 

versions of such a function will be instantiated at compile-the (either as specifed by 

the programmer or automatically by the compiler). IdeaiIy, the compiler should 

manage the instantiations and invocations of the monomorphic versions. There are 

two major kinds of universal polymorphism: 

1. parametric - The function has at Least one implicit or explicit type parameter. 

This parameter is used by the compiler to determine the types of the other 

parameters, and may also be used to determine the types of local variables and to 

determine which instance of overloaded operators and functions to call inside of 

the function. This paper describes the design and impiementation of a form of 

parametric polymorphism which makes use of partial evaluation techniques to 

irnplicitly obtain the required type information. 

2. inclusion - In some programming languages, one or more types (or classes) may 

be defined that are subtypes of another type. In such a language, when a type is 

specified in a p m e t e r  list, the actual parameter rnay be a value of that type or 

any of its subtypes. In object-oriented programming (OOP) languages, this is 

demonstrated by the supertype-subtype relationship. In "pure" OOP environments, 

inclusive polymorphic functions are expected to use the object methods of theû 

parameters to perform operations (such as cornparison) on thern. In such an 

environment, the dynamic-binding of object methods is a viable option. 



This summary is not intended to be a cornplete guide to this subject, as only the mos t 

basic classifcations of polymorphism have k e n  included. A number of other 

classifcations have been proposed since the paper by Cardelli and Wegner was 

pu blis hed Two recent developments include contenual poly morphism [Dit 941 and 

extensional polymorphism p u b  951. 



Chapter 2 

Survey of Function Polymorphism 

This chapter will examine a number of languages which support function polymorphism. 

AU but one of these languages are actuaiiy in use. The remaining language, ForceTwo, 

has been implemented in prototype form. Thei. approaches to function polymorphism are 

discussed, and the advantages and disadvantages of these approaches presented. 

2.1. Ada 

Ada was developed by CI1 Honeywell BuLi for the United States Department of Defense 

[Bar 891. The fmt version of Ada was completed in 1980 (DoD 801. An ANS1 standard 

version (called Ada 83) was established in 1983, and an ISO version in 1987. A new 

version of this language was released in 1995 m t  941. This version is referred to as Ada 

95 (or Ada 9X). Function polymorphism is achieved in Ada by use of the generic and 

anribute mechanisms and function and operator overioading. As the syntax and usage of 

these mechanisms has not changed significantly fiom Ada 83 to Ada 95, both versions 

are simply referred to as "Ada" in this thesis. 

Ada Generics 

in a generic subprogram or package definition, some parts of the definition are specified 

to be genenc parameters. Generic parameters can be values, types, or even subprograms. 

A programmer can then use the definition as a template, and instantiate different versions 

of the subprogram or package by explicitiy supplying the generic parameten. Consider 

the foliowing generic subprogram (fiom [Bar 891): 



generic 
type ITEM is private; 

procedure EXCHANGE (X, Y : in out ITEM) ; 

procedure EXCHANGE (X,  Y : i n  out ITEM) is 
T : ITEM; 

begin 
T :=X; X : = Y ;  Y :=T; 

end; 

In this example, the type ITEM is a generk parameter. It should be noted that while 

the function has k e n  declared, it has not yet k e n  instantiated. To do so, one would have 

to code statements Wce the foiiowing: 

procedure SWAP is new EXCHANGE ( REAL ) ; 
procedure SWAP is new EXCHANGE( INTEGER ) ;  
procedure SWAP is new EXCHANGE( DATE ) ; 

These statements wili instantiate three different versions of EXCHANGE; one each for 

Real, Integer, and Date-type variables. Each of these instmtiations wiii be caiied SWAP. 

This duplication of names is valid as Ada perriiits overloading of procedure names, 

provided the types or number of parameters are different. 

Consider the foliowing generic package (also from [Bar 891): 

generic 
MAX : POSITIVE; 
type ITEM is private; 

package STACK is 
procedure PUSH (X : ITEM); 
function POP retum ITEM; 

end STACK; 
-- package body not shown 

In this example, a generic Stack package is declared with two generic parameters. 

MAX is the maximum size of the stack, and ITEM is the type of the values that it will 

store. The foilowing statements WU instantiate two different versions of this package: 

package REAL-STACK is new STACK ( 100, REAL ) ; 
package INTEGER-STACK is new STACK( 50,  INTEGER ) ;  

In addition to values and types, Ada WU also permit genenc subprogram parameters. 

This is extremely useful, especidy when used in conjunction with overloaded, user- 



defined operators. The next example discussed wili make use of a generic subprogram 

parameter- 

Ada Attributes 

AU variables, types, and subprograms in a programming language have a number of 

characteristics which distinguish them. Different data types may have very different 

characteristics. For example, scalar types have minimum and maximum values, discrete 

types have a certain order, and array types c m  contain a certain number of values. 

In Ada, these charactenstics are known as attributes, and they may be referred to in 

programs. The syntax used by Ada is ?*Anribute, where T is the name of a variable, type, 

or subprogram, and Attribute is the name of the attnbute to which one wishes to refer. 

The foiiowing are some simple examples of Ada attributes: 

x ' ADDRESS - First memory address occupied by object X 

T ' FIRST - Minimum value of type T 

T ' PRED (X) - Value preceding X of type T 

T ' SUCC (X) - Value succeeding X of type T 

A ' FIRST - Lower bound of fmt index of array type A 

A ' LAST - Upper bound of fmt index of array type A 

For a complete list of Ada attributes, refer to DoD 801 or Bar 891. 

The value of an atuibute WU be determined in one of two ways. If the vaiue is known 

at compile time, it wiü be substituted directiy into the object code. If it is not, the attribute 

wiii be represented by a c d  to a functioo which wiii determine the value at run time. 

Attributes can be extremely useful when designing generîc subprograms, as they 

provide a means for the programmer to refer to distinct characteristics of generic data 

items. This is demonstrated by the foliowing example (derived fiom one in par 891): 



generic 
type INDEX is (o); 
type ITEM is private; 
type COLLECTION is array (INDEX range -) of ITEM; 
w i t h  function "<" (X, Y : ITEM) return BOOLEAN; 

procedure SORT (C : in out COLLECTION) ; 

procedure SORT (C : in out COLLECTION) is 
MIN : INDEX; 
TEMP : ITEM; 

begin 
f o r  1 in C ' FIRST . - ïNDEX' PRED (C 'LAST) loop 

M I N  := 1; 
for J i n  INDEX ' SUCC (1) . . C ' LAST loop 

if C ( J )  < C(MIN) then MIN := J; end i f ;  
end f o r ;  
TEMP := C ( 1 ) ;  C ( 1 )  := C(M1N); C(MIN) := TEMP; 

end for ;  
end SORT; 

This example makes use of both attributes and hinction parameters. The subprogram 

SORT wiii receive an unconstrained array of type COLLECTION, whose eiements will be 

of type ITEM. The range of this array will be the discrete type INDEX, but is unknown. 

SORT will ais0 receive a function referred to as "<" which it w u  use to compare two 

values of type ITEM. 

In this case, the range of the array is unknown, as is its type. As such, the boundacies 

of the two loops are referred to by attributes. These are as foiiows: 

C ' FIRST - Lower bound of array 

C ' LAST - Upper bound of array 

INDEX ' PRED (C ' LAST) - Value preceding upper bound of array 

INDEX ' SUCC ( 1 ) - Value succeeding 1 

The latter two attributes were used to dlow for a variety of range types. if expressions 

such as C ' LAST-1 and 1+1 had k e n  used instead, this subprogram would only be able 

to sort arrays with a range of type Integer. 

In order for this subprogram to work, it must be able to compare different values of 

type ITEM. To allow for a wide variety of types (including user-defmed types), a function 

which does so must be suppLied when this subprogram is instantiated. This function, 



which wiU actualiy be an overloaded operator, is referred to as "c" in this subprogram. 

Consider the foLiowing instantiation: 

type DATE-ARRAY is array ( P O S I T I V E  range o) of DATE; 

function "cm (X, Y : DATE) return BOOLEAN is 
begin 

if X,YEAR /= Y.YEAR then 
return X-YEAR < Y X E A R ;  

elsif  X-MONTH /= Y.MONTH then 
return X-MONTH < Y-MONTH; 

else 
return X-DAY < Y-DAY; 

end i f ;  
end "<"; 

procedure SORTER is 
n e w  SORT ( P O S I T I V E ,  DATE, DATE-ARRAY, " < " ) ; 

Procedure SORTER will be capable of sorting unconstrained array variables of type 

DATE-ARRAY. The P O S I T I V E  ranges of these array variables WU be provided when 

the y are actuaily declared, and may Vary. 

The function created to compare two DATE values is c d e d  "<", and is actudy a 

user-overloaded operator. In the generk function body of SORT, the operator used to 

compare two ITEM values is also cailed "<". m e n  SORTER is instantiated, the compiler 

wili determine which version of "cl' it should use. In our exarnple, it wili do this by 

comparing the specifications of the available versions of "<" with the one given in the 

genenc procedure declaration. 

Ada gives the programmer some flexibility when definhg a function parameter 

specification in a generic subprogram. It is possible to specify a default function to use if 

one is not provîded in the instantiation statement. In fact, there are two ways to do so. 

Consider the foliowing two hinction parameter specifications: 

with function "<" (X, Y : ITEM) return BOOLEAN is -; 
with function NEXT (X : T) return T is T ' SUCC; 

The fust statement is similar to the one used in the SORT subprogram definition, but 

has "is o" at the end. If a function is not specified in the instantiation statement, the 



compiler will automaticaily bind one with a matching designator and specification, if one 

is declared at that point in the program. In other words, the compiler will detemiine the 

actual type of ITEM (in our case, DATE), and wiii bind the version of "c" which is 

declared for DATE at that point, 

The second specification is somewhat different, as the "is T ' SuCC" part contains 

an explicit name for the default parameter. Unlike in the i k t  specification, the binding 

will occur at the point of the generic subprogram declaration. For this reason, this method 

will work only if the default function is an attribute, has no parameters depending on 

formal types, or is itself another forma1 parameter. The foiiowing statement would not 

work, because ITEM is not h o w n  until an instantiation is performed. 

with function "c" (X,Y:ITEM) return BOOLEAN is LESS-; 

Discussion 

It cannot be said that the genenc subprogram mechanism is not expressive or lacks 

flexibility. It is quite capable of supporthg function polymorphism, as has been 

demonstrated. This method, while effective, has a number of shortcomings. 

The genenc mechankm is a separate program construct which requires its own 

syntax. This increases the complexity of programs which use this mechanism. The syntax 

in question can be quite verbose, as was demonstrated in the SORT generic subprogram 

declaration. Each generic parameter must be described in t e m  of its general type, 

limitations, range, range type, and so on. In fairness, it appears to have k e n  designed this 

way to aid error checking. 

Another shortcornhg is the amount of unnecessary work that a programmer must do 

in order to instantiate different versions of generic subprograms. In the SORT exanple, 

the programmer had to specify the types of the range and elements of the array in the 

instantiation statement. It would have been a trivial task for the compiler to discover these 

types for itself, fiom the DATE-ARRAY type declaration. 



One can carry this argument even m e r ,  and declare that the entire instantiation 

statement is unnecessary. As an alternative, one could c d  the genenc subprogram 

directly in the program, and let the compiler mate and keep track of the instantiations. 

Again, it would be a trivial task for the compiler to determine the type of the array 

parameter, and therefore the types of its range and elements. 

Attributes seem to be an effective way of ceferring to instantiation-specific type 

charactenstics. The syntax of the attnïute mechanism is terse but intuitive, which is quite 

desirable, 

2.2. C++ 

The C++ language [Str 911 evolved from "C with Classes," a series of languages 

developed at Bell Labs by Stroustrup beginning in 1980. The k t  C++ translater was 

implemented by Stroustrup in 1983, although a number of features have k e n  added since 

then. Work is currentiy uadenvay on a joint ANSI-ISO standard. The working ciraft of 

this standard can be viewed at www.cygnus.com~-m/wp-draftdraft Parametric 

polymorphism is achieved in C t t  through the use of the template featw. This feature 

makes it possible to defme generic classes and functions. 

A C++ template consists of a template header followed by a class or function definition. 

Part of the header is a parameter list; this is used to ident* the "generic" elements of the 

template. The parameters of a class template may be classes, character strings, function 

narnes, and constant values. The parameters of a function template, though, may only be 

classes. The following is an example of a class template header: 

template eclass T, i n t  n> 

in this template header, parameter T is a class and parameter n is an integer constant. 



C++ Clam Templates 

Genenc classes in CH are ofien referred to as container classes, as they provide the 

means to store and manipulate data of a particular type in an abstract way. S tacks, lis ts, 

and trees are examples of typicai container classes. When objects of a container class are 

instantiated, the programmer must explicitly specify the template parameters. Consider 

the foliowing Stack container class, adapted from examples given by Stroustnip [Str 9 11 

and Pohl p o h  941: 

template cclass T> / /  header (with parameter list) 
class stack { 
private : 
T* data; / /  array containing data 
int top; / /  "top of stack" offset in array 
int maxsize; / /  maximum size of stack 

public : 
stack(int size) / /  constructor 

{ data = new T [size ] ; 
top = -1; 
maxsize = s i z e ;  } 

-s tack ( ) 
{ delete []data; ) 

void push(T value) 
{ data[++top] = value; } 

T pop() 
{ return data[ top--] ; 1 

int full ( )  const 
{ return (top == maxsize-1); } 

1; 

The class parameter List for this template contains a single identifier, T. The 

constructor of this class also contains a parameter, s i ze .  When objects of class s tack 

are defmed, classes and values must be explicitly suppiied for ail template and 

constructor parame ters. For example: 

stack<char> sc(100); / /  100 element char stack 
stackcint> si(SO0); / /  500 element int stack 

This will define two stacks from the single template. Stack SC is a char stack of size 

LOO, and si  is an int stack of size 500. These objecis will behave as if they belong to two 



individual classes, and may be used normaily. The foliowing function (adapted from p o h  

941) makes use of our s tack template to reverse an array of n integea: 

void reverse (int l i s t  [ 3 , i n t  n) 
r 

1 
stack<int> stk(n) ; / /  stack of n integers 
int i; / /  loop comtes 
for ( i = O ;  icn; ++i) 
stk.push( l ist[i]  ) ; / /  push elements onto stack 

for ( i = O ;  i<n; ++i) 
list [il = stk-pop ( )  ; / /  pop off in reverse order 

1 

C++ Function Templates 

Function template defhtions are constructed in a rnanner similar to that of class 

templates. Uulike class templates, though, function templates will be instantiated 

automaticdiy by the compiier when they are caiied. For this reason, the types of the 

function parameters must involve the classes in the template. 

A function template d e f ~ t i o n  w u  actually contain two parameter Lists; one for the 

template and one for the function itself. Values for the template parameten wili be 

determined fiom the program context and passed implicitly. Values for the function 

parameters will have to be specified explicitly, as usual. 

Function templates ailow programmers to create "generic" versions of common 

aigorithms, such as sort or search. The following generic sort function, adapted from 

[Str 9 11, demonstrates the use of function templates in conjunction with class templates. 



/ /  Vector class template 
templatecclass T> 
class Vector { 
private: 
Tf V; / / array of type T 
int sz; / /  s i z e  of the array 

public : 
Vector ( int s ) 

{ v = new T[sz = s ] ;  1 
-Vector ( ) 

{ delete [ IV;  1 
T& operator [ ]  ( i n t  i) / /  overload subscript operator 

{ return vt i ] ;  3 
i n t  size() / /  return the size of the vector 

{ return sz; 1 
1 ;  

/ /  Bubble Sort function template 
ternplatecclass T> / /  template parameter list 
void sort(Vector<T>& v) / /  function parameter list 
C 
int n = v.size(); / /  size of vector 
int i, j; / /  loop vars 
T temp; / /  used f o r  swapping 
for (i=O; icn-1; i++) 

for (j=n-1; k j ;  j -4 
i f  (vcj] c v[j- i ] )  / /  swap 

C temp = v [ j l ;  
vCj 1 = v[j-11; 
v[j-11 = ternp; } 

1 

Objects of class vec tor contain two data items. The fit is an array of type T, and 

the second is an integer variable containing the size of this array. These data items have 

been encapsulated to simplify the use of searching and sorthg algorithms. Such 

algorithms can c d  the object method size to determine the size of, and thecefore the 

upper bound of, the array in question. 

The template parameter List of sort contains a single class, T. The function 

pararneter List of sort tells us that this hnction WU accept a vec t o r  as a pararneter. 

When this function is called, the compiler wül determine what T is by f a n g  the base 

type of the Vec tor parameter, and wiil instantiate a version that is capable of soning 

items of class T. The foilowing block of code WU instantiate, initialize, and son the 

elements of two vectors. 



/ /  vector of integers 
Vector<int> vecl(3 ) ; / /  vector with three elements 
/ /  array initialization obtted 
sort (vecl) ; / /  sort vector 

/ /  vector of chars 
Vectorcchar> vec2 (4) ; / /  vector with four elements 
/ /  array initialization omitted 
sort (vec2 ) ; / /  sort vector 

As with the generic SORT procedure defined in Ada, this function template must be 

able to compare different values of class T. The vectoa defmed above were of classes 

i n t  and char. for which the buiit-in operator < is defmed. The inteaded meaning of < 

may differ for other classes, such as char*.  and wiil have no meaning at aU for user- 

defmed classes. It is possible to overload operators in Ctt ,  but the operands must be 

classes or enumerated types. Hence, it is not possible to overload c to perfom a char-by- 

char comparison of strings of type char*. There are a number of ways to get around this 

problem. 

The fmt of these is to defme a subclass of vec tor (called NewVec tor) which 

contains an object method. less than, that wiil perform the comparison operation. In 

order to deal with unique and user-defmed types, the actual definition of less than will 

fmt be placed inside the Comparator class. This allows us to defme a generic version 

of les s than for built-in types (such as int), and a special version of les s than for 

each unique or user-defmed type (such as char*) that we wish to use. In essence, we 

will be using inclusion polymorphism. Consider the following code: 

/ /  contains a generic version of lessthan 
template<class T> 
class Comparatox { 
public : 
inline static lessthan(T& a, T& b) 

{ re tu rn  a < b; ) / /  use the bui l t - in  operator 
1; 



/ /  contains a special version of lessthan for char* 
class Cornparator<char*> C: 
public : 
inline static lessthan(const char* a, const char* b) 

{ return strcmp(a,b) < 0; } / /  cal1 strcrnp instead 

/ /  class NewVector is a subclass of Vector and Comparator 
template<class T> 
class NewVector : public Vector<T>,public ComparatorcT> { 
public : 
NewVector (int size) : VectorcT> (size) { } 

1 ;  

/ /  Bubble Sort - lessthan function encapsulated 
template<class T> 
void sort(NewVector<T>& v) / /  changed to NewVector 
C 
int n = v.size(); 
int if j; 
T temp; 
for (i=O; i<n-1; i++) 
for (j=n-1; icj; j--) 
if (v.lessthari(v[j],vCj-11)) / /  changed to lessthan 

C temp =v[jl; 
v[j] = v[j-11; 
v[j-11 = temp; } 

1 

/ /  create and sort vectors 
main ( ) 
C 
NewVector<int> vl(3); / /  vector of class int 
NewVector<char*> v2 (4) ; / / vector of class char* 
sort (vl) ; / /  uses generic lessthan 
sort (v2) ; / /  uses char* lessthan 

1 

This example encapsulated the comparison operation inside the NewVec t O r class, 

which ailowed sort to access it. When a NewVec tor object was created, it inherited 

the methods defined in both Vector and Comparator. For vl, the lessthan 

rnethod defined in the generk Compara tor template was inherited. In the case of v2, 

the compiler determined that a speciai Comparator class had been created for the 

char * type, so the les s than method defined within it was inherited instead. 

If one does not wish to encapsulate the comparison operation inside the class of the 

parameter passed to s O r t , there are alternatives which use pararnetric polymorphism. 



One of these is to explicitly pass an object of class Comparator to the sort function, 

as the foliowing example does. 

/ /  Bubble Sort - lessthan function passed explicitly 
template<class T> 
void sort(Vector<Tb& v, Comparator<T>& cmp) 

/ /  changed to Vector, Comparator 
C 
int n = v.size(); 
int i, j; 
T temp; 
for (i=O; i<n-1; i++) 
for (j=n-1; icj; j--) 

if (cmp.lessthan(v[j],v[j-ll)) / /  changed to cmp 
C temp = v[j l ;  
v[j] = v[j-11; 
v[j-11 = ternp; 1 

/ /  create and sort vectors 
main ( ) 
{ 
Vector<int> vl(3) ; / /  vector of class int 
Vector<char*> v2(4); / /  vector of class char* 
Comparator<int> cl; / /  lessthan of class i n t  
Comparator<char*> c2; / /  lessthan of class char* 
sort (VI, cl) ; / /  pass i n t  objects 
sort (v2, CS ) ; / /  pass char* objects 

1 

This approach works, but is rather inelegant. Objects cl and c2 o f  this example are 

merely "dummy" objects, used to satisQ the type system. In cases üke this, where objects 

passed to a function contain methods but no data, we may pass their methods impiicitiy 

instead. The foiIowing version of the s O r t fùnction does just that. 



/ /  Bubble Sort - lessthan function passed implicitly - 

template<class T> 
void sort(Vector<T>& v) / /  changed to Vector only 
C 
int n = v.size(); 
int if j; 
T temp; 
for (i=O; i<n-i.; i++) 
for (j=n-l; icj; j--1 
if (Comparator<T>: :lessthan(v[ j ] , v[j-11) ) 

/ /  changed to Cornparator<T> 
temp = v[jl; 
v[j] = v[j-11; 
v[j-11 = temp; 1 

1 

/ /  create and sort vectors 
main ( ) 
C 
Vector<int> vl(3); / /  vector of class int 
Vector<char*> v2(4); / /  vector of class char* 
sort (vl) ; / /  pass i n t  vector only 
sort (v2 ) ; / /  pass char* vector only 

1 

Discussion 

The template feature of C.» is a reasonably concise and effective method for 

implementing paramevic polymorphism. It is not without its flaws, however. 

One problem stems from the fact that function template parameten are limited to 

classes only. In our Bubble Sort example, we had to encapsulate an amy dong with its 

size in the Vector ciass in order to pass both to the sort function. It would have been 

simpler if we could have just passed the "bare" array to the function, and have had the 

size of the array passed implicitiy. For example: 

template Cclass T, int n> 
void sort (T v [n] ) 
{ / /  code omitted ) 
main ( ) 
{ 
int a [ 3 ]  = {9, 7, 8); 
sort (a) ; 

1 

This is not possible in C+, though, because arrays are passed by reference automafically, 

without any size information- We must pass the size explicitly, as shown below. 



template cclass T> 
void sort (T v[] , int n) 
{ / /  code omi t ted  ) 
main ( ) 
{ 

i n t  a[33 = {9, 7, 8); 
sort(a,3) ; 

1 

This is unfortunate. because the compiler could easily fuid the size of an array when it 

finds the type. Once the size is determined, it could be sent to the function instantiation in 

a number of ways. Confcrmant arrays in Pascal, for example, pass the size of an array as 

a hidden runtime parameter. 

In the three Bubble Sort examples, different methods were used to pass an overloaded 

hinction as a parameter to a hinction template. In the fint version. which used inclusion 

polymorphism, the less than function was encapsulated inside one of the parent 

classes of the NewVector object passed. This was somewhat verbose but reasonable, as 

doing so is standard practice in object-oriented programming. 

The second and third versions used parametric polymorphism. In the second version, 

the function was passed explicitly inside a "dummy" objeci. This probably would not be 

done in practice, as this method is more complex but less convenient than the one used in 

the third version. 

In the third version, the lessthan function was passed as an implicit parameter. 

The syntax required to do so could be improved, as it is non-intuitive and misleading. In 

fact. it does not appear that we are passing a parameter at ali. It can be argued that 

accessing a method of a "foreign" class is bad practice in object-onented programming, 

but that is exactly what we seem to be doing in this case. 

The syntax of the template feature may also be problematic. The sarne syntax is used 

in both function and class template headers, but the template parameter iists differ 

(classes only vs. classes. strings, functioas, and constants) and the instantiations are done 

quite differently (automaticaily vs. manudy). This c m  cause a considerable arnount of 



confusion for novice users, unless a great deal ofcare is taken to read the "fine print" of 

the template feature description in a book such as [Str 911 or [Poh 941. 

2.3. ML 

ML is a functional prograrnming language that was designed for use in theorem proving. 

It was introduced by Gordon, Milner, and Wadsworih in 1977, and used to create their 

Edinburgh LCF theorem prover. At present the version that is most widely used is 

Standard ML, developed by Milner in 1984 Pau 911. Compilers for this language are 

available fiom a nurnber of sources. 

Cardefi and Wegner have descnkd ML as king "the paradigmatic language for 

parametric polymorphism" [Car 851. in this language, it is possible to wnte functions 

without specifying the types of the parameters and result. The only ciifference between a 

monomorphic function d e f ~ t i o n  and its polymorphic equivalent is tbat the type 

information wül be omitted from the latter one. In ML, most polymorphic functions 

involve pairs, Lists, and other data structures. Consider the following two function 

defuiitions: 

fun pairself (x : real) = (x,x) ; 

fun pairself x = ( x , x ) ;  

Function pairself will accept a value, x, and pair it with itself. The f i t  definition is 

monomorphic; it accepts a value of type real. The type of x is unspecified in the second 

definition, though, so that this version will be able to handle more than one type. 

ML Type Schemes 

Polymorphism in ML is based on type schemes, which serve as a form of template for 

type checking and type inference. The type scheme of a hinction is deterrnined and 

printed when the hinction is entered. The type scheme of a monomorphic function is 

quite trivial, as is demonstrated by the foliowing definition and response: 



fun pairself (x : real) = ( x ,  x) ; 
> val pairself = fn : real -> real * real 

The response t ek  us that hinction pairseif accepts a parameter of type real and 

produces a pair of values. determined to be of type real as well. 

If ML is unable to determine the type of a parameter and/or the result, then the type 

scheme of the function wiii contain a type variable in place of that type. A type variable 

is denoted as a string of characters starting with a single quote. Consider the foiiowing 

definition and response: 

fun pairself x = ( x , x )  ; 
> val pairself = fn : 'a -> 'a * 'a 

In this case, the types of the parameter and resulting pair is represented by the type 

variable ' a. 

A type scheme may contain more than one type variable. Each of the foliowing 

functions contain two and t h e  type variables, respectively. 

fun fs t  (x,y) = x; 
> val £st = fn : 'a * 'b -> 'a 
fun  fstfst z = fst(fst z )  ; 
> val fstfst = fn : ('a * 'b) * 'c -> 'a 

Func tion f s t wiii return the fmt of a pair of values, possibly of different types. Function 

f s t f s t will r e m  the first value in the fust pair of pairs. 

ML Type Merence 

Standard ML uses a type inference mechanism to determine the types of the arguments 

and result in a function definition. When a function is defmed, ML WU infer unspecified 

type information from the program context by foilowing a logical series of steps Pau 9 11. 

In essence, it will break a function definition down into expressions, and repeatedly apply 

type-checking rules to resolve arnbiguities. As this process mm, types are assigned to 

arguments, overloaded operators, and expressions. Each argument must have the same 

type everywhere in the definition. The theory behind the ML type inference mechanism is 

discussed by Milner in w 7 8 ] .  Consider the foliowing example, from Pau 9 11: 



fun facti (n,p) = 
if n=O then p 
else facti (n-1, n*p) ; 

The expressions n=O and n-1 both contain integer constants, so ML deduces that n is of 

type int and integer subtraction is to be used in n-1. This identifier also appears in the 

expression n*p, so p is also of type i n t  and integer multiplication will be used. As p is 

returned in the base case of f acti,  its result type must be i n t  as weii. Hence, ML will 

respond with the following statement: 

> val facti  = fn : i n t  * i n t  -> in t  

In the case of the monomorphic version of pairself, ML would know that x has 

aiready k e n  assigned a type, real. The result of this hc t ion  wouid therefore be a pair 

of real numbers. 

As previously stated, if ML cannot determine the type of an argument or the result, a 

type variable will appear in the type scheme. When such a function is called ML will 

substitute the type of the actual argument(s), perform some more type checking, and 

instantiate an appropriate version [Car 851. For this reason, our polymorphic version of 

pairs e l  f couid accept a parameter and r e m  a pair of almost any type. For example: 

pairself 4.0; 
> (4.0, 4.0) : real * real 
pairself 7; 
> (7, 7 )  : i n t  * i n t  
pairself ( "Ozzy" , 123 ) ; 
> (("Ozzy", 123), ("Ozzy", 123)) 
> : (string * in t )  * (s t r ing  * i n t )  

In these three function calls, pairs el  f accepted a real. an int, and a pair as 

arguments and retunied the expected results. 

Discussion 

Type schemes, as discussed. seem to work very well. The creation of polymorphic 

functions in ML is reaily a trivial task. This is to be expected, as type schemes are an 

integral part of the ML language and the compilation process. As is the case in most 



languages, though, it does not do as weil when confionted with odd situations. 1 wiii 

discuss two of these at this tirne. 

The fmt  problematic situation is the deciaration and use of references (pointers) to 

polymorphic functions. It is possible, in theory, to declare a reference to a polymorphic 

function, assign the reference to another, monomorphic function, and then use that 

reference to c d  the monomorphic function indirectly with incompatible parametes. The 

foiiowing code, which is no longer valid in Standard ML, demonstrates this problem. 

fun 1 x = x; 
> val 1 = fn : 'a-> 'a 
val fp = ref 1; 
> val fp = ref fn : ('a -> 'a) ref 
! fp  5 ;  
> 5 : i n t  

Function f is the identity hinction; it returns whatever value (of any type) we send it. The 

reference f p is a pointer to I. In ML, the " ! " character is used to dereference a pointer. 

B y calling ! f p with the panmeter 5 (an integer), we are actudy calling 1; this is a valid 

caU and 5 wiiI be retumed. In the next code segment, the assignment of fp  is changea to 

not. When we do so, we M t  the type of the argument and result to bool. Hence. when 

we now c d  ! f p with an integer argument, we cause a mn-time type error. 

fp := not ;  
! fp  5; 

This problem has k e n  studied by a number of people, including Tofte [Tof 901. His 

solution, which has been adopted in Standard ML, is to outlaw the creation of 

unconstrained polymorphic references. Standard ML contains a special class of weak rype 

variables which are used by the type iaference mechanism to detect such situations. Each 

weak type variable may only be assigned, explicitly or implicitly, to a single type in the 

sarne part of the program. The following declaration of f p contains an explicit type 

assignment. In this part of the prograrn, f p  may only refer to functions with a boolean 

parameter and result. When we caU ! fp with an integer parameter, a compile-tirne error 

is caused, 



val fp = ref (1: bool -> bool) ; 
> val fp = ref fn : (bool -> bool) ref 
fp := not 
!fp 5; 
> E r r o r  

In the foliowing l e t  statement, the type of the weak type variable is determined 

implicitly to be boo l when no t is assigned to f p. Hence, calling ! fp with the 

parameter true is valid and wu r e m  the value f alse. 

let val fp = ref 1 
in fp := not; !fp true end; 
> false : bool 

Another situation which can cause problems involves the use of overloaded functions 

(such as + and *). As previously stated, the type inference mechanism WU determine the 

type of an expression from the program context. If an expression contains an overioaded 

function, and the parameters are type variables, then ML will be unable to determine 

which version of the hnction to use and wiil therefore reject the code containing the 

usage. Consider the foliowing function definition, from [Pau 9 11 : 

fun square x = x*x 
> E r r o r  - Unable to resolve overloading for * 

To get around this problem, it is necessary to provide type information explicitly. For 

example: 

fun square (x : real) = x*x 
> val square = fn : real -> real 

In this case, we have inserted a type constraint on the argument, LUniting it to values of 

type real. ML is now able to select the real version of hinction *. Function square 

can now be used. albeit in monomorphic form only. 

2.4. ForceTwo 

ForceTwo is part of a family of imperative languages developed by Cormack and Wright 

[Cor 881. Other languages in this family include Zephyr [Cor 851 and ForceOne [Cor 871; 

ForceTwo was created to address some of the limitations in the design and 



implementation of these. This language, iike the othen, was used as a "test b e d  for 

Cormack's and Wright's ideas on polymorphism and type systems. These ideas were later 

expressed in [Cor 901. 

Polymorphism is supported in ForceTwo through facilities such as modules, 

functions, type generators and type converters, function and operator overloading, and 

parameters. Of these, the latter is of the most interest to us. ForceTwo supports four kinds 

of parameters: 

monomorphic - the traditional kind, whose type is specified in the function header 

and whose value is provided in the huiction invocation. 

type - the parameter is a type, and is specified explicitly in the function invocation. 

The syntax of these parameters is as follows: 

i d e n t  : type 

The parameter name is ident, and type is a keyword. 

query - the parameter is a type, but it is not specified in the func tion invocation. 

Instead, it is obtained fiom one of the actual parameters. The syntax is as follows: 

ident-1  : ? ident-2 

This indicates that type ident-2 wüi be obtained from the actual parameter bound 

to ident-1. 

automatic - the narne of the actual parameter is specified in the function defition, 

instead of in the invocation. The value (if a variable) or version (if a function or 

operator) of an automatic parameter will be determined fkom the program context and 

bound when the hinction is cded. Automatic parameters were designed to permit the 

implicit passing of function and operator parameters. The syntax is: 

auto i d e n t  : typespecification 

The keyword auto precedes the parameter identifier. The type-spec i f icat ion 

can be a simple type (for a variable), or the types of the parameten and result (for a 

function). An example of an automatic parameter is presented later. 



Cormack and Wright refer to query and automatic parameters coiiectively as implicit 

parameters, as their corresponding actual parameters are not specified in the function 

invocation. Iastead, the actual parameters are obtained by the compiler, through its type 

inference mechanism r o r  901. 

Monomorphk parameters 

The following example demonstrates how different kinds of parameters c m  be used 

together to create a polymorphic hinction. Consider the recursive power function, which 

has two parameters. The fmt  (x) is a value of some type, and the second (i) is an integer 

exponent. This function will retum x to the power of i; this value wiii be of the same 

type as x. To create and c d  a monomorphic version of power (where x is of type 

real), we could write the foiiowing: 

power: [x: real, i: integer] real == 
if i = 1 then x else power[x, i-11 * x 

powerC2-5, 21 -- returns 6.25 

Type parameters 

The definition above contains two monomorphic parameters. If we wanted to create a 

more general version of this hinction, we couid add a type parameter, t. This parameter 

would have to be specified explicitly in the hinction invocations. For example: 

power: [t: type, x: t, i: integer] t == 
if i = 1 then x else power [t, x, i-11 * x 

power[real, 2.5, 23 -- retums 6.25 
power [integer, 5, 3 ] -- returns 125  

Query parameters 

This example now has two problems. The fmt, and most obvious, is that our function 

invocations now have an extra parameter. They have become more tedious to write, and 

look awkward. We cm elllninate this by converting t from a type parameter to a query 

parameter: 



power: [x: ?t, i: integer] t == 
if i = 1 then x else power [x, i-11 * x 

power C2.5, 21 -- returns 6.25 
power [S , 3 ] -- returns 125 

The second, l e s  obvious problem, involves the overloaded operator *. ForceTwo 

diows operator overloading, so * may refer to integer multiplication, real multiplication, 

or some user-defhed operation. The compiier simply wïii not know which version of this 

operator it should use in each instantiation of power. In order to allow the static binding 

of the appropriate version at compile the ,  we could make * a parameter: 

power: Lx: ?t, i: integer, *: [t,t]t ] t == 
if i = 1 then x else power[x, i-1, * ]  * x 

power[2.5, 2, * ]  -- returns 6.25 
power[S, 3, *] -- retums 125 
The type specifcation of parameter * indicates that ihis operator will take two 

operands of type t and return a result of that type as well. Unfortunately, we now have to 

explicitly specify * in our function invocations. 

Automatic parameters 

[n order to pass this operator implicitly, we should convert it to an automatic parameter: 

power: [x: ?t, i: integer, auto *: [t,t]t ] t == 
if i = 1 then x else powerrx, i-l] * x 

powerL2.5, 23 -- returns 6.25 
power [5, 31 -- returns 125 

ln this final version, the type of the function and the operator used are both passed as 

implicit parameters. The acmal version of * used in the instantiation WU be bound at the 

site of the function invocation. For this technique to work, a version of * matching the 

type specification in the formal parameter Lst must exist in the scope of the invocation; 

this version will be selected by the overloading resolution mechanism. Consider the 

following code sequence: 



( 
*: [a: string, b: string] string == concat[a,bl 
power["abcn, 31 -- returns "abcabcabc" 

1 
power["abcn, 31 --notvalid 

ln ForceTwo, the symbols ( and ) are used to star t  and end a new scope, respectively. 

inside this new scope, we overload * to perform string concatenation. M e n  we c d  

power inside this scope with a string parameter, the new version of * wiii be bound to 

its formal parameter and power wiii r e m  the result shown. Once the scope ends, 

though, this version of * wiil no Longer be available. 

Discussion 

Cormack and Wright feel that polymorphism is best supported through the use of separate 

facili ties suc h as modules, functions, parame terized types, overloading, and Unpiici t type 

and function parameters. This appears to work; we used a combination of implicit 

parameters and overloading to implement the polymorphic power function. 

The syntax used in formal parameter iists is terse. but is adequate for declaring 

implicit type* function, and value parameters. Different versions of polymorphic 

functions wiii be instantiated by the compiler as needed, as it done in ML, with the 

implicit actual parameters determined from the program context. It should be noted that 

the effort required to use an overloaded string operator in a polymorphic function was 

minimal, especially when compared to the contortions that this author had to perform to 

do a similar task with a char * operator in C++. 

Unfortunately, this language is not well documented, and development on it has 

ceased. Hence, there remain a number of unanswered questions concerning the flexibility 

of both the syntax and the type inference mechanism used. 

What syntax is required to pass an array to a subprogram? 1s it possible to pass the 

size and type of an array impiicitly? 1s it necessary to encapsulate the array in a 

module or defme it as a parameterized type in order to do so? 



What syntax is required to pass a record to a subprogram? 1s it possible to pass the 

types and ranges used in the record implicitly? If so, how is this doae? 

1s it possible to pass a data item of a parameterized type by reference? If so, what 

syntax is required, and how is the unspecified type information determllied by the 

type inference mechanism? 

2.5. Eiffel 

Eiffel w e y  921 was developed by Meyer at Interactive Software Engineering (ISE) in the 

laie 1980s w i e  951. This language was designed as  a vehicle for advancing Meyer's 

ideas about the construction of robust object-oriented prograrns m e y  881, and is intended 

for use in large-scale applications. Compiiers for this language are available €rom at least 

three sources w i e  951. Eiffel is an "almost pure" object-onented language which uses 

generic classes, inheritance, and dynamic-binding to support inclusion polymorphism. By 

doing so, it also supports a form of function polymorphism. 

Eiffel has many of the same characteristics as other object-oriented languages. but 

some of the terminology used (and the reasoning behind it) bears closer examination. It is 

said that a class in Eiffel contains a number of features. There are two types of features: 

attributes - Data items defmed in a class. Attributes w u ,  as expected, contain the 

data that the programmer wishes to store in objects of the class. An attribute rnay dso 

contain data related to other attributes or abstract data types implemented in a class. 

For example, Eiffel has a pre-defmed ARRAY class. This class has three attributes 

(lower, upper, and count) which contain the lower and upper bounds of the 

array, as weU as its size. It should be noted that attributes in Eiffel and Ada are 

different program mechanisms, although it is possible to use them in similar ways. 

For example, the pre-defmed class PLATFOm contains attributes related to platform- 

specific properties (such as the number of bits used to represent an integer). 



routines - Subpmgrarns used to perfonn some kind of a computation on the 

attributes of an object. A routine rnay be either a huiction or a procedure. A routine 

c d  may be in the form of an insirucrion (such as ob j ect . p r i n t  ( 1) ) or an 

expression (such as 4 -3 where " -" is a routine called on object "4 l' with "3 " as the 

parameter). A routine c d  in expression form rnay use either prefix or in f i  notation. 

The only difference between a cidi in expression and instruction fonn is the syntax 

used to denote it in the program. 

It should be noted that a routine rnay be effective or deferred. An effective routine is the 

usual type; it is implemented in the same class in which it is defied. For a deferred 

routine, oniy the declaration is provided. It WU be up to the descendants of the class to 

provide the implementation details. 

in a generic class, one or more parameters are used in place of a class name in some 

feature definitions. These parame tes are supplied explicitiy b y the programmer w henever 

an object of such a class is declared. One commonly-used generic class is the ARRAY 

class. It is possible to defme arrays that rnay contain data items of virtualiy any class. For 

example: 

intarray : ARRAY [ INTEGER ] ; 
real-array : ARRAY [ REAL 1 ; 
2d-matrix : ARRAY [ ARRAY [ INTEGER ] ] ; 

As mentioned previously, three of the attributes of this class are lower, upper, and 

count. Two important routines of this class are item and put. These routines are used 

to refer to and assign values to elements of an array. For example: 

intarray.put(99,l); -- assign 99 to element 1 
real-array. item(5) ; -- return value of element 5 

In some situations. it rnay be desirable to Lunit a parameter to a member of a 

particular family of classes. This is usuaily done to ensure that the class passed contains 

certain features that rnay only occur in that family. To do so, one must speciQ the base 

class of that family in the formal parameter list of the generic class. Doing so will ensure 



that only descendants of that base class WU be accepted as parameters. This is known as 

constrained generïcity. 

The Eiffel type system is based on inheritance and conformance. As with other 

object-oriented languages, a subclass wiil inherit aii  of the features of its base class. It is 

possible to redefme these features, md implement any deferred routines that may be 

detined in the base class. A class is said to confonn to another class if it is a descendent of 

that class. In general, class Y may be used wherever class x is specified as long as Y 

conforms to X For a full explmation of Eiffei's conformance d e s ,  refer to chapter 13 of 

WY 921. 

Eiffel uses a combination of generic classes, conformance, and dynamic-binding to 

support inclusion polymorphism. Generic classes diow the programmer to create 

program constructs that could be used to contain and manipulate data items of more than 

one class. In order to manipulate these data items, the routines of a generic class must be 

capable of performing class-dependent operations on them (such as comparisons). To 

ensure that these operations (actually routines) have k e n  defmed, the parameten of a 

genenc class are generally constrained. The compiler WU use the d e s  of conformance to 

perform static type checking of these parameters. 

When the routine of a parameter is cailed, an Eiffel program wiil use dynamic- 

binding to do so. This is necessary because the version of the routine required will depend 

on the class (or subclass) of the actual parameter. Because of dynamic-binding, the 

compiler wiil only have to generate one version of each routine defmed in a genenc class. 

It should be noted that aa Eiffel compiler may perfonn static-binding of a routine c d  if it 

determines that only one version of that routine wili exist at mn-the. 

Polymorphic routines are not created explicitly in this laquage. It is possible to 

create a polymorphic function implicitly, though, by d e f ~ n g  a routine inside of a generic 

ciass. Consider the following generic class, SORTABLE-ARRAY. This class contains a 



routine. sort, which uses the Bubble Sort algorithm to sort an array of an unspecified 

type. This example is very similar to the Bubble Sort example discussed in section 2.2. 

class SORTABLE_ARRAY[ T -> COMPARABLE ] 
creat ion 
make 

feature -- Public 
data : ARRAY[ T 1; 
size : INTEGER; 

make( W r a y  : ARRAY [ T ] ) is 
do 
data := deepclone( ankrray ) ;  
size := data-count; 

end; -- make 

sort is 
local 

i, j : INTEGER; 
temp : T; 

do 
from i : = I 
until i = size 
loop 
from j := size 
until j = i 
loop 

if data,item(j) < data.item(j-1) then 
temp := data.item(j); 
data,put(data.item(j-l), j ) ;  
data-put (temp, j-1) ; 

end; 
j := j - 1; 

end; 
i := i + 1; 

end; 
end; -- sort 

end -- SORTABLE-ARRAY 

The SORTABLE-ARRAY ciass has four features; two atalbutes and two routines. 

Attribute data is an array of type T, and si  ze WU contain the size of the array (an 

integer value). Routine make is invoked when the programmer wishes to instantiate an 

object of this class; an array is passed to it as a parameter. Routine s or t wili, of course. 

sort the array. 



This genenc class has one parameter, T, which is constrained to be a descendant of 

the COMPARABLE class. The COMPARABLE class contains deferred declarations for 

cornparison routines, such as "c" and "9. This constraint ensures that the 'k" routine 

will be available for use in the sorting routine. Many pre-defmed classes, Like INTEGER, 

REAL, and STRING, are descendants of the COMPARABLE class. The following lines 

wiu declare three objects, A, B, and C, of the SORTABLE-ARRAY class: 

A : SORTABLEdARRAY[ INTEGER 1; 
B : SORTABLE-ARRAY [ REAL ] ; 
C : SORTABLE-ARRAY [ STRING ] ; 

The foiiowing lines wili instantiate and sort objects A, B, and C. 

! !A-make( << 1, 2, 3 >> ) ; 
!!B-make( 2.5, 6.7, 1 ,  0.5, 7.8 >> ) ;  
! !C-make( << "&clt8 , "Slash", "Duff", "Matt" >> ) ;  

A. s o r t ;  
B s o r t ;  
C s o r t ;  

A user-defined class may be a parameter for the SORTABLE-ARRAY ciass as long as it is 

a descendant of the COMPARABLE class and contains an impiementation for the "<" 

routine. The following incomplete CONPLEX definition is an example of such a class. 

class COMPLEX 
inheri t 
COMPARABLE 

creation 
make 

f eature 
reai-part : REAL; 
imag-part : Eü3AL; 
make ( re: REAL; im : REAL ) is 
-- code omitted 
in f ix  "eW ( other : like Current ) : BOOLEAN is 
-- code ornitted 

end -- COMPLEX 
Discussion 

It was previously stated that Eiffel is an "almost pure" object-oriented language. The 

ciifference between Eiffel and "pure" OOP languages (like SmaUtallc-80) is that Eiffel 

uses static type checking insiead of dynamic typing. By performing type-checking at 



compile tirne, the run-time cost of sending a message is reduced to that of an indirect 

procedure c d .  This combination of static type checking and dynamic binding results in a 

language that is both flexible and type-safe. While Eiffel still does not have the run-time 

effciency of staticaiiy-bound Ianguages, it is considerably more efficient than Smailtaik- 

80 (Cha 891. 

Eiffel supports function polymorphism in the context of inclusion polymoiphism, 

while the other languages examined used variations of paramevic polymorphism. As 

such, this author will not attempt to compare these methods directly. [nstead, this author 

will make note of three language characteristics that have celevance to the work presented 

in this thesis. 

The syntax used in Eiffel is notewocthy in that it employs very few cryptic operators 

and symbols. The reserved words of this language tend to be descriptive and meaningful. 

In general, this author has found that code written in Eiffel tends io be both readable and 

concise, especiaily when compared to similar prograrns written in CM. 

Eiffel allows the programmer access to information about the data types k ing  used 

(much like Ada does through its attributes). High-level information is generally stored as 

attributes in the sarne class as the data type in question. Examples of such high-level 

information include the size and bounds of an array. Low-level (and machine-specific) 

information is obtained by accessing attributes defined in the PLATFORM class (which is 

a base class of ail other classes). Through these attributes, the programmer can determine 

the nurnber of bits required to store an object, the highest supported character code, and 

so on. 

In Eiffel, polymorphism has been integrated into the "core" of the language, much 

like it was in ML. As such, it requises no special constmcts or unnatural syntax. This 

author feels that such integration is important, because it allows the programmer to use 

polyrnorphic features without leamhg new constmcts or having to temporarily adopt a 

new programming philosophy. 



Chapter 3 

Related Research 

The research descnbed in this paper is fairiy unique, as it involves the implementation of 

a form of parametric polymorphism in a language which supports evaluation-time 

independence [Sal92]. A number of partial evaluation techniques (most notably function 

specialization) are used in the implementation of this language. As such, this research has 

been influenced and inspired by recent work in both the areas of polymorphism and 

partial evaluation. 

Polymorphism 

Much of the current work in polymorphism originates from ideas expressed in a paper by 

Cardeiii and Wegner [Car 851. In that paper, the authors discuss types, type systems, and 

polymorphism in great detail. Most publications in this area stiU refer to that paper, as it 

contains extensive descriptions of most of the basic polymorphism concepts. 

A great deal of work has k e n  done on other classifcations of polymorphism. One 

such classification is contextual polyrnorphism, developed recently by Ditchfield 

[Dit 94). This method uses type-related declarations and assertions to provide a form of 

pararnetric polymorphism in a modifed version of C. 

Another ment  development is extensional polymorphism, by Dubois, Rouaix, and 

Weis p u b  951. Extensional polymorphism allows the definition of fuily (ad-hoc) 

polymorphic genenc functions in ML by providing a framework for type-checking them. 

A good deal of effort has been put into extending and improving the ML type- 

inference system w78], especially in regards to how it handles problerns caused by 

imperative programming mechanisms (such as polymorphic references). One such 

extension proposed by Tofie [Tof 901 has been included in Standard ML. Leroy and Weis 



Eer 9 11 and Wright wri 951 have developed more powemil extensions which provide 

improved support for imperative programming. Laufer and Odealq [Lau 941 have 

extended this language so that abstract data types may be treated as kt-class values. 

Harper and Momsett 951 have recentiy completed work on a modification of ML in 

which mn-time type analysis may be used in polymorphic functions to determine type 

information. Fiaily. Ohori [Oho 951 has developed a new ML-style type inference 

system based on a second-order record calculus which aiiows labeled records and labeled 

variants. 

Smith and Volpano have recently addressed the problem of applying ML-style type- 

inference systems to existing imperative languages [Smi 96a]. -y have used this work 

as a b a i s  for providing polymorphic typing in C [Smi 96bI. 

Baumgartner and Russo [Bau 951 have developed an interesting language extension 

for C++ in which abstract type hierarchies rnay be defmed independently of class 

hierarchies. They believe that, by separating a type definition fiom its implementation, 

programmers will have more flexibility when using subtype (Le. inclusion) 

poly morphism. 

Partial Evaluation 

An overview of partial evaluation may be found in papers by Jones [Jon 961, Consel and 

Danvy [Con 931, and Meyer w e y  9 11. These papers provide a good introduction to the 

principles behind partial evaluation, as weli as many of the problems that may be 

encountered. 

The work described in this paper builds upon ideas developed by Salomon [Sal92] 

[Sal95b] [Sa! 961 and implemented in the Safer-CA translater. By evaluating source 

code at compile-time, the translater is able to eliminate the need for preprocessor 

statements, as weli as improve the efficiency of the object code produced. 

Previous work by this author mal 961 has also influenced the research described here. 

That report describes an implementation of function specialization for Safer-C. This 



involved mod@ing the parse tree representation of function def~t ions  to propagate 

known values and then perfonn other optuni7ations. 

This author has found the work of Andersen [And 921 [Jon 931 to be particularly 

useful. He has created an off-iine partial evaluator for a subset of C which is capable of 

reducing or evaluating expressions, unrollhg loops, and speciaiizing functions. 

Kleinrubatscher. Knegshaber, Zochling, and Gluck we 9 q  have since created a 

partial evaluator for Fortran prograrns. Their partial evaluator works by translating a 

Fortran 77 program into an intermediate form, performing a binding-time analysis and 

optimizations on it, and then translating it back to Fortran 77 again. 

Danvy pan  961 has recentiy published a paper which contains a description of a 

type-directed panid evaluator. The concepts behind this partial evaluator are discussed in 

detail, and have a basis in lambda-calculus. 



Chapter 4 

Function Polymorphism in Safer-Cl2 

In Chapter 2 of thk thesis, it was shown that functioo polymorphism is currently 

supported in a number of languages. Paramemc polymorphism was used in Ada, ML, and 

ForceTwo, inclusion polymorphism in Eiffel, and a mixture of both in CH.  The syntax 

used to declare and instantiate polymorphic functions varied considerably between these 

languages. 

This chapter describes some of the mechanisms used by Safer-C/2 to support 

function polymorphism. These program mecbanisms were developed in consultation with 

my supervisor, D.I.Salomon, and have evolved over t h e .  This chapter also describes 

many of the design issues that were considered during the development process. Some of 

the ideas expressed in this chapter were derived from eariier versions of the design; these 

versions are descnid  in Appendix A. 

4.1. Parametric or Inclusion Polymorphism? 

Before designing the polymorphic feanires, an elementary question had to be answered: 

what types of polymorphisrn should Safer-C support? As was explained in section 1.2, 

there are two types of universal polymorphism. They tend to be used in different 

programming environments, and can require very different implementations. 

Parametric polymorphism is used in both imperative and functional languages. Static 

(i.e. compile-time) type-checking is used to validate the type parameters passed, as weii 

as al1 operator and hnction calls involving variables of these types. In most languages, 

different versions of polymorphic functions are instantiated at compile-time as well, 



using static-binding. There are languages which use some form of dynarnic (Le. run-time) 

binding [Har 951 w o r  9 11, but this is not ofien done for parametric polymorphism. 

Using static-binding ensures that a i l  of the overhead involved with polymorphic 

functions wiil occur at compile-tirne. The compiler wili detemiuie which type parameters 

are k i n g  passed and wiii then instantiate a number of type-specinc versions of these 

functions. At run-time, these type-specific versions are called where appropnate, in the 

same way that monomorphic fuactions are. The main disadvantage of this method is that 

it is costly in terms of size, as the objecr code generated may contain a number of separate 

type-specific versions of each poly morphic hinc tion. 

tnclusion polymorphism, on the other hand, is used in object-oriented programming 

environments. As with pumetr ic  polymorphism, static type-checking is used to vaiidate 

each of the function caiis. With this method, though, the compiler will only create one 

version of each polymorphic huiction in the object code. When such a function is cailed, 

the program wüi use dynamic-binding to determine type information and to resolve 

function and operator overloading. 

While this method is efficient in terms of the size of the objec t code created, the 

dynamic-binding process generally imposes some run-time overhead. As such, prograrns 

which make use of this method can be slower than equivalent programs which use 

parametric polymorphism [Cha 891. 

1s it necessary to choose between these methods? It appears that both parametric and 

inclusion polymorphism are useful, but in different contexts. hclusion polymorp hism 

seems to be a logical and elegant method for providhg genencity in object-oriented 

environments. Parametric polymorphism, as described above, may be used to simplify the 

creation of ad-hoc polymorphic functions, both at the application and operating system 

level. Hence, this author believes that both should be supported by Safer-C. 

As these methods are quite different, they w iU be implernented independently . The 

package of object-oriented features that is currently under development will include 



support for inclusion polymorphism. This thesis describes the design and implementation 

of a form of parametnc polymorphism. 

4.2. Objectives 

From the examination of function polymorphism in other Ianguages, it was determined 

that the design produced for Safer-C should satisw certain critena. These are presented 

below, dong with explmations of why each is desirable. 

1. Polymorphic functions should be called and used just like monomorphic functions. 

with type. range, and subprogram parameters passed implicitly. As such, the task of 

rnanaging their i n ~ t i u t i o n s  should fa11 to the compiler rather than the programmer. 

This is the method used in C++, ML, and ForceTwo. Doing so should s i m p w  the 

use of such procedures, as dl of the "extra" programmuig work that they require will 

be done once, when they are defmed. 

AUowing the compiler to manage the instantiations could produce more efficient 

code, as it may be able to perform opthkations that the programmer cannot. For 

instance, some function invocations could involve related parameter types. Instead of 

instantiating a version for each type, the compiler could create only one and insert 

type-conversion routines into the invocation statements (as is done in ad-hoc 

polymorphism). Doing so would reduce the size of the code generated. 

FinaUy, this method will eiiminate the minor but nagging problem of having to 

create and remember different names for each of the fiinction instantiations. Tt wiU be 

up to the compiler to determine interna1 names for the different venions. Such names 

wiil be created by using an encoding ("name mangling") mechanism. 

2. n e  syntar used to define polymorphic finctions should be reasonably terse. intuitive. 

and unambiguous. 

The syntax used by Ada's generic subprogram mechanisrn is fairly complex and 

verbose; this increases the effort required to define such subprograms. The Safer-C 



syntax should be kept reasonably terse to minimize the work needed to defuie 

polymorphic functions. 

Some of the syntax used by Ada (e.g. "range cz") and C+c (eg. 

" (Vector<T>& v) ") is quite cryptic. This author strongly feels that the syntax 

used by Safer-C should be unambiguous and intuitive. This will increase the 

" readability " of poly morphic functions, and help to avoid coahision. 

3. Syntactic diflerences between monomorphic and polymorphic functions shouid be 

limited to their headers. 

In Ada and C++, polymorphic functions are defmed using a separate program 

construct. This increases the complexity of such defhitions. It was decided that the 

Safer-C syntax should be designed so that a separate program construct is not 

required. Instead, the existing function definition statement should be extended to 

allow for polymorphic function defuitions. 

Even with such an extension, there wiU have to be some syntactic differences 

between monomorphic and polymorphic function definitions. Limiting these 

differences to the hinction headers should m e r  simplify the defuitions. 

4. The syntax of a polymorphic function should support type andfunction parameters, 

including user-defined types and overlouded operator parameters. 

To support parametric polymorphism, the programmer should be able to 

implicitly pass both "simpie" types (such as integer or boolean) and user-defmed 

types (such as arrays, structures, or pointers) to user-defmed functions. 

Functions almost always have to manipulate their parameters in some type- 

specific way. If a function or operator is cailed from witùin a polymorphic function, 

the compiler must type-check the caii and determine which version of a function or 

operator is king called. This could be simpüfied by passing the function or operator 

in question as an implicit parameter. 



Many functions that have parameters of a user-defmed type wiil refer to some 

basic element of that type at some point. There should be some way For the compiler 

to determine what these elements are, and there stiouid be a mechanism which would 

allow the programmer to access thern. This is permitted in Ada through the attribute 

mechanism. Examples of such elements are the base type of an array or pointer, the 

index type of an array, and the index range of an array. 

5. nie instantiation method used to Nnplernent this design should support separate 

compilation. 

In large programming projects, the source code is often divided between a number 

of different text files. These mes are compiied separately and the resulting object 

modules are linked together to form the complete program. The benefits to doing so 

are fd ly  well known and wiU not be discussed here. 

As has k e n  mentioned, managing the instantiations of polymorphic functions 

should be the responsibility of the compiler. This should be done in a way that allows 

for separate compilation. In other words, it should be possible to defme a 

polymorphic function in one source füe and cali it from others. 

For the time being, Safer-C has been implemented as a translator that produces 

ANS1 C code. This code is then compiied and Linked using existing tools. The goal, 

then, is not separate compilation but separate translation. Hence, the solution to this 

problem must take place at the code generation phase and not at the linking phase. 

6. The overall style of the design should be consistent with the style of the existing 

features of safer-C. 

The syntax used in this design should be similar in style to the existing syntax of 

this language. Safer-C has been designed to be unarnbiguous and easy to read. The 

design produced here should use keywords that are distinct and easy to remember. 

Most importantly, this design should not require radical changes in the existing 

language. 



Safer-C is a unique language, as it aiiows the programmer to spcify the 

evaluation time of most of the elements of a program. At present, Safer-C supports 

both translation-tirne and nin-time execution of source code- The design produced 

should coexist with, and if possible, exploit this feature of the language. 

4.3. Overview 

As has been mentioned, Safer-C will allow statements and functions to be evaluated at 

either compile-time (also known as translation-the) or at mn-tirne. This is known as 

evaluation-thne independence [Sal92]. 

This unique language feature has a number of benefits. It has been shown that 

translation-the statements in Safer-C can be used in the same way that preprocessor 

statements are in C; this eiiminates the need for a separate preprocessor meta-lmguage 

[Sal9%]. The evaluation of such statements are carried out by the compiler in a partial 

evaluation phase. in that phase, a number of partial evaluation techniques (such as 

constant folding, loop unrolling, and function residualization) are applied to the parse tree 

with the goal of producing a faster and sometimes smaiier program [Sai 961. 

One of the techniques applied by the partial evaluator is function specialization [Bal 

961. When the values of one or more of the parameters in a function invocation are known 

at translation-tirne, it is possible to create a specialized version of the function in which 

such values are propagated throughout the hinction body. After performing constant 

folding and loop unrolling on the specialized hnction, it wiii generally execute faster 

than the original version. 

Function polymorphism has been supported in Safer-C by extending function 

specialization so that functions may be specialized for types, as well as values. A 

polymorphic function may be defined through the use of type parameters. A type 

parameter differs from a nomial parameter in that it is a type that is passed at translation- 

time, instead of a value passed at an-tirne. When provided with type parameters, the 



partial evaluator wiU perfom type substitution and manipulation operations on the 

function to create a specialized version. 

Type parameters may be passed to a function explicitiy or implicitly. In both cases, 

the compiler will use this type information to create a specialized (monomorphic) version 

of the polymorphic function. This is known as instantiating a function. It is these 

specialized versions which wiii actuaiiy be included and called in the resulting program; 

the original function is used only as a template. 

Nomally. the keyword t ran is used in the type specifcation of a formal parameter 

to indicate that its value should be passed at translation-tirne (e.g. x : : tran int). In 

this design, a l l  type parameters are. by default, translation-the parameters. For this 

reason, the tran keyword may be omitted fiom formal type parameter specifications. 

By default, a i l  of the parameters in a conventional parameter List are explicit. The 

following function, therefore, should be passed a type parameter explicitly at translation- 

-swap= : : func ( T : : type 
x : : ->T 
y : : ->T 

) void 
block 

temp :: T !! used for swapping 
temp := xQ 
x@ : = y@ 
y@ := temp 

end 

This function wül swap the values referenced by two parameters, x and y. Both of these 

parameters are pointers to type T, which is also a parameter. This function would be used 

in the following manner: 

<<main>> : : func ( ) int 
block 
a, b :: int 
c, d :: float 
! ! variable initializations omitted 
swap( int, &a, &b ) 
swap ( float, &c, &d ) 

end 



In this case, the compiler would instantiate two versions of swap; one for type int and 

one for type f loat. 

Idedy, the programmer should not have to pass type information explicitly. Doing so 

is both inconvenient and unnecessary, as the compiler could easily determine the types of 

the actual parameters at translation-tirne. For this reason, an irnplicit parameter passing 

mechanism has been deveioped for Safer-C. 

A number of different mechanisms were actuaüy considered. The design described 

here was the third developed; the previous two are dixussed in Appendix A. To gain a 

deeper understanding of the design issues faced during the development process, fmt- 

tirne readers are encouraged to read the appendix before proceeding m e r .  To d o w  the 

reader to compare these designs, the foiiowing sections and the appendix share some 

common examples. 

4.4. Implicit Parameters 

As has been stated, every parameter in a conventional parameter list is passed explicitly. 

To allow for the declaration of irnplicit pararneters, it has k e n  decided that programmers 

should be able to partition a formal parameter List into an "implicit" and an "explkit" 

section. This is done by preceding each section with the keywords i m p l  and expl, 

respectively. If a function requires no implicit parameters. then both keywords should be 

ornitted. 

When such a function is cded, every parameter in the expl section must be 

provided in the actual parameter List The compiler wiii use a type unification algorithm 

[Aho 861 to detennine what the actual implicit pararneters are and then instantiate an 

appropriate version of the function. Consider the foiiowing version of the swap function: 



<<swap>> :: func ( impl T :: type 
expl x :: ->T 

y : : ->T 
) void 

block 
temp :: T !! used for swapping 
t m p  := x@ 
x@ := y@ 
y@ := temp 

end 

<<main>> : : func ( ) int 
block 
a, b :: int 
c, d :: float 
!! variable initializations omitted 
swap( &a, &b ) 
swap ( &c, &d ) 

end 

In this version, only the explicit parameters are Listed in the actual parameter Lists. The 

type parameter, T, is now an implicit parameter. As before, the compiler wiil instantiate 

two different versions of this function. It should be noted that implicit parameters are not 

lirnited to types; values may be passed implicitly as weil. 

4.5. Type Manipulation Functions 
The swap function examined previously is unique, as the two explicit parameters are of 

the same type. In addition, the only operation that is performed on these parameten is 

assignment. 

in real programming situations, polymorphic functions wiU aimost never be this 

simple. These iùnctions may be complicated by any number of the foiiowuig factors: 

They may contain type-specific operators and function cails. The programmer rnay 

wish to ensure that these operators and functions are defmed for the actual type 

parameters. 

Type conversions may be required which involve at least one of the type parameters. 

The programmer may want to ensure that such conversions are possible. 



The programmer rnay wish to place constraints on the types of the parameters. For 

example, she rnay want to ensure that a parameter is an ordinal, an array. a struct, etc. 

If one of the actuai parameters is an array, the programmer rnay wish to have the 

index range and base type passed implicitly. 

To deal with these situations, the developers of Safer-C have created a number of 

translation-the type manipulation hinctions. These fuactions wiii be evaluated as the 

fbnction in which they are used is king instantiated. These hnctions may be used in a 

number of ways: 

Functions returning a type rnay be used to initialize an implicit type parameter or a 

type variable. For example, they rnay be used to determine the type of a variable or 

the return type of the hinction. Two such functions are Wides tType and 

Baseme. 

Functions returning a boolean rnay be used as conditions in type matching 

expressions. These expressions are described in section 4.6. Two such functioas are 

IsArrayType and IsTypeConsistent. 

Some functions rnay retum values. These are generally used to detemine information 

about one of the parameters. Two such functions are SizeOf and HighBound. 

Table 1 contains the names, type signatures, and meanings of ail of the type manipulation 

functions currently proposed for Safer-C. Some of these hnctions are based upon Ada 

attributes. while others are denved fiom type manipulation hinctions used by compilen 

for type-checking. A number of these functions wiil be examined at length in section 4.6. 



Table 1. List of translation-time type manipulation functï 
I 

Type signature 
(Type x Type + Boolean) 

ons 
Meaning 
Are types Tl and T2 structurdiy 
compatilble? 
Do types T L and T2 have the 
same name? 
Are the argument types TL and 
T2 the same type or  synonyms 
for the same type? 
1s a variable of type T2 
assigoable to a variable of type 
Tl? 
1s a value of type T2 promotable 
to a value of type Tl? A value of 
a numeric type can be promoted 
to a value of a wider type. 
1s a value of type T2 convertible 
toavalue of type Tl? A value of 
one type is convertible to a vaiue 
of another type if a conversion 
function is built-in or supplied by 
the user. 
1s the argument type an ordinal 
type? 

1s the argument type a numenc 
type? 
1s the argument type a range 
type? 
1s the argument type a pointer 
type? 

1s the argument type an array 
type? 
1s the argument type a structure 
type? 
1s the argument type a union 
type? 
1s the argument type an 
enumerated type? 
1s the argument type a signed, as 
opposed to unsigned, numeric 
type? 

1 Function name 

. . - - -- - - 

( ~ y p e  x Type + Boolean) 

(Type x Type + Boolean) 

(Type x Type + Boolean) 

- - - - - - - 

Wype x Type -) Boolean) Promo t ableTypes(T 1 ,T2) 

(Type x Type Boolean) 

- - - - - - - - 

(Type + Boolean) 

(Type + Boolean) 

(Type + Boolean) 

(Type + Boolean) 

(Type + Boolean) 

(Type + Boolean) 

(Type + Boolean) 

(Type + Boolean) 

(Type + Boolean) 



Wides tType(T 1 ,T2) 

(Any + Boolean) This function evaluates to true if 

(Type x Integer + Type) 

the argument expression is type 
consistent. This Function is 
usuaiiy used to test whether an 
operator or function exists for 
certain types. Rather than 
providùig a complex description 
of the types of the parameters and 
the desired result, it simply 
requests that the type-consistency 
checker be ntn on its argument, 
and returns tnie or false 
depending on the success or 
failure of that check. 

- -  - 

Retum ihe widest type of Tl and 
T2. Types Tl  and T2 must be 
numenc types. The numeric 
types are ranked by wideness 
according to the precision of the 
numenc value they can hold. 
R e h m  the narrowest type of T 1 
and T2. Types T 1 and T2 must 
be aumeric types. This function 
mirrors the function WidestTm. 
Retum the sim in bytes needed to 
store a variable of tvDe T. 
Return the type of the variable V. 
Retum the base type of type T. 
Type T must be a compound type 
such as an array type or a pointer 
- - - - - - - - - - - - - - - - - 

Retum the index type of an array 
tvDe. 
- - - - - - - - - - - - 

Retuni the type of the 1-th field 
of T, a structure type. 
Refers to the 1-th field of a 
structure variable. This wouId be 
used in place of the field name 
when the actual name is 
llnknown. 
Return the lower bound of a 
range type. 
Retum the upper bound of a 
range type. 



While the merits of each function will not be discussed individuaüy, two design decisions 

were important enough to deserve an explanation. 

4.5.1. IsTypeConsistent 

While function IsTypeConsistent may seem somewhat awkward to use in practice, 

dus hiaction plays a very important role in polymorphic hinction definitions. 

IsTypeCons is tent is used to ensure that an operator or function has been defmed 

for certain parameter and result types. 

As currently designed. 1s Typecons is t ent requires an expression as its 

parameter. It wiii type-check the expression to determine if the operatorffunction used in 

it is vaiid for the types of its operands/parameters and resuit. Two other designs were 

considered for this function: 

1. One version would require a standard parameter list consisting of an 

operator/function, some parameter types, and a resuit type. 

2. hother version would also require an expression for its parameter, but the expression 

would contain type names instead of variable names. 

In the end, it was decided that the current design would require the least effort to 

implement and understand, and would require approximately the same effort to use. 

Ensuring the Existence of Required Functiom and Operators 

Two other languages have mechanisms which perform a role similar to that of 

IsTypeConsistent. In an Ada genenc subprogram definition. the type signature of 

required functions should be specified explicitly P o D  801. Ada generic subprograms 

were exarnined in section 2.1 of this thesis. For the foilowing genenc function to be 

instantiated, the c function must have been declared for the type parameter, T, and have a 

return type of BOOLEAN: 



generic 
type T is private; 
with function "<'l (U, V : T) return BOOLEAN is o; 

function MAX (A, B : T) return T; 

In CLU, a generic procedure or cluster dennition m s t  explicitly state the name and type 

signature of each procedure that the type parameter will provide [Ghe 871. The following 

generic cluster definition ensures that the les s than procedure has been defked for 

type parameter T and r e m s  a boolean result: 

set=cluster [T: type] is create, insert,  delete 
where T has lessthan: proctype(T,T) returns (bool) 

A cWerent approach was taken when designing ïsTypeConsistent. Both of the 

above mechanisms used specialised syntax; ~s'IlypeConsiçtent uses none. Instead of 

explicitly stating the type signature of an operator or function, a Safer-C programmer 

would use the operator or function in an expression. The type signature wodd be 

obtained and tested irnplicitly . 

In practice, ~srypecons is  tent has tumed out to be both flexible and easy to use. 

Assume that x is a formal (value) parameter of a polymorphic function. The foliowing 

invocation of IsTypeCons is tent will ensure that the < operator has been defied for 

the type of x: 

Additionally, by using the result of the c operation in a boolean expression (formed with 

the &r operator), we may indicate that the result type should be boolean: 

4.5.2. Field and FieldType 

For a time, the Safer-C designers did not provide a means to access or determine the 

(unknown) interna1 characteristics of a structure parameter. It was considered unlikely 

that a programmer would want to "blindly" pass a structure to a function and expect the 

function to deal with it properly (with the possible exception of output functions). For 



this reason, neither of the earlier designs (described in Appendix A) were given this 

capabiiity. 

There could be situations, though, when a programmer may fmd such a capability 

useful. For this reason, functions F ieldType and Field have been defmed. 

F ieldType may be used to determine the type of one of the fields of a structure, while 

F i e l d  may be used to refer to the field itself. FieldType requires a structure type and 

a field number as parameters, while F i e l d  only requires the field number. In this 

context, "field numben" refer to the order in which fields appear in a structure defdtion. 

Consider the foliowing definitions: 

B :: tme := struct { a :: i n t  ! ! f i e l d  1 
b : : f loat ! ! f i e l d  2 
c : : long i n t  ) ! ! f i e l d  3 

A :: B !! A is a variable of type B 

Assume that A is passed to a function, and that B itself is passed as a type parameter. if 

the formal parameter names of A and B are X and Y, respectively, fhen the fields of this 

structure could be referred to in the foilowing marner: 

templ : : F i e l d m e  ( Y, 1 ) ! ! type i n t  
temp2 : : F i e l d m e  ( Y ,  2 ) ! ! type float 
temp3 :: F i e l d m e (  Y, 3 ) ! ! type long i n t  
X . F i e l d (  1 ) := 1 
X . F i e l d (  2 ) := 3.14 
X .F ie ld (  3 ) := 40000 

It should be noted that a n u b e r  of other designs have been considered for this purpose. 

While Field and FieldType have been included here, the designers stiii consider 

their syntax to be experimental. As such, these functions may not appear in the final 

release of Safer-Cf2. 

4.6. Conditional Type Matching 
Many of the type manipulation functions were designed to d o w  the programmer to place 

constraints on the types of the actual parameten. This may be done for two reasons: 



The programmer may want to ensure that a function cm ody be cailed if the actud 

parameters are certain kinds of types (such as numeric types). This may be usehl if 

the function contains operator/function cails which are only defmed (or have the same 

intended meaning or usage) for those types. 

The programmer may want to overioad the name of a polymorphic function by 

creating several versions which manipulate different types in different ways. 

Conditional type matching would give the compiler a means to choose between the 

different versions when an invocation is made. 

facilitate this, each explicit parameter may be accompanied by a boolean type 

matching expression. Such expressions wil1 be evaluated during the functioa instantiation 

process; this process will only succeed if each expression evaluates to me. The syntax 

used is: 

type-expression where bool ean-expressi on 

For exarnple: 

r o o t  :: T where IsPointerType(T) and -- IsNumericType (BaseType (T) ) 

This boolean expression wili evaluate to m e  if roo t is a pointer to a numeric data item. 

While the boolean expression in this example was somewhat complex, it has been found 

that in practice, such expressions wiii often consist of a single lunction c d .  It should be 

noted that "--" is a statement continuation marker in Safer-C. 

When designing this feature. the Safer-C designers considered using the more precise 

phrase " such that" instead of "where". In the end, it was decided that "where" 

would probably be Iess cumbersome to use. 

A number of examples WU now be presented to iilustrate how type manipulation 

functions are used, in conjunction with conditional type matching, to support hinction 



Example 1 

Function square wilî return the square of its parameter, x The type manipulation 

function IsTypeConsistent is used to ensure that the operator "*" is defmed for the 

type of the parameter. 

-square>> : : func ( impl 
T : : type 

expl 
x : : T where -- IsTypeConsistent (x * x) 

) T 
block 

r e t u r n  (x * x) 
end 

Function invocations would take the followïng form: 

s q u a r e (  2 ) ! ! retums 4 
square( 1 . 5  ) ! ! returns 2 .25 

if the operator " *" were overloaded to perform string concatenation, the foliowing 

function call would be valid as weii: 

s q u a r e (  "ab" ) ! !  returns "abab" 

Example 2 

This example is somewhat more cornplex, as m a x  wiii accept two parameters of 

(potentially) different types and return the greatest of them. Function IsNumericType 

is called two times to ensure that the actuai parameters in the invocation are of numeric 

types. It is not necessary to check that ">" is defined for the parameters, because this 

operator is vaiid for all numeric types. As the precision of the types of the parameters 

may Vary, Wides t-e is used to detemiine the result type of this function. 

Note that since the evaiuation tirne of max has been specified as king translation- 

time (tran), its function body would actuaiiy be substituted in place of the function 

invocation by the partial evaluator. The rationale for doing so is discussed in section A. 1. 



<<max>> :: tran furrc ( impl 
Tl :: type 
T2 : : type 
W : : type : = Wides tType (TI, T2 ) 

expl 
a :: Tl where -- IsNumericType (TI) 
b : : T2 where -- IsNumericTvpe (T2 ) 

) w 
body 
return (a > b ? a : b) 

end 

The following are valid function invocations: 

max( 11, 99 ) ! ! returns 99, an int 
max( 3.14, 5.0 ) !! returns 5.0, a float 
max( 11, 40000 ) !! returns 40000, a long int 

The following invocation would not be valid: 

max( 11, "abc" ) ! !  "abc" is not numeric 

Example 3 

Function sort wiU perform a Bubble Sort operation on a one-dimensional array of any 

size and base type. This function uses IsArrayType and IsTypeCons istent to 

ensure that da ta is indeed an array, and that the "c" operator has been defined for its 

base type. This function also employs LowBound, HighBound, and IndexType to 

determine the upper and Iower boundaries of its index range. Fioally, B a s  eType is used 

to determine the base type of the array. 

It should be noted that LowBound was used in this example for the sake of 

completeness; the lower bound of aii  arrays in Safer-C (as in C) is O. This may, however, 

change in future versions of the language. 



<<sort>> :: func ( 
impl 

T : : type 
1 : : type . . - - 
10 : : t ran i n t  := 
hi : : t ran i n t  : = 
B : : type _ . - - 

expl 
data :: T where 

IndexType(T) 
LowBound ( 1) 
Higrnound ( 1 ) 
BaseType  (T) 

-- IsArrayType (T) and -- IsTypeConsistent (data [lo] < data [hi] ) 
) void 

block 
i, j :: 1 ! ! loop vars 
temp :: B ! ! used fo r  swapping 
£or (i := 10; i < hi ;  i++) 

f o r  (j := hi; i c j; j--) 
if (data[j] < data[j-11) ! !  swap 

temp := da ta [ j  1 
data[j] := data[j-l] 
data[j-11 := temp 

endif 
end£ or 

endf or 
end 

This function would be used in the foIlowing manner: 

al :: [0..99] double ! ! declare f i r s t  ar ray 
a2 :: [O. .999] ->char ! !  declare second array 
! ! array in i t i a l i za t ions  omitted 
! !  overloading of "<"  for ->char omitted 
s o r t (  a l  ) ! !  s o r t  f i r s t  array 
sort( a 2  ) !! s o r t  second array 

Example 4 

In the example below. the previous function has been overloaded so that the base type of 

the array is a structure, not a simple type. The array must be sorted on a "key" field; the 

field number (described previously) is passed as an explicit translation-the parameter, F. 

BaseType is used to determine the structure type (S), and Field is used to refer to the 

key field in both the function header and body. ï s s  tructwe is used to ensure that 

the base type of the array is a structure; this WU help the compiler to distinguish between 

the two versions of so r t  during the instantiation process. 



<<sort>> :: func ( 
impl 

T : : type 
1 :: type := IndexType(T) 
10 :: tran int := LowBound(1) 
hi :: tran int := HighBound(1) 
S :: type := BaseType(T1 

expl 
data :: T where -- IsArrayType(T) and 

-- IsStructType ( S )  and -- IsTypeConsistent (data [lo] . Field (F) -- < data [hi] .Field(F) ) 
F :: tran int 

) void 
block 

i, j :: 1 ! ! loop vars 
temp :: S ! ! used for swapping 
for (i := 10; i < hi; i++) 
for (j := hi; i < j; j--) 
if (data [ j ] . Field(F) < data [ j -11 . ~ield(F) 
temp := data[j] 
data[j 3 := datarj-l] 
data [ j -11 : = temp 

endif 
end£ or 

endfor 
end 

If both versions of s o r t  were defined in the same program, the following code would be 

! !  structure type SI has four fields 
s1 :: type := struct { key :: int ! ! key is f i e ld  1 

a, b, c : : char ) 
! !  structure type s2 has t w o  fields 
s2 :: type := struct { d : : f loat 

key : : f loat } ! ! key is field 2 
al : : [O.. 991 double ! ! array of double 
a2 :: [0..999] int !! array of int 
a3 : : [O. .5] s1 ! !  array of struct sl 
a4 :: [0..19] s2 !! arsay of struct s2 
! !  array initializations omitted 
sort ( al ) ! !  cal1 first version 
sort( a2 ) ! !  cal1 first version 
sort( a3, 1 ) ! !  cal1 second version 
sort( a4, 2 ) ! !  cal1 second version 

Example 5 

The function in this example wül perform maaix addition on a pair of two-dimensional 

arrays, A and B. Their sum will be stored in another two-dimensional array, C. These 



arrays must be of the same type, Tl. They may have any size and base type; as before, 

IsTypeCons is tent is used to ensure that the "+" operator is defined for the base 

W. 

In Safer-C (as in C), a two-dimensional array is actuaiiy an array of arrays. By 

applying the B a s  eType function to Tl (which is actuaiiy a ow-dimensionai array type), 

the compiler WU obtain another m a y  type, T2. At this point, ~owBound, HighBound, 

and IndexType may be appiied to Tl and T2 to obtain the dimensions of the matrices. 

As before, LowBound is used to obtaîn the low bounds of each "dimension" for the sake 

of completeness. 

type 
tran i n t  : = 
tran int := 
type : = 
tran int := 
tran int : = 

Tl where 

Lowsound ( IndexType ( T l )  ) 
HighBound(IndexType(T1)) 
BaseType (Tl) 
LowBound ( IndexType ( T2 ) ) 
HighBound(IndexType(T2)) 

-- IsArrayType(T1) and -- IsArrayType(T2) and -- IsTypeConsistent (A[lol] [Io21 + B [lol] [Io21 ) 
) void 

block 
x, y :: int 
for (X := 101; x <= hil; x++) 

fo r  (y := 102; y <= hi2; y++) 
c 1x1 [Y] := ACXI [y1 + B [XI [y1 

end£ or 
end£ or 

end 

The foiiowing code wiii declare and then add two different pairs of matrices: 

ml :: type := [0..9][0..12] int 
m2 :: type := [0..5][0..99] float 
a, b, c :: ml 
x, y, z :: m2 
! !  array initializations of a, b, x, y ornitted 
add-matrices ( a, b, c ) 
add-matrices ( x, y, z ) 



Chapter 5 

Implementation 

This chapter describes the implementation of the mechanisms descriid in sections 4.3 to 

4.6. The implementation process was divided into a number of steps; these are described 

here in the order in which they were performed. While the implementation was not trivial, 

it was fairly straighdorward and, for the most part, presented no serious technical 

challenges. 

One of the objectives of this project was to implement the design in such a way that 

separate compilation will be supported Doing so in the context of the Safer-C language 

(and translation process) raised a nurnber of implementation issues. These issues are 

presented separately in section 5.2. 

The implementation steps were: 

1. Modify the scanner and the parser 

A number of changes were required to the scanner and passer to support the syntax 

described in sections 4.4 and 4.6. Three new keywords (impl, exp 1, and where) 

were added to the language. The grammar was modified to aliow partitioned formal 

parameter lists. implicit parameter initialuations, and to accept conditional type 

matching expressions. 

2. Modify partial evaluator 

As stated in section 4.3, function polymorphism was to be implemented as a fonn of 

fbnction speciaiization using translation-time type substitution and manipulation. The 

partial evaluator was modified to permit such speciaüzations. Section 5.1 describes 

how the instantiations are managed. 



As part of this step, a version of the type unifcation algorithm described by Aho. 

Sethi, and UUman [Aho 861 was implemented. This algorithm was adapted to work 

with the type tree structure used by the Safer-C translator, and extended to work with 

values of ordinal types. 

When this step was completed, the Safer-C translator was able to rdably  process 

simple polymorphic hinctions, such as the two versions of swap from sections 4.3 

and 4.4. A s m d  test suite of polymorphic functions (employing both explicit and 

implicit type parameters) were developed to ensure that the specialization process was 

working properly. 

3. Implement a subset of the type manipulation funetions 

Once step 2 was completed. a subset of the type manipulation functions listed in 

section 4.5 was implemented- This subset consisted of IsTypeCons i s t ent, 

WidestType, IsNumer icType ,  IsArrayType, BaseType, IndexType, 

LowBound, and HighBound. 

Another small test suite of functions was written; these were used to further test 

the modifications made in step 2 as well as the functions listed here. At the 

completion of this step, the translator was able to reliably deal with conditional type 

matching as illustrated by examples 1,2,3, and 5 in section 4.6. 

4. Implement the remaining type manipulation Punetions 

The next step was to impiement the remahhg type manipulation functions. At this 

point, a comprehensive test suite was developed which tested ail of the functions and 

ensured that the function specializer is capable of dealing with more advanced 

defuiitions than those examined previously. The test suite included instances of 

overloaded function definitions as weii. 

5. Extend to support separate compilation 

The fmal step in the implementation was to extend the instantiation process so that a 

polymorphic function defined in one source file can be invoked (and possibly 



instantiated) in another. The issues involved in separate compilation are examined in 

section 5.2, 

5.1. Managing instantiations in a single source file 

Safer-C has been implemented as a translator which produces ANSI C code. The 

translator works by reading Safer-C code into a parse tree, performing partial evaluation 

operations on it, and then generaiing ANS1 C code from the modified tree. AU 

polymorphic invocations and instantiations must therefore be resolved before the ANS1 C 

code is generated. 

When the implementation process began, function speciaiization had not been 

"officially" implemented in Safer-C. This author had previously implemented a version 

of it [Bai 961, but this implementation only perfonned specializations for translation-time 

value parameters. in addition, the programmer was required to instantiate the function 

versions manually. 

To validate the ideas expressed in this thesis, an extended version of the "official" 

function specialization method, as described by Salomon [Sal96], has been implemented. 

This description States that a function should be automaticaüy specialized if: 

1. Its evaluation time is declared to be run-time (the defadt), and 

2. One or more of its forma1 parameters are declared to be translation-tirne. 

The extended version of the specializer had to be capable of dealing with both translation- 

time value and type parameters, as weil as irnpiicit parameters and conditional type 

matc hing expressions. 

As the partial evaluator processes the parse tree, a symbol table is built. Each 

identifier (i.e. variable, type, function, or label name) in the program will be entered into 

the table when it is encountered. An entry is removed when the scope in which it is 

defuied ends. The symbol table was extended so that the foliowing information may be 

stored for each function entry: 



A pointer to the root node of the function in the parse iree. if the function is 

polyrnorphic, it is eventually removed from the parse tree and replaced by its 

instantiations. 

The "class" rating of the function. There are three classes of user-defined functions: 

those with no translation-tirne parameters (i.e. monomorphic), those with one or more 

translation-tirne parameters in a standard parameter List, and those with implicit and 

explicit parameters. 

If the function is polyrnorphic, a linked iist of instantiation prototypes. These 

prototypes are used as a basis for creating the monomorphic instantiations of the 

function. 

If the function name has been overloaded, a pointer to the next symbol table entry of a 

function with the same name. Fuoction overloading has not been "oficially" 

implemented in Safefl; this is merely an ad-hoc implementation. 

The specialization process works as foiiows: 

When a function definition is encountered in the parse tree, it is entered into the 

syrnbol table. The class of the function is determined and stored in the table entry, 

dong with a pointer to the root node and (if the function name has been overloaded) a 

pointer to the previous function enhy with the same name. 

When a function invocation is encountered, the partial evaluator wiil check the 

symbol table entry of the function to determine if it is polyrnorphic. If so, a type 

unification algorithm will detemine the values of the translation-tirne parameters and 

ensure that the invocation is valid. If it is valid: 

A "name mangling" mecbanisrn is used to obtain the distinct name of an 

instantiation. This name is created by combining the original name with encoded 

type signatures of the parameters (both explicit and implicit). 

The translater will search for an instantiation prototype with this name in the 

Linked List attached to the table entry. If such a prototype is not found. it wiii be 



created and added to the Linked List This prototype wüi contain the values of the 

translation-the parameters, as determined by the type unification mechanism. 

The function invocation wili be replaced by a call to a hinction with that narne. 

AU explicit translation-thne parameten will be removed from the actual parameter 

List* 

If the invocation is not valid but the hrnction name has been overloaded, this step wiil 

be repeated for the next function with the same narne. 

3. Every identifier in a program is only valid in a certain scope. When a scope ends, al1 

of the identifien that were declared in that scope are removed fiom the syrnbol table. 

The translater will examine each syrnbol table entry before it is removed to determine 

if it refers to a poiymorphic function. If so: 

A function specializer is caiied for each of the instantiation prototypes of the 

knction. The speciaiizer wiU substiiute values and types for the translation-time 

parameters in the function, thereby creating a monomorphic version. At this point. 

standard partial evaluation techniques (such as constant folding) WU be applied to 

the newly-created function body. 

The polymorphic function definition will be removed from the parse tree and 

replaced by the instantiations. 

To iiiustrate how this would work, consider the swap function (and its invocations) from 

section 4.4: 

<<swap>> :: func ( impl T :: type 
expl x : : ->T 

y : : ->T 
) void 

block 
temp :: T !! used f o r  swapping 
temp := x@ 
x@ : = y@ 
y@ := temp 

end 



<<main>> :: func ) i n t  
block 
a, b :: int 
c, d : : f l o a t  
! ! variable initializations ornitted 
swap( &a, &b ) 
swap ( &c, &d ) 

end 

The specialUer wiU create two instantiations of swap; one for type i n t  and one for type 

f loat .  M e n  the partial evaluation process finishes. the parse tree will contain a 

representation of the foilowing program: 

<<swap i n t > >  :: func ( x :: ->int  
y : : ->int 

) void 
block 
temp :: i n t  
temp := x@ 
x@ : = y@ 
y@ := temp 

end 

<<swap f l o a t > >  :: func ( x :: ->f loa t  
y : : ->f l o a t  

) void 
block 
temp : : f l o a t  
temp := x@ 
x@ : = y@ 
y@ := temp 

end 

<<main>> : : func ( ) int 
block 
a, b :: i n t  
c, d :: float 
s w a p  i n t (  &a, &b ) 
swap float ( &c, &d ) 

end 

The translater WU then generate an equivalent program in ANS1 C. It should be noted 

that the function names swap int and swap f l o a t  differ from those created by 

the name mangling mechanism. The names were changed in this exarnple for the sake of 



5.2. Managing instantiations in multiple source files 

When an entire program is contained in a single source füe, managing the instantiations 

of polymorphic functions is a straightfoward task. AU of the invocation statements in the 

program wiil be in memory at the same the, dong with the function body. The 

specializer will have access to both, and will be able to ensure that there are no missing or 

duplicate instantiations. 

This task becomes much more complex when separate compilation is used. Ideaily, it 

should be possible to declare a polymorphic hioction in one source file and cal1 it from 

others, as can be done with monomorphic functions. Doing so in the context of the 

Safer-C language (and translation process) raises three major irnplementation issues: 
- 

1. In order to iastantiate a version of the function, the translator WU need its parse tree 

representation. How should the translator gain access to it? 

2. Two or more source files may contain invocations that have the same translation-time 

parameters. This could cause the translator to repeatedly create the same instantiation 

of the function. How wül the translator manage the "duplicate instantiation" problern? 

3. If the source code of the function is modified, instantiations based on the old version 

wiii stiU exist in other nles. How wiU the translator ensure that the final program does 

not contain "mùred" instantiations? 

These issues are very similar to the template instantiation problems faced by C++ 

compiler designers. There are two basic approaches to these problem FSF 951: 

1. In Borland C++, the programmer wili place the entire template definition in a header 

fde, which is loaded and parsed when a source fde is compiled. The compiler will 

create aii of the instantiations needed by that source fie and place them in the object 

file. When aU of the object mes are Linked together, the Linkage editor WU discover 

and remove any duplicate instantiations. This method has the foilowing advantages: 

It requires no modifications to the compiler, as al1 of the extra management work 

is done by the M a g e  editor. 



If a template definition is updated, the header file containing it wiil be modified as 

weii. The project manager should be able to detect this and recompile all of the 

source mes which include this header We. 

Duplicate instantiations WU not appear in the b a l  object füe. 

This method has two disadvantages: 

It is inefficient in terms of time. Many (duplicate) instantiations may be 

geaerated, and aii but one WU be discarded. 

[t requires a speciai iinkage editor which is capable of detecting and discarding 

dupiicate instantiations. 

2. The AT&T C++ translater uses a special "template repository" to store the locations 

of template definitions and their invocations. The information in the repository is 

updated whenever a source ffle is compiled. A separate instantiation step is performed 

just before the object files are linked; this step will instantiate ali of the venions 

required in the program. This method has a number of advantages: 

It is efficient in terms of time, as each instance of a template is oniy generated 

once. 

It ensures that the current versions of the templates wiii be used for al1 

instantiations. 

It does wt require a special M a g e  editor. 

Duplicate instantiations will not appear in the fmal object file. 

This method has two main disadvantages: 

* The implementation is extremely cornplex. 

The compiler wiii create one repository in each directory containing source fües. 

For this reason, it is difficult to build multiple prograrns in one directory or one 

program over multiple directories. 

The Safer-C designers have spent a good deal of time considenng these issues. The 

following ideas were proposed for dealing with each one: 



Issue 1: Accessing the prse tree representation of the huiction dennition 

A new statement could be added to the language, which would aUow the programmer 

to specify the name of the füe that a function definition is located in. This statement 

would take a form similar to the foilowing: 

function-name in "file-name" 

For example: 

<<swap>> in "a-file.slm 

When the translater wouid encounter such a statement, it would load and parse the 

Fie indicated to obtain the function definition. This idea was deemed to be too 

inefficient and problematic (especidy when cornbined with Issue 3) and was not 

considered further- 

The programmer could place the function definition inside a translation-time function, 

and then load the îunction into memory before the source file is parsed. By invoking 

the translation-time function at the start of the source file, the function definition 

would be "imported" into the program. This is the Safer-C equivalent to 

# I N C L U D E ~ ~  a header file in C and C++. This is essentiaily the sarne solution used 

in the Borland C t t  cornpifer. 

This issue could be avoided entirely by using a template repository, as was done by 

the AT&T designers. See the fust idea for Issue 2. 

Issue 2: Managing the "dupiicate instantiation" problem 

Use a variation of the l1 template repository " idea. In the Safer-C version, the 

programmer would explicitiy create and name the repository to be used for a specifc 

project. The name and path of the repository would be provided to the compiler as a 

command-iine option when it is run. Doing so would avoid the "one template per 

directory" problem of the AT&T implementation. For example: 

scl  -REP="-/stuff/repository.repl' filename-sl 



As with the AT&T version, ali of the instantiations would be performed in a single 

step, after all of the source fdes have been mslated to ANSI C.  These instantiations 

couid be performed by a program other than the main Safer-C translator. For 

example: 

instantiate -/stuff/repository.rep 

The Safer-C designers have also considered storing the parse tree representation of 

each function in the repository, instead of just its location. W e  this would increase 

the complexity and size of the repository, it may also improve the eficiency of the 

instantiation step as it would eliminate the need to load and pane multiple source fdes 

to obtain these parse trees. 

Expand the "name mangling" mechanism so that the name of the source fie is 

included as part of the instantiation name. For example: 

swap filename-int( a, b ) 
swap f ilename-f l o a t  ( c, d ) 

This would not avoid the duplicate instantiation problem, but it would ensure that no 

two duplicates have the same name. As such, object files containing these 

instantiations could be iinked without enon using a standard M a g e  editor. 

AUow the translator to create duplicate versions with the same names. When ai i  of the 

source fdes have been translated to ANSI C, c d  a separate program to examine the 

resdting fdes and remove the bodies of any duplicated functions. The headen would 

remain, as C cornpiiers generally use them to perforrn error checking during the 

compilation process. 

Issue 3: Ensuring tbat dl instantiations are based on the same Function version 

+ If the function definition was contained in a translation-time function (stored in a 

separate fde) and then imported, this issue would indeed be valid. Fortunately, most 

project managers (such as make in UNIX) are capable of determïning if a source fie 

has been modified. If so, they automatically recompile al l  other source files which 



depend upon i t  This would ensure that every instantiation of a function is built from 

its most current version, 

Again, this issue would be avoided if a template repository were used. 

Conclusion 

Whde the Safer-C designers favor the tempiate repository idea, it is far too complex io 

impiement in the context of this thesis. As such, it has been decided that the foilowing 

combination of ideas wiU be implemented: 

Polymorphic functioa definitions should be placed inside transiation-thne functions. 

The definitions wili be imported into source nles by invokuig these functions. 

It will be up to the UNIX make utility to easure that every source fde that calls these 

translation-the fuoctions WU be retransiated if the fde containing them is rnodifZed. 

The name mangling mechanism wiii be extended so that source file names will be 

included in the instantiation names. 

Whiie this combination of ideas is the most inefficient in tenns of both tune and program 

size, its implementation is trivial and would aüow for separate compilation. 



Chapter 6 

Summary 

in many irnperative propamming languages, the types of variables, parameters, 

constants, and functions must be specified expiicitiy by the programmer. This provides a 

means for typechecking code at compile-the, but can be quite restrictive. in the worst 

case, the programmer may be forced to implement different versions of a program 

consuuct for each type of argument to which it will be applied. A number of languages, 

such as Ada, C+c, and ML, d o w  the defuuton of functions which can be applied to 

more than one type or to a set of types. These are known as polyrnorphic functions. 

Polymorphism is a central feature of object-oriented Ianguages iike Eiffel. 

Partial evaluation is a program optimization process which occurs at compile-the. in 

general, partial evaluation techniques (such as constant folding, loop unroliing, and 

function speciaiization) exploit values known at compile-tirne with the goal of producing 

a faster and sometimes smaiier program. These techniques are used extensively in the 

Safer-C programming language, developed at the University of Manitoba. In this 

language, variables, parameters, and functioas can be assigned an evaluation tirne by the 

programmer. When one or more parameters of a hinction have an evaluation time of 

compile-time (also known as translation-tirne), the func tion may be specialized for their 

values. 

Function specialization is one of the means through which Safer-C wiM support 

function polymorphism. This thesis described three new developments in this area: 1) 

Syntax for declaring irnplicit formal parameters, 2) Boolean conditions for type inference. 

and 3) Translation-time type manipulation functions. 



An extension of function specialization has been developed which dows  functions to 

be specialized for types, as well as for values. Translation-tirne type and value 

information may be provided explicitly by the programmer, or it may be described 

abstractly in an implicit formal parameter List. An implicit parameter passing mechanism 

wiU obtain the types and values descnid in such lists fiom the site of each function 

invocation. 

Implicit parameters can lead to a greater degree of abstraction in programs. For 

example, generic soriing functions generally require three parameters: an array, the 

number of elements in the array, and the base type of the array. As the compiler can 

easily determine the latter two parameters at translation-tirne, they are in fact redundant. 

If the range and base type were declared to be implicit parameters, function invocations 

would only require one explicit parameter: the may itseif. 

The p rog rmer  may place constraints on the specialization process by defining a 

conditional type matching expression for any explicit parameter. Such constraints provide 

a means of validating type-specific aspects of each function invocation. For example, it is 

possible to speciQ that a parameter must be an array or a numecic type. Conditional type 

matching expressions aiso give the compiler a means to choose between different 

versions of overloaded functions. 

Conditionai type matching expressions and the implicit parameter passing mechanism 

were made possible through the creation of a set of translation-time type manipulation 

functions. These functions accept types as parameters and retum a type or value as their 

result. Some of these functions (e.g. Wides tType) were based upon interna1 functions 

used by compilers, while others (e.g. 1s~ypeCons is tent) were invented especially 

for conditional type matching expressions. These hinctions may be used in a number of 

ways: 

Functions retuniing a type may be used to initialize an implicit type parameter or a 

type variable. Two such functions are Wides twe and Baseme. 



Functions retuniing a boolean may be used as conditions in type matching 

expressions. Two sucb functions are 1 sArrayType and IsTypeCons i s tent. 

Functions reninung values may be used to initialize an implicit value parameter or 

translation-time variable. Two such functions are SizeOf and HighBound. 

Future directions 

Safer-Cl2 is intended to be a "state of the art" programming language that is at least as 

powemil as CU. When completed, it wiii contain a number of modem language features, 

suc h as operator overloading, parameterized types, and objec t-onented support (ailowing 

inclusion polymorphisrn through dynamic binding). The function specialization method 

(and reIated mechanisrns) described in this thesis wili influence and be influenced by the 

other language features. At this tirne, it is envisioned that the work described here will be 

extended in a number of directions: 

In the current design, implicit parameters are limited only to translation-tirne types 

and values. There are some situations in which it may be more appropriate to pass an 

implicit value parameter (such as the size of an array) at an-tirne, instead of at 

translation-tirne. Consider the following code, based on Example 3 in section 4.6: 

A :: [0. .5]  i n t  
B : : [O, - 6 1  i n t  
! !  array initializations omitted 
s o r t  (A) 
sor t  (B) 

At present, the translater wiü create two instantiations for sort ; one each for range 

O . .5 and O . .6. If the upper bound were passed as a run-the parameter, only one 

instantiation would be required. 

While implernenting and testing this function specialization method, it became 

evident that more type manipulation functions would be useful. For example, simple 

types (such as int, f loat, and char) must be treated differently when king 

printed. For this reason, it is not currently possible to construct "piirely" polymorphic 



output functions. Additional type manipulation functions, such as 1s In t ,  1 sF l o a t ,  

and IsChar wouid make it possible to define such output fuactions. 

At this time, a simple function overloading mechanism bas been implemented. This 

mechanism will attempt to validate one version of an overloaded hnctioa at a the,  

until a perfect match is made. A better mechanism should be developed which wïU 

examine aii fiinction versions and decide between them on the basis of how "close" 

their type match is. 

At this tirne, work is underway on a new "universal" mechanism for expressing and 

manipulating arrays and structures. Should this type mechanism be included in 

Safer-U2. ne%- t)p smipulation fuoctions shouid be developed to obtain 

information about it. Such functions would be sirnilar to (and possibly replace) 

IsArrayType, IsS truc tType, FieldType, and Field. 



Appendix A 

Evolution of this work 

The function speciaiization method presented in this paper has evolved a great deal since 

this research was iaitiated. This section of the thesis describes the two earlier versions of 

the design, and explains why they were discarded. For the sake of clarity, some 

background information fiom Chapter 4 has k e n  repeated here. 

Both of the previous versions have a number of thùigs in common. In all cases. a 

polymorphic function may be defuied by using type parameters in place of type names in 

the function header. A type parameter differs from a normal parameter in that it will be 

passed a type at compile-the, instead of a value at run-tirne. 

Type parameters may be passed to a hinction explicitiy or implicitly. In both cases, 

the compiler wili use this type information to create a specialized (monomorphic) version 

of the polymorphic function. It is these specialized versions which will actudy be cailed 

in the resulting program. 

To indicate that a parameter should be passed at translation-the, the keyword tran 

is placed before its type specification in the formal parameter List. M e n  an explicit type 

parameter is defined, the keyword type is used in place of the type spcification; for 

such parameters, the keyword tran is optional.. The foiiowing function, therefore, 

should explicitly be passed a type parameter at translation-the: 

<<square>> :: func ( T :: tran type; x :: T ) T 
block 

r e tum (x * x) 
end 

This function will calculate and return the square of a number of the type represented by 

T, a type parameter. Some calis to this function could be: 



square ( int, 2 ) ! ! returns 4 
square ( Eloat, 1.5 ) ! ! returris 2 - 2 5  

The syntax used to denote explicit type parameters did not change throughout the 

evolution of the functioa specialization method. What did change, though, were the 

methods used to declare and use implicit type parameters. 

A.1. Version 1 

It was initiaily proposed that implicit type parameters should be declared by prefacing 

them with the "1" operator at their first occurrence. This was essentially the method used 

for declaring query parameters in ForceTwo (Cor 881. This method, by iwlf. seems 

adequate for declaring simple polymorphic functions Like the following: 

<<square>> :: func ( x :: ? T ) T 
block 

return (x * x) 
end 

This version of square is much iike the 1s t  one. except that the type parameter T is 

passed impiicitly. At translation-tirne, the compiler would determine what T is from the 

actual parameter used and instantiate an appropriate version of this function. When doing 

so, it would have to perform type-checking to validate aii of the overloaded operator and 

function calls (such as " * ") which involve parameters of type T. The func tion invocations 

would take the foliowing form: 

square( 2 ) ! ! returns 4 
square( 1.5 ) ! !  returns 2.25 

if the " *" operator were user-overloaded to perfonn string concatenation, the following 

function c d  would also be valid: 

square ( "ab" ) ! ! returns "abab" 

The following function, max3, is somewhat more complex: 

-=max3>> :: fwic ( a, b, c :: ? T ) T 
body 

return ( a >  b ?  (a > c ?  a : c) : (b > c ?  b : c)) 
end 



This function would accept three parameten of the type represented by T, a type 

parameter. This function would return the largest of these three parameters, a value which 

is also of type T. The conditional operator "? : " is used to determuie this value, as 

opposed to using nested i f  . . . els e statements. For example: 

ma-( 11, 99, 88 ) ! !  retums 99  
m a x 3 (  3-14, 1.5, 5.0 ) ! !  retums 5.0 

WhiIe this appears to work well, it could be improved. To see how, one must understand 

some of the background and objectives of the Safer-C project. 

One of the goals of the Safer-C designers is to elhinate the need for a separate 

preprocessor meta-language. It has been shown that this can be accomplished by aiiowing 

statements and functions to be evaluated at transIation-time instead of at nin-time [Sal 

9311. The functionality of the preprocessor macro statement can also be duplicated by 

substituting the body of a function in-ihe wherever it is invoked p a l  961. To do so, the 

programmer must change the evaiuation time of a function to translation-time. This is 

done by including the keyword tran in the function header. For example: 

<<max3>> :: tran func ( a ,  b, c :: ? T )  T 
body 

return ( a > b ?  ( a > c ?  a : c) : (b > c ?  b :  c)) 
end 

The body of this fünction wiii be expanded in-üne wherever it is invoked. The same 

result may be obtained by using the foiiowing preprocessor macro in C: 

Unfortunately, this version of the design (as currently described) was sornewhat Iess 

flexible than the "macro expansion" method. The macro method would permit the 

programmer to mix the types of the parameters, while the above Safer-C design would 

not. This flexibility was restored by d e f h g  a number of translation-time type 

manipulation functions. The fmt function defined was wides t, which would accept a 

number of types as parameters and retum the type with the most numerical precision. For 



example, if passed the types i n t  and long in t ,  wides t would retum long int. 

Consider the foiiowing version of max3 : 

<<max3>> :: tran func (a::?T;b::?~;c::?V) w i d e s t ( ~ , ~ , ~ )  
body 

returri ( a > b ?  ( a > c ? a :  c) : ( b > c ? b :  c ) )  
end 

In this version, each parameter may have a different type. The type of the function itself 

would be the widest of types T, U, and V. 

This method was also extended to ailow for the implicit or explicit passing of the size 

and base type of array parameters. For explicit passing, the size and base type would have 

been defmed as king translation-time parameten in the formal parameter List. It was 

proposed that the foliowing syntactic expression be used to describe the structure of the 

array parameter king passed: 

array : : [O - . size-l ] base-type 

This is a minor extension of the type expression used in Safer-C for array declarations. 

The following program, based upon the Bubble Sort example of section 2.2., illustrates 

how this method would have worked, and how bctions using it would have been 

invoked: 

<<sor t>> :: fmc ( base :: tran type 
s i z e  :: tran int 
data :: [O. s i z e - 1 ]  base ) void 

block 
i, j :: int ! ! loop vars 
temp :: base ! !  used f o r  swapping 
f o r  (i := O ;  i < s ize-1;  i++) 

f o r  (j := s i z e - 1 ;  i < j; j - - 1  
i f  (data[ j ] < data [ j -11 ) ! ! swap 
temp := data[j] 
datarj] := data[j-11 
data[ j-l] := temp 

endi f 
endfor 

endf or 
end 



<<main>> : : func ( )  i n t  
block 
al :: [0..99] double !! declare first array 
a2 :: [O. .999] ->char !! declare second array 
! ! array initializations omitted 
! ! overloading of f o r  ->char omitted 
sort( double, 100, al ) !! sort first array 
sort( ->char, 1000, a2 ) ! !  sort second array 

end 

In this example, sort is a polymorphic function to which the size and base type of 

data are passed explicitly at translation-tirne. Both translation-tirne parameters are used 

in the fùnction body; size as an integer constant, and base as the type of temp. The 

main function of this program contains IWO array declarations, al and a2. These arrays 

have different sizes and base types. The compiler would instantiate two different venions 

of sort which conform to the typdsize combinations shown in the actual parameter 

Iists. 

Passing the size and type implicitly is a somewhat more complex matter. Four 

different syntactic expressions were considered that built upon features examùied 

previously. In the order that they were developed, they were: 

a r r a y  :: [ O .  .?size-11 ?base-type 

array :: [O..?(size::type-expr)-11 ?base-type::type-expr 

a r r a y  : : [ ?size : : type-expr] ?base-type : : type-expr 

a r r a y  : : [?size: : type--r] ?base-tme 

The f ~ s t  expression was an extension of the one presented for use with explicit 

parametea. In this expression, the "7" operator was used to indicate the presence of both 

implicit size and type parameters. This expression could have been problematic, as it 

would not have ailowed the programmer to specify constraints for these parameters (as is 

done for explicit parameten). 

To eliminate this problem, the second expression was devised. This expression 

contained subexpressions which would describe the type and evaluation time of the two 

implicit parametea. Unfortunately, this expression was rather convoluted. To reduce its 



complexity , the designers considered replacing the "index range" section with an " array 

size" section, as shown in the third expression. This would have created no immediate 

programming problems, as arrays (as in C) always have an index range of type i n t ,  

starting at O. However, the designers of Safer-C have discussed the possibüity of 

elirninating these Limitations at some future date. If this were done, this expression may 

have had to be m&ed so that other index types and ranges could be passed implicitiy. 

The founh expression was created by elirniaatiog the type expression used to describe 

the base type. This was done to further reduce the complexity of the expression and to 

make it more compatible with the standard implicit parameter d e f ~ t i o n  method (where 

such type expressions are not needed). In reality, the type expression would always have 

been "tran type" anyway. The foliowing version of the sort function uses the fourth 

expression in its formal parameter List: 

<<sort>> : : func (data : : [?size: : tran i n t ]  ?base) void 
block 

! !  function body orn i t t ed  
end 

< < m a i n > >  : : f unc ( ) i n t  
block 
al :: [0 . .99]  d o u b l e  ! ! declare first ar ray  
a2 : : [ O .  ,9991 ->char ! ! declare second array 
! ! array i n i t i a l i z a t i o n s  o m i t t e d  
! ! o v e r l o a d i n g  of f o r  ->char o m i t t e d  
s o r t (  al ) !! s o r t  f irst  array 
s o r t (  a2 ) ! ! s o r t  second array 

end 

The compiler would detemine what the base and s i z e  parameters are for each 

instantiation by exarnining the type structure of the actual parameters used in each 

function caii. From the formai parameter List, the compiler would know that size is a 

translation-time int parameter. Given its placement in the expression, the compiler 

would consider base to be a translation-the t y p e  parameter. 



Discussion 

It was eventuaily decided that this version of the design should be discarded and another 

deveioped. This decision was reached for the folIowing reasons: 

This version used the "?" operator to indicate the start of an implicit parameter 

declaration. This character is already used in Safer-C as a part of the conditional 

operator "? : ". It cm be argued that overloading an operator with two completely 

unrelated meanings (as was done with " *" and "&" in C) would have been a very poor 

design decision [Sd 95a]. As the "?" character was considered to be the most 

intuitive and obvious choice for this purpose, simply changing it did not appear to be 

a good solution. 

The Safer-C designers were not M y  satisfied with any of the expressions that were 

devised to support implicit array size and type! passing. The fourth expression that 

was descrïbed seemed adequate, but had two flaws: 

1. The h t  in this senes of expressions was just a minor extension to the type 

expression used to declare arrays. In the third expression, the "index range" 

section was replaced with an "array size" section in order to reduce its complexity. 

Unfortunately. the similarity of the resulting expression to the array declaration 

expression could have actuaiiy caused problems, as  it is possible that a 

programmer could confuse the famats of these two expressions. Simply restoring 

the "index range" section to avoid this problem would have resulted in cryptic 

formal parameter Lists such as the foilowing one: 

(data : : [O. . ? ( s i z e :  : tran i n t )  -11 ?base) 

2. The complexity and length of such expressions would continue to increase if 

multi-dimensionai arrays were involved. The foiiowing formai parameter list 

would have been required if a three-dimensionai array were to be passed: 

(cube: : [ ? x :  :tran int] [?y: :tran int] [ ? z :  :tran int]?base) 



It was decided that another mechanism should be developed which woufd ailow 

the range or size of each dimension to be specified in an independent expression. 

The kssons learned during the development of this design have proven to be quite 

valuable. As ir tums out, the single most hportant development was the idea for 

translation-the type manipulation hinctions. In the final design (descnid in Chapter 4), 

such functions play a critical role in the declaration and instantiation of polymorphic 

functions, 

A.2. Version 2 

m e r  discarding the original design, it was decided that one should be produced which 

would not require special operators and compound expressions. In this version, every 

irnplicit parameter would appear as an independent expression in the formal parameter 

list. Such parameters would be listed dongside the explicit parameters in the List, as is 

done when using expficit translation-time parameters. 

While compound expressions would not be required per-say, some expressions would 

cenainly refer to other (implicit) parameters by name. For example, the type of an explicit 

panmeter could be one of the implicit parameters. Io the case of arrays, the upper bound 

could be an implicit parameter as well. 

Generally, implicit parameters should be declared before they are actuaiiy referred to, 

in order to increase the readability of parameter Lists. For a tirne, the Safe- designers 

considered making this a legal requirement of such parameter Lists. Afier some 

consideration, it was decided that doing so ran contrary to the Safer-C design philosophy. 

This version of the design initiaiiy allowed for four different kinds of implicit 

parameters. M e r  some consideration, it was decided that only three of them should be 

supported. The fourth is included here anyway, for the sake of completeness. 



Impikit translation-the type or value parameters 

These implicit parameters would bave been used as "building blocks" in other 

expressions in the f o d  parameter List. The foiiowing syntax was proposed for both 

types and values: 

identifier : : imp tran type 

This was actuaüy an extension of the syntax used to declare explicit translation-time 

parameters, as described previously. If the parameter is a type, then its tme wodd 

simply be type. If it is a value, then its type could be a built-in type, a user-defined 

type, or even the name of a translation-the type parameter. For example: 

A :: imp tran type ! !  A is a type 
B : : imp tran i n t  ! ! B is a value of type i n t  
C :: i m p  tran A ! !  C is a value of type A 

As in Version 1, an expression was defmed to describe the structure of array 

parameters. ui this version, the sarne expression would have been used for both expiicit 

and implicit type and range parameters. This expression is nearly identical to the one used 

b y Safer-C for array declarations : 

array :: [low. .high] base type  

Instead of passing the size of the array, the programmer would pass the index range. At 

this time, Safer-C only supports index ranges of type int and a low bound of O. For this 

reason, the programmer wiIi only have to defme one translation-time int parameter, the 

high bound. If these range limitations were removed in some future version of Safer-C, 

the expression described here would not have had to be modified. The following formal 

parameter List illustrates how such expressions would have k e n  used: 

( T :: imp tran type  ! ! base type 
R :: imp tran i n t  ! ! high bound of range 
A :: [O..H] T ) ! ! array 

In this example, T and H are the type and high index of the array, A. While T and H are 

implicit parameters in this example, they could be passed as explicit parameters as well. 

To do so, one would omit the keyword irnp fiom the h t  two parameter descriptions. 



One of the advantages of this approach was that muiti-dimensionai array expressions 

would have been easy to write and understand. Consider the foiIowing example: 

( base :: imp tran type ! ! base type 
x , y , z  :: imp tran i n t  !! high bounds 
cube :: [O.,x][O.,y][O.,z] base ) ! !  3D array 

This formai parameter list is quite intuitive and readable, especiaiiy when compared to its 

counterpart in section A. 1. 

Operator and function parameters 

In Version 1 of the design. it was to have been the compiler's responsibility to validate 

every operator and fûnction c d  made inside a polymorphic hnction. This wouid have 

become complicated if the parameters of such a c d  were values of some implicit type 

parameter. If so. for each instantiation (and actual type parameter). the compiler would 

have had to ensure that the operator or hnction is defmed for that type in the surrounding 

scope. 

In this version, the capabilities of Safer-C were extended to allow for the dedaration 

of implicit and explicit operator and function parameters. Such declarations would have 

simplified typec hecking and increased the flexibility of poly morphic func tion calls. 

Operators and functions were. respectively, the second and third kinds of implicit 

parameters supported by this design. 

When developing the syntax for such declarations, the designers attempted to keep 

the overali style similar to that of translation-time type/value parameters. The syntax 

described here requires no special operaton. The imp keyword is used to distinguish 

between an implicit and an expiicit parameter. 

The Safer-C designers had given sorne thought to the possibility of eventudy 

extending this mechanism to aiiow for mn-the operator and function parameter passing. 

The syntax described here was designed so that the programmer would be able to speciQ 

whether an operator or function is a translation-the (tran) or a run-time parameter. 



This was done so that such an extension could be accomplished without changing the 

syntax of this mechanism (and thereby requiring that existing Safer-C code be updated). 

Impiïcit and explicit operator/fmction parameters would have been used and verified 

in very different ways. For impiicit parameters, the compiler would have searched (in the 

scope surroundiag each invocation of the function) for an operator/function matching the 

pattem and name in the expression. If one were found, it would have been used in an 

instantiation of the hinction. For expiicit parameters, the compiler would type-check the 

operator/function named in the actual parameter List against the pattern in the expression. 

If the operator/function named matched the pattern, it would have been substituted for the 

formal parameter in the function instantiation. 

The syntactic expressions are listed below, dong with some simple examples to 

illustrate their use. In ail cases, [ imp] was used to show that the keyword i m p  was 

optional. If it was present, the expression described an implicit parameter; if it was 

absent. an expücit parameter. The expression for a unary operator was as follows: 

"operator' :: [imp] tran (type) result-type 

For example: 

II++ : : imp t ran (Tl) Tl ! ! implicit 
I I  - - II :: tran (T2) T2 !! explicit 

The expression for a binary operator was as foiiows: 

" operator" : : [imp] tran ( typel, typel) resul t-type 

For example: 

Il * II :: imp tran (Tl, Tl) Tl !! impl ic i t  
"<" :: tran (T2, T2) int ! ! explicit 

The expression for a function was as foilows: 

function : : [imp] tran ( t m e l ,  t ~ p e 2 ,  . ) result-type 

For example: 

m a x  : : imp tran (Tl, Tl) Tl ! ! implicit 
work : : tran (int, char, real) void ! ! explicit 



To iiiustrate how implicit type, value, operator, and function parameters would have been 

used together, some of the examples fiom section A.1. have be re-wntten to conform to 

the design presented here. It shouid be noted that translation-tirne type manipulation 

functions were carried over fiom the initial design, and may still be used in the same 

manner. Comments are provided to clarify the Iess obvious points about these hinction 

definitions and caiis. 

! ! " square" returns the square of x 
! ! - operator " * "  must be defined for type T 
<<square>> : : func ( T : : imp tran type 

x :: T 
"* ln :: imp tran (TI T) T 
T 

block 
return (x * x) 

end 

! ! "max3" returns the largest of three parameters 
! ! - the parameters may be of dif f erent types 
! !  - the type of the function will be the widest of 
! !  types Tt U, and V 
! ! - operator ">" must be defined for the widest of 
! !  &es TI Ut a n d V  
! ! - in Safer-Cl "--" is a statement continuation mark 
=rnax3>> : : tran func ( T : : imp tran type 

U : : imp tran type 
V : : imp tran type 
a :: T 
b :: U 
C :: v 
II > II . . . . imp tran ( widest(T,U,V) -- widest (TrUI V) -- ) int 

) widest (TI U,V) 
body 

return (a > b ?  (a > c ?  a : cc) : (b > c ?  b : c)) 
end 



! !  "sort" will perform a Bubble Sort on an array 
! !  - the array may be of any size and base type 
! !  - the high bound and base tme are implicit parameters 
! ! - operator "cw must be def ined for the base type 
<<sort>> : : func ( base : : imp tran type 

high : : imp tran int 
data : : [O ,high] base 
Il < il :: imp tran (base, base) int 

) void 
block 

i, j :: int ! ! loop vars 
temp :: base ! ! used for swapping 
for (i : = O; i < high; i++) 
for (j := high; i == j; j - -1  
if (data[j] <data[j-11) !! swap 
temp := data[jl 
data[j] := d a t a [ j - l ]  
data [ j -11 : = temp 

endi f 
endfor 

endfor 
end 

! !  main program 
<<main>> :: func ( )  in t  
block 

! ! overloading of " * "  as string concat omitted 
square( 2 ) ! ! retums 4 
square( 1.5 ) !! returris 2.25 
square( "ab" ) ! ! returns "abab" 

max3( 11, 99, 88 ) ! ! returns 99 
max3( 3.14, 1.5, 5.0 ) ! ! returns 5.0 

al :: [0..99] double ! ! declare f irs t array 
a2 :: [0..999] ->char !! declare second array 
! !  array initializations omitted 
! !  overloading of "c" for ->char omitted 
sort( al ) !! sort first array 
sort( a2 ) !! sort second array 

end 

Implicit variable parameters 

In many programs, global variables are accessed directly by subprograns. While this is 

generdy considered to be poor programming practice, it can be extremely convenient 

when used judiciously. Implicit variable parameters were designed as an attempt to 

regulate the access to such data items. 



hplicit  variable parameters wodd have been passed automaticaily to functions when 

they were invoked. The parameter name would be the same as the actual name of the 

variable. as declared in the scope surroundhg the function CU. Such parameters would 

be declared using the following syntax: 

name : : imp tme 

For example: 

l i r n i t  :: imp i n t  
highest : : imp Tl 

In short. an implicit variable parameter would have appeared in the formal parameter iist 

but not in the actual function invocations. At translation-the, the compiler wodd have 

examined the scope of each function invocation to ensure that the parameten listed were 

indeed defined there. It was envisioned that such parameters would have two advantages: 

1. They would provide a means to regulate global references. If a global variable not 

listed as an implicit variable parameter were to be accessed. the compiler would have 

generated a warning message. 

2 B y examining the beader of an existing function, a programmer would have been able 

to determine the narnes and types of ail of the global data items accessed by the 

func tion. 

It was eventuaily decided that implicit variable parameters should be excluded from 

this version of the design. The main reason was that these parameters could have altered 

the style of what is supposed to be an unrestrictive language. The secondary reason is that 

both advantages Listed above could have been reaüzed by employing good programming 

style (for example, by placing a list of "global variables required" in the comments at the 

function declaration). 

Discussion 

Version 2 of the design was not discarded because there was something wrong with it, 

per-say. Generally speaking, the parameter expressions described here were reasonably 



expressive and concise. Forma1 parameter iists using such expressions would have k e n  

more readable and intuitive (though somewhat longer) than equivalent Lis& created using 

Version 1 of the design. 

This design was discarded because the developea of Safer-C realized that there were 

other, more natural ways to deal with the issues discussed hem. The final design differs 

from this one in two major ways: 

ui Version 2, impiïcit and explicit parameters were defined side by side in the 

parameter iist, with the keyword imp used to distinguish between them. When 

declaring polymorphic functions, di irnplicit and aU explicit typefvalue parameters 

tended to be grouped together aaturaliy. To simpm matters in the final design, it was 

decided that parameter Lists should be partitioned into two sections: implicit and 

explicit. This is done through the use of the imp l and expl keywords. 

The final design makes extensive use of translation-time type manipulation functions, 

while this version did not In the fmal design, such functions are used to enable 

conditionai type matching during the hstantiation process. Conditional type matching 

expressions both simpliQ type-checking and ailow the programmer to overload 

polymorphic function names. Type manipulation functions are used to determine the 

structure of array parameters; they also eliminate the need for operatodhnction 

parameters. For this reason, the fmai design does not need the speciai parameter 

expressions found in versions 1 and 2. 



Sample programs 

This appertdix contains a number of programs fiom the test suites. Each program is 

accompanied by the ANS1 C code pmduced by the translater, as well as the output 

generated by compiling and executing it. AU of the C programs were compiled by acc 

running under SunOS Release 4.1.3. 

312 - Safer-C code: 

Safer-C version 1.5 

!! 312.~1 
! !  ------ 
! !  Test of ASSIGN clause w i t h  WidestTyge TMF 

< c m a x > >  :: func ( impl A :: type 
B : : t:ype 
W : : type : = Wides tType (A, B) 

expl x :: A 
y :: B 
w 

block 
return (x > y ? x : y) 

end 

< < m a i n > >  : : func ( ) void 
block 
a : : short i n t  := 1 
b : : shor t  int : = 2 
c : : i n t  := 3 
d : : i n t  := 4 
e :: long i n t  := 5 
f : : long i n t  := 6 
g : : f l o a t  := 7.0 
h : : f l o a t  := 7.5  
i : : double := 8.0 
j : : double := 8.5 
k :: long double := 9.0 
1 : : long double : = 9 .5  



printf ( "Max of. . . \n" ) 
! ! same types 
printf ( " a, b = %d\n" , 
printf ( l' c, d = %d\nn , 
printf(" e, f = %1d\nm, 
printf ( l  g, h = %f\nN, 
printf(" i, j = %f\nW, 
printf ( " k, 1 = %e\nn , 
! ! mixed types 
printf ( " a, c = %d\nn , 
printf ( " a, e = %1d\nw , 
pr int f  ( " a, g = %f \n" , 
printf ( " a, i = %f\nn , 
printf ( "  a, k = %e\nW , 

end 

! ! RESULT: 

max(a, b) ) ! ! short int 
rnax(c, d)) !! int 
max(e, f ) )  !! long i n t  
rnax(g, h)) !! float 
max(i, j)) !! double 
max(k, 1)) !! long double 

rnax(a, c) ) ! ! int 
max(a, e)) !! long int 
max(a, g ) )  !! float 
max(a, i)) !! double 
rnax(a, k)) !! long double 

312 - C code produced: 

/ *  Target ianguage: ANS1 C * /  
/ *  Source language: Safer-C version 1.5 * /  
/ *  Source file: 312. SI * /  
/ *  Translation date: Wed Jan 22 00:12:34 1997 * /  

long double 
rnax-Fsrrsr-r(shoxt int x, long double y) 

{ 
return x>y ? x : y; 

double 
max-Fsddsd-d(short int x, double y) 

{ 
return x>y ? x : y; 
1 

f loat 
max-Fsff sf-f (short int x, float y) 

return x>y ? x : y; 
1 

long int 
max-Fsllsl-l(short int x, long int y) 

{ 
return x>y ? x : y; 
1 

int 
max-Fsiisi-i(short int x, int y) 

C 
retum x>y ? x : y; 
1 



long double 
max-Frrrrr-r(long double x, long double y) 

C 
return x>y ? x : y; 
1 

double 
max-Fddddd-d(doub1e x ,  double y) 

C 
return x>y ? x : y; 
1 

float 
max-Ff f f f f-f ( float x, f loat y) 

C 
return x>y ? x : y; 
1 

long int 
max-Flllll-l(1ong int x, long int y) 

C 
return x>y ? x : y; 
1 

int 
max-Fiiiii-i(int x ,  int y) 

C 
re tum x>y ? x : y; 
1 

short int 
max-Fsssss-s (short int x, short int y) 

C 
return x>y ? x : y; 
1 

void 
main ( ) 

C 
short int a = 1; 
short i n t  b = 2; 
int c = 3; 
int d = 4; 
long int e = 5; 
long int f = 6; 
float g = 7.0; 
float h = 7.5; 
double i = 8.0; 
double j = 8.5; 
long double k = 9.0; 
long double 1 = 9 . 5 ;  



printf ( "Max of, , , \n" ) ; 
printf(" a, b = %d\nW, ma-Fsssss-s(a, b)); 
printf ( " c, d = %d\nN , m a x - F i i i i i - i  (c, d) ) ; 
printf ( " e, f = %ld\nw , max-F11IlI-1 (e, f ) ) ; 
printf ( g, h = %f\nn  , max-Ff f fff-f ( g r  h) ) ; 
printf(" i, j = % f \ n w ,  max-Fddddd-d(i, j)); 
printf ( "  k, 1 = %e\n",  max-Frrrrr-r(k, 1) ) ; 
printf ( " a, c = %d\nW , max-Fsiisi-i (a, c) ) ; 
printf ( "  a, e = %ld\nU , max-Fsllsl-1 (a, e) ) ; 
printf ( "  a, g = %f\nw , rnax__Fsffsf-f (a, g )  ) ; 
printf ( "  a, i = %f\nw , max-Fsddsd-d(a, i) ) ; 
printf ( " a, k = %e\nw , m a x - F s r r s r - r  (a, k) ) ; 
1 

312 - Output: 

Max of-. 
a, b = 2  
c , d = 4  
e, f = 6  
g, h = 7.500000 
i, j = 8-500000 
k, 1 = -3.103615e+23 1 (error) 
a , c = 3  
a , e = 5  
a, g = 7.000000 
a, i = 8.000000 
a, k = -3 .lO36lSe+23l (error) 

315 - Safer-C code: 

Safer-C version 1.5 

! !  Simple t e s t  of WHERE clause with IsArrayType and 
overloading. 

-=greatest>> : : func ( impl T :: type 
expl data :: T where not 

IsArrayType (T) 
1 T 

block 
return data 

end 



<<greatest>> :: func ( 

1 
block 

i :: 1 
max :: B := dataCo] 

h p 1  
T : : type 
B :: type := BaseType(T) 
1 : : type : = IndexType (T) 
hi :: tran int := HighBound(1) 
10 : : tran int : = LowBound (1 

expl 
data : : T where IsArrayType (T ) 

B 

! ! var of index type 
! ! var of base type (with init) 

f o r  (i := 10; i <= hi; i++) 
if (dataCi] > max) 
max := dataCi] 

endi f 
endfor 

return max 
end 

-=<main>> :: func ( )  void 
block 
al :: [ 0 . . 4 ]  i n t  := { 3 ,  9, 2, 6, 4) 
a2 :: [0..2] float := {4.6, 7.7, 2.1) 
b : : int := 99; 
c : : float := 3-14 

print£("Array 1: %d %d %d %d %d\nW, al[O], alCl], 
alC21, alC31, aîC41) 

printf ( " H i g h :  %d\nN , greatest (al) ) 

printf("Array 2: %f %f %f\nW, a2[0], a2[1], a2[2]) 
printf ( "High: %f \n" , greatest (a2) ) 

printf ( " Integer : %d\nN , b) 
pr in t f  ( "High: %d\nU , greatest (b) ) 

printf ( "Float : %f\nN , c) 
printf ( "High: %f \nW , greatest (c) ) 

end 

/ *  Target language: ANS1 C * /  
/ *  Source language: Safer-C version 1.5 * / 
/ *  Source file: 315.~1 * /  
/ *  Translation date: Wed Jan 22 00:12:37 1997 * /  



float 
greatestFff-f(f1oat data) 

C 
return data; 
1 

int 
greates t-Fii-i ( i n t  data) 

t 
retum data; 
1 

f loat 
greates tFAS-ffIO2-X2XXOXAS-f-f ( f loat data  [ 3  ] ) 

C 
int i; 
f loat max = data [ 0 ] ; 
for (i = 0; i<=2; i++ ) 

C 
if (data [il >max) 

C 
max = datari]; 
1 

1 
return max; 
1 

i n t  
greatestFA4-iiI0-4-X4XXOXA4-i-i(int dataCs]) 

C 
int i; 
int m a x  = dataro] ; 
for (i = 0; i<=4; i++ ) 

{ 
if (data [il max) 

max = dataCi] ; 
1 

1 
return max; 
1 

void 
main ( ) 

C 
int a231 = { 3 ,  9 ,  2, 6, 4); 
float a2[3] = C4.6, 7.7, 2.1); 
int b = 99; 
float c = 3.14; 



printf ( "Array 1: %d %d %d %d %d\nW , al [O 1 ,  al [l] , 
aU21 alC31, alC4l); 

printf ( "High: %d\nW , 
greatest-FA4-iiIO4-X4XXOXA4-i-i(al)); 

printf("Array 2: %f %£ %f\nn, a2[0], a2[I], a2[2]); 
printf ("High: %f\nw , 

greatest-FA2-f f 102-XSXXOXA2-f-f (a2) ) ; 
printf("1nteger: %d\nn, b); 
printf ( "High: %d\nn, greatest-Fii-i(b) ) ; 
printf ( "Float: %f\nm , c) ; 
printf ( "High: %£\nu, greatest-Fff-f (c)); 

Array 1: 3 9 2 6 4 
High : 9 
Array 2: 4.600000 7 .700000 2,100000 
High: 7 . 700000 
Snteger: 99 
High : 99 
Float: 3 140000 
High : 3 140000 

318 - Safer-C code: 

Safer-C version 1 . 5  

! !  318.~1 
! !  ------ 
! !  Simple test of WHERE clause with IsTypeConsistent. 
! ! 
! ! This is Example 1 f r o m  section 4.6. of the thesis. 

<<square>> : : func ( 
i m p l  T : : type 
expl x :: T where IsTypeConsistent(x * x)  

) T 
block 

re turn  (x * x) 
end 

<<main>> :: f u n c  ) void 
block 

a : : i n t  := 2 
b :: f l o a t  := 1 .5  
c :: ->char := "abn 



printf("%-4d squared = 3-4d\nW, a, square (a) ) ! ! int 
printf("%4.2£ squared = %4.2f\nW, b, square(b1) !!float 

!! This invocation is not type consistent: 
!! printf ("%s squared = %s\nl', c, square(c)) 

end 

318 - C code produceci: 

/ * T a r g e t  language: ANS1 C * /  
/ *  Source language: Safer-C version 1.5 * /  
/ *  Source file: 318.~1 * /  
/ *  Translation dâte: W e d  Jan 22 ûG:12:40 1997 *: 

f loat 
square-Fff-f (float x) 

C 
return x*x; 

int 
square-Fii-i (int x) 

{ 
return x*x; 
1 

void 
main ( ) 

t 
i n t  a = 2; 
float b = 1.5; 
char (*c) = "ab"; 
printf ( "%-4d squared = %-4d\nw, a, square-Fil-i (a) ) ; 
printf ( 11%4.2f squared = %4.2f\nm, b, squareFff-f (b) ) ; 
1 

2 squared = 4 
1-50 squared = 2.25 



320 - Safer-C code: 

Safer-C version 1.5 

!! 320.~1 
! !  ------ 
! !  Tests ASSIGN clause w i t h  WidestType, WHERE clause with 
! ! IsNumericType . 
! ! 
!! This is Example 2 from section 4.6. of the thesis. 

block 
return ( 

end 

func ( h p l  Tl :: type 
T2 : : type 
W : : type : = WidestType (Tl, T2 ) 

expl x : : TI where IsNumericType (Tl) 
y : : T2 where IsNumericType (T2 ) 

) w 

<<main>> : : func ( )  void 
block 

a : : i n t  := 11 
b : : int := 99 
c : : f l o a t  := 3.14 
d : : float := 5.0 
e : : long int := 40000 
f :: ->char := "abc" 

printf ( "Max of. . . \nW ) 
! ! int 
printf ( " %-5d %-5d = %-5d\n", a, G, max(a, b)) 
! ! f l o a t  
printf(lt %4.3f %4.3f = %4.3f\nn, c, d, max(c, d)) 
! ! long int 
printf(" %-5d %-5d = %-5d\nW, a, e, m a x h  el) 

! !  T h i s  invocation contains a non-nmeric param: 
! !  printf(" %d %s = %d\nn, a, f, max(a, f)) 

end 

320 - C code produceci: 

/ *  Target language: ANS1 C * /  
/ *  Source language: S a f e u  version 1.5 * /  
/ *  Source file: 320. sl * /  
/ *  Translation date: Wed Jan 22 00 :12 :42 1997 * /  



long int 
max-Fiilil-l(int x, long int y) 

C 
return x>y ? x : y; 
1 

float 
max-Ffffff-f(float x, float y) 

C 
return x>y ? x : y ;  
1 

int 
max__Fiiiii-i(int x, int y) 

return x>y ? x : y; 
1 

vo id 
main ( ) 

{ 
int a = 11; 
int b = 99; 
float c = 3.14; 
float d = 5 - 0 ;  
long int e = 40000; 
char (*f) = "abc"; 
printf ("Max of. , . \nW ) ; 
printf(" 8-5d %-5d = 3-5d\nU, a, b, 

max-Fiiiii-i (a, b) ) ; 
printf(" %4.3£  %4,3f = %4,3£\nn, c, d, 

max-Ffffff-f (c, d) ) ; 
printf ( O '  %-5d %-Sd = 3-5d\nW, a, e, 

max-Fillil-l (a, e) ) ; 
1 

320 - Output: 

Max of.. . 
11 99 = 99 
3.140 5,000 = 5.000 
11 40000 = 40000 



321 - Safer-C code: 

Safer-C version 1.5 

321.~1 
------ 
Tests ASSIGN clause with Baseme, IndexType, 
Lowbound, and HighBound, WHERE clause with IsArrayType 
and IsTypeConsistent 

This is Example 3 from section 4 . 6 .  of the thesis. 

<<sort>> : : func 
impl T 

1 
10 
hi 
B 

expl data 

block 
i, j :: 1 
temp :: B 

( 
: : type 
: : type := IndexType(T) 
: : tran int : = LowBound (1) 
: : tran int : = HighBound (1) 
:: type := BaseType(T) 
: : T where IsArrayType (T) and 

IsTypeConsistent (data [lo] < data [hi] ) 
) void 

! !  loop vars 
! !  used for swapping 

for (i := Io; i < hi; i++) 
f o r  (j := hi; i c j; j - - 1  
if (data[ j ] < data[ j -11 1 ! ! s w a p  
temp := data[j] 
data[j] := data[j-l] 
data [ j -11 : = ternp 

endi f 
end£ or 

endfor 
end 

<<main>> : : f unc ( ) void 
block 
al : : [O. -41 int := {3 ,  9, 2, 6, 4) 
a2 :: [0..2] float := C4.6, 7.7, 2.1) 

printf("Before: %d %d %d %d %d\nn,  a1[0], alCl], a1[2], 
a1[31, a1[41) 

sort (al) 
printf("After: %d %d %d %d %d\nm, a1[0], al[l], a1[2], 

a l W ,  alC41) 



printf("Before: %3.lf %3.lf %3.1f\nW, a2[0], a2[1], 
a2 C21) 

sort (a2) 
printf("After: %3.lf %3.lf %3.lf\nW, a2[0], a2[1], 

a2C21) 
end 

b 

321 - C code pmduced: 

/ * Target language: ANS1 C * /  
/ *  Source language: Safer-C version 1.5 * /  
/ *  Source file: 321.~1 * /  
/ *  Translation date: Wed Jan 22 00:12:44 1997 * /  

void 
sort-FA2-f 102-XOXXSXfA2-Fv ( f loat data [ 3  ] ) 

C 
int i, j; 
float temp; 
for (i = 0; i < 2 ;  i++ ) 

C 
for (j = 2; i<j; j-- ) 

C 
if (data[j]<data[j-11) 

C 
temp = data [ j ] ; 
data[j] = data[j-11; 
data[j-11 = temp; 
1 

1 
1 

void 
S O ~ ~ F A ~ - ~ I ~ - ~ - X O X X ~ X ~ A ~ - ~ - V  ( int data [ 5 ] ) 

f 
int i, j; 
i n t  temp; 
for (i = 0; k 4 ;  i++ ) 

{ 
for (j = 4; i<j; j-- ) 

C 
if (data[j]<data[j-11) 

C 
temp = data [ j] ; 
data[j] = data[j-11; 
data[j-l] = temp; 
1 



void 
main ( ) 

C 
i n t  a 1 1 5 1  = {3, 9 ,  2 ,  6,  4 ) ;  
f l o a t  a 2 [ 3 ]  = C4.6, 7.7,  2 .1 ) ;  
p r in t f  ( " B e f o r e :  %d %d %d %d %d\nn, a L [ O ] ,  a l [ l ] ,  a l [ 2 ] ,  

aU3L a l C 4 1 ) ;  
S O ~ ~ - F A ~ - ~ I O - ~ - X O X X ~ X ~ A ~ - ~ - V ( ~ ~ ) ;  
p r i n t f ( " ~ f t e r :  %d %d %d %d %d\nW, a 1 [ 0 ] ,  a l [ l ] ,  a l [ 2 ] ,  

a1131,  a l t 4 1 ) ;  
p r i n t f ( " B e f o r e :  % 3 J f  %3.1£ %3.lf \nW, a 2 [ 0 ] ,  a 2 [ 1 ] ,  

a 2 C 2 1 ) ;  
s o r t F A S - f 1 O S X O X X 2 X f A 2 - f v  (a2 ) ; 
p r i n t f ( " A f t e r :  % 3 . l f  %3.lf %3.1f\nw, a 2 [ 0 ] ,  a 2 [ 1 ] ,  

a 2  E21)  ; 

B e f o r e :  3 9 2 6 4 
A f t e r :  2  3 4 6 9 
B e f o r e :  4 .6  7.7 2.1 
A f t e r :  2.1 4 . 6  7.7 

322 - Safer-C code: 

S a f e r - C  version 1 . 5  

! !  3 2 2 . ~ 1  
! !  ------ 
! !  T e s t s  ASSIGN clause with BaseType, IndexType, 
! ! L o w b o u n d ,  and HighBound, WHERE clause w i t h  IsArrayType 
! !  and I s T y p e C o n s i s t e n t  
! ! 
! !  T h i s  is Example 5 from section 4.6. of the thesis- 



! !  add two matrices; store result i n  the third 
<<add-matrices>> :: func ( 

impl Tl : : type 
101 : : tran i n t  : = LowBound ( IndexType (Il ) 
hi1 :: tran i n t  := HighBound(IndexSrpe(T1) ) 
T2 :: type : = BaseType (Tl) 
102 :: tran i n t  := LowBound(IndexType(T2)) 
hi2 :: tran i n t  := HighBound(IndexType(T2) ) 

expl A, B, C :: TI where 
-- IsArrayType (TI) and 
-- IsArraSrype(T2) and 
-- IsTypeConsistent (At101 J ri.021 + -- B[lol] [i-021) 

) void 
block 
x, y : : int ! ! loop vars 

for ( X  := 101; x c= hil; x++) 
for (y := 102; y <= hi2; y++) 

c [XI [YI := ACxl [YI + B [xl Cyl 
endf or 

endfor 
end 

!! print an integer matrix 
eprint-int>> 

impl Tl 
101 
h i1  
T2 
102 
hi2 

expl M 

) void 
block 

x, y :: i n t  ! !  

type 
tran int := LowBound(IndexType(T1) 
tran i n t  := Hig-ourid(~ndexType(Tl) ) 
type : = BaseType (Tl) 
tran i n t  : = LowBound ( Indexme (T2 ) 
tran i n t  : = HighBound ( IndexType (T2 ) ) 
T I  where 
-- IsArrayType (Tl) and 
-- 1 sArrayType (T2 ) 

loop vars 

for (X := 101; x <= hil; x++) 
f o r  (y := 102; y <= hi2; y++) 

print f  ( " % 4 d W ,  M[x] [y] ) 
endfor 
printf ( '' \n" ) 

endf or 
printf("\nV) 

end 



! ! print a float matrix 
xcprint-float>> :: func ( 

impl, Tl :: type 
101 :: tran int := LowBound(IndexType(TL)) 
hi1 :: tran int := HighBound(IndexType(T1)) 
T2 : : type := BaseType(T1) 
102 :: tran int := LowBound(Index~e(T2)) 
hi2 : : tran int : = HighBound ( IndexType (T2 ) ) 

expl M : : Tl where -- IsArrayType (Tl) and -- IsArrayTyge (T2 ) 
) void 

block 
x, y : : int ! ! loop Qars 

for (X := 101; x < =  hil; x++) 
f o r  (y := 102; y <= hi2; y++) 

printf  ("%5.1fn, M [ x ]  [y]) 
end£or 
printf ( " \nn ) 

endfor 
printf ( " \nu ) 

end 

<<main>> : : func ( )  void 
block 
x, y :: int 
ml :: type := [O. - 2 1  [O, -31  int 
m2 :: type := [0..1] [O. - 2 1  float 

a :: ml := { {l, 2, 3, 41, -- C% 6 ,  7 ,  81, 
-c cg, 10, 11, 12) 1 

b :: ml := { {IO, 20, 30, 40), 
-- (50, 60, 70, 801, 
-C1 C90, 100, 110, 120) 1 

c :: ml 
d :: In2 := { C1.5, 2.5, 3-51, -- I4.5, 5 . 5 ,  6.5) ) 

e :: rn2 := C (10.5, 11.5, 12.51, -- (13.5, 14.5, 15.5) ) 
f :: m2 

add-matrices(a, b, c) 
printf ( "Int matrices : \nW ) 
print-int (a) 
print-int (b) 
printf ( "Surn: \nn) 
print-int (c) 



add-matrices (d, e, f ) 
pr in t f ("F1oat  matrices:\nW) 
p r i n t f  l o a t  (d) 
p r i n t f  l oa t  (e) 
p r in t f  ( "Sm: \nW ) 
print-f l o a t  ( f ) 

end 

322 - C code produceai: 

/ *  Target ianguage: ANS1 C */  
/ *  Source language: Safer-C version 1.5  * /  
/ *  Source f i l e :  322. sl * /  
/ *  Translation date: Wed Jan 22 00 :12 :49 1997 * /  

void 
add-ma t r i c e s F A 1 - A 2 - f  X O X X ~ X A ~ - ~ X O X X ~ X A ~ - ~ - ~ A ~ _ A S - ~ A I _ A S  
- f-v(f1oat AC21 [ 3 ] ,  float B [ 2 ]  [ 3 ] ,  f l o a t  C [ 2 ]  [ 3 ] )  

C 
int x , y ;  
f o r  (X = O; x < = l ;  X++ ) 

{ 
fo r  (y = 0; y<=2; y++ ) 

C 
c [XI [y] = A k l  [y1 +B 1x1 [ y ]  ; 
1 

vo id 
~ ~ ~ - ~ ~ ~ ~ ~ ~ ~ S F A ~ _ A ~ - ~ X O X X ~ X A ~ - ~ X O X X ~ X A S - A ~ - ~ A S - A ~ - ~ A S - A ~  
-i-v(int AC31 [ 4 ] ,  int B [ 3 ]  143, int C [ 3 ]  [ 4 ] )  

C 
i n t  x , y ;  
f o r  (x = O; xc=2; x++ ) 

{ 
for (y = 0; y<=3; y++ ) 

C 
C [XI [YI = A Cxl [YI +B Cxl Cyl ; 
1 



void 
~ ~ ~ ~ ~ - ~ ~ ~ - F A S - M - ~ X O X X ~ X A ~ - ~ X O X X ~ X A S - M - ~ - V  (int M [ 3  ]  [ 4 ]  ) 

C 
i n t  x,y; 
for (X = 0; xc=2; x++ ) 

{ 
for (y = 0; y<=3 ; y++ ) 

C 
printf ( le %4dlg , M [XI [y] ) ; 
3 

printf ( "\nn ) ; 
1 

printf("\nW); 
1 

void 
print-fLoat-~~l-~-£~O~~ULAS-f~OX~2X~l-~-f-v(float 
ML21 D l  ) 

{ 
int x,y; 
for (x = O; x<=l; X++ ) 

{ 
for (y = 0; yc=2; y++ ) 

{ 
printf("%5,1fw, M [ x ]  [ y ] ) ;  
1 

printf ( " \n" ) ; 
1 

printf ( " \nn ) ; 
1 

void 
main ( ) 

C 
int x , y ;  
typedef int m1[3]  [ 4 ]  ; 
typedef float 
int a [ 3 ]  [ 4 ]  = 

int b[3] [ 4 ]  = 

int c [ 3 ]  [ 4 ] ;  
float d[2] [ 3 ]  

float £121 [ 3 ]  ; 



322 - Output: 

I n t  matrices: 
1 2 3 4  
5 6 7 8  
9 10 11 12 

Floa t  matrices : 
1 .5  2 .5  3 .5  
4 - 5  5 - 5  6.5 
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