Describing Function Error Bounds

=The Non-Autonomous Case

OF MANITOBA
A Thesis .

Presented to

the Faculty of Graduate Studies and Research

The University of Manitoba

In Partial Fulfillment
of the Requirements for the Degree

Master of Science

by
Barrie William Leach

October 1968

¢ Barrie William Leach 1968




ABSTRACT

by
Barrie William Leach

Describing Function Error Bounds

=the Non-Autonomous Case

The application of various describing function
error estimabte techmiques to first and second order systems
was investigated., Emphasis was placed on the application
of these estimate techniques to practical systems in their
normal operating region. Experimental results by analog
simulation were used in a comparison of the various bounds
as applied to first order systems. Appliecability of the
estimate techniques to second order systems was correlated
with the amount of resonance in the linear transfer function
of the system, and a few experimental findings were used
in a comparison of estimates for the second order case,
Results revealed that all estimate techmiques considered
were far from being of practical use to the designer of

nonlinear control systems.
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CHAPTER I
INTRODUCTION AND FORMULATION OF THE PROBLEM
I. THE DESCRIBING FUNCTION METHOD

Definition of the describing functionl

Consider the single-loop nonlinear feedback system
of Figure l. G(s) represents the transfer function of the
linear portion of the loop and N represents a single non-
linear element with a transfer characteristic

m = f£{e). (I-1)
It is convenient to consider the nonlinear function, f{e),
as consisting of two parts (a quasilinear gain and a dis-
tortion term) of the form

fle) =K e + £qlele {I=2)

q

With e assumed to be a sinusoidal input, Ke e represents

q
the fundamental component of the output of the nonlinearity
while fd(e) is the distortion component. Keq will be a
function of the input signal amplitude,and becomes the
describing function for f{e). The conventional sinusoidal
describing function is chosen sc as to minimize f4le) in
the mean-square sense, and hence becomes the Fourier series

coefficient of the fundamental of the cutput of the

1Johm E. Gibson, Nonlinear Automatic Control
(New York: McGraw-Hill Book Company, Inc., 1903} , pp.34h-

347.
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nonlinearity divided by the amplitude of the input
fundamental ,E, Thus, for a sinusecidal input:

e = E sin{wt) = E sin(&y) , (1I=3)
the normalized fundamental terms,

m
g(E) = 1 «x Sz £[E sin(67)] sin(81)d6; (I-ka)

cxmeza

B
and

-
b{E)} :'FT};E“ x io rlE sin(@l)]cosiel)del, (I=4Db)

are defined. Then the describing function, K4, becomes,
Keq = g(E) + jb(E) . (1I-5)
For symmetric single-valued nonlinearities b{e) will be

zero. This definition of the conventional sinusoidal

describing function will be implied throughout.

Use of the describing function in forced systems

The describing function can be used under certain
conditions to predict the approximate closed-loop frequency
response and relative stability of nonautonomous nonlinear
systems of the form in Figure 1. For example, if r{t)

(referring to Figure 1) is a sinusoidal input, R sin wt,
and the linear harmonic transfer function,G{jw),is suffici-
ently low pass, then the error signal,e, can be approx-
imated as a fundamental sinusoid, &{t}, where

8{t) = E sin(wt+g). (I-6)
4 closed=loop transfer function relating e(t) to r(t) then

can be written as




This yields a magnitude relationship,

_E; = 1 - 9 (1“8)
R 1-+Keq(E)G(Jw)
and a phase relationship
e :4 l _ ° (I“’g)
l-fKeq(E)G(Jw3
If the nonlinearity is symmetric and single-valued then
Keq = &(E), (1-10)

and Keq(E) is a real function of E. Equation (I=8) can then
be solved readily for Keq(E)° The right hand side of the
resulting equation will be a function of R, E, G, and w,
For given G(jw) and R, the right hand side can be plotted
versus E for various w. The left hand side plotted versus
E is simply the describing function of the nonlinearity.
Possible operating points (E,w) of the system are found as
the intersections of the two curvesoz With E known, |c(t)|
can be plotted versus w for given R, yielding the closed
loop response.

Alternatively, equation (I-8) could be inverted
and rewritten as

R = E|1L+Keq(E)G(jw)]. (I-11)
For specified E, R and 6 (equation I-9) can be found quite
readily at any given frequency. In this way, the operating
points can be found in a straightforward computational

manner, rather than by resorting to graphical techniques.

*For example plots see Gibson, op. ¢its, Ppe 393-39k.




Garber3 outlines the first approximation in
Galerkint's method as the equivalent to the foregoing des-
cribing function method. The results are the same except
that any ambiguity in calculating the angle € is erased
with the use of the first approximation in Galerkin's method.

Further details of the application of the describing
function method to forced systems can be found in texts by

’l"‘:mmall+ and Gibsomﬁa

Inherent assumptions and inaccuracies of the method

Two basic assumptions in the application of the
describing function method are readily apparent from the
development of the definition of the describing function
using the system of Figure l. First of all; the system may
contain only one nonlinear element. Secondly, the nonlinear
element may not change its characteristic with time. The
third assumption is that,if the input to the nonlinearity
is a sinusoid, then only the fundamental component of the
nonlinearity is significant in the feedback loop. This

assumption is known as the filter hypothesis,and forms

3Ee D. Garber, "Error Estimation in the Describing
Function Method", Automation and Remote Control, Vol. 2l

1963, pp. 449-L50.

hJohn G, Truxal, Automatic Feedback Control System

Synthesis {New York: McGraw-Till Book Company, Inc., 1955),
pp. 581=585.

5Gibson, op. Cit., ppe 389=395.




the basis for the use of the describing function. In-
tuitively, if no subharmonic components are present in
the system, then the filter hypothesis can be justified
by the fact that higher harmonics in the output of the
nonlinearity usually have smaller amplitudes than the
fundamental,and most linear elements exhibit low-pass
filter characteristics which tend to attenwate the higher
harmonics.

Obviously, no practical linear element will act
as a perfect low-pass filter. Some harmonic content will
always be fed back to the input of the nonlinearity, thus
rendering the describing function method an approximation
only,

The degree of approximation can only be surmised
in a lot of cases, so practical use of the describing
function must remain suspect until some investigation into
the error involved in its use has taken place.

For a complete discussion of the definition, use,
and inaccuracies of the describing function, the reader is

referred to bibliography references (4),(5),(6), and(15),

IXI. The Problem

Statement of the problem

Since about 1960,a number of articles have come
forth yielding various techniques for determining bounds

on the error involved in using the describing function.




This investigation was originally intended as a study of

those techniques applying to non-autonomous {forced) systems.
The techniques were to be applied to various systems of a
general nature,with the hope that a comparison of tech-
niques for various systems would yield such information as
which bound technique should be applied to a given system.
The determination of which bound to use would be made by
considering both the ease of application and accuracy of

the bounds.

Importance of the study

The describing function plays an important role in
the analysis of nonlinear feedback systems because of its
analogy with the frequency response methods of linear systems,
and its relative ease of application. However, to be of
practical use in the design of nonlinear feedback systems,
it is necessary that some means of determining the error in
application of the describing function method be available
to the designer. Johnsané even questions the validity of
applying the describing function method at all to non-
autonomous systems without investigation into the errors
involved. Ideally, the designer would like to be able %o
apply simple, but accurate,bound techniques bto his problem,

in order to determine whether or not the describing function

6

E. C. Johnson, "Sinusoidal Analysis of Feedback-
Control Systems Containing Nonlinear Elements", Trans. ATEE,
Vol. 71, Part II. Applications and Industry, July, 1952,
pp. 169=181.




method will be accurate enough for his work. Assuming

this were possible, he could then study higher order

systems by the approximate technique of reducing them to
their dominant poles. The reduced system would supposedly
be much easier for application of the describing function
error estimates,and the estimates would give the designer
some idea of the error involved in applyving the describing
function method to the original system. It must be stressed,
hawever; that this type of design technique would rely
heavily on the existence of fairly accurate error bound
methods.

Because of the need for practical design tech-
niques like the f@regoing; the investigation of existing
describing function error estimate techniques becomes
important. The importance is further enhanced by the
fact that the articles describing the various error bound

techniques do not indicate the accuracy of their bounds.



CHAPTER II

REVIEW OF THE LITERATURE

Iiterature pertaining to non-autonomous systems

Sandbergl makes use of functional analysis to study
a wide class of nonlinear control systems with one memoryless
nonlinear element. An upper bound on the mean-square error
resulting from the use of the describing function is found.
As well, conditions are presented for the nonexistence of
subharmonics and self-sustained oscillations.

Haltzmamz indicates a technique for verifiying
whether or not an exact periodic solution of a forced non-
linear system exists in the neighbourhood of a periodic
solution predicted by the describing function method. Again,
functional analysis is used, but no applicable error bound
is found.

Rozenvasser3 has studied the exact determination
of forced periodic oscillations in systems with a'single

piecewise linear nonlinearity. No error bounds are obtained

1

Systems to Periodic Input Signals,” The Bell System Technical
Journal, Vol. XLIII, No. 3, May 196k, pp. 911=920.
2

J. M, Holtzman, "Contraction Maps and Equivalent
Linearization", The Bell System Technical Journal, Vol., XLVI,
No., 10, December 1967, Pp. 2L05=2535,

BE, N. Rozenvasser, "On the Accurate Determination
of Periodic Regimes in Sectionally Linear Automatic Control
Systems", Automation and Remote Conmtrol, Vol. 21, 1960,
pp. 902-910.

T. W. Sandberg, "On the Response of Nonlinear Control
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for the describing function method, but the work is impor-
tant as a basis for subsequent papers.
Gar'berst studies the problem of determining the
periodic state of forced oscillations in nonlinear systems. =
Describing function error estimates are found for certain
constraints on the nonlinearity. The development is extended
to the case of an automatic optimizing system described by
equations with periodic coefficients,

2 article develops

A joint Garber and Rozenvasser
estimates for the forced system case essentially the same
as those given by Garber. The only improvements are in

notation and extension of the technique to other systems.

Direction of the investigation

The three articles yielding forced system describ-
ing function error estimates of a usable type were those by
Sandberg, Garber, and Garber and Rezenvasser. Since the
Garber estimate and the Garber-Rozenvasser estimates were
esentially the same, a comparison of Sandberg's estimate
with that of the Garber-Rozenvasser article would be suf-
ficient. This would then be a straightforward comparison
of two methods and, hopefully, would determine which of the

two estimates to use for a given system.

hgarver, op. cit.

5Ee D. Garber and E. N. Rozenvasser, "The Invest-
jgation of Periodic Regimes of Nonlinear Systems on the
Basis of the Filter Hypothesis™, Automation and Remote
Control, Vol. 26, 1965, pp. 274=285.




It was thought that the investigation should be

started for systems with first order6 linear transfer func-
tions and then expanded to the second order case, Certainly,
investigation of the second order case would be of more
practical value, but the first order case was thought to
offer a simple introduction to the estimate techniques,
One nonlinearity was chosen at the outset as being fairly

7

representative of a continuous ' nonlinearity of practical
use in control systems., This was the unit saturation non-
linearity expressed mathematically by,

fle) = e , lel &1

Fley =-1 , e £ =1

fley=1 , e > 1, (1I-1)

The Sandberg estimate

Sandberg uses functional analysis and, particularly,

the contraction-mapping fixed-point theorem to develop his
estimates. A few mathematical preliminaries are given in
the article, but a more extensive coverage of functional
analysis in general can be found in bibliography references

(9), (10}, (11}, and (16).

6The order of a linear transfer function is the
number of poles,

7A11 the error estimates considered required the
nonlinear element to be continuous.
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The space of real-valued periodic functions of t
with period T which are square-integrable over a period
{the space is denoted by K) is considered. The norm of any

function g existing in K_(norm denoted by|| g|| ) is defined by

2 T2
le P =1 § s (II-2)
T. ©

This is recognized as simply the rms value of g

The nonlinear control system considered is as shown
in Pigure 2. F is a linear operator operating on the output,
v(t), of the nonlinearity V. The input and output of the
system are y and x respectively, I denotes the identity
operator and w(t) is the input to the nonlinearity. Thus
v is related to x by the functiomal equation

x=FV¥[x+y] . (11-3)
= % esos F_35 Foy Flgeee} is a countable set of complex
constants such that sup | F | <00, and F; is equal to the
complex conjugate of an@ It is assumed that the restriction
of P to K is a bounded linear mapping of K into itself, with
the property that if g€K and h=Fg, then hn::ann9 where g,
and hﬁ are the nth Fourier coefficients of g and h respec-
tively.

An imp@fgant special case,

FPg = an(t =% )gl{rldy , gek (II-b4}

where f(t)éLlR ? is noted, This is the familiar convolution

LlR denotes the space of real-valued absolutely

integrable functions defined on (=00,00),
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1

integral of f and g, and hence F, is found as F( jnwe ), where
F(jw)? is the Fourier transform of £f(t).

The nonlinear function ¥ is assumed to be real-
valued, independent of t,and such that there exist real con-
stants &« and B (B >0) with the properties that

1t +8) =1 (IT-5)
and :

oL(Hy = P20 €YIHy) - Y{Po) & By - Ky)

(II-6)
for any real [y 2 .

It is observed that the application of the describ-
ing function technique to the system of Figure 2 amounts to
analyzing the approximate system resulting from replacing
F by the operator ﬁ, defined by,

T =jnwe t
1 S [Fegle dt = Fpg,, n =1
T
© =0, nZt*l. (1I-7)

Here geK:; 8n is the n®! Fourier coefficient of g and T = 217
Wo

is the period of the input sinusoid.
The projection operator, P, is a linear mapping
of K into itself defined by
2 “jﬂWot
1 [Pgle at = g, neTN
T 9
= 0, néN; (1I-8)

where 77 is a set of integers such that -m€ 91 if me It , and

9 o =jwt
F{jw) is defined here as S fltle dt.
- O
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g¢K. In the case of main interest,qurfal, lz , and PF=TF,
Sandberg proves a number of theorems and corollaries,
Those directly related to the error bound are stated below,
and the reader is referred to the Sandberg paper for their
proefalo A preliminary result is given as
Theorem I1:
el = sup 7, |- (I1-9)
If igf |l - Fy |>'O, the operator (I-F) possesses a
bounded inverse on K and
l(z-Fy=2rll = syp | Fp/(1-Fy) | . (1I-10)
The major result is

Theorem II: F,V, andp are defined as before. Let

v € Ko Suppose that
r = sup | Fp/(1-F,) | (B -1)< 1. (IT-11)
n
Then there exists a unique x € K such that x=F¥[x + v] .

In fact, x=1im x, where

m == 00

Xpo1 = (TF) L F {7 [y + 7] =%n}, (I1-12a)

and x5 is an arbitrary element of K. The n®h approximation,
X satisfies

” X =X ll llx (IT-12b)

A ccmsequence of Theorem IT is

Corollary II: Suppose that the hypotheses of Thecremll

are satisfied and that % €K satisfies £ = PF¥[2+y] . Then

0
The numbering of theorems and corocllaries follows that
of the Sandberg article.




=1
Nx=21l ¢ 1 ) (z-F) F(1-P) Y [2+¥]]]. (II-13)
-7
Sandberg notes that the hypotheses of Theorem II

imply that there exists a unique XeK such that = PF“V[J'?:«!-V] o

Parseval's identity is used to develop the bound on l|x = &

l|==2ll £ l ? } f (IT-14)

l-r g nﬁ%, lwfn

0 pourier coefficient of Y[%+y]. In the

where P, is the n
normal describing function case,?‘(:{»l9 1}9 and y(t) is a
sinusoid of period T, Also, if ¥ is an odd function, then
Po = Os According to Sandberg, it can be shown that if

&= 0,%(0)=0, and y =Py then,

levig+v]ll 2 «|lg2+vll; (II-15)
o that, .
(-P)Y[2+y] = (NY[R+v]l 2= Ip¥+415)°
< (8% BB IRyl .
(1I1-16)
Then the bound on ||x - %]|| becomes
gl & L Nz-F) " - 1] (2-P) Y [2+v]
=1
%
¢ L mm l n (ﬁz-»aﬂ Nz+yll.
l=r
(T1=17)

As a special case, F' is defined as the restriction of F to

the subspace

= gglgéK; f gltle

0

=jnwe,t

dt =0, n even}
(I1-18)

This gives rise to

Theorem IV: Let F' and K’ be as defined above., Let Y

and B be as defined before with the further qualification

16

as,
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that V(-K)=="Y(H)} for any real M (i.e.Yis odd symmetric).

Suppose that

P
q = sup n (B -1)<1. II-19

Thenn the conclusion of Theorem II remains valid if K is
replaced with K’, r is replaced with q, and F is replaced

with F o

The Garber-Rozenvasser estimate

Garber and Rozenvasser consider the system

x=W{ply + ¢ = %_é_e_;;;-? + P (y==£(x) ) (II-20)
as shown in Figure 3. W(p? is the transfer function of the
linear part of the system,and is assumed to be a ratio of
the two polynomials, K(p) and D(p), with K(P) of lower degree
than D{p} (for physical realizability). The forcing function,
$ (t), is a periodic function of the frequency w. The non-
linearity is f{x), and is assumed piecewise continuous and
such that

x(6+T) = x(e); =x(t+T/2)=-=x(t), (II=21)
where T =2Ww, If £(x) is assumed odd symmetric it can be
shown™ that x{t) is the solution of the integral equation

K(t)—g/ Ple—v)e [x(x) ] dv  +¢(t), (II-22)
where the kernel @(tmT)g is given by

@(tm’t‘)'w EW‘ (2s +1)JW] (28 +1)jult-7) , (II=23)

§= -0

11
Rozenvasser, op. cit,
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Now the infinite series (II-23) can be expressed as a finite

series by a complex variable technique described in Morettial2

The result is

n
Ble-2)1=> K(e) explie(t=2)1; (04t -7 & _TT)
€=1 D' {Ap) I+exp[ T A¢ ]
W

:‘ﬁ K{Ae)  exp[(m/w+t =) ;(04T- t&TT)
P=1 D' { \e) L+ exp[TAe/w] W
(II=24D)
where A\p (P=1, 2,..., n) are the roots of the equation
D{ A)=0, and the roots are assumed to be simple.
Application of the describing funcition method to
the system of Figure 3 will result in an approximate periodic

regime, xapp(t)5 for x(t); and Xapp(t) will satisfy

T/2
xapp(‘t) :{ (s »’t)f’[xapp(?,‘)] d?:+(b1(t),
Q

(11-25)
where

jw(t=7) njw(t»t)§
™

@1 = W EW(JTW)@ + W(=jwle
(II-26)
is the fundamental component of the kernel @, and ®l is the

fundamental component of the forcing function §{t).

Subtraction of equation (II-26) from equation (II-22)

together with some transformations yields

|x(%) (t)] € lalml + |ay(e)|  (1I-27)

= Xapp

where T/2 ,
Jie) =9 - ¢, + S/ B, (6-0)£ [xapp(¢) ] av (T1-28)

and T/2 0
J-(t) = S/ t=%) 3 £lx{v)| =T (T)]tar,
2! 0 o ){ [x(x)] [Xapp H (11-29)

12
Gino Moretti, Functions of a Complex Variable

(Englewood Cliffs: Prentice-Hall, Inc., 1904}, pp. 159-160.
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with ¢h=:@ - @1 as the sum of the higher harmonics of the
kernel @e
If f(x) satisfies the uniform Lipschitz condition
|£(81)-2(8,)|€1|¢,-F, | ; (1= const) (II-30)

then & final estimste can be found in the form

Ix - Xappl ¢ max|d| ’ (I1-31)
where
/2 13
I(w)= |§ (u)}]| du. (II-32)
The condition for applicability of estimate {(II-=31) is
1-MI>0, (II-33)

Although Garber and Rozenvasser do not give specific
details on the evaluation of max]Jl(t)}, they say that an
upper bound on Jlit) can be cbtained rather simply. They
do a simple example in which the exact value of max'Jl(t)l
can be calculated quite readily. On the other hand, in
Garberts paper is indicated an approximation to max'Jl(t)'
made in one of his examples. The generalization of this

approximation is as follows:

14 | T/2
o1 (e)]= I i {@(t»’t)a@l(tm’t)}f [xappm]ml

;/2
¢ {Osm’?zfr/zlf[xapp(ﬂ”} i W{t“ﬁ@@l(tmz)‘ laz|

13
This is based on the fact that Q(t-T+T/2)==f(t-1),
1
This is assuming that ¢{t)= @i(t} (i.e. the input
is sinusoidal). Then Jy{(t) is simply the response of the
linear part of the system to the higher harmonics_of the
approximate output of the monlinearity, f[xapp(t)]°
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04TLT/2

éihmax ‘f[xapptrﬂ‘g ?iZIQ(U)eél(u)‘du,

(TI-34)
so that

T/2
285 01 G Bl , o0yl
II=35

Garber and Rozenvasser also note that in the prac-

tical use of the estimate, equation (II-20) should be trans-

formed to

x=We(p)yx + Px (1I-36)
where

Wx(p) = T{ﬁﬁg}\% - ’ (II=37)

v = £(x) +2rx (11-38)
and

b=__0 R (1I-39)

T+ A(D)
The opbtimum value of A\ , the linear rotation, is then

chosen 30 as to minimize the estimate.



CHAPTER IIT

INVESTIGATION OF THE APPLICATION OF ESTIMATES

TO FIRST ORDER SYSTEMS

Introduction

For a practical evaluation of the application of
error estimates for the describing function method to any
system, attention must be given to the practical range of
operation and range of parameter values of the system., A
basic part of the investigation,in this chapter and the next,
is a determination of the usefulness of the error estimates
as applied to what are considered practical first and second
order systems.

The general nonlinear system considered is of the
form indicated in Figure 1. The input to the system, r(t),
is a sinusoid, Rsin wt, and the linear transfer function,

G(s), is of the general form

Gls) = _k a, k real ' (ITI-1)
s+a
but can be gain normalized to the form
G{s)= _ 1 (III-2)
sS+a

without loss of generality.
The nonlinear function considered, f(e), is a unit
saturation function as defined by equation (II-1). It is

chosen because it represents a continuous odd symmetric non-

linearity,and a good approximation to many saturation type



nonlinearities existing in practical control systems. The
fact that it is continuous and odd symmetric means that the
most advanced form of the error estimates can be applied to

the system.

Application of the describing function

The describing function for the unit saturation

nonlinearity takes the forml

Keq(E) = &(B)=_1 [20, -sin(26,)]+ L cos(6,)
(I1I-3)
where
82 = are sin (1/E) . (III=4)
This can be rewritten as 1

g(E)=_2_fare sin (1/8)+ (1-1/8°)? /&{ . (111-5)
i)

The magnitude relationship, equation (I-8), then becomes

R BT
R |1+glEIG(]
¢ o a®+ w? _
‘! T+E(EI/T wj+a?7| §%6(2)2 + [a2wPrag(E)] 22

(II1-6)
so that here equation (I-11) is written as

1
R= E iwzg(E)2+[a2 +u + ag(E)] 2; 2, (III-9)
2.2

ac+w
The phase relationship of eguation {(I-9) becomes

8= 1 = arctan) wg{E) o
1 +g(E)G(jw) 5 2
wota +ag(E)
(I1I-8)

1
Gibson, op. cit., p. 364,

22
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I. The Sandberg Estimate

Because the case where the input is a sinusoid and
the nonlinearity odd symmetric is being considered, the final
estimate form of equation (II=-17) can be used together with
Theorem IV. The estimate form of equation {1I1-14) was felt
to be too unwieldy for practical use, and hence is not con-
sidered here.

It now becomes necessary Lo relate the Sandberg
notation to the notation of the system of Pigure l. For

v = f{e), a unit saturation nonlinearity, cand 8 become

«=0 : B =2 . (IITI-9)
The linear transfer function is identified a32
Fljw) = =Gl{jw) = =1 __, (III-10)
jw+a
Then
F{jw) I:I -1 - 1 ,(TII-11)
I=-F(jw)

jw+a+l %£+(l+aJ2§%
Equation (II-19) becomes,for this case,
q = sup 1 = 1 (1.
n odd [n2%52+(l+a)2]%’ §w2+(l+a)2§%

(III-12)

Now equations (III-11) and (III-12) can be identified as the

2

Tt is noted that Sandberg considers a positive
feedback system, while the system of Figure 1 has negative
feedback. This accounts for the minus sign in equation
(11I-10}.




2L

M curveg3 lM(jw)I , of the linear transfer function
G(jw)= 1/(jw+a}. The crossover frequency% W, of the
linear transfer function F(jw) is defined by the relation-
ship

|F (Gw, )| = 1= 1 , (I11-13)

]

PO

which implies

W, = [1 - 32].% o (III-14)

Thus a crossover exists as long as adl. From a practical’
standpoint, a crossover would always exist for the linear
transfer function. Moreover, stability considerations
and practical realigation normally dictates that a2 0.
Therefore the range of the parameter a of practical interest
is

cLadl, (II1-15)
Under these conditions it can be seen that the g defined in
equation {(III-12) satisfies the key inequality of equation
(ITI-12), namely ¢<1, for all frequencies in the range
0{w¢ &, The normal frequency range of interest would be

approximately the decadé below W defined by

3
John L., Bower and Peter M. Schultheiss, Introduc-

tion tc the Design of Servomechanisms (New York: John Wiley
and gons, InC., 1958), PPs 211=220,
3

Bower and Schultheiss, op. cit., pp. 162-16k.
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w £ w (IT1-16)

10

Obviously, in this case the Sandberg estimate can be applied

in the required frequency range. It is also apparent that
sup , Fn , — 1 (IXI-17)
ngn | I =F, 2 2L

{9w + (1 +a) g 2

since the expression of equation (ITI-11) is monotonic

decreasing with a. The norms ||#+yll and |x - £l are readily

identified as

b = 18] = ||E sin(wt +8)||= _E IT-18)
| +7ll = lall |E sin(wt + )” 5 (III-18)
and

I - % = lle -¢l (III-19)
respectively.

The final form of the estimate as given in equation
(II-17) beccmes
lle -&ll¢ A2 [9w2+(l+a)2] . (111-20)
1 - gw2+(1+a)2g 2

If the waveform [e(t) - é(t)] is assumed approximately sin-

usocidal then the rms norm of inequality (ITI-20) can be

transformed to a magnitude norm inequality of the form

i
e -8l¢ 2lovPr(14ai2]2 & (TI1-21)
1 - 3w+ (1+2)%§ - 2
This will then be consistent with the norm of Garber and
Rozenvasser?s estimate.

Numerical results of application of the Sandberg

estimate are given at the end of this chapter.
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II. The CGarber-Rozenvasser Estimate

The linear transfer function of the Garber-Rozenvasser

system (see Figure 3) becomes

Wip) = =G{p) = _=1 , (III-22)
ptea

The kernel, §(t -}, then is written as

Bt -v) = _=e2(t =¥) . g twéT/2

s (I11-23)
1+e aT/2
and the function I{w) of equation {II-32) becomes
I(w) = 1 ﬁanh[&'ﬂ . (IIT-24)
2w

a

For the unit saturation nonlinearity, the uniform Lipschitsz

condition of eguation (II-30) beccmes

le9) - 205 ¢ gy -%l, (ITI-25)
so that
MI{w} = %_ tanh.[%%;J . (I11-26)

Then the condition for applicability of the estimate is

1 -1 t.anh[arr]>a, (IIT-27)
a 2w
or
1 x tanh [aﬂ ] 1. (I1I=28)
a 2W

Tt should be recalled that a is considered in the
range 0{a<l so that the function tanh [%% ] /a is monotonic
decreasing with increasing w,and always greater than 1 at
w=0. Thus the estimate cannot be applied in the complete

range O&wg¢ o . If the function tanh [g;g]/a is evaluated
2w
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at w=w the resulting expression is:

tanh [g_gm]/a = tanh[ a1 ]/a . (IIT-29)
e

%Jleaz

This expression was evaluated for 0£a€ 1l at .0l
intervals and the minimum of 1 occurred at the upper limit
a=1l., Thus, for all a in the region of interest, the in-
equality of equation (III-28) is not satisfied at the cross-
over frequency. Moreover, this means that the inequality

(III-28) is not satisfied for all w¢w, and, particularly,
W

is not satisfied in the cperating region _Ssxggv% defined
10

as the practical range.

Application of linear rotation

The inapplicability of the Garber-Rozenvasser
estimate in the region of interest for a first order system
necessitates the use of the linear rotation concept in order
to get any estimate, leave alone the optimum one. Applica-
tion of the linear rotation concept produces a transformed
system defined in equation (II-36), where in this case

Walp) = = MYp+ta) =_ -1 , (I11-30)
1 = Mp+3 p+a =\

from equation (II-37).
Now for Wx(p),the function I{w) will become

Ix({w) = 1 x Tanh [(a - X)TT] . {I11-31)
a8 = A 2w

The new Lipschitz condition constant becomes
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Mx = 1 4+ A : A 20
= 1-IM ;-1 4&AN€0
_ 2
= 1Al s —00 & A&-L
2
(T11-32)
Therefore, MyIx(w) is written as
MyIx(w) = 1 + A tanh[(a»mn]; AD> O
a= A 2w
= 1= JAl cann[(a T ] 5-L £ A<O
a +|A| 2w 2
= Il tanh[(a +IM)TT] ; —od N&-1,
a + [\ 2w 2
(I1I-33)

It is obvious from the form of equation (III=33)
that a value of A\ can always be found so that MxIx < 1
for any a in the range 0$£a&l and any w. Thus the linear
rotation concept does make the Garber-Rozenvasser estimates

applicable in the region of interest.

Approximation to max 'Jl(t)'
The transformed system of equation (II-=36) must

be considered in the evaluation of max]Jl[o Then the trans-

5

formed nonlinearity ~ becomes

fx{x) = flx) + Ax (ITI-3L4)
and the transformed input becomes

bult) = pta [¢(t)] , (ITI=35)

pt+ta =A

5

The transformed nonlinearity is also odd symmetric,
so that the Garber-Rozenvasser estimate can still be applied.
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where (p+a) / (p+a =A is a linear operator operating on

$(t). The term max 'Jl(t) , can be approximated for the
046LT/2

transformed system as indicated by equation (II-=35). The

result is then

max lJl(t)légmax lf* [Xapp('l‘)]‘} ZZI@*(Q)»@l*(u)’du

04e¢T/2 0L TL¢T/2
{ITI=36)
where
={a=\)u
Pulu) = =e ; {ITI-37)
={a=AT/2
1+e
and
@l*(u} = %O[W*(jw}ejw+w (mjw)eajm]
= =h sin{wu+ o) ,
1
T[(a=n)2+w?]® (T1I-38)
where
oy = arctan [a ;;)\ ] o (III-39)
Now the term,
max Fxlx, _(T)l= max £lE sin{wr+8)+AE sin(wvr +6)
Oé’&'éT‘/Zl *[app ]l owsr/zl i ] ( ’
(III-40)

of equation (III-=36) can be evaluated fairly easily for given
A and E. Also, the integral of egquation (III-37) can be
calculated on a digital computer quite readily. Through

the use of a root finding subroutine, the zeros of

[ Pxlu) - @1*(11)] can be found in the interval O0<&ugT/2,
and the integrals easily calculated and summed for the

intervals in which [@*(u) - @l*(u)] does not change sign.
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The details of evaluation are given in Appendix A.

Exact evaluation of max|Jdy(t]l

For a sinusoidal input the expression for Jl(t)
of equation (II-28) becomes
T/2
30 = § Dpe(t=7) Fxxapple)] dz. (IIT-41)
This can be rewritten as

T/2
Jl(t):é [@*(t"'?ﬁ) = @]_*(t’”ﬂ]f*[xapp(’t)] dz

T/2 T/2
:52 Dyl B=T)Fx [xapp(ﬂ] dtasé' (ﬁl*(@»t)f*}}{app(ﬂ] e,

(ITI-42)
However, consideration of equation (II=25) will yield
T/2
Brelt=m)eum,  (B)] d¥=xyp (6) =0, (), (ITI-43)

so that
%/2
= - + -
Jple) =5 dule ©) i [y (TI] A8+ By () x5 (8]
(III-4L)
The remaining integral of equation (III-LL) can be evaluated
exactly for t in the range 04t &£ T/2. The details of the
evaluation of Jl(t) for the first order system are given
in Appendix A along with the final expression for Jl(t)
(which is too complicated to present here)., The exact™
calculation of max ,J (t),th@n involves using a digital
otter/2' L
computer to compube ‘Jl(t)lat very small intervals in the
range 04t $¢T/2 and find the maximum value. A comparison

is made at the end of this chapter between an exact

evaluation of max[Jll and an approximate one.

*ioeg to within computer accuracy.
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Minimization of error estimate

With MxIx and max|dJ,|known for any A, the error
estimate of equation (II-31) becomes, for given A,

| = |e - &|{ maxll_ - (IIT-45)

‘x
1 = MeIx

~Xapp

It is thena matter of finding the optimum value of A , xoptg
to minimize the estimate. In general the process of finding
xopt can be very tedious,since xopt can depend on a, w, and
even E for the first order case. The general procedure
would then be to iterate A over the applicable range for
given a, w, and E to find the minimum estimate. It was felt
that a simpler approach, although not necessarily one yield-
ing x@pt’ might be to consider a minimization of MxIx
rather than the complete error bound. This might even yield
x&apt if MxIx changed much more rapidly with A than did
max|Jy|. Certainly a minimization of MxIx is valid in the
sense that it would ensure that the Garber-Rozenvasser bound

could be applied. An investigation of this approach is dev-

eloped in Appendix A.
TITI. A Comparison Of Results

Some typical first order systems were considered
and the various error estimates calculated. Analog sim-
ulation was employed for the systems considered in order
to measure the actual maximum magnitude of error encount=:.

ered in using the describing function approximation.




TABLE I

FIRST ORDER ERROR ESTIMATES
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w E ERROR ESTIMATES
radians
per sec. Sandberg] G-=-Rl | G=R2 |Measured
System 1 Wes 04999 | 1.5 13.82 Lo68 | 1,11 .07
a=,02 Wi: 09998 | 1.5 3,16 75 | .18 .02
W, = 29998 i%: 4999 | 5.0 || 46,08 |14.05 [3.57 | .24
w,: -9998 | 5.0 10.53 2.26 | 57 .03
System 2 We: 4994 | 1.5 11.72 3.47 | .82 .08
a=,.05 écz .9987 | 1.5 3.05 073 017 .01
w, =+9987 ‘j%: o499k | 5.0 39,06 10,42 | 2,64 022
We: 09987 | 5.0 10,16 2,18 | .56 .03
System 3 Wer 04975 | 1.5 9ok2 248 | 59 .08
a =.1 wi: 29950 | 1.5 2.89 69 | 16 .02
We =995 E%: 08975 | 5.0 31.42 Tobly | 1,89 022
Wot 09950 5.0 9.65 2,07 | 53 .02
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The method of measurement in the analog experiments
was quite simple, but was considered accurate enough com-
pared to the numbers calculated for the various bounds.,

The measurement technique was to use a transfer function
analyzer to measure the amplitude and phase of the funda-
mental of the input to the nonlinearity. The absolute

value of the maximum difference between the measured sinu-
soid and the describing function approximation would then
yield the measured bound. The assumption in this method

is that the actual input to the nonlinearity closely approx-
imates a sinusoid. This assumption seemed to be valid for
all cases tried.

Table I gives calculated and measured error estimates
for three different first order systems at two frequencies
and two saturation levels. The most significant result is
the fact that the calculated error estimates exceed the
measured ones by factors of 7 up to 400, While the second
decimal place of the measured estimates is likely in error,
the huge discrepancy between calculated and measured esti-
mates is still apparent. A comparison of the wvarious esti-
mates indicates that the Sandberg estimate exceeds the
Garber-Rozenvasser with the approximation to malel] (G=R1)
by a factor between 3 and L4.5. Similarly, the Garber-
Rozenvasser estimate with approximate max]Jll exceeds ‘the

Garber-Rozenvasser estimate with exact max[Jll(GaRZ) by a
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factor of about 4. Finally, the Garber-Rozenvasser estimate
with exact malell exceeds the measured results by a factor
between 7 and 20,
Figure 4 gives a graphical comparison of the three

calculated error estimates over the frequency range We /10 ¢ w

£ Woo The improvement in going from Sandberg to G-Rl to
G-R2 is clearly indicated. This graph also shows the typical
decrease with frequency of the calculated estimates indicat-

ing the expected improved filtering of the linear part of

the system as frequency is increased.




CHAPTER IV

INVESTIGATION OF THE APPLICATION OF ESTIMATES

TO SECOND ORDER SYSTEMS

The system

The only change to be made in the system from that
of the previous chapter is in the linear transfer function.
The system is still of the general form of Figure 1 with a
sinusoidal input, r(t)=R sin wt, and a unit saturation
nonlinearity., The linear transfer function, G(s), is assumed
to be of the general form

G(s) = k s a, b, k real (TVv=1)
(s+a) (s+Db)

but normalization with respect to b will yield

G(s) = k , a<l (Iv=2)
{s+a) (s+1)

as a general transfer function which can be considered.

Application of the describing function

The describing function, g(E), for a unit saturation
nonlinearity has already been expressed in equations (III-3),
(ITI=4), and (III=5). The magnitude relation of equation
(I-8) becomes, for the second order case,

E/R = 1

1+ kg
{jw+aj{jw+1)

= w2(1+a)2 + (w? < a)2 .

ikzw2g2(1-+a)24-[w2(l'+a)2°(a mw2+gkg§gzz?)]2§ 2
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The phase relationship of equation (I-9) then becomes

9:< 1 = arctan wk(l+alg .
T+gG(Jw) 2 2\,.2 2
whiw ( 1+a“ J+a“+gk(a-w”)

(TV=4)

I. The Sandberg Estimate

The linear transfer function,in Sandberg'®s notation,

becomes
F(jw) = =G(jw) = =k . (IV=5)
(Gw+a) (jw+1l)
Thus
l F(jw) | - I _,
1 = F\jw =
g(a+k - w2)2+w2(1+a)2 E
(IV=6)
and
q = sup k o
n odd ; 5
[{a+k - n2w2)2+n2w’2(1 +a)2]
(TV=7)

Equation (IV=6) is the M curve, lM(jw)'9 of the linear 53?
transfer function G(jw). Normally,for second order systems a
resonance peak is associated with the M curve at the res-

onant frequency Wa,e. Here wyp would be defined as
27 2
wp = [o+ k- (1+a)?] (TV-8)
2

under the condition

2% > 1+a°.

Alsoc, the crossover frequency, Wu, of this system would be
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151
W, = %»{l-faz) 4—[(l-+a2}2-+k2 - az] : 2,
2 L
(IV=10)
subject to the condition
k> a. (Iv-11)

Hence inequalities (IV-9) and (IV=11) would be satisfied
for practical systems. DMorecver, a resonance peakslm(ij)l,
greater than 1 is also desired in a practical system o
ensure reascnably fast response. In most cases w, and wg
are fairly close in value so that the frequency region of
operation of the system is normally below Wio If wy € w £ Wo

defines the region in which

| 3w)| = lp}i( °w§ . ! > 1, (IV-12)
=~ F(3w)

then it becomes apparent that,for a driving frequency w0<:wr,
there can easily exist a value of n such that w1$xu%)subo
If this is the case then the condition of applicability of
the estimate, q<1l, does not hold.

Obviously, as the system becomes more resonant the
likelihood that the condition of applicability holds tends
to decrease., Similarily, if the system becomes less res-

onant then the condition of applicability has a better chance

of holding.
I1I. The Garber-Rozenvasser Estimate

The linear transfer function of the Garber-

Rozenvasser system is now written as
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wip) = =G(p} = - k . (IV=-13)
(p+allp+1)

and the kernel, §(t -7}, becomes

-a{t=1) ={t=%)
Ple.=2)==k _[e _ e s 04t =T £ T/2
T-a —ar/2 T =T/2
l4+e l+e
(Iv=1La)
-aT/2 =al(t=7) <T/2 =(t=7%)
= e e __e e ;
T-2 —at/2 -T/2
l14+e 1+e

0& r=-t4T/2
(Ilehb)
The function I{w) becomes

=T/2 azeﬁu?..@+e»aT/2 maﬁ?

I(wizk l+e =2e ,
1= G ) =aT/?
i+e a{l+e )
(IV=15)
where /
-aT/2 =T/2
w¥=_1 M[(l+e / ) / (L+e )]. (1v=16)

=&

The condition for applicability of The estimate is then

I{wi= _k
l=2

l+e  =2e _1l+*e =2e 1.
~T/2 —al/2
lte a(l+e ) (IV=17)

{ =T/2 =u* =aT/2 =au¥

Tn order to investigate the cordition of applic-
ability, values of I(wc) were determined for systems in
a parameter grid defined by 0¢ a1l and 1 ¢k £100. The
minimum of I{w,) was found,and turned out to be 1l.0l.
While not conclusive, this jnvestigation seemed to suggest

that,for the practical range of system parameter values




and forxvém%,the condition of applicability of the Garber-
Rozenvasser estimate would not hold. It should be noted
that the function I(w) was found to be a monotonic decreas-
ing function of w,sc that the foregeing conclusion would

at least be valid for the particular wvalues of a and k

tested.

Application of linear rotation

Once again the linear rotation concept must be
applied in order to try to make the Garber-Rozenvasser
estimate applicable irn the region w9{ évvév%, as well as
to minimize the estimate. When the linesar rotation concept
is applied, the linear transfer function of the transformed

system becomes
Wx(p) = = /[ aj{p+1]] = - k )

+
/(p+aﬂp+1n 2
p+{l+a)p+a=- Ak

(IV-18)
This canr be written as

Wxlp)l=__ =k , (IV-19)
(p = pyilp = Pyl

where X
Py = ~(1ta) +[bak +§l - a)? " ; (IV-202)
73
) 0 %
p. = =(L+a) - [pAp+(1 <a)] ., (IV-20b)
2 ) 2

Two cases can be considered,depending on the value of A .

If the condition,
2
A>=(1=2a) (IV-21)
> T

9

4O
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holds, then Py and p, are real, and the function Ix(w)
can be found in exactly the same manner as I{w) of equation

{(IV=15)}, The result is

I«(w)=_k {l +ep2T/2=»Zep2u* - 1 +eplT/2@2eplu* ’
PL " P2 =po(1l+ epz"f72} wpl( 1 +epff/2)
{IV=22)
where
u* = 1 In [(l +eplT/2) / (l+ep2T/2)] .
17 P2 (IV-23)
However, if the condition,
A< =ﬁ,ﬁﬁlz , (TV=24)

holds, then Py and pz are complex conjugates of the form

Py = < A +Bj 3 Py = -A = Bj , (IV=25)
where
2q 2
A= (1+a} 3 B:[=le->\k—klwa}] .
2 2

(IV=26)
The kernel, Qi{u), is then written as

»Au{ ~AT/?2 ~AT/2

O, (u) = ke e sin{BT/2) cos(Bu)- [l+e

x cos(BT/Z)] sin(Bu )}

-iT/2 =AT
B§1+29 x cos(BT/2} +e g

(IV=27)

or more succinctly as

=Au
fu(u) = ke sin(Bu+¥)
=KT/Z =AT
B §l+2e x cos{BT/2) te g

Wiy
- e

(IV=28)




where
-AT/2
§ = = arctan e sin(BT/2} + 1T .
=AT/2
L+e x cos{BT/2) {IV=29)

The zeros of §,(u) in the interval O0%u{T/2 are the set

§un§ defined by

w, = TI- J : T-0 >0
B
= 2= H T=-3% < O
B
woo= mgx : WmU>()&MW%$W2

= (n+l)r7=0; -0 £ 0 and unéT/Z .
B
(IV=30)
Once the zeros of QPx(u) are known in O <€ u<{T/2 then Ix(w)

can be expressed as

a Ui4l
Ielw)= > S | ¢, (u) [ du , (IV-31)
i=0 u,
where u, = 0 v,y = T/2 . {(IV=32)

The integral from one zero to the next is then a standard
tabulated integral (in this case consthebAusin(Bu+ﬂ)du),
and can be calculated rather simply.

The Lipschitz condition constant, Mx, remains the
same as that given by equation (III=32),so that MxIx(w)

is now defined for all A,but in a rather complicated

manier.

42



L3

Approximation to maXlJl(tH

The transformed nonlinearity, fx(x), remains as

in equation (III=-34). The transformed input, {x(t), becomes

Pelt) = (pt+a) (p+1) [o(e)] . (IV=33)
(p+aj (p+1)= Ak

In a manner similar to that employed in Chapter IIIL, max
0¢t€T/2

|Jl(t)l can be approximated for given A . The result is

derived from the general expression of equation (III=36).

For A satisfying inequality (IV-21), the kernel, {x{u),

becomes
P U pLu
Be(w)= =l Ye'l - e? , (I7-34)
1 l+e 1+e

where Py and pp are as given in equations (IV=12a) and
(IV=12b}. The fundamental approximation to the kermel,

QIQ&}, is written as

(ﬁlhﬂ: -~ bk sin (wu +d) .
* z
T g(Plpz”’Wz)z*Wz(pfpz)z g
(IV-35)
where
PyPo = W
d= arctan[ 172 .
-(p1+p,lw (IV-36)

When A satisfies inequality (IV-24), then §,(u) is as
given in equation (IV=28), and @l*(u) becomes
@l*(u):: - Lk sin {(wu +d.) ; ;

T {(A2+ B2 - w2)2+4A2w2} (1V-37)

where

o = arctan 22+ 8% - Wt (Iv-38)
i 2 Aw ?




and A and B are as given in equation (IV-26). With (y(u)
and @l*(u} known, the integral of equation (III-36) can
be found by again using a root finding procedure on
[@*(u) - @l*(u}},and determining the integrals between
the zeros. The details of evaluation are omitted, since
they closely parallel those given in Appendix A for the

first order case.

Exact evaluation of maxIJl(t)l

The expression, max lJl(t),, could be evaluated

0£t4T/2

exactly, in a manner similar to what was done for the first

Ll

order case. Because the details of evaluation would be much

more complicated than those for the first order case, it was

felt that an investigation of the approximation to lJlit)'
should be made first. The results of this investigation
(together with the known improvement from an exact eval-
uation of lJl(t?| for the first order case) would indicate
whether or not the amount of work imvolved in an exact

evaluation would be justified.

Minimization of error estimate

A general method of minimizing the error estimate
would involve an iteration of A over a suitable range
through the use of a digital computer. As in the first
order case, it was thought that perhaps a minimization of

MxIsx would also yield the minimum bound or something close
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to ite. Also, it was felt that the first point of investiga-
tion should be the evaluation of m%&%M*IQEbecause, if it
turned out that maéfm*IQ}?l in all cases, then there
would be no point in pursuing the investigation for the
second order case. The evaluation of m%p{M*ka would also
have to be done on a digital computer, since the expression
for MiIx is too complicated for analytical procedures. The

results of this investigation are detailed in Appendix B,
III. Numerical Results

Correlation of resonance with applicability of the estimates

For the Sandberg estimate, it is quite obvious that
the degree of resonance of the linear part of the system

1
(as defined by M_, the M peak) determines whether or not the

ps
estimate can be applied. In cases where the M peak is much
greater than 1 it is very unlikely that the inequality q <1
{see equation II-19) will be satisfied.

As a check to see how applicability of the Sandberg
estimate is related to resonance for a typical second order
system, M peak was varied from 1.155 down to .9 and the
applicability of the Sandberg bound was tested in the range
fg L w £ We at We intervals. The M peak was varied by
%gking 2 system with k=1 and varying a from O to .20,

The results showed that the bound could not be applied at

any of the ten frequencies tested until M?::1@O69, where

the bound applied only at oLw,. The bound could be applied

lMp = |mw,) | .
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over about half the range only when Mp came down to 1.01.
Finally, the bound became applicable over the whole range

only for Mp less than 1.

The results of Appendix B seemed to indicate that
there was a similar correlation between resonance and applic-
ability of the Garber-Rozenvasser estimate. To investigate

this, m%? %Mx1*§ was plotted versus M, at the frequencies

w
Cs

10

and varying a over the range O0—.4 so that Mp varied through

Ve, and w,. M, was varied by taking a system with k=1.5

the range l.35~>.9. The results, plotted in Figure 5, indicate
that minfM*I*} is monotonic increasing with Mp (for miniM*IQ
¢ 1) at all three frequencies. Furthermore, for Mp=:1615

the Garber-Rozenvasser estimate can only be applied over about
half the frequency range of interest. As Mp increases above
1.15, the range of application of the bound decreases below
one half.

A further graph was made of min§M¥I¥z versus My,
this time for a system in which a remained fixed at a value
of .5 and k varied over the range 1—>5.5. Figure 6 shows
the plots, which are quite similar to those of Figure 5.
Tt is noted, however, that for the case of Figure 6 it takes
an M? of 1.25 before the Garber-Rozenvasser estimate can
only be applied over half the frequency range of interest.

Figures 5 and 6 seem to suggest a monotonic increase of

min {N&I;}mdth My (as long as min.{M*I*}is less than one)o




TABLE IT

SECOND ORDER ERROR ESTIMATES
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W E ERROR ESTIMATES

radians

per Sec. Sandberg G=R Measured
System 1 [We: 300 1.5 NA 35.75 - 07
k=.7 We: 600 1.5 NA .61 .02
a=,01 We: 2300 5.0 NA 107.26 013
Ye =,600 wi: +600 | 5.0 NA 1,84 .03
ML= 1.0275
System 2 |'c: 2998 | 1.5 196,07 739 +03
k =.7 wi: 25996 | 1.5 2L .0l o57 .01
a =.03 We: 02998 | 5.0 653.56 22,18 .10
W = 05996 z: 25996 | 5.0 80,12 1,71 002
Mp=@9969
System 3 |"g: .5056 | 1.5 25,21 2.45 o1l
k=1.5 wi: 1.0112| 1.5 30,06 olihy 002
a=.3 Yie: 5056 5.0 84,06 7034 .15
W, =1.0112 wi: 1.0112| 5.0 100,18 1.33 «07
My = 09831
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They also seem to indicate that if the M peak of the system
is from 1.15 to 1l.25 or greater, then the Garber-Rozenvasser

estimate is likely to be applicable over less than half of

£ wW.e

We & w £ o

the frequency range

Comparison of error estimates

Error estimates were calculated for cases in which
the Garber-Rozenvasser and/or Sandberg error estimates could
be applied. This necessitated investigating low resonance
systems which are not considered too practical., A practical
second order system would probably have an M peak of 1.2-1.4
in order to ensure reasonably fast response. Systems con-
sidered for the estimate comparisons had to have M peaks of
one or less in order to ensure that both the Sandberg and
Garber-Rozenvasser estimates could be applied.

Analog simulation was used for the systems considered
in the estimate comparison so that actual maximum magnitudes
of error involved in using the describing function could be
compared to the estimates of the error. The measurement
technique used was the same as the one described in Chapter
IIT. Table II gives calculated and measured error estimates
for three different second order systems at two frequencies
and two saturation levels. The Garber-Rozenvasser estimate
for approximate max'Jll (G=R) is seen to be a substantial
improvement over the Sandberg estimate. In some cases the

Sandberg estimate exceeds the Garber-Rozenvasser one by
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factors as high as 75. For system 1, the Garber-Rozenvasser
estimate yields a result where the Sandberg estimate fails.
Nevertheless, the Garber-Rozenvasser estimate still exceeds
the measured estimate by factors as high as 8002 If the
first order results are indicative, then an improvement by
a factor of four or five can be expected by using the Garber-
Rozenvasser estimate with exact max|Jy|. It was felt that
this improvement would not be substantial enough to warrant
the amount of work involved in an exact calculation of max [J1] .
Figure 7 shows a graph of the Sandberg and Garber-
Rosenvasser estimates versus frequency for a typical system.
An interesting observation is that, while the Garber-
Rosenvasser esbtimate is monotonic decreasing with frequency,
the Sandberg estimate experiences a resonant peak at the
resonant frequency of the linear part of the system. This
is due to the direct relationship between the M curve and

the error estimate.




CHAPTER V

CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

For the first and second order systems studied, it
was found that the Sandberg and Garber-Rozenvasser estimates
were really of little or no use to a practical designer. In
the first order case, both bounds could be applied, but the
estimates were much tooliberal to be of practical value. The
Sandberg estimate was found to be the easiest %o apply, but
yielded the most liberal bound. The Garber-Rozenvasser
estimate with the approximation %o max|Jl' became more com=
plicated to apply, but reduced the liberality of the estimate
substantially. Finally, the Garber-Rozenvasser estimate with
exact max‘Jll was bthe most difficult to apply, but gave the
best estimate.

In the second order case it was found that the degree
of resonance of the linear part of the system determined
whether or not the estimates could be applied at all. It
was found that, as the M peak increased, the range of applic-
ability (within the freguency region of interest) of the
error estimates decreased. The Garber-Rozenvasser estimate
was found to apply over a slightly wider range of M peak
values than did the Sandberg estimate. Also, for the cases
in which the estimates could be applied, the Garber-

Rozenvasser estimate with the approximation to malell was
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found to be much better than the Sandberg estimate, but more
difficult to apply. BEven with the added improvement of an
exact calculation of max|J1| (as projected from the first
order case) it was obvious that the Garber-Rozenvasser
estimate would still be too liberal for practical purposes,
and the complications of an exact calculation of max[JlI
would not be justified.

Some interesting findings were noted in the appli-
cation of linear rotation to the Garber-Rozenvasser estimate.
First of all, for both first and second order cases it was
found that linear rotation had to be used if the estimate
was to be applied in the region of interest. Secondly, a
minimization of MyIx always produced the minimum estimate
and Aopt was always =-.5. This meant that the bound was
minimum for the minimum slope condition on fx[x]s These
observations made the job of applying the linear rotation
much easier than first thought.

Tt should be noted that, although only a unit
saturation nonlinearity was considered, most of the conclu=~
sions will hold regardless of the type of nonlinearity.

The major pitfalls of both the Sandberg and Garber-Rozenvasser
estimates are seen Lo be related to the linear transfer
function and not to the nonlinearity. This is possibly the

main weakness of the methods - the details of the nonlinearity
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are overlooked, and only some type of slope condition is
used to describe the nonlinearity. Perhaps future work
should be devoted to a more thorough consideration of the
nonlinearity. For example, in the case of the Garber-
Rozenvasser estimate, a more exact calculation of the term
ds {see equations II-27 and II-29) should lead to a better
estimate. This would involve a detailed analysis of the
nonlinearity, as was done for the exact calculation of Jq.
A further possibility for future work lies in the
Sandberg bound expression of egquation (IT-14). This is an
infinite series expression involving the Fourier coefficients
of the higher harmonics of the approximate (describing
function) output of the nonlinearity. Perhaps a finite
series will give an adequate error estimate that can be of

practical importance.
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APPENDIX A

Approximation to max J l(t.)

From equations (III-37) and (III-38) the expression,

[@%(“) = @1*(11)] , becomes

={a= AJu
Bylu) - @h(u} = =¢ + kL _sin{wu+o) .
={a= N)T/2 . 2
l+e T‘[(am N ) 4w ]

{A=1)

" Consider an intervalg[ulg u2]9 in which [@*(u) - @1*(11)]

is positive and does nov change signe. Then

wn u
gm*(u)u@l*(u}[du = g[@*m - §yx(w)] du
1

H

u, ={a= A}u ]
S -e +4 sin{wu +et ) du
ay =(a= A JT/2 2 %

1+e T[(amx) +w2]

~{a=AJu, =la= Ay

ee( s + 2 . X
(an)\)[1+e° = /] ”{(a»)\)2+w2§§

=g

[@os(vml + 041) = COS(WQ +°‘1)] ;s Afa.

- .,,,% [uzwul]"'% [eos(wl)wcos(wz)]; A=a,
(A=2)

Similarily, in an interval, [uy u4]9 in which [@*(u)m@l*(u)]

is negative and does not change sign, then

Sl&‘@*(“)“@lk(mldu: e - I Y V4 L
.

3 (a=A) [1+ea(a@”rr/2] {(a=)\)zw2}%

[css(vm4+okl) - cos(wuy + o<l)] s A#a.
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— %[u4 - u3]+%[cos(wu4}m cos(wuB)]; A=a,
(A=3)

The zeros of [@*(u) - @l*(u)] can be found in the interval
[O9 T/Z] by using a rootfinding subroutine on a digital
computer; and then equations (A=2) or (A=3) can be used
(depending on the sign of [@*(u) - Ql*(u)] ) to determine
the integral in the intervals between succ9831ve ZETroS.
A summation of integrals will then yield I@*(u nél*(u)ldua

Also, equation {III-40) can be wrltten as

; i(na%{$T/2|f* [xapp('c)]] = 1+AE, A>0; E> 1
=1 - IAl, ACO; 1¢ELf1+2(1 - IND /A
= IME -1, A<0; B2 §1+2(1 =1AN/IAI,
(A~k)
Hence an approximation to max IJl(t)Iis found.

0¢t&T/2

Evaluation of Jl(t)

In order to evaluate Jy(t), consideration must

be given to the evaluation of the terms, ¢l*(t) and

{ ﬁ*(ta f*[xapp(Ti]dt of equation (III-44). When the

1nput to the system, P{t), is a sinusoid, then the operator

equation (III=35) becomes

dy(t) = Gy (6) = pra  [R sin(wt - ©)]
P+a - A
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3
5
— R wa®] sin {wt - 8 +9%),

[W2+ (a cA)Z]%
(4=5)

where

o, = arctan|w/a] - arctan|w/(a - M. (4-6)
Tt is noted that the time variable has been considered
shifted so that the input sinusoid of the original system
has a phase angle of =0 (8 is expressed in equation (I11-8) ),
and the describing function approximation to the input to
the nonlinearity is written
Zapp (¢t} = E sin wbtb (A=7)
now with zero phase angle.
The kernel of the transformed system, Qx(t =1),
is expressed as
={a= A){t=7)
Ppelt =) = =e 0&t =T £T/2
={a= N\ )T/2
l+4+e
~{a= XN)T/2 ={a= A\)}{(t="7)

e
—{a= N)T/2
l4e

%o

= e : 04T~ 6 &T/2

(A-8)
so that the integral in equation (ITT-4L) can be written as

t ={a=A){t=7)

T/2
So Bl =) Ex [y pp(T) ]a¥ = %»@ I £u (D] 0T
l1+e
T/2 ={la=A)T/2 ={a=\}(t=7)
+ e e £x [X ('U)] ar
—{a-NT/2 app

1+e (A=9)
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Now the transformed nonlinearity is simply

f*[ app(ﬂ] = f*[E sin(w't)] = (1+ANE sin wr 5 047 Sarcsi%n(ij)

=1+ AE sin wt ; arcsin(l/E) < T4 T= arcsin(1/E)
W W

=(1+\A) E sin wt; TI- arcsin(1/E) £t &r/2 .
W

(A=10)
The integral represented by equation (A<9) can then

be evaluated for each of the three cases 0¢t ¢arcsin(l/E) ,
W

arcsin (1/E) ¢ t¢ M=arcsin{1/E), and T=_arcsin (1/E) ¢t £7T/2.

W W W
he result is eyl =ax o[ =2 =&,
-2yt gmw cos{w'z-.)[e +e i}iﬂ[@ -e
*(t@ﬂf*[ app(T)] dr = Ee s P
0 (ay 2w 2)(1+e )

~(1+AaxE sin wt +(1+ANwE cos wt ; 0 < ¢ ¢ 7

ai+w‘2 a*2+w
aly =&
=85 E W cos(w’cl) [e lme ]'L- wz a*’rl =
- He e +e 1
=~y T/2 e
(a§+w2)(1+e )
=l = AEay sin wt+ AEw cos wb 3 ’tlé t L%
ax 2 2 2 2
ax+w axt+wW
=ayt axl, A ] 2 [ axk ax
— _Ee gw cas(w‘tl}[e Te ?é-m«; [e 1 e %
2 2 wa*sz A Ea*
(ay+w }{(1+e )

={1+\axE sin wt+ {(1+NEwW cos wt; (2 L v&T/2

2
A a4y (A=11)
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where

T = arcsin(1/E} Tp== arcsin(1l/E) : ax —a = \ .
w W

(A=12)
Application of equations (A=5), (A=7), and (4=11l) to equation

(III-4L4) then yields an expression for Jy{t) in the interval
o0&t ¢T/2,
Minimization of Mk

The expressions for M«Ixare given in equation (III=33).

Since
1im SmM1“a+MUﬁﬁ=l {4=13)
A —> = 00 2w

and
1im g IAl } = 1, {(Ae=1l)
A—> =00 (& +|N

it is easily seen that in the range =-o0&A & =3, MIy is

minimum for A= =%, Thus it is sufficient to find lmin M*I*go
¢ N oo
mﬁ\ <

Extremal points for MyIx in the interval =2 { A { o must

satisfy
tanhz[(a m)\)n'] + i (1+a)2w 2ﬁanh[gaaxzrr]m1:o .
2w (L+A){a=)\)1T) 2w
(A=15)
Also,
lim Y1 +A tﬁmﬁa»A)ﬂ] =1,
A—>oc0 [a = A 2w
(A=16)
It is obvious that the value of min g M*Ix§ will always

=5 AL o0
be less than 1 so that the A\ corresponding to the absolute

minimum will always be finite. A digital computer
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can be used to solve equation (A=15) for all extremal points,
and each one can be tested to find the A corresponding to

min § MxI«fo

Results of MyIx investigation

A number of typical first order systems in the range
0&a & .1 were investigated to find min {MxIx}. One interest-
ing result of the investigation was the fact that for every
system studied the value of A corresponding to min {M*I*}
was found to be =.5. This occurred for all frequencies in
the range of interest, E $w & Woeo

It thus appeariothat a minimization of Mx is suf-
ficient to minimize MxIx, at least in the region of interest.
Obviously themn, the change of I with A is quite slow com=
pared to the linear change with A of Mg. Figure 8 shows
a plot of MI and min{M*Lé versus frequency in the region
We { w £ w to indicate the typical decrease in value that

10 ¢
results when the linear rotation is applied.

Investigation of error estimabte minimization

It was suspected that the value of A yielding
min {M&I*E might also yield the minimum bounds. This idea
was pursued by investigating several first order systems and
actually calculating the bound (for both approximate max [Jl(t)l
and exact max ]Jl(t}l ) as A\ was iterated slowly through the

range in which the minimum bound was known to lie. In all
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Ye
cases, for frequencies in the range S w ¢ Wes
10

minimum bound occurred for N = =.5, as suspected. It was

the

noted, however, that for frequencies larger than w,,where
a bound would exist even without the use of the linear rota-
tion, it was not necessarily true that the A to minimige
the bound was always -.5. It thus appears that in the region
of interest, o & w & W, MxIx is the critical term in
determining the bound and must change much more drastically
with A than does malel(tHe

| The foregoing observations indicate that the process
of determining the minimum bound for the first order case in
the region of interest is not as difficult as first was thought.
Fortunately, Nopt is always the same and the calculation of

the minimum bound becomes relatively straightforward.



APPENDIX B

Minimization of Myxlx

MxIx was minimized for a variety of second order
systems in the particular range O £ a ¢ 1; .5 ¢ K £ 10.
The most important result was the fact that the minimization
did not always produce m%? {M*I*g(lo As a matter of fact,

it was only for a few systems investigated that m%? {M*I*?<l

in the complete range "¢ ¢ w § Woe It should be noted
10
that lim fMgI*?==lg so that min gM*IQZis always 1 or
| Al>o0 A

less. However, in a case where m%g {M*Ik}zl, the Garber-
Rozenvasser bound obviously cannot be applied,since it will
approach infinity.

It was also noticed that in cases where mig{M*IQ<l
the value of A\ producing the minimum was always =.5. Since
a similar result had been found for first order systems, this
tended to confirm the idea that a minimization of Mxwould
also minimize MxIx under certain conditions.

Figures 9 and 10 show plots of MI and min{MxIxf
versus frequency to indicate the large decrease caused by
the application of linear rotation. Figure 9 is an example
of the case where min fM*Ig {1 for the complete range
We & w & Ws 5 SO that an error bound can be found in this
Zggire range. On the other hand, Figure 10 is an example of

the case where min fM*I*?< 1 only over part of the range.

Thus a bound cannot be found over the whole range of interest

in this instance.
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The case where the Garber-Rozenvasser bound could
not be applied over any of the frequency region of interest
was found to occur most often in the investigation of min{M*Iﬁ
for typical systems. The case normally occurred as the par-
ameter k was being increased while a remained constant,or

while a was being decreased while k remained constant.

Minimization of error estimate

For those cases in which the bound could be applied,
an investigation was made to discover whether or not the
minimization of MxIy would also minimize the bound. This was
found to be correct, and since A= -.5 was always the optimum
value, meant that the calculation of the bound was reasonably

straightforward.



