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Abstract 

This thesis describes a design and implementation of a Viterbi decoder using 

FPGA technology. 

We use the sliding block filtering concept, the pipeline interleaving technique and 

the fonvard processing method to construct the design. We use VHDL to describe the 

design, Synopsys tools to synthesize it and Xilinx tools to target the design to an 

XVC300-8 device, 

Besides the above, the principle of the Viterbi Algonthm, two kinds of structures 

of the Viterbi decoder, VHDL coding style, a high level synthesis strategy and the 

methodologies of FPGA design are briefly discussed. 

We also present complete source code, scripts and reports for this design in 

appendixes. 
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Chapter 1 

Introduction 

1.1 Motivation 

With the growing use of digital communication, there has been an increased 

interest in high speed Viterbi decoding design within a single chip. Advanced field 

programmable gate anay (FPGA) technologies and well developed electronic design 

automatic (EDA) tools have made it possible to realize a Viterbi decoder with the 

throughput at the order of Giga-bit per second without using off-chip processor(s) or 

mernory. The motivation of this thesis is to use VHDL, Synopsys synthesis and 

simulation tools to realize a 1 Gbitds Viterbi decoder targeting Xilinx FPGA technology. 

1.2 Overview 

In communication systems, error control coding techniques play a very important 

role. Described in its simplest terms, error-control coding involves the addition of 

redundancy to transmitted data to provide the means for detecting and correcting errors 

that inevitably occur in any real-world communication system. 

Convolutional coding is one of these techniques. The convolutional encoder 

operates on the source data stream at the bit level and produces a continuous Stream of 

encoded symbols. Each information bit will affect a finite number of consecutive 

symbols in the output stream. 



Convolutional encoding with Viterbi decoding is a Forward Error Correction 

(FEC) technique that is particularly suited to a channel in which the transmitted signal is 

m d y  corrupted by Additive White Gaussian Noise (AWGN). 

The classical method to realize the Viterbi decoder is a .  iterative calculation and 

memory trace-back [3], which is effective for a moderate decoding speed and long 

constrain length. For a high-speed decoder, iterative calculation and memory trace back 

becomes the bottlenecks for the throughput. 

This thesis presents a concurrent method to realize the Viterbi decoder, in which 

sliding block input, concurrent calculations between consecutive blocks and pipeline 

processing techniques are used. With these techniques, the throughput can reach 1 G b k  

1.3 Outline 

The organization of this thesis is as following: In Chapter 2, Viterbi algorithm and 

its properties are reviewed. Chapter 3 describes the principle of the design, the structure 

of the decoder and detailed component design. In Chapter 4, the verification method, 

simulation environment and performance evaluations are presented. Chapter 5 covers 

implernentation of the design including VHDL coding, compiling strategy, placement and 

routing as well as back-annotation for the timing simulation. [n chapter 6, cornparisons 

are made with some existing designs. Chapter 7 provides some conclusions. 



Chapter 2 

Viterbi Algorithm 

Viterbi decoding was developed by Andrew J. Viterbi in his seminal papa [l] in 

1967. Since then, other researchers have expanded on his work by fuiàing good 

convolutional codes, exploring the performance h i t s  of the technique, and varying 

decoder design parameters to optirnize the irnpIementation of the technique in hardware 

and software. 

This chapter f is t  gives a bnef description of convolutional encoding. Then the 

Viterbi algorithm is discussed. Finally two properties of the Viterbi algorithm are 

presented for use in subsequent chapters. 

2.1 Convolutional Encoding 

Convolutional codes are usually characterized by two parameters and the patterns 

of n modulo-2 adders. The two parameters are the code rate and constraint length. The 

code rate, kln, is expressed as a ratio of the number of bits into the convolutional encoder 

(k) to the number of channel symbols output by the convolutiona~ encoder (n) in a given 

encoder cycle. The constraint length, K, denotes the "length" of the convolutional 

encoder, i.e. how many k-bit stages are available to feed n modulo-2 adders that produce 

the channel symbols. Figure-2.1 shows a general convolutional encoder. An alternative 

parameter to K is v (=K-1), which indicates there are 2' states in the encoder [2]. The 

content of the K - 1 least signifiant bits of the shift register is denoted as the state. 



adders 

I n 

/ + Output symbols 

Figure-2.1 A general convolutional encoder 

In this thesis, we take R = 1/2, K = 3, the two modulo-2 adders are: : gl = x2 + x1 

2 + 1 (or expressed as: gl = 1 1 1) , go = x + 1 (or g o  = 10 l), This encoder has been 

determined to be one of the best codes for R = 1/2, K = 3, or (2, 1, 3) code for short [3]. 

The corresponding logic diagrarn is s h o w  as Figure-2.2. There are four possible states S 

(=  S,So): 00,01,10,11. 

Input data 
k b itds 

Figure-2.1 . Convolutional Encoder with R = 1 /2, K = 3, gi = 1 1 1, g o  = 1 0 1 



In this encoder, input bits shodd be stable during the encode cycle. The encoding 

cycle starts when the shifi register clock edge OCCLUS. The output of the left-hand flip-flop 

(FF) is clocked into the right-hand flip-flop, while the previous input bit is clocked hto  

the lefi-hand flip-flop, and a new input bit becomes available. Then the outputs of the 

upper and lower modulo-2 adders become stable. The selector clock, which is double in 

fiequency to the register clock, triggers out gl, go dtemati~ely~ forming the channel 

syrnboI sequence. 

If the input sequence is 

010111001010001, 

then the output sequence will be: 

00t l10000110011111 100010110011, 

assuming that the output of both of the flip-flops in the shift register are initially cleared. 

From the above, we cm see that the mechanism of convolutional encoding is 

spreading the single bit information in several consecutive bits. 

2.2 Viterbi Algorithm 

The Viterbi Algorithm is known to be the maximum-likelihood decoding method 

for convolution codes. We use the (2, 1,3) code with gi = 1 1 1, go = 10 1 to explain it. 

The evolution of this four-state encoder can be described using the trellis diagram 

shown in Figure-2.3. The trellis is a time-indexed version of the state diagram. Each box 

corresponds to a state at a given time index, and each branch corresponds to a state 

transition. Associated with each branch is the input bit and the output symbol 



correspondhg to the state transition. Given a hown starting state, every input sequence 

corresponds to a unique path through the trellis. In the trellis, each branch is assigned a 

weight, referred to as the branch metnk, which is a measure of the likelihood of the 

correspoding transition given the noisy channel symbol sequence. Branch metrics are 

typically calculated using Hamming distance, so that the more likeiy path (shortest path) 

through the trellis corresponds to the most likely input sequence. From this point of view, 

the Viterbi algorithm is an efficient method for finding the shortest path through a trellis. 

Input/Output 0/00 1/11 1/0 1 o/o 1 

Figure-2.3. Trellis for convolutional code with 4 states 

The first phase of the Viterbi algorithm is to recursively compute the shortest path 

fiom time n to time n + 1. At time n each state i is assigned a path metric T,' which is 

defïned as the accumulated metric dong the shortest path leading to that state. The path 



meûics at time n + 1 can be recursively calculated in tenns of the path metrics of the 

previous iteration as follows: 

where i is a predecessor state of j and h ,'j is the branch metnc on the transition from 

state i to state j. The qualitative interpretation of this expression is as follows. The 

shortest path Ulto state j must pass through a predecessor state by delkition. If the 

shortest path into j passes through i, then the path metnc for the path must be given by 

the path rnetric for i plus the branch metric for the state transition from i to j. The h a 1  

path metric for j is given by the minimum of dl candidate paths. 

n i e  equation given in (1) is the well-known add-compare-select (ACS) operation. 

The hardware that implements this is referred to as a two-way ACS unir. For example, the 

ACS unit for state 00 in the four-state trellis is shown in Figure-2.4. It outputs the 

updated path metnc and a 1-bit decision d {+,. which identifies the entering path of 

minimum metrîc. Al1 the decision bits should be stored for trace-back use. 

Figure-2.4. the two-way ACS units of state-00 



Connecting four two-way ACS units together, the four-state trellis transition can be 

implemented as shown in Figure-2.5. 

Figure-2.5 four-state trellis transition 

The second phase of the Viterbi algorithm involves tracing back and finding the 

shortest path through the trellis, The shortest path leaduig to a state is referred to as the 

szovivor path for that state. It can be recursively found using the stored decision bits. 

Given the current state Sn and the current decision bit, the previous state Sn-, c m  be 

estimated according to the following trace back recursion: 

Sn.i = (Sn 1 ) d (2) 

Which corresponds to a 1-bit left shift of the current state register with input equal to the 

current state decision bit. 

ARer finding the survivor path, the original message c m  be re-created using a 

table that maps state transitions to the inputs that caused hem,. Table-2. I is the table for 

the(2, 1 ,3 )  codewithgi= l l l , g o =  101. 



Table-2.1 State transition map 

X = Impossible 

2.3 Two Properties of The Viterbi Algorithm 

A property of the trellis which is used for survivor path decoding is that if the 

survivor paths from al1 possible states at time n are traced back, then with hi& 

probability, al1 the paths merge at time n-L, where L is the survivor path length and is 

typically 5v [4]. Once the sunivor paths have merged, the traced path is unique 

independent of the starting state and future ACS iterations. 

Similarly, when starting with unknown initial state metrics (typically set to zero), 

the state metncs afier J trellis iterations are independent of the initial metrics, or 

equivdently, the survivor path wili mage with the tnie survivor path as if the initial 

metrics had been known. The parameter J is the synchronization length and is also 

typically Sv [SI. 

2.4 Summary of The Viterbi Algorithm 

Based on the Viterbi Aigorithm and survivor path merge properties, we can 

summarize the Viterbi decoding process as follows: 



1. For each received channel symbol, calculate the branch rnetric (i.e. Hamming distance) 

between the channel symbol and every possible channe1 symbol in the trellis. 

2. At each decoding cycle, iterate the ACS process for each state to find the path metrics 

and store al1 the produced decision bits. 

3. When the stored decision vectors are long enough (normally > L ), start the trace back 

process using the formula (2) and recover the original message using the state transaction 

table as shown in Table-2.1. 



Chapter 3 

Hardware Design of The Viterbi Decoder 

In prïnciple, the Viterbi algorithm can be easily realized in hardware. The 

complexity of doing so it is detennined by the constra.int length K and the decoding speed 

[6]. To realize a Viterbi decoder with hi& throughput and long constraint length, the 

hardware scale wi I I  be very Iarge, With the development of very large-scale integration 

(VLSI) technology, more and more topologies have been proposed to implement high 

speed Viterbi decoders using application speclxc integuated circuits (ASICs) or FPGAs. 

In this thesis, the concurrent calculation and the pipeline, interleaving techniques are 

introduced into the Viterbi decoder. This structure makes it possible to speedup the 

throughput with only a Iinear increase in hardware complexity. 

In this chapter, we f is t  briefly outline the design of a sequential Viterbi decoder, 

and then give a detailed description of our parallel Viterbi decoder: sliding block decoder. 

Finally, we provide detailed component design. 

3.1 Sequential Decoder 

There are many kinds of structures that c m  be used to implement the Viterbi 

Algorithm. Sequential decoding is the traditional one. Sequential decoding uses several 

memory banks to store, trace-back and decode the decision bits. The typicai architecture 

of this kind of decoder is shown in Figure-3.1. 



Branch Metric Unit 

I ACS Unit I 
1 - initial state 

A~ecis ion  bits - 
Write 
Bank 

Survivor - 
Paùi Merge i 

Bank - 
Read 
Bank  an In ~ n n  OU 

Output 

Figure-3.1. Typical architecture of a sequential Viterbi decoder using rnernory 

Decision memory is usually composed of at l e s t  three separate banks for writing, 

survivor path merging and reading (decoding) at the same time to match the throughput 

of the ACS process rate. While the write bank accepts the decision vectors, the sunrivor 

path merge bank is for finding the suMvor path and the read bank is for producing the 

output Stream. The three memory banks will change roles in the trace-back process in this 

way: 

Write Bank + Merge Bank 3 Read Bank 3 Write Bank . . . 

This sequential architecture is suitable for low throughput requirements and more 

area-efficient for long constraint length codes, The total memory size in depth and width 

is deterrnined by the constraint length of the code. For exarnple, if K = 15, the least total 

rnemory size is 3 XLXN = 3 X 5 (1 5 - 1 )  X 2'15-1' = 3,440,640 bits. So, for moderate 



speed decoders with long constraint lengths, using the sequential structure is a practical 

method. 

Increasing the throughput in this architecture needs more memory banks working 

in parallel and this increases the hardware cost dramatically. 

3.2 Sliding Block Decoder 

For hi&-speed practical implernentations of the Viterbi algonthm, architectures 

are desired that at worst lead to a Iinear increase in hardware complexity for a linear 

speedup in the throughput rate. The sliding block decoder is one such architecture that 

utilize the concurrent calculation and pipeline processing [7]. 

Based on the first property of the survivor path, it is proposed in [7] that the state 

at time n c m  be decoded using only information fiorn the interval n - L to n + L. A 

decoder is called a diding block Viterbi decoder (SBVD). Tt uses a block of received 

channel symbols as an address to access a lookup table, and the table output is the 

decoder output. Unfortunately, this implernentation is impractical, because even for the 

sirnplest code (2,L ,3) with 3-bit soft decision input, the number of the address bits rquired 

for the table is 2L X 3 = 2 X 5 (3 -1) X 3 = 60 bits! However, variations on the concept 

of the sliding block decoder have been used to realize the concurrent Veterbi Algorithm. 

The minimized merhod in [8] and the eqzral fonvard and backward rnethod in [l O] 

are two practical applications of the sliding block decoder concept. These two methods 

are based on the sunrivor path property of the Viterbi algonthm and make use of the 

pipeline and concurrent structures to implement the Viterbi decoder for the (2, 1,3) code. 



The throughputs of these two implementations can reach up to 600 Mbitskec and 

1 Gbitskec, respectively. 

The design in this thesis is also based on the sliding block decoding concept and 

pipeline technique, but the structure is different and sorne hprovements are made in 

area-efficiency. The design uses forwardprocessing and a pipeline sharirtg architecture. 

Since the block length are finite, the ACS and trace-back recursions can be 

unfoldeci and pipelined to yield the systolic architecture shown in Figure-3.2. 

Charnel Symbol Input 

Channe1 
symboI 

Xo pipeline 
O 

- 

- 

- 

? - - 

BM: Branch Metrics Unit 
ACS: Add Compare Select Unit 
SSE: Swvivor State Unit 
TB: Trace-Back Unit 

Synchronization 
stages 

a 

lK+ 1 hFI 

ZK-l 

1 Decoded Output 

Z W  Survivor path merging stages 

Figure-3 -2 Forward processing sliding block decoding 



For each block, starting f%om Stage O, do the ACS calculation for the k t  channel 

symbol pair Xo, get the path metric for each state. Then feed these path metrics into 

Stage L, do the ACS again with the second channel symbol, Xi, get the new path metrics, 

repeat this procedure until the end of the block. Then, compare the four state metrics in 

the survivor srare estimation (S SE) block, get the minimum path metric state which is the 

starting state for the trace-back process. From the trace-back process, the original 

message c m  be retrieved. The S B M  method is equivalent to the best state survivor path 

decoding, hence the survivor path length and synchronization length c m  be reduced to 

L= 2 . 9  141. So for one block of length 2L + M, the decoded bits fiom L to L + Mare the 

most likely original message. 

The performance of this method depends on the value of L. The throughput is 

dete&ed by the decoding length M. Although the number of ACS units scales with M, 

the number of buffers in the pipelines scales with M?. Therefor, it is desirable to achieve a 

given throughput by minimizing the decoding length and maximizing the clock rate. In 

this design, the aim is to achieve the throughput of 1Gbitfs. Since the minimum 

operating dock penod cm reach 12 ns in this design (see later chapters) , if we take M = 

12, we c m  get lGbit/s throughput. In addition, since the decoder outputs M bits per 

clock cycle, M channel symbol pairs need to be read eom the input strearn during the 

same clock cycIe. So only M new channel symbol pairs need to be fed into the decoder 

each cycle- The rest of the 2L symbols have been buffered at the previous cycle. If we let 

M = 2L (Le. L = 6>2.5v), we can make fil1 use of the pipeline buffer resources through 



sharing- In this way, decoding of continuous input blocks with M=2L is analogous to 

pipeline filtering with 2L overlap as shown in Figure-3 3. 

Input Stream 

Decoding 
Cycle t; 

Decoding 
Cycle t + 1: 

Decoding 
Cycle t + 2: 

Output Stream 

Figure-3.3. The pipeline processing flow 

By overlapping these 2L channel syrnbols, we c m  reduce the number of channel 

symbol pipeline buffers from Figure-3.4 (a), which is a detailed form of Figure-3.2 with 

L=3 for example, to Figure-3.4 (b). By sharing the pipeline skew buffers which contain 

the same channel symbols, the number of buffers can be fùxther reduced as shown in 

Figure-3.4 (c). 



LT .+&-----b 

X- - 
L- a x. - *  
"1 4-b LI 

x-2 -b xn-z 

Xn-3 ,-b ) 6 + 3  

x- +mmt+-, ' 
" -, &s 

(b). Total No. of Buffers = 54 (c). Total No. of Buffers = 45 

Figure3 A. Channel symbol improvements 

A more detailed view of the forward processing SBVD architecture for the 

simplified case of L = 3 and M = 6 is shown in Figure-3.5. For illustration, it is divided 

into two parts: the channel symbol pipelines and 6-bit decoder unit. 



Stage 1 : 

Stage4 

Stages: 

Channel Symbol Pipelines decoder unit 

Figure-3.5. Simplified Forward Processing Sliding Block Viterbi Decoder 

Given that the 12-bit decoder works at a clock rate fclk, its thughput rate is 1 2Lik . 

Theoretically, using N of these decoders comected in parallelly, the throughput of the 

composite Viterbi decoder can reach L2Nf,ik, as long as the serial-to-parallel and parallel- 

to-serial shift registers can operate at this speed. this redizes the linear increase in 

hardware complexity for a Iinear speedup in the throughput rate. For example, with N = 2 



the two M-bit decoder uni& process the input Stream blocks alternately as shown in 

Figure-3 -6. 

Input CO Unit 1 at dock t Input IO Unir 1 a! dock t +l 

Input Strcyn: L L L L L L L L L L 

Input to Unit Z at dock r Inp ic  CO Unit 2 ar clodc t+l 

Figure-3.6. Decoding flow for the 2-Unit decoder 

We c m  see that, at each decoding cycle, there are 2L channe1 symbols will be 

input to both units. As such their pipelines cm be shared with each other. Figure-3.7 

shows the structure of a 2-unit 6-bit decoder, that forms a 12-bit decoder. The throughput 

of such a decoder can reach 12Llk. 



Figure-3.7. The structure of a 12-bit decoder built using two 6-bit decoders 

3.4 Component Design 

hplementation of the Forward Processing SBVD decoder is relatively 

straightfonvard given the high level architecture shown in Figure-3.5. The design consists 

of the following five basic functional components: 

Branch Metric unit (BM). 

ACS unit(ACS). 



Survivor State Estimate unit (SSE). 

Trace-Backunits (TB). 

Pipeline buffers. 

In each unit, there is a register storing al1 outputs. So one pipeline stage is 

accounted per unit. A single clock is used to synchronize al1 units and pipeline skew 

bufTers. The cntical path between the units determines the maximum clock rate. The 

following subsections discuss the details of each unit. 

3.4.1 Branch Metric Units 

For one trellis iteration, each branch metnc (BM) unit accepts two 3-bit quantified 

symbols and produces four branch meû-ics h A. .O1, h )', h .", corresponding to the four 

possible encoder outputs 00, 0 1, 10, 1 1, respectively. The branch metrics are calculated 

using the Hamming Distance measure as shown in Table-3.1 (where x is the hypothesized 

encoded symbol and y is the received symbol) . 

Table-3.1 Hamming Distance measure for branch metric 

The branch metric is the sum of 2 syrnbol metrics, and thus it lies in the interval (0, 14), 

and therefore 4 bits are needed to express the branch metric. From Figure-2.3 we c m  see 

p0,00 = p1.10 p1,00 , p.10 ~10.01 , hll,ll hlO,II = h11.01 
Y 9 9 . We re-define these hs as 



koo, hl1, hlo, kol , respectively. The branch metrics unit c m  be Mplemented using 

inverters and adders as shown in Figure-3.8. 

Input Symbol Gl (3 bits) 

input Symbol G2 (3 bits) 
Am (4 biîs 1 

't-d-- L+,f+ A'' (4  bits) 

1 y--+[xq+ A " (4 bits) 

Figure-3 -8. Branch metric unit 

3.4.2 ACS Units 

ln section 2.2, the 2-way ACS unit and 4-way ACS units were constmcted as 

shown in Figure-24 and Figure-2.5 respectively. In this section, we discuss the detail 

design of the addition, cornparison and selection operations. 

The recursive path metric update results in unbounded word growth due to the 

addition of branch metrics, which are always nomegative. We avoid nomalization using 

the modulo arithmetic approach proposed in [I l ] .  The modulo arithmetic approach 

exploits the fact that the Viterbi Algorithm inherently bounds the maximum dynamic 

range A,, of the path metric to be: 

A,,,& & log& (4) 

where N is the nurnber of states and is maximum branch metric arnong state 

transitions [ 121. 



Given two nurnbers a and b such that 1 a - b 1 < 4 which are to be compared using 

subtraction, a result nom nurnber theory states that the comparison c m  be evaluated as 

( a - b ) mod 2A without arnbiguity. Hence the path metrics can be updated and 

compared using modulo 2A, arithmetic. The modulo arithmetic is implicitly 

implemented by ignoring the path meûic overfiow. The number of bits for the path 

rnetric is: 

For the design of this Cstate decoder, = r log2 ( 2 X 28 ) 1 +- 1= 7 bits. 

Area-efficient ripple carry arithmetic is used to implement the 2-way ACS units since the 

look-ahead carry adder structure offers little speed advantage at the required 7-bit 

precision and increases additional area overhead, especially when the combined delay of 

the add and comparison are considered. By implementing the comparison using 

subtraction, the adder and subtractor carry chains nui in parailel fiom LSB to MSB, 

resulting in an add-cornparison delay that is only one full adder bit delay longer than the 

7-bit ripple carry add delay done as shown in Figure-3.9. 



Figure-3.9. Block diagram for 7-bit adder and 7-bit comparator. 

The four-state ACS unit updates path rnetx-ics for a single iteration of the îrellis. 

Each unit consists of four two-way ACS units. On each clock cycle, four path meûics 

fiom the previous stage are input and four updated path metrics are output. Each updating 

also generates a vector of four 1 -b decisions that are output to the trace-back unit. Al1 

outputs are registered in flip-flops. After adding the flip-flop, the four-way ACS unit can 

be constnicted as shown in Figure-3.10. 



Figure-3.1 0. Four-way ACS 

3.4.3 SSE Unit 

To avoid the existence of the critical time path in the SSE unit, four path metrics 

are compared by generating six possible pair-wise comparkons and combining the 

cornparison results to form the minimum path metric selection. The state with minimum 

path metric is registered in flip-flops as one stage of the buffer. The output of the flip- 

flops are the starting state for the trace-back processing. The logic block of the SSE unit 

is shown in Figure-3.1 1. 



I Select Logic I 

Output 

Figure-3.1 1. Logic block of the SSE unit 

3.4.4 Trace-Back Unit 

The trace-back (TB) unit implements a single trace-back recursion based on the 

formula Sn.[ = ( S. 1 ) dS and the state transition map shown in Table-2.1. The current 

estirnated state Sn fiom the previous trace-back unit stage or SSE unit is used to select the 

decision of the current state h m  the input decision vector. The selected 1-b decision and 

the 2-b current state are appropriately combined to produce the estimated state Sn-, for the 

next stage and L.1 (1) is the decoded output. Sn.[ will be registered in Flip-flops to 

implement a one stage pipeline. The logic block diagrarn of the trace-back unit is shown 

in Figure-3.12. 



Sn-, (0) 

Sn-f ( 1) 

Decoded output bit 

Figure-3.12, The logic block of trace-back unit 

3.4.5 Pipeline Buffers 

Unfolding and pipelining the recursive ACS and trace-back calculations requires 

re-timing of the input and output streams via skew buffers, which are implemented using 

flip-flops. The general RXD (widthXdepth) pipeline buffer is shown in Figure-3.13. 

Depth = D 

Input 

Reset 
Clock 1 - 1 

Output 

Figure-3.13. GeneraI W XD pipeline buffer 



Chapter 4 

Design Verification 

4.1 Verification Environment 

To veri@ the design, a sirnplified digital communication mode1 was created as 

shown in Figure-4.1. At the transmitting end, the onginal messages are encoded into 

channel syrnbols, and then the digital signal should be converted into the analog signal. In 

the communication channel, the addirive white Gaussiun noise (AWGN) should be 

added. At the receiving end, the noisy analog signals are quantified into two 3-bit digital 

channel symbols. Through the Viterbi decoder, the original message can then be 

recovered. The performance of the Viterbi decoder c m  be evaluated through comparing 

the recovered message with the original message and calculating the bit error rate (BER) 

at a speci fic energy per symbol tu noise dense ratio, Em0. 

Transmitting end Channel Receiving end 
* 

I 
AWGN 

j 

Figure-4.1. A Simplified Digitai Communication Mode1 
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4.2 Verification Procedures 

The verification procedure is shown in Figure-4.2. It consists of 3 steps. Step 1 is 

creating the simulation environment, including generating a randorn message, 

convo lutional encoding, adding noise and quantization. S tep2 is VHDL simulation and 

production of the decoded message. Step 3 is cornparison of the original message with 

the decoded message, accumulating the message length and the error numbers and 

evaluating the BER for each specific E m 0 ,  if the error numbers are greater than 200. 

(Selecting 200 errors to calculate the BER is for the purpose of statistical accuracy.) 

Stepl and step 3 are implemented with C/C++ programs. Synopsys "vhdlsim" performs 

step 2 with a VHDL testbench. A Perl prograrn under Unix integrates these three steps, 

controlling the executions of the C/C++ prograrns and vhdlsim. 



Step 1 
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Random Message Generator + 
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Emr Nurnber m~* 
Calculate: 
BER= No. of  Ermr~otai Msgs 

Figure-4.2 .The flow chart of the simulation procedure. (+> 



4.3 Simulation Environment 

The Random Message Genemtor creates a stream of random binary data Its 

length c m  be changed by an input argument. This stream of data is written into a 

"data.datW file in ASCII code format for later comparison. The generation of the random 

binary data is as follows: Use the rand( ) fiuiction in C* to generate a unifonnly 

distributed random number between O and RAND-MAX. If the random nurnber is 

greater than half of the range of the random variable, we assume it to be 1, otherwise, 0. 

The ConvolutionaZ Encoder performs the specified convo Iutional encoding. In 

this design, it converts the message into the channel symbols of the (2, 1, 3) code with gi 

= 111 andgo= 101. 

Ant@oda[ Mapping converts ones and zeroes of channel syrnbols into antipodal 

base-band signals. Here, we assume that it translate zeroes to +ls and ones to -1s. 

Adding Noise to the antipodal signals involves generating Gaussian random 

nurnbers, scaling the numbers according to the desired energy per symbol to noise density 

ratio, Es/2V0, and adding the scaled Gaussian random numbers to the antipodal signals. 

Since the C H  library only provides a uniform random nurnber generator, 

rand( ) , we had to make use of the relationships among the uniform, Rayleigh, and 

Gaussian distributions[l3], Given a uniform random variabIe U in (O, l), a Rayleigh 

random variable R can be obtained by: 

where a' is the variance of îhe Rayleigh random variable, and Gaussian random variable 

G can be obtained by: 



G = R  COSU; 

where U ' is another uniform random variable in (0,2z). 

In the AWGN channel, the channel symbols are corrupted by additive noise, n(t), 

which has the power spectnim No/2 wattsmz. The variance o2 of this noise is equal to 

Nol2 . If we set the energy per symbol Es equal to 1, then Es/& =1/2a2 and O= 

dl/( 2( Es /No )) . thus, given the desired Es/No, the standard deviation of the additive 

white Gaussian noise (AWGN) can be found- This standard deviation of the AWGN can 

be used to generate Gaussian randorn variables to simulate the noise. Adding this noise to 

the antipodal signal produces the noisy signal. 

An ideal Viterbi decoder would work with infinite precision, or at l e s t  with 

floating-point nurnbers. in practical systems, the received channel symbols are usually 

quantized with one or a few bits of precision in order to reduce the complexity of the 

hardware. If the received channe1 symbols are quantized to one-bit precision (< OV = 1 , ~  

OV = O), the result is called hard-decisiun data. If the received channe1 syrnbols are 

quantized with more than one bit of precision, the result is called soft-decision data. A 

Viterbi decoder with soft decision data inputs quantized to three or four bits of precision 

can perform about 2 dB better than one working with the hard-decision input [ 141. The 

usual quantization precision is three bits. More bits provide little additional improvement 

[lS]. In our design, every noisy signal is mapped into a 3-bit digital symbol. We assume 

the received signal levels in the absence of noise are -IV = 1, + l V  = O. Since the channel 

is modeled as additive white noise with Gaussian distribution and the power spectrurn 

No/2 wattsm, the received signal has the mean and standard deviation: 

1 , O , ~ = N O / ~ .  



A uniforni, three-bit soft decision quantizer has best performance if the decision 

regions are given by: 

D = q x c n ,  

The relationship of D to the quantizer decision regions is shown in Figure-4.3. 

The q value should be in the range of 0.45 to 0.71 [L4]. If we take q = 0.5, then 

D = 0.5 x 4 1/2 Es/%. 

Figure-4.3. The uniform quantization 

For the quantified channel symbols to be read b y the VHDL testbench, they must 

be converted into a text file in ACSII code format. The file is named "quntzd.datV. 

The C/C+ source code perfomiing fiom the generating of the random message 

(in data-dat) to producing the quantified channel symbols file (in quntzd-dat) is provided 

in Appendix A. Appendix B is an example of the "data.datW file. There is no return 



character between the rows in this file. Appendix C is an example of the "quntzd-dat" file. 

The length of both files is the nurnber of bits and can be controlled by an input argument. 

4.4 VHDL Simulation 

The Viterbi decoder and its testbench are described in VHDL. They can be 

simulated with Synopsys "vhdlsirn". The testbench rads the "quntzd-dat" file as the 

stimuli for the Viterbi decoder simulation. The simulation result with Synopsys 

"vhdlsim" is the decoded data which is output to a file, "decoded.dat", an example of 

which is shown in Appendix D. Before synthesinng, only fùnctional simulation is 

performed. After placement and routing, timing simulation can also be done for the back- 

annotated VHDL file. 

4.5 Evaluating the Performance 

Evaluation includes comparing the "data.datn file with "decoded.datW file, 

accumulating the message length and error numbers, and if the error number is greater 

than 200, calculating the BER at the current E n o  with the formula: 

BER = Error number / total message length. 

Then the E m o  is increased by 0.5 and the process returns to stepl in Figure-4.2. After 

obtaining every BER versus E f l o  fiom 1 to 5, the curve in Figure44 can be plotted 

using MatLab. 



Figure44 BER versus E n o  



Chapter 5 

Implementation of the Design 

5.1 Implementation Design Flow 

The implementation design flow is shown in Figure-5.1 and consists of the 

following steps : 

1. Start with a hctional VHDL description of the design. 

2. Using Design Analyzer or Design Compiler in Synopsys check if there are any errors 

in the VHDL file and determine if the description can be synthesized. 

3. After determining that the circuit can be synthesized, simulate to verify that the VHDL 

description performs the desired function. If it does not work as desired, rnodie the 

VHDL code. 

Repeat steps 2 and 3 until the VHDL source code is functionally correct and can 

be synthesized. All the VHDL source code is provided in Appendix D. 

4. Before synthesis, the compiling strategy and technology libraries must be defined. In 

this design, obtaining the fastest speed was chosen as the compilation strategy. The 

Xilinx-Virtex series is selected as the technology Iibrary. En Figure-5.1, these tasks are 

represented as inputs to the synthesis step. 

5. Synthesize the VHDL description into a technology-specific gate-level netlist. 

6. After synthesizing the design, obtain the timing report and FPGA area report as (shown 

in Appendix E). If the reports do not meet the design goals, they must be analyzed to 



determine the modifications to be made. This process is iterative and might require 

modi@ng the original VHDL code or trading-off between the circuit speed and the area. 

7. Save the synthesized design as a SEDIF file, which can be recognized by NGDBuild in 

Xilinx Alliance. Use the DC2NCF program to translate the Synopsys constraint DC file 

to a Netlist Constraints File (NCF). Step 2 to 7 are performed through a script file 

provided in Appendix F. 

S. Run NGDBuild on the SEDIF file to create an NGD file. At the meantirne, input the 

UCF (User Constraint File), which limits the longest delay between the stages not 

exceeding 12 ns, to NGDBuild. 

9. Run the MAP program on the NGD file to create a mapped NCD file. 

10. Run PAR on the NCD file to place and route the design. 

1 1. Run NGDAnno on the routed NCD and NGM files to create an NGA file. 

12. Run NGD2VHDL on the NGA file to create a VHDL file for simulation with back 

annotation. This step also creates a Standard Delay Format (SDF) file containing timing 

information. Step 8 to 12 are performed by a script provided in Appendix G. 

13. Analyze VHDL code created in step 12 using Synopsys "vhdlan" command and then 

use "vhdlsim" to simulate the back-annotated design. The back-annotated simulation is 

run by executing a script provided in Appendix H. 
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5.2 VHDL Hierarchy 

Hierarchical design in VHDL can make the source code reusable and easier to 

read and debug. Based on the required functional uaits and pipeline stages, the 

hierarchical structure for the design (as shown in Figure-5.2) was constmcted. Each block 

represents a VHDL entity, that cm be independently tested and synthesized to obtain the 

timing and FPGA area reports. 

1 

4-Way ACS Sumivor State Decision bits Trace-Bac k Output 
Skew Buffer Unit Gtimate Unit Skew Buffer Unit Skew buffer 

Figure-5.2 VHDL hierarchy 

TOP is the top-level block of the Vitehi decoder. It is a pure structural modehg 

architecture, which is mainly composed of three VHDL staternents: component 

declaration, signal declaration, and component instantiation. Through compiling TOP 

with the Synopsys Design Compiler, the critical timing path can be found and the total 

area and power consumption can be estimated for the design. If these parameters do not 



meet the requirements, the component that effects these parameters can in turn be 

modified. 

The 4-way ACS unit is dso a pure stnrctural modeling architecture. It instantiates 

the branch metric unit and the 2-way ACS unit, combining Figure-3.9 and Figure-3.1 1 

together. There are hvo pipeline stages in the 4-way ACS unit. Putting the branch metric 

unit and the 2-way ACS unit in an entity rnakes the top level architecture simple and 

readable. 

The buffer (width, depth) component is a parametenzed entity. It is instantiated as 

pipeline buffers for channel symbols, decision bits and output bits by giving the specific 

width and depth parameters required. 

The branch metric unit instantiates the half adder component and the full adder 

component to realize the arithmetic addition instead of just using "+" to perfom it. The 

reason for this is explained in section 5.4 under coding style consideration. 

The rest of the blocks are behavioral modeling structures in which concurrent 

signal assignment statements and logic algebra expressions are used. These expressions 

will automatically instatiate Xilinx primitives or macros to implement the functions. 

5.3 Xilinx Virtex architecture 

To get the best VHDL coding style, the Virtex architecture must be understood. 

The basic building block of the Virtex CLB is the logic cell (LC). In Figure-5.3, the CLB 

contains four LCs organized as two slices. Figure-5.4 shows a more detailed view of a 

single slice (Le. half the CLB). 
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Figure-54 Block Diagram of a single-slice Virtex CLB 

An LC includes a Cinput function generator, carry logic and a storage element. 

The function generator is implernented as a 4-input look-up table (LUT) and can 

implement any Cinput logic function. The output fkom the Cinput LUT in each LC 

drives both the CLB output and the D-input of the flip-flop. Each additional Zinput 

dedicated AND gate per LUT implernents an efficient 1 -bit multiplier. 

The most relevant feature of the CLB is the dedicated carry logic which is 

required to implement fast, efficient arîthrnetic functions shown in Figure-5.5. There are 

two separate carry chains in the Virtex CLB, one per slice. The height of the carry chain 

is two bits per CLB. The logic consists of a 2-input MUX (MUXCY) and an XOR 

(XORCY) gate. The XOR gate allows a 1-bit full adder to be implemented within a logic 

ce11 (LC). The dedicated ca ry  path is used to cascade LUT functions for implernenting 



wide logic functions. This reduces logic delays due to the decreased number of logic 

Zevels even for very high fan-in function [16]. 

Figure-5.5 Carry Logic Diagram 

5.4 Coding Style Considerations 

When designing with VHDL, it is important to consider the coding style. 

Different coding styles will produce different synthesis results for a specific technology. 

The Xilinx tool has a technology specific library that takes advantage of specialized logic 

on their devices. The Synopsys tool recornmends that you use this library because it 

provides improved performance and increases the accuracy of the area and timing 

predictions in the Synopsys environment. But you still should take each particular 

application into consideration. For example, in this design, if we use the VHDL code 

show in Figure-5.7 to describe the branch metric unit, after synthesizing we will get the 

area and timing report shown in Figure-5.8 and schematic diagram shown in Figure-59. 

Although the "add" operation syrnbol "+" will automatically instantiate a macro for a 4- 

bit adder in Xilinx tibrary, the synthesized results is not the minimum area and fastest 



speed. The reason is that there are 6 inverters before the add operatioa They are 

implemented with 6 separate LUTs and can not be combined into the LUTs that 

implement the "+" macros because macros are untouchable. As a result, the area and the 

delay increase. 

Iïbrary IEEE; 
use IEEE.std_logic-ll64.aii; 
use iEEE.std_Iogic-arithaii; 
use EEE-std-logic-wignedall; 

entity bm is 
Port ( 

sym: in std-Iogic-vec tor (5 downto O); 
bmOO: out std-logic-vector (3 downto O); 
bml1: out std-logic-vector (3 downto O); 
bmlO: out std-logic-vector (3 downto O); 
bmO 1 : out std-logic-vector (3 downto O); 
clk, reset: in std-logic); 

end bm; 

architecture arch-bm of bm is 

signal nsym: std-logic-vector(5 downto O); 
signai bmOOt,bmO 1 fbml Ot,bm 1 1 t:std-logic-vec tor(3 downto O); 

begin 
gemsym: for i in O to 5 generate 

nsym(i)<=not sym(i); 
end generate getnsym; 

bmOOt<= (O'&sym(5 downto 3)) + (U'&sym(2 downto O)); 
bmO ltc= (U'&sym(5 downto 3)) + (0'&nsym(2 downto O)); 
bmlOtc= (Q1&nsym(5 downto 3)) + (O'&sym(2 downto O)); 
bml 1 te= (D'&nsym(S downto 3)) + (0'&nsym(2 downto O)); 

process(ck,reset) 
begin 
if resep'l ' then 
bm00~="0000"; 
bm11~="0000"; 
bm 1 O~="OOOO1'; 
bmO i~="OOOOt'; 
elsif clkkvent and c i k ' l  ' then -CLK rising edge 
bmOO<=bmOO t; 
bm0 lc=bmO 1 t; 
bmlO~=bmlOt; 
bml l<=bml lt; 
end if; 



end process; 

end arch-bm; 

Report : fPga 
Design : bm 
Version: 2000.05 
Date : Wed Oct 4 l6:57:54 2000 
***************************************** 

LUT FPGA Design Statistics 

* Core Cell Statistics * 
Number of 2-input LUT celis: 6 
Number of Core Flip Flops: 16 
Number of Core 3-State Buffers: O 
Number of Other Core Celis: 16 
Total Number of Core Cells: 70 

Report : M-iing 
-path fùu 
-delay max 
-maxqaths 1 

Design : bm 
Version: 2000.05 
Date : Wed Oct 4 165754 2000 
......................................... 

Operating Conditions: WCCOM Library: aga-virtex-6 
Wire Load Model Mode: top 

Startpoint: sym<3> (input port) 
Endpoint: bm 1 O-regG> 

(nsing edge-triggered flip-flop clocked by clk) 
Path Group: clk 
Path Type: max 

Des/Clust/Port Wire Load Model Library 

Point hcr 
- - - - -- - - - - 

dock (input port clock) (tise edge) 0.00 
input extemal delay 0.00 
symc3> (in) 0.00 
U54/0 (LUT2) 2.08 
add_28/plus/plus/A<O> (bmxdw-add-4-1) 0.00 
add-2 8/plus/pIus/A-LUT,'LO @ WLUT2-L) 0.58 

Path 

0.00 
0.00 f 
0.00 f 
2.08 f 
2.08 f 
2.66 f 



add-28/plus/plus/A~CY/LO (MUXCY-L) 0.90 3.56 f 
add-28/plus/pIus/A-CY~1 IL0 (MUXCY-L) 0.05 3.61 f 
add-28/pluslpIuslA~CYY2/L0 (MLJXCY-L) 0.05 3.66 f 
add-2S/pIus/pIus/A-XORR3/0 (XORCY) 1.13 4.79r 
add-2S/pIus/pIus/Si3> (bm-xdw-add-4-1) 0.00 4-79 r 
bml O-regc3HD (FDC) 0.00 4.79r 
data arriva1 time 4.79 



Figure-5.9 The schematic diagram for BM using "+" for the add operation 



If we use the VHDL code provided in Appendix D to describe the branch metric 

unit in which a 3-bit adder is composed of a 1-bit half-adder and two 1-bit full-adders, 

after synthesizing we will get a better area report and timing report as shown in figure- 

5.10. The corresponding schematic diagram is shown in Figure-5.1 1. The reason is that 6 

inverters will be  combined with the half-adders and the full-adders into LUTs in the 

process of compiling since al1 of the instantiations can be ungrouped. 

**************************************** 
Report : fpga 
Design : qunt2bm 
Version: 2000.05 
Date : Sun Sep 3 11:22:36 2000 
***************************************** 

LUT FPGA Design Statistics 

* Core Ce11 S tatistics * 
Number of 2-input LUT cells: 5 
Number of 3-input LUT cells: 6 
Number of 4-input LUT cells: IO 
Nurnber of Core Flip Rops: 16 
Number of Core 3-S tate Buffers: O 
Number of Other Core Ceus: O 
Total Number of Core Cells: 37 

Report : timing 
-path fiil1 
-delay max 
-max_paths 1 

Design : qunt2brn 
Version: 2000.05 
Date : Sun Sep 3 11:22:36 2000 
***************************************** 

Operating Conditions: WCCOM Library: xfpga-virtex-6 
Wire Load Mode1 Mode: top 

Starpoint: sym<l> (input port) 
Endpoint: bm00-re&> 

(rising edge-triggered flip-flop docked by clk) 
Path Group: clic 
Path Type: max 



Des/Clust/Port Wire Load Mode1 Library 

Point lncr Path 
- --- - - - - 

dock (input port dock) (rise edge) 0.00 0.00 
input extemal delay 0.00 0.00 r 
symcl> (in) 0.00 0.00 r 
U52/0 (LUT4) 1-78 1.78 r 
U64/0 (LUT3) 1.28 3.06 r 
bm00-regS>/D (FDC) 0.00 3.06 r 
data arriva1 time 3-06 



Figure-5.1 1 nie schernatic diagram for BM without using 

"+" for the add operation 



For the 2-way ACS unit, Since there is not any logic gates needed before add 

algorithm or between add and compare operations, we can use "t" and " <=" to describe 

these two operations respectively. The synthesized result is better than that described 

with half adders and full adders. 

5.5 Choosing the Xilinx Part 

AAer compiling the TOP entity, the FPGA area and timing report shown in 

Figure-5-12 generated. Normally the area report is optimistic because the layout tool uses 

additional CLBs as feedthroughs for routing. Although the Virtex device XCVZOOE has 

4704 flip-flops, which is more than we need in the design ( 3598 flip-flops) , afker 

mapping the design into Xilinx CLB, we can see the number of slices are not enough for 

the design. So the Virtex device XCV300E (it has 3072 slices while XCV200E has only 

2352 slices) had to be selected to implernent this design. 

Report : fpga 
Design : top 
Version: 2000.05 
Date : Mon Oct 9 11:27:25 2000 
**************************************** 

* C o r e  C e 1 1  Statistics * 
N u m b e r  of 2-input LUT cells: 
N u m b e r  of 3-input LUT cells: 
N u m b e r  of 4-input LUT cells: 
Number of C o r e  F l i p  Flops: 
Number of C o r e  3-State Buffers: 
N u m b e r  of Other Core Cells: 



T o t a l  Number of Core C e l l s :  1 1 2 6 1  

* P o r t  Statistics * 
Number o f  Input P o r t s :  74 
N u m b e r  of O u t p u t  P o r t s :  1 2  
Number o f  B i - d i r e c t i o n a l  P o r t s :  O 
T o t a l  N u m b e r  o f  P o r t s :  86 

* P a d  C e 1 1  S t a t i s t i c s  * 
N u m b e r  of Input P a d s :  74 
N u m b e r  o f  Output P a d s :  1 2  
Number of Clock P a d s :  O 
T o t a l  Number o f  Pads C e l l s :  8 6  

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
Report : timing 

-path full 
-delay max 
-max_paths 1 

Design : top 
Version: 2000.05 
Date : Sun Nov 12 16:56:56 2000 
************* t** f***********************  

Operating Conditions: WCCOM Library: xfpga-virtexe-7 
Wire Load Model Mode: top 

Startpoint: stage~0/acs3/sm~regcO~ 
(rising edge-triggered flip-flop clocked by clock) 

Endpoint: stage-l/acsl/sm-regc0> 
(rising edge-triggered flip-flop clocked by clock) 

Path Group: clock 
Path Type: max 

top xcv3 0 0e-7-avg xfpga-virtexe-7 

Point Incr Path 

clock clock (rise edge) 0.00 o. O0 
clock network delay (ideal) 0.00 0.00 
stage-O/acs3/sm-regcO>/C (FDC) 0-00 0.00 r 
stage-0/acs3/sm-regcO>/Q (FDC) 2.30 2-30 f 
stage_O/acs3 /smc0> (ACS) 0-00 2.30 f 
stage-O/@-outcO> (acs4) 0.00 2.30 f 
stage-l/gml-incO> (acs4) 0-00 2.30 f 
stage-l/acsl/sml<O> (ACS 1 0.00 2-30 f 
stage~l/acsl/add~23/plus/p1us/A~0~ (ACS-xdw-add-8-0) 

0.00 2-30 f 
stage~l/acsl/add~23/plus/p1us/AALUT/LO (DWLUT2-L) 0.43 2.73 f 
stage~l/acsl/add~23/plus/p1us/A~CY/LO (MUXCY-L) 0.43 3.16 f 
stage~l/acsl/add~23/plus/plus/AAXORRl/0 (XORCY) 2.02 5.18 r 
stage-l/acsl/add-23/plus/plus/S<l> (ACSxdw-add-8-0) 

0.00 5-10 r 
stage,l/acsl/lte-30/leq/leq/Acl> (ACS-xdw-comp-uns-8-0) 

0.00 5-18 r 
stage-l/acsl/lte-30/1eq/1eq/A~LUT~1/LO (DWLUTS-L) 0.43 5-61 r 
stage-l/acsl/fte-30/leq/leq/A-CYY1/LO (MUXCY-L) 0.43 6.04 r 
stage~1/acsl/lte~30/leq/leq/A~CYY2/L0 (MUXCY-L) 0.07 6.11 r 



stage-l/acsl/lte-30/ieq/leq/A-CYY3/L0 (MUXCY-L) O -07 
stage-l/acsl/lte-30/ieq/leq/A-CYY4/L0 (MUXCY-L) 0-07 
stage-l/acsl/lte-30/Zeq/leq/leq/~~CY~S/LO (MtTXCy-L) O -07 
stage-l/acsl/lte-30/leq/leq/AACYY6/L0 (MUXCY-L) 0.07 
stage-i/acsl/lte-30/leq/leq/A-CN/O (MUXCY) 1.97 
stage-l/acsl/lte-30/ieq/leq/Ieq/AAGEEB (ACS-xdw-comp-uns-8-0) 

O -00 
stage-l/acsl/U43/0 ( L W 3  ) 1.33 
stage~i/acsl/srn~regcO~/D (FDC) O .O0 
data arriva1 t h e  

The timing values reported are the pre-layout values. Pre-layout delays are 

evaluated by a statistical model, which is an approximation. The pre-layout results 

usually are pessiinistic and typically differ fiom post-layout by 10 to 15 percent if the 

average wire load model is used [17]. From the timing report we can see that the data 

arriva1 tirne for the longest path (Le. critical path) is 9.69 ns, which is srnaller than our 

design aim of 12 ns. This means the selection of the speed grade "-8" is reasonable. So in 

the next step, we use this synthesized result to place and route targeting XVC300E-8. 

5.6 Placement and Routing 

Before place and route, two other processes need to be done. First, the netlist file needs to 

be converted into an NGD (Native Generic Database) file. NGDBuild performs this step. 

It reduces al1 components in the design to NGD primitives, checks the design by running 

a Logical DRC (Design Rule Check) on the converted design and writes an NGD file as 

output. In this step, the User Constraints File (.ucf file) needs to be input to NGDBuild. In 

this design we specify a timing constraint that limits the longest time delay to12 ns in 

"top.ucfl file. The second step is mapping the NGD file to a Xilinx FPGA. M M  executes 

this step. It maps the logic in the design to the components (logic cells, VO cells, and 

other components) in the target device. The output is an NCD (Native Circuit 



Description) file - a physical representation of the design in temis of the components in 

the Xilinx Virtex chip. The NCD file can then be placed and routed. 

There are two different design flows that can be used to implement the placement 

and routing: 

1. First run the PAR to place and route. If there are a few paths do not rneet your 

requirement, use Floorplanner andor FPGA Editer to modify hem manually. If there 

are too many paths that do not meet your requirement, modiQ the user constraint file 

and run the PAR again or choose a higher speed grade part. 

2- First mn Floorplanner to manually placing the selected logic into the resources of 

the target device. Next, nui MAP and PAR to fit the design into the target FPGA using 

the Floorplan constraints. 

In Our design, the first method was used, because there were too many critical 

paths existing between the consecutive stages so that the manual placement and routing 

through Floorplanner is hard to reach the expected result. After placement and routing, 

the PAR report is obtained as shown in Appendix 1, which indicated that the maximum 

delay between the flip-flops, is 10.140 ns. Theoretically this means the chip can work at 

the dock cycle of 12 ns in the standard environment. The layout is shown in Figure-S. 13. 





5.7 Back Annotation and TransIation to VaDL 

The back-annotation process generates a generic timing simulation model. In the 

Xilinx Development System, NGDAnno back-annotates timing information using the 

NCD file produced by PAR, and the NGM file produced by MAP. The NCD file, 

represents the physical design. The NGM file represents the logical design. NGDAnno 

distributes timing information associated with placement, routing, and block 

configuration fkom the physical NCD design file into the logical design represented in the 

NGM file. NGDAnno outputs an annotated logical design that has a a g a  (Native Generic 

Annotated) extension. The NGA file then is input to NGD2VHDL, which converts the 

back-annotated file in Xilinx format into VHDL format for simulation. NGD2VHDL also 

produces the SDF (Standard Delay Format) file which is used by Synopsys simulation. 

5.8 Simulation with Timing Delays 

After NGDSVHDL produces the VHDL file and SDF file, we again use Synopsys 

"vhdlan" to compile the VHDL file and "vhdlsirn" to sirnulate it with the SDF file. From 

Figure-5.12, we can see that the longest path is located between two adjacent ACS 

stages, which can be simplified as in Figure-5.14. The simulation waves in Figure-5-15 

shows the longest path between two stages is about 10.8 ns. This again verifies that the 

design can work at 1/12ns= 83.3 MHz and therefore the throughput can reach 1 Gbit/s 

since each clock cycle 12 bits of output will be produced. 
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Chapter 6 

Comparison with Existing Designs 

Two designs with the same constraint length have been selected for comparison. 

Although differences in technology and design style make the cornparison somewhat 

misleading, it still c m  be seen that doing this design is worthwhile. The cornparison is 

summarized in Table-6.1. 

Daim 1 Constmint hplh 1 Thmughput ( Mbitk) 1 Coding ,gain @10-' BER 1 Tec hnoIogy 

Pl  3 600 Less !han 3.4 dB 12p CMOS 

Table-6.1 Cornparisons with otha Viterbi decoder designs 

This thesis 

Gerhard Feîfsveis [8] designed a R=1/2, K=3 Viterbi decoder using the minimized 

method with 1 . 2 ~  CMOS technology in 1990. Its throughput is 6OOMbitk. The chip area 

is 1 70rnm2. in comparison, the minimized method is not a maximum likelihood algonthm 

because the estimates of the states at either end of the decode block are not based on al1 

of the available data- A true maximum likelihood estimate is based on the entire 

observation interval and hence the coding gain of the sliding block Viterbi decoder 

method always upper bounds the minimized method for the same interval parameters. 

Peter J. Black and Teresa H.-Y. Meng [1 O] designed a Viterbi decoder of (2,1,3) 

code using the hybrid (forward and backward) processing method with 1 . 2 ~  double-metal 

3 LOO0 6-  2 dB Xilinx Virtex XCV30OE 
(0.18 pm CMOS) 



CMOS technology in1996. Its throughput is 1Gbitk The chip area is 81mm2. It has 3.4 

dB coding gain at 10" BER. In cornparison, the hybrid processing method accumulates 

the path metrics in the trellis through n-L to n-1 (forward) and through n+L to n t 1  

(backward) and at n selects the state which has the minimized paîh metric as a trace back 

state. In addition, there is no synchronization stage in the trace back process in the hybrid 

method. So the sumïvor path length is actually one half shorter than the forward 

processing method. Hence the coding gain of the former is smaller than that of the latter. 

The disadvantage of the fonvard processing method is that it has to use 2402 flip- 

flops for the pipeline bufEers compared with o d y  1188 flip-flops in the forwad and 

backward method [IO]. 



Chapter 7 

Conclusion 

7.1 Summary 

A sliding block Viterbi decoder was designed that combines the filterhg 

characteristics of the sliding block decoder with the computation efficiency of the Viterbi 

algorithm. The finite memory length (4L) of the Viterbi algorithm allows decoding of the 

interval n-Ml2 to n+M/2 based only on the input symbols over the interval n-MD-L to 

n+MR+L. Using the forward trellis processing method with the pipeline interleave 

structure unfolds the trellis iteration algorithm into concurrent calculations. Therefore the 

decoding speed is MLik and can be M e r  linearly increased with a linear increase in the 

hardware complexity. 

The design was descrîbed in hierarchical VHDL, synthesized with the Synopsys 

tools and irnplemented using Xilinx Virtex. After the timing simulation with back 

annotation, the design was targeted ont0 an XCV300E-8 working at a fkequency of 

83.3MHz, hence providing 1 Gbitk of throughput. 



7.2 Conclusion 

Based on the design, simulation, implementation and evaluation for the sliding 

block  vite^ decoder, the following conclusions are drawn: 

1. The sliding block method to implement the Viterbi decoder allows the use of hardware 

with a limited processing speed to achieve a very high throughput rate. Tt is a linear scale 

solution. 

2. The performance of the forward processing with the slidùig block method is better than 

that of hybrid processing, but the area of the former is larger than the latter. 

3. To achieve the best synthesized result fiom the VHDL coding style, both the 

technology structure of the targeting device and your application logic should be taken 

into consideration. 

7.3. Further Work 

To make this design to work in real world, there are still some peripheral circuits 

that need to be designed such as hi&-speed parallel-to-serial/serial-to-parallel shift 

registers and a synchronization circuit. 

Using similar components, other types of sliding block Viterbi decoder with 

longer constraint lengths c m  also be constructed, but the suMvor path length, the path 

metric width and processing structure would have to be changed. 



Appendix A: C/C++ Source Codes 

// ****** This is the main program: enc0der.c~ 

#indude cstdlib.h> 
#indude cmalloc.h> 
#indude cs tream. h> 
#include <math,h> 
#indude cstdio.h> 
#include ctime,h> 
#indude ciostream,h> 
#indude cfstrem,h> 

#indude "vdsim-hW 
#include "cnv-encd.ccW 
#indude "addnoise,ccm 
#indude "quantization. cc" 

extern void c-encd(int gi21 [41.  long data-len. int *in-array. int 
* outarray) ; 
exte-rn void addnoise(f1oat es-ovrnO, long datalen, int 
*in-arxay,float *outarray); 
extern void quantization(int gr21 [ 3 1 ,  float es-ovr-no, long 
channel-length, f loat *charnel-output-vector, int 
*decoder-outputmatrix); 
main(int argc,char *argv[] ) 
C 

FILE *f ileptr; 
long t,rnsg-length=MSG-LEKchannel-length, ltime; 
int *onezer, *encoded, *quantizationout; 
char *charptr; 
int m, stime, FR=2, SN=l; 
float *splusn; 
f loat es-ovr-n0 ; 
int sC21 [KI = {Cl, 1, 11, Cl, O, 1)); 
m = K - 1 ;  
es-ovr-n0 = f loat (atof (argvC11) ) ; 
msg~length=msg~length+(2*width-(2+msg~length)%(2*width)); 
channel-length = ( msg-length + m ) * 2; 

onezer = (int *)malloc( msg-length * sizeof( int ) ) ;  
encoded = (int *)malloc( channel-length * sizeof(int) ) ;  
splusn = (float *)malloc( channel-length * sizeof(f1oat) ) ;  

quantizationout = (int *)malloc( msg-length * sizeof( int ) ) ;  

ltime = time(mL); 
stime = (unsigned int) ltirne/2; 
srand(stime) ; 

/ *  generate the random data and write it to the output array * /  
for (t = O; t c msg-length; t++) 

* (  onezer t. t ) = (int} ( rand0 / (RAND-MZLX / 2 )  > 0.5 ) ;  



/*************** Write the random dada to "datal.datn *********/ 

charptr =(char *)malloc( channel-length * sizeofl char ) ) ;  
for (t=O;tcmsg-length; ttt) 
* (charptrtt) =0x30+* (onezertt) ; 

fileptr = f~pen("datal,dat",~wb~ ) ;  - .  

fwrite ( charptr, sizeof (char), mg-length, fileptr ) ; 

£close (f ileptr) ; 

addnoiçe(es-ov~n0, channel-length, encoded, splusn); 

free(onezer1; 
free(encoded1; 
f ree (splusn) ; 
f ree (quantizationout) ; 



int m; / *  K - 1 * /  
long t, tt; / *  bit time, symbol time * /  
int j, k; / *  loop variables * /  
int *unencoded-data; / *  pointer to data array * /  
int shif t-reg [KI ; / *  the encoder shift register * /  
int srhead; / *  index to the first elt in the sr * /  
int P, q; / *  the upper and lower xor gate outputs * /  

/ *  allocate space for the zero-padded input data array * /  
unencoded-data = (int *)malloc((input-len + m)*sizeof(int)); 
if (unencoded-data == NuLL) { 

printf("\ncnv-encd-c: Can't allocate enough memory for 
unencoded data ! Aborting, . . ) ; 

/ *  read in the data and store it in the array * /  
for (t = O; t c input-len; t++) 

* (unencoded-data + t 1 = * (in-array + t ) ; 

/ *  zero-pad the end of the data * /  
for (t = O; t c m ;  t++) { 

*(unencoded-data + input-len + t) = 0; 
1 

/ *  Initialize the shift register * /  
for ( j  = O; j c K; j++) { 

shift-reg[jJ = 0; 
1 

sr-head = 0; 

/ *  initialize the channel symbol output index * /  
tt = 0; 

/ *  NOW start the encoding process * /  
/*cornpute upper and lower mod-two adder outputs,one bit at a time * /  

for (t = O; t c input-len + m; t++) { 
shif t-reg [sr-headl = * ( unencoded-data + t ) ; 
p = 0; 



q = O; 
for (j = O; j c K; j++) { 

k = (j + sr-head) % K; 
p ^= shift-reg[kl & g[O] [j]; 
q A= shiftreglk] & grII [j] ; 

/ *  m i t e  the upper and lower xor gate outputs as channel symbols * /  
* (out-array + tt) = p; 
tt = tt + 1; 
* (out-array + tt 1 = q; 
tt = tt + 1; 
sr-head -= 1; /* equivalent to shifting everything right one 

place * / 
if (sr-head < 0 )  / *  but make sure we adjust pointer rnodulo K */  

srhead = m; 
1 

/ *  free the dynamically allocated array */ 
free (unencoded-data) ; 



float gngauss(float mean, float sigma); 

void addnoise(f1oat esovr_nO, long channel-len, int *in-array, float 
* outarray ) 
C 

long t; 

float mean, es, sn-ratio, sigma, signal; 

sigma = (float) sqrt (es / ( 2 * sn-ratio ) ) ; 

/ *  transform the data fxom 0/1 to +1/-1 and add noise * /  

for (t = O; t -= channel-len; t++) { 

/*if the binary data value is 1, the channel symbol is -1; if 
the binary data value is 0, the channel symbol is cl. * /  

signal = 1 - 2 * * (  in-array + t ) ;  

/ *  now generate the gaussian noise point, add it to the 
channel symbol, 

and output the noisy channel symbol * /  

float gngauss(f1oat mean, float sigma) { 
double u, r; / *  uniform and Rayleigh random variables * /  

/+ generate a uniformly distxibuted random number u between O and 1 
- 1E-6*/ 

u = (double)rand() / RAND-MAX; 
if (U == 1.0) u = 0.999999999; 

/ *  generate a Rayleigh-distributed random number r using u */ 
r = sigma * sqrt( 2.0 * log( 1.0 / (1.0 - u) ) ) ;  

/ *  generate another uniformly-distributed random number u as 
bef ore* / 



u = (doub1e)randO / RAND-MAX; 
if (U == 1-0) u = 0,999999999; 

/ *  generate and return z Gaussian-distributed raridom number using r 
and u * /  

return( (float) ( mean + r * cos(2 * PI * u) ) ) ;  

3 



#unde£ SLOWACS 
#def ine FASTACS 
#unde£ NORM 
#def ine MAXMETRIC 128 

void deci2bin(int d, int size, int *b); 
int bin2deci (int *b, int size) ; 
int nxt-stat(int current-state, int input, int *memory_contents) ; 

void init-adaptive-quant(f1oat es-ovrno); 
char soft-quant(f1oat channelsymbol); 
int soft-metric(int data, int guess) ; 

char quantizer_table[256]; * Ij * /  

void quantizatîon(int gr21 [KI, float es-ovrnO, long int 
charnel-length, 

float *channeloutput~vector, int *decoder-outputmatrix) 
{ 

FILE *f ileptr; 
inti, j, 1; 
long int t; 
int mernory-contents [KI ; 
int input[TWOTOTHEM] [TWOTOTHEMI; 
int output[TWOTOTHEM] [SI ; 
int nextstate[TWOTOTHEM] ES] ; 
int acc-errmetric [TWOTOTHEMI [2 1 ; 
int state-history[TWOTOTHEMI [K * 5 + 11 ; 
int state-sequence[K * 5 + il; 
int *chanriel-outputmatrix; 
char *chptr; 
char *str = "1 000000 000000 000000 000000 000000 000000 000000 

000000 000000 000000 000000 OOOOOO\nw; 
int binary_output[2] ; 
int buanch_output[2]; 
int m, n, number-of-states, depth-of-trellis, step; 
int branch-metric, qunt-length, 

sh-ptr, sh-col, x, xx, h, hh, next,state,count,tmp; 
/ *  n is 2^1 = 2 for rate 1/2 * /  
n = 2; 

/ *  rn (memory length) = K - 1 * /  
m = K - 1 ;  

/ *  number of states = 2^(K - 1) = 2% for k = 1 * /  
number-of-states = (int) pow(2, m) ; 



depth-of-trellis = 3 * 5; 
/ *  initialize data structures */ 
for (i = O; i c number-of-states; i++) { 

for ( j  = O; j c number-of-states; j++) 
inputCi] [j] = 0; 

for (j = 0; j < n; j t c )  { 
nextstate[il [jl = 0; 
outputCi1 [ j l  = 0; 

for ( j  = O; j c= de~th-O£-trellis; j++) { 
state-historyCi1 [j] = 0; 

1 

/ *  initial accum-errormetric[x] [O] = zero * /  
acc-err-metric [ i 3 [ O I = 0 ; 
/*  by setting accum_error-metric[xl El] to MAXINT, we don't need 

a flag */ 
accum-err-metric [ i 1 [ I l  = MAXINT; 

/ *  generate the state transition matrix, output matrix, and input 
matrix 

- input matrix shows how FEC encoder bits lead to next state 
- next-state matrix shows next state given current state and 

input bit 
- output matrix shows FEC encoder output bits given current 

presumed 
encoder state and encoder input bit--this will be compared to 

actual 
received symbols to determine metric for corresponding branch of 

trellis 
* / 

for ( j  = O; j < nurnberof-states; j++) { 
for (1 = 0; 1 < n; l++) { 

next-state = nxt-stat(j, 1, memory-contents); 
input [jl [next-state] = I; 

/ *  now compute the convolutional encoder output given the 
current 

state number and the input value * /  
branch-output [O 1 = 0 ; 
branch-output [ I 1 = 0 ; 

for (i = O; i c K; i++) { 
brarich-output [O1 ^= memory-contents [il & g [O] [il ; 
branch-output 111 ^= memory-contents Li] & g[ï] [il ; 

1 

/ *  next state, given current state and input */  
nextstate [j 1 (11 = next-state; 
/* output in decimal, given current state and input * /  
output C j 1 Cl] = bin2deci (branch-output, 2 ) ; 



1 / *  end of 1 for loop * /  

3 /*  end of j for loop * /  

charnel-output-matrix = (int *)malloc( channel-length * sizeof(int) 
1;  

if (channel-output-matrix == NULL) { 
printf ( 
"\nquantization+c: Can't allocate memory for 

charnel-output-matrix! Aborting,,."); 
exit(1) ; 

1 

/ *  now we're going to rearrange the charnel output so it has n 
rows , 

and n/2 columns where each row corresponds to a channel symbol 
for 

a given bit and each column corresponds to an encoded bit * /  
wt-length=(channel_length/n)*6; 
channel-length = channel-length / n; 

chptr = (char *)malloc( qunt-length * sizeof( char ) ) ;  
if (chptr == NULL) { 

printf("\n testquantization-c: error allocating onezer array. 
aborting! " ) ;  

exit (1) ; 
1 

printf ( " \n" ) ; 
/ *  quantize the channel output--convert float to short integer * /  
/ *  channel-output-matrix = reshape(channe1-output, n, 

channel-length) * /  
fileptr = fopen("quantzd.datn, "wbt' ) ;  
fwrite ( ( s t r ) ,  sizeof(char),2+7*widthr fileptr ) ;  

count=l; 

for (t = O; t c (charnel-length * n); t += n) { 
for (i = O; i c n; i++) 

{ tmp =(soft_quant( '(channel-output-vector + (t + i) ) ) ) ;  
t (channel-output-matrix+(t/n)+(i*chmel-th)) = tmp; 

if (count==l) 
C 
* (chptrttti) ='Or; 
* (chptr+t+i+l) = ' ; 
if ( tmp & 0x04) * (chptr+t+i+S) ='l# ; 
else *(chptr+t+i+2)='0,; 
if ( tmp & 0x02) * (chptr+t+i+3) = ' I r ;  
else * (chptr+t+i+3 ) = '  0 ; 
if ( tmp & 0x01) * (chptr+t+i+4) ='l' ; 
else *(chptr+t+i+4)='0,; 
count += 1; 

fwrite ( (chptr+t+i), sizeof(char),S, fileptr ) ;  



1 
else { 
if ( tmp & 0x04) * (chptr+t+i) = , I r  ; 
else *(~hptr+t+i)=~O'; 
if ( tmp & 0x021 * (chptr+t+i+l) =Il ; 
else * (chptr+t+i+l) ='O ; 

if ( tmp & 0x01) *(~hptr+t+i+2)=~1~; 
else *(~hptr+t+i+2)=~0'; 
count += 1; 
£mite ( (chptr+t+i), sizeof (char) , 3 ,  fileptr ) 

1 / *  end t for-loop */  

/ *  write data to file * /  
fclose(fi1eptr) ; 
free(chptr1; 

/ *  this initializes a quantizer that adapts to Es/No * /  
void ini t-adap tive-quant ( f loat es-ovr-n0 ) { 

int i, d; 
float es, sn-ratio, sigma; 



sn-ratio = (float) pow(l0.0, ( es-ovr-n0 / 10.0 ) ) ;  

sigma = (float) sqrt( es / ( 2.0 * sn-ratio ) ) ;  

d = (int) ( 32 * 0.5 * sigma ) ;  

f o r  i i  = ( -3 * d ) ;  i c ( -2 * d  ) ;  i++) 
quantizer-tableCi t 1281 = 6; 

f o r  (i = 0; i c ( 1 * d ) ;  i+c) 
quantizer-tableli + 1283 = 3 ;  

f o r  (i = ( 1 * d ) ;  i < ( 2 * d ) ;  i++) 
quantizer-table Ci + 1281  = 2; 

for (i = ( 2 * d ) ;  i c ( 3 * d ) ;  i++) 
quantizer-table[i + 1281 = 1; 

/ *  this quantizer assumes that the mean channel-symbol value is +/-  1, 
and translates it to an integer whose mean value is + / -  32 to 

address 
the lookup table "quantizer-table". Overflow protection is included. 

"/  
char soft-quant(f1oat channel-symbol) 

I: 
int x; 

return (quantizer-table [x + 1281 1 ; 
1 

/ *  this metric is based on the algorithm given in Michelson and 
Levesque, 

page 323, */ 
int softmetric(int data, int guess) { 

return(abs(data - (guess * 7 )  1 ) ; 
1 



/*  this function calculates the next state of the convolutional 
encoder, given 

the current state and the input data- It also calculates the memory 
contents of the convolutional encoder, * /  

int nxt-stat(int current-state, i n t  input, int *memory,contents) { 

int binarystate [K - 1 j ; 
state * /  

int next-state-binary [K - 1 j ; 
*/ 

int next-state; 
state * /  

int i; 

/ *  binary value of current 

/*  binary value of next state 

/*  decimal value of next 

/ *  loop variable * /  

/*  convert the decimal value of the current state number to binary 
* /  

deci2bin (current-state, K - 1, binary-state) ; 

/* given the input and current state number, compute the next state 
number * /  

next-state-binaryC01 = input; 
for (i = 1; i < K - 1; i++) 

next-stzte-binary[i = binary-stateli - 11; 

/ *  convert the binary value of the next state number to decimal * /  
next-state = binSdeci(next-statebinary, K - 1); 

/ *  memory_contents a r e  the inputs to the modulo-two adders in the 
encoder * /  

memory_contents [O 1 = input; 
f o r  (i = 1; i -= K; i++) 

memory-contents [il = bin-state [i - 11 ; 

return (next-state) ; 
1 

/ *  this function converts a decimal number to a binary number, stored 
as a vector MSB first, having a specified number of bits with 
leading zeroes as necessary * /  

void deci2bin(int d, int size, int *b) { 

for(i = O; i < size; i++) 
b[i] = 0; 



/ *  t h i s  function converts a binaxy number having a specified 
number of b i t s  t o  the  corresponding decimal number */ 

i n t  bin2deci ( i n t  *b, i n t  size) { 
i n t  i ,  d; 

return (d) ; 
1 



#define K 3 /*  constraint length */ 
#define TWOTOTHEM 4 / *  ZA(K - 1) -- change as required * /  
#define PI 3,141592654 / *  circumference of circle divided by diarneter 
*/  
#define MSG-LEN 100000 / *  how m a n y  bits in each test message * /  
#define DOENC 1 / *  test with convolutional encoding/Viterbi 
decoding * /  
#undef DONOENC / *  test with no coding * /  
#define LOESNO 0.0 / *  minimum Es/No at which to test * /  
#define HIESNO 3 - 5  / *  maximum Es/No at which to test * /  
#define ESNOSTEP 0.5 / *  &/NO increment for test driver * /  
#define width 12 / *  Decoder's width */ 



//****** This program execute step 3 in Figure-4.2 ********* / /  

#indude CS tdio . h> 
#inchde CS tdlib . h> 
#indude ciostream.h> 
#include cfstream.h> 
#define decodelength 12 
#define max-errNo 100 

main ( ) 
C char msg,dcd; 
long number~error=0,total~error,msgg1ength=O,total~length; 
float es-ovr-n,BER; 
i n t  errposition ; 
long j,cnt~decodelength+l] ; 

ifs tream in-mg ; 
ifstream in-dcd ; 
f s tream io-trnp ; 
f s tream io-tpos ; 
ofstream outresult; 
ofstream out-pos; 

//************ Open data,dat ******+**********+*//  

in-msg-open ("data-datn,ios::in 1 ios::nocreate ) ;  
if (!in-msg) C 
coutcc "Cannot open datal-dat \nW; 
return 1; 

1 

indcd-open ("decoded.dat",ios::in 1 ios::nocreate ) ;  

if (!in-dcd) { 
coutcc "Cannot open decoded-dat \nn; 
return 1; 

1 
/ /  *************** Open tpos.dat *******+******// 

io-tpos . open ( " tpos . dat " , ios : : in (ioç : : out) ; 
if ( !io-tpos) { 

coutcc" Cannot open tpos-dat \nW; 
retum 1; 
1 

io~tpos.setf(ios::showpoint); 
f o r  ( j = O ; j c decode-length; j ++) io-tpos>>cnt [ j 1 ; 

/ /  ******** compare the simulation result ***********// 
in-dcd.~eekg(42*(decode_length+l)+6,ios::beg); 



er~osition=(int(msg~lengthj+decode~length/2)%decode~length; 
if (errposition==O) errposition = decode-length; 
coutccmsg-1engthcc"-"<cerrpoçitioncc " "; 
cnt [errposition-11 ++; 

1 
1 
io-tpos . seekp ( 0, ios : : beg) ; 
for ( j = O ; j < decode-length; j+t) 
io-tposcccnt [ j 1 cc" ; 

io-tmp.open ("trnp.datn,ios::in(ios::out~ios::nocreate); 
if ( !io-tmp) { 
coutcc" Carnot open tmp-dat \nn ; 
return 1; 

1 
io-tmp.setf(ios::showpoint); 

/ /  **** update total-lengh, total-error and es-ovr-n ****/ /  

total-error = total-error + number-error; 
total-length = total-length + msg-length; 

if (total-errort200) { 
coutcctotal-lengthccVr ncctotal-errorc<" "ccesovr_n; 

/ /  coutcces-ovrn; 
io-tinp. seekp (ios: :beg) ; 
io-tmpcctotal-lengthcc" .cc total-errorcc" "cc es-o~r_ncc~ "; 
io-tmp. close ( ) ; 
1 

else { 

io-tmp . seekp ( ios : : beg) ; 
io-tmp << O cc tc O cc cc es-ovr-n + 0.5ccw 
io-tmp. close ( ) ; 

BER = float(tota1-error)/float(total_length); 

out-result-open ("result.datM, ios::out 1 ios::app ) ;  

if ( !outresult) { 
coutc<" Cannot open result ,dat \n" ; 
r e t m  1; 
1 

printf ( "  BER = %E \n ",BER) ; 
couttc "The number of error bits is " cc total-error 
cc " in " <t total-length tc " bits.\nW; 

/ /  coutcces-ovrnt0.5; 
out-result,setf(ios:: scientific); 
out-resultcc BER cc ","; 
out,result,setf(ios::fixed); 



out-result CC esovr-n "\nN; 
out~result,close~); 

/ /  *************** ,pdat- poç-dat **************// 
out_pos.open ("pos.datw, ios::out 1 ios::app ) ;  
if ( !out-result) { 
coutcc" Cannot open pas-dat \nn; 
return 1; 
1 

for ( j  = O; j c decode-length; jt+) 
out_poscccnt [ j << " " ; 

O ~ t _ ~ ~ ~ ~ c e ~ ~ ~ v r ~ n c ~ ~ ~  \nn ; 
out-pos .close ( ) ; 

coutcc" C m o t  open tpos-dat \nn; 
return 1; 

1 
io,tpos~setf(ios::showpoint); 
for ( j  = O; j c decode-length; j++) io-tpos<ccnt[j]ccm 
io-tpos , close ( ) ; 

in-mg . close ( ) ; 
in-dcd. close ( ) ; 



//** This Perl program coordinate encoder, vhdlsim and comp **// 
// ** It makes the flow in Figure42 repeat work * *// 

SLOGFILE = "tmp-dat"; 
open (LOGFILE or die ( "Could no t open log file, ) ; 
read(LOGFILE, $line,30); 
close (LOGFILE) ; 
(Smsg, Serr, Sesovm) =split(' ',$line); 
Sesovrn = substr($esovrn,0,3); 
while ($esovrnc=8-5) ( 
pr in t  ( "$esovrnW ) ; 

systern( "nice -19 encoder $esovrnW ) ; 

çystem("nice -19 vhdlsim -nc con£-testbench -e my"); 
system("c0mp"); 

SLOGFILE = " tmp , datn ; 
open(L0GFILE) or die("Cou1d not open log file,"); 
read(LOGFILE, $line,30); 
close(L0GFILE); 
($mg, Serr, Sesovrn) = split ( ' , Sline) ; 
Sesovrn = substr(Sesovrn,0,3); 

1 ;  
print("The test is over! \nw); 



Appendïx B. Data.dat file Format 



Appendix C qunbd.dat fde format 

No te: 

First bit in each row is the reset signal. 

Two 3-bit quantized symbol compose of a charnel symbol pair. 

Each row represents a half block. 



Appendix D. decoded-dat File Format 

oooooooooooo 4-- Reset period. 
000000000000 

The latency period (41 clock cycles) after reset. 

000000000000 

O11011110011 
011000001100 
010111101001 
001010001101 

oo O ooo oiiiil+-. The decoded data begins fiom the seventh bit of this row. 

O11110110101 
001000111011 
011001001110 
010000111000 





Appendïx E. VHDL Source Code 

library IEEE; 
Iibrary UNISIM; 
use LEEE.std-logic-1164~11; 
use EEE-std-Iogic-msigneddl; 
use UNISIM.al1; 

entity top is 
Port ( 

x0,x 1 ,x2,~3,~4,~5,~6,x7,~8,~9~~ 1 OYx I 1 : in std-logic-vector (5 downto O); 
cIock,reset: in STD-LOGIC; 
yo,y 1 1 0,y 1 1 : out STD-LOGIC); 

end top; 

architecture arch-top of top is 

component BUFGDLL 
port (1 : in STDJOGIC; 

O : out STD-LOGIC); 
end component; 

component BUFG 
port (1 : in std-logic; 

O : out std-logic); 
end component; 

component FDC 
port (Q: out std-logic; 

D,C,CLR: in std-logic); 
end component; 

component buffl x 
generic (deptkinteger); 
port (din: in std-logic; 

dout: out std-logic; 
clk,reset:in std-logic); 

end component; 

component b u f i  1 
generic(width5nteger); 
port (din: in std~logic~vector(width- 1 downto O); 

dout: out std-logic-vector(width- 1 downto O); 
clk,reset: in std-logic); 



end component; 

component b u e  
generic (width: integer; deptkinteger); 
port (din: in std-logic-vector (width-1 downto O); 

dout: out std-1ogic.vector (width- 1 downto O); 
ckyreset:in std-logic); 

end component; 

component acs4 
port (sym: in std-logic-vector(5 downto O); 

gm0-in,- l-in,gm2gm2in,grn33in: in std-logic-vector (6 downto O); 
gm0-outgm lsut,grn2-out,gm3_out: out std-logic-vector (6 downto O); 
d: out STD-LOGIC-vector (3 downto O); 
clk: in STD_LOGIC; reset:in std-logic); 

end component; 

component CS port (gm0,gm 1 ,gmZ,gm3 : in std-logic-vector (6 downto O); 
selec: out std-1ogic.vector (1 downto O); 
cik: in STD-LOGIC; RESET: in std-logic); 

end component; 

component tb port (state-in: in std-logic-VECTOR(1 downto O); 
d: in STD-LOGIC-vector (3 downto O); 
state-out: out std~logic~vector(l downto O); 
clk: in std-logic; 
reset: in std-Iogic); 

end component; 



signal b4-1 i,b4-1 o,b4-3 i,b4-30,b4~5i,b4~So,b4-7ï,b4-7o,b4-9i, 
b4-9o,b4-1 li,b4-1 lo,b4-13i,b4-130,b4-15i,b4-15o,b4-17i, 
b4-17o,b4-19i,b4-1 9o,b4-2li,b4-2lo,b4-23i,b4-230,b4~25i, 
b4-25o,b4-27i,b4-27o,b4-29i,b4-29o,b4-3 1 i,b4-3 1 o,b4-3 3i, 
b4-3 30 : std-fogic-vector (3 downto O); 

signal sl,s2,s3,s4,s5,s6,s7,s8,s9,s10,sl l,s12,~13,~14,~15,~16, 
s 17,s 18:std-logic-vector (1 downto O); 

signal bl~l,b1~2,b1~3,b1~4,b1~5,b1~6,b1~7,b1~8,b1~9, 
b 1-1 0,b 1-1 1 : std-logic; 

signal x 1-1 ,x2-Z,x3-3 ,x4~4,x5~5,x6~6,x7~7,x8~8,~9~9,x 1 0-1 O, 
xl1-11,xO-1 l,x1~12,~-13,x3~14,~4-15,x5~16,x6~l7,x7~18, 
x8-1 g,x9_2O,x 102 1 ,x 1 1-22: std-Iogic-vector (5 downto O); 

begin 

DLL: BUFGDLL port map(I=~clock,O=>oscout); 
CL0CKBUF:BWG port map(I=~oscout,O=~clk); 

pipex0-11 :buf&x 
generic rnap (width=>6,depth=> 1 1) 
port rnap (dïn=~xO,dout=~xO~ll ,clk=>clk,rese~>reset); 

--------------------------- 
pipex 1-1 :bu& 1 

generic rnap (width=>6) 
port rnap (din=>x 1 ,dout=>x 1-1 ,clk=>clk,reset>reset); 

pipex 1-1 2:bufEuc 
generic rnap (width=>6,depth=> 1 1 ) 
port rnap (din=>x 1-1 ,dou*>x 1-1 2,clk=~Ak,rese~>reset); 

........................... 
pipe-2:buffk 

generic rnap (widih=>6,depth=>2) 
port rnap (din=>x2,dout=>x2-2,cIk=>clk,rese~>res et); 

pipex2-13:buffxx 



generic rnap (width=>6,depth=>i 1) 
port rnap (din=~~-2,dout=>x2-13,cik=~clk,reset=>reset); 

---------------_--- 
pipex3-3 :bu& 

generic rnap (width=>6,depth=>3) 
port rnap (din=>x3 ,dout=>x3-3 ,clk=~clk,reset=~reset); 

pipex3-14:buffkx 
genenc rnap (width=>6,depth=> 1 1 ) 
port rnap (din=>x3-3 ,dout=~x3-14,cil~~clk,reset=~reset); 

--------------------------- 
pipex4-4: bu& 

generic rnap (width=>6,depth=>4) 
port rnap (din=~x4,dout=~x4~4,cll~>clk,reset=>reset); 

pipex4-15:bufh 
generic rnap (width=>6,depth=>ll) 
port map (din=~x4~4,dout=~x4-15,c~~ck,reset=~reset); 

--c----------------__C________________I________C________________I______---__C________________I______- 

pipex5-5:buffkx 
genenc rnap (width=>6,depth=>5) 
port rnap (din=~x5,dout=~x5~5,~Ik=~~~rese~~reset); 

pipex5-16:buffh 
genenc rnap (width=>o,depth=> 1 1) 
port rnap (din=>x5-5,dout=>x5-1 6 , ~ l k = ~ ~ k , r e s e ~ ~ r e s e t ) ;  

........................... 
pipex6-6:buffxx 

genenc rnap (width=>6,depth=>6) 
port map (din=~x6,dout=~x6~6,~~~~Ik,re~e~-~reset); 

pipex6-17:bufflxx 
generic rnap (width=>6,depth=> 1 1) 
port rnap (din=~x6~6,dou~~x6~17,clb~cIk,reset=~reset); 

--------------------------- 
pipex7-7 :buffxx 

generic rnap (width=>6,depth=>7) 
port rnap (din=>~7,dout=~x7-7~cU~~clk,reset=>reset); 

pipex7-18:buffjut 
generic rnap (width=>o,depth=> 1 1 ) 
port rnap (din=~x7~7,dou1~=~x7~18,clb~clk,reset=>reset); 

--------------------------* 

pipex8-8: buffxx 
generic map (width=>6,dep th=%) 
port rnap (din=~x8,dout=~x8~8,cIl~~~ik,reset=~reset); 

pipex8-19:buffxx 
generic rnap (width=>o,depth=> 1 1) 
port rnap (din=>x8~8,dout=~x8~19,cllc~clk~rese~~reset); 

........................... 



pipex9-9:buffxx 
generic rnap (width=>d7depth=>9) 
port rnap (din=>x9 ,dout=x9-9,clk~cLk,rese~~reset); 

pipex9-20:bufEuc 
genenc rnap (width=>6,depth=> 1 1) 
port rnap (din=~x9_9,dout=~x9~20,clk~~clk,rese~-~reset); 

-------------------- 
pipex 10-1 0:bufEcx 

genenc rnap (width=>6,depth=> t O) 
port rnap (din=>x 1 O,dout=>x 1 0-1 O,ck=>clk,rese~>reset); 

pipex 1 0-2 1 :buffk  
genenc rnap (width=>d,depth=>ll) 
port rnap (din=>x 10-1 O,doui=x 10-2 1 ,clk=>clk,rese~~reset); 

---_.------------------ 

pipex 1 1-1 1 :bufEx 
genenc rnap (width=>B,depth=> 1 1) 
port rnap (din=>x 1 l ,dou~~>xl l - l l  ,ck=>ck,rese~>reset); 

pipex 1 1-22:buEcx 
generic map (width=>d,depth=> 1 1) 
port rnap (din=>x 1 1-1 1 ,dout=>x l 1-22,ck=~cikireset-heset); 

......................................................... 
zero~="0000000"; 
stage-O: acs4 

port map (sym=>xO, 
gmO - in=>zero, gm 1-in=>zero ,grn2-in=>zero ,gm3-in=~zero, 
grno-out=>gO-0,gm 1-out=>gO-l ,gm2-ou~~g0-2,gm3-ou~~gO~3 , 
cllc=>clk,reset=>reset); 

stage-1 : acs4 
port rnap (sym=>x 1-1, 

gm0-in=>gO-O, gm l-in=>&l, gm2-in=>g0-2, gm3-in=>gO-3, 
gm0-ou*>g 1-0,gm l-ou+>gl-l ,gm20ut=>g 1-2,gm3-out=>gl3, 
ck=>clk,rese+>reset); 

stage-2: acs4 
port rnap (sym=>x2_2, 

gm0-h=>g 1-0, grn 1-in=>g 1-1, grn2_in=>g 1 3 ,  gm3_h=>g 1-3, 
grn0 - ouF>2_O,gm l-out=>g2-1 ~gm2gm2~u~>@~2,gm3gm3~~L->@823 , 
clk=>cik,rese+>reset); 



stage-4: acs4 
port rnap (sym=>x4-4, 

gmO-in=>g3-0, gm 1-in=>g3-1, gm2-in=>g3-2, grn3-in=>g3-3, 
gmO-.u*>g4-O,gm l-out=>g4-1 7gm2-out=zg4_2,gm3-ou~~g4-3, 
cW>clk,reset=>rese t); 

..................................... 
stage_5:acs4 

port map (sym=>x5-5, 
gmO-h=>g4-0, gm l_in=>gr)i, @-in=>g4-2, gm3-in=>g4-3, 
gmo-ou*>g5-o,gm LouL->gS-l ,gm2-ou~>g~,gm3-out=>g5-3 , 
c&=>cik,reset=>reset); 

s tage-6 :acs4 
port rnap (sym=>x6-6, 

gmO-in=>gS-o, gm l-in=>g5-l, gm2-in=>g5-2, grn3-in=>g5-3, 
gm0-out=>g6-07grn lAout=>g6-1 ,gm2_ou~~g6-2,gm3-ou~>g6-3, 
clh>clk,reset=>reset); 

--------------------------------------------------------- 
stage-7: acs4 

port rnap (sym=>x7-7, 
grno-in=>g6-O, pl-h=>g6-1, gm2_in=>g62, gm3-in=>g6-3, 
gmO-ou~>g7-0,grn lout=>g7-1 ,gm2-ou~>g7-2,gm3-ou~~g7-3, 
d=>b4_33i, clk=~clk,rese~>reset); 

buff4-33 : b u e x  
generic rnap (width=>4,depth=>3 3) 
port rnap (din=>b4-3 3 i,dout=>b4-3 3 o,clk=>cIk,rese~>reset); 

TraceBack 17: TB 
port rnap (state-in==% 1 7,d=~b4-33o,state-out=~s 1 8, 

clb>clk,reseî=>reset); 
yW=s l8(l); 

stage-8 : acs4 
port rnap (sym=>x8-8, 

gm0-in=>g7-O, gm lin=>g7-1, gm2-in=>g7-2, grn3-in=>g7-3, 
gmO_ou*>g8_0,gm Lout=>g8-l ,gm2-0ut=>g8-2,grn3-0ut->g8~3, 
d=>b4-3 1 i,cI~~clk,reset=~reset); 

buff4-3 1 : bu& 
generic rnap (width=>4,depth=>3 1 ) 
port rnap (din=>b4-3 1 i,dout=->b4-3 1 o,clk~clk,rese~~reset) ;  

TraceBackl6: TB 
port rnap (state-in=>s 1 6,d=>b4-3 1 o,state-oue>s 17, 

clk=~clk,reset=~reset); 
buffl-1 :FDC port map (Q=>yl ,D=>s 17(l),C=>ck,CLR=~reset); 

s tage-9: acs4 
port map (sym=>x9-9, 





b&4-23: bu& 
generic rnap (width=>4,depth=>23) 

port rnap (din=~b4~23i,dout=~b4~230,cll~~c~rese~-~reset); 
TraceBackl2: TB 

port rnap (state-in=>s 12,d=>b4-230,state-out=>s 13, 
clk>clk,reset=>reset); 

buffl-5:bufflx 
generic rnap (depth=>5) 
port rnap (din=>s 13(l),dou~~y5,clk=~cIk,reset=~reset); 

................................................. 
stage-1 3 :acs4 

port rnap (syrn=>x 1-1 2, 
gmO-in=>g 1 2-0, gm 1-in=>gl2-1, gm2-in=>g12-2, gm3_in=>g 1 2-3, 
gmO-ou*>g 1 3-0,gm 1-ou+>g 1 3-1 ,gm2-0u+>g l3-2,gm3-ous>g 1 3 3 ,  
d=>b4-2 1 i,clk=>cllc,reset=>reset); 

buff4-2 1 : bu& 
generic rnap (width=>4,depth=>2 1) 

port rnap (din=>b4-2 1 i,dou*>b4-2 1 o,ck->ck,reset===reset); 
TraceBackl 1 : TB 
port rnap (state-in=>s 1 1 ,d=>b4-2 1 o,state-out=>s 12, 

clk=>ck,rese*>reset); 
buffl-6:buffl x 

genenc rnap (depth=>6) 
port rnap (din=>s 12(1),dout=~y6,clk=~clk,reset=~reset); 

.......................................................... 
stage-1 4:acs4 

port rnap (syrn=>x2-13, 
gmO-in=>g 13-0, gm 1-in=>g 1 3-1, gm2-in=>g13-2, gm3_in=>g 13-3, 
gmO-ou~~g14-0,gm 1-ou*>g14-1 ,gm2-out-.>gL4-2,gm3-ou~>gl4-3, 
d=~b4-19i,cUc=~clk,rese~>reset); 

buff4-19: buffXx 
generic rnap (width=>4,depth=> 1 9) 

port rnap (din=>b4-1 9i,dou*>b4-1 90, ci.b>ck,rese+~reset); 
TraceBackl O: TB 
poa rnap (state-in=>s IO,d=>b4-1 90,state_out=>s 1 1, 

clk=>clk,reset=>reset); 
buffl-7:buffl x 

generic rnap (depth=>7) 
port rnap (din=>s 1 l ( l),dout=~y7,clk=>ck,rese~~reset); 

---------------------------------------------------------- 
stage-1 5 :acs4 

port rnap (syrn=>x3-14, 
gm0-in=>gl4-O, gm 1-in=>gl4-1, @-in=>g14-2, gm3-in=>g 14-3, 



buff4-17: b u e  
generic rnap (width=>4,depth=> 1 7) 

poa rnap (din=~b4~l7i,dout=~b4~l~0,c~~clk,reset=~reset); 
TraceBack9: TB 
port rnap (state~in=>s9,d=>b4~17o,state~out=~s 10, 

clk=>cIk,reset=>reset); 
buffl-8:buffl x 

generic rnap (depth=>8) 
port rnap (din=>s 1 O( l),dout=>y8,cIk-->cU:,rese*>reset); 

stage-1 6:acs4 
port rnap (sym=>x4-15, 

gmOh=>g 1 5-0, gm 1-in=>g 1 5-1, gm2-în=>g15-2, gm3_in=>g 1 5-3, 
gmO_ou~>gl6-O,gm Lou*>g16-l ,gm20ue>g l6-2,g&out=>gl6-3, 
d=>b4-1 Si,cIk=>clk,reset=>reset); 

buff4-i 5:  bufkx 
generic map (width=>4,depth=> 1 5) 

port rnap (din=>b4-1 5i,dout=~b4~15o,clk=~clk,reset=~reset); 
TraceBack8 : TB 
port rnap (state-in=>s8,d=~b4-15o,state-out=>s9, 

clk=>clk,reset=>reset); 
hum-9:buffl x 

generic rnap (depth=>9) 
port rnap (din=~s9(1),dou~~y9,~k~c1k,rese~-~re~et); 

stage-1 7:acs4 
port rnap (sym=>xS-16, 

grn0 - in=>@ 6-0, gm l-in=>gl6-1, gm2-in=>g16-2, grn3-in=>g16-3, 
gmO-ouP>g 1 7-0,gm l-out=>g 1 7-1 ,gdLout=>g l7-2,gm3-out-=+g 1 7-3, 
d=>b4-13i,clk==>clk,rese~>reset); 

buff4-13: bu& 
generic rnap (width=>4,depth=> 13) 

port rnap (din=>b4-1 3i,douL">b4-1 3o,ck>cLk,rese+~reset); 
TraceBack7: TB 
port rnap (state-in=>s7,d=>b4 30,state-out=>s8, 

clk=>clk,rese+>reset); 
burn-1O:burn x 

generic rnap (depth=> 1 O) 
port rnap (din=>s8(1 ),dout=>yi O,ck=>clk,reset=>reset); 

stage-1 8:acs4 
port rnap (sym=>x6-17, 

gm0-in=>gl O ,  gm 1-in=>g17-1, gm2-in=>g17-2, gm3-in=>g17-3, 



buff4-11: bu& 
generic rnap (width=>4,depth=> 1 1 ) 

port rnap (din=>b4-1 li,dout=>b4-1 lo,clk=~clk,rese~~reset); 
TraceBack6: TB 
port rnap (state-in=>s6,d=>b4-11 o,state-oue>s7, 

clk=>clk,reset=>reset); 
hum-1 1 :bufflx 

generic rnap (depth=> 1 1 ) 
port rnap (din=>s7(1 ),dout->y1 1 ,clk>clk,reset=>reset); 

........................................................ 
stage-1 9:acs4 

port rnap (sym=>x7-18, 
gm0-in=>g 1 8-0, gm l-in=>gl8-1, grn2-in=>g18-2, gm3-in=>g 1 8-3, 
gmO-ou*~gl9-0,gml-out=>gl9-1 ,gm2_out=>gl 9-2,gm3out=>g 19-3, 
d=>b4-9i,clk=>ck,reset=>reset); 

buff4-9: bu& 
generic rnap (width=>4,depth=>9) 

port rnap (din=>b4-9i,dou~>b4-90,ck-~cIk,rese~>reset); 
TraceBack5: TB 
port rnap (state-in=~s5,d=>b4~9o,state-ou~->s6, 

clk=>clk,reset=>reset); 

stage_SO:acs4 
port rnap (sym=>x8-19, 

gm0-in=>g 19-0, gm lln=>g19-1, @in=>g 19-2, gm3-in=>g 1 9-3, 
gm0_out=>g2O-Oygm Lou*>@O-l ,gm2-ou~>g20-2,gm3-0~~~@0~3 , 
d=>b4-7i,cLk=>clk,reset=>reset); 

buff4-7: buffkx 
generic rnap (width=>4,depth=>7) 

port rnap (din=~b4~7i,dout=~b4470,clk=~clk7reset=~reset); 
TraceBack4: TB 
port map (state_in=>s4,d=>b4_70,state-out=>s5, 

cik=>clk,reset=>reset); 

stage-2 1 : acs4 
port rnap (sym=>x9-20, 

gmO-in=>g20-0, gml-in=>g20-1, gm2-in=>g20-2, gm3-in=>g20-3, 
gmo_out=>g2 1-0,gm lou+>g2 1-1 ,grn2-ouG=>g2 1_2,gm3_0ue>g2 1-3, 
d=>b4_5i, clk=>clk,rese~>reset); 

buff4-5: buffxx 
generic rnap (width=>4,depth=>5) 

poa rnap (din=~b4~5i,dou~>b4~5o,cIk=>cIk,rese~~reset); 
TraceBack3 : TB 



port rnap (state-in=>s3 ,d=>b4-50,state_out=>s4, 
clk>ck,reset=>reset); 

stage-22:acs4 
port rnap (syrn=>x 10-2 1, 

gm0-in=>@ 1-0, gm l_in=>g2 1-1, @in=>@ 1-2, grn3_in=>g2 1 3 ,  
gmo-ouF>g22-û,grn 1 ~ 0 u ~ > # 2 ~ 1 , ~ ~ 0 u ~ ~ @ 2 ~ 2 , g m 3 ~ 0 u ~ ~ & 2 2 ~ 3 ,  
d=>b4-3 i,clk=>clk,reset=>reset); 

bufT4-3: bu& 
generic rnap (width=>4,depth=>3) 

port rnap (din=>b4-3i,dou*>b4-3oYclb>c&,reset=>reset); 
TraceBack2: TB 
port rnap (state_in=>s2,d=>b43O,state-out=>s3, 

cIk=>clk,reset=>reset); 

csmap: CS 

poa rnap (grnO=>g23_0,grn 1 =>g23-l ,gm2=>g23-2,gm3=>g23-3, 
selec=>s 1 ,clk=>clk,reset=>reset); 

end arch-top; 

library IEEE; 
use IEEE.std_logic-l164.all; 

entity bm is 
Port ( 
sym: in std-logic-vector (5 downto O); 

bmOO: out std_logic-vector (3 downto O); 
bml 1 : out std-logic-vector (3 downto O); 
bmlO: out std-logic-vector (3 downto O); 
bmO 1 : out std-logic-vector (3 downto O); 



clk: in STD-LOGIC; 
reset: in STD_LOGIC); 

end bm; 

architecture bm-arch of bm is 

component hadder port( 
a,b: in std-logic;~, 
cout: out std-logic); 

end component; 

component fadder port( 
a,b,cin: in std-logic;~, 
cout: out std-logic); 

end component; 

signal nsym:std-logic-vector(5 downto O); 
signal bmOOt,bmO 1 t7bm1 Ot,bm 1 1 t: 

std-logic-vector(3 downto O); 
signal cout07cout 1 ,cout2,cout3 : 

std-logic-vector(1 downto O); 
begin 
getnsym: for i in O to 5 generate 

nsyrn(i)<=no t s yrn(i) ; 
end generate getns ym; 

bmOO-O: hadder port rnap 
(a=~sym(3),b=~sym(0),s=~bmOOt(O),cout=>coutO(0)); 

bm00-1: fadder port rnap 
(a=>sym(4),b=~syrn(l ),cin=~coutO(O),s=~bmOOt(1), 
cou~>couto( 1 )) ; 

bm0O-23 : fadder port rnap (a=>sym(5),b=~sym(2),cin=~coutO(l),s=~bm00t(2), 
cout=>brnOOt(3)); 

bm0 1-0: hadder port map (a=>sym(3),b=>nsym(O),s=>brnO 1 t(O),co~t=>c~~t I (O)); 
bmO 1-1 : fadder port rnap (a=>sym(4),b=>nsym(l ),cin=>cout I (O),s=>bmO 1 t( 1 ), 
cout=~cout l(1)); 

bmO 1-23 : fadder port rnap (a=~sym(S),b=>nsym(2), cin=>cout i ( L ),s=>bmO 1 t(2), 
cout->bm0 1 t(3)); 

bm 1 0-0: hadder port map (a=>nsym(3),b=~sym(O),s=>bm 1 Ot(O),cou~~co~t2(0)); 
bm 1 0-1 : fadder port rnap (a=>nsym(4),b=~sym(l)yclli=>~~t2(0)~s=>bm 1 0t(1), 
cout=>cout2(1)); 

bm 1 0-23 : fadder port rnap (a=~nsyrn(5),b=>sym(2),cin=~cout2(1 ),s=>bm lOt(2), 
cout=>bm 1 Ot(3)); 

bm 1 1-0: hadder port map (a=~nsym(3),b=~nsym(O),s=>bm 1 1 t(O),cou~~c0~t3(0)); 
bml l-1: fadder port rnap (a=~nsyrn(4),b=>nsym(1),ch=~cout3(0)ys=~bm1 1 t(l), 
cout=~cout3 (1 )); 



bm 1 1-23: fadder port map (a=~nsym(5),b=~nsym(2),ch=~cout3(1),s=~bm 1 1 t(2), 
cout=.>bm 1 1 t(3)); 

begin 
if r e s e ~ l  ' then 
bm00~="0000"; 
bm1 l~="OOOOf'; 
bm 10~="0000"; 
bmO 1<="0000"; 
elsif clk'event and cIk+l7 then -CLK nsing edge 
brnOO<=bmOût; 
bm0 1 <=bm0 1 t; 
bm 10<=bm lot; 
bml lc=bml lt; 
end if; 
end process; 
end bm-arch; 

entity ACS is 
port (bmO: in std-logic-vector (3 downto O); 

bm 1 : in std-logic-vector (3 downto O); 
smO: in std-logic-vector (6 downto O); 
srn 1 : in std-logic-vector (6 downto O); 
sm: out std-logic-vector (6 downto O); 
d: out std-logic; 
clk: in std-logic; 
reset: std-logic); 

end ACS; 

architecture arch-ACS of ACS is 

signal smOt,sm 1 t:std-Iogic-vector(7 downto O); 

begin 
smOt<=("O "&srno) + ("0000"&bmO); 
sm1 t<=("O"&sml) + ("0000"&bml); 

process (clk,reset) 



begin 
if reset=? ' then 
sm <= (others=>D 3; 
d-==T)", 
ekif clk'event and c l k ' l  ' then 
if (smOt<=sml t) then 

sm <= smOt(6 downto O); d<=U'; 
else srn <= sm l t(6 downto O);d<='l", 
end if; 
end ic 

end process; 
end arch-ACS; 

library IEEE; 
use EEE-std-Iogic-l164.alI; 

entity acs4 is 

port (sym: in std-logic-vector (5 downto O); 
gm0-h,gm l-h,gm2-in7gm3-in: 
in ski-logic-vector (6 downto O); 
gm0-out,gm 1-out,g&out,gm3-out: 
out std-logic-vector (6 downto O); 
d: out STD-LOGIC-vector (3 downto O); 
clk: in STD-LOGE; reset:in std-Iogic); 

end acs4; 

architecture arch-acs4 of acs4 is 

component qunt2brn port (sym: in std-logic-vector (5 downto O); 
bm00,brn 1 1 ,bm 1 0,bmO 1 : out std-logic-vector (3 downto O); 
clk,reset : std-logic) ; 

end component; 

component ACS port (bmO: in std-logic-vector (3 downto O); 
bm 1 : in std-logic-vector (3 downto O); 
smO: in std-logic-vector (6 downto O); 
sm 1 : in std-logic-vector (6 downto O); 
sm: out std-logic-vector (6 downto O); 
d: out std-logic; 
clk: in std-logic; 
reset : in std_logic); 

end component; 



signal bO0,b 1 1 ,bO 1 ,b 1 0: std-logic-vector (3 downto O); 

bm I :qunt2bm port map (sym=>sym, 
brnOO=>bOO,bml l=>b 1 1 ,bmlO=>b l0,bmO l=>bOl, 
cllc=>clk,reset=>reset); 

acs 1 : ACS port map (brnO=>bOO,bml=>b 1 1 ,~rnO=~gmO~k,srnl=~gm1~in, 
d=~d(O),sm=~pO~out,clk>ck,reset==>reset); 

acs2: ACS port map (bmO=>b 1 1 ,bm l=~bOO,smO=~gmOO~,sm l=>gml-in, 
d=~d(2),~m=~grn2~out,cll~~clk,reset=~reset); 

acs3 : ACS. port map (bmO=>b 10,bml =>b0 1 ,sm0=>gm2-in,sm l=>gm3-in, 
d=>d(l),sm=>gm 1-ou~cllc=>clk,reset=>reset); 

acs4: ACS port map (bmO=>bO 1 ,bm l =>b l O,s1nû=>gm2~in,sm 1 =>gm3-inY 
d=~d(3),srn=>gm3-out,clk=>clk,reset=~reset); 

end arch-acs4; 

entity CS is 
port ( grn0,gm 1 ,gm2,gm3 :in std-logic-vector(6 downto O); 

selec: out std~logic~vector (1 downto O); 
clk: in SmLOGIC;  RESET:in std-logic); 

end CS; 

architecture arch-CS of CS is 

signal a,b,c,d,e, f: std-logic; 
signal sel: std-logic-vector(1 downto O); 

begin 
a<=Q' when gmO<=gm 1 else '1 : 
b<=D' when gmO<=gm2 else '1 '; 
c<=V when gmO<=gm3 else '1 f 
d<=D' when grn i <=gm2 else '1 : 
e<=Q ' when grn 1 <=gm3 else '1 : 
f<='O' when gm2<=grn3 else '1 : 
sel( 1 )<=((a or b or c) and ( not a or d or e)) or (b and d and not f) or (c and e and f); 
sel(O)<=((a or b or c) and (not b or not d or 0) or(a and not d and not e )  or (c and e and f ) ;  



process(clk,reset) 
begin 
if resee'l ' then 
selec(="OO"; 
elsif ck'event and c k ' l  ' then 
sele6=sel; 

end if; 
end process; 
end arch-CS; 

entity TB is 
port (state-in: in STD-LOGIC-VECTOR (1 downto O); 

d: in STD-LOGIC-vector (3 downto O); 
state-out: out std-logic-vector (l  downto O); 
cik: in std-logic; 
reset: in std-logic); 

end TB; 

architecture TB-mch of TB is 
signal tmp: std-logic-vector (1 downto O); 
begin 
trnp( l )c=state-in(0); 
with state-in select 
tmp(O)c= d(0) when "OO", 

d(1) when "0 l", 
d(2) when "IO", 
d(3) when " 1 1 ", 
X' when others; 

process (clk,reset) 
begin 
if reset='17 then 

state-out<= "00"; 
elsif clk'event and clk='l' then 
state-out <= tmp; 

end if; 
end process; 
end TB-arch; 



library IEEE; 
use EEE-std-logic-1 l64.all; 

entity buffll is 
port (din: in std-Iogic; 

dout: out std-logic; 
clk: in std-logic; 
reset:in std-logic); 

end buffl 1 ; 

architecture arch-bum 1 of buffl1 is 
begin 

process(clk,reset) 
begin 
if resee'l ' then 
dout<=O : 
elsif clk'event and clk='17 then 
dout<=din; 
end if; 

end process; 
end arch-buffi 1 ; 

library EEE; 
use IEEE.std_logic-1164.all; 
use WORK-all; 

entity bufflx is 
generic(depth:integer) ; 

port (din: in stdJogic; 
dout: out std-logic; 
clk: in std-logic; 
reset:in std-logic); 

end buffl x; 

architecture arch-buffl x of buffl x is 

component bum 1 
port (din: in std-logic; 

dout: out std-logic; 
clk: in std-logic; 
reset:in std-Iogic); 

end component; 



signai x: std-Iogic-vector(1 to depth); 

begin 
cascade: for i in 1 to depth generate 

first-stage: if i= 1 generate 
firststagemap: buffl 1 

port map (din=>din,dout=>x(i),cllc=>clk,reset=>reset); 
end generate firststage; 

rnid-stages: if (i> l and icdepth) generate 
midstagesmap: buffll 

port map (din=>x(i- l),dou~~x(i),cib~clk,reset=~reset); 
end generate mid-stages; 

last-stage: if (i=depth) generate 
1aststagernap:bufTll 

port map (din=>x(i- l),dout=~dout,clk=~clk,reset=>reset); 
end generate last-stage; 

end generate cascade; 
end arch-buffl x; 

library IEEE; 
use iEEE.std-logic-l164.all; 

entity bu& 1 is 
generic(width:integer); 

Port ( 
din: in std-logic-vector(width- 1 downto O); 
dout: out std-logic-vector(width- 1 downto O); 
clk: in std-logic; 
reset:in std-logic); 

end b u f i  1; 

architecture arch-bufil of b u e l  is 
begin 
process(clk,reset) 
begin 
if reseWl ' then 
dout<=(others=>D 3; 
elsif clk 'event and clk='l ' then 



dout<=din; 
end if; 

end process; 
end arch-buffjcl ; 

library IEEE; 
use IEEE.std-logic-l164.all; 
use W0R.K-alI; 

entity bu& is 
genenc(width:integer;dep th5nteger); 

Port ( 
din: in std-logic-vector(width4 do wnto O); 
dout: out std-logic-vector(width- 1 downto O); 
clk: in std-logic; 
reset:in std-logic); 

end buffxx; 

architecture arch-bu& of bu& is 

cornponent bu& 1 
generic (width:integer); 
port (din: in std-logic-vector(width- 1 downto O); 

dout: out std~logic~vector(width-1 downto O); 
clk: in std-logic; 
reset:in std-logic); 

end cornponent; 

type vctr is array (1 to depth) of std-logic-vector (width- 1 downto O); 
signal x: vctr; 

begin 
cascade: for i in 1 to depth generate 

first-stage: if i= l generate 

firststagemap: b u f i  1 
genenc map (width=> width) 
port map (din=>din,dou~>x(i),cl&>cIk,rese~~reset); 

end generate first-stage; 

mid-stages: if (izl and i<depth) generate 
midstagesmap: bu& 1 





entity hadder is 
port (a: in std-logic; 

b: in std-logic; 
s: out std-logic; 
cout: out std-logic); 

end hadder; 

architecture arch-hadder of hadder is 
signal axorb: std-logic; 
begin 
s<= a xor b; 
cout <= a and b; 
end arch-hadder; 

package CONSTANTS is 
constant P E W D  : tirne := 12 ns ; 
constant HALF-PERIOD : time := PERIOD / 2 ; 

end CONSTANTS ; 

library STD ; 
library IEEE ; 
use std.textio.al1; 
use IEEE.std-logic-1 l64.aIl; 
use 1EEE.std-logic-textio.al1 ; 
use Work.constants.all ; 
use IEEE.std_Iogic.arith.all; 
use Work-al1 ; 

entity testbench is 
end testbench; 

architecture arch-testbench of testbench is 

component top 
Port ( 

x0,x 1 ,x2,x3~x4,x5,x6,x7,x8,~9~~ 1 0,x 1 1 : in std-logic-vector(5 downto O); 
clock,reset: in STD-LOGIC; 
@,y1 , y 2 ¶ ~ 3 , ~ 4 , y 5 , y 6 , ~ 7 , ~ ~ ¶ ~ ¶ ~ ~  O ¶ Y ~  1 : out STD-LOGIC); 

end component; 

signal xO,x 1 ~x2,x3,x4,x5,x6,x7~x8,x9,x 10,x 1 1 : std-logic-vector (5 downto O); 
signal clock,reset: STD-LOGIC; 



signal y: STD-LOGIC-vector (O to 1 1); 

begin 

UUT : top 
Port Map ( xO=>xO,x 1 =>x 1 ,x2=>x2,x3=>x3 ,x4=>x4,x5=>x5, 

x6=~x6,x7=~x7,x8=~x8,x9=~~,x1 û=>x 10,x 1 l=>x 1 1, 
clock=~clock,rese~~reset, 
YO==-Y(o),Y 1 =>Y( 1 ),Y~='Y (2L y3=>y(3 ), 
Y~~Y(~).YS=>Y(S),Y~=~Y(~),Y~=~Y(~),~~=>~(~), 
ys=>y(9),yl O=>y(i O),yl l=>y(ll) ); 

STIMULUS : process 
file W i n  : TEXT is in "quantzd.datn ; 
file Wout  : TEXT is out "decoded-dat" ; 
variable N i n e  , OUTline : LINE ; 
variable reseti: std-logic; 
variable xOi,x 1 i,x2i,x3i7x4i,x5i,x6i,x7i,x8i7x9i~x 1 Oi,x i l i: 

std-logic-vector(5 downto O); 

begin 
readline( TVin , N i n e  ) ; 
read( iNline , reseti ) ; 
read( INline , xOi ); read( M i n e  , x 1 i ); 
read( N i n e  , x2i ); read( Mine , x3i ); 
read( INline , x4i ); read( INline , x5i ); 
read( INline , x6i ); read( INline , x7i ); 
read( INline , x8i ); read( M i n e ,  x9i ); 
read( N i n e  , x l Oi ); read( INline , x 1 l i ); 

clock <= 0: 
reset c=reseti; 

x0 <= xOi; x l  <= x l  i; x2 <= x2i; 
x3 <= x3i; x4 <= x4i; x5 <= x5i; 
x6 <= x6i; x7 <= x7i; x8 <= x8i; 
x9 <= x9i; x10 <= xlOi; xl  1 <= xl li; 
wait for HALF-PERIOD; 

clock <= '1 '; 
wait for HALF-PERIOD; 

for i in 1 to 12 loop 
clock<=O'; 
wait for halfjeriod; 
clock<='l'; 



wait for haIf_period; 
end Ioop; 
clock<=i)", 
wait for halfqeriod; 

while not endfile( TVin) loop 
--Get a vector 
readline( TVin , INline ) ; 
read( N i n e  , reseti ) ; 
read( N i n e  , xOi ); read( N i n e  , xl i  ); 
read( N i n e  , x2i ); read( N i n e ,  x3i ); 
read( Mine , x4i ); read( Mline , x5i ); 
read( N i n e  , x6i ); read( INline , x7i ); 
read( Mine , x8i ); read( INline , x9i ); 
read( INline , x 1 Oi ); read( INline , x 1 1 i ); 

clock <= '0'; 
reset <=reseti; 

x0 <= xOi; x 1 <= x 1 i; x2 <= x2i; 
x3 <= x3i; x4 <= x4i; x5 <= x5i; 
x6 <= x6i; x7 <= x7i; x8 <= x8i; 
x9 <= x9i; x10 <= xlOi; x l l  -== xl li; 
wait for HALF-PERIOD; 

clock <= '1 '; 
wait for HALF-PERIOD; 
--Write output values 
write(0UTline , y) ; 
writeIine( TVout , OUTIine ); 

end toop; 

for i in 1 to 42 loop 
clock<=D '; 
wait for halfseriod; 
clock<='l '; 
wait for halfqeriod; 
write(0UTline , y) ; 
writeline( Wout , OUTline ); 

end loop; 

assert false report "test complete" ; 
end process ; 

end arch-testbench; 



Appendix F. Area and Timing Report for the TOP Entity 

Report : fpga 
Design : top 
Version: 2000-05 
Date : Mon Oct 9 11:27:25 2000 
........................................ 

* Core Cell Statistics * 
Number of 2-input LUT cells: 
Number of 3-input LUT cells: 
Number of 4-input LUT cells: 
Number of Core Flip Flops: 
Number of Core 3-State Buffers: 
Number of Other Core Cells: 
Total Number of Core Cells: 

* Port Statistics * 
Number of Input Ports: 
Number of Output Ports: 
Number of Bi-directional Ports: 
Total Number of Ports: 

* Pad Ce11 Statistics * 
Number of Input Pads : 
Number of Output Pads : 
Number of Clock Pads: 
Total Number of Pads Cells: 

........................................ 
Report : timing 

-path full 
-delay m a x  
-max_paths 1 

Design : top 
Version: 2000-05 
Date : Mon Oct 9 11:30:57 2000 
........................................ 

Operating Conditions: WCCOM Library: xfpga-virtex-6 
Wire Load Mode1 Mode: top 

Startpoint: stage-O/acs3/sm-regc0> 
(rising edge-triggered flip-flop clocked by clock) 

Endpoint: stage-l/acsl/sm-regcO> 
(rising edge-txiggered flip-flop clocked by clock) 





Appendix G. The script for Synopsys Compiler 

TOP = top 
edifoutdesign-name = top 

designer = "Jian Linn 
company = "U of Mn 
part = "XCV300PQ240-6" 

analyze -format vhdl \ 
f./HDLs/buff.vhd ./HDLs/bitcomp.vhd \ 
-/HDLs/hadder.vhd ./HDLs/fadder.vhd \ 
./HDLs/comparex,vhd ./HDLs/quntSbm-vhd \ 
-/HDLs/tb,vhd \ 
./HDLs/acs-dw-vhd ./HDLs/cs-vhd \ 
./HDLs/topNosmgrsl,vhd} 

elaborate qunt2bm 
ungroup -al1 
remove-constraint -al1 
removeclock -al1 
create-clock "clk" -period 50 
groupsath -criticalrange 10000 -default 
compile -map-effort high 
report-f pga 
report-timing 

elaborate acs 
removeconstraint -al1 
remove-dock -al1 
create-clock "clk" -period 50 
groupzath -critical-range 10000 -default 
compile -map-effort high 
report-fpga 
report-t iming 

elaborate acs4 
set-dont-touch {bmîracslracs2,acs3,acs4} 
remove-constraint -al1 
removeclock -al1 
create-clock "clkn -period 50 
group-path -critical-range 10000 -default 
compile -map-effort high 
report-f pga 
report-timing 

elaborate CS 
remove-constraint -al1 
removeclock -al1 
create-clock "clkW -period 50 
groupsath -critical-range 10000 -de£ault 
compile -map-effort high 
report-f pga 
report-timing 



elaborate buffll 
compile 

elaborate bufflx -paran "depth = 2" 
uniquify 
compile 

elaborate buf £lx -parcun "depth = 3 " 
uniqyify 
compile 

elaborate buff lx -param "depth = 4" 
uniquify 
compile 

elaborate bufflx -param "depth = 5 "  
uniqui fy 
compile 

elaborate bufflx -param "depth = 6" 
uniquif y 
compile 

elaborate bufflx -param "depth = 7" 
uniquify 
compile 

elaborate buf f lx  -paran "depth = 8 "  
uniquif y 
compile 

elaborate buf flx - p a r a m  "depth = 9" 
uniquify 
compile 

elaborate buf £ lx -parani "depth = 10" 
uniquif y 
compile 

elaborate bufflx -param "depth = 11" 
uniqui £y 
compile 

elaborate buffxl -param "width = 6 "  
uniquify 
compile 

elaborate bu£ fxl -param "width = 4 "  
uniquify 
compile 

elaborate buffxx -param "width = 6, depth= 2" 
uniqui £y 
compile 

elaborate buffxx -param "width = 6, depth= 3" 
uniquify 



compile 

elaborate buffxx -param "width = 6, depth= 4 "  
uniqui £y 
compile 

elaborate buffxx -param "width = 6, depth= 5" 
uniqui £y 
compile 

elaborate buffxx -param "width = 6, depth= 6" 
uniquify 
compile 

elaborate buffxx -param "width = 6, depth= 7" 
uniwify 
compile 

elaborate buffxx -param "width = 6, depth= 8" 
uniquify 
compile 

elaborate buffxx -param "width = 6, depth= 9" 
uniquify 
compile 

elaborate buffxx -param "width = 6, depth= 10" 
uniquify 
compile 

elaborate buffxx -param "width = 6, depth= 11" 
uniquify 
compile 

elaborate buffxx -param "width = 4, depth= 33" 
uniquify 
compile 

elaborate buffxx -param "width = 4, depth= 31" 
uniquify 
compile 

elaborate buf fxx -param "width = 4, depth= 29 " 
uniquify 
compile 

elaborate buffxx -param "width = 4, depth= 27" 
uniquif y 
compile 

elaborate buffxx -param "width = 4, depth= 25" 
uniqui f y 
compile 

elaborate buffxx -param "width = 4, depth= 23" 
uniquify 
compile 



elaborate buffxx -param "width = 4, depth= 21" 
uniquify 
compile 

elaborate buffxx -param "width = 4, depth= 19" 
uniqiiif y 
compile 

elaborate buffxx -param "width = 4, depth= 17" 
uniqui f y 
compile 

elaborate buffxx -param "width = 4, depth= 15" 
uniquif y 
compile 

elaborate buffxx -param "width = 4, depth= 13" 
uniquif y 
compile 

elaborate buffxx -param "width = 4, depth= 11" 
uniquify 
compile 

elaborate buffxx -param "width = 4, depth= 9" 
uniquify 
compile 

elaborate buffxx -param "width = 4, depth= 7" 
uniquify 
compile 

elaborate buffxx -param "width = 4, depth= 5 "  
uniquify 
compile 

elaborate buffxx -param "width = 4, depth= 3 "  
uniquify 
compile 

elaborate tb 
compile -map-effort high 
report-£ pga 
report-timing 

elaborate top -arch " arch-top" 
setdont-touch { DLL,CLOCKBUF,pipexl_1, \ 

pipexl-12, pipe-2, pipex3-3 , \ 
pipex4-4, pipex5-5, pip-6, \ 
pipex7-7,pi~ex8-8,pipex9~9, \ 
pipex10-10,pipexll-11, \ 
pipex0-11, pipex2-13, pipexU4, \ 
pip-4,15, pipex5-16 , pipex6-17 , \ 
pipex7-18,pipex8-19,pipex9_20, \ 
pipexl0-21, pipexll-22, \ 
stage-0, stage-1, stage-2, \ 



ins e r t s a d s  

removeconstraint -al1 
remove-clock -al1 
create-clock "clock" -period 50 
groupzath -critical-range 10000 -default 
compile -map-effort high 
report-£ pga 
report-timing 

write -format db -hierarchy -output top + ".db" 

set-attribute TOP "part" -type string part 

m i t e  -format edif -hierarchy -output TOP + ".sedifn 

mite-script > TOP + ".dcU 

sh dc2ncf -w TOP + " . dc" 

exit 



Appendix A. The script for Placement and Routing 

#!/bin/csh -f 
ngdbuild -p xcv300-6-pq240 -uc top-ucf top-sedif top-ngd 
map -u -O top-m-ncd top-ngd top-pcf 
pax -w -01 2 -d O topm-ncd top-r-ncd top-pcf 
ngdanno -s 6 -O top-anrio-nga top-r-ncd top-m-ngm 
ngd2vhdl top-anno-nga -w top,time,vhd 



Appendïx 1. The script for Timing Simulation 

SLOGFILE = "tmp.datn; 
open(LoG~1LE) or die("Cou1d not open log file."); 
read(LOGFILE, $line,30); 
ciose(L0GFILE); 
( S m s g ,  Serr, Sesovrn) =split(' ' , $ l ine )  ; 
Sesovrn = substx($esovrn,0,3); 
while ($esovrnc=8.5 ) { 
print ( " $esovrnW ) ; 

system("nice -19 encoder $esovrrin); 
system('nice -19 vhdlsim -nc -sdf-top /testbench/uut -sdf top-tirne-sdf 
conf-testbench -e r n y " ) ;  
system( "comp") ; 

$LOGFILE = "tmp.datW; 
open (LOGFILE) or die ( " Could not open log file. " ) ; 
read(LOGFILE, $line,30); 
close(LOGF1LE); 
(Smsg, Serr, Sesovm) = split(' ',$linel; 
Sesovrn = substr($esovrn, 0,3) ; 

1 ;  
print ( "The test is over ! \n" ) ; 



Appendix J. The Report for Placement and Routing 

Release 3.1.01i - Par D.19 
Mon Nov 13 14:41:08 2000 

par -w -01 5 -d O map-ncd top-ncd top-pcf 

cons traints file: top .pcf 

Loading device database for applicction par £rom file *map.ncdn. 
"topw is a n  NCD, version 2.32, device xcv300e, package pq240, speed -8 

Loading device for application par £rom file 'v300e.nphr in environment 
/CMC/tools/xilinx. 
Device speed data version: PREVIEW 1 . 3 3  2000-06-16. 

~evice utilization summary: 

Number of External GCLKIOBs 1 out of 4 258 
Number of External IOBs 85 out of 158 53% 

Number of SLICEs 2924 out of 3072 95% 

Number of DLLs 
Number of GCLKS 

1 out of 8 12 % 
2 out of 4 50% 

Overall effort level (-01) : 5 (set by user) 
Placer effort level (-pl): 5 (set by user) 
Placer cost table entry (-t): 1 
Router effort level (-rli: 5 (set by user) 

~tarting initial Timing Analysis. REAL the: 25 secs 
Finished initial Timing Analysis. REAL the: 44 secs 

starting initial Placement phase. REAL the: 48 secs 
Finished initial Placement phase. REAL the: 52 secs 
Starting the placer. REAL the: 53 secs 
Placement pass 1 
~ * . . ~ . . - . ~ - . . - . . ~ * - ~ - ~ . . . . ~ . . . ~ ~ . ~ . . . . ~ - . . . . . . . - * . ~ - . - - - - - - - - - - - . - - . - - * - - -  
Placer score = 408090 
Optimizing .., 
Placer score = 343675 
ïmproving the placement. REAL the: 2 mins 3 secs 
Placer stage completed in real the: S mins 44 secs 

Optimizing ... 
Starting IO Improvement. REAL time: 6 mins 31 secs 
Placer score = 312010 
~inished IO Improvement. REAL time: 6 mins 31 secs 

Placer completed in real the: 6 mins 31 secs 

Writing design to file "top.ncdn. 

Total REAL the to Placer completion: 6 mins 50 secs 
Total CPU t h e  to Placer completion: 6 mins 38 secs 



O connection(s) routed; 14510 unxouted- 
Starting router resource preassignment 
Completed router resource preassignment. REAL time: 7 mins 13 secs 
Starting iterative routing. 
Routing active signais- 
- . - * - - - - -  

End of iteration 1 
14510 successful; O unrouted; (0) REAL the: 10 mins 48 secs 
Constraints are met. 
Total REAL the: 11 mins 2 secs 
Total CPU the: 9 mins 
End of route. 14510 routed (100.00%); O unrouted. 
No errors found. 
Completely routed- 

Total REAL time to Router completion: 11 mins 19 secs 
Total CPU t h e  to Router completion: 9 mins 12 secs 

Generating PAR statistics . 

The Delay Summary Report 

The Score for this design is: 162 

The Number of signals not completely routed for this design is: O 

The Average Comection Delay for this design is: 1,146 ns 
The Maximum Pin Delay is: 3 -974 ns 
The Average Comection Delay on the 10 Worst Nets is: 2.386 ns 

Listing Pin Delays by value: (ns) 

Timing Score: O 

Asterisk ( * )  preceding a constraint indicates it was not met. 

Al1 constraints were met. 
Writing design to file "top.ncdn. 

Al1 signals are completely routed. 



Total REAL t h e  to PAR completion: 12 mins 12 secs 
Total CPU time to PAR completion: 9 mins 43 secs 

Placement: Completed - No errors found. 
~outing: Completed - No errors found, 
Timing: Completed - No errors found, 

PAR done. 
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