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Abstract

The relaxation response of three reentrant disordered ferromagnetic sys-

tems Feg g5Nig 35-2Crz (z = 0.11,0.12), Cr;_Fe, (z = 0.21), and (Feg 65Nig.35)1-zMn.

(z = 0.118), have been investigated over a range of temperatures both below and

above their glass temperatures.

The measurements were performed with a home-made variable tempera-
ture, variable frequency SQUID dc-susceptometer with a temperature range from

4.2 K to 250 K and a dc-field range up to 100 Qe.

The relaxation response was measured using a variety of experimental pro-
cedures. In the simplest procedure, the sample was field cooled from a reference
temperature in the paramagnetic regime to the measurement temperature, held
at fixed temperature for a waiting time ¢, after which the field was removed and
the response was measured over an observation time 2s < ¢ < 10%s. In more

complicated procedures, the temperature was cycled or shifted during the waiting

time ¢, or subjected to a field change of varying amplitude.

All samples investigated here were characterized by two thermally distinct
relaxation regimes, a high temperature regime of equilibrium, power law dynamics
which coincided with the ferromagnetic regime, and a low temperature regime of
nonequilibrium, age-dependent dynamics which coincided with the reentrant glass
phase. The relaxation isotherms in both regimes were fitted to specific functional
forms predicted by various models of slow relaxation in disordered systems in-
cluding Fisher and Huse’s droplet scaling theory of domain growth, heirarchically
constrained dynamics, Bouchaud’s theory of random traps, an Elementary Decay
Model based on a stochastic distribution of activation energies, and a percolation
theory for relaxation of dispersive excitations within finite domains. The fitting
parameters extracted from these fits provided detailed information on the organi-

zation of metastable states in the configuration space of a structurally disordered

jid



system, on their evolution with temperature, and on their fragility with response
to field and temperature fluctuations, and allow us to compare the various the-
oretical approaches to slow relaxation, establish possible correlations and expose

inconsistencies.
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Chapter 1

Introduction

1.1 Basic Concepts and Phenomena in Disor-
dered Magnets

In 1972, Cannella and Mydosh (1972) noticed a cusp in the a.c. susceptibil-
ity of a dilute AuFe alloy. Since then a fascinating new topic—spin glasses—emerged
in condensed matter physics. The mid-1970’s to mid-1980’s, was a very fruitful
period for spin glass research, both in theory and experiment. Hundreds of papers
per year were written on spin glasses, and the most important models and theo-
retical concepts were constructed. The experimental phenomena were explained
reasonably well. After that, the tempo slowed down and a tranquility appeared,
with more sophisticated theories, subtle new experiments and the identification
of ‘ideal’ spin glass materials. “ Spin glasses " are still an active, frontier topic in
physics. The theory is evolving towards a more complete description, with newer
ideas. Experimentation is continuing with investigations of novel forms of spin
glasses and even more subtle effects. Spin glass theory has had a rather large and
unexpected impact on some problems far from spin glasses themselves. It turns
out that a number of problems in fields outside physics share some of the essen-

tial features — randomness and frustration — that characterize spin glasses. This



is especially true of the particularly novel concepts of mean field theory: broken
ergodicity is a fundamental concept and broken replica symmetry may be a basic
tool for analysing complex systems. There is a richness of analogies with many
other areas extending from astrophysics to molecular evolution to zoology (Stein

1992; Mezard and Parisi 1985, 1986; Orland 1985).

Now, the spin glass has become a fundamental and general form of mag-
netism; in its frequency of occurrence as a ‘magnetic ordering’ phenomenon, it
occupies the third place, after ferromagnetism and antiferromagnetism. Random-
ness, frustration, glassiness and amorphousness represent very important phenom-

ena in contemporary physics.

What is a spin glass, and what are the necessary ingredients to form a
spin glass state? The simplest answer is that a spin glass is a collection of spins
(i.e. magnetic moments) whose low-temperature state is a frozen disordered one.
without the kind of long range uniform or periodic pattern observed in conven-
tional ferro- and antiferromagnets. To create a disordered magnetic system which
exhibits spin glass characteristics, two ingredients are necessary: randomness of
interactions between the magnetic moments and competition among the differ-
ent interactions. It follows that no single configuration of the spins is uniquely

favoured by all the interactions, and this is commonly called ‘frustration’.

As an example, Figure 1.1 shows two magnetic clusters. In both (a) and
(b) interactions are random between the randomly distributed magnetic moments.
The exchange interaction constant J may be either positive or negative between
moments as shown in the figure. In (a), the configuration has no competition or
in other words, it is unfrustrated, all the bond energies are satisfied and there will
only be a two-fold degenerate ground state. This latter arbitrariness is caused by
the initial choice of the first spin direction. But in (b), only one is negative, and

in this case all the bond energies cannot simultaneously be satisfied. One spin
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Figure 1.1: Two spin clusters on a lattice with mixed interactions: j > 0 means
ferro- and j < 0 means antiferromagnetic interaction. (a) unfrustrated, which is
two-fold degenerate and (b) frustrated, which is 8-fold degenerate energy state.



remains frustrated, or one bond is broken, no matter what we do. Now the cluster
has an 8-fold degenerate state(any spin could be the one with frustration). So the

frustration will cause more possible configurations with the same energy.

To create randomness, we can randomly distribute the magnetic species
substitutionally on a non-magnetic host lattice. Fortunately, nature already pro-
vided us with this kind of magnetic alloy even before the name spin glass was
coined. They are composed of magnetic impurities bearing a moment or localized
spin and randomly occupying lattice sites in a non-magnetic host metal. Spin
glasses were accidentally discovered by studying such binary alloys. Here we want
to control the concentration z of these impurities so that they can interact with
each other in a random way. The host can be just about any non-magnetic metal
that dissolves the ‘good moment’ elements such as Mn, Fe, Gd, Eu, etc. The
archetypal specimens of the metallic site-random spin glasses are Cu;_.Mn, and

Au,_.Fe, (the underlined metal is the host). These noble-metal alloys are also

called canonical spin glasses.

For a spin glass system, when the temperature goes from a high tempera-
ture to a low temperature , it will undergo a glassy phase transition at a freezing
temperature Ty. For above this temperature, the system is an ordinary param-
agnet, and it is simply a collection of paramagnetic spins, i.e., independent and
rapidly rotating arrows in the ‘chaos’ caused by the high temperature. When
the temperature is lowered from T > Ty, many of these randomly positioned and
freely rotating spins build themselves into locally correlated units or clusters, even
domains, which can then rotate as a whole. As the temperature disorder is further
removed, the various spin components begin to interact with each other over a
longer range. The system seeks its ground state configuration for the particular
distribution of spins and exchange interactions. This means a favourable set of
random alignment axes, gererated by the local anisotropy, into which the spins or

clusters can lock. However, the frustration plays its role and a multi-degenerate



array of ground states presents itself for the system to choose from. For such
disordered systems there are many metastable configurations which are possible,

and which may “trap” the system.

To study freezing or phase transitions, the best quantity to measure is the
frequency-dependent susceptibility. Usually the ac susceptibility is measured in
a very small biasing dc-field (< 1 Oe). But by using highly sensitive SQUID
techniques we can also measure the static magnetization in a very small applied
field. As H — 0, there must be a similarity between the dc¢ susceptibility x4 =
M/H and the ac susceptibility x,. = dM/dH. There are two distinct ways to
measure the susceptibility with a dc field: field cooling (FC) and zero-field cooling
(ZFC). In FC measurements, we apply the field above T; and cool the sample in
this field to T <« Ty, and record the magnetization (or heat the sample from
T « Ty to T > Ty, and record the magnetization). The FC curve is reversible.
In ZFC measurements, we cool the sample in zero field from T >> Ty to T <« Ty,
and apply the field at this low temperature, then we heat the sample and measure
M(t) to T > Ty in this constant field. When we measure the ZFC curve, xzrc
is unstable and always drifts upwards towards xrc. Figure 1.2 shows the FC and
ZFC curves for x(t) for two different concentrations of CuMn. At temperatures
below the peak, the FC curve is reversible, while the ZFC curve is irreversible.
The peak in xzrc and the plateau in x ¢ reveal the onset of the glassy transition

at T=Tf.

At small fields A < 100 Gauss, this peak in xzrc is well defined. When
the applied field is increased, the ZFC curve relaxes to the FC curve very fast.
It seems that the field removes the criticality of the phase transition, yet it does
not fully prevent the formation of the frozen state. In order to avoid all the
complications with relaxation and irreversibility, a good experiment to perform is

the FC measurement. For certain canonical spin glasses, a small peak and then a
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Figure 1.2: Field cooled [(a),(c)] and zero-field cooled [(b),(d)] magnetizations
(x = M/H, H = 5.9 gauss) for CyMn (1.08 and 2.02 at%Mn) as a function of
temperature. Initial susceptibility of (b) and (d) were measured with increasing
temperature in the field. From Nagata et al. (1979).
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Figure 1.3: Inverse of the FC-susceptibility (H/M) for AgMn (10.6 at%) as a
function of temperature for various magnetic fields (indicated on each curve in
gauss). Data were obtained by slow cooling in a constant field. The onset of
the ‘plateau’ (marked by arrows) is taken arbitrarily as the point of the M (T)
curve departing by 3% from its low-temperature value thereby defining T;. The
resulting boundary of the spin-glass phase H.(T) is shown in the inset. T} is the
zero field value of Ty. From Monod and Bouchiat (1982).



plateau develops at Ty. Figure 1.3 is a plot of the inverse magnetization divided
by the cooling field (H/M) versus the temperature. At small fields, the inverted
cusp denotes Ty. However, the peak rapidly disappears with increasing field. Now
we must use the onset of the plateau to establish Ty, as shown by the arrows.
These points not only shift downward in T with increasing H, but become much
more diffuse. An estimate of T is given in the inset of the figure where an H — T
phase diagram is attempted, albeit with large error bars. At large fields T is

simply not well defined.

1.2 Spin Glass Systems

So, a spin glass is a random, mixed—interaction magnetic system character-
ized by a temperature Ty below which a highly irreversible, metastable frozen state
occurs without the usual long-range magnetic order. The random-interactions
could be achieved by the random-site occupancy of the alloys, as mentioned
above, in which the magnetic impurities are randomly distributed in a non-
magnetic metal host, or by creating random-bond types of systems. The latter
was found to exist only recently in real materials, e.g. the compounds Rb,Cu,_.Co.F,
and Fe;_.Mn_.TiO; were discovered to give reasonable approximations of +.J cou-
plings(Mydosh, 1993). Suffice it to say, there must be disorder in the constitution
of a spin glass: either site randomness with a distribution of distances between
the magnetic spins, or bond randomness where the nearest-neighbour interac-

tion varies between parallel coupling +J and antiparallel coupling —J.

1.2.1 RKKY Spin Glasses

If a magnetic alloy shows spin glass behavior, usually the concentration of

the impurities is very low and the spins cannot interact with each other directly.



The mechanism of the interaction is indirect and induced by the conduction
electrons, which is the now: famous Ruderman, Kittel, Kasuya, Yosida (RKKY)
interaction whose Hamiltonian is H = J(r) S; - S;. A local moment with spin S;
polarizes the host’s conduction electrons in its neighborhood, which will cause a
damped oscillation in the response of the conduction electrons. These oscillations
will influence the orientation of the second magnetic moment S;, and thereby

cause a coupling between spins S; and S; with coupling constant:

sin(2ker) c08(2kFT)] (1.1)

J(r) = 6w ZJ{N(EF) [ (2ker)t (2kpr)?

where Z is the number of conduction electrons per atom, J; is the s-d exchange
constant, V(EF) is the host density of states at the Fermi level, kg is the Fermi

momentum and ris the distance between two impurities. This reduces to

at large distances. A phase factor ¢ is included to account for the charge difference
between impurity and host and the former’s angular momentum. Such oscillatory
behavior of J(T), or really the Pauli susceptibility, which in the free-electron model
has spherical symmetry, is illustrated by the two coupling schemes in Figure 1.4.

Notice that the (1/r)3 fall-off is sufficiently long-ranged so that it can effectively
reach a number of near-neighbour sites. Now if a second magnetic impurity with
spin S; is put at one of the neighbouring sites, it will produce its own RKKY
polarization. The two conduction-electron-mediated polarizations will overlap in
such a way as to establish a parallel or an antiparallel alignment of the two spins.
Figure 1.4 plots the Pauli susceptibility of the conduction eletrons to show these
situations. Note that the sign (+ = 1T and — = T|) of the impurity coupling varies
with distance. If we combine this property with site disorder (various separations

between the spins), we have generated a random distribution of coupling strengths

9
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Figure 1.4: RKKY interaction between two impurities in terms of the Pauli sus-
ceptibility x,. From Mydosh (1993).
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—Figure 1.5: Computer simulation of probability distribution of coupling strengths
for about 103 spins resulting from an RKKY interaction in a 3-dimensional dilute
magnetic alloy. From Binder and Schrdder (1976).
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and diraections. Figure 1.5 shows the probability function P(J;;) from a computer
simulation for some bonds J;; coupling a random-site magnetic alloy. The number
of + and — bonds is nearly symmetric. Here the required feature of ‘competition’
among ferro and antiferromagnetic exchange bonds is obtained in a natural way,
namely via the oscillating RKKY interaction. This is why the whole spin-glass
problem started with magnetic alloys. We must once again emphasize that it is
the combination of site disorder and the + and — RKKY interactions that causes
a mixture of competitive bonds that will eventually lead to frustration in some of

these bonds.
RKKY spin glasses are alloys which usually consist of noble metal hosts

with transition metal impurities, like CuMn , AuFe etc, and transition metal/transition
metal combinations like PdFe etc, which has the strongest coupling. Many, many
hundreds of these kinds of combinations can be fabricated in the laboratory.
RKKY alloys can also be fabricated from magnetic rare-earth elements by di-
luting them into a non-magnetic host metal and letting the RKKY interaction
perform its coupling. This kind of alloy does not have a Kondo effect, that is a
localized antiferromagnetic interaction of an isolated or single-impurity spin with
the surrounding conduction electrons (Mydosh 1993), and usually has a limited

solubility.

An amorphous compound without crystallographic order (that is, so-called
natural site randomness) can also be an RKKY spin glass. There are many com-
binations of these systems with a single magnetic species of a transition metal.
These compounds are formed by melt-quenching or splat-cooling and sputtering
techniques. As they are non-crystalline, it is possible to make any desired amounts
of ferro- and antiferromagnetic exchange in any ratio and absolute magnitude. But
amorphous spin glasses, with their higher resistivity, will dampen the range of the
RKKY interaction.

11



1.2.2 Insulating and Semiconducting Spin Glasses

Besides the RKKY magnetic interaction in disordered tmagnctic systemns,
a superexchange interaction also exists which can yield a spin glass state. In
insulating or scmiconducting materials. since there are no conduction electrons,
a sort of covalent wixing of p and d (or f) wave functions ocenrs. Some lead to
parallel spins, like p-d. d-f and p-f. Some lead to antiparallel configurations, like
p-p. d-d and f-f. So, if randomly spaced. the parallel or antiparallel orientations
between the magnetic spins will result in the competing interactions which will

form the spin glass state. -

In addition to the above two intcractions, dipolar and magnetic anisotropy
in small particle matcrials can also be present in a spin glass but they are the
weakest interactions. (Vincent ot al. 1996). Table 1.1 is a list of the different

interactions and their strengths.

Table 1.1: Strengths of differently coupled random magnetic systeins.
From Mydosh (1993).

0
Strong Medium Weak None
™
o ! g
= o
"~ | — :
s t ' 3
Amor. ®
§ Semi. @
g r g
b Insul. * =
-] 6
: g
s Part _
= . =
0
Exchange ar dipolar coupling
Exchange or dipolar coupling

T™ = CuMn, AuFe, PtMn, etc.
RE = LaGd, (YGd)AL, (CeGd)Ru,, etc.
Amor. = a-(FePd)gy Py, a-FeSa ctc.
Semi. = (EuSs)S, CdMaTe ete.
Insul. = (MgFe)o:. ZnFeF;, 3-Co0-ALO,SIO; ete.
Part. = Co0, a(H0,0;(B,0)), etc.
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1.3 Relaxation and Aging in Disordered Mag-
netic Systems

Relaxation and aging effects in disordered magnets were first observed by
Lundgren et al.(1983), and were then studied extensively. The aging experiments
can be performed in two ways: one is to quench the sample from a reference
temperature Tr > T, (the critical temperature, the same as Ty for a spin glass)
in a magnetic field h to T;, < T, wait a certain length of time ¢,, at constant T},
and A, and then remove the field A and measure the decay of the magnetization
M (t) versus the measuring time . Another way is to quench the sample from
Tr > T, in zero magnetic field h = 0 to T;, < T, wait a certain length of time
tw, and then apply the magnetic field 2 # 0 and measure the magnetization M(t)
versus t. In both cases, the magnetization has as inflection point around ¢ = ¢,
which is a direct manifestation of the nonequilibrium nature of the state in which
the system found itself at the end of the wait time ¢,,. The inflection time is just
equal to the “aging” or wait time ¢, (Lundgren et al., 1983). This is why this is

known as an aging effect.

Figure 1.6 shows relaxation measurements for three different wait times ¢,
= 300 s, 1000 s, and 3000 s, on an amorphous sample of (Fep ;5Nig.ss5)75P16BeAls.
The effect of aging is seen as an inflection point on a logt scale at t = t,,, in figure
(a), and in figure (b) which shows the relaxation rate Szpc(ty,t) = OMzrc/0logt,

there is a corresponding maximum at t = t,,.

The aging effect is very field dependent. If we apply a different field, or
perform a field step change during the aging period, the aging effect is different
or the memory of the aging process may be partially destroved or completely
eliminated. Figure 1.7 is a plot of Szrc(tw,t) vs. logt for different magnetic fields
h,at T = 16.3 K and ¢,, = 300s, for the same sample as in Figure 1.6. We can see

13
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Figure 1.6: Relaxation of the zero-field-cooled magnetization at T = 16.3 K and
different wait times t,,: from top to bottom o ¢, = 300s, O ¢, = 1000s, oty =
3000 s. a)AMzpc/h vs. logt. b)Relaxation rate S =1/h (dMr¢/dlogt) vs. logt. h
= 0.1 Oe. From Djurberg (1995).
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Figure 1.7: Relaxation rate Szrc = (1/h)dMzrc/dlogt vs. logt at different fields
h(Oe): from bottom to top (l.h.s) 0 0.3, 3 0.5, ¢ 0.8, x 1.0, + 2.0, & 4.0, 6.0,
®8.0. T =163 K, ¢, = 300 s. From Djurberg et al. (1995).
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Figure 1.8: Zero-field-cooled susceptibility (1/H)M (t) and the corresponding re-
laxation rate S(t) = (1/H)OM/0In(t) at t,. = 103 sec, plotted vs. loga(t) . The
sample has been aged below (AT = 0.15 K) and above (AT = —0.15 K) the mea-
surcment temperature. Also plotted is a conventional (AT = 0 K) ZFC curve.
T./T, =091, H =08 G. (a) (1/H)M(t). 5% of (1/H)Mprc indicated. (b) S(t).
1% of (1/H)Mpc indicated. From Granberg ot al. (1988).
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that at low fields, h < 1 Oe, the response does not depend on field: for larger fields
the curves become field dependent, and deviate from the linear low-field response.
The relaxation rate then typically increases at short times and the maximum,

originally at ¢ = ¢, is shifted towards shorter observation times.

Another interesting experiment involves a temperature fluctuation before
the measurement, performed near the measurement temperature 7T,,. Tempera-
ture shifting (Tp — T, — AT < Ty, age for t, T;n — AT — Tp,) and temperature
cycling (Tp — Ty < Ty, age for t,, Ty — Ty + AT — T3,) will also influence the
aging process. Figure 1.8 shows temperature shifting results on a sample of Cu-10
at%Mn: a positive temperature shift (AT = 0.15 K) yields a relaxation curve
characterized by an apparent wait time t,,,, < ¢, and a negative temperature
shift (AT = — 0.15 K) yields a relaxation curve characterized by an apparent
wait time which is longer than ¢, ty,,, > t, (Granberg et al. 1988).

The aging effects which are observed under various circumstances and the
corresponding theories proposed to explain them are most interesting topics which

will be the principal focus of this thesis.

1.4 Relaxation and Aging Behavior in Other Com-
plex Systems

Anomalous relaxation behavior and aging effects are common features in
all complex systems (Struik 1978; Jackle 1986). A collection of conference papers
in RELAXATIONS IN COMPLEX SYSTEMS (edited by Ngai and Wright, 1991.)
gives a detailed study of the relaxations in a variety of materials. Here I will give
two typical examples, polymers and window glass, to show the similar behaviour

to that observed in disordered magnetic systems.

Figure 1.9 is a volume-temperature relation between the crystal, liquid and

17



glass states in a super cooled liquid. On cooling a liquid from the initial state
A, the volume will decrease steadily along AB. If the rate of cooling is slow ,
and nuclei are present, crystallization will take place at the freezing temperature
T¢. The volume will decrease sharply from B to C, and thereafter, the solid will
contract with falling temperature along CD. If the rate of cooling is sufficiently
rapid, crystallization does not take place at Ty, and the volume of the supercooled
liquid decreases along BE, which is a smooth continuation of AB. At a certain
temperature T, , the volume-temperature graph undergoes a significant change in
slope and continues almost parallel to the contraction graph CD of the crystalline
form. T, is called the glass transformation or glass transition temperature. Only
below T, is the material a glass. The location of E, the point corresponding to T},
varies with the rate of cooling , and thus it is appropriate to call it a transformation

range rather than a fixed point. At T, the viscosity of the material is very high,

about 10'2 poise.

If the temperature of the glass is held constant at a little below T}, , the
volume G will continue to decrease slowly. Eventually it reaches the level G’ on
the dotted line, which is a smooth continuation of the contraction graph BE of
the supercooled liquid. If we perform relaxation experiments on physical and
mechanical properties, for example torsional stress, the resulting slow relaxation

in the glass phase does not have a simple exponential form.

Figure 1.10(a) is the relaxation function ®(¢) for torsional stress relaxation

in a soda-lime-silica glass at different temperatures below 7,. The relaxation

function ®(t) has a stretched ezponential form

®(t) o exp[—(t/70)"), 0<B<1 (1.3)

This function can be applied rather universally to a very broad class of materials
(Ngai and Wright, 1991). By using the time-temperature scaling principle (Ferry,

1980), the relaxation curves at different temperatures fall on a single “master
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curve”, which is shown in Figure 1.10(b).

The aging effect in polymers is another example. Figure 1.11 is the exper-
imental procedure to study the aging effects on the small-strain creep properties
of a polymer. The tested sample was usually first annealed to reduce any in-
ternal stresses generated by earlier compression molding or extrusion operations.
The sample to be examined is placed in the creep tester, and subjected to the
thermal treatment. First, the sample is heated to a temperature T, 10-15 °C
above the glass temperature T,. A period of 10-20 minutes at Ty suffices for the
establishment of thermodynamic equilibrium. Next, the sample is quenched to
a temperature T) below T,, and kept at this temperature. The quench takes a
few minutes. When a certain time ¢, has elapsed after the quench, a creep test is
started. The sample is subjected to a constant stress og; the resulting strain € is

measured as a function of time ¢, with ¢ = 0 defined at the moment of loading.

Figure 1.12 shows the aging effects in this test of a PVC (polyvinylchoride)
sample of about 1x10 x20 mm?® at small strains. The most important features
of the results are: (i) Aging produces nearly horizontal shifts of the creep curves,
without large changes in shape. Thus, aging primarily affects the rate of creep.
(%) In certain temperature ranges below T}, the creep rate increases by a factor

of about 10 per tenfold increase in aging time.

Both the relaxation behavior in soda-lime-silica glass and the aging effects
in polymers can be explained by the Williams, Landel and Ferry (WLF) (1955)
free volume picture, in which the rate change is not primarily due to thermal
activation but rather to thermal ezpansion (Kovacs, 1963). The characteristic
time 7 of the expansion of the free volume vy is very dependent on 7. As long
as T is high, the free volume is large and 7 is small, thus the thermal contraction
of vy can follow the cooling process. At T, the relaxation time becomes so long

that the changes in vy can no longer keep up with the cooling process. To a first
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Figure 1.12: Small-strain tensile creep curves of a rigid PVC quenched from 90
OC (i.e. 10 °C above T}) to 20 °C and kept at 20 % 0.1 °C for a period of 4 years.
The different curves were measured for various values of the time, t.. in days.
elapsed after the quench. The master curve at t. = 1000 days gives the results
of a superposition by shifts which were almost horizontal; the shifting direction
is indicatec! by the arrow. The crosses on the t. = 1 day enrve were found when.
after 1000 days of aging,. the sample was reheated to 90 °C. requenched to 20 °C.
and remeasured for a t. of 1 day; they show that the aging is thermoreversible as
it should be (on reheating to above T, the naterial reaches the equilibrium state.

i.e. all history is forgotten). From Struik (1991).
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approximation the volume vy at T, is frozen-in and v, no longer decreases during
further cooling from T} to T, (Figure 1.13). If the WLF ideas can be applied to
the range below T, we can expect a similar change in 7 during cooling above T,
and a constant value of 7 during further cooling from T, to T,. This ignores the
small changes of v, during cooling from T} to T,.

After the cooling, if the material is kept at a constant temperature 7, below
T,, the free volume is higher than it should be and the relaxation time 7 is not
large enough, and consequently vy will slowly decrease towards the equilibrium
line. Now we apply the free-volume picture to the non-equilibrium state below
T,. It then immediately follows that the volume contraction will be accompanied
by a change in 7. In other words, the slow decrease in vy will be accompanied
by a gradual increase in 7. This implies that the ‘stiffening’ process seen during
cooling through the T;-range simply continues. All properties which depend on
and strongly change around T, will continue to change during the isothermal stay

at T,. This process is named physical aging.

In spin-glasses and reentrant ferromagnets, the situation is much more
complicated. The relaxation curves at the different temperatures and different
wait times can not be scaled by simply shifting the time scale. Many theories and
experiments have been proposed to explore these phenomena. In the next chapter
I will focus on the theories of spin glasses and their dynamics, with an emphasis

on the physical explanations.

Significance of my research: The systems described above all exhibit
anomalous relaxation dynamics, that is, not a simple Debye form e~*/", and an
understanding of the physical mechanisms underlying these dynamics has impor-
tant implications for the general problem of relaxation in complex systems, like
glasses and polymers. In fact, the dielectric, mechanical, and magnetic properties

of ordinary glasses, amorphous polymers, random magnets, ferroelectrics , super-
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cooled liquids, and high-T, superconductors all exhibit non-Debye response to a

step-function excitation, as well as non-equilibrium aging effects.
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Chapter 2

Theory

In this chapter I will introduce the fundamental theories of spin glasses

and some of the current dynamic theories for relaxation and aging.

2.1 Basic Concepts

Averaging in disordered systems:

In ordinary statistical mechanics, if we want to calculate some observable
quantity of a system, we usually use ensemble theory, for example the canonical
ensembile, to calculate the partition function Z and then calculate the variable.
The free energy of the system (Binder and Young,1986; Fisher and Hertz, 1991)
is given by

F = —kgT ln[z{z}]av (2'1)

Z{.’t} = TT{S‘.} exp [—H{:L’, Si}/kBT] (2-2)

where {S;} are the statistical spin variables and {z} are the randomness variables
and [ ],, means that we average over the different configurations of the random

variable z. In this case, the random variables {z} come to thermal equilibrium
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and the average over z and S are treated on an equal footing. This averaging pro-
cess is called an annealed average. Experimentally, this process requires that the
measuring time t.., satisfies ., >> tais, where 4, is the corresponding fluctuation

time for the random variable among its various microscopic configurations.

In a spin glass, if the system is quenched from above the phase transition
(or freezing) temperature T to a temperature below T, it can be trapped in any
one of a large number of metastable states due to the randomness and frustration.
The hopping times (or fluctuation times) among these metastable states occupy a
very wide time scale, and for some, ¢4, >> t.zp. In this case, we cannot calculate
[Z]4v and then calculate the variables of the system as in equation 2.1, but we

must average the free energy over the various configurations:

F = [F{z}]sw = —ksT(ln Z{z}s = —k&T / dzP{z}In Z{z) (2.3)

instead. This is called a quenched average. If we deal with the spin glass problem,

we must perform a quenched average.
Broken ergodicity:

When a system undergoes a phase-transition from a disordered state to an
ordered state, the symmetry of the system ( for example, the translation symme-
try) is lowered; this is called broken symmetry. Broken symmetry leads to broken
ergodicity, which means that the ergodic hypothesis that, in equilibrium, the sys-
tem should be found with the Gibbs-Boltzmann probability oc e=®Z in each of its
possible configurations, is violated. A ferromagnet with its net magnetization up
will never be found in a state with its net magnetization down, in the limit as
the number of spins N — o0o. Its motion is restricted to the part of its configu-
ration space with positive magnetization M > 0 only. This is an example where
the ergodic hypothesis is satisfied. A spin glass is a state with broken ergodicity
(Palmer, 1982).
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Spin-glass systems exhibit a “freezing transition” to a state with a new
kind of “order” in which the spins are locked in random orientations. The ordered
phase is characterized by an order parameter. In ferromagnetic systems, the order
parameter is the spontaneous magnetization per site M = £+ ¥°; < S; >r. What
is the order parameter for a spin glass? To describe the “order” in a spin glass,

several order parameters have been defined:

(a) Edwards and Anderson order parameter qz4 (Edwards and Ander-

son,1975):

Since there is no long-range order, order parameters based on spatial cor-
relations are useless, and Edwards and Anderson focused on time correlations. At
one observation time g, a particular spin is S;(¢;). If it is studied again long time
later at ¢ + ¢4, there is a nonvanishing probability that S;(t + ¢;) will point in the

same direction. Then a time autocorrelation function is defined:

gea = lim << Si(to) - Si(t + to) >1>c (2.4)

where the inner angular brackets represents a thermal averaging and the outer
a configurational C averaging over all spins. When T = 0, gg4 = 1 and when
T — Ty, qea = 0. The parameter then plays the role of the mean field in the Curie-

Weiss theory of ferromagnetism. For ergodic systems the local time correlation is

identical to

qea = ¢ =<<8§; >}>¢ (2.5)
So, ge4 measures the mean square local spontaneous magnetization, averaged over
all configurations.
(b) Parisi’s overlap order parameter g,s (Parisi, 1983; Mezard et al., 1984):

A disadvantage of qg4 is that it is nonzero for a normal unfrustrated fer-

romagnetic or antiferromagnetic material, as well as for a spin-glass. As we will
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see shortly, spin glasses are characterized by a multitude of nearly degenerate
pure states, and Parisi defined a new order parameter which is the overlap of the

magnetization between two different pure or thermodynamic states:

1 N
Gap = 37 2 m - mf (2.6)

=1

where. m¢ is the thermal average of the magnetization at site i in state a, m} is
the thermal average of the magnetization at site ¢ in state £, and N is the total
nurmnber of spins. The self-overlap ga. is the Edwards-Anderdson order parameter

gea- The two parameters are related by
~1< —qea(T) £ qap < qea(T) < 1. (2.7)

Parisi also introduced another parameter z(q)

2(9) = [* daP(q) (28)

P(q) = ZB chpﬂ&(q ~ Gag) (2.9)

where P(q) is the probability distribution of the ¢,3. P, and P are the prob-
abilities that the system is in pure state a and 3 respectively. So, z(q) is the
probability of that two pure states chosen at random have an overlap smaller
than q. z(q) is a monotonic and an inverse function, which is obviously defined
in the interval 0 to 1. ¢(z) is a multivalued order parameter for the infinite-range

SK spin glass, which I will discuss later.
(c) Hamming distance d,s (Rammal, 1986):

The Hamming distance is originally a mathematical concept for describing

the difference between two binary numbers. It was borrowed to describe the spin
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glass problem. It is defined as the fraction of spins that must reorient to convert

one pure state to another:

N
dos = 3 3(S7 S (210)
i=1
So,
N
dos = 3 D(SP+S - 257 -S7) (2.11)
i=1
1
= 5(ae4 — gap) (2.12)

2.2 The EA Model and The Replica Symmetric
Solution

To describe the sudden random freezing of a spin glass at a transition
temperature, Edwards and Anderson (EA) (1975) proposed a random bond dis-

tribution picture, and a time autocorrelation order parameter gg4.

The Hamiltonian in a 3-dimension random-bond system can still be written

in the form:

H = - Z J,-jSi . SJ‘ ot ZH; . Si, (213)
iJ i

where S; and S; are the classical spins on sites Z and j. Ji; is the exchange inter-
action between the two spins. Edwards and Anderson assumed the distribution

of J;; to be a Gaussian function

LB
P(Jy) = mexp(-m’) (2.14)
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where A is the variance.

Following the procedure discussed above, we first determine the free energy
for a fixed configuration of bonds, which is given in terms of the partition function
Z by

= —kgTInZ = —kgTTr (exp(—éi-T- ) : (2.15)

We are dealing with a system which has gquenched disorder as I mentioned in the
last section. So, we must average InZ over the distribution P(J;;), i.e., < In Z; >¢.

Evaluating < In Z; >¢ is not easy, and EA employed the so-called replica method

for the first time to make this possible. Using the relation, Z® = exp(nln Z) =~

l1+nlnZ as n — 0, we have
. 1
InZ = lig [;(zn - 1)] : (2.16)
The average over In Z is then

0 Z{zHew = lim (2"t ~ 1) = lim 2 [Z°al,,  (217)

>

The problem left is to average Z™, which is easier. For positive n, we can express
Z™{z}, where {z} represents the set of bonds describing the disorder, in terms of

n identical replicas of the system

Mz} = [ Zae) (2.18)
a=1
= ﬁ Trexp[-H{z, 57}/ ksT)] (2.19)
a=1
= Tr(se}all i, all a €XP [- 5_2: H{z,S3}/ksT (2.20)
a=1
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where Z, is the partition function of the ath replica, and the trace is over all spins

in all replicas.

The configurational average of Z*{z} =< Z™ >¢ over the disorder is
computed by evaluating the trace

< 2™ >c= Tr(sa}{z} €XP [— z H{z, S?}/kBT:I (2.21)
a=1
Substituting the Hamiltonian {with H; = 0 for simplicity) into (2.21) leads to

<Z" >c= Tr{sa}{z} H exp [k T E S"S"] dJ;JP(J,J) (2.22)

<i,j>

<Z">c= ). /:o [H dJ,,P(J,,)exp[k T S g ZS" S"]] (2.23)

{s¢} <ij> <ij>
The integration is usually performed using a Gaussian form for P(J;;). In the
mean field approximation, it is assumed that << S?S,-B >r>c¢ = 0, and defining
q =<< S; >2>( the free energy F(q) is calculated, where ¢ = gg4 is the Edwards
and Anderson order parameter. Using the condition 8F/dq = 0, in the limits
T — 0 and T — Ty, the results (Edwards and Anderson, 1975; Mydosh, 1993)

are
1 T
T —=0)=1- (—7; 2?,' (2.24)
and
o~ 7)) =3 [1- (7. (2.25)



The susceptibility can be written using the fluctuation—dissipation theo-

rem as

2
x(T.H=0)= (:';7—:‘5’-1)7 Yl<< 8§ >r>c — << Si >3>¢] (2.26)
B+ ij

Since << §? >7>¢ =1 and << §; >%*>¢c= g, we get

2
X(T,H =0) = %,55%(1 — (T)) ~ xae(T). (2.27)

Using the limiting results for q(T"), we have

(9”-8)2 2
<Ty) =2k _ - .
Xae(T < Ty) 3o OT;-T) (2.28)
and
_(ops)® 21T _
Xac(T — 0) = T (31|-) T; = const (2.29)

which means x approaches a constant value when T — 0, and at Ty an asymmetric

peak occurs.

So, the EA model elegantly replaces the site disorder and RKKY interac-
tions by a Gaussian exchange bond distribution, and predicts a phase transition
at a temperature Ty. Fisher’s results (Fisher, 1975) for a quantum spin (S = 3)
version of the EA model predict sharp peaks both in the susceptibility and the
specific heat, as shown in Figure 2.1. The susceptibility nicely resembles exper-
iment. But the specific heat also has a sharp cusp at Ty, and this is a puzzle
compared with the experimental result, which has a very broad peak, and no ob-
vious transition temperature (Brodale et al., 1983)). So, a true mean-field theory

for spin glasses is still incomplete.
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Figure 2.1: (a) Susceptibility and (b) specific heat versus reduced temperature
calculated from the EA model for two spin values. From Fisher (1975).
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2.3 The SK Model and Parisi’s Replica Symme-
try Breaking Solution

Sherrington and Kirkpatrick (SK) in 1975 proposed that the proper mean-
field theory (MFT) of spin glasses should be the exact solution of an infinite-range
EA model. The spins couple equally with each other with the same distribution
P(Ji;) no matter where they are located. The probability distribution of the

interactions J;; between each pair ij of spins is taken to be Gaussian

_ 1 (Jii = Jp)?
P(J;;) = @nani P [—-—’2—A—,2L] (2.30)

where Jj is the mean, and includes the possibility of ferromagnetism, and A’ is the
variance. This assumption might be unphysical, but it is a reasonable description
of a long-range disordered system, with RKKY long-range interactions as in these
systems. Scaling of A’ and Jj is introduced in order that the thermodynamic

quantities be finite in the large NV limit, i.e., A’ = A/N?% and Jy = Jo/N, so the

new A and Jj are both intensive. Thus,

e 2
P(J5) = (5 :&2)% exp [-Niz’y—%ig/ﬂ)— (2.31)

Repeating the ‘replica trick’, i.e., calculating < Z™ >¢ instead of < In Z >,

the free energy is given by
F=-kgT <InZ >c= -kaT'l‘iLno%(< Z" >¢ —-1) (2.32)

and, after many calculations (Sherrington and Kirkpatrick, 1975), the final ex-

pression is

.1 A2Nn
F = "‘BT,I.‘E.%H{""" [4(1:31')2]/ /.:[
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[H(—)*dx"] X exp [—NZ 5@0)? - NZ 2(2%)?

(aB)

+NInTrsexp (k = 3" yediggh ¢ ( ) Z:c“S“)] —1}(2.33)
(aB)

where the trace is now over n replicas at a single site. ®® and z* are dummy
variables of integration, and (af3) label the distinct pairs of replicas. SK assumed
that the thermodynamic limit N — oo, and the replica limit n — 0 can be
interchanged in order to perform the integration more easily, (by the method of
steepest descent). They considered the replicas to be indistinguishable, which is
called the replica-symmetric solution, meaning that g,3 = ¢ = constant for all

pairs of replicas (ag).

Substituting y — ¢ - (5 2x)andz - m- ( )z and removing the terms

linear in n as n — 0 yields

~B(1-q? Am? 1
F=N kBT{ 2kaT)? | 2kgT @A) Y
-22 Jog'?z  Am
/d.. exp(—2-) In [2cosh( kT + FaT ) (2.34)

where 2 is a variable related to q and m in the effective field, H(z) = Jq'/?z +
Jom + H (Binder and Young, 1986). Differentiating with respect to ¢ and m to

determine the self-consistent simultaneous equations for ¢ and m, the results are

g=1- ‘/_/exp(——- )sech? [k:;' +%°;r-;-,] dz (2.35)
m= \/_/exp( )ta.nh [A; ::;] dz. (2.36)
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Figure 2.2: Magnetic phase diagram predicted by SK model. From Sherrington
and Kirkpatrick (1975).
Here there are two order paranmeters ¢ and m. ¢ is related to finite-ranged inter-

actions and m is related to infinite-ranged interactions:
g =<< S; >>¢ (2.37)

and

m=<< S§; >r>c - (2.38)

A nouzero ¢ indicates magnetic order, while nonzero m (in addition to-q) indicates
that the order is ferromagnetic. When m = 0 but g # 0. the order is a “spin-
glass™ state. For given ratios of Jo/A. ¢(T) and m(T) can be calculated and a
magnetic phase diagram is thereby established. Figure 2.2 is the Egl versus Jo/A
plot for Ising spin interactions. The possibility of the following phase transitions
is predicted : (i)paramagnetic — spin glass; (ii) paramagnetic — ferromagnetic:

and (iii) double (or re-cutrant) transitions paraimaguetic — ferromaghetic — spin
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Figure 2.3: Differential susceptibility without external field (solid lines) and with
a field H = 0.1A (dotted lines) for Jo/A = 0, curves (a). and Jy/A = 0.5, curves
(b). From Sherrington and Kirkpatrick (1975).
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glass.

The differential (or ac-) susceptibility may be obtained from the ¢(T") func-
tion by adding an external field term and then taking the zero field limit:

_ [1—q(T)] X9
D) = T =Tl = @]~ 1= Jox® (2:39)

where x(© is the value for J, = 0. Above the ordering temperature, where ¢ =0,
this is just a Curie-Weiss law. In the spin-glass state, the fluctuations decrease Y,
while Jp increases it. Two examples are plotted in Figure 2.3 for Jo/A = 0 and
0.5, and fields H = 0 and 0.1A. Once again a cusp in the susceptibility exists
at a specific critical temperature, which is rounded and shifted downward in a dc

field.

But when the specific heat is calculated (SK, 1978), there is also a cusp
in the predicted Cm(T) at Ty. For T < Ty, the leading term of Cp,(T') «x T. For
T > Ty, Cm = NkgA?/(2(kgT)?), hence a tail in C,, x 1/7 persists to higher
temperatures, which is in contrast to the usual mean-field-theory result where
Cm = 0 for T > Ty. The entropy S equals Nkg[ln2 — A?/(2kgT)?] above the
transition temperature T, but goes to a negative limit —kg/2m at T = 0. This

is an unacceptable unphysical feature of the model.

de Almeida and Thouless (1978) performed a detailed analysis of the SK
solution and showed that both the paramagnetic and ferromagnetic phases were
unstable at low temperatures, and traced the instability line as a function of field.
In the presence of an applied field H # 0 the instability line of the SK-solution is
plotted in Figure 2.4. The H — T plot yields the AT line which gives the stability
limits of the SK solution. The functional form is

Ty - Tar(H) _ 34, H\z
= _(Z)%(A) , (2.40)
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Figure 2.4: H — T phasc diagram (or AT line) illustrating the stability limits of
the SK solution for the case of Jy = 0. From de Almcida and Thouléss (1978).
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So, treating all the replicas as indistinguishable, that is, assuming ¢,3 = ¢
for all (o), makes the SK solution unstable. We must search for a way to

overcome the replica symmetric instability problem.

Parisi(1979) proposed an ansatz to break replica symmetry. His procedure
was as follows. First start with an n xn replica symmetric matrix with all elements
equal to go (identical parameters). As an example, we take n = 8 (Mydosh, 1993).
In the first step, we divide the (n x n) matrix into sub-matrices (n/m;) x (n/m,)
with sizes m; x m; (m, = 4 here). We leave the off-diagonal blocks unchanged
with elements ¢y, and assign the diagonal blocks elements q; as shown in Figure
2.5. We repeat this step on the diagonal blocks and get the sub-sub-matrices
along the diagonal blocks (m;/m;) x (m;/m;) with sizes m; x ma (m2 = 2 here).
In this step, we create order parameter ¢, as the new diagonal block elements.
Then iterate the process R times until we get the smallest diagonal block of sizes

mp x mg. Throughout this construction, the successive sizes of the blocks are
n>my>2mg--->mp>1 (2.41)

But, all of these numbers are positive integers. For calculating the free energy

in the limit n — 0, we must reverse the above procedure, and the m; become

arbitrary real numbers between 0 and 1 (Parisi, 1980),
0<m <my---<mp<l (2.42)
If R is very large, the m; are continous, and for the kth step in the sequence:
Mi/Mieyy — 1 —dz/z and g — gq(z) (2.43)

where z is defined in the interval 0 € z < 1 as in section 2.1. We now have
an infinite number of order parameters g(z), which is the most important result
to be obtained from the Replica Symmetry Breaking (RSB) solution, as well
as a distribution function P(q) = dz/dq which gives the probability of replica
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Figure 2.5: Replica symmetry breaking (RSB) scheme for gq3 with two levels of
breaking (n = 8, 1y = 4; my = 2). From Mydosl, (1993).
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overlap q. Lastly, we would like to mention that the SK replica symmetric solution
corresponds to the k=0 step or the original go matrix, which means that g(z) = go.

which is independent of z.

There is another way to visualize the Parisi’s RSB scheme. Figure 2.6 is
a tree which represents the order parameter (or overlap) matrix g,5 of Figure
2.5. The uppermost level represents the individual replicas with self—overlap
@maz, Which is the largest possible value of ¢g. Each level groups together replicas
with a certain overlap g,5. The lowest level ¢ is the minimum value of g, that
is the smallest possible overlap, so at this level, all replicas are identical. To
find the overlap value g,5 for a particular pair of replicas (a3). we trace back
along the branches of the tree from a and from 3 until they join. For example,

Q12 = g2, 14 = q; and g3 = qo.

Based on the RSB model, the susceptibility and the internal energy are
given respectively by (Binder and Young, 1986)

- o7 ) 1 - a(e)ds (2:44)
and
U= -% [) ‘1 = ¢(z))dz — HM (2.45)

where M is the magnetization per spin. We see that linear-response theory, where
x = C/T(1 — q), breaks down. Further calculations indicated that (Binder and
Young, 1986) x(RS B) is a constant for all T < T}, which corresponds to the field-
cooled susceptibility xrc, and that the entropy S vanishes at T = 0, (remember
that S is negative in the SK solution). So, by RSB, the unphysical negative

entropy is removed.
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Figure 2.6: Tree representation of Parisi’s RSB scheme. To find ¢,3 (@ = 1 and
3 = 4 here) trace back along the hranches of the tree from o and 3 until thev
join: gqp = qy is the value of ¢ at this point. From Mydosh, (1993).



2.4 Pure States, Metastable States, and Dynamic
Behaviour

In this section, I will draw a series of phenomenological pictures about the
formation of the metastable states and their dynamic behaviour in spin glasses,

to get a feeling for the processes which can occur in the ordered spin glass phase.

To understand the coexistence of many phases in a system, let us first look
at the analogies that exist between fluids and ferromagnets. Figure 2.7 compares
their coexistence diagrams below the critical temperature 7,.. In a ferromagnet,
the magnetic field H and magnetization M correspond to the pressure P (or
chemical potential ;) and the density p in a fluid. At a low temperature T < T,
there is a coexistence curve in both cases. Inside this curve the magnet breaks up
into “up” and “down” domains, or each of which corresponds to a “pure” state of
the system. The term “pure” state means a set of microscopic configurations in
thermal equilibrium with each other. This is analogous to gas-liquid coexistence
in fluids. At a constant temperature T < T, the phase transition, “up” « “down”
domains in ferromagnets, and “gas” « “liquid” in fluids, is a first order phase
transition.

In each of the above cases, there are two different pure states of phases
in the coexistence region. But in the spin glass state, due to randomness and
frustration, the number of coexisting pure phases is “infinite”, with some kind
of distribution. These configurations have the lowest free energy. There are also
very many other configurations with higher free energies which correspond to
metastable states. By contrast, in a ferromagnet at T < T, and H = 0 (Figure
2.8(a)), only two degenerate stable phases coexist. If we apply a magnetic field to
the system, one state in (a) is still stable and the other one becomes metastable
(Figure 2.8(b)). The phase with m = —my (the metastable one) will eventually
flip over a energy barrier § to the stable phase with m = +my. The flipping
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Figure 2.7: Phase and coexistence diagram illustrating the magnet-fluid analogy.
Notc magnetization M corrcsponds to density p and wmagnetic ficld H to pressure
P or chemical potential g Fromn M.E.Fisher (1983).
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time is 7 oc €%/T. So, in a ferromagnet, only one stable and one metastable phase
coexist at T < T, when H # 0, and there is only one flipping time 7. In a
spin glass, the situation is much more complicated. A spin glass is a coexistence
of many phases and many metastable states. For a thermodynamic system the
“many” is “infinite”. Parisi’s RSB solution gives the the number of pure states

(De Dominicis et al., 1985) with free energy f; to be
P(f)) x e47° (2.46)

where f; is the free energy of a pure system, z is a temperature dependent param-
eter between 0 and 1, and f is a characteristic energy. There are very few states
with f; < fo. There are very many with f; > fy but they all have negligble weight
when built replaced by the Boltzmann factor exp(—f;/T) since z < 1. Thus the
states of interest have f; = fy. If we borrow the “valley/sub-valley” picture to
describe this, the pure phases are separated by infinite barriers, forming mutu-
ally inaccessible valleys in configuration space. The time to flip from one pure
phase to another is very long. Inside each valley, is a very rough landscape with
a broad distribution of ﬁnite energy barriers separating sub-valleys, which repre-
sent the metastable states. The individual pure states may have very different

magnetizations, as may the metastable states within each pure state.

To plot the energy landscape in configuration space, we imagine imposing
local magnetizations {m;} on the system and calculate the free energy G({m;}),
and plot it in an (N + 1)-dimensional space, where N is the number of the mag-
netic moments, whose axes are labelled by the {m;} and G. All of the local

minima of G which satisfy 5%‘ = 0 and arf::gn, > 0 are states corresponding to

locally stable magnetization configurations. Some of the barriers are infinite and
separated configuration space into valleys — the lowest energy state in each valley

is a pure state and the rest form metastable sub—valleys. Each valley has a net

magnetization o v N in zero field, where N is the number of the magnetic atoms.
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Figure 2.8: (a) Ferromaguet at H = 0 and T < T,.. Two kinds of states (domains)
coexist with same energv. (b) Ferromagnet at H # 0 and T < T.. One state is
stal};{e and the other one is metastable. The metastable oue will flip over to the
stable state.
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Figure 2.9: Spin glass statc at A =0 and T < T}.
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Figure 2.10: Spin glass state at H #0and T < Ty.
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When a spin glass is quenched from T > Ty to T < T} in zero field, it will

nucleate all possible pure phases in various regions of the sample. If the system
is trapped locally in a metastable state, it will gradually relax toward the nearest
pure state, as shown in Figure 2.9. When H # 0 some of the formerly pure states
will themselves become metastable as shown in Figure 2.10 and these regions of
the sample will evolve toward a stable pure phase. Presumably there will be
two types of relaxation process, very slow processes between valleys, and “faster”
processes between metastable subvalleys. The latter will be responsible for the

measured slow dynamics. When the field is reduced to zero, similar relaxation

processes are expected to occur.

2.5 The Droplet Scaling Model

Fisher and Huse proposed a phenomenological theory (Fisher and Huse,
1986, 1988a, 1988b) for the low temperature behaviour of spin glasses. This
approach is based on the concept of droplet excitations in a short-range Ising spin
glass, and assums that there are only two pure equilibrium states I' and T below
T}, related by global spin—reversal symmetry. If the system is in ground state T,
then the lowest—energy relaxation is a droplet of reversed spins T of length scale
L.

For example, in Figure 2.11, T is the ground state, and T, which is s
global spin reversal, is a droplet surrounded by a domain wall. The low-lying

droplet excitations on length scale L have a wide free energy distribution which
grows with droplet sizes as F, oc T(T)L?, where 6 is a exponent with a limit
8 < ‘—‘-;—‘ (d is the dimension of the system), and T is the stiffness constant. This

scaling ansatz gives the following distribution pr(FL)dF of droplet free energies
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at length scale L:
1 _ Fr
pL(FL) = TLgp(-rLg)' (2.47)

Macroscopic phenomena result from the microscopic energy excitations. Most of
the excitations involve only one or a few spins flipping over, and only contribute
to the high frequency or short time scale phenomena. But, we are more interested
in the long time, low-frequency phenomena, which are related to the large droplet
excitations. Because of the randomness of the excitations, the surface of the
droplet becomes very complicated, as shown in Figure 2.11. The surface area of

the droplet scales as A; ~ L%, where d, satisfies the relationd — 1 < d, < d.

Droplets with free energy Fy ~ L? will have barriers to their creation and

annihilation. The energy barriers will also grow as a power of L as B ~ L¥ where
¥ is a new independent exponent which satisfies § < ¥y < d — 1. Thus a droplet

will last for a time 7.:
B
TL = To exp(—kBT (2'48)

where 79 is a microscopic time. Thus, in an observation time ¢, the droplet will

have grown to a size L given by:

v
t ~ Toexp (,:B—T) (2.49)

/%
or L~[kBT1n(-:;)] : (2.50)

The thermally active droplets with anomalously low free energies have

long-time autocorrelations which decay as

L T A 1
C(t) ~ geay [m] (2.51)
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Figurc 2.11: Schematic picturc of the droplet of length scale L (containing site j).
Outside the droplet the spins arc aligned as in ground state . While inside the
droplet the spins are reversal, as in the ground statc I, which is just the global
spin flip of I". The surface of the droplet is fractal. From Fisher and Huse (1988h).
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which is a slow logarithmic decay, where gg4 is the Edwards and Anderson order

parameter, and where A sets the overall free-energy scale of the barriers (A ~ J

for T < T).

Now, we consider the non-equilibrium behaviour as the system approaches
equilibrium after a quench from temperature T >> Ty to T' <« Ty. Because both I'
and T are nucleated after the quench, the system will try to lower its free energy by

decreasing the amount of interface between I' and T, so both I and T grow larger
and larger. This growth will be very slow because of the randomness-induced

free-energy bairiers, which must be surmounted in order to move sections of the
wall between I and T.

In a time ¢, after the quench, the characteristic length R,, of a droplet will
be

Tln(ts /1) %
Rt, ~ [-—Z(T—)o—} (2.52)

where ¢, is the total age of the system, which equals the wait time ¢, plus the
measurement time ¢, and 7, is a microscopic time. This slow domain growth de-
termines the non-equilibrium dynamics of the spin-glass below the freezing tem-
perature. If a corresponding field quench is performed by turning off an infinite
magnetic field, the magnetization m(t) will decay, with the formation and growth

of the “zero-magnetization-domains”, according to

m(t) ~ '1'2,17 ~ [T—?{t] : (2.53)

where A is a new dynamic exponent related to the non-equilibrium growth.

The droplet model may also be used to describe the aging effect, i.e., the
response of the system if we wait for a time £,, after a thermal quench in a field,

and then turn off the field. In this experiment, relaxation processes are probed
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on a length scale L, which starts growing as soon as the field is turned off:

Intl®
L~ [’iﬁﬂ . (2.54)

Let us consider two limiting cases: Int < Int,, and Int > In¢,.

In the first case, the probing length scale is much smaller than the domain

size:
1 4
Tlnt|¥ Tlnt,|*®
L, ~ [-ATT—)] < R, ~ R, [A(T) ] (2.55)

where ¢, = t, +t = t,,. So, R, will be constant in this ‘early epoch’ regime,
which is probed on the scale L,. In other words, the probing scale is so small
that it does not “see” beyond the domain wails, but only samples the dynamics
within the pure states ' and T. So, this is quasi-equilibrium behavior, i.e., the
relaxation of the magnetization approximates the characteristics of equilibrium,

and the magnetization decays as

H

where both # and ¥ are equilibrium exponents.

Second, if Int > Int,,, t, = t+t, = t, which is the “late epoch”, the exper-
iments now clearly sense the non-equilibrium dynamic behaviour due to domain

growth. The decay of the magnetization is now

A
l“""] (2.57)

where a non-equilibrium exponent A defines the magnetization decay.
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Figure 2.12: Growth with time of domain size R, experimental-probing-length
scale L, and relaxation rate: (a) R¥ vs. Int,, t, =t + ¢, the total age of the
svstem: (h)RY and LY vs. Int. ¢ is the time of measurement, t,.. the waiting time,

and to, a microscopic time; and (c) relaxation rate M /BInt vs. Int. ¥ is a barrier
expoucnt. From Lundgren (1988).. ‘
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The system will thus experience a crossover from quasi-equilibrium to non-
equilibrium dynamics, at In¢ = Int,,. Figure 2.12 shows R? vs. Int,, LY and R"
vs. Int, and 3=~ Mnm vs. In(¢). At the crossover t,,, the magnetization decay rate
changes rapidly. This is why aging yields a characteristic anomaly at the aging
time ¢,. As t — oo, L and R have the same macroscopic length scales, so the
number of domains and their walls become insignificant. True equilibrium will
finally be reached, and the magnetization and its decay rate will both go to zero.
This process is confirmed experimentally both in the literature and in our results
(see Chapter 4).

2.6 The Model of Random Traps

Bouchaud proposed a phenomenological model for relaxation and aging in
disordered systems (Bouchaud, 1992; 1994). I will discuss this model here, and
our improvements for a real disordered system, in detail. The basic principles are
as follows.

For a finite disordered system, the energy landscape is expected to be
extremely rough, with many local minima corresponding to metastable states,
as shown in Figure 2.13. These states are surrounded by energy barriers, which
makes them trap-like, and they have a distribution of energies f given by (De
Dominicis et al., 1985):

where fj is the minimal energy required to “hop” between any two states, and z is
a temperature dependent parameter. This result is based on the assumption that
Parisi’s Replica Symmetry Breaking (RSB) solution of the SK model (Mezard et
al., 1985) for the pure states applies to the metastable states within each pure
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Figurc 2.13: Schematic view of the energy landscape: holes are drilled betow the
rcﬁarcnce cnergy fo which is the minimal energy nceded to go from oue metastable
state to another. Note that this drawing is onc dimeunsional: in reality mountains
of height >> fy also exist between different statcs. From Bouchaud (1992).

state as well.

Each trap has a corresponding trapping time 7, and there is a cistribution

of these trapping times. If we define the trap depth by
AE = fo—f (2.59)
then, the trapping time r is
T = e T where T ~ 10712 . (2.60)
and the distribution of trapping times 7 is given by:
y(r)dr = P(f)df. (2.61)
Transforming from f to :

f=fo~AE = fo— Tln(;’(;) (2.62)
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We can write

and have

Y(r)dr =

Checking the normalization:

/:w(r)dr = 1:1'3/1:;-;7

dr T

P L ldr

T

2 explZ(-T ()] -] - Tlar

2 - Zar
LR |
1:(1_0) T_d'r

TTg
1-1+z

dr.

(2.63)

(2.64)

(2.65)

(2.66)

(2.67)

(2.68)

(2.69)

(2.70)

(2.71)

(2.72)

which is independent of  ( z > 0). However, it is crucial to notice that for such a

distribution, the average exploration time < 7 > diverges, i.e. [ ¥(7)-7-dT = o0,

for 0 < £ < 1. This is ultimately the origin of aging.

A real spin glass is a collection of many finite independent spin glass sub-

systems. Any given subsystem has a finite number S of traps. There will be a

60



distribution of sizes of the subsystems P(S)dS, with 0 < § < oc, but all subsys-

tems are characteristized by the same trapping distribution %(7).

If a subsystem is initially in some particular trap, it will perform a random
walk and explore deeper and deeper traps, which are more and more stable. The
total time elapsed after taking S steps is t. = ¥5_, 7:, where 7; is an independent
random variable chosen from the distribution ¥(7), with 75 < 7 < co. For a finite
number S of steps, there will be a largest (or most probable) term ¢, in this series.
The probability that the maximium value of 7 = ¢, is encountered only once in S

steps is:
/ C ) = = (2.73)
te S

and substituting for ¥(7) from (2.68) yields:

dr =% 1
75 f =1 = ThllR =3 (2.74)

which defines the ergodic or equilibrium time t.r4(S) for subsystem S:

t. = 105"/ = Ergodic Time terg(S). (2.75)

Now, suppose we wait for a time t,, < ter4(S) so that the subsystem visits
N(t,) < S states. What is the deepest trap 7mer actually encountered during t.,?
Following the same argument as above, the probability of encountering T, once

in N steps is [ _¢(r)dr = 4, and this yields

Tmaz = TONI/z- (2.76)
Now
N(tw)
tw = 3 ti=<T>N(tw) (2.77)
i=1
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Ifz<1

is the origin of AGING. Equilibrium is attained only if t,, > terg(S).

So,

Q

= N(t,,,)/ﬂ:mx rY(r)dr

Tmaz dT
= N (tw)xré‘ -[b 'T—_-,

1.—:+1

N(tw)zmg|

l?mqg

1-z'™

1

l1-z

N(tw)27G [Tmaz — 707

1
-z

N (tW) zfgrf];l-d: 1

b

— [TONI/z]l—:

N{tw)g

x

TONV: 2= Tonaz
l-z

(2.78)

(2.79)

(2.80)

(2.81)
(2.82)
(2.83)

(2.84)

Thus for z < 1, the deepest trap 7img; that is probed is limited only by the
wait time t,,. The longer the wait time, the more of phase space is probed. This

Ifz>1

T 1 1
= 'rs -
N(tw) 1 -7 0 [T:_l Toz-'ll
= z N1y = N1
z-1
t
Tmaz = TONIIZ = TO(T—:)I/I

1-+ 1
= To =t <<tw
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(2.86)

(2.87)

(2.88)



Thus, if £ > 1, the deepest trap encountered is no longer limited by t.,,.

To calculate the decay in the extreme nonequilibrium limit t,, < terg(S)
and for z < 1, we can essentially assume that t.,, = co. We define P(7,¢t,) =
Br(Z)r4(r) as the probability of finding a subsystem in the trap 7, where B is a
normalization factor, and r(;Z) is the probability that a specific trap occurs. B is

determined by the normalization condition:

terg =00

/0 P(rty)dr = 1 (2.89)

7.1
Bzrd /0“' r(D)mdr = 1 (2.90)

or, defining u = =:

1

Brr2 /: (W) ptdu = 1 (2.91)
- r(u)du

.B.'Bfg:t,l‘,z/;w—uT' = 1. (292)

If we take r(u) to be a step function for simplicity:

_J 1 for u<l1
r(u) = { 0 for u>1 (2.93)
then
1
A= éﬂ = 1 , (2.94)
o u* l1—-z
SO,
1
= —— .95
zT§tl-zA’ (2.95)
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and have

1
P(rt) = o T() 7 9(0) (2:96)
= LDy en
= g ()T (2.97)

This is the probability of finding the subsystem in a trap = before the field is cut
off.

After the field is cut off, the distribution becomes:
G(r,t) = P(r,t +t,) x g(7) (2.98)

where the ¢ + ¢, allows for the possibility of continued aging when H = 0, and
where g(7) is a factor which describes how the traps empty after the field is cut
off, which is approximately a step function:

_J O for <t
g(r) -{ | for 7>t (2.99)
Now the decay is determined from
dm m
= = 7 (2.100)
dm _ 4 loa (2.101)
m T T
_ g dr-t-G(rt) )
= —dt T dr G D) (2.102)
tt‘f‘tw dr- % . (t+ft:,+2=‘l
t A rz
t+ty _dr
= -dt%m?,_—,”i (2.104)
t rz



(=]

= —dtE (2.105)
1- [‘;:,1—? - zl:]
= —dt(-— ’)[( — tw‘;:_z s (2.106)
- I—I -zl:[l—(gt )zl
= M E L - (T (2.107)
_ 1 —(=t_)z
- —dt.t“.(t+tw)"‘-(1x$)-[1[_(:;3-1)-_1:]-. (2.108)
o t+ty .

=U (gﬁ‘;) slowly varies

Note, that (2.108) is a universal function of ; only. If we approximate U(=t-

as a constant v, then we have

m(t) = mg exp[— /o “EE( 4 to)" ). (2.109)

Our assumption of “ artificial ” step functions in (2.93) and (2.99) means
that the limits of integration in the calculation of < 1/7 > are controlled by the
rectangular “pulse” shown in Figure 2.14.

As we mentioned previously, a real system is composed of many subsys-
tems. Each subsystem has its own ergodic time t.; and if ¢t +t,, > terg, £ + £y
should be replaced by t.,, in function (2.109). For simplicity, we compare t,, and

terg in order to choose the appropriate functional form for the decay, which is

either

_ [ moexp[-7[st I (t+ tu)"Mdt], by <lerg
) ‘{ moexpl~7 [SE7(t + ) s > g )

Since a real system has a distribution of sizes and of ergodic times P(tery),
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Figure 2.14: The “pulse” which defines the calculation of < 1/7 >. a) t + ¢, <
t,.,-g(S), h) t+ t‘w > tﬂ-g(S).
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the total magnetization is the superposition of that in each subsystem:

tw t
M(t) = Mo { [ dterg Plterg) expl— J T+ terg) ]

+ /: dterg P(terg) exp[—7 /Oct“(t+tw)"‘dt]}- (2.111)

By factoring out the purely nonergodic t,-dependent exponent, this equation
can be recast as the product of a universal function f(t/t,) and a non-universal

correction factor 1 — F which describes the deviation from the -ti-—sca.ling:

t
M(t) = My exp[—~ /0 £2(t + t)®1dt] { 1~ (2.112)
1(t/tw)

)

ft'" Gt org P(terg) [1 —exp (—7 /‘ 2t + torg)* 't + 7/‘ £3(t+ t )"Hit)]
Jo erg erg A erg A w

F
Thus, a plot of M(t)/(My(1 — F)) versus t/t,, should restore universality.

In practice, we choose a log-normal distribution of ergodic times:

1 (logyo terg — 10810 terg)?
P — - 1
(logyo ters) 2r0?,, P [ 202, (2.113)

where 0 = 0Org is the half-width of the distribution (see Figure 2.15). To calculate
the correction factor numerically, we divide the integration range into 32 intervals,

each of width o/4, and take 32 discrete points. We define

X = loggterg (2.114)

Xo = Iogiotorg (2.115)
32

X, = Xo+(n—3-)% (2.116)
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and convert the integration over t.,, into a sum over the 32 intervals, so that the
correction factor F is computed from:

32 -
F = ) P(logigter) - 1

n=1

[1 —exp (-’y /o ‘ EF(E + terg) ™ Mt + /0 ’ £ (t + tw)"‘dt)] (2.117)

2.7 The Elementary Decay Model (EDM)

Recently, Erhart et al. (1994a; 1994b) presented an elementary decay
model for relaxation in disordered systems based on the simple assumption that
the initial activation energy barrier distribution in a disordered system has a

Poissonian form,
1 -&/E
fo(E) = ol (2.118)

where E is the average energy. This is actually consistent with Parisi’s RSB
solution of the SK model (Mezard et al., 1985). Each energy fraction decays

independently with an Arrhenius rate,

r =roe E/T (2.119)

so that, following a step function change in field, a physical observable Xg(t)

changes as:

“Xdi(t) = —r(E)Xz(). (2.120)
Integrating,

Xe dXg(t) _ ¢

/1 % = /0 r(E)dt (2.121)
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yields

Xe(t) = Xoge ™™ = Xoge™ o=, (2.122)

For a disordered system, X(t) will be a superposition of decays for all E,

so,

X({t) = Xo /o"" fo( E) exp[—rot exp(— E/T)|dE (2.123)

Xo [ gep(~E/Byempl-ritexp(~E/TIE  (2124)

If we make the following variable changes:

T = 7ot (2125)
s = rotexp(—E/T) =1exp(—E/T) (2.126)
T
b= = (2.127)
then,
X = Xo /° LeBuctig-o_ L)y, (2.128)
T E S
— -b b—1_—s
= Xobr /0" sle~ds (2.129)
SO,
Xo(t)/Xo = br™® A s*te~*ds = brty(b,7) (2.130)
= g(b,7) = g(7), (2.131)

where (b, 7) = J§ s®~le~*ds is known as the incomplete gamma function.

The single parameter b = T'/E determines the shape of the curve and hence

the type of the decay: nearly logarithmic for b < 1, but with the correct values
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Figurc 2.16: Normalized dccay function g(h.7) = X(7)/Xo against normalized
time 7 = rot with global rate ry, displayed for the values b = kT/FE (from top)
0.01, 0.03, 0.1, 0.3, 1, 3. 10. The broken curve corresponds to exp(—7). From
Erhart et al. (1994a)

of one and zero for t = 0 and t — oc, respectively, a power law for intermediate
values of b ~ 1, but starting at onc. and approximately exponential behaviour for
b > 1. Figure 2.16 illustrates these functions in a linear plot in order to show both
the initial and limiting behaviour. and Figures 2.17 and 2.18 plot the function in

various ways in order to show the similarities to simpler functions.

These simple functional forms show “mnemory” effects if we plot them versus
a delayed time ¢4 defined by t = t; + t,,. as shown in Figure 2.19. The derivative
of a logarithmic decay will then show an inflection point around 4 = ¢,.. awd the
derivative of a power law decay will exhibit a peak at t; = t,,/b. The latter is

very similar to the aging peak obscrved in real spin glass systems.

In the EDM, the aging process is attributed to changes in the activation
energy distribution itself during the wait time ¢,,. In order to make a connection
between the physical process and its mathimetical representation, we can write

the total time after the quench as the suin of two parts & = &, + 4. where &4 is the
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Figure 2.17: Decay function g(b, ) for b = 0.01, 0.03, 0.1, 0.3. (a) g(h, 7) against
In7; (b) derivative —dg/d(In7) against Int; (c) regions close the power law g < 7~
are shown in a In-In plot: In g(h. ) against InT. From Erhart ot al. (1994a)
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Figure 2.18: Similiar to figure 2.17, but for b values (a), (b) =1, 3, 10 and (broken
curves) exp(—7); except (c) regions close to exponential exp(—7) are shown in a
In-linear plot In g(b, 7) against T for b = 1, 3, 10, 30, and (broken curve) exp(—T).
From Erhart et al. (1994a)
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Figure 2.19: -Memory’ effect without a second step when the derivative -
dxe/d(In ty) of non-exponential functions x=(t) are plotted as a function of the log-
arithm of a delayed time t; with t = t; + t,,. (a) Derivative —dz/d(Inty) of a
logarithwic decay z(¢) = 1 — Int against log,qts for &, = 107 with q = 2, 3, 4,
5 (arrows). Note the inflection points at ty = t,. (b) Derivative -dz/d(Inty) of
the power law z(t) = t~° against log,q tq for t,, = 100, 1000. 10000(arrows) and b
= 0.6. 1.3. 1.5, respectively. Note the extrea at ty = t,./b. From Erhart et al.
(1994b)
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delayed time, or the observation time starting at the moment of the step function

field change. Equation (2.123) then becomes:
Xi,(t0) = X5 [~ F4(B, tu) expl—taro exp(E/T)IE (2132)

where X is the initial value of X (t4) at ¢y =0, and f} is the renormalized wait
time (t,,) dependent distribution,

’ _ ___fo(E) exp[-turoexp(—=E/T))
fo(E, ty) = T Fo(E) exp|—tore exp(~E/T)|dE (2.133)

If we make variable changes in function (2.132) as before, the age-dependent

decay then becomes:

X7 (ma) _ 9o(T = Ty + 74)
— T = . 2.134
X5 b (7) (T =Ty) ( )

When b ~ 1, the derivative of this function has a peak at 14 = 7,,/b, as shown in
Figure 2.20.

In fitting real spin glass data, we must superpose two components: one

with aging and with a t,, built-in, and one with no aging, as follows:
Gaging = (1 - C)gi(bl, Tinl; Td + Tw) + Cg;(b% Tin2; Td) (2'135)

SO,

M(t,ty) = M, {(1 — c)2bLr=ro(tttuttig)) +cz=_(&r=_'olﬂzll} . (2.136)

q1(b1,7=ro{tw+tin1)) 92(b2,7=rolin2)

There are 7 parameters in this function. They represent respectively:
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Figure 2.20: ¢/4.7,,(7) and —dg;, . (7)/dIn 74 versus Inr,
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Figure 2.21: ‘Aging’ effect in the amorphous metellic spin glass
(FezNiy_;)7sBisPsAl;. Points: zero field cooled susceptibility [(1/H)M(t)] and
corresponding relaxation rate [S(t) = (1/H)dM/dInt] at different waiting times
tw = 10%, 103, 10%, and 10° sec) plotted against log ot where ¢ = ¢ starts at the
field step to H = 0.1 G. Curves: fits with functior (2.136) of the EDM with the
above ¢,, and b, = 0.6, 1.3, 1.5, 2.7; b, = 0.02, 0.02, 0.01, 0.01; ro1,2 = 0.7, 0.7,
0.9,14;t;n1 =4,8,3,5s; tin2 =1.5,1.5, 0.8, 2.1 5; c = 0.976, 0.977, 0.949, 0.932;
Xo = 1.1, 1.0, 0.4, 0.3; respectively. Inset: distribution function Xofo(E')|e,=0 of
activation energies £’ = E/T evaluated with the above EDM parameters. From
Erhart (1994b).
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My - the initial value of the magnetization at t; = 0
c - the proportion of aging and non-aging components
(c =1 corresponds to no aging)
by - the type of decay for the aging component (generally &, ~ 1)
b, - the type of decay for the non-aging component (generally b, < 1)

tint - a correction to the aging time, which might be due to the
influence of a finite cooling time

tin2a - a similar correction for the non-aging component
o - a normalizing factor, which is very insensitive and is usually
fixed at 1

The most crucial parameters are c, b and b;. These determine essentially all the

decay characteristics.

As an example, Figure 2.21 shows the fitting results for an amorphous
metallic sample (Fe_Ni;_;)75B16PsAl;, using the function M(t,t,) = Mp(l —
Jaging),» Which is an increasing function rather than a decay function in Eq.(2.136).

2.8 A Percolation Model for Magnon Relaxation

Chamberlin and Haines (1990) proposed another model for glassy dynam-
ics, which is based on the activated relaxation of dispersive excitations in a per-
colation distribution of finite-sized domains or clusters. This model gives good
fits to the magnetic relaxation of spin-glass and ferromagnetic systems, and also

to stress relaxation in a structural glass (Chamberlin et al., 1991a; 1991b), over a

broad range of measurement times from 10~* to 10* seconds.

The model defines a dynamically correlated domain (DCD) as a local region
where excitations relax with a single uniform relaxation rate, and considers this
to be the primary relaxation response. Secondary response like domain growth,
domain rotation, and domain wall motion are ignored. Assuming a distribution of
domain sizes n,, size-dependent relaxation rates ws, and a size-dependent initial

response P,, where s is the number of spins in one domain, the net relaxation is

78



the weighted sum over all sizes:

M(t) = i(P,n,) x e~wst, (2.137)

s=0

The equilibrium response is proportioned to the number of responding particles

P, = Bys, so

Q0
M(t) =P sne™". (2.138)

=0

If a given spin is assumed to be correlated with at least one of its neigh-
bors with probability p, percolation theory provides specific predictions for the
distribution of finite domains. For p > p. where p. is the critical probability for
bond percolation in three dimensions (Lubensky et al., 1981},

(sn,) o< §'%%exp[—(C's)*/3) (2.139)

where C’ o [p—p.|'/ and o = 0.45. For activated relaxation of quantized systems
at temperature T, w, cx e 5E/kaT_ Al dispersive excitations in finite systems have
an average energy-level spacing 6 E which is inversely proportional to the number
of particles in the system. This is simply a statement that since s discrete levels fill
a fixed bandwidth A,  E = A/s, where A depends only on the average interaction
between spins, independent of domain size. (see Figure 2.22). Using x = C's, the

net relaxation becomes
M(t) = M; /om £'% exp(—1%/3) exp(—tweoeC/*)dz (2.140)

where the adjustable parameters are C = C’A/kgT, which is called the correlation
coefficient, the initial response [3['(£)/2]M; = 3.518M;, and wy, the relaxation
rate for the infinite domain. Although the average-sized domains [Z = (12)%/?]

produce the dominant behaviour, for C > 1 the spectrum is extremely broad.
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Figure 2.22: Schematic representation of excitation levels in a finite cluster. The
bandwidth, A, is fixed by the average interaction between particles. (a) and (b)
The average energy-level spacing, §E, varies in inverse proportion to the number
of particles in the cluster. (b)At equilibrium. all cluster have the same average
internal energy. (c) for ‘aligned’ clusters, the energy of which was reduced by an
external perturbation, the interual increases toward cquilibrivm. (d) The inter-
nal energy of ~antialigned’ clusters decreases when the external perturbation is

removed. Froin Chamberlin (1991b).
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A ferromagnetic sample cooled from the paramagnetic regime in zero ex-
ternal field contains domains oriented in all possible directions, resulting in no net
magnetization. At finite temperatures, the magnetic moment of each domain is
reduced from saturation by magnon excitations. The average magnon density is
uniform for all zero-field-cooled domains, but the level of excitation in field-cooled
domains depends on their orientation. “Aligned” domains have a reduced density
of magnons, so that their net internal energy increases after H is removed. In
this case 6E > 0 and larger energy level spacings hinder the relaxation process,
so smaller domains relax more slowly, and wy = w_exp(—C_/z) with C_ > 0,
where w. is the relaxation rate of the largest domain. Aligned domains have
C > 0; they need not be aligned with H but in general will be oriented with
the local field. Similarly “antialigned” domains have their ground state magnetic
moment opposite in direction to H and have an initially higher level of excita-
tion, which decreases during relaxation. In this case 6E < 0, and a larger energy
level spacing expedites the relaxation process, so smaller domains relax faster and
Wanti = W4 exp(+C4/z) with C, > 0, Thus, two separate equations can be used
to describe the relaxation of aligned and antialigned domains:

M(t) = M; /0 = 1079 exp(—z*/3 exp(~tw,.eC+/*)dz (2.141)

M(t) = M; f:’ 2199 exp(—z/3 exp(—~tw_e~C~/*)dz (2.142)

where w_ is the fastest relaxation rate of the largest aligned domains, and w,. is the
slowest relaxation rate of the largest antialigned domains. As a test of this model,
Chamberlin fitted the predicted decay to a sample of Au 11.9%at:Fe. Figure 2.23
shows that Eq.(2.141) fits the measured relaxation curves above the transition

temperature very well, which means this relaxation may be due to domains with
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Figure 2.23: Magnetic relaxation of sample 11.9%at Au:Fe at 3 temperatures
above the transition T,,, = 39 K. The solid curves are the best fits using Eq.(2.141)
over the range 10~* — 10 sec. Extrapolation to shorter and longer times reveals
no systematic deviation. Inset: Difference between Eq(2.141) and the data. The
best fits by a simple power law (solid curves) are shown for comparison. From
Chamberlin (1990).
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Figure 2.24:-Magnctic relaxation of 11.9% Au:Fe at 4 temperatures below T, =
39 K. The solid curves are the best fits using Eq.(2.141) + Eq.(2.142) over the
range 10~ — 102 sec. From Chamberlin (1990).

pure ferromagnetic order, or domains whose ground state magnetic monment was

aligned with H.

However. below the transition temperature, both functious (2.141) and

(2.142) are needed to fit the relaxation curves. as shown in Figure 2.24.

2.9 Comments on These Relaxation Models

If the energy of a systeni in some particular state can be characterized by a
siugle value E;. for example a ferromagnet desceribed hy its site average magnetie
moment and with energy —m; -H in a magnetic field H, then when this state

changes to another state characterized by equilibrium energy E; the system will
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relax to the new state by a conventional Debye function
q(t) = goexp(—t/7) (2.143)

where T is a characteristic time related to the energy barrier between the two
states. But in a disordered system, usually there is a complex structure of
metastable states, each with a corresponding metastable energy and a correspond-
ing relaxation time 7; connecting it to the new state. So, the whole system is some
superposition of the behaviour of each metastable state. Any superposition of sim-

ple Debye functions will result in a non-Debye form for the anomalous relaxation,
at) = [ P(r)exp(~t/r)dr (2.144)

where P(7) is the characteristic time distribution of a real system. This is the
common feature of all disordered systems. For example, Aharoni (1985) suggested

a gamma-distribution function for P(r)

P(r) = r,,r‘l(p) (;r;),,_le_,,m (2.145)

for a disordered system, where p and 7, are adjustable parameters, which yields

the following relaxation function for the magnetization:

o(t) = a(ﬂ)-r-fp—) PG (2() (2.146)

where K, is the modified Bessel function of the third kind (Watson, 1962). This
function fits experiment reasonably well (Aharoni et al., 1985; 1992).

But a good theory should not only be able to give a quantitative descrip-
tion, but must also give the physical reasons underlying the choice of distribution:

For example, a stretched exponential form
q(t) = qoexp[—(-;t_-)l“"], 0<n<l (2.147)
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is widely used to describe the anomalous relaxation in various materials (Ngai,
1980; Chamberlin, 1984; Ngai et al., 1991; Ruan, 1993). The fitting results are
always quite good. This function was shown by Palmer et al. (1984) to be a conse-
quence of hierarchically constrained dynamics, and by De Dominicis et al. (1985)
to be a characteristic of relaxation with a distribution of independent random free
energy levels. Both parameters 7 and n have very complicated forms and they are
the combinations of many micro-parameters. So, from the results for 7 and n, it
is difficult to understand the physical process. However, the stretched exponential
form is still the most powerful and the simplest description of much anomalous re-
laxation behaviour. The other models discussed in this chapter are more physical
and provide a better understanding of the physics behind the dynamics, especially
the aging effects.

Fisher and Huse’s droplet scaling model is based on the assumption
that a spin glass has only two ground states, which contradicts the long-range SK
model. It explains the aging effect and why, at ¢t = ¢,, the relaxation rate dM/dInt
has a peak. This model represents pioneering work in the study of relaxation
dynamics, and gives a physically appealing explanation for the dynamic response,
but does not yield complete relaxation functions valid for all observation times ¢

which can be used to fit experimental data.

Bouchaud’s random trap model and Erhart et al's EDM both give
relaxation functions which can quantitatively describe the relaxation curves very
well (Bouchaud, 1992;1994; Erhart, 1994a, 1994b; also see next chapter). An
important feature of these two models is that they have a simple aging mechanism
built in, and do not require the addition of a constant baseline to the relaxation
function, which is necessary in both the stretched exponential and Chamberlin's

percolation model descriptions, and which is hard to justify physically.

Both models have parameters which are related to the distribution of
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metastable state energies: z in the random trap model, and b in the EDM model.
The rate of aging as a function of temperature (that is the fact that aging is
more effective at higher measurement temperatures) is also a feature of these two
models: in the random trap model, we introduced a distribution of ergodic times
to describe the difference in the aging rate at different temperatures. At different
temperatures the fraction of active (or non-ergodic) subsystems with aging, and
equilibrium (or ergodic) subsystems without aging, are different. In the EDM,
a similiar parameter c, also controls the proportion of the aging and non-aging

components in the system.

These two models also have stretched exponential and simple power law
features. In the random trap model, if we expand function (2.109)

m = moe~" o £ (tHt0)* 1t (2.148)
for t <« t,,, we get
mx e S (2.149)

which is a stretched exponential function, while for ¢t > ¢,

m o ()= (2.150)
tw
which is a power law. In the EDM model, if b >> 1, the EDM function is a
stretched exponential, while if b ~ 1, it is a power law (Erhart, 1994a).

Chamberlin’s percolation model gives a reasonable fit to the relaxation
curves, but it is necessary to add a constant baseline. Furthermore, this model
has no explicit aging time £, built in, so it is difficult to appreciate the rela-
tionship between the model parameters and aging. However, this model also
shows stretched exponential and simple power law behaviour in some limits: for

Cw.t > 1, Eq(2.141) becomes a simple power law m(t) ~ ¢t™<; for Cw,t <1
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Eq(2.142) is a stretched exponential m(t) ~ exp(—t?). (Chamberlin and Haines,
1990).
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Chapter 3

Sample Preparation and
Measurement Techniques

3.1 Magnetic Properties and Sample Prepara-
tion

As stated in section 1.2, the conduction-electron-mediated RKKY interac-
tion between the transition-metal impurities yields the strongest impurity-impurity
coupling. These kinds of materials exhibit the archetypal properties of disordered
magnetic systems, like anomalously slow relaxation, aging, and so on. They are
ideal systems for the purpose of our experiments. We have chosen one binary sys-
tem, CrFe, and two ternary (pseudo-binary) systems, FeNiCr and FeNiMn, for our
investigations. In this section I will first discuss their magnetic properties, then
their phase diagrams, finally the sample preparation procedure for each system.
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3.1.1 The FeNiCr System
i) Magnetic properties and phase diagram

FeNiCr alloys in the y-range are widely used as commercial Elinvar and
even more importantly as austenitic stainless steels. Therefore, the magnetic
properties of this system have been extensively studied (Majumdar et al., (1984);
Deryabin et al., (1984, 1985, 1987); Acet et al. (1987, 1988); Takei et al. (1984,
1986, 1987)). Figure 3.1 shows the magnetic phase diagram. Along the rim of
the FM-range, FeNiCr alloys show reentrant spin glass(RSG) behaviour at low
temperatures (hatched area) with a pure spin glass(SG) region adjacent to it
(dotted area).

Figure 3.2 shows the differential magnetic susceptibility ¥ = dm/dh of
alloys in the series FegsNi3s-.Crz, for £ = 0, 5, 10, 15. The results show that
for z = 0, which is the classical Invar alloy, the ordering is purely ferromagnetic,
and there is no spin-glass state. The alloys with z = 5 and 10 are ferromagnetic
at high temperatures, and have a reentrant spin glass state at low temperatures.
The peaks at the higher temperatures for z = 5 and 10 correspond to the critical
peaks from the ferromagnetic phase transition. For z = 15, where a pure spin
glass with Tsg ~ 15 K. The Curie temperatures for each concentration z of Cr

are shown in Figure 3.3.

Figure 3.4 is the magnetic phase diagram of another series of alloys
Fego—zNizCrzo. We can see from the diagram that for z = 19 and 21, the system
is a spin glass at low temperatures because the concentration of Ni is too low to
support long-range ferromagnetism. For larger values of z, like z = 23 and 26,
the system evolves from a long-ranged ferromagnetic state to a mixed (FM + SG)

state as the temperature is lowered.
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Figure 3.1: Ternary magnetic phase diagram of FeNiCr in the vy-range. The full

lines show contours of constant Curie-temperature projected into the zero Kelvin

plane. RSG-area is shown hatched, the pure SG- area dotted. Crosses in the

FM region mark commercial Invar and Elinvar compositions. From Wassermann
1980).
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Figure 3.2: Temperature dependence of the differential magnetic susceptibility of
FegsNiss_.Cr; alloys with z = 0 (a), 5 (b), 10 (c) and 15 (d). The numbers on
the curves indicate the value of the external coustant field in Oe. From Deryabin
et al. (1984).
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Figure 3.3: Magnetic phase diagram of the system FegsNiy;—.Cr.. From Deryabin
et al. (1984).
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phase diagram of Fesn-.NirCrz alloys (10< z < 30). From Majumdar et al.
(1984).
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ii) Sample preparation

A total of eight different concentrations of FeNiCr alloys were prepared
from the two series Feg g5Nig 35--Cr; with z = 0.10, 0.11, 0.12, 0.13, 0.15, and
Feg g0—zNizCrg20 with z = 0.21, 0.24, 0.26, by melting the appropriate amounts
of 99.99% pure Fe foil, 99.995% pure Ni foil, and 99.99% pure Cr chunks, all
supplied by Aldrich Chemical Company Inc., on the water cooled copper hearth

of an argon arc furnace, using a tungsten electrode and a titanium getter.

Pre-melting of each pure metal showed that they are all stable with negli-
gible losses during the melting. The melting and boiling points of each metal are
shown in Table 3.1. An etching reagent was used to clean surface contamination
from the metals and the alloys after each melt, and was also used to reduce the
amounts of the pure metals to get the precise amount needed for the alloys. The
ingots were inverted and remelted ~ 5 to 6 times to ensure homogeneity, then
cold rolled into a thin sheet from which the samples were spark cut. Sand-paper

was used to smooth the surface of the samples or to make them even thinner.

The samples were put into small vycor tubes. The tubes were vacuumized
and sealed under a partial argon atmosphere (160 Torr) and placed into a furnace
at a temperature of Tyn, = 1000 °C, annealed(tqsn) for 4 days, and then quenched
rapidly(¢,) (in ~ 1 second) into cold water by breaking the tube. The sample
parameters are listed in Tables 3.2 and 3.3.



Table 3.1: Physical and chemical properties of Fe, Ni, Cr, Mn and their alloys.

Melting point (°C) | Boiling point (°C)

Etching reagent

“Fe 1535 2750 aqua regie: HCL.HNO3:H,0 =
3:1:2 + a few drops of H,O,
Ni 1453 2732 pure HNO;
Cr 1857 2672 pure HCI (37%)
Mn 1244 1962 HNO3:H,0 = 1:5
FeNiCr - - HCLI:HNO;:H,O:glycerol =
| alloys 2:1:3 + a few drops of H,O,
CrFe - - HCI:HNOj:glycerol =
alloys 2:1:3 + a few drops of H;0,
FeNiMn - - HNO3:H20 =
alloys 1:5

Table 3.2: FeggsNip.35--Cr; samples. (Typical dimensions are
8x0.4x0.3 mm3 if they are not listed).

z dimensions m | Tann | tann tq
axbxc (mm?®) | (mg) | (°C) | (days) | (s)
56 | 950 4 1

10 6.5 | 950 4 1
7.1 | 950 4 1

needle, a=8.2 | 1.6 | 1040 4 1
11 | needle, a=8.1 | 2.1 | 1040 4 1
needle, a=9.2 | 2.7 | 1040 4 1
4.9 | 1000 4 1

12 5.2 | 1000 4 1
5.6 | 1000 4 1

4.0 | 1000 4 1

13 5.0 | 1000 4 1
6.0 | 1000 4 1

7.4 | 1000 4 1

15 8.9 | 1000 4 1
9.0 | 1000 4 1
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Table 3.3: Feggo—zNiCrq .20 samples. (Typical dimensions are
8x0.4x0.3 mm? if they are not listed).

T dimensions m | Tean| tann | tg
axbxc (mm?) | (mg) | (°C) | (days) | (s)
21 9.3 | 1000 4 1
10.7 | 1000 4 1
5.1 | 1000 4 1
24 6.1 | 1000 4 1
6.6 | 1000 4 1
6.1 | 1000 4 1
26 7.9 | 1000 4 1
8.2 | 1000 4 1

3.1.2 The CrFe System
i) Magnetic properties and phase diagram

The magnetic properties of the Cr,_.Fe,; system have been well studied
(Burke and Rainford, 1983; Burke et al., 1983; Fukusaka, 1986) and the magnetic
phase diagram is reasonably well established (Burke et al., 1983) as shown in
Figure 3.5. Its principal features are as follows: for Fe concentrations z < 0.16
the system is an itinerant antiferromagnet, with a crossover from incommensurate
to commensurate spin density wave order above z ~ 0.023, a spin glass in the
narrow range between 0.16 < z < 0.19, and a ferromagnet for z < 0.19, with a
reentrant sequence between 0.19 < z < 0.25.

Figure 3.6 shows the susceptibility of samples of Cr-17.5 at% Fe and Cr-
19.5 at% Fe. The two curves are remarkably similiar, both showing a sharp
asymmetric peak at 30 K. Closer examination of the 19.5 at% Fe data reveals a
slight shoulder between 40 and 60 K which is absent in the 17.5 at% Fe data.
This shoulder gives a weak maximum in dx/dT at 44 K (Burke et al., 1983). It is
suggested that this point corresponds to a ferromagnetic phase transition. This
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Figurc 3.5: Maguctic phasc diagram for Cr_.Fe, alloys. Complex maguctic prop-
erties are observed in the hatched region. From Burke et al. (1983).
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is supported by neutron small-angle scattering (Fig.3.6). So the sample Cr-19.5
at% Fe is a re-entrant ferromagnet with a Curie temperature T = 44 K and a
reentrant glass temperature Tsc ~ 30 K. The absence of a shoulder in Cr-17.5

at% Fe suggests that it is a pure spin glass with Ts¢ ~ 30 K.

Figure 3.7 shows several more concentrated samples. They are all typical
reentrant ferromagnets. The arrows indicate the Curie temperatures determined

by neutron small-angle scattering.

ii) Sample preparation

The Cr,_.Fe samples were prepared by using a similiar procedure to that
in section 3.1.2.. 99.99% pure Fe wire and 99.99% pure Cr chunks were obtained
from Aldrich Chemical Company Inc.. A master alloy containing z = 0.24 was
prepared first and given an homogenizing anneal at T, = 1160 °C for tgnn, = 4 days
and cooled slowly to room temperature. After the anneal, the ingot was spark-cut
into small pieces, which were used to make the remaining alloys by dilution with
pure Cr. Melting losses were negligible(0.001 out of 4) at all times. After cleaning
with a solution(see Table 3.1), the samples were spark cut from the individual
ingots. Finally, these samples were sealed in vycor tubes under a partial argon
atmophere (160 Torr) and placed inside a furnace at T,,, = 1160 °C for 4 days,
then quenched rapidly by breaking the tube in cold water. The parameters of the

samples are shown in Table 3.4.

Table 3.4: Cr,_.Fe, samples.

T dimensions m | Tann | tann tq
(at%) | axbxc (mm?®) | (mg) | (°C) | (days) { (s)
21.0 | 7.26x0.44x0.27| 6.5 | 1130 4
22.0 | 8.37x0.42x0.41} 114 | 1160 4 1

[e—y
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Figure 3.6: AC susceptibility of Cr-17.5 at% Fe and ferromagnetic Cr-19.5 at% Fe
as a function of temperature. The two curves have been displaced for clarity. The
Curie temperature determined by neutron small-angle scattering (SAS) for the
19.5 at% alloy is shown by an arrow. Alloy concentrations (at% Fe) are indicated.

From Burke et al. (1983).
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Figure 3.7: Low-field magnetization of ferromagnetic Cr-19.9 at% Fe, Cr-20.8 at%
Fe and Cr-25 at% Fe alloys. Maguctization in an applied ficld of 10 Oe is shown
as a function of temperature. The Curie temperatures determined by neutron
small-angle scattering (SAS) are indicated by arrows. Alloy concentratious (at%
Fe) are indicated. From Burke et al. (1983).
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3.1.3 The FeNiMn System
i) Magnetic properties and phase diagram

Figure 3.8 shows the magnetic phase diagram of the FeNiMn ternary sys-
tem. The system exhibits a wide range of fcc v-stability, with exceptions at the
corners of Fe (*Fe and low temperature e-martensite), Mn (*Mn) and around the

ordered phase of NiMn.

Very recently Wulfes (1992) investigated the magnetic phase diagram of
the system (FeggsNig.35)1—zMn; (0 < z < 0.30) in detail. The results are shown
in Figure 3.9. For low Mn concentrations (z < 0.02) the system behaves like a
normal ferromagnet. At high temperatures there is a paramagnetic-ferromagnetic
transition, characterized by a Curie temperature T below which the system is
purely ferromagnetic. With increasing Mn concentration, the value of T de-
creases rapidly. Between the Mn concentrations 0.02 < z < 0.06, a second phase
transition with a characteristic temperature 7;, (< 20 K) is observed below T,
and this phase can be interpreted as a mixed ferromagnetic and spin glass phase.
In the Mn concentration range 0.06 < z < 0.14, a third characteristic temperature
Tim < T, is observed. On cooling from high temperatures the system exhibits
the following transitions: paramagnet « ferromagnet — mixed ferromagnet and
spin glass < spin glass. At a Mn concentration z = 0.14, the Curie temperature
Tc and T;, reach the same value, and the ferromagnetic phase vanishes. This is
a first triple point in the phase diagram. In the range of 0.14 < z < 0.20 the
system behaves as a pure spin glass. There is a transition from paramagnetism
to a spin glass at about T,, = Tim = 50 K. There is a second triple point in the
magnetic phase diagram at z =~ 0.20. For higher Mn concentrations z > 0.20 a
new characteristic temperature is observed. The system shows reentrant antifer-
romagnetic behaviour: there is an antiferromagnetic phase, probably mixed with

spin glass components, and a spin glass phase at low temperatures.
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Figure 3.8: Magnetic phase diagram of the ternary system FeNiMn in the fcc v-
phase. Contour lines for constant Néel-temperatures Ty in the antiferromagnetic
AF-phase and Curie- temperature T.. in the ferromagnetic FM-phase are shown.
The dotted region marks a purc spiu-glass SG-phase separating the AF- aud FM-
regions. The hatched region gives the area of a reentrant-spin-glass RSG- phase,
which oceurs below the FM ordering. Crosses tark connnercial Invar and Elinvar
compositions. From Wassermann (1980).
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Figure 3.9: Magnetic phase diagram for the alloy system (FeggsNip.3s)i--Mn;
extrapolated to B.;; = 0 (T) showing the dependence of the characteristic tem-
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Figure 3.10: (a) AC susceptibility vs. temperature (v = 137 Hz, Hy o = 5.5 A/n)
for (Feg.65Nig 15)0.887Mng 113. The measurement without an external dc field shows
a ferromagnetic-like Hopkinsou maximum just below Te: and an anowmalous break
down below 60 K. Note the large influence of the small external dc field on the
amplitude of the x’-sigual. (b) AC susceptibility vs. temperature in external de
fields. At 2 mT there are two well defined peaks at Tr; and Tc. With increasing
cxternal ficld the low temperature peak is split into two peaks indicating a different
field dependence of T; and Tg. From Huck et al.(1988).
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The characteristic temperatures T¢, T;, and T}, are identified by _structure
of the temperature dependence of the magnetization or susceptibility. The struc-
ture is very dependent on the concentration of Mn and the external D.C. biasing
field. An example is shown in Figure 3.10, for the A.C. susceptibility of a reentrant
(Feo.65Ni 0.35)0.8s7Mng 113 ferromagnet in various D.C. biasing fields. The charac-
teristic temperatures T¢ > T, (T in the diagram) > T;n(7; in the diagram) are
defined by the locations of the three peaks in susceptibility, extrapolated to zero
field, as shown in Figure 3.11.

ii) Sample preparation

The (Fep.55Nio.35—-z)1-zMn, alloys were prepared by using a similiar proce-
dure to that in section 3.1.2.. The pure elements 99.99% pure Fe wire, 99.997%
pure Ni foil, and 99.99% pure Mn flakes were supplied by Aldrich Chemical Com-
pany Inc.. First, an alloy of Fegg5Nip3s called INVAR was prepared. Then, by
adding the appropriate amount of Mn into the INVAR, we fabricated a master
alloy with Mn containing z = 0.187. The master alloy was then given an homoge-
nizing anneal at 7, = 1100 °C for 3 days and cooled slowly to room temperature.
After the annealing, a 1:5 solution of HNO3/H20O was used to remove the surface
contamination from the ingot. The final concentration cf Mn in the master alloy
was calculated after considering the high stability of INVAR, and attributing the
meiting, etching and annealing losses primarily to Mn, which vapourized relatively
easily (Mn has a low boiling point as shown in table 3.1). Other concentrations

of Mn were prepared by diluting the master alloy with pure Mn.

The ingots were cold rolled into sheets, from which the samples were spark-
cut. Finally, these samples were sealed in vycor tubes under a partial argon
atmosphere (160 Torr) and placed into a furnace at Ty,,, = 900 °C for 4 days,
then quenched rapidly by breaking the tube into cold water. The parameters of
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the samples are shown in Table 3.5.

Table 3.5: (FeggsNig.35)1-zMn, samples.

z dimensions m | Tann | tann | tq
(at%) | axbxc (mm®) | (mg) | (°C) | (days) | (s)
18.7 | 5.33x0.89x0.81 | 30.0 | 900 | 4 1
118 | 8.14x0.36x0.24(A) | 58 | 920 | 4 1

7.18x0.54x021(B) | 69 | 920 | 4 1

3.2 Apparatus and Measurement Techniques

Magnetic phase transitions in disordered magnetic systems often occur
well below room temperature, and the magnetic signals are weak. So we need a
cryogenic environment and a high resolution, high sensitivity SQUID (Supercon-
ducting QUantum Interference Device) probe to perform the measurements. In
this section I will introduce the apparatus of the SQUID Magnetometer which I

used in my experiments.

3.2.1 The *He Cryostat

The measuring core of the apparatus is immersed in a liquid helium dewar,
and connected to the vacuum system, measurement electronics and the tempera-
ture control unit. Figure 3.12 shows the configuration of the *He cryosiat. At the
bottom, a wooden box filled with sand rests on four rubber feet (~ 4” high and
~ 8" in diameter). This base reduces the mechanical vibrations. The aluminum
frame rests in the sand box and supports the nitrogen dewar by four aluminum
rods, and also supports the helium dewar which is fixed to the top of the frame.
The sample chamber, the SQUID sensor, remote terminal board and pick-up coils,

and the D.C. solenoid coils are inserted together as a unit through the top of the
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helium dewar. The helium dewar is vacuum sealed at its upper flange.

Two mechanical pumps, MP1 (Sargent Welch Model 1402) and MP2 (Al-
catel Model 2033), and an oil vapour diffusion pump are used to produce a vacuum
in the sample chamber in the helium dewar and in the vacuum space of the helium
dewar. Figure 3.13 shows the flow diagram of the pumping system. Before the
system is cooled, the helium dewar is flushed and pumped with N, gas 5 to 6
times using MP2, to reduce the partial pressure of air, and then filled with N, gas
to slightly over one atmosphere. The vacuum space of the helium dewar is flushed
and pumped with air 5 to 6 times using MP1, and then sealed under a partial
vacuum (7-8 mTorr). This partial pressure is helpful in cooling the inside of the
helium dewar when transfering the liquid nitrogen in the beginning, and the small
quantity of air freezes very quickly after the temperature is lowered to produce a
good vacuum between the walls of the helium dewar. The sample chamber is also
flushed with N; gas 5 to 6 times using MP1 and pumped until 100 K after the
liquid nitrogen transfered. The pressure of the helium dewar is measured with a
thermocouple gauge TC3. The pressure of the sample chamber is measured with a
thermocouple gauge TC1 and an ionization gauge I (Model 270 Gauge Controller,
Granille Phillips). TC2 measures the pressure in the vacuum space of the helium

dewar.

After the sample rod is inserted into the sample chamber, and the sample
chamber is flushed with N, gas, both MP1 and the diffusion pump are used to

reduce the pressure in the sample chamber.

Next the liquid mitrogen is transferred into the nitrcgen dewar and the
sample begins to cool. The sample chamber is pumped continuously until the
temperature of the sample reaches 250 K (this requires about 2 hours), where
the outgassing of the sample, due to mostly the G.E. varnish and Ag paint used

to glue the sample to the sample rod, becomes insignificant. Then ~ 200 mTorr
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of N, exchange gas is leaked into the sample chamber to speed up the cooling
process. It is important to cool the system slowly towards 77 K, since most of the
significant contraction of materials occur between 300 K and 77 K. Cooling from
250 K to 100 K requires about another 2 hours. As the system cools, the pressure
inside the helium dewar drops below one atmosphere, and more N, exchange gas
must be added to the dewar to maintain a pressure of one atmosphere. When the
temperature of the sample reaches about 100 K, the N, exchange gas in both the
sample chamber and the helium dewar are removed and both spaces are pumped
and flushed 5 to 6 times with *He exchange gas via MP1 and MP2 respectively.
The N; and *He gas are supplied through the gas handling system (GHS) labeled
in Figure 3.13. Liquid helium can then be transfered into the helium dewar in

order to cool the sample to 4.2 K.

By pumping with both MP1 and the diffusion pump, the sample chamber
can be evacuated to ~ 2 x 10~° Torr and the sample can be heated. The temper-
ature of the sample can be varied between 4.2 K and 250 K, and controlled with
a long term stability of +5 mK between 15 and 250 K. In this regime, the tem-
perature of the sample is stabilized by a balance between the cooling power from
the 4.2 K helium bath outside the sample chamber and the heater power from
the heater. It is quite tricky to control the temperature between 4.2 K and 15 K,
since this requires just the right amount of the *He exchange gas to counteract
the heat leak along the sample rod from room temperature. It is also possible to
reach temperatures below 4.2 K by pumping the ‘He bath with MP2 and con-
trolling the pressure with a manostat, since the boiling point of the helium bath

decreases with a reduction in its vapour pressure.

In the magnetic relaxation experiments, which in theory require an instan-
taneous “ temperature quench”, an appropriate amount (~ 50 m Torr) of *He
exchange gas is leaked into the sample chamber at the paramagnetic reference

temperature in order to initiate the cooling process and then gradually pumped

111



out as the desired temperature is approached in order to minimize overshooting.

The final pressure is determined by the specific measurement temperature T},.

Figure 3.14 shows the details of the insert of the *He cryostat. A thin walled
aluminum can covered with lead sheet provides shielding from stray magnetic
noise, and encloses the SQUID remote terminal board, sample chamber and the
pick-up coils. Two copper radiation shields are soldered onto the supporting
rods to reduce liquid helium boiling caused by radiation. Figure 3.15 shows the
configuration of the pick-up coils, A.C. coil, D.C. solenoid and the Ag sample
block. The sample chamber was machined from a solid rod of Emerson and
Cumming 1266 Stycast epoxy, and glued with 1266 Stycast epoxy to one end of
a one meter long, 3”-outer diameter stainless steel tube of thickness 0.020". The

sample rod essentially consists of %”-outer diameter, low thermal conductivity
stainless steel tube approximately 1 meter long and of wall thickness 0.010”, with
a silver sample block attached to one end. The sample is glued with G.E. varnish
which provides mechanical strength, and high-purity silver paint which provides
good thermal contact (from SPI Supplies, West Chester PA) to the end of the
pin on the silver block (0.060” diameter). A 25 Q heater is anchored with G.E.
varnish to the silver block. The temperature of the silver block and hence the
sample is measured with a calibrated silicon diode (Model DT-470-SD-13 Lake
Shore Cryotronics) which is glued with G.E. varnish near the end of the cylinder,
and as close as possible to the sample. The temperature is controlled with a Model

520 Cryogenic Temperature Indicator/Controller (Lake Shore Cryotronics).

3.2.2 The Magnetization Measurement System

The pick-up coil and the D.C. field solenoid are all wound on a Stycast
1266 epoxy former and designed to fit concentrically about the bottom of the

sample chamber. The two pick-up coils are counterwound, which reduces stray
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interference, and the sample is situated in only one coil of the pair. The solenoid
is specially designed to produce a uniform magnetic field over the volume of the
sample and the astatic pair of pick-up coils. It produced a magnetic field of 46
Oe/A.

Figure 3.16 is the electronic block diagram of the measurement system.
In magnetization measurements, the magnetic flux in the pair of pick-up coils is
coupled into the signal coil in the SQUID probe. The voltage output of the Model
30 Control Unit is proportional to the change of magnetic flux in the pick-up coils
induced by a change in either the temperature or the magnetic field, and thus is
proportional to the magnetic moment M of the sample. The voltage is measured
with a RACAL-DANA Model 5003 digital voltmeter (DVM). In magnetic relax-
ation experiments, the decay of the sample magnetization (in volts) is collected
from the DVM by IBM PC (Datatrain -286) via an IEEE interface bus, and the

magnetization M versus log)ot is displayed on the screen at the same time.

3.2.3 Calibration of The SQUID Magnetometer

When measuring the magnetization of the sample with the SQUID we get
an output siginal in volts. If we want the magnetic moment of the sample, we
need to convert volts to the electromagnetic unit (emu) of moment. We use a
paramagnetic oxide Gd20; to calibrate the system. A cylindrical sample holder
was machined out of aluminum, with dimensions of 0.56 mm interior diameter,
and 1 mm outer diameter, and 8 mm long. The holder was filled with 4.8 mg
of Gd203; powder (Aldrich Chemical Co., Wisconcin), and was sealed with an
aluminum cap using Stycast 1266 epoxy. The magnetization was measured at
several fixed temperatures T = 4.2, 20, 30, 40 K, in a static field H, = 10 Oe.
The magnetic moment of Gd;O; for a given field H and temperature T can be
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calculated from the following formula

M= Nyl H

" 3kg(T ~6) (3.1)

where N = 3.32 x 10?' atoms/g is the number of Gd atoms per gram, p.ps =
(7.70 £0.04)p5 is the effective magnetic moment of Gd, kg = 1.38 x 10716 erg/K
is the Boltzmann constant, and 8§ = —13 K is the Curie-Weiss temperature. Com-

parison with the measured moment in volts gives the calibration factor:

1Volt =~ 1.5 x 10~ %emu (3.2)
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Chapter 4

Data Analysis and Discussion

In this chapter I will focus on our measurements of the relaxation of the
thermoremanent magnetization (TRM) in some disordered magnetic systems, and
the analysis of the experimental data in the context of the models developed in
Chapter 2, and [ will try to make connections between the experiments and the
physical principles. The samples [ have measured included:

(a) Fegg5Nig35-2Cr, system, with £ =0.11 and £ = 0.12
(b) Cr,- Fe; system, with £ = 0.21
(c) (FepssNig3s)1—zMn; system, with £ =0.118
The dimensions and masses of the samples are listed in Chapter 3. All of them

are reentrant ferromagnets, which means that there is sufficiently strong exchange

bond disorder to cause the ferromagnetic ordering to collapse at low temperatures.
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4.1 Temperature Dependence of The Static Mag-
netization

Measuring the profile of the static magnetization M in a small field H
versus the temperature, which gives the dc-susceptibility x4.(T) = M/H, is one
of the ways to study phase transitions, and to define the transition temperatures.
So, we first measured both the field-cooled(FC) and zero-field-cooled(ZFC) mag-
netizations, in a static applied field H,.

Figure 4.1(a) shows the FC and ZFC magnetizations for Feyg5Nig 24Cro.11,
measured in an applied field H, = 0.6 Oe. The FC magnetization was obtained
by applying H, at a reference temperature T,y = 160 K within the paramagnetic
phase, cooling in this field to 4.2 K, and then warming. The ZFC magnetization
was measured by cooling to 4.2 K in zero field(the earth field is compensated),
appling H,, and then warming. The ZFC magnetization rises rapidly with de-
creasing temperature, passes through an inflection point around 120 K then a
peak around 100 K, then drops off slowly before decreasing suddenly below 30 K.
The FC magnetization is identical to the ZFC magnetization above 120 K. Below
this, Mpc >Mzrc and Mgc exhibits less well-defined structure. The diagram
suggests that a paramagnetic-ferromagnetic transition takes place near T, & 120
K(the Curie temperature), and the possibility of a ferromagnetic collapse below
about Tr = 22 K (vertical arrows in Figure 4.1(a)), which is consistent with the
measurements of Deryabin et al. {1984). Above T,, the magnetization curve falls
off very slowly with temperature, which is a indication that this alloy has more
than one phase and perhaps some phases with a higher Curie temperature than
120 K. But the phase with T, = 120 K dominates the alloy. Fig.4.1(b) shows the
ac susceptibility(Deryabin et. al., 1984) of Fey g5Nig 25sCrg.19, which shows a set of
ferromagnetic critical peaks suggesting a Curie temperature of T, = 130 K and

a set of low temperature peaks(see inset) which suggest a reentrant temperature
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Tr =20 K.

Figure 4.2(a) shows the FC and ZFC curves for (FepgsNig.35)0.8s2Mno 11s-
It indicates that T, = 150 K and Tg = 70 K (vertical arrows in Figure 4.2(a)),
which is consistent with the work of Wulfes et al. (1983). Fig. 4.2(b) shows the
triple peaked structure which typically characterizes the ac susceptibility in this
reentrant system(Huck et al. 1988). The highest temperature set of peaks are

ferromagnetic critical peaks.

Figure 4.3(a) shows the FC curve for the same FeNiCr system, but for a
different concentration, corresponding to Feg gsNig 23Cro ;2. It indicates that T, =
60 K and Tg = 25 K (vertical arrows in Figure 4.3(a)), which is also consistent
with the work of Deryabin et al. (1984). Comparing with Feg¢sNig 24Cro1;, we
find that increasing the concentration of Cr only changes the Curie temperature
of the alloy but does not influence the glass temperature very much. T, and Tp
come closer as the concentration of Cr increases. Figure 4.3(b) shows the FC and
ZFC curves for Crg r9Feg2;. It indicates that T, = 70 K and Tr = 25 K (vertical
arrows in Figure 4.3(b)), which is consistent with the measurements of Burke et

al. (1983).

So, in all these systems the magnetic response function x4.(7T") and x.(T)
shows the abrupt decline at low temperatures customarily indentified with the
onset of the ‘reentrant’ phase. Of course, the structures observed in the static
magnetization as a function of temperature and described above are really thermal
blocking effects, and are thus only suggestive of phase transitions and do not
constitute proof. In order to confirm the existence of a critical transition, it is
necessary to measure the ac susceptibility as a function of temperature in the
presence of a static biasing field. At a paramagnetic-ferromagnetic transition, the
ac susceptibility will exhibit a peak as a function of temperature (Deryabin et al.
1984; Huck et al. 1988). The temperature of this peak varies with as [T, — T.| ~
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Figure 4.1: (a) The temperature depeudeunce of the static magnetization of
Fen.65Nin.214Cro.11 measured under both FC and ZFC conditions in a field H, ~ 0.6
Oe. The arrows indicate the Curie temperature T, and the reentrant temperature
Ta. (b) AC susceptibility of FeggsNig.25Crg.10- From Deryabin et al. (1984).
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H'YO+) and the amplitude of the peak varies with field as x(7},) ~ H(/9-1
where v, 3, and § are critical exponents. Peaks like these have been observed in
both the FeNiCr and the FeNiMn systems as shown in Figures 4.1(b) and 4.2(b),

and are a symptom of long-ranged ferromagnetism.

The ferromagnetic-spin glass reentrant boundary is much more difficult to
identify. The ac susceptibility shows peaks as well, as shown in Figures 4.1(b)
and 4.2(b), but these have never been identified as genuinely critical. Ideally, this
reentrant transition should yield a “divergence” in the nonlinear components of
the susceptibility (Deryabin et al. 1984; Huck et al. 1988), but this effect is often
masked by domain wall dynamics from the ferromagnetic phase. Perhaps the best
way to recognize the onset of the reentrant spin glass phase is through the aging

effects in the relaxation response studied here.

4.2 Experimental Relaxation Procedures

The most interesting temperature range for us is around and below the
reentrant temperature T g, where anomalous relaxation behaviour occurs. Figure
4.4 shows the basic procedure for measuring the TRM relaxation: The sample
is heated to a reference temperature T,y in the paramagnetic phase above T.,
where a magnetic field H, is applied and kept constant. Then, the sample is
cooled “quickly” in the field to the measuring temperature T,,, below Tg or T,.
The typical cooling time in our experiments is about 10—15 minutes although it
necessarily varies with (T.y — Trn). At Tp,, we can perform four different types of

relaxation experiments as illustrated in Figure 4.5:

a) After the sample has been cooled from the reference temperature T,

through T, to the measurement temperature T,,, we simply wait for a length of

time t,,, then cut off the field, and measure the decay of the magnetization over
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four decades of observation of time 1s < t < 10%s.

b) The sample is over-cooled from T,.s through T, to a temperature T, —
AT, where we wait for a length of time ¢, then raise the temperature to T,,, cut

off the field, and measure the decay of the magnetization;

c) The sample is under-cooled from T,.s through T. to a temperature
Tm + AT, where we wait for a length of time ¢,,, then lower the temperature to

Tm, cut off the field, and measure the decay of the magnetization;

d) After the sample has been cooled from T,.; through T, to the measure-
ment temperature T,,, we wait a length of time ¢,, then cycle the temperature
from T,, — Ty + AT — T, cut off the field, and measure the decay of the

magnetization.

The measurement of the decay after the waiting period ¢, spans the time
window 1s to 10*s. The total magnetization decay includes two parts: an instan-
taneous decay which is reversible, followed by a slow decay which is irreversible.
The second part is the thermoremanent magnetization(TRM) relaxation which is
of primary interest to us. In order to measure accurately the influence of aging
on the relaxation, a small field step is necessary, so that the magnetic response is
linear in field. Thus H, should be typically a few Gauss. The precise criterion for
this field may differ from system to system however(Chu et al., 1995; Djurberg et
al., 1995; and section 4.8 in the chapter). If the field is outside the linear response
range, then the field change will at least partially destroy the aged state, and alter
the apparent age of the system and hence the true relaxation response. Such field

effects will also be studied in this chapter.

125



M T ;ail time ¢,
g i\ Hako
E Ha-0 : an
Reversible 1 : Field-Cooled
Part ' : Magnetization
]
! I
o et - .
. |
TRM ordered phase 1+ Paramagnetic
L 1 .
Tm Te T(K)

Figure 4.4: Procedure for the TRM decay measurement. The sample is cooled in
a field H, quickly from above T, to T,,. In our measurements "ordered” phase
means reentrant spin-glass One waits a time t,, at T,, before reducing the field to
zero (or to the trapped field). There is a rapid decay, followed by a slow decay of
the irreversible part (TRM) of the magnetization. From Chu et al. (1995).
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Figure 4.5: Types of relaxation experiments: a) Ordinary case: both aging and
measurement at T,,: b) Overcooling case: aging at T,, — AT and measurement
at T,n; ¢) Undercooling case: aging at Ty, + AT and measurement at Ty d)
Cycling case: aging at T,,,, cycling T,y — T+ AT — T,,, and measurcient at Ty,
Temperature shifting from 7,, +AT — Trm takes about 150 seconds. Temperature
cycling takes about 300 seconds.
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4.3 Relaxation Dynamics: A Stretched Expo-
nential and A Power Law Analysis

Thermoremanent relaxation isotherms of type (a) in Fig.4.5 section are one
of the important experiments to quantitatively describe the relaxation response
of a spin glass. Theoretical analysis of the data, by fitting to the predictions of
various models, can help us to understand the physical mechanisms which govern
the approach to equilibrium and the response to a step function excitation in

disordered magnetic systems.

Figures 4.6 - 4.8 illustrate typical TRM relaxation isotherms for
(Feqg5Nig.35)0.882Mng 118 The dots are the data points and the solid curves are
theoretical functions. These isotherms can be grouped into two thermally distinct

regions with completely different relaxation characteristics:

a) For temperatures T,, < T, =~ 70 K in Figures 4.6 and 4.7, which corre-
sponds closely to the reentrant phase, the relaxation isotherms all exhibit a profile
which may be described qualitatively as some portion of an S-shaped curve with
an inflection point (vertical arrows), and quantitatively by the superposition of a

stretched exponential and a constant:

MRp(t) = My + M;exp[—(t/7)'""]. (4.1)

This empirical representation, which is frequently invoked in the analysis
of pure spin-glass relaxation (Hoogerbeets et al., 1986), provides an excellent
description of the experimental data over the entire observation window as shown
by the solid curves in Figures 4.6 and 4.7. The best-fit values of the parameters n
and 7 listed in Table 4.1 are indeed typical of pure spin glasses (Hoogerbeets et al.,
1986); in particular, the exponent n increases with increasing temperature and the

trend towards unity indicates that the system is approaching its glass temperature.
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The necessity to supplement the stretched exponential with a substantial baseline
term Mp, which at low temperatures accounts for approximately 90% of the entire
remanent signal, is consistent with vector spin models of bond-disordered systems,
which predict a longitudinal ferromagnetic spontaneous magnetization to coexist

with transverse spin-glass freezing (Mitchler et al., 1993).

Furthermore, the relaxation response in this regime is not unigue, but
rather exhibits a dependence on system age ¢, which indicates that the low-
temperature phase is a nonequilibrium phase. This is illustrated in Figure 4.7
for (Feqe5Nio.35)0.8s2)Mng. 118 for temperature T,, = 57 K and for a sequence of
wait times in the range 60s < ¢, < 10800s; the effect is clearly visible in the
relaxation rate S(t} = —9Mpg(t)/2Int, shown in Figure 4.7(b), as a propagation
of the maximum, corresponding to the inflection point in Mz(t), towards longer
obervation times with increasing system age. The solid curves in Figure 4.7(a)
are best fits to Eq. (4.1). An inspection of the corresponding parameters in Table
4.1 confirms that the aging process primarily affects the location of the inflection
point (7), without significantly altering the overall shape (n), at least for wait

times t,, < 10%s.

(b) Over the temperature range T, < T, < T, which is essentially co-
incident with the ferromagnetic phase, the curvature of the relaxation isotherms
is uniformly positive (Fig.4.8) , and all are accurately described by an empirical
function consisting of the superposition of a simple power law and a constant

(solid curves);
Mpg(t) = Mo + Mit™™, (4.2)

with best-fit parameters for (Feg g5Nig.35)0.8s2Mno.11s listed in Table 4.2. The func-
tional form of the decay and the values of the exponent m are both typical of glassy
relaxation dynamics in the extreme equilibrium limit of infinite age (Lundgren et

al., 1986). In fact, in contrast to the reentrant phase, the isotherms in this regime
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exhibit no measurable dependence on system age, for wait times ¢, < 10% s,
indicating that, within the slow-cooling constraints of the current investigation,
equilibrium is established far more rapidly in the high-temperature phase. This
behavior is also consistent with that observed in “good” random ferromagnets,
like Pdg ggsFeo.014 (Mitchler et al., 1993), which is not reentrant and has “ideal”
Heisenberg critical exponents, and with the droplet fluctuation model of Huse
and Fisher, which predicts (Huse and Fisher, 1987) a power-law decay of the
average temporal autocorrelation function in Ising ferromagnets with quenched
bond disorder.

A power law decay of thermoremanent magnetization of ferromagnets has
been predicted theoretically. For example, in the droplet theory of Ising fer-
romagnets (Huse and Fisher, 1987), Huse andFisher argued that the long-time
equilibrium dynamics of long-range ordered Ising ferromagnets are dominated by
the creation and annihilation of long-lived droplet fluctuations. Two types of dis-
ordered ferromagnets are considered: random-ezchange disorder and random field

disorder. One important dynamic quantity which they computed is the spatial

average of the temporal autocorrelation function C(t)
C(t) =< Ci(t) >c=<< Si(0)S;(t) > — < §; >> (4.3)

where < ... >, denotes the infinite time average, and < ... >, is the configuration
(spatial) average. The time dependence of C(t) depends on the dynamics of the

droplet fluctuations.

According to Huse and Fisher (1987), the free energy Fp of a droplet
fluctuation consists of the free energy of the domain wall plus the free energy
cost of flipping the interior spins of the domain when the system is subject to a
random or uniform field. In order to create or annihilate a droplet, a free energy

barrier Bp has to be surmounted, and the lifetime of the droplet fluctuation 7p
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is activated according to
Tp ~ exp(Bp/T) (4.4)

For long times ¢, only those long-lived droplets with 7p > t contribute significantly
to Ci(t) and the long time dynamics are dominated by these so-called rare droplets.

For simplicity Huse and Fisher (1987) considered a roughly circular or

spherical droplet of radius r, which has an average free energy Fp given by
Fp = Ajort! (4.5)

where ¢ is the average surface tension and Ay is the surface of a unit circle or

sphere in d dimensions. Huse and Fisher suggested that the activation barrier Bp

is proportional to r¢-!,
Bp = b(f)rd? (4.6)

with f to be defined as a ratio of the actual free energy to the average free energy
of a droplet. Thus the lifetime for a droplet is given by

7p ~ exp(b(f)r*"/T), (f <1). (4.7)

For a given f, the radius of the long-lived droplets can be obtained using p = ¢,

and is given by:

a1 Tln(t/to)

~ =50 (48)

where ¢; is a microscopic time. Eq.(4.7) and Eq.(4.8) indicate that the lifetimes of

the droplets which dominate the long time dynamics of C(t) are exponentially rare

in Int, and the spatially averaged autocorrelation function becomes
C(t) ~ t~=D) (4.9)
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that is, a power-law decay of the autocorrelation at long times for a random-

ezchange system. The exponent z(T) will depend on the temperature T', and on
nonuniversal details of the system.

Tor random-fiel? systems, an extra term due to the random fields acting
over the entire interior of the droplet has to be added in Eq.(4.5), while Eq.(4.6)
and Eq.(4.7) still keep the same form, viz, the radius of the long-lived droplets
varies as a function of In¢. The spatially averaged temporal correlation function

is
C(t) ~ exp(—k(Int)?) (4.10)

where y = (d — 2)/(d — 1) and k depends on the details of the distribution of
the random-field free energy, and on the temperature. The decay described in
Eq.(4.10) is slower than that in Eq.(4.9). Notice that Eq.(4.9) can be included
in Eq.(4.10) by setting y = 1. This is not surprising since in both cases, the
relaxation times of the long-lived droplets are exponentially rare in In¢. The

exponent y simply reflects the nature of the randomness.

A stretched exponential relaxation function has also been predicted theo-
retically. One such theory by De Dominicis, Orland and Lainee (1985) is based
on the mean field theory of Sherrington and Kirkpatrick. According to Parisi's
solution of the infinite-range Sherrington-Kirkpatrick model, the spin glass is char-
acterized by a large number of quasi-degenerate states, and the free energies F,
of these degenerate states are independent random variables. The equilibrium

probability for the state occupation is
Fg? = exp(~BF,)/2 (4.11)

where Z = ¥, exp(—0F,) and F, = Fy + fo( f, is a small fluctuation). Since it is

assumed that all the F, are quasidegenerate, the probability law for the random
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variable F, or the small fluctuation f;, is an exponential or can be linearized into

an exponential around its frozen value.

De Dominicis et al. used a master equation which governs the relaxation
to equilibrium of the state occupation P,(t), and employed detailed balance and
a simple assumption for the transition probability, to show that the probability

z(qar), where qas is the Edwards-Anderson self overlap, decays as

2(t) =1~ B (412)
or
() ~ 7 +2(> —Z)e- U=/ [T (1 ~ 2)(3/70)7] (4.13)

where vy is a finite non-universal constant. While the stretched exponential be-
haviour is promising, it is not clear that the parameter z is directly related to the

thermoremanent magnetization, which is measured experimentally.

Another model which predicts stretched exponential behaviour is a model
of heirarchically constrained dynamics by Palmer, Stein, Abrahams and Ander-
son (1984). The simplest way to obtain a relaxation response different from the
conventional Debye relaxation, g(t) = go exp(—t/7), is to postulate a statistical

distribution of relaxation times with a weight function w(7)

a®) = [ w(r) exp(-t/r)ar (4.14)

This approach tends to be microscopically arbitrary, and also assumes parallel re-
laxation, where each degree of freedom z; relaxes independently with a character-
istic time 7;. Palmer et al. proposed a series approach involving many sequential
correlated activation steps. The theory assumes that strongly interacting systems
are characterized by constraints which, for example, prevent atom or cluster A
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from moving until atom or cluster B first moves out of the way. The theory also

involves a heirarchy of degrees of freedom, with faster degrees of freedom succes-

sively constraining slower ones, so that some atoms or groups of atoms are only
able to move appreciably when several of the faster ones happen to move in just
the right way, leaving a hole or a weakened bond. In particular, Palmer et al.
consider a discrete series of levels n = 0, 1,2, ... with level n represented by N,
Ising spins S;. Each spin in level n + 1 is only free to change its state if u, spins
in level n attain one particular state of their 2¥~ possible states. The relaxation

function is computed from

a®) = 3 wnexp(~t/7,) (4.15)

n=0

where wp, = N, /N, N =332, N, and

n-1

Ta = Toexp(D_ fik)
k=0

where gy = peIn2.

The theory contains two unspecified functions u, and wy,(orN,). If it is

assumed that
bn = pon? (p>1)
and Nn+l = Nn/'\

then Eq.(4.15) yields, when replaced by an integral:
t
a(t) ~ wo expl—(2)0] (4.16)

where 8 = 1/(1 + fip) and

- nAl_g =\
= 7o exp(fo(—=) (1 + fo)
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While the two stretched exponential theories described above place the
Kohlraush stretched exponential on a more firm theoretical foundation, neither
contains any mechanism for the aging process, which we regard as perhaps one of
the most crucial constitutive features of a spin glass. Consequently we have not

pursued this analysis any further here.

The relaxation isotherms for the remaining samples have similiar features
to those for (FeggsNig.as)o.ss2Mng 118 and are shown in Figures A.1-A.10, Ap-
pendix A, along with the best-fits to the stretched exponential and power law
functions. The best-fit parameters are listed in Tables 4.3 through 4.8. If we
inspect the parameters in these tables, we find that all systems exhibit similiar
systematics: a) the baseline M, decreases with increasing temperature T and wait-
time t,; b) M; shows the opposite behaviour to Mp; ¢) n increases from about
0.6 at a temperatures far below T, to around 0.9 at temperatures close to T, but
appears to be independent of wait time t,,; d) 7 always corresponds to the inflec-
tion point in the relaxation isotherms. 7 decreases with increasing temperature,
and increases with increasing wait time ¢,,. The sensitivity of T to ¢, becomes

noticeably weaker at higher temperatures.

The errorbars in the parameter tables are the standard deviations of the
parameter estimates by a standard least-square fitting procedure(Press, 1992).

The same procedure was used for all of the model fits in this thesis.
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Figure 4.6: Thermoremanent relaxation isotherms of {FeggsNig as)o.ss2Mno.118 for
a sequence of temperatures T,, < 60 K(Tg ~ 70K) and for a common wait time
tw = 60s. The solid curves are fits to Eq.(4.1) and vertical arrows mark the
characteristic times (inflection points) r.
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Figure 4.7: (a) Wait-time dependence of the thermoremanent relaxation of
(Feg.s5Nig.35)0.882Mng.11s at T, = 57 K. The solid curves are fits to Eq.(4.1) and
vertical arrows mark the characteristic times (inflection points) 7. (b) The relax-
ation rates S(t) for the isotherms in (a).
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Figure 4.8: Thermoremanent relaxation isotherms of (Feg ¢5Nig 35)0.8s2Mno.118 for
a sequence of temperatures T, > 65 K(7. ~ 150K) and for a common wait time

ty = 60s. The solid curves are fits to Eq.(4.2).



Table 4.1: Best-fit parameters of (Feg 65Nig 35)0.852Mng 113 to the stretched
exponential in Eq.(4.1).

T tw NIQ Mg n T

(K) | (sec) | (10~3emu/g) | (10~%emu/g) (sec)

40 60 | 117.90£ 0.05 | 15.10 £ 0.06 | 0.650 £ 0.005 2830 £ 50
45 60 | 110.70% 0.08 | 22.90 £ 0.10 | 0.680 £ 0.005 | 2120 + 40
50 60| 101.90+0.11 | 34.50 £ 0.16 | 0.730 £ 0.003 1370 + 20
52 60 | 97.30 £ 0.09 | 39.30 + 0.16 | 0.740 + 0.005 856 £ 9
55 60 | 87.80 £ 2.71 | 51.00 £ 0.28 | 0.790 £ 0.005 357 £ 3
a7 60 | 85.30 £ 0.15 | 60.90 £ 0.43 | 0.820 £ 0.005 162 £ 2
57 300 | 86.00 £ 0.16 | 58.00 =+ 0.36 | 0.810 + 0.005 313 + 4
87 900 | 82.40 & 0.18 | 62.30 £ 0.33 | 0.830 £ 0.005 642 + 10
87 3600 | 73.80 £ 0.35 | 72.60 £ 0.53 | 0.850 £ 0.005 | 3090 + 130
57 | 10800 | 58.00 £ 2.00 | 89.50 + 2.59 | 0.880 £ 0.005 | 28900+ 7000
60 60 | 81.80 + 0.08 | 84.80 £+ 0.42 | 0.870 £ 0.005 23.4+ 0.5

Table 4.2: Best-fit parameters of (Feg 5Nio.35)0.8s2Mng 115 to the power law

in Eq.(4.2).

T tw 1\/10 I\/I. m

(K) | (sec) | (10~3%emu/g) | (10~3emu/g)

65 60 | 55.40 £ 0.30 | 63.80 £+ 0.28 0.072 £ 0.001
70 60 | 73.40 £0.10 | 43.80 £ 0.10 0.088 £+ 0.001
80 60 | 8590 £0.19] 34.10 £ 0.18 0.082 £ 0.001
90 60 | 95.00 £ 0.14 | 33.60 £ 0.13 0.066 £+ 0.001
100} 60 | 97.70 £ 0.12 | 29.80 %= 0.12 0.064 + 0.001
110 60 [90.90 £0.15| 27.70 £ 0.14 0.060 £ 0.001
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Table 4.3: Best-fit parameters of Fegg5Nig24Crg.1; to the stretched
exponential in Eq.(4.1).

T tw Mo M; n T
(K) | (sec) (emu/g) (emu/g) (sec)

8 60 | 3.424 + 0.001 | 0.029 £ 0.001 | 0.745 + 0.004 | 6850 + 890
10 60 { 3.301 + 0.001 | 0.055 + 0.001 | 0.677 £ 0.002 | 3660 + 160
12 60 | 3.280 + 0.001 | 0.103 £ 0.001 | 0.650 £ 0.001 3395 + 68
14 60 { 3.209 £+ 0.001 | 0.164 £+ 0.001 | 0.640 + 0.001 2092 + 29
15 60 { 3.131 + 0.001 | 0.209 £+ 0.001 | 0.657 + 0.001 1869 + 22
16 60 | 3.106 + 0.001 | 0.259 £ 0.001 | 0.669 + 0.001 1726 £ 17
17 60 | 3.042 + 0.001 | 0.322 £ 0.001 | 0.704 + 0.001 1191 + 14
17 900 | 3.020 £ 0.001 | 0.311 £ 0.001 | 0.681 £ 0.001 2189 + 33
17 | 1800 | 2.991 £ 0.002 | 0.321 £ 0.002 | 0.687 + 0.001 3385 + 86
17 | 3600 | 2.983 + 0.004 | 0.361 £ 0.004 | 0.707 + 0.002 | 8715 + 476
17 | 7200 | 2.820 £ 0.015 | 0.527 & 0.016 | 0.748 + 0.002 | 87000+ 14000
18 60 | 2.950 + 0.001 | 0.411 £ 0.002 | 0.746 + 0.001 742 £ 11
19 60 | 2.871 + 0.001 { 0.576 £ 0.003 | 0.810 + 0.001 390 + 4
19 300 | 2.877 £ 0.002 { 0.513 £ 0.003 | 0.782 + 0.001 633 + 12
19 900 | 2.902 £+ 0.001 | 0.479 + 0.002 | 0.763 £ 0.001 810+ 9
19 | 1800 { 2.893 £ 0.001 | 0.483 + 0.002 | 0.765 + 0.001 1174 £ 11
19 | 3600 | 2.869 + 0.001 | 0.474 + 0.001 | 0.762 £ 0.001 1510 £ 10
19 | 7200 | 2.853 £ 0.001 | 0.494 + 0.001 | 0.769 + 0.001 2508+ 29
20 60 | 2.773 + 0.002 | 0.632 + 0.004 | 0.820 £ 0.001 243 +£ 2
21 60 | 2.680 + 0.002 | 0.849 £ 0.007 | 0.868 £ 0.001 69 +£1
21 600 | 2.682 £+ 0.002 | 0.837 £+ 0.004 | 0.866 + 0.001 13 +£1
21 | 1800 | 2.693 £ 0.002 | 0.773 £ 0.004 | 0.855 £ 0.001 179 £ 1
21 | 7200 | 2.683 + 0.002 | 0.767 £ 0.004 | 0.856 + 0.001 208 £ 3
22 60 | 2.596 + 0.002 | 1.004 £ 0.010 | 0.892 £ 0.001 161
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Table 4.4: Best-fit parameters of Feg g5Nig 24Crp1; to the power law

in Eq.(4.2).
T bw l\flo Mi m
(K) | (sec) |  (emu/g) (emu/g)
24 | 60 | 2.058 + 0.003 ] 0.908 £+ 0.002 0.0435 + 0.0001
25 | 60 | 2.057 + 0.002 | 0.806 + 0.002 0.0443 + 0.0001
26 | 60 | 1.918 £ 0.007 | 0.915 £ 0.007 0.0334 + 0.0003
28 | 60 | 1.861 % 0.020 | 0.936 + 0.021 0.0288 + 0.0007
30 | 60 [1.632+ 0.064 | 1.118 3 0.064 0.0230 + 0.0015
33 | 60 [1.464 £ 0.082]1.284 + 0.082 0.0221 + 0.0016
35 | 60 [0.814 £ 0.030 | 1.910 + 0.030 0.0151 + 0.0003
40 | 60 | 1.297 £ 0.016 | 1.324 £+ 0.016 0.0217 £ 0.0001
45 | 60 | 1.698 + 0.004 | 0.879 + 0.004 0.0299 + 0.0001
50 | 60 | 1.727 + 0.018 | 0.808 + 0.018 0.0283 £+ 0.0007
60 | 60 [1.631 + 0.037|0.769 + 0.037 0.0245 + 0.0013
70 | 60 | 1.441 + 0.011 | 0.759 £ 0.010 0.0244 + 0.0004
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Table 4.5: Best-fit parameters of Feg g5Nig 23Cro 12 to the stretched
exponential in Eq.(4.1).

T to M, M; n T

(K) | (sec) | (x10~'emu/g) | (x 10~'emu/g) (sec)

16 300 | 3.482 £ 0.002 | 0.574 £ 0.002 | 0.589 + 0.001 2025 + 23
18 300 | 3.382 £ 0.002 | 0.741 £ 0.003 | 0.602 = 0.002 1225 £ 17
20 300 | 3.225 £ 0.002 | 1.106 £ 0.003 | 0.637 = 0.001 1155 £ 10
20 900 | 3.242 £ 0.005 | 1.099 + 0.006 | 0.632 x 0.002 2215 + 47
20 | 1800 | 3.065 £ 0.013 | 1.197 £ 0.014 | 0.653 £ 0.003 | 4583 £+ 230
20 | 3600 | 2.839 £ 0.030 | 1.379 £ 0.032 | 0.674 £ 0.003 | 14615 £ 1500
20 | 7200 | 2.387 + 0.097 | 1.752 £ 0.099 | 0.704 £ 0.004 | 80943 £ 2134
21 300 3.136 + 0.002 | 1.281 £+ 0.003 | 0.664 = 0.009 803 £ 6
21 900 | 3.043 £ 0.004 | 1.206 £ 0.005 | 0.660 £+ 0.001 1236 + 17
21 | 1800 | 3.052 £ 0.004 | 1.252 £ 0.004 | 0.654 + 0.001 2284 + 30
21 | 3600 | 2.854 + 0.020 | 1.421 +0.022 | 0.690 + 0.003 | 6143 + 444
21 | 7200 | 2.717 £ 0.040 | 1.540 + 0.043 | 0.699 + 0.004 | 14034 X 1864
22 300 | 2.860 £ 0.004 | 1.647 £ 0.006 | 0.712 + 0.001 760 & 9
22 900 | 3.037 £ 0.002 | 1.525 £ 0.003 | 0.690 + 0.006 1145 £ 8
22 | 1800 | 2.938 £ 0.003 | 1.529 £+ 0.004 | 0.691 £ 0.008 1702 £ 19
22 13600 | 2.824 £ 0.011 | 1.663 £ 0.013 | 0.714 + 0.002 3675 + 13
22 | 7200 | 2.661 & 0.020 | 1.759 £+ 0.022 | 0.729 + 0.002 | 8008 + 513
23 300 | 2.512 £ 0.003 | 2.004 £+ 0.009 | 0.747 £+ 0.009 377 £ 3
24 300 | 2.636 £ 0.004 | 2.415 £ 0.011 | 0.783 % 0.011 188 £ 1
24 900 | 2.683 £ 0.002 | 2.375 £ 0.006 | 0.782 + 0.006 242 + 1
24 | 1800 2.771 £ 0.002 | 2.260 + 0.004 | 0.774 £+ 0.005 349 + 1
24 | 3600 | 2.587 £ 0.002 | 2.169 + 0.003 [ 0.771 + 0.004 427 £ 1
24 | 7200 | 2.482 £ 0.003 | 2.389 + 0.005 | 0.790 + 0.004 913+ 7
25 300 | 2.213 £ 0.007 | 5.221 £ 0.036 | 0.890 + 0.001 14 +1
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Table 4.6: Best-fit parameters of Feg gsNig 23Crg 12 to the power law

in Eq.(4.2).
T | ty Mo M; m
(K) | (sec) | (x 107'emu/g) | (x 10~ lemu/g)
26 | 300 | 0.566 £ 0.019 | 4.159 + 0.018 0.068 + 0.001
28 | 300 | 1.735 £ 0.003 | 2.847 + 0.003 0.105 £ 0.001

Table 4.7: Best-fit parameters of Crg 79Fep 21 to the stretched
exponential in Eq.(4.1).

T tw Mo M; n T

(K) | (sec) | (10~°emu/g) | (10~%emu/g) (sec)

10 60 | 404.094 0.15 | 39.49 £ 0.21 | 0.646 £ 0.002 | 1331 £ 22
12 60 | 384.45+ 0.16 | 60.38 & 0.24 | 0.652 £ 0.002 904 + 10
14 60 | 348.49+ 0.19 | 80.52 + 0.34 | 0.699 <+ 0.002 513 £ 5
14 | 300 | 343.73% 0.15] 77.44 &+ 0.23 | 0.679 £ 0.001 788 + 6
14 | 900 | 352.81+ 0.32 | 80.26 £+ 0.40 | 0.683 + 0.001 1959 + 37
14 | 1800 | 352.60+ 0.90 | 91.52 + 1.04 | 0.709 + 0.002 | 5058 * 265
14 | 3600 | 293.23£ 6.30 | 135.33 + 6.54 | 0.754 £ 0.004 | 82000 23000
16 60 | 329.81% 0.22 | 96.27 + 0.48 | 0.748 £+ 0.001 338 + 3
18 60 | 324.74+ 0.14 | 115.40 + 0.44 | 0.817 £+ 0.001 133+ 1
20 60 | 378.96+ 0.34 | 139.71 + 1.10 | 0.874 £ 0.001 77.3+ 1.3
22 60 | 289.37+ 0.57 | 190.27 + 2.42 | 0.914 £ 0.001 32.0%+ 1.1

Table 4.8: Best-fit parameters of Crg 79Fep.2; to the power law in Eq.(4.2).

T tw Mo M; m

(K) | (sec) | (10%emu/g) | (10~3emu/g)

26 60 366 + 3 11 83 0.01847+ 0.00002
30 60 1668 +04 | 124.1 £ 04 0.04397+ 0.00001
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4.4 Relaxation Dynamics: A Random Trap Anal-
ysis and Scaling of The Relaxation Isotherms

Bouchaud’s random trap model is based on the concept of a very rough
energy landscape with many local minima corresponding to metastable configura-
tions, surrounded by high energy barriers, each of which can trap the system for
a time 7. For a broad distribution ¥(7) , such as that associated with the ran-

dom energy model (REM) (Derrida, 1981) or the standard mean field SK model
(Sherrington and Kirkpatrick, 1975):

(1) ~ r-(1+2) with O<z<l, (4.17)

< T > diverges, and ergodicity is broken, in the sense that the system is essentially
never able to probe the deepest traps within the experimental observation window
as it evolves towards equilibrium. In the extreme non-ergodic limit of ‘short’ wait

times, the model predicts a decay of the form:
4
m(t) = moexp [-», /0 3 + t,,,)Hdt] (4.18)

with a crossover from stretched exponential behaviour for ¢ < ¢, to a power law

behaviour for t > t,,.

When z > 1, the distribution of lifetimes (7} in Eq.(4.17) decays rapidly
enough for 7-9(7) to become normalizable, < 7 > is finite, and the model predicts
that the deepest trap encountered during the waiting time %, is Tmer < tw, SO
that the system equilibrates essentially instaneously after the quench. In fact, by
following a procedure analogous to that described by Bouchaud for z < 1, we have
been able to show that the relaxation dynamics in the £ > 1 regime is determined

by a microscopic cut-off time 7, (rather than by the macroscopic waiting time t,,),
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and obey a simple power law:

m(t) = mo(%)“‘, z>1 (4.19)

Applying the extreme non-ergodic function (4.18) to the relaxation isotherms
of Feg e5Nig.24Cro.1; we can obtain quite good fits without the need to add an “ar-
tificial” constant baseline. In fact, the additional of such a baseline degrades the
quality of the fits. Isotherms for 7}, < T, are all compatible with Eq.(4.18), and,
as an illustration, the solid curves in Figures 4.9, 4.10 and 4.11 are the best fits
of the data for FeggsNig 24Cro 11 to this expression, with the best fit parameters
mo,y and z listed in Table 4.9, and with ¢,, assigned its ezperimental value. The
shape of the theoretical curves (4.18) is parameterized exclusively by z, which
is less than unity and increases monotonically as T — T,. Its physical signifi-
cance will be discussed shortly. All three fitting parameters do vary with system
age. Nevertheless, these fits lend considerable credibility to the proposed aging
mechanism, which is manifested explicitly through a single, ezperimentally-defined
parameter ¢,,. The systematic deviations apparent in some of the isotherms at
long observation times, particularly in younger versions of the system (¢ < 300s)
where the data tend to exhibit more curvature than the theoretical expression,
are qualitatively similar to those encountered in pure spin glasses. This may be
a consequence of some of the simplifying approximations (such as the assump-
tion of constant G(7/t,) in equation (2.108), or perhaps the specific form of the
cut-off function exp(—¢/7) introduced in equation (2.102). or may have a phys-
ical origin related to a distribution of subsystem sizes and ergodic times which
we will discuss later. Nevertheless, the essential features of the time dependence
of the thermoremanent decay in the low-temperature glassy phase, including its
variation with temperature and system age, are replicated remarkably well by a
picture in which ergodicity is broken by a divergent mean trapping time, which

prevents a system of finite experimental age ¢,, from exploring all of the available
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configuration space.

For temperatures T, > T, the relaxation isotherms are accurately de-
scribed by the power law decay in equation(4.19), which however must be super-
posed on a constant baseline, m(t) = mgt~(*~1) + ¢, where the z — 1 is the m in
equation (4.2). For the high temperature data, all of the m exponents are between
0 £ m < 1, so z is larger than unity in this regime. Thus, the relaxation response
in the high-temperature phase, where the dynamics are observed to be stationary
(that is, age-independent), is analytically consistent with the model prediction in
the extreme equilibrium limit where the system ergodically probes a phase space
for which the deepest traps of any significance are Timar < ty, due to the form of
the trapping distribution.

The preceding analysis offers new insight, from a dynamical perspective,
into the phenomenon of sequential transitions in ferromagnets, as well as empirical
support for a recent model of glassy dynamics based on a mechanism of anomalous

diffusion in a disordered energy landscape.

The gower law distribution function (4.17) for the lifetime of the metastable
states follows directly from an exponential distribution of free energy wells, P(f) =
(z/T)explz(f — fo)/T), where f, is a reference level, which is a characteristic of
both the standard SK model (Sherrington and Kirkpatrick, 1975) and the REM
(Derrida, 1981). Thus the parameter z(T') provides information on the structure
of phase space. In the REM, z = T/T,, the energy landscape is temperature
independent, and configuration space consists of many completely uncorrelated,
but perfectly frozen metastable valleys at T}, while, in the standard SK model, =
has a non-trivial temperature dependence and decreases towards zero as T — Ty,
meaning that only a relative few states out of the many available in Parisi’s
hierarchical replica symmetry breaking scheme (Mezard et al., 1986) dominate
the properties of the system in this limit. In the fits to all the samples studied
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here, z increases with temperature through the glassy phase, thus offering some
preliminary support for the REM picture, although the temperature dependence

is not linear, in agreement with the recent observations of Bouchaud(1992).

Above T, as we have said, the data are no longer compatible with the
extreme non-ergodic expression in equation (4.18) and, more importantly, aging
ceases to be observable experimentally. However, the random trap formalism is
capable of replicating the time dependence of the decay in this regime as well,
provided that z is allowed to exceed unity. Morever, this is precisely the con-
dition which reduces aging effects to negligible proportions in the model, and
which guarantees an equilibrium relaxation response for any macroscopic wait
time t, > 7o ~ 10712 s. We emphasize that this situation is physically quite
distinct from the scenario of ‘interrupted aging’ for z < 1, according to which
equilibrium is achieved only when the wait time is long enough to exceed an

ergodic time ¢, ~ 7oS'/%, where S is the total number of metastable states
(Bouchaud, 1992). Although the model offers little evidence concerning the types
of frozen spin configurations which are expected to yield an energy landscape with
z > 1, the current analysis, coupled with the observation of ‘stationary’ power law
decay, with similar exponents, in the thermoremanence of ‘good’ (non-reentrant)
random-exchange ferromagnets like Pdg gssFeq 014 (Bouchaud et al., 1994), suggests

that this may be a constitutive feature of a state with predominantly ferromag-

netic order.

The same analysis based on Eq.(4.18) of the random trap model has been
performed on all the other samples. The best-fit parameters are listed in Tables
4.10—4.12 and corresponding fits are shown in Figures B.1—B.5, Appendix B. This
expression is only valid for temperatures Ty, below the glass temperature T,. So,
when T,, is very close to T,, the description of the TRM isotherms by Eq.(4.18)

encounters obvious difficulties, for example at T,, = 21 K for FeygsNip.24Cro.11
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(Tg = 22 K), and at T, = 24 K and 25 K for Feg g5Nig 23Cro.12 (T4 = 25 K). But,
generally speaking if we allow mg, v, and z to vary freely with temperature and
wait time, we can fit all of the thermoremanent isotherms very well. An inspection
of the parameters in tables 4.9-4.12 shows that v increases with temperature and
wait-time, and has a magnitude of around 10~2 for all of the systems. z also
increases as the temperature increases, but depends only weakly on the wait-time

tw.
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Figure 4.9: Raudom Trap Model fits of Eq.(4.18)s0lid curves) to thermorcmanent

relaxation isotherms of Fey g5Nig.24Crg.1; for a sequence of temperatures T,;, < 22 K
and for a cowmtnon wait time ¢, = 60s. The vertical arrows wark the characteristic

times (inflection points) 7.

) 4 5
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Figure 4.10: (a) Random Trap Model fits of Eq.(4.18)(solid curves) to the wait-
time dependence of the thermoremanent relaxation of Feg g3Nig.2(Croq at T, =
17 K. (b) Same sample and analysis as in (a) but for T}, =19 K.
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Figurc 4.11: Random Trap Model fits of Eq.(4.18)(solid curves) to the wait-tince
dependence of the thermoremanent relaxation of FeggsNig.24Crg 11 at Tin = 21 K.
The fitting quality is not as good as T, = 17 K aud 19 K. Function(4.18) would
not work for the isotherm with 7, = 21 K and ¢,. =2 h.
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Table 4.9: Best-fit parameters of Feg gsNig 24Crg.11 to the random trap model Eq.(4.18).

T tow Mo ¥ T
(K) | (sec) | (x 10~%emu/g) | (x1073)

8 60| 345.06 £ 0.01 | 0.70 + 0.01 0.562 £ 0.011
10 60| 335.24 £ 0.01 | 1.82 £ 0.01 0.402 £ 0.005
12 60| 337.66 £ 0.01 | 3.68 £ 0.01 0.288 £+ 0.003
14 60 [ 336.17 £ 0.01 | 6.33 £ 0.01 0.364 + 0.002
15 60 | 33257+ 0.01 | 7.88 £ 0.01 0.436 £+ 0.001
16 60 | 334.72 £ 0.01 | 9.49 £ 0.01 0.483 £ 0.001
17 60 | 334.43 + 0.01 | 10.88+ 0.01 0.626 £+ 0.001
17 900 | 335.05 + 0.02 | 12.86+ 0.01 0.779 £ 0.001
17 | 1800 | 333.25 £ 0.02 } 13.64+ 0.01 0.786 + 0.001
17 | 3600 { 335.93 £ 0.01 | 14.32+ 0.01 0.784 £+ 0.001
17 | 7200 | 335.46 + 0.01 | 15.30+ 0.01 0.786 %+ 0.001
18 60 | 335.29 £ 0.03 | 12.26+ 0.01 0.760 + 0.001
19 60 | 351.95 £ 0.09 | 13.02+ 0.01 0.882 + 0.001
19 300 | 351.93 + 0.07 { 13.87+ 0.01 0.892 + 0.001
19 900 | 346.03 + 0.05 | 14.03% 0.01 0.866 + 0.001
19 | 1800 | 350.64 £ 0.05 | 15.23+ 0.01 0.891 + 0.001
19 | 3600 | 346.26 £ 0.04 | 16.12+ 0.01 0.887 £ 0.001
19 | 7200 | 344.86 £ 0.04 | 17.06+ 0.01 0.882 £+ 0.001
20 60 | 351.37 £ 0.13 | 13.99+ 0.01 0.899 £+ 0.001
21 60 [ 372.10 £ 0.31 | 14.08+ 0.01 0.934 + 0.001
21 600 | 395.28 + 0.34 | 14.86+ 0.01 0.951 + 0.001
21 | 1800 | 405.10 £ 0.36 | 15.16+ 0.01 0.955 + 0.001
21 | 7200 - - -

22 60| 365.32 £ 0.40 | 13.84+ 0.01 0.939 + 0.001
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Table 4.10: Best-fit parameters of Fep g5Nig 23Crp.12 to the random trap

model Eq.(4.18).
T tw Mo Y T
(K) | (sec) | (x 10~%emu/g) | (x1073)
16 | 300 | 405.03 @ 0.02 | 24.20 £ 0.02 0.578 £ 0.001
18 | 300 | 413.51 + 0.03 | 31.18 £ 0.02 0.656 + 0.001
20 | 300 | 434.84 + 0.04 | 42.81 £ 0.02 0.686 + 0.001
20 | 900 | 437.02 + 0.03 | 45.55 + 0.02 0.702 = 0.001
20 | 1800 | 428.63 + 0.03 | 49.02 + 0.03 0.711 £ 0.001
20 | 3600 | 422.92 £ 0.03 | 51.51 + 0.04 0.711 £ 0.001
20 | 7200 | 414.40 £ 0.03 | 52.26 + 0.05 0.722 £ 0.001
21 | 300 | 448.62 + 0.05 | 46.54 £ 0.02 0.746 £ 0.001
21 | 900 | 434.35 £ 0.05 | 49.38 + 0.02 0.767 £ 0.001
21 | 1800 | 437.09 + 0.04 | 54.10 + 0.03 0.748 £ 0.001
21 | 3600 | 432.09 = 0.04 | 56.32 + 0.03 0.755 + 0.001
21 | 7200 | 429.07 £ 0.03 | 60.65 + 0.04 0.751 + 0.001
22 | 300 | 460.71 £ 0.08 | 53.30 + 0.02 0.784 + 0.001
22 | 900 | 469.85 + 0.06 | 54.74 + 0.02 0.791 £ 0.001
22 | 1800 | 459.98 + 0.06 | 58.85 = 0.02 0.791 £ 0.001
22 | 3600 | 458.71 + 0.05 | 61.15 + 0.03 0.792 + 0.001
22 | 7200 | 449.52 + 0.05 | 65.02 £ 0.04 0.792 £ 0.001
23 | 300 | 486.50 + 0.15 | 61.51 = 0.02 0.845 + 0.001
24 | 300 | 596.30 £ 0.38 | 58.55 + 0.01 0.894 + 0.001
24 | 900 ] 591.72 + 0.30 | 61.15 + 0.01 0.895 + 0.001
24 | 1800 | 584.37 £ 0.25 | 61.51 + 0.01 0.893 + 0.001
24 | 3600 | 562.62 + 0.25 | 66.07 = 0.01 0.895 + 0.001
24 | 7200 | 571.61 £ 0.25 | 67.50 + 0.03 0.897 + 0.001
25 | 300 753.15 + 0.76 | 61.84 + 0.01 0.919 + 0.001
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Table 4.11: Best-fit parameters of Crg r9Feq.21 to the random trap model Eq.(4.18).

T tw Mo Y z
(K) | (sec) | (x 10~%emu/g)

10 60 44.1 £ 0.2 0.012 £ 0.003 0.46 + 0.02
12 60 44.2 £ 0.2 0.019 £ 0.003 0.55 £+ 0.02
14 60 429 + 0.2 0.023 £+ 0.002 0.72 £ 0.02
14 300 429 £ 0.2 0.026 £+ 0.002 0.79 £ 0.02
14 900 43.9 £ 0.2 0.027 £+ 0.002 0.78 £ 0.02
14 | 1800 448 + 0.2 0.028 £ 0.002 0.78 £+ 0.02
14 | 3600 429 £ 0.2 0.029 + 0.002 0.77 £ 0.02
16 60 43.5 + 0.2 0.024 + 0.002 0.82 + 0.02
18 60 47.0 £ 0.2 0.021 + 0.002 091 £ 0.01
20 60 52.1 £ 0.2 0.015 £+ 0.002 0.92 £ 0.01
22 60 45.6 + 0.2 0.018 £ 0.002 0.93 £ 0.01

Table 4.12: Best-fit parameters of (FeggsNip.as)o.sa2Mngp 115 to the random trap

model Eq.(4.18).

T tw Mo Y T

(K) | (sec) | (x 10~%emu/g)

40 60 | 131.80 & 0.01 | 0.015 £ 0.001 0.29 + 0.01
45 60 [ 131.70 £ 0.02 | 0.021 £ 0.001 0.43 £ 0.01
50 60| 131.70 £ 0.04 | 0.029 £ 0.001 0.59 £ 0.01
52 60| 133.70 + 0.06 | 0.033 + 0.001 0.69 = 0.01
59 60| 139.80 £ 0.16 | 0.038 £ 0.001 0.82 £ 0.01
57 60 | 161.70 & 0.49 | 0.038 £+ 0.001 0.90 + 0.01
a7 300 | 165.90 &+ 0.36 | 0.049 %+ 0.001 0.91 £ 0.01
a7 900 | 164.00 £ 0.30 | 0.041 + 0.001 091 £ 0.01
57 3600 | 159.80 £ 0.24 | 0.042 £ 0.001 0.91 £ 0.01
57 | 10800 { 155.50 + 0.23 | 0.044 £ 0.001 091 %+ 0.01
60 60 | 402.10 + 5.69 | 0.042 £+ 0.001 0.96 + (.01

Function (4.18) only holds in the extreme non-ergodic limit, where the pa-

rameter z is supposed to depend only on temperature and is independent of the
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wait time ¢, as is the parameter 4. However, the previous fits show that both «
and z vary with ¢,,, and this dependence suggests some flaw in the analysis. It is
possible to overlook this discrepancy and to regard the parameters as being ap-
proximately constant. If the response of a real system was purely nonergodic then,
for a given temperature T, the relaxation data for different ¢,, should scale onto
a universal curve when plotted as a function of ¢/t,,, since the predicted response
m(t, ty)/mo in Eq.(4.18) depends only on the reduced variable ¢/t,,. Figures 13(a),
14(a) and 15(a) show the measured thermoremanent decay, normalized to its value
mg at t = 0, and plotted versus log(t/t,,), for three temperatures T =17 K, 19 K,
and 21 K, and several wait times ¢, = 1m, 3m, 5m, 10m, 15m, 30m, 1h and 2h.
The value of my was determined by using the previous fits to the superposition of
a stretched exponential and a constant in Section 4.3, and extrapolating to t = 0.

The lack of universality and the change in the relaxation rate for the dif-
ferent ¢,, data is obvious. Furthermore, if we were to fix £ and 4 for a given
temperature T and different wait times ¢,,, this nonergodic function would not
fit the data very well at all, as shown in Figure 4.12(a). Here, we have used the
values for the parameters z and v, obtained from the best fits to the ¢, = 60s
data, because the youngest set of data satisfies the nonergodic condition best. If
we generate theoretical curves from function (4.18) for the same z and v but dif-
ferent ¢,, and compare with the experimental data in Figure 4.12(a), we do not get
a satisfactory result. The systematic deviations clearly get worse as ¢, increases.
In fact, the parameter v in equation(2.109) is actually predicted to decrease a
little bit as ¢,, increases. So, the situation might get even worse if we were to use
the more accurate exponent v from this model, that is, choose one by fitting a

particular ¢,, curve, and then calculate the other «'s.

These failures to describe the data using only the extreme nonergodic func-
tion suggest that the real system does not age as rapidly as the nonergodic function

predicts it should, and that the magnetization m(t, t,,) should be represented as a
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= = st

superposition of independent response functions, each weighted according to a dis-
tribution P(t.r,), as we discussed in Section (2.6). If we also invoke the assumption
that the crossover from nonergodic to ergodic behaviour occurs suddenly, which is
equivalent to assuming that the most probable ergodic time t.r, = 7S/ is also
the only ergodic time for a subsystem which occurs with any appreciable proba-
bility for any given subsystem, and that the crossover takes place when t,, = t.,,
(rather than when t +t,, = t..,, as it actually does (Bouchaud et al., 1994)), then
each term in the superposition is either purely ergodic or purely nonergodic, and
the total magnetization is given by function (2.112). Now, the ¢/t, - scaling is
corrected by a factor 1 — F, i.e.,

m(t, tu)/(mo(l — F)) = f(%)- (4.20)

Figures 4.13(b), 4.14(b) and 4.15(b) show the corrected scaling plots, and Figure
4.12(b) shows the corrected fits to the relaxation isotherms. Both these fits and
the universal behaviour are remarkably improved, and the “best-fit” parameters
are listed in Table 4.13. The correction factor 1 — F is numerically calculated as
described in Section 2.6. The systematic deviations observed in Figure 4.12(a)
are removed, although there is clearly some mismatch in slopes which may be due
to our choice of a Gaussian distribution. Inspection of Table 4.13 shows that (a)
the width of the distribution of ergodic times is relatively large (der, = 2) and
temperature independent, (b) the mean of the logarithm of the ergodic time is
relatively small (log,q Z.ry < 2) and decreases with increasing temperature, which
is consistent with the observed tendency of the system to age less and thus to
approach equilibrium faster as T increases, (c) the parameter z, which describes
the structure of configuration space, increases with increasing temperature and

approaches unity as T — T, which is more consistent with Derrida’s model

(Derrida, 1981) of random energy levels than with Sherrington and Kirkpatrick’s
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model (Sherrington and Kirpatrick, 1975) of random exchange bonds, in agree-

ment with the conclusions reached by Bouchaud and coworkers (Bouchaud et al.,

1994).

For our particular choice of distribution, the mean ergodic time £, can be

calculated from

frg = /0“’ berg P(ter )dterg (4.21)

= exp (Iog o terg/ logio € + 02,/ (2(log g €)?)) /logge  (4.22)

which yields values of Z.., ranging from f.4(17 K) ~ 9 x 10%s to Z.., (21 K)
~ 9 x 10%s, listed in Table 4.13, once again comparable to those deduced by
Bouchaud et al. (1994).

The same scaling analysis was performed for the remaining samples and
the results are collected in Appendix B. For Fep¢sNig.23Cro.12, T = 20 K, 21 K,
22 K, and 24 K, and t,, = 5m, 15m, 30m, 1h, and 2h, the scaling analysis yielded
the best fit scaling parameters listed in Table 4.14, and the scaling plots shown
in Figures B.6-B.9; For Crq 79Feg 21, Trn = 14 K and ¢, = 1m, 5m, 15m, 30m, and
1h, the best fit scaling parameters are listed in Table 4.15, and the scaling plots
are shown in Figure B.10; For (Fegg5Nio.35)0.882Mno.118, T = 48 K, 52 K, 56 K
and 57 K, and ¢, = lm, 2m, 3m, 4m, 5m, 10m, 15m, 30m, 1h, and 2h, the best
fit scaling parameters are listed in Table 4.16, and the scaling plots are shown in
Figures B.11-B.14. A comparison of the scaling plots for these different systems,
shows that the scaling analysis works a little better in the systems Feg g5Nig 24Cro 11
and (Feg 65Nio 35)0.8s2Mng 11s8. The relaxation isotherms in these two systems have
somewhat weaker curvature which makes them more compatible with the shape

of the theoretical functions.
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Figure 4.12: (a) Fits (solid curves) of FeggsNig.24Crq.; for T,, = 19 K and for
different wait times t,. toEq.(4.18) with fixed ¥+ = 0.0130 and = = 0.882. mq is

chosen by extrapolating stretched exponential fits to ¢ = 0. (b) Fits (solid curves)
of T = 19 K for different wait ties ¢, to Eq.(2.112) with the fixed 7 and &
values in Table 4.13. my is 3.378, 3,361, 3.376. 3.380, 3.359 and 3.369 emu/g for

te = 60s. 300s. 900s, 1800s, 3G00s, 7200s respectively.
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Figure 4.13: (a) Scaling of Feqg;Nig.2.Cra., isotherms at T, = 19 K for different
wait tiwes ty, as m/my versus t/t,. my is chosen by the cwpirical stretched
exponential model. (b) Scaling of Feg gsNig24Cro.11 isotherms at T, = 19 K for
different wait tiwes ty, by Eq.(2.112). my is 3.378, 3.361, 3.376, 3.380, 3.359 and
3.369 emu/g for t,. = 60s. 300s. 900s. 1800s. 3600s. 7200s respectively. Other

parameters are in Table 4.13.
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Figure 4.14: (a) Scaling of Feq ;Nig.2:Crq.11 isotherms at T, = 17 K for different
wait tilmes ty,, as m/img versus ¢/ty. myg is chosen by the cpirical stretched
exponential model. (b) Scaling of Feg5Nin.24Cro.11 isotherms at T, = 17 K for
different wait times ¢, by Eq.(2.112). myg is 3.342, 3.322, 3.306, 3.343 and 3.340
emu/g for t,, = 60s, 900s, 1800s. 3600s. 7200s respectively. Other parameters are
listed in Table 4.13.
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Figure 4.15: (a) Scaling of Feyg3Nig2:Cry.q isotherms at T, = 21 K for different
wait times t,, as m/mg versus t/t,. mg is chosen by the empirical stretched
cxponential model. (h) Sealing of Fey g;Nip2Cry 1y isotherms at T, = 21 K for

different wait times ¢, by Eq.(2.112). myq is 3.426, 3.416, 3.426 and 3.432 emu/g
for ¢ = 60s, 6G00s, 1800s, 7200s respectively. Other paramcters are in Table 4.13.
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Table 4.13: Scaling parameters of Feg5Nig24Crg 11 to Eq.(2.112).

T(K) | logigters Oerg terg z Y
(x10°s)
17 120+0.2]20+03| 927 [0.10+ 0.05]0.0128 £+ 0.0010
19 [/10+03720+03] 927 | 0.60 £ 0.10 | 0.0135 + 0.0010
21 |00+03[20%£03] 093 |0.83+0.10 | 0.0140 + 0.0010

Table 4.14: Scaling parameters of Fegg5Nig 23Cro 12 to Eq.(2.112).

T(K) | logyoterg Oerg Zerg T Y
(x101%5)
20 {224+£02]3.0+03 8.39 0.10 + 0.05 | 0.044 + 0.001
21 [18+02]3.0+03 3.34 0.20 £ 0.05 | 0.050 £+ 0.001
22 116+023.0+03 2.11 0.30 £ 0.05 | 0.058 £+ 0.001
24 103+02(30£03 1.06 0.40 £ 0.05 | 0.068 £+ 0.001

Table 4.15: Scaling parameters of Crg7gFego; to Eq.(2.112).

T(K) | logjo terg Oerg terg z Y
(x10%s)
14 |18+02]20+02| 585 |0.20+ 0.02|0.025 + 0.001

Table 4.16: Scaling parameters of (Feg ¢sNig.as)o.ss2Mng 118 to Eq.(2.112).

T(K) | logq terq Oerg terg T ¥
(x10%s)
48 {25+£02]20+02! 293 [020£005] 0.036+ 0.001
52 /16+£02[20+£02| 369 [040+005| 0.043+ 0.001
56 109+£02[20+£02| 074 |0.60+0.05| 0.050+ 0.001
57 [20£02[20+02] 585 |080+£0.05] 0.041 %+ 0.001
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4.5 Relaxation Dynamics: An Elementary De-
cay Model (EDM) Analysis

The EDM model predicts a 7-parameter decay function given by Eq.(2.136):
= — o) BOLT=ro (bt ting)) | ga(ba.r=ro(ttting))
Mt te) = Mo{(1-o)opmmlitial) 4 calazenlitgl ] (4.23)

In this section we illustrate the EDM analysis by appling the model to
the Crop.79Feg21 TRM relaxation curves both below and above T,. The best fit-
ting parameters are listed in Tables 4.17 and 4.18, and the da‘a and the fits are
collected in Figures 4.16, 4.17 and 4.18. Figures 4.16(a) and 4.17(a) show the
time dependence of the decay Mg(ts) and of the corresponding relaxation rate
S(ta) = —OMRg(ts)/3Int,, respectively, both plotted on the same logarithmic ob-
servation time scale log,, ¢4;. The solid curves and the inserts are predictions of the
EDM. First, a few words about the actual fitting procedure. Generally speaking,
it was necessary to include both components of (4.23) when fitting the data. The
first, age-dependent component g, alone has far too much curvature, and decays
to zero far too rapidly, to provide a suitable representation of the experimental
data which is a very gradual decay with quite subtle changes in curvature. The
second, age-independent component g, has a very different value of the parameter
b and provides a virtually constant baseline which inproves the quality of the fits
considerably. The parameter ro was fixed at 1 because the fits were relatively
insensitive to it. The other 6 parameters then determined the fits to the exper-
imental data with some limitations. The parameter ¢ must be between 0 and 1.
If the fits yielded ¢ > 1, it was fixed at 1. If only g, was used to describe the

data(c = 1), as follows:

M(t) = Mygse + My (92(”2’ T=t+ tmz)) (4.24)

g2(b2, T =t + tin2)
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then it was necessary to add a baseline Mp,,e to match the decay magnitude and
the curvature of the data. This usually happened for the data around or above Ty;
tin, and i, are both larger than zero. If ¢;,, or t;n, were less than zero in the fits,
they were fixed at a constant positive number since a negative cooling time does
not make physical sense. The ratio ¢,/b; corresponds to the inflection point of
the decay function, and the maximum in the relaxation rate, which should match
that of the data. Sometimes b, had to be adjusted by hand for the longer wait
times, in order to make ¢,/b; match the inflection point.

The quality of the fits is excellent especially for the shorter wait times
(tw < 300s). This model generally provided the best fits of all the models we
used, particularly to the structure in the relaxation rates. For longer wait times
(tw = 900s), the function crossed the data a few times and some deviations could

be observed in the relaxation rate.

The inserts in Figures 4.16 and 4.17 show the final “aged” distribution of
activation energies (1 — ¢)fg,, (E,tw) + cfos,(E) at 74 = 0 (just after the field
change), with fy and f; defined by Eq.(2.118) and Eq.(2.133) respectively, eval-
uated with the best fit EDM parameters in Table 4.17. The first term (1 —
¢)fo s, (E,ty) incorporates the effect of aging in a field, and contributes a rela-
tively narrow, weak mazimum to the final distribution, at an activation energy
which increases as a function of a system age ¢,,. The second, age-independent
term cfo 5, (E), which is created by the field change, is characterized by a value of
ba ~ 0.01 which is at least an order of magnitude less than &,, and is responsible
for the very broad, comparatively flat background which dominates the distri-
bution. This age-independent component cfys, contributes a quasi-logarithmic
decay cgy, ,,., Which accounts for virtually the entire magnitude of the remanence
since ¢ ~ 0.9, while the age-dependent component (1 — c)f3, yields a relatively

small amplitude, quasi-power law decay (1 — c)g, r,.,.r, Which accounts for most
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Figure 4.16: (a) EDM fits of Eq.(4.23) (solid curves) to the thermoremanent
relaxation isotherms of Crg 79Feq2; for T, = 10, 12, 14, 16 and 18 K(Tr = 25K)
and for a common wait time t,, = 60 s. The vertical arrows mark the inflection
points 7. (b) Relaxation rates for the data (dots) and the prediction of the EDM
function (solid curves). The insert shows the final “aged” distribution of activation
energies (just after the field change). The peaks from bottom to top corresponds

to the temperatures from low to high.
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Figurc 4.17: (a) EDM fits of Eq.(4.23)(solid curves) to the wait-time dependence

of the thermoremanent relaxatior of CryroFeps at The = 14 K aud for wait times
te = 1m, 5m, 15m, 30m and 1 h. The vertical arrows mark the characteristic times
(inflection points) 7. (b) Measured relaxation rates(dots) and the predictions
of the theory (solid curves). The insert shows the final “aged” distribution of
activation cucrgics (just after the ficld change). The peaks from left to right
corresponds to the wait times from short to long.
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Figure 4.18: EDM fits (solid curves) of Eq.(4.23) to the thermoremanent relax-
ation curves of CroroFep 2 for T, = 20 K and 22 K (< Tj), ¢, = 60 s, and of
Eq.(4.24) to T;, = 26 and 30 K (> Ty) for ¢y, = 60 s (T = 25K).
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of the structure in the measured relaxation rate S(¢). The parameter c increases
monotonically with temperature and approaches unity near 25 K, above which
the age-dependent component vanishes (1 — ¢) = 0, and the measured relaxation

response is described by g;, and Eq.(4.24) alone.

The EDM is clearly capable of reproducing the principle structure features
of the TRM decay very well, including both subtle variations in its curvature,
as well as its overall magnitude. The success of this description rests on the fol-
lowing key assumptions regarding the distribution of activation energies: (a) Its
initial form immediately following the quench is Poissonian; (b) The distribution
is not static, but instead evolves with wait time ¢,, (at constant temperature and
field) by losing the contribution from relaxation processes within a progressively
expanding region at the lower energy end of the activation energy spectrum; (c)
The effect of the field change is to modify substantially the distribution which
exists at the end of the aging period, but in such a way that the new distribution,
which defines the actual observed decay, nevertheless retains some memory of the
aging process. This evolutionary sequence is illustrated in Figure 4.19 using the
best fit parameters for one of the relaxation isotherms analyzed for the system:
Feg.65Nip.23Cro.12, with T}, = 20 K, ¢,, = 1800s. Aging converts the original Pois-
sonian distribution (solid curve) in Fig.4.19(a), which is dominated by low energy
(or short time) activation events, into a distribution (dashed curve) in Fig.4.19(a),
which indicates that those relaxation process which remain active at the end of
the interval (in the sense that they have not yet decayed to equibrium) tend to be
clustered around a particular characteristic activation energy E.. (This peak is a
consequence of multiplying two exponentials, exp(—t,,/7) and exp(—E/F)). How-
ever, Fig.4.19(b) shows that, contrary to expectation, this characteristic energy
does not dominate the final decay because the field change effectively “disperses”

the distribution over a very wide range of activation energies, leaving only a weak
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artifact in the vicinity of E, to “echo” the effect of aging. If the EDM is to be
consistent with experiment, these distributions must have one further property,

which is particularly crucial to the subsequent interpretation.

According to the EDM, a relaxing physical observable derives its time
dependence from the decay of an underlying distribution function:

o(r) = [~ £(E,7)E (4.25)

where f ~ exp(—T7, exp(—E/T)) in the aging regime 7 < 7, and

[ ~ exp(—74exp(—E/T)) in the post-aging regime r > 7,,. Although the model
decay in these two regimes is thus governed by the same exponential factor, it is an
ezperimental fact that the field-cooled magnetization is observed to be essentially
constant throughout the waiting period. Thus, activation events, which occur
during the aging period (7 < 7,) do not translate into measurable physical losses,
and this can be accomplished within the EDM formalism, if aging acts to merely
redistribute the activation events while continuously preserving the normalization
of the distribution. This renormalization has been incorporated into the dashed
curve of Fig. 4.19(a). Once the field is changed, however, these same activation
processes become “operative”, in the sense that they represent real losses to the

distribution, and hence to the decaying physical observable.

The EDM itself offers no particular insight into the physical origin of these
effects. However, at least some of this behavior is reminiscent of Bouchaud'’s
model of activated hopping among metastable traps, and suggests the following
interpretation for the EDM. Once again we adopt the general premise that a dis-
ordered system consists of a collection of magnetically independent subsystems,
each of which possesses a very rugged free energy landscape with many local min-
ima. Each minimum represents a particular metastable spin configuration of the
N-spin subsystem, and each is characterized by its own macroscopic magnetiza-

tion. During the waiting time ¢,, each subsystem ergodically explores a limited
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region of its own configuration space by thermally driven hopping among the
traps, but has the largest probability to be found after a time ¢, in a trap with a
characteristic time ~ ¢, (which is usual for random walks involving broad distri-
butions, where the most significant contributions arise from the largest, but most
infrequent, events). In other words, the behaviour of all physical observables is
dominated by the properties of the deepest trap which the subsystems were al-
lowed to probe during the aging period. This is precisely the trend observed in
Fig.4.19(a) (both the solid and the dashed curves), where the distribution evolves
from a function dominated by short time activation events to one dominated by
activations near E,, corresponding to a relaxation time t. = t¢,/b, ~ ¢, since
b, ~ 0.5. Furthermore, the constancy of the field-cooled magnetization Mg im-
plies that the system is limited, in its excursions through configuration space, to

a particular subgroup of traps, all of which are favoured energetically, since an

extensive free energy MpoHce would be required in order for the system to es-

cape from this region of configuration space. These considerations suggest that
we may interpret the EDM distribution f(',',,l (E,ty) as the fractional number of
subsystems which occupy traps of depth E within a particular “pool of traps” of

fized magnetization Mgc, after a wait time ¢,,. Since no subsystems are lost from

this pool during the aging period ¢,,, the distribution f3, remains nomalized to

unity and the magnetization cannot decay.

With this identification, it is then possible to suggest a physical interpre-
tation for the change in the distribution from fy,, (E,ty) — (1~ a)fos, (B, tw) +
afop, (E) when the field is changed. Suppose that changing the field changes the
depth of the traps by a factor £ which depends on the typical number N of spins
which must be flipped in order to escape from the bottom of a trap and on their

Zeeman energy with respect to the field change (Vincent et al., 1995a). This

number N, and the net uncompensated moment m ~ ++/N, are both expected
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to increase with the depth of the trap, so that the field-induced redefinition of
the traps is non-uniform, and becomes progressively more significant as the traps
become deeper. This redefinition has the effect of dispersing the energetically
localized subsystems in Fig.4.19(a) (dashed curve) over a much broader range of
trap depths. These redefined traps now experience “real” depopulation in the
sense that subsystems activated out of these redefined Mgco-traps are lost from
this region of configuration space to other energetically more favourable regions

of configuration space, where the traps have zero magnetization.

While similar considerations by Vincent et al.(1995a) only allow for the
possibility of a reduction in the trapping time by this mechanism, it is clear
from Fig.4.19(b) that the EDM predicts both increases as well as decreases in the
trapping times as a consequence of the field change. However, the most significant
feature of the proposed redefinition is that changing the field completely “resets”
many of the subsystems, since many of the shallow traps emptied during aging
are refilled by changing the field, and in this regards, the EDM certainly agrees

with Vincent’s picture.

The EDM analysis was also performed for the other systems both below
and above the glass temperatures. The best-fit parameters are listed in Tables
4.19-4.25, and the fits are shown in Figures C.1-C.18, Appendix C. The param-
eter ¢, which describes the fractional contribution of the non-aging component,
increases towards unity as the temperature approaches Ty, but decreases slightly
with increasing wait time t,,. The parameter b, increases with temperature and
wait time ¢,,, while b; increases with temperature, but decreases slightly with in-
creasing wait time ¢,,. The parameter ¢;,; tends to be larger at lower temperatures
and shorter wait times, which is consistent with the longer cooling times expected
at the lower temperatures. The parameter ¢;,; is around ls and increases with

wait time t,,.
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Figure 4.19: (a)The original Poissonian distribution of energy (solid curve) and
the distribution of energy converted by aging after wait time ¢,, (dashed curve) for
Feg s5Nig.23Cro.12, with T, = 20 K and ¢,, = 1800s. (b) The distribution of energy
at the beginning of the field cut off for the same sample and same condition.
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Table 4.17: Best-fit parameters of the EDM model Eq.(4.23) to Crq.7oFeg ;.-

T tw NI0 c bl b2 tint tin2
(K) | (sec) | (x 10~ 'emu/g) (x 10~1) (x107%) | (sec) (sec)

10 | 60 | 4412+0001 | 083 +002 |058+005| 043001 |16+4| 05*02
12 | 60 | 4410+0001 | 086 £005 |1.17+004 (073001 |15+2| 0301
14 | 60 | 4.196 + 0.001 | 0.907 £0001 | 1.92 +0.01 | 1.23 £ 001 | 1.0 | 062 % 0.04
14 | 300 | 4.132 + 0.001 | 0.953 + 0.001 45 1.55 £ 001 | 1.0 [ 2.80 + 0.04
14 | 900 | 4.260 + 0.001 | 0.951 + 0.001 5.0 150 £ 001 | 1.0 | 4.76 + 0.04
14 | 1800 | 4.365 + 0.001 | 0.949 + 0.001 6.0 141 £001| 1.0 |501 *004
14 | 3600 | 4.195 + 0.001 | 0.938 + 0.001 6.0 137 £ 001 | 1.0 | 6.46 + 0.05
16 | 60 | 4.082 £0001 | 0.948 £0.001 | 2.70 £0.01 | 1.60 £ 001 | 1.0 | 094 * 0.04
18 | 60 | 4.053 £ 0001 | 0.978 £ 0.001 | 4.85 £0.04 | 1.72 £ 001 | 1.0 | 0.13 * 0.02
20 | 60 46 +£ 02 0993 £0.001 | 5.7+0.1 | 137001 1.0 |0.02 =002
22 | 60 383 £009 |099 +0001| 40+0.1 |162+001]| 1.0 0.01

Table 4.18: Best-fit parameters of the EDM model Eq.(4.24) to Crg.79Fep.2;-

T tw I\’Ilm.ie MO b2 tin2
(K) | (sec) | (x 10~'emu/g) | (x107'emu/g) | (x 1072%) (sec)
26 60 0.002 3.802 £ 0.075 | 1.791+£ 0.001 0.01
30 60 1.155 1.790 £ 0.098 | 4.146+ 0.001 0.01
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Table 4.19: Best-fit parameters of Feg 65Nig 24Cry 13 to the EDM model Eq.(4.23).

T tw Mo c by b2 tin1 tin2
(K) | (sec) (emu/g) (x 1071 | (x107?) (sec) (sec)

8 60 | 3.451 £ 0.001 | 0.60 + 1.32 | 001 £0.04 | 006 £0.13 |90 £35| 0.5 + 0.7
10 60 | 3.354 £ 0.002 | 0.57 £ 0.67 | 0.03£0.05 | 0.11 £0.13 | 87 £9 | 0.3 +04
12 60 | 3.380 £ 0.002 | 0.60 £ 1.73 | 007 +0.03 | 020 £ 058 | 99 £ 31 | 1.1 £ 0.2
14 60 [ 3.367 £ 0.00L | 0.65 +0.15 | 0.14+0.06 [030 £001 | 45+5 | 0.7 £0.1
15 60 | 33290001 | 068 £008 [0.17+004 |042+001| 35+4 | 1.2£0.1
16 60 | 3.351 £ 0.001 | 0.73 £004 | 0242004049001 20+3 | 1.0 0.1
17 60 | 3.334 £ 0.001 | 0.901 £ 0.006 | 068 £ 0.04 | 058 £001] 19+3 | 1.1 £0.1
17 | 900 | 3.306 £ 0.001 | 0.973 + 0.001 3.7 0.73 £ 0.01 1.0 5.3 £ 0.1
17 | 1800 | 3.289 + 0.001 | 0.974 + 0.001 4.7 0.75 = 0.01 1.0 6.9 £ 0.1
17 | 3600 | 3.317 + 0.001 | 0.970 + 0.001 5.0 0.72 = 0.01 1.0 8.4 £0.1
17 | 7200 | 3.316 % 0.001 | 0.969 + 0.001 80 0.67 £ 0.01 1.0 7.8 £+ 0.1
18 60 | 3.300 + 0.001 | 0.945 + 0.001 | 1.17 £ 0.06 | 0.80 £ 0.01 | 023 | 1.1 0.1
19 60 | 3.307 + 0.001 | 0.977 + 0.001 | 2.08 * 0.02 | 1.02 + 0.01 1.0 0.37 £ 0.02
19 | 300 | 3.285 + 0.001 | 0.990 = 0.001 | 4.41 £ 0.06 | 1.14 + 0.01 1.0 1.94 £ 0.02
19 | 900 | 3.297 + 0.001 | 0.990 + 0.001 8.0 1.13 £ 0.01 1.0 2.53 £ 0.02
19 | 1800 | 3.297 + 0.001 | 0.990 + 0.001 11.0 1.11 £ 0.01 1.0 2.82 + 0.02
19 | 3600 | 3.270 + 0.001 | 0.989 = 0.001 18.0 1.09 £ 0.01 1.0 3.20 £ 0.02
19 | 7200 [ 3.195 + 0.001 | 0.988 = 0.001 26.0 1.07 £ 0.01 1.0 3.59 £+ 0.02
20 60 | 3.228 £ 0.001 | 0.086 + 0.001 | 3.43 £ 0.03 | 1.17 + 0.01 1.0 0.45  0.02
21 60 | 3.196 + 0.001 | 0.994 & 0.001 | 7.10 + 0.05 | 1.26 + 0.01 1.0 0.01

21 | 600 | 3.197 £ 0.001 | 0.997 + 0.001 | 332+ 0.5 | 1.31 + 0.01 1.0 0.20 £+ 0.01
21 | 1800 | 3.198 + 0.001 | 0.997 £ 0.001 65.0 1.31 + 0.01 1.0 0.44 £ 0.01
21 | 7200 | 3.195 + 0.001 | 0.998 + 0.001 83.0 1.31 + 0.01 1.0 0.74 + 0.01
22 60 | 3.099 £ 0.001 | 0.996 + 0.001 | 17.9 £ 0.2 | 1.26 £ 0.01 1.0 0.01
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Table 4.20: Best-fit parameters of Feg ¢5Nig.24Cro.1; to the EDM model Eq.(4.24).

T tw Mbase MO b‘l tin2
(K) | (sec) | (emu/g) |  (emu/g) (x 107%) (sec)
24 | 60 2.109 | 0.880 £ 0.001 | 4.689 £ 0.001 0.01
25 | 60 2.109 | 0.776 £+ 0.001 | 4.826 £ 0.001 0.01
26 | 60 1.922 | 0.929 £+ 0.001 | 3.371 £+ 0.001 0.01
28 | 60 1.688 | 1.123 £ 0.001 | 2.385 £ 0.001 0.01
30 | 60 0.469 | 2.293 + 0.001 { 1.069 + 0.001 0.01
33 | 60 0.281 | 2.481 £ 0.001 | 1.100 + 0.001 0.01
35 | 60 0.937 | 1.805 £ 0.001 | 1.628 + 0.001 0.01
40 | 60 1.406 | 1.232 £ 0.001 | 2.400 + 0.001 0.01
45 | 60 1.688 | 0.905 = 0.001 | 2.961 & 0.001 0.01
50 | 60 1.594 | 0.953 £ 0.001 | 2.387 = 0.001 0.01
60 | 60 1.406 | 1.003 & 0.001 | 1.855 £ 0.001 0.01
70 | 60 1.406 | 0.804 £ 0.001 | 2.327 + 0.001 0.01
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Table 4.21: Best-fit parameters of Feggs5Nig.23Cro 12 to the EDM model Eq.(4.23).

T tw Mo c by b2 tin1 tin2

(K) | (sec) | (x 10~'emu/g) (x 1071) (x 1072) | (sec) (sec)

16 | 300 | 4.038 £ 0.001 | 0.863 £0.001 | 1.65+003 | 087 £001 | 1.0 | 36 £ 0.1
18 | 300 | 4.009 £ 0.001 | 0.894 £ 0001 | 3.44 +002 | 1.14 £ 001 | 1.0 | 1.8 £0.1
20 | 300 | 4.260 + 0.001 | 0.883 £ 0.001 | 3.21 £002 | 2.10 2001 | 1.0 | 35 £0.1
20 | 900 | 4.284 + 0.001 | 0.900 £ 0.001 5.0 202+001] 10 | 54 £0.1
20 | 1800 | 4.203 £ 0.001 | 0.907  0.001 70 199 £001 | 10 | 63 £0.1
20 | 3600 | 4.155 £ 0.001 | 0.903 % 0.001 8.0 194 £ 001 | 1.0 | 85 0.1
20 | 7200 | 4.075 £ 0.001 | 0.910 £ 0.001 12.0 1.74 £ 001 | 10 | 85+0.1
21 | 300 | 4.309 £ 0.001 | 0.908 + 0.001 | 447 =002 | 257 £001 | 1.0 | 28 £0.1
21 | 900 | 4.162 = 0.001 | 0.926 + 0.001 | 893 £ 003 | 244 £ 001 | 1.0 | 36 £0.1
21 | 1800 | 4.221 + 0.001 | 0.924 + 0.001 10.0 249 £001 | 1.0 | 64 £0.1
21 | 3600 | 4.181 £ 0.001 | 0.921 + 0.001 11.0 244 +001] 10 | 70£01
21 | 7200 | 4.168 + 0.001 | 0.907 = 0.001 12.0 239 £001 | 1.0 | 85 £0.1
22 | 300 | 4.300 + 0.001 | 0.916 £ 0.001 | 387 £0.02 | 3.50 001 | 10 | 30 01
22 | 900 | 4.412 + 0001 | 0.931 £ 0.001 | 842+ 004 | 3.11 £001 ] 1.0 | 40 £0.1
22 | 1800 | 4.328 + 0.001 | 0.933 £ 0.001 12.0 308 £001L ] 10 | 48 £0.1
22 | 3600 | 4.334 + 0.001 | 0.931 % 0.001 13.0 307 £001 | 1.0 | 60 0.1
22 | 7200 | 4.263 + 0.001 | 0.926 + 0.001 15.0 301 £001] 10 | 74 £01
23 | 300 | 4.163 +0.001 | 0939 £+ 0001 | 6.30 =003 | 442 £00L | 1.0 | 18 £01
24 | 300 | 4.447 £ 0.001 | 0.970 £ 0.001 | 9.24 £ 004 | 4.77 £ 001 | 1.0 | 14 £0.1
24 | 900 | 4.496 £ 0.001 | 0.972 £0.001 | 181+ 01 | 463 +001 | 1.0 | 1.6 0.1
24 | 1800 | 4544 £0.001 | 0972 £0001| 258+01 |44l £001] 10 | 2001
24 | 3600 | 4.313 + 0.001 | 0969 £0.001 | 42002 | 450 £ 001 | 10 | 22 £0.1
24 | 7200 | 4.394 £ 0.001 | 0.963 £0.001 | 546+ 0.2 | 430 £00L | 1.0 | 23 £0.1
25 | 300 | 4.846 £ 0.001 | 0981 £0.001 | 8.72+0.06 | 521 £001 | 1.0 | 0.1 £0.1

Table 4.22: Fit parameters of the EDM model Eq.(4.24) to FepgsNig.23Cro.12-

T tw Mbase MO b2 tin2
(K) | (sec) | (x 10~ 'emu/g) | (x10~'emu/g) (x 1072) (sec)
26 { 300 0.918 9.983 £0.001 | 7.752 £ 0.001 0.01
28 300 1.837 2.918 £+ 0.001 | 11.240 £ 0.001 0.01
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Table 4.23: Best-fit parameters of the EDM model Eq.(4.23) to (Feg.gsNig.35)0.852Mno. 118-

T tw Mo c by b2 tinl tin2
(K) | (sec) | (x 10~ 'emu/g) (x 1071) (x 1072) (sec) (sec)
40 | 60 1.323 £0.001 | 069 +0.19 | 036 023 | 0.73 £0.17 | 10428 | 16 = 0.5
45 | 60 1324 +0001 | 072007 |056+015113+008]| 6315 1.0+0.3
50 |60 1.328+ 0001 | 0.78+003 | 077 £012 | 1.85+004 | 33+10 | 1.0 £0.2
52 60 1317+ 0001 | 082+002 | 1.12+011 | 199 £0.04 | 7.1£0.7 | 0.3 £0.2
55 60 1.278 £ 0.001 | 0.927 £ 0.008 | 243 £024 | 280 £005) 17 +10 | 06 0.1
57 | 60 1.283 £ 0.001 | 0.967 + 0.004 | 4.59 + 0.66 | 3.19 = 0.04 | 47 £20 | 0.44 + 0.09
57 | 300 | 1.293 + 0.001 | 0.967 + 0.006 | 6.37 £ 0.09 | 3.08 £ 0.01 1.0 0.62 + 0.03
57 | 900 | 1.289 + 0.001 | 0.971 + 0.001 | 9.70 + 0.18 | 3.10 + 0.01 1.0 1.01 £ 0.03
57 | 3600 | 1.281 £ 0.001 | 0.972 + 0.001 15.0 3.05 £ 0.01 1.0 1.58 £ 0.03
57 | 10800 | 1.255 + 0.001 | 0.966 + 0.001 18.0 3.04 + 0.01 1.0 1.97 + 0.03
60 | 60 1.264 £ 0.001 | 0.989 + 0.001 | 17.96% 0.85 | 3.50 £ 0.01 1.0 0.87 + 0.04

Table 4.24: Best-fit parameters of the EDM model Eq.(4.24) to (Feg ¢5Nig.35)0.8s2Mno.115.

T tw NIhue MO b2 tin2
(K) | (sec) | (x 10~ 'emu/g) | (x10~'emu/g) (x 107%) (sec)
65 60 0.517 0.696+ 0.001 | 6.645+ 0.001 0.01
70 60 0.776 0.421+ 0.001 | 10.240+ 0.001 0.01
80 | 60 0.853 0.361+ 0.001 | 8.027+ 0.001 0.01
90 60 0.905 0.391+ 0.001 | 5.552+ 0.001 0.01
100 | 60 0.957 0.327+ 0.001 | 5.091+ 0.001 0.01
110 ] 60 0.957 0.241+£ 0.001 | 7.800+ 0.001 0.01
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Table 4.25: Best-fit parameters of the EDM model Eq.(4.23) to (Feg g5Nig.as)0.282Mno.118-

T tw Mo c by b2 tinl tin2

(K) { (sec) | (x 10~ lemu/g) (x 10°1) (x 1072) (sec) (sec)

48 60 1.416 £ 0.001 0.63 £ 0.05 059+008|197+£012|30+7]13+03
48 180 1.405 £ 0.001 | 0.809 £0.003 | 1.29 £ 0.04 | 1.69 £ 0.02 1.0 1.6 £ 0.2
48 300 1.407 £0.001 | 0.849 £0.002 | 1.77 £ 0.05 | 1.71 £+ 0.05 1.0 3.8 0.2
52 60 1.412 + 0.001 0.83 £ 0.01 140 £0.11 | 269+0.03 [ 29+ 7| 1.6 £0.2
92 120 1.394 + 0.001 | 0.853 £ 0.001 | 1.72 £ 0.03 | 2.70 £+ 0.02 1.0 20 £0.1
52 180 1.404 £ 0.001 | 0.875 = 0.001 | 2.18 + 0.04 | 2.65 £+ 0.02 1.0 23 +£0.1
92 300 1.401 £ 0.001 | 0.900 £ 0.001 | 3.22 £ 0.04 | 2.63 + 0.01 1.0 2.7+£0.1
52 900 1.396 £ 0.001 | 0.018 + 0.001 | 6.02 £ 0.07 | 2.54 + 0.01 1.0 40 £ 0.1
56 60 1.419 £ 0.001 | 0.900 £ 0.001 | 2.61 £ 0.04 3.§1 + 0.02 1.0 0.5 £0.1
26 120 1.396 £ 0.001 | 0.933 £ 0.001 | 3.39 £ 0.04 | 3.75 £ 0.02 1.0 1.1 £0.1
56 180 1.427 £ 0.001 | 0.942 = 0.001 |{ 4.16 £ 0.04 | 3.70 £ 0.01 1.0 14 +£0.1
56 240 1.386 0001 | 0.947 £ 0.001 | 5.16 £ 0.05 | 3.82 + 0.01 1.0 16 £0.1
56 300 1.387 £ 0.001 | 0.049 £ 0.001 | 5.41 £ 0.06 | 3.86 = 001 1.0 1.9 +£0.1
56 600 1.398 £ 0.001 | 0.946 %= 0.001 | 8.12 = 0.07 | 3.61 £+ 0.01 1.0 1.2 +£0.1

4.6 Relaxation Dynamics: A Percolation Anal-

ysis

The percolation model of Chamberlin and Haines, which is also a theory
of activatived dynamics, but for dispersive excitations within a fized distribution
of finite domains, is based on such general geometrical considerations that it is

difficult to appreciate the physical origins of either the aging or temperature-
cycling effects within this theoretical framework. Nevertheless, the two model

relaxation functions Eq.(2.141) and (2.142) do provide a reasonable description
of the relaxation isotherms, since each is reducible to one of the empirical ex-
pressions Eq.(4.1) or {4.2) in an appropriate limit (Chamberlin and Hains, 1990):
for Cw,t < 1, M, (t)(Eq.(2.141)) — a stretched exponential, while for Cw_t >>
1, M_(t)(Fq.(2.142)) — a simple power law. Figures 4.20-4.22 illustrate these fits
for the FepgsNip 23Cro.12 sample. A six-parameter fit to a superposition of the
aligned and antialigned relaxation functions yields unreliably high parameter un-
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certainties, and thus reinforces the need to consider the contribution from only one
type of domain, at least over the temporal range of this experiment. Ultimately

the following representations were favoured for our analysis:

(a) In the high-temperature ferromagnetic phase, the best description was

achieved by superposing the aligned function on a constant baseline, M_ + Mp,
as shown by the solid curves for the T;n = 26 K and 28 K isotherms in Fig.
4.20. The quality of the fits are indistinguishable from the empirical power-law
fits in section 4.3. The best-fit parameters for the high-temperature isotherms of
Feg ¢5Nig 23Crg.12 are listed in Table 4.27. The characteristic relaxation times of
the average-size aligned domains, 7_ = [wg, exp(—C/Z)]~}, where T = (19/6)%2,
were calculated and are also listed in Table 4.27.

(b) In the low-temperature reentrant phase, the most consistent results
are obtained by a simple superposition of the antialigned function and a constant
baseline, M, (t} + M,. However, the quality of the fits was clearly dependent on
the age of the system: for relatively short wait times (£, < 900s), the fits were
measurably inferiour to the stretched exponential (Inx2 /x2 ~ 1.1), but improved
systematically with increasing age until , for (¢,, > 900s), the two representa-
tions became essentially interchangeable. The solid curves through the isotherms
16K < T, < 25K and for ¢, =5m, 15m, 30m, lh, and 2h in Figures 4.20-4.22
show the best fits, and the vertical arrows mark the inflection points, which are
systematically longer than the characteristic relaxation times of the average-size
antiligned domains 7, = [w exp(+C/Z)]~!. The corresponding fitting parame-
ters and 7, are listed in Table 4.26 and they satisfy the condition Cwt < 1 for
M (t) to reduce to a stretched exponential.

Tables 4.26 and 4.27 provide a complete list of the best-fit parameters

for all the reentrant isotherms. The correlation coefficient C increases with tem-
perature, so that, with the physically reasonable assumption of a temperature-
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independent average interaction between the spins A, the percolation correlation
length £ < (A/CT)??, where ¢ = 0.45 and v = 0.88 are percolation scaling ex-
ponents, decreases with increasing temperature throughout the reentrant phase,
which is consistent with its behavior in pure spin glasses (Chamberlin and Haines,
1990). Thus, a Chamberlin-Haines analysis of the dynamic crossover suggests
that the dynamics in the ferromagnetic phase are dominated by domains which
are aligned with the field, presumably because the reorientation of antialigned
domains on field cooling is relatively unhindered in this phase. In the reentrant
phase, such aligned reorientation is inhibited, and the decay is due predominantly
to slowly relaxing, higher-energy antialigned domains. However, the wait-time de-
pendence of the fits in the reentrant phase may reflect the inadequacy of a single,
fixed domain size distribution, due to possible domain growth in the early stages
of aging, and the microscopic origins of the aging process have yet to be resolved
within this formalism.

Tables 4.28-4.34 list the best-fit parameters for the remaining systems and
the fits are shown in Figures D.1-D.10, Appendix D.
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Figure 4.20: Thermorcmancut relaxation isotherins of Feg s Nig2yCroz for a sc-
quence of temperatures and for a common wait time ¢,, = 300s to the percolation
model. The solid curves for T,,, < 25 K are fits to Eq.(2.141) and vertical arrows
mark the characteristic inflection points 7. The solid curves for T, > 26 K are
fits to Eq.(2.142).
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Figure 4.21: (a) Wait-tilue dependence of the thermoremancnt relaxation of
Feg 5Nig.23Cro,12 at T}, = 20 K. The solid curves are fits to the percolation model
aud vertical arrows wark the characteristic inflection poiuts 7. (b) Sawne sample
and analysis as in (a) but for 7}, =21 K.
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Figure 4.22: (a) Wait-time dependence of the thermoremaucent relaxation of
Feg.65Nig.23Cro.12 at T = 22 K. The solid curves are fits to the percolation model
aud vertical arrows mark the characteristic inflection points 7. (b) Sawe sawple
and analysis as in (a) but for T;, =24 K.
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Table 4.26: Best-fit parameters of Feg g5Nig.23Cro.12 to the percolation model Eq.(2.141).

T tow Mo M; Wy C Ty
(K) | (sec) | (x1073emu/g) | (x10~3emu/g) | (x10~5Hz) (sec)

16 | 300] 354.8 0.1 16.26 + 0.03 | 493 £ 0.06 | 155 + 0.1 | 1290 + 28
18 300 | 3420 0.1 2245003 | 519+004 | 1790+0.1 | 797+ 13
20 | 300 | 3320 %0.1 3405+ 004 | 380 £003 | 213 £ 0.1 596+ 8
20 | 900 | 3383 £ 0.1 3128+ 0.04 | 3.25+0.02 | 188 £ 0.1 | 1090+ 15
20 | 1800 | 330.7 £ 0.1 3085 0.05 | 2.34 £ 002 | 18.7 £ 0.1 | 1540+ 26
20 | 3600 | 326.1 + 0.2 30.33£ 0.08 | 1.46 + 0.02 | 185 + 0.1 | 2600+ 54
20 | 7200 | 3160 £ 04 3089 £ 0.14 | 068 £ 002 | 194 £ 0.1 | 4700+140
21 | 300 | 3232 =+01 4142+ 0.04 | 3.18 £ 002 | 25.7 £ 0.1 331+ 5
21 | 900 | 3164 +0.1 3692+ 0.04 | 3.02+0.02 | 23.3 £ 0.1 526+ 8
21 | 1800 | 322.1 £ 0.1 3581£ 0.04 | 2.57 £ 002 | 209 £ 0.1 | 949% 14
21 | 3600 | 317.8 £+ 0.1 35.86£ 0.06 | 1.48 £ 002 | 220 + 0.1 | 1370+ 26
21 | 7200 | 316.3 £ 0.2 35.30+ 0.08 | 104+ 001 | 214 + 0.1 | 2160+ 47
22 | 300 299.5+0.1 55.29 & 0.06 | 1.50 £ 0.01 | 334 £ 0.1 177+ 3
22 | 900 319.0 0.1 48.00 £ 0.05 | 201 £001 | 27.7 = 0.1 364+ 6
22 | 1800 | 3124 £0.1 46.17 £ 0.05 | 1.74 £ 0.01 | 264 £ 0.1 527+ 8
22 | 3600 | 313.1 £ 01 4588+ 0.07 | 1.15 £ 001 | 268 £ 0.1 | 748+ 14
22 | 7200 | 3088 £ 0.2 44.46£0.09 | 0.80 £ 0.01 | 269 + 0.1 | 1060% 24
23 | 300 2644+01 | 73552009 | 094 £001 | 441X 01 | 425+ 09
24 | 300| 278.2%£0.1 9468+ 0.14 | 049 £0.01 | 573 = 0.1 8+ 1
24 | 000 | 2845 £ 0.1 90.47+ 0.08 | 0.51 £ 0.01 | 54.7 £ 0.1 | 12.1+0.3
24 | 1800 | 2929 +0.1 85.04£0.12 | 0.46 £ 0.01 | 52.2 £ 0.1 | 20.8206
24 | 3600 | 2748 £ 0.1 80.01£ 0.11 | 047 £001 | 499+ 0.1 | 298%08
24 | 7200 | 2791 £ 0.1 7791+ 0.11 | 0.38 £ 0.01 | 47.6 = 0.1 56% 2
25 | 300 | 2686 £ 0.1 178.6+ 0.5 | 0.031 +0.001 | 103.1 £ 0.3 | 0.04+ 0.01

Table 4.27: Best-fit parameters of Feg g5Nip.23Crg.12 to the percolation model Eq.(2.142).

T tw Mg M; W C T
(K) | (sec) | (x1073emu/g) | (x10~3emu/g) (Hz) (sec)
26 300 25 1.2 177.5¢ 1.1 (5.89+0.05) x 10° { 77.5+ 0.2 16121
28 300 101.1 £ 0.7 175.3 £ 2.6 (7.43+£0.99) x 10° | 53.5+ 0.1 | 1.81+0.28
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Table 4.28: Best-fit parameters of Feg gsNip.24Cro.1; to the percolation model Eq.(2.141).

T tw Mo M; we C Ty
(K) | (sec) | (x10~2%emu/g) | (x10~%emu/g) (x10~5Hz) (sec)

8 60 | 3431+0.1 0.73 £ 0.04 081 £0.28 | 294+ 14 658 + 386
10 60| 331.0+0.1 1.52 £ 0.02 “1.70 £ 0.11 221 £ 0.3 1164+ 132
12 60 | 320.7 £ 0.1 2.85 £ 0.01 218 £ 0.06 | 198 £0.1 1368+ 74
14 60 | 3228 0.1 4.78 £ 0.01 281 £ 004 |202+0.1 990 30

15 60 | 3155+ 0.1 6.23 £ 0.01 240 £ 003 | 22401 787+ 20

16 60 | 3135+ 0.1 7.84 £ 0.01 212 £ 002 |241+0.1 662+ 14

17 60 | 307.4 +0.1 10.31+ 0.02 1.47 £ 0.02 30.2 £ 0.1 318+ 8

17 | 900 | 306.3 0.1 9.04 = 0.02 1.92 £ 002 | 242 +0.1 704% 16

17 | 1800 | 304.4 + 0.1 8.94 + 0.02 154 £ 0.02 | 23.7 £ 0.1 962+ 22

17 | 3600 | 307.3 £ 0.1 8.88 £ 0.02 1.05 £ 0.02 | 23.6 £ 0.1 1460% 39

17 | 7200 | 304.8 £ 0.1 9.65 + 0.04 045 £0.01 |249 £0.1 2653+ 96
18 60 | 2984 + 0.1 14.41% 0.02 0.661+ 0.01 | 41.4 £ 0.1 98+ 2

19 60 | 2924 + 0.1 21.25+ 0.05 | 0.1720.01 | 619 £0.2 10+ 1

19 | 300 | 2922 0.1 18.47+ 0.04 0.298% 0.01 | 51.3 £ 0.1 37+ 1

19 | 900 | 2948 £0.1 16.48% 0.03 0.502£ 0.01 | 44.2 £ 0.1 ~ 79+ 3

19 | 1800 | 295.0 £ 0.1 15.91+ 0.03 0.469% 0.01 | 42.4 + 0.1 116= 4

19 | 3600 | 293.1 + 0.1 15.13% 0.03 0.504£ 0.01 | 40.0 + 0.1 164+ 5

19 | 7200 | 2930+ 0.1 15.02% 0.03 0.385+ 0.01 | 396 £ 0.1 230+ 8

20 60 | 2815+ 0.1 25.79% 0.07 0.078+ 001 | 74.0 £ 0.2 25% 0.1

21 60 | 2739+ 0.1 39.13x 0.02 | (5.0+0.3)x0.01 | 116.620.6 | (2.0+0.3)x0.01
21 | 600 | 273.7%0.1 390+ 0.2 (6.3%0.3)x0.001 | 109.4£0.6 | (5.8+0.9)x0.01
21 | 1800 | 273.7 £0.1 34.6x 0.2 (6.8£0.4)x0.001 | 102.8+0.5 0.18+0.03
21 | 7200 | 273.7 0.1 32.3% 0.2 (7.1%0.4)x0.001 | 96.8+0.5 0.40+0.05
22 60 | 2665 + 0.1 43.1+ 0.3 (2.950.2)x0.001 | 133.4+0.9 | (1.8+0.4)x0.001
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Table 4.29: Best-fit parameters of Fep.¢5Nig.24Cro 11 to the percolation model Eq.(2.142).

T tw Mo M; (7 C T—

(K) | (sec) | (x10~%emu/g) | (x10~%emu/g) (Hz) (sec)

24 60 216.8 £ 0.4 26.4+£0.2 (1.51£0.15) x 10° 89.0+ 0.6 (4.78+0.98) x 10°

25 | 60 | 211.9 + 05 25.1 £ 0.3 | (3.60£0.59) x 105 | 93.2% 0.9 | (4.26+1.34) x 10°

26 60 2074+ 038 25.3 + 0.3 (1.08+£0.24) x 10 | 109.0+ 1.4 | (2.32+1.07) x 10*

28 60 183.1 +£ 2.2 33.5+ 1.0 (8.20+6.07) x 10° | 164.5+ 4.4 | (5.85+8.93) x 10°

30 | 60 1530 £ 1.4 40.4 £05 [ (9.48+3.00) x 107 | 213.2% 2.7 | (2.83£2.27) x 10°

33 60 1365 £ 1.5 44.7 £ 0.5 {2.19£0.55) x 10 214.24+ 2.5 | (1.47%£1.02) x 10

35 60 160.3 £ 1.2 39.0 £ 0.5 (1.28+0.42) x 107 | 168.5% 2.1 | (7.87%5.58) x 10°

40 60 1593 + 1.1 365 £ 0.5 (9.52+3.43) x 10° | 159.0+ 2.0 | (1.89+1.36) x 10°

45 60 1673+ 1.6 33.3 £ 0.9 (3.88+2.87) x 107 | 158.9+ 3.4 | (4.57+6.07) x 10¢

50 | 60 148.1 £ 1.6 341 £ 06 | (3.65%1.45) x 107 | 213.5% 3.7 | (7.81%8.30) x 10°

60 60 143.3 + 4.0 306+ 14 (3.20£3.10) x 107 | 226.7+ 10.2 | (9.17+£25.5) x 10 |

70 60 155.1 £ 1.0 234 £ 0.5 (1.74+1.00) x 107 | 214.2+ 3.0 | (9.01+9.90) x 10*
Table 4.30: Best-fit parameters of Crq 19Feg 21 to the percolation model Eq.(2.141).

T tw NIO M;‘ Wy C ?4.

(K) | (sec) | (x10-%emu/g) | (x10~3emu/g) (x10~5Hz) (sec)

10 60 | 407.33% 0.05 12.46 £ 0.03 2.63 + 0.04 23.21+ 0.10 6203 20

12 60 | 388.81+ 0.04 19.53 £ 0.03 3.16 £ 0.03 24.63+ 0.06 400+ 80

14 60 | 353.21% 0.04 28.45 + 0.04 1.91 + 0.02 34.05+ 0.08 124.71+0.1

14 300 | 349.15% 0.04 25.83 + 0.03 2.27 £ 0.02 28.75+ 0.06 268+ 5

14 900 | 362.78+ 0.06 24.05 + 0.04 1.74 £ 0.02 25.33+ 0.06 641+ 14

14 | 1800 | 370.66+ 0.10 24.61 + 0.05 1.03 £ 0.01 25.63+ 0.06 1030+ 20

14 | 3600 | 351.53+ 0.22 24.89 + 0.08 0.46 + 0.01 25.64+ 0.06 2280+ 70

16 60 | 335.27+ 0.06 36.81 £+ 0.08 0.78 £ 0.01 46.94+ 0.14 3.1+ 1.2

18 60 | 330.69+ 0.09 50.47+ 0.20 (9.5£ 0.3)x0.01 | 78.524+ 0.36 | (9.4+ 0.9}x0.001

20 60 | 386.70% 0.27 65.57% 0.61 {1.9+ 0.2)x0.001 | 125.7 £ 1.2 | (1.0+ 0.3)x0.01

22 60 | 300.08%+ 1.03 93.95+ 2.55 (6.8£3.0) x 10-° 195.1+5.4 | (1.4£1.9) x 10~
Table 4.31: Best-fit parameters of Crg 79Feq.2; to the percolation model Eq.(2.142).

T tw Mo M; w- C T

(K) | (sec) | (x10~3%emu/g) |{ (x10~%emu/g) (Hz) (sec)

26 60 151.2 £ 3.0 73.6 £ 1.2 (1.22£0.87) x 10~% | 141.4+ 2.3 | (8.2+5.9) x 10°

30 60 122.7 £ 1.7 99.4 + 1.0 (2.57:!:1.3'7) x 10741 105.2+ 1.3 | (3.8£2.1) x 10°
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Table 14.32: Best-fit parameters of (Feg g5Nig_ as)o.ss2Mno, 118 to the percolation model Eq.(2.141).

T tw Mo M; Wi C 7,
(K) | (sec) | (x1073emu/g) | (x10~3emu/g) (x10~3Hz) (sec)

10 60 | 119.80£008 | 4.30 £ 0.04 21+0.1 20.7 + 0.3 1210+ 120

45 60 | 113.40% 0.08 7.00 £ 0.04 1.5 + 0.1 254 = 0.2 735+ 15
50 60 | 104.60£0.10 | 11.90 £ 0.07 054 £ 0.02 372+03 252+ 23

52 60 | 100.60£ 0.05 | 13.60 £ 0.06 0.69 = 002 397 £0.3 126+ 10

55 60] 9110+ 008 | 19.90 £ 0.12 0.25 £ 0.01 579 =04 1.1+ 0.1

57 60 | 88.60 £0.10 | 26.20 £ 0.22 | (8.0+06)=x001 | 78.1+ 0.8 1.2+ 0.2

60 60 [ 8540 £0.16 [ 42.90 £ 0.67 | (1.720.6)x0.001 | 130.9 £ 2.0 | (1.7 0.8)x0.01

Table 4.33: Best-fit parameters of (Feo.a5Nio.33)0.s82Mno.118 to the percolation model Eq.(2.141).

T tw Mo M; w4 C T,
(K) | (sec) | (x10~3%emu/g) | (x10~%emu/g) | (x10-®Hz) (sec)
48 60| 1135+0.1 106 £ 0.1 216 £05 | 257 £ 0.1 484+ 20
48 | 180 1136 =01 98 £ 0.1 26505 | 228 £0.1 660+ 24
8 | 300 112=x0.1 96 £ 0.1 249+ 05 | 21801 839+ 32
52 60| 1037 £0.1 162 £ 0.1 126+ 03 | 354 % 02 148+ 9
52 | 120 1024 £0.1 15.6 £ 0.1 145+ 03 | 332+ 02 190+ 11
52 | 180 ] 1038x0.1 15.0 £ 0.1 153+ 03 | 315 £ 0.1 244+ 9
52 | 300 1040 £0.1 14.5 + 0.1 16203 | 299 £ 0.1 306+ 11
52 | 900 | 104.1=%0.1 136 £ 0.1 13903 | 269 £ 0.1 608% 24
56 60| 93201 274 £ 0.1 3.00£ 009 | 594 £ 03 86+0.7
56 | 120] 922 £0.1 254 + 0.1 3.93£0.11 | 545+ 03 16.0=1.3
56 | 180 ] 953 £0.1 24.7 + 0.1 4.14£0.10 | 524 £ 02 22.1%1.3
56 | 240 | 925 £0.1 237 + 0.1 528+ 0.14 | 50.1 £ 0.2 26.1£1.6
56 | 300 ] 925 +0.1 237 + 0.1 471£0.12 | 498 £ 0.2 30.8+19
56 | 900 ] 925 =+0.1 226 + 0.1 446£0.12 | 475 £ 02 49.0+3.1
57 60| 88602 262+02 |080+006|781+08 1.2£0.2
57 | 300| 898 £0.1 233£0.1 |095+006 69106 49+98
57 | 900| 888 02 230£02 [057+004 [688x06 88%15
57 | 3600 | 855 03 23802 [0.13+002]| 72808 18.5%5.5
57 | 7200 | 788 £ 0.8 258+ 04 [002+001 80202 33£15
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Table 4.34: Best-fit parameters of (Feg 65Nig 3s)0.882Mng 113 to the percolation model Eq.(2.142).

T | t, Mo M; w_ C 7
(K) | (sec) | (x1073emu/g) | (x103emu/g) (Hz) (sec)
65 | 60 491 £07 241 £ 0.5 | (7.3202)x10% | 714£ 1.0 132 £88
70 | 60 618 £ 038 T3+ 47 | (5.950.1) x 107 | 65.1F 1.2 1.75+0.40
80 | 60 756 + 0.9 246+ 43 | (7.6x15)x 10° | 69.3% 2.7 0.29+£0.19
%0 | 60 872 + 1.1 212+ 36 | (24%0.6) x 10° | 82.6% 20 0.9620.58
100 | 60 893+ 14 190 £ 3.7 | (5.9+18)x 10° | 89.9% 1.7 1.43£0.89
110 [ 60 831+13 176 £ 3.1 | (1.9+0.5) x 10’ | 96.9% 1.8 1.5720.91

4.7 Relaxation Dynamics: Temperature Fluctu-
ation Effects

The observation of a thermally driven crossover from equilibrium to nonequi-
librium relaxation dynamics certainly offers compelling preliminary support for an
orientational collapse from parallel to random spin alignment. However it does not
constitute conclusive evidence for genuine spin-glass freezing, since aging is also
a feature of other types of systems, such as amorphous polymers (Struik, 1978),
high-T;. superconductors (Rossel, 1990), and charge-density waves (Biljakovic et
al., 1991). However, as mentioned earlier, the spin-glass state exhibits a unique
sensitivity to temperature. According to droplet scaling theories of spin glasses,
neighbouring states at temperatures T and T + AT share nearly identical equi-
librium spin correlations < S; - S; >r only up to the overlap length o1, beyond
which the signs of the correlations at T are uncorrelated with those at T + AT.
Alternatively, according to Replica Symmetry Breaking models, there is an heirar-
chical structure of metastable states, and cooling causes a given state to bifurcate

into “new” states.

Temperature-shifting and temperature-cycling experiments are more com-
plicated thermal protocols which may provide direct evidence for this type of ther-
mal fragility and which may help to decide which of these two pictures, droplet
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versus heirarchical, is more appropriate as a description of frustrated systems.
The corresponding experimental procedures have already been shown in Figure
4.4 and F'igure 4.5.

Figures 4.23(a) and (b) show the results of a temperature-shifting ex-
periment. The temperature-shifting is performed by (a) overcooling to T, —
AT ,waiting for t,,, heating to T,, and removing the field, and (b) undercooling to
Tn + AT, waiting for ¢,,, cooling to T;,, and removing the field. The temperature
increments AT are listed in the figures. The results show that (a) aging at a lower
temperature T;, — AT and measuring at T}, always makes the system look younger,
meaning that the inflection point shifts towards smaller values until, at a thresh-
old increment ATipreshaa = 2K, the memory of aging at T, — AT is completely
destroyed and the relaxation response is exactly the same as that obtained by a
direct quench to T, followed by an immediate removal of the field. According to
droplet theories, the state at T, is then uncorrelated with that at T}, — AT areshotd
and laT,,,..ag = 0- (b) aging at a higher temperature T, + AT and measuring at
T» makes the system look older when AT < AT™ = 0.5 K and beyond that makes
the system look progressively younger until the memory of aging at T,, + AT is
once again completely destroyed when AT = ATipreshoid = 2K. Some of these
results can be interpreted as a temperature dependence of the growth rate of the
domains, which is schematically illustrated in Figure 4.24. When the sample is
aged at a temperature T,, — AT, the growth of the domains is slower than at 7,,.
When the temperature is increased to T, after ¢,,, we move from A to B in the
figure and a system that appears to be younger than it would have been at T, is
probed. The overall features of the relaxation rate curve are preserved, but the
maximum in S(t) is shifted towards shorter observation times. Similarly, if the
system is aged at a higher temperature than 7,,, the growth of domains is faster
at T,, + AT than at T,,, and a system that appears older is probed after cooling
to T (C to D in Figure 4.24). Figure 4.24 is only plausible over the temperature
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range where a sufficient “overlap” between the equilibrium spin configurations at
the two temperatures exists. The fact that the system appears to get younger
in Figure 4.23(b) when AT > AT* = 0.5 K can not be explained directly by
the mechanism in Figure 4.24 because this theory predicts that the system will
continue to appear older with increasing AT > 0. However, when T,, + AT ~ T,,,
then the influence of the ordering temperature might also affect the aging and if
AT is too large, so that T, + AT > T, the ordered state will be destroyed, and
the system will behave as if it was quenched directly to T,,.

As evidence of the temperature dependence of the aging rate, we plot the
inflection points at different temperatures and for a sequence of wait times in
Figure 4.25(a) for Feg g5Nig.24Crg 11 and 4.25(b) for Feg ¢5Nig23Crg ;2. We find that
in both cases the aging rate is larger at lower temperatures for the same wait time
and the aging rate increases faster at lower temperatures. In Figure 4.25(a), the
rate for T,, = 17 K increases faster than linearly, and linearly for 7;, = 19 K, and
slower than linearly for T,, = 21 K; in Figure 4.25(b) as the temperature decreases
from 24 K to 20 K, the aging rate get faster and deviates more from linearity.

We can also interpret these temperature shifting effects from the perspec-
tive of the the heirarchical RSB theories by analyzing the evolution of the popu-
lation of the metastable states.

In the first class of experiments where the sample ages at a temperature
Tm— AT, the complexity of the free—energy landscape is higher (see Figure 4.26),
and the aging process is slower, relative to that at T,,. If we suppose that the
system jumps over a barrier via a thermally activated process, then after a time
tw, the subregion of configuration space which has been explored is characterized
by a highest barrier

Amoz(Tm, tw) = T In(tw/70), (4.26)
where 75 is a microscopic attempt time. Thus, at T;;, — AT, the region of phase
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Figure 4.23: Relaxation rate S(t) = —dM(t)/d1n(t) vs. log(t) at T,, = 19K
for FeygsNig24Cryqi. (a) Tewperature undercooling shifting: i.c., the sample is
cooled from T.s to T, — AT, aged for 2 hrs, then the temperature is raised to T,
the field is cut off and the decay of the maguetization recorded. (b) Tewmperature
overheating shifting: similar as (a). but the sample is cooled to T, + AT in the
beginning.
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Figure 4.24: Schematic illustration of the temperature dependence of domain
growth. ¥ is a barrier exponent. From Lundgren 1938.
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Figure 4.25: Aging rates for a series of ¢, at the different temperatures. (a) for
Feo,ssN iO.ZACTO.u(TR = 22K ) (b) for Feo_ssNio,g;;Cl‘o,u(Tg = 25K ) The solid lines

are guide for the eye.
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Figure 4.26: Hierarchical organization of metastablc states. The coarse-gained
free-energy surface is represented at each level corresponding to a given temper-
ature. When the temperature is decreased. each vallev subdivides into others.
The times ¢, and ¢, which are uccessary to cxplore, at T, and T, — AT, rc-
spectively, the region of phase bounded by the same barriers are indicated. The
closest couunon ancestor to all states within the space bounded by &y at T, and
T.n— AT is the same, and its corresponding value of the overlap function is ¢,. The
sketch also shows that, as the system explores more of phase space, it encounters
ever increasing barrier heights, and that the free-cnergy surface has a self-similar
structure. From Lederman et al., (1991).
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space populated during a given fixed waiting time ¢, is bounded by barriers
An(T,, — AT.t,) whose height is smaller than it would have been at T,,. This
implies that, when the system is subsequently heated to T,,, the effective waiting
time at T,,, will be smaller than it should be and will decrease with increasing AT.

The second class of experiments can also be described following this ap-
proach. The sample is now field cooled to T, + AT. After a time ¢,, a certain
number N’ of metastable states are populated at that temperature. As the tem-
perature is lowered to T,,, each one of those states gives “birth” to new ones (see
Fig. 4.26). Thus, when the field is cut to zero and the decay of TRM measured,
the shape of the decay will reflect two processes. First, at short times the sys-
tem populates the new states created by lowering the temperature. This is a fast
process because it corresponds to populating states which are very close together
in phase space (with a large overlap) or, similarly, states separated by very small
barriers [compared t0 Amaz(Tm,tw)]- Thus the decay of the TRM is faster than
in a conventional experiment. Second, at long times, it populates the region of
phase space not populated immediately after cooling from T, + AT to T,,. Now,
the higher the temperature, the faster the aging process and the quicker the sys-
tem equilibrates. Therefore, for a fixed waiting time ¢, at T, + AT, the system
will explore a larger region of phase space through second-stage processes then it
would have at T;,. This is the reason why, as AT increases, the system ages more
and more at large observation times beyond its normal age t,, at temperature T,,.
The TRM decay is slower at long observation times than the reference one at T,

with the same waiting time.

Figures 4.27 and 4.28 show the results of the temperature cycling experi-
ments for (Feoes5Nip 35)0.8s2Mne 118 and Crg 79Fep2; respectively. For
(Feop.65Nig.35)0.882Mno.118, we cooled the sample in a field H, = 5 Oe to the mea-
surement temperature T, < Tsg, and after a long wait time ¢,, at T;,, performed
a temperature cycling 7,, — T, + AT — T,,, after which the field was re-
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Figure 4.27: The relaxation rata S for (Fegg5Nig.as)o.ssaMitg 118 measured after
cooling in a field H, = 5.0 Oe to T, = 58 K. waiting for t,, = 10" s. cvcling
from T,, = T, + AT — T, with tgae = 300 s, and then rewoving the ficld
(which defines t = 0). AT = oo corresponds to warming above T,. Note that
the disappearauce of one waximuin is accompanied by the simultaneous growth
of the other.
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Figure 4.28: The relaxation rate S for Crg ryFeg 21 measured after cooling in a field
H,=100ctoT =15 K. waiting for t,, = 10" s, cycling from T — T+AT — T.
with tqqe = 300 s, and then removing the field (which defines t = 0). AT = oc
corresponds to warming above T,. Note that the disappearance of one maximum
is accompanied by the simultaneous growth of the other.
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moved. The wait time was ¢,, = 10%s, and the temperature cycling duration was
tycde = 300s K t,,. Figure 4.27 shows the result at T;, = 58 K for the temperature
increaments AT from 0 to 2 K as listed. The isotherm AT = oo was obtained by
heating the system above Ts¢, then cooling and aging at T, for ¢, = tcycre.

As shown in the figure, for small values of AT (< 1K), there is a single
maximum at ¢,, = ¢,, = 10%s, which is gradually suppressed with increasing AT.
However, for values of AT larger than 1 K, not only is this maximum at longer wait
times suppressed , but a second maximum begins to grow at shorter observation
times, in the vicinity of ¢, = fyq.. As the maximum at longer times weakens,

the maximum at shorter times strengthens.

The droplet model of Fisher and Huse provides a possible explanation of
this phenomenon. According to this model, the spin-glass state exhibits a unique
sensitivity to temperature, so that neighbouring states at temperature 7;, and
T + AT share nearly identical equilibrium spin correlations < S;-S; > only up
to the overlap length [or, beyond which the signs of the correlations at T, are
uncorrelated with those at T;, + AT. If a spin glass is field cooled to a temperature
T,n and , after a wait time ¢,, has elapsed, is subjected to a brief temperature cycle
Tn — T+ AT — Ty, of duration tyqe < ty, immediately prior to field removal,
then the subsequent behaviour depends on the magnitude of AT as follows: (a)
If AT < ATinreshoid, then lar > Rr(ty) (the overlap length is larger than the
typical domain size at T},,), and there is only one type of domain and hence one
maximum in the relaxation rate S(t) at ¢t ~ ¢,. (b) If AT > ATinreshoid, then
lar > Rr(ty) and some of the T}, domains will fracture into smaller (T, + AT)
domains of dimension T, so S(t)} will exhibit two maxima at t ~ tyqe and ¢ ~ ty,
corresponding to the two distinct domain sizes. (¢} If AT > AT hreshotd, Virtually
all the T, domains will be annihilated, and there will be one maximum in S(¢) at
t ~ tyde due to the (T, + AT) domains alone.
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There is alternative explanation for this phenomenon, based on the ex-
istence of an heirarchical organization of states in phase space, as predicted
by Parisi’s solution of the SK model. Suppose we return to the heirarchy of
metastable states and its evolution with temperature shown in Figure 4.29. As
we stated previously, cooling cause the valleys to continuously split into multiple
subvalleys, while, on warming, the process is reversed and the subvalleys coalesce.
Further suppose that the energy barriers between states a, 3, v, are such that the
characteristic time to overcome them is of the order of or slightly larger than the
experimental time ¢.,,, and make the same assumption for the barriers inside the
sets {a;}, {B:}, and {%}(i =1,2,3) at T,, — AT. When the system is quenched
from above Tsc to T, — AT, it falls somewhere in the complicated landscape
defined at T,, — AT (suppose that it is in one of the states {a;}). As the system
ages, it approaches equilibrium by first sampling the various subvalleys in {a;},
but has difficulty in equilibrating among the valleys a, 3, v due to the higher en-
ergy barriers. When the temperature is raised to Tr,, the set {a;} collapses into
a single valley @, so that when the temperature is again lowered to T,, — AT,
memory of the previous equilibrium is lost and the system essentially must begin

to equilibrate all over again, and thus appears to be younger.

We also performed a temperature cycling experiment on Crg79Feg2; as
follows. The sample was cooled in a field H, = 0.5 Oe to the measurement
temperature T,, = 15 K, and after a long wait time ¢, = 10%s at T = 15K, a
temperature cycling Ty, — T:n + AT — T, was performed for ¢yq. = 300s, after
which the field was removed. Figure 4.28 shows the results for the temperature
increments AT from 0 to 1.6 K as listed. As before, the isotherm AT = oo
was obtained by heating the system above Tsg, then cooling and aging at T, for
tw = toyde.

As shown in the figure, for small values of AT (< 0.8 K), there is a single

maximum at t, = t, = 104, which is gradually suppressed with increasing
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Figure 4.29: Sketch of the coarse-grained free-energy surface at different temper-
aturcs around 7. When the temperature decreases from T to T — AT, state a,
B and v <<give birth>> to sct of states {a;}. {0:} and {+:}. respeetively. Cou-
versely when the temperature is raised from T to T + AT, state a. J. ¥ erge into
a single state §. From Lefloch et al., (1992).

200



AT. However, for values of AT larger than 0.8 K, not only is this maximum at
longer wait times suppressed, but a second maximum begins to grow at shorter
observation times, in the vicinity of ¢/, = tyq.. As the maximum at longer times
weakens, the maximum at shorter times strengthens. A comparison of Figures
4.27 and 4.28 shows that the structure induced by temperature cycling is much
more clearly defined in Crq 79Feg 2 than it is in (FeggsNig.as)o.ss2Mng.11s- This is
probably because the shorter cooling times in the former system lead to stronger
curvature in the original relaxation isotherms, and this in turn permits multiple

inflection points to be resolved more easily.

While the droplet and heirarchical approaches both offer apparently rea-
sonable, although very different, explanations for this phenomenon, recent reports
in the literature (Lefloch, et al. 1992) of negative temperature cycling experiments
appear to support the heirarchical picture. According to these reports, lengthy
aging at T, followed by a cycling from T;, — T,, — AT — T}, does not appear
to influence the age of the system, and when the temperature is returned to T,
the system simply continues to age from the state reached before the cycling was
performed. Thus there is a clear asymmetry in the experiments which contradicts
the droplet model, according to which large domains will fracture into small do-
mains whenever the modulus |AT) is large enough for the overlap length laT to

fall below the domain size at T'.

Can this asymmetry be accounted for within the heirarchical picture? Re-
ferring back to Figure 4.29, suppose the system is cooled to T, and falls into
valley 3, for example. As aging proceeds at Tj,, the system attempts to explore
the other valleys a and v and establish an equilibrium population distribution.
If the system is now cooled to T, — AT, it will equilibrate quickly within the
sets (subvalleys) 3;, but the relative populations of the different sets o;, G; and «;
will not change because the barriers between the sets are too high. Thus cooling
does not bring the system any closer to equilibrium with regard to the a,3,v
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populations, and when T;, — AT — T,,, the additional equilibration within the
subvalleys is lost by coalesence, and the system simply picks up where it left off
after the original aging at T,,,.

4.8 Relaxation Dynamics: Field Effects

In an ordinary TRM experiment, a sample is cooled from above 7 in a
field, to a measurement temperature T,,, and kept at constant field and temper-
ature for a time ¢,,, before the field is cut off and the decay of the magnetization
is measured. In the last section, we showed that the relaxation isotherms are sen-
sitive to temperature fluctuations during the waiting period. Here we will show
that the relaxation curve is also sensitive to the field amplitude before the field is
removed. The magnetization will relax faster after a larger field step.

Figures 4.30(a) and 4.31(a) show the m(t)/my versus log,o(t/t,,) plots for
experiments performed at T, = 17 K and 19 K for Feg ¢5Nig.24Cro.11, for a series of
different cooling fields. In these two figures, all of the wait times are ¢, = 1 hour;
mgo is the normalization factor for the individual curves, which is obtained by
fitting the curve to an empirical stretched exponential function plus a constant,
and extrapolating to ¢ = 0. Within the accuracy of our measurement, g is

approximately the same as the field-cooled (FC) magnetization.

On a plot of m(t)/my versus log,q(t/tw), not only does the shape of the

curve change with field but also the magnitude of m(t)/my changes as well. For
fields H, < 2 Oe, the inflection point of the curve essentially does not move; but
for larger fields, the inflection point of the curves experiences a significant shift.
So, for the system FeggsNig.24Cro.11, we could say that the range of linear field
response is less than 2 Oe. This value is very different from the field threshold

for the system Cd, 7Ing 3S4 which is an insulating spin glass (Vincent et al., 1995)
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Figure 4.30: TRM relaxation at T,, = 17 K for . = 1h for Fep;Nig2(Cro;
with the values of the applied field ranging from 2 to 10 Oc. (a) A plot of
M(t)/ M, vs. log(t/t.), where My = 2.848, 3.521, 4.091. 4.958 and 7.754 are the
normalized factors obtained from fitting the curves for a stretched exponential
and extrapolating to t = 0. (b) Scaling plot of (a) corrected hy both parameters

a and k.
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Figure 4.31: TRM relaxation at T,, = 19 K for t,. = 1h for Feq 3Ni.2Cro.1q with
the values of the applied ficld ranging from 0.8 to 10 Oe. (a) A plot of M(t)/A,
vs. log(t/tw), where M, = 1.510. 2.020. 2.783, 3.470. 4.408, 5.858 and 8.996 are
the noralized factors obtained from fitting the curves for a stretched exponential
and e('.ixt.rapolating to t = 0. (bh) Scaling plot of (a) corrected by hoth parameters
a and «.
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and the system Cu—6%Mn, which is a metallic spin glass (Chu et al., 1995), for
which the field thresholds are 20 Oe and 30 Oe, respectively, but similar to that of
(Feo.15Nig 85)75P16BsAlz which is an amorphous spin glass (Djurberg et al., 1995).
So, the sensitivity of the relaxation function to the magnitude of the field is very
different from system to system.

Based on Bouchaud’s model of random traps, the relaxation function
m(t)/mg essentially depends only on the ratio t/t,,. In the extreme limit of noner-
godic behaviour, the plot should yield a “master curve” in which data for different
ty all lie on the same curve. The plots in Figures. 4.30(a) and 4.31(a) clearly in-
dicate that the data do not scale with ¢/¢,,.

As already stated previously, while aging, the system evolves among states
with same magnetization (Mpc states) as inferred from the time independence of
the field-cooled magnetization. When the field is changed by AH, a new Zeeman
term is added which increases the free energy of the Mg states by MrcAH and
tends to bring the system into a set of Mrc + AM states. If we assume that
this results in a decrease in the barriers by the same amount MrcAH, then, the
escape times {7} of the whole set of Mg¢ states are Jowered to {7’} by the factor
o = exp(—bAH), where 7 = ar and a < 1. Thus at the instant £* the field is
changed, the T distribution is shifted and the measurement now probes states for
which the most probable depth is at* instead of t*. The system thus appears to
be younger, as if it had only aged for a time at*.

In order to interpret and improve the scaling plots in Figures 4.30(a) and
4.31(a), it is necessary to extend Bouchaud’s picture of random traps beyond the
phase-space description and include more details of how the traps couple to a field.
Following Vincent et. al (1995), the trapping time 7 is assumed to be related to
the number N of spins which must be flipped to escape from a trap by

T = roexp(B(N)/(ksT)) (4.27)
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where the depth B(N) of the trap increases with N. Due to the random couplings

between the spins, the net uncompensated moment for this trap is v Nugm where

psm is the spin moment, so the Zeeman energy is
E(AH) = vVNmugAH (4.28)
and the lifetime of the 7 traps is reduced to

B(N) — E(AH, N)
ksT

(N) = ar(N) = rpexp| ] (4.29)
Figure 4.32 shows two sets of traps corresponding to two different values of the
magnetization. The field perturbation tilts the free energy landscape, and favours

one set of traps over the other.

Experiments on the out of phase susceptibility x” (Vincent et al 1995)
support some of this picture. In these experiments, the sample is cooled from
the paramagnetic phase to the glass phase, and the ac susceptibility is observed
to decrease as the system ages at a constant temperature. If a static field is
subsequently applied, then the relaxation is restarted, just as if the age of the
system was reduced by the field perturbation. This effect is illustrated in Figure
4.33(a) for a CdCr, 7Ing 3S, insulating spin glass, which shows measurements of x”
at w = 1 Hz for a sequence of field changes of different amplitude. If measurements
at different frequencies are compared, such as those in Figure 4.33(b) for w = 0.1
and 1 Hz, where the time ¢, of the field change is chosen so as to keep wt, constant,
then it is clear that the effect of the field perturbation is stronger for deeper
traps(that is, for larger ¢;). However, a close inspection of these data shows that
the measured relaxation restarts more abruptly after a field change than can be
accounted for by a simple reduction in age, as if some of the subsystems experience

a new quench from above T¢. In order to account for this effect, it is assumed that

B(N) grows less rapidly than E(AH, N) ~ /N, so that 7(N) initially increases
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Fignre 4.32: Schematic picture of the free-energy landscape after a field variation.
The magnetically unfavorable metastable states have been tilted, and their depth
has diminished; the deeper the trap, the larger its extention, and the stronger the
effect of the field perturbation. From Vincent et al. (1995).
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but then eventually decreases for values of N in excess of a critical size V* defined

by

(4.30)

€|~

T(N*)=ar(N*)=ar* =

This is illustrated in Figure 4.34.

_ This effectively divides the set of traps into two families, “hard” traps
with 7 < 7* which experience a reduced age described by a, and “fragile” traps
with 7 > 7° which are completely destabilized and wiped out by the field change.
Vincent et al. defined p as the proportion of subsystems which are fragile at the

time t, of the perturbation, and wrote x” as the sum of two terms

X'(wt>t) =px"(w,t—t)+ 1 -p)x"(w,at, +t —t;) (4.31)

Our TRM measurements are also sensitive to these effects. In order to
scale the relaxation isotherms on to a universal curve, it is necessary to use two

correction factors, one a for the t/t,, axis and another « for the vertical M/ Mgc

axis, so that the scaling function for the TRM is

M t
Mo - (a(tw)tw) (432)

where a(t,) = exp[—xo(tw)H?]. This H? dependence of a(t,) is an integrated
form of bBAH assuming that bAH « xoHAH. The factor x allows for a field

and/or a t,, dependence of the initial fast response.

The scaling procedure described above has been applied to the data in
Figures 4.30(a) and 4.31(a) and the resulting plots are shown in Figs.4.30(b)
and 4.31(b). The various TRM decay curves have been shifted horizontally and
vertically in order to make them coincide as much as possible. The best fit scaling
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Figure 4.33: a). Relaxation of the out-of-phase susceptibility x” (in arb. units)
at frequercy w = 1 Hz and constant temperature 12 K, as a function of the time
(age) following a quench from above T, = 16.7 K. The sample is CdCr;.7Ine.3S,
insulating spin glass. After 350 min, a static field AH (=5, 9, 15, or 30 Oe) is
applied, producing a renewed x” relaxation. After another 350 min, the field is
removed. The inset sketches the procedure. b). Comparison of the effect on x” of
a dc field variation in two experiments at frequencies w = 0.1 and 1 Hz. The field
variation is applied at a time ¢; (=350 and 35 min, respectively) such that the
Eroduct w - t; is kept constant. The curves are plotted as a function of w - ¢, and

ave been vertically shifted in order to superpose both relaxations before the field
variation. At constant w - ¢, the effect of the perturbation is seen to be stronger
for the lowest frequency (longest ¢;). From Vincent et al. (1995).
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parameters o and « for the different fields are listed in Tables 4.35 and 4.36. The
scaled curves lie reasonably well on a “master relaxation curve”. With increasing
field, the various isotherms describe progressively longer-time portions of this
master curve than it is possible to observe in the usual experiments; the reduction
of the effective age of the system allows us to measure the relaxation function
for very large values of t/(at,). Obviously the curves fall together nicely and
universal behaviour is obtained. The horizontal and vertical shifts determine the

factors a and .

Table 4.35: Scaling parameters for Feg ¢5Nig.24Cro 11 for Ty = 17 K.

H {2 3 4 6 10
(Oe)

a | 1.0| 0.23%0.01 | 0.014+0.001 (2.0£0.1)x10-7 (@£1) x 10-°
% | 1.0 | 1.002+0.001 | 1.004+0.001 1.011 £0.001 1.26 £ 0.01

Table 4.36: Scaling parameters for Feq5Nig24Cro.1; for T = 19 K.

H |08 1.4 2 3 4 6 10
(Oe)
a [10] 0.10£0.01 [ 0.025:0.001 | (2.0£0.1) | (2.8%0.1) | (1.0£0.1) (3z1)
x10~4 x10-5 x10-% x 106
x | 1.0 ] 1.010+0.001 | 1.020+0.001 | 1.05£0.01 | 1.10£ 0.01 | 1.20 £ 0.01 | 1.58 £ 0.01

The parameter o describes the reduction in the depth of hard traps, which
renormalizes the time axis ¢t/t,, to t/(at,) as expected. The parameter x accounts
for the partial quench effect. It describes the proportion of subsystems which are
located in the region of fragile traps and which are completely washed out by
the field variation. These subsystems are directly responsible for the initial fast
decay of the magnetization which precedes the much slower TRM decay, and are
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therefore expected to affect the initial value of M/Mpc through x. From Tables

4.35 and 4.36, it is seen that a decreases as H increases.

A plot of Ina v.s. H? is shown in Figure 4.35, (a) for T;,, = 17K and (b)
for T;n = 19K. The curves are approximately straight lines, in agreement with
the expression a = exp(—xoH?).

We finally wish to point out that the proposed field scaling of the TRM re-
laxations is in agreement with a more general scaling form suggested by Paris(1995).
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Chapter 5

Summary and Conclusions

The purpose of this thesis was to study the relaxation of the thermoremanent
magnetization in several different magnetic systems which exhibit ferromagnetic
ordering with low temperature reentrant collapse, to establish its principal char-
acteristics as a function of observation time ¢, waiting (or aging) time ¢t,, tem-
perature T, and magnetic field H, and to compare these measurements with the
predictions of several of the most prominent theories of relaxation in systems with
quenched disorder. The experimental systems were chosen from among those for
which the existence of sequential ferromagnetic to spin glass transitions has been
reasonably well established, primarily through the observation of certain structure
in the ac magnetic susceptibility, but for which no data was available concerning
the relaxation response to abrupt changes in magnetic field in either of the two

ordered phases.

In a nutshell, if one of these systems is cooled in a magnetic field H from
above its Curie temperature to a temperature T, below the temperature T where
the ferromagnetic state appears to collapse into a glassy spin state, and held for
a curing time t,, at fixed (T;,, H) before abruptly removing the field at ¢ = 0,
then the relaxation isotherm exhibits an inflection point ¢;,;; when plotted on a

logarithmic time scale logot, and the entire experimental response function shifts
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towards longer observation times with increasing age t,,. The latter characteris-
tic is striking evidence that the system does not reach equilibrium immediately
following the “quench” to T, but continues to evolve during the curing period.
Unlike the behaviour reported by Lundgren et al in pure spin glasses(Lundgren
et al, 1983), this age-induced shift is not equal to ¢, and has a very significant
temperature dependence. The relaxation isotherms are not unique functions of
(Tm, H), but are sensitive to the past history of the temperature and field so that,
for example, small fluctuations in temperature or field during the curing period
can have a dramatic effect on both the location of the inflection point and on
the amplitude of the decay. This means that the correlations established as the
state grows with time are extremely fragile functions of temperature and field,
and growth can be interrupted and even “restarted” for increments of AT or AH
which exceed certain threshold values. None of these appear to be characteristics
of the ferromagnetic phase. When the measurement temperature T, is above
Tk, the relaxation response behaves like a simple unique transient connecting two
equilibrium states, with no age dependence, no fragility to temperature and field

fluctuations, and no inflection point.

There are a number of prominent theories in the literature which purport
to explain slow nonexponential decay of a physical observable in response to a step
function excitation in systems with disorder, and one of the motivations of this
thesis was to provide a critical evaluation and comparison of these various theories,
using reentrant ferromagnets, with their two thermally distinct relaxation regimes,
as “test subjects”. In fact, one of the features which distinguishes the current
study from most others in this area is the use of detailed fits of the eﬁcperimental

data to specific functional forms as one of the criteria for establishing the validity

of a theory.

Probably the best empirical descriptions of the data are provided by the
Kohlraush stretched exponential exp{(—t/7)?] for the age-dependent reentrant
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(spin glass) data, and (somewhat less satisfactory) a power law ¢~= for the sta-
tionary ferromagnetic relaxation isotherms. However, both functions must be
supplemented by a substantial constant baseline, which is difficult to justify the-
oretically, and furthermore none of the models which yield stretched exponential
behaviour offer any explicit mechanism for aging, so that the physical significance

of the various fitting parameters is difficult to appreciate.

The percolation model of Chamberlin is based on the assumption that mag-

netic systems segregate into mesoscopic dynamically correlated domains (DCD)

within each of which the spins share a common relaxation rate. The DCD’s are
either “aligned” with the field, in which case their magnon density is reduced

by the field so that their energy increases after H is removed, or “antialigned”,
in which case they have a higher level of magnon excitation in a field and must
consequently lose energy when the field is removed. The characteristics of both
types of domains are summarized in Figure 5.1. The most important feature of
the model is that the magnon energy level spacing § F is finite-size quantized, and

thus varies inversely as the number s of spins in the domain, 6 E = A/s. Thus the

relaxation times for the aligned domains vary from 7_ = oo for s =0 to 7= = 75
for the largest domain s = oo, while for antialigned domains 7, varies from 7, =0

for s = 0 to 7, = r%, for the largest domain s = oo, as shown in Figure 5.1. Perco-

lation theory gives the distribution of domain sizes to be n, ~ s/ exp[—(c's)?/3]
and the total relaxation is a parallel combination of activated relaxation from all
the domains. Our analysis shows that the reentrant phase dynamics are domi-
nated by antialigned domains, while the ferromagnetic dynamics are dominated
by aligned domains. Thus the behaviour in the reentrant phase is different from
that of the pure spin glasses studied by Chamberlin, which are characterized by
a mixture of both aligned and antialigned domains, but appears to bear a much
closer ressemblance to the ordered phase of pure ferromagnets like EuS, which

also shows a crossover from antialigned to aligned domination as the tempera-
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ture increases through the Curie temperature T,. It is interesting to compare

the behaviour of the two Fep ¢5Nig.23Crg.12 and Feg g5Nig 24Cro1; alloys. Figure 5.2
shows the behaviour of the average characteristic times 7, and 7_ as a function
of temperature T at a fixed wait time ¢,, = 60s, and Figure 5.3 shows the wait
time dependence of ¥, in the reentrant phase of the two alloys. Assuming, like
Chamberlin, that the magnon bandwith A is constant, then Figure 5.1 tells us
that the average domain size 5 in the reentrant phase decreases with increasing
temperature T but increases with increasing wait time ¢,,. As far as we are aware,
the current investigation is the first to apply the Chamberlin formalism explicitly
to variable wait time data, so we have no points of comparison here. Never-
theless, there is one very interesting similarity with Chamberlin’s analysis: the
Feg.65Nig.24Crg.11 alloy shows a large jump in 7 at T = Tr which is very reminis-
cent of the behaviour observed by Chamberlin in EuS and attributed by him to
a critical divergence of the correlation length. The current data seems to imply
a corresponding divergence at Tr. Since the 11at% alloy is a good ferromagnet
while the 12at% alloy is on the borderline between the ferromagnetic and the spin
glass phases, it is tempting to interpret this jump as evidence of a critical change
of phase at Tr, which of course requires the existence of a well-defined ferromag-
netic state, so that it is present at 11at% and absent at 12at%. However this is
quite speculative at this stage. In spite of its apparent generality and power, it
should be noted that the Chamberlin function must still be supplemented by a
constant baseline (this was true of Chamberlin’s original studies as well), and this

once again suggests a weakness in the formalism.

We now turn to the two remaining models, the Elementary Decay Model
(EDM) and Bouchaud's model of random traps. Both are remarkable in that
they incorporate explicit mechanisms which replicate many of the essential fea-
tures of aging observed in disordered systems. The EDM is noteworthy for its
ability to reproduce all of the standard functional forms quoted in the various
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220



analyses of slow relaxation data which appear in the literature, in a closed form
which is valid for all experimental times 0 < £ < 0o, and with only ope parameter
b = T/FE determining the complete shape of the decay. The random traps model
is noteworthy because it offers a very appealing physical picture of how a disor-

dered system evolves towards equilibrium by randomly exploring a progressively
larger number of metastable states in its configuration space, and it also yields
an explicit functional form for the decay whose shape is also determined by only
one parameter z, with 0 < z < 1. Both models are also capable of describing
nonexponential decay in a variety of physical systems including high T, supercon-

ductors, type II superconductors, spin glasses, polymers, and charge density wave

systems.

The EDM assumes that the decay originates from a sequence of thermally
activated Arrhenius relaxations over a Poissonian distribution of energy barriers,
and that the decay begins at the moment that the system is quenched below the
ordering temperature. Thus aging corresponds to those activation events which
are “lost” during the waiting period prior to the field removal, and the relaxation

function, measured from the instant 7 = 0 that the field is reduced to zero is
© ! 7 '] !
9or(7) = [ fo(B") expl—Ti, exp(—E')] - expl—T exp(~ E)|dE

where fo(E') = bexp(—bE'), E' = E/T, and b = T/E. When the EDM formalism
is applied to our reentrant ferromagnets, it is immediately apparent that a single
relaxation function is completely inadequate to describe the the total measured

response, and that a superposition of two such functions with very different values

of the shape parameter b is necessary in order to account for the large amplitude
of the remanence which remains even after several hours of relaxing. The first
contribution is wait time dependent and is characterized by a value of b; ~ 0.1 —
0.5 (typically) which increases with temperature, but much faster than linearly,

particularly in the vicinity of Tg, as shown in Figure 5.4. This means that the
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average activation trap E is also strongly temperature dependent, and decreases
rapidly with increasing temperature. Qur analysis also shows that this wait time
dependent term becomes progressively weaker as T approaches T from below
(that is, the parameter ¢ — 1), and the decay is represented exclusively by the
second age-independent contribution above Tg. This latter term is characterized
by a shape parameter b, which is roughly an order of magnitude of smaller than b,.
In spite of its impressive ability to replicate quite subtle variations in curvature,
particularly in the relaxation rate S = —dm/dint, the EDM offers no insight into
the physical origin of the activation barriers or the nature of the “entities” which
are relaxing or the genesis of the second distribution, which appears to be induced
by the field change. One of the more significant contributions of this thesis has
been to provide a physical interpretation for the EDM, but for this we had to rely

to a large extent on the random traps model of Bouchaud.

Bouchaud’s model assumes that the configuration space of any disordered
system consists of many local energy minima which represent all the metastable
configurations which the system passes through in its search for the equilibrium
configuration, which is the deepest (or global) minimum. This process is a ther-
mally activated random walk among a set of “traps” with a distribution of trapping

times 7:

S
¥(r) = gy

and if z < 1, the search is essentially pever completed, at least within a finite
wait time t,,. We believe that it is no coincidence that the single most important
parameter z of this model, which controls the “extent” of the trapping distribu-
tion ¥(7), exhibits the same temperature dependent systematics as the parameter
b in the EDM, which similarly defines the “width” of the activation barrier dis-

tribution. Both increase with temperature, indicating that the distribution is

dominated by shallow traps (or low barriers) as the temperature approaches the
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glass temperature from below. In order to explain the behaviour of our reentrant
ferromagnets, particularly the failure of the experimental data to scale with ¢/¢,,
as predicted by the purely nonergodic expression derived by Bouchaud, it became
necessary to regard a disordered system as a collection of independent subsystems,
and this also formed the basis for our interpretation of the Poissonian distribution
of the EDM and its transformation into a single-peaked structure during the wait
time ¢,. Furthermore, we postulate that it is the renormalization of the depths
of these traps caused by the Zeeman energy shift, as proposed by Vincent et. al
(1995), that is described by the second, non-age-dependent EDM distribution; in
other words, the field-induced component of the EDM energy distribution rep-
resents the way the subsystems which compose the entire system are effectively
redispersed among the original set of traps by the field change. Our investigations
suggest that the most promising approach will ultimately be a compromise which
exploits the analytical power of the EDM and the simplicity and transparency of
the random trap physics. However, at the current stage neither of these models
have evolved sufficiently to replicate subtle (higher order) effects like those related
to temperature cycling during the curing period, and future work must focus on

incorporating these subtlties into the formalism.
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Appendix A
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Figure A.1: Thermoremanent rclaxation isotherms of Fegg;Nig24Crg.q1 for a se-
quence of temperatures T,, < 22 K and for a common wait time ¢,, = 60s. The
solid curves are fits to Eq.(4.1) and vertical arrows mark the characteristic tiimes

(inflection points) r.

233



— - ']

2 3
Log 4ot
Figure A.2: (a) Wait-tiue dependence of the thermoremancut relaxation of
Fep.65Nin.24Cro.11 at Tn = 17 K. The solid curves are fits to Eq.(4.1) and verti-
cal arrows mark the characteristic times (inflection points) 7. (b) The relaxation

rates S(t) for the isotherms in (a).
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Figurc A.3: (a) Wait-timce dependence of the therorcmancent relaxation of
Feg.¢5Nig.24Cro.11 at T, = 19 K. The solid curves are fits to Eq.(4.1) and verti-
cal arrows wmark the characteristic times (inflection points) 7. (b) The relaxation
rates S(t) for the isotherms in (a).
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Figure A.4: (a) Wait-time dependence of the thermorcmancent relaxation of
Fegg5sNip24Cro.11 at T, = 21 K. The solid curves are fits to Eq.(4.1) and verti-
cal arrows wark the characteristic times (inflection points) 7. (b) The relaxation

rates S(t) for the isotherms in (a).
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Figure A.5: Thermoremanent relaxation isotherms of FeggsNig.24Cro.11 for a se-
qiience of temperatures T, > 24 K and for a common wait time #,. = 60s. The

solid curves are fits to Eq.(4.2).
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Figurc A.G: Thermoremanent relaxation isotherins of FeygzNig23Cry e for a se-
quence of temperatures T,, and for a common wait time ¢, = 300s. The solid
curves arce fits to Eq.(4.1) for T, < 25 K and to Eq.(4.2) for T;, > 26 K. The
vertical arrows mark the characteristic times (inflection points) 7.
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Figurc A.7: (a) Wait-time dependence of the thermorcmanent relaxation of

Feg 65Nig.23Cro.12 at T,n = 20 K. The solid curves are fits to Eq.(4.1) and ver-

tical arrows mark the characteristic times (inflection points) 7. (b) Sawme as (a)

but for temperature T, = 21 K.
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Figure A.8: (a) Wait-time dependence of the thermorciianent relaxation of
Feg 65Nig.23Cro.12 at T, = 22 K. The solid curves are fits to Eq.(4.1) and ver-
tical arrows mark the characteristic times (inflection points) 7. (b) Sawne as (a)
but for measurement temperature 7,, = 24 K.
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Figurc A.9: Thenunorcanent relaxation isotheris of Cry z9Feps) for a sequence
of temperatures T,, and for a common wait time t,, = 60s. The solid curves are
fits to Eq.(4.1) for T;,, £ 22 K and to Eq.(4.2) for T, 2 26 K. The vertical arrows
mark the characteristic times (inflection points) 7.
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Figure A.10: (a) Wait-time dependence of the thermoremanent relaxation of
Crg.19Feg.21 at Ty, = 14 K. The solid curves are fits to Eq.(4.1) and vertical arrows
mark the characteristic times (inflection points) 7. (b) The relaxatiou rates S(t)
for the isotherms in (a).
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Figure B.1: Random Trap Model fits of Eq.(4.18)(solid curves) to thermoremanent

relaxation isotherms of Fegg3Nig.23Cro.12 for a sequence of temperatures 7,, <
25 K aud for a common wait time tw = 300s. The vertical arrows mark the

characteristic times (inflection points) 7.
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Figure B.2: (a) Randow Trap Modedl fits of Eq.(4.18) solid curves) to the wait-time
dependence of the thermoremanent relaxation of FeqgsNig2:Cro.12 at T = 20 K.
The vertical arrows mark the characteristic times (inflection points) 7. (b) Same
sample and analysis as in (a) but for T;,, =21 K.
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Figure B.3: (a) Random Trap Model fits of Eq.(4.18)solid curves) to the wait-tie-
dependence of the thermoremanent relaxation of Fey g;Nig.23Cro.12 at Tin = 22 K.

The vertical arrows wark the characteristic times (inflection points) r. (b) Sawe

sample and analysis as in (a) but for T, =24 K.
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Figure B.4: (a) Randowm Trap Model fits of Eq.(4.18)solic curves) to thernore-
manent relaxation isotherms of (Feg ¢5Nig.35)0.s82Mng 115 for a sequence of temper-
atures T, < 60 K and for a common wait time t,. = 60s. (b) Random Trap Model
fits of Eq.(4.18)(solid curves) to the wait-time dependence of the thermoremanent
relaxation of (Fcp.g5Nip.ss)o.sseMig s at T, = 57 K.
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Figure B.5: (a) Randow Trap Model fits of Eq.(4.18)(solid curves) to thermoren- -
nent relaxation isotherms of Crgz9Fey 2, for a sequence of temperatures 7;, < 22
K and for a common wait time #,. = 60s. (b) Random Trap Model fits of Eq.(4.18)

(solid curves) to the wait-time dependence of the thermoremanent relaxation of
Cl’u_';gFCu,z[ at T'm =14 K.
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Figure B.G: (a) Scaling of Fey3Nip24Cry.z at T = 20 K for different wait times
using only mq. my is chosen by the empirical stretched exponential model. (b)

Sealing of Feg g3 Nig23Cry.iz at T, = 20 K for different wait times using Eq.(2.112).
mg = 0.443, 0.448, 0.441, 0.438 and 0.433 emu/g for t,, = 300s, 900s, 1800s, 3600s,

7200s respectively.
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Figure B.7: (a) Scaling of Fey;3Nig2sCroz at T,, = 21 K for different wait times

using only myg. 7ng is chosen by the empirical stretched exponential model. (b)

Sealing of Fey g3Niy 23Cry. 12 at T,,, = 21 K for different wait times using Eq.(2.112).

my = 0.458, 0.443, 0.454, 0.452 and 0.455 emu/g for t,, = 300s, 900s, 1800s, 3600s.,

7200s respectively.
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Figure B.8: (a) Scaling of Fegg3Nin23Croz at T, = 22 K for different wait tiues
using only mg. mg is chosen by the empirical stretched exponential model. (b)

Sealing of Fey 3Niy.21Cro.2 at T,,, = 22 K for different wait times using Eq.(2.112).
my = 0.465, 0.482, 0.474, 0.479 and 0.475 emu/g for ¢, = 300s, 900s, 1800s, 3600s,

7200s respectively.
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Figure B.9: (a) Scaling of Fey 3 Nig2:Croe at T, = 24 KK for different wait tines
using only mg. mq is chosen by the empirical stretched exponential model. (b)
Sealing of Fey43Nig24Croig at T, = 24 K for different wait times using Eq.(2.112).
mg 0.509, 0.516, 0.528, 0.500 and 0.514 emu/g for t,, = 300s, 900s, 1800s, 3600s,

and 7200s respectively.
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Figure B.10: (a) Scaliug of CryzyFegz) at T, = 14 K for different wait times using
only mg. my is chosen by the empirical stretched exponential model. (b) Scaling
of CryryFeyz at T, = 14 K for different wait times using Eq.(2.112). m, 0.422.
0.415, 0.430, 0.445 and 0.429 emu/g for ¢, = 60s, 300s, 900s, 1800s, and 3600s

respectively.
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Figure B.11: (a) Scaling of (Fu.,_,;,.-,Ni.,,;g,),,_wzl\Iu.,_,,5 at T, = 48 N for (liffurv.m
wait times using only mg. my is chosen by the empirical stretched exponential
model. (h) Scaling of (F(‘.().(;_-,Ni()_;;,’,)()_;sgh’[n()'|m at T:,, = 48 K for different wait
times using Eq.(2.112) my = 0.143, 0.142, and 0.142 emu/g for ¢, = 60s, 180s.
atd 300s respectively.
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Figure B.12: (a) Scaling of (FeyusNipas)osseMunis at T, = 52 K for different
wait times using only mg. my is chosen by the empirical stretched exponential
model. (b) Scaling of (Fegg3Nigss)a.sseMno.is at T, = 52 K for different wait
times using Eq.(2.112). mg = 0.147, 0.145, 0.145, 0.145 and 0.146 emu/g for t,
= (0s, 120s, 180s, 300s aid 900s respectively.
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Figure B.13: () Scaling of (FoygsNipsas)osseMug s at T = 56 K for differcnt
wait times using only mg. ng is chosen by the empirical stretched exponential
model. (b) Scaling of (Fegg3Nigas)osseMno.is at T, = 56 K for different wait
times only Eq.(2.112). g 0.155, 0.153, 0.156, 0.152, 0.152 and 0.152 emu/g for
te = G0s. 120s, 180s, 240s, 300s and GOOs respectively.

b=

255



1-F)
&

M/(Mo
2

—i

0.65- L 4 1 1
-3 -2 -1 0

Logid(ttw)
Figure B.14: (a) Scaling of (Feag3Nigas)osxeMuox at T,y = 57 K for different
wait times using only mg. my is chosen by the empirical stretched exponential
model. (b) Sealing of (FeggsNipss)asseMno.i1s at T, = 57 K for different wait

times using Eq.(2.112). mg = 0.145, 0.144, 0.143 0.142, and 0.140 emu/g for ¢,
= G0s, 300s, 900s, 3600s, aud 10800s respectively.
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Appendix C
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Figure C.1: (a) EDM fits of Eq.(4.23)(solid curves) to thermoremanent relaxation
isothernis of FegsNig24Cro.1; for a sequence of temperatures 7, = 8. 10.12. 14,
and 15 K and for a comumon wait time ¢, = 60s. The vertical arrows mark the
characteristic times (inflection points) 7. (b) Relaxation rates for the data (dots)
and the theoretical function (solid curves). The insert shows the final ~aged”
dlistribution of activation encrgics (just after the ficld change). The pesiks trom
hattom to top correspoud to increasing temperature.
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Figure C.2: (a) EDM fits of Eq.(4.23)(solicl curves) to thermoremanent relaxation
isothers of FeygsNig24Cro.p; for a sequence of temperatures T, = 16, 18, 19, 20,
and 22 K and for a common wait time ¢, = 60s. The vertical arrows mark the
characteristic tites (inflection points) 7. (b) Relaxation rates for the data (dots)
and the theoretical function (solid curves). The insert shows the final “aged”
distribution of activation energies (just after the field change). The peaks froin
bottom to top correspond to increasing temperature.
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Figure C.3: (a) EDM fits of Eq.(4.23)(solid curves) to the wait-time dependence
of the thermorcmanent relaxation of Fey65Niy24Croq at T, = 17 K. The vertical
arrows mark the characteristic times (inflection points) . (b) Relaxation rates
for the data (dots) and the theoretical function (solid curves). The iusert shows
the final “aged” distribution of activation energies (just after the field change).
The peaks from left to right correspond to increasing wait time.
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Figure C.4: (a) EDM fits of Eq.(4.23)(solid curves) to the wait-time dependence
of the thermorcemancent relaxation of FeygzNig2.Cryqy at T, = 19 K. The vertical
arrows mark the characteristic times (inflection points) 7. (b) Relaxation rates
for the data (dots) and the theorctical function (solid curves). The insert shows
the final “aged” distribution of activation energies (just after the field change).
The peaks from left to right correspond to increasing wait time.
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Fignure C.5: (a) EDM fits of Eq.(4.23)solid curves) to the wait-time dependence
of the theroremancnt relaxation of Feyg3Nip.24Cro.yy at Ti = 21 K. The vertical
arrows mark the characteristic times (inflection points) 7. (b) Relaxation rates
tor the data (dots) and the theoretical function (solid curves). The insert shows
the final “aged” distribution of activation energies (just after the field change).
The peaks from left to right correspond to increasing wait time.
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Figure C.6: EDM fits of Eq.(4.24) (solid curves) to thermoremanent relaxation
isotherms of Foy ;Nig21Cry, 1y for a sequence of temperatures T, > 24 K and for
a common wait time t,, = 60s.
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Figurc C.7: (a) EDM fits of Eq.(4.23)(solid curves) to thermorcmanent relaxation
isotheris of FoygasNip23Crpe for a sequence of tewmperatures T, < 24 K and
for a common wait time ¢, = 60s. The vertical arrows mark the characteristic
times (inflection points) 7. (b) Relaxation rates for the data (dots) and hy the
theoretical function (solid curves). The insert shows the final “aged” distribution
of activation cnergics (just after the ficld change). The peaks from bottom tu top
correspond to increasing temperature.
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Figure C.8: (a) EDM fits of Eq.(4.23)(solid curves) to the wait-time dependence
of the thermoremanent relaxation of FeggsNig 23Croaz at T, = 20 K. The vertical
arrows mark the characteristic times (inflection points) 7. (b) Relaxation rates for
the data (dots) and by the theoretical function (solid curves). The inscrt shows
the final “aged” distribution of activation energies (just after the field change).

The peaks from left to right correspond to increasing wait time.
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Figure C.9: (a) EDM fits of Eq.(4.23){solicl curves) to the wait-time dependence
of the thermoremancut relaxation of FeggsNigasCro.z at T = 21 K. The vertical
arrows mark the characteristic times (inflection points) . (b) Relaxation rates for
the data (dots) aud by the theoretical Function (solid curves). The iusert shows
the final “aged” distribution of activation energies (just after the field change).

The peaks from left to right correspond to increasing wait time.
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Figure C.10: (a) EDM fits of Eq.(4.23)(solid curves) to the wait-time dependence
of the thermoremancnt relaxation of Feg sNiy.2sCro 2 at T = 22 K. The vertical
arrows mark the characteristic times (inflection points) 7. (b) Relaxation rates for
the data (dots) and by the theoretical function (solid curves). The insert shows
the final “aged” distribution of activation energies (just after the field change).

The peaks from left to right correspond to increasing wait time.
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Figure C.11: (a) EDM fits of Eq.(4-23)(solicl curves) to the wait-time dependence
of the thermoramanent relaxation of FeygsNig2sCro.z at T, = 24 Is. The vertical
arrows mark the characteristic times (inflection points) r. (b) Relaxation rates for
the data (dots) and by the theorctical function (solid curves). The iusert shows
the final “aged” distribution of activation energies (just after the field change).

The peaks from left to right correspond to increasing wait time.
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Figure C.12: EDM fits (solid curves) of the thermoremanent relaxation of
FegpgsNig.23Cro.i2 at Trn = 25 K to Eq.(4.23) aud 15, = 26 K, and 28 K to Eq.(4.24)
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Figure C.13: (a) EDM fits of Eq.(4.23)solid curves) to thermoremanent relaxation
isotherius of (FogasNinas)uaseMun s for a sequence of temperatures T, < 60 K
and for a common wait time ¢,, = 60s. The vertical arrows mark the characteristic
times (inflection points) 7. (h) Relaxation rates for the data (dots) and the

theoretical function (solid curves). The insert shows the final “aged” distribution
of activation cucrgics (just after the ficld change). The peaks froia bottow to top
correspond to increasing temperature.
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Figure C.14: (a) EDM fits of Eq.(4.23)(solid curves) to the wait-time dependence
of the thermoremanent relaxaticu of (FeggsNig.ss)ossaMug. s at T, = 48 K. The
vertical arrows mark the characteristic times (inflection points) 7. (b) Relax-
ation rates for the data (dots) and the theoretical function (solid curves). The
insert shows the final “aged” distribution of activation energies (just after the field
change). The peaks from left to right correspond to increasing wait time.
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Figure C.15: (a) EDM fits of Eq.(4.23)(solid curves) to the wait-time dependernee
of the thermoremancent relaxation of (FeggsNig.as)osszMuo s at T, = 52 Is. The
vertical arrows mark the characteristic times (inflection points) . (b) Relax-
ation rates for the data (dots) and the theoretical function (solid curves). The
insert shows the final “aged” distribution of activation energies (just after the field
change). The peaks from left to right correspond to increasing wait time.
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Figure C.16: (a) EDM fits of Eq.(4.23)(solic curves) to the wait-time dependence
of the thermorcinancent relaxation of (Feg.gsNig.ss)o.sszMuy. s at Ty, = 56 K. The
vertical arrows mark the characteristic times (inflection points) . (b) Relax-
ation rates for the data (dots) and the theoretical function (solid curves). The
insert shows the final “aged” distribution of activation energies (just after the field

change). The peaks from left to right correspond to increasing wait time.
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Figure C.17: (a) EDM fits of Eq.(4.23)(solid curves) to the wait-time dependence
of the thenmoremancent relaxation of (Fep.gaNig.a5)u.ss2Mng ;15 at T,. =57 K. The
vertical arrows mark the characteristic times (inflection points) 7. (b) Relax-
ation rates for the data (dots) aud the theoretical tunction (solid curves). The
insert shows the final “aged” distribution of activation energies (just after the feld
change). The peaks from left to right correspond to increasing wait time.
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Figure C.18: EDM fits of Eq.(4.24) (solid curves) to thermoremanent relaxation
isotherms of (Fey g3 Niyss)o.meMng,i1x for a sequence of temperatures T, > 65 K
and for a common wait time ¢t,, = 60s.
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Figure D.1: Thermorcmanent relaxation isotherms of Feg gzNig24Cro.y; for a se-
quence of temperatures T;, < 22 K and for a common wait time £, = 60s. The
sclid curves are fits to Eq.(2.141) and vertical arrows mark the characteristic iu-
flection points 7.
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Figure D.2: (a) Wait-time dependence of the thermoremanent relaxation of
¢0.65Nipg24Cro.11 at Ty = 17 K. The solid curves ave fits to Eq.(2.141). (b) Same

sample and analysis as in (a) but for T;,, =19 K.
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Figure D.3: Wait-time dependence of the thermoremanent relaxation of
FepesNiy24Cro.11 at Tp = 21 K. The solid curves are fits to Eq.(2.141).
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Figure D.4: Thermoremanent relaxation isotherms of FeggsNig24Cro.q; for a se-
quence of temperatures T, > 24 K and for a common wait time #,. = 60s. The
solid curves are fits to Eq.(2.142).
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Figure D.5: Thermoremanent relaxation isotherms of CrysoFogs; for a sequence
of temperatures and for a common wait time ¢, = 6Us. The solid curves are
fits to Eq.(2.141) for T}, < 22 K and to Eq.(2.142) for T,, > 26 K. The verti-

cal arrows mark the location of the relaxation time 77/7= for average-sized an-

tialigned/aligned dowains.
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Figure D.G: Wait-time dependence of the thernoremanent relaxation of
Cro.79Fens: at T, = 14 K. The solid curves are fits to Eq.(2.141) and the vertical

arrows wark the location of the relaxation time 7 for average-sized antialigned
domains.
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Figure D.7: Thermoremanent relaxation isotherms of (FegesNig s )o.ss2Mug. s for
a sequence of temperatures T, < 60 K and for a common wait time ¢, = 60s.
The solid curves are fits to Eq.(2.141) and vertical arrows mark the location of
the relaxation time 71 for average-sized antialigned domains.
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Figurc D.8: Wait-time dependeuce of the thermoremancnt relaxation of
(Feo.esNig.3s)0.882Mng 118 at Tr, = 57 K(a) and 7,, = 48 K(b). The solid curves are
fits to Eq.(2.141) and vertical arrows mark the location of the relaxation time 75
for average-sized antialigned domains.
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Figure D.9: Wait-time dependence of the thermorcmanent relaxation of
(Feo.65Nig.35)0.082Mng 118 at T, = 52 K(a) and T, = 56 K(b). The solid curves are
fits to Eq.(2.141) and vertical arrows mark the location of the relaxation time 75
fot average-sized antialigned domains.
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Figurc D.10: Thermoremancut relaxation isotherws of (FeygsNiy.as)o.sseMue 118
for a sequence of temperatures T}, > 65 K and for a common wait time ¢,, = 60s.
The solid curves are fits to Eq.(2.142) aud vertical artows mark the location of
the relaxation time 7 for average-sized aligned domains.
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