
THE UNTVERSITY OF MANITOBA 

Relaxation Dynamics in Some 
Reentrant Disordered Magnetic Systems: 

FeNiCr, FeNiMn, CrFe 

A THESIS SUBMITTED TO 
THE FACULTY OF GRADUATE STUDIES OF 

THE UNTVERSITY OF MANITOBA 
IN PAWIAL FULFILLMENT OF THE REQUIRhIENTS OF 

THE DEGREE OF DOCTOR OF PHILOSOPHY 

DEPARTMENT OF PHYSICS 
WINNIPEG, MANITOBA 

MAY, 1997 



National Library Biblioth&que nationale 
du Canada 

Acquisitions and Acquisitions et 
Bibliographie Services senrices bibliographiques 

395 Wellington Street 395. rue Wellingion 
Otta~aON K 1 A W  W O N  U 1 A W  
canada Canada 

The author has granted a non- 
exclusive licence allowing the 
National Library of Canada to 
reproduce, loan, distnbute or sell 
copies of this thesis in rnicroform, 
paper or elechonic formats. 

The author retains ownership of the 
copyright in this thesis. Neither the 
thesis nor substantial extracts fiom it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur a accordé une licence non 
exclusive permettant à la 
Biôliothèque nationale du Canada de 
reproduire, prêter, distribuer ou 
vendre des copies de cette thèse sous 
la forme de microfiche/fiim, de 
reproduction sur papier ou sur format 
électronique. 

L'auteur conserve la propriété du 
droit d'auteur qui protège cette thèse. 
Ni la thèse ni des extraits substantiels 
de celle-ci ne doivent être imprimés 
ou autrement reproduits sans son 
autorisation. 



THE UNIVERSITY OF M A i ' O B A  

FACULN OF GRADUATE SïüDïES 

COPYRICIïî PERIMESIOLU 

A Thesis submitted to the Faculty of Graduste Studia of the University of Manitoba 
in partial fulnUmerrt of the rquimntab of the degnc of 

Permission has bces granteci to the LIBRARY OF TFIE üMVERSITY OF kL1WOBA 
to Iend or seIl copies of thb thcris, to the NATIONAL WBRARY OF CANADA to microfilm thn 
tbcsis and to Iend or sel1 copia of the Nm, rad to W R S I T Y  MICROFILAW to publish an 
abtract of th& tâesis. 

This reproduction or copy of  this thesis bas k a  made availablc by authority of tbe copyright 
owber solely for the purposc of private study and rescarch, rad may only bt reproduccd and 
copied as permitted by copyright Iaws or with espress written authorization from the copyright 
owner. 



Abstract 
The relaxation response of three reentrant disordered ferromagnetic s y s  

tems Feo.w,N&).~-&r= (2 = 0.11,0.12), Cri-=F% (Z + 0.21), and ( F ~ O - ~ N ~ . ~ )  I-zMnz 

(z = 0.ll8), have been investigated over a range of temperatures both below and 

above their glas temperatuses. 

The measurements were performed with a homemade variable tempera- 

tue ,  variable frequency SQUID dc-susceptometer with a temperature range fiom 

4.2 K to 250 K and a de-field range up to LOO Oe. 

The relaxation redponse was measured using a variety of experimental p r e  

cedures. In the simplest procedure, the sample was field cooled h m  a reference 

temperat use in the paramagnetic zegime to the m e s  urement temperature, held 

at nxed temperature for a waiting time &, eRer which the field was removed and 

the response was measured over an observation tirne 2s 5 t 5 10's. In more 

cornplicated procedures, the temperature was cycled or shifted during the waiting 

time t ,  or subjected to a field change of varying amplitude. 

Al1 samples investigated here were characterized by two thermdy distinct 

relaxation regirnes, a high temperature regime of equiiibrium, power law dynamics 

which coincided with the ferromagnetic regime, and a low temperature regime of 

nonequilibrium, agedependent dynamics which coincided with the reentrant gless 

phase. The relaxation isotherms in both regimes were fitted to specific functional 

forms predicted by various models of slow relaxation in disordered systems in- 

cluding Fisher and Huse's droplet scaling theory of domain growth, heirarchicaiiy 

constrained dynamics, Bouchaud's theory of random traps, an Elementary Decay 

Mode1 based on a stochastic distribution of activation energies, and a percolation 

theory for relaxation of dispersive excitations within fmite domains. The fitting 

parameters extracteci from these fits provided detailed information on the organi- 

zation of met astable states in the configuration space of a structurdy disordered 

iii 



system, on their evolution with temperature, and on their fragiiity with response 

to field and temperature fluctuations, and allow us to compare the various the- 

oretical approaches to slow relaxation, estabiish possible correlations and expose 

inconsis tencies. 
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Chapter 1 

Introduction 

1.1 Basic Concepts and Phenornena in Disor- 
dered Magnets 

In 1972, Cannella and Mydosh (1972) noticed a cusp in the a.c. susceptibil- 

ity of a dilute AuFe alloy. Since t hen a fascinating new topic -spin glasses -emerged 

in condensed matter physics. The mid-1970's to mid-1980)s) was a very fruitful 

period for spin g las  research, both in theory and experiment. Hundreds of papers 

per year were written on spin glasses, and the most important models and theo- 

retical concepts were constructeci. The experimental phenornena were explaineci 

reasonably well. After that , the tempo slowed dom and a tranquility appeared, 

with more sophisticated theories, subtle new experiments and the identification 

of 'ideal' spin glass materiais. " Spin glasses " are still an active, frontier topic in 

physics. The theory is evolving towards a more complete description, with newer 

ideas. Experimentation is continuing with investigations of novel forms of spin 

glasses and even more subtle effects. Spin glas  theory has had a rather large and 

unexpected impact on some problems far fiom spin glasses themselves. It turns 

out 

t ial 

that a number of problems in fields outside physics share some of the essen- 

features - randomngs and h t r a t i o n  - that characterue spin glasses. This 



is especialiy true of the particularly novel concepts of mean field theory: broken 

ergodicity is a fundamental concept and broken replica symmetry may be a basic 

tool for analysing complex systems. There is a nchness of analogies with many 

O t her areas extending from astrophysics to molecular evolution to zoology (Stein 

1992; Mezard and Parisi 1985, 1986; Orland 1985). 

Now, the spin glass has become a fundamental and general form of mag- 

netism; in its frequency of occurrence as a 'magnetic ordering' phenornenon, it 

occupies the t hird place, after ferromagnetism and ant iferromagnet km. Random- 

ness, frustration, glassiness and amorphousness represent very important phenom- 

ena in contemporary physics. 

What is a spin glass, and what are the necessary ingredients to form a 

spin glass state? The sirnpkst answer is that a spin glass is a collection of spins 

(i.e. magnetic moments) whose low-temperature state is a frozen disordered one. 

without the kind of long range uniform or periodic pattern observed in conven- 

t ional ferro- and ant iferromagnets. To create a disordered magnetic system which 

exhibits spin glass characteristics, two ingredients are necessary: randomness of 

interactions between the magnetic moments and competition among the differ- 

ent interactions. It follows that no single configuration of the spins is uniquely 

favoured by ail the interactions, and this is commonly called 'h t ra t ion '  . 

As an example, Figure 1.1 shows two magnetic clusters. In both (a) and 

(b) interactions are candom between the randomly distributed magnetic moments. 

The exchange interaction constant J may be either positive or negative between 

moments as shown in the figure. In (a), the configuration has no competition or 

in other words, it is unfrustrateci, al1 the bond energies are satisfied and there wiU 

only be a two-fold degenerate ground state. This Latter arbitrariness is caused by 

the initial choice of the first spin direction. But in (b), only one is negative, and 

in this case al1 the bond energies cannot simultaneously be satisfied. One spin 



Figure 1.1: Two spin ciusters on a lattice with mixed interactions: j > O means 
ferre and j c O means antiferromagnetic interaction. (a) unhtrated, which is 
two-fold degenerate and (b) Crustrateci, which is û-fold degenerate energy state. 



remains frustrated, or one bond is broken, no matter what we do. Now the cluster 

has an û-fold degenerate state(any spin could be the one with frustration). So the 

frustration will cause more possible configurations with the same energy. 

To create randomness, we can randomly distribute the magnetic species 

substitutionally on a non-magnetic host lattice. Fortunately, nature already pro- 

vided us with this kind of magnetic ailoy even before the name spin g l a s  was 

coined. They are composed of magnetic impurities bearing a moment or localized 

spin and randomly occupying lattice sites in a non-magnetic host metal. Spin 

glasses were accidentaily discovered by studying such binary alloys. Here we want 

to control the concentration x of t h a e  impurities so that they can interact with 

each other in a random way. The host can be just about any non-magnetic metal 

that dissolves the 'good moment' elements such as Mn, Fe, Gd, Eu, etc. The 

archetypal specimens of the metallic siterandom spin glasses are &-,Mnz and 

bl- ,Fe ,  (the underlined metal is the host) . These noble-metal alloys are also 

called canonicai spin glasses. 

For a spin g l a s  system, when the temperature goes from a high tempera- 

ture to a low temperature , it d l  undergo a glassy phase transition at a freezing 

temperature TI. For above this temperature, the system is an ordinary param- 

agnet, and it is simply a collection of paramagnetic spins, i.e., independent and 

rapidly rotating arrows in the 'chaos' caused by the high temperature. When 

the temperature is lowered kom T » Tf, many of these randomly positioned and 

freely rotating spins build themselves into localiy correlated units or clusters, even 

domains. which can then rotate as a whole. As the temperature disorder is further 

removed, the various spin components begin to interact with each other over a 

longer range. The system seeks its ground state contiguration for the particuiar 

distribution of spins and exchange interactions. This means a favourable set of 

random alignment axes. gerierated by the local anisotropy, into which the spins or 

clusters can lock. However, the fkustration play its role and a multi-degenerate 



array of ground states presents itself for the system to choose from. For such 

disordered systems there are many metastable configurations which are possible, 

and which may '%rapn the system. 

To study freezing or phase transitions, the best quantity to measure is the 

frequency-dependent susceptibility. Usually the ac susceptibility is measured in 

a very smali biasing dc-field (< 1 Oe). But by using highly sensitive SQUID 

techniques we can also measure the static magnetization in a very smali applied 

field. As H -. O, there must be a similarity between the dc susceptibility X& = 

M/H and the ac susceptibility X, = dM/dH.  There are two distinct ways to 

measure the susceptibility with a dc field: field cooling (FC) and zero-field cooling 

(ZFC). In FC measurements, we apply the field above Tf and cool the sample in 

this field to T < Tf, and record the magnetization (or heat the sample from 

T < Tf to T > Tf, and record the magnetization). The FC curve is reversible. 

In ZFC measurements, we cool the sample in zero field from T B Tf to T < TI, 

and apply the field a t  this low temperature, then we heat the sample and measure 

M ( t )  to T B Tf in this constant field. When we measure the ZFC curve, XZFC 

is unstable and always drifts upwards towards X F C .  Figure 1.2 shows the FC and 

ZFC curves for ~ ( t )  for two dinerent concentrations of &Mn. At temperatures 

below the peak, the FC curve is reversible, while the ZFC curve is irreversible. 

The peak in XZFC and the plateau in XFC reveal the omet of the glassy transition 

at T = Tt. 

At small fields H c 100 Gauss, this peak in XZFC is well defined. When 

the applied field is increased, the ZFC curve relaxes to the FC curve very fast. 

It seerns that the field removes the criticality of the phase transition, yet it does 

not fully prevent the formation of the frozen state. In order to avoid al1 the 

complications wit h relaxation and irreversibility, a good experiment to perform is 

the FC measurement. For certain canonical spin glasses, n smali peak and then a 



Figure 1.2: Field cooled [(a), (c)] and zero-field cooled [(b) ,(d)] magnetizations 
( X  = h f / H ,  H = 5.9 gauss) for M n  (1.08 and 2.02 at%Mn) as a hinction of 
t emperat ure. Init i d  susceptibility of (b) and (d) were measured wit h increasing 
temperature in the field. Rom Nagata et al. (1979). 



Figure 1.3: Inverse of the FGsusceptibility (HIM)  for @n (10.6 at%) as a 
function of temperature for various magnetic fields (indicated on each c m  in 
gauss). Data were obtained by slow coolxng in a constant field. The omet of 
the 'plateau' (marked by arrows) is taken arbitrariiy a9 the point of the M(T) 
curve departing by 3% fiom its iow-temperature value thereby defining Tt. The 
resulting boundary of the spin-glas phase H,(T) is shown in the inset. Tg is the 
zero field value of TI. Rom Monod and Bouchiat (1982). 



plateau develops at TI. Figure 1.3 is a plot of the inverse magnetization divided 

by the cooling field ( H I M )  versus the temperature. At smail fields, the inverted 

cusp denotes Tf. However, the peak rapidly disappears with increasing field. Now 

we must use the omet of the plateau to establish TI, as shown by the arrows. 

These points not only shift downward in T with increasing H, but become much 

more d h .  An estimate of TI is given in the inset of the figure where an H - T 
phase diagram is attempted, albeit with large error bars. At large fields Tt is 

simply not well defined. 

1.2 Spin Glass Systems 

So, a spin glas is a random, mixed-interaction magnetic system character- 

ized by a temperature Tf below which a highly irreversible, metastable frozen state 

occurs without the usual long-range magnetic order. The random-interactions 

could be achieved by the random-site occupancy of the alioys, as mentioned 

above, in which the magnetic impurities are randomly distributeci in a non- 

magnetic metal host, or by creating random-bond types of systems. The latter 

was found to exist only recently in real materials, e.g. the compounds Rb2Cul-+CoZF4 

and Fel-,Mn,TiOs were discovered to give reasonable approximations of I J cou- 

plings(Mydosh, 1993). Suffice it to Say, there must be disorder in the constitution 

of a spin glass: either site randomness with a distribution of distances between 

the magnetic spins, or bond randomness where the nearest-neighbour interac- 

tion varies between parallel coupling + J and antiparallel coupling - J. 

1.2.1 RKKY Spin Glasses 

If a magnetic alloy shows spin g l a s  behavior, usually the concentration of 

the impurities is very low and the spins cannot interact with each other directly. 



The mechanism of the interaction is indirect and induced by the conduction 

electrons, which is the now famous Ruderman, Kittel, Kasuya, Yosida (RKKY) 

interaction whose Hamiltonian is 'H = J(T) Si - Si. A local moment with spin Si 

polarizes the host 's conduction electrons in its neighborhood, which wiIl cause a 

damped oscillation in the response of the conduction electrons. T h e  oscillations 

will inauence the orientation of the second magnetic moment S j ,  and thereby 

cause a couphg between spins Si and Sj with couphg constant: 

where Z is the nurnber of conduction electrons per atom, JO is the s-d exchange 

constant, N(EF)  is the host density of states at the Fermi level, kF is the Fermi 

momentum and r is the distance between two impurities. This reduces to 

at large distances. A phase factor 4 is included to account for the charge difference 

between impurity and host and the former's angular momentum. Such oscillatory 

behavior of J(r), or really the Pauli susceptibility, which in the freeelectron mode1 

has spherical symmetry, is illustrateci by the two coupling schemes in Figure 1.4. 

Notice that the (1/r)3 fd-off is sufficiently long-ranged so that it can effectively 

reach a number of near-neighbour sites. Now if a second magnetic impurity with 

spin Sj is put at one of the neighbouring sites, it will produce its own RKKY 

polarization. The two conduct ion-electron-mediated polarizat ions wiil overlap in 

such a way as to establish a parallel or an antiparallel alignment of the two spins. 

Figure 1.4 plots the Pauli susceptibiiity of the conduction eletrons to show these 

situations. Note that the sign (+ = TT and - = TL) of the impurity coupling varies 

with distance. If we combine this property with site disorder (various separations 

between the spins), we have generated a random distribution of coupling strengths 



Figure 1.4: RKKY interaction between two impurities in tenns of the Pa& SUS- 

Figure 1.5: Cornputer simulation of probabiiity distribution of coupling strengths 
for about IO3 spins resulting from an RKKY interaction in a 3-dimensional diiute 
magnetic ailoy. From Binder and Schroder (1976). 



and directions. Figure 1.5 shows the probability hinction P(J i j )  from a cornputer 

simulation for some bonds Jij coupling a random-site magnetic alloy. The number 

of + and - bonds is nearly symmetric. Here the rquired feature of 'cornpetition' 

among ferro and antiferromagnetic exchange bonds is obtained in a natural way, 

namely via the osciiiating RKKY interaction. This is why the whole spin-glas 

problem started with magnetic alloys. We must once again emphasize that it is 

the combination of site disorder and the + and - RKKY interactions that causes 

a mixture of cornpetitive bonds that wili eventually lead to fnistration in some of 

these bonds. 

RKKY spin glasses are ailoys which usually consist of noble metal harts 

with transition metal impurities, like fiMn , bE'e etc, and transition metal/transition 

metal combinations like w e  etc, which has the strongest coupling. Many, many 

hundreds of these kinàs of combinations c m  be fabricated in the laboratory. 

RKKY alloys can also be fabricated from magnetic rare-earth elements by di- 

luting them into a non-magnetic host metal and letting the RKKY interaction 

perform its coupiing. This kind of alloy does not have a Kondo effect, that is a 

localized antiferrornagnetic interaction of an isolatecl or single-irnpurity spin with 

the surroundhg conduct ion electrons (Mydosh l993), and usually has a limited 

solubility. 

An amorphous compound without crystailographic order (that is, so-called 

natural site randomness) can also be an RKKY spin glass. There axe many corn- 

binations of these systems with a single magnetic species of a transition metal. 

These compounds are formed by melt-quenching or splat-cooling and sputtering 

techniques. As they are non-crystahe, it is possible to make any des* amounts 

of ferro- and antirerromagnetic exchange in any ratio and absolute magnitude. But 

amorphous spin glasses, with their higher resistivity, will dampen the range of the 

RKKY interaction. 



1.2.2 Insulating and Semiconducting Spin Glasses 

Ili addi tiori to the almve t ~ v o  iritcrac tiotis' dipolar aiid magnetic anisotropy 

iii snidl pnrticlc iiiatcrids caii &O IIC prescut iii a spiii glass but tlicy are clic 

wcakcst iiitcractio~~s (Viiicent ct al. 1996). Table 1.1 i s  a lise of tlic diffcrciit 

intermtioiis a i c l  t i ie ir  streiigtiis. 



1.3 Relaxation and Aging in Disordered Mag- 
net ic Syst ems 

Relaxation and aging effects in disordered magnets were k t  observed by 

Lundgren et d. (MU), and were then st udied extensively. The aging experiments 

can be performed in two ways: one is to quench the sample fiom a reference 

temperature TR > Tc (the critical temperature, the same as TI for a spin glass) 

in a magnetic field h to Tm < Tc, wait a certain length of time tw a t  constant Tm 

and h, and then remove the field h and measure the decay of the magnetization 

M ( t )  versus the measuring time t. Another way is to quench the sample from 

TR > Tc in zero magnetic field h = O to Tm < Tc, wait a certain length of time 

t,, and then apply the magnetic field h # O and measure the magnetization M(t) 

versus t. In both cases, the magnetization bas as inflection point around t = t, 

which is a direct manifestation of the noneqdibrium nature of the state in which 

the system found itself at the end of the wait time t,. The idection time is just 

equal to the "aging" or wait t h e  t, (Lundgren et a!., 1983). This is why this is 

known as an aging effect. 

Figure 1.6 shows relaxation measurements for three different wait times t, 

= 3M) s, 1000 s, and 3000 s, on an amorphous sample of (Feo.15Nio.s5)75P~6B6A13- 

The effect of aging is seen as an idection point on a logt scale at t = tw, in figure 

(a), and in figure (b) which shows the relaxation rate SzFc(t,, t) = all.lz~c/a log t , 

there is a corresponding maximum at t = t,. 
The aging effect is very field dependent. If we apply a difFerent field, or 

perform a field step change during the aging period, the aging effect is dinerent 

or the rnemory of the aging process may be partially destroyed or completely 

eliminated. Figure 1.7 is a plot of SzFc(tw, t) vs. logt for difTerent magnetic fields 

h, at T = 16.3 K and t, = 300s, for the same sample as in Figure 1.6. We can see 



Figurr 1.6: Relaxation of the nrro-field-coolcd mngnntimtion at  T = 16.3 K and 
different wait times &: hom top to bottom 0 t ,  = 300 s, O f ,  = lu00 s, O t, = 
3 0  S. n)lfzFc/h rgs. Io$. h)Rclnwtioii rntr S =l / l i  (rl;lfi<Fc/rflogt) r's. log: h 
= 0.1 Oe. Rom Djurberg (1995). 



Figure 1.7: Relaxation rate SZFC = (l/h)dMzFC/dogt va. logt at diament fields 
h(0e): from botbm to top (1.h.s) o 0.3, O 0.5, O 0.8, x 1.0, + 2.0, 4.0, 6-0, 

8.0. T = 16.3 K, t,,, = 300 S. Rom Djurberg et al. (1995). 



Figure 1.8: Zero-field-cooled suscept ibili ty (1 / H ) M ( t )  aud tim corresporiding re- 
1axation rate S(t) = ( I / H ) a M / a h ( t )  at tu. = ln3 SM.: pbttm-i W. g )  . The 
sample has been aged below (AT = 0.15 K) and above (AT = -0.15 K) the mea- 
sumiiiciit tciupcriiturc. Also plottcd is a coiivciitioiiid (AT = O K) ZFC curvc 
KIT, = 0.91, H = 0.8 G. (a) ( I /H)M( t ) '  5% of ( l / H ) M r c  indicntd. (b) S(t). 
1% of ( 1 / H ) 3 G C  indicntccl. h n i  Grnrihrrg rt al. (1988). 



that at low fields, h < 1 Oe, the response does not depend on field: for larger fields 

the curves become field dependent, and deviate from the linear low-field response. 

The relaxation rate then typicaiiy increases at short times and the maximum, 

originally at t x t,, is shifted towards shorter observation times. 

Another interesthg experiment involves a temperature fluctuation before 

the measurement, performeci near the measurement temperature Tm. Tempera- 

ture shifting (TR + Tm - AT < TI, age for &, Tm - AT + Tm) and temperature 

cycüng (TR 4 Tm < T / ,  age fer t,,,, Tm -r Tm + AT -r Tm) will also iduence the 

aging proces. Figure 1.8 shows temperature shifting resdts on a sample of Cu-10 

at%Mn: a positive temperature shift (AT = 0.15 K) yields a relaxation curve 

characterized by an apparent wait t i m  t,, < tw and a negative temperature 

shift (AT = - 0.15 K) yieIds a relaxation curve characterizeù by an apparent 

wait tirne which is longer than L, f, > t, (Granberg et al. 1988). 

The aging effects which are observed under various circumstances and the 

corresponding theories proposed to explain them are most interest ing topics which 

will be the principal focus of this thesis. 

1.4 Relaxation and Aging Behavior in Ot her Com- 
plex Systems 

Anomalous relaxation behavior and aging effects are common features in 

aii complex systems (Struik 1978; Jackle 1986). A collection of conference papers 

in RELAXATIONS IN COMPLEX SYSTEMS (edited by Ngai and Wright, 1991 .) 

gives a detailed study of the relaxations in a variety of materials. Here 1 will give 

two typical examples, polymers and window glas, to show the similar behaviour 

to that o b s e ~ e d  in disordered magnetic systems. 

Figure 1.9 is a volume-temperature relation between the crystai, liquid and 



glas  states in a super cooled liquid. On cooling a liquid from the initial state 

A, the volume will decrease steadily along AB. If the rate of cooling is slow , 

and nuclei are present, crystallization will take place at the freezing temperature 

TI. The volume wili decrease sharply from B to C, and thereafter, the solid d l  

contract with falling temperature dong CD. If the rate of cooling is sufnciently 

rapid, crystallization does not take place at Tf , and the volume of the supercooled 

Iiquid decreases along BE, which is a smooth continuation of AB. At a certain 

temperature Tg , the volume-temperature graph undergoes a significant change in 

dope and continues aimost parailel to the contraction graph CD of the crystalline 

form. T, is called the g l a s  transformation or glaû9 transition temperature. Only 

below Tg is the material a glass. The iocation of E, the point corresponding to Tg, 

varies with the rate of cooling , and thus it is appropriate to  c d  it a transformation 

mnge rather than a fixed point. At Tg the viscosity of the material is very high, 

about 1013 poise. 

If the temperature of the glas  is held constant a t  a little below Tg , the 

volume G wiii continue to decrease slowly. Eventually it reaches the levei G on 

the dotted üne, which is a smooth continuation of the contraction graph BE of 

the supercooled liquid. If we perform relaxation experiments on physical and 

mechanical properties, for example torsional stress, the result ing slow relaxation 

in the g las  phase does not have a simple exponential form. 

Figure 1.10(a) is the relaxation function 8(t) for torsional stress relaxation 

in a soda-lime-silica glass at different temperatures below Tg. The relaxation 

function Q(t) has a stretched eqonentzd form 
0 

@ ( t )  a ex~[-(t/ro)~I, o < p < 1  (1.3) 

This function can be applied rather universally to a very b r o d  class of materials 

(Ngai and Wright, 1991). By using the time-temperature scaling principle (Ferry, 

1980), the relaxation curves at difEerent temperatures fa11 on a single "master 



cuve". which is shown in Figure 1.10(b). 

The aging effect in polymers is another example. Figure 1.11 is the exper- 

imental procedure to study the aging effects on the smaii-strain creep properties 

of a polymer. The tested sample was usually first amedeci to reduce any in- 

t ernal stresses generated by earlier compression molding or extrusion operations. 

The sample to be examined is placed in the creep tester, and subjected to the 

thermal treatment. First, the sample is heated to a temperature To9 10-15 OC 

above the glas temperature Tg. A period of 1û-20 minutes at To sufnces for the 

establishment of thermodynamic equilibrium. Next, the sample is quenched to 

a temperature Tl below Tg, and kept at this temperature. The quench takes a 

few minutes. When a certain time te has elaped after the quench, a creep test is 

starteci. The sample is subjected to a constant stress 00; the resulting strain c is 

measured as a function of tirne t, with t = O defined at the moment of loading. 

Figure 1.12 shows the aging effects in this test of a PVC (polyvinylchoride) 

sample of about 1 x 10 x20 mm3 at s m d  strains. The most important featutes 

of the results are: (2) Aging produces nearly horizontal shifts of the creep c m ,  

without large changes in shape. Thus, aging primady &mts the rate of creep. 

(zz) In certain temperature ranges below Tg, the creep rate uicreases by a factor 

of about 10 per tenfold increase in aging time. 

Both the relaxation behavior in soda-Lime-silica glas and the aging effects 

in polymers can be explaineci by the Wiiliarns, Lande1 and Ferry (WLF) (1955) 

free volume picture, in which the rate change is not primarily due to thermal 

activation but rather to thennui expunszon (Kovacs, 1963). The characteristic 

time r of the expansion of the frre volume vf is very dependent on T. As long 

as T is high, the free volume is large and T is srnall, thus the thermal contraction 

of vf can follow the cooling process. At T,, the relaxation time becomes so long 

that the changes in v l  can no longer keep up with the cooling process. To a first 
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approximation the volume uf at Tg is fiozen-in and vf no longer decreases during 

further cooling from Tg to Ta (Figure 1-13). If the WLF ideas can be applied to 

the range below Tg, we can expect a similar change in during cooling above Tg 

and a constant value of r during further cooling kom Tg to Ta. This ignores the 

s m d  changes of vf during cooling from T, to Ta. 

After the coohg, if the material is kept a t  a constant temperature Ta below 

Tg, the free volume is higher than it should be and the relaxation tirne r is not 

large enough, and consequently vf will slowly decrease towards the equiiibriwn 

line. Now we apply the Eree-volume picture to the non-equilibrium state below 

Tg. It then immediately follows that the volume contraction will be accompanied 

by a change in r. In other words, the slow decrease in vf will be accompanied 

by a gradua1 increase in r. This implies that the 'stiffening' process seen during 

cooling through the Tg-range simply continues. All properties which depend on r 

and strongly change around T, will continue to change during the isothermal stay 

at Ta. This process is named physical agzng. 

In spin-glasses and reentrant ferromagnets, the situation is much more 

cornplicated. The relaxation curves at the difterent temperatures and different 

wait times can & be scaled by simply shifting the time scale. Many theories and 

experiments have been proposed to explore these phenornena. In the next chapter 

1 will focus on the theories of spin glasses and their dynamics, with an emphasis 

on the physical expianations. 

Significance of m y  research: The systems described above al1 exhibit 

anomalous relaxation dynamics, that is, not a simple Debye form e-t/T, and an 

understanding of the physical mechanisms underlying these dynamics has impor- 

tant implications for the general problem of relaxation in cornplex systems, like 

glasses and polymers. In fact , the dielectric, mechanical, and magnetic properties 

of ordinary glasses, amorphous polymers, random magnets, ferroelectrics , super- 



cooled liquids, and high-Tc superconductors ail exhibit non-Debye response to a 

stepfunction excitation, as weil as non-equilibrium aging effmts. 



Chapter 2 

Theory 

In this chapter 1 wiU ïntroduce the huidamentai theories of spin glasses 

and some of the current dynamic theories for relaxation and aging. 

2.1 Basic Concepts 

Averaging in disorderd systems: 

In ordinary statistical mechanics, if we want to calculate some observable 

quantity of a system, we usualiy use ensemble theory, for example the canonical 

ensembie, to calculate the partition function Z and then calculate the variable. 

The fiee energy of the system (Binder and Young,1986; Fisher and Hertz, 1991) 

is given by 

where {Si) are the statistical spin variables and {x) are the randornness variables 

and [ 1, means that we average over the dserent configurations of the random 

variable z. In this case, the random variables {z) corne to thermal equilibrium 



and the average over z and S are treated on an q u a i  footing. This averaging pro- 

cess is called an annealed avemge. Experimentdy, this process requires t hat the 

rneasuring time t, satisfies t,, ;* t h ,  where t& is the correspondhg fluctuation 

time for the random variable among its various microscopie configurations. 

In a spin glass, if the system is quenched from above the phase transition 

(or freezing) temperature Tt to a temperature below TI, it can be trapped in any 

one of a large number of metastable states due to the randomness and fnistration. 

The hopping times (or fluctuation times) among these metastable states occupy a 

very wide tirne scale, and for some, t b  % t-. in this case, we camot calculate 

[Z]., and then calculate the variables of the system as in equation 2.1, but we 

must average the £tee energy over the various configurations: 

instead. This is cailed a quenched average. If we deal with the spin g las  problem, 

we must perform a quenched average. 

Broken ergodicity: 

When a system undergoes a phase-transition from a disordered state to an 

ordered state, the symmetry of the system ( for example, the translation symme- 

try) is lowered; this is called broken symmetry. Broken symmetry leads to broken 

ergodiczty, which means that the ergodic hypothesis that, in equilibrium, the sys- 

tem should be found with the Gibbs-Boltzmann probability a e-OE in each of its 

possible configurations, is violated. A ferromagnet with its net magnetization up 

wiii never be found in a state with its net magnetization dom, in the limit as 

the number of spins N -r m. Its motion is restricted to the part of its contigu- 

ration space with positive rnagnetization M > O only. This is an example where 

the ergodic hypothesis is satisfied. A spin g l a s  is a state with broken ergodicity 

(Palmer, 1982). 



Spin-glas systerns exhibit a " k i n g  transition" to a state with a new 

kind of "order" in which the spins are locked in random orientations. The ordered 

phase is characterized by an order parameter. In ferromagnetic systems, the order 

parameter is the spontaneous magnetization per site M = k xi < Si >,. What 

is the order parameter for a spin glas? To describe the "order" in a spin glas, 

several order parameters have been defined: 

(a) Edwards and Anderson order parameter QEA (Edwaràs and Ander- 

son, 1975): 

Since there is no long-range order, order parameters based on spatial cor- 

relations are useless, and Edwards and Anderson focused on time correlations. At 

one observation time to, a particular spin is Si(h). If it is studied again long time 

later at t + ta, there is a nonvanishing probabiiity that Si(t + to) will point in the 

same direction. Then a time autocorrelation function is deûned: 

where the inner angular brackets represents a thermal averaging and the outer 

a configurational C averaging over al1 spins. When T = 0, QEA = 1 and when 

T -. TI, q ~ a  = O. The parameter then plays the role of the mean field in the Curie- 

Weiss theory of ferromagnetism. For ergodic systems the local time correlation is 

identical to 

So, q & ~  measures the mean square local spontaneous magnetization, averaged over 

al1 configurations. 

(b) Parisi's overlap order parameter q a ~  (Parisi, 1983; Mezard et al., 1984): 

A disadvantage of QEA is that it is nonzero for a normal unfrustrateci fer- 

rornagnetic or antiferromagnetic material, as well as for a spin-glas. As we will 



see shortly, spin glasses are characterized by a multitude of nearly degenerate 

pure states, and Parisi defined a new order parameter which is the overlap of the 

magnetization between two different pure or thermodynamic states: 

where. mf is the thermal average of the magnetization st site i in state a, mf is 

the thermal average of the magnetization at site i in state p, and N is the totd 

nurnber of spins. The self-overlap q,, is the Edwards- Anderdson order parameter 

QEA. The two parameters are related by 

Parisi also introduced another parameter x(q)  

where P(q) is the probability distribution of the q d .  Pa and Po are the prob 

abilities that the system is in pure state a and P respectively. So, x(q) is the 

probability of that two pure states chosen at random have an overlap smaller 

than q. x(q)  is a monotonie and an inverse function, which is obviously defined 

in the interval O to 1. q(x) is a multivalued order parameter for the infinite-range 

SK spin glas,  which 1 will discuçs later. 

(c )  Hamming distance da* (Rammal, 1986): 

The Hamming distance is originally a mathematical concept for describing 

the difference between two binary numbers. It was borrowed to describe the spin 



g la s  problem. It is defined as the fraction of spins that must reorient to convert 

one pure state to another: 

2.2 The EA Mode1 and The Replica Symmetric 
Solut ion 

To describe the sudden random freezing of a spin glas  at a transition 

temperature, Edwards and Anderson (EA) (1975) proposeci a random bond dis- 

tribution picture, and a t h e  autocorrelation order parameter QEA. 

The Hamiltonian in a Sdimension random-bond system can still be written 

in the form: 

where Si and Sj  are the classical spins on sites i and j. Jij is the exchange inter- 

action between the two spins. Edwards and Anderson assumed the distribution 

of Jij to be a Gaussian function 



where A is the variance. 

Foiiowing the procedure discwed above, we first determine the free energy 

for a fixed configuration of bonds, which is given in terms of the partition hinction 

by 

We are deding with a system which has quenched disorder as 1 mentioued in the 

last section. So, we m u t  average In2 over the distribution P(J&), Le., < in Zi >c. 

Evaluating < ln Zi >c is not easy, and EA employed the so-called replica method 

for the first time to make this pobsible. Using the relation, Zn = exp(nlnZ) = 
l+nlnZasn+O, we have 

The average over ln Z is then 

The problem left is to average Zn, which is easier. For positive n, we can express 

Zn(x), where { x }  represents the set of bonds describing the disorder, in terms of 

n identîcal replicas of the system 



where 2, is the partition function of the ath replica, and the trace is over ali spins 

in al1 replicas. 

The configurational average of P { z )  =< 2" >c over the disorder is 

computed by evaluating the trace 

Substituting the Hamiltonian (with Hi = O for simplicity) into (2.21) leads to 

1 n 

< T >c= P [ n dJjiP(Jij) Z Jij SP S?] 
(Sr) -Oo c i j>  < i j>  a=l 

The integration is usuaiiy performed using a Gaussian form for P(Jij). In the 

mean field approximation, it is assumed that << S~S; > ~ > c  = 0,  and defining 

q =<< Si >$>c the free energy F(q) is calculateci, where q = q ~ ,  is the Edwards 

and Anderson order parameter. Using the condition @F/aq = O, in the limits 

T -. O and T -. T', the results (Edwards and Anderson, 1975; Mydosh, 1993) 

are 

and 



The susceptibiiity can be written using the fluctuation-dissipation th- 
rem as 

Since << S: >T>C -1 and << Si >*>c=q, we get 

Using the iimiting results for q(T), we have 

and 

which means x approaches a constant value when T -r 0, and at Tf an asymmetric 

peak occurs. 

So, the EA model elegantly replaces the site disorder and RKKY interac- 

tions by a Gaussian exchange bond distribution, and predicts a phase transition 

at a temperature TI. Fisher's results (Fisher, 1975) for a quantum spin (S = f) 

version of the EA model predict sharp peaks both in the susceptibility and the 

specific heat, as show in Figure 2.1. The susceptibility nicely resembles exper- 

iment. But the specific heat also has a sharp cusp at Tf , and this is a puzzle 

compared with the experimental result, which has a very broad peak, and no ob- 

vious transition temperature (Brodale et al., 1983)). So, a true rnean-field theory 

for spin glasses is stiil incomplete. 



Figiii-c: 2.1: (ii) S i i s ( q ~ t  il d i &  itiicl (1 1) spr.ific- licat vc:rsiis i.<!clii<-(XI tc:iiipc:i.at iint 
calculateci From the EA mode1 for two spin values. Rom Fisher (1975). 



2.3 The SK Model and Parisi's Replica Symme- 
try Breaking Solution 

Sherrington and Kirkpatrick (SK) in 1975 proposeci that the proper mean- 

field theory (MET) O t spin glasses shouid be the exact solution of an  infiniterange 

EA model. The spins couple equally with each other with the same distribution 

P(Ji j )  no matter where they are located. The probabüity distribution of the 

interactions J, between each pair zj of spins is taken to be Gaussian 

where Jo is the mean, and includes the possibility of ferromagnetism, and A' is the 

variance. This assumption might be unphysical, but it is a reasonable description 

of a long-range àisordered system, with RKKY long-range interactions as in these 

systems. Scaling of A' and Jd ïs introduced in order that the thermodynamic 

qusntities be finite in the large N b i t ,  i.e., A' = A / N ~  and Jh = &IN, so the 

new A and JO are both intensive. Thus, 

Repeating the 'replica trick', Le., calculating < Zn >c instead of < ln Z >c, 

the free energy is given by 

and, after many calculations (Sherrington and Kirkpatrick, 1975), the final ex- 

pression is 



where the trace is now over n repiicas a t  a single site. y(Q@) and xœ are dummy 

variables of integration, and (ap) label the distinct pairs of repiicas. SK assumeci 

that the thermodynamic limit N 4 00, and the replica limit n -, O can be 

interchangeci in order to perform the integration more easily, (by the method of 

steepest descent). They considered the replicas to be indistinguishable, which is 

caiied the replica-syrnmehic solution, meaning that qa@ = q = constant for ail 

pairs of replicas (ap).  

Subtituting y + q (&) and z + m (&)f, and removing the te- 

linear in n as n -, O yields 

where r is a variable related to q and rn in the effective field, ~ ( r )  = ~ q ' ' * a  + 
Jorn + H (Binder and Young, 1986). Dinerentiating with respect to q and rn to 

determine the self-consistent simultaneous equations for q and m, the results are 

1 - z2 
m=-/ exp(-)tanh 2 - z  + - dr.  
fi [W X".] 
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Figure 2.2: Magnetic plinse clingraui preciictcd by SK mociel. Froiti Slierriiigtoii 
and Kirkpatrick (1975). 

Hcrc tliere are twc) orcler pwaiiictcrs q aricl tn. q is relatecl to fiiiitoriing~l iiiter- 

ac tioas aud tn is related to iiifiilite-raiiged iuteractioiis: 

and 

712 E<< Si >T>C - (2.38) 

A iioiiiero q iridicates iiiagiietir onler, wliile iioiizero frr (iii additioii to-q) iiiclicate 

that the order is ferromagnetic. Wheri rn = O but q # 0: the order is a 'spiii- 

glas" state. For giveri ratios of Jn/A. q(T) aiid trr(T) <mi t ~ e  <*irl<tdi~td wtl a 

magnetic phase diagrarii is thereby estabüshed. Figure 2.2 is the versus &/A 

plot for king spin interactions. The possibili ty of the foiiowing phase transitions 

is predicted : (i)pariunagnetic -r spiii g l a s ;  (ii) paramagnetic + ferromagnetic: 
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Figure 2.3: Differential susceptibiiity without exteriid fielcl (solid liues) aiid rvi tli 
a field H = 0.1A (dotted liiies) for .Jo/4 = O, curvcs (a). micl *A,/A = 0.9' curves 
(h). From Slierriiigtoii aiid Kirkpatrick (1975). 



glass. 

The differential (or ac-) susceptibility may be obtained from the q(T) func- 

tion by adding an e-xternal field term and then taking the zero field limit : 

where X(o) is the value for JO = O. Above the ordering temperature, where q = 0, 

this is just a Curie-Weiss law. In the spin-glas state, the fluctuations decrease X, 

while JO increases it. Two examples are plotted in Figure 2.3 for Jo/A = O and 

0.5, and fields H = O and 0.1A. Once again a cusp in the susceptibility exists 

at a specinc critical temperature, which is rounded and shiRed downward in a dc 

field. 

But when the specific heat is calculated (SK, 1978). there is also a cusp 

in the predicted C,(T) at TI. For T < Tf , the leading term of C,(T) a T. For 

T > Tl, Cm = NkBA2/(2(ksT)*) ,  hence a tail in Cm a 1 / p  persists to higher 

temperatures, which is in contrast to the usuai man-field-theory result where 

Cm = O for T > TI. The entropy S equak NkB[ln 2 - A * / ( ~ ~ B T ) ~ ]  above the 

transition temperature TI, but goes to a negative limit -ks/27r at T = O. This 

is an unacceptable unphysical feature of the model. 

de Almeida and Thouless (1978) perfonned a detailed analysis of the SK 

solution and showed that both the paramagnetic and ferromagnetic phases were 

unstable at low ternperatures, and traced the instability line as a function of field. 

In the presence of an applied field H # O the instability line of the SK-solution is 

plotted in Figure 2.1. The H - T plot yields the AT line which gives the stabiliw 

iimits of the SK solution. The functional form is 



Stable 

Figure 2.4: H - T pliasa cliagrarii (or AT line) illiistrating the stahility liniits of 
tlic SK soliitioii for tliv c.:iso of .JO = O. Froiii < I c  Aliii(:i<lii iiiitl Tlioulkss (1978). 



So, treating all the replicas as indistinguishable. that is, assuming q,g = q 

for al1 (@), makes the SK solution unstable. We must search for a way to 

overcome the replica symmet ric instability pro blem. 

Parisi(1979) proposed an ansatz to break replica symmetry. His procedure 

was as follows. First start with an n x n replica symmetric matrix with aU elements 

equal to qo (identical parameters). As an example, we take n = 8 (Mydosh, 1993). 

In the first step, we divide the (n x n) matrix into submatrices (n/mi) x (n/ml) 

with sizes ml x mi (ml = 4 here). We lave  the off-diagonal blocks unchanged 

with elements qo, and assign the diagonal blocks elements q, as s h o w  in Figure 

2.5. We repeat this step on the diagonal blocks and get the sub-submatrices 

along the diagonal blocks (ml/m2) x (mi lmr) with sizes m2 x m2 (m2 = 2 here) . 
In this step, we create order parameter q.1 as the new diagonal block elements. 

Then iterate the process R times until we get the smaiiest diagonal block of sizes 

m~ x m ~ .  Throughout this construction, the successive sues of the biocks are 

But, al1 of these numbers are positive integers. For calculating the free energy 

in the Ihnit n + O, we must reverse the above procedure, and the become 

arbitrary real numbers between O and 1 (Parisi, 1980), 

If R is very large. the are continous, and for the kth step in the sequence: 

mr/mc+i 1 - &lx and g -r q(z) (2 -43) 

where 3: is defined in the i n t e d  O 5 x 5 1 as in section 2.1. We now have 

an infinite number of order parameters q(x), which is the most important result 

to br obtained from the Replica Symmetry Breaking (RSB) solution, as well 

as a distribution function P(q)  = dxldq which gives the probability of replica 
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overlap q. Lastly. we would like to mention that the SK replica symmetric solution 

corresponds to the k=O step or the original qo matrix, which means that q(z) = qo, 

which is independent of x. 

There is another way to visualize the Parisi's RSB scheme. Figure 2.6 is 

a tree which represents the order parameter (or overlap) matrix qap of Figure 

2 -5. The uppermost level represents the individual replicas wit h seü-overlap 

q,-, which is the largest possible value of p. Each level groups together replicas 

with a certain overlap q a ~ .  The lowest level qo is the minimum value of q, that 

is the smdes t  possible overlap, so at this level, all replicas are identical. To 

find the overlap value q , ~  for a particular pair of replicas (afl), we trace back 

dong the branches of the tree h m  a and from /3 until they join. For example, 

q12 = 921 q14 = 41 and ql8 = q0. 

Based on the RSB model, the susceptibility and the interna1 energy are 

given respectively by (Binder and Young, 1986) 

and 

where M is the rnagnetization per spin. We see that linear-response theory, where 

x = C/T(1 - q), breaks down. Further calculatiom indicated that (Binder and 

Young, 1986) x(RSB)  is a constant for al1 T < T f ,  which corresponds to the field- 

cooled susceptibility X F C ,  and that the entropy S vanishes at T = O, (remember 

that S is negative in the SK solution). So, by RSB, the unphysical negative 

entropy is removed. 



Figure 2.6: Tree representatioii of Parisi's RSB sclieme. To find q , ~  (a = 1 and 
R = 4 hrrc) trncr hack alonfi thr branche of tlic trrr h n i  n and 9 iintil th.. 
join: q,p = q, is the d u e  of q at this point. Rom Mydosti, (1993). 



2.4 Purestates, MetastableStates, andDynamic 
Behaviour 

In this section, 1 will draw a series of phenomenological pictures about the 

formation of the metastable states and their dynamic behaviour in spin glasses, 

to get a feeling for the processes which can occur in the ordered spin g l a s  phase. 

To understand the coexistence of many phases in a system, let us h t  look 

a t  the analogies that exist between fluids and ferromagnets. Figure 2.7 compares 

their coexistence diagrams below the criticai temperature Tc. In a ferromagnet, 

the magnetic field H and magnetization M correspond to the pressure P (or 

chernical potential p )  and the density p in a fluid. At a low temperature T < Tc, 
there is a coexistence c u m  in both cases. h i d e  this curve the magnet breaks up 

into "up" and "down" domains, or each of which corresponds to a ''pure" state of 

the system. The term "pure" state means a set of microscopie configurations in 

thermal equilibrium with each other. This is analogous to gas-liquid coexistence 

in fluids. At a constant temperature T c Tc, the phase transition, "up" c-, "down" 

domains in ferromagnets, and "gas" - "liquid" in fluids, is a b t  order phase 

transition. 

In each of the above cases, there are two Merent pure states of phases 

in the coexistence region. But in the spin glass state, due to randomness and 

frustration, the number of coexisting pure phases is "infinite", with some kind 

of distribution. These configurations have the lowest free energy. There are also 

very many other configurations with higher free energies which correspond to 

metastable states. By contrast, in a ferromagnet at T < Tc and H = O (Figure 

2.8(a)), only two degenerate stable phases coexist. If we apply a magnetic field to 

the system, one state in (a) is still stable and the other one becomes metastable 

(Figure 2.8(b)). The phase with m = -mo (the metastable one) will eventually 

flip over a energy barrier 6 to the stable phase with m = +m. The flipping 
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P o r  (.lniiii(~iI potcmt i d  IL. Froiii hLE.Fislic:r (11)SS). 



time is r a e6IT. So, in a ferromagnet, only one stable and one metastable phase 

coexist at T < Tc, when H # 0, and there is only one flipping time T. In a 

spin glass, the situation is much more complicated. A spin g las  is a coexistence 

of many phases and many metastable states. For a thermodynamic system the 

"many" is "idnite". Parisi's RSB solution gives the the number of pure states 

(De Dominicis et al., 1985) with free energy fi to be 

where fi is the free energy of a pure system, z is a temperature dependent param- 

eter between O and 1, and fo is a characteristic energy. There are very few states 

wit h fi <i: fo. T here are very many wit b fi > fo but t hey all have negligble weight 

when built replaceci by the Boltzmann factor exp(- fJT) since z < 1. Thus the 

states of interest have fi fo. If we borrow the ''vaiIey/subvalley" picture to 

describe this, the pure phases are separated by infinite barriers, forming mutu- 

aily inaccessible valleys in contiguration space. The t h e  to flip from one pure 

phase to another is very long. Inside each d e y ,  is a very rough landscape with 

a broad distribution of finite energy barriers separating sub-valleys, which repre- 

sent the metastable states. The individual pure states may have very different 

rnagnetizations, as may the metastable states within each pure state. 

To plot the energy landscape in configuration space, we imagine imposing 

local magnetizations {mi) on the system and calculate the free energy G ( { m } ) ,  

and plot it in an  (N + 1)-dimensional space, where N is the number of the mag- 

netic moments, whose axes are labelleci by the {mi) and G. Ali of the local 

> O are states correspondhg to minima of C which satisfy = O and a;;;a, 

locally stable magnetization configurations. Some of the barriers are infinite and 

separated configuration space into d e y s  - the lowest energy state in each valley 

is a pure state and the rest form metastable sub-valleys. Each valley has a net 

magnetization a f i  in zero field, where N is the number of the magnetic atoms. 
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Figue 2.5: (a) Fcrruiiiog~iet at H = O aiid T < Tc- TWO kilids uf statu ( ~ O U I ~ L I Z ~ )  
coexist with same enerp. (b) Ferromamet at H # O and T < T,. One state is 
stable and the other aie is luetastable. The metastable oiie wiil flip over to the 
stable state. 



Figirr 1.0: Spin gIms s t i l t ~  ~t H = 0 and T < TI. 



Pigirr 2.10: Spin ghss s t a t ~  a t  H # 0 and T < 7''. 



When a spin glas  is quenched from T > TI to T < TI in zero field, it will 

nucleate al1 possible pure phases in various regions of the sample. If the system 

is trapped Iocally in a metastable state, it will graduaily relax towaxd the nearest 

pure state, as shown in Figure 2.9. When H # O some of the formerly pure states 

wiil themselves become metastable as shown in Figure 2.10 and these regions of 

the sample di evolve toward a stable pure phase. Presumably there will be 

two types of relaxation process, very slow processes between d e y s ,  and "faster" 

processes between metastable subvaileys. The latter will be responsible for the 

measured slow dynamics. When the field is reduced to zero, similas relaxation 

processes are expected to occur. 

2.5 The Droplet Scaling Mode1 

Fisher and Hue  proposed a phenomenological theory (Fisher and Huse, 

1986. 1988a. 1988b) for the low temperature behaviour of spin glasses. This 

approach is based on the concept of droplet excitations in a short-range Ising spin 

glass, and assurns that there are only two pure equilibrium states î and F below 

TI, related by global spin-reversal symmetry. If the system is in ground state î, 

then the lowest-energy relaxation is a droplet of reversed spins T of length scale 

L. 

For exarnple. in Figure 2.1 1, î is the ground state, and f, which is r's 
global spin reversal, is a droplet surrounded by a domain wall. The low-lying 

droplet excitations on length scale L have a wide free energy distribution which 

grows with droplet sizes as FL a T (T) Le, where û is a exponent with a limit 

B 5 9 (d is the dimension of the system), and Y is the stiffness constant. This 

scaling ansatz gives the foliowing distribution pL(FL)dFL of droplet free energies 



at Iength scale L: 

Macroscopic phenomena result from 

the excitations involve only one or a 

the microscopic energy excitations. Most of 

few spins flipping over, and only contribute 

to the high frequency or short tirne scale phenomena. But, we are more interesteci 

in the long tirne, low-frequency phenomena, which are related to the large droplet 

excitations. Because of the randomness of the excitations, the surface of the 

droplet becornes very complicated, as shown in Figure 2.11. The surface area of 

the droplet scales as AL - L ~ # ,  where d, satisfies the relation d - 1 < d, < d. 

Droplets with free energy FL - Le wili have barriers to their creation and 

annihilation. The energy barriers wiIi also grow as a power of L as B - L* where 

41> is a new independent exponent which satisfies 9 5 J> 5 d - 1. Thus a droplet 

d l  last for a time TL: 

where rg is a rnicroscopic time. Thus, in an observation t h e  t, the droplet wili 

have grown to a size L given by: 

The t hermaliy active droplets with anomalously low free energies have 

long- t ime autocorrelat ions which decay as 



Figprc 2.1 1: Sclieiiiatic picturc of tlic clroplct of lciigtli scalc L (coiitdiiiiig sitc j). 
Outsidc tlie cIroplet tlic spius arc aiigic~l as iu youutl statc T. kbliilc iiisidc tlic 
dropkt the spiris are reversdo as iii tlie grouud statc r? wliicli is just tlie global 
spin flip of r. The surface of the droplet is fractal. Rom Fisher and HUSC! (1088b). 



which is a slow logarithmic decay, where QEA is the Edwards and Anderson order 

parameter, and where A sets the overall free-energy scale of the barriers (A .- J 

for T « Tc). 

Now, we consider the non-equiiibrium behaviour as the system approaches 

equilibrium after a quench from temperature T > Tf to T < TI. Becaw both î 

and r are nucleated after the quench, the system wiU try to lower its free energy by 

decreasing the amount of interface between r and r, so both I' and grow larger 

and larger. This growth will be very slow because of the randonmess-induced 

free-energy barriers, which mu& be surmounted in order to move sections of the 

wall between I' and r. 
In a time ta after the quench, the characteristic length Rb of a droplet will 

be 

where ta is the total age of the system, which equaIs the wait t h e  t ,  plus the 

measurement time t, and ri is a microscopie time. This slow domain growth de- 

termines the non-equilibrium dynamics of the spin-glas below the freezing tem- 

perature. If a corresponding field quench is performed by turning off an infinite 

magnetic field, the magnetization m(t) wiU decay, with the formation and growth 

of the "zero-magnetization-domains" , according to 

where X is a new dynamic exponent related to the non-equilibrium growth. 

The droplet mode1 may also be used to describe the aging effect, i.e., the 

response of the system if we wait for a time t ,  after a thermal quench in a field, 

and then tum off the field. In this experiment, relaxation processes are probed 



on a length scale LI which starts growing as soon as the field is turned off: 

Let us consider two lirniting cases: lnt < Int, and lnt 5 inf. 

In the first case, the probing length scale is much smaller than the domain 

size: 

where ta = t, + t = tW. So, Rh wiU be constant in this 'early epoch' regime, 

which is probed on the scale Lt. In other words, the probing scale is so small 

that it does not "see" beyond the domain wails, but only samples the dynamics 

within the pure states î and r. So, this is quasi-equilibrium behavior, i.e., the 

relaxation of the magnet ization approximates the characteris tics of equiiibrium, 

and the magnetization decays as 

where both B and 1C, are equilibcium exponents. 

Second, if ln t » ln t,, ta = t +t, = t, which is the "late epoch, the exper- 

iments now clearly sense the non-equilibrium dynamic behaviour due to domain 

growth. The decay of the magnetization is now 

where a non-equilibrium exponent X defines the magnetization decay. 



Figim 2-12: Growtli a i t h  tiiii<n of c1orii;iiii sia. R. cx,s~w:ririiciit;il-~~roI)iii~lnii~~I~ 
scale L, and relaxation rate: (a) R* vs. Inta, ta = t + t, the total age of the 
-rstrrn: ( h ) p  and LY VS. Int. t is thn timc. of mcnsurrmcnt, t,,:. thr mit ing tirne' 
and 4, a rnicroscopic tirne; and (c) relaxation iate aM/laln t vs. Int. rl, is a banier 
cxpoimiit . Froiii Luclgrcii (1988) .- 



The system will thus experience a crossover from quasi-equiiibrium to non- 

equilibrium dynamics, at ln t = in t ,  . Figure 2.12 shows fl vs. ln ta, L* and * 
vs. lnt, and &$ VS. h(t). At the crossover &, the magnetization decay rate 

changes rapidly. This is why aging yields a characteristic anomaly at the aging 

t h e  g. As t - oc, L and R have the same macroscopic length scales, so the 

number of domains and their w a b  become insignificant. 'The equilibrium wiii 

âinaiiy be reached, and the magnetization and its decay rate wiil both go to zero. 

This process is confirmeci experimentally both in the Literature and in our results 

(see Chapter 4). 

2.6 The Mode1 of Random Traps 

Bouchaud proposecl a phenomenological model for relaxation and aging in 

disordered systems (Bouchaud, 1992; 1994). 1 WU discuss this model here, and 

our improvements for a real disordered system, in detail. The basic principles are 

as follows. 

For a finite disordered system, the energy landscspe is expected to be 

extremely rough, with many local minima correspondhg to metastable states, 

as shown in Figure 2.13. These states are surrounded by energy barriers, which 

rnakes them traplike, and they have a distribution of energies f given by (De 

Dominicis et al., 1985): 

where fo is the minimal energy required to "hop" between any two states, and x is 

a temperature dependent parameter. This result is based on the assumption that 

Parisi's Replica Symmetry Breaking (RSB) solution of the SK model ( M e z d  et 

al., 1985) for the pure states applies to the metastable states within each pure 



Fi wrc 2.13: &liernatic view of the energy lauckape: holn WC drillal h & ~ -  tlic 
rc 1 erciiw cnergy fa wliich is the uiiiiinial energy iiwlod to go €rom oue riictiista hl(: 
state to miotlicr. Note that this tlrawing is oric dioiesisional: in reality niouiitaiiis 
of Iiciglit >> fo also exist between differeiit statcï. From Bouciiaucl (1992). 

state as tvell. 

Eacli trap lias a corrcspoiidirig trapping tirnc r! aud diere is a <listributioii 

of tliesc trappiiig time. If we define the trap depth by 

tlieii, the trapping tiriie T is 

T = 7+E'T. ïr r h e-ro 70 - 2O-'*.s (2. G( 1) 

and the tlistributioii of trappiiig times T is given by: 

B * ( Ï ) C ~ T  = P( f )(p. ( T G  1) 

Transforniing from f to r: 

f = f o - A E  = fn-~ln(L) (2.62) 
ru 
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LVe can mite 

and have 

C hecking the normalization: 

which is independent of x ( x > O). However, it is crucial to notice that for such a 

distribution, the average exploration time < T > diverges, Le. J.. $(r)-rodr = oc, 

for O < z < 1. This is ultimately the origin of aging. 

A real spin glass is a collection of many jmrite independent spin glass sub- 

systems. Any given subsystem has a finite number S of traps. There wili be a 



distribution of sizes of the subsystems P(S)dS,  with O < S < oc, but dl subsys- 

tems are characteristized by the same trapping distribution +(r). 

If a subsystem is initially in some particular trap, it wili perform a random 

walk and explore deeper and deeper traps, which are more and more stable. The 

total time elapsed after taking S steps is te = XE, T-, where ri i8 an independent 

random variable chosen from the distribution $(T), with ro < r < m. For a finite 

number S of steps, there will be a largest (or most probable) term t, in this series. 

The probability that the mairllnium value of r = t, is encountered oniy once in S 

steps is: 

and substituting for @(r) from (2.68) yields: 

which defines the ergodic or equilibrium time t,, (S) for subsystem S: 

t, = T , S ' / ~  = Ergoàic Tzme t,, (S) . (2.75) 

Now, suppose we wait for a t h e  t, « t,,(S) so that the subsystem visits 

N(tw)  < S states. What is the deepest trap r,, actually encoute rd  during tu? 

Following the same argument as above, the probabiliw of encomtering T,, once 

in N steps is JTJ $ J ( T ) ~ T  = h, and this yields 

Now 



Thus for z < 1, the deepest trap r,, that is probed is limited only by the 

wait time tw . The longer the wait tirne, the more of phase space is probed. This 

is the origin of AGINÇ. Equilibrium is attained only if t, > t,,(S). 



Thus, if x > 1, the deepest trap encountered is no Longer limited by t. 

To calculate the decay in the extreme nonequilibrium Limit t, « t , ( S )  

and for x < 1, we can essentially assume that t,, oo. We dehe  P(rl t,) = 

B r ( e ) r @ ( r )  as the probability of finding a subsystem in the trap T ,  where B is a 

normalization factor, and r ( f )  is the probability that a specific trap occurs. B is 

determined by the normalization condition: 

or, defining u = 5: 

If we take r(u) to be a step function for sirnplicity: 

r ( 4  = { 1 for u s 1  
O for u > l  



and have 

This is the probabiüty of finding the subsystem in a trap r before the field is cut 

off. 

After the field is cut off, the distribution becomes: 

where the t + t, allows for the possibility of continueci aging when H = 0, and 

where g(r) is a factor which demibes how the traps empty after the field is cut 

off, which is approximately a step function: 

dr) = { O for 7 < t  
1 for 7 > t  ' 

Now the decay is detemineci fiom 



i-x [l-(&-JI = -& . t-= . (t + t J f - 1  . (-) . 
z [l-(&-)L-z]. (2.108) 

Note, that (2.108) is a universal function of & only. If we approximate w(&) 
as a constant 7, then we have 

Our assumption of " artificial " step functions in (2.93) and (2.99) means 

that the limits of integration in the calculation of < l / t  > are controlled by the 

rec tangular "pulse" s hown in Figure 2.14. 

As we mentioned previously, a real system is composed of many subsys- 

terns. Each subsystem has its own ergodic time t,, and if t + t, > te,, t + t, 
should be replaceci by t,, in hinction (2.109). For simplicity, we compare t, and 

t,, in order to choose the appropriate functional form for the decay, which is 

eit her 

Since a real system has a distribution of sizes and of ergodic times P(tero), 

65 



Figure 2.14: Tlie "pulse" cvliicli defiiles the cdculatioii of < l / r  >. a) t + t, < 
trr,(S): 11) t + t, > t&). 



the total magnetization is the superposition of that in each subsystem: 

By factoring out the purely nonergodic k-dependent exponent, this equation 

can be recast as the product of a universal hinction f (tlt,) and a non-universai 

correction factor 1 - F which describes the deviation from the &-scaling: 

Thus, a plot of iVf (t)/(hf0(1 - F)) versus t/t, should restore universaiity. 

In practice, we choose a log-normal distribution of ergodic times: 

1 (log,, t,, - log,, t,, l2 
P(10a:otffg) = d~ [- 1 (2.113) 

2=*mg 2@Lg 

where o = O,, is the half-width of the distribution (see Figure 2.15). To calculate 

the correction factor numerically, we divide the integration range into 32 intervals, 

each of width u/4, and take 32 discrete points. We define 



Figure 2.15: A distribution P(loglo te,) vs. loglo twg. 



and convert the integration over t,, into a sum over the 32 intervals, so that the 

correction factor F is computed from: 

2.7 The Elementary Decay Mode1 (EDM) 

Recently, Erhart et al. (1994a; 1994b) presented an elementary decay 

model for relaxation in disordered systems based on the simple assumption that 

the initial activation energy barrier distribution in a disordered system has a 

Poissonian form, 

where F is the average energy. This is actually consistent with Parisi's RSB 

solution of the SK model (Mezard et al., 1985). Each energy fraction decays 

independently wit h an Arrhenius rate, 

so that, following a step function change in field, a physical observable  XE(^) 

changes as: 

Integrating, 



For a disordered system, X( t )  wiU be a superposition of decays for all E, 

so, 

If we make the following variable changes: 

where y(b, r )  = jar sb-leeSds is known as the incomplete gamma &nctzon. 

The single parameter b = TIF determines the shape of the curve and hence 

the type of the decay: nearly logarithmic for b < 1, but with the correct values 



O 5 10 15 20 
time t 

tinic r = rat witli global réte ru: <iispiaycti for t~ic  values b = ~ T / Ë  (froiii top) 
0.01, 0.03, O. l? 0.3: 1, 3, 10. Tlic brokm curvc corrc?spouds to cxp(-r) .  Froiri 
Erhart et al: (19944 

of orle and zero for t = O and t -. 3 ~ ,  respectively: a power law for interriiediate 

values of 0 -.. 1, but starting at OIE. ruici npproxirnatcly exponeiitial beliaviour h r  

6 » 1. Figure 2.16 illustrates these furictions in a Liiiear plot iu order to sliow both 

the initial and limiting behaviour. and Figures 2.17 and 2.18 plot the hnction in 

various ways in order to show the sixiiilari ties to sirnpler functions. 

Tliese simple functional fornis show "i~icmory efk t s  if we plot tliem versus 

a delayed time t clefin4 by t = t i- t,,,. as shown iti Figure 2.19. The derivative 

of a logmitliriiic tlway will tlieii sliow iui iiiflwtioii poiiit auouiid t d  5 tu:' aiitl tlic 

derivative of a power law decay wili exliibit a peak at td = t,,,/b. The latter is 

vcry siuiilar to tlie agiug peak ot>scrvecl iu rcd spiu glas systcriis. 

111 the EDM, the aging process is attributed to changes in the activation 

enerw distn bution itself during the wait time t,. in order to make a coanection 

between the physicai process and i ts mat himetical representat ion, we can wri te 

th: totd tiuic dtcr tlic c(uciic.1~ LIS t h  suiii of two y i ~ t ~  t = t,,, + td .  wlicrc Lt dia tlic: 
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Figure 2.17: Decay fuiictioii y(b, T )  for 6 = 0.01, 0.03. 0.1: 0.3. (a) g(b, T) agahlst 
l m ;  (b) clerivative -dg/d(lnr) agaiiist lnr; (c) regions close the power law g x r-& 
arc shown in a ln-ln plot: ln g(b. r) ngainst Inr. h i r i  Erliart ct al. (1994~) 



Figure 2.18: Similiar to figure 2.17, but for b values (a), (b) b = 1,3,10 and (broken 
cunres) exp(-r); except (c) regions close to exponential exp(-r) are shown in a 
in-linear plot in g(b, T )  against r for b = 1, 3, 10,30, and (broken curve) exp(-r). 
From Erhart et al. (1994a) 



Figure 2.19: -Mernory' effixt witliout a secoiicl step when the derivative - 
d:r/rl(lii td)  of iioii-exponoiitiai hiiictioia ~ ( t )  an! p b t t ~ l  as a huictibti of  t h  h- j -  

a d m  of a delayed tiiiie t d  with t = tti + L. (a) Dcriwtivc -&/d(hitd) of a 
logaiitliiiiic clway z(t) = 1 - hi t  agaiilst log,& for t, = 10q with q = 2, 3: 4, 
5 (arrows) . Note the iiiflmtiori poiuts at t d  = kt,. (11) Derivative -&/d(ln td)  of 
tlic powr lürv x( t )  = t-b a g a i i ~ t  logl0 td for tv, = 100: 1000. 10000(acrows) aiicl II 
= O.G. 1.3. 1.5, r(wp(~c*tivcly. Notct tliv c!xti.<wiii at  t = t,,./b. Froiii Erliiirt cit :il. 

(1994b) 



delayed t h e ,  or the observation tirne starting at the moment of the step function 

field change. Equation (2.123) t hen becomes: 

where XA is the initial value of Xk( td )  at t d  = 0, and fo is the renorma,.iized wait 

time (tJ dependent distribution, 

If we make variable changes in hinction (2.132) as before, the age-dependent 

decay then bemmes: 

When b - 1, the derivative of this function has a peak at r d  = r,/b, as shown in 

Figure 2.20. 

In fitting real spin glas data, we must superpose two components: one 

with aging and with a t ,  built-in, and one with no aging, as follows: 

There are 7 parameters in this function. They represent respectively: 





Figure 2.21: 'A*' efkct in the amorphous metellje rpin g h  
(Fe& -.), B - Points: zero field cooled suscepti bility [( l/ H) M (t)] and 
corresponding relaxation rate [S(t) = (1/ H)dM/d ln t] at diaerent wait ing t imes 
t, = 10'. 103, 104, and l@ sec) plotted against loglnt where t = td starts et the 
field step to H = 0.1 G. Cumes: fits with hinctio~ (2.136) of the EDM with the 
above t,. and bl = 0.6, 1.3, 1.5, 2.f: = 0.02, 0.02, 0.01, 0.01; rosi,, = 0.7, 0.7, 
0.9. 1.4; thTl = 4.8, 3.5 S; tinV2 = 1.5,1.5,0.8p 2.1 S; c = 0.976, 0.97?,0.949,0.932; 
Xo = 1.1, 1.0, 0.4, 0.3; respectively. Iaret: distribution funetion Xo fo(E')(4=o of 
activation energies E' = E/T evaluated with the above EDM parameters. Rom 
Erhart (1994b). 



Mo - the initial valueof the rnagnetizationat td = O  
c - the proportion of aging and non-aging components 

(c = 1 corresponds to no aging) 
bl - the type of decay for the aging component (generaily bl .- 1) 
62 - the type of decay for the non-aging component (generdy b2 « 1) 
tint - a correction to the aging tirne, which might be due to the 

influence of a finite cooling time 
tin2 - a similar correction for the non-aging component 
ro - a normalizing factor, which is very insensitive and is usually 

6xed at 1 

The most crucial parameters are c, Li and q. These determine essentially all the 

decay characterïstics. 

As an example, Figure 2.21 shows the fitting results for an amorphous 

metaiüc sample (F~Nil-,)r5BisPôAi3, using the fimction M ( t , L )  = Mo(l - 
gogmg), which is an increasing function rat ber than a decay function in Eq. (2.136). 

2.8 A Percolat ion Mode1 for Magnon Relaxation 

Chamberlin and Haines (1990) proposed another model for glassy dynam- 

ics, which is based on the activated relaxation of dispersive excitations in a per- 

colation distribution of 6nite-sized domains or clusters. This model gives good 

fits to the magnetic relaxation of spin-glas and ferromagnetic systems, and also 

to stress relaxation in a structurai glass (Chamberlin et al., 1991a; 1991b), over a 

broad range of measmement times from 10-~ to 104 seconds. 

The model defines a dynamicaily correlated domain (DCD) as a local region 

where excitations relax with a single uniform relaxation rate, and considers this 

to be the primary relaxation response. Secondary response like dornain growth, 

domain rotation, and domain wall motion are ignoreci. Assurning a distribution of 

domain sizes n., size-dependent relaxation rates w,, and a sue-dependent initial 

response P,, where s is the number of spins in one domain, the net relaxation is 



the weighted sum over al1 sizes: 

The equilibrium response is proportioned to the number of responding particles 

P, = Pos, so 

If a given spin is assumeci to be correlated with at le& one of its neigh- 

bors with probability p, percolation theory provides specific predictions for the 

distribution of finite domains. For p > p, where p, is the critical probabiiity for 

bond percolation in three dimensions (Lubensky et al., 1981), 

where Cf a I p  1 and o = 0.45. For activated relaxation of quantized systems 

at temperature T, w, a e-6E/kaT. AU dispersive excitations in finite systems have 

an average energy-level spacing 6E which is inversely proportional to the number 

of particles in the system. This is simply a statement that since s discrete levels fiU 

a fixeci bandwidth A, 6E = AIS, where A depends only on the average interaction 

between spins, independent of domain sue. (see Figure 2.22). Using z = C's,  the 

net relaxation becomes 

where the adjustable parameters are C = CNA/keT, which is called the correlation 

coefficient, the initial response [31'($)/2]Mi = 3.518Mi, and w, the relaxation 

19 3/2 rate for the W t e  domain. Although the average-sized domains [Z = (6) ] 
produce the dominant behaviour, for C » 1 the spectnim is extremely broad. 



Figure 2.22: Scliematic represeutatioii of excitation levels iu a fiuite cluster. The 
baudwidth, A2 is k e d  by the average interaction between particles. (a) and (b) 
The average energy-level spacing, bEo varies in iiiverse proport ion to the nuiiiber 
of particle. iu the cluster. (b)At equilibrium, ail ciuster have the same average 
iriternal energy. (c) for 'digneci' clusters, the enerpy of wliicti was reducecl by an 
ext(rrid ptxtiirt~atiori. tlic iiitcriid iii(w:nsi?s towml (qiii1il)riiiiii. (cl) Th iiitcr- 
i d  eiiergy of -aiitidigucd clusters dt~:reases wlieii the extcxiixl perturhtioii is 
reiiiovd. Frotn Clwiibcrliri (199 11)). 



A ferromagnetic sample cooled from the paramagnetic regime in zero ex- 

ternal field contains domains oriented in aii possible directions, resulting in no net 

magnetizat ion. At finite temperatures, the magnetic moment of each domain is 

reduced from saturation by magnon excitations. The average magnon density is 

uniform for al1 zero-field-cooled domains, but the level of excitation in field-cooled 

domaios depends on their orientation. "Aiigned" domains have a reduced densi& 

of magnons, so that their net interna1 energy ancreuses after H is removed. In 

this case bE > O and larger energy level spacings hinder the relaxation process, 

so smaiier domains relax more slowly, and wd = w- exp(-C/x) with C- > 0, 

where w- is the relaxation rate of the largest domain. Aligned domains have 

C > O; they need not be aligned with H but in general will be onented with 

the local field. Similady "antialigned" domains have their ground state magnetic 

moment opposite in direction to H and have an initiaily higher level of excita- 

tion, which demuses during relaxation. In this case 6E < 0, and a larger energy 

level spacing expedites the relaxation process, so smaller domains relax faster and 

wanti = w+ exp(+C+/z) with C+ > O, Thus, two separate equations can be used 

to describe the relaxation of aiigned and antialigned domaias: 

where w- is the fastest relaxation rate of the largest aIigned domains, and w+ is the 

slowest relaxation rate of the largest antialigned domains. As a test of this model, 

Chamberlin fitted the predicted decay to a sample of Au ll.S%at:Fe. Figure 2.23 

shows that Eq. (2.141) fits the measured relaxation curves above the transition 

temperature very well, which means this relaxation may be due to domains with 



t (sec) 

Figure 2.23: Magnetic relaxation of sample 1 W%at Au:Fe at 3 temperatures 
above the trausitiou T, = 39 K. The solici curves are the best fits usiiig Eq.(2.141) 
over the range IO-'' - 10 sec. Extrapolatiou to shorter and longer tinies reveals 
no systernatic deviatioii. Inset: Difference ktweeu Eq(2.141) and tlic data. Tlic 
Imt fits hy a siulpk: poivcr law (solid ciiives) an: sliown for wriiparisoii. Froiu 
Cliamberiin (IWO). 



t (sec) 
Figurc 2.24: -Magiictir relaxation of 11.9% Au:Fe ai 4 temperatures t ~ h v  Tm = 
39 K. The solid curves are the best fits using Eq(2.141) + Eq(2.142) over the 
range IO-*' - 102 sec. Froni Cliamberlin (1990). 

pure ferromagnetic order, or doniaiiis wliose grouiid state magnetic iiionieiit was 

alignd with H. 

Ho~ever~  below the traiisi tioii teiiiperat urc' h t l i  functioiis (S. 141) aucl 

(2.142) are needed to fit the relaxation curves, as shown in Figure 2.24. 

2.9 Comments on These Relaxation Models 

If the energ of a systcni in some particular statc cnri bt: diaractcriiretl by a 

siiiglr valiiti Ei- h)r rsamplr ;i Fcrmriingiit-t tlcx-rihl 1- its sitc avc3rngr ~iii~gnctir 

moment and with energy -mi H in a magnetic field H, then wheri tliis state 

changes to another state characterized by equiiibrium energy Ej the system will 



relax to the new state by a conventional Debye fwiction 

where r is a characteristic tirne related to the energy barrier between the two 

states. But in a disordered system, usuaiiy there is a complex structure of 

metastable states, each with a conespondhg metastable energy and a correspond- 

ing relaxation tirne r, connecting it to the new state. So, the whole system is some 

superposition of the behaviour of each metastable state. Any superposition of sim- 

ple Debye fuactions wül resdt in a non-Debye form for the anomalous relaxation, 

where P(T) is the characteristic tirne distribution of a r d  system. This is the 

cornmon feature of ail disordered systems. For example, Aharoni (1985) suggesteà 

a gamma-distribution bc t ion  for P(r )  

for a disordered system, where p and ro are adjustable parameters, which yieldç 

the following relaxation function for the magnetization: 

where Kp is the modined Bessel function of the third kind (Watson, 1962). This 

function fits experiment reasonably well (Aharoni et al., 1985; 1992). 

But a good theory should not only be able to give a quantitative descrip 

tion, but must &O give the physical reasons underlying the choice of distribution: 

For example, a stretched exponential form 



is widely used to descnbe the anomalous relaxation in various materisls (Ngai, 

1980; Chamberlin, 1984; Ngai et al., 1991; Ruan, 1993). The fitting results are 

always quite good. This function was shown by Palmer et al. (1984) to be a conse- 

quence of hiemrehically consmtined dpamzcs, and by De Dominicis et al. (1985) 

to be a characteristic of relaxation with a distribution of independent mndom free 

en- levels. Both parameters r and n have very compiicated forms and they are 

the combinations of many micro-parameters. So, fiom the results for T and n, it 

is difncult to understand the physicai process. However, the stretched exponent ial 

form is stiil the most powemil and the simplest description of much anomalous re- 

laxation behaviour. The other models discussed in this chapter are more physicd 

and provide a better understanding of the physics behind the dynamics, especidy 

the aging effects. 

Fisher and Huse's droplet sding model is based on the assumption 

that a spin glass has only two ground states, which contradicts the long-range SK 

model. It explains the aging effect and why, at t = f the relaxation rate d M / d  ln t 

hm a peak. This model represents pioneering work in the study of relaxation 

dynamics, and gives a p hysicaliy appealing explmation for the dynamic response, 

but does not yield complete relaxation hinctions valid for all observation times t 

which can be used to fit experimental data. 

Bouchaud's random trap model and Erhart et al's EDM both give 

relaxation functions which can quant itatively describe the relaxation curves very 

well (Bouchaud, 1992;1994; Erhart, 1994a, 1994b; also see next chapter). An 

important feature of these two models is that they have a simple aging mechanism 

built in, and do not require the addition of a constant baseline to the relaxation 

function, which is necessary in bot h the stretched exponential and C hamberlin's 

percolation model descriptions, and which is hard to justify physically. 

Both models have parameters which are related to the distribution of 



metastable state energies: z in the random trap model, and b in the EDM model. 

The rate of aging as a hinction of temperature (that is the fact that aging is 

more effective at  higher measurement temperatures) is also a feature of these two 

models: in the random trap model, we introduced a distribution of ergodic times 

to describe the dinerence in the aging rate at difEerent temperatures. At different 

temperatures the fraction of active (or non-ergodic) subsystems wit h aging, and 

equilibrium (or ergodic) subsystems without aging, are dinerent. In the EDM, 

a simiiiar parameter c, a h  controls the proportion of the aging and non-aging 

components in the system. 

These two modeis &O have stretched exponential and simple power law 

features. In the random trap model, if we expand function (2.109) 

for t « t,, we get 

which is a stretched exponential function, while for t » t, 

which is a power law. In the EDM model, if b » 1, the EDM function is a 

stretched exponential, whiie if b - 1, it is a power law (Erhart, 1994a). 

Chamberlin's percolation model gives a reasonable fit to the relaxation 

c w e s ,  but it io necessary to add a constant baseline. Furthemore, this model 

has no explicit aging t h e  t, built in, so it is ditncult to appreciate the rela- 

tionship between the model parameters and aging. However, this model also 

shows stretched exponential and simple power law behaviour in some limits: for 

Cw-t > 1, Eq(2.141) becornes a simple power law m(t) - t-=; for Cw+t 5 1 



Eq(2.142) is a stretched exponential m(t) - exp(-t8). (Chamberlin and Haines, 

1990). 



Chapter 3 

Sample Preparation and 
Measurement Techniques 

3.1 Magnetic Properties and Sample Prepara- 
tion 

As stated in section 1.2, the conduction-electron-mediated RKKY interac- 

t ion between the transition-metal impurit ies yields the strongest impuriw-impurity 

coupling. These kinds of materials exhibit the archetypal properties of disordered 

magnetic systems, like anomalously slow relaxation, aging, and so on. They are 

ideal systems for the purpose of our experiments. We have chosen one binary sys- 

tem, CrFe, and two temary (pseudo-binary) systems, FeNiCr and FeNiMn, for our 

investigations. In this section 1 will first discuss theü magnetic properties, t hen 

their phase diagrams, finally the sample preparation procedure for each system. 



3.1.1 The FeNiCr System 

i) Magnetic properties and phase diagram 

FeNiCr doys  in the y-range are widely useà as  commercial Elinvar and 

even more importantly as austenitic stainles steels. Therefore, the magnetic 

properties of this system have been extensively studied (Majumdar et al., (1984); 

Deryabin et al., (1984, 1985, 1987); Acet et al. (1987, 1988); ~ a k e i  et al. (1984, 

1986, 1987)). Figure 3.1 shows the magnetic phase diagram. Along the rim of 

the FM-range, FeNiCr alloys show reentrant spin glass(RSG) behaviour at  low 

temperatures (hatched area) with a pure spin glass(SG) region adjacent to it 

(dotted area) . 

Figure 3.2 shows the differential magnetic susceptibüity x = dmldh of 

alioys in the series FessNis-,Cr,, for z = 0, 5, 10, 15. The results show that 

for z = O, which is the classical Invar aiioy, the ordering is purely ferromagnetic, 

and there is no spin-glas state. The doys  with z = 5 and 10 are ferromagnetic 

a t  high temperatures, and have a reentrant spin glass state at low temperatures. 

The peaks at the higher temperatures for z = 5 and 10 correspond to the critical 

peaks from the ferromagnetic phase transition. For x = 15, where a pure spin 

glass with Tsc 2 15 K. The Curie temperatures for each concentration x of Cr 

are shown in Figure 3.3. 

Figure 3.4 is the magnetic phase diagram of another series of alloys 

Feso-,NizCrzo. We can see from the diagram that for z = 19 and 21, the system 

is a spin g las  at low temperatures because the concentration of Ni is too low to 

support long-range ferromagnetism. For larger values of x, like x = 23 and 26, 

the system evolves from a long-ranged ferromagnetic state to a rnixed (FM + SG) 

state as the temperature is lowered. 



-- Fa (al W1 - 

Figure 3.1: Ternary magnetic phase diagram of FeNiCr in the 7-range. The full 
Lines show contours of constant Curietemperature projected into the zero Kelvin 
plane. RSGarea is shown hatched, the pure S G  area dotted. Crosses in the 
FM region mark commercial Invar and Elinvar compositions. Rom Wassermann 
(1980). 



Figure 3.2: Tempera tiirr dcpendcnrc of thc differmtial magnetir siisreptihility of 
FeôsNiu-=Cr, alloys with z = O (a), 5 (b), 10 (c) auci 15 (d). The numbers on 
tiic curvcs iiiclicntc tlic vdiir of tlic cx?cninl (wi~stnrd ficlcl iii Oc. Froiii Dcrynhiii 
et ai. (1984). 



Figure 3.3: Magnetic phase diagrau of the systexu F%5Nis-,Cr,. Froiii Deryabiii 
et al. (1984). 



Figurc 3.4: Tuiipcmtui-c (T) vs Ni coucciitrütiou ( x  iii uiiits of at.c/u) uiag~ictic 
phase diagram of Fe~~-,Ni,Crzo al10.w (101 z < 30). Rom Mnjumdar et al. 
( 1984). 



ii) Sample preparation 

A total of eight different concentrations of FeNiCr alloys were prepared 

from the two series F~.sNio.35-ICr, with z = 0.10, 0.11, 0.12, 0.13, 0.15, and 

F%.80-+Ni&ro.m with x = 0.21, 0.24, 0.26, by melting the appropriate amounts 

of 99.99% pure Fe foii, 99.995% pure Ni foii, and 99.99% pure Cr chu&, al1 

supplied by Aldrich Chernical Company Inc., on the water cooled copper hearth 

of an argon arc furnace, using a tungsten electrode and a titanium getter. 

Pre-melting of each pure metai showed that they are all stable with negli- 

gible lusses during the melting. The melting and boiüng points of each metal are 

show in Table 3.1. An etching reagent was d to clean surface contamination 

from the metais and the alloys after each melt, and was also used to reduce the 

amounts of the pure met& to get the precise amount needed for the alloys. The 

ingots were inverted and remeltecl - 5 to 6 times to ensure homogeneity, then 

cold rolled into a thin sheet from which the samples were spark cut. Sand-paper 

was used to smooth the surface of the sampïes or to make them even thinner. 

The samples were put into smaii vycor tubes. The tubes were vacuumized 

and sealed under a partial argon atmosphere (160 Torr) and placed into a furnace 

at a temperature of Tann = 1000 OC, annded(tann) for 4 days, and then quenched 

rapidly(tq) (in - 1 second) into cold water by breaking the tube. The sample 

parameters are listed in Tables 3.2 and 3.3. 



Table 3.1 : Physical and chernical properties of Fe, Ni, Cr, Mn and their alloys. 

I 1 ~ e l t ï n g  point (OC)  1 ~ o i i i n g  point (OC) ( E tching reagent I 
Fe 

~ O Y S  2:1:3 + a few chops of Hz02 
CrFe - - HC1:HNO3:glycerol = 

Ni 
Cr 
Mn 

FeNiCr 

alloys 2:1:3 + a few drops of H202 
FeNiMn - - HN03:H20 = 

1535 

Table 3.2: F~.ssNio.3s-,Cr, samples. (Typical dimensions are 

1453 
1857 

8x0.4x0.3 mm3 if they are not listeci). 

2750 

s x  b x c  (mm3) (mg) (OC) (da&) (s-) 
5.6 950 4 1 

aqua regie: HCl:HN03:H20 = 

2732 
2672 

3:1:2 + a few &op of H20Z 
pure HN03 

pure HC1(37%) 
HN03:H20 = 1:5 

HC1:HN03:H20:glycero1 = 
1244 

- 
1962 

- 



Table 3.3: F~.80-,Ni,Cro.20 samples. (Typical dimensions are 

8 xO.4 x O.3 mm3 if they are not listeci). 

1 x 1 dimensions 1 m 1 T 1 tan,, 1 ta 

3.1.2 The CrFe System 

i) Magnetic properties and phase diagram 

The magnetic properties of the Crl,,Fe, system have been well studied 

(Burke and Rainford, 1983; Burke et al., 1983; Wusaka, 1986) and the magnetic 

phase diagram is reasonably weil estabüshed (Burke et al., 1983) as shown in 

Figure 3.5. Its principal features are as follows: for Fe concentrations x < 0.16 

the system is an itinerant ant iferromagnet , with a crossover from incornmensurate 

to cornmensurate spin density wave order above z - 0.023, a spin glas in the 

narrow range between 0.16 < z < 0.19, and a ferromagnet for x < 0.19, with a 

rentrant sequence between 0.19 5 x 5 0.25. 

Figure 3.6 shows the susceptibility of samples of Cr-17.5 at% Fe and Cr- 

19.5 at% Fe. The two curves are remarkabiy similiar, both showing a sharp 

asymmetric peak at 30 K. Closer examination of the 19.5 at% Fe data reveals a 

slight shoulder between 40 and 60 K which is absent in the 17.5 at% Fe data. 

This shoulder gives a weak maximum in d x / d T  at 44 K (Burke et al., 1983). It is 

suggested that this point corresponds to a ferromagnetic phase transition. This 



Concentration (at% Fe) 

Figue 3 -5: h Iagiictic pliasc diagmii for Cri -,Fe. id+. Coiuplcx uiagiict ic prup- 
ertics are observeci in the hatched region. From Burke et ai. (1983). 
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is supported by neutron small-angle scat tering (Fig.3.6). So the sample Cr- 19.5 

at% Fe is a re-entrant ferromagnet with a Curie temperature Tc 44 K and a 

reentrant glas temperature Tsc i 30 K. The absence of a shoulder in Cr-17.5 

at% Fe suggests that it is a pure spin glas with Tsc = 30 K. 

Figure 3.7 shows several more concentrateci samples. They are aU typical 

reentrant ferromagnets. The arrows indicate the Curie temperatures determined 

by neutron small-angle scattering. 

ii) Sample preparation 

The Cri-,Fe samples were prepared by using a similiar procedure to that 

in section 3.1.2.. 99.99% pure Fe wire and 99.99% pure Cr chunks were obtained 

from Aldrich Chemical Company Inc.. A master d o y  containing x = 0.24 was 

prepared first and given an homogenizing anneal at Th = 1160 OC for tan, = 4 days 

and cooled slowly to room temperature. After the anneal, the ingot was spark-cut 

into small pieces, which were used to make the remaining aloys by dilution with 

pure Cr. Melting losses were negiigible(0.001 out of 4) at all times. After cleaning 

with a solution(see Table 3.1), the samples were spark cut fkom the individual 

ingots. Finally, these samples were sealed in vycor tubes under a partial argon 

atmophere (160 Torr) and placed inside a h a c e  at T,, = 1160 OC for 4 days, 

then quenched rapidly by breaking the tube in cold water. The parameters of the 

samples are shown in TabIe 3.4. 

Table 3.4: Crl-,Fe, samples. 

(&%) ax b xc (mm3) (mg) (OC) (days) (sj 
21.0 7.26~0.44~0.27 6.5 1130 4 1 



Figure 3.6: AC susceptibility of Cr-17.5 at% Fe and ferromagnetic Cr-19.5 at% Fe 
as  a function of temperature. The two curves have been cüsplaced for clarity. The 
Curie temperature determined by neutron smaü-angle scat tering (SAS) for the 
19.5 at% alloy is shown by an arrow. Aiioy concentrations (at% Fe) are indicated. 
Fmm Burke et al. (1983). 



Figure 3.7: Low-field magnetization of ferromagnetic Cr-19.9 at% Fe, Cr-20.8 at% 
Fc iud Cr-26 a& Fi: dloys. Mu. iictizatioii iu ai applitd fidd of 10 Oc is sbowii 
as a hinction of temperature. #he Curie temperatures determineci by neutron 
sniall-aigle scat teriug (SAS) are indicated by arrows. Alloy couceut ~ a t  ious (at ';/o 
Fe) are indicated. Froiii Burke et al. (1983). 



3.1.3 The FeNiMn System 

i) Magnetic properties and phase diagram 

Figure 3.8 shows the magnetic phase diagram of the FeNiMn ternary sys- 

tem. The system exhibits s wide range of fcc 7-stabiliw, with exceptions at  the 

corners of Fe (&Fe and low temperature emartensite), Mn ("Mn) and around the 

ordered phase of NiMa. 

Very recently Wuifes (1992) investigated the magnetic phase diagram of 

the system (F%.ssNio.s)i-rMnt (O 5 z 5 0.30) in detail. The rauits are shown 

in Figure 3.9. For low Mn concentrations (z < 0.02) the system behaves like a 

normal ferromagnet. At high temperatures there is a paramagnetic-ferromagnetic 

transition, characterized by a Curie temperature Tc below which the system is 

purely ferromagnetic. With increasing Mn concentration, the value of Tc de- 

creases rapidly. Between the Mn concentrations 0.02 < z 5 0.06, a second phase 

transition with a characteristic temperature Tm (5 20 K) is observed below Tc, 

and this phase c m  be interpreted as a mixed ferromagnetic and spin glas phase. 

In the Mn concentration range 0.06 5 x 5 0.14, a third characteristic temperature 

Ti, < Tm is observed. On cooling from high temperatures the system exhibits 

the foiiowing transitions: paramagnet ++ ferromagnet - rnixed ferromagnet and 

spin glass - spin glass. At a Mn concentration x = 0.14, the Curie temperature 

Tc and T,,,, reach the same value, and the ferromagnetic phase vanishes. This is 

a fmt triple point in the phase diagram. In the range of 0.14 5 x < 0.20 the 

system behaves as a pure spin glrrss. There is a transition from pararnagnetism 

to a spin glass at about Tm ss Ti, 50 K. There is a second triple point in the 

magnetic phase diagram at z a 0.20. For higher Mn concentrations x 2 0.20 a 

new characteristic temperature is observeci. The system shows teentrant antifer- 

romagnetic behaviour: t here is an antiferromagnetic phase, probably mixed with 

spin glas. components, and a spin glass phase at  low temperatures. 



Figure 3.8: Magnetic phase diagram of the ternary systeiu FeNihln in the €cc 7- 
pliase. Coutour lines for constant Nkl-taniperatures TN il1 tllc antiferro.olnilguetir 
AF-phase and Ctirie- tntiipcratiirr T,. in tlw fcrrornagnctic FM-phasr ara showti. 
Tlic dottd rcgioii uiiu'ks ü purc syiii-g-1:liiss SG-pliusc scparatiiig tlic AF- aucl FM- 
regions The hatched re 'on gives the area of a teentrant-spin-glass RSG- phase, 
wliicli occuis bclow tLc RI orclçriiig. Crosses i i iuk coiiiilic~cial Iiiviir iiiitl Eliiit-.ir 
compositions. Rom Wassermann (1980). 



Figure 3.9: Magnetic phme diagram for the aiioy system ( F Q . ~ N ~ . & - , M ~ ,  
extrapolatecl to B, = O (T) showing the dependence of the characteristic tem- 
perature (Tm, Tk. Tc) versus Mn concentration. Rom Wulfes et ai. (1992) 
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Figiin! 3.10: (a) AC siis(~cptil)ility vs. t~iiip!i.atiir~ ( t /  = 137 HA! Ho.,: = 5.5 A/iii) 
for (Feo.BsNio;is)o.ss&I~.l 13. The measurement without an externd dc field shows 
e fiiri-oiiiag~ictic-likc Hopkiiisoii ni,2uiiiiuiii just hclotv Tc iui<l tu1 èiiioiiidous I)rcd;ili 
d o m  below 60 K. Note the large idluence of the small externd dc field on the 
iriiipli t ude of tlic ~'aigi id.  (b) AC susçcptibility m. tcuiperüt urc iii cxtcriial ck. 
fields. At 2 mT there are two well defined peaks at TRi and Tc. With increasing 
cxtcrnnl ficlci thc l m -  tcnipcratitrc pcnk is spüt iiito two pcaks iiidiratirig n diffrrciit 
fielcl dependence of aiid TR. From Huck et aL(1988). 



F i  3 . :  Field clependrnce of the thrw characteristic temperatiim Tc TR 
and z. The extrapolations TR(B 4 0) and Z ( B  O) deliver different zero field 
vnlucs indicatiiig ai iritriiisic nnisotropy of tlic spin systcni. Froiii Hlirk ct al. 
(1988). 



The characterist ic temperatures Tc, Tm and Tm are ident ified by structure 

of the temperature dependence of the magnetization or susceptibility. The struc- 

ture is very dependent on the concentration of Mn and the external D.C. biasing 

field. An example is shown in Figure 3.10, for the A.C. susceptibility of a rentrant 

(Feoes5Ni o.35)o.ss7Mno. i3 ferromagnet in various D.C. biasing fields. The charac- 

teristic temperatures Tc > Tm (TR in the diagram) > xm(z in the diagram) are 

defined by the locations of the three peaks in susceptibility, extrapolateci to zero 

field, as shown in Figure 3.11. 

ii) Sample preparat ion 

The (F~.usi\l~.35-r)i-zM~z alloys were prepared by using a similiar proce- 

dure to that in section 3.1.2.. The pure elements 99.99% pure Fe wire, 99.997% 

pure Ni foil, and 99.99% pure Mn flakes were suppüed by Aldrich Chernical Com- 

pany Inc.. First, an d o y  of F ~ o . ~ ~ N ~ ~ . ~ ~  c d e d  INVAR was prepared. Then, by 

adding the appropriate amount of Mn into the LNVAR, we fabricated a master 

alloy with Mn containhg x = 0.187- The master d o y  ivas then given an homoge 

Nzing ameal at Th = 1100 OC for 3 days and cooled slowly to room temperature. 

After the annealing, a 1:5 solution of HN03/H20 was used to remove the si~rhice 

contamination from the ingot. The final concentration cf Mn in the master alloy 

was calculated after considering the high stabiii3 of INVAR, and attributing the 

meithg, e t c h h ~  and anneakg losses primarily to Mn, which vapourized relatively 

easily (Mn has a low boiling point as shown in table 3.1). Other concentrations 

oi Mn were prepared by diiuting the master alloy with pure Mn. 

The ingots were cold rolled into sheets, fkom which the samples were spark- 

cut. Finally, these samples were sealed in vycor tubes under a partial argon 

atmosphere (160 Torr) and placed into a h a c e  at  Tan, = 900 OC for 4 days, 

then quenched rapidly by breaking the tube into cold water. The parameters of 



the samples are shown in Table 3.5. 

Table 3.5: (Fe,,ssNb.35) i-+Mnz samples. 

(at%) axbxc(mm3) (mg) (OC) (da&) (i) 
18.7 5.33 x0.89 xO.81 30.0 900 4 1 

3.2 Apparat us and Measurement Techniques 

Magnetic phase transitions in disorderd magnetic systems often occur 

weil below room temperature, and the magnetic signals are weak. So we need a 

cryogenic environment and a hi& resolution, high sensitivity SQUID (Supercon- 

ducting Quantum Interference Device) probe to perform the measurements. In 

this section 1 will introduce the apparatus of the SQUID Magnetometer which 1 

used in my experiments. 

3.2.1 The 4He Cryostat 

The ~ e s ~ i r i n g  core of the apparatus is immersed in a liquid helium dewar, 

and connecteci to the vacuum sysiss,  maturement electronics and the tempera- 

t u e  control unit. Figure 3.12 shows the configuration of the "He cryoslat. At th5 

bottom, a wooden box fillecl with sand rests on four rubber feet (- 4" high and 

-- 8" in diameter). This base reduces the mechanical vibrations. The aluminum 

frame rests in the sand box and supports the nitrogen dewar by four aluminum 

rods, and also supports the helium dewar which is fixeci to the top of the frame. 

The sample chamber, the SQUID sensor, remote terminal board and pick-up coils, 

and the D.C. solenoid coiis are inserted together as a unit through the top of the 



helium dewar. The helium dewar is vacuum sealed at its upper flange. 

Two mechanical pumps, MP1 (Sargent Welch Mode1 1402) and MP2 (AC 

catel Model2033), and an oii vapour diffusion pump are used to produce a vacuum 

in the sample chamber in the helium dewar and in the vacuum space of the helium 

dewar. Figure 3.13 shows the flow diagram of the pumping system. Before the 

system is cooled, the helium dewar is flushed and pumped with N2 gas 5 to 6 

times using MP2, to reduce the partial pressure of air, and then Wed with N2 gas 

to slightly over one atmosphere. The vacuum space of the helium dewar is flushed 

and pumped with air 5 to 6 times using MP1, and then sealed under a partial 

vacuum (7-8 mTorr). This partial pressure is helpful in cooling the inside of the 

helium dewar when transfering the iiquid nitrogen in the beginning, and the smaii 

quantity of air freezes very quickiy after the temperature is lowered to produce a 

good vacuum between the w a b  of the helium dewar. The sample chamber is also 

flushed with N2 gas 5 to 6 times using MPl and pumped untii 100 K after the 

liquid nitrogen transfered. The pressure of the heliurn dewar is measured with a 

thermocouple gauge TC3. The pressure of the sample chamber is measured with a 

thermocouple gauge TC1 and an ionization gauge 1 (Mode1 270 Gauge Controlier, 

Gradle Phillips). TC2 measurcs the pressure in the vacuum space of the helium 

dewar . 

After the sample rod is inserted into the sample chamber, and the sample 

chamber is flushed with N2 gas, both MP1 and the diffusion pump are used to 

reduce the pressure in the sample chamber. 

N~~ the iiquiQ -:A..---- iuuu~efi is transferred into the nitmgen dewar and the 

sample begins to cool. The sample chamber is pumped continuously untii the 

temperature of the sample reaches 250 K (this requires about 2 hours), where 

the outgassing of the sample, due to mostly the G.E. varnish and Ag paint used 

to glue the sample to the sample rod, becomes insignificant. Then - 200 mTorr 



Figure 3.12: 'Ha  Crpstat. C ~ O I I ~  W. 1Zunt1 (1993). 
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Figure 3.13: Flow diagrwi of puiiipiug hies. €roui W. Runii (1993). 
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of NÎ exchange gas is leaked into the sample chamber to speed up the cooling 

process. It is important to cool the system slowly towards 77 K, since most of the 

significant contraction of materials occur between 300 K and 77 K. Cooling from 

250 K to 100 K requires about another 2 hours. As the system cools, the pressure 

inside the helium dewar drop below one atmosphere, and more N2 exchange gas 

must be added to the dewar to maintain a pressure of one atmosphere. When the 

temperature of the sample reaches about 100 K, the N2 exchange gas in both the 

sample chamber and the heiium dewar are removed and both spaces are pumped 

and Bushed 5 to 6 times with 4He exchange gas via MP1 and MP2 respectively. 

The Nz and 4He gas are supplieci through the gas handling system (GHS) labeled 

in Figure 3.13. Liquid helium can then be transfered into the helium dewar in 

order to cool the sample to 4.2 K. 

By pumping with both MP1 and the di&sion pump, the sample chamber 

can be evacuated to - 2 x Torr and the sample can be heated. The temper- 

ature of the sample can be varied between 4.2 K and 250 K, and controlled with 

a long term stability of f 5 mK between 15 and 250 K. In this regime, the tem- 

perature of the sample is stabilized by a balance between the cooiing power from 

the 4.2 K helium bath outside the sample chamber and the heater power from 

the heater. It is quite tricky to control the temperature between 4.2 K and 15 K, 

since this requires just the right amount of the 4He exchange gas to counteract 

the heat leak along the sample rod from room temperature. It is also possible to 

reach temperatures below 4.2 K by pumping the 4He bath with MP2 and con- 

trolling the pressure with a manostat, since the boiling point of the helium bath 

decreases with a reduction in its vapour pressure. 

In the magnetic relaxation experiments, which in theory require an instan- 

taneous " temperature quench", an appropriate amount (- 50 m Torr) of 4He 

exchange gas is leaked into the sample chamber at the paramagnetic reference 

temperature in order to initiate the cooling process and then gmdually pumped 



out as the desireci temperature is approached in order to minimize overshooting. 

The final pressure is determined by the specific measurement temperature Tm. 

Figure 3.14 shows the details of the insert of the 'He cryostat. A thin walled 

alurninum can covered with lead sheet provides shielding from stray magnetic 

noise, and encloses the SQUID remote terminal board, sample chamber and the 

pick-up coils. Two copper radiation shields are soldered onto the supporting 

rods to reduce liquid helium boiling caused by radiation. Figure 3.15 shows the 

configuration of the pick-up coils, A.C. coil, D.C. solenoid and the Ag sample 

block. The sample chamber was machineci from a solid rod of Emerson and 

Cumming 1266 Swcast e p o q  and giued with 1266 Stycast epoxy to one end of 

a one meter long, :"-outer diameter stainless steel tube of thickness 0.020". The 

sample rod essentially consists of !" -outer diameter, low thermal conductivity 

stainless steel tube approximately 1 meter long and of waU thickness 0.0 IO", with 

a silver sample block attached to one end. The sample is glued with GE. varnish 

which provides mechanical strength, and high-purity silver paint which provides 

good thermal contact (frorn SPI Supplies, West Chester PA) to the end of the 

pin on the silver block (0.060" diameter). A 25 heater is anchored aith G.E. 

vamish to the silver block. The temperature of the silver block and hence the 

sample is measured with a calibrateci silicon diode (Mode1 DT-470-SD-13 Lake 

Shore Cryotronics) which is glued with G.E. varnish near the end of the cylinder , 
and as close as possible to the sample. The temperature is controlled with a Mode1 

520 Cryogenic Temperature Indicator/Controiler (Lake Shore Cryotronics) . 

3.2.2 The Magnet izat ion Measusement System 

The pick-up coil and the D.C. field solenoid are al1 wound on a Stycast 

1266 epoxy former and designed to fit concentricdy about the bottom of the 

sample chamber. The two pick-up coils are counterwound, which reduces stray 



Figure 3.14: Iiisert of 'He crpstnt. h i i i  W. HUHU (1993). 



Figu~c 3.15: Coiifigurntiuu of tiic p i d  up c-oil. AC. c d .  D.C. sohiioitl aiid the 
Ag sarnpie block. Froai W. Rumi . ( 1993). 



interference, and the sample is situated in only one coi1 of the pair. The solenoid 

is speciaiiy designed to produce a uniform magnetic field over the volume of the 

sample and the astatic pair of pick-up coils. It produced a magnetic field of 46 

Oe/A. 

Figure 3.16 is the electronic block diagram of the measurement system. 

In magnetization measurements, the magnetic flux in the pair of pick-up coüs is 

coupled into the signal coi1 in the SQUID probe. The voltage output of the Model 

30 Control Unit is proportional to the change of magnetic flux in the pick-up coiis 

induced by a change in either the temperature or the magnetic field, and thus is 

proportional to the magnetic moment M of the sample. The voltage is measured 

with a RACALDANA Model 5003 digital voltmeter (DVM). In magnetic relax- 

ation experirnents, the decay of the sample magnetization (in volts) is coliected 

from the DVM by IBM PC (Datatrain -286) via an IEEE interface bus, and the 

magnetization M versus loglot is displayed on the screen at the same time. 

3.2.3 Calibration of The SQUID Magnetometer 

When measuring the magnetization of the sample with the SQUID we get 

an output siginal in volts. If we want the magnetic moment of the sample, we 

n e d  to convert volts to the electromagnetic unit (emu) of moment. We use a 

paramagnetic oxide Gd203 to calibrate the system. A cyhdrical sample holder 

was machined out of aliiminum, with dimensions of 0.56 mm interior diameter, 

and 1 mm outer diameter, and 8 mm long. The holder was filied with 4.8 mg 

of Gd203 powder (Aldrich Chemicai Co., Wisconcin), and was sealed with an 

aluminum cap using Stycast 1266 epoxy. The magnetization was measured at 

several fixeci temperatures T = 4.2, 20, 30, 40 K, in a static field Ha = 10 Oe. 

The magnetic moment of Gd203 for a given field H and temperature T can be 



Figure 3.16: Elcr twuic I)lo<:k tliag~èuii oF r lic SU UID AC Sus~t: l~toi i i~-  
ter/Mngnetometer. From W. Rum (1993). 



calculated from the foiiowing formula 

where N = 3.32 x IO*' atoms/g is the number of Gd atoms per gram, ~ ~ e f f  = 

(7.70 i 0.04)~~ is the effective magnetic moment of Gd, kB = 1.38 x erg/K 

is the Boltzmann constant, and 6 = -13 K is the Curie-Weiss temperature. Corn- 

parison with the measured moment in volts gives the calibration factor: 



C hapter 4 

Data Analysis and Discussion 

In this chapter 1 wii l  focus on o u  measurements of the relaxation of the 

t hermoremanent magnet izat ion (TRM) in some disordered magnet ic systems, and 

the anaiysis of the experimental data in the context of the models developed in 

Chapter 2, and 1 wili try to make connections between the experiments and the 

p hysical principles. The samples 1 have measured included: 

(a) F%.ssNb.ss-+Cr~ SYstem, with x =0.11 and x = 0.12 

(b) Cri-,Fe, system, with x = 0.21 

(c) (Feo.s5Nb.3S) l-,Mn, system, with x =O. 1 18 

The dimensions and masses of the samples are listed in Chapter 3. Al1 of them 

are rentrant ferromagnets, which means that there is sufnciently strong exchange 

bond disorder to cause the ferromagnetic ordering to collapse at low temperatures. 



4.1 Temperature Dependence of The Static Mag- 
net kat ion 

Measuring the profiie of the static magnetization M in a small field X 

versus the temperature, which gives the dc-susceptibility x&(T) = M / H ,  is one 

of the ways to study phase transitions, and to define the transition temperatures. 

So, we k t  measured both the field-cooled(FC) and zero-field-cooled(ZFC) mag- 

netizations, in a static applied field H,. 

Figure 4.1 (a) shows the FC and ZFC magnetizations for F Q . ~ ~ N ~ ~ . ~ ~ C ~ ~ .  

measured in an applied field Ha = 0.6 Oe. The FC magnetization was obtained 

by applying Ha at a reference temperature Tmf = 160 K within the paramagnetic 

phase, cooling in this field to 4.2 K, and then warming. The ZFC magnetization 

was measured by cooling to 4.2 K in zero field(the earth field is compensated), 

appling Ha, and then warming. The ZFC magnetization rises rapidly with d e  

creasing temperature, passes thmugh an ideetion point around 120 K then a 

peak around 100 Ky then drops off slowly before decreasing suddenly below 30 K. 

The FC magnetization is identical to the ZFC magnetization above 120 K. Below 

this, MFC >MZFC and MFC exhibits less weli-definecl structure. The diagram 

suggests that a paramagnetic-ferromagnetic transition talces place near T, 120 

K(the Curie temperature), and the possibiiity of a ferromagnetic collapse below 

about TR 22 K (vertical arrows in Figure 4.1(s)), which is consistent with the 

measurements of Deryabin et al. (1984). Above Tc, the magnetization curve falls 

off very slowly with temperature, which is a indication that this ailoy has more 

than one phase and perhaps some phases with a higher Curie temperature than 

120 K. But the phase with Tc 120 K dominates the alloy. Fig.4.l (b) shows the 

ac susceptibility(Deryabin et. al., 1984) of F~.55N~.25Cr0.L0, which shows a set of 

ferromagnetic critical peaks suggesting a Curie temperature of Tc 2 130 K and 

a set of low temperature peaks(see inset) which suggest a reentrant temperature 



Figure 4.2(a) shows the FC and ZFC curves for (F~.6sNio.35)o.s82b~no.1L8. 

It indicates that Tc 2 150 K and TR 70 K (verticai arrows in Figure 4.2(a)), 

which is consistent with the work of Wuifes et al. (1983). Fig. 4.2(b) shows the 

triple peaked structure which typically characterizes the ac suxeptibiliw in this 

reentrant system(Huck et al. 1988). The highest temperature set of peaks are 

ferromagnetic crit ical peaks. 

Figure 4.3(a) shows the FC curve for the same FeNiCr system, but for a 

dinerent concentration, corresponâing to F~Ni0.pCro.12. It indicates that Tc 2 

60 K and TR Y 25 K (vertical arrows in Figure 4.3(a)), which is also consistent 

with the work of Deryabin et al. (1984). Comparing with Feo.ssN~.2rCro.ii, we 

find that increaeing the concentration of Cr only changes the Curie temperature 

of the alioy but does not influence the glass temperature very much. Tc and TR 

corne closer as the concentration of Cr increases. Figure 4.3(b) shows the FC and 

ZFC c w e s  for Cro.79F%.2i. It indicates that Tc 70 K and TR U= 25 K (vertical 

arrows in Figure 4.3(b)), which is consistent with the measurements of Burke et 

al. (1983). 

So, in ail these systerns the magnetic response function xdc(T) and xoe(T) 

shows the abrupt decline at Iow temperat ures cus tomarily indent ined wit h the 

onset of the 'reentrant' phase. Of course, the structures observed in the static 

magnetization as a hinction of temperat ure and describeci above are really thermal 

blocking effects, and are thus only suggestive of phase transitions and do not 

constitute proof. In order to confirm the existence of a criticai transition, it is 

necessary to measure the ac susceptibility as a function of temperature in the 

presence of a stat ic biasing field. At a paramagnet ic- ferromagnetic transition, the 

ac susceptibiîity will exhibit a peak as  a function of temperature (Deryabin et al. 

1984; Huck et al. 1988). The temperature of this peak varies with as ITp - TcI - 



Figure 4.1: (a) The teiiiperoture depeudeuce of the statiç uiagiietiuitioii of 
F P ~ . ~ ! N ~ ~ ~ & ~ ~ . ~  1 rneasiired under hoth FC and ZFC conditions in a field H,, = 0.6 
Oe. The arrows indicate the Curie temperature Tc and the rentrant temperature 
TR. (b) AC suscept ibility of Fe~.~Nio.&r~.  Froiii Deiyabiii et al. (1984). 



Figure 4.2: (a) The temperature dependence of the static magnetization of 
(Feo.~Nio.~)o.cuizM~.118 rneasured under both FC and ZFC conditions in an a p  
pl id  field Ha = 1.0 Oe. The 8 2 ~ 0 ~ s  indicate the Curie temperature Tc = 150K 
and the rentrant temperature TR z 70K. (b) AC susceptibility of sample 
(Feo.aNb.&r&f~.113. Rom Huck et ai. (1988). 



Figure 4.3: (a) The temperature dependence of the static magnetization of 
F e ~ . ~ N b . & r ~ . ~ ~  m e s s u d  under FC conditions oniy in a field Ha .- 0.6 Oe. 
The arrows indicate the Curie temperature T, and the reentrant temperature TR. 
(b) The temperature dependence of the static magnetization of Cro.mFq,.2i mea- 
sured under both FC and ZFC conditions in an applied field Ha = 0.5 Oe. The 
arrows indicate the Curie temperature Te = 70K and the reentrant temperature 
TR z 25K. 
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HL'(7+J) and the amplitude of the peak varies with field as z(Tp) - H ( ' / ~ ) - ~ ,  

where y, p, and 6 are cntical exponents. P& like these have been obsewed in 

both the FeNiCr and the FeNiMn systems as shown in Figures 4.l(b) and 4.2(b), 

and are a symptom of long-canged ferromagnetism. 

The ferromagnetic-spin glas reentrant boundary is much more diflicult to 

identify. The ac susceptibility shows peab as well, as shown in Figures 4.l(b) 

and 4.2(b), but these have never been identifid as genuinely critical. Idealiy, this 

reentrant transition shouid yield a "divergence" in the nonlinear components of 

the susceptibility (Deryabin et al. 1984; Huck et al. l988), but this effect is often 

masked by domain w d  dynamics fiom the ferromagnetic phase. Perhaps the best 

way to recognize the onset of the reentrant spin glas  phase is through the aging 

effects in the relaxation response studied here. 

4.2 Experimental Relaxation Procedures 

The most interesting temperature range for us is around and below the 

reentrant temperature TR, where anomalous relaxation behaviour occurs. Figure 

4.4 shows the basic procedure for measuring the Tm1 relaxation: The sample 

is heated to a reference temperature T, in the paramagnetic phase above Tc, 

where a magnetic field H, is applied and kept constant. Then, the sample is 

cooled ''quickiy'' in the field to the measuring temperature Tm, below TR or T,. 

The typical cooling time in our experiments is about 10-15 minutes although it 

necessarily M e s  with (Tw - Tm). At Tm, we can perform four different types of 

relaxation experiments as illustrateci in Figure 4.5: 

a) After the sample has been cooled from the reference temperature Twf 

through Tc to the measurement temperature Tm, we simply wait for a length of 

time t,, then cut off the field, and measure the decay of the magnetization over 



four decades of observation of time 1s < t 5 104s. 

b) The sample is over-cooled from Tmf through Tc to a temperature Tm - 
AT, where we wait for a length of t h e  &, then raise the temperature to Tm, cut 

off the field, and measure the decay of the magnetization; 

c) The sample is under-cooled from Tmf through Tc to a temperature 

Tm + AT, where we wait for a length of t h e  I?,,,, then lower the temperature to 

Tm, cut off the field, and measure the decay of the magnetization; 

d) After the sample has been cooled fiom T,, through Tc to the measure- 

ment temperature Tm, we wait a length of time b, then cycle the temperature 

fkom Tm -r Tm + AT -r Tm, cut off the field, and measure the decay of the 

magnet izat ion. 

The measurement of the decay d e r  the waiting period t, spans the time 

window 1s to 10's. The total magnetization decay includes two parts: an instan- 

taneous decay which is mrsible,  foliowed by a slow decay which is irreversible. 

The second part is the t hermoremanent magnetization(TRh4) relaxation which is 

of primary interest to us. In order to measure accurately the influence of aging 

on the relaxation, a small field step is necessary, so that the magnetic response is 

linear in field. Thus H, should be typicaliy a few Gauss. The precise criterion for 

this field may d s e r  from system to system however(Chu et al., 1995; Djurberg et 

al., 1995; and section 4.8 in the chapter). If the field is outside the linear response 

range, then the field change will at least partiaily destroy the aged state, and alter 

the apparent age of the system and hence the true relaxation response. Such field 

effects will also be studied in this chapter. 



Fi e 4.4: Procedure for the TRhi decay measurement. The sarnple is cooled in f l  a eld Ha quickiy from above Tc to Tm. In our measurements "ordered" phase 
means reentrant spin-glass One waits a tirne t, at Tm before reducing the field to 
zero (or to the trapped field). There is a rapid decay, followed by a slow decay of 
the irreversible part (TRM) of the magnetization. From Chu et al. (1995). 
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Figure 4.5: Types of relaxation experiments: a) Ordinary case: both aging and 
mcasiircmcnt nt T,,&; h) Ov~rrooling casc: aging nt T,,, - AT and rnrmiircimmv 
at Tm; c) Undercooling case: aging at Tm + AT and measurement at Tm; ci)  
Cycliug CUC: agiug at T,,,, ç cliiio- G, -t Tm +AT - T,,& ÿ i d  iii<.ùsui.cuciit iit T,&; 
Temperature shihing h m  Jm I XT -. Tm takes about 150 seconds. Temperature 
cyrling takm ahoiit 3 0  srronds. 



4.3 Relaxation Dynamics: A S t ret ched Expo- 
nential and A Power Law Analysis 

Themoremanent relaxation isotherms of type (a) in Fig.4.5 section are one 

of the important experiments to quantitatively describe the relaxation response 

of a spin glass. Theoretical analysis of the data, by fitting to the predictions of 

various models, can help us to understand the physical mechanisrns which govern 

the approach to equilibrium and the response to a step function excitation in 

disordered magnetic systems. 

Figures 4.6 - 4.8 illustrate typical TRM relaxation isotherms for 

(Feo.~Nb.3S)o.ee2M~.118. The dots are the data points and the solid curves are 

t heoretical functions. These isothenns can be grouped into two thermdy distinct 

regions with completely different relaxation characteristics: 

a)  For temperatures T, 5 Tg cz ?O K in Figures 4.6 and 4.7, which corre- 

sponds closely to the reentrant phase, the relaxation isotherms al1 exhibit a profile 

which may be dacribed qualitatively as some portion of an S-shaped cuve with 

an idlection point (vertical arrows) , and quantitatively by the superposition of a 

stretched exponential and a constant: 

This empirical representation, which is frequently invoked in the analysis 

of pure spin-glass relaxation (Hoogerbeets et al., l986), provides an excellent 

description of the experimental data over the entire observation window as shown 

by the solid curves in Figures 4.6 and 4.7. The best-fit values of the parameters n 

and T listed in Table 1.1 are indeed typical of pure spin glasses (Hoogerbeets et al., 

1986) ; in psrticular, the exponent n increases with increasing temperature and the 

trend towards unity indicates that the system is approaching its glass temperature. 



The necessity to supplement the stretched exponential with a substantial baseline 

term Mo, which at low temperatures accounts for approximately 90% of the entire 

remanent signal, is consistent with vector spin models of bond-disordered systerns, 

which predict a longitudinal ferromagnetic spontaneous magnetization to coexist 

wit h transverse spin-glas freezing (Mitchler et al., 1993). 

Furthermore, the relaxation response in this regime is not unique, but 

rather exhibits a dependence on system age t, which indicates that the low- 

temperature phase is a nonequzlibtium phase. This is iiiustrated in Figure 4.7 

for (Feo.65N~.3s)oss2)M~.118 for temperature Tm = 57 K and for a sequence of 

wait t h  in the range 60s 5 t, 5 10800s; the effect is clearly visible in the 

relaxation rate S(t) = -aMR(t) /a  ln t, shown in Figure 4.7(b), as a propagation 

of the maximum, corresponding to  the inflection point in MR(t) ,  towards longer 

obervation times with increasing system age. The solid curves in Figure 4.7(a) 

are best fits to Eq. (4.1). An inspection of the corresponding parameters in Table 

4.1 contirms that the aging process primarily affects the location of the idection 

point (r), without significantly altering the overail shape (n), at least for wait 

times t, 5 104s. 

(b) Over the temperature range T, 5 Tm 5 Tc, which is essentially co- 

incident with the ferromagnetic phase, the curvature of the relaxation isotherms 

is uniformly positive (Fig.4.8) , and all are accurately described by an empirical 

function consisting of the superposition of a simple power law and a constant 

(solid curves); 

with best-fit parameters for (~eo.ssNb.35)o.~2M~.118 listed in Table 4.2. The func- 

tional form of the decay and the values of the exponent m are both typical of glassy 

relaxation dynamics in the extreme equiiibriuni limit of infinite age (Lundgren et 

al., 1986). In fact, in contrast to the reentrant phase, the isotherms in this regime 



e-uhibit no measurable dependence on system age, for wait times t, < 10" s, 

indicating t hat , wit hin the slow-cooling constraints of the current investigation, 

equiiibrium is established far more rapidly in the high-temperature phase. This 

behavior is also consistent with that observed in "good" random ferrornagnets, 

like Pdo.sssF~.oir (Mitchler et al., 1993), which is not reentrant and has "ideai" 

Heisenberg critical exponents, and with the droplet fluctuation mode1 of Huse 

and Fisher, which predicts (Huse and Fisher, 1987) a power-Iaw decay of the 

average temporal autocorrelation function in Ising ferromagnets with quenched 

bond disorder. 

A power law decay of thermoremanent magnetization of ferromagnets has 

been predicted theoretically. For example, in the droplet theory of Ising fer- 

romagnets (Huse and Fisher, 198?), Huse andFisher argued that the long-time 

equilibrium dynamics of long-range ordered Ising ferromagnets axe dominateci by 

the creation and annihilation of long-iived droplet fluctuations. Two types of dis- 

ordered ferromagnets are considered: mndom-exchange disorder and mndom field 

disorder. One important dynamic quantity which they computed is the spatial - 
average of the temporal autocorrelation function C(t) 

where < ... >t  denotes the infinite time average, and < ... 2, is the configuration - 
(spatial) average. The time dependence of C(t) depends on the dynamics of the 

dropIet fluctuations. 

According to Huse and Fisher (l98'1), the ftee energy FD of a droplet 

fluctuation consists of the free energy of the domain wali plus the free energy 

cost of flipping the interior spins of the domain when the system is subject to a 

random or uniform field. In order to create or annihilate a droplet, a free energy 

barrier Bo has to be surmounted, and the lifetime of the droplet fluctuation 



is activated according to 

For long times t ,  ody those long-lived droplets with r' 2 t contribute significantly 

to Ci ( t )  and the long time dynamics are dominateci by these so-cded mre droplets. 

For simplicity Huse and Fisher (1987) considered a roughly circular or 

sphericai droplet of radius r,  which has an average free energy FD &en by 

where a is the average surface tension and Ad is the surface of a unit circle or 

sphere in d dimensions. Huse and Fisher suggested that the activation barrier BD 

is proportional to e-', 

with f to be defined as a ratio of the actual free energy to the average Eree energy 

of a droplet. Thus the lifetime for a droplet is given by 

For a given f ,  the radius of the long-lived droplets can be obtained using r~ = t7  

and is given by: 

where to is a rnicroscopic tirne. Eq(4.7) and Eq. (4.8) indicate that the lifetimes of 
- 

the droplets which dominate the long time dynamics of C(t)  are exponentidy rare 

in ln t , and the spatidy averagd autocorrelation function becornes 



that is, a power-law decay of the autocorrelation at long times for a random- 
- 

ezchange system The exponent x(T) will depend on the temperature T, and on 

nonuniverd details of the system. 

%r :andom-fie!! systoms, an extra term due to the random fields acting 

over the entire interior of the droplet has to be added in Eq.(4.5), whüe Eq.(4.6) 

and Eq(4.7) stiii keep the same form. viz, the radius of the long-lived droplets 

varies as a function of ln t. The spatiaily averaged temporal correlation hinction 

where y = (d - 2 ) / (d  - 1) and h depends on the detaik of the distribution of 

the random-field free energy, and on the temperature. The decay described in 

Eq.(4.10) is slower than that in Eq(4.9). Notice that Eq(4.9) can be inciuded 

in Eq(4.10) by setting y = 1. This is not surprising since in both cases, the 

relaxation times of the long-lived droplets are exponentially rare in ln t. The 

exponent y simply reflects the nature of the randomness. 

A stre tched exponent i d  relaxation function has also been predicted t h e  

reticaliy. One such theory by De Dominicis, Orland and Lainee (1985) is based 

on the mean field theory of Sherrington and Kirkpatrick. According to Parisi's 

solution of the infinite-range S herrington-Kùkpatrick model, the spin glas is char- 

acterized by a large number of quasi-degenerate states, and the free energies Fa 
of these degenerate states are independent random variables. The equilibrium 

probability for the state occupation is 

where Z = C, exp(-PF,) and Fa = Fo + fa( fa is a small fluctuation). Since it is 

assumed that ail the Fa are quasidegenerate, the probability law for the random 



variable Fa, or the small fluctuation fa, is an exponentiai or can be linearized into 

an exponential around its fkozen value. 

De Dominicis et al. used a master equation which governs the relaxation 

to equilibrium of the state occupation P,(t), and employed detailed balance and 

a simple assurnption for the transition probability, to show that the probabiliw 

x(qM), where qnf is the Edwmds-Anderson self overlap, decays as 

where vo is a finite non-universal constant. While the stretched exponential b e  

haviour is promising, it is not clear that the parameter x is directly related to the 

thermoremanent magnetization, which is measured experimentally. 

Another mode1 which predicts stretched exponential behaviour is a mode1 

of heirarchically constrained dynamics by Palmer, Stein, Abrahams and Ander- 

son (1984). The simplest way to obtain a relaxation response d8erent from the 

conventional Debye relaxation, q( t )  = g exp(-tir), is to postdate a statistical 

distribution of relaxation times with a weight function w(r )  

This approach tends to be rnicroscopicaily arbitrary, and also assumes parallel re- 

laxation, where each degree of freedom xi relaxes independently with a character- 

istic time ri. Palmer et al. proposed a series approach involving many sequential 

correlateci activation steps. The theory assumes that strongly interacting systems 

are characterized by which, for example, prevent atom or cluster A 



from moving until atom or cluster B first moves out of the way. The theory ais0 

involves a heirarchy of degrees of freedom, with faster degrees of freedom succes- 

sively constraining slower ones, so that some atoms or groups of atoms are only 

able to move appreciably when several of the faster ones happen to move in just 

the right way, leaving a hole or a weakened bond. In particular, Palmer et al. 

consider a discrete series of levels n = 0,1,2, .. . with level n represented by Nn 

Ising spins Si. Each spin in level n + 1 is only free to change ib state if p,, spins 

in level n attain one particular state of their 2'2 possible states. The relaxation 

function is computed from 

where w,, = N = N, and 

The theory contains two unspecined functions F(, and w,(orl\l,). If it is 

asswned that 

then Eq44.15) yields, when replaced by an integral: 

where ,û = 1/(1+ h) and 



While the two stretched exponential theories descnbed above place the 

Kohlraush stretched exponential on a more fian theoretical foundation, neither 

contains any mechanism for the aging process, which we regard as perhaps one O t 

the most crucial constitutive features of a spin glass. Consequently we have not 

pursued this analysis any further here. 

The relaxation isotherms for the remaining samples have simiiiar features 

to those for ( F ~ . 6 5 N ~ 3 S ) o . s 8 2 M ~ n o 1  and are shown in Figures A. 1 -A. IO, A p  

pendix A, along with the best-fits to the stretched exponentiai and power law 

functions. The best-fit parameters are listed in Tables 4.3 through 4.8. If we 

inspect the parameters in these tables, we find that al1 systems exhibit similiar 

systematics: a) the baseline Mo decreases with increasing temperature T and wait- 

time b; b) Mi shows the opposite behaviour to Mo; C) n increases nom about 

0.6 at a temperatures far below Tg to around 0.9 at  temperatures close to Tg, but 

appears to be independent of wait time &; d) T always corresponds to the in8ec- 

tion point in the relaxation isotherms. r decreases with increasing temperature, 

and increases with increasing wait time t,. The sensitiviw of T to t, becomes 

not iceably weaker at higher temperatures. 

The errorbars in the parameter tables are the standard deviations of the 

parameter estirnates by a standard least-square fitting procedwe(Press, 1992). 

The same procedure was used for dl of the mode1 fits in this thesis. 



Figure 4.6: Themoremanent relaxation isothenns of ( F Q . ~ N ~ ~ . ~ ~ ) ~ . ~ ~ M ~ ~  for 
a sequence of temperatures Tm 60 K(TR -- 70K) and for a common wait time 
t, = 60s. The solid curves are fits to Eq(4.1) and vertical arrows mark the 
characteristic times (inûection points) r. 



Figure 4.7: (a) Wait-tirne dependence of the themoremanent relaxation of 
(F%.ssNio.3s)o.8a2iM~.l18 at Tm = 57 K. The solid curves are fits to Eq(4.1) and 
vertical arrows mark the characteristic times (inflection points) r. (b) The relax- 
ation rates S(t) for the isotherms in (a). 



Figure 4.8: Themoremanent relaxation isotherms of (F~.aNio.3s)o.ssah(I~no118 for 
a sequence of temperatures Tm 2 65 K(T, = 150K) and for a common wait t h e  
t ,  = 60s. The soiid c w e s  are fits to Eq(4.2). 



Table 4.1: Best-fit parameters of ( F ~ . M N i o . 3 5 ) o . ~ 2 M ~ .  to the stretched 
exponential in Eq. (4.1). 

Table 4.2: Best-fit parameters of (Feo.asNio.3s)o.sszM~no 18 to the power law 
in &.(4.2). 

T 
( K) 

t w  

(sec) 

T 
(K) 

hl0 
(10"emu/g) 

L 
(sec) 

Mi 

(10-~emu/g) 

 IO 
(10-3emu/g) 

Mi 
(10-~emu/g) 





Table 1.1: Best-fit parameters of Fe0.65Nb.24Cr0.LL to the power law 



Table 4.5: Best-fit parameters of ~.ssN~.23Cro.12 to the stretched 
exponential in Eq. (4.1). 

T 
(K) 

L 

16 
18 

tw 
(sec) 

300 
300 

MO 
(~10-'emu/g) 

3.482 & 0.002 
3.382 & 0.002 

Mi 

( x  10-'ernu/g) 

0.574 =t 0.002 
0.741 =t 0.003 

n 

0.589 =t 0.001 
0.602 f 0.002 

T 

(sec) 

2025 & 23 
1225 k 17 



Table 4.6: Best-fit parameters of to the power law 

Table 4.7: Best-fit parameters of Cro.nFeo.2i to the stretched 
exponentiai in Eq. (4.1). 

Table 4.8: Bat-fit paxameters of Cro.79Fm.21 to the power law in Eq(4.2). 

T 
(K) 

26 
30 

tu 
(sec) 

60 
60 

hl0 
(10-3emu/g) 

366 =t 3 
166.8 k 0.4 

Mi 
(10-~emu/g) 

11 3 
124.1 Az 0.4 

m 

0.01847k 0.00002 
0.04397& 0.00001 



4.4 Relaxation Dynamics: A Random Trap Anal- 
ysis and Scaling of The Relaxation Isotherms 

Bouchaud's random trap model is based on the concept of a very rough 

energy landscape with many local minima corresponding to metastable configura- 

tions, surromdeci by high energy barriers, each of which can trap the system for 

a time r. For a broad distribution $(T) , such as that associateci with the ran- 

dom energy model (REM) (Demda, 1981) or the standard mean field SK model 

(Sherrington and Kirkpatrick, 1975): 

< T > diverges, and ergodicity is broken, in the sense that the system is essentiaiiy 

never able to probe the deepest traps within the experimental observation window 

as it evolves towards eqwlibrium. In the extreme non-ergodic limit of 'short' wait 

times, the model predicts a decay of the form: 

with a crossover from stretched exponential behaviour for t « t,, to a power law 

behaviour for t » t,. 

When z > 1, the distribution of Metimes @(T) in Eq(4.17) decays rapidly 

enough for rqb(r) to become normalizable, < T > is finite, and the model predicts 

that the deepest trap encountered during the waiting thne t, is T,, << tw, so 

t hat the system equilibrates essentidy instaneously after the quench. In fact , by 

following a procedure analogous to that describeci by Bouchaud for x < 1, we have 

been able to show that the relaxation dynamics in the x > 1 regime is determined 

by a microscopie cut-off time ro (rather than by the macroscopic waiting time t,), 



and obey a simple power law: 

Applying the extreme non-ergodic hinct ion (4.18) to the relaxation isotherms 

of Fk~.~~Nio .~&ro .~~ we can obtain quite good fits without the need to add an "ar- 

tincial" constant baseline. In fact, the additional of such a baseline degrades the 

quality of the fits. Isotherms for Tm c Tg are all compatible with Eq.(4.18), and, 

as an illustration, the solid curves in Figures 4.9, 4.10 and 4.11 are the best fits 

of the data for F%6SNio.uCro.ii to this expression, with the best fit parameters 

m, y and z listed in Table 4.9, and with t ,  assigned its ezperimental value. The 

shape of the theoretical curves (4.18) is parameterimi exclusively by x,  which 

is less than unity and increases monotonicaily as T -* Tg. Its physical signin- 

came wiiI be discussed shortly. All three fitting parameters do vary with system 

age. Nevertheless, these fits lend considerable credibility to the proposed aging 

mechanism, which is menifesteci explicitly through a single, experimentally-defined 

parameter t,. The systematic deviations apparent in some of the isotherms at 

long observation times, particularly in younger versions of the system (t < 300s) 
where the data tend to exhibit more curvature than the t heoretical expression, 

are qualitatively similar to those encountered in pure spin glasses. This may be 

a consequence of some of the simplifying approximations (such as the assump 

tion of constant G(r/t,) in equation (2.108), or perhaps the specinc form of the 

cut-off function exp(-tir) introduced in equation (2.102). or may have a phys- 

ical origin related to a distribution of subsystem sizes and ergodic times which 

we will discuss later. Nevertheless, the essential features of the time dependence 

of the t hermoremanent decay in the low-temperature glassy phase, including its 

variation with temperature and system age, are replicated remarkably well by a 

picture in which ergodicity is broken by a divergent mean trapping time, which 

prevents a system of f i i te  experimental age tw from exploring all of the available 



configuration space. 

For temperatures Tm > Tg, the relaxation isotherms are accurately de- 

scnbed by the power law decay in equation(4.19), which however must be super- 

posed on a constant baseline, m(t) = Gt-(=-l) + c, where the x - 1 is the m in 

equation (4.2). For the high temperature data, al1 of the rn exponents are between 

O 5 m 1, so z is larger than unity in this tegime. Thus, the relaxation response 

in the high-temperature phase, where the d y n d c s  are observed to be statzmary 

(that is, age-independent), is analyticdiy consistent with the model prediction in 

the extreme equilibriurn limit where the system ergodicaily probes a phase space 

for which the deepest traps of any significance are T,, < &, due to the form of 

the trapping distribution. 

The preceding analysis offers new insight, from a dynamical perspective, 

into the phenomenon of sequential transitions in ferromagnets, as weil as empirical 

support for a recent model of glassy dynamics based on a mechanism of anomalous 

dinusion in a disordered energy landscape. 

The gower law distribution function (4.17) for the lifetime of the metastable 

states foliows directly from an exponential distribution of free energy wells, P( f )  = 

(x /T)  exp[x( f - fo)/T], where fo is a reference level, which is a charac teristic of 

both the standard SK model (Sherrington and Kukpatrick, 1975) and the REM 

(Derrida, 1981). Thus the parameter z(T) provides information on the structure 

of phase space. In the REM, z = T/T,, the energy landscape is temperature 

independent, and configuration space consists of many completely uncorrelateci, 

but perfectly frozen metastable valleys at Tg, while, in the standard SK model, x 

has a non-trivial temperature dependence and decreases towards zero as T -. Tg, 

meaning that only a relative few states out of the many available in Parisi's 

hierarchical replica s ymmetry breaking scheme ( Mezard et al., 1986) daminate 

the properties of the system in this b i t .  In the fits to ail the samples studied 



here, z increases with temperature through the glassy phase, thus offering some 

prelirninary support for the REM picture, although the temperature dependence 

is not linear, in agreement with the recent observations of Bouchaud(l992). 

Above Tg, as we bave said, the data are no longer compatible with the 

extreme non-ergodic expression in equation (4.18) and, more important ly, aging 

ceases to be obsemable ezpenmentdly. However, the random trap formalism is 

capable of replicating the time dependence of the decay in this regime as well, 

provided that z is allowed to exceed uni@. Morever, this is precisely the con- 

dition which reduces aging effectç to negligible proportions in the model, and 

which guarantees an equilibrium relaxation response for any macroscopic wait 

time t, > ro - 10-lZ S. We emphasize that this situation is physicdy quite 

distinct from the scenario of 'interrupted aging' for x < 1, according to whicb 

equilibriurn is achieved only when the wait time is long enough to exceed an 

ergodic time t,, .- roSW, where S is the total number of metastable states 

(Bouchaud, 1992). Although the model offers little evidence concerning the types 

of frozen spin configurations which are expected to yield an energy landscape with 

x > 1, the current analysis, coupled with the observation of 'stationary' power law 

decay, with similar exponents, in the thermoremanence of 'good' (non-reentrant) 

random-exchange ferromagnets like PQ.oe6Feo.olr (Bouchaud et al., 1994), suggests 

that this may be a constitutive ieature of a state with predominantly ferromag- 

.net ic order. 

The same analysis based on Eq(4.18) of the random trap model has been 

performed on all the other samples. The best-fit parameters are listed in Tables 

4.10-4.12 and corresponding fits are shown in Figures B. 1 -B.5, Appendix B. This 

expression is only valid for temperatures Tm below the g las  temperature Tg. So, 

when Tm is very close to Tg, the description of the TRM isotherms by Eq(4.18) 

encounters obvious difFiculties, for example at Tm = 21 K for Fq-,.s5Nio.z.&ro.~t 



(Tg 22 K). and at Tm = 24 K and 25 K for F~eoô5Nio.wCro.iz (Tg 2 25 K). But, 

generally speaking if we aiiow w, y, and z to vary keely with temperature and 

wait t h e ,  we can fit all of the themoremanent isotherms very well. An inspection 

of the parameters in tables 4.9-4.12 shows that y increases with temperature and 

wait-tirne, and has a magnitude of around IO-* for aii of the systems. x &O 

increases as the temperature increases, but depends only weakly on the wait-tirne 

tt" 



Figw 4.9: Radoiii Trap AIodcl fits uf Eq. (4.18),solid çulws) to tlieruomuiaieiit 
relaxation isotherms of Feo.ssNio-24Cro.i 1 for a sequence of temperatures Tm 22 K 
and for a coioiuiuoii wait tiuie L, = 60s. The vcrticd ilrows muk the chi~~'actcristic 
times (inflxtion points) T. 



Figure 4.10: (a) Randorn Trap Mode1 fits of Eq. (4.18)(solid curves) to the wait- 
timr deprndcncc of thr thcrmorcm~ncnt rdaxation of F Q . ~ ; ~ N ~ ~ . ~  [Cro. 1 at T,,, = 
17 K. (b) Same sample and analysis as in (a) but for Tm = 19 K. 



Figurc 4.11: Raiidoui Trap hIoclcl fits of Eq. (<l.lB)(solid cuives) to the wdt-tiiiic 
dependence of the therrnoremanent relaxation of F e ~ . ~ N i ~ . ~ & r ~ .  at Tm = 21 K. 
The tittirig quolity is uot as good as Tm = 17 K aiid 19 K. Fuiictiou(4.18) would 
not work for the isotherm with Tm = 21 K and t,,. = 2 h. 



Table 4.9: Best-fit parameters of F e ~ . ~ N i ~ . ~ ~ C r ~ . ~ i  to the random trap mode1 Eq.(4.18). 

T 
(K) 

t w  

(sec) 
Mo 

( x  IO-*emu/g) 
Y 

( x ~ o - ~ )  



Table 4.10: Best-fit parameters of F ~ o .~~&J.~~C~O.~~ to the random trap 
mode1 Eq. (4.18). 

T 
(K) 

16 
18 
20 

t w  

(sec) 

300 
300 
300 

Mo 
( x  10-~emu/g) 

405.03 0.02 
413.51 =t 0.03 
434.84 =t 0.04 

Y 
(x  10-~) 

24.20 3z 0.02 
31.18 0.02 
42.81 k 0.02 

2 

0.578 k 0.001 
0.656 k 0.001 
0.686 J= 0.001 



Table 4.11: Best-fit parameters of Cro.tsFeo.21 to the random trap model Eq.(4.L8). 

Table 4.12: Best-fit parameters of (~eo.6565N~.35)o.aazM~.118 to the randorn trap 
model Eq.(4.18). 

T 
(K) 

Function (4.18) only holds in the extreme non-ergodic limit, where the pa- 

rameter x is supposed to depend only on temperature and is independent of the 

t w 

(sec) 

T 
(K) 

40 

Mo 
( x  10-*emu/g) 

tw 
(sec) 

60 

-Y 

Mo 
( x  10-3emu/g) 

131.80 & 0.01 

7' 

0.015 I 0.001 

x 

0.29 =t= 0.01 



wait time k,  as is the parameter y. However, the previous fits show that both y 

and x vary with t,, and this dependence suggests some flaw in the analysis. It is 

possible to overlook this discrepancy and to regard the parameters as being a p  

proximately constant. If the response of a real system was purely nonergodic then, 

for a given temperature T, the relaxation data for Merent t, should scale ont0 

a universal cuve when plotted as a hnction of t/t,, since the predicted response 

m(t, t,)/% in Eq. (4.18) depends only on the reduced variable t /k .  Figures l3(a), 

14(a) and 15(a) show the measured themoremanent decay, normalized to its value 

m, at t = 0, and plotted versus log(t/t,), for three temperatures T =17 K, 19 K. 

and 21 K, and severd wait times t, = lm, 3m, 5m, 10m, 15m, 30m, l h  and 2h. 

The value of Q was determineci by using the previous fits to the superposition of 

a stretched exponential and a constant in Section 4.3, and extrapolating to t = 0. 

The lack of universali@ and the change in the relaxation rate for the dif- 

ferent tw data is obvious. Fiirthermore, if we were to fut x and y for a given 

temperature T and dEerent wait times tw , this nonergodic function would not 

fit the data very well at au, as shown in Figure 4.12(a). Here, we have used the 

values for the parameters x and y, obtained from the best fits to the t, = 60s 

data, because the youngest set of data satisfies the nonergodic condition best. If 

we generate theoretical curves nom function (4.18) for the same x and 7 but dif- 

ferent t, and compare with the experimental data in Figure 4.12(a), we do not get 

a satisfactory result. The systematic deviations clearly get worse as t, increases. 

In fact, the parameter 7 in equation(2.109) is actually predicted to decrease a 

little bit as tu incresses. So, the situation might get even worse if we were to use 

the more accurate exponent y from this model, that is, choose one by fitting a 

particular tw curve, and then calculate the other Ys. 

These failures to describe the data using only the extreme nonergodic func- 

tion suggest that the r d  system does not age as rapidly as the nonergodic function 

predicts it should, and that the magnetization m(t, t,) should be represented as a 



superposition of independent response functions, each weighted according to a dis- 

tribution P(t,,) , as we discussed in Section (2.6). If we ais0 invoke the assumption 

that the crossover from nonergodic to ergodic behaviour occurs suddeniy, which is 

equivalent to assuming that the m a t  probable ergodic time t,, = qSLP is also 

the - only ergodic tirne for a subsystem which occurs with any appreciable proba- 

bility for any given subsystem, and that the crossover takes place when t ,  = tmg 

(rather than when t + t, = t,,, as it actualiy does (Bouchaud et al., 1994)), then 

each term in the superposition is either purely ergodk or purely nonergodic, and 

the total magnetization is given by function (2.112). Now, the t/tw - scaling is 

corrected by a factor 1 - F, i.e., 

Figures 4.13(b), 4.14(b) and 4.15(b) show the corrected scaling plots, and Figure 

4.12(b) shows the corrected fits to the relaxation isotherms. Both these fits and 

the universal behaviour are remarkably improved, and the "best-fit" parameters 

are listed in Table 4.13. The correction factor 1 - F is numerically calcuiated as  

described in Section 2.6. The systematic deviat ions observed in Figure 4.12(a) 

are removed, aithough there is clearly some mismatch in slopes which may be due 

to our choice of a Gaussian distribution. Inspection of Table 4.13 shows that (a) 

the width of the distribution of ergodic times is relatively large (O,, 2) and 

temperature independent, (b) the mean of the logarithrn of the ergodic time is 

relatively small (loglo t,, 5 2) and decreases with increasing temperature, which 

is consistent with the obsenred tendency of the system to age less and thus to 

approach equilibrium faster as T increases, (c) the parameter x, which describes 

the structure of configuration space, increases with increasiog temperature and 

approaches unity as T + T i ,  which is more consistent with Derrida's mode1 

(Derrida, 1981) of random energy levels than with Sherrington and Kirkpatrick's 



mode1 (Shemngton and Kirpatrick, 1975) of random exchange bonds, in agree- 

ment with the conclusions reached by Bouchaud and coworkers (Bouchaud et al., 

1994). 

For our particular choice of distribution, the mean ergodic t h e  & can be 

caiculated lrom 

which yields values of & ranging from k ( l 7  K) - 9 x 10% to f,, (21 K) 

.- 9 x 104s, listed in Table 4.13, once again comparable to those deduced by 

Bouchaud et al. (1994). 

The same scaling analysis was performed for the remaining samples and 

the results are coilected in Appendix B. For Feo.6sNb.23Cro.12, Tm = 20 KT 21 K, 

22 K, and 24 K, and t, = 5m, 15m, 30m, lh,  and 2h, the scaling analysis yielded 

the best fit scaling parameters listed in Table 4.14, and the s cahg  plots shown 

in Figures B.6-B.9; For Cro.19Fe0.21, Tm = 14 K and t, = lm, 5m, 15m, 30m, and 

lh, the best fit scaling parameters are Listed in Table 4.15, and the scaling plots 

are shown in Figure B.lO; For (F~.MNio.3s)o.882M~.118, Tm = 48 K, 52 K, 56 K 

and 57 K, and t, = lm, 2m, 3m, 4m, Sm, 10m, 15m, 30m, lh, and 2h, the best 

fit scaling parameters are listed in Table 4.16, and the scaling plots are shown in 

Figures B. 1 1-B. 14. A comparison of the scaling plots for these different systems, 

shows that the scaling analysis works a little better in the systems F@.65Ni0.24Cro.ll 

and (Feo.6sNio.3s)o.saal\rI nono1 18. The relaxation isot herms in these two systems have 

somewhat weaker curvature which makes them more compatible with the shape 

of the theoretical functions. 



Figure 4.12: (a) Fits (solid curves) of Feo.ssNio.2rCro.i for Ttn = 19 K arid for 
diffmnt wait t i rne  t,,. toEq.(4.18) with fixd 7. = 0.0130 and .7: = 0.882. m,-, is 
chosen by extrapolating stretched exponential fits to t = O. (b) Fits (solid curves) 
of T, = 19 I< for diffcrciit mit  tiiiics t, to Ec1.(2.112) witli tlic fiscci 7 aiul ç 

values in Table 4.13. mo is 3.378, 3,361, 3.376, 3.380, 3.359 and 3.369 emu/g for 
t ,  = 60s. 300s. DO*: 1800s. 3600s: 7200s rcspcrtiwly. 



Figure 4.13: (a) Scaliiig of C ~ O . ~  1 isotlierns at T,,, = 19 K for different 
mi t  tiiiics tu, as niIrnu vcisus t /&. ~ I ( U  is choscu by tlic ciupiricül strctclicd 
exponentiai model. (b) Scaling of F Q . ~ N ~ ~ . ~ ~ C ~ ~ . ~  isotherms at Tm = 19 K for 
<lifFemiit wair tiuies t, by Eq.(2.112). 71% is 3.378, 3.361, 3.37G, 3.380, 3.359 aiid 
3.369 mu/g for C = 60s. 300s. 900s. 1800s. 3600s. 720s rcrrpectiwly. Other 
parameters are in Table 4.13. 



Figure 4.14: (a) Scaliiig of F'ea.tr,Nia2.1Crn.i 1 isothornis at T,,, = 17 K for rliffemit 
wait tiiiiu &, as nc/iih vcrsus t/t,.   TI^ is ciwseii by tllc ciupii-icd strctch~d 
exponential model. (b) Scaiing of Fm.A5Nio.2&ro.ii isotherms at Tm = 17 K for 
differerit wait times t, by Eq.(2.112). rr<o is 3.342, 3.322, 3.306, 3.343 sud 3.340 
emii/g for t,,, = 60s. WOs? 1800s. 360k. 7200s respwtiveiy. Othcr parameters are 
Listeci in Table 4.13. 



Figiini 4.16: (a) Sciilitig of Fc~~,.,&,~;~ Cr(,. isotllt:n11s ibt T,,, = 21 IC for <liff(!niiit 
wait times &, as rtz/mo versus t/L. n~ is chosen by the empirical stretched 
mponrntinl modcl. (h) ScnIing of Fr,LtGNio/a iCru.l 1 isothcrms nt T,, = 21 K for 
different wait times t, by Eq.(2.112). Q is 3.426, 3.416, 3.426 and 3.432 emu/g 
fur t,,, = GOs, GOOs, lSOOs, 7200s rcspcctivc1y. Otlicr pwatuctcrs ÿir: iii Tüblc 4.13. 



Table 4.13: Scaiing parameters of F ~ O . ~ ~ N ~ . ~ & ~ .  to Eq42.112). 

Table 4.14: Scaling parameters of Fe~ .65Nb.~Cro .~~  to Eq. (2.112). 

Table 4.15: Scaling parameters of Cro.nF%2t to Eq. (2.112)- 

- - -  - -- -- 

Table 4.16: Scaling parameters of (Feo.65Nb.35)o.ss2M~.118 to Eq(2.112). 

T(K) 

48 
52 
56 
57 

log,, terg 

2.5 J= 0.2 
1.6 f: 0.2 
0.9 iz 0.2 
2.0 =t 0.2 

*, 
2.0 10.2 
2.0 Az 0.2 
2.0 & 0.2 
2.0 & 0.2 

- 
tete 

( x 10%) 
29.3 
3.69 
0.74 
5.85 

2 

0.20 & 0.05 
0.40 f: 0.05 
0.60 =t 0.05 
0.80 & 0.05 

Y 

0.036 =f= 0.001 
0.043 * 0.001 
0.050 & 0.001 
0.041 =t 0.001 



4.5 Relaxation Dynamics: An Element ary De- 
cay Model (EDM) Analysis 

The EDM mode1 predic ts a Fparameter decay huiction giwn by Eq. (2.136) : 

In this section we illustrate the EDM analysis by appling the mode1 to 

the Cro.roF%.zi TRM relaxation curves both below and above Tg. The best fit- 

ting parameters are Listeci in Tables 4.17 and 4.18, and the data and the fits are 

c o k t e d  in Figures 4.16, 4.17 and 4.18. Figures 4.16(a) and 4.17(a) show the 

time dependence of the decay MR(td) and of the corresponding relaxation rate 

S(td)  = -aMR(td)/a ln t d  , respectively, bot h plotted on the same logarithmic ob- 

servation t h e  scale log,, t d .  The solid curves and the inserts are predic tions of the 

EDM. First, a few words about the actual fitting procedure. Generally speaking, 

it was necessary to include both components of (4.23) when fitting the data. The 

first, age-dependent component gl alone has far too much curvature, and decays 

to zero far too rapidly, to provide a suitable representation of the experimental 

data which is a very gradua1 decay with quite subtle changes in curvature. The 

second, age-independent component g2 has a ver-  dinerent value of the parameter 

b and provides a virtually constant baseline which inproves the quality of the f i t s  

considerably. The parameter ro was fixeci at 1 because the fits were relatively 

insensitive to it. The other 6 parameters then determined the fits to the exper- 

imental data with some limitations. The parameter c must be between O and 1. 

If the fits yielded c > 1, it was nxed at 1. If only 92 was used to describe the 

data(c = l), as f o l h :  



then it was necessary to add a baseline Albe to match the decay magnitude and 

the curwrture of the data. This usudy happened for the data around or above Tg; 

th, and &, are both larger than zero. If C, or th, were less t han zero in the fits, 

t hey were h e d  at a constant positive number since a negative cooling time does 

not make physical sense. The ratio t,,,/bi corresponds to the infiection point of 

the decay function, and the maximum in the relaxation rate, which should match 

that of the data. Sometimes 61 had to be adjustecl by hand for the longer wait 

times, in order to make &/bi match the idection point. 

The quality of the fits is excellent especiaily for the shorter wait times 

(t, 5 300s). This mode1 generdy provided the best fits of all the models we 

useci, particularly to the structure in the relaxation rates. For longer wait tirnes 

(t, 3 900s), the hinction crosseci the data a few times and some deviations could 

be observed in the relaxation rate. 

The inserts in Figures 4.16 and 4.17 show the final "aged" distribution of 

activation energies (1 - c)f&, (El tw) + c fo*br(E) at rd  = O (just after the field 

change), with jo and fi defined by Eq(2.118) and Eq(2.133) respectively, eval- 

uated with the best fit EDM parameters in Table 4.17. The fust term (1 - 
c) foc, (El tu) incorporates the effect of aging in a fieid, and contributes a rela- 

tively narrow, weak mazimum to the final distribution, at  an activation energy 

which increases as a function of a system age t,. The second, age-independent 

term ~ f o , ~ ( E ) ,  which is created by the field change, is characterized by a value of 

b2 - 0.01 which is at least an order of magnitude l e s  than bl,  and is responsible 

for the very broad, comparatively Bat background which dominates the distri- 

but ion. This age-independent component c fOd, contributes a quasi-logarit hmic 

decay ~ d ~ , ~ , , ,  which accounts for virtually the entire magnitude of the remanence 

since c - 0.9, while the agdependent component (1 - c) fAVbl yields a relatively 

smali amplitude, quasi-power law decay (1 - c)&,~,,~, which accounts for most 



Figure 4.16: (a) EDM fits of Eq(4.23) (solid c w e s )  to the thesmoremanent 
relaxation isothesms of Cro.7sF&2i for Tm = 10, 12, 14, 16 and 18 K(TR = 25K) 
and for a cornmon wait tirne t, = 60 S. The vertical mows mark the infiection 
points r. (b) Relaxation rates for the data (dots) and the prediction of the EDM 
huiction (solid curves). The insert shows the final "a@" distribution of activation 
enecgies (just f ier the field change). The peaks from bottom to top corresponds 
to the temperatures from low to high. 



Figure 4.17: (a) EDM fits of Eq.(4.23 (solid curvcs) to tlic wait-tiiiic clcpcii<leiicc 
of t h :  t li(!riiii~n~iiiiiii(!~~t rchx~~tiol* of d iil.;!l Fco.~ i b t  T, = 14 K itli<l 611 w i  t ti~u(:s 
t, = lm, 5m, 15m, 30m and 1 h. The vertical arrows mark the characteristic times 
(inflection points) r. (h) Mrasiird relaxation ratn(dots) and the prdilictions 
of the theory (soiid cuves). The insert shows the final "aged" distribution of 
actiwtiou ciicrgics (just dtcr tlic ficld cliiuigc). Tlic pcaks hiii Icft tu iiglit 
corresponds to the wait times from short to long. 



Figure 4.18: EDM fits (solid c m )  of Eq.(4.23) to the themoremanent relax- 
ation curves of Cro.70Feo.2i for Tm = 20 K and 22 K (< Tg), t ,  = 60 s, and of 
Eq.(4.24) to Tm = 26 and 30 K (> T,) for t ,  = 60 s (TR = 25K). 



of the structure in the measured relaxation rate S(t). The parameter c increases 

rnonotonically with temperature and approaches uni6 near 25 K, above which 

the agedependent component vanishes (1 - c) = 0, and the measured relaxation 

response is descnbed by g& and Eq(4.24) aione. 

The EDM is clearly capable of reproducing the principle structure features 

of the TRtM decay very well, including both subtle variations in its curvature, 

as well as its overall magnitude. The success of this description rests on the fol- 

lowing key assumptions regardiig the distribution of activation energies: (a) Its 

initial form immediately following the quench is Poissonian; (b) The distribution 

is not static, but instead evolves with wait time t, (at constant temperature and 

field) by losing the contribution fiom relaxation processes within a progressively 

expanding region a t  the lower energy end of the activation energy spectrum; (c) 

The effect of the field change is to m o d e  substantidy the distribution which 

exists at the end of the aging period, but in such a way that the new distribution, 

which defines the actual observeci decay, nevertheless retains some rnemory of the 

aging process. This evolutionary sequence is iiiustrated in Figure 4.19 using the 

best fit parameters for one of the relaxation isotherms analyzed for the system: 

F~.esN~.23Cro.iz, with Tm = 20 K, t, = 1800s. Aging converts the original Pois- 

sonian distribution (soiid curve) in Fig.4.19(a), which is dominateci by low energy 

(or short t h e )  activation events, into a distribution (dashed curve) in Fig.4.19(a), 

which indicates that those relaxation process which remain _active at the end of 

the interval (in the sense that they have not yet decayed to equibrium) tend to be 

clustered around a particular characteristic activation energy Ec. (This peak is a 

consecpence of multiplying two exponentials, exp( - tJr )  and exp(- ~127)). How- 

ever, Fig.4.19(b) shows that, contrary to expectation, this characteristic energy 

does not dominate the final decay because the field change effectively "disperses" 

the distribution over a very wide range of activation energies, leaving only a weak 



artifact in the vicinity of E, to "echo" the effect of aging. If the EDM is to be 

consistent wit h experiment , t hese distributions rnust have one furt her property, 

which is particularly crucial to the subsequent interpretation. 

According to the EDM, a relaxing physical observable derives its time 

dependence from the decay of an underlying distribution function: 

where f .- exp(-r, exp(-EIT)) in the aging regime T 5 T, and 

f - exp(-rd exp(-E/T))  in the p o s t - m g  regime T > r,. Although the model 

decay in these two regimes is thus governecl by the same exponential factor, it is an 

ezperimental fact that the field-coaled magnetization is observed to be essentiaiiy 

constant t hroughout the waiting period. T hus, activation events, which occur 

during the aging period (r 5 T,) do translate into measurable physical losses, 

and this can be accomplished within the EDM formalism, if aging acts to rnerely 

redistribute the activation events while continuowly presenring the nomalization 

of the distribution. This renomalization has been incorporated into the dashed 

cuve of Fig. 4.19(a). Once the field is changed, however, these same activation 

processes become "operative", in the sense that they represent real losses to the 

distribut ion, and hence to the decaying physical observable. 

The EDM itself offers no particular insight into the physical origin of these 

effects. However, at le& some of this behavior is reminiscent of Bouchaud's 

model of activateci hopping among metastable traps, and suggests the following 

interpretation for the EDM. Once again we adopt the general premise that a dis- 

ordered system consists of a collection of magneticaily independent subsystems, 

each of which possesses a very nigged free energy landscape with many local min- 

ima. Each minimum represents a particular metastable spin configuration of the 

N-spin subsystern, and each is chsracterized by its own macroscopic magnetiza- 

tion. During the waiting tirne t,, each subsystem ergodically explores a iimited 



region of its own configuration space by thermdy driven hopping among the 

traps, but has the largest pmbubility to be found after a time t, in a trap with a 

characteristic time &, (which is usuai for random walks imlving broad distri- 

butions, where the most significant contributions arise from the largest, but most 

infrequent, events). In other words, the behaviour of di physical observables is 

domùiated by the properties of the deepest trap which the subsystems were al- 

lowed to probe during the aging period. This is precisely the trend obsenred in 

Fig.4. N(a) (both the solid and the dashed c u m )  , where the distribution evolves 

from a h c t i o n  dominatecl by short time activation events to one dominated by 

activations near E,, correspondhg to a relaxation t h e  t, = f /bl  - t ,  since 

bl - O.S. Furthemore, the constancy of the field-cooled magnetization Mm im- 

plies that the systern is limited, in its excursions through configuration space, to 

a païticular subgroup of traps, aii of which are favoured energeticaily, since an 

extensive free energy n/IFcHc would be required in order for the system to es- 

cape from this region of configuration space. These considerations suggest that 

we may interpret the EDM distribution fi,h (E, t,) as the fractional number of 

subsystems which occupy traps of depth E ~i thin  a purticulur "pool of tmps " of 

&ed magnetization MFC,  after a wait time t,. Since no subsystems are lost from 

this pool during the aging period tw , the distribution filbl remains nomalized to 

unity and the magne tization cannot decay. 

With this identification, it is then possible to suggest a physical interpre- 

tation for the change in the distribution from f i v b 1 ( ~ ,  t,) -r (1 - a)f'lbl ( E ,  tu) + 
a foa (E) when the field is changeci. Suppose that changing the field changes the 

depth of the traps by a factor E which depends on the typical number N of spins 

which must be flipped in order to escape from the bottorn of a trap and on their 

Zeeman energy with respect to the field change (Vincent et al., 1995a). This 

number N, and the net uncompensateci moment m - f \/N> are both expected 



to increase with the depth of the trap, so that the field-induced redefinition of 

the traps is non-unijbn, and becomes progressively more significant as the traps 

become deeper. This redefinition has the eEect of dispersing the energetically 

localized subsystems in Fig.4.19(a) (dashed curve) over a much broader range of 

trap depths. These redefined traps now experience Yreal" depopulation in the 

sense that subsystems activateci out of these tedefineci MFc-traps are lost h m  

this region of configuration space to other energetically more favourable regions 

of configuration space, where the traps have zero magnetization. 

W e  sunilar considerations by Vincent et aL(1995a) only d o w  for the 

possibility of a reductioq in the trapping time by this mechanism, it is clear 

from Fig.4. N(b) that the EDM predicts both increases as weli as decreases in the 

trapping times as a consequence of the field change. However, the most significant 

feature of the proposed redefinition is that changiag the field completely "resets" 

many of the subsystems, since many of the shallow traps emptied during aging 

are refilled by changing the field, and in this regards, the EDM certainly agrees 

with Vincent's picture. 

The EDM analysis was also performed for the other systems both below 

and above the glas temperatures. The best-fit parameters are listed in Tables 

4.19-4.25, and the fits are shown in Figures C.1-C.18, Appendix C. The param- 

eter c, which describes the fractional contribution of the non-aging component, 

increases towards unity as the temperature approaches Tg, but decreases slightly 

with increasing wait tirne t,. The parameter bl increases with temperature and 

wait time t,, while b2 increases with temperature, but decreases slightly with in- 

creasing wait time t,. The parameter tinl tends to be larger at lower temperatures 

and shorter wait times, which is consistent with the longer cooling times expected 

at  the lower temperatures. The parameter tinZ is around 1s and increases with 

wait tirne t,. 



Figure 4.19: (a)The original Poissonian distribution of energy (soiid curve) and 
the distribution of energy convertecl by aging after wait tirne tw (dashed c m )  for 
F ~ Q ~ ~ N ~ o . ~ C ~ ~ .  L2, with Tm = 20 K and t, = 1800s. (b) The distribution of energy 
at the beginning of the field cut off for the same sample and same condition. 



Table 4.17: Best-fit parameters of the EDbI model Eq(4.23) to Cro..isFeo.21. 

Table 4.18: Best-fit parameters of the EDM model Eq(4.24) to Cro.7sF%.21. 

T 
(K) 

26 
30 

tu 
(sec) 

60 
60 

Mme 
(x  10-'ernu/~) 

0.002 
1.155 

MO 
(x10-lemu/g) 

3.802 zk 0.075 
1.790 A 0.098 

b2 
( x  10-~) 

1.791k 0.001 
4.146A 0.001 

t in2 

(sec) 

0.01 
0.01 



Table 4.19: Best-fit parameters of F~.65N~.z4Cq.ll to the EDM mode1 Eq.(4.23). 

'r 
(K) 

8 
10 
12 

t w  

(sec) 

60 
60 
60 

(emu/g) 

3.451&0.001 
3.354f0.002 
3.380 f 0.002 

c 

0.6ûf  1.32 
0.57k0.67 
0.60 f 1.73 

b 1 
( X  10") 

0.01f0.04 
0.03f0.05 
0.07 f: 0.03 

bz 
(x 10-~)  

0.06f0.13 
O.l l f0.13 
0.20 f 0.58 

tinl 

(sec) 

90f 35 
87f9 
99 f 31 

ttna 
(sec) 

0.5f 0.7 
0 . 3 f 0 . 4  
1.1 f 0.2 



Table 4.20: Best-fit parameters of Feo.ssNii.24Cro. to the EDM mode1 Eq.(J.X). 



Table 4.21: Bat-fit parameters of F ~ o . ~ ~ N ~ . ~ ~ C ~ ~ . ~ ~  to the EDM model Eq. (4.23)- 

Table 4.22: Fit parameters of the EDM model Eq(4.24) to Feo.s5Nio.uCro.i2 

T 
(K) 

tw 

(sec) 

T 
(K) 

26 
28 

 IO 
( x lO"emu/g) 

tu 
(sec) 

300 
300 

c 

MO 
( x  10-'emu/g) 

9.983 k 0.001 
2.918 + 0.001 

%se 

( x  lo-'emu/g) 

0.918 
1.837 

bl 
( x  10-l) 

b2 

(x  

7.752 * 0.001 
11.240 & 0.001 

tin2 

(sec) 

0.01 
0.01 

b2 
(x 10'~) 

t i n ~  

(sec) 
tin2 

(sec) 



Table 4.23: Best-fit parameters of the EDM modei Eq(4.23) to (Feo.sNb.3s)o.sa2kI~.iie. 

Table 4.24: Best-fit parameters of the EDM model Eq(4.24) to (Feo.ssNi~.3s)o.sazMno.ils. 



Table 4.25: Best-fit parameters of the EDM model Eq.(4.23) to (F~.ssNio.3~)~.ssîh/In0.ii8. 

4.6 Relaxation Dynamics: A Percolat ion Anal- 
ysis 

The percolation model of Chamberlin and Haines, which is also a theory 

of activatived dynamics, but for dispersive excitations within a &ed dis tribution 

of finite domains, is based on such general geometrical considerations that it is 

difficult to appreciate the physical origins of either the aging or temperature 

cycling effects within tbis theoretical framework. Nevertheless, the two model 

relaxation functions Eq. (2.141) and (2.142) do provide a reasonable description 

of the relaxation isothetms, since each is reducible to one of the empirical ex- 

pressions &.(4.1) or (4.2) in an appropriate limit (Chamberlin and Hains, 1990) : 

for Cw+t < 1,  Ad+(t)(Eq.(2.141)) + a stretched exponential. whiie for Cu-t >> 

1, M- ( t )  (Eq.(2.142)) -r a simple power law. Figures 4.20-4.22 illustrate these fits 

for the F%ssNio.23Cro.i2 sample. A six-parameter fit to a superposition of the 

aligned and antialigned relaxation functions yields unreliably high parameter un- 



certainties, and thus reinforces the need to consider the contribution from oniy one 

type of domain, at least over the temporal range of this experiment. Ultimately 

the following representations were favoured for our analysis: 

(a) In the high-temperature ferromagnet ic phase, the best descnpt ion was 

achieved by superposing the aligned function on a constant baseline, M- + Mo, 

as shown by the solid c w e s  for the Tm = 26 K and 28 K isotherms in Fig. 

4.20. The quality of the fits are indistinguishable from the empirical power-law 

fits in section 4.3. The best-fit parameters for the high-temperature isotherms of 

Feo.db.nCro.12 are listed in Table 4.27. The characteristic relaxation times of 

the average-size aligned domains, 7- = [w; exp(-Cl@]-' , where Z = (19/6)~/~, 

were calculateci and are also listed in Table 4.27. 

(b) In the low-temperature reentrant phase, the most consistent results 

are obtained by a simple superposition of the antialigned function and a constant 

baseline, M+(t) + Mo. However, the quality of the fits was clearly dependent on 

the age of the system: for relatively short wait times (t, 5 goOs), the fits were 

measurably inferiour to the stretched exponential (Ln x:/x: - 1.1) , but improved 

systematically with increasing age until , for (tu 2 goOs), the two representa- 

t ions became essentially interchangeable. The solid curves t hrough the isot h e m  

16K 5 Tm 5 25K and for t =5m, 15m, 30m, lh,  and 2h in Figures 4.20-4.22 

show the best fits, and the vertical arrows mark the inflection points, which are 

systematically longer than the characteristic relaxation times of the average-size 

ant iligned domains T+ = [w& exp(+C/~)] -' . The correspondhg fitting parame- 

ters and ?+ are listed in Table 4.26 and they satisfy the condition Cw&t < 1 for 

hl+(t) to d u c e  to a stretched exponential. 

Tables 4.26 and 4.27 provide a complete list of the best-fit parameters 

for al1 the rentrant isotherms. The correlation coefficient C increases with tem- 

perature, so that, with the physically reasonable assumption of a temperature- 



independent average interaction between the spins A, the percolation correlation 

length oc (AICT)"", where a = 0.45 and v = 0.88 are percolation scaling ex- 

ponents, decreases with increasing temperature throughout the reentrant phase, 

which is consistent with its behavior in pure spin glasses (Chamberlin and Haines, 

1990). Thus, a Chamberlin-Haines analysis of the dynamic crossover suggests 

that the dynamics in the ferromagnetic phase are dominateci by domains which 

are alzgned with the field, presumably because the reorientation of antialigned 

domains on field cooling is relatively unhindered in this phase. In the reentrant 

phase, such aligned reorientation is inhibited, and the decay is due predominantly 

to slowly relrucing , higher-energy antialigned domains. However , the wai t- t ime de- 

pendence of the fits in the reentrant phase may reflect the inadequacy of a single, 

fixeci domain size distribution, due to possible domain growth in the eary stages 

of aging, and the microscopie origins of the aging process have yet to be resolved 

within t his formalism. 

Tables 4.2û-4.34 list the best-fit parameters for the remaining sys tems and 

the fits are shown in Figures 0.1-D.lO, Appendix D. 



F r  4-20: Tlier~iiorc:iiiii~~(!~it i.cliix>itioii isotliw~iis id F(!fl.,i5Ni,,.2:lC~,.i.L for ii SC- 

quence of temperatures and for a common wait time = 300s to the percolation 
model. The solid ctirvcs for T,, 5 25 K arr fits to Eq.(2.141) and vertid arrorvs 
mark the characteristic infiection points r. The solid curves for Tm 2 26 K are 
fits to Eq.(2.142). 



Figurc 1.2 1 : (a) Mut - tiiiic ~ L ~ F I I I I C L I C C  uf tlic ~~ICILIIUIL~II.L~IC.I~~ L L . I ~ ) ~ I ~ ~ u I I  of 
Feo.=Nio.&p12 at Tm = 20 K. The solid curver are 6ts to the percolation mode1 
L U L ~  wrticai a ~ w s  ~ i l u l i  tliç ~Lara~twistic i i l j l ~ t t i ~ 1 1  p~ iu t s  T.  (b) SUN s 1 ~ 1 i p I ç  
and anal.vsis a9 in (a) but h r  T, =21 K. 



Figurc 4.22: (a) khi t - t iuic dcpciidcucc of tlic tlcriiiorc~iiucut rclüxatioii of 
Feo.6.5Ni0.23Cr0.L1 at Tm = 22 K. The solid c m  are 6ts to the percolation mode1 
aud verticai arrows u iuk  the ciraracterïstic iufkttioii yoiiits T. (b) S u e  s u p l e  
and maiysis as in (a) but for Tm =24 K. 



Table 4-26: Best-fit parameters of F W . ~ N ~ ~ . ~ C ~ ~ .  i2 to the percolation model Eq42.141). 

Table 4.27: Best-fit parameters of Feo.&iii.uCro.i2 to the percolation model Eq.(2.142). 

r 

T 
(K) 

t w  

(sec) 

26 1 300 
28 f 300 

MO 
( x lO-=ernu/g) 

2.5 f 1.2 
101.1 f O.? 

hl, 
( x l ~ - ~ e m u / g )  

177.5f 1.1 
175.3 f 2.6 

W- 

(Hz) 

(5.89*0.05) x IO3 
(7.43*0.99) x 10" 

c T- 
- 
(sec) 

77.5f 0.2 
53.5f 0.1 

161f 21 
1.81f 0.28 



Table 428: Best-fit parameters of Fe0.&iî0.2aCro.l~ to the percoiation mode1 Eq42- 141). 

T t w hiro Mi a+ C 
(K) (sec) ( x l~-~emu/g) ( x l~-~emu/g) ( x 10'~&) 



Table 4.29 Best-fit parameters of F ~ Q . ~ N Ï o . ~ ~ C ~ ~ . ~ ~  to the percolation model Eq.(2.142). 

T t, & M* 
(K) (sec) ( x 10'*ernu/g) ( x 10'2emu/g) 

Table 4.30: Best-fit parameters of Cro.tsF%.nl to the percolation model Eq.(2.141). 

- - -- - -  . - -- - -- - 

Table 4.31: Best-fit parameters of Cro.~sFeo.~~ to the percolation model Eq.(2.142). 

T 
(K) 

26 
30 

t w  

(sec) 

60 
60 

Mo 
( x loS3emu/g) 

151.2 f 3.0 
122.7 f 1.7 

Mi 
( x 10-~emu/g) 

73.6 f 1.2 
59.4 f 1.0 

W- 

(Hz) 

(1.22f 0.87) x 10-O 
(2.57f 1.37) x 

C 

141.4f 2.3 
105.2f 1.3 

T ,  
- 

(sec) 

(8.2f 5.9) x 10" 
(3.8f 2.1) x 10' 





Table 4.34: Best-fit parameters of (Feo~esNio.3s)o.eszbl~.Lle to the percolation mode1 Eq(2.142). 

4.7 Relaxation Dynamics: Temperat ure Fluct u- 
ation Effects 

The observation of a thermally driven crossover from equilibrium to nonequi- 

librium relaxation dynamics certainly offers compeliing preliminary support for an 

orientational coliapse from parallel to random spin alignment. However it does not 

constitute conclusive evidence for genuine spin-glas freezing, since aging is also 

a feature of other types of systems, such as amorphous polyrners (Stniüc, 19781, 

high-Tc superconductors (Rossel, lWO), and charge-density waves (Biljakovic et 

al., 1991). However, as mentioned earlier, the spin-glass state exhibits a unique 

sensit ivity to temperature. According to droplet scaling t heories of spin glasses, 

neighbouring states at temperatures T and T + AT share nearly identical equi- 

librium spin correlations < Si Sj >r only up to the overlap length I A T ,  beyond 

which the signs of the correlations at T are uncorrelated with those at T + AT. 

Alternatively, according to Replica Symmetry Breaking models, t here is an heirar- 

chical structure of metastable states, and cooling causes a given state to bifurcate 

iato "new" states. 

Temperature-shifting and temperature-cycling experiments are more corn- 

plicated thermal protocols which may provide direct evidence for this type of t her- 

mal fragility and which may help to decide which of these two pictures, dmplet 



versus heirarchical, is more appropriate as a description of fnistrated system. 

The correspondhg experimental procedures have already been show in Figure 

4.4 and Figure 4.5. 

Figures 4.23(a) and (b) show the results of a temperature-shifting ex- 

periment. The temperature-shifting is performed by (a) overcooling to Tm - 
AT,waiting for tw , heating to Tm, and removing the field, and (b) undercooling to 

Tm + AT, waiting for t,, cooüng to Tm, and removing the field. The temperature 

increments AT are listed in the figures. The results show that (a) aging at a lower 

temperature Tm-AT and measuring at Tm always makes the system look younger, 

meaning that the inflection point shifts towards smailer values untii, at a thresh- 

old increment ATthmhdh = 2K, the memory of aging at Tm - AT is completely 

destroyeà and the relaxation response is exactly the same air that obtained by a 

direct quench to Tm followed by an immediate removal of the field. Accordhg to 

droplet theories, the state at Tm is then uncorrelated with that at Tm - AThveshdd 

and lnTtnn,ndd = O. (b) aging at a higher temperature Tm + AT and measuring at 

Tm makes the system look older when AT < AT' 2 0.5 K and beyond that makes 

the system look progressively younger until the memory of aging at Tm + AT is 

once again completely destroyed when AT = ATUtrulidd = 2K. Some of these 

results can be interpreted as a temperature dependence of the growth rate of the 

domains, which is schematically iliustrated in Figure 4.24. When the sample is 

aged at a temperature Tm - AT, the growth of the domains is slower than at Tm. 

When the temperature is increased to Tm, after tw , we move from A to B in the 

figure and a system that appears to be younger than it would have been at Tm is 

probed. The overaii features of the relaxation rate curve are presemed, but the 

maximum in S( t )  is shifted towards shorter observation times. Similady, if the 

system is aged at a higher temperature tban Tm, the growth of domains is faster 

a t  Tm + AT than at Tm, and a system that appears older is probed after cooling 

to Tm (C to D in Figure 4.24). Figure 4.24 is only plausible over the temperature 



range where a sufficient "ovetlap" between the equiiibrium spin configurations at 

the two temperatures exists. The fact that the system appears to get younger 

in Figure 4.23(b) when AT > A T  = 0.5 K can not be explaineci directly by 

the mechanism in Figure 4.24 because this theory predicts that the system will 

continue to appear older with increasing AT > O. However, when Tm + AT - Tg, 
then the influence of the ordering temperature might also afF't the aging and if 

AT is too large, so that Tm + AT > Tg, the ordered state wiii be destroyed, and 

the system will behave as if it was quenched directly to Tm. 

As evidence of the temperature dependence of the aging rate, we plot the 

infieetion points at different temperatures and for a sequence of wait times in 

Figure 4.25(a) for Feo.ssNhuCro.ll and 4.25(b) for FwNb.2JCr0.12 We find that 

in both cases the aging rate is larger at lower temperatures for the same wait time 

and the aging rate increases faster at  lower temperatures. In Figure 4.25(a), the 

rate for Tm = 17 K increases faster than linearly, and linearly for Tm = 19 K, and 

slower than linearly for Tm = 21 K; in Figure 4.25(b) as the temperature decreases 

from 24 K to 20 K, the aging rate get fester and deviates more from linearity. 

We can also interpret these temperature shifting effmts fiom the perspec- 

tive of the the heirarchical RSB theories by analyzing the evolution of the popu- 

lation of the metastable states. 

In the first class of experiments where the sample ages at a temperature 

Tm - AT, the complexity of the free-energy landscape is higher (see Figure 4.26), 

and the aging process is slower, relatiw to that at  Tm. If we suppose that the 

system jumps over a barrier via a thermally activated process, then after a time 

t,, the subregion of configuration space which has been explored is characterized 

by a highest barrier 

where ro is a microscopie attempt time. Thus, at Tm - AT, the region of phase 
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Figirc. 4.23: Relaxation rate S(t)  = -OM( t ) /B  ln(t) vs. iog(t) at Zr, = 19K 
for Fi.Fti5Niu.24 Cb. l .  (a) Tciiipcicituc uiidcrcooliiig sliiftiug: i x . ,  tlic siuiiplc is 
cookd from TM to Tm -AT, aged for 2 hm, then the temperature is raised to Tm, 
the field is cut off aucl the dway of the uiaguetiaatioii recordecl. (L) Teliiperatiiri! 
owrhwting shifting: sirnilar as (a). hiit the sampke is cooled to G, + AT in the 
beginning. 



Figure 4.24: Schematic illustration of the temperature dependence of domai11 
growtli. ii is a buriet upt~iiiiieut. Fwui Luiidgreu 1988. 



Figure 4.25: Aging rates for a series of t, at the dinerent temperatures. (a) for 
Fe~.6~iUi0.~~Cr~.~~ (TR = 22K). (b) for F R ~ N ~ ~ . ~ C ~ ~ . ~ ~ ( T ~  = 25 K). The solid lines 
are guide for the eye. 



Figure 4.26: Hierarchicd organization of nietastahlc states. Tlie coarsc-gaind 
free-eiiergy surface is rcpresentcul at m h  lm1 correspoiidiiig to a givm teiiiper- 
atiirc. When tho tcnipcratiim is dcc.rcascrl. cncli ~111.- siihdividcs inta otticrs. 
Tlic tiiues t iuid t wliick are ucccssay to mylom, at T;,, wid T, - AT: rc- 
spectively, the region of phase bounded by the sarne barriers are inciicated. The 
çloücst ~0111111011 auccstor tu aU statcs witLiu tlic S ~ U X  ~VWC[UI by A, at ï,,, ü~ld 
Tm -AT is the same. and its corresponding value of the overlap functioii is q, . The 
sketcli &O shows t h ,  as the systeu explores u i m  of pliase spwe, it eucouuters 
ever increasing barrier heights, and that the frce-cricrgi surface lias a self-siiiiilar 
struct urc. Fruiii Lctlcriiiÿii ct d., (1 XI 1). 



space populated during a given fixed waiting time t ,  is bounded by barrien 

&(Tm - AT. t,) whoae height is smaller than it would have been at Tm. This 

implies t hat, when the system is subsequently heated to Tm the effective waiting 

tirne at Tm will be smaller than it should be and wili decrease wit h increasing AT. 

The second class of experiments can a h  be described following this a p  

proach. The çample is now field cooled to T, + AT. After a time t,, a certain 

number of metastable states are populated at that temperature. As the tem- 

perature is lowered to Tm, each one of those states gives "birth" to new ones (see 

Fig. 4.26). Thus, when the field is cut to zero and the decay of TRM measuced, 

the shape of the decay will reRect two processes. First, at short times the sys- 

tem populates the new states created by lowering the temperature. This is a fast 

process because it corresponds to populating states which are very close together 

in phase space (with a large overlap) or, similarly. states separated by very srna11 

bamea [compared to A,,,&., t,)]. Thus the decay of the TRM is faster than 

in a conventional expriment. Second, at long tirnes, it populates the region of 

phase space not populated immediately after cooling from Tm + AT to Tm. Now, 

the higher the temperature, the faster the aging process and the quicker the sys- 

tem equilibrates. Therefore, for a ftced waiting time t ,  at Tm + AT, the system 

wiU explore a larger region of phase space through second-stage processes then it 

would have at Tm. This is the reason why, as AT increases, the system ages more 

and more at large observation tirnes beyond its normal age tw at temperature Tm. 

The Th? decay is slower at long observation times than the reference one at Tm 
with the same waiting tirne. 

Fi,wes 4.27 and 4.28 show the results of the temperature cycling experi- 

ments for (Fe~.6Si\iio.3s)~.~zM~.118 and Cro.~aFe21 respectively. For 

( F e o . ~ ~ N i o . ~ ~ ) ~ . w 2 M ~ . t 1 8 ,  we mled the sample in a field Ha = 5 Oe to the mea- 

surement temperature Tm < Tsc, and after a long wait time tw at Tm, performed 

a temperature cycling Tm 4 Tm + AT -t Tm, after which the field was re- 



Figure 4.27: Tlic relaxation rata S for ( F ~ . & ~ N i ~ . ~ ) ~ . ~ ~ h / i 1 4 ~ .  (8  ~uea~urecl aftcr 
cooling iii a field 4, = 5.0 Or to T,,, = 58 K. waiting for t,,., = 10.' S. wliiig 
froiii T,,, + T, f AT - T,. witli tde 2 300 s, mitl tlicii rciiioviiig tlic ficld 
(which defines t = O). AT = oc corresponds to wanning above T,. Note that 
tlie dislippeu-aice of oiie iiiaxiiuuui is xcoiiipuiecl by dit: siuiultoiituus growtli 
of the other. 



Figure 4.28: The relmiioii rate S For C q 7 9 F ~ . 2 1  nieasured after cooling iii a field 
H, = 1.0 Or to T = 15 K. wnitirig for t,,,, = 10" so rydiug froiii T - T+AT - T. 
with t d .  % 300 s, and then removiug the field (which defines t = O). AT = m 
mrr~ponds to warming ahove Tg. Note thrrt the disappearancc! of <m(! mrrximiim 
is accompanied by the simultaneous growth of the other. 



moved. The wait time was t, = 104s, and the temperature cycling duration was 

tqde = 300s < C. Figure 4.27 shows the result at  Tm = 58 K for the temperature 

increaments AT from O to 2 K as listeci. The isotherm AT = oo was obtained by 

heating the system above Tsc, then cooling and aging at  Tm for t, tqde- 

As shown in the figure, for smali values of AT(< lK) ,  there is a single 

maximum at  t, 2 t, = 104s, which is gradudy suppressed with increasing AT. 

However, for values of AT larger than 1 K, not only is this maximum at  longer wait 

times suppressed , but a second maximum begins to grow a t  shorter observation 

times, in the vicinity of t& 2 tqde. As the maximum at longer times weakens, 

the maximum a t  shorter times strengthens. 

The droplet model of Fisher and Huse provides a possible explanation of 

this phenornenon. According to this model, the spin-glas state exhibits a unique 

sensitivity to temperature, so that neighbouring states at temperature Tm and 

Tm + AT share nearly identical equilibrium spin correlations < Si S >T only up 

to the overlap length lm, beyond which the signs of the correlations a t  Tm are 

uncorrelated with those at Tm +AT. If a spin g las  is field cooied to a temperature 

Tm and , after a wait time t, has elapsed, is subjected to a brief temperature cycle 

Tm + Tm +AT -. Tm, of duration tWde < &, immediately prior to field removal, 

then the subsequent behaviour depends on the magnitude of AT as foliows: (a) 

If AT < ATthreihdd, then lAT > R&) (the overlap length is larger than the 

typical domain size at Tm), and there is only one type of domain and hence one 

maximum in the relaxation rate S(t) a t  t N t,,,. (b) If AT > ATthrUhddi then 

lAT > Rr(tw) and some of the Tm domains will fracture into smaller (Tm + AT) 

domains of dimension lAT, so S(t) wiil exhibit two maxima at t - tqde and t - tw , 

conesponding to the two distinct domain sizes. (c) If AT » AGhreshdd, victuany 

a11 the Tm domains will be annihilated, and there will be one maximum in S(t) a t  

t - t,, due to the (Tm + AT) domains alone. 



There is alternative explmation for this phenornenon, based on the eu- 

istence of an heirarchical organization of states in phaoe space, as predicted 

by Parisi's solution of the SK model. Suppose we return to the heirarchy of 

metastable states and its evolution with temperature shown in Figure 4.29. As 

we stated previously, cooling cause the valleys to continuously split into multiple 

subdeys ,  while, on warming, the process is reverseci and the subvalleys coaiesce. 

Further suppose that the energy barriers between states a, P, 7, are such that the 

characteristic tirne to overcome them is of the order of or slightly larger than the 

experimental time t-, and make the same assumption for the barriers inside the 

sets {ai), {pi), and {x)( i  = 1,2,3) at Tm - AT. When the system is quenched 

from above Tsc to Tm - AT, it falls somewhere in the complicated landscape 

defined at Tm - AT (suppose that it is in one of the states {cri)). As the system 

ages, it approaches equilibrium by k t  sampluig the various subvalleys in {a*}, 

but has difficulty in equilibrating among the valleys a, ,O, 7 due to the higher en- 

ergy barriers. When the temperature is raised to Tm, the set {&) collapses into 

a single valiey a, so that when the temperature is again lowered to Tm - AT, 

memory of the previous equilibrium is lost and the system essentially must begin 

to equilibrate d over again, and thus appears to be younger. 

We &O performed a temperature cycling experiment on Cro.79F~.21 as 

follows. The sample was cooleci in a field Hc = 0.5 Oe to the measurement 

temperature 7'' = 15 K, and after a long wait t h e  t ,  = 104s a t  T = 15 K, a 

temperature cycling Tm -.r Tm + AT -r Tm was performed for twde 300s, after 

which the field was removed. Figure 4.28 shows the resdts for the temperature 

increments AT from O to 1.6 K as listed. As before, the isotherm AT = oo 

was obtained by heating the system above TsG, then cooling and aging a t  Tm for 

tu 2 

As shown in the figure, for srnail values of AT(< 0.8 K), there is a single 

maximum at t, S t, = 104s, which is graduaily suppressed with increasing 



T-AT - -- 
(ai) 

Figure 4.29: Sketch of the coarse-gainecl frw-cnergy surface at clifferent temper- 
atura around T. Wni the tcmperature decreases froni T to T - AT, state a, 
0 kuid 7 <<$vc h r t b  > to  SC^ of S ~ R C C S  { < r i } .  {ai) 2 2 1 ~ 1  {ali}. rcspc~tiv(:1v. (hi- 
vcrsely wtieu t h  teiiipcraturc is raisal h u  T to T + AT: stritc o. /l. 7 iiicrgc iuto 
a siiigle state 6. Frorii Lcflodi et al.. (1992). 



AT. However, for values of AT larger than 0.8 K, not only is this maximum at 

Longer wait tirnes suppressed, but a second maximum begins to grow at  shorter 

observation times, in the Mcinity of fm S t&,. As the maximum at longer times 

weakens, the maximum at shorter times strengthens. A cornparison of Figures 

4.27 and 4.28 shows that the structure induced by temperature cycling is much 

more clearly defined in C r ~ . ~ F e o . ~ ~  than it is in (F~.6sN~.3s)o.~2Mm.~~8- This is 

probably because the shorter cooling times in the former system lead to stronger 

curvature in the original relaxation isotherms, and this in turn permits multiple 

idection points to be resolved more easily. 

While the droplet and heirarchical approaches both offer apparently rea- 

sonable, although very dinerent, explanations for this phenornenon, recent reports 

in the Literature (Lefloch, et al. 1992) of negative temperature cycling experiments 

appear to support the heirarchical picture. According to these reports, lengthy 

aging at Tm, followed by a cycling from Tm -, Tm - AT -+ Tm, does appear 

to influence the age of the system, and when the temperature is returned to Tm, 

the system simply continues to age from the state reached before the cycling was 

performed. Thus there is a clear asymmetry in the experiments which contradicts 

the droplet model, according to which large domains will fracture into small d e  

mains whenever the modulus IATI is large enough for the overlap length lAT to 

fa11 below the domain size at T. 

Can this asymmetry be accounted for within the heirarchical picture? Re- 

ferring back to Figure 4.29, suppose the system is cooled to Tm and falls into 

valley B, for example. As aging proceeds at Tm, the system atternpts to explore 

the other valleys a and 7 and establish an equilibrium population distribution. 

If the system is now cooled to Tm - AT, it will equilibrate quickly within the 

sets (subvalleys) a, but the relative populations of the different sets ai, ,Oi and Ti 

will not change because the baxriers between the g& are too high. Thus cooling 

does not bring the system any closer to equilibrium with regard to the a,fl,r 



populations, and when Tm - AT -. Tm, the additional equilibration within the 

subvalleys is lost by coalesence, and the system simply pich up where it left off 

after the original aging at  Tm. 

4.8 Relaxation Dynamics: Field Effects 

In an ordinary TRM experiment, a sample is cooled from above Tc in a 

field, to a measurement temperature Tm, and kept at constant field and temper- 

ature for a t h e  t,, before the field is cut off and the decay of the magnetization 

is measured. In the last section, we showed that the relaxation isotherms are sen- 

sitive to temperature fluctuations during the waiting period. Here we wiil show 

that the relaxation c w e  is also sensitive to the field ampiitude before the field is 

removed. The rnagnetization will relax faster after a larger field step. 

Figures 4.30(a) and 4.31(a) show the rn(t)/m versus log,,(t/t,) plots for 

e-xperiments performed at Tm = 17 K and 19 K for Fe0.65Ni0.24Cro.ll, for a series of 

different cooüng fields. In these two figures, all of the wait times are t, = 1 hour; 

mo is the normalization factor for the individual curves, which is obtained by 

fitting the curve to an empirical stretched exponential function plus a constant, 

and extrapolating to t = O. Within the accuracy of our measurement, mo is 

approximately the same as the field-cooled (FC) magnetization. 

On a plot of m(t)/m,-, versus loglo(t/tw), not only does the shape of the 

curve change with field but also the magnitude of m(t)/mo changes as well. For 

fields Ha 5 2 Oe, the idection point of the curve essentially does not move; but 

for larger fields, the inflection point of the curves experiences a sigdicant shift. 

So, for the system Fe0.65Ni0.24Cr0.11, we could Say that the range of linear field 

response is l e s  than 2 Oe. This value is very different from the field threshold 

for the system Cdl.71n&4 which is an insuiating spin glass (Vincent et al., 1995) 



Figtirc! 4.30: TRM relaxation at T,,, = 17 K for t,,. = l h  for F~~.r;;Nin.~~Cin.~ 1 

witli tiic v d u e  of the applied field raiigiug hui 2 to 10 Oc. (a) A plot of 
M ( t ) / N  vs. log@/&), where Mo = 2.84& 3.521, 4.091: 4.958 and 7.754 are the 
uoruialiaed factors obtaiied hui fittiiig the c u r v s  for a stretclid expuutmial 
anci extrapolatinp; to t = O. (h) Scding plot a l  (a) correct4 by both pnranwtrrs 
a and n. 



Figure 4.31: T R M  relaxation at T,,, = 19 K for t,,. = 111 For F%.ct-,Nifl.2.iCro.ii wïtli 
tlic d u c s  of the applid ficlci rugjiig frou 0.8 tu 10 Oe. (a) A plot of bi(t)/i\fu 
vs. log(t/tw), where = 1.510. 2.020. 2.783. 3.470: 4.408, 5.858 and 8.996 are 
tlie iioriualizd Factors obtaiued fioui fittiiig the çurve for a stretched apoueiitial 
and t?xt.rapolating to t = O. (h) Scaling plot of (a) mrrwtd  hy hoth pnriuneters 
a and K. 



and the 5ystern Cu-6%Mn, which is a metallic spin glas (Chu et al., 1995), for 

which the field thresholds are 20 Oe and 30 Oe, respectively, but similar to that of 

(Feo. isNio.as)7sPi6B& which is an amorphous spin glas (Djurberg et al., 1995). 

So, the sensitivity of the relaxation function to the magnitude of the fieid is very 

different from system to system. 

B a d  on Bouchaud's mode1 of random traps, the relaxation function 

m(t ) /m  essentidy depends only on the ratio t/b. In the extreme lirnit of noner- 

godic behaviour, the plot should yield a "master c m "  in which data for different 

t, aiI lie on the same curve. The plots in Figures. 4.30(a) and 4.31 (a) clearly in- 

dicate that the data do & scale with t/tw. 

As already stated previously, while aging, the system evolves among states 

with same magnetization (MFc states) as inferred from the time independence of 

the field-cooled magnetization. When the field is changed by AH, a new Zeeman 

term is added which increases the free energy of the Mm states by MFcAH and 

tends to bring the system into a set of MFC + AM states. If we assume that 

this results in a decrease in the barriers by the same amount MFcAH, then, the 

escape times { T )  of the whole set of Mm states are jowerd to { Y )  by the factor 

a = exp(-bAH), where f = crr and a < 1. Thus at the instant t* the field is 

changed, the r distribution is shifted and the measurement now probes states for 

which the most probable depth is at* instead of t*. The system thus appears to 

be younger, as  if it had oniy aged for a tirne at*. 

In order to interpret and improve the scaling plots in Figures 4.30(a) and 

4.31(a), it is necessary to extend Bouchaud's picture of random traps beyond the 

phase-space description and include more details of how the traps couple to a field. 

Following Vincent et. a1 (1995), the trapping tirne r is assumed to be related to 

the number N of spins which mu& be flipped to escape from a trap by 



where the depth B ( N )  of the trap increases with N. Due to the random couplings 

between the spins, the net uncompensateci moment for this trap is \ /NpBm where 

p ~ m  is the spin moment, so the Zeeman energy is 

and the lifetime of the T traps is reduced to 

T' (N) = M ( N )  = ri exp[ B ( N )  - E(AK N) ] 
ksT 

Figure 4.32 shows two sets of traps corresponding to two different values of the 

magnetization. The field perturbation tilts the free energy landscape, and favours 

one set of traps over the other. 

Experiments on the out of phase susceptibility f (Vincent et al 1995) 

support some of this picture. In these experiments, the sample is cooled from 

the paramagnetic phase to the glass phase, and the  ac susceptibility is observed 

to decrease as the system ages at a constant temperature. If a static field is 

subsequently applied, then the relaxation is restarted, just as if the age of the 

system was reduced by the field perturbation. This effect is illustrated in Figure 

4.33(a) for a CdCrl.ih&4 insulating spin glass, which shows measurements of f 

a t  w = i Hz for a sequence of field changes of different ampiitude. If measurements 

at difTerent frequencies are cornparecl, such as those in Figure 4.33(b) for w = 0.1 

and 1 Hz, where the time t l  of the field change is chosen so as to keep utl constant, 

then it is c1ear that the effect of the field perturbation is stronger for deeper 

traps(that is, for larger t l )  . However, a close inspection of these data shows that 

the measured relaxation restarts more abruptly after a field change than can be 

accounted for by a simple reduction in age, as if some of the subsystems experience 

a quench from above Tc. In order to account for this effect, it is assurned that 

B ( N )  grows less rapidly than E (A H, N) - m, so that r'( N) initially increases 



Figue 4.32: Schematic picture of the free-energy landscape after 
The magnetically unfavorable metastable States have been tilted, 
has diminished; the deeper the trap, the larger its extention, and 
effect of the field perturbation. From Vincent et al. (1996). 

a field variation. 
, and their depth 
the stronger the 



but then eventually decreases for values of N in evcess of a critical size !V* defineci 

by 

This is illustrated in Figure 4.34. 

This effectively divides the set of traps into two families, "hard" traps 

with T < r* which experience a reduced age described by a, and "fragile" traps 

with T > T* which are completely destabiiized and wiped out by the field change. 

Vincent et al. defined p as the proportion of subsystems which are fkagiie at the 

t h e  tl of the perturbation, and wrote f as the sum of two terms 

Our Tm1 measurernents are also sensitive to these effects. In order to 

scale the relaxation isotherms on to a universal c w e ,  it is necessary to use two 

correction factors, one a for the t/t,  axis and another n for the vertical M/MFc 

axis, so t hat the scaling function for the Tm1 is 

H2 dependence of cr(t,) is an integrated 

form of bAH assurning that bAH a xoHAH.  The factor K aiiows for a field 

and/or a t, dependence of the initial fast response. 

The scaling procedure described above has been applied to the data in 

Figures 4.30(a) and 4.31(a) and the resulting plots are shown in Figs.l.30(b) 

and 4.3l(b). The various TRM decay curves have been shifted horizontally and 

vertically in order to make them coincide as much as possible. The best fit scaling 

208 
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Figure 4.33: a). Relaxation of the out-of-phase susceptibility f (in arb. units) 
at frequeccy w = 1 Hz and constant temperature 12 K, as a hinction of the time 
(age) foliowing a quench from above Tg = 16.7 K. The sample is CdCrl.dnd4 
insulating spin glas. After 350 min, a static field AH (=5, 9, 15, or 30 Oe) is 
applied, producing a renewed f' relaxation. A b r  another 350 min, the field is 
removed. The inset sketches the procedure. b). Cornparison of the effect on f of 
a dc field variation in two experiments at frequencies w = 0.1 and. l Hz. The field 
variation is applied at a time tl (=350 and 35 min, respectiveiy) such that the 
roduct w - tl is kept constant. The cuves are plotted as a fmction of w t, and 

gave been vertidy shifted in order to superpose both relaxations before the fîeld 
variation. At constant w t, the e f k t  of the perturbation is seen to be stronger 
for the lowest kequency (longest t l) .  From Vincent et al. (1996). 
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Fioure 4.34: Escaping times in uhardn and "fragtie" traps. The "hard" traps only 
reBuce their age, but the %agilen traps wilI be completely wiped out in the field 
perturbation. 



Figure 4.35: The relation of parameter a to the magnetic field for T = 1TK and 
T = 19K. 



parameters a! and K for the different fields are listed in Tables 4.35 and 4.36. The 

scaled c w e s  lie reasonably weii on a "master relaxation c w e "  . With increasing 

field, the various isotherms descnbe progressively longer-time portions of this 

rnaster curve than it is possible to observe in the usual experiments; the reduction 

of the effective age of the system ailows us to measw the relaxation function 

for very large values of t/(at,J. Obviously the curves fa11 together nicely and 

universal behaviour is obtained. The horizontal and vertical shifts determine the 

factors a and K.  

Table 4.35: Scalïng parameters for i ? e ~ . ~ ~ N & . ~ C r ~ . ~ ~  for Tm = 17 K. 

Table 4.36: Scaling parameters for Feo.ssNio.2&ro.ll for Tm = 19 K. 

The parameter a describes the reduction in the depth of hard traps, which 

renormaüzes the time a>gs tlt, to t/(atw) as expected. The parameter K accounts 

for the partial quench effect. It describes the proportion of subsystems which are 

located in the region of fragile traps and which are completely washed out by 

the field 

decay of 

variation. These subsystems are directly responsible for the initial fast 

the magnetization which precedes the much slower TRM decay, and are 



therefore expected to affect the initial value of ilf/lCfFc through ri. From Tables 

4.35 and 4.36, it is seen that cr decreases as H increases. 

A plot of ha as. Ha is shown in Figure 4.35, (a) for Tm = 17K and (b) 

for Tm = 19K. The c w e s  are approximately straight Lines, in agreement with 

the expression cr = exp(-x@). 

We finally wish to point out that the proposeci field scaling of the TRM r+ 

laxations is in agreement with a more generai scaiing fonn suggested by Paris(1995). 



Chapter 5 

Summary and Conclusions 

The purpose of this thesis was to study the relaxation of the thermoremanent 

magnet izat ion in several dinerent magnetic systems which exhibit ferromagnetic 

ordering with low temperature rentrant collapse, to establish its principal char- 

acteristics as a huiction of observation time t, waiting (or aging) time tu, tem- 

perature T, and magnetic field H, and to compare these measurements with the 

predictions of several of the most prominent theories of relaxation in systems with 

quenched disorder. The experimental systems were chosen from among those for 

which the existence of sequential ferromagnetic to spin glass transitions has been 

reasonably well established, primarily through the observation of certain structure 

in the ac magnetic susceptibility, but for which no data was available concerning 

the relaxation response to abrupt changes in magnetic field in either of the two 

ordered phases. 

In a nutshell, if one of these systems is cooled in a magnetic field H from 

above its Curie temperature to a temperature Tm below the temperature TR where 

the ferromagnetic state appears to collapse into a glassy spin state, and held for 

a curing time t, at fixed (Tm, H) before abruptly removing the field at t = 0, 

then the relaxation isotherm exhibits an inflection point t*nfi when plotted on a 

logarithmic time scale loglot, and the entire experimentai response hinction shifts 



towards longer observation times with increasing age tu. The latter characteris- 

tic is striking evidence that the system does not reach equilibrium irnmediately 

following the "quench" to Tm, but continues to evolve during the curing period. 

Unlike the behaviour reported by Lundgren et al in pure spin glasses(Lundgren 

et al, N83), this age-induced shift is equal to t, and has a very significant 

temperature dependence. The relaxation isot herms are not unique fimctions of 

(Tm, H), but are sensitive to the past history of the temperature and field so that, 

for example, smail fluctuations in temperature or field during the curing period 

c m  have a dramatic effkct on both the location of the idection point and on 

the amplitude of the decay. This means that the correlations estabiished as the 

state grows with tirne are extremely fragile functions of temperature and field, 

and growth can be interrupted and even "restarted" for increments of AT or AH 

which exceed certain threshold values. None of these appear to be characteristics 

of the ferromagnetic phase. When the measwment temperature Tm is above 

TR , the relaxation response behaves like a simple unique transient connecting two 

equilibrium states, with no age dependence, no fragility to temperature and field 

fluctuations, and no dec t ion  point. 

There are a number of prominent theories in the literature which purport 

to explain slow nonexponential decay of a physical observable in response to a step 

function excitation in systems with disorder, and one of the motivations of this 

thesis was to provide a critical evaluation and cornparison of these various theories, 

using reentrant ferromagnets, with t heir two thermally distinct relaxation regimes, 

as "test subjects". In fact, one of the features which distinguishes the current 

study from most others in this area is the use of detailed fit8 of the experimental 

data to specific functional forms as one of the criteria for establishing the validity 

of a theory. 

Probably the best empincal descriptions of the data are provided by the 

Kohlraus h stretched exponential exp[(-t/r)P] for the age-dependent reentrant 



(spin glas) data, and (somewhat les satisfactory) a power law t-= for the sta- 

tionary ferromagnetic relaxation isot h e m .  However, bot h functions mus t be 

supplemented by a substantial constant baseline, which is dinicult to j ustify the- 

oretically, and fûrthermore none of the models which yield stretched exponential 

behaviour offer any explicit mechanism for aging, so that the physical significance 

of the various fitting parameters is difncult to appreciate. 

The percolation model of Chamberlin is based on the assumption that mag- 

netic systerns segregate into mesoscopic dynamically correla ted domains (DCD) 

within each of which the spins share a corggion relaxation rate. The DCD 's are 

either "aligne~i~~ with the field, in which case their magnon density is reduced 

by the field so that their energy after H is removed, or "antialigneâ" , 
in which case they have a higher level of magnon excitation in a field and must 

consequently energy when the field is removed. The characteristics of both 

types of domains are summarized in Figure 5.1. The m a t  important feature of 

the model is that the magnon energy level specing bE is finite-size quantized, and 

thus varies inversely as the number s of spins in the domain, bE = A/s. Thus the 

relaxation times for the aligned domains vary from r- = m for s = O to r- = TG 

for the largest domain s = oc, whüe for antialigned domains r+ varies from r+ = O 

for s = O to T+ = T& for the largest domain s = oo, as shown in Figure 5.1. Perce 

lation theory gives the distribution of domain sizes to be n. -- s1I9 exp[-(ds)*/q 

and the total relaxation is a paraliel combination of activated relaxation from al1 

the domains. Our analysis shows that the reentrant phase dynamics are domi- 

nated by antiaiigned domains, while the ferromagnetic dynamics are dominateci 

by aligned domains. Thus the behaviour in the reentrant phase is different from 

that of the pure spin glasses studied by Chamberlin, which are characterized by 

a mixture of both aligned and antialigned domains, but appears to bear a much 

closer ressemblance to the ordered phase of pure ferromagnets like E S ,  which 

also shows a croçsover from antialigned to aligned domination as the tempera- 



ture increases through the Curie temperature Tc- It is interesting to compare 

the behaviour of the two Feo.ssNio.uCro. iz and Feo.aNio.2&r~.it alloys. Figure 5.2 

shows the behaviour of the average characteristic times 7, and 7, as a function 

of temperature T at  a fixed wait time t ,  = 60s, and Figure 5.3 shows the wait 

time dependence of 7+ in the rentrant ph= of the two alloys. Assuming, like 

Chamberlin, that the magnon bandwith A is constant, then Figure 5.1 telis us 

that the average domain size 3 in the reentrant phase decreases with increasing 

temperature T but j.ncreas- with increasing wait time tw. As far as we are aware, 

the current investigation is the h t  to apply the Chamberlin formalism explicitly 

to variable wait time data, so we have no points of comparison here. Never- 

theless, there is one very interesting similarity with Chamberlin's analysis: the 

Feo.ssNio.24Cro.ii d o y  shows a large jump in T at  T = TR which is very reminis- 

cent of the behaviour observed by Chamberiin in EUS and attributed by him to 

a critical divergence of the correlation length. The current data seems to imply 

a correspondhg divergence at  TR. Since the llat% alloy is a good ferromagnet 

while the 12at% d o y  is on the borderline between the ferromagnetic and the spin 

glas  phases, it is tempting to interpret this jump as evidence of a critical change 

of phase at  TR, which of course requires the existence of a well-defined ferromag- 

netic state, so that it is present at Hat% and absent at  12at%. However this is 

quite speculative at  this stage. In spite of its apparent generality and power, it 

should be noted that the Chamberlin function must still be supplemented by a 

constant baseline (t his was true of Chamberlin's original studies as well) , and this 

once again suggests a weakness in the formalism. 

We now turn to the two remaining models, the Elementary Dëcay Mode1 

(EDM) and Bouchaud's mode1 of random traps. Both are remarkable in that 

they incorporate explicit mechanisms which replicate many of the essential fea- 

tues  of aging observed in disordered systems. The EDM is noteworthy for its 

abiliw to reproduce 4 of the standard functional f o m  quoted in the various 
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Figue 5 -1: Aligned and antialigned domains and a cornparison of their character- 
is tics. 



Figure 5.2 Average characteristic time versus temperat ure in Fm.65Nio.24 and 
Fe0.65Ni0.23Cr0.12. 



Figue 5-3: Average characteris tic time versus wait time in Feo.ssNio.w Cro.il 



analyses of slow relaxation data which appear in the literature, in a closed form 

which is valid for 4 experimental times O 5 t < cm, and with only parameter 

6 = TIF determiring the complete shape of the decay. The random traps mode1 

is noteworthy because it offers a very appealing physical picture of how a disor- 

dered system evolves towards equilibrium by randomly exploring a progressively 

larger number of metastable states in its configuration space, and it also yields 

an explicit functionai form for the decay whose shape is &O determined by only 

one parameter z, with O 5 z 5 1. Both models are also capable of describing - 
nonexponential decay in a varie@ of physical systems including high Tc supercon- 

ductors, type II superconductors, spin glasses, polymers, and charge density wave 

sys t ems. 

The EDM assumes that the decay originates fiom a sequence of thermally 

activated Arrhenius relaxations over a Poissonian distribution of energy barriers, 

and that the decay begins at the moment that the system iç quenched below the 

ordering temperature. Thus aging corresponds to those activation events which 

are "lost" during the waiting period prior to the field removal, and the relaxation 

function, measured from the instant 7 = O that the field is reduced to zero is 

where fo(Et) = bexp(-bEt), E' = E/T, and b = TIF. When the EDM formalism 

is applied to our reentrant ferromagnets, it is immediately apparent that a single 

relaxation function is completely inadequate to describe the the total measured 

response, and that a superposition of such functions with very different values 

of the shape parameter b is necessary in order to account for the large amplitude 

of the remanence which remains even after several hours of relaxing. The first 

contribution is wait time dependent and is chatacterized by a value of bl - 0.1 - 
0.5 (typicaily) which increases with temperature, but much faster than linearly, 

particularly in the vicinity of TR, as shown in Figure 5.4. This means that the 



average activation trap Ë is also strongly temperature dependent, and decreases 

rapidly with increasing temperature. Our analysis also shows that this wait time 

dependent term becomes progressively weaker as T approaches TR from below 

(that is, the parameter c -t l), and the decay is represented exclusively by the 

second ageindependent contribution above T'. This latter term is characterized 

by a shape parameter & which is roughly an order of magnitude of smder  than bi. 

In spite of its impressive ability to replicate quite subtle variations in curvatwe, 

particularly in the relaxation rate S = -ûm/alnt, the EDM offers no insight into 

the physical origin of the activation barries or the nature of the "entities" which 

are relaxing or the genesis of the second distribution, which appears to be induced 

by the field change. One of the more significant contributions of this thesis has 

been to provide a physical interpretation for the EDM, but for this we had to rely 

to a large extent on the random traps mode1 of Bouchaud. 

Bouchaud's model assumes that the configuration space of any disordered 

system consists of many local energy minima which represent all the metastable 

configurations which the system passes through in its search for the equiiibrium 

configuration, which is the deepest (or global) minimum. This process is a ther- 

mally activated random walk among a set of "traps" with a distribution of trapping 

times T :  

and if z c 1, the search is essentialiy never completed, at least within a finite 

wait time t,. We believe that it is no coincidence that the single most important 

parameter x of this model, which controls the "extent" of the trapping distribu- 

tion é(~) ,  exhibits the same temperature dependent systematics as the parameter 

b in the EDM, which similarly defines the "width" of the activation barrier dis- 

tribution. Both increase with temperature, indicating that the distribution is 

dominateci by shaliow traps (or Iow barriers) as the temperature approaches the 





g l a s  temperature from below. In order to explain the behaviour of our rentrant 

ferromagnets, particularly the failure of the experimental data to scale with t / t ,  

as predicted by the purely nonergodic expression derived by Bouchaud, it became 

necessary to regard a disordered systern as a collection of independent subsystems, 

and this aIso formeci the b i s  for our interpretation of the Poissonian distribution 

of the EDM and its transformation into a single-peaked structure during the wait 

time &. Furthemore, we postdate that it is the renormalization of the depths 

of these traps caused by the Zeeman energy shift, as proposed by Vincent et. al 

(1995), that is described by the second, non-agedependent EDM distribution; in 

other words, the field-induced component of the EDM energy distribution r e p  

resents the way the subsystems which compose the entire system are effectively 

redisperd among the original set of traps by the field change. Our investigations 

suggest that the most promising approach will ultimately be a compromise which 

exploits the analytical power of the EDM and the simplicity and transparency of 

the random trap physics. However, at the current stage neither of these models 

have evolved sufficiently to replicate subtle (higher order) effects like those related 

to temperature cycling during the curing period, and future work must focus on 

incorporat ing t hese subt lties into the formalism. 
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Appendix A 

Figure A. 1 : Therriioreinanent rclmtioii isoi hernis of F%.= Niu.2.i Cro. for a se- 
quence of temperatures Tm 5 22 K and for a coiiiriiou wait tiiiie t ,  = 60s. The 
solid curvcs are fits to Eq(4.1) aiicl vcrtical wrows iiisrk tlic <*liarnrteiistir tiiiics 
(inflectioii points) r. 



Log lo t  
Figure A.2: (a) t- timc dcpeudciicc of tLc tlicriiioi.ciiüuiciit mii~sat ioii uf 
F ~ . B ~ N ~ ~ . ~ ~ C ~ ~ . ~  at Tm = 17 K. The solid cunres are fits to Eq(4.1) and verti- 
cal arrows mark the characteristic times (inflection points) T. (b) The relaxation 
rates S(t) for the isotliernis in (a). 



Figurc A.3: (a) k h i  t- t iiuc dcpcudcucc of t lie tlicruiorciiüuiciit rclüxiitioii of 
Feo.aNio.24Cro. at Tm = 19 K. The solid curves are fits to Eq. (4.1) and verti- 
cal u w w s  mark the ckuactei-istic tiuies (iuflectiou poiuts) r. (b) The rcla~atiou 
rats S(t) for the isotherm in (a). 



Figui.<: A.4: (a) K i t  - tiiiic dcpcudcucc of tiic t kcriiiorciiiiiuciit w l m t  iou of 
F e ~ . ~ N b . & r ~ . ~  at Tm = 21 K. The solid curves are fits to Eq(4.1) and verti- 
cal oirows uüu-k tilt! cliarutciistic tiiiirs (iufktiou poiiits) T. (b) Tlie relowtioii 
rates S(t) for the isotherms in (a). 



Figure A.5: Thermoreinanent relaxation isother~ns of Feo.aNio.24Cro.ll for a se- 
qiioncr of t~mperatiirw T,, 2 24 K and for a rommon m i t  timc t,,. = 60s. The 
solid curves are fits to Eq.(4.2). 



Fibwrc A G :  Tlici.~iiorciiiuc~it rcliuratiou isotlicriiis of Fÿ).üjNiU.23Cru.L2 for il SC- 
quence of temperatures Tm and for a common wait time t, = 300s. The soüd 
curvcs arc fits to &.(Al) foi- z,, 5 22 8  id tu Ek&2) for T, 2 2G K. T h 
vertical arrows mark the characteristic times (inflection points) r. 



Figurc A. 7: (a) Wai t-tiiiic dcpciiclciicc of tlic tlicruiorcuiaiicut rdÿsativii of 
F~.ssNio.23Cro.12 at Tm = 20 K. The soiid curws are fits to Eq(4.1) and ver- 
tkd aïrows uark the cliwacteristiç tiiiies (iuflectiou poiiits) T.  (b) Saue as (a) 
but for temperature T ,  = 21 K. 



Fiyrc  A.8: (a) CVui t-t iiuc dcpciidciicï: of tkc tlici.uio~'cii~aiiciit rclaxatioii of 
Feo.BSNb.nCro.lz at Tm = 22 K. The soiid curves are fits to Eq(4.1) and ver- 
ticd arrows iiiark the cliuacteiistic tiiues (iiifiectioii poi~its) r. (b) S u t :  as (a) 
but for measurement temperature Tm = 24 K. 



Fi,wc A.3: Tkcriuorciuaucut relwtioii isottici.iiis of C~-".~~Fcu;c~ for a scquciicc 
of temperatures Tm and for a common wait time t, = 60s. The solid curves are 
fits to Eq.(4.1) for T, 22 K aiid tu Eq.(4.2) for I;, 2 2G K. T h  vciticd alrowvs 
mark the characteristic times (idection points) r. 
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Fibwn: A.10: (a) bhit-tiiiic dcpcudciicc of t h  t l i ~ r i i i ~ W i i i i ~ i ï i i t  rcltisatiou of 
Cra.79F&.2i at Tm = 14 K. The solid curves are fits to Eq.(4.1) and vcrtical arrows 
uark the characteristic thes  (iuflectiou poiuts) r. (L) Tlie ~lawtioii  rates S(t) 
for the isothenns in (a). 



Appendix B 

Figure B. 1: Raiicloiii Trap hfoclcl fits of Eq.(4.18Xsolicl curvcs) to tlicriiioreiiiaiieiit 
rcliu<ttioii isothcrnis of Fco.aiNio.PCb.12 for a squeiico of tciiipemtiircs c, 5 
25 K aiid for a coriiiiioii wait tiiiic t,,. = 3OO.s. Tlic vcirti(*al iarrotbx iiiitrk t l i ~  
ciiarac!tcristi(* tiiiics (iiifi(w.tioii poiiits) r. 



Figuc B. l :  (a) Rucloiii Trap hlodcl fits oEEq. (4.18) :solid curvcs) to tlic vait-r  iiiic 
dependence of the thermoremanent relaxation of k'en.njNin.2:iCrn.i2 at T,, = 20 K. 
The vertical arrows n iuk  the cliaracteristic tinies (infiection poiiits) r. (b) Saine 
sariple aud aiialysis as iii (a) but for Tm =21 K. 



Figurc I3.3: (a) PLi~iicloiii Triip hlodcl hts of Eq.(4.1S),sditl curvu) tu tlic [riut-tiiii~~ 
dependence of the thernioremanent relaxation of Fq.6jNi0.23Cr0.12 at Zn = 22 K. 
Tlic vcrtical UL-~NS iiiiuk tlic cliuactcristic tiiiics (itificctioii poiiits) r .  (b) S~iiiic 
san~pb and analvsis as in (a) hiit for T ,  =24 K. 



Figin! BA: (a) n;lii(loi~i Trap A I ~ c l d  fits of Eq.(4.18XsoIi~ 1 ( - i i r ï ~ s )  to tlic:ri~i~rc~-- 
manent relaxation isot herrns of ( F e ~ . ~ N i ~ . ~ ~ ) ~ . ~ ~ M a o .  for a sequence of temper- 
atiires T,,, 5 60 K and for n cornmon mit  timc t,,. = 60s. (h) Rnndom Trnp Modri 
fits of Eq. (4.18Xsolid curves) to the wait-t ime dependence of the thermoremanent 
rcIü><iitioii d (F~.asNiu.35)u.wLhI~i0.LICI iit T, = 57 I i .  



Figiin: B.3: (il) Ririic loiii Triil) h:fo(I(:l fits oCEq.(4.18)(~~lit 1 c-iii.v<.s) t il tli<!i.iii<irc:iiiii. - 

nent relaxation isotherms of Cro.79F~.2i for a sequence of teriiperatures T ,  22 K and for n common m i t  timc +. = 60.9. (h) Rnndniii Trnp AIndrl fits of Eq.(4.18) 
(solid curves) to the wai t-time dependence of the tliermoreniment relaxation of 
C q . n F ~ . 2 1  at T, = 14 K. 



Fig~m: l3.G: (a) SwIi11g of F(!,j.,k;Nitj~2:fCr,l.12 ~ l t  rtt = 20 1; for (Iiff(:r(!ut w i t  til~l(:s 
using only r ~ .  mo is cllosen by the empirical stretdid exponentid model. (b) 
Scding at z,, = 10 K for diffcmiit m i t  timm iising Eq.(.(2.112). 
rno = 0.443,0.448: 0.441,0.438 and 0.433 emu/g for t, = 300s, 90Os, 1800s, 3600s, 
7200s rcs y cc t i vclj-. 



--  

Fiaiin: I3.7: ( i l )  S<*iiliiig of Fc,,-,i:Ni,l.21Cr,l. l, i it  T,,, = 21 I i  for <liff<:i.<:iit i~ i i i t  t i i i i ~  

using only m. 7n.0 is chosen by the ernpiricd stretclied exponential model. (b) 
Scding of FQ.~~;N~~.&~,~. nt T,,, = 11 K for diffcrrnt m i t  timrs using Eq.(2.112). 
mo = 0.458,0.443,0.454,0.452 and 0.455 emu/g for f = 300s, 900s, 1800s1 3600s. 
7200s i.cspcctivcly. 



Figiirc: i3.S: (il) Sc-di i ig  of Fc!tiluNiti.2:iCh,.i2 iit T,,, = 22 I i  lor (liffcrwt wiiit tiiiit.5 

using only tw. Q is cliosen by the empirical stretched exponential niodel. (b) 
Srnling of F P ~ . ~ , N ~ , , ~ ~ ~ C ~ ~ , ~ ~ ~  nt T,,, = 22 K for diffcrriit wit  tiincs twing Eq.(2.111). 
Q = 0.465,0.482: 0.474, 0.479 and 0.475 emu/g br t, = 300s: 9009, 1800~~ 3600s: 
7200s rcspwtiwlj-. 



Fig~inb I3.8: ( i i )  S-iiiiiig of FC:,,.,~N~,~;~,C~,,,,, ilt T,,, = 24 I i  Eor tliff(:r<:iit ~ l i t  t i i i i t s  

using only rn* mo is cliosen by the enipirical stretchecl exponential moclel. (b) 
Scnliiig of F Q . ~ ; ~ N ~ ~ ~ . ~ , ~ C ~ ~  l2 nt T,,, = 24 K for diffcrrnt m i t  timrs iising Eq.(1.111). 

0.509, 0.516, 0.528, 0.500 mcl 0.514 emu/g for k, = 300s, 900s: 1800~~ 3600s' 
aiid 7200s rcspwtiwly. 
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Figurt: C.10: (il) S(-iiliiig o f  Ctl-i!jF<!4);ZI i ~ t  T,,, = 14 K fur diff(:~-(:~lt wiit t i l w s  usiltg 
only is cliosen by the enipirical stretched exponential inodel. (b) Scaliug 
O€ Cr,,.;gFc,~.~, nt T,,, = 14 K for diffcrcrit m i t  timrs ~ising Eq.(7.112). n7,, 0.422. 
0.415, 0.430, 0.445 and 0.429 emu/g for & = GOs, 300s, goOs, 1800s, and 3600s 
l-es y cct i vcly. 





F i  B- 1 ( i l )  St-iiliiig of  (Fc,, tnNi,,;c.)~i.nn.2AI~~IB-I in iit T,,, = 52 I< fiji. tliffc!i-oiif 

wait times ~ i n g  only m. nb is chosen by the empirical stretched exponential 
modd- (h) Scdlng of (~~.r;;Nio.:r;)an82k~nOOl 1s n t  r,. = 52 K for diffcrcnt m i t  
t i ~ s  using Eq(2.112). mo = 0.147, 0.145, 0.145, 0.145 and 0.146 emu/g For tu, 
= GOs, 120s, lSOs, 300s iuid 900s i-cspcctivcly. 



Figiin: B.13: ( i l )  Swliiig of 1s ilt Tt, = 58 GIi fijr tliff(:n*ii~ 
wait tiines using only m. ?no is clloseu by the empirical stretched exponential 
niodd. (h) ScaIing of (F~~.,,Ni~:,)~,,hf~~.,~~ at T,, = 56 K for diffrrcint [rait 
times only Eq.(2.112). r% 0.155, 0.153, 0.156, 0.152, 0.152 and 0.152 ernu/g for 
tu, = GOs, 120s, 1SOs, 240s, 300s üiitl GOOs mpcc-tivclq: 



1 - 1 :  ) s i  of ( F i )  I , = 57 I i  1<)r (1iffcn:iit 
m i t  times using only ?no. mo is cliosen by the empirical stretched exponeritial 
n i d c l .  (h) Scding of (F~4.ti~Nio.3~)a~~2h~no.l ,, a t  T,,, = 57 K for diffcrrnt !rait 
times using Eq.(2.112). mo = 0.145, 0.144, 0.143 0.142, and 0.140 ernu/g for tu, 
= GOs, 300s, DOOS, 3G00s, aiitl 10800s rcspcutivc:~. 



Appendix C 

- -- 
Figure C. 1 : (a) EDM fits of Eq-(4.23)(solicl curvfzi) to tlicniioreinaiiciit relaxatioii 
isotlieruis of F Q . ~ ~ N ~ ~ . ~ . , C ~ .  1 ,  for n sccluciicc of tcinpcraturcs T,,, = 8: 10.12.14: 
aritl 15. K aiid for a coiiiiiioii wait tiiiie f ,  = GOs. Tlic vcrtical arow iiiark tlio 
cluuncteristic t in ia  (iiiRcctioii poiiits) T.  (11) RcIau<tioii rata for tlie <lata (dots) 
and the tlicoretical fuiictiori (solicl curvcs). Tlic iiisert slio~vs tlie filial -agcxl.' 
distrit>utioii of actimtioii eiiorgics (just aftw t h  fi&[ (:I~;LII::<!). Tilt* [ ~ < * : i k ~  ti-01 I I  
htot i i  to top corrmpoiid to illcr(i~~i~ig teiiipeiritiirc. 



Pintrc C.2: (a) EDM fits of Eq.(4.23)(soIitI ri~rvm) to tlicniiorrnian~nt rrlasatio~i 
isotlicriiis of Fÿ,ÿ,GNiu.&ro. for a squciicc of ttiiipcratures Tm = tG, 18.19: 20: 
and 22 K and for a common wait time t,,, = 60s. The vertical anows mark the 
cl~~~~acteris tic tiiiies (iidiw tiou poiuts) r. (b) Relaxatioii rates for tlie data (dots) 
and the theoretical funetion (solid ciiwes). The insert shows the final a g d "  
distribution of activation energies (just after the field change). The peaks froin 
bottorii to top cori-espoiid to ixicreasing tcniperature. 





Figirc C.4: (a) EDM fits of Eq.(4.23)(soiicl ritrvrs) to tlw tvait-tiinr dopciitlriirr 
uf tlic tlicriiioi.ciiituiciit ~clt~xatioti of F ~ J . ~ N ~ ~ . & - ~ . ~  iit ï,,, = 119 K. Tlic vcrt ical 
arrows mark the characteristic t irne (inflection points) T .  (b) Relaxation rates 
for the data (dots) ÿiid the tlicurctiçd fuiiçtiuii (solid c-urvcs). The iiisçrt slioivs 
the final ''ageci" distrihiition of activation energ= (jitst alter the field change). 
The peaks from left to right correspoiid to increasiiig wait tiiiie. 





Figure (3.6: EDM fits of Eq.(4.24) (solid curves) to tlieriiioreniaiient reiaxatioii 
isothcrnis of Fc,.GNiu.-r ,Cr,, , , for n scqiiriirr of tc~npcrn turcs T,, 2 21 I< niid for 
a common wait time h, = 60s. 



Figurc C.7: (a) EDbI fits of Eq.(4.23Xsolid cui~cs) to tlicriiiorciiiaiiciit rclrrxatioii 
isotlioriiis of F<i,.~5Nia2;IC~,.u for i i  scqiitrit:c: of t~ii ip'i . i i t . i i i . ta Zn 24 I i  ;iiid 
for a cornmon wait time t, = 60s. The vertical orrows mark the characteristic 
timm (inflwtion points) r. (h) Relaxation rates for the data (dots) anri hy thc 
theoreticai function (solid curves). The insert shows the final "aged" distribution 
of r~ctiiutioii ciicrgiu. Oust aftcr tlic fi~ld cliaiigc). Tlic puiks froiii hot tuiii tu top 
correspond to increasing tamp~rature. 



Figure! C.8: (a) €DM fits of Eq.(4.23)(soIid ciirves) io  tlir mit-tinic dopsiicleri<r 
of tlic tlicr~iioreiiüuiciit rclaxrrtiou of F%.aNiu.23CrU.L2 at T, = 20 K. Tlic vertical 
arrows mark the characteristic times (idection points) r. (b) Relaxation rates for 
tlic data (dots) aud l.y the tli~uretical fuiictioii (solid çurves). The iiiscrt siiows 
the final %gd" distribution of activation energies (jiist aficr the field change). 
The peaks from le& to right correspond to increasing wait time. 



Fimirc C.9: (a) EDkI fits of Eq.(4.23)[solirl riiivcs) to tlis mit-titiic dcpentlciirr 
of tlic tlicuuorciiimmiit ~clclinatioii of F ~ . ~ N i ~ : ~ & i . u . ~ ~  iit G, = 21 K. Tlic vertical 
arrows mark the characteristic t imes (inflection poirits) r. (b) Relaxation rates for 
tlic data (dots) aiid by tLc tlicurcticai fuiiçtioii (solid curves). Tlic iiisert sliows 
the final "agd" disribution of activntion energim (j~ust afteter the field rhaiige). 
The peaks froui left to right correspoiid to iiiçreasiiig wait tinie. 



fi gui.^ C. 10: ( A )  EDCI fits of Eq.(4.23Xsolid ri irvcs) tn tlir wait-timn tlc~wri(lriirr 
of tlic tliciuioi-citiÿliciit i-cli~uirtiou of Fq,GNiU.23C~u.12 at T,,& = 222 K. Tlic vcrticiil 
arrows mark the characteristic times (inflection points) r. (b) Relaxation rates for 
tlic data (dots) iuid bj- the tlicwwticd fuuctioii (solid c u r w ) .  The iiiscrt sliows 
the final L~agerl''di~r~h~ition of activation energies (jiist after the field change). 
The peaks froin left to riglit corresporid to iiicreasing m i t  time. 



Figiirc? C.11: (a) EDlf fits ofEq-(4-23)(solicl ritivcs) to thc nrait-tin~<~ tlcp<iiicicii(*r. 
of tlic tlicriiiorc~iiüiiciit rclwiitioii of F ~ I . ~ ~ N ~ ~ . ~ ~ C ~ ~ . ~ ~  at 7;,, = 24 I i .  Tllc vcrticd 
arrows mark the chsracteristic times (inflection points) T.  (b) Relaxation rates for 
tiic data (dots) aiid by tlic: tlicurcticd fuiictioii (solid curva). Tlic iriscrt sliorvs 
the final "aged" distrihiltion of activation energicr; (jiist nfter the field rhaiige). 
The peaks froui ieft to ngfit correspoiid to iiicreasing wait tiine. 



Figure C.12: EDM fits (solid curves) of the thermoremanent relaxation of 
F ~ é u . ~ N i u . w C ~ u . l a  at T, = 23 f i  to Eq.(4.23) aiid 1, = Lü li' aiid 28 K to Eq.(4.24) 



Log l o t  
Fiyrc C.13: (a) EDhI fits of Eq.(4.23Xsoiicl rurva) to tli(:riiiorcilwiciit r(:Iasatioii 
isotiiwiiis of ( F ~ , . J ~  b&,.:l.i)ll.(lwL h h t l -  r L  f c ~  il M : ~ I I ( I I I ( - ~ :  o f  tt~iqx:ntt uns T,,, 5 60 r i  
and for a cornuion wai t time t, = 60s. The vertical arrows mark the characteris tic 
timm (inflwtion points) T .  (h) Rrlaxntion n t m  for th r  data (dots) and rhc 
t heoret ical funct ion (solid curves). The insert shows the final "aged" dis tri bu tion 
of iictivatioii cucrgics (just aftiftcr tlic ficld c:liiuigiftc). Tlic pcaks fm:i bot toiii tu toli 
correspond to incrcasing tempcrat~irc. 



Figure C.14: (a) EDM fits of Eq.(4.23)(solid curves) ta tlic wait-tiiiie d<t~)eiicleiicv? 
of t lic tlicruiomiiiuici~t ~ laxat ic t i  of (Fq.ütNio.;l;)u.wÏRItiU. at T,,, = 48 K. Tlic 
verticai arrows mark the characteristic tirnes (inflection points) T.  (b) Relax- 
atioii rates for tlie dota (dots) aud the tli~wreticlil fullctiou (solid CUL-va). The 
insert shows the final "agd" distrihiition of activation energies (jiist ~ f t e r  the field 
diange). The peaks from left to riglit correspond to increasing wait tinie. 



Figure C C 5  (a) EDM fits of Eq.(4.23)(solid curves) to the wnit-tiiiio <li~paii<l<?iiw 
of tlic tlicriiiomiiiiuiciit mli~~ütiuu of ( F L ~ . ~ N ~ ~ . ~ ~ ) ~ . ~ ~ ~ ~ I ~ ~ ~ ~  at T,,, = 53 K. T l l ~  
vertical arrows mark the characteristic times (idection points) r. (b) Relm- 
atioii rates foi. tlic data (dots) aiid tlio tliwrctiçd fuiictioii (solid curves). Tiie 
insert shows the final ''agd' distrib~ition of activation eiiergks ( j i ~ s t  aftor the field 
change). The pealcs fkoni left to right correspond to increasiiig wait the .  



Figure C. 1G: (a) EDM fits of Eq.(4.23):solicl cuiws) to t h  wait-tiiiit! clepeiicleii<~o 
of t lic tlicriiiorciiiüiiciit mliuüit ioii of (Fq,.GNiu;ri)u.wJ   ILI^. l8 ilt Zr, = BG K. TIic 
vertical anows mark the characteristic times (inflection points) T.  (b) Relax- 
atioii rates for tlic data (dots) aud the tlieoreticd fuiictioii (solid curves). Tlic 
insert shows the final %gd" distribution of activation energies (jiist aftar the field 
change). The peaks froin left to nglit correspoud to iucreasing wait time. 





Figure C. 18: EDM fits of Eq.(4.24) (solid curves) to thernioreiiiaxieiit relaxatioii 
isothmiis of (F~~~.~;Ni~.;~)~.~~~h.fn~.~~~ for n scqiiriicr of trtiipcrntiirm T,,, 2 65 1< 
and for a comrnon wait tirne t , ,  = 60s. 



Appendix D 

Figure D. 1: T1icriiion:iiiaiieiit rclaxatioii isotlicrliis of Cro. for a s(:- 
quciicc of tciiiperntur(s Tm 5 22 K aiid. for a coiiiiiioii mit tiitie kt,, = 60s. The 
solid curvcs air fits to Eq.(2.141) aiid vertiml u n w s  ciiark tlic! clinractcristic ili- 
Hoctioii poiiits r. 



Log lot 

Figure D.2: (a) Wai t- time dependence of the t hermorernanent relaxation of 
F ~ . ~ N i ~ : ~ ~ C i u . t  1 at T,, = 17 1;. Tlic solid curves ai.c fits tu Eq.(2.141). (b) Sniiic 
smiiple and iuiaiysis as iii (a) but for T, =19 K. 



Figure D.3: IV&-time dependence of the thermoremanent relaxatioii of 
üt T, = 21 I i .  Tlio solid curvcs arw iita tu Eq(2.141). 



Figure D.4: Tlicrmoremanent relaxation isot hernis of Fea65Ni0.21Cr0. for a se- 
qurnrr of temperirtiir<.s T,. 1: 24 K and for a romrnon wait tirne t,,. = 60s. The 
solid curves are fits to Eq(2.142). 



Figin: D.5: TIic:i.iiiorciiiiiii(!~~t r<?l>isiitioii isotli<:riiis of C~,,.:!,FC,,.~, for ii s<xiii(~ii(-(* 
of teriiperatures and for a common wai t time t, = 60s. The solicl curves are 
fits to Eq(2.141) for T,, 5 22 K and to Eq(2.142) for T,,, 2 26 K. The verti- 
cal arrows mark the location of the relaxation time F / r  for average-sizecl an- 
tialigiiccl/iiligiic~l doiiiniiis. 



Figure DA: CVaï t-t iiiie degeiideiicc of the tIiei.iiioi.e:iiioi~e~it re1uot ioii of 
Cr~.mFeo.~i at Tm = 14 K. The solid curves are fits to Eq.(2.141) and the vertical 
urows uiark tlie locatioii of tlie relaxlrtioii tiiiie TT for average-sizd aiitialigiied 
domains. 



Fipurc D.7: Tlicriiiorciii~iiciit rclwtioii isotlicriiis of (F~.GPiiU.;15)U.w2h.11100L 18 for 
a sequence of temperatures Tm 60 K and for a common wait time &, = 60s. 
Tiic solid curves arc fits to Eq.(2.141) wid vertical wrows iiia-k the locittioii of 
the relaxation tirne for average-siîd a n t i d i ~ d  domainî. 



Figuc D .S: k h i  t- t iuic dcpcudc.ucc of t Lc tlicuiomuiüiicut m l w t  iou of 
( F ~ . d i o . & . ~ M ~ .  118 at Tm = 57 K(a) and Tm = 48 K(b). The solid curves are 
fits to Eq(2.141) aiid vertid arows mark the locatioii of tlie relaxotiou tiiue 
for average-sized antirrligned domains. 



Figurc D.9: CVüi t- tiiiic tbpmitlciicc of tlic tlicriiiorc~iiaiiciit rclmtioii of 
(&.asNia3s)o,&in0.,ie at Tm = 52 K(a) and Tm = 56 K(b). The solid curvg are 
lts to Eq.(2.141) aiid vcrticai arrows uluk tilt: iocatioii d tlie wlaxÿtioii tiuie f ;  
fot average-sizd antidignecl domdns. 



Figu~c D. 10: Tlici~iiorciiiuiciit rciasatiuu iso t iicruw of ( € ÿ ~ . ~ N i ~ . ~ ) ~ . ~  h14jilo1 18 

for a sequence of temperatures Tm 2 65 K and for a common wait time t, = 60s. 
Tlie solid curves u e  fits to Eq(2.142) oiid vcrtiçd ai.rows .jiiiark tlic locatioii of 
the relaxation time % for average-sized aligneci domains. 




