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Abstract 

One approach to the analysis of repeated measures designs allows researchers to model 

the variance-covariance structure of their data rather than presiimr a certain structure as is 

the case with conventional univariate and rnultivariate test statistics (Littell, Milliken, 

Stroup, & Wolfinger, 1996). This mixed-mode1 approach was evaluated for testing al1 

possibic pairwise clihreiicrs aiiioiiy repeated masures niaqinal rncans in a bctwccn- by 

wiihin-subjects design. Specifically, Type 1 error control and power were exarnined for 

simultaneous and stepw ise multiple comparison procedures using SAS' ( 1 9%) PROC 

MIXED in an unbalanced repeated measures design when normality and variance- 

covariance homogeneity assumptions did not hold. The potentiiil advantage of the 

MIXED procedure with its ability to specify various variance-covariance structures was 

compared to known robust multiple comparison procedures basrd on a between-subjects 

heierogeneous unstructured fom of the variance-covariance matrix with Saitcrthwaite 

( 1 94 1, 1946) degrees of freedom (Keselman, 1 994; Keselman, Keselman. & Shaffer, 

1991; Keselman & Lix, 1995). Specifically, the trsting strategies of always fitting an 

unstructured variance-covariance matrix, fitting the tme population structure, or ailowing 

two model selection criteria available through PROC MIXED to select the best structure 

were investigated. Rates of Type I error control were similar across the testing strategies 

for each of the multiple comparison procedures. The recommendation of always fi tting an 

unstructured variance-covariance matrix to the data was based on the fact that a 

researcher does not need prior knowledge about the true population structure and does not 

need to rely on a model selection criterion to provide good Type 1 error control. 

-v- 



Furthemore, results sliowed two stepwise multiple cornparison procedures as particularly 

notable. Shaffer's ( 1  986) sequentially rejective Bonferroni and Hochberg's ( 1988) 

sequentially acceptive Bonferroni procedures had supenor performance with regards to 

Type 1 rrror control and power to detect true pairwise differences across the investigated 

conditions. 
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Repeated Measu res Multiple Comp~rison Procedures with a M ixed Model Analysis 

A common experimental design in psychological and educational research is the 

repeated measures (RM) design in which the sarne measurernent is iaken on a unit of 

analysis (cg., subject) on more than one occasion. Other narnes for this type of design 

inciudc: w i tliiii-subjzcls üiid corrrliitéd gwups desiyiis. A rmon for the popularitp of this 

design is that in many situations repeated measurements on the same subject occur 

naturally. For example. a developmental study that examines a child's motor 

development across age levels or a leaming study where the same individual is rneasured 

across V ~ ~ O U S  treatrnent conditions ihat may represent di fferent drus dosage levels. 

Because the same subjects are nieasured repeatedly the measuremeiits are correlated. 

Therefore, the pattern of variances and covariances (or correlations) among the levels of 

the repeated tactor require special consideration when anülysing data from such designs. 

Tliere are two main advantages of RM designs that also contribute to their popiilarity in 

the literature (Maxwell & Delaney, 1990). First, the units of analysis act as their own 

control, thereby eliminating individual differences between subjects from the error 

vwiability and thus creating a more sensitive design for testing effects. Second, a RM 

design requires fewer subjects to obtain the sarne level of power as in a between-subjrcts 

design (also known as an independent groups design). This is appealing for a researcher 

who may be under constraints of time and money when conducting a study. 

A design that contains a single repeated factor is called a simple RM design. The 

inclusion of an additional repeated factor (or factors) in which the units of analysis are 

measured under each combination of the repeated factors is called a single group factonal 
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RM design or higher order within-subjects design. When a grouping factor (or factors) is 

added to a Rh4 design it is called a between- by within-siibjects design or mixed design. 

In a mixed design, the units of analysis are classified into independent groups and 

measured under al1 levels (or combinations) of a repeated factor (or factors). A design 

tliai contailis one brtween-subjccts and onc within-subjccts factor is the simplest example 

of a mixed design, someiimes referred to as a split-plot design. 

The discussion of RM designs in the psychological literüture dates back to the 

1940s (see Lovie, 198 1). The univanate analysis of variance (ANOVA) approacli to data 

from these designs wüs the focus of early research. Not surprisingly the univariate 

approach remains the most cornmon analysis method for Rh4 designs in the psychological 

and educational literature (Keselman et al., 1998; Kowalchuk, Lix, & Keselman, 1996). 

However, data encountered by behavioral researchen is uniikely to satisfy the strict 

assumptions required for valid univariate F-tests. Recomrnendations in the literature 

about the "best" analysis strategy to adopt for RM designs can be found in numcrous 

articles and book chapters (cg., Barcikowski & Robey, 1984; Everitt, 1995; Keselman & 

Alginn, 1996; Keselman & Keselman, 1993; Lewis, 1993; Looney & Stanley, 1989; 

Maxwell & Delaney, 1990; McCall & Appelbaum, 1973; O'Brien & Kaiser, 1985). These 

recommendations are typically based on simulation or Monte Car10 studies enamining the 

"robustness" of V ~ ~ O U S  analysis methods. The term robustness refers to a statistical test's 

insensitivity with regard to Type 1 error control under violations of its assumptions (Box. 

1954). The predominant method of evaluating robustness is the use of simulation 

techniques, in contrast to theoretical explications. 
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The majority of research on RM designs has focused on the analysis of omnibus 

tests of RM factors (Le., within-subjects main and within-subjects interaction effects). 

Although omnibus tests of these factors are informative, a researcher usually has 

hypotheses of interest that require the use of more speci fic contrast (or cornpanson) tests 

( e . ~ . ,  marginal mean compansons). .4ssuming the effect of interest is a RM main effect 

(with more than two levels) a researcher has the option of testing specific a priori 

contnst(s) or choosing a multiple cornparison pmcedure (MCP) to test ail possible 

painvise contrasts. The latter is the focus of the present study. 

To develop the background for the present study. an overview of omnibus 

analysis approaches to RM designs will be presented. Typicaily the data from thase 

drsiyns are analysed by conventional univariate or multivariate methods. In addition. 

there are degrees of Freedom (df) adjusted procedures that may be used when the 

assumptions of the conventional univariate approach is not tenable. Anotlier approach to 

the analysis of RM designs recommended in the literature, the mixed model approach. 

üIlows one to model the variance-covariance structure of the data rather than presume a 

certain structure as is the case with conventional univariate and multivariate test statistics 

(see Littell, Milliken, Stroup, & Wolfinger, 1996; SAS Institute, 1999; Wolfinger, 1993, 

1996). The purpose of the present study was to evaluaie this mixed model approach for 

testing al1 possible pairwise differences among RM marginal means in a between- by 

within-subjects design. Accordingly, a Monte Carlo study was donc to examine the 

robustness of several MCPs using SAS' (1999) PROC MIXED. 

The decision to investigate a mixed RM design is based on the popularity of this 
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design in the Merature. A methodological content analysis of 13 educational and 

psychological joumals published in 1994 found 84% of the articles that iised a RM design 

analysed a rnixed design ( i  .e., a design that contains both between-subjects and within- 

subjects factors; Keselman et al., 1998; Kowalchuk et al., 1996). Furthemore, the authors 

found that unbalanccd dcsigns (i.c., uncqual numbcrs of subjccts in cach groupkcll) ncrc 

more common than balanced designs. The journals reviewed are considercd 

representative of the education and psychology disciplines and are considered prominent 

by researchers in the respective areas and thus provide a good indication of designs likely 

to be encouiitered by applied researchers. 

Mixed Repeated Measures Design 

Omnibus Tests 

The simplest of the higlier-order mixed RM design contains one between-subjects 

and one within-subjects factor in which subjects ( i  = 1, ... , n,, L, n, = N) are randornly 

selected for each level of the between-subjects factor (j = 1, ... , J )  and observed and 

measured under al1 levels of the within-subjects factor (k = 1,  ... , K). 

The general linear mode1 for RM data is (see Timm, 1975) 

Y = X B + { .  (1) 

where Y is an N x K matrix of scores on K repeated measurements, N is the total sample 

size, X is an N x J design matrix that codes for between-subjects effects (rank(X) = J), B 

is a J x K matrix of nonrandom parameters (i.e., population means), and is an N x K 

matrix of random error components. The rows of 6 are assumed to independently and 
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identically distribiited as Nk(O, T), where I: is a K x K varianceïovariance matrix. 

The unknown elements a ,  of the matrix X are estimated by 

s = Y ~ Y - Y ~ x ~ .  (2  

wliere ' ixfers to the transpose operator. The df due to crior is N - J = v, , and (lh,)S is an 

unbiased estimator of E. 

The general linear nuIl hypothesis can be written as 

Ho: DBU = O .  ( 3 )  

where D is a dfD Y, J contnst matrix on the between-subjects effeci. with rank(D) = df, 5 

J and U is a K x df, contrast matrix on the within-subjects effect, with rank(U) = df,: s K. 

The sum of squares and cross products matrix due to the hypothesis is computed as 

S, = (DW -0)' (D(X'X)- 'D~ ) - l  ( D ~ U  - O ) .  ( 4 )  

and the sum of squares and cross products matrix due to error is computed as 

se = uTyT[t, - x(xTx)-'xyLJ. ( 5 )  

wherc 1, is an identity matrix of dimension N. A test of the nul1 hypothesis is made by 

cornparhg the matrices S, and S,. 

Multivariate A D D ~ o ~ c ~ .  Several muhivariate (MANOVA) test statistics cm be 

used to test an omnibus nul1 hypothesis in a RM design. The most common include 

Hotelling's (193 1) T2 statistic, Pillai (1955)- Bartlett (1939) trace statistic, Wilks' (1 932) 
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likelihood ratio, Hotelling (195 1 )- Lawley ( 1938) trace criterion, and Roy's ( 1953) largest 

root criterion. M e n  the minimum of (df,, df,) is equal to one, al1 criteria are equivalent 

to Hotelling's (1 93 1) T' statistic. 

Hotelling's (193 1)  T' statistic is defined by T' = v, [tr (S, Sc-')], where tr refers to 

ilie trace opcntor, Pillai (1955)- Banlett (1939) tracc (PB) statistic is givcn by PB = tr(S, 

T*') where T = S, + S,, Wilks' (1932) likelihood ratio (W) is defined by W = det (S, T"), 

where det refers to the determinant of a matrix, and the Hotelling ( 195 1)- Lawley (1 938) 

trace (HLT) criterion is defined by HLT = tr (Sh Se-'). Each of these statistics can be 

expressed as an 1-variate. For example, a test of a RM main effect based on Hotelling's 

( 193 1 ) T2 can be expressed as 

N - J - K + 2  
F = T' r ~ [ a ;  ( K - 1 ) .  ( N - 3 - ~ + 2 ) ] .  

( N - J )  ( K - 1 )  

The F-approximations for PB, W. and HLT can be found in Muller, LaVange, Ramcy, 

and Ramey (1  992). 

The multivanate test statistics are based on an Unstructured (UN) form of the 

variance-covariance matrix, where (K(K+ 1))/2 parameters must be estimated [Le., K 

variances and (K(K- 1))/2 covariances]. The UN variance-covariance matrix has the 

following form (assurning K = 4) 

UN= 
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Valid use of muhivariate test statistics do not place any restrictions on the fom of the 

variance-covariance matrix but do require the structure of the matrix to be constant across 

the levels of the grouping variable, in addition to the assumptions of nomality and 

independence of observations. According to Oison (1 974). the Pillai-Bart lett trace 

critsrion is thc most robust of the M.4NOVA test statistics. 

Univariate Aooroach. The univanate approach to the analysis of RM designs is a 

special case of the more general rnultivariate analysis. However. the rnatrix U must be 

orthonormal such that U r U  = I,,.,,, where I is an identity matrix of dimension K - 1 .  A 

test of the nul1 hypothesis is given by 

F = [SSH l ~ ~ , ] / [ s s E  I df,] = F [a : df,. df,] . ( 8 )  

where dfh = df, rank(U), dl, = v, rank(U). SSH = trace(S,), and SSE = trace(S,). 

Unlike the multivariate tests, the validity of the univariate F-tests (main and 

interaction effects) is dependent on a particular form of the variance-covariance matrk. 

The assumption of equal population variances and equal population covariances defines a 

specific type of variance-covariance structure known as Compound Symmetry (CS) or 

unifomity and requires two paranieters to be estimated, a homogeneous variance (d) and 

a constant correlation (p). The CS variance-covariance matrix, when K = 4. has the 

following form 

 CS=^ 
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Compound symmetry is a sufficient condition for valid univariate - tes t s  but it is not a 

necessary condition. A less restrictive condition for valid F-tests is that the variances of 

al1 paired differences among the levels of the RM variable are equal (Huynh & Feldt. 

1970). This can be expressed as 

A variance-covariance matrix that satisfies ihis less restrictive assumption is said to 

possess a spherical pattern and is known as a Huynii-Feldt (HF) structure which has the 

following fonn (when K = 1) 

where h is a scalar value greater than zero. Thus, the necessary and sufficient condition 

for valid univariate - tes ts  is called the sphencity assumption. When a RM variable 

contains two levels, only one paired difference exists and the sphericity assumption is 

said to be tnvially satisfied. 

The sphericity condition can be expressed in matrix notation as 

(Rouanet & Lepine 1970). This implies that the variances of the set of K-1 contrasts on 
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the repeated variable represented by the matt-ix U are constant. When the design contains 

a between-subjects variable, an additional assumption is required that c m  be expressed as 

U ~ L ~ U  = U ' L ~ U  = * "  = uTzju = Â I(K-l) . (13) 

which implirs ü constant variance across the Ievels or the yroupiiig factor. Tlirsc. 

assumptions have been jointly referred to as rnultisample sphericity (Huynh, 1978). The 

univanate F-tests are valid if and only if the assumption of multisample sphericity is 

satisfied in addition to the normality and independencr assumptions. 

The literature uniformly ügrees that the conventional univanate F-test should not 

bc used due to its sensitivity to assumption violations. Because the data from educational 

and psychological research is unlikely to satisfy the strict assumptions required for valid 

univariate 1-tests, this analysis approac h is not recommended. Furthemore, the use of 

preliminary tests of the multisample sphericity assumption such as Box's modified 

criterion (see Huynh & Feldt, 1970) to test for heteroscedasticity of covariance matrices 

and Mauchly's (1940) sphericity cntenon to test for departures from sphericity are not 

recommended (Keselman, Rogan, Mendoza, & Breen, 1980; Rogan, Keselman, & 

Mendoza, 1979). Both tests are extrernely sensitive to nonnormality and even under 

conditions of normality the tests are sensitive to small departures fiom their respective 

h ypotheses. 

Box (1954) showed thai the univariate F-tests are approximately distnbuted as - 

variates when the df are adjusted by a factor representing the departure from sphencity. 

The degree of sphencity in a population variance-covariance matnx is measured by the 
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parameter epsilon, notated as E , where 

is the pooled population variance-covariance rnatrix. The parameter E lias an upper 

bound of one when sphericity is satisfied and a lowcr bound of (K- l ) . '  for a S x K design. 

Severai df adjusted univariate analysis procedures have bren proposed to correct for 

violation of the sphencity assumption in a RM analysis. 

Adiusted Denrees of Freedom Univariate A~proaches. Given the lower bound 

of epsilon, Geisser and Greenhouse ( 1958) presented a lower bound correction for 

univariate 1-tests where E is set equal to (K- 1)-'. M e n  the df for effects involving ü 

repeated factor in a J x K design are multiplied by this correction factor, a test of the 

within-subjects main effect is based on 1 and (N - J) df and a test of the within-subjects 

interaction effect is based on (J - 1), and (J - l)(N - J) df. This method is conservaiive 

(Le., smaller df correspond to a larger critical -value; Maxwell & Delaney, 1990) and 

may lack suflicient power to reject the nul1 hypothesis. Hence, this method is not 

recommended (Rogan et al., 1979). 
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Greenhouse and Geisser (1959) suggested a sample estimate Ê for Box's (1954) 

E. The conventional univariate df are multiplied by the adjustment factor Ê. For tests of 

within-subjects main and within-subjects interaction effects in a J x K design. the 

Greenhouse and Geisser ( 1  959) Ê adjusted F-tests are respectively. 

and 

w hçre 

FK F [a; ( K - ~ ) Ê .  ( N - J ) ( K - l ) Ê ] .  

and 

whcre Sj is the sample variance-covariance matrix for the jh group and S is the pooled 

sarnple variance-covariance matrix. The sarnple estimate of E was found to be biased 

when E was greater than or equal to .75 especially with small sample sizes (Collier, 

Baker, Mandeville, & Hayes, 1967). 
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Huynh and Feldt (1 976) proposed an E adjustment approach to correct for the 

conservative nature of the Ê adj ustment method of Greenhouse and Geisser ( 1959). Tests 

of RM main and interaction effects in a J x K design are respectively. 

FK = F [a: (K- I )  C . (N - J ) (K-  1) cl .  

and 

where 

Although E can e ixceed a value of one its maximum val ue is restricted to one. Lecoutre 

( 199 1 ) offered a correction E, to the E adj usted procedure when the number of groups is 

greater than or equal to two. Specifically, (N - J + 1 )  is substituted for N in the numerator 

of E. Chen and Dunlap (1994) found È, to be less biased thw È when E was greater 

than or equal to .75 (Le., rates of Type i error were closer to the nominal level). This 

correction is important because a review of education and psychology publications found 

that E rarely fell below .75 (Huynh & Feldt, 1976). 

Additional E adjusted procedures that essentially represent a combination of E, 

and Ê have been proposed. Quintana and Maxwell (1994) investigated seven E adjusted 
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npproaches to the analysis of RM designs in ternis of Type 1 error and power under 

violation of the sphencity assumption. The authors recommended two adjustment 

approaches: the É, adjusted procedure and a method combining E, and Ê in which E, 

is calculated and if it is greater than or equal to .75 then the E, adjustment is used, 

othenvise the Ê adjustment is used. 

In general. the adjusted univariate methods are robust to heterogeneity of 

covariance matrices given equal sample sizes (Huynh, 1978) and are more robust than 

multivariate methods under nonnormality (Keselman, Keselman, & Lix. 1 995; Rogan et 

al., 1979). However, when heterogeneous covariance matrices are cornbined with uncqual 

group sizes, the univariate adjusted tests and the multivariate tests are generally not 

robust (Keselman & Keselman, 1990; Keselman et al., 1995; Olson, 1974). Specifically, 

when covariance matrices and group sizes are negatively paired (i.c., the covariance 

matrix with the largest element values is paired with the smallest group size), Type I error 

rates become liberal and when covariance matrices and group sizes are positively paired 

(Le., thc covariance matnx with the largest element values is paired with the largest group 

size), Type 1 error rates become conservative. For a review of the empirical literature, see 

Keselman, Lix, and Keselman (1996) who conducted a mcta-analysis summarizing Type 

1 error and power results of Monte Car10 studies on split-plot RM designs investigating 

univariate and multivariate approaches. 

Some authors have recommended a test strategy that combines the adjusted 

univariate and multivariate tests (Barcikowski & Robey, 1984; Looney & Stanley, 1989). 
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For example. both univariate and multivmiate tests are evaluated at al2 and if either test 

i s  significant then the hypothesis is rejected. Keselman et al. (1 995) compared this testing 

strategy to uniforrnly adopting either an adjusted univariate or multivariate test. Their 

results do not füvor the use of a combinrd tesiing strategy because the combined strategy 

is sensitive to the sanie condiiioiis (i.è., uiièyual covariaiice niatriccs combincd with 

unequal group sizes) that cause the adjusted univariate and multivariate tests to lack 

robustness. 

Huynh (1978) proposed two approaches to deal with the case of unequal 

covariance matrices and arbitrary groiip sizcs in a between- by within-subjects R M  

design; the General Approximation (GA) test and the Improved General Approximation 

(IGA) test. The RM main and interaction -tests for the GA test are distributed 

respectively as, 

and 

whcre b, c, h, h' and h" are unknown constants. To correct for underestimation, 

"improved" estimates for h, h', and h" are given by Fi, Fi', and fi". The formulae can be 

found in Huynh (1978). Algina (1994) presented a Lecoutre (1991) correction (CIGA) to 

the IGA test by replacing N in the numerators of R' and Fi" by (N - J + 1). Huynh (1978) 

found the E and IGA adjusted tests performed reasonably well in tems of Type I error 
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control cornpared to the Ê and GA adjusted tests. Because of the cornplexity of the IGA 

test Huynh recommended the simpler E approximate procedure. Howevcr, the E 

procedure is not robust to violation of the multisample sphericity assurnption when group 

sizes are unequal. 

Algina and Oshima (1  994) found both the IGA and CIGA tests adequately 

controlled Type I error under violation of multisarnple sphericity but the cornbined effect 

of covariance heterogeneity and nonnormality resulted in conservative rates of e m r  for 

the test of the within-subjects interaction. Alginü and Oshima (1995) recommended the 

CIGA test for tests of the within-subjects main effect (unweightcd hypothesis) when the 

design is unbalanced and covariance matrices are uneqiial. However, when the design is 

balanced the È, adjusted procedure provides good control of Type 1 error. Algina ( 1997) 

extended the CIGA test for RM dcsigns containing multiple between-subjects and 

multiple within-subjects factors and provided a cornputer program to computc the CIGA 

test. Thus, the complexity of the procedure is no longer an issue preventing researchers 

from adopting this method of analysis. 

Aporoximate Denrees of Freedom Multivariate Amroach. In addition to the 

univariate solution provided by Huynh (1978), an approximate df rnultivariaie solution 

for unequal covariance matrices (Le., allows Z, .r q., where j + j') is based on a Welch 

(1947, 195 1)-James (195 1, 1954) (WJ) type statistic according to lohansen ( 1  980) and 

Keselman, Caniere, and Lix (1993). 
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The general linear nul1 hypoihesis is expressed as 

H o :  Cp = O .  ( 2 5 )  

where C = D B U". where D and U have been defined previously and -, is the Kronecker 

or direct product function, C is a contrast matnx with df, x df,: rows and J x K columns, 

p is a J x K coluiiiii vector ohairird by vcnically stackiiig the rows of B. Tliat is, p = 

(B,', ... , B,'), where B, = (p,,, ... , K ~ ) ' ~ .  

The test statistic is defined as 

where Y estimates p and S = diag(S,/n,, ... , S,/n,), a block diagonal matrix with elements 

S,in, . This statistic divided by a constant c,  is approximately distributed as an F-statistic 

with v, = (df, x df,) and v, = (v, (v, + 2))/(3A) df, where c = v, + 2A - (6A)/(v, + 7) and A 

is given by 

where Q, is a block diagonal matrix of dimension JK x JK such that the (s,t)th diagonal 

block of Q, = 1, if s=t=j and is O othenvise. 

Keselman et al. (1993) found the WJ approach provided reasonable conttol of 

Type i error given certain sample size requirements. Specifically, to test the within- 

subjects main effect the smallest group size should be 2 to 3 times larger than the number 

of RM minus one and if the data are likely to violate the normality assumption, the ratio 

increases to 3 or 4 to one. To test a within-subjects interaction effect the srnallest group 
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size should be 3 or 4 times larger than the number of RM minus one, while this ratio 

increases to 5 or 6 to one if the assumption of nomality is unlikely to be satisfied. 

Provided these sample size requirernents are adhered to. the WJ test is superior with 

regard to power compared to the univariate adjusted and multivariûte tests when both 

covariance i n a h x s  aiid yroup siles arc! uiiequül (Keseliiiaii et al., 1995). Lis aiid 

Keselman ( 1  995) provide a SASAML (SAS Institiite, 1989) program that can be used to 

compute the WJ test for any RM design. 

An investigation (Algina & Keselman. 1997) of the seneralizability of the slimple 

size requirements given by Keselrnan et ai. (1993) for the WJ test include the following 

moditications: (a) for a test of the RM main effect. the sample size requirements cm be 

reduced as the number of levels of the grouping Factor increase, and (b) for a test of the 

RM interaction effect, the sarnple size requirements should be increased as the number of 

levels of the grouping factor increase. When the sample size requirements of the WJ test 

cannot be obtained an alternative is the CIGA test. However, the WJ test is more 

powerful than the CIGA test when sample sizes allow adequate control of Type 1 error for 

the WJ test (Alpha & Keselman, 1998). 

Emoirical Baves A~oroach. Boik (1997) proposed a hybrid analysis for a RM 

design based on the univariate and multivariate approaches that uses a two stage model. 

In contrast to the general linear model for RM data, the first stage model of the present 

approach is 

Y U = X O + E ,  ( 2 8 )  

where 8 = BU and E = GU. The rows of E are assumed to be independently and 
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identically distributed as NK., (O, @), where + = UTZU. The second stage mode1 assumes 

prior distributions on O and <D. Specifically, 8 and cD are assumed to be independently 

distributed and O is unifomly distributed over a J(K-1) dimensional space and d follows 

a spherical inverted Wishart distribution 

This implies that 

where 

This is referred to as second stage sphcricity, that is sphencity is satisfied on average but 

noi necessarily for any given covariance niatrix. To quantify the prier belief in sphericity 

the hyperparameter f is computed ( (K- 1)- 1 < f < -) such that "Small values off 

correspond to a belief that departure from sphericity will be large, whereas large values of 

/correspond to the belief that depariure fiom sphericity will be small." (Boik, 1997 p. 

160). The conventional multivariate test statistics can be used to test hypotheses. The 

hypothesis matrix is the same as the conveniional multivariate approach (Le., Sh) and the 

error matrix is given by 

S b  = , + S e ,  ( 32 )  
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with (N - J +/) df. To obtain an ernpirical Bayes (EB) solution, the hyperparameters off 

and r are estimated fiom the observed data (see Boik, 1997 for formulas). 

Boik (1 997) found the EB approach adequately controlled Type 1 crror and was 

more powerful than multivariate and adjusted univariate approaches. Keselman, 

Kowalchuk, and Boik (in press) further investigated the robustness of the EB prcwedore 

comparing it to adjusted df univariate, multivariate, WJ, aiid CIGA rnethods. As 

expected, the EB approach was sensitive to the same conditions that afrect the robustness 

of the approaches that comprise this method (i.e.. covariance heterogeneity combined 

with unequal group sizes). Thus. the EB approach is only recommended when data are 

normally distributed and group sizes are equal. 

Mixed Model A~proach. An analysis strategy for RM designs rccommcnded in 

the literature is based on a mixed model approach which ailows users to model the 

covariance structure of their data rather than presume certain structures as is the case with 

conventional univariate and multivariate test statistics (Jennrich & Schluchter, 1986; 

Liang & Zeger, 1986; Wolfinger, 1993, 1996). Being able to speci fy the structure of the 

covariance matrix should lead to a more parsimonious model of the data and as a result 

more powerful tests of the fixed-effeci parameters (Wright & Wolfinger, 1996). This 

mixed model approach is now available through SAS' (1996, 1999) PROC MIXED 

procedure. 

The general linear mixed model is (SAS Institute, 19%) 

Y" = xp+zy +Su 9 
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where Yu is an m x 1 vector of measured responses (Le., univariate data, m = N x K), X is 

an m x p known design matrix, fl is a p x 1 vector o f  unknown fixed-effects, Z is an m x q 

known design mütrix. y is a q x 1 vector of unknown random-effects, and 5, is an m x 1 

unknown error vector. Both y and tu have expectations O and variances G and R. 

rcspcctivcly. The variance of Y, is therefore equd to V - ZGZT A R, where R is an m x 

m block diagonal matrix with blocks corresponding to the individual units of analysis 

with each block having a specified variance-covariance structure. In contrast to the 

previous general linear model, Yu is a univariate representation of multivariate data (Le., 

the multiple responses of each unit of analysis are stacked into a single vector). The name 

mixed model refers to the fact that both fixed-effect (p) and random-effect (y) parimeters 

are contained in the model. If  Z = O and R = ol,, then the mixed model reduces to the 

general linear modei. 

An initial step is to estimate G and R. PROC MIXED uses two likelihood based 

meihods; maximum likelihood (ML) and restricted/residuûl maximum likelihood 

(REML). The delails which are beyond the scope of this paper can be found in Wolfinger, 

Tobias, and Sa11 (1994). Based on simulation studies, REML is recommended (Wright, 

1995; Wright & Wolfinger, 1996). To obtain estimates for fl and y, the solution to the 

following mixed model equations (Searle, 197 1 ) is needed 



The solutions cm also be written as 

p= (xTv-lx>- xTv-'Y" , 

and 

The covariance matrix of p and is 

Repeated Measures 2 1 

( 3 5 )  

where "-" denotes a generalized inverse (Searle, 197 1 ). With only fixed-effects includcd 

in the model, the variance-covariance matnx of fl is reduced to (XrR-%)W. Statistical 

in ference on fixed-effects of the model are obtained by testing the followinp nul1 

hypo t hesis 

H,: L ~ = O .  ( 38 )  

where L is a df, x p contrast matrix, with rank(L) = dfL 5 p. A general Estatistic is given 

by 

which has an approximate E-distribution with df rank(L) and v. The MIXED procedure 

provides various options for denominator df for tests of fixed-effects (see SAS Institute, 

1996, pp. 565-566). For example, one can select a Satterthwaitc: solution described by 
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Giesbrecht and Burns (1985), McLean and Sanders (1988), and Fai and Cornelius (1996). 

Selecting a CS or HF covariance structure to model the data in the MIXED 

procedure gives the results for a conventional univariate analysis of RM. When an LN 

covariance matnx is fit to the data, the -statistics are a scalür multiple of the multivanate 

Lawiry-Holellin~ trace stü~isiic (Kiziiibüuiii, 1973; CViiylit, 1995) but not one of the usual 

F-approximations of multivariate tests reported by the SAS GLM procedure. In addition - 

to the covariance structures previously mrntioned (Le., CS, HF, and UN), other structures 

that could be selected to model RM data include First-Order Autoregressive (ARI) 

structure, Heterogeneous First-Order Autoregressive (ARH 1)  structure, Heteropeneous 

Compound Symrnetric (CSH) structure, and a linear Random Coefficient (RC) structure 

( Wol finger, 1 996). The autoreyressive and random coefficient structures modcl data such 

that measurernents taken closer together are more highly correlated than measurements 

taken farther apart, which is characteristic of RM data. The AR 1 structure has an 

additional property such that points that are a fixed distance apart have a consistent 

correlation pattern. 

The covariance structures not previously defined have the following form (when 

K = 4); 

(a) AR1 
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(c) CSH 

and (d) RC 

CSH = / 

The CS and AR1 structures are considered homogeneous structures since the 

variances dong the main diagonal are equal, however they differ in terms of their off- 

diagonal elernents. That is, the covariances of the AR 1 structure decrease exponentially, 

whereas the covariances of the CS structure remain constant. Furthemore, both the CS 

and AR1 structures require only two parameters to be estimated. Generalizations of CS 

and AR1 that allow distinct variances along the main diagonal are considered 

heterogeneous structures and are known as CSH and ARH 1, respectively. Both CSH and 
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ARH 1 structures require (K+l)  parameters to be estimated. The HF structure is similar to 

the CSH structure, that is, it has the same variance structure dong the main diagonal and 

the same number of unknown parameters. The UN structure is considered the most 

general heterogeneous structure with unequal variances and covariances and requires 

K( I<+l )2  paramctcrs to bc cstimatcd. Thc RC stnicturc is a lincar modcl that rillows 

random modeling of an intercept and slope with time as the independent variable. 

An advantage of the MlXED procedure is ihat it allows the user to specify, 

separately and jointly, between-subjects and within-subjects heieropneity. Between- 

subjects heterogeneity occurs when subjects exhibit different variance patterns across 

groups but are similar within a group. On the other hand. within-subjects heterogeneity 

occurs when the data from the same subject does not exhibit a constant variance across 

measurement occasions. Between-subjects heterogeneity is specified by the option 

GROüF=effect on the REPEATED staternent in SAS. This results in al1 observations 

from a single level of a grouping variable having the same estimated covariance 

parameters with each group level havins different parameters but the same covariance 

structure. Within-subjects heterogeneity is specified by the choice of variance-covariance 

structure fit to the data. 

An important consideration when using this approach is choosing the covariance 

structure that best describes or models the data. Wolfinger ( 1993, 1996) presented a three 

stage approach based on an adaptation of a method presented by Diggle (1 988) to select 

the most appropriate covariance structure. The third stage relies on formal statistical 

techniques to compare variance-covariance structures. Specifically, two mode1 fit criteria 
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from the MIXED procedure can be used to select the "best" covariance structure; 

Akaikets Information Criterion (AIC) (Akaike, 1974) and Schwarz' Bayesian Critenon 

(SBC) (Schwarz, 1978) (Littell et al., 1996). The form of the two cnteria are 

and 

where 6 is the restricted/residual maximum likclihood estimate of the unknown variance- 

covariance parameter s. q is the number of unknown elements of la, n = N x K, and p = J 

x K (Wolfinger. 1996). The respective values of thesc two criteria are conipared across 

vanous covariance structures with the mle that larger-is-better (i.e., the structure with the 

largest critenon value is the best covariance structure for the data and thercfore one 

should interpret the fixed-effect tests üssociüted with this particular structure). The two 

criteria may not necessarily agree on the best structure since the SBC has a stronger 

penalty which is a function of the number of unknown parameters and sample size. 

Therefore, the SBC will likely favor more panimonious models compared to AIC. 

Keselman, Algina, Kowalchuk, and Wolfinger (1998) found this to be truc in the context 

of a simulation study. The authors investigated the Akaike (1974) and Schwarz (1978) 

criteria in an unbalmced nonspherical heterogeneous RM design in which the true 

covariance structure of the data, the distributional form of the data, as well as sample size 

was varied. Their results indicated that neither criterion unifomly perfonned well and in 
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particular the Schwarz criterion more frequently picked the wrong covariance structure. 

That is, a more parsimonious covariance structure, one with fewer unknown parameten, 

was more oflen picked by the Schwarz criterion than the true structure. 

In addition to the above mentioned model fit criteria, Dawson, Gennings, and 

Carter (1997) prescnkd iwo yrapliical iecliiiiyurs (Le., draltsiiiaii's Jisplüy plots and 

parallel mis plots) that can be used to detemine the variance-covariance structure o r  RM 

data before using the MIXED procedure. Examining graphical plots of one's data is a 

useful technique, however the recommendation of the authors to also use the Akaike and 

Schwarz criteiia to make the final selection of the best fitting covariance structure is not 

without problems as previously noted by Keselman et al. ( 1998). Furthemiore. the default 

F-tests from the MIXED procedure can be biased under certain conditions (Wright, 1995; - 

Wright & Wolfinger, 1996). 

Given the availability of this approach to the analysis of RM designs through 

PROC MIXED, Keselman, Algina, Kowalchuk, and Wolfinger (1999b) compared the 

mixed model approach to the WJ test, the CIGA test, a multivariate test, and Greenhouse 

and Geisser (1959) and Lecoutre (1991) modified Huynh and Feldt (1976) adjusted df 

methods. Specifically, rates of Type 1 ermr control were investigated in unbalanced 

nonspherical RM designs having one between-subjects and one within-subjects variable 

when covariance homogeneity and nomality assumptions were violated separately and 

jointly. The covariance structures investigated were UN, ARHI, and RC; heterogeneous 

within-subjects and heterogeneous within- and between-subjects structures. The default 

F-tests available with the MIXED procedure generally becarne conservative or liberal 
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when unequal group sizes were paired either positively or negatively with unequal 

covariance matrices. The rates of Type 1 error for the RM effects were not controlled even 

when the correct covariance structure was fit to the data. As expected the WJ and CIGA 

approaches were able to control their Type 1 error rates. however, sample size 

requiraiieiits aiiuiucratcd by Kcsclman ct al. (1993) wcrc ncccssary in ordcr to obtain 3 

robust WJ test. 

The mixed mode1 analyses of RM effects investigated by Kcselman et al. (1999b) 

were based on default F-tests available through PROC MIXED in which the error df 

corresponded to that of the conventional univariate F-test with the exception of tests 

based on RC and UN covariance structures (see SAS Institute, 1996, pp. 565-566). 

However, a user has the option of requesting F-approximations based on Satterthwaite's 

df solution to test for KM fixed-effects. The conjecture tliat better Type 1 error control 

may be achieved with this option was investigated by Keselman, Algina, Kowalchuk, and 

Wolfinper (l999a). The results showed that if the correct covariance structure was 

selected, PROC MIXED Satterthwaite F-tests which allow for within- and between- 

subjects heterogeneity can in most cases effectively control their rates of Type 1 error 

when the data are nonnormal in fom, covariance matrices are unequal, and the design is 

unbalanced. An important caveat however is that the user must know the true covariance 

structure to obtain robust tests of the RM fixed-effects with PROC MIXED. 

Mult i~le Cornnarison Procedures 

The words cornparison and contrast are used interchanpably to refer to a linear 

contrast of means. The terni multiple implies that there can be many different 
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comparisons arnong a set of means. However, this discussion will be restricted to 

procedures that test al1 possible painvise comparisons among a set of means. 

Control of Type I error is an important consideration when doing multiple testing. 

An error rate per-contrast or per-cornparison (a,) is the probability of committing a Type 

I crror on a singlc contrast (i.c., falscly dcclaring a cornparison significant). A problem 

with adopting this form of Type 1 error control when conducting multiple tests is that the 

probability of at least one Type I error increases exponentially as the number of 

comparisons increase. Another approach is to use a MCP that limits the overall 

(familywise) error rate to a nominal alpha level. Familywise error rate (u, ,~) is the 

probability that one or more Type 1 errors will be made on a set (i.e.. fmily)  of 

comparisons. Authors typically agret: that Type 1 error control is of primaiy imporiüiice 

followed by power (e.g., Keselman, 1994; Kirk, 1995; Searnan, Levin, & Serlin, 199 1). 

That is, only those procedures that are robust with respect to Type 1 error are further 

evaluated in tems of power. 

Three definitions of power commonly used are (Einot & Gabriel, 1975; Ramsey, 

1978): (a) any-pairs power, (b) average per-pair power, and (c) ail-pairs power. Any-pairs 

power is the probability of rejecting at least one tnie pairwise difference. Average per- 

pair power is the average probability of rejecting true painvise differences. Lastly, d l -  

pairs power is the probability of rejecting ail true pairwise di fferences. With regards to 

MCP testing, only average per-pair and all-pain power are meaningful, whereas if a 

researcher is interested in detecting any difference arnong rneans, then the power of the 

omnibus (FJ test would be most relevant (Keselman, 1994; Ramsey, 1978). 
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There are two main types of MCPs that limit their familywise error rate to alpha: 

(a) simultaneous procedures, and (b) stepwise or sequential procedures. Simultaneous 

procedures use one critical value for al1 pairwise comparkons, whereas stepwise 

procedures require a sequence of cnticai values. Examples of popular simultaneoiis 

MCPs include the Bon ferroni (Dunn, 196 1  ) and Tukey ( 1  953) prwdures, %hile w l l  

known stepwise MCPs include the Newman (1 939)Xeuls (1952) and Fisher's ( 1935) 

least significant difference procedures. However. these stepwise procedures cannot 

control a,, when K > 3. As a result, Ryan (1960), Einot and Gabriel ( 1975), and Wclsch 

(1977) proposed modifications to the Newman-Keuls method (known in SAS as the 

REGW method) and Hayter (1986) proposed a modification to Fisher's procedure. 

With numerous MCPs to choose from, a researcher is presented with a di fficult 

task of choosing the "best" method. Numerous Monte Carlo studies (e.g., Keselman. 

Kcselman, & Shaffer, 199 1 ; Keselman & Lix, 1995; Keselmrin, Lix, & Kowalchuk, 1998; 

Seaman et al., 199 1 ) provide information that can be used to judge which method is most 

appropriate under certain conditions. A review of the educational and psychological 

literature (Keselman et al., 1998; Kowalchuk et al., 1996) found almost half of the articles 

incorporating a mixed design used multiple pairwise cornparisons of RM means. The 

most popular method used was Tukey's (1953) procedure followed by Newman-Keuls 

(Keuls, 1952; Newman, 1939), multiple !-tests, and Bon ferroni (Dun ,  196 1) procedures. 

The selection of MCPs chosen by researchers has no1 changed since an earlier review by 

Jacard, Becker, and Wood (1984). The popularity of these procedures is likely based on 

their availability in statistical packages. In the present study, the MCPs examined 
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included simultaneous procedures most commonly used by researchers (e.g., Tukey and 

Bonferroni) and stepwise procedures which have been found, through Monte Carlo 

studies (see Keselman, 1994; Keselman & Lix, 1995) to be robust with regards to Type I 

error conirol and powerful to detect true differences (e.g., Shaffer's (1 986) sequent ially 

rejcctivc Bonî'rroni procedure aiid Wrlscli's (1977) step-up rangc proccdurc). 

Contrast (Painvise) Test Statistic. A contrast among levels of the RM marginal 

means is given by y = ckT pk, where ckT is ü coefficient vector of weights, X, ckT = 0, and 

pk is the vector of K population means. The notation for a contrast is also given by 

1~ = a, (ckT pIk), where a, = 11J for al1 j = 1, ... , J (i.e.. an unweiphted means analysis) 

and is estimated by Y = 1, a, (ckT K,,). An estimate of the variance of a contrast is given by 

d,(W) = X, a,? (ck ' S, ck)/n,. A general forrn of the test statistic for the hypothesis H,: = O 

is given by 

The conventional test of a contrast uses a pooled estimate of error variance based 

on the interaction mean square (e.g., MS,,,). The !-ratio is given by 

where MSKxsj is the within-subjects error terni fiom a 

9 

J (between) x K (wi thin) univariate 

ANOVA. This -statistic provides an exact test of the nul1 hypothesis, Ho: = O, if and 

only if the assurnption of sphericity (multisarnple sphericity) is satisfied (Keselman, 
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1982; Mitzel & Games. 1981). Maxwell (1980) found the use of the Tukey procedure 

with a common estimate of variance in a simple RiM design under violation of sphericity 

lead to inflated Type 1 error rates under a complete nul1 hypothesis. The use of a constant 

estimate of variance assumes that the variance of each contrast is equal. However, this is 

iioi likaly to occur wiih rcal data and as a rcsult thc poolcd cstimaie of variance niny be 

too large or too small for some contrasts. Therefore, individual estiniates of variance thüt 

Vary from contrast to contrast should be used (Keselman. 1982; Keselman, Rogan, & 

Games, 198 1; Maxwell, 1980; Mitzel & Games, 198 1 ). Thus. an alternative form of the 1- 

ratio has an error term based on an estimate of variance that pools across the levels of the 

between-subjects variable but considers only the levels of the RM variable of interest. 

The !-ratio is expressed as 

where c, is a coefficient vector representing a painvise contrast among the RM marginal 

means. The validity of this test is therefore based on satisfying the between-subjects 

condition of the multisample spliericity assumption (Keselman, 1 982). That is, the value 

of the variance estimate for each contrast is constant across the ievels of the between- 

subj ects variable. 

Keselman and Keselman (1988) compared four simultaneous MCPs for testing 

painvise RM marginal means under violation of multisample sphericity in an unbalanced 

design containing one between-subjects and one within-subjects variable. A Tukey 



Repeated Measures 32 

approach wi th a pooled estimate of error vwiability (MSK,,) and three approaches based 

on a pooled sample covariance matrix (Le., pooled across the levels of the between- 

subjects variable); n moditied Tukey approach, a Bon ferroni approach. and an approach 

using a miiltivariatc critical value. Results indicated that for tests of unweighted means al1 

four siri~ultaiisous proccdures failcd ro consistcntly providc Typc I crror control undcr 

violation of multisample spherici ty. Thrrefore, Maxwell's ( 1 980) recommcndation of a 

Bonferroni approach based on separate variance estimates for each painvise coinparison 

in a one-way (simple) RM design cannot be extended to RM designs containing a 

between-subjec ts variable. 

Keselman et al. ( 199 1 ) presented a statistic (KKS) based on a variance estimate 

tliüt is not dependent on multisample sphencity constraints. That is, the error term does 

not pool across the levels of the between-subjects factor and considers only the levels of 

the RM variable of interest. The test statistic is expressed as 

which can be approximated as a -variable with Sattetthwaite (1941, 1946) df given by 
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Keselman et al. (1991) compared four approaches for painvise cornpansons among RM 

means using the KKS statistic in an unbalanced J x K design. Type 1 error control was 

investigated under conditions of nonnormality and variance-covariance heterogeneity. 

Results indicated tliat the nonpooled statistic based on Satterthwaite df with a Studentized 

rang,  a Studentized maximum modulus, or a Bonferroni critical value providd adequiiiz 

a,, control under niost conditions. 

Using the K K S  statistic, Keselman (1993) investiyated several stepwise MCPs 

under violation of multisarnple sphericity in a RM design containing one between- and 

one within-subjects variable. Based on Type 1 error control, the author recommended the 

following three procedures; Wclsch's ( 1977) step-up procedure, Hayier's ( 1 986) modi fied 

two-stage least significant difference procedure. and Shaffer's ( 1986) sequentially 

rejective Bonferroni procedure which begins with an omnibus test. Either a corrected df 

univariate F-test or a multivariate test was used as the omnibus test in those procedures 

requiring this first step. Furthermorc, Keselman (1994) compared previously investigüted 

stepwise and simultaneous MCPs (Keselman, 1993; Keselman et al.. 1991) in a J x K 

design under conditions of nonnormality and variance-covariance heterogeneity. Welsch's 

(1 977) step-up procedure was considercd "superior to al1 of the other MCPs" (Keselman, 

1994, p. 151) in ternis of Type I error control and power to detect nonnull painvise 

di fferences. 

Because of the sensitivity of the univariate - tes t ,  the adjusted df univariate 

approaches, and the multivariate approach to violation of multisarnple sphericity given 

unequal group sizes, a robust alternative was investigated as the omnibus test for those 
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procedures that require an omnibus test at stage one (Keselman & Lix, 1995). The WJ 

procedure was used as the omnibus test dong with the KKS statistic wiih numerous 

stepwise MCPs for RM means under nonnormality and variance-covariance 

heterogeneity. The authors recornmended the Welsch ( 1977) step-up procedure, Hayter's 

( 1 986) IWO-slayr iiiodi fid least sigiii ficaiit di fferciicr procedure, Shaffcr's ( 1986) 

sequentially rejective Bonferroni procedure thüt begins with an omnibus test, and the 

following procedures modified by a technique descnbed by Duncan (1957) including the 

Peritz (1  970) procedure, Ryan-Welsch (Ryan, 1960; Welsch, 1977) multiple range 

procedure, and a multiple range procedure that begins with an omnibus test (Shaffer, 

1979, 1986). 

In summary, robust MCPs have been idcntified (Keselman 1994; Keselmün & 

Lix, 1995; Keselman et al., 199 1 ) based on a test statistic that uses a nonpooled error t e n  

and a between-subjects heterogeneous UN form of the variance-covariance matrix witli df 

adjusted by Satterthwaite's ( 194 1 ,  1946) solution. Furthemore, Lix and Keselman (1995) 

provide a SAS/IML (SAS Institute, 1989) program to compute these tests in RM designs. 

However, the availability of PROC MIXED now allows researchers to select smong 

various foms of variance-covariance matrices to model their RM data. As well, the 

option of Satterthwaite df hypothesis testing for fixed-effect omnibus tests and painvise 

comparisons on RM marginal means is also now available through the MIXED 

procedure. Should researchers adopt a mixed model methodology, in particular PROC 

MIXED, for testing painvise multiple comparisons oFRM means? This question bean 

investigation because currently researchers need not adopt mixed model methodology to 
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obtain robust tests of pairwise multiple cornpansons of RM means. 

Therefore, the purpose of the present study was to investigate Type I error control 

for simultaneous and stepwise MCPs using PROC MIXED in nn unbalanceci between- by 

within-subjects design under violation of nonnality and variance-covariance homogeneity 

(Le., iiiultisaiiiplc splirricity). Thus, the potcntial advantagc of PROC MIXE D with its 

ability to specify various covariance structures such as ARI, ARH 1, and RC was 

compared to a known robusi procedure (Le., KKS statistic) based on an UN covariance 

structure. Furthemore, MCPs that adequately controlled their rates of Type 1 error were 

then compared for their sensitivity to detect true painvise differences. 

Monte Carlo Study 

A Monte Carlo study was used to investigate the robustriess of selected MCPs 

available through SAS' ( 1  996, 1999) PROC MIXED procedure. To investipaie a,, Type 

1 rrror control, a simulation study was designed with a true nul1 hypothesis. A set of 

pseudorandom numbers were generated using a cornputer algorithm to sample from a 

population with known characteristics. The expenment was replicaied numerous tirnes 

and for each replication, a test statistic was compiited from the generated data, and was 

compared to a theoretically known critical value. Based on this result, the nul1 hypothesis 

was either rejected or retained. Thus, an empirical estimate of Type 1 error was obtained. 

Design 

A RM design containing one between-subjects and one within-subjects factor 

with the number of levels of the between-subjects factor equal to three and the number of 

levels of the within-subjects factor equal to four and eight was investigated. 
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Studv Variables 

The following variables were manipulated: (a) population covariance structure, 

(b) covariance structures. (c) group sizes, (d) painngs of covariance matrices and group 

sizes, (e) shape of the data, (0 the covariance structure fit to the data, (g) type of nul1 

liypotliasis, and (h) t p c  of nonnull mcan configuration. 

Because published research does not contain enough information to detemine the 

extent to which assumptions are satistied @.y., nonnality, sphericity, variance-covariance 

homogeneity across groups) it is difficult to know the type of data likely to be 

encountered by educational and psychological researchers. Therefore, the conditions 

investigated were selected to represent a range of possibilities that may occur in apylied 

settings. 

Pooulation - Covariance Structures. The following types of covariance structures 

were used to generate simulated data: (a) ARH 1, (b) RC, and (c) W. Each of these 

structures models data that exhibits within-subjects heterogeneity ( i  .e., variances dong 

the main diagonal were unequal) and violates the sphericity assumption (Le.. epsilon = 

0.79. '  See Appendix A for element values of the population covariance structures for K 

= 4 a n d K = 8 .  

C r o u ~  Covariance Structures. Homogeneous (i.e., equal across groups) and 

heterogeneous (i.e., unequal across groups) covariance stmct ures were investigated. 

Specifically, the unequal group covariance matrices were in a 1:3:5 ratio. that is Tl = 

1/3& and Z, = 5/32,. This ratio was chosen because previous studies (e.g., Keselman, 

1994; Keselman & Lix, 1995; Keselman et al., 1993; Keselman et al., 1999a, 1999b) 
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have found it to have a negaiive effect on Type 1 error control and therefore presents a 

condition that may also affect the validity of the tests examined in this investigation. 

gr ou^ Sizes. Equal and unequal group sizes were investigated. Total sample size 

(N) was set cqual to 45, and 60. These sample sizes were chosen because a review of the 

eiiipirical liieraiure (Keseliuaii et al., 1998; Ko~alcliuli et al., 1996) found tliat more tlian 

half of the articles containing a mixed design rrported a total sümple size of 60 or less. 

For each value of N, two conditions of group size inequality were examined, a moderate 

degree and a substantial degree of inequality. A coefficient of sample s i x  variation (C,) 

was set equal to approximately .16 for the moderate condition and .33 for the more 

disparate condition. C, is defined as 

where ii is the average group size. The two unequal sample size cases for eüch total 

sample size were respectively, (a) 12, 15, 18 and 9, 15, 2 1 (N = JS), and (b) 16,30, 34 

and 12,20,28 (N = 60). 

Pairines of Covariance Matrices and gr ou^ Sizes. Positive and negative 

pairings of covariance matrices and group sizes were investigated. These pairings are 

known to produce conservative and liberal rates of Type I enor, respective1 y. For each 

total sample size condition there were six pairings of covariance matrices and group sizes 

investigated: (a) equal n,, equal X,; (b) equal ni, unequal X,; (ck') unequal nj, unequal E, 

(positively poired); and (CM') unequal n,, unequal Xj (negatively paired). The c'Id' 
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condition corresponds to the more disparate unequül group size cases and the c/d 

condition corresponds to the less disparate unequal group size cases. 

Data Generation. Although the test procedures investigated are based on the 

assumption of multivariate nomality, this condition is unlikely to be satisfied when 

working wilh real data. For exüiiiplc. bticcrri ( 1989) esaiiiiiied 110 measures 

characteristic of psychologicrl and educational data and found none even approximated a 

nomal distribution. Furthemore, the two sample independent 1- test is sensitive with 

respect to Type 1 error control when data are sampled from distribritions with extreme 

deprees of skewness (e.g., 1.64; Sawilowsky & Blair. 1992). Therefore. data were 

generated from multivariate normal and nonnormal population distribut ions in order to 

provide conditions in which the tests may not perfonn favorably. 

To generate multivariate (i.e., K-vanate) nomal data, pseudorandom observation 

vectors Y,,T = [Y,],, Y,,?, ... , YiJK] with a mean vector plr = [p,,, p,,, ... , pJK] and covariance 

matnx Zj were obtained by a triangular decomposition of T, (referrrd to as the Cholesky 

factorization or square root method): 

y,, = P, +Lz, i 52 

where L is an upper triangular rnatnx satisfying the equality L'rL = T,, and Z,, is an 

independent normal l y distributed vector. The vectors of observations were obtained by 

the RANNOR function in SAS (1989). 

The nomormal data was a multivariate lognormal distribution with marginal 

distributions based on Yijk = exp (XijJ, where Xi,, - N(0, 2 5 ) .  Skewness and kurtosis 
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values are 1.75 and 5.90, respectively. Algina and Oshima (1 994, 1995) provide details of 

the steps involved to generate multivariate lognormal data. 

Covariance Structures FF to the Data. In addition to the true population 

covariance structure, other selected covariance structures that mode1 between-subjects 

and within-subjccts hctcrogcncity, scpürriielp and joinily were also fit to the d m .  The 

following 12 covariance structures were fit to the data: (a) UN, (b) UN-H, (c) ARH 1, (d) 

ARHl-H. (e) RC, (0 RC-H, (g) HF, (h) HF-H. ( i )  CSH, (i) CSH-H, (k) ARI, (1) ARI-H, 

where the "-H" corresponds to the between-subjects hetcrogeneous version of the 

covanance structure. The AIC and SBC criteria from SAS' (1996, 1999) PROC MIXED 

were used to select the best covariance structure among the 12 possible stnicturcs. That 

is, the painvise test statistics for the MCPs were basrd on the covariance structure 

selected by AIC or SBC. In addition, the test statistics for the MCPs were based on an 

UN-H covariance structure and the correct covariance structure. Therefore, four testins 

strategies were compared. That is, one approach based on always assuming an UN-H 

covariance structure, a second approach based on pnor knowledge of the truc population 

covariance structure, a third approacli based on using the AIC criterion to seiect the best 

covariance structure, and a fourth approach based on using the SBC criterion to select the 

best covariance structure. 

Nul1 Hv~othesis. Empirical Type 1 error rates were collected when the population 

mean vectors reflected a complete nul1 hypothesis (e.g., pl  = p2 = p3 = p, = 0; 

pl  = pt = ... = p7 = pS = 0) and a partial nul1 hypothesis ( c g ,  p, = p2 * p, = p,; 

p, = ... = p4 + Pr = ... = ps). A partial nul1 hypothesis occurs when some population means 
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are equal but the overall nul1 hypothesis is not true (Toothaker, 199 1, p. 13). Although a 

partial nul1 hypothesis could be represented by many nonnull configurations only one was 

chosen for each level of K. Because a researcher never knows the true state of a nuIl 

hypothesis, it is important that a MCP control a, ,  under both complete and partial nul1 

1iypotlic.srs. 

Nonnull Mean Confieuration. Three types of mean configurations were 

investigated (Ramsey, 1978): (a) a minimum range configuration, where the first half of 

the means in the range are equal and the second half are also equal but different from the 

first half; (b) a maximum range configuration, where the first and last mean represent two 

extremes and the remaining means are the average of these two extreme values; and (c) 

an equally spaced range configuration, whrre the means are equaily spaced across tlir 

range. Two definitions of power were investigated: (a) all-pairs power and (b) average 

per-pair power. 

Descri~tion of Multiale Com~arison Procedures 

The following MCPs available through SAS' (1996) PROC MIXED procedure 

were investigated: (a) Bonferroni, (b) Sidak, (c) Tukey, and (d) Studentized maximum 

modulus (SMM/GTZ). In addition, the following MCPs, not available through SAS were 

also investigated: (a) Shaffer's (1 986) sequentially rejective Bonferroni procedure, (b) 

Hochberg's (1 988) sequentially acceptive Bonferroni procedure, and (c) Welsch's ( 1977) 

step-up range procedure. The MCPs available through SAS are simultaneous procedures, 

whereas the additional procedures investigated are stepwise procedures that cm easily be 

evaluated using the statistical output provided by SAS. The inclusion of stepwise 
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procedures is based on their generally superior performance compared to simultaneous 

procedures with regard to power rates (Keselman, 1994). 

The following simultaneous procedures are available by default through SAS 

(1  996). The Bonferroni procedure (Dunn, 196 1) tests each comparison at a d c  level of 

siyriificance, wlierè c is 1112 ~lui~lber  of pai~wise coiiiparisoiis (i.è., c = K(K-1)2) and u = 

aF,. The Sidak (1967) procedure tests each comparison at a 1 - ( 1  - u)' ' level of 

significance. The Sidak procedure is based on tlie multiplicative inequality in contrast to 

the additive Bonferroni inequaiity and therefore is slightly more powerful. The Tukey 

(1953) procedure tests each compürison by cornparhg the observed test statistic to a 

critical value from the Studentized range distribution (q,,, / JZ) (see Scheffe, 1959 p. 28 

for the specification of a Studentizcd range variable). Lastly, the Studentized maximum 

modulus procedure tests each contrast by comp'ming the observed test statistic to a critical 

value from the Studentized maximum modulus distribution ( M , . ,  ,,) (see Scheffe, 1959 p. 

78 for the specification of a Studentized maximum modulus variable). 

The stepwise procedures examined in this study were limited to those that do not 

require an omnibus test as a first step because of the lack of robustness of omnibus RM 

fixed-effects with PROC MIXED (Keselman et al., 1999a, 1999b). The three procedures 

chosen have shown promising results in previous simulation studies (Keselman, 1994; 

Keselman & Lix, 1995). 

Shaffer's (1 986) sequentially rejective Bonferroni procedure is a modification of 

Holm's (1979) procedure. Holm modified the Bonferroni procedure such that testing is 

done in a stepwise fashion with successively higher significance levels, thus the 
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procedure has greater power than the Bonferroni procedure. Shaffer's modification 

further improves the power of Holm's procedure. Shaffer's procedure begins by 

arranging the pvalues associated with the test statistics of the c-painvise cornparisons 

from smallest to Iarpest (i.e., p, i. r ,  ... , e, correspondhg to hypotheses H,, ... , H,). 

The siiiallrst g-value (g,) is sompared to d c .  If g, 2 ak, thcn statisiicd tcsting stops and 

al1 remaining painvise contrast hypotheses are retained. Othenvise, if p, ak, then H, is 

rejected and one proceeds to test the remaitiing painvise hypotheses in a stepwise hshion 

by cornparing the nssociatrd pvalues to ak', where ce is equal to the maximum number 

of tme nul1 hypotheses, given the number of hypotheses rejected at previous steps. The 

values for c' can be obtained from Shaffer's (1986, p. 828) Table 2. 

Hochberg 's ( 1 988) sequent ially acceptive Bon ferroni procedure is based on the 

same critical values as Holm's ( 1  979) procedure but testing proceeds from the largest g- 

value and rejection of an hypothesis implies rejection of al1 hypotheses with equal to or 

smaller e-values. This procedure rejects al1 hypotheses (H,., where m' 5 m, and m = c. c- 

1, ... , l )  i f  e, 5 a/(c - m + l). Thus, one begins by examining the largest pvalue (E). If 

-, a then al1 hypotheses are rejected. If a > a then H, is accepted, and one proceeds to 

compare e,., to a/?. If a., 5 al2 then al1 hypotheses (m = c- 1, ... , 1 ) are rejected, 

otherwise H,., is retained and one proceeds to compare  S.^ to a/3, and the process (i.e., 

steps) continues. 

Welsch (1 977) proposed a step-up range procedure that begins by rank ordering 

the means and examining adjacent means (i.e., two-range tests) first. If any two-range 

test(s) are significant then any larger set of means that contain the significant subset(s) are 



Repeated Measures 43 

declared significant by implication. If any two-range test(s) are found nonsignificant, then 

one proceeds to test larger range tests (e.g., three-range). If  a three-range test is signi ficant 

then al1 larger sets of means that contain this subset are declared significant by 

implication. The range tests for a set of means Vary from r = 2 (two-range test) to r = K 

(K-raiige test). Thc tablc of critical ïalucs cm be found in Keselmm (1994). 

Pairwise Test Statistk. The forrn the of the !-test statistic from PROC MIXED 

(SAS Institute, 1996) is 

where L consists of a single row contrast vector. is a p .u 1 vector of fixed-effect 

parameters, and W is the variance-covariance matnx associated with p. The df  were 

estimated using two options avai lable through PROC MIXED, the defaul t option (i.e., 

BETWlTHM or CONTAM) and Satterthwaite's solution (see SAS Institute, 1996, pp. 

565-566). 

The value obtained from this statistic is similar to using the KKS (Keselman et al., 

199 1) statisiic (see equation 49) with S, replaced by the estimated variance-covariance 

matrix selected to mode1 the data through SAS' (1996, 1999) PROC MIXED. The 

flexibility of the MIXED procedure is that it ailows a user to specify various variance- 

covariance structures rather than always assuming an Unstructured between-subjects 

heterogeneous structure (i.e., UN-H). Thereforc, selecting the UN-H covariance structure 

with the Satterthwaite df option with the MIXED procedure is equivalent to the KKS 

statistic with Satterthwaite df.* 
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Simulation Proeram 

The program was written in SAS MACRO (SAS Institute, 1997) and SAS/IML 

(SAS Institute, 1989) languages and was run on release version 8.0 of SAS. Because the 

computational tinie required for PROC MIXED (SAS Institute. 1996) is substantial only 

selected combinations of thc cight study i.arinblcs wcrc cxamincd using 1000 simulations 

or replications with a .O5 levcl of significance. 

Results 

x v ~ e  1 Error Rates 

To evaluate the robustness of a MCP, Bradley's (1978) liberal criterion was usrd. 

That is, if an empirical estimate of Type 1 error (â) was contained within the interval of 

Sa 5 â a 1 Sa, then the test procedure was considered robust. For an alpha level of .O5 

the interval is ,025 5 â 5 .075. If Type 1 error was not contüined in this interval then a test 

procedure was considered nonrobust. In the tables, bold entries correspond to these latter 

values. Othcr y uantitative measures of robustness reponed in the literature include 

Bradley's stringent criterion (Le., .9a 5 â r 1. la) and a binomial standard error approach 

[e.g., plus or niinus two or three times (a ( 1  -a)/N)" , where N is the number of 

simulations; see Wright & Wolfinger, 19961. The choice of robustness criterion may lead 

to different interpretations of Type 1 error results. Although no universal standard is 

available, Bradley's liberal critenon provides an acceptable range of values to judge 

robustness. That is, an applied researcher should feel cornfortable with a procedure that 

controls Type 1 enor within these bounds, if the procedure limits the rate across a wide 

range of conditions in which assumptions are violated. 
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Four testing strategies were compared to evaluate the operating characteristics of 

seven MCPs. That is, one approach based on always assuming a UN-H variance- 

covariance structure (Le., K K S  approach), a second approach based on pnor knowledge 

of the true population variance-covariance structure, a third approach based on using the 

AIC criierioti io seleci iIie besi siruciura, aiid a fourth apyroacli bused on usiiig the SBC 

criterion to select the best structure. The seven MCPs investi pated included four 

simultaneous procedures [Bonferroni (Bon), Sidak, Tukey, and Studentized maximum 

modulus (SMM)] and three stepw ise procedures [Shaffer's sequentially rejective 

Bonferroni (SRB), Hochberg's sequentially acceptive Bonferroni (Hoch), and Welsch's 

step-up range]. The MCPs were computed using a test statistic with a nonpooled error 

term (i.e., does not pool across the between- and within-subjects factors). In addition, two 

ways of estimating the df for the test statistic were examined. One approach based on a 

Satterthwaite df solution and the other approach based on the dehult df option availuble 

through PROC MIXED. 

The results presented are for srlectcd combinations of the eight variables 

investigated which included (a) type of population variance-covariance structure, (b) 

homogeneous and heterogeneous yroup variance-covariance structures, (c) equal and 

unequal group sizes, (d) positive and negative painngs of variance-covariance matrices 

and group sizes, (e) multivariate normal and nonnormal data, (0 type of variance- 

covariance structure fit to the data, (g) type of nul1 hypothesis, and (h) type of nonnull 

mean configuration. The combinations investigated were chosen to dernonstrate 

differences among the MCPs with regard to their error rates. 
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Normallv Distributed Data. Table 1 contains the study conditions collected 

when data were obtained from a normal distribution for K = 4 and N = 45. Positive and 

negative pairings of group sizes and variance-covariance matrices were investigated only 

for the more disparate unequal sample size condition. These conditions represent cases 

when multisampir: sphericily is iioi sütisfit'd (Le., wlieii àpiiericity is iiot èqiial to one luid 

the variance-covariance matrices are unequal across the levels of the grouping variable). 

Tables 2 throuçh 5 contain Type I error rates for the four testing strategies, respectivcly 

based on Satterthwaite df and Tables 6 through 9 contain error rates for the four testing 

strategies, respectively based on default df. Tables 10 and 1 1 contain the percentages with 

which the AIC and SBC criteria selected the correct variance-covariance structure frorn 

among 12 possible stnictures. 
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Table I 

Studv Conditions (Normal Distribution. K = 4. N = 45) 

Note. Vopulation Covariance Structure. Covariance Matrix. 

Condition 
I 

C' 

ci' 
C 

C' 

d' 

C' 

d' 

C' 
r 

d' 

C '  

d' 

C'  
L 

d' 

Pop Cov Sn" 

AWi 1 -H 

A W l - H  

RC- H 

RC-H 

UN-H 

UN-H 

ARH1-H 

ARH1-H 

RC-H 

RC- H 

UN-H 

UN-H 

Sample Sizes 

9,1521 

9,15,21 

9,15,21 

9.15.21 

9.15'21 

9, 15,2 1 

9'1 5.2 1 

9.15.2 1 

9.1521 

9.15.21 

9.1 5,2 1 

9.1 5.2 1 

Cov Matb 

1 :3:5 

1 :3:5 

1 :3:5 

1 :3:5 

1 :3:5 

1 :3:5 

1 :35 

1:3:5 

1:3:5 

1 :3:5 

1 :3:5 

1 :3:5 
L 

Pairing 

+- 

t 

+ 

t 

+ 

t 

Nu11 Hypothesis 

p ,=p2=p3=\i,=0 

p =p :=p ,=p,=O 

p l=p2=p,=p,=0 

p,=p2=p,=p,=0 

p, =p-=p,=p,=O 

11 ,=p2=pJ=p4=0 

P r=P: + \~J=CIJ 

C i ~ = k ~ l i ~ ' C i ~  

p1=P2 *P3=P4 

Cii"P: e P ~ = P ~  

Pi=P2 *Pt=P4 

I'P: P J = P ~  
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Table 2 

Em~irical Twe 1 Error Rates (%) when Fittina a UN-H Covariance Structure 

lNormal Distribution. K = 4. N = 45. Satterthwaite df) 

I Completr: Null Hypothesis I 

1 Partial Nul1 Hypothesis 1 

Condition 
I 

c * 

d ' 

1 ARH 1 1 

Note. Bon = Bonferroni; SMM = Studentized maximum modulus; SRB = Shaffer's 
(1986) sequentially rejective Bonferroni; Hoch = Hochberg's (1988) sequentially 
acceptive Bon ferroni. 

Bon 

4.50 

4.60 

Sidak 

4.60 

4.60 

Tukey 

5 .90 

5.10 

SMM 

4.60 

4.80 

SRB 

4.50 

4.80 

Hoch 

4-50 

4.80 

Welsch 

7.70 

7.90 
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Table 3 

Ern~iticai Type 1 Error Rates I%) when Fitting the Tnie Covariance Structure 

[Normal Distribution. K = 4. N = 45, Satterthwaite dfl 

I Cornplete Nul1 H ypothesis I 

l Partial Yu11 Hypothesis I 

Condition 

c' 

d' 

Note. See note fiom Table 2. 

Bon 

4 .90 

3.50 

Sidok 

4 .90 

3.60 

Tukey 

5.50 

4.90 

SMM 

4 .90 

3.80 

SRB 

4.70 

3.80 

Hoch 

4.90 

3.80 

Welsch . 
8.30 

7.30 
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Table 5 

Empirical Twe 1 Error Rates I%) with Schwarz Criterion Selectine the Best Covariance 

Stnicture (Normal Distribution. K = 4. N = 45, Satterthwaite df) 

Complete Null Hypothesis 

Partial Nul1 Hypothesis 

Note. See note fiorn Table 2. 

Condit ion 

c * 

d ' 

SRB 

5.10 

3 .90 

Bon 

5.10 

3.80 

Hocli 

5.10 

3.90 

Sidak 

5.10 

3.80 

Tukey 

5.70 

4.70 

Wclsch 

8.30 

7.70 

SMM 

5.10 

3.80 
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Table 6 

Empirical Twe 1 Error Rates when Fitting a UN-H Covariance Stnicture 

[Normal Distribiition. K = 4. N = 45. Default df) 

Complctr Nul1 Hypothesis 1 

1 Partial Nul1 Hypathesis 1 
1 ARH 1 1 

Condition 

c' 

d ' 
r 

Note. See note fiom Table 2. 

Bon 

5.10 

7,20 

Tukey 

5.80 

8.10 

Sidak 

5.10 

7.20 

SMM 

5.10 

7.30 

SRB 

5.1 O 

7 .70 

Hoch 

5.10 

7.20 

Welsch 

7.50 
I 

1 1.20 
L 
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Table 7 

Empirical Tyne 1 Error Rates (%) when Fittine the True Covariance Structure 

lNormal Distribution. K = 4. N = 45. Default df') 

Complete Null Hypotliesis 

Partial Null Hypothesis 

Condition 

c '  

d' 

ARH 1 

Note, See note fiom Table 2. 

Bon 

4.50 

4 -90 

SMM 

4.70 

4.90 

SRB 

4.50 

4 .90 

Sidak 

1.70 

4.90 

Tu kr y 

5.20 

5 A 0  

Hoc h 

4.50 

5 .O0 

Welsch 

6.80 

8.20 
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Table 8 

Empincal Type 1 Error Rates (%) with Akaike Critenon Selectine the Best Covariance 

Structure (Normal Distribution. K = 4, N = 45. Default dfl 

- -- - 

Completr Null Hypothesis 

Partia 1 Null Hypothesis 

Condition 

c' 

d' 

Note. See note fiom Tabie 2. 

Bon 

4.60 

4.10 

Sidak 

3.60 

4.20 

Tukey 

5 -40 

5.10 

SMM 

4.60 

3.20 

SR13 

4.60 

4.10 

Hoc h 

4.60 

4.20 

Welscli 

7.10 

8. JO 
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Table 9 

Empirical T-ype I Error Rates I%) with Schwarz Critenon Selectine the Best Covariance 

Structure (Normal Distribution, K = 4. N = 45. Default dfl 

I Complete Nul1 Hypothesis I 

I Partid Nul1 Hypothesis I 

Condition 
I 

c* 

d ' 

Note. See note fiom Table 2. 

Bon 

3.80 

4.10 

Sidak 

3.80 

4.20 

Tukey 

4.60 

5.00 

SMM 

3.80 

4.30 

SRB 

3.80 

4.10 

Hoch 

3.80 

4.10 

Welsch 

6.50 

8.10 
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Table 10 

Percentare of Time Akaike Criterion Selected the Correct Covariance Structure 

[rounded to whole numbers) (Normal Distribution. K = 4. N = 45. Sattenhwaite dfl 

Note. Cond = Condition; Shadinp represents the truc covariance structure; Only the 
three most frequently selected covariance structures for each condition are reported. 
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Table 1 1 

Percentare of Time Schwarz Criterion Selected the Correct Covariance S tructurc 

(rounded to whole numbers) (Normal Distribution. K = 4. N = 45. Satterthwaite df) 

Note. See note from Table 10, 
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The values fiom Tables 2 and 3 indicate that for both complete and partial nul1 

hypotheses always fitting a UN-H variance-covariance structure performs similarly to 

fitting the true variance-covariance structure for each of the population variance- 

covariance structures investigated (i.e., ARH 1, RC, and LN) when df were based on 

Satirrthwüitr's soluiion. L'rider ü çoniplrta iiull hypi)tl~&, dl MCPS coiiirol Type I m o r  

rates within Bradley's (1978) liberal criterion with the exception of Welsch's (1977) step- 

up range procedure. Under a partial nuIl hypothesis, the simultaneous MCPs were 

typically conservative with Type 1 error rates as low as 0.70%. whereas the stepwise 

MCPs were well controlled with only the occasional conservative rate of 1 .SO% and 

1.90% for the SRB and Hoch procedures. respectively when unequal groups sizes were 

positively paired with unequal variance-covariance matrices (condition c'). 

When rnultisarnple sphericity i s  violated. a test statistic thüt does not pool across 

between- and within-subjects factors and is based on Satterthwaite df is a robust approach 

to examine ail possible pairwise cornparisons among the levels of a RM factor using 

either a simultaneoiis or stepwise MCP. Furthem~ore, there does not appear to be an 

advantage to fitting the tnie variance-covariance structure compared to always fitting a 

UN-H structure to the data. For example, averaged across the investigated conditions, the 

SRB and Hoch procedures had error rates equal to 3.59% and 3.52%, respectively (see 

Table 3) when the true variance-covariance structure was fit to the data, while average 

error rates were 3.70% and 3.63%, respectively (sec Table 2) when a UN-H structure was 

always fit to the data. 

Tables 4 and 5 contain rates of error when the AIC and SBC criteria, respectively 
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were used to select the best variance-covariance structure from among 12 possible 

structures when df werc büsed on Satterthwaite's solution. Under a complete nul1 

hypothesis, relying on either of these two mode1 selection criterion will generally provide 

good Type 1 error control for al1 MCPs except Welsch's procedure. On the other hand, 

givéii a partial nul1 liypotliesis. only the stcpwisc MCPs providcd robust crror ratcs across 

the investigated conditions. 

Avnilable through SAS' (1996, 1999) PROC MIXED is a nonpooled test statistic 

with df based on the default option. The error rates of MCPs based on this approach were 

investigated under violation of multisample sphericity to examine whether it is the form 

of the test statistic that provides robust procedures regardless of the estimation of the df. 

Table 6 presents the Type 1 error rates of the MCPs based on the default df option 

available through PROC MIXED when always fitting a W - H  variance-covariance 

structure to the data. Under a complete nul1 hypothesis, error control was within 

Bradley's (1978) limits except for the Tukey and Welsch procedures wheii uneqiirl yroup 

sizes were negatively paired with unequal variance-covariance matrices (condition d'). 

The enor rates averaged across population variance-covariance structures were 8.03% for 

the Tukey procedure and 1 1.60% for the Welsch procedure. Under a partial niill 

hypothesis, empincal estimates of Type 1 error were conservative for the Bon, Sidak, and 

SMM procedures averaging 2.13% for the positively paired conditions (c') across 

population variance-covariance structures. A similar pattern of results is evident in Table 

7 when the tme variance-covariance structure was fit to the data and df were based on the 

default option. However, a notable difference was that liberal values for condition d' for 
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Tukey's procedure under ARHl and RC population variance-covariance structures 

became robust when fitting the true variance-covariance structure rather than fitting a 

UN-H structure to the data. Furthemore, error rates in general were smaller when fitting 

the tnie population variance-covariance structure compared to always fitting a üN-H 

stnicturc. For cxamplc. avcragcd across invcstigatcd conditions the SFü3 and Hoch 

procedures had error rates equal to 4.86% and 4.73%, respcctively (see Table 7) when the 

true variance-covariance structure was fit to the data, while average error rates were 

5.68% and 5.56%. respectively (see Table 6) when a UN-H structure was always fit to the 

data. 

Based on default df, allowing either the AIC or SBC criterion (see Tables 8 and 9, 

respectively) to select the best vanance-covariance structure from among 17 possible 

structures provided similar error control under cornplete and partial nul1 hypotheses. 

Specifically, Type 1 error rates were well controlled wi th the following exceptions. 

Welsch's procedure had libenl rates as high as 1 1.00% under a complete null hypothesis 

and the simultaneous procedures under a partial null hypothesis had conservative rates 

ranging between 0.70% and 2.00% when uneqiial group sizes were positively paired with 

unequal variance-covariance matrices (condition c') for the ARH 1 and RC population 

structures. 

Although Type 1 error is generally contrdied by allowing cither the AiC or SBC 

criterion to select the best variance-covariance structure, their accuracy ai picking the 

correct variance-covariance structure i s  typically poor. Tables 10 and 11 give percentages 

reflecting the fiequency with which each criterion selected the correct variance- 
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covariance siructure from among 12 possible structures For each investigated condition. 

The shading in the table represents the true population variance-covariance structure for 

each condition. The rates were simi lar across the two df options investigated, therefore 

only the conditions based on Sattcrthwaite df solution were tabled. When the true 

population variance-covariance structure was RC-H, both the .MC cntenon (see Table 

10) and the SBC criterion (see Table 1 1) selected the correct structure with an accuracy 

rate between 91% to 93% (average=92%) and 59% to 86% (averaye=73%), respectively. 

However, when the true population variance-covariance structure was either ARH 1-H or 

UN-H. both criteria selected the wrong variance-covariance structure with tlic greatest 

frequency. That is. a between-subjects heterogeneous version of a First-Order 

Autoregressive (AR 1 -H) structure was selec ted with rates between 52% [O 8 1 % 

(average=68%) for AIC and 85% to 98% (average=93%) for SBC. Interestingly, when 

the true population variance-covariance stnictiire was ARH 1-H or UN-H, the SBC 

criterion never sclected the correct structure, whereas the AIC criterion selected the 

correct structure with an average accuracy rate of only 12%. The accuracy rates (%) for 

M C  and SBC were similar for complete and partial nuil hypotheses. 

In summary, when nonnality is satisfied but multisample sphericity is violated in 

an unbalanced RM design, two MCPs were robust regardless of the method of 

determinhg df for the nonpooled painvise test statistic. Avrraged across investigated 

conditions, the error rates for SRB and Hoch when fitting a LN-H variance-covariance 

structure based on default df were 5.68% and 5.56%, respectively (see Table 6), whereas, 

the average error rates based on Satterthwaite df were 3.70% and 3.630/, respectively (see 
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Table 2). Furthemore, there was no Type 1 error advantage to fitting the true population 

variance-covariance structure compared to always fitting a UN-H structure to the data. 

Loenormal Distributed Data. Table 12 contains the study conditions collected 

when data were obtained from a lognormal distribution for K = 4 and N = 45 with df 

basèd on Sartcnhwaitc's solution. Typc I crror ratcs for thc four tcsting stratcgies arc 

contained in Tables 13 through 1 6, respectively. Fewer study conditions were exaniined 

when data were obtained from a lognormal distribution for K = 1 and N = 45 with df 

based on the default option and are given in Table 17 wi th Tables 1 8 through 2 1 

containing error rates For the four testing strateyies, respectively. Tables 22 and 13 

contain percentages that the AIC and SBC criteria, respectively selected the best 

variance-covariance structure from among 12 possible structures. The empincal error 

rates from these investigaied conditions provide information on the robustness properties 

of the MCPs when nomality and multisample sphericity were violated separately and 

jointly. 
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Table 12 

Study Conditions lLoenormal Distribution. K = 4. N = 45. Satterthwaite d Q  

Note. See note fiom Table 1. 

Condition 

P 

b 

c 

c' 

d 
C 

d ' 

a 

b 
r 

c 

c * 

d 

Nul1 Hypothcsis 

c i  l=p2=p,=p,=0 

11 l =ps=p,=p,=O 

c i  lsp2=p ,=p,=O 

l=ps=p,=p J=O 

1 l=p2=p,=p,=0 

p l = ~ z = ~ 3 = ~ 4 = 0  

pi=p2=pi=p,=0 

pl=p2=p,=pJ=0 

pl=p2=pJ=p4=0 

pi =pr=jlJ=p4=0 

pl=p2=p,=p,=0 

pl=p2=pJ=pJ=0 

Pop Cov Str 

ARH 1 

A R H l - H  

ARH 1-H 

ARH 1 -H 

ARH 1-H 

ARH 1 -H 

RC 

RC-H 

RC- H 

RC-H 

RC- H 

il 
1 

b 

c 
1 

C' 

d 

d ' 
r 

C' 

Cov Mat 

1:l:l 

1 :3:5 

1 :3:5 

1 :3:5 

1 :3:5 

1 35 

1:l:l 

1 :3:5 

1 :3:5 

1 :35 

1 :3:5 

Sample Sizrs 

1j715.15 

15,15,15 

12,15,1S 

9,15,21 

12.15,lS 

9,152 1 

15.15,15 

1.5.15.15 

12.15.18 

9,l 5'2 1 

12,15,18 

Piliring 

NA 

NA 

+ 

+. 

NA 

NA 

t 

+ 

UN 

UN-H 

tlN-H 

LN-H 

LN-H 

UN-H 

ARH I -H 

pl=P! * F J = ~ J  

15,15,15 

15.15.15 

12,15,18 

9.1 5,2 1 

12,15,18 

9,15,21 

9,15,2 1 

C'  

d ' 
L 

C *  

d ' 

1:l:l 

1 :3:5 

1 :3:5 

1 :3:5 

1 :3:5 

1 :3:5 

1 :3:5 

RC-H 

RC-H 

UN-H 

UN-H 

NA 

NA 

+ 

-t 

-t 

9, 15.2 1 

9,15,21 

9,15,21 

9,15,2 1 

p ,=p2=p,=p4=0 

pl=p2=p,=p,=0 

p ,=p2=p ,=p,=O 

p,=p?=p,=p,=O 

p ,=p2=p,=p4=0 

pl=p2=p,=p,=0 

pi=P2*P~'Pr 

1 :3:5 

1 :3:5 

1 :3:5 

1:3:5 

+ 

+ 

P1=kf PJ=PJ 
- - 

PI=P~*PJ=P~ 

Pi=Psf PJ=PJ 

P i"P: *PJ=P~  
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Table 13 

Em~irical Twe 1 Error Rates (%) when Fitt in~ a UN-H Covariance Structure 

(Lornomal Distribution, K = 4. N = 45. Satterthwaite dfl 

Complete NuIl H ypothesis I 
1 ARH 1 1 

Condition 

a 

b 
L 

c 

c' 

d 
b 

d' 

SMM 

4.20 

3.20 

3.10 

3.30 

2.80 

3.60 

Bon 

3.80 

3 .O0 

2.80 

3 2 0  

2.60 

3.30 

Sidak 

3.90 

3.20 

2 .90 

3.30 

2.80 

3.30 

Welsch 

7.30 

7.10 

7.30 

7-10 

7.30 

7.60 

SRB 

3.80 

3.10 

2.90 

3 20  

2.90 

3.  40  

Tukey 

5.10 

4.40 

4.10 

4.10 

4.10 

1.70 

Hoch 

3 .90 

3.10 

3 .O0 

3.20 

2.90 

3.50 
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Table 13 continued 

l Partial Nul1 Hypoibesis I 
1 ARH 1 1 

Note. Sec note from Table 2, 

I 

Condition 
1 

c ' 

d ' 

Bon 

t ,O0 

0.90 

Welsc h 

3.80 

4-10 

SRB 

2.90 

3 -20 

Hoc h 

2.80 

2.60 

Sidak 

1.10 

1 .O0 

Tukey 

1.50 

1 .70 

SMM 

1.20 

1.20 
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Table 14 

Em~iricril Type 1 Error Rates (%) when Fittine the Tnie Covariance Structure 

[Loenormal Distribution. K = 4. N = 45. Satterthwaite dt) 

Compleie Nul1 Hypothrsis 

Condition 

;I 

b 

c 

C' 

d 

d ' 

Bon 

3.60 

2 .30 

3.40 

3.10 

2.70 

2.80 

Sidrik 

3.70 

2.70 

3.50 

3 2 0  

2.70 

2.80 

SMM 

3.70 

2.90 

3.60 

3.20 

2.70 

3.20 

Tukey 

4.50 

3.70 

4.10 

3 .90 

3.30 

3.60 

Welsch 

7.20 

6.40 

6.70 

6.40 

5.50 

5.50 

S R B  

3.70 

2 .JO 

3.30 

3 2 0  

2.80 

2.70 

Hoc h 

3.70 

2.40 

3.40 

3.20 

2.80 

1.70 
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Table 14 continued 

1 Partial Nul1 Hypothesis 1 

Note. See note from Table 2. 

Condition 

c' 
I 

d ' 

Bon 

0.90 

8.90 

Sidak 

1 .O0 

0.90 

Tukey 

1 .30 

I .OU 

SMM 

1 .O0 

0.90 

Hoch 

2.40 

, 2.20 

SRI3 

2.70 

2.60 

Welsch 

3.50 
l 

3.50 
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Table 15 

Empirical Twe 1 Error Rates Ph) with Akaike Criterion Selectine the Best Covariance 

Structure (Lornonnal Distribution. K = 4. N = 45. Satterthwaite df) 

Complctte Nul1 Hypothesis 

Condition 

il 

b 

c 

C'  

d 

d ' 

Bon 

4.20 

2.70 

3.60 

3.10 

3.20 

3.50 

Sidak 

4.40 

2.90 

3.70 

3.20 

3.20 

3.50 

Tukcy 

5.10 

3.10 

4.50 

4.10 

420  

4.60 

S MM 

3.40 

3.10 

3.80 

3.30 

3 -20 

3.80 

Welsch 

8.20 

6.60 

7.40 

6.50 

7.00 

6 .O0 

SRB 

4.30 

2.80 

3 -60 

3.20 

3 -40 

3.70 

Hoch 

4.30 

2.80 

3.70 

3 2 0  

3 A0 

3.70 
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Table 15 continued 

Partial Null Hypothesis I 

Note. See note fiorn Table 3. 

Condition 

c' 
L 

d' 

Bon 

0.80 

0.90 

Sidak 

0.90 

0.90 

Tukey 

1.30 

I .20 

SMM 

1 .O0 

0.90 

SRB 

2 .30 

2.80 

Hoch 

2.40 

2.30 

Welsch 

3.50 

3 .90 
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Table 16 

Em~irical T w e  I Error Rates (%) with Schwarz Criterion Selectine the Best Covariance 

Structure (Loenormal Distribution. K = 4. N = 45, Satterthwaite df) 

1 Complete Null Hypothesis 

Condition 

a 

b 

c 
1 

C' 

d 
1 

d' 

Bon 

3.80 

3.20 

3.60 

2.80 

3 .O0 

3.60 

Sidak 

4 .O0 

3.30 

3.60 

2.90 

3 .O0 

3.60 

tloch 

4.00 

3.20 

3 -60 

2.80 

3.10 

3.70 

Tukey 

4.50 

4 .O0 

4.60 

3.70 

3.60 

4.50 

Weisch 

7.50 

6.40 

7.40 

5 -90 

6.70 

6.70 

SMM 

4 .O0 

3 .30 

3.70 

3 .O0 

3.00 

3 .70 

SRB 

4.00 

3.20 

3.60 

2.80 

3.10 

3.70 



Repeated Measures 7 1 

Table 16 continued 

1 Partial Null Hypothesis 1 
1 ARH 1 1 

Note. See note from Table 2. 

Condition 

c ' 

d ' 

S idak 

0.90 

1.40 

Bon 

0.80 

1 .JO 

Tukey 

1.10 

1.70 

SRB 

2.30 

3.30 

SMM 

1 .O0 

1.40 

Hoch 

2.50 

2.90 

Welsch 

3.60 

4.50 
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Table 17 

Studv Conditions (Lognormal Distribution. K = 4. N = 45. Defaiilt dfl 

Condition 1 Pop Cov Sn" 1 Sarnple Sizes 1 Cov ~ a c ~  1 Pairing 1 Nul1 Hypothesis 

c ' 

d' 

d ' 

C' 

d' 

C' 

d' 

Note. See note from Table 1. 

RC-H 

KC-H 

C' 

d ' 

UN-H 

ARHI-H 

ARH 1 -H 

RC-H 

RC-?i 

9,1521 

9.15.21 

UN-H 

UN-Ii 

9'15'21 

9.15'21 

9,15,21 

9,1521 

9,15,21 

1 :3:5 

1 :3:5 

9.15.21 

9.15.21 

1 :3 :5  

t :3:5 

1 :3:5 

1 :3:5 

1 :3:5 

t 

1 :3:5 

1 :3:5 

p,=p,=p,=p,=O 

p,=p,=p,=p,=O 

+ 

t 

pl =p2=p,=p,=0 

Pi=P: *PJ=PJ 

P I = P ~ ' P ) = P ~  

Pi=P: *P3"P4 

Ci i =kt: Ci \=Ci, 

+ P I = I ~ : * P ~ = P ~  

Pi=pz*P~=Pr 
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Table 18 

Empirical Twe 1 Error Rates (%) when Fittine a UN-H Covariance Structure 

[Lornomal Distribution. K = 4. N = 45. Default d Q  

1 Completrl NuIl Hypothesis 1 

1 Partial Nul1 Hypothesis 1 

Note. See note fiom Table 2. 

Condition 
r 

c ' 

d' 

Bon 

3.80 

5.80 

Welsch 

6.80 

10.90 

Sidak 

3 .90 

5.80 

SMM 

4 -00 

5.80 

Tukey 

4.10 

7.20 

SR5 

3.80 

5.80 

Hoc h 

3.150 

5.80 
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Table 19 

Empirical T w e  1 Error Rates (%) when Fittinrr the True Covariance Structure 

LLopnomal Distribution. K = 4. N = 45. Default dfl 

7 Cornplete Nul1 Hypothesis 1 

Partial Nul1 Hypothesis 

ARH 1 

Note. See note from Table 2. 

Welsch 

6.70 

8.10 

ARH 1 

RC 

SRB 

2.70 

3.70 

4.20 

5 .JO 

Hoch 

2.70 

3.70 

Tukey 

3.70 

4.80 

Sidak 

2.80 

3.80 

Condition 
1 

ç '  

d' 

RC 

SMM 

2.80 

3 .90 

Bon 

2.70 

3.70 

3.30 

4.00 

3.60 

3.80 

I .7O 

1.90 

2 .O0 

2 .30 

C' 

d ' 

1.70 

1.90 

1.70 

1.90 
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Table 20 

Em~irical Type 1 Error Rates (%) with Akaike Criterion Selectinr the Best Covariance 

Structure (Lognormal Distribution. K = 4. N = 45. Default df) 

1 Complete Nul1 Hypothesis 1 

I Partial Nul1 Hypothesis I 

I 

Note. See note from Table 2. 

Condition 
r 

c' 

d' 

Bon 

2.60 

3.40 

Sidak 

2.80 

4.50 

SMM 

2.80 

4.50 

Tukry 

3.60 

5.50 

SRB 

2.60 

3.40 

Hoch 

2.70 

4.40 

Welsc h 

6.40 

9.20 
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Table 2 1 

Em~irical Tme 1 Error Rates (%) with Schwarz Critenon Selectine the Best Covariance 

Structure (Lognormal Distribution, K = 4, N = 45. Default d o  

Complete Nul1 Hypothesis 

Partial Nul1 Hypothesis 

Note, See note fiom Table 2. 

Condition 

c '  

d' 

SMM 

2.50 

4.50 

Bon 

2.40 

4 .40 

SRB 

2.40 

4.40 

Sidak 

2.50 

4.40 

Tukey 

3.60 

5 2 0  

Hoch 

2.40 

4.40 

Welscli 

6.30 

9.20 
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Table 22 

Percentage of Time Akaike Criterion Selected the Correct Covariance Structure 

[rounded to whole numbers! (Lognomal Distribution. K =4, N = 45. Satierthwaite df) 

Note. See note from Table 10. 
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Table 23 

Percentage of Time Schwarz Criterion Selected the Correct Covariance Structure 

Lrounded to whole numbers) (Lornormal Distribution. K = 4, N = 45. Satterthwaite dfl 

Note. See note from Table 10. 
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Table 13 contains Type 1 error rates when a UN-H variance-covariance structure 

was always fit to the data and df were based on Satterthwaiie's solution. Rates of error for 

each MCP were generally well controlled under a complete null hypothesis with the 

following exceptions: the Welsch procedure under a ARH1 variance-covariance structure 

with a mie or Ï.600/h (co i id ihi  d'), ilie Welscii procedure under a RC variance- 

covariance structure with rates ranging between 9.00% and 10.40%, and the Bon, SRB, 

and Hoch procedures under a UN variance-covariance structure with rates of 2.309'0, 

2.40%, and 2.40%' respectively for a positive pairing of unequal variance-covariance 

matrices and unequal group sizes (condition c). Under a partial null hypothesis only the 

SRB, Hoch. and Welsch procedures were able to control Type I error with rates ranging 

between 2.50% and 5.50%. whcreas the sirnultaneous MCPs typically had conservüti ve 

rates ranging between 0.90% and 1.60%. 

Rates of Type 1 error control when the true population variance-covariance 

structure was fit to the data and df were based on Satterthwaite's solution are contained in 

Table 14. The tendency across conditions was for rates to be slightly smaller when fitting 

the true population variance-covariance structure compared to rates when a UN-H 

structure was always fit to the data. Under a cornplete null hypothesis al1 MCPs generally 

provided error rates within Bradley's (1978) limits with the occasional liberal value for 

the Welsch procedure and the occasional conservative value for the Bon. S M .  and Hoch 

procedures. While under a partial null hypothesis only the three stepwise MCPs provided 

robust error control across investigated conditions. 

Once again, there was no Type I error advantage to titting the mie variance- 
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covariance structure compared to always fitting a UN-H structure. For example, averaged 

across investigated conditions the SRB and Hoch procedures had error rates eqiial to 

3.43% and 3.37%, respectively (see Table 14) when the true variance-covariance 

structure was fit to the data, while average error rates were 3.83% and 3.80%. 

respactively (sre Tablc 13) when a UN-II stmcturc was always fit to thc data. 

Allowing either the AIC or SBC criterion to choose the best variance-covariance 

structure (see Table 15 and 16, respectively) provided similar error control across the 

investigated MCPs. Under a complete nuIl hypothesis al1 procedures except Welsch, were 

able to maintain e m r  rates within Bradley's ( 1978) limits. however only the stepwise 

procedures were robust under a partial nul1 hypothesis with an occasional conservaiive 

rate of 2.30% for the SRI3 and Hoch procedures. 

When the df were bûsed on the Jefault option available through PROC MIXED, 

rates of error based on always fitting a UN-H variance-covariance stnicture to the data 

(sec Table 18) were not well controlled across al1 population variance-covariance 

structures. Speci fically, under a complete nul1 hypothesis, rates were liberal for al1 MCPs 

when the population variance-covariance structure was RC and unequal group sizes were 

negatively paired with unequal variance-covariance matrices (e.g., rates ranged between 

8.70% to 14.00% across the MCPs for condition d'). Empirical rates of Type 1 error 

improved when titting the true variance-covariance structure to the data (see Table 19), 

however the Welsch procedure remained nonrobust under a cornplete null hypothesis. 

Similar to the results based on Satterthwaite df, only the stepwise MCPs provided robust 

eror  rates under a partial null hypothesis across investigated conditions. It is important to 
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note that the SRI3 and Hoch procedures based on default df were only robust across al1 

conditions when the true population variance-covariance structure was fit to the data. 

Relying on either the AIC or SBC criterion (see Tables 2 0  and 2 1 ,  respectively) to 

select the best variance-covariance structure provided similar rates of error when d f were 

büsèd oii tlir default option. Only the S R B  and Hoch proccdurcs pro~~ided empirical error 

rates within Bradley's limits for complete and partial nul1 hypotheses across the 

population variance-covariance structures investigated. 

Tables 22 and 23 contain the frequency with wliich the AIC and SBC criteria, 

respectively selected the correct variance-covariance structure from anlong 12 possible 

structures. The values were similar regardless of the choice of df option. therefore only 

the conditions where Satterthwaitc df were used are tabled. The AIC critérion (see Table 

22) selected the correct variance-cov~ance structure w ith the greatest frequency across 

most conditions, however the percentages ranged from 16% to 48% with an average 

accuracy rate of only 41%. In cornparison. the SBC criterion (see Table 23) selected the 

correct variance-covariance structure with rates between 59% to 71% when the true 

population structure was RC but when the tnie population structure was either ARH I or 

W, the SBC criterion selected the wrong variance-covariance structure (Le.. AR 1 or 

ARl-H) with the greatest frequency (Le., rates between 29% to 71%). 

A limited number of conditions were examined when K = 8 to determine whether 

the results for the MCPs based on the four iesting strategies for K = 4 would extend to a 

larger number of levels of the RM factor (Le., an increase in the number of levels of the 

RM factor from 4 to 8 increases the number of pairwise tests fiom 6 to 28). The total 
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sample size was increased to N = 60 from N = 45 and only the negative pairing of 

unequal group sizes with unequal variance-covariance matrices were examined for the 

more disparate sample size case when the data was lognomally distributed (see 

Appendix B for Tables BI to B 1 1). The results indicate tliat al1 MCPs except Wclsch's 

procedure IiüJ zrror raies witliiii Bradley's ( 1978) liiiiits for s csnipletc nul1 liypothesis 

when always fitting a UN-H structure with Satterthwaite df (see Table B2). When the true 

popiilation structure wûs fit to the data, the error rates became srnaller and under certain 

conditions conservative (see Table 8 3 ) .  Relying on either the AIC or SBC criterion to 

select the best variance-covariance structure provided siniilar robust error control except 

for the occasional conservative rate for the SRB and Hoch procedures and liberül error 

rates for the Welsch procedure across population structures (see Tables 84 and Bj). The 

accuracy with which the AIC critenon selected the correct variance-covariance structure 

improved to an average of 74% across the investigated conditions (see Table BG), while 

the SBC criterion was only highly accurate when the true population structure was RC-H 

(Le., 95%) and otherwise selected the wrong structure with the greatest frequency (see 

Table 87). Consistent with the K = 4 results is the tendency for error rates for MCPs to 

become smaller under a partial nul1 hypothesis regardless of the testing strategy adopted 

and in particular conservative for the simultaneous MCPs. The pattern of results when 

using the default df option with K = 8 is similar to when K = 4 (see Tables 8 8  to B I l ) .  

That is, error rates were liberal for al1 MCPs when fitting a UN-H structure to the data for 

a RC population variance-covariance structure and improved when fitting the true 

population structure. In general, the results for K = 4 extend to K = 8 with the exception 
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of the need for a larger total sample size in order for the convergence cnteria to be met for 

the REML estimation. 

Power Rates 

To simulate power rates for the MCPs, three nonnull mean configurations were 

exaniined. l l i ü ~  is, a iiiiiiiiiiurii rüiige configuration, a maximum rangc configuration, and 

an equally spaced range configuration. Effect sizes varied between 0.50 and 1.25 and 

were selected to avoid floor and ceiling effects (see Appendix C for population means). 

All MCPs were compared in terms of average per-pair and dl-pairs power with the 

testing strategies of always fitting a LIN-H variance-covariance structure or the true 

variance-covariance structure. Guidelines provided by Einot and Gabriel (1975) were 

used to evaluate difkrences in power values across procedures. That is, power differences 

greater than 20% were considered substantial while those less than 10% werc considered 

negligible. 

Normallv Distributed Data. Table 24 contains all-pairs and average per-pair 

power rates for data obtained from a normal distribution for K = 4 and N = 45 for a 

minimum range configuration when df were based on Satterthwaite's solution and a LJN- 

H variance-covariance stnicture was always fit to the data. As expected, the stepwise 

MCPs were more powerful than the simultaneous MCPs, however this power advantage 

was only negligible (Le., less than 10%). For all-pairs power, the average power rates 

across investigated conditions for the simultaneous MCPs (Bon, Sidak, Tukey, and 

SMM) were 35.25%. 35.58%, 39.08%, and 36.05%, respectively and for the stepwise 

MCPs (SRB, Hoch, and Welsch) were 45.07%, 45.28%. and 59.57%, respectively. For 
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average per-pair power, the average power rates across investigated conditions for the 

simultaneous and stepwise MCPs (Bon, Sidak, Tukey. SMM, SRB, Hoch, and Welsch) 

were 64.72%. 65 .Oz%, 68.1 1 %, 65.53%, 7 1.49%. 69.4 176, and 78.83%. respectively. 

Although the Welsch procedure was most powerful. the result is illusory because this 

prosedure Iiad libsral mor rates under a complcrc niill hypothcsis. Whcn thc truc 

population variance-covariance structure was fit to the data, the MCPs were more 

powerful, howevrr this power advantage never exceeded 3 percentüge points (see Table 

25). The rates averaged ücross investigatetl conditions for the simultaneous and stepwise 

MCPs were 37.42%, 37.78%. 41.08%, 38.05%. 46.37%, 46.53141, and 59.80%, 

respectively for all-pairs power and 66.02%, 66.27%, 69.1 1 %, 66.66%. 7 1.07%. 69.28%. 

and 78.82%. respectively for average per-pair power. 

Power rates for MCPs based on default df are contained in Table 26 when always 

fitting a UN-H variance-covariance structure and Table 27 when fitting the tnie 

population variance-covariance structure to the data. The power advantage of fitting tlie 

correct variance-covariance structure compared to always fitting a UN-H structure never 

sxcreded 2 percentage points when the rates were averaged across conditions separately 

for all-pairs and average per-pair power. Specifically, the average across conditions for 

all-pairs power for the simultaneous and stepwise MCPs when a UN-H variance- 

covariance structure wüs fit to the data were 39.45%, 39.75%, 42.27%, 39.80%, 50.13%. 

50.30%, and 62.77%. respectively and when the irue variance-covariance structure was fit 

to the data the average rates were 40.92%, 41 .Z%, 43 S8%, 4 1.32%, 5 1 . 1  7%, 5 1.28%, 

and 62.80%, respectively. For average per-pair power, the average across conditions 



Repeüted Measures 85 

Table 24 

Power Rates (Minimum Mean Configuration) when Fittinr~ a U N - H  Covariance Structure 

(Normal Distribution K = 4, N = 45. Satterthwaite dfl 

1 All-Pairs Power 1 

I 
- - - - -  - 

Average Per-Pair Power 1 

Condition 

c' 
I 

d ' 

1 ARH 1 1 

Bon 

49.90 

26.60 

Note. c' = positive pairing of unequal covariance matrices and unequal group sizes; d' = negative 
pairing of unequal covariance matrices and unequal group sizes (n, = 9,15,2 1); Bon = Bonferroni; 
SMM = Studentized maximum modulus; SRB = Shaffer's (1986) sequentially rejective Bonferroni; 
Hoch = Hochberg's (1988) sequentially acceptive Bonferroni. 

Siddi 

50.10 

26.70 

Wclsch 

87.48 

70.55 

Condition 
r 

c' 

d' 

Tu key 

53.80 

29.80 

Tukey 

79.18 

57.85 

Bon 

76.5 8 

53.70 

SMM 

50.30 

27.70 

Sidak 

76.78 

54.00 

Hoch 

51.58 

58.30 

SMM 

76.93 

54.93 

SRB 

6 1 .30 

34.80 

SRB 

83.13 

61.15 

Hoch 

61.50 

35.00 

Welsch 

72.50 

49.50 
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Table 25 

Power Rates (Minimum Mean Configurationl when Fittine the True Covariance Structure 

(Normal Distribution K = 4. N = 45. Satterthwaite df) 

I  airs Power I 
1 ARH 1 1 

I 
- - - - -  - 

Average Per-Pair Power 

1 ARH 1 

Condition 

c' 
r 

d' 

Note. See note from Table 24. 

Bon 

53.10 

28.10 

Tuke y 

57.00 

32.10 

Condition 

C *  

d ' 

Sidak 

53.50 

28.80 

SN3 

64 .JO 

40.00 

SMM 

53.60 

29.20 

Bon 

78.58 

55.68 

Hoch 

64.50 

40. 10 

Wttlsch 

74.30 

5 1.00 

S ida k 

78.85 

56.05 

Tukey 

50.88 

59.33 

SMM 

78.95 

56.53 

SRB 

54.65 

64.05 

Hoch 

53.63 

6 1.68 

Welsch 

88.78 

7 1.33 
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Table 26 

Power Rates (Minimum Mcan Confiyration) when Fittine a U N - H  Covariance Structure 

/Normal Distribution K = 4. N = 45. Default df) 

1 Average Per-Pair Power 1 
1 ARH 1 1 

Condition 

c' 

d ' 

Sidak 

53.70 

30.40 

Bon 

53.20 

30.20 

Note. See note fiom Table 24. 

Condition 

c'  
, 

d ' 

Tuke y 

56.80 

33.40 

Bon 

77.73 

61.38 

SRB 

66.40 

42.70 

SMM 

53.70 

30.50 

Sidak 

78.00 

6 1.45 

Hoc h 

66.50 

42.70 

1 

Welsch 

74.00 

55.40 
L 

Tukriy 

79.95 

63.78 

SMM 

78.03 

61.48 

SRB 

84.23 

68.85 

Hoc h 

83.08 

66.60 

Welsch 

87.93 

75.48 
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Table 37 

Power Rates (Minimum Mean Confieiiration) when Fittine the True Covariance Structure 

(Normal Distribution K = 4. N = 45. Default dt) 

1 Ali-Pairs Power 1 

1 Average Per-Pair Power 1 

Condition 

C' 

d' 

1 ARH 1 1 

Bon 

56.90 

33.40 

Note. See note fiom Table 24. 

Condition 

c' 
I 

di 

Sidak 

57.20 

33.80 

Bon 

79.35 

63.08 

Tukcy 

59.40 

36.50 

Sidak 

79.48 

63.40 

SMM 

57.30 

33.80 

Tukey 

8 1 .O8 

65.63 

SRB 

66.20 

46.30 

SMM 

79.58 

63.48 

Hoch 

66.30 

46.30 

Welsch 

74 -40 

56.80 

SRB 

81.65 

70.80 

Hoch 

83.28 

68.73 

Welsçh 
1 

58.30 

76.28 
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when fitting a UN-H variance-covariance structure for each of the MCPs were 69.64%. 

69.84%, 71.77%,69.88%. 76.0296. 74.41 %, and 8 Mg%, respectivcly and whrn fitting 

the true variance-covariance structure, the average rates were 70.07%. 70.30%, 72.13%, 

70.38%, 76.28%, 74.63%. and 81 68%. respectively. The MCPs were more powerful 

wlien the df were bascd on thc dcfault option, howcvcr thc diffcrence in average rates 

across conditions was negligible (i.e., never greater than 6 percentage points) compared to 

average power rates for MCPs based on Satterthwaite df. 

Loenormal Distributed Data. All-pairs and average per-pair power rates for data 

obtained from a lognormal distribution for K = 4 and N = 45 for a minimum, maximum, 

and equally spaced mean range configuration were investigated. Tables 28 and 29 contain 

all-pairs and average per-pair power rates, respectively when the MCPs were based on 

Satterthwaite df and a LN-H variance-covariance structure was dways fit to the data and 

Tables 30 and 3 1, contain power rates when the true variance-covariance structure was fit 

to the data for all-pairs and average per-pair power rates, respectively. Because of the lack 

of robustness for MCPs based on default df for the combined violation of normality and 

homogeneity of variance-covariance matrices, power rates are not reported. 
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Table 28 

All-Pairs Power Rates when Fitting a UN-H Covariance Structure 

[Lognormal Distribution. K = 4. N = 45, Satterthwaite df) 

1 All-Pairs Power 

L 

Condition 
1 

c '  (min) 

d' (min) 

c' (mu) 

d'(mm) 

c' (q) . 
d' (eq) 

Note. c' = positive pairhg of unequal covariance matrices and unequal group sizes; d' = negative 
pairing of unequal covariance matrices and unequal group sizes (n, = 9, 15,2 1);  min = minimum, 
max = maximum, eq= equally spaced mean configuration; Bon = Bonferroni; SMM = Studentized 
maximum modulus; SRB = Shaffer's (1986) sequentially rejective Bonferroni; Hoch = Hochberg's 
(1988) sequentially acceptive Bonferroni. 

Bon 

53.30 

28.20 

49.80 

18.10 

37.20 

9.40 

c '  (min) 

d' (min) 

c' (mm) 
r 

d' (mm) 
r 

c' (eq) 

d' @q) 

Sidak 

53.60 

28.50 

50.40 

18.40 

37,60 

9.60 

56.70 

22.40 

83.70 

42.10 

18.90 

3.30 

56.30 

22.20 

83.10 

4 1 .50 

18.50 

3.30 

b 

c' (min) 

d' (min) 

c' (max) 

d' (max) 

c' (eq) 
I 

d' (eq) 

SiMM 

34.00 

29.50 

50.70 

19.20 

3 8 .O0 

1 0.40 

Tukey 

56.80 

33.20 

53.40 

22.40 

43.00 

12.90 

38.80 

20.90 

36.20 

12.30 

17.70 

5.10 

14.20 

24.10 

40.30 

15.10 

20.30 

7.10 

SRB 

62.70 

38.10 

68.00 

34.60 

70.40 

35.50 

60.40 

27.30 

85.90 

47.90 

23.40 

5.60 

39.20 

2 1 .O0 

36.40 

12.50 

17.90 

5 -20 

5 2 .90 

29.40 

55.70 

27.00 

5 1.70 

25.30 

70.00 

33.40 

94.90 

65.60 

62.70 

29.80 

39.60 

2 1 .50 

36.60 

13.00 

18.10 

5.60 

66.80 

47.90 

56.40 

2 8 ..IO 

36.10 

14.60 

Hoch 

62.90 

38.10 

68.50 

36.10 

71 -60 

38.30 

83 -40 

57.20 

94.40 

68.70 

44.10 

15.10 

56.90 

23.20 

84.30 

43.30 

19.30 

3 .50 

52.90 

29.30 

54.50 

25.80 

50.70 

23.40 

Welsch 

73.40 

53 A0 

70.60 

42. I O  

59.10 

23.10 

70.00 

33.40 

94 A0 

63.60 

60.70 

25.70 
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Table 29 

Average Per-Pair Power Rates when Fitting a UN-H Covariance Stnicturc 

[Lognormal Distribution. K = 4. N = 45. Satterthwaite df) 

Average Per-Pair Power 

ARH 1 

Condition 

c' (min) 

d' (min) 

c' (rnax) 

d' (mm) 

c' (q) 

d' (eq) 

c' (min) 

Hoch 

8 1.23 

61.13 

90.60 

72.30 

94.20 

79.68 

82.88 83.05 85.30 83.25 89.35 88.33 93.35 

d' (min) 

c' (mu) 

d' (max) 

c '  (eq) 

d' (eq) 

Note. See note fiom Table 28. 

Wrlsch 

87.25 

72.70 

92.02 

78.62 

92.07 

79.05 

Bon 

76.78 

56.40 

84.74 

64.88 

85.55 

68.07 

58.63 

96.02 

80.92 

80.20 

64.30 

c' (min) 

d' (min) 

c' (max) 

d' (max) 

c' (eq) 

d' (eq) 

Sida k 

76.93 

56.60 

84.90 

65.16 

85.72 

68.32 

72.83 

53.73 

78.24 

60.48 

78.75 

63.17 

59.05 

96.20 

3 1.24 

80.35 

64.43 

73.08 

53.913 

78.34 

60.74 

78.98 

63.37 

Tukey 

79.38 

60.78 

86.44 

68.72 

87.25 

71.17 

80.10 

60.1 8 

84.96 

68.80 

88.40 

73.40 

64.40 

96.76 

84.47 

82.35 

68.05 

75.93 

57.58 

80.34 

64.12 

80.52 

66.42 

SMM 

77.13 

57.60 

84.98 

65.86 

85.88 

69.02 

78.55 

58.05 

85.20 

67.90 

88.75 

73.78 

73.30 

54.63 

78.52 

6 1.54 

79.08 

64.05 

SRI3 

53.58 

63 .40 

90.52 

73.06 

93.77 

78.68 

60.1 8 

96.32 

8 1.96 

80.60 

65 $37 

85 .90 

7 1 -28 

86.30 

72.88 

86.30 

74.85 

68.00 

98.72 

88.88 

91.45 

76.17 

63.63 

98.86 

89.32 

92.23 

77.62 

79.53 

98.50 

9 1 .GO 

88.90 

76.67 



Repeated Measures 92 

Table 30 

AII-Pairs Power Rates when Fitting the True Covariance Structure 

~Loenormirl Distribution, K = 4. N = 45. Satterthwaite dQ 

1 All-Pairs Power 1 
1 ARH l 1 

Condition 

c'  (min) 
I 

d' (min) 

c' (max) 

d' (mm) 
r 

Ç '  (es) 
, 

d' (q) 

c' (min) 

d' (min) 

c '  ( m u )  

d' (max) 

C' (eq) 

d' (eq) 

Note. See note fiom Table 28. 

Bon 

56.10 

32.70 

53 -00 

23.70 

39.90 

12.60 

c'(min) 

d' (min) 

c' (max) 
I 

d' (mm) 

c' (q) 

58.60 

37.30 

82.60 

47.10 

20.80 

4.90 

5.10 5.20 7.10 5.60 23.40 25.30 14.60 

38.80 

20.90 

36.20 

12.30 

17.70 

Sidak 

56.30 

33.00 

53.30 

23.90 

40.40 

t 2.80 

58.80 

27.60 

83.10 

47.40 

2 1.30 

5.30 

SMM 

56.50 

3 3 20 

53.40 

24.30 

41 .O0 

13.30 

Tukey 

58.50 

35.90 

56.60 

27.00 

44.60 

16.40 

39.20 

2 1 .O0 

36.40 

12.50 

17.90 

6 1 .30 

3 1.30 

86.20 

52.20 

25.30 

6.70 

SRB 

66.80 

42.20 

7 1.60 

4 1.50 

74.00 

39.80 

44.20 

24.10 

40.30 

15.10 

20.30 

59.00 

27 -90 

83.30 

43.20 

2 1 .JO 

5.30 

- 

Hoch 

66.90 

42.30 

72.30 

42.60 

75.00 

12.20 

39.60 

2 1 .50 

36.60 

13.00 

18.10 

Welsch 

75.10 

55.60 

73-40 

46.30 

61.50 

27.50 

67.00 

35.20 

9 1.90 

64.90 

60.80 

27.30 

52.90 

29.30 

54.50 

25.80 

50.70 

67.30 

35.40 

92.40 

65 -90 

6 1 .90 

28.90 

79.90 
1 

54.00 

92.80 

7 1.30 

45.30 
1 

17.80 

5 2 -90 

29.40 

55.70 

27.00 

5 1.70 

66.80 

47.90 

56.40 
* 

28.40 

36.10 
1 
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Table 3 1 

Average Per-Pair Power Rates when Fitting the True Covariance Structure 

fLoenonnal Distribution. K = 4. N = 45. Satterthwaite dfj 

I 
- 

Average Per-Pair Powcr 

Condition 

c' (min) 

d' (min) 

c' (max) 

d' (mm) 

c' (eq) 

d' (eq) 

c' (min) 

d' (min) 
1 

c' (max) 

d' (max) 

c '  (eq) 

d' (eq) 

Note. See note fiom Table 28. 

Bon 

78.80 

59.35 

86.30 

68.36 

86.68 

71 .33 

83.45 

62.30 

95.28 

82.38 

8 1 .O0 

65.78 

c' (min) 

d' (min) 

c'(max) 

d' (max) 

c' (eq) 
l 

d' (eq) 

Sidiik 

78.95 

59.60 

86.42 

68.64 

86.83 

7 1 .58 

73 .O8 

53.98 

78.34 

60.74 

78.98 

63.3 7 

72.83 

53.73 

78.24 

60.48 

78.75 

63.17 

83.70 

62.63 

95.42 

82.68 

81.15 

66.18 

Tukey 

80.80 

63.13 

87.64 

71.12 

88.23 

73.83 

85.25 

66.18 

96.36 

85.42 

82.93 

69.32 

75.93 

57.58 

80.34 

64.12 

80.52 

66.42 

SMM 

79.13 

60.00 

86.46 

68.96 

86-97 

7 1.88 

78.55 

58.05 

85.20 

67.90 

88.75 

73.78 

83.88 

61.10 

95.64 

83.32 

8 1.47 

66.83 

85.90 

7 1.28 

86.30 

72.88 

86.30 

74.85 

73.40 

54.63 

78.52 

6 1.54 

79.08 

64 .O5 

SRB 

84.43 

67.30 

9 1.74 

76.88 

94.17 

8 1.62 

80.40 

60.18 

84 -96 

68.80 

88.40 

73.40 

87.80 

64.78 

96.90 

83.30 

90.80 

72.40 

Hoc h 

83.30 

64.75 

9 1 .S8 

76.08 

94.82 

82.33 

Welsch 

88.23 

74.50 

92.94 

80.74 

92.52 

Y0.97 

86.73 

62.63 

96.98 

83.50 

9 1.20 

72.85 

92.70 

76-88 

98.40 

9 1.48 

89.12 

77.10 
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In terrns of all-pairs power (see Tables 28 and 30) the stepwise MCPs were more 

powerful than the sirnultaneous MCPs across mean configurations and population 

variance-covariance structures. For the minimum and mavimum range configurations the 

power difference was generally less than 20%, however for the equally spaced range 

coiifiyuration the power diffcrcnce was pcncrally substantial (i.c., grcatcr than 20%). 

Anionp the three stepwise MCPs, the Welsch procedure was most powerful under a 

minimum range configuration, the SRB and Hoch procedurcs were most powerful under 

an equally spaced range configuration, and al1 three procedures Iiad similar powrr rates 

under a maximum range configuration. Among the four simultaneous MCPs, Tukcy's 

procedure was consistently most powerful across mean configurations for the investigated 

conditions. When always fitting a üN-H variance-covariance structure, the average ail- 

pairs power rates of the simultaneous procedures, (Bon, Sidak, Tukey, and SMM), were 

30.66%. 30.97%, 34.57%, and 3 1.48%. rcspectively and average rates for the three 

stepwise procedures ( S M ,  Hoch, and Welsch) were 49.65%, 50.77%, and 5 1.85%. 

respectively (see Table 28). The stepwise MCPs were more powerful than the 

simultaneous MCPs, with an average difference of 18.85%. Fitting the true population 

variance-covariance structure does provide a power advantage, however this difference 

does not exceed 3 percentage points compared to always fitting a UN-H structure (e.g., 

average all-pairs power rates were 32.80%, 33.08%. 36.3 1 %, 33.40%. 5 1.09%, 5 1.94%, 

and 52.82%. respectively for the simultaneous and stepwise procedures when fitting the 

true population variance-covariance structure; see Table 30). 

In terms of average per-pair power (see Tables 29 and 3 l), the stepwise 
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procedures were more powerful than the simultaneous procedures across the mean 

configurations and population variance-covariance structures. however this power 

advantage was nrgligiblc (Le., less than 10%). In addition, fitting the true population 

variance-covariance structure was generally more powerful than alwüys fitting a UN-H 

variiulcd-covaliallcace- si^ structure but the diffcrencc was typically lcss than 2 pcrccntagc 

points. For the three stepwise procedures, SRB, Hoch, and Welsch, the average across 

investigated conditions for average per-pair power were 80.60%. 80.13%, and 83.78%, 

respectively. when fitting a UN-H variance-covariance stnicturc and the average rates for 

Bon, Sidak, Tukey, and SMM were 72.59%0, 72.80%. 75.55%. and 73.2904, respectively. 

When fitting the true population variance-covariance structure. the average average per- 

pair power nies were 73.80%, 74.02%, 76.40%. 74.38%, 80.48%. 79.36%. and 84.06%, 

respective1 y for the simultaneous and stepwise procedures. 

For K = 8, a minimum range configuration was examined for the negative pairing 

of unequal groups sizes and variance-covariance matrices with df based on 

Satterthwaite's solution. In general, the power advantage of the stepwise MCPs over the 

stepwise procedures was smaller. It is important to note that Tukey's procedure was 

comparable to the SRB and Hoch procedures in terms of power rates and was at times 

more powerful than the simultaneous procedures (see Appendix B, Table B 12). Likewise, 

for K = 8, fitting the true variance-covariance matrix was typically more powerful than 

always fitting a UN-H structure (see Appendix B, Table BI 3). In terms of all-pairs 

power, the di fference averaged across population variance-covariance stnict ures never 

exceeded 6 percentage points and for average per-pair power this difference was only 2 
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percentage points. 

Discussion 

A mixed model approach which allows a user to model the variance-covariance 

stnicture of the data was compared to kiiown robust procedures based on a between- 

subjecis Iiztèrogeiieous Uristnicturèci f'onii of ilict variance-covariüncc matris ( i  .c.. L W H )  

when trsting dl possible painvise differences among repsüted nieüsures marginal means. 

Type 1 error and power results were reponed for seven MCPs in a nonsphericül repeated 

measures design contaiiiing one between- and one within-subjects variable under 

violation of normality and variance-covariance homogeneity, separately and joicitly. The 

four simultûneous MCPs investigated are avnilable in SAS' ( 1  996) PROC MIXED and 

the three siepwise MCPs, althouph not available in SAS, can easily be computed from the 

statistical output. In addition to the tcsting strategies of always assuming a UN-H 

structure venus fitting the true variance-covariance stnicture, two model selection criteria 

were examined as testinp stntegirs to evaluate the operat ing charricteristics of the MCPs. 

The testing strategy of always assuming a UN-H variance-covariance structure 

performcd similarly to fitting the true variance-covariance structure across investigated 

conditions for each of the MCPs. The tendency was for error rates to be srnaller when 

fitting the t u e  structure compared to always fitting a UN-H structure. Furthemore, 

MCP s that were liberal under a UN-H structure became robust when the true variance- 

covariance structure was fit to the data. The irnproved Type 1 error control when fitting 

the true structure was more evident when df were based on the default option. For 

example, under violation ofnormality and multisarnple sphericity when the default df 
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option was specified and unrqual groups sizes were negatively paired with unequal 

variance-covariance matrices (condition d') al1 liberal error rates across MCPs (except 

Welsch) became robust when the true structure (Le., RC-H) was fit to the data. 

The advantage of always fitting a UN-H variance-covariance structure is that a 

rcsearclier does not need pior howlcdgc about thc truc population variance-conriance 

structure to provide p o d  Type 1 error control. An additional benefit of always fitting a 

UN-H variance-covariance structure as opposed to always fitting ünother between- 

subjects heterogeneous structure is that a UN structure is the niost grneral (i.e., allowing 

the variances/covariances to be iinequal and placing rio restrictions on the form) and thus 

can be applied in any situation where a researcher is uncertain about the true nature of the 

population variance-covariance structure. Therefore, one can obtüin robust painvise 

cornpansons among the levels of the RM main effect without prior knowledge about the 

true population variance-covariance structure. However, Keselman et al. ( 1999a) found 

that one needs pnor knowledge about the true population structure in order to obtain 

robust tests of RM main and interaction effects with PROC MIXED, 

Without prior knowledge about the tme population variance-covariance structure 

a researcher has the choice of two mode1 selection criteria available in SAS' (1996) 

PROC MIXED. The AIC and SBC criteria were investigated as testing strategies where 

each criterion selected the best variance-covariance structure from arnong 12 possible 

structures. Allowing either the AIC or SBC criterion to select the best variance- 

covariance structure generally provided robust Type I error control, however neither 

criterion can be relied upon to choose the correct stnicture with a high accuracy rate. 
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When multisample spliericity was violated, the accuracy rates for both criteria were 

highest when the population variance-covariance structure was RC-H. Ln contrast, when 

the population structure was either ARH 1-H or UN-H, the tendency was for a more 

parsimonious structure to be selected (Le., one with fewer parameters to be estirnated). In 

püriisulür ü ARI-H structure was sclected witli the greatest freqiicncy by both cntcria. 

Under the combined violation of normality and multisample sphericity, the AIC cntenon 

generally selected the correct structure with the greatest freqiiency but this averüyed only 

4 1 % across conditions. The SBC criterion had the highest accuracy rates when the 

population structure was RC whereas, when the population structure was ARHI or UN, a 

more parsimonious structure wüs selected with the greatest frequency. That is, the AR1 

structure was selected when variance-covariance matrices were equd across the grouping 

variable (condition a) and the ARl-H structure was selected when variance-covariance 

matrices were unequal across the grouping variable (conditions b, c, c', d, and d'). 

The pattern of Type I error control was comparable between AIC and SBC 

because of the similar error rates across the between-subjects heterogeneous structures 

selected by either criterion as the best variancesovariance structure. A researcher can rely 

on either criterion to select a variance-covariance structure that will provide acceptable 

Type I error control, particularly when the selection is a between-subjects heterogeneous 

structure. However, if the goal of using either AiC or SBC is to select and examine the 

true variance-covariance structure, a researcher will likely be mislead because of their 

low accuracy rates. Therefore, another advantage of always fitting a UN-H structure is 

that one does not need to fit numerous variance-covariance structures to a set of data and 
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thus compare mode1 selection criterion values across structures to obtain robust painvise 

cornpansons among the levels of a RM main effect. 

When multisample sphericity is violated, robust MCPs using a statistic with a 

nonpooled error term (i.e., KKS statistic - nonpooled across bath between- and within- 

subjrcis rüciors) b a s d  oii i t  UN-H vüriiiiisccovnriaiizt: airusiurr: hith Sattriîliwaite df  

solution have been suggested (Keselman 1994; Keselman & Lin, 1995; Keselman et al., 

199 1 ). The performance of the MCPs based on Sattrrthwaite df and assuming a UN-H 

variance-covariance structure through PROC MIXED were consistent with previous 

rescarch. However, the liberal rates of Type I crror for the Welsch procedure across 

population variance-covariance structures was a new finding in that it indicates the 

limitation of the results reported by Keselman (1994) and Keselman and Lix (1995). A 

iikely reason for these different results is the V ~ ~ O U S  forms of the population variance- 

covariance n~atrix and the data generation of a multivariate nonriormal distribution with 

more extreme degrees of skewness in the present study. A caution with the use of 

Welsch's procedure is that under certain conditions with Satterthwaite df, a more 

conservative cntical value was used when the computed degrees of freedom for a 

painvise test statistic was less than five (i.e., the tabled critical values for Welsch's 

procedure are not given for degrees of freedom less than five). 

The robust performance of a nonpooled painvise test statistic under violation of 

multisample sphericity is well known. However, the advantage of adopting a conservative 

method of estimating df (Le., Satterthwaite's solution) for this statistic has never been 

compared to another method of estimating df. SAS' (1996, 1999) PROC MIXED 
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provides a user with the flexibility of a default df option with the use of a nonpooled 

painvise statistic. Reported results indicatc that when the default degrees of fieedom were 

used Type 1 error rates were typically lager than when Satterthwaite df was adopted and 

under certain conditions error rates exceeded Bradley's (1978) upper limit. For example, 

the combined violation of normaliiy and multisamplr: splieriçiiy resullèd in librrül érror 

rates for all MCPs when unequal group sizes were negaiively paired with unequal 

covariance matrices for a RC population variance-covariance structure. Although, fittins 

the true population variance-covariance structure to the data provided robust rates of error 

for al! MCPs except Welsch's procedure when df  were based on the default option. In 

contrast with the results based on Sütterthwaite df, to obtain valid painvise tests using 

default df, one needs pnor knowledge about the truc population variance-covariance 

stnic ture. 

Because a researcher never knows the true state of the population means, it is 

important that a MCP control Type I error under both complete and partial null 

hypotheses. The results for the simultaneous procedures under a partial nuIl hypothesis 

were consistent with previous research (Keselman, 1993, 1994). That is, error rates were 

typically less than the .O5 significance level and most of the time, rates were less than 

Bradley's (1978) lower limit. Under violation of multisample sphericity and the 

combined violation of normality and multisample sphericity, only two MCPs were able to 

mointain Type 1 error control within Bradley's (1978) lirnits except for the occasional 

conservative rate when unequal group sizes were positively paired with unequal variance- 

covarimce matrices. Specifically, the SRB and Hoch procedures based on a UN-H 
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structure with Satterthwaite df. 

As expected, the stepwise MCPs were more powerful than the simultaneous 

MCPs when df were based on Satterthwaite's solution. This power difference was 

negligible under violation of multisaniple spherici ty, but increased under the combined 

violüiioii of iioriiiality viid ~~iultisaniplc sphericity in favor of thc stcpwisc proccdurcs. 

However, increasing tlie levels of the RM factor from 4 to 8 resulted in less discrepancy 

between the simultaneous and stepwise procedures in terms of all-pairs and average per- 

pair power rates. Furthemore. the power advantage of fitting the true population 

variance-covariance structure compared to always fitting a LN-H structure was negligible 

across the MCPs for both dl-pairs and average per-pair power rates. 

In conclusion, either Shaff'r's ( 1986) modified sequentially rejective Bonferroni 

or Hochberg's (1988) sequentially acceptive Bonferroni procedure büsed on a UN-H 

structure with Satterthwaite df are recommended. Not only do these procedures control 

Type 1 enor across a wide range of conditions but are powerful in detecting [rue pairwise 

diffrrences. Lix and Kcselman (1995) provide a SASIIML (SAS Institute, 1989) program 

that cnables a user to calculate nonpooled pairw ise test statistics based on Satterthwaite's 

df solution which c m  be used in the computation of the previously mentioned MCPs. 

However, the availability of robust pairwise test statistics in a major statistical package 

should encourage their adoption by applied researchers because of easc and accessibility 

considerations. A potential outcome of this research would be the incorporation of robust 

MCPs such as SRI3 and Hoch into a future release of the PROC MIXED program given 

their supenor performance over the simultaneous MCPs currently availabie. A potential 
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advantage of the use of PROC MIXED is the ability of the program to handle missing 

data. Therefore. a direction for future research is the investigation of the robustness 

properties of various MCPs through PROC MIXED when data are missing. 
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Footnotes 

' Sphericity is not a requirement for the statistics investigated, however pior 

research has indicated that tests of the type investigated were affected when data were not 

spherical (see Keselman et al., 1993). 

! A i  èxtèiisioii of tlis KKS painvise statistic to test omnibus fiscd-cffcct tcstç is 

the approximate df multivariate approücli due to Johansen (1980) and Keselrnan et al. 

(1993). However, tests of omnibus fixed-effects with a LIN-H covariance structure with 

Satterthwaite df  throush the MlXED procedure are not equivalent to this approximate df 

mu1 t ivariate WJ approac h. 
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Appendix A 

Population Correlation and Covariance Structures 

Heteroaeneous First-Order Autoregressive /ARH 1 1 

Epsilon = .7490698 

Correlation Matrix 
I 0.7300 0.5329 0.3890 

1 0.7300 0.5329 
1 0.7300 

1 

Covariance Matrix 
8 .0  6.5293 185 4.7664025 3.8 1 15726 

10.0 7.3 5.837627 
10.0 7.9967493 

12.0 

Epsilon = .7J72201 

Correlation Matrix 
1 0.46 0.2 1 16 0.097336 0.0447746 0.0205963 0.0094743 

1 0.46 0.2 1 16 0.097336 0.0347746 0.0205963 
1 0.46 0.21 16 0.097336 0.0447746 

1 0.46 0.21 16 0.097336 
f O. 46 0.2 1 16 

1 0.46 
1 

Covariance Matrix 
8 3.68 1.8926079 0.8705997 0.4004758 O. 1842 189 0.0928288 

8 4.1 14365 1 i .8926079 0.8705997 0.4004758 0.201 8017 
1 O 3.6 2.1 16 0.97336 0.4904807 

10 3 -6 2.1 16 1 .O662625 
10 4.6 2.3 179619 

1 O 5.0390475 
12 
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Random Coefficient [RC) 

Epsilon = 0.752 1 197 

Covariance Matrix 
2.7301562 2.3002343 2.8703 123 

4.2803 124 4.2603903 
6.6504686 

Epsiion = 7522259 

Correlation Matrix 
1 0.5544533 0.5603854 0.5589393 0.552914 0.5443534 0.5346061 0.5245 107 

1 0.6091684 0.6 199035 0.623752 0.623 1524 0.6 195349 0.6149589 
1 0.6638484 0.6763223 0.6527344 0.685 1334 0.6849 127 

1 0.713735': 0.726 1 19 1 0.7333993 0.7372 158 
1 0.756929 1 0.7683228 0.7755436 

1 0.793265 1 0.5033376 
I 0.8233998 

1 

Covariance Matrix 
2.1639 159 1.27 13738 1.37883 18 1 A862897 1.5937477 1.7 0 12056 1,8086636 1.9 16 12 15 

2.42983 18 1 S882897 1.7467477 1.9052056 2.0636636 2.222 12 15 2.3805795 
2.7977477 2.0072056 2.2 166636 2.426 12 15 2.6355795 2.8450374 

3.2676636 2.528 12 15 2.7885795 3.0490374 3.3094954 
3.8395795 3.15 10374 3.4624954 3.7739533 

4.5 134954 3.8759533 4.2384 1 13 
5.28941 13 4.7023692 

6.1673272 
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Unstructured ( UN) 

Epsilon = ,750535 1 

Correlation 1Matri.u 
1 0.729445 

1 

Covariance Matrix 
8.0 6.5243544 

10.0 

Epsilon = 0.750843 1 

Correlation Mritrix 
1 0,5943965 0.4785603 0.5034549 0.4738909 0.5 157068 0.5507265 0.428635 1 

1 0.5073292 0.4995573 0.5354634 0.52 1?3 12 0.6097338 0.19WSO(I 
1 0.60 14101 0.57 1214 0.5950098 0.5655234 0.33 17410 

I 0.6629336 0.6227244 0.7274 189 0.5669606 
1 0.6933065 0.6878823 0.677424 1 

1 0.790535 1 0.67909 15 
1 0.6 156267 

1 

Covariance Matrix 
8 4.755 172 1 4.2803725 4.5030373 42386088 4.61262 18 5.3959954 4.1997488 

8 45376901 4.3681 761 4.7893396 4.6665056 5.974 1465 1.959 108 1 
10 6.01 J 1005 5.7 121 395 5.9500983 6.1939987 3.6340406 

1 O 6.629326 1 6.2272444 7.9684752 6.2 107423 
1 O 6.9339653 7.53537 15 7.4208096 

1 O 8.6598784 7.4390746 
12 7.4235206 

12 
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Appendix B 

Type 1 Error and Power Results for K = 8 

Table B 1 

Studv Conditions (Lornormal Distribution. K = 8. N = 60 Satterthwaite df 

d' 

d ' 

Note. See note from Table 1 .  

d' 

d' 

RC- H 

UN- H 

RC- H 

UN4 

13,20.28 

12,20,28 

1 2.20.28 

12,20,28 

1 :35 

1 :3:5 

p i.=p2=p i=p4=p5=p0=p7=pN=0 

p t=pI=pJ=p,=p5=po=pf=pY=0 

1:3:5 

1:3:5 

pl=)i2=p\=!h *Ps=Clt,=Pt=Pu 

PI=!~:=PJ=PA *Ps=P~=P~=Pu 
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Table 8 2  

Ernoirical Type 1 Error Rates when Fitting a UN-H Covariance Structure 

lLornorma1 Distribution. K = 8, N = 60 Satterthwaite dfl 

1 Complete Null Hypothesis 1 

1 Partial Nil11 Hypothcsis 1 

Note, See note fiom Table 2. 

Condit ion 

d' 

Wrlsch 

8.20 

Sidak 

2.70 

SMM 

3-20 

Bon 

2.50 

Tukey 

4.50 

SRB 

2.50 

Hach 

2.50 
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Table B3 

Empirical T-ype I Error Rates (%) when Fitting the True Covariance Structure 

[Lognomal Distribution. K = 8. N = 60. Satterthwaite dfl 

I Complete Nul1 Wypothesis 

I ARH l 

1 Partial Nul1 Hypothesis 

1 ARHl 

Note. See note from Table 2,  

1 

SMM 

2.70 

Condition 

d ' 

Sidrik 

2.60 

7 

Bon 

2.60 

Tuke y 

3.71) 

Wcilsch 

7.60 

SRB 

1.90 

Hoclt 

1.90 
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Table B4 

Ern~irical Twe I Error Rates (%) with Akaike Crikrion Selecting the Best Covariance 

Structure (Lognormal Distrib~~tion. K = 8. N = 60, Satterthwaite dfl 

7 Complete Nul1 Hypothesis 

1 Prininl Null Hypothesis 

Condition 

d ' 

1 ARH l 1 

Note. See note From Table 2. 

Bon 

2.50 

Sidak 

2.50 

Tukey 

3.60 

SMM 

2.60 

SRB 

1.90 

Hoch 

1.90 

Welsch 

7.90 
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Tabie BS 

Em~irical Type 1 Error Rates (%) with Schwarz Criterion Selecting the Best Covariance 

Structure [Lornormül Distribution. K = 8. N = 60. Satterthwaite dQ 

I Complete Null Hypothesis I 
1 ARH l 1 

1 Partial Null Hypothesis 1 

Condition 
1 

d ' 

Note. See note from Table 2. 

Bon 

3.20 

Sidak 

3 -20 

Tukey 

4.60 

SMM 

3.30 
L 

Hoch 

3 .20 

SRB 

3 20 

Welscli 
1 

9.20 
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Table B6 

Percentarre of  Time Akaike Criterion Selected the Correct Covariance Stnicture 

frounded to whole numbers) (Loenormal Distribution. K = 8. N = 60. Satterthwaite df) 

I d '  I I 1 1 2 1  I I I 

Note. See note from Table 10. 

Table B7 

Percentaee of Time Schwarz Criterion Selected the Correct Covariance Structure 

(rounded to whole numbers) (Loenormül - Distribution. K = 8. N = 60. Satterthwaite dfl 

I I Cworiaticr Structure I 

Note. See note fiom Table 10. 

Cond 

d' 

J' 

J' 

d' 

d' 

I J' 

CSll 

I 

CSH-Il 

2 

4 

3 

1 7  

HF 

I 

F I  

- 7 

I 

AR1 

I 

ARI - t l  

SJ 

87 

1 2  

ARHI 

I 

ARWI-H 

16 

13 

I 

RC 

2 

2 

RC'-11 

95 

88 

95 

1 1 8 6 1  

UN UN-H 

I I 
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Table B8 

Em~irical Twe 1 Error Rates (%) when Fitting a UN-H Covariance Structure 

(Loenomal Distribution. K = 8. N = 60 Default d n  

1 Complete NuIl Hypothesis 1 
1 ARH l 1 

Note. See note from Table 2. 

Table B9 

Empirical T w e  1 Error Rates (%) when Fitting the True Covariance Structure 

/Loenormal Distribution, K = 8. N = GO. Default df) 

Hoch 

6.80 

Condition 

d' 

-- 

Complete Null Hypothesis 
I 

ARHI 

Welscti 
1 

16.20 . 
SMM 

6.90 

SRB 

6.80 

Bon 

6.80 

Note. See note from Table 2. 

Sidak 

6.90 

Wttlsch 

1 1.80 

Tukey 

8.50 

SMM 

4.50 

Condition 

d' 

Sidak 

4.50 

Bon 

4.40 

SRB 

4.40 

Tukey 

5.50 

Hoch 

4.40 
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Table B 10 

Empincal T-ype 1 Error Rates (%) with Akaike Critenon Selectine the Best Covariance 

Structure (Lognormal Distribution. K = 8. N = 60. Defatilt dQ 

1 Cornplete Nul1 Hypothesis 1 

Note. See note from Table 2. 

Condition 
r 

d ' 

Table B 1 1 

Empincal Tvoe 1 Error Rates (%) with Schwarz Criterion Selectinr the Best Covariance 

Structure ~Lornormal Distribution. K = 8. N = 60. Default df) 

1 Complcte Nul1 Hypothesis 1 
- -  

ARH l 1 

Bon 

4.50 

Sidak 

4.60 

Tukey 

5.70 

Note. See note h m  Table 2. 

CorJition 
r 

d' 

SMM 

1.60 

Bon 

4.30 

Hoc h 

4.50 

SRB 

4.50 

Welscli 

12.10 

Sidak 

4.50 

Tukey 

5.80 

SMM 

4.50 

SRB 

4.30 

Hoc h 

4.30 

Welsch 

1 1 .SO 
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Table B 12 

Power Rates (Minimum Mean Confityration) when Fitting a UN-H Covariance Structiire 

{Lornormal Distribution K = 8. N = 60. Satterthwüite dfl 

1 All-Pairs Power 1 

1 Average Per-Pair Power 1 

Condition 

d ' 

1 ARH 1 1 

Bon 

15.20 

Note. d' = negative pairing of unequal covariance matrices and unequal group sizes (n, = 12, 
20,28); Bon = Bonferroni; SMM = Studentized maximum modulus; SRB = Shaffer's (1986) 
sequentially rejective Bon ferroni; Hoch = Hochberg' s ( 1 988) sequentially acceptive 
Bon ferroni. 

Condition 

d ' 

Sidak 

15.60 

Bon 

69.69 

Tukey 

21 .50 

Sidak 

70.03 

SMM 

16.80 

Tukey 

75.02 

SRB 

22.10 

I 

SMM 

71.19 

Hoch 

22.20 

Welsch 

73.00 

SRB 

73.65 

Hoch 

72.74 

Wclsch 
1 

92.7 1 
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Table B 13 

Power Rates (Minimum Mean Confi~iurationl when Fittinr the True Covariance Structure 

f Lornonnal Distribution K = 8. N = 60. Satterthwaite dfl 

1 Ail-Pairs Power 1 

1 Avenge Per-Pair Power 1 
1 ARH l 1 

I 

Condition 

d i  
1 

SMM 

25.70 

Note. See note from Table B 12. 

Condition 

d' 

Tukey 

25.20 

I 

Bon 

24.70 

SRI3 

3 1.30 

Sidrik 

2 J .90 

Bon 

76.79 

Hoch 

3 1.30 

Welsch 

77.40 

Sidak 

77.0 1 

Tukey 

79.88 

SMM 

77.24 

SRB 

80.03 

Hoch 

79.5 1 

Wcilsch 

93.80 
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Appendix C 

Population Means for Power Conditions 

K = 4 Minim~ini Range Configuration 

ARHI: -0.75 -0.75 0.75 0.75 Effect Size = 0.75 

RC: -0.50 -0.50 0.50 0.50 Effcct Sizc = 0.50 

UN: -0.75 -0.75 0.75 0.75 Effect Size = 0.75 

K = 4 Maximum Range Confiruration 

ARH 1 : - 1.4 142 1356 0.00 0.06 1.4 142 1356 Effect Size = 1 .O0 

RC: - 1 .O606601 7 0.00 0.00 1 .O60660 17 Effect Size = 0.75 

UN: - 1.4 142 1356 0.00 0.00 1.4 142 1356 Effect Size = 1 .O0 

K = 4 Eauallv S~aced  Ranec Configuration 

ARH 1 : -1.67705098 -0.55901699 0.55901699 1.67705098 
Effect Size = 1.25 

RC: - 1 .O0623059 -0.33541020 0.3354 1030 1 .O0623059 
Effect Size = 0.75 

UN: - 1.67705098 -0.55901699 0.35901699 1.67705098 
Effect Size = 1.25 

K = 8 Minimum Ranee Configuration 

ARHI: -1.25 -1.25 -1.25 -1.25 1.25 1.25 1.25 1.25 
Effect Size = 1.25 

RC: -0.50 -0.50 -0.50 -0.50 0.50 0.50 0.50 0.50 
Effect Size = 0.50 

UN: -1.00 -1.00 -1.00 -1.00 1.00 1-00 1.00 1.00 
Effect Size = 1 -00 




