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Abstract
One approach to the analysis of repeated measures designs allows researchers to model
the variance-covariance structure of their data rather than presume a certain structure as is
the case with conventional univariate and multivariate test statistics (Littell, Milliken,
Stroup, & Wolfinger, 1996). This mixed-model approach was evaluated for testing all
possibie pairwise dilferences among repeated mieasures marginal means in a between- by
within-subjects design. Specifically, Type I error control and power were examined for
simultaneous and stepwise multiple comparison procedures using SAS’ (1996) PROC
MIXED in an unbalanced repeated measures design when normality and variance-
covariance homogeneity assumptions did not hold. The potential advantage of the
MIXED procedure with its ability to specify various variance-covariance structures was
compared to known robust multiple comparison procedures based on a between-subjects
heterogeneous unstructured form of the variance-covariance matrix with Satterthwaite
(1941, 1946) degrees of freedom (Keselman, 1994; Keselman, Keselman, & Shaffer,
1991; Keselman & Lix, 1995). Specifically, the testing strategies of always fitting an
unstructured variance-covariance matrix, fitting the true population structure, or allowing
two model selection criteria available through PROC MIXED to sclect the best structure
were investigated. Rates of Type [ error control were similar across the testing strategies
for each of the multiple comparison procedures. The recommendation of always fitting an
unstructured variance-covariance matrix to the data was based on the fact that a
researcher does not need prior knowledge about the true population structure and does not
need to rely on a model selection criterion to provide good Type I error control.

-y-



Furthermore, results showed two stepwise multiple comparison procedures as particularly
notable. Shaffer’s (1986) sequentially rejective Bonferroni and Hochberg’s (1988)
sequentially acceptive Bonferroni procedures had superior performance with regards to
Type I error control and power to detect true pairwise differences across the investigated

conditions.
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Repeated Measures |

Repeated Measures Multiple Comparison Procedures with a Mixed Model Analysis

A common experimental design in psychological and educational research is the
repeated measures (RM) design in which the same measurement is taken on a unit of
analysis (e.g., subject) on more than one occasion. Other names for this type of design
include within-subjects and correlated groups designs. A reason for the popularity of this
design is that in many situations repeated measurements on the same subject occur
naturally. For example, a developmental study that examines a child’s motor
development across age levels or a learning study where the same individual is measured
across various treatment conditions that may represent different drug dosage levels.
Because the same subjects are measured repeatedly the measurements are correlated.
Therefore, the pattern of variances and covariances (or correlations) among the levels of
the repeated factor require special consideration when analysing data from such designs.
There are two main advantages of RM designs that also contribute to their popularity in
the literature (Maxwell & Delaney, 1990). First, the units of analysis act as their own
control, thereby eliminating individual differences between subjects from the error
variability and thus creating a more sensitive design for testing effects. Second, a RM
design requires fewer subjects to obtain the same level of power as in a between-subjects
design (also known as an independent groups design). This is appealing for a researcher
who may be under constraints of time and money when conducting a study.

A design that contains a single repeated factor is called a simple RM design. The
inclusion of an additional repeated factor (or factors) in which the units of analysis are

measured under each combination of the repeated factors is called a single group factorial
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RM design or higher order within-subjects design. When a grouping factor (or factors) is
added to a RM design it is called a between- by within-subjects design or mixed design.
In a mixed design, the units of analysis are classified into independent groups and
measured under all levels (or combinations) of a repeated factor (or factors). A design
that contains one between-subjects and onc within-subjects factor is the simplest example
of a mixed design, sometimes referred to as a split-plot design.

The discussion of RM designs in the psychological literature dates back to the
1940s (see Lovie, 1981). The univariate analysis of variance (ANOV A) approach to data
from these designs was the focus of early research. Not surprisingly the univariate
approach remains the most common analysis method for RM designs in the psychological
and educational literature (Keselman et al., 1998; Kowalchuk, Lix, & Keselman, 19906).
However, data encountered by behavioral researchers is unlikely to satisfy the strict
assumptions required for valid univariate E-tests. Recommendations in the literature
about the "best" analysis strategy to adopt for RM designs can be found in numerous
articles and book chapters (e.g., Barcikowski & Robey, 1984; Everitt, 1995; Keselman &
Algina, 1996; Keselman & Keselman, 1993; Lewis, 1993; Looney & Stanley, 1989;
Maxwell & Delaney, 1990; McCall & Appelbaum, 1973; O'Brien & Kaiser, 1985). These
recommendations are typically based on simulation or Monte Carlo studies examining the
"robustness” of various analysis methods. The term robustness refers to a statistical test's
insensitivity with regard to Type I error control under violations of its assumptions (Box,
1954). The predominant method of evaluating robustness is the use of simulation

techniques, in contrast to theoretical explications.
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The majority of research on RM designs has focused on the analysis of omnibus
tests of RM factors (i.e., within-subjects main and within-subjects interaction effects).
Although omnibus tests of these factors are informative, a researcher usually has
hypotheses of interest that require the use of more specific contrast (or comparison) tests
(e.g., marginal mean comparisons). Assuming the effect of interest is a RM main effect
(with more than two levels) a researcher has the option of testing specific a priori
contrast(s) or choosing a multiple comparison procedure (MCP) to test all possible
pairwise contrasts. The latter is the focus of the present study.

To develop the background for the present study, an overview of omnibus
analysis approaches to RM designs will be presented. Typically the data from these
designs are analysed by conventional univariate or multivariate methods. In addition,
there are degrees of freedom (df) adjusted procedures that may be used when the
assumptions of the conventional univariate approach is not tenable. Another approach to
the analysis of RM designs recommended in the literature, the mixed model approach,
allows one to model the variance-covariance structure of the data rather than presume a
certain structure as is the case with conventional univariate and multivariate test statistics
(see Littell, Milliken, Stroup, & Wolfinger, 1996; SAS Institute, 1999; Wolfinger, 1993,
1996). The purpose of the present study was to evaluate this mixed model approach for
testing all possible pairwise differences among RM marginal means in a between- by
within-subjects design. Accordingly, a Monte Carlo study was done to examine the
robustness of several MCPs using SAS’ (1999) PROC MIXED.

The decision to investigate a mixed RM design is based on the popularity of this
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design in the literature. A methodological content analysis of 13 educational and
psychological journals published in 1994 found 84% of the articles that used a RM design
analysed a mixed design (i.e., a design that contains both between-subjects and within-
subjects factors; Keselman et al., 1998; Kowalchuk et al., 1996). Furthermore, the authors
found that unbalanced designs (i.c., uncqual numbcrs of subjccts in cach group/cell) were
more common than balanced designs. The journals reviewed are considered
representative of the education and psychology disciplines and are considered prominent
by researchers in the respective areas and thus provide a good indication of designs likely
to be encountered by applied researchers.

Mixed Repeated Measures Design
Omnibus Tests

The simplest of the higher-order mixed RM design contains one between-subjects

and one within-subjects factor in which subjects (i = 1, ..., nj, £, n; = N) are randomly
selected for each level of the between-subjects factor (j = 1, ..., J) and observed and
measured under all levels of the within-subjects factor (k = 1, ..., K).

The general linear model for RM data is (see Timm, 1975)

Y=XB+E. (1)

where Y is an N x K matrix of scores on K repeated measurements, N is the total sample
size, X is an N x J design matrix that codes for between-subjects effects (rank(X) =J), B
is a J x K matrix of nonrandom parameters (i.e., population means), and §is an N x K

matrix of random error components. The rows of § are assumed to independently and
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identically distributed as N, (0, £), where X is a K x K variance-covariance matrix.

The unknown elements 6, of the matrix X are estimated by

S=Y'Y-Y"Xb. (2)

where " refers to the transpose operator. The df due to crror is N - J = v, , and (1/v,)S is an
unbiased estimator of X.

The general linear null hypothesis can be written as

H,: DBU=0. (3)

where D is a dfy, x J contrast matrix on the between-subjects effect, with rank(D) = df;, <
Jand U is a K x df;- contrast matrix on the within-subjects effect, with rank(U) = df. < K.

The sum of squares and cross products matrix due to the hypothesis is computed as

S, =(DbU-0)" (D(X'X)'D")" (DbU-0). (4)

and the sum of squares and cross products matrix due to error is computed as

S, = UTY'[1, - X(X"X)"'X'|YU., (5)

where Ly is an identity matrix of dimension N. A test of the null hypothesis is made by
comparing the matrices S, and S,

Multivariate Approach. Several multivariate (MANOV A) test statistics can be
used to test an omnibus null hypothesis in a RM design. The most common include

Hotelling's (1931) T? statistic, Pillai (1955)- Bartlett (1939) trace statistic, Wilks' (1932)
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likelihood ratio, Hotelling (1951)- Lawley (1938) trace criterion, and Roy's (1953) largest
root criterion. When the minimum of (dfp, df) is equal to one, all criteria are equivalent
to Hotelling's (1931) T* statistic.

Hotelling's (1931) T* statistic is defined by T*> = v, [tr (S, S.")], where tr refers to
the trace operator, Pillai (1955)- Bartlett (1939) tracc (PB) statistic is given by PB = tr(S,
T') where T =S, + S., Wilks' (1932) likelihood ratio (W) is defined by W = det (S, T*'),
where det refers to the determinant of a matrix, and the Hotelling (1951)- Lawley (1938)
trace (HLT) criterion is defined by HLT = tr (S, S.'). Each of these statistics can be
expressed as an F-variate. For example, a test of a RM main effect based on Hotelling’s
(1931) T? can be expressed as

_ N-J-K+2

=——— = T'= Fla: (K-1). (N-J-K+2)]. (6)
(N-I)(K-1) [0. ( - )]

The E-approximations for PB, W, and HLT can be found in Muller, LaVange, Ramey,
and Ramey (1992).

The multivariate test statistics are based on an Unstructured (UN) form of the
variance-covariance matrix, where (K(K+1))/2 parameters must be estimated [i.e., K
variances and (K(K-1))/2 covariances]. The UN variance-covariance matrix has the

following form (assuming K = 4)

.
O O 0O0; Oy
hl
o; 0., O
UN= : -3 #. (7)
gy Oy
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Valid use of multivariate test statistics do not place any restrictions on the form of the
variance-covariance matrix but do require the structure of the matrix to be constant across
the levels of the grouping variable, in addition to the assumptions of normality and
independence of observations. According to Olson (1974), the Pillai-Bartlett trace
critcrion is the most robust of the MANOV A test statistics.

Univariate Approach. The univariate approach to the analysis of RM designs is a
special case of the more general multivariate analysis. However, the matrix U must be
orthonormal such that U'U = I ), where I is an identity matrix of dimensionK - 1. A

test of the null hypothesis is given by

F=[SSH/df,]/[SSE/df,] = F[a: df,. df,]. (8)

where df;, = df;, rank(U), df, = v, rank(U), SSH = trace(S,), and SSE = trace(S.).

Unlike the multivariate tests, the validity of the univariate E-tests (main and
interaction effects) is dependent on a particular form of the variance-covariance matrix.
The assumption of equal population variances and equal population covariances defines a
specific type of variance-covariance structure known as Compound Symmetry (CS) or
uniformity and requires two parameters to be estimated, a homogeneous variance (¢*) and
a constant correlation (p). The CS variance-covariance matrix, when K = 4, has the

following form

(9)

Il
Q
[ B]

CsS

- T B
— O TV O
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Compound symmetry is a sufficient condition for valid univanate F-tests but it is not a
necessary condition. A less restrictive condition for valid F-tests is that the variances of
all paired differences among the levels of the RM variable are equal (Huynh & Feldt,

1970). This can be expressed as

o= O. + op - 20,0, (forallk#kK'). (10)

A variance-covariance matrix that satisfies this less restrictive assumption is said to
possess a spherical pattern and is known as a Huynh-Feldt (HF) structure which has the

following form (when K = 4)

4 - ) 4
. G.+C 6. +03 G +0;
0,; | 2 ';\. ] 3 _}\‘ | 4 '7\.
) ) 3
ol +ol 6l +gl
> » TG0, 5 4
o3 = - = -A
HF = 2 A : (11)
4 -
o +0;
63 2l
5
T,
o}

where A is a scalar value greater than zero. Thus, the necessary and sufficient condition
for valid univariate F-tests is called the sphericity assumption. When a RM variable
contains two levels, only one paired difference exists and the sphericity assumption is
said to be trivially satisfied.

The sphericity condition can be expressed in matrix notation as

UTSU=4l,, (12)

(Rouanet & Lepine 1970). This implies that the variances of the set of K-1 contrasts on
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the repeated variable represented by the matrix U are constant. When the design contains

a between-subjects variable, an additional assumption is required that can be expressed as

U's,U=U"Z,U= - =U'ZU=rI,. (13)

which implies a constant variance across the levels of the grouping factor. These
assumptions have been jointly referred to as multisample sphericity (Huynh, 1978). The
univariate E-tests are valid if and only if the assumption of muitisample sphericity is
satisfied in addition to the normality and independence assumptions.

The literature uniformly agrees that the conventional univariate E-test should not
be used due to its sensitivity to assumption violations. Because the data from educational
and psychological research is unlikely to satisfy the strict assumptions required for valid
univariate E-tests, this analysis approach is not recommended. Furthermore, the use of
preliminary tests of the multisample sphericity assumption such as Box's modified
criterion (see Huynh & Feldt, 1970) to test for heteroscedasticity of covariance matrices
and Mauchly's (1940) sphericity criterion to test for departures from sphericity are not
recommended (Keselman, Rogan, Mendoza, & Breen, 1980; Rogan, Keselman, &
Mendoza, 1979). Both tests are extremely sensitive to nonnormality and even under
conditions of normality the tests are sensitive to small departures from their respective
hypotheses.

Box (1954) showed that the univariate F-tests are approximately distributed as E-
vaniates when the df are adjusted by a factor representing the departure from sphericity.

The degree of sphericity in a population variance-covariance matrix is measured by the
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parameter epsilon, notated as ¢ , where

o [r (UTzU)] | (14)
(K-I)tr[(UTEU):]
and
J
2 -0, (15)
— =l

T ON-)

is the pooled population variance-covariance matrix. The parameter ¢ has an upper
bound of one when sphericity is satisfied and a lower bound of (K-1)' fora J x K design.
Several df adjusted univariate analysis procedures have been proposed to correct for
violation of the sphericity assumption in a RM analysis.

Adjusted Degrees of Freedom Univariate Approaches. Given the lower bound
of epsilon, Geisser and Greenhouse (1958) presented a lower bound correction for
univariate F-tests where ¢ is set equal to (K-1)"'. When the df for effects involving a
repeated factor in a J x K design are multiplied by this correction factor, a test of the
within-subjects main effect is based on 1 and (N - J) df and a test of the within-subjects
interaction effect is based on (J - 1), and (J - 1)(N - J) df. This method is conservative
(i.e., smaller df correspond to a larger critical E-value; Maxwell & Delaney, 1990) and
may lack sufficient power to reject the null hypothesis. Hence, this method is not

recommended (Rogan et al., 1979).
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Greenhouse and Geisser (1959) suggested a sample estimate € for Box's (1954)
. The conventional univariate df are multiplied by the adjustment factor £. For tests of
within-subjects main and within-subjects interaction effects in a J x K design, the

Greenhouse and Geisser (1959) € adjusted F-tests are respectively,

Fe = Fa: (K-1) & (N-J)K-1) E]. (16)
and
Fiu = Fla: (J-1XK-1) €. (N-JXK-1)E]. (17)
where
tr (UTSU)|”
&= [ ( ] — . (18)
(K-1) e [(U'SUY’]
and
)
Z(n,-l)s, (19)

S= — —
(N-§))

where §; is the sample variance-covariance matrix for the j** group and S is the pooled
sample variance-covariance matrix. The sample estimate of € was found to be biased
when € was greater than or equal to .75 especially with small sample sizes (Collier,

Baker, Mandeville, & Hayes, 1967).
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Huynh and Feldt (1976) proposed an € adjustment approach to correct for the

conservative nature of the € adjustment method of Greenhouse and Geisser (1959). Tests

of RM main and interaction effects in a J x K design are respectively,

Fe = Flas (K- T, (N-IXK-1) E], (20)
and
Fre = F oz J-1)K-1)E. (N-J)K-1) €] (21)
where
- N(K-De-2

© KNI -K-D ] (22)

Although € can exceed a value of one its maximum value is restricted to one. Lecoutre
(1991) offered a correction £, tothe € adjusted procedure when the number of groups is

greater than or equal to two. Specifically, (N - J + 1) is substituted for N in the numerator

of €. Chen and Dunlap (1994) found € to be less biased than € when e was greater

than or equal to .75 (i.e., rates of Type I error were closer to the nominal level). This
correction is important because a review of education and psychology publications found

that ¢ rarely fell below .75 (Huynh & Feldt, 1976).

Additional ¢ adjusted procedures that essentially represent a combination of €,

and € have been proposed. Quintana and Maxwell (1994) investigated seven € adjusted
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approaches to the analysis of RM designs in terms of Type [ error and power under

violation of the sphericity assumption. The authors recommended two adjustment

approaches: the €, adjusted procedure and a method combining €, and € in which €,
is calculated and if it is greater than or equal to .75 then the €, adjustment is used,

otherwise the € adjustment is used.

In general, the adjusted univariate methods are robust to heterogeneity of
covariance matrices given equal sample sizes (Huynh, 1978) and are more robust than
muitivariate methods under nonnormality (Keselman, Keselman, & Lix. 1995; Rogan et
al., 1979). However, when heterogeneous covariance matrices are combined with unequal
group sizes, the univariate adjusted tests and the multivariate tests are generally not
robust (Keselman & Keselman, 1990; Keselman et al., 1995; Olson, 1974). Specifically,
when covariance matrices and group sizes are negatively paired (i.¢., the covariance
matrix with the largest element values is paired with the smallest group size), Type [ error
rates become liberal and when covariance matrices and group sizes are positively paired
(i.e., the covariance matrix with the largest element values is paired with the largest group
size), Type I error rates become conservative. For a review of the empirical literature, see
Keselman, Lix, and Keselman (1996) who conducted a meta-analysis summarizing Type
[ error and power results of Monte Carlo studies on split-plot RM designs investigating
univariate and multivariate approaches.

Some authors have recommended a test strategy that combines the adjusted

univariate and multivariate tests (Barcikowski & Robey, 1984; Looney & Stanley, 1989).
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For example, both univariate and multivariate tests are evaluated at a/2 and if either test
is significant then the hypothesis is rejected. Keselman et al. (1995) compared this testing
strategy to uniformly adopting either an adjusted univariate or multivariate test. Their
results do not favor the use of a combined testing strategy because the combined strategy
is sensitive to the same conditions (i.c., unequal covariance matrices combined with
unequal group sizes) that cause the adjusted univariate and muitivanate tests to lack
robustness.

Huynh (1978) proposed two approaches to deal with the case of unequal
covariance matrices and arbitrary group sizes in a between- by within-subjects RM
design; the General Approximation (GA) test and the Improved General Approximation
(IGA) test. The RM main and interaction F-tests for the GA test are distributed

respectively as,

Fc = bF[h'. h]. (23)

and

F = ¢ F[h". h]. (24)

where b, ¢, h, h' and h" are unknown constants. To correct for underestimation,
"improved" estimates for h, h', and h" are given by R, fi', and fi". The formulae can be
found in Huynh (1978). Algina (1994) presented a Lecoutre (1991) correction (CIGA) to

the IGA test by replacing N in the numerators of fi’ and " by (N - J + 1). Huynh (1978)

found the € and IGA adjusted tests performed reasonably well in terms of Type | error
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control compared to the € and GA adjusted tests. Because of the complexity of the IGA

test Huynh recommended the simpler € approximate procedure. However, the €
procedure is not robust to violation of the multisample sphericity assumption when group
sizes are unequal.

Algina and Oshima (1994) found both the IGA and CIGA tests adequately
controlled Type [ error under violation of multisample sphericity but the combined effect
of covartance heterogeneity and nonnormality resulted in conservative rates of error for
the test of the within-subjects interaction. Algina and Oshima (1995) recommended the
CIGA test for tests of the within-subjects main effect (unweighted hypothesis) when the
design is unbalanced and covariance matrices are unequal. However, when the design is

balanced the €, adjusted procedure provides good control of Type [ error. Algina (1997)

extended the CIGA test for RM designs containing multiple between-subjects and
multiple within-subjects factors and provided a computer program to compute the CIGA
test. Thus, the complexity of the procedure is no longer an issue preventing researchers
from adopting this method of analysis.

Approximate Degrees of Freedom Multivariate Approach. [n addition to the
univariate solution provided by Huynh (1978), an approximate df multivariate solution
for unequal covariance matrices (i.¢., allows X, = X, where j = j') is based on a Welch
(1947, 1951)-James (1951, 1954) (W]J) type statistic according to Johansen (1980) and

Keselman, Carriere, and Lix (1993).
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The general linear null hypothesis is expressed as
Ho: Cpu =0, (25)
where C =D ® U', where D and U have been defined previously and = is the Kronecker
or direct product function, C is a contrast matrix with dfj, x dfi rows and J x K columns,
pis a J x K column vector obtained by vertically stacking the rows of B. That is, p =
(BT, ..., B,"), where B; = (j;, ..., u)".

The test statistic is defined as

Ty, =(CY)" (CSC")"' (CY). (26)

where Y estimates p and S = diag(S,/n,, ..., Sy/n)), a block diagonal matrix with elements
S,/n, . This statistic divided by a constant c, is approximately distributed as an E-statistic
with v, = (df, x dfi.) and v, = (v, (v, + 2))/(3A) df, where c =v, + 2A - (6A)/(v, + 2) and A
is given by

Zj [u {SCT(CSCT)"CQJ}z +{ur (sc"(csc'r)"CQ,)}ZV(n, -1). (27)

1=l

|-

where Q, is a block diagonal matrix of dimension JK x JK such that the (s,t)th uiagonal
block of Q, = I if s=t=j and is 0 otherwise.

Keselman et al. (1993) found the WJ approach provided reasonable control of
Type I error given certain sample size requirements. Specifically, to test the within-
subjects main effect the smallest group size should be 2 to 3 times larger than the number
of RM minus one and if the data are likely to violate the normality assumption, the ratio

increases to 3 or 4 to one. To test a within-subjects interaction effect the smallest group
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size should be 3 or 4 times larger than the number of RM minus one, while this ratio
increases to 5 or 6 to one if the assumption of normality is unlikely to be satisfied.
Provided these sample size requirements are adhered to, the W] test is superior with
regard to power compared to the univariate adjusted and multivariate tests when both
covariance matrices and group sizes are unequal (Keselman et al., 1995). Lix and
Keselman (1995) provide a SAS/IML (SAS Institute, 1989) program that can be used to
compute the W test for any RM design.

An investigation (Algina & Keselman, 1997) of the generalizability of the sample
size requirements given by Keselman et al. (1993) for the W/ test include the following
modifications: (a) for a test of the RM main effect, the sample size requirements can be
reduced as the number of levels of the grouping factor increase, and (b) for a test of the
RM interaction effect, the sample size requirements should be increased as the number of
levels of the grouping factor increase. When the sample size requirements of the WJ test
cannot be obtained an alternative is the CIGA test. However, the W/ test is more
powerful than the CIGA test when sample sizes allow adequate control of Type [ error for
the WJ test (Algina & Keselman, 1998).

Empirical Bayes Approach. Boik (1997) proposed a hybrid analysis for a RM
design based on the univariate and multivariate approaches that uses a two stage model.
In contrast to the general linear model for RM data, the first stage model of the present
approach is

YU=XO +E, (28)

where © = BU and E = &U. The rows of E are assumed to be independently and
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identically distributed as N, (0, ®), where ® = UTZU. The second stage model assumes
prior distributions on @ and ®. Specifically, @ and @ are assumed to be independently
distributed and @ is uniformly distributed over a J(K-1) dimensional space and ® follows

a spherical inverted Wishart distribution

O W (ST (29)
This implies that
E@®)=0"I,. (30)
where
Gl=— (31)
S-(K-1) -1

This is referred to as second stage sphericity, that is sphericity is satisfied on average but
not necessarily for any given covariance matrix. To quantify the prior belief in sphericity
the hyperparameter fis computed ( (K-1)-1 < f< ) such that "Smali values of f
correspond to a belief that departure from sphericity will be large, whereas large values of
S correspond to the belief that departure from sphericity will be small." (Boik, 1997 p.
160). The conventional multivariate test statistics can be used to test hypotheses. The
hypothesis matrix is the same as the conventional multivariate approach (i.e., Sy) and the
error matrix is given by
(32)

Sp =1l +8

e
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with (N - J + f) df. To obtain an empirical Bayes (EB) solution, the hyperparameters of /°
and t are estimated from the observed data (see Boik, 1997 for formulas).

Boik (1997) found the EB approach adequately controlled Type I error and was
more powerful than multivariate and adjusted univariate approaches. Keselman,
Kowalchuk, and Boik (in press) further investigated the robustness of the EB procedure
comparing it to adjusted df univariate, multivariate, WJ, and CIGA methods. As
expected, the EB approach was sensitive to the same conditions that affect the robustness
of the approaches that comprise this method (i.c., covariance heterogeneity combined
with unequal group sizes). Thus, the EB approach is only recommended when data are
normally distributed and group sizes are equal.

Mixed Model Approach. An analysis strategy for RM designs reccommended in
the literature is based on a mixed model approach which allows users to model the
covariance structure of their data rather than presume certain structures as is the case with
conventional univariate and multivariate test statistics (Jennrich & Schluchter, 1986;
Liang & Zeger, 1986, Wolfinger, 1993, 1996). Being able to specify the structure of the
covariance matrix should lead to a more parsimonious model of the data and as a result
more powerful tests of the fixed-effect parameters (Wright & Wolfinger, 1996). This
mixed model approach is now available through SAS’ (1996, 1999) PROC MIXED
procedure.

The general linear mixed model is (SAS Institute, 1996)

Y, =Xp+Zy+§,, (33)
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where Y, is an m x | vector of measured responses (i.¢., univariate data, m = N x K), X is
an m x p known design matrix, f isap x | vector of unknown fixed-effects, Zisanm x q
known design matrix, y is a q x | vector of unknown random-effects, and £, isanmx |
unknown error vector. Both y and §, have expectations 0 and variances G and R,
respectively. The variance of Y, is therefore equal to V =ZGZ' + R, where Risanm x
m block diagonal matrix with blocks corresponding to the individual units of analysis
with each block having a specified variance-covariance structure. In contrast to the
previous general linear model, Y, is a univariate representation of multivariate data (i.c.,
the multiple responses of each unit of analysis are stacked into a single vector). The name
mixed model refers to the fact that both fixed-effect (B) and random-effect (y) parameters
are contained in the model. If Z = 0 and R = oly, then the mixed model reduces to the
general linear model.

An initial step is to estimate G and R. PROC MIXED uses two likelihood based
methods; maximum likelihood (ML) and restricted/residual maximum likelihood
(REML). The details which are beyond the scope of this paper can be found in Woifinger,
Tobias, and Sall (1994). Based on simulation studies, REML is recommended (Wright,
1995; Wright & Wolfinger, 1996). To obtain estimates for § and v, the solution to the

following mixed model equations (Searle, 1971) is needed

[XTR"X X'R"'Z J(”J=("TR"YuJ (34)
Z'R'X Z'R'Z+G')\y) \Z'R'Y,)"
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The solutions can also be written as

B=(X"V'X)y X'V'Y, (35)

and

7=GZ'V'(Y,-Xf). (36)

The covariance matrix of p and 7 is

T -! Ty -l -
_(X™R'X XRZ] (37)

(Z'R'X Z'R'Z+G"
where "-" denotes a generalized inverse (Searle, 1971). With only fixed-effects included
in the model, the variance-covariance matrix of p is reduced to (X'R'X). Statistical
inference on fixed-effects of the model are obtained by testing the following null

hypothesis

H,: LB=0. (38)

where L is a df x p contrast matrix, with rank(L) = df, < p. A general F-statistic is given

by

Fo ALT(LWL")" LB ' (39)
rank(L)

which has an approximate E-distribution with df rank(L) and v. The MIXED procedure
provides various options for denominator df for tests of fixed-effects (see SAS Institute,

1996, pp. 565-566). For example, one can select a Satterthwaite solution described by
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Giesbrecht and Burns (1985), McLean and Sanders (1988), and Fai and Cornelius (1996).

Selecting a CS or HF covariance structure to model the data in the MIXED
procedure gives the results for a conventional univariate analysis of RM. When an UN
covariance matrix is fit to the data, the F-statistics are a scalar multiple of the multivanate
Lawley-Hotelling trace statistic (Kleinbaum, 1973; Wright, 1995) but not one of the usual
F-approximations of multivariate tests reported by the SAS GLM procedure. In addition
to the covariance structures previously mentioned (i.e., CS, HF, and UN), other structures
that could be selected to model RM data include First-Order Autoregressive (AR1)
structure, Heterogeneous First-Order Autoregressive (ARH1) structure, Heterogeneous
Compound Symmetric (CSH) structure, and a linear Random Coefficient (RC) structure
(Wolfinger, 1996). The autoregressive and random coefficient structures model data such
that measurements taken closer together are more highly correlated than measurements
taken farther apart, which is characteristic of RM data. The ARI structure has an
additional property such that points that are a fixed distance apart have a consistent
correlation pattern.

The covariance structures not previously defined have the following form (when
K =4),

(a) ARI1

L
-_— O
©
~
(=]
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ARl =¢" (40)

- ©
— o © ©
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(b) ARHI
g ©,0,p ©,0;p° 0,0,p’
ARHI = G, GIO;BP GZUJp- . (41)
o5 C,0.P
H
(c) CSH
{Gf 6,6:p OG0 0C,G,p
CSH = l o; O':O;JP 0:0.P | (42)
3 0;0,p
i o}
and (d) RC
1 [y fe
2 7 2
RC = L21ey o )i 12 + °c , , (43)
13 G, |[I13 G-
14 14 o

The CS and AR structures are considered homogeneous structures since the
variances along the main diagonal are equal, however they differ in terms of their off-
diagonal elements. That is, the covariances of the AR structure decrease exponentially,
whereas the covariances of the CS structure remain constant. Furthermore, both the CS
and ARI structures require only two parameters to be estimated. Generalizations of CS
and ARI that allow distinct variances along the main diagonal are considered

heterogeneous structures and are known as CSH and ARH 1, respectively. Both CSH and
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ARHI1 structures require (K+1) parameters to be estimated. The HF structure is similar to
the CSH structure, that is, it has the same variance structure along the main diagonal and
the same number of unknown parameters. The UN structure is considered the most
general heterogeneous structure with unequal variances and covariances and requires
K(IK+1)/2 parameters to be cstimated. The RC structurc is a lincar model that allows
random modeling of an intercept and slope with time as the independent vartable.

An advantage of the MIXED procedure is that it allows the user to specify,
separately and jointly, between-subjects and within-subjects heterogeneity. Between-
subjects heterogeneity occurs when subjects exhibit different variance patterns across
groups but are similar within a group. On the other hand, within-subjects heterogeneity
occurs when the data from the same subject does not exhibit a constant variance across
measurement occasions. Between-subjects heterogeneity is specified by the option
GROUP=effect on the REPEATED statement in SAS. This results in all observations
from a single level of a grouping variable having the same estimated covariance
parameters with each group level having different parameters but the same covariance
structure. Within-subjects heterogeneity is specified by the choice of varniance-covariance
structure fit to the data.

An important consideration when using this approach is choosing the covariance
structure that best describes or models the data. Wolfinger (1993, 1996) presented a three
stage approach based on an adaptation of a method presented by Diggle (1988) to select
the most appropriate covariance structure. The third stage relies on formal statistical

techniques to compare variance-covariance structures. Specifically, two model fit criteria
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from the MIXED procedure can be used to select the "best" covariance structure;
Akaike's Information Criterion (AIC) (Akaike, 1974) and Schwarz' Bayesian Criterion

(SBC) (Schwarz, 1978) (Littell et al., 1996). The form of the two criteria are

AIC=1,(8) - q. (44)

and

SBC=1,(q) - q/2 log(n-p). (45)

where & is the restricted/residual maximum likelihood estimate of the unknown variance-
covariance parameter 2, q is the number of unknown elements of e, n=Nx K, and p=1J
x K (Wolfinger, 1996). The respective values of these two criteria are compared across
various covariance structures with the rule that larger-is-better (i.c., the structure with the
largest criterion value is the best covariance structure for the data and thercfore one
should interpret the fixed-effect tests associated with this particular structure). The two
criteria may not necessarily agree on the best structure since the SBC has a stronger
penalty which is a function of the number of unknown parameters and sample size.
Therefore, the SBC will likely favor more parsimonious models compared to AIC.
Keselman, Algina, Kowalchuk, and Wolfinger (1998) found this to be true in the context
of a simulation study. The authors investigated the Akaike (1974) and Schwarz (1978)
criteria in an unbalanced nonspherical heterogeneous RM design in which the true
covariance structure of the data, the distributional form of the data, as well as sample size

was varied. Their results indicated that neither criterion uniformly performed well and in
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particular the Schwarz criterion more frequently picked the wrong covariance structure.
That is, a more parsimonious covariance structure, one with fewer unknown parameters,
was more often picked by the Schwarz criterion than the true structure.

In addition to the above mentioned model fit criteria, Dawson, Gennings, and
Carter (1997) presented (wo graphical techniques (i.e., draftsinan's display plots and
parallel axis plots) that can be used to determine the variance-covariance structure of RM
data before using the MIXED procedure. Examining graphical plots of one's data is a
useful technique, however the recommendation of the authors to also use the Akaike and
Schwarz critenia to make the final selection of the best fitting covariance structure is not
without problems as previously noted by Keselman et al. (1998). Furthermore, the default
E-tests from the MIXED procedure can be biased under certain conditions (Wright, 1995;
Wright & Wolfinger, 1996).

Given the availability of this approach to the analysis of RM designs through
PROC MIXED, Keselman, Algina, Kowalchuk, and Wolfinger (1999b) compared the
mixed model approach to the WJ test, the CIGA test, a multivanate test, and Greenhouse
and Geisser (1959) and Lecoutre (1991) modified Huynh and Feldt (1976) adjusted df
methods. Specifically, rates of Type [ error control were investigated in unbalanced
nonspherical RM designs having one between-subjects and one within-subjects variable
when covariance homogeneity and normality assumptions were violated separately and
jointly. The covariance structures investigated were UN, ARH1, and RC; heterogeneous
within-subjects and heterogeneous within- and between-subjects structures. The default

F-tests available with the MIXED procedure generally became conservative or liberal
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when unequal group sizes were paired either positively or negatively with unequal
covariance matrices. The rates of Type I error for the RM effects were not controlled even
when the correct covariance structure was fit to the data. As expected the WJ and CIGA
approaches were able to control their Type | error rates, however, sample size
requirements enumerated by Kesclman ct al. (1993) were nccessary in order to obtain a
robust W] test.

The mixed model analyses of RM effects investigated by Keselman et al. (1999b)
were based on default E-tests available through PROC MIXED in which the error df
corresponded to that of the conventional univariate E-test with the exception of tests
based on RC and UN covariance structures (see SAS Institute, 1996, pp. 565-560).
However, a user has the option of requesting E-approximations based on Satterthwaite’s
df solution to test for RM fixed-effects. The conjecture that better Type [ error control
may be achieved with this option was investigated by Keselman, Algira, Kowalchuk, and
Wolfinger (1999a). The results showed that if the correct covariance structure was
selected, PROC MIXED Satterthwaite F-tests which allow for within- and between-
subjects heterogeneity can in most cases effectively control their rates of Type I error
when the data are nonnormal in form, covariance matrices are unequal, and the design is
unbalanced. An important caveat however is that the user must know the true covariance
structure to obtain robust tests of the RM fixed-effects with PROC MIXED.

Multiple Comparison Procedures
The words comparison and contrast are used interchangeably to refer to a linear

contrast of means. The term multiple implies that there can be many different
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comparisons among a set of means. However, this discussion will be restricted to
procedures that test all possible pairwise comparisons among a set of means.

Control of Type [ error is an important consideration when doing multiple testing.
An error rate per-contrast or per-comparison {a,) is the probability of committing a Type
I crror on a single contrast (i.c., falscly declaring a comparison significant). A problem
with adopting this form of Type I error control when conducting multiple tests is that the
probability of at least one Type | error increases exponentially as the number of
comparisons increase. Another approach is to use a MCP that limits the overall
(familywise) error rate to a nominal alpha level. Familywise error rate (a;.) is the
probability that one or more Type [ errors will be made on a set (i.e., family) of
comparisons. Authors typically agree that Type [ error control is of primary importance
followed by power (e.g., Keselman, 1994; Kirk, 1995; Seaman, Levin, & Serlin, 1991).
That is, only those procedures that are robust with respect to Type I error are further
evaluated in terms of power.

Three definitions of power commonly used are (Einot & Gabriel, 1975; Ramsey,
1978): (a) any-pairs power, (b) average per-pair power, and (c) all-pairs power. Any-pairs
power is the probability of rejecting at least one true pairwise difference. Average per-
pair power is the average probability of rejecting true pairwise differences. Lastly, all-
pairs power is the probability of rejecting all true pairwise differences. With regards to
MCP testing, only average per-pair and all-pairs power are meaningful, whereas if a
researcher is interested in detecting any difference among means, then the power of the

omnibus (F) test would be most relevant (Keselman, 1994; Ramsey, 1978).
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There are two main types of MCPs that limit their familywise error rate to alpha:
(a) simultaneous procedures, and (b) stepwise or sequential procedures. Simultaneous
procedures use one critical value for all pairwise comparisons, whereas stepwise
procedures require a sequence of critical values. Examples of popular simultaneous
MCPs include the Bonferroni (Dunn, 1961) and Tukey (1953) procedures, while well
known stepwise MCPs include the Newman (1939)-Keuls (1952) and Fisher’s (1935)
least significant difference procedures. However, these stepwise procedures cannot
control azy when K > 3. As a result, Ryan (1960), Einot and Gabriel (1975), and Welsch
(1977) proposed modifications to the Newman-Keuls method (known in SAS as the
REGW method) and Hayter (1986) proposed a modification to Fisher’s procedure.

With numerous MCPs to choose from, a researcher is presented with a difficult
task of choosing the "best” method. Numerous Monte Carlo studies (e.g., Keselman,
Keselman, & Shaffer, 1991; Keselman & Lix, 1995; Keselman, Lix, & Kowalchuk, 1998;
Seaman et al., 1991) provide information that can be used to judge which method is most
appropriate under certain conditions. A review of the educational and psychological
literature (Keselman et al., 1998; Kowalchuk et al., 1996) found almost half of the articles
incorporating a mixed design used multiple pairwise comparisons of RM means. The
most popular method used was Tukey’s (1953) procedure followed by Newman-Keuls
(Keuls, 1952; Newman, 1939), mulitiple t-tests, and Bonferroni (Dunn, 1961) procedures.
The selection of MCPs chosen by researchers has not changed since an earlier review by
Jacard, Becker, and Wood (1984). The popularity of these procedures is likely based on

their availability in statistical packages. In the present study, the MCPs examined
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included simultaneous procedures most commonly used by researchers (e.g., Tukey and
Bonferroni) and stepwise procedures which have been found, through Monte Carlo
studies (see Keselman, 1994; Keselman & Lix, 1995) to be robust with regards to Type |
error control and powerful to detect true differences (e.g., Shaffer’s (1986) sequentially
rejective Bonferroni procedure and Welsch's (1977) step-up range procedurc).

Contrast (Pairwise) Test Statistic. A contrast among levels of the RM marginal
means is given by y =¢," p,, where ¢," is a coefficient vector of weights, £, ¢," =0, and
;. is the vector of K population means. The notation for a contrast is also given by
v ==X a(c, m). wherea, =1/J forallj=1, ..., J (i.e., an unweighted means analysis)
and is estimated by ¢ = £, a; (¢,” X;;). An estimate of the variance of a contrast is given by
o’ (W) =¥ a’ (¢," S;¢,)/n,. A general form of the test statistic for the hypothesis H,: y =0

is given by

. S (46)
o(y)

The conventional test of a contrast uses a pooled estimate of error variance based

on the interaction mean square (e.g., MS,g;). The t-ratio is given by

W-v,)

S oeal (47)
MSK‘S,,chch n
k=] )=l i

where MSy ¢, is the within-subjects error term from a J (between) x K (within) univariate
ANOVA. This t-statistic provides an exact test of the null hypothesis, H,: y =0, if and

only if the assumption of sphericity (multisample sphericity) is satisfied (Keselman,
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1982; Mitzel & Games, 1981). Maxwell (1980) found the use of the Tukey procedure
with a common estimate of variance in a simple RM design under violation of sphericity
lead to inflated Type [ error rates under a complete null hypothesis. The use of a constant
estimate of variance assumes that the vanance of each contrast is equal. However, this is
not likely to occur with real data and as a result the pooled cstimate of variance may be
too large or too small for some contrasts. Therefore, individual estimates of variance that
vary from contrast to contrast should be used (Keselman, 1982; Keselman, Rogan, &
Games, 1981; Maxwell, 1980; Mitzel & Games, 1981). Thus, an alternative form of the (-
ratio has an error term based on an estimate of variance that pools across the levels of the
between-subjects variable but considers only the levels of the RM variable of interest.

The t-ratio is expressed as

-v,)

Z (n, - l)cTScL (48)

]
Z ‘_J_
n -
Al

where ¢, is a coefficient vector representing a pairwise contrast among the RM marginal
means. The validity of this test is therefore based on satisfying the between-subjects
condition of the multisample sphericity assumption (Keselman, 1982). That is, the value
of the variance estimate for each contrast is constant across the levels of the between-
subjects variable.

Keselman and Keselman (1988) compared four simultaneous MCPs for testing
pairwise RM marginal means under violation of multisample sphericity in an unbalanced

design containing one between-subjects and one within-subjects variable. A Tukey
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approach with a pooled estimate of error variability (MS ;) and three approaches based
on a pooled sample covariance matrix (i.e., pooled across the levels of the between-
subjects variable); a modified Tukey approach, a Bonferroni approach, and an approach
using a multivariate critical value. Results indicated that for tests of unweighted means all
four simultaneous procedures failed to consistently provide Type [ crror control under
violation of multisample sphericity. Therefore, Maxwell's (1980) recommendation of a
Bonferroni approach based on separate variance estimates for each pairwise comparison
in a one-way (simple) RM design cannot be extended to RM designs containing a
between-subjects vanable.

Keselman et al. (1991) presented a statistic (KKS) based on a variance estimate
that is not dependent on multisample sphericity constraints. That is, the error term does
not pool across the levels of the between-subjects factor and considers only the levels of

the RM variable of interest. The test statistic is expressed as

W-v,)

- al : ’ (49)
Z ;(ckSJck)

=1 )

which can be approximated as a t-variable with Satterthwaite (1941, 1946) df given by

| ( " (e;S,¢)° (50)
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Keselman et al. (1991) compared four approaches for pairwise comparisons among RM
means using the KKS statistic in an unbalanced J x K design. Type [ error control was
investigated under conditions of nonnormality and variance-covariance heterogeneity.
Results indicated that the nonpooled statistic based on Satterthwaite df with a Studentized
range, a Studentized maximum modulus, or a Bonferroni critical value provided adequate
a;w control under most conditions.

Using the KKS statistic, Keselman (1993) investigated several stepwise MCPs
under violation of multisample sphericity in a RM design containing one between- and
one within-subjects variable. Based on Type | error control, the author recommended the
following three procedures; Welsch's (1977) step-up procedure, Hayter's (1986) modified
two-stage least significant difterence procedure, and Shaffer's (1986) sequentially
rejective Bonferroni procedure which begins with an omnibus test. Either a corrected df
univariate E-test or a multivariate test was used as the omnibus test in those procedures
requiring this first step. Furthermore, Keselman (1994) compared previously investigated
stepwise and simultaneous MCPs (Keselman, 1993; Keselman et al., 1991)ina) xK
design under conditions of nonnormality and variance-covariance heterogeneity. Welsch's
(1977) step-up procedure was considered "superior to all of the other MCPs" (Keselman,
1994, p. 154) in terms of Type | error control and power to detect nonnull pairwise
differences.

Because of the sensitivity of the univariate F-test, the adjusted df univariate
approaches, and the multivariate approach to violation of multisample sphericity given

unequal group sizes, a robust alternative was investigated as the omnibus test for those
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procedures that require an omnibus test at stage one (Keselman & Lix, 1995). The W)
procedure was used as the omnibus test along with the KKS statistic with numerous
stepwise MCPs for RM means under nonnormality and variance-covariance
heterogeneity. The authors recommended the Welsch (1977) step-up procedure, Hayter's
(1986) two-stage modilied least significant difference procedure, Shaffer's (1986)
sequentially rejective Bonferroni procedure that begins with an omnibus test, and the
following procedures modified by a technique described by Duncan (1957) including the
Peritz (1970) procedure, Ryan-Welsch (Ryan, 1960; Welsch, 1977) multiple range
procedure, and a multiple range procedure that begins with an omnibus test (Shaffer,
1979, 1986).

In summary, robust MCPs have been identified (Keselman 1994; Keselman &
Lix, 1995; Keselman et al., 1991) based on a test statistic that uses a nonpooled error term
and a between-subjects heterogeneous UN form of the vanance-covariance matrix with df
adjusted by Satterthwaite’s (1941, 1946) solution. Furthermore, Lix and Keselman (1995)
provide a SAS/IML (SAS Institute, 1989) program to compute these tests in RM designs.
However, the availability of PROC MIXED now allows researchers to select among
various forms of variance-covariance matrices to model their RM data. As well, the
option of Satterthwaite df hypothesis testing for fixed-effect omnibus tests and pairwise
comparisons on RM marginal means is also now available through the MIXED
procedure. Should researchers adopt a mixed model methodology, in particular PROC
MIXED, for testing pairwise multiple comparisons of RM means? This question bears

investigation because currently researchers need not adopt mixed model methodology to
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obtain robust tests of pairwise multiple comparisons of RM means.

Therefore, the purpose of the present study was to investigate Type | error control
for simultaneous and stepwise MCPs using PROC MIXED in an unbalanced between- by
within-subjects design under violation of normality and variance-covariance homogeneity
(i.e., multisample sphericity). Thus, the potential advantage of PROC MIXED with its
ability to specify various covariance structures such as AR1, ARH1, and RC was
compared to a known robust procedure (i.e., KKS statistic) based on an UN covariance
structure. Furthermore, MCPs that adequately controlled their rates of Type I error were
then compared for their sensitivity to detect true pairwise differences.

Monte Carlo Study

A Monte Carlo study was used to investigate the robustness of selected MCPs
available through SAS’ (1996, 1999) PROC MIXED procedure. To investigate agy Type
I error control, a simulation study was designed with a true null hypothesis. A set of
pseudorandom numbers were generated using a computer algorithm to sample from a
population with known characteristics. The experiment was replicated numerous times
and for each replication, a test statistic was computed from the generated data, and was
compared to a theoretically known critical value. Based on this result, the null hypothesis
was either rejected or retained. Thus, an empirical estimate of Type I error was obtained.
Design

A RM design containing one between-subjects and one within-subjects factor
with the number of levels of the between-subjects factor equal to three and the number of

levels of the within-subjects factor equal to four and eight was investigated.
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The following variables were manipulated: (a) population covariance structure,
(b) covariance structures, (¢) group sizes, (d) pairings of covariance matrices and group
sizes, (¢) shape of the data, (f) the covariance structure fit to the data, (g) type of null
hypothesis, and (h) typc of nonnull mean configuration.

Because published research does not contain enough information to determine the
extent to which assumptions are satisfied (e.g., normality, sphericity, variance-covariance
homogeneity across groups) it is difficult to know the type of data likely to be
encountered by educational and psychological researchers. Therefore, the conditions
investigated were selected to represent a range of possibilities that may occur in applied
settings.

Population Covariance Structures. The following types of covariance structures
were used to generate simulated data: (a) ARHI, (b) RC, and (c) UN. Each of these
structures models data that exhibits within-subjects heterogeneity (i.e., variances along
the main diagonal were unequal) and violates the sphericity assumption (i.e., epsilon =
0.75).' See Appendix A for element values of the population covariance structures for K
=4and K =8.

Group Covariance Structures, Homogeneous (i.e., equal across groups) and
heterogeneous (i.e., unequal across groups) covariance structures were investigated.
Specifically, the unequal group covariance matrices were in a 1:3:5 ratio, thatis &, =
1/3Z, and X, = 5/3Z,. This ratio was chosen because previous studies (¢.g., Keselman,

1994; Keselman & Lix, 1995; Keselman et al., 1993; Keselman et al., 1999a, 1999b)
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have found it to have a negative effect on Type [ error control and therefore presents a
condition that may also affect the validity of the tests examined in this investigation.

Group Sizes. Equal and unequal group sizes were investigated. Total sample size
(N) was set equal to 45, and 60. These sample sizes were chosen because a review of the
empirical literature (Keselman et al., 1998, Kowalchuk et al., 1990) found that more than
half of the articles containing a mixed design reported a total sample size of 60 or less.
For each value of N, two conditions of group size inequality were examined, a moderate
degree and a substantial degree of inequality. A coefficient of sample size variation (C,)
was set equal to approximately .16 for the moderate condition and .33 for the more

disparate condition. C, is defined as

] (nJ -ﬁ)l
Z J (51)

= vl
C, = —

n

where n is the average group size. The two unequal sample size cases for each total
sample size were respectively, (a) 12, 15, 18 and 9, 15, 21 (N =45), and (b) 16, 20, 24
and 12, 20, 28 (N = 60).

Pairings of Covariance Matrices and Group Sizes. Positive and negative
pairings of covariance matrices and group sizes were investigated. These pairings are
known to produce conservative and liberal rates of Type | error, respectively. For each
total sample size condition there were six pairings of covariance matrices and group sizes
investigated: (a) equal n,, equal Z;; (b) equal n;, unequal Z;; (c/c’) unequal n;, unequal Z;

(positively paired); and (d/d’) unequal n,, unequal Z; (negatively paired). The c'/d’



Repeated Measures 38

condition corresponds to the more disparate unequal group size cases and the c¢/d
condition corresponds to the less disparate unequal group size cases.

Data Generation. Although the test procedures investigated are based on the
assumption of multivariate normality, this condition is unlikely to be satisfied when
working with real data. For example, Micceri (1989) examined 440 measures
characteristic of psychological and educational data and found none even approximated a
normal distribution. Furthermore, the two sample independent t- test is sensitive with
respect to Type [ error control when data are sampled from distributions with extreme
degrees of skewness (¢.g., 1.64; Sawilowsky & Blair, 1992). Therefore, data were
generated from multivariate normal and nonnormal population distributions in order to
provide conditions in which the tests may not pertorm favorably.

To generate multivariate (i.e., K-variate) normal data, pseudorandom observation
vectors Y,' = [Y,1, Yo, ... . Y] with a mean vector p," = [, W;s, ... , k] and covariance
matrix I, were obtained by a triangular decomposition of X, (referred to as the Cholesky

factorization or square root method):

Y, =p, +LZ, (52)

where L is an upper triangular matrix satisfying the equality L'L =X, and Z; is an
independent normally distributed vector. The vectors of observations were obtained by
the RANNOR function in SAS (1989).

The nonnormal data was a multivariate lognormal distribution with marginal

distributions based on Y = exp (X;;), where X, ~ N(0, .25). Skewness and kurtosis



Repeated Measures 39

values are 1.75 and 5.90, respectively. Algina and Oshima (1994, 1995) provide details of
the steps involved to generate multivariate lognormal data.

Covariance Structures Fit to the Data. In addition to the true population
covariance structure, other selected covariance structures that model between-subjects
and within-subjccts hetcrogencity, separately and jointly were also fit to the data. The
following 12 covariance structures were fit to the data: (a) UN, (b) UN-H, (c) ARH1, (d)
ARHI-H, (e) RC, (f) RC-H, (g) HF, (h) HF-H, (i) CSH, (j) CSH-H, (k) ARI, (I) AR1-H,
where the "-H" corresponds to the between-subjects heterogeneous version of the
covanance structure. The AIC and SBC criteria from SAS’ (1996, 1999) PROC MIXED
were used to select the best covariance structure among the 12 possible structures. That
is, the pairwise test statistics for the MCPs were based on the covariance structure
selected by AIC or SBC. In addition, the test statistics for the MCPs were based on an
UN-H covariance structure and the correct covariance structure. Therefore, four testing
strategies were compared. That is, one approach based on always assuming an UN-H
covariance structure, a second approach based on prior knowledge of the true population
covariance structure, a third approach based on using the AIC criterion to select the best
covariance structure, and a fourth approach based on using the SBC criterion to select the
best covariance structure.

Nuil Hypothesis. Empirical Type I error rates were collected when the population
mean vectors reflected a complete null hypothesis (e.g., p; = f; = ;3 =p, = 0;

M, = My = ... = 4, = g = 0) and a partial null hypothesis (e.g., p; = n, # p3 = ug;

K, = ... = Mg % Bs = ... = dg). A partial null hypothesis occurs when some population means
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are equal but the overall null hypothesis is not true (Toothaker, 1991, p. 13). Although a
partial null hypothesis could be represented by many nonnull configurations only one was
chosen for each level of K. Because a researcher never knows the true state of a null
hypothesis, it is important that a MCP contro! agy under both complete and partial null
hypotheses.

Nonnull Mean Configuration. Three types of mean configurations were
investigated (Ramsey, 1978): (a) a minimum range configuration, where the first half of
the means in the range are equal and the second half are also equal but different from the
first half; (b) a maximum range configuration, where the first and last mean represent two
extremes and the remaining means are the average of these two extreme values; and (c)
an equally spaced range configuration, where the means are equally spaced across the
range. Two definitions of power were investigated: (a) all-pairs power and (b) average
per-pair power.

Description of Multiple Comparison Procedures

The following MCPs available through SAS’ (1996) PROC MIXED procedure
were investigated: (a) Bonferroni, (b) Sidak, (c) Tukey, and (d) Studentized maximum
modulus (SMM/GT?2). In addition, the following MCPs, not available through SAS were
also investigated: (a) Shaffer’s (1986) sequentially rejective Bonferroni procedure, (b)
Hochberg’s (1988) sequentially acceptive Bonferroni procedure, and (c) Welsch’s (1977)
step-up range procedure. The MCPs available through SAS are simultaneous procedures,
whereas the additional procedures investigated are stepwise procedures that can easily be

evaluated using the statistical output provided by SAS. The inclusion of stepwise
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procedures is based on their generally superior performance compared to simultaneous
procedures with regard to power rates (Keselman, 1994).

The following simultaneous procedures are available by default through SAS
(1996). The Bonferroni procedure (Dunn, 1961) tests each comparison at a a/c level of
significance, where ¢ is the number of pairwise comparisons (i.e., ¢ = K(K-1)/2) and a =
a;w. The Sidak (1967) procedure tests each comparison ata | - (1 - a)' © level of
significance. The Sidak procedure is based on the multiplicative inequality in contrast to
the additive Bonferroni inequality and therefore is slightly more powerful. The Tukey
(1953) procedure tests each comparison by comparing the observed test statistic to a
critical value from the Studentized range distribution (q, ¢ . / vV2) (see Scheffe, 1959 p. 28
for the specification of a Studentized range variable). Lastly, the Studentized maximum
modulus procedure tests each contrast by comparing the observed test statistic to a critical
value from the Studentized maximum modulus distribution (M, . ,) (see Scheffe, 1959 p.
78 for the specification of a Studentized maximum modulus variable).

The stepwise procedures examined in this study were limited to those that do not
require an omnibus test as a first step because of the lack of robustness of omnibus RM
fixed-effects with PROC MIXED (Keselman et al., 1999a, 1999b). The three procedures
chosen have shown promising results in previous simulation studies (Keselman, 1994;
Keselman & Lix, 1995).

Shaffer’s (1986) sequentially rejective Bonferroni procedure is a modification of
Holm’s (1979) procedure. Holm modified the Bonferroni procedure such that testing is

done in a stepwise fashion with successively higher significance levels, thus the



Repeated Measures 42

procedure has greater power than the Bonferroni procedure. Shaffer’s modification
further improves the power of Holm’s procedure. Shaffer’s procedure begins by
arranging the p-values associated with the test statistics of the c-pairwise comparisons
from smallest to largest (i.e.,p, < p» <, ..., < p. corresponding to hypotheses H,, ..., H,).
The smallest p-value (p,) is compared to a/c. If p; = w/c, then statistical testing stops and
all remaining pairwise contrast hypotheses are retained. Otherwise, if p, < a/c, then H, is
rejected and one proceeds to test the remaining pairwise hypotheses in a stepwise fashion
by comparing the associated p-values to a/c’, where ¢’ is equal to the maximum number
of true null hypotheses, given the number of hypotheses rejected at previous steps. The
values for ¢’ can be obtained from Shaffer’s (1986, p. 828) Table 2.

Hochberg's (1988) sequentially acceptive Bonferroni procedure is based on the
same critical values as Holm’s (1979) procedure but testing proceeds from the largest p-
value and rejection of an hypothesis implies rejection of all hypotheses with equal to or
smaller p-values. This procedure rejects all hypotheses (H,,., wherem’ < m, and m =¢, c-
1, ..., 1)ifp, s @/(c - m+ 1). Thus, one begins by examining the largest p-value (p,.). [f p.
< a then all hypotheses are rejected. If p. > a then H, is accepted, and one proceeds to
compare p.., to /2. If p.., < a/2 then all hypotheses (m =c-1, ..., 1) are rejected,
otherwise H_, is retained and one proceeds to compare p.., to a/3, and the process (i.¢.,
steps) continues.

Welsch (1977) proposed a step-up range procedure that begins by rank ordering
the means and examining adjacent means (i.¢., two-range tests) first. [f any two-range

test(s) are significant then any larger set of means that contain the significant subset(s) are
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declared significant by implication. If any two-range test(s) are found nonsignificant, then
one proceeds to test larger range tests (e.g., three-range). If a three-range test is significant
then all larger sets of means that contain this subset are declared significant by
implication. The range tests for a set of means vary from r = 2 (two-range test) tor =K
(K-range test). The tablc of critical values can be found in Keselman (1994).

Pairwise Test Statistic. The form the of the t-test statistic from PROC MIXED

(SAS Institute, 1996) is

L5_ . (53)

where L consists of a single row contrast vector, p is a p x 1 vector of fixed-effect
parameters, and W is the vanance-covariance matrix associated with p. The df were
estimated using two options available through PROC MIXED, the default option (i.e.,
BETWITHIN or CONTAIN) and Satterthwaite’s solution (see SAS Institute, 1996, pp.
565-566).

The value obtained from this statistic is similar to using the KKS (Keselman et al.,
1991) statistic (see equation 49) with §; replaced by the estimated variance-covariance
matrix selected to model the data through SAS’ (1996, 1999) PROC MIXED. The
flexibility of the MIXED procedure is that it allows a user to specify various variance-
covariance structures rather than always assuming an Unstructured between-subjects
heterogeneous structure (i.e., UN-H). Therefore, selecting the UN-H covariance structure
with the Satterthwaite df option with the MIXED procedure is equivalent to the KKS

statistic with Satterthwaite df>
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The program was written in SAS MACRO (SAS Institute, 1997) and SAS/IML
(SAS Institute, 1989) languages and was run on release version 8.0 of SAS. Because the
computational time required for PROC MIXED (SAS Institute, 1996) is substantial only
sclected combinations of the cight study variables were examined using 1000 simulations
or replications with a .05 level of significance.

Results

Type I Error Rates

To evaluate the robustness of a MCP, Bradley’s (1978) liberal criterion was used.
That is, if an empirical estimate of Type [ error (G) was contained within the interval of
Sa < @ = 1.5a, then the test procedure was considered robust. For an alpha level of .05
the interval is .025 < @ < .075. If Type I error was not contained in this interval then a test
procedure was considered nonrobust. In the tables, bold entries correspond to these latter
values. Other quantitative measures of robustness reported in the literature include
Bradley’s stringent criterion (i.e., .9a < d < 1.la) and a binomial standard error approach
[e.g., plus or minus two or three times (« (1-a)/N)*, where N is the number of
simulations; see Wright & Wolfinger, 1996). The choice of robustness criterion may lead
to different interpretations of Type I error results. Although no universal standard is
available, Bradley’s liberal criterion provides an acceptable range of values to judge
robustness. That is, an applied researcher should feel comfortable with a procedure that
controls Type I error within these bounds, if the procedure limits the rate across a wide

range of conditions in which assumptions are violated.
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Four testing strategies were compared to evaluate the operating characteristics of
seven MCPs. That is, one approach based on always assuming a UN-H variance-
covariance structure (i.e., KKS approach), a second approach based on prior knowledge
of the true population variance-covariance structure, a third approach based on using the
AIC criterion 10 select the best structure, and a fourth approach based on using the SBC
criterion to select the best structure. The seven MCPs investigated included four
simultaneous procedures {Bonferroni (Bon), Sidak, Tukey, and Studentized maximum
modulus (SMM)] and three stepwise procedures [Shaffer’s sequentially rejective
Bonferroni (SRB), Hochberg's sequentially acceptive Bonferroni (Hoch), and Welsch’s
step-up range]. The MCPs were computed using a test statistic with a nonpooled error
term (i.e., does not pool across the between- and within-subjects factors). [n addition, two
ways of estimating the df for the test statistic were examined. One approach based on a
Satterthwaite df solution and the other approach based on the default df option available
through PROC MIXED.

The results presented are for selected combinations of the eight variables
investigated which included (a) type of population variance-covariance structure, (b)
homogeneous and heterogeneous group variance-covariance structures, (c) equal and
unequal group sizes, (d) positive and negative pairings of variance-covariance matrices
and group sizes, (¢) multivariate normal and nonnormal data, (f) type of variance-
covariance structure fit to the data, (g) type of null hypothesis, and (h) type of nonnull
mean configuration. The combinations investigated were chosen to demonstrate

differences among the MCPs with regard to their error rates.
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Normally Distributed Data. Table 1 contains the study conditions coilected
when data were obtained from a normal distribution for K =4 and N = 45. Positive and
negative pairings of group sizes and variance-covariance matrices were investigated only
for the more disparate unequal sample size condition. These conditions represent cases
when multisample sphericily is not satisfied (i.e., when sphericity is not equal to onc and
the variance-covariance matrices are unequal across the levels of the grouping variable).
Tables 2 through 5 contain Type I error rates for the four testing strategies, respectively
based on Satterthwaite df and Tables 6 through 9 contain error rates for the four testing
strategies, respectively based on default df. Tables 10 and 11 contain the percentages with
which the AIC and SBC criteria selected the correct variance-covariance structure from

among |2 possible structures.



Table 1

Study Conditions (Normal Distribution, K =4, N = 45)

Repeated Measures
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Condition Pop Cov Str° Sample Sizes Cov Mar® Pairing Null Hypothesis
¢ ARH!-H 9,15,21 1:3:5 + B =Ha=Hy=p=0
d ARHI-H 9,15,21 1:3:5 - B =R ==, =0
¢’ RC-H 9,15,21 t:3:5 + W =Ra=t=pn,=0
d RC-H 9,15,21 1:3:5 - ==y =p,=0
¢’ UN-H 9,15,21 1:3:5 + By =p,=p,=p,=0
d’ UN-H 9,15,21 1:3:5 - =R =1y =p,=0
¢ ARHI-H 9,15,21 1:3:3 + TR TR TIC T
d’ ARHI1-H 9.15,21 1:3:5 =R # =Ry
¢’ RC-H 9.15,21 1:3:5 + K=Hs s Uy=Hy
d' RC-H 9.15.21 1:3:5 TR TR TR T
¢’ UN-H 9.15,.21 1:3:5 * Hy=Ha > =iy
d UN-H 9.15.21 1:3:5 - TR TR TR T

Note. * Population Covariance Structure, ® Covariance Matrix.
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Empirical Type I Error Rates (%) when Fitting a UN-H Covariance Structure
(Normal Distribution, K = 4, N = 45, Satterthwaite df)

Repeated Measures
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Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 4.50 4.60 5.90 4.60 4.50 4.50 7.70
d’ 4.60 4.60 5.10 4.80 4.80 4.80 7.90
RC
¢’ 2.80 2.80 3.70 3.00 2.90 2.90 6.20
d’ 4.10 4.40 540 4.60 4.60 4.60 8.50
UN
¢’ 3.80 4.00 4.90 4.00 3.80 3.90 8.30
d 3.60 3.60 5.30 3.90 4.50 4.50 7.50
Partial Null Hypothesis
ARHI1
¢’ 1.50 1.50 1.80 1.50 4.00 3.80 4.80
d’ 1.30 1.30 1.80 1.40 3.30 3.20 4.50
RC
¢’ 1.70 1.90 2.30 1.90 3.60 3.50 4.70
d’ 1.60 1.70 2.50 1.70 3.70 3.30 5.00
UN
¢’ 0.70 0.70 0.70 0.70 1.80 1.90 3.70
d’ 1.20 .20 1.30 1.20 2.90 2.70 3.90

Note. Bon = Bonferroni; SMM = Studentized maximum modulus; SRB = Shaffer’s
(1986) sequentially rejective Bonferroni; Hoch = Hochberg's (1988) sequentially

acceptive Bonferroni.
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Table 3

Empirical Type I Error Rates (%) when Fitting the True Covariance Structure

(Normal Distribution, K = 4. N = 45_Satterthwaite df)

49

Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
c' 4.90 4.90 5.50 4.90 4.70 4.90 8.30
d’ 3.50 3.60 4.90 3.80 3.80 3.80 7.30
RC
3 310 3.10 3.70 3.10 3.10 3.10 6.60
d’ 3.60 3.80 5.00 4.20 340 340 6.10
UN
¢’ 3.80 4.00 4.90 4.00 3.80 3.90 8.30
d’ 3.60 3.60 5.30 3.90 4.50 4.50 7.50
Partial Null Hypothesis
ARHI1
¢’ 1.40 1.40 1.50 1.40 3.80 3.50 4.60
d 1.30 1.30 1.70 1.30 270 2.70 4.20
RC
c' 2.10 2.10 2.60 2.10 4.50 4.30 5.20
d 1.80 1.80 2.10 1.80 4.10 3.50 5.20
UN
¢ 0.70 0.70 0.70 0.70 1.80 1.90 3.70
d’ 1.20 1.20 1.30 1.20 2.90 2.70 3.90

Note. See note from Table 2.



Table 4

Empirical Type [ Error Rates (%) with Akaike Criterion Selecting the Best Covariance

Structure (Normal Distribution, K = 4, N = 45, Satterthwaite df)

Repeated Measures
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Complete Null Hypothesis
ARH!
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 5.20 5.20 6.00 5.20 5.20 5.20 8.60
d 3.60 3.70 4.60 3.70 3.80 3.90 7.60
C
¢’ 3.20 3.20 3.80 3.20 3.20 3.20 6.70
d 3.60 3.70 5.10 4.10 3.30 330 6.60
UN
¢ 4.70 4.90 5.50 4.90 4.70 4.70 7.50
d 4.10 4.10 4.90 4.20 4.60 4.60 7.60
Partial Null Hypothesis
ARHI
¢’ 1.30 1.30 1.90 1.30 3.40 3.10 4.40
d 1.20 1.20 1.60 1.30 2.60 2.80 4.10
C
¢’ 2.20 2.20 2.60 2.20 4.40 4.30 5.20
d 1.90 1.90 2.20 1.90 4.20 3.60 5.20
UN
¢’ 2.00 2.20 2.50 2.20 4.30 4.00 6.30
d 2.30 2.40 3.00 2.40 4.70 4.40 6.90

Note. See note from Table 2.
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Repeated Measures
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Empirical Type I Error Rates (%) with Schwarz Criterion Selecting the Best Covariance

Structure (Normal Distribution, K =4, N = 45, Satterthwaite df)

Complete Null Hypothesis
ARH!
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 5.10 5.10 5.70 5.10 5.10 5.10 8.30
d 3.80 3.80 4.70 3.80 3.90 3.90 7.70
RC
¢’ 2.30 2.30 290 2.30 2.30 2.30 4.80
d' 5.30 5.50 6.80 5.90 5.40 5.50 8.70
UN
¢’ 4.80 4.90 5.40 5.00 4.90 4.90 7.70
d 4.30 4.30 4.80 4.30 440 4.40 7.80
Partial Null Hypothesis
ARHI
¢’ 1.30 1.30 1.90 1.30 3.30 2.90 4.20
d 1.50 1.50 1.90 1.70 3.10 3.10 4.50
RC
c' 1.10 1.10 1.50 1.10 3.40 3.40 4.50
d 2.20 2.20 2.60 2.20 4.90 4.40 6.10
UN
¢’ 2.70 2.80 3.20 2.80 4.80 4.60 6.50
d’ 270 2.70 3.50 270 5.30 5.00 7.20

Note. See note from Table 2.
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Table 6

Empirical Type [ Error Rates (%) when Fitting a UN-H Covariance Structure

(Normal Distribution, K = 4. N = 45, Default df)

52

Complete Null Hypothesis

ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 5.10 5.10 5.80 5.10 5.10 5.10 7.50
d 7.20 7.20 8.40 7.30 720 7.20 11.20
RC
¢’ 5.30 5.40 5.90 540 530 5.30 8.50
d’ 6.70 6.70 7.90 6.70 6.70 6.70 12.90
UN
¢ 4.40 4.40 5.00 4.40 4.40 4.50 7.40
d 6.70 6.70 7.80 6.70 6.70 6.70 10.70

Partial Null Hypothesis

ARHI
c’ 2.30 2.30 2.60 2.30 4.40 4.40 5.10
d 3.50 3.60 4.30 3.60 6.50 5.70 7.40
RC
¢’ 1.80 1.80 2.50 1.80 4.90 5.20 6.30
d 3.80 3.80 4.50 3.80 6.80 6.70 8.50
UN
¢’ 2.30 2.30 2.70 2.30 4.10 3.80 5.80
d 3.20 3.20 3.80 3.20 6.00 5.40 7.40

Note. See note from Table 2.



Table 7

Empirical Type 1 Error Rates (%) when Fitting the True Covariance Structure

{(Normal Distribution, K = 4, N = 45, Default df)

Repeated Measures
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Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 4.50 4.70 5.20 4.70 4.50 4.50 6.80
d’ 4.90 4.90 540 4.90 4.90 5.00 8.20
RC
¢’ 3.80 3.90 4.80 4.10 3.80 3.80 7.80
d 420 4.30 4.80 4.30 4.20 4.20 8.90
UN
c’ 4.40 4.40 5.00 4.40 4.40 4.50 7.40
d’ 6.70 6.70 7.80 6.70 6.70 6.70 10.70
Partial Null Hypothesis
ARHI
¢’ 1.80 1.80 2.10 1.80 3.70 3.70 4.50
d’ 3.10 310 3.20 3.10 5.60 5.50 6.80
RC
¢’ 1.40 1.50 1.90 1.50 4.50 4.40 5.40
d 2.40 240 3.00 2.40 5.90 5.20 7.30
UN
c' 2.30 2.30 2,70 2.30 4.10 3.80 3.80
d’ 3.20 320 3.80 3.20 6.00 5.40 7.40

Note. See note from Table 2.



Table 8

Empirical Type [ Error Rates (%) with Akaike Criterion Selecting the Best Covariance

Structure (Normal Distribution, K =4, N = 45, Default df)

Repeated Measures
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Complete Null Hypothesis
ARH!
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 4.60 4.60 540 4.60 4.60 4.60 7.10
d’ 4.10 4.20 5.10 4.20 4.10 4.20 8.40
RC
¢’ 4.10 4.20 4.90 4.30 4.10 4.10 8.10
d’ 4.60 4.70 5.30 4.70 4.60 4.60 9.40
UN
¢’ 3.60 3.60 4.20 3.60 3.60 3.60 7.30
d 6.20 6.20 7.30 6.20 6.20 6.20 9.20
Partial Null Hypothesis
ARHI
¢ 1.70 1.70 1.80 1.70 3.60 340 4.60
d 3.00 3.00 340 3.00 5.40 5.00 6.50
RC
¢’ 1.40 1.50 2.00 1.50 4.90 4.50 6.10
d 2.50 2.60 3.20 2.60 5.80 5.30 7.50
UN
¢’ 2.50 2.50 3.30 2.50 6.10 5.40 8,00
d’ 4.20 4.20 4.80 4.20 6.60 6.20 8.10

Note. See note from Table 2.
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Empirical Type [ Error Rates (%) with Schwarz Criterion Selecting the Best Covariance

Structure (Normal Distribution, K = 4, N = 45, Default df)

Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Weisch
c’ 3.80 3.80 4.60 3.80 3.80 3.80 6.50
d 4.10 4.20 5.00 4.30 4.10 4.10 8.10
RC
¢’ 2.90 3.00 3.60 3.10 2.90 2.90 4.70
d 5.40 5.50 6.40 5.50 5.40 5.40 11.00
UN
¢’ 3.40 340 4.10 3.40 3.40 3.40 6.60
d' 5.90 5.90 6.60 5.90 5.90 5.90 8.50
Partial Null Hypothesis
ARHI
¢’ 1.60 1.60 1.70 1.60 3.80 3.50 4.50
d’ 2.80 2.90 3.50 3.00 5.70 5.40 6.70
RC
c’ 0.70 0.80 1.10 0.80 310 2.90 3.70
d 2.70 2.80 3.50 2.80 6.60 5.90 8.00
UN
¢’ 2.90 3.00 3.70 3.00 5.90 5.30 7.40
d& 4.50 4.50 5.00 4.50 6.50 590 8.20

Note. See note from Table 2.



Table 10

Repeated Measures

Percentage of Time Akaike Criterion Selected the Correct Covariance Structure

(rounded to whole numbers) (Normal Distribution, K =4, N = 45, Satterthwaite df)

Covanance Structure
Cond | CSH | CSH-H | HF | HF-H | ARl | ARI-H | ARH! | ARHI-H | RC { RC-H | UN | UN-H
¢ 8| 12 4
d' 78 12 8
¢’ 2 92 3
d’ 2 93 J
¢ 56 15 13
J’ 56 13 15
¢’ 8] 10 5
d’ 80 11 0
o 3 2 9 2
d' 2 2 93 2
¢ s2 lo 12
d’ So 16 14

Note. Cond = Condition; Shading represents the true covariance structure; Only the
three most frequently selected covariance structures for each condition are reported.
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Table 11

Percentage of Time Schwarz Criterion Selected the Correct Covariance Structure

(rounded to whole numbers) (Normal Distribution, K = 4, N = 45, Satterthwaite df)

Repeated Measures

Covartance Structure
Cond | CSH | CSH-H | HF | HF-H | ARl | ARI-H | ARHI | ARHI-H | RC | RC-H | UN | UN-H
¢’ o 92 1
d | 98 1
¢’ ! 38 | 59
d' 3 1] 84
Ny 4 87 4
d' 95 ] |
o 5 92 2
d’ | 98 |
¢’ I 32 J 64
d¢ 3 10 | 86
¢’ 3 85 4
d’ 94 2 !

Note. See note from Table 10.
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The values from Tables 2 and 3 indicate that for both complete and partial null
hypotheses always fitting a UN-H variance-covariance structure performs similarly to
fitting the true variance-covariance structure for each of the population variance-
covariance structures investigated (i.e., ARHI, RC, and UN) when df were based on
Satterthwaile’s solution. Under a complete null hypothesis, all MCPs control Type [ error
rates within Bradley’s (1978) liberal criterion with the exception of Welsch's (1977) step-
up range procedure. Under a partial null hypothesis, the simultaneous MCPs were
typically conservative with Type I error rates as low as 0.70%, whereas the stepwise
MCPs were well controlled with only the occasional conservative rate of 1.80% and
1.90% for the SRB and Hoch procedures, respectively when unequal groups sizes were
positively paired with unequal variance-covariance matrices (condition c’).

When multisample sphericity is violated, a test statistic that does not pool across
between- and within-subjects factors and is based on Satterthwaite df is a robust approach
to examine all possible pairwise comparisons among the levels of a RM factor using
either a simultaneous or stepwise MCP. Furthermore, there does not appear to be an
advantage to fitting the true variance-covariance structure compared to always fitting a
UN-H structure to the data. For example, averaged across the investigated conditions, the
SRB and Hoch procedures had error rates equal to 3.59% and 3.52%, respectively (see
Table 3) when the true variance-covariance structure was fit to the data, while average
error rates were 3.70% and 3.63%, respectively (see Table 2) when a UN-H structure was
always fit to the data.

Tables 4 and 5 contain rates of error when the AIC and SBC criteria, respectively
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were used to select the best variance-covariance structure from among 12 possible
structures when df were based on Satterthwaite’s solution. Under a complete null
hypothesis, relying on either of these two model selection criterion will generally provide
good Type [ error control for all MCPs except Welsch’s procedure. On the other hand,
given a partial null hypothesis, only the stepwisc MCPs provided robust error rates across
the investigated conditions.

Available through SAS’ (1996, 1999) PROC MIXED is a nonpooled test statistic
with df based on the default option. The error rates of MCPs based on this approach were
investigated under violation of multisample sphericity to examine whether it is the form
of the test statistic that provides robust procedures regardless of the estimation of the df.

Table 6 presents the Type [ error rates of the MCPs based on the default df option
available through PROC MIXED when always fitting a UN-H variance-covariance
structure to the data. Under a complete null hypothesis, error control was within
Bradley’s (1978) limits except for the Tukey and Welsch procedures when unequal group
sizes were negatively paired with unequal variance-covariance matrices (condition d’).
The error rates averaged across population variance-covariance structures were 8.03% for
the Tukey procedure and 11.60% for the Welsch procedure. Under a partial null
hypothesis, empirical estimates of Type [ error were conservative for the Bon, Sidak, and
SMM procedures averaging 2.13% for the positively paired conditions (c’) across
population variance-covariance structures. A similar pattern of results is evident in Table
7 when the true variance-covariance structure was fit to the data and df were based on the

default option. However, a notable difference was that liberal values for condition d’ for
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Tukey’s procedure under ARH1 and RC population variance-covariance structures
became robust when fitting the true variance-covariance structure rather than fitting a
UN-H structure to the data. Furthermore, error rates in general were smaller when fitting
the true population variance-covariance structure compared to always fitting a UN-H
structurc. For cxamplc, averaged across investigated conditions the SRB and Hoch
procedures had error rates equal to 4.86% and 4.73%, respectively (see Table 7) when the
true variance-covariance structure was fit to the data, while average error rates were
5.68% and 5.56%, respectively (see Table 6) when a UN-H structure was always fit to the
data.

Based on default df, allowing either the AIC or SBC criterion (see Tables 8 and 9,
respectively) to select the best variance-covariance structure from among 12 possible
structures provided similar error control under complete and partial null hypotheses.
Specifically, Type I error rates were well controlied with the following exceptions.
Welsch’s procedure had liberal rates as high as 11.00% under a complete null hypothesis
and the simultaneous procedures under a partial null hypothesis had conservative rates
ranging between 0.70% and 2.00% when unequal group sizes were positively paired with
unequal variance-covariance matrices (condition c¢’) for the ARH| and RC population
structures.

Although Type I error is generally controlled by allowing either the AIC or SBC
criterion to select the best variance-covariance structure, their accuracy at picking the
correct variance-covariance structure is typically poor. Tables 10 and 11 give percentages

reflecting the frequency with which each criterion selected the correct variance-
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covariance siructure from among 12 possible structures for each investigated condition.
The shading in the table represents the true population variance-covariance structure for
each condition. The rates were similar across the two df options investigated, therefore
only the conditions based on Satterthwaite df solution were tabled. When the true
population vanance-covariance structure was RC-H, both the AIC criterion (see Table
10) and the SBC criterion (see Table 11) selected the correct structure with an accuracy
rate between 91% to 93% (average=92%) and 59% to 86% (average=73%), respectively.
However, when the true population variance-covariance structure was either ARHI-H or
UN-H, both criteria selected the wrong variance-covariance structure with the greatest
frequency. That is, a between-subjects heterogeneous version of a First-Order
Autoregressive (AR 1-H) structure was selected with rates between 52% to 81%
(average=68%) for AIC and 85% to 98% (average=93%) for SBC. Interestingly, when
the true population variance-covariance structure was ARH1-H or UN-H, the SBC
criterion never selected the correct structure, whereas the AIC criterion selected the
correct structure with an average accuracy rate of only 12%. The accuracy rates (%) for
AIC and SBC were similar for complete and partial null hypotheses.

In summary, when normality is satisfied but multisample sphericity is violated in
an unbalanced RM design, two MCPs were robust regardless of the method of
determining df for the nonpooled pairwise test statistic. Averaged across investigated
conditions, the error rates for SRB and Hoch when fitting a UN-H variance-covariance
structure based on default df were 5.68% and 5.56%, respectively (see Table 6), whereas,

the average error rates based on Satterthwaite df were 3.70% and 3.63%, respectively (see
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Table 2). Furthermore, there was no Type I error advantage to fitting the true population
variance-covariance structure compared to always fitting a UN-H structure to the data.
Lognormal Distributed Data. Table 12 contains the study conditions collected
when data were obtained from a lognormal distribution for K =4 and N = 45 with df
based on Satterthwaite’s solution. Type [ crror rates for the four testing strategies are
contained in Tables 13 through 16, respectively. Fewer study conditions were examined
when data were obtained from a lognormal distribution for K =4 and N = 45 with df
based on the default option and are given in Table 17 with Tables 18 through 21
containing error rates for the four testing strategies, respectively. Tables 22 and 23
contain percentages that the AIC and SBC criteria, respectively selected the best
variance-covariance structure from among 12 possibie structures. The empirical error
rates from these investigated conditions provide information on the robustness properties
of the MCPs when normality and multisample sphericity were violated separately and

jointly.
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Repeated Measures

Study Conditions (Lognormal Distribution, K =4, N = 45, Satterthwaite df)
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Condition Pop Cov Str Sample Sizes Cov Mat Pairing Null Hypothesis
a ARHI 15,15,15 :1:1 NA P ===, =0
b ARHI-H 15,1515 1:3:5 NA = =H,=p,=0
¢ ARHI-H 12,1518 1:3:5 + H=pa=py=p,=0
¢’ ARHI-H 9,15,21 1:3:5 - Hy=H=Hy=p,=0
d ARHI-H 12.15,18 1:3:5 - =R, =, =0
d ARHI-H 9,15.21 1:3:5 - W=y =p =0
a RC 15.15,15 1:1:1 NA W =M=y =H,=0
b RC-H 15,15,15 1:3:5 NA Wy =M=l =0, =0
¢ RC-H 12,15,18 1:3:5 + W= =1y =0, =0
¢’ RC-H 9,15,21 1:3:§ + M =R =y =p,=0
d RC-H 12,15,18 1:3:5 - B === =0
d RC-H 9,15,21 1:3:5 - W =Ha=H =, =0
a UN 15.15,15 1:1:1 NA M =H=1y=p,=0
b UN-H 15,15,15 1:3:5 NA W =W =0 =, =0
c UN-H 12,15,18 1:3:3 - W= =p=p,=0
¢’ UN-H 915,21 1:3:5 + =Ry =, =0
d UN-H 12,15,18 1:3:5 - W ===, =0
d’ UN-H 9,15,21 1:3:5 - H=Ha=py=p,=0
¢ ARH!-H 9,15,21 1:3:5 + My=Ha =Ry

d ARHI-H 9,15.21 1:3:5 - TR TRLY TP T

¢’ RC-H 9,15.21 1:3:5 + TR T TIE T

d’ RC-H 9,15.21 1:3:5 - TIC TR VI T

¢ UN-H 9,15,21 1:3:5 + 1 P TP TTEd 'Y

d’ UN-H 9,15,21 1:3:5 - TR TR T

Note. See note from Table 1.
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Empirical Type I Error Rates (%) when Fitting a UN-H Covariance Structure

(Lognormal Distribution, K = 4, N = 45, Satterthwaite df)

Repeated Measures
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Complete Null Hypothesis
ARHI1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
a 3.80 3.90 5.10 4.20 3.80 3.90 7.30
b 3.00 3.20 4.40 3.20 3.10 3.10 7.10
¢ 2.80 2.90 4.10 310 2.90 3.00 7.30
¢’ 3.20 3.30 4.10 3.30 3.20 320 7.10
d 2.60 2.80 4.10 2.80 290 2.90 7.30
d 3.30 3.30 4.70 3.60 340 3.50 7.60
RC
a 4.40 4.40 5.60 4.60 4.30 4.30 9.00
b 4.90 5.00 6.60 5.10 5.10 5.10 9.30
¢ 5.60 5.60 7.20 5.60 5.60 5.60 9.20
¢’ 5.30 5.30 6.10 5.50 5.40 540 9.20
d 5.40 5.60 6.80 5.70 5.50 5.70 9.50
d 6.30 6.30 7.30 6.50 6.50 6.60 10.40
UN

a 3.80 3.80 4.40 3.90 3.80 3.80 7.20
b 3.80 3.80 4.10 3.90 3.60 3.60 7.10
c 2.30 2.50 3.10 2.60 240 2,40 6.50
c’ 3.70 3.70 4.40 390 3.50 3.50 6.90
d 3.90 3.90 4.60 3.90 3.90 3.90 7.30
d 330 3.30 4.30 3.70 3.50 3.50 6.40




Table 13 continued

Repeated Measures
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Partial Null Hypothesis
ARH!

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 1.00 1.10 1.50 1.20 2.90 2.80 3.80
d’ 0.90 1.00 1.70 1.20 3.20 2.60 4.10

RC
¢’ 2.10 2.10 2.60 2.10 4.60 4.40 5.50
d 1.40 1.40 1.90 1.50 3.00 2.80 4.80

UN
¢’ 1.50 1.50 1.90 1.60 3.10 3.00 4.20
d 1.00 1.00 1.40 1.10 2.70 2.50 3.50

Note. See note from Table 2.
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Table 14
Empirical Type 1 Error Rates (%) when Fitting the True Covariance Structure
(Lognormai Distribution, K = 4, N = 43, Satterthwaite df)
Complete Null Hypothesis
ARH!
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
a 3.60 3.70 4.50 3.70 3.70 3.70 7.20
b 2.30 2.70 3.70 2.90 2.40 2.40 6.40
c 3.40 3.50 4.10 3.60 3.30 340 6.70
¢ 3.10 3.20 3.90 3.20 3.20 3.20 6.40
d 2.70 2.70 3.30 2.70 2.80 2.80 5.50
d’ 2.80 2.80 3.60 3.20 2.70 2.70 5.50
RC
a 4.30 4.50 5.00 4.50 4.30 4.30 8.70
b 2.90 310 4.20 3.20 290 290 6.70
c 5.20 5.30 5.90 5.30 5.30 5.30 8.20
¢ 3.80 3.90 4.50 4.00 3.70 3.80 7.00
d 5.30 5.30 6.10 540 5.10 540 9.20
d’ 3.70 3.90 4.20 3.90 3.60 3.60 6.70
UN
a 3.90 3.90 4.50 3.90 3.90 390 7.30
b 3.80 31.80 4.10 3.90 3.60 3.60 7.10
c 2.30 2.50 310 2.60 2.40 240 6.50
c’ 370 3.70 440 3.90 3.50 3.50 6.90
d 3.90 3.90 4.60 3.90 390 390 7.30
d’ 3.30 3.30 4.30 3.70 3.50 3.50 6.40




Table 14 continued
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Partial Null Hypothesis
ARHI1

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
c’ 0.90 1.00 1.30 1.00 2.70 2.40 3.50
d 0.90 0.90 1.00 0.90 2.60 2.20 3.50

RC
¢ 1.90 1.90 2.10 2.00 4.10 390 5.20
d' 1.30 1.30 1.60 1.30 3.30 2.60 4.30

UN
¢ 1.50 1.50 1.90 1.60 310 3.00 4.20
d 1.00 1.00 1.40 1.10 2.70 2.50 3.50

Note. See note from Table 2.
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Empirical Type | Error Rates (%) with Akaike Criterion Selecting the Best Covariance

Repeated Measures

Structure (L ognonnal Distribution, K =4, N = 45_Satterthwaite df)
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Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
a 4.20 4.40 5.10 4.40 4.30 4.30 8.20
b 2.70 290 4.10 3.10 2.80 2.80 6.60
¢ 3.60 3.70 4.50 3.80 3.60 3.70 7.40
c’ 3.10 3.20 4.10 3.30 3.20 3.20 6.50
d 3.20 3.20 4.20 3.20 340 340 7.00
d’ 3.50 3.50 4.60 3.80 3.70 370 6.00
C
a 4.90 5.00 6.00 5.10 4.90 4.90 9.50
b 4.20 4.50 5.50 4.50 4.10 4.10 8.20
c 5.50 5.60 6.80 5.60 3.70 5.70 8.60
¢’ 4.70 4.80 5.60 4.90 4.80 4.80 7.80
d 6.20 6.20 6.80 6.30 6.20 6.20 9.60
d 5.10 5.10 5.70 5.20 5.30 5.30 9.30
UN
a 3.30 3.30 3.90 3.30 3.30 3.30 6.90
b 3.60 3.60 4.40 3.60 3.50 3.50 7.70
< 2.80 2.90 3.60 3.00 2.90 2.90 6.00
¢’ 3.30 3.30 4.00 3.40 3.00 3.10 6.50
d 3.50 3.50 4.40 3.60 3.60 3.60 7.40
d 3.70 3.80 440 3.90 3.80 3.80 6.60




Table 15 continued
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Partial Null Hypothesis
ARHI

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 0.80 0.90 1.30 1.00 2.30 2.40 3.50
d 0.90 0.90 1.20 0.90 2.80 2.30 3.90

RC
c’ 2.10 2.10 2.50 2.10 4.50 4.20 5.10
d’ 1.60 1.60 2.20 1.70 3.00 2.80 4.30

UN
¢’ 2.30 2.30 2,50 2.30 3.90 3.60 4.70
d’ 1.20 1.20 1.70 1.20 3.70 3.10 5.20

Note. See note from Table 2.
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Repeated Measures
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Empirical Type [ Error Rates (%) with Schwarz Criterion Selecting the Best Covariance

Structure (I ognormal Distribution, K =4, N = 45, Satterthwaite df)

Complete Null Hypothesis
ARH!
Condition | Bon Sidak Tukey SMM SRB Hoch Weisch
a 3.80 4.00 4.50 4.00 4.00 4.00 7.50
b 3.20 3.30 4.00 3.30 3.20 3.20 6.40
¢ 3.60 3.60 3.60 3.70 3.60 3.60 740
¢’ 2.80 290 3.70 3.00 2.80 2.80 5.90
d 3.00 3.00 3.60 3.00 3.10 310 6.70
d' 3.60 3.60 4.50 3.70 3.70 3.70 6.70
C
a 4.60 4.70 5.00 4.70 4.50 4.50 8.90
b 3.40 3.80 4.50 3.90 3.60 3.60 740
< 4.90 5.00 5.60 5.00 4.70 4.70 7.80
¢’ 4.10 430 5.00 4.30 4.10 4.20 6.40
d 5.90 6.00 720 6.10 5.90 6.10 10.00
d’ 4.40 4.70 5.10 4.70 4.70 4.70 8.40
N

a 3.10 3.10 4.00 3.10 310 3.10 6.60
b 3.30 3.30 4.50 340 340 340 7.80
¢ 3.60 3.80 4.40 3.80 3.60 3.60 6.50
¢’ 3.00 320 390 3.20 2.80 2.90 6.70
d 3.20 3.20 3.80 330 3.30 3.30 6.80
& 3.90 4.00 4.60 4.00 3.90 3.90 6.50
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Table 16 continued
Partial Null Hypothesis
ARHI

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
c’ 0.80 0.90 1.10 1.00 2.30 2.50 3.60
d’ 1.40 1.40 1.70 1.40 3.30 290 4.30

RC
¢’ 2.10 2.10 2.40 2,20 3.80 3.70 4.50
d’ 1.90 1.90 240 1.90 390 3.50 5.00

UN
¢ 2.10 2.10 2.30 2.10 3.90 340 4.50
d’ 2.00 2.00 2.80 2.10 4.80 4.20 6.40

Note. See note from Table 2.
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Table 17

Study Conditions (Lognormal Distribution, K = 4, N = 45, Default d

Condition Pop Cov Str* Sample Sizes Cov Mat® Pairing Null Hypothesis
¢’ ARHI-H 9,15,21 1:3:5 + W=Ha=p,=p,=0
d’ ARHI-H 9,15,21 [:3:5 - B ==l =H,=0
¢’ RC-H 9.15.21 1:3:5 + TIRITEI TR TR
d’ RC-H 9.15.21 1:3:5 - B =pa =y =p,=0
¢’ UN-H 9,15.21 1:3:5 * B =Ha=py=p,=0
d UN-H 9,15,21 1:3:5 - Hy=H= =, =0
¢’ ARHI-H 9,15,21 1:3:5 + TR TER VI T
d ARHI-H 9,15,21 1:3:5 - Hy=Ha A U= ]y
¢' RC-H 9,15.21 1:3:5 + HISHa = fy= iy
d’ RC-H 9,15,21 1:3:5 - TR T T
¢’ UN-H 9.15,21 1:3:5 + TRTERaTIC T
d’ UN-i1 9,15,21 1:3:5 - [Pl TP I TR T

Note. See note from Table 1.
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Table 18
Empirical Type | Error Rates (%) when Fitting a UN-H Covariance Structure
(Lognormal Distribution, K = 4, N = 45, Default df)
Complete Null Hypothesis
ARHI1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
c’ 1.80 3.90 4.10 4.00 3.80 3.80 6.80
d 5.80 5.80 7.20 5.80 5.80 5.80 10.90
RC
¢’ 6.80 6.80 7.90 6.90 6.80 6.80 11.20
d’ 8.70 8.70 9.20 8.70 8.70 8.70 14.00
UN
¢ 4.30 4.50 5.00 4.50 4.30 4.30 8.70
d 4.70 4.80 5.60 4.80 4.70 4.70 9,80
Partial Null Hypothesis
ARHI
¢ 1.60 L.70 1.70 .70 3.50 3.50 4.90
d’ 2.70 2.80 3.30 2.80 5.70 5.60 7.30
RC
¢ 2.20 2,20 2.50 2,20 5.20 5.00 6.20
d 4.30 4.40 4.60 4.40 7.50 7.10 9.10
UN
¢’ 1.60 1.70 1.90 1.70 5.30 4.50 7.20
d 2.90 2.90 3.40 2.90 5.70 540 7.40

Note. See note from Table 2.



Table 19

Empirical Type I Error Rates (%) when Fitting the True Covariance Structure

(Lognormal Distribution, K = 4. N = 45, Default df)

Repeated Measures
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Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢ 2.70 2.80 3.70 2.80 2.70 2.70 6.70
d 3.70 3.80 4.80 3.90 3.70 3.70 8.10
RC
¢’ 4.90 5.00 5.60 5.00 4.90 4.90 8.70
d 6.00 6.10 7.10 6.20 6.00 6.00 9.80
UN
¢’ 4.30 4.50 5.00 4.50 4.30 4.30 8.70
d 4.70 4.80 5.60 4.80 4.70 4.70 9.80
Partial Null Hypothesis
ARHI
¢’ 1.70 1.70 2,00 1.70 3.40 3.60 4.20
d' 1.90 1.90 2.30 1.90 4.00 3.80 5.40
RC
c' 1.70 1.80 2.00 1.80 4.50 4.50 5.50
d’ 2.90 2.90 340 290 5.30 4.90 6.70
UN
¢’ 1.60 1.70 1.90 1.70 5.30 4.50 7.20
d 2.90 290 340 2.90 5.70 5.40 7.40

Note. See note from Table 2.



Table 20
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Empirical Type I Error Rates (%) with Akaike Criterion Selecting the Best Covariance

Structure (Lognormal Distribution, K =4, N = 45, Default df}

Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 2.60 2.80 3.60 2.80 2.60 2.70 6.40
d 4.40 4.50 5.50 4.50 440 4.40 9.20
RC
¢’ 6.10 6.20 6.70 6.20 6.10 6.20 9.60
d’ 7.40 7.40 8.50 7.40 7.40 7.40 11.90
UN
< 4.10 4.40 4.90 4.50 4.10 4.20 9.00
d 4.50 4.50 5.40 4.50 4.50 4.50 8.70
Partial Null Hypothesis
ARHI
¢’ 1.40 1.50 2.00 1.60 340 340 4.10
d’ 2.00 2.00 2.20 2.00 4.50 4.40 6.00
RC
c' 2.20 2.20 2.50 2.20 4.90 5.10 6.10
d 3.60 3.60 4.10 3.60 6.40 6.10 7.80
UN
c' 1.80 1.80 2.10 1.80 4.80 3.80 7.10
d’ 2.80 2.80 3.20 2.80 6.20 5.60 7.90

Note. See note from Table 2.
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Table 21

Empirical Type [ Error Rates (%) with Schwarz Criterion Selecting the Best Covariance

Structure (Lognormal Distribution, K =4, N = 45, Default d

Complete Null Hypothesis

ARHI
Condition { Bon Sidak Tukey SMM SRB Hoch Welsch
c' 2.40 2.50 3.60 2.50 2.40 2.40 6.30
d' 4.40 4.40 5.20 4.50 440 4.40 9.20
RC
¢’ 4.50 4.50 5.00 4.50 4.50 4.50 8.00
d’ 6.50 0.60 8.30 6.60 6.50 0.50 10.80
UN
¢ 4.20 4.30 4.70 4.40 4.20 4.40 7.40
d 4.00 4.00 4.50 4.00 4.00 4.00 7.20

Partial Null Hypothesis

ARHI
¢’ 1.10 1.10 1.70 1.20 3.60 3.60 4.60
d 2.20 2.20 2.60 2.20 5.80 4.90 7.10
RC
¢’ 1.50 1.60 1.80 1.60 3.80 4.00 5.00
d 3.40 3.40 3.80 3.40 5.90 5.60 1.30
UN
¢’ 2.40 240 2.70 2.40 4.50 4.20 6.70
d 3.90 390 4.50 3.90 7.00 6.30 8.40

Note. See note from Table 2.



Table 22

Repeated Measures

Percentage of Time Akaike Criterion Selected the Correct Covariance Structure

(rounded to whole numbers) (Lognormal Distribution, K =4, N = 45, Satterthwaite df)

Covanance Structure
Cond | CSH | CSH-H | HF | HF-H | AR1 | ARI-H | ARHI | ARHI-H | RC 1 RC-H | UN | UN-H
a 19 32 13
b 29 o+ I8
¢ 30 45 17
¢’ 28 41 19
d 27 44 18
¢ 2 42 23
a 16 | 28 30
b 8 48 35
¢ 8 46 35
¢ 8 46 35
d 7 46 338
d 9 47 3o
a 20 29 20
b 13 31 38
¢ 15 27 41
¢’ 12 28 43
d 13 28 41
d’ 1 29 43
¢’ 29 41 13
d 24 44 20
¢’ 10 46 32
d 7 45 37
¢ 4 29 39
d’ 13 29 39

Note. See note from Table 10.
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Table 23

Percentage of Time Schwarz Criterion Selected the Correct Covariance Structure

Repeated Measures
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(rounded to whole numbers) (I ognormal Distribution, K = 4, N = 45, Satterthwaite df)

Covanance Structure
Cond | CSH | CSH-H | HF | HF-H | AR | ARI-H | ARHI { ARHI-H | RC | RC-H | UN [ UN-H
a 49 It 25
b 5 71 14
¢ 0 69 16
¢’ 9 00 13
d 0 69 15
J o7 18 4
a 4 65 14
b o 13 |67
< 0 15 | 67
< 5 17 | 65
d 5 12 170
d 5 13 171
a 29 20 15
b 5 56 20 5
¢ 57 18 5
¢’ 55 14 6
d o 59 17
d* 5 57 18
¢’ 7 70 13
d’ 66 17 6
¢’ 6 21 59
d* 6 13 | 68
¢’ 52 9 14
d’ 58 4 I8

Note. See note from Table 10.
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Table 13 contains Type I error rates when a UN-H variance-covariance structure
was always fit to the data and df were based on Satterthwaite’s solution. Rates of error for
each MCP were generally well controlled under a complete null hypothesis with the
following exceptions: the Welsch procedure under a ARH1 variance-covariance structure
with a rate of 7.60% (condition d°), the Welsch procedure under a RC variance-
covariance structure with rates ranging between 9.00% and 10.40%, and the Bon, SRB,
and Hoch procedures under a UN variance-covariance structure with rates of 2.30%,
2.40%, and 2.40%, respectively for a positive pairing of unequal variance-covariance
matrices and unequal group sizes (condition ¢). Under a partial null hypothesis only the
SRB, Hoch, and Welsch procedures were able to control Type [ error with rates ranging
between 2.50% and 5.50%, whereas the simultaneous MCPs typically had conservative
rates ranging between 0.90% and 2.60%.

Rates of Type I error control when the true population variance-covariance
structure was fit to the data and df were based on Satterthwaite’s solution are contained in
Table 14. The tendency across conditions was for rates to be slightly smaller when fitting
the true population variance-covariance structure compared to rates when a UN-H
structure was always fit to the data. Under a complete null hypothesis all MCPs generally
provided error rates within Bradley’s (1978) limits with the occasional liberal value for
the Welsch procedure and the occasional conservative value for the Bon, SRB, and Hoch
procedures. While under a partial null hypothesis only the three stepwise MCPs provided
robust error control across investigated conditions.

Once again, there was no Type [ error advantage to fitting the true variance-
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covariance structure compared to always fitting a UN-H structure. For example, averaged
across investigated conditions the SRB and Hoch procedures had error rates equal to
3.43% and 3.37%, respectively (see Table 14) when the true variance-covariance
structure was fit to the data, while average error rates were 3.83% and 3.80%,
respectively (see Table 13) when a UN-H structurc was always fit to the data.

Allowing either the AIC or SBC criterion to choose the best variance-covariance
structure (see Table 15 and 10, respectively) provided similar error control across the
investigated MCPs. Under a complete null hypothesis all procedures except Welsch, were
able to maintain error rates within Bradley’s (1978) limits, however only the stepwise
procedures were robust under a partial null hypothesis with an occasional conservative
rate of 2.30% for the SRB and Hoch procedures.

When the df were based on the default option available through PROC MIXED,
rates of error based on always fitting a UN-H variance-covariance structure to the data
(see Table 18) were not well controlled across all population variance-covariance
structures. Specifically, under a complete null hypothesis, rates were liberal for all MCPs
when the population variance-covariance structure was RC and unequal group sizes were
negatively paired with unequal variance-covariance matrices (e.g., rates ranged between
8.70% to 14.00% across the MCPs for condition d’). Empirical rates of Type I error
improved when fitting the true variance-covariance structure to the data (see Table 19),
however the Welsch procedure remained nonrobust under a complete null hypothesis.
Similar to the results based on Satterthwaite df, only the stepwise MCPs provided robust

error rates under a partial null hypothesis across investigated conditions. It is important to
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note that the SRB and Hoch procedures based on default df were only robust across all
conditions when the true population variance-covariance structure was fit to the data.

Relying on either the AIC or SBC criterion (see Tables 20 and 21, respectively) to
select the best variance-covariance structure provided similar rates of error when df were
based on the default option. Only the SRB and Hoch procedures provided empirical error
rates within Bradley’s limits for complete and partial null hypotheses across the
population variance-covariance structures investigated.

Tables 22 and 23 contain the frequency with which the AIC and SBC criteria,
respectively selected the correct variance-covariance structure from among 12 possible
structures. The values were similar regardless of the choice of df option, therefore only
the conditions where Satterthwaite df were used are tabled. The AIC criterion (see Table
22) selected the correct variance-covariance structure with the greatest frequency across
most conditions, however the percentages ranged from 16% to 48% with an average
accuracy rate of only 41%. In comparison, the SBC criterion (see Table 23) selected the
correct variance-covariance structure with rates between 59% to 71% when the true
population structure was RC but when the true population structure was either ARH1I or
UN, the SBC criterion selected the wrong variance-covariance structure (i.c., AR1 or
AR1-H) with the greatest frequency (i.e., rates between 29% to 71%).

A limited number of conditions were examined when K = 8 to determine whether
the results for the MCPs based on the four testing strategies for K = 4 would extend to a
larger number of levels of the RM factor (i.e., an increase in the number of levels of the

RM factor from 4 to 8 increases the number of pairwise tests from 6 to 28). The total
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sample size was increased to N = 60 from N = 45 and only the negative pairing of
unequal group sizes with unequal variance-covariance matrices were examined for the
more disparate sample size case when the data was lognormally distributed (see
Appendix B for Tables Bl to B11). The results indicate that all MCPs except Welsch’s
procedure had error rates within Bradley's (1978) limits for a complete null hypothasis
when always fitting a UN-H structure with Satterthwaite df (see Table B2). When the true
population structure was fit to the data, the error rates became smaller and under certain
conditions conservative (see Table B3). Relying on either the AIC or SBC criterion to
select the best variance-covariance structure provided similar robust error control except
for the occasional conservative rate for the SRB and Hoch procedures and liberal error
rates for the Welsch procedure across population structures (see Tables B4 and BS). The
accuracy with which the AIC criterion selected the correct variance-covariance structure
improved to an average of 74% across the investigated conditions (see Table B6), while
the SBC criterion was only highly accurate when the true population structure was RC-H
(i.e., 95%) and otherwise selected the wrong structure with the greatest frequency (see
Table B7). Consistent with the K = 4 results is the tendency for error rates for MCPs to
become smaller under a partial null hypothesis regardless of the testing strategy adopted
and in particular conservative for the simultaneous MCPs. The pattern of results when
using the default df option with K = 8 is similar to when K = 4 (see Tables B8 to B11).
That is, error rates were liberal for all MCPs when fitting a UN-H structure to the data for
a RC population variance-covariance structure and improved when fitting the true

population structure. In general, the results for K = 4 extend to K = 8 with the exception
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of the need for a larger total sample size in order for the convergence criteria to be met for
the REML estimation.
Power Rates

To simuiate power rates for the MCPs, three nonnull mean configurations were
examined. That is, a minimum range configuration, a maximum range configuration, and
an equally spaced range configuration. Effect sizes varied between 0.50 and 1.25 and
were selected to avoid floor and ceiling effects (see Appendix C for population means).
All MCPs were compared in terms of average per-pair and all-pairs power with the
testing strategies of always fitting a UN-H variance-covariance structure or the true
variance-covariance structure. Guidelines provided by Einot and Gabriel (1975) were
used to evaluate differences in power values across procedures. That is, power differences
greater than 20% were considered substantial while those less than 10% were considered
negligible.

Normally Distributed Data. Table 24 contains all-pairs and average per-pair
power rates for data obtained from a normal distribution for K =4 and N =45 fora
minimum range configuration when df were based on Satterthwaite’s solution and a UN-
H variance-covariance structure was always fit to the data. As expected, the stepwise
MCPs were more powerful than the simultaneous MCPs, however this power advantage
was only negligible (i.e., less than 10%). For all-pairs power, the average power rates
across investigated conditions for the simultaneous MCPs (Bon, Sidak, Tukey, and
SMM) were 35.25%, 35.58%, 39.08%, and 36.05%, respectively and for the stepwise

MCPs (SRB, Hoch, and Welsch) were 45.07%, 45.28%, and 59.57%, respectively. For
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average per-pair power, the average power rates across investigated conditions for the
simultaneous and stepwise MCPs (Bon, Sidak, Tukey, SMM, SRB, Hoch, and Welsch)
were 64.72%, 65.02%, 68.11%, 65.53%, 71.49%, 69.41%, and 78.83%, respectively.
Although the Welsch procedure was most powerful, the result is illusory because this
procedure had liberal error rates under a complete null hypothesis. When the truc
population variance-covariance structure was fit to the data, the MCPs were more
powerful, however this power advantage never exceeded 2 percentage points (see Table
25). The rates averaged across investigated conditions for the simultaneous and stepwise
MCPs were 37.42%, 37.78%, 41.08%, 38.05%, 46.37%, 46.52%, and 59.80%,
respectively for all-pairs power and 66.02%, 66.27%, 69.11%, 66.66%, 71.07%, 69.28%,
and 78.82%, respectively for average per-pair power.

Power rates for MCPs based on default df are contained in Table 26 when always
fitting a UN-H variance-covariance structure and Table 27 when fitting the true
population variance-covariance structure to the data. The power advantage of fitting the
correct variance-covariance structure compared to always fitting a UN-H structure never
exceeded 2 percentage points when the rates were averaged across conditions separately
for all-pairs and average per-pair power. Specifically, the average across conditions for
all-pairs power for the simultaneous and stepwise MCPs when a UN-H varnance-
covariance structure was fit to the data were 39.45%, 39.75%, 42.27%, 39.80%, 50.13%,
50.30%, and 62.77%, respectively and when the true variance-covariance structure was fit
to the data the average rates were 40.92%, 41.25%, 43.58%, 41.32%, 51.17%, 51.28%,

and 62.80%, respectively. For average per-pair power, the average across conditions



Repeated Measures 85

Table 24

Power Rates (Minimum Mean Configuration) when Fitting a UN-H Covariance Structure
{Normal Distribution K =4, N = 435, Satterthwaite df)

All-Pairs Power
ARHI

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 49.90 50.10 53.80 50.30 61.30 61.50 72.50
d’ 26.60 26.70 29.80 27.70 34.80 35.00 49.50

RC
c’ 52.80 53.60 57.30 53.90 6340 63.70 76.20
d 24.10 24.40 28.20 25.10 33.60 33.70 48.60

UN
¢’ 41.80 42.00 44.60 42.30 51.70 51.90 66.20
d’ 16.30 16.70 20.80 17.00 25.60 25.90 44.40

Average Per-Pair Power

ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 76.58 76.78 79.18 76.93 83.13 81.58 §7.48
d 53.70 54.00 57.88 54.93 61.15 58.30 70.55
RC
¢’ 79.78 80.10 82.08 80.33 §5.28 84.10 89.93
d 54.03 54.50 58.75 55.35 61.70 59.15 70.98
UN
c’ 72.98 73.23 75.03 73.38 78.90 77.53 85.05
d 51.23 51.50 55.75 52.28 58.78 55.80 69.00

Note. ¢’ = positive pairing of unequal covariance matrices and unequal group sizes; d’ = negative
pairing of unequal covariance matrices and unequal group sizes (n; =9, 15, 21); Bon = Bonferroni;
SMM = Studentized maximum modulus; SRB = Shaffer’s (1986) sequentially rejective Bonferroni;
Hoch = Hochberg’s (1988) sequentially acceptive Bonferroni.
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Power Rates (Minimum Mean Configuration) when Fitting the True Covariance Structure

(Normal Distribution K =4, N = 45 Satterthwaite df)

All-Pairs Power
ARHI

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 53.10 53.50 57.00 53.60 64.40 64.50 74.30
d 28.10 28.80 32.10 29.20 40.00 40.10 51.00

RC
c' 56.70 56.70 59.70 56.80 65.20 65.30 76.40
d’ 28.50 29.00 3230 29.40 31.30 3140 46.50

UN
¢’ 41.80 42.00 44.60 42.30 51.70 51.90 66.20
d 16.30 16.70 20.80 17.00 25.60 25.90 44.40

Average Per-Pair Power
ARH!

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
c’ 78.58 78.85 80.88 78.95 54.65 83.63 88.78
d 55.68 56.05 39.33 56.53 64.05 61.68 71.33

RC
¢ 80.90 81.03 82.88 81.15 85.53 84.38 90.15
d’ 56.73 56.98 60.78 57.68 54.50 52.63 68.63

UN
¢’ 72.98 73.23 75.03 73.38 78.90 77.53 85.05
d 51.23 51.50 55.75 52.28 58.78 55.80 69.00

Note. See note from Table 24.



Table 26

Repeated Measures

87

Power Rates (Minimum Mean Configuration) when Fitting a UN-H Covariance Structure

(Normal Distribution K =4, N = 45, Default df)

All-Pairs Power

ARH!
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 53.20 53.70 56.80 53.70 66.40 66.50 74.00
d 30.20 3040 3340 30.50 42.70 42.70 55.40
RC
¢ 57.50 57.70 59.80 57.70 66.60 66.80 75.20
d 31.30 31.50 33.40 31.50 40.30 40.70 56.40
UN
¢’ 42.80 43.30 45.90 43.50 54.60 54.80 67.10
d& 21.70 21.90 24.30 21.90 30.20 30.30 48.50
Average Per-Pair Power
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 77.73 78.00 79.95 78.03 84.23 83.08 87.93
d’ 61.38 61.45 63.78 61.48 68.85 66.60 75.48
RC
¢’ 82.28 82.40 83.63 82.40 86.80 85.88 89.73
d 63.45 63.70 65.80 63.78 70.00 68.20 77.23
UN
c’ 74.85 75.05 77.00 75.13 81.23 79.88 86.08
da 58.15 58.45 60.43 58.48 65.00 62.80 73.70
Note. See note from Table 24.
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All-Pairs Power
ARHI

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ 56.90 57.20 59.40 57.30 66.20 66.30 74.40
d' 3340 33.80 36.50 33.80 46.30 46.30 56.80

RC
c' 57.60 57.90 59.50 38.00 67.30 67.40 75.20
d’ 33.10 33.40 3590 3340 42,40 42.60 54.80

UN
¢’ 42.80 43.30 45.90 43.50 54.60 54.80 67.10
d’ 21.70 21.90 24.30 21.90 30.20 30.30 48.50

Average Per-Pair Power
ARHI

Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
c’ 79.35 79.48 81.08 79.58 84.65 83.28 88.30
d’ 63.08 63.40 65.63 63.48 70.80 68.73 76.28

RC
¢’ 81.88 82.00 83.38 82.13 86.40 85.68 89.40
d’ 63.10 63.40 65.28 63.45 69.60 67.40 76.30

UN
¢’ 74.85 75.05 77.00 75.13 81.23 79.88 86.08
d’ 58.15 58.45 60.43 58.48 65.00 62.80 73.70

Note. See note from Table 24.
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when fitting a UN-H variance-covariance structure for each of the MCPs were 69.64%,
69.84%, 71.77%, 69.88%, 76.02%, 74.41%, and 81.69%, respectively and when fitting
the true variance-covariance structure, the average rates were 70.07%, 70.30%, 72.13%,
70.38%, 76.28%, 74.63%, and 81.68%, respectively. The MCPs were more powerful
when the df were based on the default option, however the difference in average rates
across conditions was negligible (i.e., never greater than 6 percentage points) compared to
average power rates for MCPs based on Satterthwaite df.

Lognormal Distributed Data. All-pairs and average per-pair power rates for data
obtained from a lognormal distribution for K =4 and N = 45 for a minimum, maximum,
and equally spaced mean range configuration were investigated. Tables 28 and 29 contain
all-pairs and average per-pair power rates, respectively when the MCPs were based on
Satterthwaite df and a UN-H variance-covariance structure was always fit to the data and
Tabies 30 and 31, contain power rates when the true variance-covariance structure was fit
to the data for all-pairs and average per-pair power rates, respectively. Because of the lack
of robustness for MCPs based on default df for the combined violation of normality and

homogeneity of variance-covariance matrices, power rates are not reported.
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Table 28

All-Pairs Power Rates when Fitting a UN-H Covariance Structure

(Lognormal Distribution, K = 4, N = 45, Satterthwaite df)

All-Pairs Power
ARHI1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ (min) 53.30 53.60 56.80 54.00 62.70 62.90 73.40
d’ (min) 28.20 28.50 33.20 29.50 38.10 38.10 5340
¢’ (max) 49.80 50.40 53.40 50.70 68.00 68.50 70.60
d’ (max) 18.10 18.40 2240 19.20 34.60 36.10 42.10
¢’ (eq) 37.20 37.60 42.00 38.00 70.40 71.60 59.10
d’ (eq) 9.40 9.60 12.90 10.40 3550 38.30 23.10
RC
¢’ (min) 56.30 56.70 60.40 56.90 70.00 70.00 82.40
d’ (min) 2220 22,40 27.30 23.20 3340 33.40 57.20
¢’ (max) 83.10 83.70 85.90 84.30 94.40 94.90 94.40
d’ (max) | 41.50 42.10 47.90 43.30 63.60 65.60 68.70
¢’ (eq) 18.50 18.90 23.40 19.30 60.70 62.70 44.10
d’ (eq) 3.30 3.30 5.60 3.50 25.70 29.80 15.10
UN
¢’ (min) 38.80 39.20 44.20 39.60 52.90 52.90 66.80
d’ (min) 20.90 21.00 24.10 21.50 29.30 29.40 47.90
¢’ (max) | 36.20 36.40 40.30 36.60 54.50 55.70 56.40
d' (max) 12.30 12.50 15.10 13.00 25.80 27.00 28.40
¢’ (eq) 17.70 17.90 20.30 18.10 50.70 51.70 36.10
d’ (eq) 5.10 5.20 7.10 5.60 23.40 25.30 14.60

Note. ¢’ = positive pairing of unequal covariance matrices and unequal group sizes; d’ = negative
pairing of unequal covariance matrices and unequal group sizes (n; = 9, 15, 21); min = minimum,
max = maximum, eq= equally spaced mean configuration; Bon = Bonferroni; SMM = Studentized
maximum modulus; SRB = Shaffer’s (1986) sequentially rejective Bonferroni; Hoch = Hochberg’s
(1988) sequentially acceptive Bonferroni.
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Table 29

Average Per-Pair Power Rates when Fitting a UN-H Covariance Structure

(Lognormal Distribution, K =4, N = 45, Satterthwaite df)

91

Average Per-Pair Power
ARH]I
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ (min) 76.78 76.93 79.38 77.13 82.58 81.23 87.25
d’ (min) 56.40 36.60 60.78 57.60 63.40 61.13 72.70
¢’ (max) 84.74 84.90 86.44 84.98 90.52 90.60 92.02
d’(max) | 04.88 65.16 68.72 65.86 73.06 72.30 78.62
¢’ (eq) 85.55 85.72 87.25 85.88 93.77 94.20 92.07
d’ (eq) 68.07 68.32 71.17 69.02 78.68 79.68 79.05
RC
¢’ (min) 82.88 83.05 85.30 83.25 89.35 88.33 93.35
d’ (min) 58.63 59.05 64.40 60.18 68.00 64.63 79.53
¢’ (max) 96.02 96.20 96.76 96.32 98.72 98.86 98.80
d’ (max) | 80.92 81.24 84.42 81.96 88.88 89.32 91.60
¢’ (eq) 80.20 80.35 82.35 80.60 91.45 92.23 88.90
d’ (eq) 64.30 64.43 68.05 65.27 76.17 77.62 76.67
UN
¢’ (min) 72.83 73.08 75.93 7340 80.40 78.55 85.90
d’ (min) $3.73 53.98 57.58 54.63 60.18 58.05 71.28
¢’ (max) 78.24 78.34 80.34 78.52 84.96 85.20 86.30
d’ (max) | 60.48 60.74 64.12 61.54 68.80 67.90 72.88
¢’ (eq) 78.75 78.98 80.52 79.08 88.40 88.75 86.30
d’ (eq) 63.17 63.37 66.42 64.05 73.40 73.78 74.85

Note. See note from Table 28.
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All-Pairs Power Rates when Fitting the True Covariance Structure

(Lognormal Distribution, K =4, N = 45, Satterthwaite df)

All-Pairs Power
ARHI1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ (min) 56.10 56.30 58.50 56.50 66.80 66.90 75.10
d’ (min) 32.70 33.00 35.90 33.20 42.20 42.30 55.60
¢’ (max) 53.00 53.30 56.60 53.40 71.60 72.30 73.40
d’ (max) 23.70 23.90 27.00 24.30 41.50 42.60 46.30
¢’ (eq) 39.90 40.40 44.60 41.00 74.00 75.00 61.50
d' (eq) 12.60 12.80 16.40 13.30 39.80 42.20 27.50
RC
¢’ (min) 58.60 58.80 61.30 59.00 67.00 67.20 79.90
d’ (min) 27.40 27.60 31.80 27.90 35.20 3540 54.00
¢’ {max) 82.60 83.10 86.20 83.30 91.90 92.40 92.80
d’ (max) 47.10 47.40 52.20 48.20 64.90 65.90 71.30
¢’ (eq) 20.80 21.30 25.30 21.40 60.80 61.90 45.30
d’ (eq) 4.90 5.30 6.70 5.30 27.30 28.90 17.80
UN
¢’ (min) 38.80 39.20 44.20 39.60 52.90 52.90 66.80
d’ (min) 20.90 21.00 24.10 21.50 29.30 29.40 47.90
¢’ (max) 36.20 36.40 40.30 36.60 54.50 55.70 56.40
d’ (max) 12.30 12.50 15.10 13.00 25.80 27.00 2840
¢’ (eq) 17.70 17.90 20.30 18.10 50.70 51.70 36.10
d’ (eq) 5.10 5.20 7.10 5.60 23.40 25.30 14.60

Note. See note from Table 28.
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Average Per-Pair Power Rates when Fitting the True Covariance Structure

(Lognormal Distribution, K = 4, N = 45, Satterthwaite df)
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Average Per-Pair Power
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
¢’ (min) 78.80 78.95 80.80 79.13 84.43 83.30 88.23
d’ (min) 59.35 59.60 63.13 60.00 67.30 64.75 74.50
¢’ (max) 86.30 86.42 87.64 86.46 91.74 91.88 92.94
d’ (max) 68.36 68.64 71.12 68.96 76.88 76.08 80.74
¢’ (eq) 86.68 86.83 88.23 86.97 94.47 94.82 92.52
d' (eq) 71.43 71.58 73.83 71.88 81.62 8233 80.97
RC
¢’ (min) 83.45 83.70 85.25 83.88 87.80 86.73 92.70
d’ (min) 62.40 62.63 66.18 62.10 64.78 62.63 76.88
¢’ (max) 95.28 95.42 96.46 95.64 96.90 96.98 98.40
d' (max) | 82.38 82.68 85.42 83.32 83.30 83.50 91.48
¢’ (eq) 81.00 81.15 82.93 81.47 90.80 91.20 89.12
d’ (eq) 65.78 66.18 69.32 66.83 7240 72.85 77.10
UN
¢’ (min) 72.83 73.08 75.93 73.40 80.40 78.55 85.90
d’ (min) 53.73 53.98 57.58 54.63 60.18 58.05 71.28
¢’ (max) [ 78.24 78.34 80.34 78.52 84.96 85.20 86.30
d’ (max) | 6048 60.74 64.12 61.54 68.80 67.90 72.88
¢’ (eq) 78.75 78.98 80.52 79.08 88.40 88.75 86.30
d’ (eq) 63.17 63.37 66.42 64.05 73.40 73.78 74.85

Note. See note from Table 28.
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In terms of all-pairs power (see Tables 28 and 30) the stepwise MCPs were more
powerful than the simultaneous MCPs across mean configurations and population
variance-covariance structures. For the minimum and maximum range configurations the
power difference was generally less than 20%, however for the equally spaced range
configuration the power difference was gencrally substantial (i.c., greater than 20%).
Among the three stepwise MCPs, the Welsch procedure was most powerful under a
minimum range configuration, the SRB and Hoch procedures were most powerful under
an equally spaced range configuration, and all three procedures had similar power rates
under a maximum range configuration. Among the four simultaneous MCPs, Tukey’s
procedure was consistently most powerful across mean configurations for the investigated
conditions. When always fitting a UN-H variance-covariance structure, the average all-
pairs power rates of the simultaneous procedures, (Bon, Sidak, Tukey, and SMM), were
30.66%, 30.97%, 34.57%, and 31.48%, respectively and average rates for the three
stepwise procedures (SRB, Hoch, and Welsch) were 49.65%, 50.77%, and 51.88%,
respectively (see Table 28). The stepwise MCPs were more powerful than the
simultaneous MCPs, with an average difference of 18.85%. Fitting the true population
variance-covariance structure does provide a power advantage, however this difference
does not exceed 3 percentage points compared to always fitting a UN-H structure (e.g.,
average all-pairs power rates were 32.80%, 33.08%, 36.31%, 33.40%, 51.09%, 51.94%,
and 52.82%, respectively for the simultaneous and stepwise procedures when fitting the
true population variance-covariance structure; see Table 30).

[n terms of average per-pair power (see Tables 29 and 31), the stepwise
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procedures were more powerful than the simultaneous procedures across the mean
configurations and population variance-covariance structures, however this power
advantage was negligible (i.e., less than 10%). In addition, fitting the true population
variance-covariance structure was generally more powerful than always fitting a UN-H
variance-covariance structure but the difference was typically less than 2 pereentage
points. For the three stepwise procedures, SRB, Hoch, and Welsch, the average across
investigated conditions for average per-pair power were 80.60%, 80.13%, and 83.78%,
respectively, when fitting a UN-H variance-covariance structure and the average rates for
Bon, Sidak, Tukey, and SMM were 72.59%, 72.80%, 75.55%, and 73.29%, respectively.
When fitting the true population variance-covariance structure, the average average per-
pair power rates were 73.80%, 74.02%, 76.40%, 74.38%, 80.48%, 79.96%, and 84.06%,
respectively for the simultaneous and stepwise procedures.

For K = 8, a minimum range configuration was examined for the negative pairing
of unequal groups sizes and variance-covariance matrices with df based on
Satterthwaite’s solution. In general, the power advantage of the stepwise MCPs over the
stepwise procedures was smaller. It is important to note that Tukey's procedure was
comparable to the SRB and Hoch procedures in terms of power rates and was at times
more powerful than the simultaneous procedures (see Appendix B, Table B12). Likewise,
for K = 8, fitting the true variance-covariance matrix was typically more powerful than
always fitting a UN-H structure (see Appendix B, Table B13). In terms of all-pairs
power, the difference averaged across population variance-covariance structures never

exceeded 6 percentage points and for average per-pair power this difference was only 2
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percentage points.
Discussion

A mixed model approach which allows a user to model the variance-covariance
structure of the data was compared to known robust procedures based on a between-
subjects heterogencous Unstructured form of the variance-covariance matrix (i.c., UN-H)
when testing all possible pairwise differences among repeated measures marginal means.
Type I error and power results were reported for seven MCPs in a nonspherical repeated
measures design containing one between- and one within-subjects variable under
violation of normality and variance-covariance homogeneity, separately and jointly. The
four simultaneous MCPs investigated are available in SAS’ (1996) PROC MIXED and
the three stepwise MCPs, although not available in SAS, can easily be computed {rom the
statistical output. In addition to the testing strategies of always assuming a UN-H
structure versus fitting the true variance-covariance structure, two model selection criteria
were examined as testing strategies to evaluate the operating characteristics of the MCPs.

The testing strategy of always assuming a UN-H variance-covariance structure
performed similarly to fitting the true variance-covariance structure across investigated
conditions for each of the MCPs. The tendency was for error rates to be smaller when
fitting the true structure compared to always fitting a UN-H structure. Furthermore,
MCPs that were liberal under a UN-H structure became robust when the true variance-
covariance structure was fit to the data. The improved Type [ error control when fitting
the true structure was more evident when df were based on the default option. For

example, under violation of normality and multisample sphericity when the default df
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option was specified and unequal groups sizes were negatively paired with unequal
variance-covariance matrices (condition d’) all liberal error rates across MCPs (except
Welsch) became robust when the true structure (i.e., RC-H) was fit to the data.

The advantage of always fitting a UN-H varance-covartance structure is that a
researcher does not need prior knowledge about the truc population variance-covariance
structure to provide good Type | error control. An additional benefit of always fitting a
UN-H vanance-covariance structure as opposed to always fitting another between-
subjects heterogeneous structure is that a UN structure is the most general (i.e., allowing
the variances/covariances to be unequal and placing no restrictions on the form) and thus
can be applied in any situation where a researcher is uncertain about the true nature of the
population variance-covariance structure. Therefore, one can obtain robust pairwise
comparisons among the levels of the RM main effect without prior knowledge about the
true population variance-covariance structure. However, Keselman et al. (1999a) found
that one needs prior knowledge about the true population structure in order to obtain
robust tests of RM main and interaction effects with PROC MIXED.

Without prior knowledge about the true population vaniance-covariance structure
a researcher has the choice of two model selection criteria available in SAS’ (1996)
PROC MIXED. The AIC and SBC criteria were investigated as testing strategies where
each criterion selected the best variance-covariance structure from among 12 possible
structures. Allowing either the AIC or SBC criterion to select the best variance-
covariance structure generally provided robust Type [ error control, however neither

criterion can be relied upon to choose the correct structure with a high accuracy rate.
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When multisample sphericity was violated, the accuracy rates for both criteria were
highest when the population variance-covariance structure was RC-H. In contrast, when
the population structure was either ARHI-H or UN-H, the tendency was for a more
parsimonious structure to be selected (i.e., one with fewer parameters to be estimated). In
particular a AR1-H structure was selected with the greatest frequency by bath criteria.
Under the combined violation of normality and multisample sphericity, the AIC criterion
generally selected the correct structure with the greatest frequency but this averaged only
41% across conditions. The SBC criterion had the highest accuracy rates when the
population structure was RC whereas, when the population structure was ARHI1 or UN, a
more parsimonious structure was selected with the greatest frequency. That is, the AR1
structure was selected when variance-covariance matrices were equal across the grouping
variable (condition a) and the AR1-H structure was selected when variance-covariance
matrices were unequal across the grouping variable (conditions b, ¢, ¢’, d, and d’).

The pattern of Type [ error control was comparable between AIC and SBC
because of the similar error rates across the between-subjects heterogeneous structures
selected by either criterion as the best variance-covariance structure. A researcher can rely
on either criterion to select a variance-covariance structure that will provide acceptable
Type [ error control, particularly when the selection is a between-subjects heterogeneous
structure. However, if the goal of using either AIC or SBC is to select and examine the
true variance-covariance structure, a researcher will likely be mislead because of their
low accuracy rates. Therefore, another advantage of always fitting a UN-H structure is

that one does not need to fit numerous variance-covariance structures to a set of data and
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thus compare model selection criterion values across structures to obtain robust pairwise
comparisons among the levels of a RM main effect.

When multisample sphericity is violated, robust MCPs using a statistic with a
nonpooled error term (i.e., KKS statistic - nonpooled across both between- and within-
subjects factors) based on a UN-H variance-covariance structure with Satterthwaite df
solution have been suggested (Keselman 1994; Keselman & Lix, 1995; Keselman et al.,
1991). The performance of the MCPs based on Satterthwaite df and assuming a UN-H
variance-covariance structure through PROC MIXED were consistent with previous
research. However, the liberal rates of Type | error for the Welsch procedure across
population variance-covariance structures was a new finding in that it indicates the
limitation of the results reported by Keselman (1994) and Keselman and Lix (1995). A
likely reason for these different results is the various forms of the population variance-
covariance matrix and the data generation of a multivariate nonnormal distribution with
more extreme degrees of skewness in the present study. A caution with the use of
Welsch's procedure is that under certain conditions with Satterthwaite df, a more
conservative critical value was used when the computed degrees of freedom for a
pairwise test statistic was less than five (i.e., the tabled critical values for Welsch’s
procedure are not given for degrees of freedom less than five).

The robust performance of a nonpooled pairwise test statistic under violation of
multisample sphericity is well known. However, the advantage of adopting a conservative
method of estimating df (i.e., Satterthwaite’s solution) for this statistic has never been

compared to another method of estimating df. SAS’ (1996, 1999) PROC MIXED
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provides a user with the flexibility of a default df option with the use of a nonpooled
pairwise statistic. Reported results indicate that when the default degrees of freedom were
used Type I error rates were typically larger than when Satterthwaite df was adopted and
under certain conditions error rates exceeded Bradley’s (1978) upper limit. For example,
the combined violation of normaiity and multisample sphericity resulted in liberal error
rates for all MCPs when unequal group sizes were negatively paired with unequal
covariance matrices for a RC population variance-covariance structure. Although, fitting
the true population variance-covariance structure to the data provided robust rates of error
for all MCPs except Welsch’s procedure when df were based on the default option. In
contrast with the results based on Satterthwaite df, to obtain valid pairwise tests using
default df, one needs prior knowledge about the true population variance-covariance
structure.

Because a researcher never knows the true state of the population means, it is
important that a MCP control Type I error under both complete and partial null
hypotheses. The resuits for the simultaneous procedures under a partial null hypothesis
were consistent with previous research (Keselman, 1993, 1994). That is, error rates were
typically less than the .05 significance level and most of the time, rates were less than
Bradley’s (1978) lower limit. Under violation of multisample sphericity and the
combined violation of normality and multisample sphericity, only two MCPs were able to
maintain Type [ error control within Bradley’s (1978) limits except for the occasional
conservative rate when unequal group sizes were positively paired with unequal variance-

covariance matrices. Specifically, the SRB and Hoch procedures based on a UN-H
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structure with Satterthwaite df.

As expected, the stepwise MCPs were more powerful than the simultaneous
MCPs when df were based on Satterthwaite’s solution. This power difference was
negligible under violation of multisample sphericity, but increased under the combined
violation of normality and multisample sphericity in favor of the stcpwisc procedures.
However, increasing the levels of the RM factor from 4 to 8 resulted in less discrepancy
between the simultaneous and stepwise procedures in terms of all-pairs and average per-
pair power rates. Furthermore, the power advantage of fitting the true population
variance-covariance structure compared to always fitting a UN-H structure was negligible
across the MCPs for both all-pairs and average per-pair power rates.

In conclusion, either Shaffer’s (1986) modified sequentially rejective Bonferroni
or Hochberg's (1988) sequentially acceptive Bonferroni procedure based on a UN-H
structure with Satterthwaite df are recommended. Not only do these procedures control
Type I error across a wide range of conditions but are powerful in detecting true pairwise
differences. Lix and Keselman (1995) provide a SAS/IML (SAS Institute, 1989) program
that enables a user to calculate nonpooled pairwise test statistics based on Satterthwaite’s
df solution which can be used in the computation of the previously mentioned MCPs.
However, the availability of robust pairwise test statistics in a major statistical package
should encourage their adoption by applied researchers because of ease and accessibility
considerations. A potential outcome of this research would be the incorporation of robust
MCPs such as SRB and Hoch into a future release of the PROC MIXED program given

their superior performance over the simultaneous MCPs currently available. A potential
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advantage of the use of PROC MIXED is the ability of the program to handle missing
data. Therefore, a direction for future research is the investigation of the robustness

properties of various MCPs through PROC MIXED when data are missing.
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Footnotes

! Sphericity is not a requirement for the statistics investigated, however prior
research has indicated that tests of the type investigated were affected when data were not
spherical (see Keselman et al., 1993).

* An extension of the KKS pairwise statistic to test omnibus fixed-cffect tests is
the approximate df multivariate approach due to Johansen (1980) and Keselman et al.
(1993). However, tests of omnibus fixed-effects with a UN-H covariance structure with
Satterthwaite df through the MIXED procedure are not equivalent to this approximate df

multivariate WJ approach.
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Repeated Measures

Population Correlation and Covariance Structures

Heterogeneous First-Order Autoregressive (ARH1)

Epsilon = .7490698

Correlation Matrix

I 0.7300 0.5329
1 0.7300
1
Covariance Matnix
8.0 6.5293185 4.7664025
10.0 7.3
10.0
Epsilon = .7472201
Correlation Matrix
1 046 0.2116 0.097336
l 0.46 0.2116
1 0.46
1
Covariance Matrix
8 3.68 1.8926079 0.8705997
8 4.1143651 1.8926079
10 4.6
10

0.3890
0.5329
0.7300

38115726
5.837627
7.9967493
12.0

0.0447746  0.0205963
0.097336  0.0447746
0.2116 0.097336
0.46 0.2116

0.46
1

0.4004758 0.1842189
0.8705997 0.4004738
2.116 0.97336
4.6 2.116
10 4.6

10

0.0094743
0.0205963
0.0447746
0.09733%
0.2116
0.46

1

0.0928288
0.2018017
0.4904807
1.0662625
23179619
5.0390475
12

0.0043582
0.0094743
0.0205963
0.0447746
0.097336
0.2116
0.46

1

0.0427012
0.0928288
0.2256211
0.4904807
1.0662625
2.3179619
5.52

12

114
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Random Coefficient (RC)

Epsilon = 0.7521197

Correlation Matrix

1 0.6728846 0.6736112 0.6637471
1 0.7985195 0.8074601
l 0.8702999

1

Covanance Matrix

2.7301562 2.3002343 28703124 3.4403904
4.2803124 4.2603903 5.2404688

6.6304686 7.0405469

9.8406248

Epsilon = 7522259

Correlation Matrix

1 0.5544533 0.5603854 0.5589393 0.552914 0.5443524 0.5346061 0.5245107
i 0.6091684 0.6199025 0.623752 0.6231524 0.6198349 0.6149589

1 0.6638484 0.6763223 0.6827344 0.6851224 0.6849127

1 0.7137357 0.7261191 0.7333992 0.7372158

l 0.7569291 0.7683228 0.7755436

1 0.7932651 0.8033376

! 0.8233998

!

Covariance Matrix
2.1639159 1.2713738 1.3788318 1.4862897 1.5937477 1.7012056 1.8086636 1.9161215
2.4298318 1.5882897 1.7467477 19052056 2.0636636 2.2221215 2.3805795
2.7977477 2.0072056 2.2166636 2.4261215 2.6355795 2.8450374
3.2676636 2.5281215 2.7885795 3.0490374 3.3094954
3.8395795 3.1510374 3.4624954 3.7739533
4.5134954 3.8759533 4.2384113
5.2894113 4.7028692
6.1673272



Unstructured (UN)
Epsilon = 7505351

Correlation Matrix

1 0.729445 0.6546579
1 0.7087869
1
Covariance Matrix
8.0 6.5243544 5.8554383
10.0 7.087869
10.0
Epsilon = 0.750843 |
Correlation Matrix
I 0.5943965 0.4785602

1

Covariance Matrix

8 4.7551721 4.2803725 4.5030373 4.2386088 4.6126218
4.5376901 4.4681761 4.7893396 4.6665056
6.0141005 5.7121395 5.9500983
6.6293261 6.2272444
6.9339653

8

0.5073292

0.3462883
0.3669361
0.4932449
1

3.3929186
4.0195836
5.4032272
12.0

Repeated Measures

0.5034549 0.4738909 0.5157068 0.5507265 0.4286351
0.4995573 0.5354644 0.5217312 0.6097338 0.1999506

0.6014101 0.571214 0.5950098 0.5655234 0.3317410
0.6629326 0.6227244 0.7274189 0.5669606

1

10

1

10

0.6933965

1

10

0.6878822 0.6774241

1.7905351 0.6790915

1 0.6186267
1

5.3959954 4.1997488
5.9741465 1.9591081
6.1949987 3.6340406
7.9684752 6.2107423
7.5353715 7.4208096
8.6598784 7.4390746
12 7.4235206
12
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Appendix B
Type I Error and Power Results for K=8

Table Bl

Study Conditions (Lognormal Distribution, K = 8, N = 60 Satterthwaite df )

Condition | Pop Cov Sample Sizes | Cov Mat® Pairing Null Hypothesis
S

d ARHI-H 12,20.28 1:3:5 - TR TR TR TP TR T TR
d’ RC-H 12,20,28 1:3:5 - M= == TR SR =R = [y =0
d’ UN-H 12,20,28 1:3:5 - TR TR TIC TR TP TR TR TR0
d ARHI-H 12,20,28 1:3:5 - TR IS TIC TR TP TR TR T
d’ RC-H 12,20,28 1:3:5 - TR O TR (U A TOL TR TR T
d UN-H 12,20,28 1:3:5 - W= =H = * He T, =Ha =y

Note. See note from Table 1.



Table B2

Empirical Type I Error Rates (%) when Fitting a UN-H Covariance Structure
(Lognormal Distribution, K = 8. N = 60 Satterthwaite df)

Repeated Measures
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Complete Null Hypothesis
ARH1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d 2.50 2.70 4.50 3.20 250 2.50 8.20
RC
d 3.90 3.90 5.00 4.00 3.80 3.80 9.90
UN
d 3.70 370 5.00 3.90 3.70 3.70 10.00
Partial Null Hypothesis
ARH1
d 1.50 1.50 1.90 1.70 310 2.70 6.70
RC
d’ 1.40 1.50 2.40 1.80 3.20 3.10 7.80
UN
d 1.30 1.40 2.50 1.70 340 3.20 7.10

Note. See note from Table 2.



Table B3

Empirical Type I Error Rates (%) when Fitting the True Covariance Structure

(Lognormal Distribution. K = 8, N = 60, Satterthwaite df)

Repeated Measures

Complete Null Hypothesis
ARH1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d’ 2.60 2.60 3.70 2.70 1.90 1.90 7.60
RC
d' 2.40 2.40 370 2.50 2.20 2.20 7.50
UN
d’ 3.70 3.70 5.00 3.90 370 3.70 10.00
Partial Null Hypothesis
ARHI
d 0.80 0.90 2.00 1.20 2.50 2.40 6.30
RC
d' 1.10 1.10 1.80 1.10 330 3.00 5.70
UN
d’ 1.30 1.40 2,50 1.70 3.40 320 7.10

Note. See note from Table 2.
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Table B4

Empirical Type I Error Rates (%) with Akaike Criierion Selecting the Best Covariance

Structure (Lognormal Distribution, K = 8, N = 60, Satterthwaite df)

Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d' 2.50 2.50 3.60 2.60 1.90 1.90 7.90
RC
d 340 340 4.40 3.50 3.30 3.30 8.20
UN
d 3.60 3.70 5.10 4.00 3.60 3.60 10.10
Partial Null Hypothesis
ARHI
d 0.80 0.90 2.30 1.20 2.80 2.70 6.40
RC
d 1.10 1.10 2.10 1.20 310 2.90 6.40
UN
d’ 1.50 1.60 2.80 1.90 3.60 340 7.10

Note. See note from Table 2.
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Table BS

Empirical Type I Error Rates (%) with Schwarz Criterion Selecting the Best Covariance
Structure (Lognormal Distribution, K = 8, N = 60, Satterthwaite df)

Complete Null Hypothesis
ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d 3.20 3.20 4.60 3.30 3.20 3.20 9.20
RC
d’ 2.60 2.60 4.00 2.70 2.40 2.40 7.90
UN
d’ 2.70 2.70 4.10 2.80 2.60 2.60 8.20
Partial Null Hypothesis
ARHI
d 1.70 1.80 3.00 1.90 4.20 4.00 8.30
RC
d’ 1.40 1.40 2.20 1.40 3.70 340 6.40
UN
d’ 1.50 1.50 2.10 1.50 3.50 3.40 6.70

Note. See note from Table 2.
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Table B6

Percentage of Time Akaike Criterion Selected the Correct Covariance Structure

(rounded to whole numbers) (Lognormal Distribution, K = 8, N = 60, Satterthwaite df)

Covanance Structure

Cond | CSH | CSH-H | HF | HF-H | AR] | ARI-H | ARH! | ARHI-H | RC | RC-H | UN | UN-H
d' 13 84 3

d 7 46 43

d 2 6 920

d 14 8 2

d 5 48 44

d’ 2 ) 90

Note. See note from Table 10.

Table B7

Percentage of Time Schwarz Criterion Selected the Correct Covariance Structure
(rounded to whole numbers) ([.ognormal Distribution, K = 8, N = 60, Satterthwaite df)

Covanance Structure

Cond | CSH | CSH-H | HF | HF-H | ARl | ARI-H | ARH! | ARHI-H | RC | RC-H | UN | UN-H
d 84 16

d 2 2 95

¢ 4 2 88

d 87 13

d 3 2 95

d’ 7 2 86

Note. See note from Table 10.

({8
[}



Table B8

Empirical Type [ Error Rates (%) when Fitting a UN-H Covariance Structure

(Lognormal Distribution, K = 8, N = 60 Default df)

Repeated Measures 123

Complete Null Hypothesis
ARH1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d 6.80 6.90 8.50 6.90 6.80 6.80 16.20
RC
d’ 8.40 8.40 10.20 8.40 8.40 8.40 17.70
UN
AL
& | 6.20 6.20 7.80 6.20 6.20 6.20 16.00
Note. See note from Table 2.
Table B9
Empirical Tvpe I Error Rates (%) when Fitting the True Covariance Structure
{Lognormal Distribution, K = 8. N = 60, Default df)
Complete Null Hypothesis
ARHI1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d’ 4.40 4.50 5.50 4.50 4.40 4.40 11.80
RC
d’ 4.60 4.60 5.80 4.60 4.60 4.60 12.00
UN
d 6.20 6.20 7.80 6.20 6.20 6.20 16.00

Note. See note from Table 2.




Table B10
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Empirical Type I Error Rates (%) with Akaike Criterion Selecting the Best Covariance

Structure (Lognormal Distribution, K = 8 N =60, Default df)

Complete Null Hypothesis
ARH!
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d 4.50 4.60 5.70 4.60 4.50 4.50 12.10
RC
d 6.50 6.50 8.30 6.50 6.50 6.50 14.90
UN
d’ 6.00 6.10 7.80 6.10 6.00 6.00 15.70

Note. See note from Table 2.

Table B11

Empirical Type I Error Rates (%) with Schwarz Criterion Selecting the Best Covariance

Structure (Lognormal Distribution, K = 8, N = 60, Default df)

Complete Null Hypothesis
ARHI
Cordition | Bon Sidak Tukey SMM SRB Hoch Welsch
d 4.30 4.50 5.80 4.50 4.30 4.30 11.50
RC
d 4.90 4.90 6.30 4.90 4.90 4.90 12.30
UN
d 4.30 4.40 5.60 4.40 4.30 4.30 11.70

Note. See note from Table 2.
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Table B12

Power Rates (Minimum Mean Configuration) when Fitting a UN-H Covariance Structure
(Lognormal Distribution K = 8, N = 60, Satterthwaite df)

All-Pairs Power
ARH1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d 15.20 13.60 21.50 16.80 22.10 2220 73.90
RC
d’ 12.00 12.10 17.30 12.70 19.90 20.00 80.90
UN
d 23.50 23.70 31.40 25.40 31.70 31.70 86.40
Average Per-Pair Power
ARHI1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d’ 69.69 70.03 75.02 7t.19 73.65 72.74 92.71
RC
d 71.34 71.66 77.13 72.86 75.64 74.81 95.99
UN
d’ 80.81 81.03 84.75 81.74 83.71 83.36 97.48

Note. d’ = negative pairing of unequal covariance matrices and unequal group sizes (n; = 12,
20, 28); Bon = Bonferroni; SMM = Studentized maximum modulus; SRB = Shaffer’s (1986)
sequentially rejective Bonferroni; Hoch = Hochberg’s (1988) sequentially acceptive

Bonferroni.



Table B13
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Power Rates (Minimum Mean Configuration) when Fitting the True Covariance Structure

(Lognormal Distribution K = 8, N = 60, Satterthwaite df)

All-Pairs Power

ARHI
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d' 24.70 24.90 28.20 25.20 31.30 31.30 77.40
RC
d’ 18.70 18.80 24.30 19.60 21.90 21.90 75.90
UN
d 23.50 23.70 31.40 25.40 31.70 31.70 86.40
Average Per-Pair Power
ARH1
Condition | Bon Sidak Tukey SMM SRB Hoch Welsch
d 76.79 77.01 79.88 77.24 80.03 79.51 93.80
RC
d' 68.51 68.76 74.66 70.57 65.26 64.62 90.46
UN
d’ 80.81 81.03 84.75 81.74 83.71 83.36 97.48

Note. See note from Table B12.



Appendix C

Repeated Measures

Population Means for Power Conditions

K =4 Minimum Range Configuration

ARHI: -0.75 -0.75 0.75 0.75
RC: -0.50 -0.50 0.50 0.50
UN: -0.75 -0.75 0.75 0.75

K = 4 Maximum Range Configuration

ARHI: -1.41421356 0.00 0.00
RC: -1.06066017 0.00 0.00
UN: -1.41421356 0.00 0.00

K =4 Equally Spaced Range Configuration

ARHI1: -1.67705098
Effect Size = 1.25

-0.55901699

RC: -1.00623059
Effect Size = 0.75

-0.33541020

UN: -1.67705098
Effect Size = 1.25

-0.55901699

K =8 Minimum Range Configuration

ARHI: -1.25 -1.25 -1.25 -1.25
Effect Size = 1.25
RC: -0.50 -0.50 -0.50 -0.50
Effect Size = 0.50
UN: -1.00 -1.00 -1.00 -1.00

Effect Size = 1.00

Effect Size = 0.75

Effcct Size = 0.50

Effect Size =0.75

1.41421356

1.06066017

1.41421356

0.55901699

0.33541020

0.55901699

1.25  1.25
0.50 0.50
1.00 1.00

Effect Size = 1.00

Effect Size =0.75

Effect Size = 1.00

1.67705098

1.00623059

1.67705098

1.25

0.50 0.50

1.00 1.00
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