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Abstract 

Zn this thesis several global mammographic features were examined for their ability 

to c l a s s e  the mammograms into 

1. classes based on the proportion of dense tissue 

A set of 240 digitised mammograms was obtained fiom the Digital Database for 

Screening Mammography from the University of South Florida. The database was 

composed of mammograms that were digitized using one of three high resolution x- 

ray digitisers. It was necessary for the images to be corrected for three systematic 

differences between the x-ray digitisers: the resolution, the slope of the calibration 

c u v e  and non-Iinearities in the calibration curve. A simple correction was also made 

for differences in the mnmmographic technique by adjusting the histogram of the 

breast shadow. 

The breast shadow was then segmented using a semi-automatic procedure and sev- 

eral mammographic properties were extract ed: global moments of the histogram, the 

average local moments calculated for ~ 3 x 3  mm2 regions covering the breast shadow, 

subregions of the global histogram, multifractal dimensions and the texture energy, 

entropy and inertia calculated for the wavelet transform of the image. 



Abstract ii 

The classification accuracy, when considering the density grades, was consistently 

- 40% correct and independent of the properties used in the classifier. When classify- 

ing into normal/abnormal groups, the regional moments, histogram sub-regions and 

the multifractal dimensions al1 had approximately the same performance at - 60% 

correctly classified cases, while the global moments classified - 70% of the cases 

correctly. The texture energy, entropy and inertia also had approxünately the same 

performance but at - 80-85% correct. In addition, the classifiers exhibited no signifi- 

cant change in classification performance for variations in age for any of the examined 

properties with p = 0.001. 

The texture features resulted in the highest classification accuracy. The results 

rnay show some residual dependence on the x-ray digitiser but the smaii sample size 

precluded any definitive conclusions regarding the influence of the scanners. Overall, 

a classifier using six texture inertia features exhibited the best overall classification 

accuracy with minimal age dependence. 
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Chapter 1 

Introduction 

The prevalence of breast cancer in industrialised nations and its rapid growth in 

developing nations has it poised as one of the most common malignancies world- 

wide. In Canada alone, its incidence has risen steadily over the last three decades 

to an estimated 105 cases per 100 000 [NCSC, 19991. Simultaneously, the decrease 

in mortality rates over the same period may be the best testament to the effec- 

t iveness of mammographic screening. A secondary effect of the widespread a d o p  

tion of screening programs is a tremendous growth in the sheer volume of screen- 

ing mammograms that must be evaluated. This, combined with the low contrast 

inherent in soft tissue x-ray imaging contributes to making mammographic inter- 

pretation difficult and time consuming. There are many options, both emerg- 

ing and well established, that are intended to augment the specificity of screening 

mammography, such as positron emission tomography (PET), magnetic resonance 

imaging (MRI), ultrasound, etc. [Adler and Wahl, 1995, Sabel and Aichinger, 1996, 

Jones, 1992, Reynolds, 19991. These modalities would enable better 

ation between malignant disease and a benign condition. However 

differenti- 

there are 

- 



few alternatives to mammography itself, although there have been a number of 

significant developments in this direction such as the use of synchrotron radi- 

ation [Burattini et al., 19951; phase imaging [Ingal et al., 19981 and digital mam- 

mogaphy [Newman, 1999, Y d e  and Rowlands, 1997, Schmidt and Nishikawa, 1995, 

Simonetti et al., 19981. Both phase imaging and the use of synchrotron radiation for 

diagnostic irnaging are relatively new developments and attempt to reduce patient 

dose while improving image quality by using a nearly monochromatic x-ray source. 

Unfortunately, both modalities are quite far from clinical use- 

A more relevant development is in the area of digital mammogaphy The approach 

is more conventional, replacing the film with a solid state detector. Many types of 

detectors have been used in dinerent systems. For example, some employ a cartridge 

of amorphous selenium similar to that used in the, now obsolete, Xeromammography 

units while others use two dimensional arrays of CCD elements or a line of CCDs 

scanned across the breast. As yet, these systems are not currently in cornmon use 

and the most sensitive modality at present continues to be conventional screen/film 

mammography. However, the importance of digital systems will only increase in the 

future. In addition, the need for both computer manipulation of the images and 

computer assisted diagnosis will grow with it. 

Even without the widespread adoption of fully digital systems, attempts have been 

made to reduce some of the volume of screening mammograms that require interpre- 

tation, using the automated systems as a "second reader". In particular, a group 

from the University of Chicago has developed a system that has been undergoing 

clinical trials [Nishikawa et al., 1996). This system attempts to detect both masses 

and microcalcification clusters through a fairly complex series of steps. The system 



requires a large nurnber of parameters, such as threshold levels, and the developers 

have attempted to adjust these parameters automatically in order to optimise its 

performance [Anastasio et al., 19981. 

Digital mammography will also permit extensive computer processing of mam- 

mograms. In anticipation of widespread introduction of such systems, this thesis 

examines several tasks that could be incorporated into a screening procedure. The 

primary purpose is to i d e n t e  mammographic features of interest either for diagnos- 

tic purposes or as indicators of risk. For diagnostic applications, the intention is to 

sirnply flag a possibly abnormal mammogram for special consideration rather than 

to attempt to isolate the region where the abnormality is located. While it may be 

possible to extend the procedures used in this thesis to encompass the more difFicult 

task of abnormality identification, this is beyond the scope of the preseni work. 

A secondary goal is the identification of mammographic properties which may be 

useful in assessing risk. In generai, there are three categories which infiuence the 

development of breast cancer, 

1. heredity 

2. hormonal and reproductive factors 

3. environment /lifestyle. 

The interactions of these contributing factors are complicated and it is difficult to 

quantiSl the factors as well as their interactions in order to assess the risk. While 

there do exist biological markers which are indicative of breast cancer risk, such as 

BRCAl and BRCAB, there are a large number of breast cancer cases where either 

or both of these genes are normal [Weber, 19981. Therefore, the assessrnent of risk 



can be difficult, in general. However, if a property can be found that is indicative of 

breast cancer risk, and can be extracted fiom a mammogram, it would no longer be 

necessary to at tempt to quanti& these qualitative factors and t heir interactions. 

A quantifiable measure of the risk using mammographic features could also be 

useful for applications in the following areas: 

Risk assessrnent A patient categonsed as being in a high nsk group would likely 

have a different course of treatment than one at low risk. The different treatment 

can include a shorter time between mammography screens, preventative drug 

treatrnents or even lifestyle changes. 

Evaluation of prevention protocols A simple and reliable method to evaluate the 

effectiveness of an experimental preventative therapy would enable new thera- 

pies to be brought into practice much faster than is currently possible. Presently, 

the effectiveness of a protocol cannot be evaluated without lengthy trials in- 

volving large numbers of patients. Indeed, there is already work ongoing in this 

direction by Boyd et al. who examined the effects of dietary fat on mammo- 

graphie features [Boyd et al., 19971, as well as by Ursin et d [Ursin et al., 19961 

and Atkinson et al. [Atkinson et ai., 19991 both of whom are investigating the 

impact of Tamoxifen on mammographic features. Of course, the adoption of 

such a test would require irrefutable evidence to link the factor with breast tan- 

cer risk which would not be possible without extensive clinical trials. However, 

even prior to reaching this stage of research, the test would still be useful for 

ranking candidate preventative therapies for the more difficult and expensive 

clinical trials. 

In addition, a feature characteristic of risk would also assist in reseaxch into the 
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contribution and interaction between the factors listed above and breast cancer. 

Clearly, there would be tangible benefits from the development of a mechanism 

for the reliable classification of mammograms for either assisting in the diagnosis of 

screening mammograms or in the area of risk prediction. 

1.1 Breast Cancer Risk Evaluation 

Currently, there are two primary methods used to assess the risk of developing breast 

cancer from mamrnographic features: 

1. Wolfe grades 

2. The fraction of dense parenchymal tissue. 

Wolfe grades were introduced by J. Wolfe [Wolfe et al., 1986, Wolfe, 1976al and is one 

of the earliest mammographic classification schemes that reflects breast cancer risk. 

Wolfe grades classi& mammograms into four grades with increasing cancer risk. The 

lowest risk was assigned to mammograms with little parenchymal tissue and the high- 

est for extensive and atypical growth of the duct epithelium (atypical hyperplasia). 

The two remaining grades were assigned for the amount and appearance of ducts. 

The relationship between the Wolfe grade and breast cancer risk has already been 

extensively studied by many others. As a brief ovewiew see [Brisson et al., 1982a, 

Brisson et al., 1982b, Boyd et al., 1982, Tabir and Dean, 1982, Brisson et al., 1984, 

Goodwin and Boydl 1988, Arthur et al., 1990, Salminen et al., 19981'. In fact, there 

has even been some work on correlating Wolfe grades to the histological classification 

of biopsy samples, with respect to breast cancer [Urbanski et al., 19881. 

'The work done in this area is extensive and the List is by no means complete. 
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The primary elernents that distinguish the divisions between the Wolfe grades are 

the mammographic density and the appearance of the duct structure and there has 

been some work on quantifying both characteristics. For instance, automatic quantifi- 

cation of the duct patterns has been used by Shadagopan [Shadagopan et al., 19821 

who employed morphological features, such as the shape and spatial frequency, to 

dist inguish actual ducts from other mammographic features. Alternatively, Wolfe 

[Wolfe et al., 19861 and Saftlas [Saftlas et al., 19911 a quantitative rneasure of the 

mammographic density using a planimeter was compared to the WoEe grades for cor- 

relation to breast cancer risk. Their results indicate that the mammogaphic density 

(or simply density) is a more significant risk factor than the appearance of the duct 

structure. 

Since then, many have followed their lead in concentrating on the mammographic 

density in preference to the duct structure but different groups have used vary- 

ing numbers of density grades; from as few as four as in the American College 

of Radiology BiRADs guidelines [ACR, 19931 to a continuous scale from 0-100 as 

in [Boone et al., 19981. The range of density classes is a result of a compromise 

between the need for distinguishing subtle differences and minimization of inter- 

and intra-observer variations, since the only available standard for the mammo- 

graphie density is the classification according to an experienced observer. Several 

large and very significant studies involving 708 cases were reported by Boyd et al. 

[Boyd et al., 1995, Byng et al., 19971 who found a strong correlation between breast 

cancer risk and a six category classification scheme, SCC, where the density classes 

were divided as: None, (0,10%), [lO,25%), [25,5O%), [50,75%) and [75,100%] of dense 

tissue. The correlation of the risk to t hree ot her mammographic features (described 
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in detail below) was also considered by Boyd. 

1.1.1 Automated Methods 

The difficulw with the conventional approach to assigning eithera Wolfe grade or a 

density class is the subjective nature of the assigrment which can have quite a low 

inter-observer correlation. In fact, Boyd [Boyd et al., 19821 found a 70% agreement 

between two radiologists when assigning Wolfe grades and 60% when class i !g  the 

ext ent of dysplasia. 

There have been several approaches to using some automated characteristic to re- 

duce this subjectivity. For example, Boone [Boone et al., 19981 created a continuous 

scale (0-100) to categorise breast density and relied on the rank of a set of mammo- 

g-rams when ordered according to the proportion of breast density. This ranking was 

then used to generate the standard rather than depending upon someone's judgement 

as to the category in which the mammogram should belong when examining them in- 

dividually Once the mamrnograms were ordered, six unique features that were mostly 

related to some form of fractal dimension, were extracted and used to form a linear 

"breast density index" (BDI) so that a numerical value could be generated without 

further need of a human observer. In addition, Tahoces et al. [Tahoces et al., 19951 

was able to achieve reasonable classification of Wolfe grades (70-90% correct with 

the majority of misclassifications offset by only one class) by performing some image 

enhancement using unsharp mask filtering before extracting some simple textures. 

The texture features included the RMS power and the mean of the limits of the grey 

scale range in a region of interest (ROI) for a cornputer selected ROI. 

Alternatively, Karssemeijer et al. [Karssemeijer, 19981 used some simple features 
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from the grey level distribution of the lateral views from a set of screening marnmo- 

grams to classify four density grades (< 5%, 5-25%, 25-75% and > 75%) with - 80% 

accuracy The features which were used were quite straightforward, including: the 

standard deviation, skewness, the difierence in means between the grey level distri- 

bution in the breast tissue and pectoral muscle and the integrated &£Ference between 

the two distributions. Each property was found as a function of the distance to the 

skin surface. Even with compression, the breast thickness changes rapidly close to 

the surface so that this functional dependence on the distance to the skin can make 

a significant impact on the results. 

Some of the most extensive work has been done by Byng et al. who develop- 

ed three classification properties. Each was assessed for their classification ability 

in categorizing mammograms into a six grade density classification scheme (SCC). 

The first method, described in [Byng et al., 19941, used a semi-automated procedure 

where the user was required to select a pixel that was used as a threshold grey level to 

distinguish the breast tissue fkom the background. This also allowed the computer to 

automatically calculate the area of the actual breast shadow. Then the user selected 

a second threshold that was representative of the parenchymal tissue. The percent 

density was calculated from the fraction of the breast tissue above this second thresh- 

old normalised by the total segmented image size. Since the exposure conditions c m  

Vary from film to film, a Gxed threshold to delineate the tissue types could not be 

employed. WhiIe the approach was still subjective, the resulting marnrnogram classi- 

fication did not have nearly as much inter-observer variation as for the conventional 

approach to density classification. Byng was able to achieve high inter-observer cor- 

relation even with novice users with minimal training (typically with a Spearman 
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correlation coefficient 2 0.9). 

In a recent study by Huo [Huo et al., 20001 the difficulty in relating mammo- 

graphie density and risk was bypassed by considering a weil established risk factor 

56th a strong biological basis, the mutation in two genes, BRCAl and BRCA2. Again, 

several features were examined - many extracted £rom the histogram characteristics 

such as the average, minimum and maximum grey level in a region of interest as 

well as the grey level that delineated a given fraction of the total number of pixels 

in the ROI and several other conventional texture characteristics. When a receiver 

operating characteristic (ROC) curve was generated for the various features, the area 

beneath the curve varied kom 0.53-0.87 with an average value of 0.72. When four 

features were considered simultaneously, the area increased to 0.91 which indicates a 

considerable increase in the pro bability of correctly identwng the patients wit h the 

genetic mutations. 

1.1.2 F'ract al Techniques 

Byng et al. [ B p g  et al., 1996a, Byng et al., 19971 has also examined two additional 

features, the regional skewness and a fractal dimension, for a correlation with breast 

cancer risk. For the regional skewness, the breast tissue was segmented and the 

segmented region tessellated into small ROI'S each 3.12x3.12 mm2 and the skewness 

calculated for each ROI prior to averaging ali the values to obtain a single overall 

result2. The second property, a fractal dimension, was found by treating the image 

as a surface in a three dimensional abstract space where the height was proportional 

to the grey level for the corresponding pixel location. Shen the behaviour of the 

2See Section 2.1.1 and Section 3.3.1 or [Byng et al., 1996al for hirther detaiis. 
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surface area was characterised at  diEerent resolutions by finding the slope for the 

relationship between the log(area) as a function of the log(res~lution)~. AU three 

properties showed good correlation to the density classification using SCC and were 

used to find the relative risk in the studies listed above. In principle, aLl of them 

represent a continuous scale for the breast density. While the change in relative 

risk for variations in the regional skewness, fiactal dimension and (semi-automated) 

percent density were not as dramatic as for the SCC approach, the results found by 

Byng were still significant after adjustment for other well accepted risk factors such 

as family history or reproductive factors. 

A sirnilar method for the calculation of a fractal dimension was used by Caldwell 

et al. [Caldwell et al., 19901 for the purpose of distinguishing Wolfe grades. Caldwell 

encountered only limited success. In particular, he found that distinguishing the high 

risk (upper two grades) from the low risk (lower two grades) was more reliable than its 

ability in distinguishing divisions within either the upper or lower two grades. Another 

conventional fractal dimension, a box-counting dimension had been successfully used 

by Velanovich [Velanovich, 19961 to characterise the boundary of a suspicious m a s  

and identi@ benign from malignant masses. 

However, the cutcome when using fractal dimensions in medical applications has 

been varied. For example, Karssemeijer [Karssemeijer, 19981 was not able to re- 

produce the results of Caldwell [Caldwell et al., 19901 and Byng [Byng et al., 1996a] 

when using a fkactal dimension. It should be noted that  Karssemeijer used films 

obtained over a long period, 1983-1994, and the quality of the films varied signifi- 

cantly during that  tirne. Their results indicated that the techniques they employed 

3For those unfamiliar with fiactals, a description of the concepts for these studies dong with the 
concepts used for the multifractal dimensions used in this thesis can be found in Appendix A. 
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which were successful in classifying the density performed better when the images 

were constrained to the mammograms that were obtained more recently. 

Veenland et al. [Veenland et al., 19961, examined many different fiactal dirnen- 

sions for simulated organs. A comparison was made between the "true" fractal di- 

mension and the fkactal dimension which would be obtained from film with known 

characteristics. Veenland suggested that fkactal dimensions are very sensitive to vana- 

tions in the modulation transfer function (MTF) and noise charactenstics of the film 

and exposure conditions. On the other hand, Caldwell [Caldwell et al., 19901 and 

Byng [Byng et al., 1996al both have examined the effects of changes in the Hurter 

and Driffield (HD) cunre typical of their mammography system with Little impact on 

their results. This apparent discrepancy may have been due to 

The extensive QA procedures for modern mammography systems. Some of 

the films used by Karssemeijer was sufficiently old that the film quality was 

considerably different compared to their more recent samples. 

Sufficient clifFerence in the characteristics of the fractal dimensions for malignant 

and normal tissue that the influence of the MTF and noise in the film was not 

able to mask the differences. Veenland's conclusions were drawn fiom the change 

the film makes to the "actual" fiactal dimension while Byng and Caldwell used 

genuine mammograms. Therefore, the effect that the film makes to the fractal 

dimension of the parenchymal tissue may be smaller than the difference in the 

fractal dimensions of malignant and normal tissue. 

0 Differences in the characteristics of the fiactal dimensions themselves, i.e. the 

fractal dimension that Caldwell and Byng used may not have been as susceptible 
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to the MTF and noise of the film4. Different methods of calculating nactal 

dimensions examine dinerent characteristics of the image. 

1.1.3 Therapy Evaluation 

While the relative risk for those with a BRCAl or BRCA2 mutation is much greater 

than for those without the abnormality, the prevalence of cases with the mutations 

is relatively low [Weber, 19981. If the marnmographic features that were identi- 

fied are correlated strictly to the gene mutations they may not be useful for a p  

plications such as the evaluation of preventative therapies. However, the work of 

Boyd et al. [Boyd et al., 19971 on mammographic features and dietary fat, Ursin et 

al. [Ursin et al., 19961 and Atkinson et al. [Atkinson et al., 19991 on marnmographic 

features and Tamoxifen suggest that this may not be the case. In particular, in 

[Boyd et al.: 19971 it was found that the subjects on a low-fat, high-carbohydrate 

diet showed a reduction in the amount of mammographic density. Further, the re- 

duction in density was greater than could be accredited to weight loss alone. Ursin, on 

the other hand, [Ursin et al., 19961, examined the changes in the densities in the con- 

tralateral breast of patients diagnosed with breast cancer. It was found that patients 

treated with Tamoxifen (with and without radiation therapy) exhibited a reduction 

in the mammographic density cornpared to patients receiving chemotherapy and/or 

radiation therapy. Similarly, Atkinson, [Atkinson et al., 19991, found a statistically 

significant change (p = 0.0001) in the Wolfe grade classification (toward the lower 

risk grades) of patients undergoing treatment with Tamoxifen. 

- -  - 

4Veenland did not consider the specific fracta1 dimension used in [Caldwell et al., 19901 and 
[Byng et al., 1996aJ. 
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1.1.4 Conclusions 

In the studies discussed previously, the extracted features were quite varied but they 

were selected with the intent of producing a more reproducible and less subjective fea- 

ture than the current approach to assigning the mammographic density and they al1 

characterise essentially the same mammographic property- Boone created his breast 

density index expressly to have a very high correlation to the marmnogram ranking 

based on density- Similarly, Byng verified that there was a reliable correlation be- 

tween their featwes (percent density, regional skewness and fiactal dimension) and 

the breast cancer risk but the selection of these particular properties was made with 

consideration of their relationship to the mammographic density. For example, the 

regional skewness was specifically selected by Byng et al. since a mammogram with 

predominately dense tissue would have a histogram with a proportionally greater 

fraction of pixels with higher grey level values thus producing a negative skewness. 

As well, for a predominately dense breast, the contrast for large portions of the mam- 

mogram will be lower than for a breast consisting primarily of fatty tissue. There- 

fore, if the image of the dense mammogram were viewed as a surface in an abstract 

three dimensional space, where the pixel intensities represent the third dimension, 

it would appear smoother than a mammogram with a lower mammographic den- 

sity, thus producing a iower fractal dimension. The mammographic density and the 

features discussed above, which were related to the density, represent a basic exam- 

ination of the information that was contained even within the global characteristics 

of the mammogram. 

For this thesis we considered several systematic and more comprehensive analyses 

of the mammogram. Since the mammographic density is widely accepted as a risk 
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factor we examined the relationship of our extracted features with the density. Fea- 

tures were extracted that were less obviously c o ~ e c t e d  to the density and features 

were identified, both individudy and in combination, that can be used to c lasse  

the mammographie density. Fortunately, the database of images which were used for 

t his pro ject contained the density classification according to the BiRADs guidelines. 

However, the data were not ideally suited for either determination of density classes 

or risk assessment5. In particular, the number of cases in each densiw grade was 

quite variable and the details for a number of other important risk factors were not 

available for the patients, such as age of menarche, nulliparity, etc. The complete 

evaluation of either of these would require a full study in itself but the identification 

of the important properties and some of the basic procedures which are necessary for 

such a study are provided in the present work. We also selected the set of features 

which were most closely correlated with the appearance of breast cancer rather than 

the density classification in order to identïfy an independent risk factor or a property 

indicative of breast cancer itself. 

1.2 Computer Aided Diagnosis 

This section provides background on several image properties that were used in this 

work. In the following section some of the important studies that employed useful 

conventional techniques are described. The method typically involves the calculation 

of various textures which quant* characteristics of the image such as the contrast 

or the homogeneity. In general, a large number of textures was found and a subset 

that was most useful for the given problem was selected using a method such as 

SSee Chapter 3. 
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stepwise refinement or a genetic algorithm. Regardless of the method used for the 

feature selection, a technique such as linear discriminant analysis was used in order to 

evaluate the selected set of featwes. Several of the studies relevant in mammography 

which used a genetic algorithm are described in Section 1.2.2. 

Finally, approaches for investigating the scale which was the most significant for 

a particular problem was discussed in Section 1.2.3. If too large or too small a scale 

is used to examine the texture, the structure relevant to the probiem may not be 

reflected in the extracted features. Therefore, examining many scales to identify the 

most useful is important. 

2 . 1  Texture Met hods 

Many textures can be calculated from what is known as a spatial grey level dependence 

(SGLD) matrix. The SGLD matrix is a two dimensional array which is a function 

of two variables, d and 9. Each entry in the matrix, (i, j), contains the fiequency of 

occurrence for a pair of pixels with grey levels i and j separated by a distance d and 

with an orientation characterised by an angle 8. A similar array, a spatial grey level 

dgerence matrix bas an extra parameter, the difference in the grey levels for the pixel 

pair. In other words it is the SGLD matrix for only those pixel pairs with a specific 

value for 1 i - j J. The majority of studies described in this chapter utilised textures 

calculated using either of these matrices. However, while many textures that appear 

in the literature are quite common, many more have been developed for the specific 

purpose of their respective studies. Therefore, a complete list of textures used in each 

study as well as an explanation of how to calculate the individual textures (except 

for the ones used in this thesis) was left to the literature. 
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Two of the earliest works using texture measures in mammography are Taylor et 

al. [Taylor et al., 19901 and Magnin et al. [Magnin et al., 19861. Taylor used various 

texture measures such as the skewness, fractal dimension and Laws energy to identify 

the "easy to interpret" mammograms (fatty) fiom "diaicult" ones (dense) in addition 

to identifjmg Wolfe grades. Magnin attempted to distinguish Wolfe grades using the 

examination of several common texture features (eg. energy, inertia and others) that 

were derived from a SGLD matrix for horizonal pixel pairs separated by 10 pixels or 

features extracted fkom the grey levei difFerence matrix. 

Chan et al. [Chan et al., 19951 used an approach similar to that of Magnin to 

classify tissue regions into abnormal masses and normal tissue. After preprocessing 

to remove the effects of the background on the texture values, eight texture measures 

were calculated (eg. energy, entropy, correlation, inverse dinerence moment, etc.). 

Each was derived from the SGLD matrix for four different directions (O) and several 

pixel sepsration distances (d). This approach generated a pool of texture features 

from which a subset that best distinguish the normal tissue from abnormal masses 

can be extracted. Chan et  al. also used a stepwise refinement procedure for the feature 

selection and linear discriminant anaIysis for the feature evaluation. 

Linear discriminant analysis is a standard statistical procedure to create a function 

that is linear in the variables and minirnizes the number of incorrectly classified cases. 

The procedure can be viewed as the projection of the feature vectors onto a one 

dimensional axis and the linear discriminant procedure changes the orientation of the 

axis to  maximise the difference between the classes in the sample. The particular a.xis 

orientation or linear combination of variables that is found is generally referred to as 

the linear discriminant function. 
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The feature selection process, stepwise refinement, requires the selection of two 

thresholds and a statistic of significance. Only if the inclusion of a variable changes 

the statistic by an amount greater than the inclusion threshold is the variable used 

in the discriminant function. Once al1 the variables have been tested for inclusion, 

each selected variable is then tested for removal. If the removal of a variable changes 

the statistic by less than the second threshold then it  is removed. The procedure 

is repeated until the set of features is stable. Both the stepwise refinement and 

linear discriminant analysis are conventional and widely used approaches for feature 

selection and classification. 

Severâl general aspects on the use of textures for medical applications can also 

be found in [Veenland et al., 19981. Veenland investigated the effect of the MTF and 

noise characteristics cornmon in general anatomical radiographs on a large number 

of texture measures, features fiom the power spectrum and morphological properties. 

In addition, Veenland et al. [Veenland et al., 19981 also studied the effect of the M T F  

and noise on several bactal dimensions. 

1.2.2 Genetic Algorithmic Methods 

An application that has received much attention in cornputer aided diagnosis (CAD) 

of mammograms is in differentiating benign and malignant microcalcification clusters. 

For example, the approach of Chan et al. [Chan et al., 19981 for this problem involved 

extracting textures as well as certain morphological characteristics of the microcal- 

cification clusters and selecting a subset of features using stepwise refinement or a 

random optimization technique: a genetic algorithm. 

A genetic algorithm is a method of randomly exploring a large feature space. The 
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overall method is straightforward but there are many subtle variations to the tech- 

nique and a general discussion of the procedure can be found in Appendix B, while 

the variations used specifically for the program that implemented the genetic algo- 

rithmic approach for this thesis, ga-ors, can be found in Section 2.3. The approach to 

the exploration was inspired by genetics and evolution so that the ideas are couched 

in those terms. One common approach utilises a ccchromosome", represented by a 

string of bits, and an encoding scheme, so that each bit position represents a different 

featiire. Initially, a large number of chromosomes (a ''population") is created with 

random features selected and each member of the population evaluated relative to 

a fitness function. In [Chan et al., 19981 the fitness function was related to the area 

beneath the ROC curve for theù test data6. Next, a new generation was formed 

by "reproducing" the chromosomes and the probability of a particular chromosome 

taking part in reproduction is determined by a function of its fitness. There are two 

cornmon methods of reproduction, the first is a crossover technique which uses two 

chromosomes selected at  random and a part of each chromosome is interchanged with 

the other. The second method involves a random alteration of the genes in each chro- 

mosome (mutation). Ideally, after a fixed number of generations the chromosomes 

have evolved to a small set of the best features. 

Chan [Chan et al., 19981 found the genetic algorithm selected a set of features that 

was consistently better than those found using the conventional stepwise rehement 

technique. As well, an earlier study performed by Sahiner et al. [Sahiner et al., 19961 

made a cornparison between the performance using features selected using stepwise 

refinement, a genetic algorithm and a neural network. When they calculated the area 

beneath the ROC curve for their test data, the genetic algorithm outperformed both 

6Recall the area beneath a ROC curve is proportional to the probability of a correct ciassification. 
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alternat ive techniques. 

1.2.3 Wavelet Met hods 

A wavelet transform is an integral transform, like a Fourier transform, that has a 

basis with specific properties7. It can be viewed as the result of a signal after filtration 

through a series of high and low pass filters that are arranged in a specific order. The 

transformed signal can then be divided into several regions that contains either 

1. a representation of the signal at different resolutions 

2. components that are lost when the signal is examined at the different resolutions 

(mult i-resolution analysis) . 

The applications for a wavelet transform are growing rapidly and one widespread 

use has been in the area of image enhancement. The enhancement tends to 

work particularly well for high fiequency regions such as those that contain edges 

[Giger and MacMahon, 19961. For example, within mammographie applications they 

have been used to increase the conspicuity of objects that can be difficult to Io- 

cate, such as microcalcification clusters. The transform and variations of the pro- 

cedure has also been used for in the automatic identification of microcalcification 

clusters as in [Zhang et al., 19981 who took the wavelet transform of the image 

and weighted the components before reconstruction. Similarly, Clarke and Qian et 

al. used a procedure resembling a wavelet transform to enhance microcaicifications 

[Clarke et al., 1994, Qian et al., 19951 and masses [Qian et al., 19991. Their modi- 

fied transform elirninated the need for empirically chosen weights for the enhance- 

ment of the specific objects in which they were interesteda. Further, Lado et al. 

7See Appendix C for a more detailed description. 
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[Lado et al., 19951 used a wavelet transform not only to enhance microcalcifications 

but extracted various features fiom the transformed image for the purpose of identi- 

fying clusters with malignant characteristics. 

In an application similar to Chan [Chan et al., 19981, Wei et al. [Wei et al., 1995, 

Wei et al., 19971 created a method for the reduction of normal tissue that was mis- 

taken for abnormal masses in a CAD system. The basic methods were the same as 

the studies described in Section 1.2.1 but in [Chan et al., 19981 a multi-scale texture 

measure was achieved using various pixel separations in the SGLD matrix, the d 

parameter. However, in [Wei et al., 19951, Wei et al. compared multi-scale texture 

analyses by using various values of d in the SGLD mat& created from the original 

image to the use of a wavelet transform of the image while constraining d to be 1. 

Wei found that the results using features formed from the wavelet transformed im- 

ages were comparable or better than the results using textures formed from changing 

d. A later study can also be found, [Wei et al., 19971, where a more sophisticated 

preprocessing method and a larger number of textures was considered. 

1.3 Overview 

For t his t hesis, we explored several global marnmographic characteristics for t heir 

ability to classify mammograms into density grade categorïes as well as into nor- 

rnal/abnormal groups. We began by extracting sever al global marnmographic fea- 

tures and used either an exhaustive search or a genetic algorithm to select the subset 

of the best features to categorise the cases using either classification scheme. 

% [Qian et al., 19991 the image was enhanceci to improve the performance of severai textural, 
rnorphological and grey level properties in their CAD system. 
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The features that were extracted fiom the mammograms fell into two categories 

1. Spectral features which can be obtained from the grey level histogram. 

2. Multiscale texture features which were extracted using multifkactal models and 

wavelet transforms of the images. 

For the spectral features, we considered generalisations of the features in the studies 

given previously. In particular, extensions to the features used by Byng and Boyd et 

al., such as combinations of regional moments, combinations of global moments and 

sub-regions of the global histogram itself were considered. The intent was to identify 

less obvious features or combinations of features that may have better classification 

ability than those found in the literature. 

In addition to these spectral features we investigated severd texture features: 

a multi-fkactal dimension and three texture rneasures applied to the wavelet trans- 

formed images- The difficulty with the use of a fkactal dimension in the work cited 

earlier was the property was selected with the intent of emulating the behaviour of 

the mammographie density. Such an approach is sufficient if simply a property which 

is less susceptible to intra- and inter-observer variation was desired. However, it does 

not consider new properties that may be independent of the density but still corre- 

lated to breast cancer risk or incidence. The technique of extracting textures from 

the wavelet coefficients of a mammogram has also been used previously but the a p  

plications were in reducing the faIse positive rate in a CAD system. Therefore, the 

textures were selected to distinguish a property characteristic of a malignant mass, 

such as a spiculated border. In this thesis ali features were selected to characterise 

a global property related to cancer or cancer risk and these features may not be 

currently known to be correlated with malignancy. 
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In addition, the use of a few, or even a single quantity, to characterise the prop  

erties of a mammogram was cornmon in the studies discussed previously. This would 

be sufficient in an application such as i d e n t w g  a malignant mass where the bor- 

der can possess characteristics quite different from a benign lesion. However, a more 

comprehensive characterisation of the mammographie properties would Iikely require 

a collection of properties to be calculated from the mammograms. There are different 

approaches that can be used for this purpose but we considered only properties that 

exarnined the image at different resolutions or scales. One feature in particular that 

was investigated was a generalisation to a fiactal dimension that treats the object 

as a collection of fiactals, possibly with different dimensions, that were intricately 

intertwined with each other, i.e. a multiûactal. We also examined three conventional 

texture measures, the energy, entropy and inertia. Al1 these textures had been used 

for segmentation of masses and rnicrocalcification clusters in the studies listed above 

but we examined these textures for other purposes - their ability to distinguish den- 

sity classes and to distinguish normal from abnormal groups. A wavelet transform of 

the image was also performed pior  to extracting the texture measures after which 

the property was calculated directly fiom the wavelet coefficients. This procedure 

waç simply to collect a pool of features and again we applied either an exhaustive 

search or a genetic algorithm to select a manageable subset of the features for either 

density grades and normal/abnormal classifications. 

Chapter 2 describes the conceptual basis for the choice of spectral features which 

were employed - global and local moments, as well as subsets of the histogram, and 

the texture features - multifractal dimensions, wavelet transforms and the texture 

energy, entropy and inertia. However, one of the essential components needed for 



the work is the program used to select the essential properties. It is always diilicult 

to identify the optimum components hom a large pool of possible parameters and 

conventional systematic approaches tend to have difEculties with becoming trapped 

in local extrema. Therefore, we have employed a method of randomiy searching the 

feature space through a genetic algonthm. The modifications to the basic approach 

necessary to use genetic algorithms was also briefly discussed in Chapter 2. 

We proceed in Chapter 3 to discuss the details of the procedures needed to ex- 

tract the desired features. This includes the normalization procedure applied to the 

images in order to remove systematic dependencies such as exposure and processor 

differences or characteristics specific to a particular x-ray digitiser. The extracted 

properties were evaluated for the ability to classiS. the mammograms into Merent 

classes and a number of datasets were needed for this. Several were selected to exam- 

ine different goals and to evaluate the effects of the sample selection. In particular, 

many different classifications were possible, such as dividing the images on the basis 

of density grade, on the mammogram diagnosis or the patient diagnosis (where the 

left and right mammogram were regarded as having an "abnormal" outcome if the 

malignancy was in either breast). We describe the procedure used to select the var- 

ious cohorts as well as presenting the specific details of the methods used to extract 

the various spectral and texture properties. 

The results are presented in Chapter 4. There were many aspects to examine 

and the results are organised primarily along the lines of classification categories, eg. 

classification of density grades, classi£ication of diagnostic outcome, etc. Additionally, 

the performance of the classifier when using each property, both individually and in 

combination, is described for the various classifiers. We also investigated some special 



situations such as x-ray digitiser dependencies and age dependencies and their impact 

on the classification performance. 

Finally, a summary of the results is given in Chapter 5 along with potential future 

directions which are important to consider but beyond the scope of the curent  thesis. 

It should be noted that no attempt was made to investigate the specific visual features 

in the rnammogram that correspond to  selected abstract features that were extracted. 

The primary purpose of the thesis was exploratory. Therefore, the work reduces the 

problem fiom the selection of a single set of features from, Say, millions of options to 

selecting one set fkom, Say, tens. The correlation between the selected features and 

the visual properties was beyond the scope of this thesis. 

A note on the terminology that appears in the remahder of the work should be 

given as well. The term "property'> is used to refer to the mammographic character- 

is t ics extracted using different computational procedures, namely: 

global moments of the histogram 

O regional moments of the histogram 

subregions of the histogram 

O rnultifiactal dimensions 

texture energy of the wavelet transformed image 

texture entropy of the wavelet transformed image 

a texture inert ia of the wavelet t ransformed image 

However, several of these properties contain arbitrary parameters and the term Yea- 

ture" or "feature set" refers to a specific combination of values for the parameters of 
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a particular proper@ For example, the texture energy is a property while the texture 

energy for d = 5 and û = O" is a feature. 

Finally, unless explicitly stated otherwise, all programs used were created in house. 

This includes, but is not limited to: the procedures to segment the breast tissue in 

the mammograms from the background and the various programs to extract the 

properties. 



Chapter 2 

Theory 

The primary methods of estirnating the risk for developing breast cancer solely fiom 

its mammographic appearance, have revolved around the classification scheme devel- 

oped by WoKe [Wolfe, 1976a, Wolfe, 1976b, Wolfe et al., 19861 or the mammographic 

density [Saftlas et al., 1991, Boyd et ai., 1995, Byng et al., 1996aI. Often these char- 

acteristics were evaluated by inspection of the mammograrns and generally required 

an experienced radiologist, although some quantitative measurements of the mammo- 

graphie density have employed planimeters [Wolfe et al., 1986, Saftlas et al., 19911- 

However, with the increase in the accessibility of high performance compter sys- 

tems combined with high quality x-ray scanners, more attention has been given to 

automated approaches. This trend has been encouraged by the results of Boyd et al. 

[Boyd et al., 19951 who showed, in a large case-control study, that the mammographic 

density is a significant breast cancer risk factor independent of the more commonly 

accepted risk factors such as family history, age of first live birth, etc. His results in- 

dicate that the general appearance of a mammograrn contains significant information 

aside from the presence and location of abnormalities, the density being one simple 



characterization of the appearance. 

There have been many approaches for the extraction of the additional infor- 

mation in a mammogam through, for example, the use of various texture proper- 

ties [Magnin et al., 1986, Taylor et al., 19901, fkactal dimensions [Boone et ai., 1998, 

Caldwell e t  al., 19901, spectral properties [Tahoces et al., 1995, Karssemeijer, 19981 

and several unique approaches as  in [Shadagopan et al., 19823 (identification and 

quantification of ducts) and [Breitenstein and Shaw, 19981 (quantitative measure- 

ment of dense tissue). Regardless of the property which was considered, the investi- 

gators all attempted to classi@ the images into Wolfe grades or density categories. A 

drawback with this approach is the subjective nature of the various categories and the 

natural variability due to intra- and inter-observer differences. In this work, we forego 

the use of marnmographic density classes, for the most part, and attempt to iden- 

tic characteristics of the mammographic appearance that are indicative of disease. 

Due to the limitations imposed by the image database (see Section 3.1) combined 

with a relatively small data set, a quantitative estimate of the relative risk, as in 

[Boyd et al., 19951, is beyond the scope of this study. Rather, we confine ourselves to 

the identification of features which codd be investigated furt her. 

The mammographic features used in the thesis fa11 into two broad categories: 

what we will call "spectral" ' features and "texture" features. Spectral features are 

generally simple methods of describing the global properties of the mammogram by 

characterising the distribution of the grey levels in the segmented image without 

regard to their spatial location. In general, these features can be extracted fiom a 

histogram of the frequency of appearance for each grey level. On the other hand, 

lThe term "spectral" features is somewhat nonstandard and was selected simply due to the 
resemblance of the grey level histogram to a intensity spectnun. 



texture features are more complex and are attempts to quantifjr the appearance of 

the image. Texture features generally combine the grey level with some aspect of 

its spatial position. The rernainder of this chapter is devoted to a more detailed 

description of the spectral and texture features which were employed as  well as the 

method used for the selection of the most significant properties. 

M a n y  previous approaches to using texture features resulted in a single value for 

each texture and as a result many different textures were needed to distinguish mam- 

mograms which belong to different classes. Although Wei et al. was more concerned 

 th distinguishing malignant masses from normal tissue, the general approach for the 

texture properties used in this study was similar to that found in [Wei et al., 19951 

and [Wei et al., 19971 where a set of values was extracted which can describe the 

characteristics of the image in a straightforward and natural way. Specifically we 

employed a few simple texture properties, such as the contrast, but each image was 

transformed in such a way as to generate a collection of images viewed at  different 

length scales. The texture features were then applied to the set of images. This vector 

of multi-scale values can be used to characterise an image more completely than does 

the same property when applied to only a single scale image. 

We also examined a feature which was inspired by a multifiactal dimension. It has 

been found that many objects encountered in nature with a fkactal character behave 

as though they were composed of a collection of intricately intertwined single fiactals. 

For these objects a continuum of fkactal dimensions is needed to fully describe the 

object. A more detailed discussion of the multifractal dimensions is given in Section 

2.2.1 while the texture features are descrïbed in Section 2.2.2 and the spectral features 

beiow. 



2.1 Spectral Properties 29 

2.1 Spectral Properties 

Ali of the spectral properties which were used can be generated fiom the function 

that quantifies the fiequency of appearance for each grey level in an image (histogram 

or grey level histogram). The histogram was found for the region that was segmented 

to contain just the breast shadow2. The mammographic density is an example of a 

spectral feature. The greater the density the more radio-opaque the tissue and the 

brighter the region appears on the radiograph. Therefore, the density or proportion 

of dense tissue can be viewed as the proportion of bright pixels in the segmented 

region. Unfortunately, the differences in exposure for different patients changes the 

threshold grey level that delineates the majority of the dense parenchymal tissue h m  

the "darli" fatty tissue. While a human can readily compensate for the differences 

in exposure, attempting to give a computer program a comparable facility is quite 

difficult. For this reason, the density was not employed for this study. The spectral 

features which were actually used consisted of: 

1. The global moments of the histogram. This is a method of describing specific 

properties of the grey level distribution. Global moments were calculated fiom 

the entire segrnented breast image. Some commonly used moments are the 

mean (first moment), variance (second moment) and skewness (third moment). 

2. The regional moments. These are the averaged moments calculated from his- 

tograms generated from subregions of the segrnented breast tissue and were 

calculated as in [Boyd et al., 1995, Byng et al., 1996a, Byng et  al., 1996bl 

3. The mean of subregions of the global histogram which were the most significant 

*The segmentation procedure is described in Chapter 3. 
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in class-g the images. 

One advantage of both the global and regional moments over the density is that both 

are extensible, that is, it is easy to generate a large number of moments, each of 

which examines a different characteristic of the histogram. In addition, when using 

the density, a single threshold is desirable to sipi@ the presence of a pixel containing 

parenchymal tissue for ail images. However, the use of a single threshold would make 

the density sensitive to both the shape and position of the non-zero parts of the 

histogram whereas the moments generally isolate these characteristics into separate 

moments. 

The remaining spectral feature, the subregions of the histogram, would also be 

sensitive to the same type of changes in the histogram, but this property has the 

potential of providing considerably more information than the density could pro- 

vide. The potential information that could be extracted was more than sufficient 

to justifjr the additional clifiiculty in compensating for the exposure CiifFerences and, 

hopefully, the procedure for sub-region selection can identify regions that were rela- 

tively insensitive to these systematic changes. Al1 these spectral features were also 

very straightforward to evaluate and are described below. 

2.1.1 Moments 

The global moments of the image were calculated fkom a histogram of the entire 

segmented region, while the regional or local moments were calculated using the 

histogram for many small regions lying within the segmented breast shadow. In 
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either case the raw moment, mf, was obtained using the usual definition 

where was the grey level for the j" pixel, P(= mi) the average pixel value and N 

the total number of pixels. For the higher moments, i > 2, it was more convenient 

to employ a unit-less quantity 

the appropriate power. Hence 

by normaiizing mf to the standard deviation raised to 

we now have 

The drawback with describing the characteristics of the histogram through simple 

hierarchial properties, such as the moments, was that they tend to be most useful for 

relatively simple problems. A difficult classification problem would likely be depen- 

dent on more subtle characteristics of the distribution which is manifest in the higher 

moments. Unfortunately, these same moments tend to be extremely sensitive to small 

differences in the distribution and may cause problems when evaluated numerically 

because of the high value of the exponent. Therefore, what is desired is the smallest 

collection of the lowest moments necessary to classi& the images. 

When images have different values in the low moments of their histograms, the 

images tend to have obvious differences. For example, an image with a large value for 

the mean was brighter overall than one with a Iow value. This is particularly impor- 
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tant since the purpose of the automatic exposure control (AEC) of the mammographie 

unit was to  make the films have the same overall optical density. Hence, the mean was 

unlikely t o  be useful for classification. However, as described in [Byng et al., 19991, a 

slight ly higher moment, rns (the skewness) , reflects the relative contribution of bright 

to dark pixels in the image and would be useful for density classification. On the other 

hand, very high moments are quite sensitive to variations in the distributions and the 

natural variation in the appearance of the parenchyma from patient to patient would 

make the range of possible values in each class so broad that it would not be possible 

to resolve the different classes. 

For a difficult classification problem it is often not obvious which set of moments 

that would give the most accurate classification. Hence, more moments than are likely 

to be useful were intentionally calculated and various combinations of the available 

moments were tested for the best subset. 

The regional moments are generated in a similar fashion but use a much smaller 

region of the segmented breast shadow. The procedure basically foIlowed that de- 

scribed by Boyd et al. and Byng et al. in [Boyd et al., 1995, Byng et al., 1996a, 

Byng et al., 1996b]. Here, only a brief overview of the procedure is described. Greater 

detail can be found in the references and in Chapter 3. 

It is expected that moments calculated using more Local information will be better 

able to deal with inhomogeneities in the tissue type [Byng et al., 1996aI. Additionally, 

while the thickness of the compressed breast was fairly uniform over the middle region, 

toward the skin surface the thickness changes rapidly and the amount of glandular 

tissue was more pronounced toward the chest wall. These effects may obscure the 

differences we wish to  identify in a histogram found using the entire segmented breast 
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tissue but local moments, calculated strictly from smail regions, can gîve a better 

reilection of the tissue composition. 

Some studies, such as [Magnin et al., 1986, Tahoces et al., 19951, examine only 

a constrained region of the mammogram for their respective properties. However, 

the size and position of the region that would optimize the performance of each 

extracted feature is unclear. Therefore, rather than choose a single subregion, the 

entire segmented breast tissue was divided into many regions. The moments of the 

histogram for each region was found and the corresponding moments were then av- 

eraged together. Since it is less likely that the compressed breast thickness varies as 

dramatically over the smaller region, an averaged regional moment is less suscepti- 

ble to confounding factors such as variations in thickness and more closely reflects 

differences in the proportion of tissue types. 

2.1.2 Histogram Regions 

An alternative to using the moments with their accompanying drawbacks, was to 

utilise simple statistics calculated from a smail portion of the entire histogram. The 

expectation was t hat the amplitudes of the histogram have signifiant classification 

ability. Using properties from only portions of the histograrn also has the advantage 

of being quick to calculate and allows regions with little classification ability to be 

ignored. The difncult task was then to identify the regions of the histogram that were 

the most usehil for separating the images into the desired classes. If up to, Say, 10 

regions of varying widths were to be chosen from a total pool of 4096 grey levels, it 

was clearly not possible to do an exhaustive se& of ail the possible combinations. 

Fortunately a program from the Institute for Biodiagnostics, NRC, was devel- 
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oped for this type of classification problern. The program, 'cgsors", utilised a ge- 

netic algorithm which is a very powerful method of randomly searching a large fea- 

ture space for an optimal or near optimal configuration relative to a fitness function 

[Nikouline, 19981, in a reasonable amount of time. It has been used for a similar pur- 

pose in classifying infrared (IR) and magnetic resonance (MR) spectra into normal 

and abnormal groups. For our purposes, it was used to select a predefined number 

of regions that were the most useful in discriminating the patient classes. The mean 

was taken as the propem to characterise each selected region. A further discussion 

on genetic algorithms in general can be found in Appendix B and in Section 2.3. 

2.2 Textures 

Whereas spectral features characterise only the fiequency of the appearance of each 

grey level, textures characterise a specific aspect of the spatial relationship between 

the grey levels as well as their fiequency of appearance. There is a large number of pos- 

sible textures which can be utilised, each of which considers a siightly different char- 

acteristic. For instance, Byng et al. [Byng et al., 1996aI have used a fractal dimension 

for analysis of mammographie densities and Magnin et al. [Magnin et al., 19861 have 

examined the classification ability of a number of conventional textures for a similar 

purpose. Many textures were constructed to quanti@ a specific aspect of an image, 

such as the apparent roughness or the proportion of vertical lines, and tend to be mod- 

erately simple tu evaluate with an intuitive interpretation but there are many others 

which are extremely complex and have no easily discernable physical interpretation. 

A few textures that belong to both categories had been selected for the particular 

application described in t his thesis. Multifractal dimensions (Section 2.2.1) , which are 
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an extension to a fiactal dimension, were considered dong with three simple texture 

measures applied to a wavelet transform of the images (Section 2.2.2). The textures 

were selected to produce a set of values that characterised the images at different 

scale lengths. 

2.2.1 Mult ifractal Dimensions 

Many earlier studies had shown that a fractal dimension was useful in texture classi- 

fication in a variety of different applications. For example, the fiactal dimension used 

by Byng et al. [Byng et al., 1996a] to distinguish mammographie density classes was 

calculated by treating the image as a surface where the height was represented by the 

pixel value and the variation in the area of the surface was examined a s  a function 

of scale. For their case the intended texture feature was the roughness of the surface 

and a rougher, more convoluted surface, wouid produce a fractat dimension closer to 

three (characteristic of a volume) than to two (characteristic of a surface). Although 

a fractal dimension is inherently a multi-resolution characteristic, many natural ob- 

jects with a fractal character are often actually multifractal and require a continuum 

of values to fully characterise the object- Further details of both conventional fractal 

geometry and multifiactals can be found in Appendix A and the references. 

Conventional fractal objects, such as a Sierpinski gasket, a Koch curve or a Peano 

curve (Figures A.2-A.3) are examples of strictly self similar objects. That is, portions 

of the object can be made to appear identical to the original, if the portion is re- 

scaled by the appropriate factor. However, many physical objects with fractal-like 

behaviour are created by randorn processes and the resulting objects are statistically 

rather than strictly self-similar. Common examples of random fractals are coastlines 
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and moiintain ranges. For these objects it is not possible, in general, to make any 

sub-region exactly correspond to the original but the general character of the sub- 

regions does resemble the full object. Indeed, if an image of the sub-region is viewed 

without reference to the original it is dScu1t to judge whether it is a sub-region or 

the full object. 

Multifkactals are generally random fiactals and can be thought of as consisting 

of many random fkactals, with possibly different dimensions, whkh are intricately 

intertwined. Then, when different approaches to calculate the fiactal dimension are 

applied, a different dimension may result depending on the "fkactal component" to 

which the method is most sensitive. Because of this, when the fractal dimension is 

applied to any natural object the method of calculation for the fiactal dimension is 

critically important. 

The difference between the conventional fiactal dimension and multifractal di- 

mensions is more apparent in a specific example. Consider the situation of several 

fields with different types of ore visible over its surface. The fields are approximately 

the same size but of vastly different composition and value. It would be desirable to 

identifi the most valuable field, but it is too difficult to estimate the total value of 

the ore for al1 fields. In that case we may be interested in the distribution of ore over 

a relatively small sample of each field and assume it is typical for the entire region. It 

is likely that the distribution has a fiactal character and one approach which is often 

used to evaluate the dimension is to use what is fiequently called the box counting 

dimension (or HausdorfE mesh). In this approach, a regular grid with a side length of 

E is superimposed over the field and the number of cells, NE, which contain any type 

of ore are counted. The process is then repeated with many different sized meshes. 
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The value of the fiactal dimension, d, is then related3 to the slope of the regression fit 

of log NE as a function of logs. A dimension closer to two indicates a greater amount 

of ore but this process ignores the type of ore in each cell. Further, if the net value 

of a collection of ore is desired, the composition of the samples in each celI is very 

important - 

The distribution of ore is more likely multïfkactal and the multifkactal dimensions 

can be found fo!lowing a method similar to that used for the box counting dimension. 

The process of calculating the dimensions starts with the same regular grid but we 

assign a weight to each cell, l<ij, where zj speci@ a location within the mesh. In 

this case, the total value of the ore in the ce11 rnay be used for this purpose. The 

distribution can then be characterised by the set of fractal dimensions for the various 

collections of cells with the same pu. 

From this point, there are different approaches which c m  be applied. In this work, 

the technique known as the method of moments was used. What follows is a brief 

oveMew of the approach. A detailed description of the method can also be found 

in [Peitgen et al., 19921. This approach was pioneered by Rényi and employs what is 

known as a partition function4, x&), for the qth moment where 

The partition function is analogous to the number of cells needed to cover the object, 

NE, in the box counting dimension. Therefore, for a fractal object, X, scales with the 

3When this procedure is appiied to an image, the slope is exactly the fractai dimension but for 
other methods this rnay not be true. 

*The term was coined due to the paraiiels between how xq is useà and a partition function of 
statistical mechanics [Schroeder, Ngl]. 
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characteristic lengt h and the generalised fiactal dimension, Dq. However, the method 

of moments is not identical to the Hausdoff mesh approach and an additional factor 

of q - 1 is required. We now have 

The D, is known as  the generalised fiactal dimension since specific values of q 

correspond to more commonly known dimensions. For example q = O gives the 

usual box counting dimension while q + 1 corresponds to the information dimension 

[Peitgen et al., 1992, Schroeder, 19911. The calculation then proceeds similarly to  the 

box counting dimension5 with X, substituted for N(E)  . A property has been extracted 

from the images based on this procedure. The precise details of the method are given 

in Chapter 3. 

2.2.2 Texture Measures 

Texture measures have been used in the past for a wide range of applications including 

many in digital mammography. This indudes segmentation of suspicious masses, 

[Gupta and Undrill, 19951, and the separation of masses into benign and rnalignant 

classes [Chan et al., 19951. As well, Magnin et al. [Magnin et al., 19861 applied similar 

textures as the ones selected of this work to automatically classify mammograms into 

Wolfe grades. However, to fully characterise the image a large number of texture 

5The primary difference is that, for a muitifractai, the caiculation must be repeated as q changes. 



2.2 Textures 39 

measures is frequently required and many texture measures do not have any apparent 

physical interpretation. Studies have also been done in using a wavelet transform 

combined with texture properties for the segmentation of masses [Qian et al., 19951 

and microcalcifications [Qian et al., 19991. 

In the present work, and following the approach of Qian et al- [Qian et al., 1995, 

Qian et al., 19991, a set of textures to characterise the image was extracted in or- 

der to classify the set of mammograms into several categories. However, the texture 

measures were constrained onIy to simple textures with an intuitive physical inter- 

pretation. Further a multi-scale decomposition of the mammograms was performed 

in order to characterise the images more My.  The textures that were selected can 

be found in, for example, [Haralick et ai., 1973, Magnin et al., 1986, Wei et al., 19951 

and are sometimes referred to as the energy, H, entropy, S, and the inertia, 1. Al1 

three can be calculated fiom the SGLD matrix and are given by Equations (2.7)-(2.9). 

where pij is the entry in the SGLD matrix for pixels with grey levels of i and j. The 

d and B are arbitrary parameters. (See Chapter 3.) 

The colourful names are derived fiom the form of the equations which resemble 

their physical counterparts. Both H and S quanti& the homogeneity of the image; 

summing two different functions of the probabilities, pu, over al1 possible combina- 

tions of grey levels. 1, on the other hand, is a measure of the contrast obtained by 
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considering a function of the Merence in grey levels, (i - j), but weighted by the 

probabilities, pij- The previous studies cited required a considerable number of tex- 

tures for reasonable classification performance including many that were much more 

complex than those chosen here. Rather than emulating this approach, the texture 

measures that were selected were constrained to the energy, entropy and inertia. In 

order to obtain a more complete (textural) description of the image these textures 

were applied to the images at multiple scales. 

The required multi-scale decomposition of the images was pexformed through the 

use of a wavelet transform. At this time, the use of the wavelet transform is quite 

widespread but aot a part of most standard curricula, therefore, a brief presentation 

of method is given. 

Historically, the development of wavelet transfoms had its origins in many diverse 

fields of study and one of the results of this was that there are two explanations 

pervasive in the literature. The first is quite mathematically intensive and puts the 

transform on a rigourous basis while the second is more relevant for creating efficient 

implementations. Some of the mathematical basis of the transform along with the 

connection between the two interpretations is given in Appendix C while a brief 

overview of the technique is described below. 

The transform 

f (x), with a forrn 

can be viewed as a general integral transform, 7, of a function, 

where C is a normalization constant and @(a, b) a basis of functions of position (char- 

acterised by a) and a scaling factor (characterised by b). The choice of basis functions 

determines the overall properties of the transform and a Fourier transform becomes a 
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special case where the basis {@(-, w )  = ew') is used. Some of the important properties 

resulting from this choice of basis is that the contribution of each fiequency for the 

original signal is found but the transform contains no spatial information. In addi- 

tion, a large number of terms is needed to represent a signal with sharp transitions, 

Iike edges or boundaries. 

Many of the typical bases chosen for a wavelet transform attempt to reduce the 

extreme properties of a Fourier transform. For example, some spatial and fiequency 

information can be extracted from the wavelet transformed signal. The exact choice 

of bases that was used for the transform was a bi-orthogonal wavelet described by 

Sweldens [Sweldens, 19941. An example of two typical functions in the basis is shown 

in Figure 2.1. 

Figure 2.1: Example of the mother 
duals, for a bi-orthogonal wavelet as 
21) 

wavelet and scaling function, dong with their 
described by Sweldens. ([Sweldens, 19941, page 



2.2 Textures 42 

An additional, and important, feature of a wavelet transform is that it is possible 

to generate a multi-resolution analysis of the input signal. The typical technique to 

achieve this result is to perform an iterative decomposition on the input with the 

resolution at each successive level as one half that of the preceding level. Then, the 

transform can be perforrned by sending a copy of the signal through both a high pass 

filt er and a low pass filter foilowed by sampling the output by two, for a discrete signal. 

For the next level, the output of the low pass filter, onlx is subjected to a second pair 

of high and low pass filters and down-sampled by 2. The output of each high pass 

filter is sent directly to the output and the process repeated until the desired number 

of levels is obtained. (See Figure 2.2.) For this work, a maximum of five levels of the 

decomposition was utilised. A two dimensional image can be transformed by applying 

Figure 2.2: Discrete Wavelet Transform as a filter bank cascade 

a one dimensional transform to the rows and columns successively and this produces 

a different result for each quadrant. Clearly, there is some ambiguity in the order 

of application of the transform and the most cornmon arrangement, due to Mallat 

[Mallat, 1989a, Mallat, 1989b], is shown in Figure 2.3 where XYXYXY . . . , X ,  Y E 

{H, L) represents the coefficients after the sub-image was subjected to a hi& pass 

filter (H) to the columns (X) then a low pass filter (L) on the rows (Y)(and down- 
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LLLH LLHH F 

p 
LLLH LLHH 

Figure 2.3: MaIlat format for three levels in the two dimensional wavelet transform, 
showing the band pass filter order over a image and where L and H represent low 
and high band pass filters respectively. 
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sampled by 2). Once the transform was perfomed, al l  three textures (H, S and 1) 

were calculated fiom the images in the quadrants after filtering by HL, HH and LH 

at each level of the transform6. With five iterative levels of the transform retained, 

combined with three textures obtained kom three quadrants a t  each level and 20 

different choices of d and 8 for the SGLD matrices results in a total of 900 different 

textures. The large number of variables made it necessary to use a sophisticated 

mechanism which will find the most important textures and reduce the number which 

were actually used to classi@ the images to a manageable level. 

2.3 Classification Methods 

There were two considerably different operations needed for Our work. 

1. The selection of a small subset of features that have the greatest discriminatory 

power or classification ability for our given problem. 

2. The evaluation of the classification performance of those same features. 

Indeed, within the redm of feature selection a method of evaluating a set of features 

was necessary in order to identi& the most promising subset. Linear discriminant 

analysis, described in Section 2.3.2, was used for the evaluation of the subsets of 

features. The selection of the subset of the best features was made using either an 

exhaustive search of al1 possible subsets of features, if the number of combinations is 

small enough, or using a genetic algorithm otherwise. A general description of genetic 

algorithms is given in Appendix B while the details of the technique that are specific 

to the program ga-ors are described in Section 2.3.1. 

6Note that the remaining quadrant that was subjected to the LL 6iter combination is used for 
the input image for the next level of the transform. 
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2.3.1 Parameters for ga-ors 

As can be seen in the literature, (see Chapter 1), the image properties which can 

be obtained hom a rnammogram are numerous and there is practically an unlim- 

ited number of additional features that can be employed. A dauntîng aspect of this 

study is the selection of a set of features that provîdes reliable classification while 

being sufficiently few in number to be manageable. Additionally, the nature of the 

extracted image properties required that several considerably different methods of 

feature selection be employed. For some features, such as the global or regional mo- 

ments, the pool of properties fiom which the subset of features were to be selected is 

small enough that an exhaustive search is practical. For other features, most notably 

the histogram regions and the textures, the number of features was large enough that 

an exhaustive search was cornputationally too expensive. Anot her complication was 

that the number of features under consideration (> 900 in one case) greatly exceed 

the number of cases in the sample (max. 240), therefore even if an exhaustive search 

were possible it might well result in an overfitted solution. For these properties, we 

turned to a program drveloped at the Institute for Biodiagnostics, g ~ o r s ,  to perform 

the feature selection. The program uses a popular technique to randornly explore a 

very large feature space, a genetic algorithm. The program used in this work, gs-ors 

finds a user selected number of "best" features. The procedure used by g h o r s  is an 

extension to the conventional approach and details of the differences can be found in 

[Nikouline, 19981. 

Many aspects of the genetic algorithm are usually problem dependent, such as 

the map between the histogram regions to genes on the chromosome. For ga-ors, 

the histogram was treated as a collection of subregions and the mapping designates 
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the bins in the histogram that were to be taken as part of the same subregion. The 

chromosomes were represented by bit strings and a 1 in the ith bit represents the 

inclusion of the subregion containing the ith to (i + I ) ~ ~  grey level but a O in the 

chromosome indicates those grey levels should not be included in the feature set for 

the chromosome. The length of the chromosome was therefore the same as the number 

of bins in the histogram, 4095 for the smallest bin size, and there were at most a user 

selected number of contiguous regions containing l's, Say 5, for example. 

Another important choice for the genetic algonthm lay in the creation of the 

objective function. ga-ors uses an objective function based on the squared difierence, 

or error, between the classification results from a Iinear discriminant procedure and 

the known classification for each case7. The total squared error for each chromosome 

was then used to rank the population and any repeated chromosomes were removed. 

To enable the population to reproduce, i.e. explore the solution space, g s o r s  

used the genetic operators, mutation and crossover. The crossover operator was quite 

conventional, see Appendix B, but the operation of mutation was somewhat unusual 

in that a single gene was not necessarily changed at a tirne. A block of k genes was 

changed with each mutation and k varied as the population evolved. Initially, k was 

of the range of possible values so for a histogram of 4096 grey levels, initially 64 

k = y = 64 and decreased with each generation. This allowed the mutation to 

have a noticeable influence throughout the entire procedureB. 

The final detail to be described lies in the creation of the next generation. For 

g ~ o r s ,  once the chromosomes had been evaluated, ranked and the repeated chro- 

mosomes removed, the best NE chromosomes were immediately transferred to the 
- 

'The classes are enumerated in *rd& to be able to find the squareci ciifference. 
8The conventiond approach of changing a single gene for each mutation makes the dects of the 

mutation operator significant primarily during the later generations [Niouline, 19981- 
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population for the next generation (elite population) and the remainder formed by 

reproduction in the full, current population. The chromosomes did not have an equal 

likelihood of reproducing, rather the chromosomes with a higher rank (lower classifica- 

tion error) were more likely to be selected and the probability decreased in proportion 

with the rank. The selected chromosomes were then mutated with probability p, and 

the operation of crossover performed with probability p,. After the genetic operations 

had been performed the resulting chromosomes were placed in the new population. 

The parameters used in gsors for this work were: 

where Np is the size of the population or number of chromosomes and N, the number 

of generations to allow the population to evolve. 

2.3.2 Linear Discriminant Analysis 

Regardless of the method used to explore the feature space, a technique was needed to 

evaluate the classification performance for each candidate feature set. Linear discrim- 

inant analysis (LDA) was used for this purpose. See, for example, [McLachlan, 19921. 

This is a conventional statistical technique to form a function that can be used to 
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distinguish the various classes. The linear discriminant function, 2, has the form 

for a set of m features, Xi, and the m coefficients, ai. The precise f o m  for the set 

of constants, ai, can be calculated fiom maximizing an F statistic. In this case the 

F statistic is defined using the ratio of the mean square variance between classes to 

the mean square within class variance so that maximizing this quantity produces the 

tightest groups with the largest separation. The evaluation of the statistic itself can 

then be found following [Manly, 19861 or [Bernstein et al., 19881, for exarnple. 

At this point, the precise combination of ai's that maximises F needs to be found. 

Fortunately, Fisher described the approach in 1936 [Fisher, 19361. If a numeric value 

is assigned to each case in the sample depending upon the class to  which the case 

belongs, then the necessary mathematical procedure is identical to  finding the least 

square coefficients for linear multivariate regression [Flury and Riedwyl, 19881. There 

are different approaches for the conversion of a categorical group label to a numeric 

one but the method given by Fisher for a two group problem is to replace the original 

label: abnormal/normal, for example, by: c1/c2 where 

and ni is the number of cases in the ith class out of a total of k classesg. The 

necessary procedure can be found, in detail, in [Bernstein et al., 1988, Manly, 1986, 

9k = 2 for the abnormal/normd classification. 
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McLachlan, 19921 while an outline of the equations alone in [Zwillinger, 19961. 

The final step in the classification was to evaluate the performance of the discrim- 

inant function- Clearly there is little point in using the same dataset which was used 

in the creation of the discriminant function, since the function was created with the 

intention of optimizing the classification accuracy for that sample. A small number 

of the images (g of the total) were always reserved for a test set and the remaining 

images ($) used for the %raining" set. The resdts given in Chapter 4 were exclusively 

from the selected test groups. 



Chapter 3 

Mat erials and Met hods 

The features used for this work were extracted fiom a database of digitised mammo- 

grams which were made publicly available from the University of South Florida. The 

actual mammograms themselves originated fiom several different centres and were 

digitised using several diEerent x-ray scanners. The database and the cases used for 

this study are described hrther in Section 3.1. 

Due to variations in the film Srpe and exposure conditions as weU as variations 

in the performance of the x-ray scanners, it was necessary to normalise the images, 

Section 3.1.2. The images were transformed to remove the effects of the different pixel 

sizes and differing grey level/optical density calibration fiom the various scanners. A 

simple correction was also made for the exposure differences using a characteristic of 

the grey level histogram (also described in Section 3.1.2). 

After the normalizations were conducted, several features based on the spectral 

features and texture properties were extracted hom the corrected images, Section 3.3. 

From the full collection of extracted properties, the most significant were selected us- 

ing a genetic algorithm (gaors) or an exhaustive search through all possible features. 
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The results of the analysis are reserved for Chapter 4. 

3.1 Images 

The most obvious method to obtain the mammograms needed for this work would 

be to tum to the local breast screening centres. This way a data set couid be created 

that exactly meets the criteria for any desired aspect in our study. Unfortunately, 

this posed some local study difficulties. 

1. Much of the needed patient screening information is not stored eiectronicaily so 

that even creating a list of patients that meet a particular set of criteria was a 

tedious and tirne consuming process. 

2. Many of the screening films and patient files are not kept at  the Health Sci- 

ences Centre, Winnipeg, Manitoba and there can be a significant delay for their 

delivery- 

Our departmental x-ray scanner (from Vision Ten Inc.) was designed for general 

radiology and not intended for mammography. The scanner was sensitive to an 

optical density range fkom O to 2.5 and was roughly linear from 0-2.0 which 

is inadequate for use in mammography where an optical density of 3 or more 

on some parts of the mammogram is not uncornmon. There were also limita- 

tions imposed by the cornputer system driving the scanner that made the image 

acquisition process more difficult than necessary. Additionally, the quality of 

the scanned image itself was less than desirable, containhg various scanning 

artifacts that made segmentation of the breast tissue fkom the background un- 

usually difficult. 
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Initidly, this was the approach used to obtain data. However, the combination of 

the effects described above resulted in a total of - 60 patient exams which were 

scanned, preprocessed and the necessary features extracted in - 8 months of effort. 

To obtain a reasonable number of cases, Say 250, approxïmately 2.5 years would 

have been necessary for the data acquisition process alone. Therefore, in order to 

obtain a statistically significant sample of images an external source of screening 

mammograms were used for the feature selection and analysis. The locally obtained 

images were used strïctly for the formulation and evaluation of the segmentation and 

feature extraction procedures pnor to the processing of the images from the external 

source. 

In particular, a set of cases fkom the Digital Database for Screening Mammography 

(DDSM) was used. The images are available from the University of South Florida 

and consists of the digitised screening mammograms from a large number of women 

from several different centres [Heath and Bowyer, 19981. The database consists of the 

digitised mammograms, the diagnosis and some basic information for each patient 

such as the age, date of the study, density classification, etc. The marnmograms 

themselves were obtained using conventional techniques and then digitised using one 

of three high performance x-ray scanners (DBA M2100, Howtek MultiRad 850 or 

Lumisys 200). The characteristics of these scanners were sufficiently different from 

the departmental Vision Sen scanner that it was more straightforward to obtain 

additional images than to attempt to incorporate the locally obtained images into 

the sarnple from the DDSM. 

The patient cases were aiso provided with three classifications: 

1. normal with af least 5 years of follow-up 
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2. abnormal with a biopsy codirmed malignancy 

3. abnormal but benign changes. 

Only the first two cases were considered and the mammograms from a total of 240 

patients were obtained kom strictly the first two categoriesL. 

The drawback with this organisation is that the sample is less than ideal for 

applications that do not utilise these categories. For example, the examination of 

breast cancer risk can be performed through the mammographie density. The density 

grade classification, according to the BiRads guidelines [ACR, 19931, was provided 

with the patient information but the cases were not selected for a uniform distribution 

of cases in each grade. In particular, there were few examples of mammograms in the 

lowest density grade in our sample. The risk can also be evaluated directly as was 

done by Boyd et al. [Boyd et al., 19951. A similar analysis could not be performed 

with this dataset due to a lack of patient information. An evaluation of the relative 

risk requires the selection of similar cases and controls who are matched for breast 

cancer risk factors that are beyond our control, such as the age, nulliparity, age of 

menarche, etc. The effects of these limitations are further discussed in the context of 

the results which were obtained in Section 4.1.1. However, it was possible to analyse 

the extracted features for a correlation with the appearance of cancer directly. That is, 

the features that were useful for classifying normal/abnormal were identified without 

relying on the density grades as an indicator of risk. 

Two further pre-processing steps were performed prior to the extraction of mam- 

mographic features: the segmentation of the breast shadow in the images and nor- 

malizat ion for systematic variations. Both t hese steps are described below. 

IIt was felt that the behaviour of the classification system for the third class of images would be 
beyond the scope of the current study. 
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3.1.1 Segmentation 

The cranial-caudal (CC) views were employed and transformations were applied to 

the images to give them a uniform orientation, chest wall to the bottom, mid-line to 

the right (Figure Xl(a)), and the segmentation was pexformed using a semi-automatic 

procedure. The hs t  step involved smoothing the image by averaging over a 5x5 pixel2 

(b) Greyscaie windowing 

(a) OriginaI 

(c) Traced outline 

(d) Cropped fiiied and smoothed 
mask 

(e) Cropped final image 

Figure 3.1: Example of segmentation procedure. The rectangular object in the upper 
left is a tag that provides patient and study information. The scale for (d) and (e) 
are different from (a) to (c). 
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kernel and retaining only the resulting values which lay between some maximum and 

minimum (Figure 3.l(b)). The b i t s  were chosen by inspection on a case by case 

basis such that the majority of the region outside the breast shadow and most of 

the regions obscured by muscle tissue were outside the selected grey level range. 

Next, a routine which traced the outline of the breast was applied (Figure 3.l(c)). 

The procedure required two points to be chosen manually as the endp~ints. The 

delineated region was then filled and the edge smoothed by repeatedly applying a 

dilation and erosion operator with a 11x11 pixel2 square kernel to form the image 

mask. The mask and image were also crcpped to remove most of the unnecessary 

regions outside the segmented tissue (Figure 3. i (d)-3.l(e)). Note that other than 

cropping the image, no modification was made to the image itself during this part of 

the preprocessing. 

For the majority of the images this was sufficient to produce a mask which isolated 

the breast shadow from the remaining part of the mammogram. A number of the 

images required a substantially greater amount of custom editing. For example, an 

insufficient amount of the visible muscle tissue may have been removed automatically 

and some of the images had information tags very close to the breast shadow itself, 

which could mistakeniy be included in the mask. As well, any radio-opaque markers 

(mostly beads) indicating regions containhg suspicious tissue or the position of the 

nipple were also removed. 

3.1.2 Normalizat ion 

Since the average overall optical density was maintained at  a uniform level by the au- 

tomatic evposure control of the mammography unit, the differences in the distribution 
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of tissue types between patients may require that Merent regions of the films' sensit- 

ometric curve be used in their respective mammograms. Further, the variation in the 

characteristics of the x-ray scanners also introduce differences in the images which 

must be corrected. Some of the details of the scanners' performance were provided 

with the database which allowed the images to be normaiised for these va.riations, . 

in principle. However, insufficient data was provided on the exposure conditions and 

film characteristics prior to digitization of the film. Therefore, it was necessary to 

employ the characteristics of the grey level distribution of the images themselves and 

perform an elementary correction for these film variations. 

Scanner Differences 

The x-ray digitisers which were used to obtain the images were fkom Lumisys (LS), 

DBA or Howtek (HT), al1 of which had a similar dynamic range but their detailed 

charact eristics were considerably different . For example, the scanners ail had different 

resolutions (LS: 50pm/pixel, DBA: 42pmlpixel and HT: 43.5pm/pixel); LS and HT 

had a Iinear response curve while the DBA did not. 

To cornpensate for the various resolutions, the images were re-sampled using linear 

interpolation between pixels along the rows and columns in succession. This proce- 

dure was performed in order to provide a uniform pixel size of - 11Opm. The reduced 

resolution was comparable to that used in [Byng et al., 19941, [Byng et al., l996b], 

[Chan et al., 19951, [Karssemeijer, 19981, or [te Brake et al., 19981 and since we were 

not attempting to identify the location of high detail characteristics, such as micro- 

calcifications, the low resolution had little impact on the performance of the system. 

In addition, a reduced resolution removed some of the high spatial fiequency MTF 
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and noise differences. Finaliy, the re-sampling considerably reduced the storage re- 

quirements for the data as well as improving the computational speed of the various 

algori t hms . 

It was also necessary for the Mages to have a single response curve so that the 

pkel values correspond to a unique optical density. Since the calibration data was 

supplied with the DDSM, the response of the various scanners for a given optical 

density was known. It was also apparent that the Lumisys digitiser, LS, had the 

simplest response curve. This was expected since the LS digitiser was constructed as 

a scanning densitometer which made it an ideal choice for the standard calibration 

curve. Therefore, the grey levels in the images obtained with the remaining two 

scanners were converted to the grey level that would be expected if they were scanned 

with the LS scanner. The response curve itself for the LS scanner was given by 

where PLS is the pixel grey level for the images (obtained with the Lumisys scanner), 

r n ~ s  and bLS the slope and intercept of the regression fit for the calibration data and 

ODM, is the darkest film the scanner is capable of iden t ibg .  This "darkness" of 

the film is quantified by the optical densiSf and given by 

OD = log,, 1, 
log,, Itr 

where Ii, and It, is the incident and transmitted light intensity, respectively. Sim- 

ilarly, the calibration data and regression fits for the remaining two scanners, also 
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supplied with the database, had the form 

Therefore, the cwves used for the conversion of the images from the HT and DBA 

format to the standard (Std or LS) format was given by 

and the values for the constants are given in Table 3.1 

Table 3.1: Parameters for linear regression of x-ray digitisers, LS, HT and DBA 

The calibration curves were taken as linear but this was not valid over the en- 

tire range, the most obvious non-linear regions appearing near the extremes of their 

dynamic ranges. The simplest correction for this effect was performed: any pixels 

falling outside the linear region were ignored. The linear part was delineated by the 

last points in the calibration data that lay within the 95% confidence limits of the 

regression fit. The interval common for al1 three scanners with a linear response curve 

occurred for optical densities in the range 0.5-3-0. 

An unfortunate limitation of the data set was that al1 the normal cases were 
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digitised using one specific scanner (DBA) while the majority of the abnormal cases 

were digitised on a difFerent scanner (LS). The available scanner data allowed for our 

normalization procedure to compensate for ditferences in the scanner resolution (re- 

binning), ciifferences in the contrast due to the scanner (using a standard caiibration 

cunte) and differences in the size of the optical density range for each increment in 

the grey level (ignoring non-linear part of response curve) and represents the extent 

of the scanner behaviour that can be corrected under typical working conditions. In 

addition, there was a limited amount of data in our study which can be used to test 

this assurnption. A more rigorous test would likely require the acquisition of a set of 

images specifically for such a purpose. 

Quantities such as the MTF and Wiener spectrum2 are usefui for compansons be- 

tween different systems and it may be conceivable to use this form of information to 

alter or correct an image to conform to the characteristics of a dHerent system but it 

wodd be dificuit and such a correction was not attempted. However, if the computer 

syst em was able to detect the scanner dependencies after all practical normalisations, 

then this would have serious implications for any automated system with a similar 

purpose. Essentially, a program would need to be tuned for each specific equipment 

configuration. Additionally, QC procedures, testing after maintenance, etc. would be 

necessary to ensure that even routine changes to the hardware would not interfere 

with the algorithms. It also makes cornparisons between studies using different mam- 

mographic properties difficult if they were carried out a t  different institutions, with 

differing hardware systems. Further, a system which is capable of detecting minor 

variations due to the digitization would also be sensitive to variations in film and 

processor performance or changes in exposure conditions. These variations would 

2Noise power spectrum 



3.1 Images 60 

not, in generai, be correlated to, Say, normal and abnormai cases but if a system can 

det ect t hese Merences using properties caiculated over the entire segmented image, 

measures to address this issue for any other studies of this nature would likely be 

necessary. Of course, these difficulties may be aileviated through the use of digital 

mammography but a detailed examination of the sensitivity of spectral and texture 

properties to scanner, processor and exposure conditions would still be valuable since 

film/screen mammography is likely to be the primary modality for mamrnographic 

screening for some tirne. 

It is possible that some digitization effects remain in the images in spite of the 

efforts to remove them. However, the primary goal was to remove enough of the gross 

dependencies so that the discriminant methods would utilise the variation inherent 

to the imaged objects over any dxerences due to the x-ray scanner or exposure tech- 

nique. In addition, more detailed normalization for local or anisotropic characteristics 

requires precise information that is often difficult to obtain. Therefore, the majority 

of the remaining work assumes that the scanner characteristics are not exhibited in 

the extracted properties but some testing of this assumption is given with the limited 

data that is applicable for this purpose. 

Exposure Differences 

Standard mammography units have a number of features which enable the technician 

t O consist ently produce high quality films with similar contrast characteristics. The 

goal is to produce the same average optical density film for varying breast thickness 

and x-ray quality. Therefore, it is difficult to accurately infer the tissue type from 

the optical density on a rnammogram. To deduce the tissue type would require more 
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detail on exposure conditions3. 

In correcting for these exposure effects a portion of the histogram at either extreme 

was ignored. Both the upper and lower regions that were ignored consisted of two 

parts, a fixed part and a part with a size that varïed with the segmented image size. 

For the lower end of the histogram, the h e d  grey level range was taken as 0-1095 and 

the variable region from 1096 to 1096 + 0.5% of the total number of segmented pixels. 

For the upper end of the histogram the corresponding regions were 3595-4096 and 

3594 - 0.05% of the total number of segmented pixels to 3594. All these limit values 

were chosen empirically fiorn an examination of a small number of images. The values 

were chosen so that for the high pixel values, contributions from noise, dust etc. were 

not included and for the low pixel values, any pixels outside the breast region were 

ignored. There were considerably more pixels belonging to the latter group than the 

former and this was reflected in the difference in the proportions that were ignored. 

The remaining values were then re-mapped to occupy the full range of possible pixel 

intensities. This procedure should make the most radiographically dense tissue in the 

thickest part of the breast and the least radiographically dense tissue in the thinnest 

region have consistent grey level values across different films with varying exposures. 

In summary, the original images had a resolution of 42-50 pm/pixel and 4096 grey 

levels to give a typical file size of 25-30 Mb per image while the normalised images 

had a resolution of -- Il0 pm/pixel and 4096 grey levels. After segmentation and 

cropping of the images, a typical image size was - 1500x800 pixels and a file size 

from 5-10 Mb. In addition, the conversion of the pixel values,P, to optical density, 

3This may also require the use of a caübration step wedge in each image. However, one difficuity 
with this method is that the step wedge rnust be placed close to (or in) the penumbra. It should also 
be noted that details such as the kVp, mAs, and breast thickness, was not provided in the database. 
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OD, is given by 

Group Selection 

The various properties calculated for the images were tested for their ability to dif- 

ferentiate between groups under two different classification schemes. The first used a 

recognised method of predicting cancer risk, the mammographie density (Den clas- 

sification). The density grades were assigned by experienced radiologists following 

the guidelines outlined by the American College of Radiology Bi-RADS specification 

[ACR, 19931 and were provided along with the DDSM image database. 

In order to preclude the possibility of detecting characteristics unrelated to  the 

density classification, such as a characteristic indicative of a visible lesion, only the 

cases with both breasts diagnosed as normal were used. In addition, an arbitrary but 

consistent choice was made to use only the CC views of the mammograms for the 

left breast of the normal cases. The images were divided into a training and test set 

a t  random. Further, the effects of the distribution of the cases on the classification 

accuracy was explored by randomly re-assigning the full set of cases into a training 

and test set five times. This forms the dataset for classifig the density grades or 

the Den group. 

The alternative classification, "diagnosis classification" (Diag classification) di- 

vided the patients into normal and abnormal groups. In this case, only the patients 

with both breasts evaluated as normal were assigned to the normal class since a nor- 

mal breast contralateral to one with a malignancy may have a malignancy without 

any clinical signs at the time of the exam. In addition, the presence of a malignancy 
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may produce some subtle idluence on the appearance of both mammograms. The 

abnormal class consisted exclusively of those mammograms where a maiignancy was 

diagnosed (Le. the mammogram for the contralateral breast was ignored if it was 

cancer Gee.) The selection of the cohorts for this group was done at random fiom 

the collected pool of images. The images were divided into a training set and test 

set (at random) with the constraint that the number of cases in each category was 

roughly equal. It was found that some of the feature selection algorithms performed 

best when there were roughly equal numbers in each category and while it was possi- 

ble to weight some categories more heavily than others this had little impact on the 

final result and balancing the number of cases in each category was significantly more 

effect ive4. 

The case selection procedure was then repeated 4 additional times to form a total 

of 5 training and test groups. The constraint on balancing the number of cases in 

each category combined with the random selection of cases resulted in few cases where 

mammograms from both the left and right breasts of the same patient appeared in 

the same sample. However, the restricted size of the entire pool of images resulted in 

considerable overlap in the cases between samples. The multiple samples were used 

to provide some insight into the amount of variation that can be expected due to 

redistribution of cases into the training and test groups. 

There were additional cohorts selected for two specific purposes. Specificaliy, 

the results of the classification procedure on the normal contralateral mammograms 

(Contra) from the breast where a malignancy was diagnosed as well as those m m -  

mograms for the breasts contralateral to the "normal" cases were examined. For the 

41t should be noted that the category equalisation was not applied to the Den class as  it would 
have resulted in an unacceptably srnall sample. 
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normal cases these contralateral mammograms were also classified as normal, how- 

ever, the contralateral.breasts for the abnormal cases were chically normal but had 

a considerably higher risk of developing breast cancer [Gajalakshmi et al., 19981. 

The second cohort which was created was used to examine the age dependence in 

the classification results- Since the risk of breast cancer is influenced by the age of 

the patient, an examination of the age dependence in the mammographie properties 

which were selected was also performed. For this part of the study the images from 

the Diag classification were divided into sub-groups of patients with ages from 40-54, 

42-56>. + -, 54-68. Again, within each sub-group 5 random selections of a training and 

test group were made. 

3.3 Feature Extraction 

Three spectral properties were considered: regional moments, global moments and 

the mean for subregions of the histogram of the segmented breast tissue. For the cases 

that had a small total number of variables, as was the case with the global and regional 

moments, an exhaustive search of al1 possible combinations of variables was performed 

and the best selected, based on the results from a linear discriminant anaiysis. Indeed, 

this approach was carried out for al1 cases where it could be performed in a reasonable 

amount of time. However, an exhaustive search was not possible when the total 

number of variables exceeded - 50. Therefore, for these situations, a method of 

performing a random search of a large feature space was used to identie the most 

significant properties, a genetic algorithm, as implemented in ga-ors. This approach 

was used to select the sub-regions of the histogram and in the selection of textures. 
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3.3.1 Moments 

The global moments of the image were found by calculating the histogram of the entire 

segmented region and applying Equation (2.2). On the other hand, the calculation 

of the regional moments followed the procedure described in [Byng et al., 1996al. 

Briefly, the segmented region was tesseliated with square 29x29 pixeP (- 3x3 d) 

regions of interest (ROI'S), ignoring any ROI's which were not entirely contained in 

the segmented region. The moments were then calculated from the histogram for each 

ROI and the corresponding moments averaged together. Byng et al. found a specinc 

regional moment, the third or regional skewness, to be useful in the classification of 

density grades. Therefore the use of the regional skewness alone was considered as a 

separate case in the analysis. 

3.3.2 Hist ogram Regions 

The selection of the regions of the histogram with the greatest discriminatory power 

was conducted primarily through the progam ga-ors from the hstitute for Bio- 

diagnostics. The program selects a number of "best" regions up to a user-defined 

maximum. If too many regions were used, many may be positioned in areas which 

have little discriminatory power thus producing a more complex discriminant func- 

tion with little improvement in classification performance. Another concem was that 

an increase in the number of variables in the discriminant function also increases the 

li kelihood of t ailoring the discriminant function to characteristics that were discrim- 

inatory only in the sample used as the training set (overfitting). Naturally, if the 

number of regions was too small, an insufficient number of characteristics were being 

used and it would not be possible to accurately reflect the structure in the data. 
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Since i t  is not possible to know a priori the ideal number of features, the analysis was 

repeated using several nurnbers of regions: 2-7, 10 and 15. 

Some preprocessing was performed on the histogram data prior to submitting it to 

ga-ors. First, the pixel counts in the histograms were rank ordered, that is the values 

were replaced by their ranking in the total histogram. Hence, the maximum count 

was replaced by 4095, the total number of grey levels, the next highest by 4094, and 

so on to  O. For grey levels with equal pixel counts, the rank was decided at random. 

The rank ordering had two effects, first it removed a non-zero background and second 

it tended to provide some protection from biasing the region selection with only large 

peaks, which rnay or rnay not be discriminatory For this work, whether the rank 

ordering was or was not used did not have any significant impact on the resulting 

accuracy of the method but it improved the stability of the selected regions with 

respect to random fluctuations. Since a genetic algorithm was &ven by a random 

number generator, it was not surprising that the regions selected varied even with 

identical input5. However, applying the rank ordering reduced the variation in the 

selected regions over multiple trials and the stability was retained for a higher number 

of selected regions. 

One difficulty that must be dealt with was that the full histogram contained 

4096 discrete grey levels and the program can select a region with a minimum of 

two channels. The information contained in such a small region may be dominated 

by noise. In order to combat this effect, the size of the histogram was reduced by 

dividing the full range of grey levels into small intervals and taking the median of 

the histogram data for each intewal. The width of the i n t e ~ a l s  was selected as a 

This may not be true if there was a single weU defined optimum solution to the problem but 
that was not the case here. There appeared to be multiple solutions of comparable effectiveness. 
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compromise between a number of competing factors. For example, if the intervals were 

too small the noise in each interval may be too severe and lead to  poor classification. 

On the other hand, if the interval was too large, the regions which were actually 

significant may be removed from the pool of avaiiable variables- AdditionalIy, when 

the reduced data was then processed by ghors for the selection of subregions in this 

rebinned histogram and if the window was too large, the program frequently chose 

portions of the histogram which were as small as possible (two rebinned grey levels). 

The performance of the system was evaluated after combining: 1, 2, 4, 8, 16, 32 and 

64 grey levels and selecting the best 5 regions when the Diag cohort was used. As 

shown in Figure 3.2, a reasonable choice for the window size seemed to be 16 as it 

is the largest bin size with comparable classification accuracy to  the raw histogram 

data. 

3 -3.3 Mult ifractal Feat ures 

In order to evaluate the generalised dimensions, the partition function given in Equa- 

tion (2.3) 

 as enluated for multiple values of q. This required superimposing a regular grid with 

a characteristic length E over the image and calculating p, for each cell. To calculate 

p,, an average grey level for each ce11 was found and truncated to its integral value. 

,Q~ was then taken as the fraction of the segmented image which contained pixels with 

that truncated, average grey level. In other words, for a mesh size of E x E pixels2 the 

average for each ce11 was found and a histogram was calculated for just the segmented 

region with the reduced resolution. Hence, if an average grey level, &-, was found for 
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1 O Rank Ordered Diag cohort 

A 

Raw Diag cohort 

45 1 
1 2 4 8 16 32 64 

Window size (grey levels) 

Figure 3.2: Percentage of correctly classified cases with 5 GA selected histogram 
subregions after rebinning the histogram and applying rank ordering. The upper 
horizontal axis refers to the rank order data and the lower axis to the data without 
rank ordering. The error bars reflect the standard deviation of the five redistribution 
trials of the cohort. 
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ce11 (i, j), pij W ~ S  taken to be the number of celIs with an average grey level of Fij7 

normalised by the total number of cells contained in the segmented breast shadow6. 

The histogram was recalculated for every change in scale E. In addition, for every 

choice of q, xq was found for E = {1,3,5,9,17) and the linear regression fit calculated 

for  log^, as a function of loge. The dope of the fit gives r from which D, can be 

eaçily calculated fiom Equation (2.6). A range for E was selected after applying the 

procedure to a s m d  subset of images and selecting a region such that  log^, - C log€, 

for some constant C, which indicates that the fiactal model is valid. 

It was found that the multifractal model grew progressively less applicable as 

q $ 1. This may be due to the limitations of the double precision libraries that were 

used for the calculation of x and pQ and the rapid growth of pQ as q increased. 

It was possible to accommodate the wide range of values through the use of infi- 

nite precision math libraries but these routines were computationally very intensive. 

Further, the purpose of the study was not to demonstrate the multifiactal nature of 

a mammogram. Rather, a set of parameters which may be used to characterise the 

texture of the image was desired. For this purpose it was not significant that the 

calculated quantities exactly reflected the value of the "true" generalised fractal di- 

mensions for the images and simply a fixed range of E values was used along with the 

standard double precision arithmetic for the calculations . Therefore, 20 evenly spaced 

values were selected for q fkom -5 to 0.7. i.e. q E (-5, -4.7, -4.4, - , 0.1,0.4,0.7) 

and combinations of features which consisted primanly of Dq far fiom q = O were 

rejected7. 
-- 

6Thiç is a l ~ ~  the histogram entry for the Et grey level normalised by the total area under the 
his togram curve. 

?These dimensions were the most likdy to be far fkom the "truen value for the generalised fracta1 
dimension. 
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3.3.4 Texture Features 

For this work, the wavelet transform of the image was performed using a publicly 

available library: liftpack [Sweldens, 1994, Sweldens, 1995, Fernhdez et al., 19961. 

The library was obtained fiom a web site8 and used a method called lifting which 

enabled a bi-orthogonal wavelet basis to be generated after s p e c w g  a few desired 

properties. In particular, a basis described by Sweldens [Sweldens, 19941 was used. 

The wavelet coefficients were retained for 5 levels in the decomposition. The textures 

were then calculated for the areas which corresponded to the segmented breast region 

in the three "high pass" filtered quadrantsg at each level of the decomposition'O. 

For each quadrant the texture energy, entropy and inertia were calculated. Al1 

three texture measures can be found using the SGLD matrix, with elements, pij(d, O )  

(as described in Section 2.2.2). Recail pij(d, O )  gives the probability of finding a pair 

of pixel values i and j separated by a distance d and with an orientation characterised 

by an angle 8. The SGLD matrùr was found directly from its dehition - examining 

each pair of pixels in the segmented image with the desired separation distance and 

orientation. It should be noted that any pair of pixels that did not have both points 

within the segmented tissue was ignored. 

The choice of d and 0 were arbitrary and 20 different combinations were selected 

corresponding to the distance and direction for the cartesian vectors given by: 

8http://vuv.cs.sc.edu/-fernande/liftpack/i.ndex.html 
gFor example, the three high p a s  filtered quadrants at the highest resolution level were labeiled 

as HL, HH and LH in Figure 2.3. 
1°Each "Ievel" of the wavelet decomposition is identified by a difterent number of letters in Figure 

2.3. Therefore {HL, HH, LE?} and {LLHL, LLHH, LLLH} represent different levels of the decom- 
position. 
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Using different values for d and dinerent bvels in the wavelet transforrn may appear 

to be redundant. However, in [Wei et al., 19951 a cornparison was made between 

changing texture resolutions by using different levets in a wavelet transform and by 

changing the values for d. In their work, the wavelet transform method had compa- 

rable or better performance. Since the study by Wei was designed to  reduce the false 

positive rate for a CAD system and considered different features than those used 

in this thesis, there was no justification to choose one method to the exclusion of 

the other. Hence, both methods of exarnining multi-resolution texture features were 

utilised. 

The different levels in the transform combined with the three quadrants in each 

level and the various combinations of d and 8 resulted in 300 features per texture that 

were available for the discriminant function. The large number of values prohibited 

the use of an exhaustive search of al1 possible texture combinations- Therefore, the 

genetic algorithm was used for the selection of the best textures as well as the best sub- 

regions of the histogram. The program requires a spectrum as input hence a method 

is needed to map the collection of texture values into some fonn of "spectrum". 

The mapping was arbitrary and the texture values were placed sequentially for the 

textures corresponding to the directions given in Equation (3.8) to form groups for 

each quadrant of the wavelet transformed image. These groups were then collected 

by the order of the quadrants from which the textures originated, starting from the 

quadrant in the lower left and proceeding counterclockwise for each level (Figure 

2.3). Next, each level group of features was abutted in the "spectrum7' from the 

lowest resolution to the highest. Finaliy, each texture value waç copied 10 times prior 

to inserting the next texture feature. The program, g ~ o r s ,  identifies regions with a 
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mean that was useful for the classification problem and it is unlikely that an average 

of several texture features would correspond to a physical quanti@. In principle, the 

repeated sequence of values, which was quite large relative to the minimum region 

size of two bins, would inhibit the progam from selecting a region spanning several 

t ex-tures. 

Clearly, the order of the textures in the artificial spectrum is hierarchical. As an 

example consider a texture such as the energy. The texture value for the highest level 

of the wavelet transform occupied the bins numbered 2401-3000, the next highest 

level 1801-2400, etc. Within each level, say 2401-3000, 2801-3000 was used for the 

textures in the quadrant labelled HL in Figure 2.3, then 2601-2800 for HH and 2401- 

2600 for LH. Then within each quadrant, eg. 2801-3000, 2961-3000 contained the 

textures for the five difZerent combinations of d and 0 corresponding to 1 = 16 in 

Equation 3.8, 2921-2960 for 1 = 8, etc. Within each group of bins, eg. 2961-3000, 

2991-3000 contained textures for the specific combination of (d, 6) corresponding to 

the vector" (16,16), 2981-2990 for (16,-16), 2971-2980 for (l6,O), and so on. Finally, 

within each of these smallest groups, eg. 2991-3000: the same texture value was 

repeated for each bin. See Figure 3.3. 

( 1 , l )  , 1 = 16 from Equation 3.8 
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240 1-3000 (level 1) 

- 2801-3000 (quad. HL) 

t 10 copies of 
same texture 

2601-2800 (quad. HH) 
O 

O 

O 

2401-2600 (quad. LH) 
O 

O 

O 

Figure 3.3: Hierarchical mapping of texture features of the wavelet t ransformed image 
to a spectrum for the genetic aigorithm. "levely' refers to the scaling level in the 
wavelet transfom. "quad." refers to the quadrant HL, HH or LH in each level. (See 
Figure 2.3.) "1" refers to Equation 3.8. Finally, the vectors refer to Equation 3.8 with 
particular instances of 1. 



Chapter 4 

Results 

The results were organised into two main divisions. The first part describes the 

features selected that maximise the classification performance for the prirnary cohorts, 

datasets based on mammogram density classes (Den) and datasets based on the 

diagnosis (Diag), along with any conclusions which can be drawn from the nature of 

the selected properties. The second part evaluated the selected properties on various 

subsets of the data. In particular, we examined: 

1. The performance of the selected features to classify the normal images con- 

traIateral to the breast with a diagnosed malignancy and the mammograms 

contralateral to the normal mammograms used for the Diag cohorts. 

2. The correlation between the patient age and the selected features. 

3. The correlation between the scanner used to digitise the mammogram and the 

selected features. 
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Feat ure Select ion and Classification 

The features which were selected as the most significant varied considerably depending 

on the classes in the cohort which were to be distinguished. In this work, two main 

ciassification divisions were considered: classification into density grades (Den) and 

classZication into diagnosis classes (Diag) . 

4.1.1 Density Grade Classification 

For this classification scheme, the mammograms were evaluated into four density 

grades by experienced clinicians following the guidelines specified by the ACR (Bi- 

R4DS). This was performed at the centre where the mammogram was taken and 

supplied along with the patient information in the DDSM. The database was organ- 

ised along the lines of confirrned malignancy, normal or abnormal but benign classes. 

Therefore, the distribution of cases in each density grade reflected the distribution of 

the general population and few cases were present with the lowest density grade. A 

typical histogram for each density grade is shown in Figure 4.1. Most of the normali- 

sations have already been applied prior to the extraction of the histograms, including 

the normalisation for variations in image size. Indeed, the large number of O values is 

due to the extension of the grey levels to occupy the full 4096 range. The normalisa- 

tions that were excluded were used exclusively for the sub-regions of the histogram, 

i.e. rank ordering of the histogram and smoothing by only retaining the median value 

of each 16 successive grey levels. 

For the study of density grades, it was advisable to organise the analysis so as 

to guard against detection of features which were characteristic of a malignancy. 

Therefore mammograms were used for only those patients who were free of cancer. 
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Figure 4.1: Typical examples of the histograms for a mammogram fiom each density 
grade. The images were normalised prior to extraction of the histograms. 
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In addition, in order to avoid subtle biases, the same side (left) was used for all 

cases. The patient ages span the full range under consideration, 40-69, and the cases 

were randomly divided into a training and test set with the training cases containhg 

roughly twice the number in the test set. To reduce and quanti6 effects due to the 

choice of which images were in the training and test sets, four additional random 

divisions of the same pool of images into training and test sets were selected. This 

allowed an exploration of the effects of the distribution of cases on the classification 

accuracy. 

The overall performance, that is the percentage of cases classified correctly, for 

each feature when considered individudy is shown in Figure 4.2. The plotted points 

represent the median of the classification performance while the error bars showed 

the standard deviation of the five random training and test set selections. Since 

the standard deviation was calculated for a small group of values, the error bars in 

the following figures may not be representative of the variability of the classification 

performance of the feature set. In some cases the error bars seemed unusually large 

or smal. 

,4 few general observations were irnmediately apparent. Most notably, the clas- 

sification accuracy was approximately 40%' regardless of the property under consid- 

eration and regardless of the number of features used in the discriminant function. 

In addition, the range of values for most of the classification results were sufficiently 

large that al1 the properties can be taken as having comparable classification ability. 

The size of the standard deviation was noticeably smaller for the properties where the 

optimum set of parameters were selected by the genetic algorit hm (histogram sub- 

'A collection of rnammograms assigned at random into 4 density grades wouid have been expected 
to have a - 25% classification accuracy. 
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(a) Moments (b) Histogram Regions 
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Figure 4.2: Overall classification performance (percentage of correctly classified cases) 
for the Den class. 
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regions, texture energy, texture entropy and texture inertia) rather than through an 

exhaustive search (global moments, regional moments and multifractal dimensions). 

This may indicate that the genetic algorithm is more robust to overfitting so while 

the exhaustive search may find a combination of properties with a better overdl per- 

formance on the training set, the genetic algorithm gives a result which was more 

representative of the typical performance. 

The relatively poor performance of these properties riras equally likely to be due 

to the small sample size and unbalmced distribution of cases in the various density 

grades rather than fiom any deficiency in the approach. The organisation of the 

database resulted in a very uneven distribution of cases in the various density grades 

which can only be overcome by using a s a c i e n t  number of cases that would allow 

the selection of a statistically significant number of cases for each grade. The num- 

ber of cases that constitute a sufficient number can be significantly dserent when 

normal/abnormal groups were considered and when density grades were considered. 

Since the classification of normal/abnormal groups was the primary goal, the sample 

size and distribution of cases was insufficient for density grade classification. 

It is also important to note that the regional skewness was found to be a 

significant risk factor by Byng et al. ([Byng et al., 1996a], [Byng et al., 19991 and 

[Byng et al., 1996b1) and the classification accuracy on our sample using this prop 

erty, (34 i 15)%, was comparable to any of the other features that were considered 

here (Tables 4.1-4.8). Each table gives the number of features used in the discrimi- 

nant function (leftmost column) as well as the c'confusion matrix" or the distribution 

of the predicted classes (rows) as a function of the known classes (columns) for each 

trial and the overall performance, ie. the fraction of correctly classified cases, for each 
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NO. of 
Regions T d  A k Acc (5) T d B  &Acc(%) Trial C & Arc (%) Triai D k Acc (0) Triai E& Acc(8) 

O 0 0 0  0 3 0 0  0 0 2 1  0 1 0 2  0  1 2 0  

Table 4.1: Outcome for Den cohort using sub-regions of the histogram. For each 
trial the overail classification performance and confusion matrix is given. 

trial. Each trial (A-E) represent the five repeated divisions of the entire sarnple into 

training and test sets. 

The single best regional moment was found to be the second regional moment 

(regional variance). Its overall classification performance was comparable to the re- 

gional skewness, with a smaller uncertainty, but the lower variance may be a small 

sample size effect. For a direct cornparison between al1 properties that were under 

consideration see Tables 4.1-4.8. 

From Table 4.1 (only histogram sub-regions) the best classification2, 37.5%, occurs 
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No. of 

Table 4.2: Outcorne for Den cohort using globd moments the histogram. For each 
trial the overail classification performance and confusion matrix is given. 

when 7 subregions of the histogram, (77-79, 100-104, 107-108, 121-123, 124-126, 

254-256, 257-262)3, were used in the discriminant function. For the global moments 

(Table 4.2), the performance was slightly smaller at 35.5% for 4 and 7 global moments. 

Since we desire the simplest discriminant function possible, the best discriminant 

function occurs when using 4 global moments, {1,4,5, Il) where the llth moment was 

* ~ h e  classification for a given number of variables used in the discriminant function was taken 
as the median of tnds A-E in the tables. The best was then selected from the kt of median values 
for the various numbers of features. 

3Recall that every 16 successive grey levels in the full histogram were grouped together so that 
the range of possible values were 1-256, Section 3.3.2. The remaining 257-267 bins were 10 repeated 
copies of the patients' age. 
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the patients ' age. Similarly, the best classification using regional moments (45% in 

Table 4.3) occurs when using the 4 regional moments (3, 4, 6, 8) and the multifiactal 

dimensions (Table 4.4) gave a discriminant function with 43% (Table 4.5) of the cases 

classified correctly for 6 "dimensions" (q = (-3.2, -1.7, -1.4, -1.1, -0.8) and the 

patient's age.). When the texture energy was used, comparable classification accuracy 

(35%) appeared when using 3,4,5, 6 and 15 different sets of textures. The sample size 

for the density classification was Iikely insufficient to aUow one discriminant function 

to clearly have better performance than the others. However, for the function with 

the fewest number of textures, 3, the energy textures used were (129480, 1132-1161, 

1383-1385). For the texture entropy (Table 4.6), the best classification accuracy 

(35%) occurred for 15 textures. The use of 15 textures is excessive and comparable 

performance (34%) occurred for 2 textures, (765-819, 1378-1402). Similarly, the 

highest accuracy when using the texture inertia (37.5%, Table 4.7) appeared for 15 

textures but the use of 3 textures gave comparable results (37%) with the textures 

(900-1084, 1612-1620, 2721-2808). 

In order to be able to make some connection to previous studies in this area, 

Pearson's correlation coefficient [Bevington, 19691, T ,  was calculated for the results 

given in dl the previous tables. The correlation coefficient is given by 

where each case, i ,  in the sample of N cases had a classification predicted by the 

LDA of xi and a known classification of Yi .  Then, when the correlation coefficient 

was used to quanti& the performance, the best overall classification occurred when 7 
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No. of 
Mom. Triai A and Acc (5) Trial 6 and Acc (5) Trial C and Acc (Sb) Trial D and Acc (46) Trial E and AIX (46) 

O 0 0 0  0 3 0 0  1 1 1 0  0 1 0 2  0 3 0 0  

Table 4.3: Outcome for Den cohort using regional moments of the image. For eacb 
trial the overall classification performance and confusion matrix is given. 
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No. of 
Dim- T d  A and Acc (%) T M  B and -4cc (%) Trial C and Acc (46) Trial D and Acc (96) T '  E and Acc (46) 

O 0 0 0  0 1 2 0  0 1 2 0  0 1 2 0  0 0 3 0  

Table 4.4: Outcome for Den cohort using multifractal dimensions. For each trial the 
overall classification performance and confusion matrix is given. 
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No- of 
Tan- TdAaadAa(%)  T n r l B d k c ( % )  Tn.LCladAa(%) TrLl D and Acc (9) Triai El idAa(%) 

O 0 0 0  0 1 0 2  0 2 1 0  0 2 0 1  0 2 1 0  

Table 4.5: Outcome for Den cohort using texture energy on the wavelet transform of 
the image. For each trial the overall classification performance and confusion matrix 
is given. 
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No. of 
Tuturcs Trial A and Acc (5%) Trial B and Acc (Sb) Triai C and Acc (46) Trial D and Acc (%) Trial E and Acc (46) 

O 0 0 0  0 0 2 1  1 1 1 0  0 1 0 2  0 1 2 0  

Table 4.6: Outcome for Den cohort using the texture entropy on the wavelet trans- 
form of the image. For each trial the overail classification performance and confusion 
matrix is given. 
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No. of 
Textures Trial A and Acc (%) Trial B and Acc (%) Trial C ancl Act  (%) Trial D and Acc (46) Trial E and Acc (5%) 

O 0 0 0  0 2 1 0  1 2 0 0  O 2 0 1  0 2 1 0  

Sable 4.7: Outcome for Den cohort using the texture inertia on the wavelet transform 
of the image. For each trial the overalI classification performance and confusion mat& 
is given. 

Trial A and Act(%) Trial B and Acc (46) Triai C and Acc (55) Trial D and Acc (46) Triai E and Acc (46) 
O 0 0 0  0 3 0 0  0 2 1 0  O 2 0 1  0 2 1 0  
O 12 1 O  59.46 O  5 4  027.03 O  10 3 O  375 O  4 O  O 19.35 O 8 1 O 34.29 
0 3 3 6  0 6 5 0  O S S O  0 8 0 5  0 4 4 0  
0 5 0 7  0 7 7 0  0 6 8 0  O 9 0 2  O 1 0  5 0  

Table 4.8: Outcome for Den cohort using regional skewness of the image. For each 
trial the overall classification performance and confusion matrix is given. 
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regional moments were used in the discriminant hinction with a correlation coefficient 

r = 0.37 31 0.08. Since the use of 7 moments is somewhat excessive we also gave the 

results for 5 regional moments T = 0.5 * 0.2 and the single best regional moment 

r = 0.18 f 0.09. The correlation coefficient for the best classifier using the percentage 

of correctly classified cases, 4 regional moments, gave a correlation coefficient4 r = 

0.3 & 0.2. However, prior to presenting the detailed results £rom other studies it 

should be reiterated that the only feature common to this thesis and previous studies 

is the regional skewness. The method used to create many of the features in this 

thesis was similar to the approach used in the other studies but a small change in the 

method can result in considerably different characteristics of the new feature. This 

is particularly true for the textures which we have used. 

Karssemeijer [Karssemeijer, 19981 was able to obtain 65% agreement with the den- 

sity classification provided by radiologists on 615 mammograms and 80% agreement 

if the study was constrained to use the more recent rnarnmograms with a more consis- 

tent quality (125 cases, 199 1-1994). Additionally, the majority of misclassifications 

were incorrect by a single density grade. (For the entire set of images and the feature 

set used for the 65% result, the minor error rate was 0.33 and the major error rate5 

0.023.) For the data set in this study it was found that the minor and major error 

rates were higher than that reported by Karssemeijer. Al1 the properties considered 

had roughly similar error rates. The minor error rate at - 0.45 was on the order of 

the value found by Karssemeijer while the major error rate (- 0.2) was substantially 

4The difference in the selected set of features which gave the best classification performance may 
be a smalI sample size effect or due to the properties of the correlation coefficient. The correlation 
coefficient considers cases which are "neariyn classified correctly whereas the fraction of correctly 
classified cases does not. 

5Karssemeijer defined the error rate as the number misclassified by one grade (minor) or more 
than one grade (major) normaliseci by the total number sample size, including the correctly classified 
cases. 
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Classifiers % Exact % Minor % Major 
Agreement Disagreement Disagreement 

& vs. computer 66.0 22.0 12.0 
RI vs. computer 64.8 20.9 14.3 
R2 vs. computer 68.8 16.8 14.4 
R3 vs. computer 65.8 16.5 12.4 

VS. cornputer 68.5 16.5 15.0 

Table 4.9: Classification performance for the approach used by Tahoces. (Results 
taken from [Tahoces et al., 19951). 

greater For these considerations only (error rates) the multifkactal dimensions per- 

formed slightly better than the regional moments followed by the remaining properties 

with very similar but slightly greater error rates. 

Tahoces [Tahoces et al., 19951 on the other hand, used Wolfe grades to classi& the 

mammograms into risk groups and in comparing the computer classification against 

5 radiologists (a-&) Tahoces found the results summarized in Table 4.9. 

In another study, Byng [Byng et al., 1996b] used mammograms classined by ra- 

diologists into a six class density grade system (SCC) on 100 cases. The particular 

results which are relevant for companson to this work is the correlation between 

SCC and their semiautomatic system of calcuiating the percent density (Pearson 

correlation coefficient, r = 0.811) 

SCC vs. regional skewness: r = -0.761 

a SCC vs. their fkactal dimension: r = -0.649. 

(See [Byng et al., lW6b]. The negative correlation coefficients indicates that the 

higher skewness values and fractal coefficients are associated with the lower density 

grades and vice versa.) Finaliy, Boone et al. [Boone et al., 19981 used a continuous 
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scale (BDI) which was specifically constructed to correlate wit h the radiologists' rank- 

ing of images. On 160 patients, they found a correlation of r = 0 -907 between the BDI 

based on the results calculated using the radiologists' ranking and the computerised 

ranking. 

A cursory examination of the results shown in the tables, above, indicate a poorer 

correlation between the properties selected for this study and the density grade classi- 

fication than previous studies by other groups. M i l e  it is possible that the properties 

themselves were less suitabIe for this classification task, there were significant Mer -  

ences between this work and the studies described above. First, the number of density 

grades differed for most of the studies and although Karssemeijer also used four den- 

sity grades, Byng used six density grades, Boone a continuous scale up to 100 and 

Tahoces used Wolfe grades. Second, the dataset itself was different. This is distinct 

from the difference in sarnple sizes, discussed below. For example, Karssemeijer also 

reported that he was unable to reproduce the results of Byng using the fractal di- 

mension on a set of images from Nijmegen, although the failure in that case may be 

due to the variation in film quality. The majority of the studies, discussed above, 

used Iocally obtained mammograms and to the best of my knowledge a cornparison 

of the performance of property sets on the datasets from other groups has not been 

performed. 

The rnost significant difference between this study and the work cited above was 

that the sample size which was used for classification of the density grades was con- 

siderably smaller (- 80 in total and - 30 for the test set) than in any of the other 

studies and much fewer than the cornplete 240 cases. Most likely, the small sample 

size and uneven distribution of density grades severely inhibited the ability of the sys- 
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Numbcr of Rqxmes 

Figure 4.3: Overall classification performance for Den cohort allowing for features to 
be selected from al1 calculated properties. 

tems from identieing the most useful, general features. For completeness, the results 

were given when al1 properties were combined and the genetic algorithm allowed to 

select combinations of features fiom all calculated properties (Figure 4.3 and Table 

4.10). The small sample size resulted in many unrelated feature combinations with 

comparable performance so that a detailed analysis of the actual features selected 

yielded little that was generalisable. 

4.1.2 Diagnosis Classification 

For this part of the analysis, the mammograms that contained a diagnosed malignancy 

and the mammograms fkom the patients who bad both breasts diagnosed as normal 

(i.e. Diag cohort), were used to select the features which were subsequently used in 

the analysis for the remaining studies. The results for this cohort shared a few of the 

same general characteristics which had been observed for the analysis of the density 

grade classification (Den cohort). For example the classification performance was, for 
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No. of 
h p .  Trial A and Acc (Sb) Tnal B d Acc (56) Trial C and Acc (%) Trial D and Acc (4b) T6ai E and A a  (96) 

O 0 0 0  0 1 0 2  1 2 0 0  1 2 0 0  0 1 2 0  

Table 4.10: Outcome for Den cohort allowing for features to be selected from all cal- 
culated properties. For each trial the overall classification performance and confusion 
matrix is given. 
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a large part, independent of the number of properties used to form the discriminant 

function. (See Figure 4.4 and the detailed performance results in Tables 4.11-4.18.) 

However, the differences compared to the results for the Den cohort were equally 

prorninent. Most obvious was that the overall performance was somewhat higher 

for al1 properties. The poorest performers were the regional moments, histogram 

sub-regions and the multifractal dimensions. The behaviour of the histogram sub- 

regions seemed to be the simplest to characterise in that the accuracy was essentially 

unchanged at  - 60% when the number of sub-regions used to form the classifier varied 

from 2-15. While the classification accuracy when using the multifract al dimensions 

was - 53% for a single multifractal dimension, it rose to - 60% as more fractal 

dimensions were employed. The performance also reached a plateau at  - 60% for 2- 

10 dimensions and dropped back to - 50% for 15, Figure 4.4(c). The global moments 

appear to have the best performance of the features described so far at - 70% for 

two global moments, Figure 4.4(a). The behaviour of the regional moments was 

similar to the multifiactal dimensions except that for more then 5 regional moments 

the accuracy increases to - ?O%, Figure 4.4(a). The most significant features for 

classification appear to be the textures. AU three had an overall peak accuracy at 

80-85% and the texture energy and inertia had similar overall characteristics. Both 

had relatively low accuracy for a single texture and attain peak performance at 6 or 

7 textures which was maintained a t  nearly that level for up to 15 textures. On the 

other band, the performance of the texture entropy was essentially uniform at  - 80% 

when the number of textures used in the classifier is varied from 2-15. 

From examination of the data used for the summary figures, Tables 4.11-4.18, it 

is clear that the summary figures do not make apparent some important information 
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Number d Maiimts 

(a) Moments 

(c) Multifractal Dimensions 

(e) Entropy 

(b) Histogram Regions 

(d) Energy 

(f) Inertia 

Figure 4.4: Overall classification performance for Diag class 
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No. of Trial A Trial B Trial C Trial D Trial E 
Regions and Acc (8) and Acc (96) and Acc (9%) and Acc (56) and Acc (46) 

25 13 60.49 26 14 55.42 21 10 59-09 28 17 59.21 23 12 6438 

Table 4.11: Outcome for Diag cohort using sub-regions of the histogram. For each 
trial the number of features used in the discriminant hnction, confusion matrk and 
overall classification performance are shown. 
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No. of Trial A Trial B Triai C Trial D Trial E 
Mom- and Acc (%) and Acc (8) and Acc (46) and Acc (96) and Acc (%) 

1 29 9 65-43 27 13 6627 22 9 60.61 28 17 71.05 24 11 63.01 

Table 4.12: Outcome for Diag cohort using global moments of the histogram. For 
each trial the number of features used in the discriminant function, confusion rnatrix 
and overall classification performance are shown. 

in the data. For example, there were several cases where the overall accuracy was 

relatively high (> 60%) but the true positive or true negative fraction was very poor 

(< 50%). Fortunately, these were not present for any of the cases using texture 

properties. However, there were a few situations where the true positive or true 

negative fraction was .Y 60%. These typically only appear for a small number of 

textures where the median performance was also relatively poor. It should also be 

noted that the performance of the regional skewness was essentially random at  533~4%. 

Additional useful observations c m  be dram from the selection of features for 

each of the extracted features (Tables64.19-4.23.) but two points that should be 

6The tables contain the number of features used in the discriminant function for each property, 
leftrnost column, and the selected features for each of the 5 redistributions of the sample cases, Trials 
A-E. 
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No. of Trial A Triai B Trial C T d  D Trial E 
Morn. and Acc (46) and Acc (8) and Acc (96) and Acc (96) and Acc (5%) 

1 29 9 56.79 33 7 54.22 25 6 56.06 28 17 7237 29 6 53.42 

Table 4.13: Outcome for Diag cohort using regional moments of the image. For each 
trial the number of features used in the discriminant function, confusion matrix and 
overall classification performance are shown. 

noted prior to any further discussion was: 

1. The exact number of selected features or regions may particularly when 

the genetic algorithm was used. Due to the specific implementation of the 

genetic algorithm in gbors, if a set of features was identified which classifies 

the images well, the set was retained even though the number of features may 

be less than what was desired. Naturally, the program cannot search through 

al1 possible combinations so that  ga-ors does respect an upper limit to the 

number of properties to use in the discriminant function, for the most part. 

2. The specific features that were selected varied somewhat for the different traia- 

ing/test groups and became more apparent as the number of selected features 

increased. This is partly due to overfitting - a greater number of features 
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No-of TrialA Trial B Triai C Trial D Trial E 
Dim. and Acc (96) and Acc (96) and Acc (46) and Acc (46) and Acc (a) 

29 9 56.79 23 17 57.83 17 14 53.03 13 32 51.32 20 15 49.32 

Table 4.14: Outcome for Diag cohort using multifractal dimensions. For each trial 
the number of features used in the discriminant function, confusion matrix and overall 
classification performance are shown. 
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No. of Trial A Trial B Trial C Trial D Triai E 
Textures amd Acc (96) amd Acc (96) amd Acc (96) amd Acc (8) amd ACC (96) 

2 30 8 74.07 26 14 71.08 20 11 75.76 26 19 65.79 24 11 69.86 

Table 4.15: Outcome for Diag cohort using texture energy on the wavelet transform 
of the image. For each trial the nurnber of features used in the discriminant h c t i o n ,  
confusion rnatrix and overall classification performance are shom. 
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No- of Tnd A Trial B Trial C Trial D Trial E 
Textureç amd Acc (%) amd Acc (96) amd ACC (96) amd ACC (46) amd ACC (%) 

2 30 8 80.25 32 8 7952 19 12 8030 27 18 71.05 24 11 76.71 

Table 4.16: Outcome for Diag cohort using the texture entropy on the wavelet tram- 
form of the image. For each trial the number of features used in the discriminant 
function, confusion matrix and overall classification performance are shown. 
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No. of Trial A Trial B Trial C Trid D Trial E 
Textures arnd Acc (96) amd Acc (46) amd Acc (96) und Acc (46) amd Acc (%) 

2 28 10 64.20 32 8 7952 25 6 63.64 27 18 64.47 23 12 64.38 

Table 4.17: Outcome for Diag cohort using the texture inertia on the wavelet trans- 
form of the image. For each trial the number of features used in the discriminant 
function, confusion matrix and overall classification performance are shown. 

Trial A Trial B Trial C Trial D Trial E 
and Acc (%) and Acc (%) and Acc (%) and Acc (%) and Acc (%) 

26 12 55.56 24 16 46.99 23 8 53.03 18 27 52.63 23 12 45.21 

Table 4.18: Outcome for Diag cohort using regional skewness of the image. For each 
trial the confusion matrix and overall classification performance are shown. 
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requires a greater sample for a generai discriminant function7. This is an- 

other reason to favour a smdl number of features but it would be premature 

to discount the importance of the properties under consideration without more 

significant evidence. 

If we begin with the sub-regions selected from the histogram, Table 4.19, we see 

that when a s m d  number of regions was selected, the genetic algorithm chose regions 

from the lower third of the histogram as well as one region fiom the middle or upper 

third- For two regions, predorninantly the lower and middle third was used while 

for three, one region fkom each tended to be selected. As the number of regions 

increases, regions from the lower third are chosen more kequently than either the 

middle or upper third but for 10 regions or more, regions from the middle third were 

also highly represented. It is also important to note that the number of regions for 

the "best" classification began to be fewer than the requested number of regions as 

the number exceeds 7. 

-4 cursory examination of the global and regional moments (Table 4.20) which 

had the greatest discriminatory power, seemed to be somewhat disappointing, in 

that frequently rather high moments were selected. The dificulty with the high mo- 

ments was that they are extremely sensitive to small variations in the distribution 

and attempting to use them for a stable classification method would be ill-advised. 

Recall from Figure 4.4(a) that the classification accuracy of the moments was essen- 

tially unchanged for 2-6 global moments so that a different number of moments with 

more favourable characteristics can be used with little impact on the classification 

performance. From 5-7 regional moments the accuracy improved somewhat but the 

71n optimisation terrninology, multiple local minima have been found but it is not possible to 
identify a global minimum without a sample more representative of the fdl population. 
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No- of 
R&au TrulA TridB TrirlC T a 0  TndE 

2 35-38 44-52 4142 38-39 45-49 
112-113 112-114 112-113 214-216 112-ID 

Table 4.19: Actual subregions of the histogram selected as the "best" properties 
for each trial in the Diag cohort corresponding to Table 4.11. The selected regions 
represent the rebinned grey levels (Section 3.3.2) from 1-256. Bins 257-266 were 
assigped the patients' age. 
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No. of 
Moments Triai A TridB TriaiC TrMD TriaiE 

1 2 2 2 

(a) Global Moments (b) Regional Moments 

Table 4.20: Best moments selected for the classification of the Diag cohort for a 
varying nurnber of moments in the discriminant function. The entries are associated 
with the corresponding entries in Tables 4.12 and 4.13. The moment numbered 11 is 
the patients' age and not the llth moment. 
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improvement does not j u s t e  the cost of using substantially- more moments. Fur- 

ther, if only one moment was selected, the preferred moment was either the global 

variance or regional kurtosis. If two moments were used, the preferred pair was the 

regional mean and kurtosis or a pair of global moments fkom {3,4,5). Any of these 

is low enough that a stable classifier was much more Iikely than if the sixth or greater 

moments was used. 

For the multifractal dimensions, D, was found for 20 values of q fiom -5 up to 

0.7. However, the classification performance varied considerably (- 25%) for the 

five redistribution trials of the cases between the training and test sets. Since the 

selected features also favoured the higher values of q, this may indicate that that 

the range selected for q still contains a region where the multifractal mode1 was not 

valid (See Chapter 3.3.3.) or may simply be due to overfitting. When the range of 

p was constrained to the first 16 values (q = -5 to q = -0.5) the stability of the 

results improved significantly, Figure 4.4(c) and Table 4.21. The preferred dimensions, 

selected by the search algorithm lie close to the upper part of the range for q. However, 

the single best multifractal dimension corresponded to D+ [bin 11). Additionally, 

it appeared that dimensions far from the upper range for q were selected only when 

"forced". For example if 15 dimensions were requested then, with no repetitions, 

dimensions far from the upper q range must be selected. 

The parameters, d and 8, in the calculation of the textures resulted in a partic- 

ularly large number of features. For these properties, the sheer number of variabIes 

required that a random search method be used, i.e. ga-ors. The features selected by 

ga-ors are given in Tables 4.22 and 4.23. If the genetic algorithm is to be applied 

for these properties the features must be arranged to form an artificial spectrum as 
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No. of 
Dim. TiùlA T d B  TnrlC TMD TriilE 

1 11 I L  11 11 11 

Table 4.2 1: Best multifractal dimensions selected for the classification of Diag cohort 
for a varying nurnber of dimensions in the discriminant function. The entries were 
associated with the corresponding entries in Table 4.14 and the dimensions were 
numbered sequentially from 1 for the generalised dimension, D, l q = - s  (fiom Equation 
2.6) to 16 for 0, /q=-0.5 in equal increments of q = 0.3. The patients' age was in the 
bin numbered 17. 
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(a) Texture Energy (b) Texture Entropy 

1041 
21 1-255 
359-396 
MI-SU) 
91LQ)S 
I W I U O  
1297-1333 
2406-2426 
2MCzss 
26Y26.51 

Table 4.22: Range of texture properties selected for the classification of the Diag 
cohort for a varying number of texture energies and texture entropies in the discrim- 
inant function. The entries are associated with the corresponding entries in Tables 
4-15 and 4.16 and the values in each range of features are numbered as described in 
Section 3.3.4. The patients' age was placed in bins 3001-3010. 
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Table 4.23: Range of inertia texture properties selected for the classification of the 
Diag cohort for a varying number of texture inertia in the discriminant function. The 
entries are associated with the corresponding entries in Table 4.17 and the values in 
each range of features are numbered as described in Section 3.3.4. The patients' age 
was placed in bins 3001-3010. 
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described in Section 3.3.4. The genetic algorithm was used in the selection of the dis- 

criminatory regions in the histogram as well but the OD of a film would not change 

abruptly without some intermediate OD values. Therefore, the grey values were not 

entirely independent and we were justified in taking the mean for a sub-region of 

the histogram as a variable in the discriminant function. This was not the case, in 

principle, for the texture measures since they were arranged into a spectnun in an ar- 

b i t r a ~  order and there were "natural" boundaries between each texture. In practice, 

the selected group of textures did not always respect the divisions between different 

textures. For example, practically all the selected regions span several different tex- 

tures formed simply by changing the parameters d and 0 in the SGLD matrix8. This 

implies that the features the program selects were isotropie and independent of dis- 

tance, up to the range of pixel separations that were used in this work (max d = 16& 

and 0 E {45O, 135O, 225O, 315O)). The next most frequent "boundary crossing" was 

between the three quadrants which were distinguished by the order and type of ID 

wavelet filter that was applied. In particular, ga-ors would try to combine texture 

values calculated from different quadrants of Figure 2.3 for the same level of the 

wavelet decomposition. That is, between quadrants where the label for the quadrant 

only differs in the last two letters of Figure 2.3. While the difference in the order of 

application of the 1D wavelet filters had an impact on the output of the transform, 

the resulting coefficients between the three quadrants were similar and it would not 

be surprising that the program occasionally took means of the values across these 

quadrant boundaries. 

Finally, the last boundary occurred between the different resolutions for each 

iteration in the wavelet transform (quadrants in Figure 2.3 with different numbers 

$These quantities were described in Section 2.2.2. 
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of letters in their labels). Sets of features which cross this boundary occurred more 

frequently for the texture energy and texture entropy and then predominantly for the 

iterations that resulted in the lowest resolution part of the transform. The intervals 

with this behaviour ody  appeared when a small number of textures was desired and it 

may be significant that the texture inertia which had the fewest of this type of selected 

regions also performed the best in class*ing the images. The fiequency of occurrence 

also varied significantly. The first type of boundary crossing, ignoring d and 9, were 

extremely common while regions crossing quadrants were considerably less frequent 

and the resolution (or scaling) level crossing regions were quite rare. The range of 

the specific features that were selected for the best classification performanceg using 

7 texture energy features, 6 texture entropy features and 6 texture inertia features 

are listed in Table 4.24. The table gives the endpoints for each range of features when 

the textures are arranged as described in Section 3.3.4. Each texture was described 

by the channel number in the artscia1 spectrum as well as the wavelet level (LI, L2, 

L3, L4 and L5), wavelet transformed quadrant (LH, HH and HL) and their (d,O) 

combination as expressed as a Cartesian vector ((1- O), (0, l), - See Section 3.3.4.). 

Overall, the feature sets which were selected appear to be derived predominantly 

from the iterations of the transform which resulted in the lowest and highest resolu- 

tion. Generally, more features were selected from the lower resolution levels than the 

higher ones. 

The remaining study for this section allowed the genetic algorithm to select any 

combinat ion of features from the moments, histogram regions, multifractal dirnen- 

sions and texture measureslO. Combining the properties allowed the creation of a 

gThe number of features were selected for the best classification performance with the fewest fea- 
tues. However, the trial (A-E) was selected as the trial with the median classification performance- 

10Previously the selection was constrained to only use one property. 
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Property "Spectnun" Feature Endpoints 
Range S tart End 

427430 L5, HL, (1,-1) L2, HL, (1,-1) 
557-593 L5, HL, (8.8) LS, HL, (16,ld) 
665-7 1 1 L4, LH, (2,-2) L4, LH, (4,4) 

Energy 7 14-764 L4, LH, (4,4) L4, LH, (0.16) 
1224- 1273 L3, LH, (1,- 1) L3, LH, (2,2) 
2259-2307 L2, HL, (ZO) LZ HL (4,4) 
2339-2389 L2, HL, (8,O) L2, HL, (16,-16) 
262-3 15 LS, HH, (2,-2) L5, HH, (4,4) 
343-397 

Entropy 452-509 
8 12-860 

L5, HH, (16.16) 
L5, HL, (4.4) 
L4, HH, (2,O) 
Ll, HL, (0,161 
L5, LH, (16,O) 

Table 4.24: Texture features selected by gaors for 7 energy textures (Trid A)? 5 
entropy textures (=al C) and 6 inertia textures (Trial D). LI, L2, L3 or L4 refers to 
the level of the wavelet decomposition; LH, HH or HL refers to the quadrant for the 
decomposed image and ( 0 ,  a) refers to the Cartesian vector that corresponds to the d 
and B combination. (See Section 3.3.4.) 
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Figure 4.5: Overall classification performance for the Diag cohort allowing for fea- 
tures to be selected from a11 caiculated properties- 

discriminant function utilising properties that characterise unrelated aspects of the 

rnammogram and, ideally, giving an improved classification accuracy. When the pro- 

cess was performed using al1 properties, the overall accuracy, the details of its perfor- 

mance and the selected regions are shown in Figure 4.5, Table 4.25 and Table 4.26 

respectively. In order to use the genetic algorithm on the combined features, a spec- 

trum was formed by placing the rebinned histogram data (rank ordered and binned 

to 256 values) in the channels numbered 1-256 (as for the selection of the histogram 

sub-regions) . The global moments, regional moments and multifiactal dimensions 

were entered in bins 257-356, 357-456 and 457-656 respectively. The features for 

these three properties were repeated for 10 bins so that, for example, the 10 moments 

occupy 100 bins. The patients' age was entered in bins 657-666 and the age was also 

repeated for the 10 bins. The texture energy, texture entropy and texture inertia was 

placed in the bins 667-3666, 3667-6666, 6667-9666 respectively. Within each range 

the textures were ordered as described in Section 3.3.4- 
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No. of Trial A Triai B Trial C Trial D Trial E 
~roperties and Acc (%) and Acc (%) and Acc (96) and ACC (46) and Acc (%) 

2 22 16 69.14 29 11 73.49 20 11 69.70 25 20 63.16 25 10 76.71 

Table 4.25: Outcome for the Diag cohort allowing for features to be selected from 
al1 calculated properties. 

The appearance of Figure 4.5 highly resembled the curves in Figure 4.4(d) or 

Figure 4.4(f). The reason is immediately clear from Table 4.26. The features which 

were chosen were almost exclusively from the texture properties but there does not 

appear to be any single texture type which dominates. There was near uniform 

representation among the texture energy (667-3666), texture entropy (3667-6666) 

and texture inertia (6667-9666) but almost no features selected from any of the other 

extracted properties (collectively 1-666). This implies that the discriminatory power 

of the texture properties was much stronger than any other property that we have 

considered but that there was little difference in the discriminatory power among the 

three different textures. 

There was also a significant difference in the peak classification accuracy in Figure 

4.5 and when using the textures individually, Figures 4.4(d)-4.4(f). This was likely 
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Table 4.26: Properties selected for the Diag cohort when allowing for features to be 
selected from al1 calculated properties. 
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due to the stochastic examination of the potential feature sets inherent in a genetic 

algorithm. For this part of the study, the total number of features was more then 

three times larger than when the texture energy, entropy or inertia was used indi- 

vidually. Therefore, the genetic algorithm was able to examine a greater proportion 

of the solution space, and find a better solution, when each property was examined 

individudly as compared to the combination of d l  properties. 

For ail instances, the patients' age was included in the "spectrum" as an extra 

property, however, it was rarely chosen as a factor in any of the studies. The instances 

where it was selected seemed to occur only when a large number of features (10 or 

15) were requested to be used in the discriminant function. This suggested that the 

discriminatory power of the selected features are nearly age independent. However, 

the evidence is circumstantial and a more explicit analysis for the presence of an age 

dependence was considered in Section 4.3. 

4.2 Contralateral Mammograms 

When the mammograms containing a malignancy and the set of normal cases (Diag 

class) was selected, a large subset of the collected images was excluded. Recall that 

the selection of the training and test groups was made at random from a pool of 

images with twice as many normal mammograms as abnormai ones". Additionally, 

the number of normal and abnormal cases was kept approximately equal12. Therefore, 

there were many normal images which were not used in any of the prior training or test 

groups. -4s well, al1 the mammograms of the contralateral breasts from the women 

l1The mammograms for both breasts for each patient was included in the total pool of images 
and a random sample was selected. 

12The equality between the groups varied slightly due to the random sektion of cases. 
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with a unilateral abnormality were not included in the pool of images for the Diag 

class. It would be instructive to examine the results of the classification system on 

this set of images. 

For the mammograms of the breasts contralateral to the side where an abnormality 

was found, the classification should be "normal" if the radiologkt s' diagnosis is t aken. 

However, it was desirable to distinguish this set of images from the mammograms fkom 

subjects with both mammograms diagnosed as normal. Therefore, for this section 

the abnormal classification was altered to describe the patient diagnosis rather than 

the diagnosis of the breast itself. Using this altered definition, a patient with an 

abnormality in either breast would ca ry  the abnormal classification and only if both 

breasts are normal were the mammograms given the normal ciassification. It  should 

be noted that since the clinically normal images from the two different categories were 

kept in two isolated groups, it would be a simple matter to generate the classification 

performance for the original definition of normal and abnormal mammograms by 

regrouping the elements in the confusion matrices. 

In ordeï to evaluate the system on this set of images, linear discriminant analysis 

was used, which requires a discriminant function to be formed 

for m features, xi, and m constants, ci. There were two aspects that must be ad- 

dressed. First, the most significant set of variables, xi, needed to be found and can 

be performed using a genetic algorithm or an exhaustive search of al1 possible com- 

binations of variables. Second, the set of coefficients, ci, which produced the specific 

function that classifies the images the "best" must be determined. This c m  be per- 
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formed using LDA. 

For this part of the analysis, the genetic algorithm was not re-applied to the data 

set to select the best set of xi. Rather, the properties which were selected in Section 

4.1 -2 were considered. However, due to several random factors such as the selection 

of five training and test groups, there was a certain amount of variation in the set of 

best properties that were found for each trial. 

Since {xi) or {ci)  can be varîed to form different discriminant functions, two 

approaches to the evaluation were used. 

Only the {Q} was calculated for each property. The { x i )  was selected from the 

feature sets using the Diag cohort (Section 4.1.2) and taken from Tables 4.19- 

4.23. For each property, the specific feature set was taken as that which resulted 

in the median classification performance for the 5 trials, A-E, but with the best 

classification accuracy for the various numbers of feat ures in the discriminant 

function (1-15). For example, for the sub-regions of the histogram the feature 

set for Trial C using 5 sub-regions was selected. The various feature sets that 

were selected for each property is described in detail below. 

Then, 5 different (G} were calculated, using LDA, by using the test datasets for 

the 5 trials corresponding to the selected feature set. i-e. for the sub-regions of 

the histogram, 5 different {ci} were formed using the test sets for Trials A-E, for 

5 sub-regions. The performance of the 5 discriminant functions were then tested 

using the contralateral images. The median and standard deviation was taken 

as the classification accuracy and uncertainty for these features (Uniform). 

2. Both {xi) and (q) were varied simultaneously (Individual). For this case the 

classification performance of the discriminant functions created for the 5 triais, 
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A-E in the Diag cohort, was tested on the contralateral images. The five 

functions were investigated only for the number of features which gave the best 

classification when the number of features was varied from 1-15. Therefore, for 

the sub-regions of the histogram, the discriminant functions which were used 

to give the results in Table 4.11 when using 5 sub-regions were tested for their 

classification ability on the contralateral mammograms. 

Recall that for each property that has been considered, histogram subregions, 

global and regional moments, multifractal dimension, etc., the classification perfor- 

mance was examined for a varying number of features. For example, when considering 

the global moments, the single best moment was found, the combination of the best 

pair of moments, best triplet and so on. For this part of the analysis, the feature that 

gives the highest classification performance for each property was the only feature 

set considered, for the most part. However, there were several cases where the best 

feature set required an excessively large number of features or features that tend to be 

unstable. For these cases an alternative feature set was selected that has comparable 

performance to the feature set with the highest accuracy. The actual feature sets that 

were used for the analysis of the Uniform features will be discussed in turn. 

Global Moments For this property the best perfcrmance was attained when using 

4 features but for many of the trials, some of the high moments are needed, 

which tend to be very sensitive to small changes in the histogram distribution. 

Therefore two moments were used (median outcome: Trial C) which has nearly 

the same overall performance and only used the lower moments. See Figure 4.4 

and Table 4.ZO(a). 

Regional Moments A similar situation exists for this property as for the Global 
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Moments. The best performance occurred when four moments were used but 

two has nearly the same outcome without requiring the high moments (median 

outcome: Trial D.). See Figure 4.4 and Table 4.20(b). 

Histogram Subregions This case is straightforward. The best performance oc- 

curred for 5 regions (median outcome: Trial C). See Figure 4.4 and Table 4.19. 

Multifkactal Dimensions The calculations using 2 to 5 dimensions had comparable 

performance to each other. Therefore, 2 dimensions were used as this resulted 

in the simplest discriminant Function (median outcome: Trial E.). See Figure 

4.4 and Table 4.21. 

Energy In order to balance the best performance with the smallest number of fea- 

tures, 7 energy textures was selected for this texture property. (median outcome: 

Trial A). See Figure 4.4 and Table 4.22(a). 

Entropy Again, there was nearly equal classification performance when using $ 5 

entropy textures. Therefore five features were used (median outcome: Trial C). 

See Figure 4.4 and Table 4.22(b). 

Inertia This also seemed to have the best performance/smallest number of features 

at 6 features (median outcome: Trial D) . See Figure 4.4 and Table 4.23. 

4.2.1 Results 

An overview of the classification performance was shown in Figure 4.6. The figure 

shows the median result when using the Uniform and Individual feature sets for 

each property that was considered for this work. Clearly, there was Little difference 
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Figure 4.6: Overall classification performance for the Individual and Uniform fea- 
ture sets when applied to the cohort of remaining images. Note that the upper or 
lower horizontal axis is associated with the data series in the legend closest to each 
respective axis. The properties are Listed in the order: Histogram sub-regions (Hist ) , 
Global moments (Mom) , Regional moments (RM) , Multifiactal dimensions (MF), 
Texture energy (Erg), Texture entropy (Ent) and Texture inertia (Int). 
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Property Trial A Trial B Trial C Trial D Trial E 
Hist 71 61 56-19 94 38 69.03 85 47 64.16 98 34 71.68 88 44 63.27 

Mom 

R M  

MF 

Energy 

Entropy 

inertia 

Table 4.27: Classification details for the Individual feature set and cohort of re- 
maining images for each property under consideration. Both the confusion matrix 
and overall performance (% ) are included. 

in the results between the two feature sets. The consistency was dso evident hom 

an examination of the classification details, Tables 4.27-4.28. The results are also 

consistent with those given for the Diag cohort with the exceptions of the Global 

Moments and texture Energy. The Global Moments had a lower performance as 

compared to the results for the corresponding properties on the Diag cohort. The 

texture Energy was of particular importance since it had comparable performance 

t o  the other textures on the Diag cohort (- 80% from Figure 4.4) but considerably 

lower performance for the Uniform feature set on the set of contralateral images 

(- 70%) and lower still for the Individual feature set (- 60%). The texture entropy 

and inertia exhibited high classification rates (> 80%) for most of the cohorts and 

feature sets shown so f a .  Therefore the texture entropy or inertia may be a better 

choice as a classification property due to  their similar performance over more diverse 
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Pro perty Trial A Trial B Trial C Trial D Trial E 
Hist 93 39 66.81 86 46 65.93 85 47 64-16 89 43 69.03 93 39 68.58 

Energy 120 12 7257 118 14 70.80 121 Il 70.80 109 23 63.27 118 14 65.93 
50 44 52 42 55 39 60 34 63 31 

Enuopy 117 15 87.61 114 18 86.73 117 15 86.73 110 22 86.73 117 15 88.05 
13 81 12 82 15 79 8 86 12 82 

Table 4.28: Classification details for the Uniform feature set and cohort of rernaining 
images for each property under consideration. Both the confusion rnatrix and overall 
performance (%) are included. 
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conditions. 

Both properties produced comparable results on the Diag cohort for the selected 

number of textures but the variation of the classification performance when the en- 

tropy textures were used on the five trials for the Individual and Uniform feature 

sets were greater than those for the inertia- On the other hand, the false positive rate 

tended to be higher for the inertia than the entropy. 

4.2.2 Conclusions 

There were several additional observations which can be drawn from these results. 

For example, with the exception of the properties mentioned above (texture energy), 

the performance of al1 the remnining properties were comparable when tested on the 

Individual and Uniform feature sets. The results were also generally comparable to 

the classification results obtained when the features were applied to the Diag cohort, 

fkom where they were originally selected. 

Recall that the Uniform features refer to using the same variables in the discrim- 

inant function but allowing the coefficients to Vary by changing the images used in 

determining the coefficients. On the other hand the Individual features refer to the 

results when allowing both the variables and coefficients to Vary in the discriminant 

function. The similarity in the results between the two approaches suggest that the 

selection of features riras robust against variation due to  the distribution of images be- 

tween the training and test groups, variation due to the random nature of the genetic 

algorithm and (possibly) variation inherent between patients. 

In addition, the classification performance of the various classifiers on these con- 

tralateral images were on the same order of magnitude (percent difference of - 6) as 



as for the mammograms diagnosecl with an abnormality (Diag group). That is, clin- 

ically normal mammograms appeared to be classified as abnormal if the contralateral 

mammogram contains an abnormality- The exception is when the texture energy 

was considered where the classification accuracy was reduced by a percent difference 

exceeding 10 for the Contra images compared to the Diag cohort. 

One possibility for the similarity in the classification accuracy between the Diag 

and Contra cohorts was that the left and right breasts for the majority of patients 

were symmetric enough that the cdculated properties were similar. Therefore, if a 

mammogram with an abnormality was classified correctly then the contralateral mam- 

mogram is likely to be classified correctly as well. This explanation is compelling from 

an examination of the actual texture properties which were selected. The textures for 

the lower resolution components of the wavelet transform were favoured over the more 

detailed ones- The lower resolution components can only distinguish broad overall 

characteristics such as the mammographie density. Boyd et al. in [Boyd et al., 19951 

suggested, from some of their unpubiished data, that there is a high degree of left/right 

symmetry with respect to the density. 

Additionally, it would be expected that the same patients would be misclassified 

regardless of the mammogram examined. In particular, for the histogram sub-regions, 

global moments, multifiactal dimensions and texture energy, the fraction of misclas- 

sified mammograms which came from the same patient was greater than or equal to 

64%13 and for the global moments it was as high as 79%. The remaining properties, 

regional moments, texture entropy and inertia, still had a considerable fraction of mis- 

classifications for the same patient at 55%, 50% and 48% respectively although they 

13The observations for the histogram and textures only involved the actual trial selected for the 
Uniform feature set while for the remaining properties the results represeat the average over trials 
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were somewhat lower than for the previously mentioned properties- It is also impor- 

tant to  note that since the textures performed much better than the other properties, 

there was a considerabiy smaller total number of misclassified mammograms for the 

texture entropy and inertia compared to the spectral properties or the multifractal 

dimensions- 

An alternative explanation to left/right symmetry is that the progam may be 

detecting true characteristics of disease. For example, the presence of the malignancy 

may be producing some agent which caused a global and detectable influence on 

both breasts simultaneously. Both possible explanations for the obsewed results can 

be tested with the appropriate data. An analysis of mammograms from the same 

patient over a long period of time should reveal a change in the classification as the 

malignancy develops, for the cancer cases. On the other hand, testing whether the 

effects are due to an inherent symmetry, which would be more important as a risk 

factor than as a diagnostic tool, is possible through the analysis of a set of images 

from patients who do not have symmetric mammograms, with approximately half of 

the cases fdling into both the normal and abnormal dassifications. Creating such a 

set of images can be difficult since the number of patients who sat ise  this criterion 

represent a relatively small proportion of the population and a study of this nature 

iç beyond the scope of this thesis. 

Regardless of whet her the program was detecting features characteristic of disease 

or an inherent left/right symmetry, the results (above) along with the fact that the 

feature sets had been selected to distinguish normal/abnormal classes was suggestive 

that the selected texture properties was of interest in the classification of mammo- 

grams. Further work is needed to identify the exact nature underlying the observed 
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behaviour. The outcome of such further studies will determine how the system can 

be used in practice. 

4.3 Age Dependence 

Since age is a significant risk factor for breast cancer it would be prudent to perform 

a more detailed examination of whether there is any age dependence in the results. 

It is also possible that the classification performance can be improved by optimizing 

the choice of feature sets for many smaller age ranges. 

The results thus far seem to imply that there was little significant age dependence 

in the selected features. The analysis of the Diag class included the patients' age as 

an additional feature. Although there were a few exceptions, for the vast majority of 

the cases, the age was not selected for the set of "best" features. This is, however, 

rather indirect evidence. For the analysis presented in this section, a new cohort was 

created ftom the images based on the patient's age. A search for direct evidence of 

an age dependence was then made. 

4.3.1 Method 

The most straightfonvard method of dividing the Diag pool of images into age groups 

waç to choose a separate group for each decade. The difficulty with this approach was 

that the number of images in the 50-59 age range would be considerably larger than 

for the 40-49 or 60-69 age groups. Another consideration was that this approach only 

gives 3 different age groups which makes it difficult to clearly identify a pattern in 

the results. As an alternative the images were divided into eight age groups, 40-54, 



4.3 Age Dependence 127 

42-56, 44-58, - . -, 54-68. This gave a sufficient number of data points to make trends 

in the data clearer and ailowed easier identification of anomalous results (noise). The 

drawback with this approach was that the groups were no longer disjointL4. From 

this point the analysis proceeded as for the Diag cohort in Section 4.1.2 for each age 

group. B riefly, 

Five random divisions into training and test sets were made with each age group. 

0 The best set of 1, 2, - ., 7, 10 and 15 features fkorn each property under consid- 

eration (moments, multifractal dimensions, etc.) was found using an exhaustive 

search or a genetic algorithm as appropriate. 

The overall performance of each set of features was evaiuated using LDA for 

each property. 

4.3.2 Results 

It would not be surprising to observe differences in the functional relationship of the 

classification performance wïth the patients' age when using different properties in the 

classifier, unless the properties are dependent. The overall classification performance 

on the various age groups when global moments were used are shown in Figure 4.7. 

The classification was performed using linear discriminant analysis and allowing 1-7 

and 10 moments to be used in the discriminant function. Similarly, the results for 

the Regional Moments are shown in Figure 4.8, the sub-regions of the histogram for 

2-7, 10 and 15 regions in Figure 4.9, Figure 4.10 for the multifractal dimensions (1-7 

and 10 dimensions), while the energy, entropy and inertia results (for 2-7, 10 and 15 

14The size of each group may stili be too srnail but the statistics of any study could always stand 
some improvement. 
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Arc- Agc 

Figure 4.7: Age dependence of Global Moments of the Diag cohort when considering 
1-7 and 10 moments in the discriminant function. In each case the upper or lower 
horizontal axis is associated with the data series in the legend closest to each respective 
axis . 
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Figure 4.8: Age dependence of Regional Moments of the Diag cohort when consid- 
ering 1-7 and 10 moments in the discriminant function. In each case the upper or 
lower horizontal axis is associated with the data series in the legend closest to each 
respective axis. 
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Figure 4.9: Age dependence of Histogram sub-regions of the Diag cohort when con- 
sidering 1-7 and 10 regions in the discriminant function. In each case the upper or 
Iower horizontal iuùs is associated with the data series in the legend closest to each 
respective &S. 
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Figure 4.10: Age dependence of Multifractal dimensions of the Diag cohort when 
considering 1-7 and 10 dimensions in the discriminant function. In each case the 
upper or lower horizontal axis is associated with the data series in the legend closest 
to  each respective axis. 
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textures) appear in Figures 4.11-4.13 respectively. In many of the instances, there 

appeared to  be a clear age dependence and in some cases the function was rather 

non-linear, as in Figure 4.7(d) or Figure 4.12(a). However, the majority of these 

feature sets either classi& the images poorly or utilise more features than would be 

desirable. Therefore our attention was focussed on the particular feature sets selected 

in Section 4.2. 

A least squares fit of polynomials in the age up to the third degree was made for 

each data set corresponding to the feature sets selected in Section 4.2. The fits them- 

selves were perforrned using a commercial product, Jandel Scientific's Table Curve. 

In addition, a weighting was applied to each datum proportional to its uncertainty. 

However, the uncertainty in the results given previously was taken as the standard 

deviation for a small nurnber of points and may not be representative of the uncer- 

tainty. Therefore, for this part of the analysis, the mean of the standard deviation 

values were used for the uncertainty for the points in each dataset. That is, a different 

uncertainty was found only for Merent properties and different numbers of features 

used in the discriminant function. i.e. for each curve in Figures 4.7-4.13. 

Table Curve ranked the three polynomials by the quality of the fit based on the 

mot rnean square error. When strictly considering the fits' ranking, a non-linear 

fit would often appear to be appropriate but the final choice of the best fit polyno- 

mial was based on a combination of the ranking of the fits, using the fit standard 

error (FSE or root mean square error) and a partial F-test for statistical signifi- 

came [Bevington, 1969, Flury and Ftiedwyl, 19881. An F-test evaluates the likelihood 

(probability or p) of two samples being drawn fkom the same distribution. In this case 

the partial F-test was performed using the residuals of two candidate polynomials 
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Figure 4.11: Age dependence of texture energy of the Diag cohort when considering 
2-7, 10 and 15 textures in the discriminant function. In each case the upper or 
lower horizontal axîs is associated with the data senes in the legend closest to each 
respective axis. 
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Figure 4.12: Age dependence of texture entropy of the Diag cohort when considering 
2-7, 10 and 15 textures in the discriminant function. In each case the upper or 
lower horizontal axis is associated with the data series in the legend closest to each 
respective axis. 
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Figure 4.13: Age dependence of texture inertia of the Diag cohort when considering 
2-7, 10 and 15 textures in the discriminant function. In each case the upper or 
lower horizontal axis is associated with the data series in the legend closest to each 
respective axis. 
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Property 

Global Moments 
Regional Moments 
Histogram Regions 
Multifractal Dimensions 
Texture Energy 
Texture Entropy 
Texture Inertia 

Degree of 
Polynomial 

Partial F comp. Partial F comp. 
to const (p) to linear (p) 
0.103 (> 0.75) N/A 

Table 4.29: Partial F-test results for best polynomial fit (according to the fit standard 
error up to degree 3) for the age dependence data. 

and if the sample residuals were statistically similar ( p  greater than a critical value) 

then the addition of the extra parameter in the fitted function did not improve the 

fit significantly. The lower order polynomial was then selected as the best fit. On the 

other hand, a statistically signficant difTerence @ less than a critical value, Say 0.05) 

in the partial F-test indicated the converse and the best fit function was selected on 

the basis of its (FSE) ranking. Additionally, since the uncertainty of the points was 

quite large for many of the cases, the best fit polynomial was always compared to 

a linear fit as well as to the weighted average of the points (i.e. a horizontal line). 

For both situations the fit was tested for a statistically significant improvement in 

the description of the data over a Iinear fit and a horizontal line. The partial F-test 

values for the best fit (FSE) polynomial cornpared to a constant and a straight line 

along with their p values are shown in Table 4.29. 

If a relatively high value of p was selected as the cutoff for statistical significance, 

Say 0.05, then the use of the regional moments and texture entropy appear to produce 

results with a cubic dependence on age while the texture energy gave results with 

a quadratic age dependence and classification results for the remaining properties 
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(global moments, histogram sub-regions, multifiactal dimensions and texture inertia) 

were independent of age. However, if p is reduced to 0.01 o d y  the results for the 

regional moments stiil exhibit an age dependence and for p = 0.001, which is not 

unremonable, none of the properties show any age dependence in the classification 

results. 

In summary, if the critical value for p was taken as 0.05 the age dependence of 

the various feature combinations vary for different properties. The combination of 

2 regional moments and the combination of 5 texture entropies that were selected 

show a cubic age dependence in the results. The classification ability for 7 texture 

energies show a quadratic dependence on age and the remaining feature sets (2 global 

moments, 5 histogram subregions, 2 multifractal dimensions and 6 texture inertial 

features) were independent of age. The characteristics of the dataset would suggest 

that these fits should only be accepted if the dependencies were very clear. Therefore 

for p = 0.001 the classification ability of al1 the properties are independent of age. 

This conclusion is supported by the results of the selection of the best feature sets 

where the age was not selected in combination with any of the properties15. 

4.4 Scanner Dependence 

One characteristic of the data set that caused some concern was that the x-ray scan- 

ner used to digitise the film had some correlation with the classification of the images. 

Specifically, the majority of the Normal cases were digitised using the DBA scanner 

while the majoriw of the Abnormai cases used the LS scanner. Therefore, features 

15This was for the feature sets selected for the highest classification accuracy with the fewest 
nurnber of features. See Section 4.2- 
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F'roperty Trial A Trial B Triai C Triai D Triai E 
Histogram 20 14 58.82 18 16 52-94 20 14 58.82 15 19 44.12 13 21 38.24 

Energy 22 12 64-71 19 15 55.88 23 11 67.65 19 15 55.88 21 13 61.76 
O O O O O O O O O O 

Enuopy 14 20 41.18 9 25 26-47 13 21 38.24 10 24 29.41 10 24 29.41 
O O O O O O O O O O 

Table 4.30: Classification details for the Abnormal mammograms digitised using the 
DBA x-ray scanner. The table shows the overall classification performance (%) and 
confusion matrix for each property using the feature set of Section 4.2 

which can be used to characterise the specific scanner would also appear to be able 

to correctly classify the mammograms scanned with the respective digitisers. For the 

results presented earlier, i t  was assumed that the inherent patient to patient variation 

masked any dependencies due to the scanner after the normalizations removed the 

obvious scanner characteristics. There were insufficient data to fuiiy test t his assump 

tion but a small number of cases were present that did not have the scannerlpatient 

outcome correlation. Namely, 34 patients with a biopsy confirmed malignancy had 

their mammograms digitised with the DBA scanner. The classification ability of 

"best" set of features for each property, as described in Section 4.2, was tested just 

using this group of images. The results are shown in Table 4.30 which indicates that 

the classification performance is lower for ail properties and many are close to 50%. 
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Property Tïial A Trial B Trial C Triai D Trial E 
Histogram 0.34 0.13 0.34 0.02 0.00 
GM 0.12 0.01 0.12 0.0 1 0-12 
RM 0.0 1 0-10 0.18 0.00 0.05 
MF O. 15 0.04 0.15 0.00 0-08 
Energy 0.0 1 0.00 0.02 0.00 0.00 
Entrop y 0.00 0.00 0.00 0.00 0-00 
Inertia 0.00 0.00 0.00 0.00 0.00 

Table 4.31: Total probability of obtaining classification results as given in Table 4.30 
or poorer, assurning a binomial distribution. 

The likelihood that the change in performance observed in Table 4.30 was due 

to the small sample size can be calculated, with a few judicious assumptions. If a 

set of images, with a known classification, were assigned at random into one of two 

categories such that the assigned category was correct with probability p,, then the 

distribution of correct and incorrect cases follow a binomial distribution. -4 sample 

of N cases with at most 1% correctly classified and N - N ,  incorrectly classified cases 

can be calculated as the total probability of obtaining N - Nc, N - Nc + 1, - - O ,  N 

incorrectly classified cases or 

If the probability for a correct classification, p,, is taken as obsewed in Section 4.1.2, 

for the Diag cohort, then the total probabilities for each trial and each property are 

given in Table 4.31. For example, the table (4.31) indicates that the total probabil- 

ity, due to random chance alone, is 0.12 for obtaining at  most 20 correctly classified 

cases16 using the global moments and the distribution of cases as in Trial C. Since the 

16From Table 4.30. 
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value is small it would seem to indicate that the poor class&ation accuracy is not 

simply â statistical effect. However, there may be small sample size effects being ex- 

hibited in the calculations. In particulai-, the probabilities for correctly class-g the 

mammograms, pc, were taken £kom a dinerent and significantly larger sarnple of cases 

and may not be accurately reflected in this smaller sample. In addition, a binomial 

distribution only is an approximation to the act of randomly c l a s s m g  the mammo- 

grams. For Equation (4.3), the probability for a correct classification, pc, is assumed 

to be constant- p, actually changes somewhat as the number of mRmmograms to be 

assigned to  the classes is depleted. Clearly, this approximation is more valid as the 

total number of cases increases and deviations can be expected for a small number of 

cases. 

It should also be noted that the corrections that were applied to the images en- 

compass the full range of normalizations that can be applied in practice and should 

be sufficient to compensate for differences in the scanner characteristics. However, 

the significant variability in the appearance of the mammograms from patient to pa- 

tient combined with the non-uniformity in the appearance of the disease made it very 

difficult to assess the quality of the correction procedure with a random sample of 

mammograms from the population. Therefore, the use of data spec~cal ly  intended 

for testing the correction procedure is imperative for this type of study. 

4.5 Conclusions 

Superficially, the performance of the system for the density grade classification, was 

disappointing. However the regional skewness, that Byng et al. [Byng et al., 1996b, 

Byng et al., 19991 found to be a significant risk factor also had a similar performance 
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for our sample of images. The difficulty that was encountered was that the sample 

itself was quite small for this type of investigation17 and the distribution of cases 

among the density grades was very non-uniform. For the small sample size, there is 

little to discuss; atypical results are very cornmon if the sample size is not sufficiently 

large and the more subtle an effect, the larger the necessaq sample size. The calcu- 

lated properties were being used to quanti& a characteristic of mamrnograms which is 

extremely variable (the mammographie density). Without a sufficiently large sample 

of images that is representative of the amount of variation present in the population 

it is unlikely that the features that are useful to classiS. the density can be identified 

even through very powerful techniques such as a genetic algorithm. 

The distribution of cases among the density grades, on the other hand, re- 

quires some elaboration. This unevenness was also partly due to the sample size 

but in addition to this, the cases in the DDSM were selected to fa11 into nor- 

mal/abnormal/abnormal but benign categories without regard to their density grade 

classification. This resulted in the rnajority of the cases falling into the middle two 

density grades (- 15) with few (< 3) in the lowest density grade, in particular18. The 

unevenness gave ga-ors some difficulty because 

With 5 random training and test groups, some of the samples did not expose 

the program to examples in al1 four density grades. 

The program would simply try to classi& the second and third density grade 

correctly and allow the classification of cases in the extreme grades to be incor- 

rect. During the training phase the genetic algorithm and LDA tried to max- 

imise the number of correctly classified cases and even with the errors from the 

170n the order of 50 test cases. 
1 8 ~ h e  highest density grade had a comparable number of cases to the middle density grades. 
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mammogams falling in the extreme density grades, the system would classi@ 

the vast majority of the cases correctly. The genetic algorithm then "decided" 

that this solution was nearly optimal and mainly explored solutions with simi- 

lar behaviour. Then, during the testing phase, many cases were still classified 

correctly but there were more errors due to the patient variability. This com- 

bined with al1 the errors from the extreme densiw grades gave a low overail 

performance. 

Of the properties that were considered for this study, the regional moments and the 

multifractal dimensions classified the density grades the best and both properties had 

similar analogues in [Byng et al., 1996aI and [Byng et al., 19941 who found a correla- 

tion with the mammographie density. Due to these factors, it seemed iikely that the 

poor performance was not necessarily from the choice of the extracted property or 

the fault of gaors, and the analysis should be repeated with a larger sample. 

The rernaining investigations which were performed involved the diagnosis of the 

images or patient cases. When considering the mammograms with a diagnosed malig- 

nancy and one mammogram for each normal case, Diag cohort, the properties: global 

and regional moments, sub-regions of the histogram and the mult ifract al dimensions 

al1 had similar overall classification performance at roughly 60-70%. The texture 

properties had an even better classification performance at - 80-85%. Similarly, 

when the images under consideration were changed to the mammograms contralat- 

eral to the breasts where a malignancy was diagnosed and those normal mammograms 

which were not seiected by the random selection of training and test sets (i.e. the Con- 

tra set) the performance is largely comparable for al1 properties between the results 

in the Contra and Diag cohorts. However the performance of the texture energy, 
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in particular, was seriously degraded in cornparison to the Diag cohort. Finally, the 

results did not exhibit any dependence with age for a reasonable choice of the critical 

value, p = 0.001, given the characteristics of the dataset itselflg. 

Overali, the texture inertia appeared to have the best combination of characteris- 

tics. The classification performance was consistently high for the Diag and the set of 

images in Section 4.2 (the Contra cohort) as  well as having a relatively small variance 

in the classification accuracy after random redistribution of the cases into training 

and test groups. Additionally, there did not appear to be any age dependence in the 

results. 

lgThe sample size was small and there was an overlap of cases between adjacent age groups. 



Chapter 5 

Discussion 

The overall objective of the project was to identiS. global characteristics of mammo- 

grams that may be usehl in assisting in the diagnosis of breast cancer or assessing 

breast cancer risk. In order to assess risk, an established mammographic risk fac- 

tor was used, the mammographic density grade while the diagnostic ability of the 

cornputer system was compared to the known clinical diagnosis of the mammogram. 

The images that were used for the study were obtained from a pubiicly available 

database, the digital database for screening mammography, fiom the University of 

South Florida. The database represents a first step toward a standard database 

of images to be used for mammographic image research. The full database is to 

contain a large number of images when complete and the images were obtained with 

high quality x-ray digitisers intended for use in mammography. This factor is quite 

important as the breast shadow must be segmented from the background and the 

tas k was considerably more straightforward when the images were obtained from 

t hese digitisers. 

The database was not an ideal dataset for a study on breast cancer risk similar to 
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those done by Boyd [Boyd et al., 19951 and Byng [Byng et al., 19971. The details of 

each patient's reproductive history (age of menarche, age of first lïve birth, etc.) must 

be known and was not provided as part of the DDSM. As well, there were some 

additional deficiencies that may hinder some types of studies. For example, the 

database was Iacking Mages that were obtauied from the same patient over a fairly 

long period of tirne. This would be useful for e x d i n g  age dependent eEects or 

temporal changes in mammographic features. 

5.1 Procedure Overview 

The breast shadow was segmented fiom the background and corrections made for 

the scanner dependent effects and mammographic technique as described in Chapter 

3. Next, the properties that were selected for this study were extracted. A greater 

number of features than what was expected to be useful for the mammographic clas- 

sification was intentionally extracted since the precise combination of features that 

would maximise the classification accuracy was not known. Rom this large pool of 

features a subset was selected that had the best classification ability. The properties 

that were calculated consisted of the first 10 global moments, the first 10 regional mo- 

ments, subregions of the global histogram (a maximum of 15 subregions were allowed 

after reduction of the histogram fiom 4096 grey levels to 256),  multifract al dimensions 

@O), the texture energy, texture entropy and texture inertia (300/texture). 

The energy, entropy and inertia were calculated fkom the wavelet transform of 

the image. The transform itself was executed using a biorthogonal wavelet basis 

as described in Sweldens [Sweldens, 19941. The textures were found for 5 different 

resolution levels of the wavelet transform and for 3 of the quadrants in each level 
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(LLL. . .LH, LLL. . .HH, LLL. . .HL, see Figure 2.3). The textures quantified character- 

istics for pairs of pixels in the image and required two additional arbitrary parameters 

representative of the separation and orientation of the pair of pixels under considera- 

tion. Twenty different combinations of these arbitrary parameters were used for each 

texture in each quadrant and in each level for a total of 300 features per texture. 

From the pool of features, the single best global moment was selected, the single 

best regional moment and so on for each property. Then the best pair of global mo- 

ments, best pair of regional moments, etc. was found. The procedure was repeated 

for 3, 4, 5, 6, 7, 10 and 15 features, except for those properties where fewer than 

15 features were calculated (Le. global and regional moments). For the global mo- 

ments, regional moments and the multifractal dimensions, an exhaustive search of al1 

possible combinations of single features, pairs of features, etc. could be performed in 

a reasonable amount of time. However, the total number of possible combinations 

was too great for an exhaustive search for the remaining features (subregions of the 

histogram, the energy, entropy and inertia) and g h o r s ,  a program developed at the 

Institute for Biodiagnostics, was used as an alternative approach for finding the best 

set of features. ga-ors uses a genetic algorithm to select the optimal or nearly optimal 

combination of features to maximise the classification accuracy. 

The procedure was used to classify the images into categories corresponding to 

density grades (Den) and according to the diagnosis of the mammograms themselves 

(Diag goup). Additionally, the age dependence in the classification performance of 

the selected features for the Diag cohort was examined along with any dependence in 

the results to the rernaining systematic scanner dependencies for a small number of 

mamrnograms. Finally, the selected features were used to  classify the normal mam- 
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mograms which were contralateral to those selected for the Diag cohort (Contra). 

5.2 Results 

The following provides a summaxy of the main results for each cohort and for the age 

dependence and scanner dependence. See Chapter 4 for details. 

5.2.1 ''Den" Cohort 

When classiSing the images into density grade categories, it was found that ail the 

properties under consideration (global moments, regional moments, subregions of 

the histogram, multifiactal dimensions and the texture energy, texture entropy and 

texture inertia applied to the wavelet transformed images) had similar classification 

performance. Approximately 40% were classified correctly, independent of the number 

of features used. This classification rate was inferior relative to other studies (> 60%). 

Many of the features which were investigated were variants of the properties used 

in the literature, however, one property was calculated closely following the approach 

in [Byng et al., 1996a], the regional skewness. The results for this property on the 

database of images used în this study showed a similar performance to any of the 

other properties under consideration. Therefore, it was quite possible that the small 

sample size and uneven distribution of cases between density grades was a significant 

factor for these results. As discussed in Section 4.1.1, the influence of these factors 

was too great to permit a conclusion regarding the usefulness of this approach for 

classification according to density grades. 
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Cohort 

For the marnmograms where a malignancy was found and a random selection of mam- 

mograms from the patients who were free of cancer (Diag cohort), the classification 

performance varied with the property under consideration. 

The classification performance when using the subregions of the histogram were 

independent of the number of regions appearing in the discriminant function. 

Classification of - 60% of the cases were correct. 

The multifractal dimensions showed a broad peak in the classification results 

as the number of dimensions used in the discriminant function changed. The 

maximum performance was 60% correctly classified cases when using three 

dimensions. 

As the number of regional moments used in the classifier is increased, the be- 

haviour in the results is quite cornplex. fnitially the classifier had a low clas- 

sification accuracy (- 55%), reached a Bat plateau (- 60%) and rose again 

for a high number of moments (- 70%). The simplest classifier with good 

classification lay in the plateau region and used two regional moments. 

The global moments also exhibited a plateau or a very broad peak when the 

classification results were examined as a function of the number of moments 

used. Similarly, the best performance (- 70%) occurred for two moments. 

0 The texture entropy had a high classification performance of - 80% when a p  

proxirnately five entropy textures were used and the performance was main- 

tained at this level for up to at least 15 entropy textures in the discriminant 

function. Therefore five entropy textures were used for this property. 
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Both the texture energy and texture inertia had a Iom classification performance 

for two textures and rose to a plateau as the nurnber of textures were increased. 

The increase in classification performance was more dramatic for the texture 

inertia, changing fkom - 65% (for two textures) to - 85% for six textures while 

the texture energy spanned - 70% to - 80%, using seven textures. 

An examination of the actual combination of features that were selected also revealed 

that the directional information contained in the textures was ignored (isotropic fea- 

tures were more significant than any directional information contained in the tex- 

tures). Secondly, the textures calculated for the low resolution levels of the wavelet 

transform were predominately selected. This justified the assumption that sub- 

sampling the images to 110 pm/pixel had little impact on the classification ability of 

the properties. Finally, when the features used in the discriminant function were not 

constrained to belong to a single property the texture energy, texture entropy and 

texture inertia were selected to the exclusion of all the others. 

5.2.3 "Contra" Cohort 

In the Diag cohort, there were many mammograms in the dataset that were not 

included. The majority of these were the mammograms for the clinicdly normal 

breast contralateral to those that had a malignancy (for the abnormal cases) or, for 

the normal cases, the images that remained after five random samples were chosen 

for the Diag cohort. These images were collected as the Contra cohort. See Section 

3.2. The classification performance for the feature sets selected from the Diag cohort 

were tested on these Contra images. 

The tes ting involved: 
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1. Creating 5 discriminant functions using the best feature set for each property, 

described in Section 4.2, and changing only the coefficients for the 5 trials (A-E) 

of the Diag group. 

2. Taking the same discriminant functions formed for the Diag cohort. 

Al1 these functions were then tested for their classification performance on the Contra 

cohort . 
Overall the results were similar to those described above for the Diag cohort. 

The similarity in the results between the Diag and Contra cohorts may be due to 

an early stage of breast cancer that had yet to exhibit any clinical indicators or mirror 

symmetry between the left and right breasts, since the Contra cohort predominantly 

consisted of the mammograms contralateral to those in the Diag cohort. There is a 

hi& risk but low overall incidence of contralateral breast cancer [Chen et al., 19961, 

therefore it was more likely that the similarity in the classification performance be- 

tween the two cohorts are due to symmetry rather than the presence of an abnormal- 

ity However, the fact that the system was trained to distinguish normal/abnormal 

qoups and the high risk of contralaterai breast cancer suggested that the selected b 

features may be associated with a mammographie characteristic that is related to 

risk rather than some definite appearance of disease. While suggestive, this evidence 

is circumstantial and further work in this area is recommended for an unequivocal 

conclusion about the nature of the characteristic that is detected. 

5.2.4 Age Dependence 

The exact form of the dependence of the classifier results on age varied with the 

features used to form the classifier and with the cutoff selected for statistical signif- 



icance. The  images with a diagnosed malignancy and a random selection of images 

from patients who were cancer fiee, Diag cohort, was considered for this part of the 

study. The cohort was divided into 8 groups based on the patients' age; 40-54,4246, 

44-58, - . -, 5468. The feature sets which were used to form the classifiers for this 

study were the discriminant hinctions with the best classification performance for 

the fewest number of features for the original Diag cohort, as described in Section 

5 -2 -2. The classification results were then tested for a statistically significant Iinear 

(with a dope different fiom O), quadratic or cubic dependence with age compared to 

a constant. Additionally, any quadratic or cubic age dependence was also tested for 

st atistical significance when compared to a straight line. 

Overall, if the limit for statistical significance was set relatively high, p = 0.05, the 

age dependence in the results was cornplex. For example, for the regional moments 

and the texture entropy there appeared to be a cubic age dependence while the 

texture energy resulted in a quadratic age dependence and the remaining properties 

gave results that were independent of age. However, these may be artifacts from the 

small sample size and the use of the same images in several age groups. When p was 

set to a lower threshold, 0.001, there was no apparent age dependence in the results. 

5.2.5 Scanner Dependence 

There was a small number of cases (34) with diagnosed malignancy but with mammo- 

grams digitised on the DBA scanner, which was the scanner usually used for scanning 

the normal cases. If the classification accuracy of the Diag cohort was used for the 

probability of a correct mammogram classification for each feature set then the proba- 

bility of observing the distribution found in Section 4.4 for the 34 cases, from random 



chance alone, can be cdculated using a binomial distribution. From Section 4.4 the 

resulting probabilities were low, which implies that there may be a residual scanner 

dependence in the data. Again, this may be a small sample size effect since the 

classification accuracy found for the Diag cohort was an average value for a sample 

consisting of more than 34 cases. If this was indeed the case, then the results which 

were observed for the 34 cases would be unlikely but not necessarily systematic. 

The corrections that were applied to the images compensated for variations in the 

slope of the linear part of the calibration curve, resolution and non-linear effects in the 

calibration curve. These alterations made the resolution and contrat consistent with 

a single scanner. The final modification to the grey levels (the removal of the tails of 

the histogram followed by extending the histogram to occupy the bill range of possible 

grey level values) provided a small correction for variations in the mammographic 

technique. No atternpts were made to correct for noise dXerences aside from the 

inherent smoothing due to the reduction in the resolution. Further corrections for 

the MTF, noise and clifferences in the details of the mammographic technique are 

difficult to perform both theoretically and in practice. 

If the corrections that were applied to the images are insufncient to reduce the 

scanner characteristics below a detectable level then the repercussions are significant. 

In particular, meaningful comparisons of results fkom difFerent groups would not be 

possible unless the same database of images were used for all studies. In addition, the 

maintenance of a reliable system for computer aided diagnosis is made more dacu l t  

since the system may need to be retrained after any alterations to the hardware. This 

inchdes routine adjustments to a laser scanner such as a re-calibration of the look 

up table for conversion of the detected light signal (which is related to the optical 



density) to  a pixel value. 

5.3 Summary 

In summary, none of the properties that were selected appear to be usehl for the 

classification of density grades for this sample. However, if is advisable for an ad- 

ditional study be performed with a more extensive data set designed specifically for 

automat ic density grade classification before dismissing the properties in t his thesis 

for density grade classification. 

For the normal/abnormal classification, the texture inertia using 6 features gave 

consistently high classification performance for the mammograms with a diagnosed 

malignancy and a random sample fiom the normal cases (Diag). In addition, none 

of the selected features appeared to exhibit any signifiant age dependence in the 

results, at the p = 0.001 level. The results for a U  properties were comparable for 

images of the normal breast contralateral to t hose with the diagnosed malignancy and 

the mammograms from the normal cases not previously selected (Contra groups). 

However, the classification accuracy using the texture energy was significantly lower 

for the Contra cohort relative to the Diag cohort results. Overall, the texture 

inertia appeared to exhibit the best combination of qualities for the chssification of 

the mammograms into normal/abnormal groups. 

5.4 Future Work 

The work presented in this thesis signifies the beginning of a broad examination of 

global properties for mammographie classification. Some important aspects for the 
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classification of mammograms with global characteristics have been revealed by this 

study, many possible extensions identified and details in the execution revealed. The 

more important issues are discussed below. 

5.4.1 Segmentation 

The segmentation procedure that was used for this work was a semi-automatic pro- 

cedure that requires a considerable amount of user interaction. This was primarily 

due to the need for the procedure to be flexible and to have enough features in or- 

der to cope with any image that may be encountered. These characteristics were 

particularly significant in segrnenting the images fiom the Vision Ten scanner which 

possessed a considerable number of severe artifacts that made the segmentation pro- 

cedure difficult. With the higher quality images fiom the DDSM database, it would 

be straightforward to make the procedure fuiiy automatic as long as the poorer qual- 

ity images could be identified and set aside. Since the user interaction constrains the 

number of images that can be segmented in a given time, a fully automatic segmen- 

tation procedure can reduce the time needed to process a large number of images. 

5 .4.2 Scanner Dependence 

As stated previously, it is recommended that a study be made to specifically investi- 

gate the effects of the scanner used to digitise the mammograms on the classification 

performance. However, an ideal investigation would examine the effects of the expo- 

sure conditions, processing of the film, etc. in addition to  the scanner dependence. 

Therefore, the desired radiographs would consist of x-rays for an anthropomorphic 

phantom taken 
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1- At diEerent kVp's to examine the impact of the AEC as well as the effect of 

the kVp setting on the images. 

2. For different film/screen/processor combinations. 

3. For various intervals fiom the most recent QA test. This examines the effective- 

ness of the QA procedures to maintain a consistent image quality with respect 

to the mammographie properties that were extracted. 

4. Digit ised using different scanners. 

It is desirable to have many images to encompass the full range of variation that can 

be expected for each variable given above. A large number of images is also needed 

since this type of classifier is of a statisticai nature rather than the more typical CAD 

systems that identi& a suspicious area within any zndzuidual mammogram. The im- 

age set can be analysed for scanner dependence using the same procedure given in 

the previous chapters as well as examining the features individually for uniformity 

between images obtained from different scanners. It would also be possible to use 

these images to investigate the detaîls of how the classification system distinguishes 

between the various categories. For example, the selected features may be related to 

an incidental rather than a causai effect such as the kVp used to obtain the mam- 

mogram. A dense breast has a greater risk of developing breast cancer and generally 

requires a higher kVp so that a classifier that was in some way sensitive to the kVp 

would also classif' many mammograms correctly. 
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Density Grade Classification 

Attempting to improve the density grade classification performance may be achieved 

by using a much larger data set with considerabIy more patient information than 

was available for this thesis. The database should be large enough to enable the 

selection of a balanced number of cases in each density grade. This factor is the 

primary difficulty in c a q i n g  out a more detailed analysis than what was described 

in previous chapters. 

On the other hand a study of the risk requires a more sophisticated study al- 

together, such as a case control study as found in [Byng et  al., 19971. The current 

database does not provide the necessary patient information to be able to match the 

cases and controls with respect to similar risk factors that are beyond Our control. In 

particular, the reproductive history is missing (age of first üve birth, age of menarche, 

etc.). What is required is an entirely different database for an evaluation of the rela- 

tive risk associated with the properties considered in this thesis. Once an appropriate 

database is assembled, the full procedure given previously shouId be repeated. 

5.4.4 Diagnosis 

It is possible that the selected feature set was characterising considerably different 

aspects of the mammogram; some that are indicative of cancer risk and others that are 

indicative of the ciinical appearance of an abnormality in the current mammogram- 

Further, it is not possible to isolate the category to which each characteristic belongs 

without data selected specifically for that purpose. The simplest approach to study 

the diagnostic ability of any particular features would be to  employ a database of 

images that consists of many sets of mammograms for the same patient over a long 
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time interval. It is also usefd to have roughly equal nurnbers in both the normal 

and abnormal groups and both groups should utilise mammograms obtained over 

approximately the same time penod to compensate for improvements in the film 

technology. For the abnormal cases, the screening mammograms both before and after 

the actual diagnosis of the lesion would be useful. The images taken prior to discovery 

of the malignancy have to extend over a sufficiently long time that the presence 

of a lesion which is masked in the early mammograms is unlikely. Similarly, the 

normal cases require that the patient has been undergoing screening mammography 

for a sufficiently long time to be confident that the patient has not contracted an 

abnormality for some time after the date of acquisition for the Last mammogram used 

in the study. 

5.4.5 Age Dependence 

The approach to investigate the age dependence given in the previous chapters is 

sufficient to examine this characteristic. However, a much larger database of images 

is required so that the results are less likely to exhibit small sample effects. Indeed, 

if the sample size can be made large enough, it is possible to have a statistically 

sipificant number of samples for each age group as well as disjdnt groups with 

respect to both the cases in each group and the ages of the patients in each group. 

5.4.6 Bootstrapping 

Both the current study, described in the earlier chapters, and the proposed experi- 

ments given above require a training and a test set as an  integral part of the analysis. 

The results presented for this thesis used only five training and test groups that were 
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formed by redistributing the available cases between the two groups for each trial. 

This is a small number of triais and a better estimate of both the expected perfor- 

mance for the feature set under evaluation and the uncertainty in the performance can 

be obtained for a larger number of trials. While it is possible to simply increase the 

number of trials and to find the average and standard deviation for the results as in 

[Boone et al., 19981, there exists a method of combining the results for a large number 

of trials that gives a better estimate of the expected performance and uncertainty. 

This method is known as bootstrapping [McLachlan, 19921. A prototype program 

has been developed at the Institute for Biodiagnostics that perfonns the procedure 

but it is in its early stages and requires the intervention of an expert statistician to 

perform the procedure and evaluate the results. The procedure has not been used for 

this current study but there is no fundamental reason that prevents its application 

to the data for this work once the program reaches production quality software. 

5.4.7 Miscellaneous 

One point that has become obvious in the literature is that there are many approaches 

to feature extraction in mammogram classification but few comparisons between com- 

peting techniques. One of the difficulties for such a cornparison is the difference in 

image databases between different studies as well as differences in the reporting meth- 

ods, some use the percent correctly classified (as do we), some the area beneath ROC 

curves, sorne the actual relative risk between patients with the highest and lowest val- 

ues for some particular property. Others utilise various statistical parameters (several 

different types of correlation coefficients, etc.). 

Once the necessary image database is constructed it would be a simple matter 
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to make a direct comparison of the performance for all the features used to date for 

mammogram classification. This would require a careful examination of the Literature 

since the selection of the images for the database rnay have many constraints to be able 

to reproduce the work of several different groups ezactly. AdditionalIy, some of the 

diagnosis and risk studies require very large datasets and some of the studies involving 

the use of Wolfe grades may be difficult to execute since it requires the assessrnent of 

the mammogram by sorneone experienced in classSying the marnmograms into these 

categories. However, the popularity of Wolfe grades has declined and some of the 

techniques appearing in the literature can be used for a more objective mesure for 

various mamrnographic classes and enable a comparison to be made without as much 

intervention of an experienced observer. 

5.5 Final Comments 

Clearly, there is a sufficient number of extensions to the work presented in this thesis 

that a full investigation of all aspects would extend over many years. The studies that 

were performed with the current set of images constitute an initial examination of a 

potentially ongoing investigation for mammographic classification using the selected 

global properties. These current resuits have successfully identified simple texture 

properties of a wavelet transformed mammogram that are useful for mammographic 

classification. 



Appendix A 

Fractal Geometry 

One of the principal features that was extracted from the marnmograms used in this 

study was based on a multifiactal dimension. Since a multifractal is an extension to 

the basic ideas underling fiactal geometry, a brief outline of some of the concepts is 

described below prior to discussing mdtifractals. 

A.1 Basics 

Although many of the initial steps needed for the field of fiactal geometry appear at 

various times throughout history, one of the key people behind un%g the concepts 

and forming fractal geometry into its own field of study has been Benoit Mandelbrot. 

He recognised that the use of conventional Euclidian objects, such as lines, circles, 

curves, etc., was inadequate when trying to mode1 many naturally occurring objects 

- the objects t hemselves were simply too complex. However, there did appear to be a 

unifying characteristic behind these complicated objects; namely, self-similarity. Sym- 

metry has long been an important characteristic in the study of natural phenornena. 
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For example, Noether found that the symmetries that are a characteristic of the sys- 

tem itself imply the existence of some conserved quantity [Goldstein, 19801. As weU, 

the behaviour of systems under rescaling has been an important tool in statisticai me- 

chanics and condensed matter physics for some time [Chaikin and Lubensky, 19951. 

The behaviour of an object under changes in scale is fundamental to fractal geometry 

as well and, in a loose sense, fkactals are characterised by invariance to changes in 

scale [Addison, 19971. 

Consider three of the "classic'' mathematical or pure fractals, the Koch curve 

(Figue A. 1) , the Sierpinski Gasket (Figure A.2) and a Peano cuve  (Figure A.3). AU 

Figure A. 1: Five iterations in the generation of a Koch curve starting from a straight 
line. Figure taken fiom [Peitgen et al., 19921. 

of these were formed using a simple systematic iterative procedure. For example, a 

Koch curve was formed starting from a straight line and applying the procedure 
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Figure A.2: Three iterations in the generation of a Sierpinski gasket. Figure taken 
from [Peitgen et al., 19921. 

Figure A.3: Three iterations in the generation of a Peano curve. Figure taken from 
[Peitgen et al., 19921. 
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1. Remove the middle third of the h e  segment. 

2. Place two line segments of the same length as the part that was removed in the 

gap, so that it forms an equilateral triangle (with one side missing). 

The process was carried out for each line segment that forms a part of the curve and 

repeated ad infinitum. Similady, a Sierpinski gasket starts as a fdled triangle and ! 
of the area is removed hum each remaining triangle for each stage in the iterative 

process. Finally, the Peano curve employed a scaling factor of 5 a t  each stage and 

replaced each line segment by a combination of 9 line segments that formed the shape 

shown in the second iteration in Figure A.3. 

The resulting objects have properties quite unlike other commonly encountered 

curves or surfaces. Both the Koch and Peano c w e s  are continuous everywhere and 

differentiable nowhere and all three of these objects are strictly self-similar. If a region 

of the object, especially in its final state, is rescaled by the proper amount, the result 

exactly resembles the original, although some rotation may be necessary. In addition, 

the Peano curve can be shown to W an entire region of space [Peitgen et al., 19921 

and space filling curves are examples of where the conventional concept of dimension 

encounters difficulties. The Peano curve was formed from a singie curve, a one di- 

mensional object, but covers al1 points on a surface, a two dimensional object so the 

question arises - which dimension should be used for a Peano curve? Mandelbroit 

argued that these sort of objects were members of an entirely different class of objects 

and that the concepts which were used to define the dimensions of more conventional 

objects were inadequate for these. The conventional dimensions (1 because it is a 

line and 2 since it fills the area) still appear as the topological dimension and the 

Euclidean dimension, respectively. A fractal dimension, on the other hand, is formu- 
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lated using some aspect of the scale invariance that is inherent in a fkactal. This is 

usually expressed by some variation of 

where M is some measured quantity, n an arbitrary proportionelity constant (it is not 

relevant for the fiact al dimensions), s some distance characteristic of the resolution 

or scaling and d is the quantity related to the £ractal dimension. Dependhg on the 

exact quantities for M and s, d may be the fiactal dimension directly or may need 

to be offset, u s u d y  by either the topological dimension or the Euclidean dimension, 

before being used as a fracta1 dimension. 

One of the more cornmon methods of calculating a fiactal dimension is known 

as the Hausdorff mesh or box counting dimension. The procedure to calculate this 

dimension is very straightforward and this simplicity combined with the ease in im- 

plementing the calculation automatically has made the box counting dimension ex- 

tremely popular. Basically, the approach is as follows: 

1. If the box counting dimension is desired for the object in Figure A.4, choose an 

initial length, E.  This length is arbitrary and for an image a convenient size is 

1 pixel. 

2. Superimpose a regular mesh or grid composed of cells of size E x E over the 

object. 

3. Count the number of cells that contain any portion of the object. 

4. Change the size of the mesh and repeat the procedure. Since the scaling be- 

haviour of, in this case, the number of cells covering the object is under exami- 
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Figure -4.4: Border of Canada. The labeIs "A" and "B" are used as part of a fractal 
dimension calculation (following) . 

nation, a wide range of resolutions is needed. Therefore, a dramatic change in 

the resolution is chosen for each iteration of the procedure. If the initial size 

is 1 pixel, and for a digitised image this is the smallest resolution possible, a 

common choice for the other resolutions form a dyadic sequence, i.e. 1, 2, 4, 8, 

16, - - 

5. Plot the logarithm of the number of cells as a function of the logarithm of the 

reciprocal of the ce11 size and look for a Iinear relationship' If one does not exist 

then the fiactal mode1 does not hold and the calculation of a fractal dimension 

is nonsensical. On the other hand, if there is a linear relationship the slope 

of the fit is the fractal dimension (for the box counting dimension). For real 

lThere is some ambiguity in the quantity that should appear on the abscissa. For the scale sizes 
defined as we have in this example, we use the logarithm of the miprocd of the scale size- 



Scale Size (Pixels) Number of Cells to Cover 
1 4175 
2 2604 
4 1007 
8 378 
16 132 
32 51 
64 18 

Table A-1: Data for the box counting dimension applied to Figure A.4 

objects there wili only be a finite range of resolutions where the fractal model 

is applicable and usually not al1 the data that were calculated can be used for 

the regression fit. 

When this procedure is appiied to Figure A.4, the resulting data for the scaling 

properties are given in Table A.1. The data are also plotted in Figure A.5. From 

Figure A.5 it was clear that the linear relationship was very good except for the point 

that corresponds to a scale of 1 pixel. This indicates that for the finest resolution the 

fractal model of the border was beginning to break down but for scales fiom 2 to 64 

pixels the model was a good representation for the border. The slope of the regression 

fit and the box counting fiactal dimension was then 1.44 and is, as expected, greater 

than the topological dimension (1) and less than the Euclidean dimension (2). 

There are many approaches to calculating a fractal dimension. Indeed, there are 

almost as many different methods as there are studies that use a fkactal dimension. 

Only two are discussed here, the mass dimension and a fiactal dimension derived 

from the power spectrum. For the purposes of this discussion? the mass dimension 

was used to demonstrate a few general properties of fiactal dimensions that we would 

like to emphasise whiie the power spectrum dimension is described since it and vari- 
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Figure A.5: Plot of data for application of the box counting dimension on Figure A.4. 



ations on the technique are common in the literature for marnmographic texture 

charact erization. 

The procedure necessaq to find the mass dimension [Schroeder, 19911 is also 

straightforward. It is commonly used to calculate a fiactal dimension for objects 

that appear to radiate from a central location such as in a Lichtenberg figure, Figure 

A.6(a) - formed by the electtic discharge kom an electrode placed at the centre of 

the image, or natural down, Figure A.6(b). The mass dimension is defined as 

(a) Lichtenberg figure (b) Natural down 

Figure A.6: Two examples of natural fractals. 

where m is the amount or "mass" of the object contained within a radius r of some 

point, naturally the centre, and Dm the mass dimension. Therefore, the actual pro- 

cedure is roughly similar to the procedure for the box counting dimension. For an 

image and an arbitrary selection of radii2 find the "mass" (the number of pixels) con- 



Mass Mass 
Radius (Pixels) Centre : Hudson's Bay Centre : Nunavut 

A in Figure A.4 B in Figure A.4 
1 O O 
2 2 1 
4 9 Il 
8 24 50 
16 72 208 
32 255 825 
64 1137 1926 
228 3222 2792 
256 4175 4175 

Table A.2: Data for the mass dimension applied to Figure A.4 with the centre for the 
technique placed at two different locations, Points A and B in Figure A.4. 

tained within a circle of each radius. Shen, if there is evidence of a linear relationship 

between log(m) and log(rj the slope is Dm. If this procedure were to be applied to 

the image of the border of Canada, Figure A.4, there is some arbitrariness as to the 

choice of location for the centre. In particular, consider two centres, one on the coast 

of Hudson's bay (point A in Figure A.4) and the other near the middle of Nunavut 

(point B in Figure A.4) for radii of 1, 2,4, 8, 16, 32, 64, 128 and 256 pixels. The larger 

radii actually extend beyond the edge of the image but since there was no part of the 

Canadian border that extended beyond the image, a l l  points outside the image were 

taken as white. The data for the mass dimension for these two centres are shown in 

Table. A.2 and Figure A.7 Again, there are some important observations fkom Figure 

1. The range of scales over which the fractal mode1 was applicable was finite. When 

the centre for the mass dimension was placed near the centre of Nunavut (point 

2This is also usually chosen as a dyadic series. 
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Figure A.7: Plot of data for application of the mass dimension on Figure A.4 with 
the centre for the technique placed at two dinerent locations: points A and B from 
Figure A.4. 
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B) there was only a narrow range of resolutions where the curve was 1inear3. 

2. The dopes, and therefore the mass dimension, were not  the same when the mass 

dimension was calculated at two different locations. This demonstrated that a 

fractal dimension may not be uniform over an entire real world ob ject, unlike a 

mathematical fiactal such as the examples in Figure A.1 - Figure A.3. 

3. The rnass dimension with a centre at Nunavut was 1.9 while the mass dimension 

with a centre near Hudson's bay was 1.8. Both are different from the box 

counting dimension (1.4) for the same object. 

The repercussions of point 1 were discussed above. An arbitrary selection of 

resolutions was not appropriate when calculating a fractal dimension on a real object. 

Point 2 was also fairly obvious. A physical object may not have the same fractal 

dimension throughout. However, point 3 is less well known and there are several 

reasons behind the obsewed difference: 

Not al1 methods of calculating the kactal dimension are appropriate for al1 

situations. The mass dimension was intended to be used on object that seem 

to have an obvious central point. 

There is not a single fractal dimension. Each method of finding a fractal dimen- 

sion actually examined a different property of the O bject under investigation. 

See [Schroeder, 19911 or [Peitgen et al., 19921, for example. 

Both points 2 and 3 imply that the specification of the method used in the calculation 

of any fractal dimension must be clear and unambiguous. 

3The breakdown in the fracta1 mode1 close to the largest scale was expected. The radius of the 
circle extended beyond the limits of the image and, obviously, the border cannot be fracta1 beyond 
its limits. 
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A.2 Random Fractals 

Most nat urally occurring fractals, including coastlines, are not st rictly self similar . 

Unlike a Koch curve, a smali region cannot be made to resemble the entire object 

exactly. Rather, statistical self sirnilarity is the norm, since the objects are formed by 

processes with at least some aspect of randomness. For example, consider a mountain 

range. The distribution of softer and harder components of the rock combined with 

the, generally, non-laminar flow of water over its surface leads to a random looking 

surface. However the randomness is not uniformly distributed. Once a shallow path is 

formed for the water to drain off, more water tends to foliow that path in preference 

to others. This type of behaviour has resulted in fiactal dimensions derived fiom 

power spectra. 

If the power spectrum4 was calculated for a property with a uniformly distributed 

randorn characteristic, there would be equal contributions to al1 Fequencies and the 

spectrum would be flat. However, a random fractal such as a mountain range or the 

path of a particle undergoing Brownian motion5 has a power spectrum 

where P is the power, f the frequency, DT the topological dimension and D a fracta1 

dimension. The inertia of the particle resists very rapid changes in direction which 

suppresses high frequency components and the power decreases as the frequency in- 

creases. Hence, the observed fractal dimension for traditional Brownian motion is 

4The magnitude of the Fourier transform for some characteristic. 
Brownian motion is the characteristic behaviour of fine particles under the collective effect of 

random collisions with the molecules of the surroundhg medium. 



D = 3 2 [Schroeder, 19911 and is considerably different from a constant power spec- 

tnim (D = z). For most random fractals, including those that are created from 

components that undergo random walks, such as Brownian motion, D is not con- 

strained to any particular vdue and it may even attain integral values. The fracta1 

dimension is characterised by the approach used to find the dimension and is not 

Limited to only non-integer values. These fractal dimensions, derived fiom a power 

spectrum, are cornmon in many medical applications as well as in chaotic systems 

where the behaviour of a system appears to be partly random but there dso appear 

to be some systematic trends- These fractal dimensions along with topics related to 

the behaviour of the power spectrum can be found in the literature under "coloured 

noise" . 

A.3 Summary 

The discussion throughout this entire section on fractals and fractal dimensions has 

been of an elementary nature. A more comprehensive overail discussion can be 

found in Schroeder [Schroeder, 19911, Peitgen et al. [Peitgen et al., 19921 and Addi- 

son [Addison, 19971 while a discussion on power spectrum dimensions with particular 

attention to their application to natural objects appears in Petland [Petland, 19841. 

Finally, a description of many fiactal dimensions common in medical applications 

rnay be found in Veenland et al. [Veenland et al., 19961. 
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A.4 Multifract als 

The traditional fractal objects, such as a Sierpinski gasket, a Koch curve or a Peano 

curve (Figure A.2-.4.3), which appear in many references, [Peitgen et al., 19921 or 

[Schroeder, 19911, are examples of strictly self similar objects. That is, if a portion of 

the object is re-scaled by the appropriate amount, only a rigid body transformation is 

necessaq- to  make it exactly match the original. However, many physical objects with 

fractal-like behaviour are created by processes with a certain amount of randomness 

and are statisticaily rather than strictly self-similar. Common examples of random 

fractals are coastlines, mountain ranges and Brownian motion. For these objects it 

is not possible, in general, to make any sub-region exactly correspond to the original 

but the general character of the sub-regions does resemble the full object. Indeed, if 

an image of the sub-region was viewed without reference to  the original it is difficult 

to judge whether it is a sub-region or the full object. 

Multifractals are generally random fiactals and can be thought of as consisting 

of many random fractals, with possibly different dimensions, which are intricately 

intertwined. Then, when different approaches to calculate the fracta1 dimension are 

applied, a dîfferent dimension may result depending on the 'Yiactal cornponent" to 

which the method is most sensitive. Because of this, wben the fractal dimension is 

calculated for any natural object the method of cakulation for the fractal dimension 

is critically important. 

In order to further elucidate the difference between the conventional fractal di- 

mension and multi-fractal dimensions, consider the situation of several fieIds with 

different types of ore scattered over its surface by some natural process6. The fields 

6This same example was also discussed in Chapter 2.2-1 



are approximately the same size but of vastly dinerent composition and value. S u p  

pose we wish to buy one of the fields, the most valuable, but it is too diflicult to 

estimate the total value of the ore over the entire area of each field. In that case we 

may be interested in the distribution of ore over a relatively small sarnple of each field 

(and assume it is typical for the entire region). It is likely that the distribution has a 

fractal character and one approach which is often used to evaluate the dimension is 

to use what is frequently called the box counting dimension (or Hausdorff mesh). In 

this approach a regular grid with a side length of E is superimposed over the field and 

the number of cells, NE, which contain any type of ore are counted. The process is 

then repeated with many different sized meshes. The value of the fracta1 dimension, 

d, is then related to the dope of the regression fit of log NE as a function of loge. A 

dimension closer to two indicates a greater amount of ore but this process ignores the 

type of ore in each cell. Further, if the net value of a collection of ore is desired, the 

composition of the samples in each cell is very important. 

If we now consider the distribution as a multi-fractal, the process of calculating the 

dimensions starts with the same regular grid but we assign a weight to each cell, pij, 

where ij specifies a location within the mesh. In this case, the total value of the ore in 

the ce11 may be used for this purpose. The distribution can then be characterised by 

the set of fractd dimensions for the various collection of cells with the same p,. The 

difficuhy with this is that an integral part of the calculation of the fractal dimension 

requires changing the mesh size and the value of k j  will change as the size of the 

cells change. The logical remedy would be to scale by the mesh size, E' in this 

case. Unfortunately, for a fractal or multifractal distribution where we expect pv to 

A3 scale as P i j ,  Qij E R, then hm - = limsoij-* is not finite if < 2. This can be 
€ 4 0  €2 €+O 



remedied by using or, directly rather than /Lij/€* and or, is often c d e d  the coarse 

Holder exponent so that 

The frequency distribution of wj, given by f, is defined by 

1% W%j) 
f E  = - log € 

where N,(a,) is the number of ce11s7 that are needed to cover the regions of the 

multifractal with coarse Holder exponent , cu,, at a resolution (mesh size) characterised 

by E.  From this point there are different approaches which can be used. In this work, 

the technique known as the method of moments was used. What follows is a brief 

o v e ~ e w  of the approach. A detailed description of the method c m  aiso be found in 

[Peitgen et al., 19921. 

The name "method of moments" cornes from the use of a partition function, xq (E) , 

for the qth moment where 
ME) 

Since N,(a)da represents the number of cells of the total N(E)  which have cr E 

7N, is stilf the total number of cells of size E that cover the entire mdtifractal; i.e. for al1 values 



(a, 0 + da). We can then convert the sum over N(E)  to an integral over cr to  give 

xq effectively takes the place of the number of cells which cover the object when 

calculating the box counting dimension and since a rnultifractal dimension was de- 

sired, each cell is weighted by p&) - the probability of finding the object in a 

ce11 with Holder exportent of a. Then by using Equations (A.5), (A.?) and (A.9) we 

obtain 

(A. 10) 

(A. 11) 

Define r G aq  - f (a) and the generalised fracta1 dimension, D, from 

Since the partition function is analogous to the number of cells needed to cover the 

object, for a fractal object, X, scales with the characteristic length as 

The D, is known as the generalised fractal dimension since specific values of 

q correspond to more commonly known dimensions, for example q = O gives the 

usual Hausdorff dimension while q + 1 corresponds to the information dimension 

[Peitgen et al., 1992, Schroeder, 19911. 



Appendix B 

Basic Principles of Genetic 

Algorit hms 

In many applications there is a need to reduce the nurnber of variables needed for 

some function important to the application. For example, for this thesis we would like 

the minimum number of features that can reliably be used to distinguish one class of 

mammograms (abnormal) from another (normal). The traditional approaches, such 

as an exhaustive search, are impractical as the number of potential features to be 

considered increases. Other conventional techniques such as stepwise refinement and 

steepest descent can easily get caught in local extrema, particularly as the dimension- 

ality or the number of potential features increases' . An alternative technique that 

tries t o  circumvent these difficulties is the genetic algorithm (GA). The technique is 

a general a,pproach to optimization and is not constrained to any individual field of 

study. Additional details may be found in the '%lassic" works in the field, such as 

1A classification problem can be viewed as clustering in an abstract space where each potential 
feature is used as a separate dimension. Then the goal is to select the orientation of the viewpoint 
so th& the projection of the clusters are sufficiently separated to some desired degree, 



Holland [Holland, 19751. 

In this method a possible solution consists of a subset of features that is encoded 

onto a ccchromosome" as described below. A population of chromosomes is gener- 

ated at  random and evaluated for their ability to correctly classiSr the images. The 

chromosomes in the population that give the best results are used to form the next 

generation and as the process progresses a good, but not necessarily best solution, is 

found. In principle, a global minimum or ma,xïmum will be found although it rnay 

require an indeterminate amount of time. 

The basic ideas behind a genetic algorithm are easily described dthough many 

variants have been introduced to accommodate special aspects of different problems. 

The basic requirements fall into a small nurnber of categories: 

1. -4 mechanism is needed to map the variables under consideration onto genes in 

the chromosome- A description of the conventional approach, using the position 

in a bit string for each variable, can be found in Holland [Holland, 19751 or in 

Prakash and Narasirnba Murty [Prakash and Narasimha Murty, 19951. 

As an exarnple, this thesis used a genetic algorithm to choose regions in a 

histogrâm that can be used to classi@ marnmograms into several groups. The 

histogram consists of the number of pixels in the mammogram for each possible 

grey level. The chromosome was represented by a bit string and each bit position 

in the string corresponds to a collection of grey levels. Specifically, the ith bit 

corresponds to the region containing the zth to (i + l)th grey levels. Then, to 

select the ith to ( ~ + l ) ~ ~  region a 1 is placed in the ith position in the chromosome 

and to indicate that the same interval was not selected, a O is placed in the ith 

bit in the chromosome. 



2. To be able to change the population and explore the feature space, a mechanism 

must be provided to change the chromosomes. The most typical techniques are 

crossover and mutation: 

Crossoves As in the biological form of crossover, this genetic operator ex- 

changes information between two chromosomes and as in natural se- 

Iection, the '<fittest" chromosomes reproduce more readily. This ef- 

fect can be achieved in dinerent ways. In [Siedlecki and Sklansky, 19891 

two chromosomes were selected at random and the crossover was per- 

formed with a probability dependent on a function of the fitness for 

each chromosome. On the other hand, Prakash and Narasimba Murty 

[Prakash and Narasimha Murty, 19951 used the fitness function values to 

bias the probability of selecting a particular pair of chromosomes for apply- 

ing the crossover operator. Once they were selected the crossover was guar- 

anteed to occur. The crossover procedure itself is performed by choosing a 

point along the chromosomes, a t  random, and exchanging the chromosome 

pieces at the selected point. 

Mutation The procedure for this genetic operator starts with a randomly se- 

lected chromosome. Then each gene in the chromosome is considered. The 

gene is switched from O to 1 or I to O with a predefined probability, the mu- 

tation rate2. For this operator the chromosome's fitness is not taken into 

account. This enhances the likelihood that the genetic algorithm will h d  

the global extremum. At any time during the procedure a new chromosome 

2There is an alternative approach where two random numbers are selected. The first is to de- 
termine if the gene should have the opportunity to be changeci and the second is to determine the 
actual value that should be given to that gene- 



has a non-zero probability of forrning the necessary genes to place it near 

the global extremum regardless of the previous history of any chromosome 

in the population- 

Miscellaneous The aforementioned genetic operators are the ones that appear 

to  be common to  most studies employing a genetic algorithm. However, 

there are variations depending on the application. For example, Srikanth 

et al. [Srikanth et al., 19951 allowed the size of the chromosomes to Vary 

To allow changes in the chromosome length they implemented insertion 

and deletion of small sequences of genes as additional genetic operators. 

Since the aigorithm randomly changes the population, the procedure will only 

converge to a solution of the desired problem under the appropriate evolutionary 

pressure. This in turn requires a way to evaluate each chromosome to determine 

its fitness to the problem under consideration. The function can be very simple, 

such as a count of the number of correctly classified cases, but often modifica- 

tions are made for various purposes. In particular, a fitness function that is 

too "severe7' will make the chromosomes converge too quickly (stagnation) and 

the algorithm will likely get caught in a local extremum. On the other hand 

a function that allows too many unfit chromosomes to survive will require an 

excessively long tirne to  converge to a result. 

4. An important aspect of natural selection as used in a genetic algorithm is the 

removal of poor soiutions. The central idea is to retain the best chromosomes 

and remove the worst. Often the retention and removal is constrained by the to- 

tal number of chromosomes in the population. Of course, the exact approach of 

how to achieve the evolution of the population can Vary. One comrnon technique 



is t o  completely remove the "parent" chromosomes and replace them by the new 

chromosomes (after crossover, mutation, etc.) In this case, the convergence to an 

optimal solution may be strictly asymptotic in that if a chromosome is created 

ihat corresponds to a global extremum, it is very likely the ezact configuration 

will be lost in the creation of the next generation by the genetic operators. An 

alternative approach retains a number of the best chromosomes intact fkom the 

current generation (the elite population) and fills the remaining members of the 

population with the reproduced chromosomes. Alternatively, the parent and 

children can be placed in separate populations and the best, according to the 

fitness function, fkom either population is used for the next generation. This 

variation does not require a fked number of members in the elite population 

and was the approach used in [Srikanth et al., 19951. The formation of a new 

population ends the current generation and the procedure repeats with the eval- 

uation of each chromosome in the population for reproduction. Typically, the 

population is allowed to evolve for a h e d  number of generations. 

Since the basic method is simple many vaxiants have been used depending upon 

the nature of the problem under consideration. Indeed, many subtle differences fiom 

the basic technique appear throughout the literature. 



Appendix C 

Introduction to the Wavelet 

ïkansform 

The usefulness of a transform that can be used to analyse the frequencies present 

in a signal cannot be understated but the typical approach, a Fourier transform, 

has some diaiculties. Most notably, a Fourier transform has poor spatial resolution, 

which makes it inconvenient for analysing nonstationary signals (Le. a large number 

of nonzero coefficients wiU always be required.). There are modifications that improve 

the situation such as the windowed Fourier transform which performs a conventional 

Fourier transform over a small region (window) of the signal at a time. However, the 

fixed size of the region may be ilI suited for some applications: 

1. Where the appropriate choice for the size of the window is not known a priori. 

2. That do not have a single characteristic length [Aldroube and Unser, 19961. 

An alternative approach is to use a wavelet transform. A wavelet transform has the 

flexibility to provide both good frequency and spatial localization. In addition, it 



provides a straightforward approach to providing multi-resolution analysis. Further, 

the discrete wavelet transform can be implemented very efficiently. 

Wavelet transforms have been found to be useful in many areas, inchding nu- 

merous medical applications. For example, the transform has been used in the 

analysis of EKG and EEG signais [Unser and Aldroubi, 19961 as well as in image 

enhancement [Giger and MacMahon, 1996, Zhang et al., 19981. A general introduc- 

tory discussion can be found in [Strang, 19941, [Morgan, 19961 and [Langi, 19961 

while an example-based description can be found in [Press et al., 19921. Dis- 

cussions that give a more mathematical formulation of the transform can be 

found in [Aldroube and Unser, 1996], [Cohen and Kovaëevié, 19961, [Harpen, 19981, 

[Jawerth and Sweldens, 19941, [Strang, 19891 and [Unser and Aldroubi, 19961 along 

with the classic reference [Daubechies, 19921. In the discussion that follows it was 

assumed that the signal is discrete and one dimensional. The extension to multiple 

dimensions is straightforward. 

The transform can be viewed in terms of a series of filters that were applied to the 

original signal. This interpretation is useful for efficient implementation of a discrete 

form of the wavelet transform but the transform itself has a substantial mathematical 

basis. Some of the fundamental mathematical concepts are described in the next 

section and further details may be found in the literature. Section C.2 describes the 

development from the fundamental mathematics to the filter bank description used 

in many of the t ransform7s implement ations . 



C.1 Basic Wavelet Theorv 185 

C.1 Basic Wavelet Theory 

The wavelet transform can be used to extract information in a hierarchial manner. 

The transform can be viewed as the projection of the signal onto mmy sets of basis 

functions which span various vector spaces in L2, the set of square integrable func- 

tionsl. At each level of the hierarchial analysis, a subset of the original vector space 

mas selected and broken into two smder  vector subspaces. In the most common a p  

proach, the bases for all vector spaces used in the transform can be created from the 

dilation and translation of two fundamentai functions, the mother wavelet Q(x)  and 

mother scaling function (o(x).  The basis functions are characterised by two parame- 

ters, aj  and bj,*. This is in contrast to the Fourier transform where a single parameter 

is needed to identiQ each function in the basis, the frequency. The parameter aj for 

a wavelet transform characterises the scaling of the mother function and is usually 

selected to have a form as given in Equations C.2-C.3 below. On the other hand, bjPk 

identifies the translation of the function relative to the mother function. The bases 

can then be written as 

where C,, and DbjSr are normalization constants. With the typical choice for aj and 

bj,k (for a discrete transform) 

'For aii functions f (x) E C2 the integrai 1 f (z) f (z)& = n, K an arbitrary, but finite, constant 
and we define the inner product (f (z) , g(x)) as f (z)~(x)&. 
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Equation (C-1) can be wrîtten 

The definition of the problem requires two sets of basis functions, {@j,t} and {pl,,) 

which span two disjoint subspaces Wj and I/i respectively. The analysis can now be 

described as the projection of a function onto 1i;- which produces some lower resolution 

version (smoothed form) of the function while the projection onto Wi contains the 

information that is lost after the smoothing. Hence, the transformation is invertible. 

Oce of the more useful aspects of the wavelet transform is that it can be made to 

perform a multi-resolution analysis of the input signal. This characteristic requires 

a series of embedded vector spaces, (mathematically c K-,V i). Each vector 

space, K-1, is further divided into the subspaces and Wi in such a way that {<piJ)  

continues to span I.: and { I l i j )  spans Wi. As well, the subspaces are necessarily 

divided to  satisfy the constraint that the combination of the subspaces and Wi are 

equivalent to the subspace K-l for all i or 

For a wavelet transform with an infinite number of subspaces (i + w), only the 

projections onto either the {K) or {K) are necessary. The 'cmissing" projections 

can be calculated fiom the set that was retained. So, if the decomposition is carried 
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out indefinitely on a function, f (x) , 

for some set of constants cj,k. However, 8 the decomposition was stopped at the ph 

subspace (hereafter referred to as "levels" ) then the transform becomes 

and dJ,kpJ1k is the resulting smoothed signal on the last level of the decomposition. 
k 

Calculating the wavelet transform then becomes the task of finding {cjIk,  dJlk} or more 

Conceptually, the siniplest form of wavelet transform is obtained when the bases 

are orthogonal 

where (f (x), g(x)) = j f (x)~(x)~x for arbitrary h c t i o n s  f (x) and g ( x ) .  Then, 

finding cjlk and dj,, is straightforward 

(C. 10) 

These types of wavelet transforms are especially useful in various signal compression 

applications as it is easy to estimate the error introduced by ignoring terms with 
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contributions less than a given amount. 

An orthogonal basis may not have the desired characteristics for some applications 

and for these it may be more judicial to use bi-orthogonal wavelets. For instance, if 

the desired properties are orthogonality (for ease in h d i n g  {cjYk, djyk) and to prevent 

redundancies in the coefficients), compact support (for convenience when transform- 

ing a finite sized signal) and symmetry (for convenience when transforming symmetric 

signals) there is only one possible choice, a Haar bais  (Figure C.1) [Daubechies, 19921. 

0.00 W 0 s  0.7s 1.œ ..a LU a s  a.15 1.m 

(a) Scaling function, cp (b) Wavelet function, .Sr 

Figure C.1: Example of a one dimensional scaling function (C.l(a)) and a one dimen- 
sional wavelet function (C.l(b)) in the Haar basis. 

The drawback with a Haar basis is that is not smooth so that it  is inconvenient for 

transforming a smooth signal. That is, attempting to decompose a smooth signal 

through a combination of hinctions with sharp corners would require an excessively 

large number of components. A bi-orthogonal wavelet transform can be used for 

greater flexibility in the choice of basis functions with only a small additional effort 

in the calculation of the transform itself. 

A bi-orthogonal basis loses the very restrictive properties in Equation (C.9). This 

modification allows the freedom to select functions with other desirable properties, 
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such as smoothness. However without the properties in Equation (C.9) it could be 

difficult to  h d  c j , ~  and dit*? in general. This dïfiiculty is avoided by a judicious 

selection of bais  functions. The specific bases are selected such that for each Ievel i 

there exists a pair of vector spaces and R- that are dual to and W-, respectively. 

The duals can be viewed as an alternative subdivision of the same subspace spanned 
CV 

by I/: and Wi combined. The dual bases still possess the properties @ R- = K-, 

and the alternative subdivision of the subspace is performed such that the following 

conditions hold (Equations C.11). 

See for example [Jawerth and Sweldens, 19941. These requirements restore the sim- 

plicity in calculating the { G ~ ,  d i j )  coefficients. The constants are found by taking 

the inner product of the function with the dual bases rather than the original basis- 

The introduction of the dual spaces effectively separates the functions used for 

the forward and inverse transform and allows the wavelet and scaling function bases 

to be independent. This in turn allows the properties for the wavelet and scaling 

functions to be selected independently. For example, the smoothness of a wavelet 

competes with its compactness, a smoother function tends to be less compact. Since 
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the projection of the function onto produces a result which is iike a smoothed 

form of t he  function, a smooth ba i s  for would be desirable. On the other hand, 

the projection onto Wi reflects the information lost from the projection onto and 

contains the  higher fiequency components so that a more compact basis is more 

convenient. The bi-orthogonal transform allows both requirements to  be fulfilled 

while retaining the efficiency of an orthogonal transform. 

Of course, the difficult aspect of a bi-orthogonal transform is in the  selection of the 

bases t hat satisfy all the requirements. Quite fortunately, Sweldens [Sweldens, 1994, 

Sweldens, 19951 has developed a method, called lifting, where the appropriate bases 

with the desired properties can be generated automatically. Specifically, the proce- 

dure starts with a known basis, such as a Haar basis, and takes linear combinations 

of the functions (lifts it) in such a way to form a new basis that has the desired 

properties while maintaining the constraints necessary for a waveiet transform. The 

precise linear combinations that are taken are cornplex. Details can be found in 

[Sweldens, 19941 and [Sweldens, 19951. 

C.2 Wavelet Transforms as Filter Banks 

The wavelet transform was described, in the previous section, in terms of inner prod- 

ucts with many sets of basis functions and it may appear clifEcult t o  implement the 

transform efficiently. In practice, a simple and fast procedure to perform the calcu- 

lation has been found: the fast wavelet transform. The following discussion is based 

on that in the thesis of Langi [Langi, 19961. We assume the orthogonal transform is 

used but the analogous results can be derived for a bi-orthogonal case. 
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The coefficients Cj,k  and djIk are given by 

First consider djyk- Since c 14-17 <pj* can be written as 

and the (cpi+, ' ~ i - ~ , ~ )  are a set of constants, hl. In addition, the funetions 

are orthogonal. Therefore, (pj,*, (oi-i,r) # O iff 

and the argument for (oj,k # O occurs when 

( 2  - ) 1 - = 2"[2j(l - k)] - k 

= I - k - k  

= Z-2k 

(C. 13) 

( c .  14) 

(C. 17) 

(C. 18) 

(c. 19) 

(C. 20) 

(C.21) 

((3.22) 
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F inal1 y, 

Combining equations (C.13), (C.15) and (C.23) gives 

similady, for the other set of coefficients, Cj , t  = (x, ?,bjyk) y recall 5 i. Wj = 4--1 
which implies Wj C &--l so, again, it is possible to write 

and we define 9 1  ( P ! J , ~ ~ ,  < ~ i - l , l ) -  Similar to the derivation outlined for (qj+, <pj-lIl), 

it can be shown that 

and 

The results (C.27) and (C.31) are quite important and several observations can 
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be made. 

1. The coefficients for each succeeding level can be calculated using strictly the 

coefficients fiom the previous level. 

2. The equations ((C.27) and (C.31)) can be viewed as the application of a filter 

onto the input signal [Antoniou, 19791. From this point of view, the constants 

hl-Sk a d  g1-2k hnction as the kernel of the filters and since the equations are 

recursive, the wavelet transform is often described as a "tree" of filter banks 

applied to a signal. (See [Langi, 19961 .) 

3. Not al1 the coefficients on the (j - I ) ' ~  level are needed to form the coefficients 

on the jth level. A dyadic sequence was used for aj and biVk and for this case 

only every other coefficient is used. 

A wavelet transform is usually constmcted such that the filter with the h kernel acts 

as a low pass filter or a projection onto and the filter with the g kernel acts as a high 

pass filter (or a projection onto Wi),  followed by sub-sampling by two. The output 

from the low p a s  filter is then analysed again by another pair of filters followed by 

sub-sampling. The process can be repeated as often as desired. From this point 

of view a fast implementation for the forwaïd and inverse wavelet transform is not 

difficult . 

The tree-of-filter-banks interpretation is important since it provides an intuitive 

interpretation of the meaning behind a wavelet transform and it also allows for some 

modifications to the classic wavelet transform that are difEicult to conceptualise math- 

ematically. In the conventional wavelet transform only the output of the low pass fil- 

ters are input into the next level of the analysis but there is no fundamental reason for 
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this configuration to  be used exclusively. In principle, an arbitrary branch of the tree 

of filter banks can be used for the next level of the analysis. For example, a configu- 

ration as shown in Figure C.2 would not be forbidden. The arrangement of the filter 

Figure C.2: Arbitrary tree of filter banks- 

banks can be varied depending on the desired characteristics of the signal which is to 

be captured. Indeed, such an altered transform has been used in many applications. 

.A general description of trees of filter banks and an application to signal compression 

can be found in [Langi, 19961. These arbitrary trees of filter banks are in fact the 

"variation of a wavelet transform" used in [Clarke et al., 1994, Qian et al., 19951 for 

microcalcification segmentation arid described in Chapter 1. 



Glossary 

ACR American College of Radiology 

AEC Automatic Exposure Control. A device in a mammography unit which mon- 

itors the exposure and halts the beam of x-rays when the exposure reaches an 

upper limit . 

ASCO Arnerican Society of Clinical Oncology 

BiRADS Breast Imagùig - Reporting and Data System [ACR, 19931 

CAD Computer Aided Diagnostics 

CC Cranial Caudal, literally head to tail. 

Compact The domain over which the function is non-zero is finite. 

Confusion Matrix A two dimensional histogram of a priori classification (per- 

formed by the clinician in this case) and posteriori classification (performed by 

the program). Perfect classification produces a confusion matrix with elements 

only on the principal diagonal. 

Covariance Matrix A matrix of calculated properties comrnon in statistics. The 

matrix contains variances along the principal diagonal and covariances in the 

195 
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off diagonal elements. 

Dysplasia Alteration in the size, shape and organization of cells forming the mam- 

mographic ducts. 

DDSM Digital Database for Screening Mammography: A publicly available data- 

base of digitised screening mammograms from the Universi@ of South Florida. 

HD Hurter and DrifEeld curve. The curve that descnbes the optical density of film 

as a function of log exposure. 

Hyperplasia Abnormal increase in the number of normal cells in the duct epithe- 

lium. 

kVp kilovoltage peak. The power supply to a rnammography unit is not strictly 

DC and the peak voltage across the x-ray tube is characterised by this quantity. 

Laws' texture energy Laws' textures are calculated by filtering the image with 

filters defined by Laws and fbding some statistic for a window around each 

pixel. The Laws' texture energy is found by filtering the image with a filter that 

enhances spots and lines, then calculating the standard deviation in a window 

centred over each pixel. Taylor [Taylor et al., 19901 normalised the values by 

the local contrast map. The procedure to find the local contrast map was the 

same except that the image was filtered with a smoothing filter (also created 

by Laws). 

mAs milliArnpere seconds. A measure of the charge transported through the x-ray 

tube during an exam. 
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MTF Modulation Transfer Function. A mesure of the relative magnitude of a 

signal after propagathg though a system as compared to the original. For a 

perfect system the MTF is 1 for ai l  frequencies contained in the original signal. 

Nulliparity Never having carried a pregnancy. 

Objective Funet ion A fimction that quantifies the how well the selected properties 

correctly classi& the sample cases. 

ROC Receiver Operating Characteristic c w e .  A plot of the tme positive proba- 

bility as a function of the false positive probability- 

ROI Region of Interest 

SCC Six-Category Classification scheme of the mammographie density due to Byng 

et. al [Byng et al., 19941 

SGLD or SGLDdye Spatial Grey Level Dependence matrk. A 2 àimensional array 

which is a function of 2 variables, d and O. Each entry in the array consists of 

the probability for finding a pair of pixels with grey levels i and j separated by 

a distance d and with an orientation 8. 

Unsharp Mask A method of enhancing the high frequency components of an image. 

First a lowpass filtered version of the image is formed. Then, the original image 

is weighted by a user defined amount (amplification factor) and the lowpass 

image is subtracted from the weighted original image. 
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