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Abstract

In this thesis several global mammographic features were examined for their ability

to classify the mammograms into

1. classes based on the proportion of dense tissue

2. normal/abnormal groups.

A set of 240 digitised mammograms was obtained from the Digital Database for
Screening Mammography from the University of South Florida. The database was
composed of mammograms that were digitized using one of three high resolution x-
ray digitisers. It was necessary for the images to be corrected for three systematic
differences between the x-ray digitisers: the resolution, the slope of the calibration
curve and non-linearities in the calibration curve. A simple correction was also made
for differences in the mammographic technique by adjusting the histogram of the
breast shadow.

The breast shadow was then segmented using a semi-automatic procedure and sev-
eral mammographic properties were extracted: global moments of the histogram, the
average local moments calculated for ~3x3 mm? regions covering the breast shadow,
subregions of the global histogram, multifractal dimensions and the texture energy,

entropy and inertia calculated for the wavelet transform of the image.



Abstract i

The classification accuracy, when considering the density grades, was consistently
~ 40% correct and independent of the properties used in the classifier. When classify-
ing into normal/abnormal groups, the regional moments, histogram sub-regions and
the multifractal dimensions all had approximately the same performance at ~ 60%
correctly classified cases, while the global moments classified ~ 70% of the cases
correctly. The texture energy, entropy and inertia also had approximately the same
performance but at ~ 80-85% correct. In addition, the classifiers exhibited no signifi-
cant change in classification performance for variations in age for any of the examined
properties with p = 0.001.

The texture features resulted in the highest classification accuracy. The results
may show some residual dependence on the x-ray digitiser but the small sample size
precluded any definitive conclusions regarding the influence of the scanners. Overall,

a classifier using six texture inertia features exhibited the best overall classification

accuracy with minimal age dependence.
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Chapter 1

Introduction

The prevalence of breast cancer in industrialised nations and its rapid growth in
developing nations has it poised as one of the most common malignancies world-
wide. In Canada alone, its incidence has risen steadily over the last three decades
to an estimated 105 cases per 100 000 [NCSC, 1999]. Simultaneously, the decrease
in mortality rates over the same period may be the best testament to the effec-
tiveness of mammographic screening. A secondary effect of the widespread adop-
tion of screening programs is a tremendous growth in the sheer volume of screen-
ing mammograms that must be evaluated. This, combined with the low contrast
inherent in soft tissue x-ray imaging contributes to making mammographic inter-
pretation difficult and time consuming. There are many options, both emerg-
ing and well established, that are intended to augment the specificity of screening
mammography, such as positron emission tomography (PET), magnetic resonance
imaging (MRI), ultrasound, etc. [Adler and Wahl, 1995, Sabel and Aichinger, 1996,
Jones, 1992, Reynolds, 1999]. These modalities would enable better differenti-

ation between malignant disease and a benign condition. However there are



few alternatives to mammography itself, although there have been a number of
significant developments in this direction such as the use of synchrotron radi-
ation [Burattini et al., 1995], phase imaging [Ingal et al., 1998] and digital mam-
mography [Newman, 1999, Yaffe and Rowlands, 1997, Schmidt and Nishikawa, 1995,
Simonetti et al., 1998]. Both phase imaging and the use of synchrotron radiation for
diagnostic imaging are relatively new developments and attempt to reduce patient
dose while improving image quality by using a nearly monochromatic x-ray source.
Unfortunately, both modalities are quite far from clinical use.

A more relevant development is in the area of digital mammography. The approach
is more conventional, replacing the film with a solid state detector. Many types of
detectors have been used in different systems. For example, some employ a cartridge
of amorphous selenium similar to that used in the, now obsolete, Xeromammography
units while others use two dimensional arrays of CCD elements or a line of CCDs
scanned across the breast. As yet, these systems are not currently in common use
and the most sensitive modality at present continues to be conventional screen/film
mammography. However, the importance of digital systems will only increase in the
future. In addition, the need for both computer manipulation of the images and
computer assisted diagnosis will grow with it.

Even without the widespread adoption of fully digital systems, attempts have been
made to reduce some of the volume of screening mammograms that require interpre-
tation, using the automated systems as a “second reader”. In particular, a group
from the University of Chicago has developed a system that has been undergoing
clinical trials [Nishikawa et al., 1996]. This system attempts to detect both masses

and microcalcification clusters through a fairly complex series of steps. The system



requires a large number of parameters, such as threshold levels, and the developers
have attempted to adjust these parameters automatically in order to optimise its
performance [Anastasio et al., 1998].

Digital mammography will also permit extensive computer processing of mam-
mograms. In anticipation of widespread introduction of such systems, this thesis
examines several tasks that could be incorporated into a screening procedure. The
primary purpose is to identify mammographic features of interest either for diagnos-
tic purposes or as indicators of risk. For diagnostic applications, the intention is to
simply flag a possibly abnormal mammogram for special consideration rather than
to attempt to isolate the region where the abnormality is located. While it may be
possible to extend the procedures used in this thesis to encompass the more difficult
task of abnormality identification, this is beyond the scope of the present work.

A secondary goal is the identification of mammographic properties which may be
useful in assessing risk. In general, there are three categories which influence the

development of breast cancer,

1. heredity

2. hormonal and reproductive factors

3. environment/lifestyle.

The interactions of these contributing factors are complicated and it is difficult to
quantify the factors as well as their interactions in order to assess the risk. While
there do exist biological markers which are indicative of breast cancer risk, such as
BRCA1 and BRCAZ2, there are a large number of breast cancer cases where either

or both of these genes are normal [Weber, 1998]. Therefore, the assessment of risk
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can be difficult, in general. However, if a property can be found that is indicative of
breast cancer risk, and can be extracted from a mammogram, it would no longer be
necessary to attempt to quantify these qualitative factors and their interactions.

A quantifiable measure of the risk using mammographic features could also be

useful for applications in the following areas:

Risk assessment A patient categorised as being in a high risk group would likely
have a different course of treatment than one at low risk. The different treatment
can include a shorter time between mammography screens, preventative drug

treatments or even lifestyle changes.

Evaluation of prevention protocols A simple and reliable method to evaluate the
effectiveness of an experimental preventative therapy would enable new thera-
pies to be brought into practice much faster than is currently possible. Presently,
the effectiveness of a protocol cannot be evaluated without lengthy trials in-
volving large numbers of patients. Indeed, there is already work ongoing in this
direction by Boyd et al. who examined the effects of dietary fat on mammo-
graphic features [Boyd et al., 1997], as well as by Ursin et al. [Ursin et al., 1996]
and Atkinson et al. [Atkinson et al., 1999] both of whom are investigating the
impact of Tamoxifen on mammographic features. Of course, the adoption of
such a test would require irrefutable evidence to link the factor with breast can-
cer risk which would not be possible without extensive clinical trials. However,
even prior to reaching this stage of research, the test would still be useful for

ranking candidate preventative therapies for the more difficult and expensive

clinical trials.

In addition, a feature characteristic of risk would also assist in research into the



1.1 Breast Cancer Risk Evaluation 5

contribution and interaction between the factors listed above and breast cancer.
Clearly, there would be tangible benefits from the development of a mechanism
for the reliable classification of mammograms for either assisting in the diagnosis of

screening mammograms or in the area of risk prediction.

1.1 Breast Cancer Risk Evaluation

Currently, there are two primary methods used to assess the risk of developing breast

cancer from mammographic features:
1. Wolfe grades

2. The fraction of dense parenchymal tissue.

Wolfe grades were introduced by J. Wolfe [Wolfe et al., 1986, Wolfe, 1976a] and is one
of the earliest mammographic classification schemes that reflects breast cancer risk.
Wolfe grades classify mammograms into four grades with increasing cancer risk. The
lowest risk was assigned to mammograms with little parenchymal tissue and the high-
est for extensive and atypical growth of the duct epithelium (atypical hyperplasia).
The two remaining grades were assigned for the amount and appearance of ducts.
The relationship between the Wolfe grade and breast cancer risk has already been
extensively studied by many others. As a brief overview see [Brisson et al., 1982a,
Brisson et al., 1982b, Boyd et al., 1982, Tabar and Dean, 1982, Brisson et al., 1984,
Goodwin and Boyd, 1988, Arthur et al., 1990, Salminen et al., 1998]!. In fact, there
has even been some work on correlating Wolfe grades to the histological classification

of biopsy samples, with respect to breast cancer [Urbanski et al., 1988].

!The work done in this area is extensive and the list is by no means complete.
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The primary elements that distinguish the divisions between the Wolfe grades are
the mammographic density and the appearance of the duct structure and there has
been some work on quantifying both characteristics. For instance, automatic quantifi-
cation of the duct patterns has been used by Shadagopan [Shadagopan et al., 1982]
who employed morphological features, such as the shape and spatial frequency, to
distinguish actual ducts from other mammographic features. Alternatively, Wolfe
[Wolfe et al., 1986] and Saftlas [Saftlas et al., 1991] a quantitative measure of the
mammographic density using a planimeter was compared to the Wolfe grades for cor-
relation to breast cancer risk. Their results indicate that the mammographic density
(or simply density) is a more significant risk factor than the appearance of the duct
structure.

Since then, many have followed their lead in concentrating on the mammographic
density in preference to the duct structure but different groups have used vary-
ing numbers of density grades; from as few as four as in the American College
of Radiology BiRADs guidelines [ACR, 1993] to a continuous scale from 0-100 as
in [Boone et al., 1998]. The range of density classes is a result of a compromise
between the need for distinguishing subtle differences and minimization of inter-
and intra-observer variations, since the only available standard for the mammo-
graphic density is the classification according to an experienced observer. Several
large and very significant studies involving 708 cases were reported by Boyd et al.
[Boyd et al., 1995, Byng et al., 1997] who found a strong correlation between breast
cancer risk and a six category classification scheme, SCC, where the density classes
were divided as: None, (0,10%), [10,25%), [25,50%), [50,75%) and [75,100%] of dense

tissue. The correlation of the risk to three other mammographic features (described
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in detail below) was also considered by Boyd.

1.1.1 Automated Methods

The difficulty with the conventional approach to assigning either a Wolfe grade or a
density class is the subjective nature of the assignment which can have quite a low
inter-observer correlation. In fact, Boyd [Boyd et al., 1982] found a 70% agreement
between two radiologists when assigning Wolfe grades and 60% when classifying the
extent of dysplasia.

There have been several approaches to using some automated characteristic to re-
duce this subjectivity. For example, Boone [Boone et al., 1998] created a continuous
scale (0-100) to categorise breast density and relied on the rank of a set of mammo-
grams when ordered according to the proportion of breast density. This ranking was
then used to generate the standard rather than depending upon someone’s judgement
as to the category in which the mammogram should belong when examining them in-
dividually. Once the mammograms were ordered, six unique features that were mostly
related to some form of fractal dimension, were extracted and used to form a linear
“breast density index” (BDI) so that a numerical value could be generated without
further need of a human observer. In addition, Tahoces et al. [Tahoces et al., 1995]
was able to achieve reasonable classification of Wolfe grades (70-90% correct with
the majority of misclassifications offset by only one class) by performing some image
enhancement using unsharp mask filtering before extracting some simple textures.
The texture features included the RMS power and the mean of the limits of the grey
scale range in a region of interest (ROI) for a computer selected ROL.

Alternatively, Karssemeijer et al. [Karssemeijer, 1998] used some simple features
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from the grey level distribution of the lateral views from a set of screening mammo-
grams to classify four density grades (< 5%, 5-25%, 25~75% and > 75%) with ~ 80%
accuracy. The features which were used were quite straightforward, including: the
standard deviation, skewness, the difference in means between the grey level distri-
bution in the breast tissue and pectoral muscle and the integrated difference between
the two distributions. Each property was found as a function of the distance to the
skin surface. Even with compression, the breast thickness changes rapidly close to
the surface so that this functional dependence on the distance to the skin can make
a significant impact on the results.

Some of the most extensive work has been done by Byng et al. who develop-
ed three classification properties. Each was assessed for their classification ability
in categorizing mammograms into a six grade density classification scheme (SCC).
The first method, described in [Byng et al., 1994], used a semi-automated procedure
where the user was required to select a pixel that was used as a threshold grey level to
distinguish the breast tissue from the background. This also allowed the computer to
automatically calculate the area of the actual breast shadow. Then the user selected
a second threshold that was representative of the parenchymal tissue. The percent
density was calculated from the fraction of the breast tissue above this second thresh-
old normalised by the total segmented image size. Since the exposure conditions can
vary from film to film, a fixed threshold to delineate the tissue types could not be
employed. While the approach was still subjective, the resulting mammeogram classi-
fication did not have nearly as much inter-observer variation as for the conventional
approach to density classification. Byng was able to achieve high inter-observer cor-

relation even with novice users with minimal training (typically with a Spearman
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correlation coefficient 2> 0.9).

In a recent study by Huo [Huo et al., 2000] the difficulty in relating mammo-
graphic density and risk was bypassed by considering a well established risk factor
with a strong biological basis, the mutation in two genes, BRCA1 and BRCA2. Again,
several features were examined — many extracted from the histogram characteristics
such as the average, minimum and maximum grey level in a region of interest as
well as the grey level that delineated a given fraction of the total number of pixels
in the ROI and several other conventional texture characteristics. When a receiver
operating characteristic (ROC) curve was generated for the various features, the area
beneath the curve varied from 0.53-0.87 with an average value of 0.72. When four
features were considered simultaneously, the area increased to 0.91 which indicates a

considerable increase in the probability of correctly identifying the patients with the

genetic mutations.

1.1.2 Fractal Techniques

Byng et al. [Byng et al., 1996a, Byng et al., 1997] has also examined two additional
features, the regional skewness and a fractal dimension, for a correlation with breast
cancer risk. For the regional skewness, the breast tissue was segmented and the
segmented region tessellated into small ROI's each 3.12x3.12 mm? and the skewness
calculated for each ROI prior to averaging all the values to obtain a single overall
result?. The second property, a fractal dimension, was found by treating the image
as a surface in a three dimensional abstract space where the height was proportional

to the grey level for the corresponding pixel location. Then the behaviour of the

2See Section 2.1.1 and Section 3.3.1 or [Byng et al., 1996a] for further details.



1.1 Breast Cancer Risk Evaluation 10

surface area was characterised at different resolutions by finding the slope for the
relationship between the log(area) as a function of the log(resolution)3. All three
properties showed good correlation to the density classification using SCC and were
used to find the relative risk in the studies listed above. In principle, all of them
represent a continuous scale for the breast density. While the change in relative
risk for variations in the regional skewness, fractal dimension and (semi-automated)
percent density were not as dramatic as for the SCC approach, the results found by
Byng were still significant after adjustment for other well accepted risk factors such
as family history or reproductive factors.

A similar method for the calculation of a fractal dimension was used by Caldwell
et al. [Caldwell et al., 1990] for the purpose of distinguishing Wolfe grades. Caldwell
encountered only limited success. In particular, he found that distinguishing the high
risk {upper two grades) from the low risk (lower two grades) was more reliable than its
ability in distinguishing divisions within either the upper or lower two grades. Another
conventional fractal dimension, a box-counting dimension had been successfully used
by Velanovich [Velanovich, 1996] to characterise the boundary of a suspicious mass
and identify benign from malignant masses.

However, the cutcome when using fractal dimensions in medical applications has
been varied. For example, Karssemeijer [Karssemeijer, 1998] was not able to re-
produce the results of Caldwell [Caldwell et al., 1990] and Byng [Byng et al., 1996a)
when using a fractal dimension. It should be noted that Karssemeijer used films
obtained over a long period, 1983-1994, and the quality of the films varied signifi-
cantly during that time. Their results indicated that the techniques they employed

3For those unfamiliar with fractals, a description of the concepts for these studies along with the
concepts used for the multifractal dimensions used in this thesis can be found in Appendix A.
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which were successful in classifying the density performed better when the images
were constrained to the mammograms that were obtained more recently.

Veenland et al. [Veenland et al., 1996}, examined many different fractal dimen-
sions for simulated organs. A comparison was made between the “true” fractal di-
mension and the fractal dimension which would be obtained from film with known
characteristics. Veenland suggested that fractal dimensions are very sensitive to varia-
tions in the modulation transfer function (MTF) and noise characteristics of the film
and exposure conditions. On the other hand, Caldwell [Caldwell et al., 1990] and
Byng [Byng et al., 1996a] both have examined the effects of changes in the Hurter
and Driffield (HD) curve typical of their mammography system with little impact on

their results. This apparent discrepancy may have been due to

e The extensive QA procedures for modern mammography systems. Some of
the films used by Karssemeijer was sufficiently old that the film quality was

considerably different compared to their more recent samples.

e Sufficient difference in the characteristics of the fractal dimensions for malignant
and normal tissue that the influence of the MTF and noise in the film was not
able to mask the differences. Veenland’s conclusions were drawn from the change
the film makes to the “actual” fractal dimension while Byng and Caldwell used
genuine mammograms. Therefore, the effect that the film makes to the fractal
dimension of the parenchymal tissue may be smaller than the difference in the

fractal dimensions of malignant and normal tissue.

e Differences in the characteristics of the fractal dimensions themselves, i.e. the

fractal dimension that Caldwell and Byng used may not have been as susceptible
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to the MTF and noise of the film*. Different methods of calculating fractal

dimensions examine different characteristics of the image.

1.1.3 Therapy Evaluation

While the relative risk for those with a BRCA1 or BRCA2 mutation is much greater
than for those without the abnormality, the prevalence of cases with the mutations
is relatively low [Weber, 1998]. If the mammographic features that were identi-
fied are correlated strictly to the gene mutations they may not be useful for ap-
plications such as the evaluation of preventative therapies. However, the work of
Boyd et al. [Boyd et al., 1997] on mammographic features and dietary fat, Ursin et
al. [Ursin et al., 1996] and Atkinson et al. [Atkinson et al., 1999] on mammographic
features and Tamoxifen suggest that this may not be the case. In particular, in
[Boyd et al., 1997] it was found that the subjects on a low-fat, high-carbohydrate
diet showed a reduction in the amount of mammographic density. Further, the re-
duction in density was greater than could be accredited to weight loss alone. Ursin, on
the other hand, [Ursin et al., 1996], examined the changes in the densities in the con-
tralateral breast of patients diagnosed with breast cancer. It was found that patients
treated with Tamoxifen (with and without radiation therapy) exhibited a reduction
in the mammographic density compared to patients receiving chemotherapy and/or
radiation therapy. Similarly, Atkinson, [Atkinson et al., 1999], found a statistically
significant change (p = 0.0001) in the Wolfe grade classification (toward the lower

risk grades) of patients undergoing treatment with Tamoxifen.

“Veenland did not consider the specific fractal dimension used in [Caldwell et al., 1990] and
[Byng et al., 1996a].
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1.1.4 Conclusions

In the studies discussed previously, the extracted features were quite varied but they
were selected with the intent of producing a more reproducible and less subjective fea-
ture than the current approach to assigning the mammographic density and they all
characterise essentially the same mammographic property. Boone created his breast
density index expressly to have a very high correlation to the mammogram ranking
based on density. Similarly, Byng verified that there was a reliable correlation be-
tween their features (percent density, regional skewness and fractal dimension) and
the breast cancer risk but the selection of these particular properties was made with
consideration of their relationship to the mammographic density. For example, the
regional skewness was specifically selected by Byng et al. since a mammogram with
predominately dense tissue would have a histogram with a proportionally greater
fraction of pixels with higher grey level values thus producing a negative skewness.
As well, for a predominately dense breast, the contrast for large portions of the mam-
mogram will be lower than for a breast consisting primarily of fatty tissue. There-
fore, if the image of the dense mammogram were viewed as a surface in an abstract
three dimensional space, where the pixel intensities represent the third dimension,
it would appear smoother than a mammogram with a lower mammographic den-
sity, thus producing a lower fractal dimension. The mammographic density and the
features discussed above, which were related to the density, represent a basic exam-
ination of the information that was contained even within the global characteristics
of the mammogram.

For this thesis we considered several systematic and more comprehensive analyses

of the mammogram. Since the mammographic density is widely accepted as a risk



1.2 Computer Aided Diagnosis 14

factor we examined the relationship of our extracted features with the density. Fea-
tures were extracted that were less obviously connected to the density and features
were identified, both individually and in combination, that can be used to classify
the mammographic density. Fortunately, the database of images which were used for
this project contained the density classification according to the BiRADs guidelines.
However, the data were not ideally suited for either determination of dehsity classes
or risk assessment®. In particular, the number of cases in each density grade was
quite variable and the details for a number of other important risk factors were not
available for the patients, such as age of menarche, nulliparity, etc. The complete
evaluation of either of these would require a full study in itself but the identification
of the important properties and some of the basic procedures which are necessary for
such a study are provided in the present work. We also selected the set of features
which were most closely correlated with the appearance of breast cancer rather than
the density classification in order to identify an independent risk factor or a property

indicative of breast cancer itself.

1.2 Computer Aided Diagnosis

This section provides background on several image properties that were used in this
work. In the following section some of the important studies that employed useful
conventional techniques are described. The method typically involves the calculation
of various textures which quantify characteristics of the image such as the contrast
or the homogeneity. In general, a large number of textures was found and a subset

that was most useful for the given problem was selected using a method such as

5See Chapter 3.
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stepwise refinement or a genetic algorithm. Regardless of the method used for the
feature selection, a technique such as linear discriminant analysis was used in order to
evaluate the selected set of features. Several of the studies relevant in mammography
which used a genetic algorithm are described in Section 1.2.2.

Finally, approaches for investigating the scale which was the most significant for
a particular problem was discussed in Section 1.2.3. If too large or too small a scale
is used to examine the texture, the structure relevant to the problem may not be
reflected in the extracted features. Therefore, examining many scales to identify the

most useful is important.

1.2.1 Texture Methods

Many textures can be calculated from what is known as a spatial grey level dependence
(SGLD) matrix. The SGLD matrix is a two dimensional array which is a function
of two variables, d and . Each entry in the matrix, (7, 7), contains the frequency of
occurrence for a pair of pixels with grey levels ¢ and j separated by a distance d and
with an orientation characterised by an angle #. A similar array, a spatial grey level
difference matrix has an extra parameter, the difference in the grey levels for the pixel
pair. In other words it is the SGLD matrix for only those pixel pairs with a specific
value for | 7 — j |. The majority of studies described in this chapter utilised textures
calculated using either of these matrices. However, while many textures that appear
in the literature are quite common, many more have been developed for the specific
purpose of their respective studies. Therefore, a complete list of textures used in each
study as well as an explanation of how to calculate the individual textures (except

for the ones used in this thesis) was left to the literature.
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Two of the earliest works using texture measures in mammography are Taylor et
al. [Taylor et al., 1990] and Magnin et al. [Magnin et al., 1986]. Taylor used various
texture measures such as the skewness, fractal dimension and Laws energy to identify
the “easy to interpret” mammograms (fatty) from “difficult” ones (dense) in addition
to identifying Wolfe grades. Magnin attempted to distinguish Wolfe grades using the
examination of several common texture features (eg. energy, inertia and others) that
were derived from a SGLD matrix for horizonal pixel pairs separated by 10 pixels or
features extracted from the grey level difference matrix.

Chan et al. [Chan et al., 1995] used an approach similar to that of Magnin to
classify tissue regions into abnormal masses and normal tissue. After preprocessing
to remove the effects of the background on the texture values, eight texture measures
were calculated (eg. energy, entropy, correlation, inverse difference moment, etc.).
Each was derived from the SGLD matrix for four different directions (#) and several
pixel separation distances (d). This approach generated a pool of texture features
from which a subset that best distinguish the normal tissue from abnormal masses
can be extracted. Chan et al. also used a stepwise refinement procedure for the feature
selection and linear discriminant analysis for the feature evaluation.

Linear discriminant analysis is a standard statistical procedure to create a function
that is linear in the variables and minimizes the number of incorrectly classified cases.
The procedure can be viewed as the projection of the feature vectors onto a one
dimensional axis and the linear discriminant procedure changes the orientation of the
axis to maximise the difference between the classes in the sample. The particular axis
orientation or linear combination of variables that is found is generally referred to as

the linear discriminant function.
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The feature selection process, stepwise refinement, requires the selection of two
thresholds and a statistic of significance. Only if the inclusion of a variable changes
the statistic by an amount greater than the inclusion threshold is the variable used
in the discriminant function. Once all the variables have been tested for inclusion,
each selected variable is then tested for removal. If the removal of a variable changes
the statistic by less than the second threshold then it is removed. The procedure
is repeated until the set of features is stable. Both the stepwise refinement and
linear discriminant analysis are conventional and widely used approaches for feature
selection and classification.

Several general aspects on the use of textures for medical applications can also
be found in [Veenland et al., 1998]. Veenland investigated the effect of the MTF and
noise characteristics common in general anatomical radiographs on a large number
of texture measures, features from the power spectrum and morphological properties.
In addition, Veenland et al. [Veenland et al., 1998] also studied the effect of the MTF

and noise on several fractal dimensions.

1.2.2 Genetic Algorithmic Methods

An application that has received much attention in computer aided diagnosis (CAD)
of mammograms is in differentiating benign and malignant microcalcification clusters.
For example, the approach of Chan et al. [Chan et al., 1998] for this problem involved
extracting textures as well as certain morphological characteristics of the microcal-
cification clusters and selecting a subset of features using stepwise refinement or a
random optimization technique: a genetic algorithm.

A genetic algorithm is a method of randomly exploring a large feature space. The
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overall method is straightforward but there are many subtle variations to the tech-
nique and a general discussion of the procedure can be found in Appendix B, while
the variations used specifically for the program that implemented the genetic algo-
rithmic approach for this thesis, ga_ors, can be found in Section 2.3. The approach to
the exploration was inspired by genetics and evolution so that the ideas are couched
in those terms. One common approach utilises a “chromosome”, represented by a
string of bits, and an encoding scheme, so that each bit position represents a different
feature. Imitially, a large number of chromosomes (a “population”) is created with
random features selected and each member of the population evaluated relative to
a fitness function. In [Chan et al., 1998] the fitness function was related to the area
beneath the ROC curve for their test data®. Next, a new generation was formed
by “reproducing” the chromosomes and the probability of a particular chromosome
taking part in reproduction is determined by a function of its fitness. There are two
common methods of reproduction, the first is a crossover technique which uses two
chromosomes selected at random and a part of each chromosome is interchanged with
the other. The second method involves a random alteration of the genes in each chro-
mosome {mutation). Ideally, after a fixed number of generations the chromosomes
have evolved to a small set of the best features.

Chan [Chan et al., 1998] found the genetic algorithm selected a set of features that
was consistently better than those found using the conventional stepwise refinement
technique. As well, an earlier study performed by Sahiner et al. [Sahiner et al., 1996]
made a comparison between the performance using features selected using stepwise
refinement, a genetic algorithm and a neural network. When they calculated the area

beneath the ROC curve for their test data, the genetic algorithm outperformed both

6Recall the area beneath a ROC curve is proportional to the probability of a correct classification.
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alternative techniques.

1.2.3 Wavelet Methods

A wavelet transform is an integral transform, like a Fourier transform, that has a
basis with specific properties’. It can be viewed as the result of a signal after filtration
through a series of high and low pass filters that are arranged in a specific order. The

transformed signal can then be divided into several regions that contains either

1. a representation of the signal at different resolutions

2. components that are lost when the signal is examined at the different resolutions

(multi-resolution analysis).

The applications for a wavelet transform are growing rapidly and one widespread
use has been in the area of image enhancement. The enhancement tends to
work particularly well for high frequency regions such as those that contain edges
[Giger and MacMahon, 1996]. For example, within mammographic applications they
have been used to increase the conspicuity of objects that can be difficult to lo-
cate, such as microcalcification clusters. The transform and variations of the pro-
cedure has also been used for in the automatic identification of microcalcification
clusters as in {Zhang et al., 1998] who took the wavelet transform of the image
and weighted the components before reconstruction. Similarly, Clarke and Qian et
al. used a procedure resembling a wavelet transform to enhance microcalcifications
[Clarke et al., 1994, Qian et al., 1995] and masses [Qian et al., 1999]. Their modi-
fied transform eliminated the need for empirically chosen weights for the enhance-

ment of the specific objects in which they were interested®. Further, Lado et al.

7See Appendix C for a more detailed description.
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[Lado et al., 1995] used a wavelet transform not only to enhance microcalcifications
but extracted various features from the transformed image for the purpose of identi-
fving clusters with malignant characteristics.

In an application similar to Chan [Chan et al., 1998], Wei et al. [Wei et al., 1995,
Wei et al., 1997] created a method for the reduction of normal tissue that was mis-
taken for abnormal masses in a CAD system. The basic methods were the same as
the studies described in Section 1.2.1 but in [Chan et al., 1998] a multi-scale texture
measure was achieved using various pixel separations in the SGLD matrix, the d
parameter. However, in [Wei et al., 1995], Wei et al. compared multi-scale texture
analyses by using various values of d in the SGLD matrix created from the original
image to the use of a wavelet transform of the image while constraining d to be 1.
Wei found that the results using features formed from the wavelet transformed im-
ages were comparable or better than the results using textures formed from changing
d. A later study can also be found, [Wei et al., 1997], where a more sophisticated

preprocessing method and a larger number of textures was considered.

1.3 Overview

For this thesis, we explored several global mammographic characteristics for their
ability to classify mammograms into density grade categories as well as into nor-
mal/abnormal groups. We began by extracting several global mammographic fea-
tures and used either an exhaustive search or a genetic algorithm to select the subset

of the best features to categorise the cases using either classification scheme.

8In [Qian et al., 1999] the image was enhanced to improve the performance of several textural,
morphological and grey level properties in their CAD system.
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The features that were extracted from the mammograms fell into two categories

1. Spectral features which can be obtained from the grey level histogram.

2. Multiscale texture features which were extracted using multifractal models and

wavelet transforms of the images.

For the spectral features, we considered generalisations of the features in the studies
given previously. In particular, extensions to the features used by Byng and Boyd et
al., such as combinations of regional moments, combinations of global moments and
sub-regions of the global histogram itself were considered. The intent was to identify
less obvious features or combinations of features that may have better classification
ability than those found in the literature.

In addition to these spectral features we investigated several texture features:
a multi-fractal dimension and three texture measures applied to the wavelet trans-
formed images. The difficulty with the use of a fractal dimension in the work cited
earlier was the property was selected with the intent of emulating the behaviour of
the mammographic density. Such an approach is sufficient if simply a property which
is less susceptible to intra- and inter-observer variation was desired. However, it does
not consider new properties that may be independent of the density but still corre-
lated to breast cancer risk or incidence. The technique of extracting textures from
the wavelet coefficients of a mammogram has also been used previously but the ap-
plications were in reducing the false positive rate in a CAD system. Therefore, the
textures were selected to distinguish a property characteristic of a malignant mass,
such as a spiculated border. In this thesis all features were selected to characterise
a global property related to cancer or cancer risk and these features may not be

currently known to be correlated with malignancy.
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In addition, the use of a few, or even a single quantity, to characterise the prop-
erties of a mammogram was common in the studies discussed previously. This would
be sufficient in an application such as identifying a malignant mass where the bor-
der can possess characteristics quite different from a benign lesion. However, a more
comprehensive characterisation of the mammographic properties would likely require
a collection of properties to be calculated from the mammograms. There are different
approaches that can be used for this purpose but we considered only properties that
examined the image at different resolutions or scales. One feature in particular that
was investigated was a generalisation to a fractal dimension that treats the object
as a collection of fractals, possibly with different dimensions, that were intricately
intertwined with each other, i.e. a multifractal. We also examined three conventional
texture measures, the energy, entropy and inertia. All these textures had been used
for segmentation of masses and microcalcification clusters in the studies listed above
but we examined these textures for other purposes — their ability to distinguish den-
sity classes and to distinguish normal from abnormal groups. A wavelet transform of
the image was also performed prior to extracting the texture measures after which
the property was calculated directly from the wavelet coefficients. This procedure
was simply to collect a pool of features and again we applied either an exhaustive
search or a genetic algorithm to select a manageable subset of the features for either
density grades and normal/abnormal classifications.

Chapter 2 describes the conceptual basis for the choice of spectral features which
were employed — global and local moments, as well as subsets of the histogram, and
the texture features — multifractal dimensions, wavelet transforms and the texture

energy, entropy and inertia. However, one of the essential components needed for
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the work is the program used to select the essential properties. It is always difficult
to identify the optimum components from a large pool of possible parameters and
conventional systematic approaches tend to have difficulties with becoming trapped
in local extrema. Therefore, we have employed a method of randomly searching the
feature space through a genetic algorithm. The modifications to the basic approach
necessary to use genetic algorithms was also briefly discussed in Chapter 2.

We proceed in Chapter 3 to discuss the details of the procedures needed to ex-
tract the desired features. This includes the normalization procedure applied to the
images in order to remove systematic dependencies such as exposure and processor
differences or characteristics specific to a particular x-ray digitiser. The extracted
properties were evaluated for the ability to classify the mammograms into different
classes and a number of datasets were needed for this. Several were selected to exam-
ine different goals and to evaluate the effects of the sample selection. In particular,
many different classifications were possible, such as dividing the images on the basis
of density grade, on the mammogram diagnosis or the patient diagnosis (where the
left and right mammogram were regarded as having an “abnormal” outcome if the
malignancy was in either breast). We describe the procedure used to select the var-
ious cohorts as well as presenting the specific details of the methods used to extract
the various spectral and texture properties.

The results are presented in Chapter 4. There were many aspects to examine
and the results are organised primarily along the lines of classification categories, eg.
classification of density grades, classification of diagnostic outcome, etc. Additionally,
the performance of the classifier when using each property, both individually and in

combination, is described for the various classifiers. We also investigated some special
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situations such as x-ray digitiser dependencies and age dependencies and their impact
on the classification performance.

Finally, a summary of the results is given in Chapter 5 along with potential future
directions which are important to consider but beyond the scope of the current thesis.
It should be noted that no attempt was made to investigate the specific visual features
in the mammogram that correspond to selected abstract features that were extracted.
The primary purpose of the thesis was exploratory. Therefore, the work reduces the
problem from the selection of a single set of features from, say, millions of options to
selecting one set from, say, tens. The correlation between the selected features and
the visual properties was beyond the scope of this thesis.

A note on the terminology that appears in the remainder of the work should be
given as well. The term “property” is used to refer to the mammographic character-

istics extracted using different computational procedures, namely:
e global moments of the histogram

regional moments of the histogram

e subregions of the histogram

multifractal dimensions

e texture energy of the wavelet transformed image

texture entropy of the wavelet transformed image

e texture inertia of the wavelet transformed image

However, several of these properties contain arbitrary parameters and the term “fea-

ture” or “feature set” refers to a specific combination of values for the parameters of
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a particular property. For example, the texture energy is a property while the texture
energy for d =5 and 8 = 0° is a feature.

Finally, unless explicitly stated otherwise, all programs used were created in house.
This includes, but is not limited to: the procedures to segment the breast tissue in

the mammograms from the background and the various programs to extract the

properties.



Chapter 2

Theory

The primary methods of estimating the risk for developing breast cancer solely from
its mammographic appearance, have revolved around the classification scheme devel-
oped by Wolfe [Wolfe, 1976a, Wolfe, 1976b, Wolfe et al., 1986] or the mammographic
density [Saftlas et al., 1991, Boyd et ai., 1995, Byng et al., 1996a]. Often these char-
acteristics were evaluated by inspection of the mammograms and generally required
an experienced radiologist, although some quantitative measurements of the mammo-
graphic density have employed planimeters [Wolfe et al., 1986, Saftlas et al., 1991].
However, with the increase in the accessibility of high performance computer sys-
tems combined with high quality x-ray scanners, more attention has been given to
automated approaches. This trend has been encouraged by the results of Boyd et al.
[Boyd et al., 1995] who showed, in a large case-control study, that the mammographic
density is a significant breast cancer risk factor independent of the more commonly
accepted risk factors such as family history, age of first live birth, etc. His results in-
dicate that the general appearance of a mammogram contains significant information

aside from the presence and location of abnormalities, the density being one simple
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characterization of the appearance.

There have been many approaches for the extraction of the additional infor-
mation in a mammogram through, for example, the use of various texture proper-
ties [Magnin et al., 1986, Taylor et al., 1990], fractal dimensions [Boone et al., 1998,
Caldwell et al., 1990], spectral properties [Tahoces et al., 1995, Karssemeijer, 1998]
and several unique approaches as in [Shadagopan et al., 1982] (identification and
quantification of ducts) and [Breitenstein and Shaw, 1998] (quantitative measure-
ment of dense tissue). Regardless of the property which was considered, the investi-
gators all attempted to classify the images into Wolfe grades or density categories. A
drawback with this approach is the subjective nature of the various categories and the
natural variability due to intra- and inter-observer differences. In this work, we forego
the use of mammographic density classes, for the most part, and attempt to iden-
tify characteristics of the mammographic appearance that are indicative of disease.
Due to the limitations imposed by the image database (see Section 3.1) combined
with a relatively small data set, a quantitative estimate of the relative risk, as in
[Boyd et al., 1995], is beyond the scope of this study. Rather, we confine ourselves to
the identification of features which could be investigated further.

The mammographic features used in the thesis fall into two broad categories:
what we will call “spectral”! features and “texture” features. Spectral features are
generally simple methods of describing the global properties of the mammogram by
characterising the distribution of the grey levels in the segmented image without
regard to their spatial location. In general, these features can be extracted from a

histogram of the frequency of appearance for each grey level. On the other hand,

1The term “spectral” features is somewhat nonstandard and was selected simply due to the
resemblance of the grey level histogram to a intensity spectrum.
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texture features are more complex and are attempts to quantify the appearance of
the image. Texture features generally combine the grey level with some aspect of
its spatial position. The remainder of this chapter is devoted to a more detailed
description of the spectral and texture features which were employed as well as the
method used for the selection of the most significant properties.

Many previous approaches to using texture features resulted in a single value for
each texture and as a result many different textures were needed to distinguish mam-
mograms which belong to different classes. Although Wei et al. was more concerned
with distinguishing malignant masses from normal tissue, the general approach for the
texture properties used in this study was similar to that found in [Wei et al., 1995]
and [Wei et al., 1997] where a set of values was extracted which can describe the
characteristics of the image in a straightforward and natural way. Specifically we
employed a few simple texture properties, such as the contrast, but each image was
transformed in such a way as to generate a collection of images viewed at different
length scales. The texture features were then applied to the set of images. This vector
of multi-scale values can be used to characterise an image more completely than does
the same property when applied to only a single scale image.

We also examined a feature which was inspired by a multifractal dimension. It has
been found that many objects encountered in nature with a fractal character behave
as though they were composed of a collection of intricately intertwined single fractals.
For these objects a continuum of fractal dimensions is needed to fully describe the
object. A more detailed discussion of the multifractal dimensions is given in Section

2.2.1 while the texture features are described in Section 2.2.2 and the spectral features

below.
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2.1 Spectral Properties

All of the spectral properties which were used can be generated from the function
that quantifies the frequency of appearance for each grey level in an image (histogram
or grey level histogram). The histogram was found for the region that was segmented
to contain just the breast shadow?. The mammographic density is an example of a
spectral feature. The greater the density the more radio-opaque the tissue and the
brighter the region appears on the radiograph. Therefore, the density or proportion
of dense tissue can be viewed as the proportion of bright pixels in the segmented
region. Unfortunately, the differences in exposure for different patients changes the
threshold grey level that delineates the majority of the dense parenchymal tissue from
the “dark” fatty tissue. While a human can readily compensate for the differences
in exposure, attempting to give a computer program a comparable facility is quite
difficult. For this reason, the density was not employed for this study. The spectral

features which were actually used consisted of:

1. The global moments of the histogram. This is a method of describing specific
properties of the grey level distribution. Global moments were calculated from
the entire segmented breast image. Some commonly used moments are the

mean (first moment), variance (second moment) and skewness (third moment).

2. The regional moments. These are the averaged moments calculated from his-
tograms generated from subregions of the segmented breast tissue and were

calculated as in [Boyd et al., 1995, Byng et al., 1996a, Byng et al., 1996b)

3. The mean of subregions of the global histogram which were the most significant

2The segmentation procedure is described in Chapter 3.
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in classifying the images.

One advantage of both the global and regional moments over the density is that both
are extensible, that is, it is easy to generate a large number of moments, each of
which examines a different characteristic of the histogram. In addition, when using
the density, a single threshold is desirable to signify the presence of a pixel containing
parenchymal tissue for all images. However, the use of a single threshold would make
the density sensitive to both the shape and position of the non-zero parts of the
histogram whereas the moments generally isolate these characteristics into separate
moments.

The remaining spectral feature, the subregions of the histogram, would also be
sensitive to the same type of changes in the histogram, but this property has the
potential of providing considerably more information than the density could pro-
vide. The potential information that could be extracted was more than sufficient
to justify the additional difficulty in compensating for the exposure differences and,
hopefully, the procedure for sub-region selection can identify regions that were rela-
tively insensitive to these systematic changes. All these spectral features were also

very straightforward to evaluate and are described below.

2.1.1 Moments

The global moments of the image were calculated from a histogram of the entire
segmented region, while the regional or local moments were calculated using the

histogram for many small regions lying within the segmented breast shadow. In
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either case the raw moment, m}, was obtained using the usual definition

’ N]:O
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where P; was the grey level for the j* pixel, P(= m)) the average pixel value and N
the total number of pixels. For the higher moments, ¢ > 2, it was more convenient
to employ a unit-less quantity by normalizing m! to the standard deviation raised to

the appropriate power. Hence we now have
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The drawback with describing the characteristics of the histogram through simple
hierarchial properties, such as the moments, was that they tend to be most useful for
relatively simple problems. A difficult classification problem would likely be depen-
dent on more subtle characteristics of the distribution which is manifest in the higher
moments. Unfortunately, these same moments tend to be extremely sensitive to small
differences in the distribution and may cause problems when evaluated numerically
because of the high value of the exponent. Therefore, what is desired is the smallest
collection of the lowest moments necessary to classify the images.

When images have different values in the low moments of their histograms, the

images tend to have obvious differences. For example, an image with a large value for

the mean was brighter overall than one with a low value. This is particularly impor-
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tant since the purpose of the automatic exposure control (AEC) of the mammographic
unit was to make the films have the same overall optical density. Hence, the mean was
unlikely to be useful for classification. However, as described in [Byng et al., 1999], a
slightly higher moment, m; (the skewness), reflects the relative contribution of bright
to dark pixels in the image and would be useful for density classification. On the other
hand, very high moments are quite sensitive to variations in the distributions and the
natural variation in the appearance of the parenchyma from patient to patient would
make the range of possible values in each class so broad that it would not be possible
to resolve the different classes.

For a difficult classification problem it is often not obvious which set of moments
that would give the most accurate classification. Hence, more moments than are likely
to be useful were intentionally calculated and various combinations of the available
moments were tested for the best subset.

The regional moments are generated in a similar fashion but use a much smaller
region of the segmented breast shadow. The procedure basically followed that de-
scribed by Boyd et al. and Byng et al. in [Boyd et al., 1995, Byng et al., 1996a,
Byng et al., 1996b]. Here, only a brief overview of the procedure is described. Greater
detail can be found in the references and in Chapter 3.

It is expected that moments calculated using more local information will be better
able to deal with inhomogeneities in the tissue type [Byng et al., 1996a]. Additionally,
while the thickness of the compressed breast was fairly uniform over the middle region,
toward the skin surface the thickness changes rapidly and the amount of glandular
tissue was more pronounced toward the chest wall. These effects may obscure the

differences we wish to identify in a histogram found using the entire segmented breast
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tissue but local moments, calculated strictly from small regions, can give a better
reflection of the tissue composition.

Some studies, such as [Magnin et al., 1986, Tahoces et al., 1995], examine only
a constrained region of the mammogram for their respective properties. However,
the size and position of the region that would optimize the performance of each
extracted feature is unclear. Therefore, rather than choose a single subregion, the
entire segmented breast tissue was divided into many regions. The moments of the
histogram for each region was found and the corresponding moments were then av-
eraged together. Since it is less likely that the compressed breast thickness varies as
dramatically over the smaller region, an averaged regional moment is less suscepti-
ble to confounding factors such as variations in thickness and more closely reflects

differences in the proportion of tissue types.

2.1.2 Histogram Regions

An alternative to using the moments with their accompanying drawbacks, was to
utilise simple statistics calculated from a small portion of the entire histogram. The
expectation was that the amplitudes of the histogram have significant classification
ability. Using properties from only portions of the histogram also has the advantage
of being quick to calculate and allows regions with little classification ability to be
ignored. The difficult task was then to identify the regions of the histogram that were
the most useful for separating the images into the desired classes. If up to, say, 10
regions of varying widths were to be chosen from a total pool of 4096 grey levels, it
was clearly not possible to do an exhaustive search of all the possible combinations.

Fortunately a program from the Institute for Biodiagnostics, NRC, was devel-
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oped for this type of classification problem. The program, “ga_ors”, utilised a ge-
netic algorithm which is a very powerful method of randomly searching a large fea-
ture space for an optimal or near optimal configuration relative to a fitness function
[Nikouline, 1998], in a reasonable amount of time. It has been used for a similar pur-
. pose in classifying infrared (IR} and magnetic resonance (MR) spectra into normal
and abnormal groups. For our purposes, it was used to select a predefined number
of regions that were the most useful in discriminating the patient classes. The mean
was taken as the property to characterise each selected region. A further discussion

on genetic algorithms in general can be found in Appendix B and in Section 2.3.

2.2 Textures

Whereas spectral features characterise only the frequency of the appearance of each
grey level, textures characterise a specific aspect of the spatial relationship between
the grey levels as well as their frequency of appearance. There is a large number of pos-
sible textures which can be utilised, each of which considers a slightly different char-
acteristic. For instance, Byng et al. [Byng et al., 1996a] have used a fractal dimension
for analysis of mammographic densities and Magnin et al. [Magnin et al., 1986} have
examined the classification ability of a number of conventional textures for a similar
purpose. Many textures were constructed to quantify a specific aspect of an image,
such as the apparent roughness or the proportion of vertical lines, and tend to be mod-
erately simple to evaluate with an intuitive interpretation but there are many others
which are extremely complex and have no easily discernable physical interpretation.

A few textures that belong to both categories had been selected for the particular

application described in this thesis. Multifractal dimensions (Section 2.2.1), which are
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an extension to a fractal dimension, were considered along with three simple texture
measures applied to a wavelet transform of the images (Section 2.2.2). The textures

were selected to produce a set of values that characterised the images at different

scale lengths.

2.2.1 Multifractal Dimensions

Many earlier studies had shown that a fractal dimension was useful in texture classi-
fication in a variety of different applications. For example, the fractal dimension used
by Byng et al. [Byng et al., 1996a] to distinguish mammographic density classes was
calculated by treating the image as a surface where the height was represented by the
pixel value and the variation in the area of the surface was examined as a function
of scale. For their case the intended texture feature was the roughness of the surface
and a rougher, more convoluted surface, would produce a fractal dimension closer to
three (characteristic of a volume) than to two (characteristic of a surface). Although
a fractal dimension is inherently a multi-resolution characteristic, many natural ob-
jects with a fractal character are often actually multifractal and require a continuum
of values to fully characterise the object. Further details of both conventional fractal
geometry and multifractals can be found in Appendix A and the references.
Conventional fractal objects, such as a Sierpinski gasket, a Koch curve or a Peano
curve (Figures A.2—A.3) are examples of strictly self similar objects. That is, portions
of the object can be made to appear identical to the original, if the portion is re-
scaled by the appropriate factor. However, many physical objects with fractal-like
behaviour are created by random processes and the resulting objects are statistically

rather than strictly self-similar. Common examples of random fractals are coastlines
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and mountain ranges. For these objects it is not possible, in general, to make any
sub-region exactly correspond to the original but the general character of the sub-
regions does resemble the full object. Indeed, if an image of the sub-region is viewed
without reference to the original it is difficult to judge whether it is a sub-region or
the full object.

Multifractals are generally random fractals and can be thought of as consisting
of many random fractals, with possibly different dimensions, which are intricately
intertwined. Then, when different approaches to calculate the fractal dimension are
applied, a different dimension may result depending on the “fractal component” to
which the method is most sensitive. Because of this, when the fractal dimension is
applied to any natural object the method of calculation for the fractal dimension is
critically important.

The difference between the conventional fractal dimension and multifractal di-
mensions is more apparent in a specific example. Consider the situation of several
fields with different types of ore visible over its surface. The fields are approximately
the same size but of vastly different composition and value. It would be desirable to
identify the most valuable field, but it is too difficult to estimate the total value of
the ore for all fields. In that case we may be interested in the distribution of ore over
a relatively small sample of each field and assume it is typical for the entire region. It
is likely that the distribution has a fractal character and one approach which is often
used to evaluate the dimension is to use what is frequently called the box counting
dimension (or Hausdorff mesh). In this approach, a regular grid with a side length of
€ is superimposed over the field and the number of cells, N, which contain any type

of ore are counted. The process is then repeated with many different sized meshes.
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The value of the fractal dimension, d, is then related?® to the slope of the regression fit
of log V¢ as a function of loge. A dimension closer to two indicates a greater amount
of ore but this process ignores the type of ore in each cell. Further, if the net value
of a collection of ore is desired, the composition of the samples in each cell is very
important.

The distribution of ore is more likely multifractal and the multifractal dimensions
can be found following a method similar to that used for the box counting dimension.
The process of calculating the dimensions starts with the same regular grid but we
assign a weight to each cell, y;;, where 75 specify a location within the mesh. In
this case, the total value of the ore in the cell may be used for this purpose. The
distribution can then be characterised by the set of fractal dimensions for the various
collections of cells with the same u;;.

From this point, there are different approaches which can be applied. In this work,
the technique known as the method of moments was used. What follows is a brief
overview of the approach. A detailed description of the method can also be found
in [Peitgen et al., 1992]. This approach was pioneered by Rényi and employs what is

known as a partition function*, x,(g), for the ¢'® moment where
N
X&) =D ¥, geR (2.3)
L2V

The partition function is analogous to the number of cells needed to cover the object,

N,, in the box counting dimension. Therefore, for a fractal object, x, scales with the

3When this procedure is applied to an image, the slope is exactly the fractal dimension but for

other methods this may not be true.
4The term was coined due to the parallels between how x, is used and a partition function of
statistical mechanics [Schroeder, 1991].
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characteristic length and the generalised fractal dimension, D,. However, the method
of moments is not identical to the Hausdoff mesh approach and an additional factor

of g — 1 is required. We now have

Xq(€) oc glaNPa (2.4)
Xq(€) oc €7 (2.5)
T = (¢g—1)D, (2.6)

The D, is known as the generalised fractal dimension since specific values of q
correspond to more commonly known dimensions. For example ¢ = 0 gives the
usual box counting dimension while ¢ — 1 corresponds to the information dimension
[Peitgen et al., 1992, Schroeder, 1991]. The calculation then proceeds similarly to the
box counting dimension® with x, substituted for N(¢). A property has been extracted
from the images based on this procedure. The precise details of the method are given

in Chapter 3.

2.2.2 Texture Measures

Texture measures have been used in the past for a wide range of applications including
many in digital mammography. This includes segmentation of suspicious masses,
[Gupta and Undrill, 1995], and the separation of masses into benign and malignant
classes [Chan et al., 1995]. As well, Magnin et al. [Magnin et al., 1986] applied similar
textures as the ones selected of this work to automatically classify mammograms into

Wolfe grades. However, to fully characterise the image a large number of texture

5The primary difference is that, for a multifractal, the calculation must be repeated as g changes.
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measures is frequently required and many texture measures do not have any apparent
physical interpretation. Studies have also been done in using a wavelet transform
combined with texture properties for the segmentation of masses [Qian et al., 1995]
and microcalcifications [Qian et al., 1999].

In the present work, and following the approach of Qian et al. [Qian et al., 1995,
Qian et al., 1999], a set of textures to characterise the image was extracted in or-
der to classify the set of mammograms into several categories. However, the texture
measures were constrained only to simple textures with an intuitive physical inter-
pretation. Further a multi-scale decomposition of the mammograms was performed
in order to characterise the images more fully. The textures that were selected can
be found in, for example, [Haralick et al., 1973, Magnin et al., 1986, Wei et al., 1995]
and are sometimes referred to as the energy, H, entropy, S, and the inertia, /. All

three can be calculated from the SGLD matrix and are given by Equations (2.7)-(2.9).

H(d6) = Y p%(d0) (2.7)
S(dv 0) = Zpij(da 6) logpij(dv 0) (2'8)
I(d,6) = > (i—3)’pi(d,6) (2.9)

5]
where p;; is the entry in the SGLD matrix for pixels with grey levels of ¢ and 7. The
d and 6 are arbitrary parameters. (See Chapter 3.)
The colourful names are derived from the form of the equations which resemble
their physical counterparts. Both H and S quantify the homogeneity of the image;

summing two different functions of the probabilities, p;;, over all possible combina-

tions of grey levels. I, on the other hand, is a measure of the contrast obtained by
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considering a function of the difference in grey levels, (¢ — j), but weighted by the
probabilities, p;;. The previous studies cited required a considerable number of tex-
tures for reasonable classification performance including many that were much more
complex than those chosen here. Rather than emulating this approach, the texture
measures that were selected were constrained to the energy, entropy and inertia. In
order to obtain a more complete (textural) description of the image these textures
were applied to the images at multiple scales.

The required multi-scale decomposition of the images was performed through the
use of a wavelet transform. At this time, the use of the wavelet transform is quite
widespread but not a part of most standard curricula, therefore, a brief presentation
of method is given.

Historically, the development of wavelet transforms had its origins in many diverse
fields of study and one of the results of this was that there are two explanations
pervasive in the literature. The first is quite mathematically intensive and puts the
transform on a rigourous basis while the second is more relevant for creating efficient
implementations. Some of the mathematical basis of the transform along with the
connection between the two interpretations is given in Appendix C while a brief
overview of the technique is described below.

The transform can be viewed as a general integral transform, 7, of a function,

f(z), with a form
(Tof)(a,b) = C f_ F(@)¥(a, b)dz (2.10)

where C is a normalization constant and (a, b) a basis of functions of position (char-
acterised by a) and a scaling factor (characterised by b). The choice of basis functions

determines the overall properties of the transform and a Fourier transform becomes a
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special case where the basis {¢(-,w) = €**} is used. Some of the important properties
resulting from this choice of basis is that the contribution of each frequency for the
original signal is found but the transform contains no spatial information. In addi-
tion, a large number of terms is needed to represent a signal with sharp transitions,
like edges or boundaries.

Many of the typical bases chosen for a wavelet transform attempt to reduce the
extreme properties of a Fourier transform. For example, some spatial and frequency
information can be extracted from the wavelet transformed signal. The exact choice
of bases that was used for the transformm was a bi-orthogonal wavelet described by

Sweldens [Sweldens, 1994]. An example of two typical functions in the basis is shown

in Figure 2.1.
aef ¥(z) ¥(z)
~ N
ﬂg < - * [] z 3
#(z) ;(z)

Figure 2.1: Example of the mother wavelet and scaling function, along with their
duals, for a bi-orthogonal wavelet as described by Sweldens. ([Sweldens, 1994], page

21)
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An additional, and important, feature of a wavelet transform is that it is possible
to generate a multi-resolution analysis of the input signal. The typical technique to
achieve this result is to perform an iterative decomposition on the input with the
resolution at each successive level as one half that of the preceding level. Then, the
transform can be performed by sending a copy of the signal through both a high pass
filter and a low pass filter followed by sampling the output by two, for a discrete signal.
For the next level, the output of the low pass filter, only, is subjected to a second pair
of high and low pass filters and down-sampled by 2. The output of each high pass
filter is sent directly to the output and the process repeated until the desired number
of levels is obtained. (See Figure 2.2.) For this work, a maximum of five levels of the

decomposition was utilised. A two dimensional image can be transformed by applying

—={ H —={(Out )
> H Out
Ny — — (A }—(ow)

Figure 2.2: Discrete Wavelet Transform as a filter bank cascade

a one dimensional transform to the rows and columns successively and this produces
a different result for each quadrant. Clearly, there is some ambiguity in the order
of application of the transform and the most common arrangement, due to Mallat
[Mallat, 1989a, Mallat, 1989b], is shown in Figure 2.3 where XYXY XY ..., X,Y €
{H,L} represents the coefficients after the sub-image was subjected to a high pass

filter (H) to the columns (X) then a low pass filter (L) on the rows (Y)(and down-
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Figure 2.3: Mallat format for three levels in the two dimensional wavelet transform,
showing the band pass filter order over a image and where L and H represent low

and high band pass filters respectively.
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sampled by 2). Once the transform was performed, all three textures (H, S and I)
were calculated from the images in the quadrants after filtering by HL, HH and LH
at each level of the transform®. With five iterative levels of the transform retained,
combined with three textures obtained from three quadrants at each level and 20
different choices of d and @ for the SGLD matrices results in a total of 900 different
textures. The large number of variables made it necessary to use a sophisticated
mechanism which will find the most important textures and reduce the number which

were actually used to classify the images to a manageable level.

2.3 Classification Methods

There were two considerably different operations needed for our work.

1. The selection of a small subset of features that have the greatest discriminatory

power or classification ability for our given problem.

2. The evaluation of the classification performance of those same features.

Indeed, within the realm of feature selection a method of evaluating a set of features
was necessary in order to identify the most promising subset. Linear discriminant
analysis, described in Section 2.3.2, was used for the evaluation of the subsets of
features. The selection of the subset of the best features was made using either an
exhaustive search of all possible subsets of features, if the number of combinations is
small enough, or using a genetic algorithm otherwise. A general description of genetic
algorithms is given in Appendix B while the details of the technique that are specific

to the program ga_ors are described in Section 2.3.1.

SNote that the remaining quadrant that was subjected to the LL filter combination is used for
the input image for the next level of the transform.
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2.3.1 Parameters for ga_ors

As can be seen in the literature, (see Chapter 1), the image properties which can
be obtained from a mammogram are numerous and there is practically an unlim-
ited number of additional features that can be employed. A daunting aspect of this
study is the selection of a set of features that provides reliable classification while
being sufficiently few in number to be manageable. Additionally, the nature of the
extracted image properties required that several considerably different methods of
feature selection be employed. For some features, such as the global or regional mo-
ments, the pool of properties from which the subset of features were to be selected is
small enough that an exhaustive search is practical. For other features, most notably
the histogram regions and the textures, the number of features was large enough that
an exhaustive search was computationally too expensive. Another complication was
that the number of features under consideration (> 900 in one case) greatly exceed
the number of cases in the sample (max. 240), therefore even if an exhaustive search
were possible it might well result in an overfitted solution. For these properties, we
turned to a program developed at the Institute for Biodiagnostics, ga_ors, to perform
the feature selection. The program uses a popular technique to randomly explore a
very large feature space, a genetic algorithm. The program used in this work, ga_ors
finds a user selected number of “best” features. The procedure used by ga_ors is an
extension to the conventional approach and details of the differences can be found in
[Nikouline, 1998].

Many aspects of the genetic algorithm are usually problem dependent, such as
the map between the histogram regions to genes on the chromosome. For ga_ors,

the histogram was treated as a collection of subregions and the mapping designates



2.3 Classification Methods 46

the bins in the histogram that were to be taken as part of the same subregion. The
chromosomes were represented by bit strings and a 1 in the #*! bit represents the
inclusion of the subregion containing the ** to (i + 1)*® grey level but a 0 in the
chromosome indicates those grey levels should not be included in the feature set for
the chromosome. The length of the chromosome was therefore the same as the number
of bins in the histogram, 4095 for the smallest bin size, and there were at most a user
selected number of contiguous regions containing 1’s, say 5, for example.

Another important choice for the genetic algorithm lay in the creation of the
objective function. ga_ors uses an objective function based on the squared difference,
or error, between the classification results from a linear discriminant procedure and
the known classification for each case’. The total squared error for each chromosome
was then used to rank the population and any repeated chromosomes were removed.

To enable the population to reproduce, i.e. explore the solution space, ga_ors
used the genetic operators, mutation and crossover. The crossover operator was quite
conventional, see Appendix B, but the operation of mutation was somewhat unusual
in that a single gene was not necessarily changed at a time. A block of k genes was
changed with each mutation and k varied as the population evolved. Initially, k£ was
L of the range of possible values so for a histogram of 4096 grey levels, initially

64
k = 4—2% = 64 and decreased with each generation. This allowed the mutation to
have a noticeable influence throughout the entire procedure®.

The final detail to be described lies in the creation of the next generation. For
ga_ors, once the chromosomes had been evaluated, ranked and the repeated chro-

mosomes removed, the best Ng chromosomes were immediately transferred to the

7The classes are enumerated in order to be able to find the squared difference.
8The conventional approach of changing a single gene for each mutation makes the effects of the
mutation operator significant primarily during the later generations [Nikouline, 1998].
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population for the next generation (elite population) and the remainder formed by
reproduction in the full, current population. The chromosomes did not have an equal
likelihood of reproducing, rather the chromosomes with a higher rank (lower classifica-
tion error) were more likely to be selected and the probability decreased in proportion
with the rank. The selected chromosomes were then mutated with probability p,, and
the operation of crossover performed with probability p.. After the genetic operations
had been performed the resulting chromosomes were placed in the new population.

The parameters used in ga_ors for this work were:

Pm = 0.001 (2.11)
p. = 0.66 (2.12)
N, = 300 (2.13)
N, = 50 (2.14)
Ng = 10 (2.15)

where IV, is the size of the population or number of chromosomes and Ny the number

of generations to allow the population to evolve.

2.3.2 Linear Discriminant Analysis

Regardless of the method used to explore the feature space, a technique was needed to
evaluate the classification performance for each candidate feature set. Linear discrim-
inant analysis (LDA) was used for this purpose. See, for example, [McLachlan, 1992].

This is a conventional statistical technique to form a function that can be used to
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distinguish the various classes. The linear discriminant function, Z, has the form

m—1

Z=) aX; (2.16)

=0

for a set of m features, X;, and the m coefficients, a;. The precise form for the set
of constants, a;, can be calculated from maximizing an F statistic. In this case the
F statistic is defined using the ratio of the mean square variance between classes to
the mean square within class variance so that maximizing this quantity produces the
tightest groups with the largest separation. The evaluation of the statistic itself can
then be found following [Manly, 1986] or [Bernstein et al., 1988], for example.

At this point, the precise combination of a;’s that maximises F' needs to be found.
Fortunately, Fisher described the approach in 1936 [Fisher, 1936]. If a numeric value
is assigned to each case in the sample depending upon the class to which the case
belongs, then the necessary mathematical procedure is identical to finding the least
square coefficients for linear multivariate regression [Flury and Riedwyl, 1988]. There
are different approaches for the conversion of a categorical group label to a numeric
one but the method given by Fisher for a two group problem is to replace the original

label: abnormal/normal, for example, by: ¢;/c, where

N2
6 = — (2.17)
Zf:lni
g = — 2L (2.18)

E?:l N

and n; is the number of cases in the *® class out of a total of k classes®. The

necessary procedure can be found, in detail, in [Bernstein et al., 1988, Manly, 1986,

9k = 2 for the abnormal/normal classification.



2.3 Classification Methods 49

McLachlan, 1992} while an outline of the equations alone in [Zwillinger, 1996].

The final step in the classification was to evaluate the performance of the discrim-
inant function. Clearly there is little point in using the same dataset which was used
in the creation of the discriminant function, since the function was created with the
intention of optimizing the classification accuracy for that sample. A small number
of the images (3 of the total) were always reserved for a test set and the remaining
images (%) used for the “training” set. The results given in Chapter 4 were exclusively

from the selected test groups.



Chapter 3

Materials and Methods

The features used for this work were extracted from a database of digitised mammo-
grams which were made publicly available from the University of South Florida. The
actual mammograms themselves originated from several different centres and were
digitised using several different x-ray scanners. The database and the cases used for
this study are described further in Section 3.1.

Due to variations in the film type and exposure conditions as well as variations
in the performance of the x-ray scanners, it was necessary to normalise the images,
Section 3.1.2. The images were transformed to remove the effects of the different pixel
sizes and differing grey level/optical density calibration from the various scanners. A
simple correction was also made for the exposure differences using a characteristic of
the grey level histogram (also described in Section 3.1.2).

After the normalizations were conducted, several features based on the spectral
features and texture properties were extracted from the corrected images, Section 3.3.
From the full collection of extracted properties, the most significant were selected us-

ing a genetic algorithm (ga-ors) or an exhaustive search through all possible features.

50
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The results of the analysis are reserved for Chapter 4.

3.1 Images

The most obvious method to obtain the mammograms needed for this work would
be to turn to the local breast screening centres. This way a data set could be created
that exactly meets the criteria for any desired aspect in our study. Unfortunately,

this posed some local study difficulties.

1. Much of the needed patient screening information is not stored electronically so
that even creating a list of patients that meet a particular set of criteria was a

tedious and time consuming process.

2. Many of the screening films and patient files are not kept at the Health Sci-

ences Centre, Winnipeg, Manitoba and there can be a significant delay for their

delivery.

3. Our departmental x-ray scanner (from Vision Ten Inc.) was designed for general
radiology and not intended for mammography. The scanner was sensitive to an
optical density range from 0 to 2.5 and was roughly linear from 0-2.0 which
is inadequate for use in mammography where an optical density of 3 or more
on some parts of the mammogram is not uncommon. There were also limita-
tions imposed by the computer system driving the scanner that made the image
acquisition process more difficult than necessary. Additionally, the quality of
the scanned image itself was less than desirable, containing various scanning
artifacts that made segmentation of the breast tissue from the background un-

usually difficult.
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Initially, this was the approach used to obtain data. However, the combination of
the effects described above resulted in a total of ~ 60 patient exams which were
scanned, preprocessed and the necessary features extracted in ~ 8 months of effort.
To obtain a reasonable number of cases, say 250, approximately 2.5 years would
have been necessary for the data acquisition process alone. Therefore, in order to
obtain a statistically significant sample of images an external source of screening
mammograms were used for the feature selection and analysis. The locally obtained
images were used strictly for the formulation and evaluation of the segmentation and
feature extraction procedures prior to the processing of the images from the external
source.

In particular, a set of cases from the Digital Database for Screening Mammography
(DDSM) was used. The images are available from the University of South Florida
and consists of the digitised screening mammograms from a large number of women
from several different centres [Heath and Bowyer, 1998]. The database consists of the
digitised mammograms, the diagnosis and some basic information for each patient
such as the age, date of the study, density classification, etc. The mammograms
themselves were obtained using conventional techniques and then digitised using one
of three high performance x-ray scanners (DBA M2100, Howtek MultiRad 850 or
Lumisys 200). The characteristics of these scanners were sufficiently different from
the departmental Vision Ten scanner that it was more straightforward to obtain
additional images than to attempt to incorporate the locally obtained images into
the sample from the DDSM.

The patient cases were also provided with three classifications:

1. normal with at least 5 years of follow-up
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2. abnormal with a biopsy confirmed malignancy

3. abnormal but benign changes.

Only the first two cases were considered and the mammograms from a total of 240
patients were obtained from strictly the first two categories!.

The drawback with this organisation is that the sample is less than ideal for
applications that do not utilise these categories. For example, the examination of
breast cancer risk can be performed through the mammographic density. The density
grade classification, according to the BiRads guidelines [ACR, 1993], was provided
with the patient information but the cases were not selected for a uniform distribution
of cases in each grade. In particular, there were few examples of mammograms in the
lowest density grade in our sample. The risk can also be evaluated ciirectly as was
done by Boyd et al. [Boyd et al., 1995]. A similar analysis could not be performed
with this dataset due to a lack of patient information. An evaluation of the relative
risk requires the selection of similar cases and controls who are matched for breast
cancer risk factors that are beyond our control, such as the age, nulliparity, age of
menarche, etc. The effects of these limitations are further discussed in the context of
the results which were obtained in Section 4.1.1. However, it was possible to analyse
the extracted features for a correlation with the appearance of cancer directly. That is,
the features that were useful for classifying normal/abnormal were identified without
relying on the density grades as an indicator of risk.

Two further pre-processing steps were performed prior to the extraction of mam-
mographic features: the segmentation of the breast shadow in the images and nor-

malization for systematic variations. Both these steps are described below.

11t was felt that the behaviour of the classification system for the third class of images would be
beyond the scope of the current study.
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3.1.1 Segmentation

The cranial-caudal (CC) views were employed and transformations were applied to
the images to give them a uniform orientation, chest wall to the bottom, mid-line to
the right (Figure 3.1(a)), and the segmentation was performed using a semi-automatic

procedure. The first step involved smoothing the image by averaging over a 5x5 pixel®

(a) Original

(b) Greyscale windowing (c) Traced outline

(d) Cropped filled and smoothed (e) Cropped final image
mask

Figure 3.1: Example of segmentation procedure. The rectangular object in the upper
left is a tag that provides patient and study information. The scale for (d) and (e)
are different from (a) to (c).
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kernel and retaining only the resulting values which lay between some maximum and
minimum (Figure 3.1(b)). The limits were chosen by inspection on a case by case
basis such that the majority of the region outside the breast shadow and most of
the regions obscured by muscle tissue were outside the selected grey level range.
Next, a routine which traced the outline of the breast was applied (Figure 3.1(c)).
The procedure required two points to be chosen manually as the endpoints. The
delineated region was then filled and the edge smoothed by repeatedly applying a
dilation and erosion operator with a 11x11 pixel?> square kernel to form the image
mask. The mask and image were also crcpped to remove most of the unnecessary
regions outside the segmented tissue (Figure 3.1(d)-3.1(e)). Note that other than
cropping the image, no modification was made to the image itself during this part of
the preprocessing.

For the majority of the images this was sufficient to produce a mask which isolated
the breast shadow from the remaining part of the mammogram. A number of the
images required a substantially greater amount of custom editing. For example, an
insufficient amount of the visible muscle tissue may have been removed automatically
and some of the images had information tags very close to the breast shadow itseif,
which could mistakenly be included in the mask. As well, any radio-opaque markers
(mostly beads) indicating regions containing suspicious tissue or the position of the

nipple were also removed.

3.1.2 Normalization

Since the average overall optical density was maintained at a uniform level by the au-

tomatic exposure control of the mammography unit, the differences in the distribution
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of tissue types between patients may require that different regions of the films’ sensit-
ometric curve be used in their respective mammograms. Further, the variation in the
characteristics of the x-ray scanners also introduce differences in the images which
must be corrected. Some of the details of the scanners’ performance were provided
with the database which allowed the images to be normalised for these variations,
in principle. However, insufficient data was provided on the exposure conditions and
film characteristics prior to digitization of the film. Therefore, it was necessary to
employ the characteristics of the grey level distribution of the images themselves and

perform an elementary correction for these film variations.

Scanner Differences

The x-ray digitisers which were used to obtain the images were from Lumisys (LS),
DBA or Howtek (HT), all of which had a similar dynamic range but their detailed
characteristics were considerably different. For example, the scanners all had different
resolutions (LS: 50um/pixel, DBA: 42um/pixel and HT: 43.5um/pixel); LS and HT
had a linear response curve while the DBA did not.

To compensate for the various resolutions, the images were re-sampled using linear
interpolation between pixels along the rows and columns in succession. This proce-
dure was performed in order to provide a uniform pixel size of ~ 110um. The reduced
resolution was comparable to that used in [Byng et al., 1994], [Byng et al., 1996b],
[Chan et al., 1995], [Karssemeijer, 1998], or [te Brake et al., 1998] and since we were
not attempting to identify the location of high detail characteristics, such as micro-
calcifications, the low resolution had little impact on the performance of the system.

In addition, a reduced resolution removed some of the high spatial frequency MTF
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and noise differences. Finally, the re-sampling considerably reduced the storage re-
quirements for the data as well as improving the computational speed of the various
algorithms.

It was also necessary for the images to have a single response curve so that the
pixel values correspond to a unique optical density. Since the calibration data was
supplied with the DDSM, the response of the various scanners for a given optical
density was known. It was also apparent that the Lumisys digitiser, LS, had the
simplest response curve. This was expected since the LS digitiser was constructed as
a scanning densitometer which made it an ideal choice for the standard calibration
curve. Therefore, the grey levels in the images obtained with the remaining two
scanners were converted to the grey level that would be expected if they were scanned

with the LS scanner. The response curve itself for the LS scanner was given by
Prs = mys(ODmax — OD) + brs (3.1)

where Ppg is the pixel grey level for the images {obtained with the Lumisys scanner),
mys and by s the slope and intercept of the regression fit for the calibration data and
ODwmax is the darkest film the scanner is capable of identifying. This “darkness” of
the film is quantified by the optical density and given by
logyo fin
OD = ———— 3.2
log]_o Igr ( )

where I, and I, is the incident and transmitted light intensity, respectively. Sim-

ilarly, the calibration data and regression fits for the remaining two scanners, also
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supplied with the database, had the form

OD — bur

Par = T (3.3)
Ppga = 1QmpeaOD+bomA (3.4)

Therefore, the curves used for the conversion of the images from the HT and DBA

format to the standard (Std or LS) format was given by

Pys, LS
Psa = mrs [ODyax — (murPat + bar)] + bus, HT (3.5)
mrs {ODMR - m;}? (log,o(PpBA) — bDBA]} +bus, DBA

and the values for the constants are given in Table 3.1

mstd = 1000 mgr = 0.00094568 mpga = 1.07553
ODMax = 3.6 bHT = 3.789 bDBA = 480662
bStd - 495

Table 3.1: Parameters for linear regression of x-ray digitisers, LS, HT and DBA

The calibration curves were taken as linear but this was not valid over the en-
tire range, the most obvious non-linear regions appearing near the extremes of their
dynamic ranges. The simplest correction for this effect was performed: any pixels
falling outside the linear region were ignored. The linear part was delineated by the
last points in the calibration data that lay within the 95% confidence limits of the
regression fit. The interval common for all three scanners with a linear response curve
occurred for optical densities in the range 0.5-3.0.

An unfortunate limitation of the data set was that all the normal cases were
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digitised using one specific scanner (DBA) while the majority of the abnormal cases
were digitised on a different scanner (LS). The available scanner data allowed for our
normalization procedure to compensate for differences in the scanner resolution (re-
binning), differences in the contrast due to the scanner (using a standard calibration
curve) and differences in the size of the optical density range for each increment in
the grey level (ignoring non-linear part of response curve) and represents the extent
of the scanner behaviour that can be corrected under typical working conditions. In
addition, there was a limited amount of data in our study which can be used to test
this assumption. A more rigorous test would likely require the acquisition of a set of
images specifically for such a purpose.

Quantities such as the MTF and Wiener spectrum? are useful for comparisons be-
tween different systems and it may be conceivable to use this form of information to
alter or correct an image to conform to the characteristics of a different system but it
would be difficult and such a correction was not attempted. However, if the computer
system was able to detect the scanner dependencies after all practical normalisations,
then this would have serious implications for any automated system with a similar
purpose. Essentially, a program would need to be tuned for each specific equipment
configuration. Additionally, QC procedures, testing after maintenance, etc. would be
necessary to ensure that even routine changes to the hardware would not interfere
with the algorithms. It also makes comparisons between studies using different mam-
mographic properties difficult if they were carried out at different institutions, with
differing hardware systems. Further, a system which is capable of detecting minor
variations due to the digitization would also be sensitive to va.riations in film and

processor performance or changes in exposure conditions. These variations would

2Noise power spectrum



3.1 Images 60

not, in general, be correlated to, say, normal and abnormal cases but if a system can
detect these differences using properties calculated over the entire segmented image,
measures to address this issue for any other studies of this nature would likely be
necessary. Of course, these difficulties may be alleviated through the use of digital
mammography but a detailed examination of the sensitivity of spectral and texture
properties to scanner, processor and exposure conditions would still be valuable since
film /screen mammography is likely to be the primary modality for mammographic
screening for some time.

It is possible that some digitization effects remain in the images in spite of the
efforts to remove them. However, the primary goal was to remove enough of the gross
dependencies so that the discriminant methods would utilise the variation inherent
to the imaged objects over any differences due to the x-ray scanner or exposure tech-
nique. In addition, more detailed normalization for local or anisotropic characteristics
requires precise information that is often difficult to obtain. Therefore, the majority
of the remaining work assumes that the scanner characteristics are not exhibited in
the extracted properties but some testing of this assumption is given with the limited

data that is applicable for this purpose.

Exposure Differences

Standard mammography units have a number of features which enable the technician
to consistently produce high quality films with similar contrast characteristics. The
goal is to produce the same average optical density film for varying breast thickness
and x-ray quality. Therefore, it is difficult to accurately infer the tissue type from

the optical density on a mammogram. To deduce the tissue type would require more
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detail on exposure conditions®.

In correcting for these exposure effects a portion of the histogram at either extreme
was ignored. Both the upper and lower regions that were ignored consisted of two
parts, a fixed part and a part with a size that varied with the segmented image size.
For the lower end of the histogram, the fixed grey level range was taken as 0—1095 and
the variable region from 1096 to 1096 + 0.5% of the total number of segmented pixels.
For the upper end of the histogram the corresponding regions were 3595-4096 and
3594 - 0.05% of the total number of segmented pixels to 3594. All these limit values
were chosen empirically from an examination of a small number of images. The values
were chosen so that for the high pixel values, contributions from noise, dust etc. were
not included and for the low pixel values, any pixels outside the breast region were
ignored. There were considerably more pixels belonging to the latter group than the
former and this was reflected in the difference in the proportions that were ignored.
The remaining values were then re-mapped to occupy the full range of possible pixel
intensities. This procedure should make the most radiographically dense tissue in the
thickest part of the breast and the least radiographically dense tissue in the thinnest
region have consistent grey level values across different films with varying exposures.

In summary, the original images had a resolution of 42-50 um/pixel and 4096 grey
levels to give a typical file size of 25-30 Mb per image while the normalised images
had a resolution of ~ 110 um/pixel and 4096 grey levels. After segmentation and
cropping of the images, a typical image size was ~ 1500x800 pixels and a file size

from 5-10 Mb. In addition, the conversion of the pixel values,P, to optical density,

3This may also require the use of a calibration step wedge in each image. However, one difficulty
with this method is that the step wedge must be placed close to (or in) the penumbra. It should also
be noted that details such as the kVp, mAs, and breast thickness, was not provided in the database.
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OD, is given by
OD = ODygpy — 05t (3.6)

msed

3.2 Group Selection

The various properties calculated for the images were tested for their ability to dif-
ferentiate between groups under two different classification schemes. The first used a
recognised method of predicting cancer risk, the mammographic density (Den clas-
sification). The density grades were assigned by experienced radiologists following
the guidelines outlined by the American College of Radiology Bi-RADS specification
[ACR, 1993] and were provided along with the DDSM image database.

In order to preclude the possibility of detecting characteristics unrelated to the
density classification, such as a characteristic indicative of a visible lesion, only the
cases with both breasts diagnosed as normal were used. In addition, an arbitrary but
consistent choice was made to use only the CC views of the mammograms for the
left breast of the normal cases. The images were divided into a training and test set
at random. Further, the effects of the distribution of the cases on the classification
accuracy was explored by randomly re-assigning the full set of cases into a training
and test set five times. This forms the dataset for classifying the density grades or
the Den group.

The alternative classification, “diagnosis classification” (Diag classification) di-
vided the patients into normal and abnormal groups. In this case, only the patients
with both breasts evaluated as normal were assigned to the normal class since a nor-
mal breast contralateral to one with a malignancy may have a malignancy without

any clinical signs at the time of the exam. In addition, the presence of a malignancy
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may produce some subtle influence on the appearance of both mammograms. The
abnormal class consisted exclusively of those mammograms where a malignancy was
diagnosed (i.e. the mammogram for the contralateral breast was ignored if it was
cancer free.) The selection of the cohorts for this group was done at random from
the collected pool of images. The images were divided into a training set and test
set (at random) with the constraint that the number of cases in each category was
roughly equal. It was found that some of the feature selection algorithms performed
best when there were roughly equal numbers in each category and while it was possi-
ble to weight some categories more heavily than others this had little impact on the
final result and balancing the number of cases in each category was significantly more
effective?.

The case selection procedure was then repeated 4 additional times to form a total
of 5 training and test groups. The constraint on balancing the number of cases in
each category combined with the random selection of cases resulted in few cases where
mammograms from both the left and right breasts of the same patient appeared in
the same sample. However, the restricted size of the entire pool of images resulted in
considerable overlap in the cases between samples. The multiple samples were used
to provide some insight into the amount of variation that can be expected due to
redistribution of cases into the training and test groups.

There were additional cohorts selected for two specific purposes. Specifically,
the results of the classification procedure on the normal contralateral mammograms
(Contra) from the breast where a malignancy was diagnosed as well as those mam-

mograms for the breasts contralateral to the “normal” cases were examined. For the

41t should be noted that the category equalisation was not applied to the Den class as it would
have resulted in an unacceptably small sample.
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normal cases these contralateral mammograms were also classified as normal, how-
ever, the contralateral breasts for the abnormal cases were clinically normal but had
a considerably higher risk of developing breast cancer [Gajalakshmi et al., 1998].
The second cohort which was created was used to examine the age dependence in
the classification results. Since the risk of breast cancer is influenced by the age of
the patient, an examination of the age dependence in the mammographic properties
which were selected was also performed. For this part of the study the images from
the Diag classification were divided into sub-groups of patients with ages from 40-54,
42-56,- - -, 54—68. Again, within each sub-group 5 random selections of a training and

test group were made.

3.3 Feature Extraction

Three spectral properties were considered: regional moments, global moments and
the mean for subregions of the histogram of the segmented breast tissue. For the cases
that had a small total number of variables, as was the case with the global and regional
moments, an exhaustive search of all possible combinations of variables was performed
and the best selected, based on the results from a linear discriminant analysis. Indeed,
this approach was carried out for all cases where it could be performed in a reasonable
amount of time. However, an exhaustive search was not possible when the total
number of variables exceeded ~ 50. Therefore, for these situations, a method of
performing a random search of a large feature space was used to identify the most
significant properties, a genetic algorithm, as implemented in ga_ors. This approach

was used to select the sub-regions of the histogram and in the selection of textures.
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3.3.1 Moments

The global moments of the image were found by calculating the histogram of the entire
segmented region and applying Equation (2.2). On the other hand, the calculation
of the regional moments followed the procedure described in [Byng et al., 1996a).
Briefly, the segmented region was tessellated with square 29x29 pixel? (~ 3x3 mm?)
regions of interest (ROI’s), ignoring any ROI's which were not entirely contained in
the segmented region. The moments were then calculated from the histogram for each
ROI and the corresponding moments averaged together. Byng et al. found a specific
regional moment, the third or regional skewness, to be useful in the classification of
density grades. Therefore the use of the regional skewness alone was considered as a

separate case in the analysis.

3.3.2 Histogram Regions

The selection of the regions of the histogram with the greatest discriminatory power
was conducted primarily through the program ga_ors from the Institute for Bio-
diagnostics. The program selects a number of “best” regions up to a user-defined
maximum. If too many regions were used, many may be positioned in areas which
have little discriminatory power thus producing a more complex discriminant func-
tion with little improvement in classification performance. Another concern was that
an increase in the number of variables in the discriminant function also increases the
likelihood of tailoring the discriminant function to characteristics that were discrim-
inatory only in the sample used as the training set (overfitting). Naturally, if the
number of regions was too small, an insufficient number of characteristics were being

used and it would not be possible to accurately reflect the structure in the data.
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Since it is not possible to know a priori the ideal number of features, the analysis was
repeated using several numbers of regions: 2-7, 10 and 15.

Some preprocessing was performed on the histogram data prior to submitting it to
ga_ors. First, the pixel counts in the histograms were rank ordered, that is the values
were replaced by their ranking in the total histogram. Hence, the maximum count
was replaced by 4095, the total number of grey levels, the next highest by 4094, and
so on to 0. For grey levels with equal pixel counts, the rank was decided at random.
The rank ordering had two effects, first it removed a non-zero background and second
it tended to provide some protection from biasing the region selection with only large
peaks, which may or may not be discriminatory. For this work, whether the rank
ordering was or was not used did not have any significant impact on the resulting
accuracy of the method but it improved the stability of the selected regions with
respect to random fluctuations. Since a genetic algorithm was driven by a random
number generator, it was not surprising that the regions selected varied even with
identical input®. However, applying the rank ordering reduced the variation in the
selected regions over multiple trials and the stability was retained for a higher number
of selected regions.

One difficulty that must be dealt with was that the full histogram contained
4096 discrete grey levels and the program can select a region with a minimum of
two channels. The information contained in such a small region may be dominated
by noise. In order to combat this effect, the size of the histogram was reduced by
dividing the full range of grey levels into small intervals and taking the median of

the histogram data for each interval. The width of the intervals was selected as a

5This may not be true if there was a single well defined optimum solution to the problem but
that was not the case here. There appeared to be multiple solutions of comparable effectiveness.



3.3 Feature Extraction 67

compromise between a number of competing factors. For example, if the intervals were
too small the noise in each interval may be too severe and lead to poor classification.
On the other hand, if the interval was too large, the regions which were actually
significant may be removed from the pool of available variables. Additionally, when
the reduced data was then processed by ga_ors for the selection of subregions in this
rebinned histogram and if the window was too large, the program frequently chose
portions of the histogram which were as small as possible (two rebinned grey levels).
The performance of the system was evaluated after combining: 1, 2, 4, 8, 16, 32 and
64 grey levels and selecting the best 5 regions when the Diag cohort was used. As
shown in Figure 3.2, a reasonable choice for the window size seemed to be 16 as it

is the largest bin size with comparable classification accuracy to the raw histogram

data.

3.3.3 Multifractal Features

In order to evaluate the generalised dimensions, the partition function given in Equa-

tion (2.3)
N(e)

Xq(€) = Zui-’,- , ¢€ER (3.7)

was evaluated for multiple values of ¢g. This required superimposing a regular grid with
a characteristic length € over the image and calculating y;; for each cell. To calculate
i, an average grey level for each cell was found and truncated to its integral value.
(4i; was then taken as the fraction of the segmented image which contained pixels with
that truncated, average grey level. In other words, for a mesh size of £ x ¢ pixels? the
average for each cell was found and a histogram was calculated for just the segmented

region with the reduced resolution. Hence, if an average grey level, P;;, was found for



3.3 Feature Extraction 68

1 2 4 8 16 32 64
75 1

o Rank Ordered Diag cohort

70 -
65 [ ]

=y

=

: I

= 604 ] .

3 L

=

S

B )

d':" 55 =

e

3
L

a Raw Diag cohort

45 v TTTYTITT TR T TTYTTYTRYTTTTY
1 2 4 8 16 32 64

Window size (grey levels)

Figure 3.2: Percentage of correctly classified cases with 5 GA selected histogram
subregions after rebinning the histogram and applying rank ordering. The upper
horizontal axis refers to the rank order data and the lower axis to the data without
rank ordering. The error bars reflect the standard deviation of the five redistribution

trials of the cohort.
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cell (4,7), pi; was taken to be the number of cells with an average grey level of P;;,
normalised by the total number of cells contained in the segmented breast shadow®.
The histogram was recalculated for every change in scale €. In addition, for every
choice of g, x; was found for € = {1, 3, 5,9, 17} and the linear regression fit calculated
for log x, as a function of loge. The slope of the fit gives T from which D, can be
easily calculated from Equation (2.6). A range for £ was selected after applying the
procedure to a small subset of images and selecting a region such that log x, ~ Cloge,
for some constant C, which indicates that the fractal model is valid.

It was found that the multifractal model grew progressively less applicable as
g 2 1. This may be due to the limitations of the double precision libraries that were
used for the calculation of x and u? and the rapid growth of p9 as ¢ increased.

It was possible to accommodate the wide range of values through the use of infi-
nite precision math libraries but these routines were computationally very intensive.
Further, the purpose of the study was not to demonstrate the multifractal nature of
a mammogram. Rather, a set of parameters which may be used to characterise the
texture of the image was desired. For this purpose it was not significant that the
calculated quantities exactly reflected the value of the “true” generalised fractal di-
mensions for the images and simply a fixed range of ¢ values was used along with the
standard double precision arithmetic for the calculations. Therefore, 20 evenly spaced
values were selected for ¢ from —5 to 0.7. i.e. ¢ € {-5,—4.7,—4.4, ---, 0.1,0.4,0.7}

and combinations of features which consisted primarily of D, far from ¢ = 0 were

rejected”’.

6This is also the histogram entry for the T-":;' grey level normalised by the total area under the

histogram curve.
"These dimensions were the most likely to be far from the “true” value for the generalised fractal

dimension.
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3.3.4 Texture Features

For this work, the wavelet transform of the image was performed using a publicly
available library: liftpack [Sweldens, 1994, Sweldens, 1995, Fernandez et al., 1996].
The library was obtained from a web site? and used a method called lifting which
enabled a bi-orthogonal wavelet basis to be generated after specifying a few desired
properties. In particular, a basis described by Sweldens [Sweldens, 1994] was used.
The wavelet coefficients were retained for 5 levels in the decomposition. The textures
were then calculated for the areas which corresponded to the segmented breast region
in the three “high pass” filtered quadrants? at each level of the decomposition!®.

For each quadrant the texture energy, entropy and inertia were calculated. All
three texture measures can be found using the SGLD matrix, with elements, p;;(d, 8)
(as described in Section 2.2.2). Recall p;;(d, 8) gives the probability of finding a pair
of pixel values 7 and j separated by a distance d and with an orientation characterised
by an angle §. The SGLD matrix was found directly from its definition — examining
each pair of pixels in the segmented image with the desired separation distance and
orientation. It should be noted that any pair of pixels that did not have both points
within the segmented tissue was ignored.

The choice of d and 6 were arbitrary and 20 different combinations were selected

corresponding to the distance and direction for the cartesian vectors given by:

{(0,0), (,0), (1, -01),(,0)},l={1,2,4,8,16} (3.8)

8http://www.cs.sc.edu/~fernande/liftpack/index.html
9For example, the three high pass filtered quadrants at the highest resolution level were labeiled

as HL, HH and LH in Figure 2.3.
0Fach “level” of the wavelet decomposition is identified by a different number of letters in Figure

2.3. Therefore {HL, HH, LH} and {LLHL, LLHH, LLLH} represent different levels of the decom-
position.
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Using different values for d and different levels in the wavelet transform may appear
to be redundant. However, in [Wei et al., 1995] a comparison was made between
changing texture resolutions by using different levels in a wavelet transform and by
changing the values for d. In their work, the wavelet transform method had compa-
rable or better performance. Since the study by Wei was designed to reduce the false
positive rate for a CAD system and considered different features than those used
in this thesis, there was no justification to choose one method to the exclusion of
the other. Hence, both methods of examining multi-resolution texture features were
utilised.

The different levels in the transform combined with the three quadrants in each
level and the various combinations of d and 6 resulted in 300 features per texture that
were available for the discriminant function. The large number of values prohibited
the use of an exhaustive search of all possible texture combinations. Therefore, the
genetic algorithm was used for the selection of the best textures as well as the best sub-
regions of the histogram. The program requires a spectrum as input hence a method
is needed to map the collection of texture values into some form of “spectrum”.
The mapping was arbitrary and the texture values were placed sequentially for the
textures corresponding to the directions given in Equation (3.8) to form groups for
each quadrant of the wavelet transformed image. These groups were then collected
by the order of the quadrants from which the textures originated, starting from the
quadrant in the lower left and proceeding counterclockwise for each level (Figure
2.3). Next, each level group of features was abutted in the “spectrum” from the
lowest resolution to the highest. Finally, each texture value was copied 10 times prior

to inserting the next texture feature. The program, ga_ors, identifies regions with a
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mean that was useful for the classification problem and it is unlikely that an average
of several texture features would correspond to a physical quantity. In principle, the
repeated sequence of values, which was quite large relative to the minimum region
size of two bins, would inhibit the program from selecting a region spanning several
textures.

Clearly, the order of the textures in the artificial spectrum is hierarchical. As an
example consider a texture such as the energy. The texture value for the highest level
of the wavelet transform occupied the bins numbered 2401-3000, the next highest
level 1801-2400, etc. Within each level, say 2401-3000, 2801-3000 was used for the
textures in the quadrant labelled HL in Figure 2.3, then 2601-2800 for HH and 2401-
2600 for LH. Then within each quadrant, eg. 2801-3000, 2961-3000 contained the
textures for the five different combinations of d and @ corresponding to [ = 16 in
Equation 3.8, 2921-2960 for ! = 8, etc. Within each group of bins, eg. 2961-3000,
2991-3000 contained textures for the specific combination of (d, #) corresponding to
the vector'! (16,16), 2981-2990 for (16,-16), 2971-2980 for (16,0), and so on. Finally,
within each of these smallest groups, eg. 2991-3000, the same texture value was

repeated for each bin. See Figure 3.3.

111 1),l = 16 from Equation 3.8
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2401-3000 (level 1)
——— 2801-3000 (quad. HL)
L— 2961-3000 [ =16

™ 2991-3000 (16,16)

10 copies of
same texture

2981-2990 (16,-16)
2971-2980 (16,0)

2921-2960 [ =38

2601-2800 (quad. HH)

[ ]
L]
L J

2401-2600 (quad. LH)

18012400 (level 2)

Figure 3.3: Hierarchical mapping of texture features of the wavelet transformed image
to a spectrum for the genetic algorithm. “level” refers to the scaling level in the
wavelet transform. “quad.” refers to the quadrant HL, HH or LH in each level. (See
Figure 2.3.) “I” refers to Equation 3.8. Finally, the vectors refer to Equation 3.8 with

particular instances of [.



Chapter 4

Results

The results were organised into two main divisions. The first part describes the
features selected that maximise the classification performance for the primary cohorts,
datasets based on mammogram density classes (Den) and datasets based on the
diagnosis (Diag), along with any conclusions which can be drawn from the nature of
the selected properties. The second part evaluated the selected properties on various

subsets of the data. In particular, we examined:

1. The performance of the selected features to classify the normal images con-
tralateral to the breast with a diagnosed malignancy and the mammograms

contralateral to the normal mammograms used for the Diag cohorts.
2. The correlation between the patient age and the selected features.

3. The correlation between the scanner used to digitise the mammogram and the

selected features.

74
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4.1 Feature Selection and Classification

The features which were selected as the most significant varied considerably depending
on the classes in the cohort which were to be distinguished. In this work, two main
classification divisions were considered: classification into density grades (Den) and

classification into diagnosis classes (Diag).

4.1.1 Density Grade Classification

For this classification scheme, the mammograms were evaluated into four density
grades by experienced clinicians following the guidelines specified by the ACR (Bi-
RADS). This was performed at the centre where the mammogram was taken and
supplied along with the patient information in the DDSM. The database was organ-
ised along the lines of confirmed malignancy, normal or ebnormal but benign classes.
Therefore, the distribution of cases in each density grade reflected the distribution of
the general population and few cases were present with the lowest density grade. A
typical histogram for each density grade is shown in Figure 4.1. Most of the normali-
sations have already been applied prior to the extraction of the histograms, including
the normalisation for variations in image size. Indeed, the large number of O values is
due to the extension of the grey levels to occupy the full 4096 range. The normalisa-
tions that were excluded were used exclusively for the sub-regions of the histogram,
i.e. rank ordering of the histogram and smoothing by only retaining the median value
of each 16 successive grey levels.

For the study of density grades, it was advisable to organise the analysis so as
to guard against detection of features which were characteristic of a malignancy.

Therefore mammograms were used for only those patients who were free of cancer.
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Figure 4.1: Typical examples of the histograms for a mammogram from each density
grade. The images were normalised prior to extraction of the histograms.
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In addition, in order to avoid subtle biases, the same side (left) was used for all
cases. The patient ages span the full range under consideration, 4069, and the cases
were randomly divided into a training and test set with the training cases containing
roughly twice the number in the test set. To reduce and quantify effects due to the
choice of which images were in the training and test sets, four additional random
divisions of the same pool of images into training and test sets were selected. This
allowed an exploration of the effects of the distribution of cases on the classification
accuracy.

The overall performance, that is the percentage of cases classified correctly, for
each feature when considered individually is shown in Figure 4.2. The plotted points
represent the median of the classification performance while the error bars showed
the standard deviation of the five random training and test set selections. Since
the standard deviation was calculated for a small group of values, the error bars in
the following figures may not be representative of the variability of the classification
performance of the feature set. In some cases the error bars seemed unusually large
or small.

A few general observations were immediately apparent. Most notably, the clas-
sification accuracy was approximately 40%! regardless of the property under consid-
eration and regardless of the number of features used in the discriminant function.
In addition, the range of values for most of the classification results were sufficiently
large that all the properties can be taken as having comparable classification ability.
The size of the standard deviation was noticeably smaller for the properties where the

optimum set of parameters were selected by the genetic algorithm (histogram sub-

1A collection of mammograms assigned at random into 4 density grades would have been expected
to have a ~ 25% classification accuracy.
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regions, texture energy, texture entropy and texture inertia) rather than through an
exhaustive search (global moments, regional moments and multifractal dimensions).
This may indicate that the genetic algorithm is more robust to overfitting so while
the exhaustive search may find a combination of properties with a better overall per-
formance on the training set, the genetic algorithm gives a result which was more
representative of the typical performance.

The relatively poor performance of these properties was equally likely to be due
to the small sample size and unbalanced distribution of cases in the various density
grades rather than from any deficiency in the approach. The organisation of the
database resulted in a very uneven distribution of cases in the various density grades
which can only be overcome by using a sufficient number of cases that would allow
the selection of a statistically significant number of cases for each grade. The num-
ber of cases that constitute a sufficient number can be significantly different when
normal/abnormal groups were considered and when density grades were considered.
Since the classification of normal/abnormal groups was the primary goal, the sample
size and distribution of cases was insufficient for density grade classification.

It is also important to note that the regional skewness was found to be a
significant risk factor by Byng et al. ([Byng et al., 1996a], [Byng et al., 1999] and
[Byng et al., 1996b]) and the classification accuracy on our sample using this prop-
erty, (34 & 15)%, was comparable to any of the other features that were considered
here (Tables 4.1-4.8). Each table gives the number of features used in the discrimi-
nant function (leftmost column) as well as the “confusion matrix” or the distribution
of the predicted classes (rows) as a function of the known classes (columns) for each

trial and the overall performance, ie. the fraction of correctly classified cases, for each
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trial the overall classification performance and confusion matrix is given.

Table 4.1

trial. Each trial (A—E) represent the five repeated divisions of the entire sample into

training and test sets.

The single best regional moment was found to be the second regional moment

(regional variance). Its overall classification performance was comparable to the re-

1 skewness, with a smaller uncertainty, but the lower variance may be a small

giona

sample size effect. For a direct comparison between all properties that were under

consideration see Tables 4.1-4.8.

From Table 4.1 (only histogram sub-regions) the best classification?, 37.5%, occurs
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Table 4.2: Outcome for Den cohort using global moments the histogram. For each
trial the overall classification performance and confusion matrix is given.

when 7 subregions of the histogram, {77-79, 100-104, 107-108, 121-123, 124-126,
254-256, 257—262}3, were used in the discriminant function. For the global moments
(Table 4.2), the performance was slightly smaller at 35.5% for 4 and 7 global moments.
Since we desire the simplest discriminant function possible, the best discriminant

function occurs when using 4 global moments, {1,4, 5,11} where the 11'** moment was

2The classification for a given number of variables used in the discriminant function was taken
as the median of trials A—E in the tables. The best was then selected from the list of median values
for the various numbers of features.

3Recall that every 16 successive grey levels in the full histogram were grouped together so that
the range of possible values were 1-256, Section 3.3.2. The remaining 257-267 bins were 10 repeated

copies of the patients’ age.
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the patients’ age. Similarly, the best classification using regional moments (45% in
Table 4.3) occurs when using the 4 regional moments {3, 4, 6, 8} and the multifractal
dimensions (Table 4.4) gave a discriminant function with 43% (Table 4.5) of the cases
classified correctly for 6 “dimensions” (¢ = {-3.2,—-1.7,-1.4,—1.1,—0.8} and the
patient’s age.). When the texture energy was used, comparable classification accuracy
(35%) appeared when using 3, 4, 5, 6 and 15 different sets of textures. The sample size
for the density classification was likely insufficient to allow one discriminant function
to clearly have better performance than the others. However, for the function with
the fewest number of textures, 3, the energy textures used were {129-180, 1132-1161,
1383-1385}. For the texture entropy (Table 4.6), the best classification accuracy
(35%) occurred for 15 textures. The use of 15 textures is excessive and comparable
performance (34%) occurred for 2 textures, {765-819, 1378-1402}. Similarly, the
highest accuracy when using the texture inertia (37.5%, Table 4.7) appeared for 15
textures but the use of 3 textures gave comparable results (37%) with the textures
{900-1084, 1612-1620, 2721-2808}.

In order to be able to make some connection to previous studies in this area,
Pearson’s correlation coefficient [Bevington, 1969], r, was calculated for the results
given in all the previous tables. The correlation coefficient is given by

NZ:Y—_I. TiYi — (Zil -7:!') (Zil yi)
r= : (4.1)
N N 2 N N 2[\®
{[N > TP — (Zi:l .7:,—) ] [N > v - (Zi:l yi) ]}

where each case, 7, in the sample of N cases had a classification predicted by the
LDA of z; and a known classification of y;. Then, when the correlation coefficient

was used to quantify the performance, the best overall classification occurred when 7
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regional moments were used in the discriminant function with a correlation coefficient
r = 0.57 £ 0.08. Since the use of 7 moments is somewhat excessive we also gave the
results for 5 regional moments 7 = 0.5 + 0.2 and the single best regional moment
r = 0.18 =0.09. The correlation coefficient for the best classifier using the percentage
of correctly classified cases, 4 regional moments, gave a correlation coefficient? r =
0.3 &+ 0.2. However, prior to presenting the detailed results from other studies it
should be reiterated that the only feature common to this thesis and previous studies
is the regional skewness. The method used to create many of the features in this
thesis was similar to the approach used in the other studies but a small change in the
method can result in considerably different characteristics of the new feature. This
is particularly true for the textures which we have used.

Karssemeijer [Karssemeijer, 1998] was able to obtain 65% agreement with the den-
sity classification provided by radiologists on 615 mammograms and 80% agreement
if the study was constrained to use the more recent mammograms with a more consis-
tent quality (125 cases, 1991-1994). Additionally, the majority of misclassifications
were incorrect by a single density grade. (For the entire set of images and the feature
set used for the 65% result, the minor error rate was 0.33 and the major error rate®
0.023.) For the data set in this study it was found that the minor and major error
rates were higher than that reported by Karssemeijer. All the properties considered
had roughly similar error rates. The minor error rate at ~ 0.45 was on the order of

the value found by Karssemeijer while the major error rate (~ 0.2) was substantially

4The difference in the selected set of features which gave the best classification performance may
be a small sample size effect or due to the properties of the correlation coefficient. The correlation
coefficient considers cases which are “nearly” classified correctly whereas the fraction of correctly
classified cases does not.

5Karssemeijer defined the error rate as the number misclassified by one grade (minor) or more
than one grade (major) normalised by the total number sample size, including the correctly classified
cases.



4.1 Feature Selection and Classification 89

Classifiers % Exact % Minor % Major
Agreement Disagreement Disagreement

Ry vs. computer 66.0 22.0 12.0

R, vs. computer 64.8 20.9 14.3

R, vs. computer 68.8 16.8 14.4

R3 vs. computer 65.8 16.5 12.4

R4 vs. computer 68.5 16.5 15.0

Table 4.9: Classification performance for the approach used by Tahoces. (Results
taken from [Tahoces et al., 1995]).

greater. For these considerations only (error rates) the multifractal dimensions per-
formed slightly better than the regional moments followed by the remaining properties
with very similar but slightly greater error rates.

Tahoces [Tahoces et al., 1995] on the other hand, used Wolfe grades to classify the
mammograms into risk groups and in comparing the computer classification against
5 radiologists (Ro—R4) Tahoces found the results summarized in Table 4.9.

In another study, Byng [Byng et al., 1996b] used mammograms classified by ra-
diologists into a six class density grade system (SCC) on 100 cases. The particular

results which are relevant for comparison to this work is the correlation between

e SCC and their semiautomatic system of calculating the percent density (Pearson

correlation coefficient, r = 0.811)
e SCC vs. regional skewness: r = —0.761
e SCC vs. their fractal dimension: r = —0.649.

(See [Byng et al., 1996b]. The negative correlation coefficients indicates that the
higher skewness values and fractal coefficients are associated with the lower density

grades and vice versa.) Finally, Boone et al. [Boone et al., 1998] used a continuous
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scale (BDI) which was specifically constructed to correlate with the radiologists’ rank-
ing of images. On 160 patients, they found a correlation of r = 0.907 between the BDI
based on the results calculated using the radiologists’ ranking and the computerised
ranking.

A cursory examination of the results shown in the tables, above, indicate a poorer
correlation between the properties selected for this study and the density grade classi-
fication than previous studies by other groups. While it is possible that the properties
themselves were less suitable for this classification task, there were significant differ-
ences between this work and the studies described above. First, the number of density
grades differed for most of the studies and although Karssemeijer also used four den-
sity grades, Byng used six density grades, Boone a continuous scale up to 100 and
Tahoces used Wolfe grades. Second, the dataset itself was different. This is distinct
from the difference in sample sizes, discussed below. For example, Karssemeijer also
reported that he was unable to reproduce the results of Byng using the fractal di-
mension on a set of images from Nijmegen, although the failure in that case may be
due to the variation in film quality. The majority of the studies, discussed above,
used locally obtained mammograms and to the best of my knowledge a comparison
of the performance of property sets on the datasets from other groups has not been
performed.

The most significant difference between this study and the work cited above was
that the sample size which was used for classification of the density grades was con-
siderably smaller (~ 80 in total and ~ 30 for the test set) than in any of the other
studies and much fewer than the complete 240 cases. Most likely, the small sample

size and uneven distribution of density grades severely inhibited the ability of the sys-
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Figure 4.3: Overall classification performance for Den cohort allowing for features to
be selected from all calculated properties.

tems from identifying the most useful, general features. For completeness, the results
were given when all properties were combined and the genetic algorithm allowed to
select combinations of features from all calculated properties (Figure 4.3 and Table
4.10). The small sample size resulted in many unrelated feature combinations with
comparable performance so that a detailed analysis of the actual features selected

yielded little that was generalisable.

4.1.2 Diagnosis Classification

For this part of the analysis, the mammograms that contained a diagnosed malignancy
and the mammograms from the patients who had both breasts diagnosed as normal
(i.e. Diag cohort), were used to select the features which were subsequently used in
the analysis for the remaining studies. The results for this cohort shared a few of the
same general characteristics which had been observed for the analysis of the density

grade classification (Den cohort). For example the classification performance was, for
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Table 4.10: Outcome for Den cohort allowing for features to be selected from all cal-

culated properties. For each trial the overall classification performance and confusion

matrix is given.
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a large part, independent of the number of properties used to form the discriminant
function. (See Figure 4.4 and the detailed performance results in Tables 4.11-4.18.)

However, the differences compared to the results for the Den cohort were equally
prominent. Most obvious was that the overall performance was somewhat higher
for all properties. The poorest performers were the regional moments, histogram
sub-regions and the multifractal dimensions. The behaviour of the histogram sub-
regions seemed to be the simplest to characterise in that the accuracy was essentially
unchanged at ~ 60% when the number of sub-regions used to form the classifier varied
from 2-15. While the classification accuracy when using the multifractal dimensions
was ~ 53% for a single multifractal dimension, it rose to ~ 60% as more fractal
dimensions were employed. The performance also reached a plateau at ~ 60% for 2—
10 dimensions and dropped back to ~ 50% for 15, Figure 4.4(c). The global moments
appear to have the best performance of the features described so far at ~ 70% for
two global moments, Figure 4.4(a). The behaviour of the regional moments was
similar to the multifractal dimensions except that for more then 5 regional moments
the accuracy increases to ~ 70%, Figure 4.4(a). The most significant features for
classification appear to be the textures. All three had an overall peak accuracy at
80-85% and the texture energy and inertia had similar overall characteristics. Both
had relatively low accuracy for a single texture and attain peak performance at 6 or
7 textures which was maintained at nearly that level for up to 15 textures. On the
other hand, the performance of the texture entropy was essentially uniform at ~ 80%
when the number of textures used in the classifier is varied from 2-15.

From examination of the data used for the summary figures, Tables 4.11-4.18, it

is clear that the summary figures do not make apparent some important information
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Figure 4.4: Overall classification performance for Diag class
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No. of Trial A Trial B Trial C Tral D TralE
Regions  and Acc (%) and Acc (%) and Acc (%) and Acc (%) and Acc (%)

2 25 13 6049 26 14 5542 21 10 59.09 28 17 5921 23 12 6438
19 24 23 2 17 18 14 17 14 24

3 22 16 56.79 28 12 5904 23 8 59.09 30 15 6447 19 16 5890
19 24 22 21 19 16 12 19 14 24

4 23 15 5062 26 14 5422 19 12 5758 32 13 63.16 25 10 67.12
25 18 24 19 16 19 Is 16 14 24

5 25 13 5556 26 14 5422 20 11 6364 36 9 6842 24 11 65.75
23 2 24 19 13 22 15 16 14 24

6 23 15 5556 30 10 5783 20 11 6061 32 13 65.79 22 13 6301
21 22 25 18 15 20 13 18 14 24

7 25 13 53.09 26 14 56.63 18 13 6061 35 10 65.79 23 12 64.38
25 18 22 21 13 22 16 1S 14 24

10 24 14 5432 26 14 5542 18 13 6061 29 16 6447 22 13 6164
23 20 23 20 13 22 11 20 1s 23

15 23 1Y 56.79 24 16 5542 {8 13 5758 35 10 6447 22 13 5890
20 23 21 22 IS 20 17 14 17 21

Table 4.11: Outcome for Diag cohort using sub-regions of the histogram. For each
trial the number of features used in the discriminant function, confusion matrix and

overall classification performance are shown.
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No. of Tral A Trial B Tral C Tral D Trial E
Mom. and Acc (%) and Acc (%) and Acc (%) and Acc (%) and Acc (%)
1 29 9 6543 27 13 6627 22 9 6061 28 17 7105 24 11 6301
19 24 15 28 17 18 5 26 16 22
2 23 1S 7407 24 16 6988 23 8 6970 23 22 6447 21 14 67.12
6 37 9 34 12 23 5 26 10 28
3 22 16 6790 25 I5 6988 23 8 6667 30 15 7500 22 13 7123
10 33 0o 33 14 21 4 27 8 30
4 26 12 7037 25 15 6988 24 7 65.1A5 30 15 7368 23 12 T1.23
12 31 10 33 16 19 s 2 9 29
5 26 12 7037 26 14 6867 23 8 69.70 28 17 7105 24 11 71.23
12 31 12 31 12 23 s 26 10 28
6 25 13 6667 25 IS 6627 23 8 6818 28 17 7105 26 9 72.60
14 29 13 30 13 22 s 26 1 27
7 25 13 6420 25 1S 6627 23 8 6667 30 1S5 7368 26 9 69.86
6 27 13 30 14 21 5 26 I3 25
10 22 16 6543 25 IS5 6627 23 8 6667 31 14 7368 26 9 67.12
12 31 13 30 14 21 6 25 s 23

Table 4.12: Outcome for Diag cohort using global moments of the histogram. For
each trial the number of features used in the discriminant function, confusion matrix

and overall ciassification performance are shown.
in the data. For example, there were several cases where the overall accuracy was
relatively high (= 60%) but the true positive or true negative fraction was very poor
(< 50%). Fortunately, these were not present for any of the cases using texture
properties. However, there were a few situations where the true positive or true
negative fraction was ~ 60%. These typically only appear for a small number of
textures where the median performance was also relatively poor. It should also be
noted that the performance of the regional skewness was essentially random at 53+4%.
Additional useful observations can be drawn from the selection of features for

each of the extracted features (Tables®4.19-4.23.) but two points that should be

6The tables contain the number of features used in the discriminant function for each property,
leftmost column, and the selected features for each of the 5 redistributions of the sample cases, Trials

A-E.
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No. of Tral A Triai B Trial C Trial D Tnal E
Mom. and Acc (%) and Acc (%) and Acc (%) and Acc (%) and Acc (%)
1 29 9 5679 33 7 5422 25 6 5606 28 17 7237 29 6 S342
26 17 31 12 23 12 4 27 28 10
2 26 12 6420 27 13 S542 21 10 5909 24 21 5921 21 14 60.27
17 26 24 19 17 I8 10 21 15 23
3 27 11 6543 31 9 5663 23 8 5758 25 20 S92 25 10 6301
17 26 27 16 20 15 1t 20 17 21
4 28 10 5679 32 8 638 22 9 S758 24 21 5789 27 8 6027
25 18 22 21 19 16 1L 20 21 17
5 30 8 6667 29 11 6024 22 9 6061 25 20 6184 28 7 6led
19 24 2 21 17 18 9 22 21 17
6 27 11 6543 26 14 6024 23 8 68.18 24 21 6447 28 7 67.12
17 26 19 24 13 22 6 25 17 21
7 29 9 7407 24 16 5783 23 8 6970 26 19 6447 29 6 7123
12 31 19 24 12 23 8 23 Is 23
10 28 10 7284 28 12 6145 23 8 6970 26 19 6579 24 11 67.12
12 31 20 23 12 23 7 24 13 25

Table 4.13: Outcome for Diag cohort using regional moments of the image. For each
trial the number of features used in the discriminant function, confusion matrix and

overall classification performance are shown.
noted prior to any further discussion was:

1. The exact number of selected features or regions may vary, particularly when
the genetic algorithm was used. Due to the specific implementation of the
genetic algorithm in ga_ors, if a set of features was identified which classifies
the images well, the set was retained even though the number of features may
be less than what was desired. Naturally, the program cannot search through
all possible combinations so that ga_ors does respect an upper limit to the

number of properties to use in the discriminant function, for the most part.

2. The specific features that were selected varied somewhat for the different train-
ing/test groups and became more apparent as the number of selected features

increased. This is partly due to overfitting — a greater number of features
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No. of Trial A Tral B Tral C Trial D Trial E
Dim. and Acc (%) and Acc (%) and Acc (%) and Acc (%) and Acc (%)
1 29 9 56.79 23 17 57.83 17 14 5303 13 32 5132 20 15 4932
26 17 18 25 17 18 5 26 22 16

24 14 6049 20 20 59.04 17 14 6061 17 28 5789 21 14 60.27
18 25 14 29 12 23 4 27 15 23

3 24 14 5432 18 22 5301 22 9 62112 23 22 6579 20 1S 60.27
23 20 17 26 16 19 4 27 14 24

(8]

4 23 IS 5556 19 21 5542 22 9 6212 21 24 63.16 21 14 6027
21 22 16 27 16 19 4 27 Is 23

5 28 10 6049 19 21 5904 20 11 6061 20 25 63.16 22 13 65.75
22 21 13 30 15 20 3 28 12 26

6 25 13 5926 19 21 5663 19 12 S53.03 19 26 5921 21 14 6301
20 23 15 28 19 16 5 26 13 25

7 28 10 6049 19 21 56.63 20 11 59.09 21 24 5921 18 17 60.27
22 21 15 28 16 19 7 24 12 26

10 26 12 6049 21 19 6024 20 [1 5606 20 25 5921 17 18 56.16
20 23 14 29 18 17 6 25 14 24

15 26 12 5926 20 20 5542 17 14 5152 18 27 5395 15 20 S3.42
21 22 17 26 18 17 8 23 14 24

Table 4.14: Outcome for Diag cohort using multifractal dimensions. For each trial
the number of features used in the discriminant function, confusion matrix and overall
classification performance are shown.
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No. of Trial A Tral B Tral C Trial D Trnal E
Textures amd Acc (%) amd Acc (%) amd Acc (%) amd Acc (%) amd Acc (%)

2 30 8 7407 26 14 7108 20 Il 7576 26 19 6579 24 11 6986
13 30 10 33 5 30 7 24 11 27

3 28 10 7778 28 12 7229 24 7 8030 29 16 69.74 26 9 7534
8 35 1 32 6 29 7 24 9 29

4 31 7 7778 28 12 7470 23 8 7121 30 15 7237 26 9 7534
1 32 9 34 11 24 6 25 9 29

5 32 6 8272 33 7 7952 25 6 7727 31 14 7368 29 6 7945
8 35 10 33 9 26 6 25 9 29

6 33 5 8519 32 8 7952 26 5 7576 33 12 7500 29 6 8219
7 36 9 34 11 24 7 24 7 31

7 31 7 872 30 10 7831 27 4 8333 36 9 7763 32 3 8356
7 36 8 35 7 28 8 23 9 29

10 33 5 8395 34 6 8434 26 S5 7879 138 7 81.s8 31 4 8219
8 35 7 36 9 26 7 24 9 29

15 32 6 8519 31 9 7831 25 6 7727 39 6 8553 32 3 8356
6 37 9 34 9 26 S 26 9 29

Table 4.15: Outcome for Diag cohort using texture energy on the wavelet transform
of the image. For each trial the number of features used in the discriminant function,
confusion matrix and overall classification performance are shown.
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No. of Tral A Tnal B Trial C Tral D Trial E
Textures amd Acc (%) amd Acc (%) amd Acc (%) amd Acc (%) amd Acc (%)
2 30 8 8025 32 8 7952 19 12 8030 27 18 71.05 24 11 7671
8 35 9 134 1 34 4 27 6 32
3 28 10 77.78 31 9 771t 18 13 7121 32 13 7105 24 11 7534
8 35 10 33 6 29 9 22 7 31
4 29 9 8148 131 9 7952 24 7 8030 29 16 69.74 2! 14 7123
6 37 8 35 6 29 7 24 7 31
5 31 7 8395 29 11 7952 25 6 8182 28 17 69.74 26 9 8356
6 37 6 37 6 29 6 25 3 35
6 32 6 85.19 3% 9 8193 22 9 818 30 15 7895 28 7 8493
6 37 6 37 3 32 1 30 4 34
7 32 6 8272 34 6 7952 23 8 8030 33 12 8158 29 6 8630
8 35 1 32 5 30 2 29 4 34
10 32 6 8272 34 6 8193 24 7 7879 35 10 828 30 S5 8630
8 35 9 34 7 28 3 28 5 3
15 33 5 802 30 10 7711 23 8 8030 35 10 8158 29 6 86.30
1 32 9 34 5 30 4 27 4 34

Table 4.16: Outcome for Diag cohort using the texture entropy on the wavelet trans-
form of the image. For each trial the number of features used in the discriminant
function, confusion matrix and overall classification performance are shown.
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No. of Trial A Trial B Tral C Tral D Trial E
Textures amd Acc (%) amd Acc (%) amd Acc (%) amd Acc (%) amd Acc (%)

2 28 10 6420 32 8 7952 25 6 6364 27 18 6447 23 12 64.38
19 24 9 34 18 17 9 22 14 24

3 27 11 7654 35 5 8072 21 10 69.70 32 13 7105 23 12 7534
8 135 I 32 10 25 9 22 6 3

4 29 9 7901 33 7 8072 27 4 8636 33 12 7105 28 7 819
8 135 9 34 5 30 10 21 6 32

s 31 7 7778 32 8 8193 25 6 8030 36 9 8421 27 8 7945
Ir 32 7 36 7 28 3 28 7 31

6 32 6 8395 37 3 8554 25 6 8030 36 9 8421 29 6 8630
7 36 9 34 7 28 3 28 4 34

7 34 4 8519 32 8 8193 24 7 B81.82 35 10 8421 28 7 8493
8 35 7 36 5 30 2 29 4 34

10 33 5 8395 34 6 8434 25 6 78.79 35 10 81.58 28 7 82.19
8 35 7 36 8 27 4 27 6 3

15 32 6 8272 133 7 8313 23 8 8030 35 10 8289 27 8 7945
8 35 7 36 5 30 3 28 7 31

Table 4.17: Outcome for Diag cohort using the texture inertia on the wavelet trans-
form of the image. For each trial the number of features used in the discriminant
function, confusion matrix and overall classification performance are shown.

Trial A Tral B Trial C Trial D Trial E
and Acc (% and Acc (% and Acc (% and Acc (% and Acc (%
26 12 5556 24 16 4699 23 8 53.03 18 27 5263 23 12 45.21
24 19 28 15 23 12 g 22 28 10

Table 4.18: Outcome for Diag cohort using regional skewness of the image. For each
trial the confusion matrix and overall classification performance are shown.
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requires a greater sample for a general discriminant function’. This is an-
other reason to favour a small number of features but it would be premature
to discount the importance of the properties under consideration without more

significant evidence.

If we begin with the sub-regions selected from the histogram, Table 4.19, we see
that when a small number of regions was selected, the genetic algorithm chose regions
from the lower third of the histogram as well as one region from the middle or upper
third. For two regions, predominantly the lower and middle third was used while
for three, one region from each tended to be selected. As the number of regions
increases, regions from the lower third are chosen more frequently than either the
middle or upper third but for 10 regions or more, regions from the middle third were
also highly represented. It is also important to note that the number of regions for
the “best” classification began to be fewer than the requested number of regions as
the number exceeds 7.

A cursory examination of the global and regional moments (Table 4.20) which
had the greatest discriminatory power, seemed to be somewhat disappointing, in
that frequently rather high moments were selected. The difficulty with the high mo-
ments was that they are extremely sensitive to small variations in the distribution
and attempting to use them for a stable classification method would be ill-advised.
Recall from Figure 4.4(a) that the classification accuracy of the moments was essen-
tially unchanged for 2-6 global moments so that a different number of moments with
more favourable characteristics can be used with little impact on the classification

performance. From 5-7 regional moments the accuracy improved somewhat but the

7In optimisation terminology, multiple local minima have been found but it is not possible to
identify a global minimum without a sample more representative of the full population.
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No. of
jons TrialA TrialB TraC TrnalD TralE
2 35-38 443-52 4142 38-39 4549
112-113  112-114  112-£13 214-216 112-113

38-39 48-50 41-42 12 112-113
3 97-100 109-110 115-117 38-39  225-227
101-i05 214-215 220-221 213-216 238-239

22-24 1-2 4142 -2 45-47
4 55-59 44-50 112-113 47 112-113

61-62 109-110 164-166 3339 225227

112-119 213-215 190-191 220-221 238-239

22-24 -2 27-28 1-2 18-20

57-58 45-50  112-117 4-14 4749
5 61-62 97-102 140-149 3839 127-131
112-119 103-106 i50-153 183-186 225-227
253-254 213-215 220221 212-216 238-239

2224 2-3 26-28 1-2 1-3
57-58 15-17 78-79 414 5-6
6 61-62 4549  113-117  15-17 18-20
97-100 99-101 122-125 1820 127-131
101-108 108-110 150-153 38-39  223-227
213-214 213215 220-221 220-224 238-239

22-24 -2 26-29 -2 14
2531 13-19 78-79 4-6 5-8
57-58 334 82-84 18-20 4749
7 61-62 45-50  113-117  25-26  112-113
112-119  97-102  122-125 3539 225-228
220-222 103-110 151-1S3 185-186 233-238
253-254 213-21§ 220-221 220-221

22-24 1-2 26-29 1-2 24-29

55-58 15-19 3234 3-8 32.34

61-62 33-34 78-81 37-38 38-39
10 84-36 45-50 82-84  102-104 131-139
97-100 97-102 113-117 [11-113 140-142
101-104 103-110 122-125 126-127 149-156
158-161 213-215 160-166 129-130 220-230

167-172 170-177  145-149 238-239
253-256 179-184 201-203
189-194 213-214
-2 45-52 26-29 1-2 1-3
19-20 55-58 32-34 47 57

4243 97-102  41-42 36-38 12-16
53-59 103-104  79-81 102-108  38-42
60-62 109-110 82-84 11I-113 127-131
1S 97-100 132-134 102-104 128-i30 135-139
103-104 145-149 113-117 164-166 140-142
117-119 201-203 122-125 2{3-217 188-190

198-203 204-206 157-169 225-228
207-208 170-177 236-239
213-216 182-186
254-256 194-196

Table 4.19: Actual subregions of the histogram selected as the “best” properties
for each trial in the Diag cohort corresponding to Table 4.11. The selected regions
represent the rebinned grey levels (Section 3.3.2) from 1-256. Bins 257-266 were

assigned the patients’ age.
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No. of No. of
Moments Trial A TdalB  TrialC TrialD  TralE Moments  Trial A_ Tria! B TrialC TralD TralE
1 2 2 2 2 2 1 4 4 4 4 4
2 3 4 4 3 § 2 1 1 1 1 l
4 s s 4 7 4 4 4 4 4
I 3 3 3 3 1 1 i 1 1
3 3 6 4 6 6 3 2 4 4 6 4
4 10 8 10 9 4 9 7 9 9
4 4 1 4 1
I 2 3 2 3 4 5 6 2 6 3
U T R A A
8
; 8 : e 5 10 7 10 s
3 4 1 3 1
; ;; § § ; 4 6 2 4 2
5 s 7 3 6 3
5 4 4 4 6 4 6 8 4 8 4
9 5 5 8 8 8 9 s 10 5
10 9 6 9 9
3 3 3 3 3
3 1 1 1 1
5 2 2 2 3 s ; 4 4 4 4
6 7 3 3 3 4 s § 6 6
8 3 ? ¢ 5 6 7 7 7 7
9 p s M 3 7 8 8 8 3
10 7 6 9 8 8 9 9 9 9
| 1 2 2 ‘ 2 3 2 2 2
1 2 3 3 3 3 a 3 3 4
5 3 5 3 3 a s 4 4 s
7 7 5 P 6 s 7 s 6 s 6 6
8 & 7 8 7 6 7 6 7 7
9 7 8 9 8 7 8 8 8 9
10 10 9 10 13 8 9 9 9 10
1 1 1 1 1 1 1 1 1 {
2 2 2 2 2 2 2 2 2 2
3 3 3 4 k} 3 3 3 3 3
4 3 s s 4 4 4 4 4 4
10 s s 6 6 6 10 s 5 s s 5
6 7 7 7 7 6 6 6 6 6
7 8 8 8 8 7 7 7 7 7
9 9 9 9 9 8 8 8 8 9
10 10 10 10 10 9 9 9 9 10
11 1 1 11 1 1 1 1t i 1
(a) Global Moments (b) Regional Moments

Table 4.20: Best moments selected for the classification of the Diag cohort for a
varying number of moments in the discriminant function. The entries are associated
with the corresponding entries in Tables 4.12 and 4.13. The moment numbered 11 is

the patients’ age and not the 11*®* moment.
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improvement does not justify the cost of using substantially more moments. Fur-
ther, if only one moment was selected, the preferred moment was either the global
variance or regional kurtosis. If two moments were used, the preferred pair was the
regional mean and kurtosis or a pair of global moments from {3,4,5}. Any of these
is low enough that a stable classifier was much more likely than if the sixth or greater
moments was used.

For the multifractal dimensions, D, was found for 20 values of ¢ from —5 up to
0.7. However, the classification performance varied considerably (~ 25%) for the
five redistribution trials of the cases between the training and test sets. Since the
selected features also favoured the higher values of ¢, this may indicate that that
the range selected for ¢ still contains a region where the multifractal model was not
valid (See Chapter 3.3.3.) or may simply be due to overfitting. When the range of
g was constrained to the first 16 values (g = —5 to ¢ = —0.5) the stability of the
results improved significantly, Figure 4.4(c) and Table 4.21. The preferred dimensions,
selected by the search algorithm lie close to the upper part of the range for ¢. However,
the single best multifractal dimension corresponded to D_, (bin 11). Additionally,
it appeared that dimensions far from the upper range for ¢ were selected only when
“forced”. For example if 15 dimensions were requested then, with no repetitions,
dimensions far from the upper g range must be selected.

The parameters, d and 6, in the calculation of the textures resulted in a partic-
ularly large number of features. For these properties, the sheer number of variables
required that a random search method be used, i.e. ga_ors. The features selected by
ga_ors are given in Tables 4.22 and 4.23. If the genetic algorithm is to be applied

for these properties the features must be arranged to form an artificial spectrum as
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No. of
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Table 4.21: Best multifractal dimensions selected for the classification of Diag cohort
for a varying number of dimensions in the discriminant function. The entries were
associated with the corresponding entries in Table 4.14 and the dimensions were
numbered sequentially from 1 for the generalised dimension, Dy |,=_5 (from Equation
2.6) to 16 for D, [;—_o.s in equal increments of ¢ = 0.3. The patients’ age was in the

bin numbered 17.
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No.of
Textures Trial A
548-609
2373-2403

556-608
3 2867-2908
2952-2956

558-608
3 2888-2907
2959-2972

411417
676-687

s 735770
2890-2907
2955-2964

668-715
734779

6 1076-1093
1151-1166
1238-1210
2338-242

427430
557-593
665-711

7 714-764
1224-1273
2259-2307
2339-2389

411424
580-604
632649
T33.730
10 $042-1078
1136-1174
13071370
2234-2270
3232372

425428
432460
543-591
663-T11
716-164
1063-1127
15 1158-1164
1270-1288
1706-1754
2163-2211
2259-2307
2597-2631
2635-2656
2953-2999

JosB
558-608
2374-2408

558-6508
2331-399
21804-2805

375428
571696
37T
2359-2407

465495
718719
168-714
2849-2868
2926-298%

390417
589-648
742-781
1698-1717
2579-288S
2933-2961

244-23
313316
595-619
%12
1771223
2813-2849
2930-2973

211-255
377-425
462497
551-602
643-692
33-175
1354-1410

TraiC
554-608
2371-2403

357-608
2938-2854
2957-2971

553-608

1167-12t7
2891-2398
2923-2976

308-334
52
714762
2352-378
2817-2868

425-430
512613
661-726
3572
1503-1651
2951-3000
3001-3007

S08-518
536604
680-725
743117
12501298
2824-2876
2920-2997

195-206
451474
499-532
530-550
661-692
™
1396-14385

1754-1787 = 1693-1705

2851-2900
2901.2954

240-288
293-303
410-455
SE3-631
643-695
732-76%
1004-1024
1072-1096
1147-1167
1357-1405
1764-1812
1910-1959
2202.2246
2992382
2895-2943

2827-450
2854-2901

316-364
439454
660681
740-762
949954
962.977
1009-1051
1159-1163
1166-1208
1386-1403
1543-1596
1982.2012
2023-2031
2330-2908
2954-29712

Trial D
530612
2395-2402

549-509
2814-2865
931-2%73

08617

1810-1856
2201-2204
2328-2337

552609

1589-1890
1914-1922
2060-2171
2903-2953

S60-611

1002-1069
1142-1210
16971745
2631-2383
2906-3000
3001-3010

561-611

1087-1136
L143-1207
16831735
2368-2416
2834-2907
2918-3000
3001-3002

9-57
304-305
424463
681-701
732-T18
1041-1042
1151-L168
1193-12¢1
531-457
2932.2958

246-270
509-535
632-691
714762
25914
1082-1108
1138-1170
1226-1277
1853-1866
1838-1839
19111914
1987-2021
2041-2067
2107-218S
2837-2348

(a) Texture Energy

234-332
5715674
T0-7T7
16411680
2859-2914
2950-2973

9-57
96-144
Ji4-362
436-518
567-568
686-6%0
763-T10
$20-371
2520-2868
2939-2934

281-329
449488
515-547
641-690
714-763
764-114
951967
1122-1145
1148-1170
1616-1640
2421-2468
2838-2877
2927-2980

No.of
Texneres
2

Trial A
195-244
3719-391

183-3t16
350-399
T48-346

195-310
358-398
547-597
2096-2157

2236-284
361400
593641
81-385
2494-2567

212258
380-387
574636
1403-1435
1483-1513
2597-2600

192-288
338388
599.645
112-740
1235-1242
1308-1329
2067-2170

284-298
346-338
458-506
587-5950
1210-1252
13121317
1410-1430
1477-1510
2000-2043
2607-2626

14-62
90-i38
27259
332370
579-593
698-735
814-826
L23-1171
1227-1251
13181321
1383-1437
2129-2177
2532-2546
2682-2778

Tral B
191-293
359-397

193-298
361-398
1229-1319

284-235
362-363
812-865
2785-27194

301-350
3s1-381
$05-353
1892-1938
260-2281

13-61
283-319
326-369
1205-1216
1311-1314
2405-2453

251-218
361-296
802452
1820-1868
1924-19%9
282-2350
2560-2569

196-265
27632
361-387
464472
1210-1262
1363-1415
1505-1508
1537-1538
2390-2433
2543-2860

55-93
279-299
356¢-373
515-544
1100-1120
1207-1245
1249-1235
1377-1401
1947-1994
2694-2731
2751-27199

Teial C
300-343
361400

121-224
767-860
2594-2635

312-321
389-95
47753
821-845

262-315
343-397
453-50%
812-860
2919-2967

193-282
335-384
496-547
1380-1428
1461-1529
2660-2769

196-246
381-%9
$54-594
880-928
1445-1473
1486-1530
2720.276S

350-35%
380-392
§15-5719
628-674
712-760
871-917
1328-1355
1455-1454
1510-1560
20222054

287-303
358-338
485-357
561-564
677-680
745-747
845-893
960-1007
1035-1078
1437-1456
1505-1529
1965-1978
2128-2190

Trist D
163-210
812815

160-209
1262-12%6
1305-1374

145-222
933-944
961-986
1797-1827

162:214
352-880
954-961
1795-1842
2240-2334

273-304
353384
41949
862-906
954972
1793-1844

277293
363-379
490496
851898
951.974
1382-1430
2011-2033

169-215
282311
5539
516-546
594610
909-946
943973
1251-1299
1809-1845
2074-2122

$4-54
21.261
356386
523-546
585633
650-684
755-819
B47-895
944-976
1433-1473
2028-2058
2170-2218
U274

(b) Texture Entropy

TraadE
156-209
784825

1$9-211
a8-837
24172418

165-21t
LR v,
248-2252
U01-2429

197-236
3152397
363-610
1972-1997
2452-2482

199-297
356-396
437-532
0804-849
1973-1988
2594-2631

199-307
4s-398
4T7-541
1281239
1341-1344
1993-2041
BT1-2419

1041
211-255
359-396
562-580
984-995
1236-1240
1297-1333
2406-2426
2568-2585
2634-2658

120171
279-306
354-382
578623
643-652
710-758
900-946
954995
1372-1421
1674-1696
1747-1757
1928-1998
2306-2354
2474-2478
2526-2540

Table 4.22: Range of texture properties selected for the classification of the Diag
cohort for a varying number of texture energies and texture entropies in the discrim-
inant function. The entries are associated with the corresponding entries in Tables
4.15 and 4.16 and the values in each range of features are numbered as described in
Section 3.3.4. The patients’ age was placed in bins 3001-3010.
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No.of
Textures Trial A Trial B Tral C Trial D Tral E
2 1062-1113  204-216 990-1011 999-1010 986-1028
1116-1132 364-385 2730-2758  2942-2965 2951-2964
264-294 290-349 217-270 1063-1089 216-267
3 351-382 352-393 824-875 1109-1123 801-885
849-866 1757-1804 2151-2154 2302-2364 2954-2964
282-295 285-317 176222 434-431 121-169
4 360-364 365-3%0 272-301 931-943 216-243
811-865 877-881 361-39%6 959-1001  332-371
2721-2769 1827-1835 2127-2174 2910-2961 2361-2410
205-235 311-319 121-143 143-179 102-173
338-351 381-386 286-309 296-346 243-303
5 1047-1098 901-951 364-393 367-398 328-377
1101-1149 1794-1839 874-886 1021-1024 1204-1252
2164-2169 2734-2742 2106-2155 1097-1146 1880-1965
163-205 146-193 197215 150-177 162-170
211-250 227215 296-344 320-356¢ 257-291
6 362-388 363-395 368-386 361-387 335-392
1021-1024 1222-1229 899934 1063-1066 829-840
1145-1192 1762-1812 2803-2856 1112-1138 964-1001
2154-2167 2342-2343 2875-2884 2922-2948 1882-1919
177-195 282-310 10-56 179-222 154-200
229-273 356-387 107-131 245-292 203-251
384-390 836-884 227250 374-389 366-382
7 1043-1099 938-968 362-386 838-895 1224-1240
1104-1148 1797-1801 B816-850 929-1003  1924-1968
2122-2168 1873-1927 949-974 2031-2079 2814-2840
2721-2767 2368-2403 2634-2689 2901-2903
19-23 118-166 194-197 68-95 194-196
129-139 202-229 280-313 103-137 315-336
203-251 365-389 362-389 257-327 360-410
344-368 438-486 498-603 347-392 473-500
10 1045-1093 979-1028 1078-1101 474-571 882-930
1106-1134 1066-1205 1102-1146 B814-862 941-971
1750-1800 1784-1823 1473-1521 953-987 1465-1513
2002-2050 1887-1931 2654-2692 1556-1590 2095-2112
2480-2533 2807-2839 2823-2854 2209-225§ 2380-2404
2637-2685 2888-2911 2911-2927 27112721
60-74 113-133 171-185 65-113 64-82
124-156 201-233 266-301 117-150 98-131
215-224 362-389 345-387 313-327 267-291
379-382 908-916 607-611 348-374 368415
390-437 964-977 696-733 885-897 449-497
648-696 1153-1261 860-90S 949-996 890-919
816-864 1727-1728 953-963 1870-1920 941-1033
1088-1110 1781-1829 1194-1238 2111-2139 1081-1134
15 1123-1138 1870-1929 1764-1812 2173-2177 1443-1487
1969-1989 2183-2214 1940-1988 2239-2297 1542-1716
2341-2368 2367-2419 1991-2062 2683-2731 1717-1765
2806-2830 2828-2840 2118-2151 2781-2812 1911-1972
2891-2919 2888-2902 2360-2408 2885-2905 2706-2754
2941-2958 2603-2609 2836-2889
2882-2905 2898-2933

Table 4.23: Range of inertia texture properties selected for the classification of the
Diag cohort for a varying number of texture inertia in the discriminant function. The
entries are associated with the corresponding entries in Table 4.17 and the values in
each range of features are numbered as described in Section 3.3.4. The patients’ age
was placed in bins 3001-3010.
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described in Section 3.3.4. The genetic algorithm was used in the selection of the dis-
criminatory regions in the histogram as well but the OD of a film would not change
abruptly without some intermediate OD values. Therefore, the grey values were not
entirely independent and we were justified in taking the mean for a sub-region of
the histogram as a variable in the discriminant function. This was not the case, in
principle, for the texture measures since they were arranged into a spectrum in an ar-
bitrary order and there were “natural” boundaries between each texture. In practice,
the selected group of textures did not always respect the divisions between different
textures. For example, practically all the selected regions span several different tex-
tures formed simply by changing the parameters d and € in the SGLD matrix®. This
implies that the features the program selects were isotropic and independent of dis-
tance, up to the range of pixel separations that were used in this work (max d = 16v2
and 8 € {45°,135°,225° 315°}). The next most frequent “boundary crossing” was
between the three quadrants which were distinguished by the order and type of 1D
wavelet filter that was applied. In particular, ga_ors would try to combine texture
values calculated from different quadrants of Figure 2.3 for the same level of the
wavelet decomposition. That is, between quadrants where the label for the quadrant
only differs in the last two letters of Figure 2.3. While the difference in the order of
application of the 1D wavelet filters had an impact on the output of the transform,
the resulting coefficients between the three quadrants were similar and it would not
be surprising that the program occasionally took means of the values across these
quadrant boundaries.

Finally, the last boundary occurred between the different resolutions for each

iteration in the wavelet transform (quadrants in Figure 2.3 with different numbers

8These quantities were described in Section 2.2.2.



4.1 Feature Selection and Classification 110

of letters in their labels). Sets of features which cross this boundary occurred more
frequently for the texture energy and texture entropy and then predominantly for the
iterations that resulted in the lowest resolution part of the transform. The intervals
with this behaviour only appeared when a small number of textures was desired and it
may be significant that the texture inertia which had the fewest of this type of selected
regions also performed the best in classifying the images. The frequency of occurrence
also varied significantly. The first type of boundary crossing, ignoring d and @, were
extremely common while regions crossing quadrants were considerably less frequent
and the resolution (or scaling) level crossing regions were quite rare. The range of
the specific features that were selected for the best classification performance® using
7 texture energy features, 6 texture entropy features and 6 texture inertia features
are listed in Table 4.24. The table gives the endpoints for each range of features when
the textures are arranged as described in Section 3.3.4. Each texture was described
by the channel number in the artificial spectrum as well as the wavelet level (L1, L2,
L3, L4 and L5), wavelet transformed quadrant (LH, HH and HL) and their (d,8)
combination as expressed as a Cartesian vector ((1,0), (0,1), - - - See Section 3.3.4.).

Overall, the feature sets which were selected appear to be derived predominantly
from the iterations of the transform which resulted in the lowest and highest resolu-
tion. Generally, more features were selected from the lower resolution levels than the
higher ones.

The remaining study for this section allowed the genetic algorithm to select any
combination of features from the moments, histogram regions, multifractal dimen-

sions and texture measures!®. Combining the properties allowed the creation of a

9The number of features were selected for the best classification performance with the fewest fea-
tures. However, the trial (A-E) was selected as the trial with the median classification performance.
10previously the selection was constrained to only use one property.
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Property "Spectrum” Feature Endpoints
Range Start End
427-430 LS, HL, (1,-1) L2,HL,(1,-1)
557-593 LS, HL, (8,8) LS, HL, (16,16)
665-711 L4,LH, 2,-2) L4,LH, 449
Energy 714-764 L4, LH, (4,-4) L4, LH, (0,16)
1224-1273 L3,LH, (1,-1) L3,LH, (2,2)
2259-2307 L2, HL, (2,0) L2, HL, (4,-4)
2339-2389 L2, HL, (8,0) L2, HL, (16,-16)
262-315 LS, HH, (2,-2) LS5, HH, (4,4)
343-397 LS5, HH, (8,-8) LS, HH, {16,16)
Entropy 452-509 L5,HL,(2,0) LS,HL, 4,4
812-860 L4, HH, (1,0) L4, HH, (2,0)
2919-2967 L1, HL, 4.9 L1, HL, (0,16)
150-177 LS5, LH, (8,-8) LS, LH, (16,0)
320-356 LS, HH, (4.4) LS, HH, (8,8)
Inertia 361-387 LS, HH, (0,16) LS, HH, (16,-16)
1063-1066 L4, HL, (2,-2) L4,HL,(2,-2)
1112-1138 L4, HL, (4,-4) L4,HL, (8,0)
2922-2948 L1, HL, (0,8) LI1,HL, (8,-8)

Table 4.24: Texture features selected by ga_ors for 7 energy textures (Trial A), 5
entropy textures (Trial C) and 6 inertia textures (Trial D). L1, L2, L3 or L4 refers to
the level of the wavelet decomposition; LH, HH or HL refers to the quadrant for the
decomposed image and (-, -) refers to the Cartesian vector that corresponds to the d

and # combination. (See Section 3.3.4.)
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Figure 4.5: Overall classification performance for the Diag cohort allowing for fea-
tures to be selected from all calculated properties.

discriminant function utilising properties that characterise unrelated aspects of the
mammogram and, ideally, giving an improved classification accuracy. When the pro-
cess was performed using all properties, the overall accuracy, the details of its perfor-
mance and the selected regions are shown in Figure 4.5, Table 4.25 and Table 4.26
respectively. In order to use the genetic algorithm on the combined features, a spec-
trum was formed by placing the rebinned histogram data (rank ordered and binned
to 256 values) in the channels numbered 1-256 (as for the selection of the histogram
sub-regions). The global moments, regional moments and multifractal dimensions
were entered in bins 257-356, 357-456 and 457-656 respectively. The features for
these three properties were repeated for 10 bins so that, for example, the 10 moments
occupy 100 bins. The patients’ age was entered in bins 657-666 and the age was also
repeated for the 10 bins. The texture energy, texture entropy and texture inertia was
placed in the bins 667-3666, 3667-6666, 6667-9666 respectively. Within each range

the textures were ordered as described in Section 3.3.4.



4.1 Feature Selection and Classification 113

No. of Trial A Trial B Trial C Trial D Tral E
Properties  and Acc (%) and Acc (%) and Acc (%) and Acc (%) and Acc (%)

2 22 16 6914 29 11 7349 20 11 6970 25 20 63.16 25 10 7671
9 34 I 32 9 26 8 23 7 31

3 24 14 7407 27 13 7229 22 9 7879 28 17 1237 24 11 7671
7 36 10 33 5 30 4 27 6 RN

4 26 12 7407 30 10 7831 23 8 8030 27 18 7237 25 10 78.08
9 34 8 35 5 30 3 28 6 32

5 27 11 7654 32 8 7952 25 6 8182 28 17 7237 29 6 82.19
8 35 9 34 6 29 4 27 7 31

6 26 12 7654 29 11 77.11 24 7 8485 28 17 7237 30 5 8493
7 36 8 35 3 32 4 27 6 3

7 30 8 8148 32 8 7831 25 6 8030 28 17 7368 29 6 8356
7 36 10 33 7 28 3 28 6 3

10 29 9 7901 29 11 7470 24 7 7879 30 15 7500 28 7 82.19
8 35 10 33 7 28 4 27 6 32

15 30 8 8272 30 10 771t 22 9 7879 31 14 7895 30 5 8493
6 37 9 34 5 30 2 29 6 32

Table 4.25: Outcome for the Diag cohort allowing for features to be selected from
all calculated properties.

The appearance of Figure 4.5 highly resembled the curves in Figure 4.4(d) or
Figure 4.4(f). The reason is immediately clear from Table 4.26. The features which
were chosen were almost exclusively from the texture properties but there does not
appear to be any single texture type which dominates. There was near uniform
representation among the texture energy (667-3666), texture entropy (3667-6666)
and texture inertia (6667-9666) but almost no features selected from any of the other
extracted properties (collectively 1-666). This implies that the discriminatory power
of the texture properties was much stronger than any other property that we have
considered but that there was little difference in the discriminatory power among the
three different textures.

There was also a significant difference in the peak classification accuracy in Figure

4.5 and when using the textures individually, Figures 4.4(d)—4.4(f). This was likely
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No. of
Properties  Trial A Trial B Trial C Trial D Trial E
2 1056-1270 1176-1310 1181-1334 11751339 1183-1343
6872-6875 6890-6941 6897-7206 9023-9028 6982-7145

1172-1225 1166-1319 1132-1283 1166-1327 1156-1311

3 5647-5799 2980-3132 3659-3666 2979-3131 3625-3666
6947-6957 6894-7018 3667-3911 6938-7133 13667-3673
6891-6918 6924-7080

174-266  1051-1360 632-666  1157-1314 1254-1269

4 1116-1266 6867-7019 667-784  2468-2575 2636-2792
5413-5564 8385-8538 1169-1322 6858-711S 3660-3666
7002-7057 9389-9429 6861-7018 8962-8989 3667-3811
8732-8856 6910-6958

1117-1288  1123-1367 1072-1117 LI77-I311 1190-1340
3534-3601  6950-7029 6565-6582 3095-3246 3116-3269

s 3640-3666 7046-7066 6729-6881 3662-3666 4413-4566
3667-3925 8420-8572 69326966 3667-3T91 6828-7055
5273-5784 8678-8831 G6994-7030 6385-7012 9557-9623
6879-7098 1622-17147

479-536 68-159 484-535  1167-1311 1199-1305
1113-1243 118S-1317 1176-1194 2877-2965 1891-2043

6 2387-2538 43534507 3041-3111 6965-7091 3469-3621
5654-S710  7258-7487 3119-3156 7627-7706 3627-3666
6957-7004 8564-8716 3496-3648 9482-9633 3667-3743
T619-T708 9185-9485 6943-6990 6939-7022
7610-7759

148-299 457-609 1164-1192  485-539  1152-1304

343-536 1186-1332 3050-3055 1164-1315  2695-2844
1118-1246 3489-3518 3468-3620 S033-5185 3435-3580

7 5887-6039 3613-3645 S875-6027 T005-7084 3645-3666
6884-6983 4529-4573 6714-6866 7622-7715 3667-3788
7585-T725 S5599-5664 69576999 7T734-7886 6896-6993
9342-9494 6963-7036 7014-7054 9470-9566 7586-7747
8235-8389

486-535 84-120 629-655 257-297 491-512
2021-2173 1214-1285 966-1038 486522  1204-1322
2413-2465 2533-2682 1190-1209 1188-1289 2283-2497
3857-3867 3427-3666 1768-1920 3351-3484 3654-3666

10 5299-5303 3667-3679 S5534-5549 S161-SI191 3667-3791
5320-5352 37323774 6999-7018 6925-7030 6888-6914
6896-6914 42834315 7040-7058 7614-7716 T222-7272
T629-T7T79 43554404 9320-9346 8439-8568 7645-7703
8744-8836 6421-6569 9469-9490 94579610 8462-8581

8414-8569 9500-9562 9143-9276
9577-9642

303-457 460-490 29-92 489-503 346421

507-543 534-648 138-288  1022-1087 487-543

1137-1186 1149-1212 456483 1253-1341 556-60t
1546-1698 1240-1295 1000-1045 1382-1451 1234-1282
2467-2588 1639-175S 1361-1389 1711-1800 2474-2476
3670-3683 3017-3048 1397-1432 30173169 3575-3666
3935-3972 3485-3637 3120-3124 3280-3430 3667-3727
15 40054022 3934-3968 3921-3967 38764028 47454767
5397-5487 39844057 S5165-5209 435994677 S5798-5831
6312-6511 44964648 5995-5997 S717-5719 5849-6001
6831-6931 S5400-5552 7159-7224 6928-6990 6398-6525
7703-7722  6983-7135 7650-7802 7695-7746 6859-7012
T750-7802 7519-7572 8175-8290 T775-7845 T017-7050
9241-9386 7950-8016 8857-9028 8897-8913 8619-8646
8894-8944 9173-9185

Table 4.26: Properties selected for the Diag cohort when allowing for features to be
selected from all calculated properties.
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due to the stochastic examination of the potential feature sets inherent in a genetic
algorithm. For this part of the study, the total number of features was more then
three times larger than when the texture energy, entropy or inertia was used indi-
vidually. Therefore, the genetic algorithm was able to examine a greater proportion
of the solution space, and find a better solution, when each property was examined
individually as compared to the combination of all properties.

For all instances, the patients’ age was included in the “spectrum” as an extra
property, however, it was rarely chosen as a factor in any of the studies. The instances
where it was selected seemed to occur only when a large number of features (10 or
15) were requested to be used in the discriminant function. This suggested that the
discriminatory power of the selected features are nearly age independent. However,
the evidence is circumstantial and a more explicit analysis for the presence of an age

dependence was considered in Section 4.3.

4.2 Contralateral Mammograms

When the mammograms containing a malignancy and the set of normal cases (Diag
class) was selected, a large subset of the collected images was excluded. Recall that
the selection of the training and test groups was made at random from a pool of
images with twice as many normal mammograms as abnormal ones!!. Additionally,
the number of normal and abnormal cases was kept approximately equal'?. Therefore,
there were many normal images which were not used in any of the prior training or test

groups. As well, all the mammograms of the contralateral breasts from the women

11The mammograms for both breasts for each patient was included in the total pool of images

and a random sample was selected.
12The equality between the groups varied slightly due to the random selection of cases.
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with a unilateral abnormality were not included in the pool of images for the Diag
class. It would be instructive to examine the results of the classification system on
this set of images.

For the mammograms of the breasts contralateral to the side where an abnormality
was found, the classification should be “normal” if the radiologists’ diagnosis is taken.
However, it was desirable to distinguish this set of images from the mammograms from
subjects with both mammograms diagnosed as normal. Therefore, for this section
the abnormal classification was altered to describe the patient diagnosis rather than
the diagnosis of the breast itself. Using this altered definition, a patient with an
abnormality in either breast would carry the abnormal classification and only if both
breasts are normal were the mammograms given the normal classification. It should
be noted that since the clinically normal images from the two different categories were
kept in two isolated groups, it would be a simple matter to generate the classification
performance for the original definition of normal and abnormal mammograms by
regrouping the elements in the confusion matrices.

In order to evaluate the system on this set of images, linear discriminant analysis

was used, which requires a discriminant function to be formed

m
Z=) oz; (4.2)

i=1
for m features, z;, and m constants, c;. There were two aspects that must be ad-
dressed. First, the most significant set of variables, z;, needed to be found and can
be performed using a genetic algorithm or an exhaustive search of all possible com-
binations of variables. Second, the set of coefficients, c;, which produced the specific

function that classifies the images the “best” must be determined. This can be per-
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formed using LDA.

For this part of the analysis, the genetic algorithm was not re-applied to the data
set to select the best set of z;. Rather, the properties which were selected in Section
4.1.2 were considered. However, due to several random factors such as the selection
of five training and test groups, there was a certain amount of variation in the set of
best properties that were found for each trial.

Since {z;} or {¢;} can be varied to form different discriminant functions, two

approaches to the evaluation were used.

1. Only the {¢;} was calculated for each property. The {z;} was selected from the
feature sets using the Diag cohort (Section 4.1.2) and taken from Tables 4.19—
4.23. For each property, the specific feature set was taken as that which resulted
in the median classification performance for the 5 trials, A—E, but with the best
classification accuracy for the various numbers of features in the discriminant
function (1-15). For example, for the sub-regions of the histogram the feature
set for Trial C using 5 sub-regions was selected. The various feature sets that

were selected for each property is described in detail below.

Then, 5 different {c;} were calculated, using LDA, by using the test datasets for
the 5 trials corresponding to the selected feature set. i.e. for the sub-regions of
the histogram, 5 different {c;} were formed using the test sets for Trials A-E, for
5 sub-regions. The performance of the 5 discriminant functions were then tested
using the contralateral images. The median and standard deviation was taken

as the classification accuracy and uncertainty for these features (Uniform).

2. Both {z;} and {¢;} were varied simultaneously (Individual). For this case the

classification performance of the discriminant functions created for the 5 trials,
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A-E in the Diag cohort, was tested on the contralateral images. The five
functions were investigated only for the number of features which gave the best
classification when the number of features was varied from 1-15. Therefore, for
the sub-regions of the histogram, the discriminant functions which were used
to give the results in Table 4.11 when using 5 sub-regions were tested for their

classification ability on the contralateral mammograms.

Recall that for each property that has been considered, histogram subregions,
global and regional moments, multifractal dimension, etc., the classification perfor-
mance was examined for a varying number of features. For example, when considering
the global moments, the single best moment was found, the combination of the best
pair of moments, best triplet and so on. For this part of the analysis, the feature that
gives the highest classification performance for each property was the only feature
set considered, for the most part. However, there were several cases where the best
feature set required an excessively large number of features or features that tend to be
unstable. For these cases an alternative feature set was selected that has comparable
performance to the feature set with the highest accuracy. The actual feature sets that

were used for the analysis of the Uniform features will be discussed in turn.

Global Moments For this property the best perfcrmance was attained when using
4 features but for many of the trials, some of the high moments are needed,
which tend to be very sensitive to small changes in the histogram distribution.
Therefore two moments were used (median outcome: Trial C) which has nearly
the same overall performance and only used the lower moments. See Figure 4.4

and Table 4.20(a).

Regional Moments A similar situation exists for this property as for the Global
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Moments. The best performance occurred when four moments were used but
two has nearly the same outcome without requiring the high moments (median

outcome: Trial D.). See Figure 4.4 and Table 4.20(b).

Histogram Subregions This case is straightforward. The best performance oc-

curred for 5 regions (median outcome: Trial C). See Figure 4.4 and Table 4.19.

Mutltifractal Dimensions The calculations using 2 to 5 dimensions had comparable
performance to each other. Therefore, 2 dimensions were used as this resulted
in the simplest discriminant function (median outcome: Trial E.). See Figure

4.4 and Table 4.21.

Energy In order to balance the best performance with the smallest number of fea-
tures, 7 energy textures was selected for this texture property. (median outcome:

Trial A). See Figure 4.4 and Table 4.22(a).

Entropy Again, there was nearly equal classification performance when using 2 5
entropy textures. Therefore five features were used (median outcome: Trial C).

See Figure 4.4 and Table 4.22(b).

Inertia This also seemed to have the best performance/smallest number of features

at 6 features (median outcome: Trial D). See Figure 4.4 and Table 4.23.

4.2.1 Results

An overview of the classification performance was shown in Figure 4.6. The figure
shows the median result when using the Uniform and Individual feature sets for

each property that was considered for this work. Clearly, there was little difference
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Figure 4.6: Overall classification performance for the Individual and Uniform fea-
ture sets when applied to the cohort of remaining images. Note that the upper or
lower horizontal axis is associated with the data series in the legend closest to each
respective axis. The properties are listed in the order: Histogram sub-regions (Hist),
Global moments (Mom), Regional moments (RM), Multifractal dimensions (MF),
Texture energy (Erg), Texture entropy (Ent) and Texture inertia (Int).
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Property Trial A Trial B Trial C Trial D Trial E

Hist 71 61 56.19 94 38 69.03 85 47 64.16 98 34 7168 88 44 63.27
38 56 32 62 34 60 30 64 39 55

Mom 74 58 6549 69 63 6372 71 61 6327 56 76 59.73 70 62 6283
20 74 19 75 2 72 15 79 2 72

RM 94 38 68.58 89 43 6549 88 44 66381 65 67 62.83 86 46 68.14
33 61 35 59 31 63 17 77 26 68

MF 63 69 5575 S5 77 4779 66 66 5708 101 31 5752 56 76 S3.10
31 63 41 53 31 63 65 29 30 64

Energy 120 12 7257 107 25 60.18 121 (1 6858 101 31 5708 115 17 59.29
50 44 65 29 60 34 66 28 75 19

Enwopy 114 18 8230 106 26 8540 117 1S 86.73 96 36 71.68 116 16 7743
2 N 7 87 15 79 28 66 35 59

Inertia 113 19 7965 109 23 7788 115 17 8142 114 18 83.19 110 22 83.19
27 67 27 67 25 69 20 74 16 78

Table 4.27: Classification details for the Individual feature set and cohort of re-
maining images for each property under consideration. Both the confusion matrix
and overall performance (%) are included.

in the results between the two feature sets. The consistency was also evident from
an examination of the classification details, Tables 4.27-4.28. The results are also
consistent with those given for the Diag cohort with the exceptions of the Global
Moments and texture Energy. The Global Moments had a lower performance as
compared to the results for the corresponding properties on the Diag cohort. The
texture Energy was of particular importance since it had comparable performance
to the other textures on the Diag cohort (~ 80% from Figure 4.4) but considerably
lower performance for the Uniform feature set on the set of contralateral images
(~ 70%) and lower still for the Individual feature set (~ 60%). The texture entropy
and inertia exhibited high classification rates (Z 80%) for most of the cohorts and
feature sets shown so far. Therefore the texture entropy or inertia may be a better

choice as a classification property due to their similar performance over more diverse
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Property Trial A Trial B Trial C Trial D Trial E

Hist 93 39 6681 86 46 6593 85 47 64.16 89 43 6903 93 39 68.58
36 58 31 63 34 60 27 67 32 62

Mom 69 63 6372 69 63 6372 71 61 63.27 61 71 6106 68 64 63.72
19 75 19 75 22 72 17 77 18 76

RM 94 38 68.58 89 43 6549 88 44 66381 65 67 6283 86 46 68.14
33 61 35 59 31 63 17 77 26 68

MF 63 69 5575 77 55 59.73 66 66 5708 101 31 5752 S6 76 S3.10
31 63 36 58 31 63 65 29 30 64

Energy 120 12 7257 118 14 7080 121 11 70.80 109 23 6327 118 14 6593
50 44 52 42 55 39 60 34 63 31

117 15 8761 114 18 8673 117 15 8673 110 22 8673 117 15 88.05

Entropy
13 81 12 82 1s 79 8 86 12 82

Inerda 119 13 7832 112 20 83.19 118 14 8319 114 18 8319 115 17 7743
36 58 18 76 24 70 20 74 34 60

Table 4.28: Classification details for the Uniform feature set and cohort of remaining
images for each property under consideration. Both the confusion matrix and overall

performance (%) are included.
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conditions.

Both properties produced comparable results on the Diag cohort for the selected
number of textures but the variation of the classification performance when the en-
tropy textures were used on the five trials for the Individual and Uniform feature
sets were greater than those for the inertia. On the other hand, the false positive rate

tended to be higher for the inertia than the entropy.

4.2.2 Conclusions

There were several additional observations which can be drawn from these results.
For example, with the exception of the properties mentioned above (texture energy),
the performance of all the remaining properties were comparable when tested on the
Individual and Uniform feature sets. The results were also generally comparable to
the classification results obtained when the features were applied to the Diag cohort,
from where they were originally selected.

Recall that the Uniform features refer to using the same variables in the discrim-
inant function but allowing the coefficients to vary by changing the images used in
determining the coefficients. On the other hand the Individual features refer to the
results when allowing both the variables and coefficients to vary in the discriminant
function. The similarity in the results between the two approaches suggest that the
selection of features was robust against variation due to the distribution of images be-
tween the training and test groups, variation due to the random nature of the genetic
algorithm and (possibly) variation inherent between patients.

In addition, the classification performance of the various classifiers on these con-

tralateral images were on the same order of magnitude (percent difference of ~ 6) as
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as for the mammograms diagnosed with an abnormality (Diag group). That is, clin-
ically normal mammograms appeared to be classified as abnormal if the contralateral
mammogram contains an abnormality. The exception is when the texture energy
was considered where the classification accuracy was reduced by a percent difference
exceeding 10 for the Contra images compared to the Diag cohort.

One possibility for the similarity in the classification accuracy between the Diag
and Contra cohorts was that the left and right breasts for the majority of patients
were symmetric enough that the calculated properties were similar. Therefore, if a
mammogram with an abnormality was classified correctly then the contralateral mam-
mogram is likely to be classified correctly as well. This explanation is compelling from
an examination of the actual texture properties which were selected. The textures for
the lower resolution components of the wavelet transform were favoured over the more
detailed ones. The lower resolution components can only distinguish broad overall
characteristics such as the mammographic density. Boyd et al. in [Boyd et al., 1995]
suggested, from some of their unpublished data, that there is a high degree of left /right
symmetry with respect to the density.

Additionally, it would be expected that the same patients would be misclassified
regardless of the mammogram examined. In particular, for the histogram sub-regions,
global moments, multifractal dimensions and texture energy, the fraction of misclas-
sified mammograms which came from the same patient was greater than or equal to
64%"3 and for the global moments it was as high as 79%. The remaining properties,
regional moments, texture entropy and inertia, still had a considerable fraction of mis-

classifications for the same patient at 55%, 50% and 48% respectively although they

13The observations for the histogram and textures only involved the actual trial selected for the
Uniform feature set while for the remaining properties the results represent the average over trials
A to E.
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were somewhat lower than for the previously mentioned properties. It is also impor-
tant to note that since the textures performed much better than the other properties,
there was a considerably smaller total number of misclassified mammograms for the
texture entropy and inertia compared to the spectral properties or the multifractal
dimensions.

An alternative explanation to left/right symmetry is that the program may be
detecting true characteristics of disease. For example, the presence of the malignancy
may be producing some agent which caused a global and detectable influence on
both breasts simultaneously. Both possible explanations for the observed results can
be tested with the appropriate data. An analysis of mammograms from the same
patient over a long period of time should reveal a change in the classification as the
malignancy develops, for the cancer cases. On the other hand, testing whether the
effects are due to an inherent symmetry, which would be more important as a risk
factor than as a diagnostic tool, is possible through the analysis of a set of images
from patients who do not have symmetric mammograms, with approximately half of
the cases falling into both the normal and abnormal classifications. Creating such a
set of images can be difficult since the number of patients who satisfy this criterion
represent a relatively small proportion of the population and a study of this nature
is beyond the scope of this thesis.

Regardless of whether the program was detecting features characteristic of disease
or an inherent left/right symmetry, the results (above) along with the fact that the
feature sets had been selected to distinguish normal/abnormal classes was suggestive
that the selected texture properties was of interest in the classification of mammo-

grams. Further work is needed to identify the exact nature underlying the observed
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behaviour. The outcome of such further studies will determine how the system can

be used in practice.

4.3 Age Dependence

Since age is a significant risk factor for breast cancer it would be prudent to perform
a more detailed examination of whether there is any age dependence in the results.
It is also possible that the classification performance can be improved by optimizing
the choice of feature sets for many smaller age ranges.

The results thus far seem to imply that there was little significant age dependence
in the selected features. The analysis of the Diag class included the patients’ age as
an additional feature. Although there were a few exceptions, for the vast majority of
the cases, the age was not selected for the set of “best” features. This is, however,
rather indirect evidence. For the analysis presented in this section, a new cohort was
created from the images based on the patient’s age. A search for direct evidence of

an age dependence was then made.

4.3.1 Method

The most straightforward method of dividing the Diag pool of images into age groups
was to choose a separate group for each decade. The difficulty with this approach was
that the number of images in the 50-59 age range would be considerably larger than
for the 40-49 or 60-69 age groups. Another consideration was that this approach only
gives 3 different age groups which makes it difficult to clearly identify a pattern in

the results. As an alternative the images were divided into eight age groups, 40-54,
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42-56, 4458, - - -, 54-68. This gave a sufficient number of data points to make trends
in the data clearer and allowed easier identification of anomalous results (noise). The
drawback with this approach was that the groups were no longer disjoint!*. From

this point the analysis proceeded as for the Diag cohort in Section 4.1.2 for each age

group. Briefly,
e Five random divisions into training and test sets were made with each age group.

e The best set of 1, 2, ---, 7, 10 and 15 features from each property under consid-
eration (moments, multifractal dimensions, etc.) was found using an exhaustive

search or a genetic algorithm as appropriate.

e The overall performance of each set of features was evaluated using LDA for

each property.

4.3.2 Results

It would not be surprising to observe differences in the functional relationship of the
classification performance with the patients’ age when using different properties in the
classifier, unless the properties are dependent. The overall classification performance
on the various age groups when global moments were used are shown in Figure 4.7.
The classification was performed using linear discriminant analysis and allowing 1-7
and 10 moments to be used in the discriminant function. Similarly, the results for
the Regional Moments are shown in Figure 4.8, the sub-regions of the histogram for
2-7, 10 and 15 regions in Figure 4.9, Figure 4.10 for the multifractal dimensions (1-7

and 10 dimensions), while the energy, entropy and inertia results (for 2-7, 10 and 15

14The size of each group may still be too small but the statistics of any study could always stand
some improvement.
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textures) appear in Figures 4.11-4.13 respectively. In many of the instances, there
appeared to be a clear age dependence and in some cases the function was rather
non-linear, as in Figure 4.7(d) or Figure 4.12(a). However, the majority of these
feature sets either classify the images poorly or utilise more features than would be
desirable. Therefore our attention was focussed on the particular feature sets selected
in Section 4.2.

A least squares fit of polynomials in the age up to the third degree was made for
each data set corresponding to the feature sets selected in Section 4.2. The fits them-
selves were performed using a commercial product, Jandel Scientific’s Table Curve.
In addition, a weighting was applied to each datum proportional to its uncertainty.
However, the uncertainty in the results given previously was taken as the standard
deviation for a small number of points and may not be representative of the uncer-
tainty. Therefore, for this part of the analysis, the mean of the standard deviation
values were used for the uncertainty for the points in each dataset. That is, a different
uncertainty was found only for different properties and different numbers of features
used in the discriminant function. i.e. for each curve in Figures 4.7-4.13.

Table Curve ranked the three polynomials by the quality of the fit based on the
root mean square error. When strictly considering the fits’ ranking, a non-linear
fit would often appear to be appropriate but the final choice of the best fit polyno-
mial was based on a combination of the ranking of the fits, using the fit standard
error (FSE or root mean square error) and a partial F-test for statistical signifi-
cance [Bevington, 1969, Flury and Riedwyl, 1988]. An F-test evaluates the likelihood
(probability or p) of two samples being drawn from the same distribution. In this case

the partial F-test was performed using the residuals of two candidate polynomials
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Figure 4.13: Age dependence of texture inertia of the Diag cohort when considering
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Property Degree of Partial F comp. Partial F comp.
Polynomial to const (p) to linear (p)
Global Moments 1 0.103 (> 0.75) N/A
Regional Moments 3 15.7 (0.01) 17.0 (0.01)
Histogram Regions 2 5.27 (0.06) 1.31 (0.33)
Multifractal Dimensions 3 1.66 (0.34) 2.44 (0.22)
Texture Energy 2 17.7 (0.006) 7.68 (0.04)
Texture Entropy 3 7.66 (0.04) 10.8 (0.02)
Texture Inertia 1 0.13 (0.74) N/A

Table 4.29: Partial F-test results for best polynomial fit (according to the fit standard
error up to degree 3) for the age dependence data.

and if the sample residuals were statistically similar (p greater than a critical value)
then the addition of the extra parameter in the fitted function did not improve the
fit significantly. The lower order polynomial was then selected as the best fit. On the
other hand, a statistically significant difference (p less than a critical value, say 0.05)
in the partial F-test indicated the converse and the best fit function was selected on
the basis of its (FSE) ranking. Additionally, since the uncertainty of the points was
quite large for many of the cases, the best fit polynomial was always compared to
a linear fit as well as to the weighted average of the points (i.e. a horizontal line).
For both situations the fit was tested for a statistically significant improvement in
the description of the data over a linear fit and a horizontal line. The partial F-test
values for the best fit (FSE) polynomial compared to a constant and a straight line
along with their p values are shown in Table 4.29.

If a relatively high value of p was selected as the cutoff for statistical significance,
say 0.05, then the use of the regional moments and texture entropy appear to produce
results with a cubic dependence on age while the texture energy gave results with

a quadratic age dependence and classification results for the remaining properties
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(global moments, histogram sub-regions, multifractal dimensions and texture inertia)
were independent of age. However, if p is reduced to 0.01 only the results for the
regional moments still exhibit an age dependence and for p = 0.001, which is not
unreasonable, none of the properties show any age dependence in the classification
results.

In summary, if the critical value for p was taken as 0.05 the age dependence of
the various feature combinations vary for different properties. The combination of
2 regional moments and the combination of 5 texture entropies that were selected
show a cubic age dependence in the results. The classification ability for 7 texture
energies show a quadratic dependence on age and the remaining feature sets (2 global
moments, 5 histogram subregions, 2 multifractal dimensions and 6 texture inertial
features) were independent of age. The characteristics of the dataset would suggest
that these fits should only be accepted if the dependencies were very clear. Therefore
for p = 0.001 the classification ability of all the properties are independent of age.
This conclusion is supported by the results of the selection of the best feature sets

where the age was not selected in combination with any of the properties!®.

4.4 Scanner Dependence

One characteristic of the data set that caused some concern was that the x-ray scan-
ner used to digitise the film had some correlation with the classification of the images.
Specifically, the majority of the Normal cases were digitised using the DBA scanner

while the majority of the Abnormal cases used the LS scanner. Therefore, features

15This was for the feature sets selected for the highest classification accuracy with the fewest
number of features. See Section 4.2.
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Property_ Trial A Trial B Trial C Trial D Tral E

Histogram 20 14 58.82 18 16 5294 20 14 5882 1S 19 44.12 13 21 3824
0 o0 0 o 0 o o O 0o o

GM 20 14 58.82 17 17 5000 20 14 5882 17 17 S000 20 14 5882
0 o0 0o o0 0o o 0 O o o

RM 13 21 3824 16 18 47.06 17 17 5000 11 23 3235 IS 19 44.12
0 o 0 O o 0 0 o 0 o

MF 17 17 5000 15 19 44.12 17 17 S000 10 24 2941 16 18 47.06
o o 0 o0 o o 0 o 0 O

Energy 22 12 6471 19 15 5588 23 11 6765 19 15 5588 21 13 61.76
0 O 0 O 0o o 0 o 0 o

Entropy 14 20 41.18 9 25 2647 13 21 3824 10 24 2941 10 24 2941
0

0 o 0 O (] 0 O 0 o
Inertia 17 17 5000 15 19 44.12 15 19 4412 13 21 3824 15 19 44.12
o o 0 o0 0 o 0 O o o

Table 4.30: Classification details for the Abnormal mammograms digitised using the
DBA x-ray scanner. The table shows the overall classification performance (%) and
confusion matrix for each property using the feature set of Section 4.2

which can be used to characterise the specific scanner would also appear to be able
to correctly classify the mammograms scanned with the respective digitisers. For the
results presented earlier, it was assumed that the inherent patient to patient variation
masked any dependencies due to the scanner after the normalizations removed the
obvious scanner characteristics. There were insufficient data to fully test this assump-
tion but a small number of cases were present that did not have the scanner/patient
outcome correlation. Namely, 34 patients with a biopsy confirmed malignancy had
their mammograms digitised with the DBA scanner. The classification ability of
“best” set of features for each property, as described in Section 4.2, was tested just
using this group of images. The results are shown in Table 4.30 which indicates that

the classification performance is lower for all properties and many are close to 50%.
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Property Trdal A TrialB TrialC TrnalD Toal E
Histogram  0.34 0.13 0.34 0.02 0.00

GM 0.12 0.01 0.12 0.01 0.12
RM 0.01 0.10 0.18 0.00 0.05
MF 0.15 0.04 0.15 0.00 0.08
Energy 0.01 0.00 0.02 0.00 0.00
Entropy 0.00 0.00 0.00 0.00 0.00
Inertia 0.00 0.00 0.00 0.00 0.00

Table 4.31: Total probability of obtaining classification results as given in Table 4.30
or poorer, assuming a binomial distribution.

The likelihood that the change in performance observed in Table 4.30 was due
to the small sample size can be calculated, with a few judicious assumptions. If a
set of images, with a known classification, were assigned at random into one of two
categories such that the assigned category was correct with probability p., then the
distribution of correct and incorrect cases follow a binomial distribution. A sample
of N cases with at most NV, correctly classified and N — N, incorrectly classified cases
can be calculated as the total probability of obtaining N — N, N - N, +1,.--- N

incorrectly classified cases or

N
POV -y = Y (T)era -y (43)

i=N—N.
If the probability for a correct classification, p,, is taken as observed in Section 4.1.2,
for the Diag cohort, then the total probabilities for each trial and each property are
given in Table 4.31. For example, the table (4.31) indicates that the total probabil-
ity, due to random chance alone, is 0.12 for obtaining at most 20 correctly classified

cases'® using the global moments and the distribution of cases as in Trial C. Since the

16Fyom Table 4.30.
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value is small it would seem to indicate that the poor classification accuracy is not
simply & statistical effect. However, there may be small sample size effects being ex-
hibited in the calculations. In particular, the probabilities for correctly classifying the
mammograms, p., were taken from a different and significantly larger sample of cases
and may not be accurately reflected in this smaller sample. In addition, a binomial
distribution only is an approximation to the act of randomly classifying the mammo-
grams. For Equation (4.3), the probability for a correct classification, p., is assumed
to be constant. p. actually changes somewhat as the number of mammograms to be
assigned to the classes is depleted. Clearly, this approximation is more valid as the
total number of cases increases and deviations can be expected for a small number of
cases.

It should also be noted that the corrections that were applied to the images en-
compass the full range of normalizations that can be applied in practice and should
be sufficient to compensate for differences in the scanner characteristics. However,
the significant variability in the appearance of the mammograms from patient to pa-
tient combined with the non-uniformity in the appearance of the disease made it very
difficult to assess the quality of the correction procedure with a random sample of
mammograms from the population. Therefore, the use of data specifically intended

for testing the correction procedure is imperative for this type of study.

4.5 Conclusions

Superficially, the performance of the system for the density grade classification, was
disappointing. However the regional skewness, that Byng et al. [Byng et al., 1996b,
Byng et al., 1999] found to be a significant risk factor also had a similar performance
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for our sample of images. The difficulty that was encountered was that the sample
itself was quite small for this type of investigation!” and the distribution of cases
among the density grades was very non-uniform. For the small sample size, there is
little to discuss; atypical results are verv common if the sample size is not sufficiently
large and the more subtle an effect, the larger the necessary sample size. The calcu-
lated properties were being used to quantify a characteristic of mammograms which is
extremely variable (the mammographic density). Without a sufficiently large sample
of images that is representative of the amount of variation present in the population
it is unlikely that the features that are useful to classify the density can be identified
even through very powerful techniques such as a genetic algorithm.

The distribution of cases among the density grades, on the other hand, re-
quires some elaboration. This unevenness was also partly due to the sample size
but in addition to this, the cases in the DDSM were selected to fall into nor-
mal/abnormal/abnormal but benign categories without regard to their density grade
classification. This resulted in the majority of the cases falling into the middle two
density grades (~ 15) with few (< 3) in the lowest density grade, in particular'®. The

unevenness gave ga_ors some difficulty because

e With 5 random training and test groups, some of the samples did not expose

the program to examples in all four density grades.

e The program would simply try to classify the second and third density grade
correctly and allow the classification of cases in the extreme grades to be incor-
rect. During the training phase the genetic algorithm and LDA tried to max-

imise the number of correctly classified cases and even with the errors from the

170n the order of 50 test cases.
18The highest density grade had a comparable number of cases to the middle density grades.
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mammograms falling in the extreme density grades, the system would classify
the vast majority of the cases correctly. The genetic algorithm then “decided”
that this solution was nearly optimal and mainly explored solutions with simi-
lar behaviour. Then, during the testing phase, many cases were still classified
correctly but there were more errors due to the patient variability. This com-
bined with all the errors from the extreme density grades gave a low overall

performance.

Of the properties that were considered for this study, the regional moments and the
multifractal dimensions classified the density grades the best and both properties had
similar analogues in [Byng et al., 1996a] and [Byng et al., 1994] who found a correla-
tion with the mammographic density. Due to these factors, it seemed likely that the
poor performance was not necessarily from the choice of the extracted property or
the fault of ga_ors, and the analysis should be repeated with a larger sample.

The remaining investigations which were performed involved the diagnosis of the
images or patient cases. When considering the mammograms with a diagnosed malig-
nancy and one mammogram for each normal case, Diag cohort, the properties: global
and regional moments, sub-regions of the histogram and the multifractal dimensions
all had similar overall classification performance at roughly 60-70%. The texture
properties had an even better classification performance at ~ 80-85%. Similarly,
when the images under consideration were changed to the mammograms contralat-
eral to the breasts where a malignancy was diagnosed and those normal mammograms
which were not selected by the random selection of training and test sets (i.e. the Con-
tra set) the performance is largely comparable for all properties between the results

in the Contra and Diag cohorts. However the performance of the texture energy,
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in particular, was seriously degraded in comparison to the Diag cohort. Finally, the
results did not exhibit any dependence with age for a reasonable choice of the critical
value, p = 0.001, given the characteristics of the dataset itself'®.

Overall, the texture inertia appeared to have the best combination of characteris-
tics. The classification performance was consistently high for the Diag and the set of
images in Section 4.2 (the Contra cohort) as well as having a relatively small variance
in the classification accuracy after random redistribution of the cases into training

and test groups. Additionally, there did not appear to be any age dependence in the

results.

19The sample size was small and there was an overlap of cases between adjacent age groups.



Chapter 5

Discussion

The overall objective of the project was to identify global characteristics of mammo-
grams that may be useful in assisting in the diagnosis of breast cancer or assessing
breast cancer risk. In order to assess risk, an established mammographic risk fac-
tor was used, the mammographic density grade while the diagnostic ability of the
computer system was compared to the known clinical diagnosis of the mammogram.

The images that were used for the study were obtained from a publicly available
database, the digital database for screening mammography, from the University of
South Florida. The database represents a first step toward a standard database
of images to be used for mammographic image research. The full database is to
contain a large number of images when complete and the images were obtained with
high quality x-ray digitisers intended for use in mammography. This factor is quite
important as the breast shadow must be segmented from the background and the
task was considerably more straightforward when the images were obtained from

these digitisers.

The database was not an ideal dataset for a study on breast cancer risk similar to

144
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those done by Boyd [Boyd et al., 1995] and Byng [Byng et al., 1997]. The details of
each patient’s reproductive history (age of menarche, age of first live birth, etc.) must
be known and was not provided as part of the DDSM. As well, there were some
additional deficiencies that may hinder some types of studies. For example, the
database was lacking images that were obtained from the same patient over a fairly
long period of time. This would be useful for examining age dependent eflects or

temporal changes in mammographic features.

5.1 Procedure Overview

The breast shadow was segmented from the background and corrections made for
the scanner dependent effects and mammographic technique as described in Chapter
3. Next, the properties that were selected for this study were extracted. A greater
number of features than what was expected to be useful for the mammographic clas-
sification was intentionally extracted since the precise combination of features that
would maximise the classification accuracy was not known. From this large pool of
features a subset was selected that had the best classification ability. The properties
that were calculated consisted of the first 10 global moments, the first 10 regional mo-
ments, subregions of the global histogram (a maximum of 15 subregions were allowed
after reduction of the histogram from 4096 grey levels to 256), multifractal dimensions
(20), the texture energy, texture entropy and texture inertia (300/texture).

The energy, entropy and inertia were calculated from the wavelet transform of
the image. The transform itself was executed using a biorthogonal wavelet basis
as described in Sweldens [Sweldens, 1994]. The textures were found for 5 different

resolution levels of the wavelet transform and for 3 of the quadrants in each level
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(LLL...LH, LLL.. HH, LLL.. .HL, see Figure 2.3). The textures quantified character-
istics for pairs of pixels in the image and required two additional arbitrary parameters
representative of the separation and orientation of the pair of pixels under considera-
tion. Twenty different combinations of these arbitrary parameters were used for each
texture in each quadrant and in each level for a total of 300 features per texture.

From the pool of features, the single best global moment was selected, the single
best regional moment and so on for each property. Then the best pair of global mo-
ments, best pair of regional moments, etc. was found. The procedure was repeated
for 3, 4, 5, 6, 7, 10 and 15 features, except for those properties where fewer than
15 features were calculated (i.e. global and regional moments). For the global mo-
ments, regional moments and the multifractal dimensions, an exhaustive search of all
possible combinations of single features, pairs of features, etc. could be performed in
a reasonable amount of time. However, the total number of possible combinations
was too great for an exhaustive search for the remaining features (subregions of the
histogram, the energy, entropy and inertia) and ga_ors, a program developed at the
Institute for Biodiagnostics, was used as an alternative approach for finding the best
set of features. ga_ors uses a genetic algorithm to select the optimal or nearly optimal
combination of features to maximise the classification accuracy.

The procedure was used to classify the images into categories corresponding to
density grades (Den) and according to the diagnosis of the mammograms themselves
(Diag group). Additionally, the age dependence in the classification performance of
the selected features for the Diag cohort was examined along with any dependence in
the results to the remaining systematic scanner dependencies for a small number of

mammograms. Finally, the selected features were used to classify the normal mam-
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mograms which were contralateral to those selected for the Diag cohort (Contra).

5.2 Results

The following provides a summary of the main results for each cohort and for the age

dependence and scanner dependence. See Chapter 4 for details.

5.2.1 “Den” Cohort

When classifying the images into density grade categories, it was found that all the
properties under consideration (global moments, regional moments, subregions of
the histogram, multifractal dimensions and the texture energy, texture entropy and
texture inertia applied to the wavelet transformed images) had similar classification
performance. Approximately 40% were classified correctly, independent of the number
of features used. This classification rate was inferior relative to other studies (2 60%).

Many of the features which were investigated were variants of the properties used
in the literature, however, one property was calculated closely following the approach
in [Byng et al., 1996a], the regional skewness. The results for this property on the
database of images used in this study showed a similar performance to any of the
other properties under consideration. Therefore, it was quite possible that the small
sample size and uneven distribution of cases between density grades was a significant
factor for these results. As discussed in Section 4.1.1, the influence of these factors
was too great to permit a conclusion regarding the usefulness of this approach for

classification according to density grades.
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5.2.2 “Diag” Cohort

For the mammograms where a malignancy was found and a random selection of mam-
mograms from the patients who were free of cancer (Diag cohort), the classification

performance varied with the property under consideration.

e The classification performance when using the subregions of the histogram were
independent of the number of regions appearing in the discriminant function.

Classification of ~ 60% of the cases were correct.

e The multifractal dimensions showed a broad peak in the classification results
as the number of dimensions used in the discriminant function changed. The

maximum performance was ~ 60% correctly classified cases when using three

dimensions.

e As the number of regional moments used in the classifier is increased, the be-
haviour in the results is quite complex. Initially the classifier had a low clas-
sification accuracy (~ 55%), reached a flat plateau (~ 60%) and rose again
for a high number of moments (~ 70%). The simplest classifier with good

classification lay in the plateau region and used two regional moments.

e The global moments also exhibited a plateau or a very broad peak when the
classification results were examined as a function of the number of moments

used. Similarly, the best performance (~ 70%) occurred for two moments.

e The texture entropy had a high classification performance of ~ 80% when ap-
proximately five entropy textures were used and the performance was main-
tained at this level for up to at least 15 entropy textures in the discriminant

function. Therefore five entropy textures were used for this property.
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e Both the texture energy and texture inertia had a low classification performance
for two textures and rose to a plateau as the number of textures were increased.
The increase in classification performance was more dramatic for the texture
inertia, changing from ~ 65% (for two textures) to ~ 85% for six textures while

the texture energy spanned ~ 70% to ~ 80%, using seven textures.

An examination of the actual combination of features that were selected also revealed
that the directional information contained in the textures was ignored (isotropic fea-
tures were more significant than any directional information contained in the tex-
tures). Secondly, the textures calculated for the low resolution levels of the wavelet
transform were predominately selected. This justified the assumption that sub-
sampling the images to 110 pm/pixel had little impact on the classification ability of
the properties. Finally, when the features used in the discriminant function were not
constrained to belong to a single property the texture energy, texture entropy and

texture inertia were selected to the exclusion of all the others.

5.2.3 “Contra” Cohort

In the Diag cohort, there were many mammograms in the dataset that were not
included. The majority of these were the mammograms for the clinically normal
breast contralateral to those that had a malignancy (for the abnormal cases) or, for
the normal cases, the images that remained after five random samples were chosen
for the Diag cohort. These images were collected as the Contra cohort. See Section
3.2. The classification performance for the feature sets selected from the Diag cohort
were tested on these Contra images.

The testing involved:
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1. Creating 5 discriminant functions using the best feature set for each property,
described in Section 4.2, and changing only the coefficients for the 5 trials (A-E)

of the Diag group.
2. Taking the same discriminant functions formed for the Diag cohort.

All these functions were then tested for their classification performance on the Contra
cohort.

Overall the results were similar to those described above for the Diag cohort.
The similarity in the results between the Diag and Contra cohorts may be due to
an early stage of breast cancer that had yet to exhibit any clinical indicators or mirror
symmetry between the left and right breasts, since the Contra cohort predominantly
consisted of the mammograms contralateral to those in the Diag cohort. There is a
high risk but low overall incidence of contralateral breast cancer [Chen et al., 1996],
therefore it was more likely that the similarity in the classification performance be-
tween the two cohorts are due to symmetry rather than the presence of an abnormal-
ity. However, the fact that the system was trained to distinguish normal/abnormal
groups and the high risk of contralateral breast cancer suggested that the selected
features may be associated with a mammographic characteristic that is related to
risk rather than some definite appearance of disease. While suggestive, this evidence
is circumstantial and further work in this area is recommended for an unequivocal

conclusion about the nature of the characteristic that is detected.

5.2.4 Age Dependence

The exact form of the dependence of the classifier results on age varied with the

features used to form the classifier and with the cutoff selected for statistical signif-
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icance. The images with a diagnosed malignancy and a random selection of images
from patients who were cancer free, Diag cohort, was considered for this part of the
study. The cohort was divided into 8 groups based on the patients’ age; 40-54, 42-56,
44-58, - --, 54-68. The feature sets which were used to form the classifiers for this
study were the discriminant functions with the best classification performance for
the fewest number of features for the original Diag cohort, as described in Section
5.2.2. The classification results were then tested for a statistically significant linear
(with a slope different from 0), quadratic or cubic dependence with age compared to
a constant. Additionally, any quadratic or cubic age dependence was also tested for
statistical significance when compared to a straight line.

Overall, if the limit for statistical significance was set relatively high, p = 0.05, the
age dependence in the results was complex. For example, for the regional moments
and the texture entropy there appeared to be a cubic age dependence while the
texture energy resulted in a quadratic age dependence and the remaining properties
gave results that were independent of age. However, these may be artifacts from the
small sample size and the use of the same images in several age groups. When p was

set to a lower threshold, 0.001, there was no apparent age dependence in the results.

5.2.5 Scanner Dependence

There was a small number of cases (34) with diagnosed malignancy but with mammo-
grams digitised on the DBA scanner, which was the scanner usually used for scanning
the normal cases. If the classification accuracy of the Diag cohort was used for the
probability of a correct mammogram classification for each feature set then the proba-

bility of observing the distribution found in Section 4.4 for the 34 cases, from random
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chance alone, can be calculated using a binomial distribution. From Section 4.4 the
resulting probabilities were low, which implies that there may be a residual scanner
dependence in the data. Again, this may be a small sample size effect since the
classification accuracy found for the Diag cohort was an average value for a sample
consisting of more than 34 cases. If this was indeed the case, then the results which
were observed for the 34 cases would be unlikely but not necessarily systematic.

The corrections that were applied to the images compensated for variations in the
slope of the linear part of the calibration curve, resolution and non-linear effects in the
calibration curve. These alterations made the resolution and contrast consistent with
a single scanner. The final modification to the grey levels (the removal of the tails of
the histogram followed by extending the histogram to occupy the full range of possible
grey level values) provided a small correction for variations in the mammographic
technique. No attempts were made to correct for noise differences aside from the
inherent smoothing due to the reduction in the resolution. Further corrections for
the MTF, noise and differences in the details of the mammographic technique are
difficult to perform both theoretically and in practice.

If the corrections that were applied to the images are insufficient to reduce the
scanner characteristics below a detectable level then the repercussions are significant.
In particular, meaningful comparisons of results from different groups would not be
possible unless the same database of images were used for all studies. In addition, the
maintenance of a reliable system for computer aided diagnosis is made more difficult
since the system may need to be retrained after any alterations to the hardware. This
includes routine adjustments to a laser scanner such as a re-calibration of the look

up table for conversion of the detected light signal (which is related to the optical
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density) to a pixel value.

5.3 Summary

In summary, none of the properties that were selected appear to be useful for the
classification of density grades for this sample. However, it is advisable for an ad-
ditional study be performed with a more extensive data set designed specifically for
automatic density grade classification before dismissing the properties in this thesis
for density grade classification.

For the normal/abnormal classification, the texture inertia using 6 features gave
consistently high classification performance for the mammograms with a diagnosed
malignancy and a random sample from the normal cases (Diag). In addition, none
of the selected features appeared to exhibit any significant age dependence in the
results, at the p = 0.001 level. The results for all properties were comparable for
images of the normal breast contralateral to those with the diagnosed malignancy and
the mammograms from the normal cases not previously selected (Contra groups).
However, the classification accuracy using the texture energy was significantly lower
for the Contra cohort relative to the Diag cohort results. Overall, the texture
inertia appeared to exhibit the best combination of qualities for the classification of

the mammograms into normal/abnormal groups.

5.4 Future Work

The work presented in this thesis signifies the beginning of a broad examination of

global properties for mammographic classification. Some important aspects for the
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classification of mammograms with global characteristics have been revealed by this
study, many possible extensions identified and details in the execution revealed. The

more important issues are discussed below.

5.4.1 Segmentation

The segmentation procedure that was used for this work was a semi-automatic pro-
cedure that requires a considerable amount of user interaction. This was primarily
due to the need for the procedure to be flexible and to have enough features in or-
der to cope with any image that may be encountered. These characteristics were
particularly significant in segmenting the images from the Vision Ten scanner which
possessed a considerable number of severe artifacts that made the segmentation pro-
cedure difficult. With the higher quality images from the DDSM database, it would
be straightforward to make the procedure fully automatic as long as the poorer qual-
ity images could be identified and set aside. Since the user interaction constrains the
number of images that can be segmented in a given time, a fully automatic segmen-

tation procedure can reduce the time needed to process a large number of images.

5.4.2 Scanner Dependence

As stated previously, it is recommended that a study be made to specifically investi-
gate the effects of the scanner used to digitise the mammograms on the classification
performance. However, an ideal investigation would examine the effects of the expo-
sure conditions, processing of the film, etc. in addition to the scanner dependence.
Therefore, the desired radiographs would consist of x-rays for an anthropomorphic

phantom taken
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1. At different kVp’s to examine the impact of the AEC as well as the effect of

the kVp setting on the images.
2. For different film/screen/processor combinations.

3. For various intervals from the most recent QA test. This examines the effective-
ness of the QA procedures to maintain a consistent image quality with respect

to the mammographic properties that were extracted.
4. Digitised using different scanners.

It is desirable to have many images to encompass the full range of variation that can
be expected for each variable given above. A large number of images is also needed
since this type of classifier is of a statistical nature rather than the more typical CAD
systems that identify a suspicious area within any individual mammogram. The im-
age set can be analysed for scanner dependence using the same procedure given in
the previous chapters as well as examining the features individually for uniformity
between images obtained from different scanners. It would also be possible to use
these images to investigate the details of how the classification system distinguishes
between the various categories. For example, the selected features may be related to
an incidental rather than a causal effect such as the kVp used to obtain the mam-
mogram. A dense breast has a greater risk of developing breast cancer and generally
requires a higher kVp so that a classifier that was in some way sensitive to the kVp

would also classify many mammograms correctly.
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5.4.3 Density Grade Classification

Attempting to improve the density grade classification performance may be achieved
by using a much larger data set with considerably more patient information than
was available for this thesis. The database should be large enough to enable the
selection of a balanced number of cases in each density grade. This factor is the
primary difficulty in carrying out a more detailed analysis than what was described
in previous chapters.

On the other hand a study of the risk requires a more sophisticated study al-
together, such as a case control study as found in {Byng et al., 1997]. The current
database does not provide the necessary patient information to be able to match the
cases and controls with respect to similar risk factors that are beyond our control. In
particular, the reproductive history is missing (age of first live birth, age of menarche,
etc.). What is required is an entirely different database for an evaluation of the rela-
tive risk associated with the properties considered in this thesis. Once an appropriate

database is assembled, the full procedure given previously should be repeated.

5.4.4 Diagnosis

It is possible that the selected feature set was characterising considerably different
aspects of the mammogram; some that are indicative of cancer risk and others that are
indicative of the clinical appearance of an abnormality in the current mammogram.
Further, it is not possible to isolate the category to which each characteristic belongs
without data selected specifically for that purpose. The simplest approach to study
the diagnostic ability of any particular features would be to employ a database of

images that consists of many sets of mammograms for the same patient over a long
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time interval. It is also useful to have roughly equal numbers in both the normal
and abnormal groups and both groups should utilise mammograms obtained over
approximately the same time period to compensate for improvements in the film
technology. For the abnormal cases, the screening mammograms both before and after
the actual diagnosis of the lesion would be useful. The images taken prior to discovery
of the malignancy have to extend over a sufficiently long time that the presence
of a lesion which is masked in the early mammograms is unlikely. Similarly, the
normal cases require that the patient has been undergoing screening mammography
for a sufficiently long time to be confident that the patient has not contracted an

abnormality for some time after the date of acquisition for the last mammogram used

in the study.

5.4.5 Age Dependence

The approach to investigate the age dependence given in the previous chapters is
sufficient to examine this characteristic. However, a much larger database of images
is required so that the results are less likely to exhibit small sample effects. Indeed,
if the sample size can be made large enough, it is possible to have a statistically
significant number of samples for each age group as well as disjoint groups with

respect to both the cases in each group and the ages of the patients in each group.

5.4.6 Bootstrapping

Both the current study, described in the earlier chapters, and the proposed experi-
ments given above require a training and a test set as an integral part of the analysis.

The results presented for this thesis used only five training and test groups that were
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formed by redistributing the available cases between the two groups for each trial.
This is a small number of trials and a better estimate of both the expected perfor-
mance for the feature set under evaluation and the uncertainty in the performance can
be obtained for a larger number of trials. While it is possible to simply increase the
number of trials and to find the average and standard deviation for the results as in
[Boone et al., 1998], there exists a method of combining the results for a large number
of trials that gives a better estimate of the expected performance and uncertainty.
This method is known as bootstrapping [McLachlan, 1992]. A prototype program
has been developed at the Institute for Biodiagnostics that performs the procedure
but it is in its early stages and requires the intervention of an expert statistician to
perform the procedure and evaluate the results. The procedure has not been used for
this current study but there is no fundamental reason that prevents its application

to the data for this work once the program reaches production quality software.

5.4.7 Miscellaneous

One point that has become obvious in the literature is that there are many approaches
to feature extraction in mammogram classification but few comparisons between com-
peting techniques. One of the difficulties for such a comparison is the difference in
image databases between different studies as well as differences in the reporting meth-
ods, some use the percent correctly classified (as do we), some the area beneath ROC
curves, some the actual relative risk between patients with the highest and lowest val-
ues for some particular property. Others utilise various statistical parameters (several
different types of correlation coefficients, etc.).

Once the necessary image database is constructed it would be a simple matter
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to make a direct comparison of the performance for all the features used to date for
mammogram classification. This would require a careful examination of the literature
since the selection of the images for the database may have many constraints to be able
to reproduce the work of several different groups ezactly. Additionally, some of the
diagnosis and risk studies require very large datasets and some of the studies involving
the use of Wolfe grades may be difficult to execute since it requires the assessment of
the mammogram by someone experienced in classifying the mammograms into these
categories. However, the popularity of Wolfe grades has declined and some of the
techniques appearing in the literature can be used for a more objective measure for
various mammographic classes and enable a comparison to be made without as much

intervention of an experienced observer.

5.5 Final Comments

Clearly, there is a sufficient number of extensions to the work presented in this thesis
that a full investigation of all aspects would extend over many years. The studies that
were performed with the current set of images constitute an initial examination of a
potentially ongoing investigation for mammographic classification using the selected
global properties. These current results have successfully identified simple texture

properties of a wavelet transformed mammogram that are useful for mammographic

classification.



Appendix A

Fractal Geometry

One of the principal features that was extracted from the mammograms used in this
study was based on a multifractal dimension. Since a multifractal is an extension to
the basic ideas underling fractal geometry, a brief outline of some of the concepts is

described below prior to discussing multifractals.

A.1 Basics

Although many of the initial steps needed for the field of fractal geometry appear at
various times throughout history, one of the key people behind unifying the concepts
and forming fractal geometry into its own field of study has been Benoit Mandelbrot.
He recognised that the use of conventional Euclidian objects, such as lines, circles,
curves, etc., was inadequate when trying to model many naturally occurring objects
— the objects themselves were simply too complex. However, there did appear to be a
unifying characteristic behind these complicated objects; namely, self-similarity. Sym-

metry has long been an important characteristic in the study of natural phenomena.

160
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For example, Noether found that the symmetries that are a characteristic of the sys-
tem itself imply the existence of some conserved quantity [Goldstein, 1980]. As well,
the behaviour of systems under rescaling has been an important tool in statistical me-
chanics and condensed matter physics for some time [Chaikin and Lubensky, 1995].
The behaviour of an object under changes in scale is fundamental to fractal geometry
as well and, in a loose sense, fractals are characterised by invariance to changes in
scale [Addison, 1997].

Consider three of the “classic” mathematical or pure fractals, the Koch curve

(Figure A.1), the Sierpinski Gasket (Figure A.2) and a Peano curve (Figure A.3). All

i

Figure A.1: Five iterations in the generation of a Koch curve starting from a straight
line. Figure taken from [Peitgen et al., 1992].

of these were formed using a simple systematic iterative procedure. For example, a

Koch curve was formed starting from a straight line and applying the procedure
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Figure A.2: Three iterations in the generation of a Sierpinski gasket. Figure taken
from [Peitgen et al., 1992].
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Figure A.3: Three iterations in the generation of a Peano curve. Figure taken from
[Peitgen et al., 1992].
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1. Remove the middle third of the line segment.

2. Place two line segments of the same length as the part that was removed in the

gap, so that it forms an equilateral triangle (with one side missing).

The process was carried out for each line segment that forms a part of the curve and
repeated ad infinitum. Similarly, a Sierpinski gasket starts as a filled triangle and
of the area is removed from each remaining triangle for each stage in the iterative
process. Finally, the Peano curve employed a scaling factor of 3 at each stage and
replaced each line segment by a combination of 9 line segments that formed the shape
shown in the second iteration in Figure A.3.

The resulting objects have properties quite unlike other commonly encountered
curves or surfaces. Both the Koch and Peano curves are continuous everywhere and
differentiable nowhere and all three of these objects are strictly self-similar. If a region
of the object, especially in its final state, is rescaled by the proper amount, the result
exactly resembles the original, although some rotation may be necessary. In addition,
the Peano curve can be shown to fill an entire region of space [Peitgen et al., 1992]
and space filling curves are examples of where the conventional concept of dimension
encounters difficulties. The Peano curve was formed from a single curve, a one di-
mensional object, but covers all points on a surface, a two dimensional object so the
question arises — which dimension should be used for a Peano curve? Mandelbroit
argued that these sort of objects were members of an entirely different class of objects
and that the concepts which were used to define the dimensions of more conventional
objects were inadequate for these. The conventional dimensions (1 because it is a
line and 2 since it fills the area) still appear as the topological dimension and the

Euclidean dimension, respectively. A fractal dimension, on the other hand, is formu-
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lated using some aspect of the scale invariance that is inherent in a fractal. This is

usually expressed by some variation of

M = ks? (A.1)

where M is some measured quantity, < an arbitrary proportionality constant (it is not
relevant for the fractal dimensions), s some distance characteristic of the resolution
or scaling and d is the quantity related to the fractal dimension. Depending on the
exact quantities for M and s, d may be the fractal dimension directly or may need
to be offset, usually by either the topological dimension or the Euclidean dimension,
before being used as a fractal dimension.

One of the more common methods of calculating a fractal dimension is known
as the Hausdorff mesh or box counting dimension. The procedure to calculate this
dimension is very straightforward and this simplicity combined with the ease in im-
plementing the calculation automatically has made the box counting dimension ex-

tremely popular. Basically, the approach is as follows:

1. If the box counting dimension is desired for the object in Figure A.4, choose an
initial length, €. This length is arbitrary and for an image a convenient size is

1 pixel.

2. Superimpose a regular mesh or grid composed of cells of size £ x £ over the

object.
3. Count the number of cells that contain any portion of the object.

4. Change the size of the mesh and repeat the procedure. Since the scaling be-

haviour of, in this case, the number of cells covering the object is under exami-
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Figure A.4: Border of Canada. The labels “A” and “B” are used as part of a fractal
dimension calculation (following).

nation, a wide range of resoiutions is needed. Therefore, a dramatic change in
the resolution is chosen for each iteration of the procedure. If the initial size
is 1 pixel, and for a digitised image this is the smallest resolution possible, a

common choice for the other resolutions form a dyadic sequence, i.e. 1, 2, 4, 8,

16, - - -

5. Plot the logarithm of the number of cells as a function of the logarithm of the
reciprocal of the cell size and look for a linear relationship® If one does not exist
then the fractal model does not hold and the calculation of a fractal dimension
is nonsensical. On the other hand, if there is a linear relationship the slope

of the fit is the fractal dimension (for the box counting dimension). For real

1 There is some ambiguity in the quantity that should appear on the abscissa. For the scale sizes
defined as we have in this example, we use the logarithm of the reciprocal of the scale size.
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Scale Size (Pixels) Number of Cells to Cover

1 4175
2 2604
4 1007
8 378
16 132
32 51
64 18

Table A.1: Data for the box counting dimension applied to Figure A.4

objects there will only be a finite range of resolutions where the fractal model
is applicable and usually not all the data that were calculated can be used for

the regression fit.

When this procedure is applied to Figure A.4, the resulting data for the scaling
properties are given in Table A.1. The data are also plotted in Figure A.5. From
Figure A.5 it was clear that the linear relationship was very good except for the point
that corresponds to a scale of 1 pixel. This indicates that for the finest resolution the
fractal model of the border was beginning to break down but for scales from 2 to 64
pixels the model was a good representation for the border. The slope of the regression
fit and the box counting fractal dimension was then 1.44 and is, as expected, greater
than the topological dimension (1) and less than the Euclidean dimension (2).
There are many approaches to calculating a fractal dimension. Indeed, there are
almost as many different methods as there are studies that use a fractal dimension.
Only two are discussed here, the mass dimension and a fractal dimension derived
from the power spectrum. For the purposes of this discussion, the mass dimension
was used to demonstrate a few general properties of fractal dimensions that we would

like to emphasise while the power spectrum dimension is described since it and vari-



A.1 Basics

167

4.0

3.5 4

3.0 1

2.5

2.0

log(Number of Cells)

1.5 4

1.0
-2.0

—
-1.0

log(1/¢€)

0.5

0.0

Figure A.5: Plot of data for application of the box counting dimension on Figure A .4.
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ations on the technique are common in the literature for mammographic texture
characterization.

The procedure necessary to find the mass dimension [Schroeder, 1991] is also
straightforward. It is commonly used to calculate a fractal dimension for objects
that appear to radiate from a central location such as in a Lichtenberg figure, Figure
A.6(a) — formed by the electric discharge from an electrode placed at the centre of

the image, or natural down, Figure A.6(b). The mass dimension is defined as

(a) Lichtenberg figure (b) Natural down

Figure A.6: Two examples of natural fractals.

m oc rPm (A.2)

where m is the amount or “mass” of the object contained within a radius r of some
point, naturally the centre, and D,, the mass dimension. Therefore, the actual pro-
cedure is roughly similar to the procedure for the box counting dimension. For an

image and an arbitrary selection of radii? find the “mass” (the number of pixels) con-
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Mass Mass
Radius (Pixels) Centre : Hudson's Bay ) ( Centre : Nunavut
( AinFigure A.4 Bin Figure A .4 )
1 0 0
2 2 1
4 9 11
8 24 50
16 72 208
32 255 825
64 1137 1926
128 3222 2792
256 4175 4175

Table A.2: Data for the mass dimension applied to Figure A.4 with the centre for the
technique placed at two different locations, Points A and B in Figure A 4.

tained within a circle of each radius. Then, if there is evidence of a linear relationship
between log(m) and log(r) the slope is D,,. If this procedure were to be applied to
the image of the border of Canada, Figure A.4, there is some arbitrariness as to the
choice of location for the centre. In particular, consider two centres, one on the coast
of Hudson’s bay (point A in Figure A.4) and the other near the middle of Nunavut
(point B in Figure A.4) for radii of 1, 2, 4, 8, 16, 32, 64, 128 and 256 pixels. The larger
radii actually extend beyond the edge of the image but since there was no part of the
Canadian border that extended beyond the image, all points outside the image were
taken as white. The data for the mass dimension for these two centres are shown in

Table. A.2 and Figure A.7 Again, there are some important observations from Figure

AT

1. The range of scales over which the fractal model was applicable was finite. When

the centre for the mass dimension was placed near the centre of Nunavut (point

2This is also usually chosen as a dyadic series.
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Figure A.7: Plot of data for application of the mass dimension on Figure A.4 with
the centre for the technique placed at two different locations: points A and B from

Figure A.4.
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B) there was only a narrow range of resolutions where the curve was linear?.

2. The slopes, and therefore the mass dimension, were not the same when the mass
dimension was calculated at two different locations. This demonstrated that a
fractal dimension may not be uniform over an entire real world object, unlike a

mathematical fractal such as the examples in Figure A.1 — Figure A.3.

3. The mass dimension with a centre at Nunavut was 1.9 while the mass dimension
with a centre near Hudson’s bay was 1.8. Both are different from the box

counting dimension (1.4) for the same object.

The repercussions of point 1 were discussed above. An arbitrary selection of
resolutions was not appropriate when calculating a fractal dimension on a real object.
Point 2 was also fairly obvious. A physical object may not have the same fractal
dimension throughout. However, point 3 is less well known and there are several

reasons behind the observed difference:

o Not all methods of calculating the fractal dimension are appropriate for all
situations. The mass dimension was intended to be used on object that seem

to have an obvious central point.

@ There is not a single fractal dimension. Each method of finding a fractal dimen-
sion actually examined a different property of the object under investigation.

See [Schroeder, 1991] or [Peitgen et al., 1992], for example.

Both points 2 and 3 imply that the specification of the method used in the calculation

of any fractal dimension must be clear and unambiguous.

3The breakdown in the fractal model close to the largest scale was expected. The radius of the
circle extended beyond the limits of the image and, obviously, the border cannot be fractal beyond
its limits.
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A.2 Random Fractals

Most naturally occurring fractals, including coastlines, are not strictly self similar.
Unlike a Koch curve, a small region cannot be made to resemble the entire object
exactly. Rather, statistical self similarity is the norm, since the objects are formed by
processes with at least some aspect of randomness. For example, consider a mountain
range. The distribution of softer and harder components of the rock combined with
the, generally, non-laminar flow of water over its surface leads to a random looking
surface. However the randomness is not uniformly distributed. Once a shallow path is
formed for the water to drain off, more water tends to follow that path in preference
to others. This type of behaviour has resulted in fractal dimensions derived from
power spectra.

If the power spectrum* was calculated for a property with a uniformly distributed
random characteristic, there would be equal contributions to all frequencies and the
spectrum would be flat. However, a random fractal such as a mountain range or the

path of a particle undergoing Brownian motion® has a power spectrum
P(f) oc f~@Pr+3-2D) (A.3)

where P is the power, f the frequency, Dy the topological dimension and D a fractal
dimension. The inertia of the particle resists very rapid changes in direction which
suppresses high frequency components and the power decreases as the frequency in-

creases. Hence, the observed fractal dimension for traditional Brownian motion is

4The magnitude of the Fourier transform for some characteristic.
SBrownian motion is the characteristic behaviour of fine particles under the collective effect of
random collisions with the molecules of the surrounding medium.
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D = % [Schroeder, 1991] and is considerably different from a constant power spec-
trum (D = 3). For most random fractals, including those that are created from
components that undergo random walks, such as Brownian motion, D is not con-
strained to any particular value and it may even attain integral values. The fractal
dimension is characterised by the approach used to find the dimension and is not
limited to only non-integer values. These fractal dimensions, derived from a power
spectrum, are common in many medical applications as well as in chaotic systems
where the behaviour of a system appears to be partly random but there also appear

to be some systematic trends. These fractal dimensions along with topics related to

the behaviour of the power spectrum can be found in the literature under “coloured

noise”.

A.3 Summary

The discussion throughout this entire section on fractals and fractal dimensions has
been of an elementary nature. A more comprehensive overall discussion can be
found in Schroeder [Schroeder, 1991], Peitgen et al. [Peitgen et al., 1992] and Addi-
son [Addison, 1997] while a discussion on power spectrum dimensions with particular
attention to their application to natural objects appears in Petland [Petland, 1984].
Finally, a description of many fractal dimensions common in medical applications

may be found in Veenland et al. [Veenland et al., 1996].
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A.4 Multifractals

The traditional fractal objects, such as a Sierpinski gasket, a Koch curve or a Peano
curve (Figure A.2-A.3), which appear in many references, [Peitgen et al., 1992] or
[Schroeder, 1991}, are examples of strictly self similar objects. That is, if a portion of
the object is re-scaled by the appropriate amount, only a rigid body transformation is
necessary to make it exactly match the original. However, many physical objects with
fractal-like behaviour are created by processes with a certain amount of randomness
and are statistically rather than strictly self-similar. Common examples of random
fractals are coastlines, mountain ranges and Brownian motion. For these objects it
is not possible, in general, to make any sub-region exactly correspond to the original
but the general character of the sub-regions does resemble the full object. Indeed, if
an image of the sub-region was viewed without reference to the original it is difficult
to judge whether it is a sub-region or the full object.

Multifractals are generally random fractals and can be thought of as consisting
of many random fractals, with possibly different dimensions, which are intricately
intertwined. Then, when different approaches to calculate the fractal dimension are
applied, a different dimension may result depending on the “fractal component” to
which the method is most sensitive. Because of this, when the fractal dimension is
calculated for any natural object the method of calculation for the fractal dimension
is critically important.

In order to further elucidate the difference between the conventional fractal di-
mension and multi-fractal dimensions, consider the situation of several fields with

different types of ore scattered over its surface by some natural process®. The fields

5This same example was also discussed in Chapter 2.2.1
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are approximately the same size but of vastly different composition and value. Sup-
pose we wish to buy one of the fields, the most valuable, but it is too difficult to
estimate the total value of the ore over the entire area of each field. In that case we
may be interested in the distribution of ore over a relatively small sample of each field
(and assume it is typical for the entire region). It is likely that the distribution has a
fractal character and one approach which is often used to evaluate the dimension is
to use what is frequently called the box counting dimension (or Hausdorff mesh). In
this approach a regular grid with a side length of € is superimposed over the field and
the number of cells, N, which contain any type of ore are counted. The process is
then repeated with many different sized meshes. The value of the fractal dimension,
d, is then related to the slope of the regression fit of log V. as a function of loge. A
dimension closer to two indicates a greater amount of ore but this process ignores the
type of ore in each cell. Further, if the net value of a collection of ore is desired, the
composition of the samples in each cell is very important.

If we now consider the distribution as a multi-fractal, the process of calculating the
dimensions starts with the same regular grid but we assign a weight to each cell, y;;,
where ¢j specifies a location within the mesh. In this case, the total value of the ore in
the cell may be used for this purpose. The distribution can then be characterised by
the set of fractal dimensions for the various collection of cells with the same u;;. The
difficulty with this is that an integral part of the calculation of the fractal dimension
requires changing the mesh size and the value of u;; will change as the size of the
cells change. The logical remedy would be to scale u;; by the mesh size, €2 in this
case. Unfortunately, for a fractal or multifractal distribution where we expect u;; to
Hij

2

scale as €%7,ay; € R, then lin% 2 = lime®%~2 is not finite if a;; < 2. This can be
£

e—0



A.4 Multifractals 176

remedied by using a;; directly rather than p;;/e? and a; is often called the coarse

Holder exponent so that

- _ logui;
Q;; = 10g€ (A‘4)
pi = €% (A.5)

The frequency distribution of a;j, given by f. is defined by

_ log N(ay;)
fo = - (A6)
Ne(ag) = el (A7)

where N.(a;;) is the number of cells’ that are needed to cover the regions of the
multifractal with coarse Hélder exponent, a;;, at a resolution (mesh size) characterised
by . From this point there are different approaches which can be used. In this work,
the technique known as the method of moments was used. What follows is a brief
overview of the approach. A detailed description of the method can also be found in
[Peitgen et al., 1992].

The name “method of moments” comes from the use of a partition function, x,(g),

for the ¢** moment where
N(e)

X(8)=>_u%, ¢€R (A.8)
i,

Since N:(a)da represents the number of cells of the total N(¢) which have a €

7N, is still the total number of cells of size € that cover the entire multifractal; i.e. for all values
of Qij-
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(o, @ + da). We can then convert the sum over N(g) to an integral over o to give

Xa(€) = / Ne(a)u?(a)der (A.9)

xq effectively takes the place of the number of cells which cover the object when
calculating the box counting dimension and since a multifractal dimension was de-
sired, each cell is weighted by p;j(a) — the probability of finding the object in a
cell with Holder exponent of a. Then by using Equations (A.5), (A.7) and (A.9) we

cobtain

xo(&) = / (@) coagg (A.10)

= / gloa-f(@)ldg (A.11)
Define 7 = aq — f(a) and the generalised fractal dimension, D, from
7(g) = (¢ —1)D, (A.12)

Since the partition function is analogous to the number of cells needed to cover the

object, for a fractal object, x, scales with the characteristic length as
Xq(e) ox €™ (A-13)

The D, is known as the generalised fractal dimension since specific values of
g correspond to more commonly known dimensions, for example ¢ = 0 gives the
usual Hausdorff dimension while ¢ — 1 corresponds to the information dimension

[Peitgen et al., 1992, Schroeder, 1991].



Appendix B

Basic Principles of Genetic

Algorithms

In many applications there is a need to reduce the number of variables needed for
some function important to the application. For example, for this thesis we would like
the minimum number of features that can reliably be used to distinguish one class of
mammograms (abnormal) from another (normal). The traditional approaches, such
as an exhaustive search, are impractical as the number of potential features to be
considered increases. Other conventional techniques such as stepwise refinement and
steepest descent can easily get caught in local extrema, particularly as the dimension-
ality or the number of potential features increases!. An alternative technique that
tries to circumvent these difficulties is the genetic algorithm (GA). The technique is
a general approach to optimization and is not constrained to any individual field of

study. Additional details may be found in the “classic” works in the field, such as

1A classification problem can be viewed as clustering in an abstract space where each potential
feature is used as a separate dimension. Then the goal is to select the orientation of the viewpoint
so that the projection of the clusters are sufficiently separated to some desired degree.
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Holland [Holland, 1975].

In this method a possible solution consists of a subset of features that is encoded
onto a “chromosome” as described below. A population of chromosomes is gener-
ated at random and evaluated for their ability to correctly classify the images. The
chromosomes in the population that give the best results are used to form the next
generation and as the process progresses a good, but not necessarily best solution, is
found. In principle, a global minimum or maximum will be found although it may
require an indeterminate amount of time.

The basic ideas behind a genetic algorithm are easily described although many
variants have been introduced to accommodate special aspects of different problems.

The basic requirements fall into a small number of categories:

1. A mechanism is needed to map the variables under consideration onto genes in
the chromosome. A description of the conventional approach, using the position
in a bit string for each variable, can be found in Holland [Holland, 1975] or in

Prakash and Narasimba Murty [Prakash and Narasimha Murty, 1995].

As an example, this thesis used a genetic algorithm to choose regions in a
histogram that can be used to classify mammograms into several groups. The
histogram consists of the number of pixels in the mammogram for each possible
grey level. The chromosome was represented by a bit string and each bit position
in the string corresponds to a collection of grey levels. Specifically, the #*® bit
corresponds to the region containing the i** to (i + 1)™® grey levels. Then, to
select the 7** to (i4-1)*® region a 1 is placed in the i*" position in the chromosome
and to indicate that the same interval was not selected, a 0 is placed in the ‘"

bit in the chromosome.
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2. To be able to change the population and explore the feature space, a mechanism
must be provided to change the chromosomes. The most typical techniques are

crossover and mutation:

Crossover As in the biological form of crossover, this genetic operator ex-
changes information between two chromosomes and as in natural se-
lection, the “fittest” chromosomes reproduce more readily. This ef-
fect can be achieved in different ways. In [Siedlecki and Sklansky, 1989]
two chromosomes were selected at random and the crossover was per-
formed with a probability dependent on a function of the fitness for
each chromosome. On the other hand, Prakash and Narasimba Murty
[Prakash and Narasimha Murty, 1995] used the fitness function values to
bias the probability of selecting a particular pair of chromosomes for apply-
ing the crossover operator. Once they were selected the crossover was guar-
anteed to occur. The crossover procedure itself is performed by choosing a
point along the chromosomes, at random, and exchanging the chromosome

pieces at the selected point.

Mutation The procedure for this genetic operator starts with a randomly se-
lected chromosome. Then each gene in the chromosome is considered. The
gene is switched from 0 to 1 or 1 to 0 with a predefined probability, the mu-
tation rate?. For this operator the chromosome’s fitness is not taken into
account. This enhances the likelihood that the genetic algorithm will find

the global extremum. At any time during the procedure a new chromosome

2There is an alternative approach where two random numbers are selected. The first is to de-
termine if the gene should have the opportunity to be changed and the second is to determine the
actual value that should be given to that gene.
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has a non-zero probability of forming the necessary genes to place it near
the global extremum regardless of the previous history of any chromosome

in the population.

Miscellaneous The aforementioned genetic operators are the ones that appear
to be common to most studies employing a genetic algorithm. However,
there are variations depending on the application. For example, Srikanth
et al. [Srikanth et al., 1995] allowed the size of the chromosomes to vary.
To allow changes in the chromosome length they implemented insertion

and deletion of small sequences of genes as additional genetic operators.

3. Since the algorithm randomly changes the population, the procedure will only
converge to a solution of the desired problem under the appropriate evolutionary
pressure. This in turn requires a way to evaluate each chromosome to determine
its fitness to the problem under consideration. The function can be very simple,
such as a count of the number of correctly classified cases, but often modifica-
tions are made for various purposes. In particular, a fitness function that is
too “severe” will make the chromosomes converge too quickly (stagnation) and
the algorithm will likely get caught in a local extremum. On the other hand
a function that allows too many unfit chromosomes to survive will require an

excessively long time to converge to a result.

4. An important aspect of natural selection as used in a genetic algorithm is the
removal of poor solutions. The central idea is to retain the best chromosomes
and remove the worst. Often the retention and removal is constrained by the to-
tal number of chromosomes in the population. Of course, the exact approach of

how to achieve the evolution of the population can vary. One common technique
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is to completely remove the “parent” chromosomes and replace them by the new
chromosomes (after crossover, mutation, etc.) In this case, the convergence to an
optimal solution may be strictly asymptotic in that if a chromosome is created
that corresponds to a global extremum, it is very likely the ezact configuration
will be lost in the creation of the next generation by the genetic operators. An
alternative approach retains a number of the best chromosomes intact from the
current generation (the elite population) and fills the remaining members of the
population with the reproduced chromosomes. Alternatively, the parent and
children can be placed in separate populations and the best, according to the
fitness function, from either population is used for the next generation. This
variation does not require a fixed number of members in the elite population
and was the approach used in [Srikanth et al., 1995]. The formation of a new
population ends the current generation and the procedure repeats with the eval-
uation of each chromosome in the population for reproduction. Typically, the

population is allowed to evolve for a fixed number of generations.

Since the basic method is simple many variants have been used depending upon

the nature of the problem under consideration. Indeed, many subtle differences from

the basic technique appear throughout the literature.



Appendix C

Introduction to the Wavelet

Transform

The usefulness of a transform that can be used to analyse the frequencies present
in a signal cannot be understated but the typical approach, a Fourier transform,
has some difficulties. Most notably, a Fourier transform has poor spatial resolution,
which makes it inconvenient for analysing nonstationary signals (i.e. a large number
of nonzero coefficients will always be required.). There are modifications that improve
the situation such as the windowed Fourier transform which performs a conventional
Fourier transform over a small region (window) of the signal at a time. However, the

fixed size of the region may be ill suited for some applications:
1. Where the appropriate choice for the size of the window is not known a prior.
2. That do not have a single characteristic length [Aldroube and Unser, 1996).

An alternative approach is to use a wavelet transform. A wavelet transform has the

flexibility to provide both good frequency and spatial localization. In addition, it
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provides a straightforward approach to providing multi-resolution analysis. Further,
the discrete wavelet transform can be implemented very efficiently.

Wavelet transforms have been found to be useful in many areas, including nu-
merous medical applications. For example, the transform has been used in the
analysis of EKG and EEG signals [Unser and Aldroubi, 1996] as well as in image
enhancement [Giger and MacMahon, 1996, Zhang et al., 1998]. A general introduc-
tory discussion can be found in [Strang, 1994], [Morgan, 1996] and [Langi, 1996]
while an example-based description can be found in [Press et al., 1992]. Dis-
cussions that give a more mathematical formulation of the transform can be
found in [Aldroube and Unser, 1996], [Cohen and Kovacevi¢, 1996], [Harpen, 1998],
[Jawerth and Sweldens, 1994], [Strang, 1989] and [Unser and Aldroubi, 1996] along
with the classic reference [Daubechies, 1992]. In the discussion that follows it was
assumed that the signal is discrete and one dimensional. The extension to multiple
dimensions is straightforward.

The transform can be viewed in terms of a series of filters that were applied to the
original signal. This interpretation is useful for efficient implementation of a discrete
form of the wavelet transform but the transform itself has a substantial mathematical
basis. Some of the fundamental mathematical concepts are described in the next
section and further details may be found in the literature. Section C.2 describes the
development from the fundamental mathematics to the filter bank description used

in many of the transform’s implementations.
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C.1 Basic Wavelet Theory

The wavelet transform can be used to extract information in a hierarchial manner.
The transform can be viewed as the projection of the signal onto many sets of basis
functions which span various vector spaces in £,, the set of square integrable func-
tions!. At each level of the hierarchial analysis, a subset of the original vector space
was selected and broken into two smaller vector subspaces. In the most common ap-
proach, the bases for all vector spaces used in the transform can be created from the
dilation and translation of two fundamental functions, the mother wavelet 1(z) and
mother scaling function ¢(z). The basis functions are characterised by two parame-
ters, a; and bjx. This is in contrast to the Fourier transform where a single parameter
is needed to identify each function in the basis, the frequency. The parameter a; for
a wavelet transform characterises the scaling of the mother function and is usually
selected to have a form as given in Equations C.2-C.3 below. On the other hand, b;«
identifies the translation of the function relative to the mother function. The bases

can then be written as

Yaj ;6 () = Cajpsn 1*[’(?_—TII;J_’:)

—b.
Qoaj,bj'k (.'L') = Da,—,bj,k (p(-": a; 'k)

(C.1)

where C,; and D,,, are normalization constants. With the typical choice for a; and

b;x (for a discrete transform)

a; = 2j (C2)

1For all functions f(z) € £ the integral [ f(z)f(z)dz = K, < an arbitrary, but finite, constant
and we define the inner product (f(z),g(z)) as [ f(z)g(z)dz.
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bix = 2k (C.3)

Equation (C.1) can be written
Yik(z) = 2792y (2772 —k) (C.4)
oim(z) = 27%p(27'z—m) (C.5)

The definition of the problem requires two sets of basis functions, {1;4} and {¢im}
which span two disjoint subspaces W; and V] respectively. The analysis can now be
described as the projection of a function onto V; which produces some lower resolution
version (smoothed form) of the function while the projection onto W; contains the
information that is lost after the smoothing. Hence, the transformation is invertible.

Ore of the more useful aspects of the wavelet transform is that it can be made to
perform a multi-resolution analysis of the input signal. This characteristic requires
a series of embedded vector spaces, V; (mathematically V; C V;_,V 7). Each vector
space, V;_1, is further divided into the subspaces V; and W; in such a way that {¢; ;}
continues to span V; and {v;;} spans W;. As well, the subspaces are necessarily
divided to satisfy the constraint that the combination of the subspaces V; and W; are

equivalent to the subspace V;_; for all 7 or
Vie W; = Vi, Vi. (C.6)

For a wavelet transform with an infinite number of subspaces (i — o0), only the
projections onto either the {V;} or {W;} are necessary. The “missing” projections

can be calculated from the set that was retained. So, if the decomposition is carried
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out indefinitely on a function, f(z),
@) =D ciutin (C7)
jik

for some set of constants c;x. However, if the decomposition was stopped at the Jt*

subspace (hereafter referred to as “levels”) then the transform becomes

J
F@) =D cixthin+ D _dreose (C.8)
k

j=0 k

and Z djxPJk is the resulting smoothed signal on the last level of the decomposition.
k
Calculating the wavelet transform then becomes the task of finding {c;«, dsx} or more

generally {cjk, djx}-

Conceptually, the simplest form of wavelet transform is obtained when the bases

are orthogonal

(Piks PLm) = 0510km
(Yjges Yrm) = 850k,m (C.9)
(PikrYrm) = 0

where (f(z),9(z)) = [ f(z)g(z)dz for arbitrary functions f(z) and g(z). Then,

finding c;x and d; is straightforward

cix = (f(z),¥ix)
dix = (f(x),0ix)

(C.10)

These types of wavelet transforms are especially useful in various signal compression

applications as it is easy to estimate the error introduced by ignoring terms with
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contributions less than a given amount.

An orthogonal basis may not have the desired characteristics for some applications
and for these it may be more judicial to use bi-orthogonal wavelets. For instance, if
the desired properties are orthogonality (for ease in finding {c;, dj«} and to prevent
redundancies in the coefficients), compact support (for convenience when transform-
ing a finite sized signal) and symmetry (for convenience when transforming symmetric

signals) there is only one possible choice, a Haar basis (Figure C.1) [Daubechies, 1992].

oS5+ st
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(a) Scaling function, ¢ (b) Wavelet function, ¥

Figure C.1: Example of a one dimensional scaling function (C.1(a)) and a one dimen-
sional wavelet function (C.1(b)) in the Haar basis.

The drawback with a Haar basis is that is not smooth so that it is inconvenient for
transforming a smooth signal. That is, attempting to decompose a smooth signal
through a combination of functions with sharp corners would require an excessively
large number of components. A bi-orthogonal wavelet transform can be used for
greater flexibility in the choice of basis functions with only a small additional effort
in the calculation of the transform itself.

A bi-orthogonal basis loses the very restrictive properties in Equation (C.9). This

modification allows the freedom to select functions with other desirable properties,
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such as smoothness. However without the properties in Equation (C.9) it could be
difficult to find c;x and djx, in general. This difficulty is avoided by a judicious
selection of basis functions. The specific bases are selected such that for each level 7
there exists a pair of vector spaces V; and Ijﬁ that are dual to V; and W;, respectively.
The duals can be viewed as an alternative subdivision of the same subspace spanned
by V; and W; combined. The dual bases still possess the properties 17, 2} W’, = ‘7,:
and the alternative subdivision of the subspace is performed such that the following

conditions hold (Equations C.11).

(Piks Ptim) = 0j10k,m
<¢j,k:"z:n> = 0j10km

i (C.11)
((pj,kw wl,m) = 0
(¢j,k1 ‘;DT,;H) = 0

See for example [Jawerth and Sweldens, 1994]. These requirements restore the sim-
plicity in calculating the {c;;, d;;} coefficients. The constants are found by taking

the inner product of the function with the dual bases rather than the original basis.

cik = (f(z), %7k
djk = (f($)1%>

(C.12)

The introduction of the dual spaces effectively separates the functions used for
the forward and inverse transform and allows the wavelet and scaling function bases
to be independent. This in turn allows the properties for the wavelet and scaling
functions to be selected independently. For example, the smoothness of a wavelet

competes with its compactness, a smoother function tends to be less compact. Since
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the projection of the function onto V; produces a result which is like a smoothed
form of the function, a smooth basis for V; would be desirable. On the other hand,
the projection onto W; reflects the information lost from the projection onto V; and
contains the higher frequency components so that a more compact basis is more
convenient. The bi-orthogonal transform allows both requirements to be fulfilled
while retaining the efficiency of an orthogonal transform.

Of course, the difficult aspect of a bi-orthogonal transform is in the selection of the
bases that satisfy all the requirements. Quite fortunately, Sweldens [Sweldens, 1994,
Sweldens, 1995] has developed a method, called lifting, where the appropriate bases
with the desired properties can be generated automatically. Specifically, the proce-
dure starts with a known basis, such as a Haar basis, and takes linear combinations
of the functions (lifts it) in such a way to form a new basis that has the desired
properties while maintaining the constraints necessary for a wavelet transform. The
precise linear combinations that are taken are complex. Details can be found in

[Sweldens, 1994] and [Sweldens, 1995].

C.2 Wavelet Transforms as Filter Banks

The wavelet transform was described, in the previous section, in terms of inner prod-
ucts with many sets of basis functions and it may appear difficult to implement the
transform efficiently. In practice, a simple and fast procedure to perform the calcu-
lation has been found: the fast wavelet transform. The following discussion is based
on that in the thesis of Langi [Langi, 1996]. We assume the orthogonal transform is

used but the analogous results can be derived for a bi-orthogonal case.
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The coefficients c;x and d;, are given by
dix = (f(z), 0ik) (C.13)
cix = (@), Yik) (C.14)
First consider d;jx. Since V; C V;_;, ¢;x can be written as
Pik = Z (Piks Pi—10)Pi—11 (C.15)
!
and the {(@;x, pj_1.) are a set of constants, h;. In addition, the functions
pix(z) = 27720277z — k) (C.16)
are orthogonal. Therefore, (pji, @j—14) # 0 iff
277z —k = 270-Ug_y (C.17)
279z = l—k (C.18)
z = 2(l—k) (C.19)
and the argument for ¢;x # 0 occurs when
7z — k) log-ey = 277271 —k)] -~k (C-20)
= l—k—k (C.21)
= [ -2k (C.22)
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Finally,

(Piks Pi—14) = hi—26[z,27(l — k)], i—2x € R

Combining equations (C.13), (C.15) and (C.23) gives

dix = (f (@:%‘,k)

= (f(z), 21 hi—20[z, (1l — k)]s 1)
= > hadlz, 27 (1 - K){(f(2), pi-14)
{

= Z hi—2k8[z, 27 (1 — k)}d;_1,
1

(C.23)

(C.24)
(C.25)
(C.26)

(C.27)

Similarly, for the other set of coefficients, cjx = (z,%;x), recall V; & W; = V;_;

which implies W; C Vj_; so, again, it is possible to write

Yik

Z (Yidr Pi—11)Pj—1,0
1

Z qpPi—-11
]

(C.28)

(C.29)

and we define g = (Y;k, @j—14). Similar to the derivation outlined for (@, ¥j—14),

it can be shown that

(Vjks Pi—11) = Gi-2k6{T, 27 (1 — k)], g1—2x ER

and

Cjk = Egl—2k5[-'r, 271 — klej_14
1

(C.30)

(C.31)

The results (C.27) and (C.31) are quite important and several observations can
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be made.

1. The coefficients for each succeeding level can be calculated using strictly the

coefficients from the previous level.

2. The equations ((C.27) and (C.31)) can be viewed as the application of a filter
onto the input signal [Antoniou, 1979]. From this point of view, the constants
h;_ax and g;_ox function as the kernel of the filters and since the equations are
recursive, the wavelet transform is often described as a “tree” of filter banks

applied to a signal. (See [Langi, 1996].)

3. Not all the coefficients on the (j — 1)*® level are needed to form the coefficients
on the 7% level. A dyadic sequence was used for a; and b, and for this case

only every other coefficient is used.

A wavelet transform is usually constructed such that the filter with the A kernel acts
as a low pass filter or a projection onto V; and the filter with the g kernel acts as a high
pass filter (or a projection onto W;), followed by sub-sampling by two. The output
from the low pass filter is then analysed again by another pair of filters followed by
sub-sampling. The process can be repeated as often as desired. From this point
of view a fast implementation for the forward and inverse wavelet transform is not
difficult.

The tree-of-filter-banks interpretation is important since it provides an intuitive
interpretation of the meaning behind a wavelet transform and it also allows for some
modifications to the classic wavelet transform that are difficult to conceptualise math-
ematically. In the conventional wavelet transform only the output of the low pass fil-

ters are input into the next level of the analysis but there is no fundamental reason for
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this configuration to be used exclusively. In principle, an arbitrary branch of the tree
of filter banks can be used for the next level of the analysis. For example, a configu-

ration as shown in Figure C.2 would not be forbidden. The arrangement of the filter

—{H}— L Out

Figure C.2: Arbitrary tree of filter banks.

banks can be varied depending on the desired characteristics of the signal which is to
be captured. Indeed, such an altered transform has been used in many applications.
A general description of trees of filter banks and an application to signal compression
can be found in [Langi, 1996]. These arbitrary trees of filter banks are in fact the
“variation of a wavelet transform” used in [Clarke et al., 1994, Qian et al., 1995] for

microcalcification segmentation and described in Chapter 1.



Glossary

ACR Anmerican College of Radiology

AEC Automatic Exposure Control. A device in a mammography unit which mon-
itors the exposure and halts the beam of x-rays when the exposure reaches an

upper limit.
ASCO Anmerican Society of Clinical Oncology
BiRADS Breast Imaging — Reporting and Data System [ACR, 1993]
CAD Computer Aided Diagnostics
CC Cranial Caudal, literally head to tail.
Compact The domain over which the function is non-zero is finite.

Confusion Matrix A two dimensional histogram of a priori classification (per-
formed by the clinician in this case) and posteriori classification (performed by
the program). Perfect classification produces a confusion matrix with elements

only on the principal diagonal.

Covariance Matrix A matrix of calculated properties common in statistics. The

matrix contains variances along the principal diagonal and covariances in the

195
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off diagonal elements.

Dysplasia Alteration in the size, shape and organization of cells forming the mam-

mographic ducts.

DDSM Digital Database for Screening Mammography: A publicly available data-

base of digitised screening mammograms from the University of South Florida.

HD Hurter and Driffield curve. The curve that describes the optical density of film

as a function of log exposure.

Hyperplasia Abnormal increase in the number of normal cells in the duct epithe-

lium.

kVp kiloVoltage peak. The power supply to a mammography unit is not strictly

DC and the peak voltage across the x-ray tube is characterised by this quantity.

Laws’ texture energy Laws’ textures are calculated by filtering the image with
filters defined by Laws and finding some statistic for a window around each
pixel. The Laws’ texture energy is found by filtering the image with a filter that
enhances spots and lines, then calculating the standard deviation in a window
centred over each pixel. Taylor [Taylor et al., 1990] normalised the values by
the local contrast map. The procedure to find the local contrast map was the

same except that the image was filtered with a smoothing filter (also created

by Laws).

mAs milliAmpere seconds. A measure of the charge transported through the x-ray

tube during an exam.



Glossary 197

MTF Modulation Transfer Function. A measure of the relative magnitude of a
signal after propagating though a system as compared to the original. For a

perfect system the MTF is 1 for all frequencies contained in the original signal.
Nulliparity Never having carried a pregnancy.

Objective Function A function that quantifies the how well the selected properties

correctly classify the sample cases.

ROC Receiver Operating Characteristic curve. A plot of the true positive proba-

bility as a function of the false positive probability.
ROI Region of Interest

SCC Six-Category Classification scheme of the mammographic density due to Byng
et. al [Byng et al., 1994]

SGLD or SGLDg4y Spatial Grey Level Dependence matrix. A 2 dimensional array
which is a function of 2 variables, d and . Each entry in the array consists of
the probability for finding a pair of pixels with grey levels 7 and j separated by

a distance d and with an orientation 4.

Unsharp Mask A method of enhancing the high frequency components of an image.
First a lowpass filtered version of the image is formed. Then, the original image
is weighted by a user defined amount (amplification factor) and the lowpass

image is subtracted from the weighted original image.
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