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ABSTRACT

The operation planning of a hydro-electric utility is a complex problem
involving decisions about reservoir releases, enmergy supplies and many other
production related problems during a certaiﬁ planning period. Mathematical
modelling (simulation and optimization téchniques) is widely used to aid the
decision making process. This work presents a deterministic Linear Programming
(LP) based optimization model. The objective is to maximize the energy export
benefits of the utility, while minimizing the costs of satisfying the domestic power
demand over the planning period. For the specified reservoir inflow and power
demand scheme, decisions about the energy production, export and import have to
be made for each time step.

An iterative algorithm named EMSLP (Energy Management by Successive
Linear Programming) was developed to solve the optimization problem. The
EMSLP algorithm has two iteration levels: at the first level a stable solution is
sought, and at the second the interior of the feasible region is searched to
improve the objective function whenever its value decreases.

The EMSLP algorithm has been tested using the Manitoba Hydro system
data. To evaluate the performance of the algorithm a comparative study has been
made with the EMMA (Energy Management and Maintenance Analysis) program
used in the Manitoba Hydro practice. The results of the comparison have shown

a number of advantages of the EMSLP algorithm.



TABLE OF CONTENTS

PAGE

Acknowledgements : 1

Abstract ii

Table of Contents : iii

List of Tables _ vi

List of Figures vii

Chapter 1: Introduction 1

1.1 Problem Statement 1

1.2 The Concept of Successive Linear Programing 3

1.3 Modelling approximations 4

Chapter 2: Review of Previous Work 6
2.1 Mathematical Modelling Applied to Hydro Power

Generation

2.1.1 Dynamic Programming 7

2.1.2 Nonlinear Programming 13

2.1.3 Simulation 15

2.2 Linear Programming Applications 16

2.2.1 Deterministic Models 18

2.2.2 Stochastic Models 23

2.3 Description of the EMMA Program of Manitoba Hydro 25

2.4 Description of the Successive Linear Programming Model 39

of J. Grygier



v

PAGE

Chapter 3: Energy Management by Successive Linear Programming 50
3.1 The Problem Formulation 50

3.1.1 The Constraint Set | 52

3.1.2 The Objective Function- 56

3.2 The EMSLP Algorithm 58
Chapter 4: Evaluation of EMSLP 63
4.1 The Case Study 63

4.2 The Results of Comparison with EMMA 67

4.2.1 Final Storage Value Variation 68

4.2.2 System Load Variation 68

4.2.3 Release Limit Variation 76

Chapter 5: Conclusions 92
5.1 Discussion of EMSLP-EMMA Comparison Results 92

5.2 Developments of the EMSLP Research 95

5.3 Differences between EMSLP and Grygier’s SLP Model 95

5.4 Directions of Future Research 96
Appendix A: Notation 98
Appendix B: Bibliography 100

Appendix C: Tables of the Case Study Results 105



PAGE
Appendix D: The Fortran Program of EMSLP Applied to the Case 112
Study

D.1 Program Structure 112

D.2 Variables : 114

D.3 Input Data 120

D.4 Program Execution 121

D.5 Output Report 126
Appendix E: Source Code 128

Appendix F: Sample Input and Output File 178



R

LIST OF TABLES

Table 1. The discretized load duration curve data
Table 2. The inflow scheme

Table 3. The energy price structure

Table C-1. EMSLP results for varying storage benefits
Table C-2. EMMA results for varying storage benefits
Table C-3. EMSLP results for varying system demand
Table C-4. EMMA results for varying system demand
Table C-5. EMSLP results for varying release lirﬁits

Table C-6. EMMA results for varying release limits

PAGE
65
65

65

106
107
108
109
110

111



Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Figure 6.

Figure 7.

Figure 8.

Figure 9.

Figure 10.

Figure 11.

LIST OF FIGURES

Load duration curve modelling

EMMA flowchart

Flowchart of the SLP algorithm (Grygier, 1983)
EMSLP flowchart

Schematic Hustration of the Case Study
Comparison of reservoir levels for $3600/KCFS-day
ending storage value

Comparison of reservoir levels for $4000/KCFS-day
ending storage value

Comparison of reservoir levels for $4200/KCFS-day
ending storage value

Comparison of reservoir levels for $4500/KCFS-day
ending storage value

Comparison of reservoir levels for $4600/KCFS-day
ending storage value

Comparison of reservoir levels for $4700/KCFS-day

ending storage value

PAGE
31
38
47
60
64

69

70

71

72

73

74



Figure 12.

Figure 13.

Figure 14.

Figure 15.

Figure 16.

Figure 17.

Figure 18.

Figure 19.

Figure 20.

Figure 21.

viii

Comparison of reservoir levels for $4800/KCFS-day
ending storage value

Comparisonbof Teservoir lévels for system load equal
to 0.3 times the original load

Comparison of reservoir levels for system load equal
to 0.5 times the original load

Comparison of reservoir levels for system load equal
to 0.8 times the original load

Comparison of reservoir levels for system load equal
to 1.0 times the original load

Comparison of reservoir levels for system load equal
to 1.5 times the original load

Comparison of reservoir levels for system load equal
to 2.0 times the original load

Comparison of reservoir levels for a release limit of
5.67 m’/sec

Comparison of reservoir levels for a release limit of
8.57 m’/sec

Comparison of reservoir levels for a release limit of

11.35 m®/sec

PAGE

75

77

78

79

80

81

82

84

85

86



Figure 22.

Figure 23.

Figure 24.

Figure 25.

Figure 26.

Comparison of reservoir levels for a release limit of
14.19 m/sec

Comparison of reservoir levels for a release limit of
19.86 m/sec

Normalized objective function difference for storage
value variation

Normalized objective function difference for load
variation

Normalized objective function difference for release

limit variation

PAGE

87

88

89

90

91



1
CHAPTER 1.

INTRODUCTION

The optimization of hydro power production (in broader sense reservoir
operation) has been a problem addressed By many researchers in the past three
decades. Due to the complexity of the problem none of the numerous optimization
techniques could model all the pertinent characteristics of a reservoir system
operation (multiple-reservoirs, multiple time-periods, stochastic inflows, and
nonseparable objective functions). However, this does not mean that there were
no successful applications of operations research techniques to the problem. For
real world problems, some simplifications are required to take into account the
characteristics of the reservoir system, the available data, and the modelling goal.
The simplified problem can be successfully modelled. The model can be used for
planning and operation purposes keeping in mind the assumptions made.

An algorithm for optimal midterm operation of an interconnected hydro

utility with a deterministic input is presented in this thesis.

11  PROBLEM STATEMENT

There are three major time horizons used in a hydro utility planning
procedure: long, mid-, and short-term planning. Long-term planning involves

making strategic decisions about the system for several decades in the future.
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Midterm operation problems require decisions to be made in the system on a
weekly or monthly basis over a yearly period. Short-term planning requires making
decisions on a daily or hourly basis.

The midterm planning horizon is divided into multiple weekly or monthly
time steps to cover the whole planning period. The hydro utility’s goal in the case
of Manitoba Hydro is to satisfy the domestic load throughout the planning period.
In order to comply with its obligations the utility has to import energy in the
periods of energy deficiencies, i.e., when there is insufficient water for release
through the hydro power plants, or insufficient capacity in other domestic
generating stations. On the other hand, additional benefit can be obtained by
exporting the excess energy in periods when the production exceeds the domestic
demand. The energy price structure on the power market can also allow some
additional benefits by rationally scheduling the export-import policy (e.g., buying
off-peak priced energy to satisfy the domestic load and storing water for on-peak
priced production and possibly export).

To prevent an operation which would empty the reservoirs at the end of the
planning period (i.e., to be greedy in achieving higher benefits) there is an assigned
value of water for the last time period. The value reflects the future benefits from
the stored water.

Deterministic planning means that the stream flows in the hydraulic system,

the domestic load and the energy prices are known in advance for the whole
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planning period in each time step. These assumptions are far from realistic,
because each of the above model inputs is uncertain. Since the model does not
incorporate the uncertain future explicitly, it has to be evaluated implicitly by
sensitivity analysis. The optimization has to be performed with different scenarios
éf stochastic data to evaluate their impact on the operation policy. The way to
improve the operation policy is to update the forecasted input data whenever
additional information is available and to run the model again. Therefore, the
optimal policy obtained from the model is implemented only for the first time step.

For the next time step, the model optimizes with the new forecast.

1.2 THE IDEA OF SUCCESSIVE LINEAR PROGRAMMING

The algorithm uses the technique of Linear Programming (LP) to optimize
the operation. Like the other mathematical programming techniques LP requires
the formulation of an objective function to be optimized and a constraint set to
limit the feasible solution space. In the problem of hydro production optimization
the objective is to maximize production benefits and minimize costs with respect
to the constraints which describe the system. In addition, LP requires linear
relationships in the objective function and the constraints, too. The problem of
hydro production optimization is nonlinear. Some of the nonlinearities can be
approximated by piece wise linearization to the desired degree of accuracy, and

they do not represent a serious obstacle for the LP application. The major
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difficulty lies in the nonseparable character of hydro production function. The
multiplication of release, storage, plant efficiency and conversion constant give the
produced hydro energy. The release and storage are both decision variables in
the model and they must be separated in order to apply the LP technique. There
are numerous approximations which can be applied to linearize the relationship.
VThe common to most of them is that the solution to the problem is obtained in a
sequence of iterative LP solutions. The assumed values used to linearize the
original function are updated after each iteration until the ihput is close enough to
the output value. This technique to solve nonlinear problems using LP is called
Iterative Linear Programming (ILP).

The algorithm presented in this thesis applies an approximation which
belongs to a special class of ILP. The nonlinear function is approximated around
a chosen point in the decision space by its first order Taylor series expansion. The
algorithms developed on the basis of this approximation are called Successive

Linear Programming (SLP) algorithms.

1.3 MODELLING APPROXIMATIONS

In addition to the already introduced simplified planning with deterministic
input, modelling of the hydro utility operation requires a number of other
facilitating assumptions. The calculation of the plant head and efficiency is

performed simultaneously by determining their product called Energy Rate Function
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(ERF). The calculation does not take into account the impact of discharge, i.e.
ERF is assumed to be the function of the storage exclusively. In reality the
efficiency and the tail water are both dependent on the discharge. In addition, the
representative ERF value for a time step is assumed to be the average of the
function value for the storage at the beginning and at the end of the time step.

It is also assumed that there is a linear relationship between the volume of
the water stored in the reservoirs at the end of the planning period, and the future
benefits from that storage. In reality the return per unit volume diminishes with
the increase of the amount stored. In the model it is assumed to have a constant
return per unit volume.

The model assumes that the generating capabilities are available for
production during the whole planning period. In reality every plant must have
outages due to maintenance. The operation planning has to take that into account.
The problem of maintenance can be included into the model in the same manner
as is done in the EMMA program, Manitoba Hydro (1986).

In case of multiple reservoir modelling the travelling times of water between
the reservoirs can be ignored. This assumption can be valid only for midterm
planning when the travelling time is negligible compared to the time step length.
In cases when this is not true additional modelling is required (e.g., by introducing
an artificial reservoir) to take into account the travelling time between the

Teservoirs.
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CHAPTER 2.

REVIEW OF PREVIOUS WORK

21 MATHEMATICAL MODELLING APPLIED TO HYDRO POWER

GENERATION

The problem of optimal management of hydro power generation has been
actively studied by a large number of researchers in various academic and research
institutions and electric utilities. Many successful applications of mathematical
models have been made. The method chosen depends on the characteristics of the
hydraulic and electric system, on the availability of data, and on the objectives and
constraints specified.

The operation of a hydro utility is nonseparably connected to the problem
of reservoir management. Hydro production is often one of the major purposes (if
not the only) of building a reservoir. The hydro production of a power plant
during a time period is a function of the released water and the forebay storage
level. The forebay is usually a reservoir. Even if it is not, as in the case of run
of river plant, the operation of the generation station can be largely influenced by
the releases from an upstream reservoir. The only hydro power plants which are
not related to reservoirs are the run of river hydro plants built on unregulated
rivers, but these are rare.

The methods applied for reservoir management, and also used for hydro-
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electrical system operation, can be classified according to Yeh (1985) into four
major groups.

a) Linear programming;

b) Dynamic programming;

¢) Nonlinear programming;

d) Simulation;
Combinations of the above methods have also been reported in the literature.
Since the application of Linear programming (LP) will be discussed in detail in

Section 1.2, at this point the last three methods are addressed.

2.1.1 Dynamic Programming

Dynamic programming (DP) is a technique for optimization of multistage
decision processes. It is used extensively to optimize water resources systems. The
popularity of DP is due to the fact that the nonlinear and stochastic characteristics
of water resources systems can be translated into a DP formulation without
difficulties. DP is well suited to handle deterministic short term (daily, hourly), and
stochastic mid term (monthly or yearly) operation problems (Larson and Keckler,
1969). A deterministic model for a power generation system with pumpback
developed by Hall and Roefs (1966) also shows the applicability of the method to
mid term planning. Young (1967) proposes a method to deal with the stochastic

character of the inflows while optimizing with deterministic DP. Reservoir
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operating rules are obtained using a combination of stream flow generation aﬁd Dp
optimization of releases. The stochastic character of the inflows was taken into
account by generating a long inflow sequence by a Monte Carlo technique. The
release policy for this sequence was optimized by a deterministic forward DP. The
reservoir operating rule is a regression function of the release to the storage, inflow
and forecast of the next inflow. The generated/forecasted inflows and the optimal
storages are used as a sample to estimate the coefficients of the regression function
by the least square method. Applying the rule, the economic loss as a function of
the release is minimized for annual usage of a single reservoir.

However, Yeh (1985) has stated that the major drawback of DP in its
original form is the inability to handle big multiple reservoir systems. The memory
and computing time requirements are the major limiting factors. Each reservoir
requires at least one state variable (e.g., storage) which can have several values (in
the discrete case) at every stage (e.g., time step). The possible number of
combinations (state vectors) to be explored grow exponentially with the number
of state variables at each stage. The computational burden is unbearable for a
system of more than a few reservoirs. This problem is called the "curse of
dimensionality". In this section several DP based models are presented based on
the nature of the applied methodology rather than the chronological order of

appearance.
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The remedial measure to alleviate the "curse of dimensionality" is to
decompose the complex multiple state variable problem into a series of sub-
problems which can be solved recursively. The methods of dimension reduction
beside the decomposition of the original problem also follow an iterative solution
procedure. One of the methods is the Incremental DP (IDP) used by Larson and
Keckler (1969), systematized and referred to by Heidari et al. (1969) as Discrete
Differential DP (DDDP). The method starts with a trial state trajectory satisfying
a specific set of initial and final conditions and applies the DP recursive equation
to the neighborhood of this trajectory. At the end of each iteration step a locally
improved trajectory is obtained and used as the initial trajectory for the next step.
The procedure stops when no further improvement is identified, and it is assumed
that a local optimum is found.

Another method to alleviate the curse of dimensionality is called Incremen-
tal DP with Successive Approximations (IDPSA). The concept is to decompose the
multiple-state variable DP problem to a number of subproblems of one state
variable and to optimize one at a time while the others have assumed state
trajectories. In the following step another subproblem is optimized after the state
vectors were updated with the previous solution. The procedure is repeated until
the solution of the original problem converges. The method was first applied by
Larson and Keckler (1969) for a multiple reservoir system. Nopmongcol and

Askew (1976) combined the incremental DP and the DP with successive approxima-
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tions. Their algorithm used IDPSA to obtain the input state trajectory combination
for the two-at-a-time IDP execution. The results of both IDP and IDPSA can be
influenced by the choice of the initial state trajectory, but this is a common problem
for many other iterative procedures.

Stochastic DP (SDP) can take into account the uncertainty of the input data.
One of data which is inherently random is the reservoir inflow, and its impact on
the operational policy has to be considered. SDP models can directly incorporate
this aspect of the analysis into the solution procedure. In the work of Daellenbach
and Read (1976) a stochastic dynamic programming model of the Swedish State
Power Board (Gustafsson, 1968) is described. All reservoirs and stream flows are
aggregated and presented by a single reservoir and a single hydro station. The
program derives water value curves as a function of reservoir level for the planning
period of 52 weeks. The reservoir levels are optimized to have a minimal thermal
energy production cost of the power system. The optimization is constrained by the
requirement to satisfy the specified demand for the given marginal cost structure
of thermal energy and the total amount of storable and non-storable stochastic
inflow. The historic sequence of weekly observations of stream flows during the
most recent 30 years is used as a sample to estimate the average water values.
The model is used in conjunction with a simulation model, which helps to aggregate

the stream flows and storage contents of the various river systems.
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Turgeon (1980) compares two DP techniques applied to the problem of
optimal operation of a multireservoir power system with stochastic inflows. One is
the one-at-a-time method (also referred to as DPSA in the above discussion). The
other is the aggregation/decomposition method. The first gives an optimal feedback
operating policy for each reservoir. The feedback term implies the assumption that
the turbine release from a particular reservoir is a function of the storage and
inflow of that reservoir, exclusively. An assumption that the release is related to
the storage in the other reservoirs, too, i.e. the open-loop solution, requires DPSA
execution for every time step, which is costly in computer time. The second,
aggregation/decomposition approach breaks up the original complex parallel
reservoir/power plant system into two components. One component is the actual
reservoir/power plant of the original complex system, while the other is an
aggregate of all the remaining elements of the system. In this way a two state
variable stochastic DP problem is formulated, which can be solved without
dimensionality problems. The procedure is repeated for every reservoir separately,
and the solutions are combined to result the solution of the original problem. The
two methods were applied to, and compared on the basis of, a system of six
reservoirs/power plants. In this evaluation, the aggregation/decomposition was
proven to be better.

Reliability-constrained DP arised from the fact that long range reservoir

operation has to trade off the return and the risk associated with not achieving it.
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A probabilistic DP model with discounting was formulated to solve the stated
problem. The probabilistic term stands for the independent, stochastic character
of the inflows in the model. The problem has been solved either using the penalty
function approach or the Lagrangian duality theory of nonlinear programming.
However, there are substantial difficulties in formulating a multireservoir problem
(e.g. interdependence of inflows). There are also no attempts to evaluéte the
severity and duration of failures to satisfy the targets. The applicability of the
approach is limited to long term planning purposes.

For the problems where the objective function is separable and convex (in
the case of minimization) and the system can be described solely by dynamic
equations (i.e. linear dynamics, quadratic performance problem or LQP) an
analytical solution can be obtained. The methodology can be generalized for
multiple state variable problems without running into the dimensionality problem
like in the classical discrete DP. For the problems where the above conditions do
not hold, the objective function or the system dynamics equation can be expanded
into Taylor series. In this way, around the initial estimate the requirements for
the analytical solution are satisfied. The solution procedure for these non LQP
problems is iterative. The method has the name of differential DP and it was
introduced by Jacobson and Mayne (1970).

Turgeon (1981) presented an algorithm related to a DP approach. The task

was to optimize releases from a system of hydro power plants located in series on
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the same river. The solution procedure was based on the principle of progressive
optimality. The feature of the approach is that it does not require the discretiza-
tion of the solution space. It can also handle discontinuous return functions, and
the objective function does not have to be linearized nor approximated by a
quadratic function.

To conclude, DP is capable of handling a large scale of problems in
reservoir systems. According to the literature (Yeh, 1985) its major limitation is
the curse of dimensionality and numerous efforts have been made to alleviate this

problem.

2.1.2 Nonlinear Programming

Nonlinear programming (NLP) methods have not been applied to water
resources systems analysis as often as LP or DP. This is primarily due to the fact
that these methods are much less efficient in using computer time and memory
than the others. In addition, the mathematics is much more complicated, and the
methods do not lend themselves easily to stochastic problem solutions. The
remedial measure is to include a sensitivity capability in the algorithm. Of course
the application of these methods has its advantages, too. NLP can handle non-
separable functions (e.g. hydro production ) and nonlinear constraints.

For the general problem where the objective and constraints are both

nonlinear the penalty and/or barrier solution methods could be one of the choices
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(Yeh, 1985). Assuming convexity of the constraints the problem can be solved by
applying the Lagrangian dual procedure (Yeh, 1985).

If the problem is simpler, in the sense that the constraints are linear
functions of the decision variables and only the objective function is nonlinear, one
of the solution techniques is the gradient projection method proposed by Rosen
(1960). The feature of the method is that it implements the feasible direction
algorithm without solving an LP at each iteration step. This is possible since the
set of active constraints is changing at most by one element at a time and the
required projection matrix can be calculated from the previous one by an updating
procedure.

Another method for the same class of problems (linear constraints, nonlinear
objective function) is the reduced gradient method. The method was used by the
Tennessee Valley Authority for scheduling weekly releases (TVA, 1976). Rosenthal
(1981) applied a modification of the reduced gradient methodology to optimize a
nonlinear nonseparable objective function with a linear network flow constraints.
An unusual feature of the algorithm is the integer programming subproblem whose
function is to obtain the superbasic set and the search directions needed in the
reduced gradient method.

A summary comment on the NLP methods could be that the major obstacle
for their application is the rate of convergence and the overall high computer

requirements.
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2.1.3 Simulation

Simulation is a mathematical modelling technique aimed at broviding a
response of the system for a certain input. The input includes decision rules which
provide guidelines for the operation. The decision maker can examine the
consequences of different operation scenarios for an existing or planned system.
Simulation is extensively used in water resources. Some of the known models are
HEC-3, HEC-5, SIM 1 and Il For a more detailed review of models see Yeh
(1985). The advantage of simulation is that it can be more flexible, versatile and
detailed in the system description than the optimization techniques. On the other
hand, optimization looks to all possible decision scenarios, while simulation is
limited to a finite number of input decision alternatives.

The adopted operating rules used as input into simulation models are
summarized by Loucks and Sigvaldason (1982). They suggest that the operating
policies may include some of the following general concepts: target storage volumes,
allocation zones within the reservoir, flow ranges, and conditional rule curves
dependent on the expected natural inflows.

The combined use of optimization and simulation models is a common idea.
Loucks et al. (1981) suggest use of optimization to screen a great number of
feasible plans and to explore the remaining ones in more detail by applying a

simulation model. The general tendency in recent years is to incorporate an
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optimization scheme into the simulation model. One of these models is developed
by Sigvaldason (1976).

The practical application of optimization techniques in water resources
management is not so widespread due to the complexities of the water resources
systems and the existence of noncommensurable objectives. In this regard,
simulation is an effective tool for studying the operation of the complex water
resource system incorporating the experience and judgment of the planner or design

engineer into the model.

12 LINEAR PROGRAMMING APPLICATIONS

Linear Programming (LP) has been one of the most widely used mathemati-
cal programming techniques for optimization of water resources systems. The
technique refers to a special class of problems where the objective function and the
constraints are both linear or can be approximated by a linegr relationship. The
major advantage of this technique over the others is that the solution algorithm
efficiently identifies the global optimum and there is a mathematical proof for the
existence of an optimal solution. LP software packages are widely available, and
this feature makes its application especially attractive. The planner has to
concentrate only on the problem formulation and does not have to master every
detail of the LP solution procedure. The fact that LP problems can be solved very

efficiently gave special incentive to structure nonlinear problems as linear
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optimization models. The nonlinearities may be resolved either by approximation
(e.g., piecewise linearization of concave function to be maximized), or by
approximation and iteration (e.g., linearization of a nonseparable function). The
optimization of complex objective functions can be solvéd by piecewise linearization
and applying a variant of simplex method called separable programming (Daellen-
bach and Read, 1976).

The major obstacle for applying LP to the hydro utility operation problem
is the nonseparable character of the hydro production function. Recently Can et al.
(1982) described three methods to overcome the nonlinearity. The first method is
simlar to that applied in EMMA program of Manitoba Hydro: assume a constant
head during the time step and iteratively improve the assumption using the LP
solution. The second method calculates upper and lower bounds on the basis of
forecasted inflows. The head is assumed to be constant for specified intervals in
the hydro production calculation. The third method utilizes separable programming
to find the approximate optimal solution. The stage-storage curve is piecewise
linearized and two new variables are introduced to transform the hydro production
function in a separable form.

However, it has to be noted that with any applied linearizing approximation
the identified solution is not necessarily the global optimum as in the case of linear

problems.
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The LP models can be divided into two big groups: deterministic and

stochastic. The short description of some of the recently developed models follow.

2.2.1 Deterministic Models

Daellenbach and Read (1976) describe a deterministic LP model used by the
Pacific Gas and Electric (PG&E) Company of San Francisco (Miller and Thomp-
son, 1971, 1972). The program utilizes the increasing marginal thermal costs and
decreasing marginal efficiency of hydro-generation due to head loss by piece-wise
linear approximations. Each reservoir is represented individually. PG&E uses a
composite marginal fuel cost curve for the whole system. Its shape and location
depends on the level of thermal shut-down: the higher the shut-down level, the
higher the marginal fuel cost. The level of shut-down is estimated from the daily
system load curve after subtracting the power from the noncontrollable energy
sources (e.g., contracted import, nuclear power and base loaded units), an
intelligent guess of the hydro production and adding the contracted export load.
On the basis of this analysis a preschedule of the thermal shut-down level for each
month is estimated with regard due to its effects on the size of the transmission
losses and the spinning reserve requirements. The analysis made at PG&E
indicates that the nonlinearity of the composite fuel cost curve can be approximated
adequately by six to seven linear segments, which reflect not only the characteristics

of the existing plants but also breaks in the cost of the fuel used. The objective
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function contains also the cost of the import energy less the exported energy if any.
Hydro production is given a zero cost coefficient. The objective is to minimize the
total cost over the planning period. Every power source is constrained by a
number of technical and behavioral limitations, but most of the constraints are
related to the modelling of reservoir and hydro plant operation. They include
constraints on storage levels, flow continuity, release limits, and for reservoir head
variation due to its nonlinear effect on the result. There is a minimum target level
for each reservoir to be met at the end of the planning period. The model is used
to aid the decision process of long term allocation of power sources in PG&E.
Takeuchi and Moreau (1974) have developed a method for finding optimal
operating policies for a multiunit water resource system that extends over two river
basins and serves multiple demands. The problem of determining optimal values
for control variables within a monthly interval (for a set of initial state variables)
is formulated as a convex piece-wise LP problem. The objective is to minimize the
monthly value of the loss function (i.e., immediate losses) and to minimize the
expected value of the economic efficiency losses over all future months. The
economic efficiency losses are the unknown function of the end-of-month state
variables. That function can be estimated from the stochastic DP problem solution
within which the LP problem is nested. Special techniques are applied to obtain
a large number of solutions to similar LP problems which are needed as input for

the stochastic DP problem to find an approximate overall solution. The previous
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task involves the use of simulation in a recursive algorithm. Simulation is also used
to test the derived policy using the actual stream flow data. The method was
developed and tested to study the further development of a water resource system.

Draper and Adamowski (1975) have applied LP as a screening or allocation
model to provide information on system operation and response. This information
is later used in the preliminary design of hydroelectric power producing facilities.
The objective was to maximize the ability to generate continuous system power.
The constraints involved storage limits and power requirements. The inflow scheme
consisted of synthetically generated data. The nonlinear power response is
approximated by linear power-discharge relationship for three different storage
volumes.

Dagli and Miles (1980) formulated a model with the objective to maximize
the sum of average monthly hydrostatic heads of four power plants on the same
river over a yearly time horizon. Requirements were set to supply water for
irrigation, as well as maintaining river flows downstream of the reservoirs. The
authors applied a deterministic LP modelling procedure with updating, called
adaptive planning (AP). The idea of AP is to optimize the operations of the
system on the basis of deterministic stream flow forecast. The obtained result is
applied only for the first time step. To determine the operation of the system in
the next time step, the program is run again with the updated stream flow forecast.

In this way new additional information is added to the optimization. The obtained
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| solution is not necessarily optimal but it is very close to the optimum. The model
was used for long term planning to determine the operating policies for a set of
four dams, each of them associated with a hydro-electric plant.

Bechard et al. (1981) developed a deterministic linear-separable program-
ming model to optimize the operation of the reservoirs located in the Ottawa River
basin. LP is used to perform the basic optimization steps which are later used in
the complex multi objective decision analysis. The model has the objective of
reducing flood damages and maximizing energy production benefits. The basic
approach is the multiple-objective optimization by weighting coéfficients to trade
off the two objectives. By applying different weights a trade-off curve can be
obtained and later used by the decision maker to identify the best compromise
solution. However, certain difficulties were encountered due to the different
optimization time horizons of the two objectives. The energy objective requires one
year period since the load and reservoir elevation have a yearly repetitive cycle.
The flooding objective requires a time horizon of only three or four months of the
flooding season. The problem was solved by applying a hierarchical approach. The
long-term, yearly optimization was performed with respect to the energy objective
only. The mid-term model of about 16 weeks included both objectives and took
into account the results from the long term optimization. The hierarchical
structuring was achieved by using the long-term optimal storages as targets to be

met by the mid-term model. The continuity between the mid-term and the short-
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term model of about ten daily steps was provided in a similar way. All three models
are to be run sequentially with updated deterministic streamflow forecasts. The
hydro-electric system was represented in detail by two types of plants (run-of-river
and with reservoir) and three type of channels (controlled, free and generating).
The hydro power production is modelled with piece-wise linearization and an
iterative solution procedure to handle its non-separable nature. The model can be
used for operation planning. It can also be applied as a tool to determine the effect
of future development in the basin or the impact of modifying one or more
operating constraints.

Pereira and Pinto (1983) described a methodology to coordinate the mid-
and short-term scheduling of hydro-thermal systems. The technique is able to
incorporate the electrical problems encountered in the short-term planning into a
constraint which is added to the mid-term scheduling problem. This constraint
refers to the weekly target variable in the mid-term problem. In this way a
feedback is achieved between the short- and mid-term planning with only a few
modifications required in the specialized algorithms used at each level. The
performance of the model was tested on a case study of the Brazilian Northeast

Network.
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2.2.2 Stochastic LP Models

Stochastic LP models are developed to incorporate the nondeterministic char-
acter of the input data.(e.g., stream flows, cost coefficients etc.). The need for
modelling uncertainty is well described by Daellenbach and Read (1976). It is em-
phasized that the planning based on the expected values (e.g., streamflows) essen-
tially assumes that the costs of the positive and negative deviations from these av-
erages as well as the probability of such deviations are perfectly symmetrical, and
independent from period to period. None of these assumptions correspond to re-
ality. The uncertainty of the input data can be taken into account in deterministic
modelling through sensitivity analysis. However, the procedure does not consider
explicitly the stochastic character of the input data and may not lead to satisfactory
results.

There are several methodologies to be used for characterization of
nondeterministic parameters in LP models. A brief review follows.

The two-stage or stochastic programming with recourse is described by a
practical example presented in Loucks et al. (1981). This method is able to deal
with constraints which include random variables. In the work by Yeh (1985) the
importance of distinguishing the decision stages is emphasized to understand the
method. At the first stage the activity levels are determined. At the second stages,
after the occurrence of the random event, a correction follows minimizing the

negative effects of the activity at the first stage. In a water resource system the
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decisions taken in the first stage can be described as the target levels. At the
second stage the minimization of the losses of not meeting the set targets is
performed. The objective function has two parts: one where the effect of the
target values is evaluated and the other which gives the expected value of losses not
meeting the targets from the first part. In order to solve this problem by LP the
probability distribution of the random event(s) has to be discretized. This results
in addition of multiple constraints pertaining to the second part of the objective
function to the set of constraints which limit the optimization of the first part of the
objective. The discretized problem can be solved simultaneously although there
are two decision stages. In case where the discretization is not possible a
nonlinear deterministic problem can be formulated. The major shortcoming of the
method is that it requires the evaluation of the recourse action by an adequate
estimation of losses from the effect of random variation. There are also
dimensionality problems due to the additional constraints and variables introduced
by the discretization of the distribution function of the random event.

An alternative method to represent uncertainty in an LP model is chance-
constrained programming. The method refers to problems with one or more
random coefficients in the constraint set (either on the right or left hand side). In
these situations, instead of applying the expected value of the random variable as
the RHS, chance constraints can be written to define the probability of failure of

that constraint. Chance-constraints can be converted into deterministic equivalents
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under the condition that the probability distribution of the random variable is
known. Chance constrained models did not find application to hydro power
optimization.

In conclusion, it should be emphasized that the major task of every decision
making under uncertainty is to try to derive a deterministic equivalent of the
stochastic problem. In cases where this is not possible the alternative is to apply

a Monte Carlo simulation to assess the impact of random effects on the operation.

23  DESCRIPTION OF THE EMMA PROGRAM OF MANITOBA HYDRO

The EMSLP algorithm describéd in this thesis is tested using the Manitoba
Hydro data. In order to evaluate the performance of the algorithm the results
were compared to the EMMA program runs (Reznicek and Simonovic, 1988a).
EMMA was made available for this research by the courtesy of Manitoba Hydro,
for which the author is specially grateful. To understand the differences in the
results obtained by the two algorithms, EMMA program has to be understood, too.
Therefore, the details of EMMA algorithm and the system on which it is used, are
presented in the following section.

Manitoba Hydro is responsible for the operation of the integrated power
systems of Manitoba Hydro and Winnipeg Hydro. The generation system is
composed of thirteen hydro power and three thermal plants. The total capacity is

4250 MW of which more than 90 % is hydro. The task of operations planning is
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to derive a schedule of reservoir releases, hydro generation, thermal generation and
energy exports-imports with the goals to meet the forecasted system demand
(energy and peek capacity requirements), maintain system reliability, and operate
economically (Barritt-Flatt and Cormie, 1988).

The hydraulic system of Manitoba Hydro is very specific. There are a few‘
big, shallow reservoirs among which Lake Winnipeg is the biggest. Due to its vast
area the level changes very slowly even if an excessive amount of water is released
during the time step. The operation range is very small, only several metres. The
down stream hydro power plants on the Nelson river do not have the capabilites
to store large amounts of water. They mostly operate as run-of-river plants. The
situation on the Winnipeg River is similar. The power production in the series of
plants depends on the release from Lake of the Woods and Lac Seul. The above
facts are important for the assumptions incorporated in the EMMA program
regarding the iterative solution procedure. The head variations in the system during
the planning period are small. The developed algorithm is well suited for these
specific conditions of the hydraulic system.

The EMMA program was developed by the Computer Services Division and
the Energy Resources Section of Manitoba Hydro to support the decision making
process (Manitoba Hydro, 1986). A deterministic LP optimization model was
formulated to determine operation plans for hydro generation, thermal generation

and inter-connections with maintenance of these facilities. The planning horizon
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is about a year (depending on the purpose of running the model) which permits
tradeoffs among current and future costs and revenues. The program has the
capability to formulate the LP problem based on the input data, to solve it using
an iterative solution procedure and to present the results in a form of reports.
Since the actual problem is formulated by the computer the program is very
flexible. Any configuration aggregated from the real Manitoba Hydro system can
be optimized. The power of the model lies in the possibility to optimize with a
different level of details depending on the set goal. The program is written
professionally and due to its flexibility, the program can have a very wide range of
applications not necessarily related to hydro-thermal power system operation (e.g., -
irrigation System).

The model’s deterministic nature enables representation of the hydro-electric
system in great detail. The stochastic aspect of the input data is dealt implicitly by
performing the optimization with different stream flows and energy load, i.e.,
conducting a sensitivity analysis. The model is used in the manner of adaptive
planning (Dagli and Miles, 1980). The operating plan is optimized on a regular
basis as new information is available. The input data is updated using new
forecasts of precipitation, rivér flows, domestic energy loads, and export market
prices. Practically, only the policy determined for the first time step is imple-
mented, while the others have the role to provide impact on that policy from the

aspect of long term planning. Consequently the time horizon in EMMA is divided
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into shorter steps in the near future and longer ones for the more distant future.
The shorter near future steps can be also attributed to the more certain forecasts
for this period.

The introduction of an optimization model provided not only a shorter time
frame of forecasting, analysis, review and implementation of the up-to-date
operations plan but also enhanced the comprehensiveness of the planning. This
aspect of the modeling with EMMA is extremely important for the operation of the
Manitoba Hydro system. The relative importance of the system components can
change depending on the current status of the reservoirs, the characteristics of
forecasted flows and predicted loads. The system operation has to reflect these
changes accurately. In order to ensure this condition, the model was built with the
aim of accurately representing the system components.

The modeling done in EMMA can be separated in three parts:

a) hydraulic system;

b) electrical system; and

C) maintenance system.

The hydraulic system is composed of reservoirs, lakes and rivers. Reservoirs for
hydro-electric production have usually two outlets: a spillway and a penstock
through the turbines. The lakes can be drained either through a control structure
or by natural, i.e., nonregulated outlet. The storage of the lakes and reservoirs can

be discretized to segments to approximate the nonlinear storage-stage curve by
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piece-wise linearization. The last segment in the last time step can be further
divided into sub-units of the discrete interval called figments to better describe the
price-volume relationship. Time delays introduced by open channel flow can be
modelled by introducing a fictitious (or dummy) lake of an appropriate stage-
storage and outlet rating characteristics. Beside the above mentioned elements the
model can describe natural inflow to lakes and rivers and consumptive withdrawals.
The elements can be combined in any desirable fashion. There are few restrictions
in configuring the run-of-river generation stations. Explicit constraints can be

formulated to:

a) ensure that the sum of "figments" is equal to the storage of the last
segment;

b) provide mass balance for lakes;

¢) set the final and initial lake stage to be equal;

d) limit the outflow from a powerhouse or spillway of a generation station as

a function of the upstream storage; and
e) limit the outflow from a control structure as a function of the upstream storage.
The electrical system consists of energy generating and transmitting elements
with the purpose of satisfying the domestic and contracted export energy load. The
domestic system load is specified in each time step by a deterministic load duration
curve. The load duration curve represents the intensity of the load during a time

step reorganized in a descending order. In other words for a certain load the curve
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specifies the time (or the fraction of the time step) when it is going to be exceeded.
The curve is approximated in the model by a number of strips and an instan-
taneous peak load. The width of the strip represents the fraction of the time step
while the length represents the average load. The load duration curve modelling
is represented in Figure 1. The load must be satisfied during each strip. The
energy price varies within a time step, which is the reason for designating on and
off peak strips. Thus, the cost and revenue functions are different for the on and
off peak strips, with on peak strips having a higher energy price than the off peak
ones.

The energy transferred from or to the neighboring utilities is dealt with in
two different ways. The export or import can be either firm or interruptible. The
firm purchase or sale of energy means that it must be satisfied 100 % of the
contracted time, and therefore it is incorporated in the constraint set. The amount
of energy imported from or exported to the interruptible market depends on the
decisions made in the optimization process limited by the available tieline capacity.

The electrical system is described by formulating the following constraint
types:

a) supply and demand - to ensure that for every load duration curve strip, the
system load plus the firm exports are supplied from hydro generating

stations, thermal plants and imports;
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Figure 1. Load duration curve modeling (Barritt-Flatt and Cormie, 1988)
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hydro production - to convert the powerhouse discharge during a time step
using the production coefficients into energy for each load duration curve
strip;

run-of-river - to ensure flow continuity by load duration curve strip with an
upstream generating station;

hydro shaping - to ensure that the capacity utilized in the load duration
curve decreases moving from on to off peak, or remains unchanged for the
base loaded generation station;

thermal shaping - the same as d) but for thermal plants;

tieline total load - to ensure that the export and import time does not
exceed the total time;

import fraction limit - to limit the total interruptible import energy to a
percentage of the required system energy for each time step;

contract energy limit - to place a minimum on the total of all the contract
energy variables in all strips of all the load duration curves; and

waste heat - to limit the maximum capacity of the thermal plant when the
thermal pollution of the water source downstream of the plant exceeds either
the specified maximum temperature change or the set maximum
temperature.

The maintenance scheduling in EMMA is performed by imputting an annual

maintenance plan based on the station requirements and system operation
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requirements and reviewing the same during the optimization process. The effect

of maintenance in the optimization is reflected by reducing the capacity and energy

capability of the station during the time step when it is scheduled. The possible

constraints for this issue are:

a)

b)

d)

crew scheduling - to ensure that for a specified period crew holidays are
accounted for;

required maintenance - to ensure that for each plant sufficient maintenance
is done to meet the set requirements;

maintenance space - to ensure that after maintenance is accounted for and
the forced outage is subtracted there is enough capacity in the system to
meet the peak load;

available capacity - to ensure that the available capacity of the hydro or
thermal plant is not exceeded in a load duration strip; and

crew availability - to ensure that the maintenance done by a crew within a
time step does not exceed its availability in hours.

Except the mentioned major constraint groups there is a set of constraints

pertaining to energy grouping. These constraints are needed to maintain a balance

of generation in the electrical transmission system. Any energy variable in the

formulation can be included or excluded in these constraints by assigning an

appropriate membership coefficient. The right hand side of the constraint may be

a constant or a function of the domestic load for the interval covered by the
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constraint. The constraints are:

a) energy grouping by strips - to place a minimum value (as a function of
system load) on the total of the defined energy variablés on the particular
load duration curve strip;

b) energy grouping by time steps - to place a minimum value (as a function of
system load) on the total of the defined energy variables in the particular
time step; and

c) energy grouping by period - to place a minimum value (as a function of
system load) on the total of the defined energy variables for the chosen
period of study.

The objective function contains all the LP variables with the assigned
appropriate cost coefficients. The cost coefficient can have the following possible
meanings (Barritt-Flatt and Cormie, 1988):

- storage coefficient
- may reflect flood damage for the upper segments
- for the last time step it can denote benefits from the
future energy production
- a symbolic penalty coefficient to provide filling the
lower segments of the reservoir before the upper ones
- release

- the net benefit or cost of any release assignment
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- generated energy

- fuel cost of the production and/or

- the fixed cost of the plant maintenance
- import and export energy

- the interruptible energy market structure

- the contracted price of the firm energy transfer
- scheduled maintenance

- non-economic preferences in the assignment of

maintenance

The problem of optimizing the operation of an interconnected hydro-thermal
utility is inherently nonlinear. There are different nonlinear relationships in the
problem: the stage-storage reservoir curve, the load duration curve, the hydro
production function, cost curves, etc. The LP solution technique can be applied
~exclusively to a linear objective function subject to linear constraint set. It is
therefore required to substitute the original nonlinear relationships by a linear
approximation.

If the nonlinear relationship can be described as a univariate function (one
variable is function of the other) the problem is fairly simple: the function may be
piece-wise linearized. However, special care must be taken to ensure that the
linear approximation is satisfactory particularly as representing the original

relationships in the critical ranges.
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The problem is somewhat different when the relationship has to be described
by a multivariate nonseparable function, as in the case of hydro production given

by the following expression:

E = § *Q*H*T*e(Q,H) 1)

the produced energy (E) is a function of discharge (Q), head of the power plant
(H), and efficiency (e) multiplied by the specific weight of water ( X), and the
observed time period length (T). It has to be noted that the efficiency is the
function of discharge and head.

The discharge and the plant head are both directly and indirectly decision
variables, whose level has to be determined in the LP solution. Formulated as an
LP, this problem cannot be modelled directly. Thus, an iterative algorithm has to
be followed.

EMMA resolves the difficulty by assuming a constant value for the

production coefficients (PC):

PC = ) *T*H*e 2)

Applying this assumption, the operations problem is linearized and can be solved

by an LP package.



(a)

(b)

(d)
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The algorithm of EMMA program can be summarized as follows:

start with a set of assumed production coefficients (for each of the variables
describing the produced energy);

solve the LP problem;

calculate the production coefficients using the obtained LP solution;
compare the calculated coeffici;:nts with the assumed ones. If the difference
is less than the specified tolerance level for each of them then stop, the
solution has converged. If not, make an assumption for the next iteration
in the following manner. If the difference between the assumed and
calculated coefficient is less than 30% of the assumed one, accept the
calculated coefficient as the assumption for the next iteration. If not, the
assumption for the next iteration is the assumption for the previous iteration

corrected by 30% in the direction of the calculated one. Go to step (b).

The flowchart of the algorithm is shown in Figure 2.

Experience has shown that the production coefficients for a network of hydro

power plants converge rapidly for well constrained problems. In cases where the

problem is ill-defined convergence may not be obtained. Typically, a convergence

tolerance of a few percent is used.
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APC

SOLVE LP : R, ST

PC = PC(R, ST)

APC-PC < TOLERANCE

SOLUTION

R, ST

UPDATE APC

FIGURE LEGEND:

APC - assumed production coefficient set
PC - calculated production coefficient set
R - calculated release vector

ST - calculated storage vector

Figure 2. EMMA Flowchart
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24 DESCRIPTION OF THE SUCCESSIVE LINEAR PROGRAMMING

MODEL OF J. GRYGIER

Grygier (1983) compared three algorithms for optimizing the operation of
a multi reservoir hydrosystem over a medium term. Besides a combination of LP-
DP and an optimal control algorithm the performance of a Successive Linear
Programming (SLP) algorithm was explored. Grgyier’s work is the basis of the
research which is the topic of this thesis. His SLP algorithm is pertinent to
thedevelopment of EMSLP algorithm, and is therefore presented in detail in this
section.

The Grygier algorithm attempts to maximize the value of energy generated
by a hydropower system over the planning period, plus the expected future benefit
from the remaining water in the reservoirs at the end of the planning period. The
major assumption is that the produced energy can be sold on the market with no
limitations. The energy production during each time step is separated according
to the price into on-peak and off-peak energy. The on-peak production is,
however, maximized to a certain number of hours in the time step. It is also
assumed that the price for the water stored at the end of the planning period is
constant. The objectives, besides energy production, are incorporated into the
constraint set. For example, storage levels can be bounded above and below to

allow for recreation or flood control. The time of flow between the reservoirs is
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ignored due to the time scale of optimization (monthly time step). The only energy

source is hydro and thus it is treated implicitly in the formulation (i.e., there is no

energy variable in the formulation). The energy is expressed through the hydro

production function.

The constraint set includes:

flow continuity - to maintain conservation of mass in the reservoir;
minimum and maximum storage bounds - to take care of the physical
characteristics of the reservoirs and to be used in the solution search;
upper bounds on sum of on- and off-peak releases - to reflect the maximum
production capability during the time step, i.e., impose turbine flow limits;
upper bound on on-peak release - to limit the on-peak production; and
minimum energy - to ensure that a set minimum energy is produced during
the time step since there is no load duration curve to be satisfied by the
system.

Even with the introduced assumption of constant water price the problem

is nonlinear due to the hydro production function, and the reservoir stage-storage

relationship. The linearization procedure pursued in this algorithm resolves both

simultaneously.

The major obstacle for applying LP to the stated problem is the non-

separable character of the hydro production function. Some remedial measures

were analyzed previously by Can et al. (1982). SLP utilizes a substantially different
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The idea in SLP algorithm presented by Grygier is to apply a first order
Taylor series approximation to the hydro production function around the chosen
storage and release values. The application of the Taylor expansion to linearize
nonlinear problems and to solve them by LP iteratively is discussed by Palacios-
Gomez et al. (1982). The linearization procedure has the following form.

The energy equation (1) can be reformulated to:

E = ERF*R (3)

where ERF stands for energy rate function, and is expressed as

ERF = ¥ *H*e 4

and R designates the release

R=QT )

The assumption is that ERF is only a function of the head, ie., of the

storage and that it is not dependant on the discharge. This assumption can be

supported with the reasoning that the discharge changes many times during the
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time step and its mean value (calculated in the LP solution) is a poor approxima-

tion to be used in the efficiency calculation for the whole time step. Thus,

ERF = ERF(ST) (6)

To account for the storage value change during the time step, it is assumed that

the value of the ERF for the time step t is the average of the function value for

the initial and final storage:

ERF, = 0.5*(ERF(ST, ,)+ERF(ST))) )

The energy equation for the T-th time period has the form:

E, = ERFR, (8)

or:

E, = 0.5*(ERF(ST,,)+ERF(ST,))*R, (9)

It can be noticed that in Eq. (9) there is a multiplication of release and a function

of storage (ERF) which makes the expression nonlinear and nonseparable. The
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complexity of Eq. (9) can be reduced by removing the ERF function from the
product. The simplification can be achieved by applying a first order approximation
of ERF in Eq. (9) instead of its real form. The approximation of a function by a
Taylor series is possible in the vicinity of some chosen point. In the model these
are the estimated values of storage at the beginning of the time step (i.e., at the
end of the previous time step) ST, ; and at the end of the time step ST, The form

of Eq. (9) after introducing the first order Taylor approximation for ERF is:
E, = 0.5[ERF(ST,;) + ERF(ST,) + DERF(ST,,) * (ST, - ST,.,)
+ DERF (ST, * (ST, - ST)] * R, (10)

where DERF denotes the first derivative of ERF with respect to ST. In Eq. (10)
there is now a product of two linear decision variables instead of a linear and a
nonlinear one. However, the nonlinearity is still present, although in a simpler
form. The remedial measure to remove the product of storage and release is to

apply the approximation introduced by Loucks (1981):

ST, * R, = ST, * R, + (ST, - ST) * R, + ST, * (R, - R) (11)
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where R, is the estimated ie. known release value. It can be noticed that this
approximation is very similar to the one introduced for ERF except that it deals
with a multivariate function.

Finally, combining Eqs. (10) and (11) :

E, = 0.5*{[ERF(ST,,) + ERF(ST)] * R, + DERF(ST,,) * (ST,, - ST,,)

* R, + DERF (ST) * (ST, - ST)) * R} (12)

The linearization of the energy production represented by Eq. (12) requires
“assumptions, i.e., estimates not only for storage but also for release.

It is important to note that the ERF function incorporates the efficiency as
well as the stage-storage relationship. Thus, there is no need to model this
relationship separately. For each power plant a differentiable ERF function has
to be derived. This can be done by determining a regression curve on the available
operation data of the plant. The ERF functions and the estimates for releases are
the part of the input into the model. The estimates for the storages are calculated
using the estimated releases, given the inflow scheme and the flow continuity

equation.
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The algorithm developed on the basis of the above problem formulation and

linearization technique, can be described in the following steps:

2)

b)

d)

initialize the control variables (e.g., storage variability (VAR YMX), iteration
counter (ITER=0)) and calculate the coefficients of the LP problem on the
basis of the input data (except for the right hand side (RHS) of the storage
bounding contraints and coefficients of the hydro production in the objective
function and the minimum energy constraint);

calculate the coefficients of the hydro production in the minimum energy
constraint and the objective function using: the ERF and DERF (the first
derivative of ERF with respect to storage) values of the estimated storages,
the estimated storages and the estimated releases;

calculate the RHS of the storage bounding constraints allowing the storage
not to vary more than VARYMX around the estimated value;

solve the set LP problem, i.e, obtain the values for storage and release for
each time step, the objective function value; then set ITER=ITER+1;
decrease the value of VARYMX by multiplying it with VARFCI1 factor
(<1);

if the objective value is bigger than the one obtained in the previous
iteration (in the case of first iteration, the previous solution is zero) then
accept the calculated solution as the best so far, and use the calculated

storages and releases as input estimates for the next iteration; go to step b;
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f) otherwise decrease the value of VARYMX by multiplying it with a factor
(VARFAC < 1);

e) check whether VARYMX is less than the set tolerance level VARMIN; if
yes then stop the program execution;

g) otherwise go to c.

The flowchart of the algorithm is presented in Figure 3.

The algorithm has a special emphasis on obtaining the highest objective
possible. This fact is integrated into the directions for the iterative procedure. The
algorithm takes different courses depending on whether there is an improvement
in the objective function compared to the previous iteration or not. If the objective
improves the newly obtained solution is used to recalculate the coefficients related
to the hydro production. If not, the coefficients remain unchanged, the feasible
space of the storage values is decreased by changing the right hand sides of the
storage bounding constraints and the LP is resolved. In this way a new, higher
objective function value can be identified. The reasoning for the above action can
be explained in a following way.

Since the objective function is essentially a nonlinear function the true
optimal solution (the extreme point) does not have to lic in the corner of the
feasible space. However, these are the only points the LP can identify as optimal

ones. Therefore, the simple iterative application of LP can result in a suboptimal
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COEFF = F(AR, AS)

SOLVE LP CR, Cs, CO

VARYMX = VARYMX*VARFC1

AO = CO
AR = CR
AS = F2(AR)

STBND = Fl(AS, VARYMX)

VARYMX = VARYMX*VARFAC

SOLUTION

CR, Cs, CO

FIGURE LEGEND:

AO - aceepted objective function value

AR - accepted release vector

AS - accepted storage vector

COEFF - hydro-production constraint coefficient
CO - calculated objective function value
CO - calculated objective function value

CR - calculated release vector

VARYMX < VARMIN

STBND = Fl(AS, VARYMX) -

(& - calculated storage vector
INIT - initial storage variability
STBND - storage bound vector
VARFAC - factor (< 1)

VARFC1 - factor (< 1)

VARMIN

VARYMX - storage variability

Figure 3. Flowchart of the SLP algorithm (Grygier, 1983)

- minimum storage variability
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solution. The specialty of the algorithm lies in its capability to search for an
optimum in the interior of the feasible region whenever there is a drop in the
objective function value. This feature is enabled by decreasing the feasible
solution space around the obtained storage trajectory. In practical terms, this
means that LP is able to examine new feasible points within the decreased
space. Previously, these points were in the interior of the solution space and
ignored by the LP, butnow are corner points and thus checked for optimum.

It is interesting to notice that the storage variability VARYMX is either
unchanged or has a decreased value going from one iteration to the other. In
other words it is decreasing during the program execution. This property is
used as a criteria to terminate the program execution. When the value of
VARYMX is less than a specified tolerance the program stops, assuming that
the optimum was reached. The convergence of the iterations is ensured by
making the solution space narrower and narrower around the identified
trajectories. This eventually achieves the condition that the last two solutions
differ less than the set tolerance.

Another feature of the decreasing solution space is that it prevents the
algorithm from bouncing back and forth between two extreme points infinitely
and enables the intérmediate maximum to be identified.

Grygier (1983) claims that local optimum is always achieved and that for

the examined applications the global optimum was also identified. The
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algorithm was used to optimize the 12-month operation of hydrosystems
consisting of a single reservoir, two reservoirs in series, and -three in parallel
(with one being a pumped-storage facility). In comparison with the other
algorithms examined, Grygier (1983) claims that SLP is the easiest to implement

even though it is not the fastest method.
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CHAPTER 3

Energy Management by Successive

Linear Programming (EMSLP)

3.1 PROBLEM FORMUIATION

The EMSLP algorithm developed during the research (Reznicek and
Simonovic, 1988b) has the task of optimizing midterm operation planning of an
interconnected hydro utility for a deterministic future. The operation invoives
scheduling reservoir releases to obtain hydro power, and managing energy transfer
through the interconnections. The utility has to satisfy the domestic power demand
described by the load duration curve in each time step of the planning period. The
load duration curve is approximated by a number of strips in which the load is
assumed to be constant. The energy price varies during the time step and
therefore a different energy price can be assigned to each load duration curve strip.
In periods of deficiency or if the energy price structure makes it rational the
demand is satisfied from import. On the other hand when the energy market,
reservoir storage and domestic load conditions make it desirable the energy can be
exported to increase the benefits of the utility. The operation has to comply with
the physical characteristics of the system and the operational licenses. The model
has the following decision variables :

a) hydro energy HE;, ;
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b) export energy EE,, ;

¢) import energy IE, ;

d) turbine release R, ;

e) spilled release S, ; and

f) reservoir storage ST, .
where s denotes load duration curve strip and t the time step number. It has to
be emphasised that the above variables describe a single reservoir storage and
release, hydro energy from one power plant, and export-import through one tieline.
In case of a system where there are many of these elements another subscript has
to be added to denote the specific element in the system.

There are two different ways to impose boﬁnds on the variables. One is
“simple bound" on the variable which is the same throughout the program execution
and does not depend on the values of other variables in the decision making
process. In this model the releases can have a lower bound to satisfy minimum
flow conditions and upper bound to limit turbine flow or comply with the down
stream discharge limits. These bounds are modelled without writing an explicit
constraint. The LP routine takes care of them implicitly. The other way 1s to write
explicit constraint in the problem formulation. The relationships which have to be
described and involve more than one variable are formulated as explicit
constraints. Constraints are also formulated if the "simple bounds" change from

one iterative solution to the other.
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3.1.1 The Constraint Set

The hydro production constraint describes the energy production in the hydro
power plant. The EMSLP uses the linearization procedure formulated by Grygier
(1983) and described thoroughly in Section 1.4. Rewriting Eq. (12) in terms of the
above defined decision variables and sorting the unknowns to the left and the
constants to the right of the equality sign, the hydro production constraint in the

t-th time step has the form:

~2*2_ (HE,)+[ERF(ST,,) +ERF(ST,)J*(24/1000)*R +DERF(ST, )
S

*R,*(24/1000)*ST,, +DERF(ST,)*R,*(24/1000)*ST,

= [DERF(ST,,)*ST,,+DERF(ST,)*ST,]*RT,*(24/1000) (13)

On the left hand side the energy in the time step is represented by a summation
of the amounts allocated to each strip of the load duration curve. The conversion
factor 24/1000 is needed to obtain the energy in GWh. The constraint is written
for each time step and for each power plant if there is more than one in the
system. The coefficients of the constraint are recalculated for every iteration when
a new estimated storage trajectory is accepted.

The flow continuity constraint for the t-th time step gives the mass balance

in a reservoir:
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-ST,, + ST, + R, + S, = [, (14)

The storage at the end of a time step has to equal the storage at the beginning
of the next time step plus the inflow minus the turbine and spilled release. It is
interesting to note that this constraint provides the link between the decision
variables of different time steps. The storage variables of two adjacent time steps
are directly involved. However, through the continuity constraints for the other
time steps they are all indirectly related to each other. In case of a multiple
reservoir system the constraint has additional terms bdepending on the system

configuration (e.g., for reservoirs in series upstream release is downstream inflow).

Tieline load constraint for every load duration curve strip s and time step

IE, *RATIO/(IEF*EEF) + EE,, < EML,/EEF*24/1000*DPS, (15)

where RATIO denotes the export and import tieline capacity ratio, IEF and EEF
are the import and export efficiencies respectively, EML,, is the maximum export
load in s during t and DPS, is the number of days in the t-th time step. This

constraint limits the amount of exported or imported energy depending on the
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tieline capacity and the length of time covered by that particular strip. The export
and import variables describe the interruptible energy sales while the contracted
export or import has to be included in the load duration curve. This is a viable
way of modelling since the contracted energy requirement is known in advance and
has to be satisfied without violations. This means that it can be treated in a same
way as the domestic demand. Therefore it is possible to incorporate the two
known requirements into one, namely the domestic demand.

The supply and demand constraint for every load duration curve strip s and

time step t has the form of:

HE,+IE -EE,, = L, +*(24/1000)*DPS*W,, (16)

where L, denotes the system demand in s during t and W,, is the load duration
curve width of s in t. This constraint ensures that the domestic hydro production
plus the import minus the export satisfy the energy demand in the particular strip
of the load duration curve.

The minimum and maximum storage constraints bound the storage variable
to comply with the physical characteristics of the reservoir, the operation license,
and some other potential objectives as recreation, flood control, etc. These
requirements can be modelled by placing a simple bound on the storage variable.

However, the explicit constraint formulation is needed to model the change of these



55

bounds from one iterative solution to the other. The change of the storage bounds
modifies the feasible solution space and enables the search for an objective in the
interior of the original solution space. The constraints are imposed on minimum

storage in the t-th time step as follows:

ST, > MAX(STMIN, , ST-VARYMX ) (17)

maximum storage in the t-th time step

ST, < MIN( STMAX, , ST,+VARYMX ) (18)

where STMIN, and STMAX, are the minimum and maximum allowed storage in
t respectively and VARYMX is the allowed storage variability. In Eq. (17) it is
required that the storage has to be greater than either the predefined minimum
(i.e. the "simple" bound) or it must not be less than VARYMX from the estimated
storage. The MAX operator ensures that the more stringent criteria is satisfied,
and therefore, that both are satisfied. The upper bound is calculated in a similar
manner. It is required that the storage has to be less than the simple bound, and
also less than the estimated storage increased by the value of VARYMX. The
value of the storage variability (VARYMX) and the estimated storages may change

from iteration to iteration. Therefore the right hand sides of the constraints are
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recalculated before each iteration.

The following constraint relates the hydro energy to release in the t-th time

step

2 (HE,) - ERF(STMAX,)*R,*(24/1000) < 0 (19)
s

The relation of release to the produced hydro energy is not formulated explicitly
in the hydro production constraint Eq. (13). Besides the hydro energy and releése
the left hand side of Eq. (13) also éontains the storage variables. To stress the
importance of the relationship an upper bound is imposed on the energy production
in a time step. The production is limited to be not more than the released water
multiplied by the maximum possible value of the energy rate function (ie., the

production rate when the reservoir is full).

3.1.2 The Objective Function

The objective is to maximize the interruptible energy export and the final
storage volume while minimizing the production costs of satisfying the system
demand (hydro energy production, import, spill costs). The benefit from the
domestic energy consumption is not included in the objective, since it is constant
and defined by the system demand. The mathematical form of the objective

function is:
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Maximize{ 2 [ 2 (-HC,,*HE, +EB, *EE,-IC *IE,)
t S

-SC*S,+B,*STJ} (20)

where HC,,, EB,,, IC,,, SC, and B, are the cost coefficients of hydro energy, export
energy, import energy, spill, and storage variables, respectively. The hydro energy
has an assigned cost of running the plant and since its major task is to satisfy the
domestic load those benefits are not included as explained above. However, if the
energy is exported it brings benefits to the system and thus has a positive
coefficient in the objective function. Similarly the imported energy decreases the
objective. As noted earlier, the energy in each strip can have a different price.
Besides the energy variables the storage variable for the final time step is also
included in the objective wifh a positive coefficient. In this way the release of all
the water from the reservoirs at the end of the planning period and with the
associated disregard for the future use of the system is prevented. However, it is
assumed that the benefits are linearly related to the stored water although this is
not so in reality. The water has an indirect value as a "fuel” for hydro production
during the planning period and in addition, it has a value at the end of the
planning period to take into account the benefits from the future production.

Thus, the algorithm tends to release either the water through the turbines or store

it for future production. Spill occurs only when it is physically necessary. Thus,
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there is no explicit need to penalize spill (i.e. to include the spill variables into the
objective), although the program has that possibility. The turbine releases are
omitted from the objective function because their effect is taken into account
indirectly through the hydro energy variables.

In conclusion it can be said that the problem formulation is similar to the
one existing in EMMA, although there are differences. EMSLP cannot model
thermal plants and maintenance. There are no obstacles to adding these
capabilities to the formulation, but they were omitted because the research
emphasis was on the hydro production modelling and guiding the iterative solution
procedure. Due to the different linearization technique and ideas introduced in the
solution procedure the constraint set is different to that in EMMA. The major
difference is in the hydro production constraint (13) which reflects the SLP
approach to the problem. The storage bound [Eq. (17,18)] and hydro energy
release relation constraints are added as a part of the original work done in the

modelling.

2.2 THE EMSLP ALGORITHM

The simple modification of the ideas from Grygier’s work was not possible
for the optimization problem of the interconnected utility described earlier. A new
algorithm EMSLP was developed to solve the problem (Reznicek and Simonovic,

1988 b). The EMSLP algorithm has the following steps.
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Set the LP problem according to the input data, and set the initial storage
variability VARYMX. Calculate and accept the initial solution based on the
estimated releases (the estimated storages are calculated using the flow
continuity equation). Calculate the hydro production constraint coefficients
from the solution.

Solve the LP problem.

Compare the calculated storages with the accepted ones, and if the
difference is smaller than the tolerance, stop. The solution is obtained.

If the calculated objective function value is better than the previously
accepted one, then accept the calculated solution, but limit the change in the
release policy to 30% of the previous accepted solution. With this release
policy used as the estimate recalculate the coefficients in the hydro
production constraint. Reset VARYMX to its initial input value and go to
step (b).

Otherwise decrease the value of VARYMX, and if it is still greater than the
set minimum (VARMIN), go to step (b).

If not, then use the first worse objective after the last improvement and the

appropriate solution, as if it is better than the accepted one. Go to step

(d).

Note that whenever the value of VARYMX is changed, the bounds on the storage

variables are changed.

The flow chart of the algorithm is presented in Figure 4.
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VARYMX = INIT,

AO = -BIG
AR, AS

COEFF = F(AR, AS)

te——

SOLVE LP : CR, CS, CO

SOLUTION 1IS:

CR, CS, CoO

AO = CO
UPDATE AR
AS = FZ(AR)

VARYMX = INIT

STBND = Fl(AS, VARYMX)

I

VARYMX = INIT

VARYMX = VARYMX*VARFAC

, VARYMX < 'VARM
STBND = F, (AS, VARYMX) - ™

SOLVE LP : CR, CS, CO

AO - accepted objective function value AR - accepted release vector

AS - accepted storage vector BIG - a very big number

COEFF - hydro proudction constraint coefficients CD - calculated objective function value
CS - calculated storage vector CR - calculated release vector

INIT - initial storage variability STBND - storage bound vector

VARMIN - minimum storage variability VARFAC - factor (< 1)

VARYMX- storage variability

Figure 4. EMSLP Flowchart
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The algorithm has two iteration levels. At the first level a search for a
.stable solution is performed. At the second level the improvement of the objective
function value is sought, whenever the objective function value drops between the
two iterations. The search is performed by exploring the interior of the feasible
region using the decreased storage variability VARYMX in the solution procedure.
If the search for the better solution at the second level terminates unsuccessfully,
the algorithm returns to the first level and accepts the initially identified worse
solution. The search terminates on the first iteration level when a stable solution
1s identified.

The coefficients in the hydro production constraints are recalculated only at
the first iteration level. At the second level, the lower and upper bounds on the
storage volume are changed. The initial wide range is decreased with every
iteration at the second level, approaching the accepted storage trajectory.

In Grygier’s algorithm the storage variability is gradually decreased during
the iterative process from the starting value to the set tolerance level when the
program run terminates. According to the Grygier, the search ends with the local
optimum. The application of the same algorithm to the problem of interconnected
hydro utility led to suboptimal solutions, substantially inferior to the EMMA runs.
Therefore a new algorithm was sought.

EMSLP guides the iterative procedure in a manner different from that in

Grygier’s algorithm. The change in the release policy from one iteration to the
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other is limited to be not more than a fraction (specifically 30%) of the accepted
policy. Due to the application of the limited change, the convergence and stability
of the iterative process is substantially improved. The storage variability has in
EMSLP a somewhat decreased role. It is used only in the search for a better
optimum at the second iteration level. The value of the variable does not
necessarily decrease during the program execution. It is reinstalled to the original
one at the end of the search on the second level. Therefore the storage variability
cannot be used as a convergence criteria as in Grygier’s algorithm. Instead,
EMSLP checks whether the identified storage trajectory is close enough to the
estimated solution, used as input into the iteration. The search terminates only if
this condition is satisfied. These are the major differences between the two al-
gorithms and proved to be fruitful for the problem of interconnected utility. On
the other hand, EMSLP retained the feature of Grygier’s algorithm to search the
interior of the feasible region to possibly identify a better objective fﬁnction value.
As noted earlier, the need for this search arises from the nonlinear character of

the objective function.
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CHAPTER 4.

Evaluation of EMSLP

41 THE CASE STUDY

A small hydro-electric system based on the Manitoba Hydro system data was
designed to test the performance of the newly formulated EMSLP algorithm. The
bench mark for comparison were the results obtained by running the EMMA
program for the same case study. In order to enable the comparison the case stﬁdy
had to be formulated to suit both of the models.

The system consisted of a single reservoir, power plant, and a tieline which
enabled to import energy to satisfy the defined load and to export it if desired.
The case study is schematically shown in Figure 5.  The reservoir size was chosen
to examine the impact of the head variation on the solution. The initial reservoir
stage at the beginning of the planning period was set to 90 m (295 ft). The
maximum stage was 91.5 m (300 ft) and the minimum 85.4 m (280 ft), with the
stage-storage slope of 8 million m* m? (1 KCFS day ft?). The optimization time
horizon consisted of five monthly time steps. The load duration curve of the power
demand was discretized to two segments: one for on, and one for off peak demand

in each of the time steps as shown in Table 1.
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Figure 5. The Case Study
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Table 1 The discretized load duration curve

TIME STEP
DEMAND (MW) 1 2 3 4 5
ON PEAK 6 5 6 7 6
OFF PEAK 4 3 4 5 5

The reservoir inflow had a winter pattern typical for Manitoba or other

Northern Rivers, as shown in Table 2.

Table 2 The inflow scheme

TIME STEP
INFLOW (m’s?) 1 2 3 4 5
1135 993 7.09 5.67 4.26

The cost coefficients for the objective function are shown in Table 3, and were

chosen to resemble a realistic case existing in the Manitoba Hydro practice (Table

3).

Table 3 The energy price

TIME STEP
PRICE ($GWH?) 1 2 3 4 5

On peak import 20000 22000 20000 21000 21000
Off peak import 12000 12000 12000 14000 12000
On peak export 14000 18000 14000 18000 18000
Off peak export 8000 8000 8000 10000 9000
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The convergence tolerance was set to 5% of the production coefficients (in
EMMA). The minimum value of the storage variability for the search of the
second level is also used as a convergence tolerance level at the first iteration level.
Therefore, the tolerance in the storage variability is set to have 5% accuracy of
ERF (in EMSLP). In this way, the convergence thresholds are made identical for
both models.

In order to compare the performances of the models the optimization
problem had to be simplified to suit both of them. EMMA models the efficiency
of the plant as a function of discharge, while EMSLP makes efficiency dependent
on the storage. The compromise has been made to take a constant value for
efficiency.  EMMA also has the capability to calculate the tail water elevation
depending on‘ the discharge from the reservoir, which finally affects the net head
of the plant. EMSLP treats the tail water elevation as a constant. Therefore a
constant tail water level was set to 46.67 m (153 ft). It is interesting to note that
with applying the abové assumption for the efficiency the ERF function used in the
EMSLP model is reduced to be solely a function of the head. Since the tail water
is constant the head depends only on the storage in the lake. Finally, the
conclusion is that ERF is a linear function of the storage since the stage-storage
relationship is assumed to be linear.

In order to solve the problem both programs had nine variables in each of

the five time steps. EMMA generated six constraints in each time step, while
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EMSLP had nine.

Initially a high head plant was examined. That case had a possibility of
significant storage level changes during the planning period. The release
trajectories of the EMSLP solutions had up to 400 % higher objective function
values than the ones EMMA has identified as optimal. The difference is due to
the different linearization process applied to approximate the hydro production
function. EMMA'’s approximation is not suitable for the high head variation during
the planning period. To recognize the fact that reservoirs in Manitoba have a very
small operation range, the problem wés changed to a low head variability case.
The operation range was decreased from 30 to 6 m (100 to 20 ft). As it was
expected, the decrease in the operational flexibility decreased the differences

between the results, too.

42 THE RESULTS OF COMPARISON WITH EMMA

The algorithms were compared for a range of different input data on the
basis of release policy, iteration number and objective function value. In the input
data the value of the final storage, generation release limit, and the imposed system

load were varied.
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4.2.1 Final Storage Value Variation

The value of the storage in § per 2.45 million m’ (1 KCFS-day) was varied
from 3600 where it had no impact on the solution to 4800 where it had an
overwhelming impact on the release policy.

Tables C-1 and C-2 in Appendix C contain the results obtained by EMSLP
and EMMA, respectively. The reservoir levels obtained by the two algorithms are
different (see Figures 6-12). EMSLP tends to store the water at the first time step
and to release it later when the price of electricity is higher. EMMA releases a big
amount at the beginning time steps to obtain a short term benefit. The energy
production of EMSLP is higher than of EMMA due to a higher head maintained
during the planning period. The difference can be attributed to the more
significant role of the head in the EMSLP modelling of hydro production.

EMSLP responded to the increase in storage value at the value of $ 3700
by storing more water at the end of the planning period than the required lower
operation bound (85.4 m or 280 ft). In EMMA the storage value did not affect the
solution even at the $ 4200 level. Both algorithms kept a full reservoir at the 91.5

m (300 ft) stage when the benefit was set to $ 4800.

4.2.2 System Load Variation

The original load followed a pattern of a typical five month winter demand.

The values were proportionally varied by multiplying the original load with factors
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from 0.3 to 2. The results are shown in Tables C-3 and C-4 in Appendix C and
Figures 13-18.

In cases of factors of 0.3 and 0.5, both algorithms identified very similar
release policies. This similarity is easily explained: the load was low so it could
be satisfied from the domestic production, and the remaining water was saved for
the future production. The 0.8 case was also very similar in results, although the
EMSLP released less water, and had a 5% higher objective value. The release
policies significantly differ in all the other cases. In these others, load is highb
and the domestic production is not sufficient, import is needed. The available
water is released to meet the demand in both of the models but in a different
manner. The same tendency could be noticed for the storage value variation:
EMMA has large releases in the initial time steps, and in the final ones it can
release only the amount of the monthly reservoir inflow. Releases obtained by
EMSLP have followed the import price structure: whenever the cost is high the
release is high and vice versa. The objective function values differ in about 5%
with a tendency for a decrease when the load increases over the original value.
The decrease in the differences is due to the overwhelming impact of the import
cost.

4.2.3 Release Limit Variation

The turbine release capability was varied from 5.67 to 19.86 m’/s (0.2 to 0.7
KCFS). The results are presented in Tables C-5 and C-6 in Appendix C and

Figures 19-22.
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Tables C-5 and C-6 show that in the 19.86 case the release capability is not
constraining the release poh'cies; In the 5.67 case spill occurs since the water can
be neither stored in the reservoir, nor released through the turbines. EMMA spills
a huge amount of water in the first time step. This is irrational, since the level of
the reservoir after the first time step is even lower than the initial 90 m (295 ft).
The rational action would be to maintain a full reservoir at the 91.5 m (300 ft)
level. EMSLP maintains a full reservoir till the end of the planning period, and
spills only the excess water in each of the time steps when the need arises. This
difference gives the higher objective value in EMSLP. The 8.57 limit eliminates the
need for spill. The solutions are very similar, since the releases are bounded by the
limit. In the rest of the cases the impact of the release limit is not so dominant,
and significantly different release policies were identified. The objective functions
differ about 5% in favour of EMSLP.

Finally, the difference in the objective function values between EMSLP and
EMMA programs normalized to the EMMA results are presented in Figures 24 to
26. Figure 24 represents the comparison for storage value variation. Figure 25
shows the normalized difference for different system loads. Figure 26 represents

the comparison of objectives for the release limit variation experiments.
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CHAPTER 5.

CONCLUSIONS

5.1 DISCUSSION OF THE EMSLP-EMMA COMPARISON RESULTS

The variation of input data indicated that the two algorithms identify similar
solutions only when they are constrained to do so (e.g., very low release limit), or
when the optimization problem is very straightforward (e.g., very low system
demand). In cases when the requirement for trade off between production, export,
import, and storage use was noticeable, EMSLP presented better results than
EMMA (the final case in Tables C-1 and C-2 in Appendix C).

EMMA was not able to adjust the release policy to the existing price
structure as successfully as the EMSLP algorithm. When the system load was high
and energy had to be imported to satisfy the demand (the last two cases in Tables
C-3 and C-4 in Appendix C) EMSLP tended to save the water during the time
steps when the import energy price was lower (see Table 3) and to satisfy the
demand mostly by import (see Figures 17 and 18). The water was released (i.e., the
energy was produced at a domestic power source) at time steps when the import
energy price was higher. This adjustment to the price structure on the energy
market could not be experienced in the EMMA results. However, by repeating the
model run and constraining the release the EMMA results can be improved. In

general, EMSLP tended to maintain a higher power plant head during the planing
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period and therefore obtain a higher power output for the same release (see
Figures 12, 17 and 18). The operation with a higher head in the EMSLP case can
be attributed to the more important role of the storage variable in the hydro powér
modelling. EMSLP identified a more rational solution in the case when a
mandatory spill had to occur from the reservoir during the planning period due to .
the very low limit of the turbine release capabilities (see the first cases in Tables
C-5 and C-6). EMSLP spreads the spill throughout the planning period and keeps
the reservoir full maintaining the high head. EMMA spills a huge amount in the
first time step disregarding the impact on the head (see Figure 19). By interven-
tions in the constraint set and re-executing the model these irrationalities can be
avoided in the EMMA model.

The objective function value was the same in the cases of low system
demand and release limit but the difference of up to 5% was obtained for the
more complex situations with the trade-off between energy and storage. It has to
be added that the size of the reservoir substantially influences the variation in the
results: the bigger the reservoir operation range the bigger the variation. The
resulting differences always favoured EMSLP, as it is illustrated in Figures 5 to 7.
When the storage value or the load had extremely high values, the differences
between the objective function values obtained by the two programs decreased.
This is due to the overwhelming impact of that particular high input value on the

objective function. For example, high system load requires very high energy import
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and the reservoir operation, whether its rational or not, has only minor impact on
the objective function value ( the final case in Tables C-3 and C-4, and the
illustration in Figure 6). The number of iterations was very similar for both of the
programs. The releases were substantially different.

The behaviour of both algorithms has been examined with different choice
of the initial value for production coefficients. It is shown that the solutions of
both algorithms are independent of the initial value of production coefficients.
The EMSLP has also been tested on the impact of the allowed change in the
~ release policy from one iteration to another. The allowed change in release policy
of 30% seemed to give the best stability and the least number of iterations.

The newly formulated algorithm applied to the case study achieved better
results than the original EMMA algorithm. However, it should be émphasized that
the reservoir size and operation range play an important role in obtaining
differences between the two results. EMMA and EMSLP results differ a little
when the models are applied to a run-of-river plant configuration, although some
irrationalities may be avoided by applying EMSLP. EMMA is applicable to run-
of-river and low reservoir operation range plants exclusively. The advantage of

EMSLP is that it is equally well suited for all kind of plant characteristics.
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5.2 DEVELOPMENT OF THE EMSLP RESEARCH

An original SLP algorithm has been developed to optimize the operation of
a hydro-electric utility. The algorithm identifies stable solutions due to the
improved iterative modelling of the hydro production function. The approximation
of the hydro production function with the first order Taylor expansion proved to
be more efficient than the constant production coefficient approach. The limitation
of the change in the release policy from one iteration to the other, and the
introduction of a stability check has made possible to apply the ideas from Grygier’s
algorithm to the specific problem formulation of the interconnected hydro utility.
These additions have resulted in a completely new, two level algorithm with the
prime goal to identify a stable solution and to possibly improve the value of the

objective function by looking for the optimum in the interior of the feasible region.

53 DIFFERENCES BETWEEN EMSLP AND GRYGIER’S SLP MODEL

The problem of modelling the optimization of an interconnected utility
requires decisions about energy management and therefore the existence of energy
variables in the model. Grygier’s model does not incorporate energy variables since
the only energy considered in the model is the hydro energy. The EMSLP
objective function and hydro production constraint are significantly different from
Grygier’s formulation. The difference is due to the existence of energy variables

in the EMSLP model. The different problem formulation requires a different
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guidance of the iterative solution procedure. Instead of a search in a steadily
decreasing solution space (as in Grygier’s algorithm), EMSLP follows a different
path. At the first level, iterations are performed over a solution space of an initial
width and occasionally the interior of the solution space is searched at the second
level when the objective function drops. Besides, Grygier’s algorithm accepts the
LP calculated release policy to be the estimate for the next iteration regardless of
the previous estimate. EMSLP evaluates the difference between the calculated and
assumed release policy (used to obtain the calculated one in the previous iteration).
The change of the estimated policy is limited to 30% in the direction of the
calculated release policy. With this measure the stability of the iterative process
is improved.

The introduced differences in the iteration process guidance and input

updating proved to be fruitful for the optimization of interconnected utility.

5.4 DIRECTIONS OF FUTURE RESEARCH

The current EMSLP model will be expanded in the future to have more
realistic representation of the physical system. The modelling of the power plant
efficiency will incorporate its dependence on the discharge, as well. The power
plant head modelling will be made more realistic with the inclusion of the tail water
dependence on the discharge. The above modelling improvements will be

introduced by a two dimensional energy rate function (function of storage and
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release). The new energy rate function will be derived from practical power plant
measurements by regression analysis. The evaluation of the enhanced model will
be done by comparing its performance to the EMMA model using the Manitoba
Hydro system data.

The EMSLP model implementation requires a thorough understanding of the
details related to input,. solution algorithm guidance, etc. The model use can be
made more user friendly by creating a support environment which would provide
guidelines for the program execution. The capability of a knowledge based syStem
to serve as a support environment for the: EMSLP use will be assessed during the

future research.
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Appendix A: Notation

benefit from saving the water for future production ($ (2.45 million
m’ or KCFS-day)?)

is the first derivative of ERF over ST

number of days in the t-th time step

efficiency of the hydro power plant

energy, energy in t-th time step (kW h)

export energy benefit in s during t ($§ (GW h)7)
interruptible export en. in s during t (GW h)

export efficiency

maximum export load in s during t (MW)

energy rate function used in EMSLP (GW h (m’ s7 days)?)
specific weight of water (kN m™)

head of the hydro power plant (m)

hydro energy production cost in s during t ($ (GW h)?)
produced hydro en. in s during t (GW h)

reservoir inflow during t (m’ s? days)

import energy cost in s during t ($ (GW h)?)

import efficiency

interruptible import en. in s during t (GW h)
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STMIN,

VARMIN

VARYMX-
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system demand in s during t (MW)
discharge (m’ s-%)
production coefficients used in EMMA (GW h (m’ s7 days)?)
released water through the turbines in T (m’ s days)
estimated release through the turbines in T (m’ s days)
export and import tieline capacity ratio
released water through the spillway in t (m’ s days)
cost of spilling water ($ (2.45 million m’ or KCFS-day)”)
stored volume at the end of t (m® s days)
stored volume at the end of the final time step T (m’s”’ days)
estimated storage at the end of t (m® s days)
maximum storage in T (m® s days)
minimum storage in T (m® s days)
tolerance limit for storage variation (m® s days)
maximum allowed storage variation (m’ s days)

load duration curve strip width for s during t
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APPENDIX C

Tables of the Case Study Results
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Table C-1. EMSLP results for different ending storage values

Planning Time Horizon Objective Iterations

Case Level Function

Release 1 2 3 4 5 (10009%) 1st  Total

Level

3600 (m) 91.3 915 90.8 881 854 -126 2 3
(m’ s day) 218 288 283 422 384
3700 (m) 91.3 915 915 889 863 -126 3 4
(m’ s day) 218 288 214 414 377
4000 (m) 91.3 915 915 889 863 -125 6 9
(m’ s day) 218 288 213 414 377
4200 (m) 913 915 915 912 887 -124 5 8
(m’ s7 day) 218 288 213 208 358
4500 (m) 91.3 915 913 911 887 -121 2 3
(m’ s’ day) 218 288 229 195 195
4600 (m) 91.3 915 915 915 910 -119 6 10
m’ s’ da 218 288 213 176 176
( y)
4700 (m) 913 915 915 915 915 -117 3 5
m’ s? da 218 288 214 178 129
( y
4800 (m) 91.3 915 915 915 915 -115 3 4
(m’ s? day) 218 288 214 178 129
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Table C-2. EMMA results for different ending storage values

Planning Time Horizon Objective Iterations

Case Level Function

Release 1 2 3 4 5 (1000%) 1st  Total

Level

4200 (m) 893 90.0 886 881 854 -133 2 2
(m’ s day)” 345 299 343 222 385
4500 (m) 914 915 915 889 903 -125 4 4
(m’ s day)” 209 298 213 415 O
4600 (m) 89.9 900 915 915 892 -123 3 3
(m’ s7 day)” 346 298 75 176 349
4700 (m) 8.9 900 915 915 892 -122 3 3
(m’ s day)” 346 298 75 176 349 '
4800 (m) 899 90.0 915 915 915 -120 3 3
(m’ s day)” 346 298 75 176 132
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Table C-3. EMSLP results for different system loads

Planning Time Horizon Objective Iterations

Case Level Function

Release 1 2 3 4 5  (10009%) 1st  Total

Level

0.3 (m) 915 903 915 915 915 101 2 2
(m’ s’ day) 199 419 101 180 128
0.5 (m) 915 91.0 915 912 908 42 1 1
(m’ s? day) 199 353 168 202 174
08 (m) 907 915 909 892 835 -54 3 5
(m’ s day) 274 232 269 332 297
1.0, (m) 913 915 915 901 863 -126 5 9
(m’ s? day) 218 288 214 414 377
1.5 (m) 915 901 915 901 854 -314 6 11
(m’ s? day) 199 438 83 311 565
2.0 (m) 915 892 915 915 854 -504 6 10

(m’ s? day) 199 518 2 176 699
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Table C-4. EMMA results for different system load

Planning Time Horizon Objective Iterations

Case Level Function

Release 1 2 3 4 5 (1000%) 1st  Total

: Level

0.3 (m) 915 903 915 915 915 100 3 3
(m’ s7 day) 199 418 102 176 132
0.5 (m) 915 910 915 912 90.7 42 3 3
(m® s7 day) 199 353 168 203 176
0.8 (m) 90.7 915 909 8.1 873 -57 3 3
(m’ s? day) 275 233 272 339 304
1.0 (m) 899 900 886 881 854 -133 2 2
(m’ s? day) 345 299 343 222 385
1.5 (m) 879 861 884 854 854 -331 5 5
(m’ s day) 530 475 0 457 132
2.0 (m) 89.0 854 87.7 854 854 -520 5 5

(m’ s7 day) 433 641 0 380 132
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Table C-5. EMSLP results for varying release Limits

Planning Time Horizon Objective Iterations

Case Level Function

Release 1 2 3 4 5 (10008) 1st  Total

Level

567 (m) 915 915 915 915 91.0 -170 1 1
P(m’ s’ day) 170 176 170 176 176
S(m’® s? day) 28 132 43 0 0
857 (m) 91.0 910 915 901 887 -131 3 5
(m’ s day) 243 264 255 264 264

1135 (m) 913 915 915 896 872 -127 4 7
(m’ s7 day) 218 288 217 352 352

1419 (m) 913 915 915 889 863 -126 5 9
(m® s? day) 218 288 214 414 377

19.86 (m) 913 915 915 889 863 -126 5 9

(m’ s? day) 346 298 352 440 158
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Table C-6. EMMA results on varying release limits

Planning Time Horizon Objective Iterations

Case Level Function

Release 1 2 3 4 5 (10009%) 1st  Total

Level

567 (m) 8.6 910 915 915 910 -171 3 3
P(m’ s? day) 170 176 170 176 176
S(m’ s? day) 203 0 0 0 0
8.57 (m) 909 914 909 90.0 885 -132 3 3
(m’ s? day) 255 264 255 264 264
11.35 (m) 900 900 837 868 854 -132 3 3
(m’ s day) 340 298 340 352 263
1419 (m) 899 90.0 885 857 854 -134 4 4
(m’ s7 day) 346 298 352 440 158
1986 (m) 899 900 886 881 85.4 -133 2 2

(m® s? day) 345 299 343 222 385
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APPENDIX D.

The Fortran Program of EMSLP

Applied to the Case Study

D.1 PROGRAM STRUCTURE

The EMSLP algorithm is programmed in FORTRAN IV language. The
program is composed of a main routine, six subroutines and the Land and Powell
routines for LP solving. The program structure is identical to Grygier’s SLP
model. However, the routines are altered to model the interconnected hydro utility
operation problem. The CHGB and SOLVER routines are abridged from Grygier
(1983).

‘The MAIN routine controls the program execution: invokes routines to set
and solve the initial problem, evaluates the solution, decides about the iteration
procedure, terminates the run when the stopping criteria is satisfied. It calls the
INPUT, SETA and SETABC subroutines to set or alter the LP matrices, CHGB
and SOLVER to solve the LP problem, IPRINT and OUTPUT to give reports of
the program execution.

The following subroutines are incorporated in the EMSLP program:
INPUT - reads in the input data file, prints the read data to the output file and
initializes release bounds and right hand side values of some of the constraints;

called by MAIN;
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SETA - sets the coefficients of the left hand side of constraints and calculates the
cost coefficients of the objective function; calls ERF function; called by MAIN;
SETABC - calculates the coefficients of the hydro production constraint (both right
and leﬁ hand side), the right hand side of the storage constraints and calls the
problem solving subroutines; calls ERF function and SOLVER; called by MAIN;
OUTPUT - calculates the objective function value and prints a report about the
iteration in the output file; called by MAIN;

SOLVER - a driver for the Land and Powell (1973) routines which solve the LP;
called by MAIN, SETABC;

CHGB - resolves the LP with the modified right hand side; called by MAIN;

LP SUBROUTINES - written by Land and Powell (1973) which solve the
formulated LP problem (see Appendix C).

The program has about two thousand lines. One thousand lines are the
MAIN routine and the six subroutines, while the Land and Powell routines
represent the other thousand program lines in the total. The executable version
takes 274 kB of memory on the hard disk of a personal computer. The execution
time varies depending on the number of iterations, but the typical values are one
to two minutes on an IBM/XT personal computer with a mathematical coprocessor.
The FORTRAN source code is attached in Appendix C. A sample input and

output file are presented in Appendix D.
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D.2 VARIABLES
The following section describes the variables existing in the EMSLP program.
The variables used in the program other than in the Land and Powell
subroutines are :
CEE(S,T) - benefit from the exported energy ($/GWh)
CEI(S,T) - cost of the energy import ($/GWh)
CJ(S) - the coefficients of the energy rate function
DPS(T) - days per time step (days)
EE(S,T) - interruptible export energy (GWh)
EEL(T) - export energy loss (%/100)
EEM(S,T) - maximum export energy capacity (MW)
EI(S,T) - interruptible import energy (GWh)
EIL(S,T) - import energy loss (%/100)
EIM(S,T) - import energy cost ($/GWh)
ENLO(S,T) - power load of the system (MW)
ENWI(S,T) - load duration curve strip width (%/100)
ESTFL(T) - estimated release (KCFS*days or 28.37m’/s*days)
FLOBO(T) - discharge limit through the turbines (KCFS or 28.37m’/s)
FLOW(T) - reservoir inflow (KCFS or 28.37m’/s)
GFP(T) - release through the turbines(Generation Flow-Power)

KCFS*days or 28.37m’/s*days
y y
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HE(S,T) - the produced hydro energy (GWH)

IMONTH(T) - time step notation - string

IPEEK - a variable to control the printing of output reports

ITER - the iteration counter

ITERMX -the maximum allowed iteration number

LASTM - the last time step of the planning horizon

- MSTART - the first time step of the planning horizon

NMONTH - number of time steps of the planning horizon

NSTRIP - number of load duration curve discretization strips

OB(ITER) - the value of the objective in the ITER-th iteration

OBIJ1 - the accepted highest objective till the last iteration ($)

OBJECT - the last objective function value calculated ($)

OCO(T) - operation cost of the hydro power plant ($/GWh)

PROCHA - the allowed change of the release policy from one iteration to the
other (%/100)

S - index of the load duration curve discretization strip

SCALE - a multiplication factor of the hydro producﬁon constraint to bring to scale
the coefficients

SINTER - the bank interest rate, important for bringing all benefits and costs to

the present value
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SPICO(T) - the penalty for spilling water from the reservoir ($/KCFS*days or
$/(28.37m’/s*days))

STASTO -the slope of the storage-stage relationship (KCFS*days/ft or
(28.37m’/s*days)/0.305 m)

STMAX(T) - the maximum allowed storage in the reservoir (KCFS*days)

STMIN(T) - the minimum allowed storage in the reservoir (KCFS*days)

STO(T) - accepted reservoir storage (KCFS*days)

STOCA(T) - calculated reservoir storage (KCFS*days)

STOIN - the initial storage in the reservoir (KCFS*days)

STOVA(T) - the value of the stored water ($/KCFS*days)

T - index of the time step

VARFAC - the factor to decrease the allowed storage variation

(%/100)
VARMIN - the lower boundary of the storage variation (KCFS*days)

VARYMX - the storage variation (KCFS*days)

The Variables needed in the routines of Land and Powell to Solve the LP
problem (for detailed description of the meaning of the variables see Land and

Powell (1973)):
AA(LOOK) - the array of the non-zero elements of the A coefficient matrix

B(I) - the array of the right hand sides of the constraints
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BIG - a large number treated as infinity

BOUND(J) - the array of upper bounds for each variable

C(J) - the elements of the linear function to be maximized

DRIVER - an indicator for new variable introduction to the basis

G(I) - the array of changes to SLACK(I) to be made at each basis change

GR(K) - the array of changes to the current basic variables,XR(K), to be made at
each iteration

INBASE(J) - the array to indicate whether the j-th variable is basic or not

INREV - an indicator for the CHSLCK variables

INV(K,L) - the array of the reduced inverse matrix

IR - reinversion counter of the inverse matrix during the LP solution

IRMAX - the maximum reinversion number allowed

IROW(I) - the array of elements which signify the starting points of rows
of A in AA |

ISBIG - the maximum size of the inverse encountered during the calculation

ISDONE - end indicator to avoid stop anywhere except the main routine

ISEFF(I) - an array of elements indicating whether the i-th constraint is effective
and represented in the inverse

ISTATE - condition indicator

ITR - iteration number counter during the LP solution

ITRMAX - the maximum number of simplex iterations allowed



118

JCOIL(LOOK) - the array of column labels of the elements of A in AA

M - the number of original constraints in the problem

MARKI - identifies the constraint which is represented by a slack variable explicitly
in the basis

MARKK - identifies the row of the inverse containing the slack variable indicated
by MARKI

MAXA - the maximum number of elements that can be stored in the AA array

MAXM - the maximum number of the constraints allowed

MAXN - the maximum number of X variables

MNOW - the total number of constraints in the system

MORE - problem number indicator

MOREPR - printing control variable

MXSIZE - the maximum size of the inverse matrix

N - the number of the variables in the problem

NEGINYV - the row of the inverse associated with an infeasible variable

NEGROW - the most infeasible row of the A matrix

NEWX - the next variable to be introduced to the basis

NEWY - the row which limits the basis change

NUMSILK - the number of slack variables that are explicitly present in the basis

OBJ - the objective function value

PIV(J) - the array of the pivotal row
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R - the limit of the value of the entering variable

S(I) - the array of signs of constraints (1 for <=; 0 for =; -1 for >=)

SLACK(I) - the array of the slack variables

SIZE - the size of the inverse matrix

SIZE1 - the size of the inverse matrix plus one

SMALL - a very small value

TOL(JK) - an array of tolerances that are used in the LP subroutines

X(J) - the values of the variables

XBASIS(K) - row labels of the inverse matrix, containing the numbers of the
currently basic variables

XR(K) - the values of the variables listed in XBASIS(K)

XKPOS - entering variable indicator

Y(I) - the values of the variables of the dual problem

YAC(J) - the updated function row of the LP calculation

YAMINC - the element in the updated function row of the entering variable

YBASIS(L) - the array of the column labels of the inverse métrix containing the
numbers of the currently effective constraints

YR(L) - the values of the dual variables of the constraints listed in YBASIS(L)
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D3 INPUT DATA

The program needs a variety of information as input. The data have to be
provided in the following order in the EMUL.DAT file.

- values of control variables of the Land & Powell routines (ITRMAX,
IRMAX, TOL(I));

- planning horizon description (NMONTH, MSTART, DPS(T),
IMONTH(T)); |

- the iterative process control data (ITERMX, VARYMX, VARFAC,
VARMIN, PROCHA);

- the objective function cost coefficients (STOVA(T), SPICO(T), OCO(T),
CEE(S,T), CEI(S,T));

- the system demand data (NSTRIP, ENLO(S,T), ENWI(S,T), EEM(S,T),
EIM(S,T), EEL(S,T) ,EIL(S,T));

- the reservoir and power plant data (STOIN, STASTO, STMIN(T),
STMAX(T), FLOBO(T), CJ(N));

- the initial release estimate (ESTFL(T));

- the deterministic reservoir inflow forecast (FLOW(T)); and

- miscellaneous (SCALE,SINTER).

There are 8 tolerance values to be input ( Land and Powell (1973)). Care
has to be taken that the number of data for each array complies with the specified

problem size. In the case of the one dimensional array it is the number of time
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steps specified in NMONTH. In the case of two dimensional array it is the
product of the strip number (given in NSTRIP) and time step number
(NMONTH). The order is : specify all the data for one strip and then for the

next strip.

D4 PROGRAM EXECUTION

In this section the program run is presented in details. The execution starts
with calling the INPUT subroutine from MAIN. The INPUT subroutine reads in
all the pertinent data from the file EMUL.DAT. It also initializes some variables
needed for the LP routines of LL.and & Powell, sets bounds on the reservoir release
variables (the LP takes care about them implicitly, without requiring explicitly
written constraints) and sets the right hand sides of the constraints (except for the
hydro production constraint).

Further the MAIN routine calls the SETA subroutine. The matrix of the
coefficients of the left hand sides of the constraints is set according to the
requirements of the Land & Powell routines (in the one dimensional AA array).
The only coefficients which are not calculated and assigned are the coefficients of
the hydro production constraints, which are assigned later. This subroutine also
sets the coefficients of the decision variables in the objective function.

After executing SETA, the MAIN routine calculates the estimates for

storage levels. This is done using the initial storage level, release estimates and the
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deterministic inflow forecast balanced through the flow continuity equation. If the
so calculated estimated storage would exceed the set boundaries the estimated
release is altered to avoid the problem, and the storage is either at its lower or
upper bound.

At this point the program enters the iteration loop of solving the
optimization problem. The first iteration is specific since the coefficients of the
hydro production constraints have to be calculated and assigned based on the
estimated releases and storages. This is done in the SETABC subroutine. After
the LP is completely set up, the SETABC activates the Land and Powell routines
which solve the LP problem. From this point on, the program executes the
procedure in the MAIN routine which is the same for all of the subsequent
iterations.

The program checks whether the LP solution is feasible and optimal by
looking to the ISTATE value. If the ISTATE is different than one, the program
terminates the run reporting an infeasible solution. If it is feasible the QUTPUT
subroutine is called. After printing the heading of the report to the output file,
EMIZ.DAT, the routine enters a time loop. The computation in the loop is
repeated for every time step. Besides the calculation of the monthly benefit,
BEMO, (by summing the values of the decision variables of that particular month
multiplied by the appropriate cost coefficients), the routine also calculates the

release and storage estimates for the next iteration. This is performed by
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calculating the change in the release policy, PROMENA, between the accepted,
ESTFL(MON) and the newly calculated GFP(MON) release. The value of
PROMENA, actually its absolute value, CHANGE, is normalized by the
ESTFL(MON) to give the value of VALTO. VALTO is compared to the allowed
policy change fraction specified in PROCHA. If the VALTO value is greater than
the PROCHA the GFP(MON) value is recalculated by adding/subtracting the
PROCHA multiple of the EMSLP(MON) to the EMSLP(MON) value. The
adding or subtracting depends on the original GFP(MON) value, i.e., on the sign
of PROMENA: if it is less than zero subtraction takes place, if not addition. In
this way the direction of the change is the same as indicated by the original
GFP(MON) value.

If the value of VALTO is less than PROCHA the original value of
GFP(MON) is unchanged. After updating the release estimates the estimates for
the storage STOCA(MON) are calculated using the flow continuity equation.
Checking is done to ensure that the obtained STOCA(MON) is within the specified
bounds STMIN(MON) and STMAX(MON). If the bounds are violated, the value
of GFP(MON) is recalculated to have a feasible STOCA(MON) value (either
STMAX(MON) or STMIN(MON) depending whether the original was too high or
~too low). |
It is important to note that the values in the GFP and STOCA arrays are

just the candidates for the estimates of the next iteration. They are not accepted
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at this point, since the evaluation of the solution, based on the comparison of the
accepted and calculated objective function, is yet to come.

After the calculation of monthly benefits, ie., obtaining the objective
function value OBJECT is printed to the output file. The control is returned to
the MAIN routine.

The NODROP variable contains the information whether the previous
iteration has brought improvement to the objective or not. The TRUE value
corresponds to the improved objective. Before the first iteration a TRUE value is
assigned to calculate the initial coefficients of the hydro production constraints in
the SETABC routine. Depending on the value of NODROP the program branches
mnto two directions.

If NODROP is TRUE the program compares the newly obtained objective
function value with the so far accepted objective function values of the previous
iterations. This is to avoid cycling in an infinite loop of iterations without achieving
a stable solution. If a loop is identified the program stops after reporting the cause.
It there is no loop the program joins to the "NODROP is FALSE" branch.

The difference between the newly obtained solution and the accepted one
is compared to the tolerance limit. If the absolute value of the highest monthly
storage difference (AD) is less than the set minimum storage variability
(VARMIN) the iterative solution procedure terminates. A stable solution is

identified. If not, the program evaluates the obtained solution.
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The newly calculated OBJECT value is compared to the last accepted
objective function value stored in OBJ1. If the new one is higher, the NODROP
gets the TRUE value and the solution is accepted. The value of the OBJ1 is
updated, and the storage variability is reset to its original, maximum value
(VARYMX=VARMAX). The program goes into a new iteration at the first level.
The SETABC recalculates the coefficients of the hydfo production constraints,
resets the bounds on the storage variables and finally solves the new LP by calling
the SOLVER routine. The control is returned to the MAIN routine.

In the case that there is no improvement in the objective value and the
NODROP gets a FALSE value after the comparison, the program enters the
second level of iteration. The task is to search the interior of the original feasible
region of the LP problem in order to possibly improve the objective function value.
The storage variability (VARYMX) is decreased by multiplying it with the
VARFAC factor. The new value of VARYMX is compared to the tolerance limit
(VARMIN).

If it is greater or equal than VARMIN the bounds on the storages are
recalculated according to the new VARYMX value and the LP is resolved. It is
important to note that the coefficients of the hydro production constraints are not
changed, only the feasible region is decreased by changing the range of the possible
storage values.The execution continues from the beginning of the loop. Since the

NODROP has a FALSE value the program goes directly to the OUTPUT routine
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without invoking the SETABC. From this point on the execution is the same as
described above for the first iteration.

If the value of VARYMX is less than VARMIN the initial worse solution
(where the objective started to decrease) is accepted, and the program returns to
the first level of iteration. The value of VARYMX is reset to VARMAX, the
storage bounds are recalculated and the LP is resolved. A TRUE value is assigned
to the NODROP in order to accept the solution. The execution continues from
the start of the loop as if an improvement in the objective has occurred.

To summarize, the program accepts solutions which improve the objective
and solutions where the objective drops after it is determined that the interior of
the original feésible region does not contain a better solution. The iteration
continues until the difference between the storage trajectories of the calculated and

the accepted solution is less than the defined accuracy.

DS OUTPUT REPORT

The output file named EMIZ.DAT contains the input data and reports on
the iterative solution procedure. The input data are printed in the output report
to be able to correct the potential errors and to be able to relate the solution to
the input data (Input data sample is given in Appendix F).

Every solution in the iterative process is documented by giving the values of

following variables for each time step: inflow to the reservoir, turbine release,
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spilled release, total release, on and off peak export and import energy, on and off
peak produced hydro energy and the monthly benefit value. Besides the report
gives the number of the solution, the number of simplex iterations done to obtain
the solution the current value of the storage variation variable VARYMX and the
objective function value (A sample of output file is enclosed in Appendix F).

The report can contain messages about accepting the worse solution at the
end of the search at the second iteration level or about identifying an infinite loop

of solutions. At the end of the output file the number of iterations at the first

iteration level is also reported.
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APPENDIX E

SOURCE CODE
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c
C THE MAIN ROUTINE
c
IMPLICIT REAL*8 (A-H,0-2)
LOGICAL NODROP
REAL*8 INV,KMIN
INTEGER SIZE,SIZE1,XBASIS,YBASIS
COMMON/10/ IOIN,IOOUT
COMMON/LINPCO/
1BOUND (156),C(156), INBASE(156),PIV(156),X(156),YAC(156),
2B(156),6(156),GR(156), ISEFF(156),5(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/DATA/ MSTART,LASTM,NSTRIP,SCALE,STOIN,SINTER,
1STOVA(12),STASTO, SPICO(12),0C0(12) ,ENLOC2,12),ENWI(2,12),
2DPS(12),FLOW(12) ,FLOBO(12) ,ESTFL(12),STHAX(12),STHIN(12),
3HE(2,12),CJ(2),EE(2,12),E1(2,12) ,EEM(2,12),EIN(2,12),
4LEEL(12),EIL(12),CEE(2,12),CEI(2,12)
COMMON/MAIN/ ITERMX, IPEEK,VARYMX,BETTER,VARFAC,VARMIN,VARFC1
COMMON/RESULT/ STO(12),6FP(12),0BJECT,0BJ1, ITER, STOCA(12)
COMMON /AREF/ AA(600),JCOL(600), IROW(157), HAXA
COMMON /CONTROL/ KFLAG
COMMON /CHANGES/ PROCHA
DIMENSION OB(250)
1c=1

OV 00 N O

CALL INPUT
CALL SETA

C

C A LOOP TO :

C - CALC. MONTHLY INFLOWS/OUTFLOWS IN KCFS*DAYS

C ~ CALCULATE THE INITIAL STORAGE ESTIMATES

C
BEG=STOIN
DO 50 MN=MSTART,LASTM
MON=MN
IF(MON.GT.12) MON=MON-12
FLOW(MON)=FLOW(MON)*DPS(MON)
ESTFL(MON)=ESTFL(MON)*DPS(MON)
STO(MON)=BEG+FLOW(MON) -ESTFL(MON)
IF(STO(MON).LE.STMAX{MON)) GO TO 20
STO(MONI=STMAX(MON) )
ESTFL(MON)=BEG-STO(MON)+FLOW(MON)
IFC(ESTFL(MON) .GT.FLOBO(MON)) ESTFL(MON)=FLOBO(MON)

20 IF(STO(MON) .GE.STMIN(MON)) GO TO 50
STO(MON)=STMIN(MON)
ESTFL(MON)=BEG-STO(MON)+FLOW(MON)
IF(ESTFL(MON).GT.FLOBO(MON)) ESTFL(MON)=FLOBO(MON)
50 BEG=STO(MON)
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C INITIALIZE VARIABLES FOR THE FIRST ITERATION

VARMAX=VARYMX
0BJ1=-BIG
NODROP=. TRUE.
c
C THE LOOP OF THE ITERATIVE SOLUTION PROCEDURE
¢
DO 100 ITER=1,ITERMX
MOREPR=IPEEK-1
IF (MOREPR.LT.0.0R.MOREPR.GT.3) MOREPR=0
KFLAG=0
IF(NODROP) CALL SETABC
IF(ISTATE.NE.1) GO TO 1000
CALL OUTPUT
IF(.NOT.NODROP) GO TO 500
c
C THIS PART IS TO AVOID CYRCLING IN AN INFINITE LOOP OF SOLUTIONS
c
COM=BIG
DO 451 IK=1,IC
VAL=DABS(OBJECT-O0B(IK))
451 IF(VAL.LT.COM) COM=VAL
IF(COM.GE.0.01)GO TO 550
WRITE(6,*) 'LOOP FOUND,IT STOPS'
GO TO 1100
550 IC=IC+1
0B(IC)=0BJECT
c
500 CONTINUE
c
C CONVERGENCE CHECK : THE STOPPING CRITERIA
c
AD=0.0
J=9
DO 55 MN=MSTART,LASTHM
MON=MN
IF(MON.GT.12) MON=MON-12
DIF=DABS(STO(MON) -X(J))
IF(DIF.GT.AD) AD=DIF
55  J=J+9
IF(AD.LE.VARMIN) WRITE(6,*) 'CONVERGED VOLUME'
IF(AD.LE.VARMIN) GO TO 1100

CONVERGENCE HAS NOT BEEN DETERMINED SO PREPARE
FOR THE NEXT ITERATION: DETERMINE WHETHER THERE WAS AN
IMPROVEMENT IN THE OBJECTIVE FUNCTION (NODROP=.TRUE.)

OO 00

NODROP=0BJECT.GT.0BJ1

IF NODROP IS .TRUE. THE ITERATION CONTINUES AT THE
FIRST LEVEL ( THE OBTAINED SOLUTION IS
ACCEPTED AND USED AS THE ESTIMATE FOR THE NEXT ONE)

OO O oo
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IF(.NOT.NODROP) GO TO 79
VARYMX=VARMAX
0BJ1=0BJECT

GO To 100

THE OBJECTIVE FUNCTION VALUE GOT WORSE SO

ITERATE AT THE SECOND LEVEL (TRY TO IMPROVE THE OBJECTIVE
BY EXPLORING THE INTERIOR OF THE FEASIBLE REGION BY
LIMITING THE STORAGE VARIABILITY VARYHX

G0 OO 6 0

79 VARYMX=VARYMX*VARFAC

C CHECK WHETHER THE ITERATION AT SECOND LEVEL IS FINISHED

C
IF(VARYMX.LE.VARMIN) GO TO 99

RECALCULATE THE RIGHT HAND SIDES OF THE STORAGE

LIMITING CONSTRAINTS AND RESOLVE THE LP USING THE UNCHANGED
ESTIMATE FOR STORAGES AND RELEASES (I.E. THE SAME
COEFFICIENTS IN THE HYDRO PRODUCTION CONTRAINTS)

O O O 0 600

1=1
DO 60 MN=MSTART,LASTHM
MON=MN
IF(MON.GT.12) MON=MON-12
PIV(I)=0.
PIV(I+1)=0.
PIV(I+2)=0.
PIV(I+3)=0.
PIV(I+4)=0.
PIV(I+5)=0.
PIV(I+6)=DMAX1(STO(MON)-VARYMX,STMiN(MON))-B(I+6)
B(I+6)=B(I+6)+PIV(I+6)
PIV(I+7)=DMINT(STO(MON)+VARYMX,STMAX(MON))-B(I+7)
B(I+7)=B(I+7)+PIV(I+7)
PIV(I+8)=B(I+8)
60 I=I+9

NEWY=0
CALL CHGB
IFC(ISTATE.NE.1) CALL SOLVER
IF(ISTATE.EQ.1) GO TO 97

c

C AN OTHER TRY TO SOLVE THE LP

C
WRITE(6,*) 'A TRY FROM SCRATCH'
KFLAG=1
CALL SETABC
IF(ISTATE.NE.1) GO TO 1000

97 IF(IPEEK.EQ.1) WRITE(6,902) (B(I1+6),B(I1+7),I=1,M,8)

IFCIPEEK.EQ.14) CALL IPRINT
IF(IPEEK.GE.10) IPEEK=IPEEK-10
GO TO 100

C THE ITERATIONS AT THE SECOND LEVEL DID NOT FIND
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C A BETTER OBJECTIVE THAN THE INITIAL DECREASED ONE,
C SO ACCEPT THE FIRST DETERMINED SOLUTION AS AN

C ESTIMATE FOR THE NEXT ONE
c

99 NODROP=.TRUE.
VARYMX=VARMAX
WRITE(6,%) 'THE INITIAL DECREASE IS ACCEPTED'
1=1
DO 62 MN=MSTART,LASTM
MON=MN
IF(MON.GT.12) MON=MON-12
PIV(I)=0.
PIV(I+1)=0.
PIV(I+2)=0.
PIV(I+3)=0.
PIV(I+4)=0.
PIV(I+5)=0.
PIV(I+6)=DMAX1(STO(MON)-VARYMX, STHIN(MON))-B(I+6)
B(I+6)=B(I+6)+PIV(1+6)
PIV(I+7)=DMINT(STO(MON)+VARYMX, STMAX(MON))-B(I+7)
B(I+7)=B(I+7)+PIV(I+7)
PIV(I+8)=B(I+8)
62 1=1+9
NEWY=0
CALL CHGB
IFCISTATE.NE.1) CALL SOLVER
IF(ISTATE.EQ.1) GO TO 98
C
C AN OTHER TRY TO SOLVE THE LP
[«
WRITE(6,%) 'A TRY FROM SCRATCH'
KFLAG=1
CALL SETABC
IF(ISTATE.NE.1) GO TO 1000
98 CALL OUTPUT
OBJ1=0BJECT
100 CONTINUE
GO TO 1100
1000 MOREPR=3
CALL IPRINT
WRITE(6,*) 'I AM BACK FROM IPRINT'
902 FORMAT (8F10.3)
1100 CONTINUE
IC=IC-1
WRITE(6,129) IC
129 FORMAT(' NET ITERATIONS ',14)
END
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SUBROUTINE INPUT
IMPLICIT REAL*8 (A-H,0-2)
CHARACTER*3 IMONTH
LOGICAL NODROP
REAL*8 INV,KMIN
INTEGER SIZE,SIZE1,XBASIS,YBASIS
COMMON/I0/ IOIN,IOOUT
COMMON/LINPCO/
1BOUND(156),C(156) , INBASE(156) ,PIV(156) ,X(156) ,YAC(156),
2B(156) ,6(156) ,GR(156) ,ISEFF(156),5(156) ,SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, 0BJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/DATA/ MSTART,LASTH,NSTRIP,SCALE,STOIN,SINTER,
1STOVA(12),STASTO,SPICO(12),0c0(12),ENLOC2,12) ,ENWI(2,12),
2DPS(12),FLOW(12),FLOBO(12) ,ESTFL(12),STHAX(12),STHIN(12),
3HE(2,12),CJ(2) ,EE(2,12) ,EI(2,12) ,EEH(2,12) ,EIN(2,12),
4EEL(12),EIL(12),CEE(2,12),CEI(2,12)
COMMON/MAIN/ ITERMX, IPEEK,VARYMX,BETTER,VARFAC,VARMIN, VARFC1
COMMON/RESULT/ STO(12),6FP(12),0BJECT,0BJ1, ITER,STOCA(12)
COMMON /AREF/ AA(600),JCOL(600),IROU(157), MAXA
COMMON/MONTH/ IMONTH(12)
COMMON/CHANGES/ PROCHA
10 FORMAT(101I5)
20 FORMAT(6F11.2)
30 FORMAT(6F12.6)
OPEN(5,FILE=*EMUL.DAT')
OPEN(6,FILE='EMIZ.DAT')

O 00 ~N O

IOIN=5
100UT=6
c
C READING IN THE NEEDED DATA AND WRITING IT TO THE
C OUTPUT FILE
c
WRITE(6,*) ! OUTPUT REPORT FROM THE EMSLP PROGRAM'
WRITE(6,*) !
WRITE(6,%) ! !
WRITE(6,*) ' THE INPUT DATA ‘!
WRITE(6,*) '-------o--mmcmommo- !
WRITE(6,*) ' !
WRITE(6,*) '* LAND & POWELL CONTROL DATA'
WRITE(S,%*) ! !
READ(5,%*) ITRMAX, IRMAX
WRITE(6,10) ITRMAX, IRMAX
READ(5,%*) (TOL(I),1=1,8)
WRITE(6,30) (TOL(I),I=1,8)
c
WRITE(6,%) ' !
WRITE(6,*) '* PLANNING HORIZON DESCRIPTION'
WRITE(6,%) ' !

READ(5,%) NMONTH, MSTART
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WRITE(6,10) NMONTH,MSTART

READ(5,%) (DPS(IT),IT=1,NMONTH)
WRITE(6,20) (DPS(IT),IT=1,NMONTH)
READ(S5,*%) (IMONTHCIT),IT=1,NMONTH)
WRITE(6,*) (IMONTH(IT),IT=1,NMONTH)

WRITE(6,%) ! !

WRITE(6,*) '* ITERATIVE PROCESS CONTROL DATA'
WRITE(6,%) ! !

READ(5,*) ITERMX,IPEEK

WRITE(6,%) ITERMX, IPEEK

READ(5,%) VARYMX,VARFAC,VARMIN,PROCHA
WRITE(6,30) VARYMX,VARFAC,VARMIN,PROCHA

WRITE(6,*) *

WRITE(6,%) '* OBJ. FUN COST COEFF.'
WRITE(6,%) ' !

READ(5,%) (STOVACIT),IT=1,NMONTH)
WRITE(6,20) (STOVACIT),IT=1,NMONTH)
READ(5,%) (SPICOCIT),IT=1,NMONTH)
WRITE(6,30) (SPICOCIT),IT=1,NMONTH)
READ(5,*) (OCO(CIT),IT=1,NMONTH)
WRITE(6,30) (0COCIT),IT=1,NMONTH)
READ(5,*) (CEE(1,IT),IT=1,NMONTH)
WRITE(6,20) (CEE(1,IT),IT=1,NMONTH)
READ(5,*) (CEE(2,IT),IT=1,NMONTH)
WRITE(6,20) (CEE(2,IT),IT=1,NMONTH)
READ(5,*) (CEI(1,IT),IT=1,NMONTH)
WRITE(6,20) (CEIC1,IT),1T=1,NMONTH)
READ(5,*) (CEI(2,IT),IT=1,NMONTH)
WRITE(6,20) (CEI(2,IT),IT=1,NMONTH)

WRITE(6, %) * !

WRITE(6,*) '* SYSTEM DEMAND DATA'

WRITE(6,%) ¢ !

READ(5,*) NSTRIP

WRITE(6,10) NSTRIP

DO 50 NI=1,NSTRIP

READ(5,*) (ENLOCNI,J),J=1,NMONTH)
50 WRITE(6,30) (ENLOCNI,J),J=1,NMONTH)

DO 60 NI=1,NSTRIP

READ(5,*) (ENWI(NI,J),J=1,NMONTH)
60 WRITE(6,30) (ENWI(NI,J),J=1,NMONTH)

READ(5,*%) (EEM(1,IT),IT=1,NMONTH)

WRITE(6,20) C(EEM(1,IT),IT=1,NMONTH)

READ(5,*) (EEM(2,IT),IT=1,NMONTH)

WRITE(6,20) (EEM(2,1IT),IT=1,NMONTH)

READ(5,*) (EIM(1,IT),IT=1,NMONTH)

WRITE(6,20) (EIM(1,IT),IT=1,NMONTH)

READ(5,*) (EIM(2,IT),IT=1,NHONTH)

WRITE(6,20) (EIM(2,IT),IT=1,NMONTH)

READ(5,%) (EELCIT),IT=1,NMONTH)

WRITE(6,30) (EELCIT),IT=1,NMONTH)

READ(5,*) (EIL(IT),IT=1,NMONTH)
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WRITE(6,30) (EIL(IT),IT=1,NMONTH)

WRITE(6, %) '

WRITE(6,%) '* RESERVOIR & POWER PLANT DATA'
WRITE(6,*) ' !

READ(5,*) STOIN,STASTO

WRITE(6,30) STOIN,STASTO

READ(5,*) (STMINCIT),IT=1,NMONTH)
WRITE(6,20) (STMINCIT),IT=1,NMONTH)
READ(5,*%) (STMAX(IT),IT=1,NMONTH)
WRITE(6,20) (STMAX(IT),IT=1,NMONTH)
READ(5,*%) (FLOBOCIT),IT=1,NMONTH)
WRITE(6,30) (FLOBOCIT),IT=1,NMONTH)
READ(5,%) (CJCIT),IT=1,2)
WRITE(6,30) (CJCIT),IT=1,2)

WRITEC6,*) '+ '

WRITE(6,*) '* RELEASE ESTIMATES'
WRITE(6,%) * !

READ(S5,*) (ESTFL(IT),IT=1,NMONTH)
WRITE(6,30) (ESTFLCIT),IT=1,NMONTH)

WRITE(G,*) ' !

WRITE(6,*) '* FORECASTED INFLOW'
WRITE(6,%) ' !

READ(5,*) (FLOWCITY,IT=1,NMONTH)
WRITE(6,30) (FLOWCIT),IT=1,NMONTH)

WRITE(6,%*) '
WRITE(6,*) '* SCALE FOR LP & DISCOUNT RATE'
WRITE(6,*) ' !
READ(5,*) SCALE,SINTER
WRITE(6,30) SCALE,SINTER
WRITE(G, %) ' mmrmmm oo e m s e o e oo emeo oo '
WRITE(6,*) ' !
WRITE (6,%) ' REPORTS ON THE ITERATIVE SOLUTION PROCEDURE'
WRITE(6,*) ¢ !
¢
€ INITIALIZE VARIABLES FOR LP ROUTINES
¢
BIG=1.E8
SMALL=1.E-6
M=9*NMONTH

o
C INITIALIZE SOME BOUNDS ON RELEASES , SOME RHS-S
C
LASTM=MSTART+NMONTRH-1
=1
DO 100 MN=MSTART,LASTHM
I=(MN-MSTART) *9+1
MON=MN
IF(MON.GT.12) MON=MON-12
FLOBO(MON)=FLOBO(MON)*DPS(MON)
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BOUND(J)=FLOBO(MON)

BOUND(J+1)=-1.

BOUND(J+2)=-1.

BOUND(J+3)=-1.

BOUND(J+4)=-1.

BOUND(J+5)=-1.

BOUND(J+6)=-1.

BOUND(J+7)=-1.

BOUND(J+8)=-1.

B(I+1)=FLOW(MON)*DPS(MON)

B(I+2)=EEM(1,MON) /(1-EEL(MON))*24./1000.*DPS(MON)*ENWI(1,MON)
B(I+3)=EEM(2,MON)/(1-EEL(MON))*24./1000.*%DPS(MON)*ENWI (2, MON)
B(I+4)=ENLO(1,MON)*24./1000.*DPS(MON)*ENWI(1,MON)
B(I+5)=ENLO(2,MON)Y*24./1000.*DPS(MON)*ENWI(2,MON)

B(I1+8)=0.0

J=J+9

B(2)=B(2)+STOIN

RETURN

END
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SUBROUTINE SETA
¢
C THIS SUBROUTINE SETS UP THE A MATRIX AND THE C VALUES,T0O
¢
IMPLICIT REAL*8 (A-H,0-Z)
REAL*8 INV,KMIN
INTEGER SIZE,SIZE1,XBASIS,YBASIS
COMMON/10/ 10IN,I00UT
COMMON/LINPCO/
1BOUND(156),C(156) , INBASE(156),PIV(156),X(156),YAC(156),
2B(156),6(156) ,GR(156) , ISEFF(156),5(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/DATA/ MSTART,LASTM,NSTRIP,SCALE,STOIN,SINTER,
1STOVA(12),STASTO, SPICO(12),0C0(12),ENLO(2,12),ENWI(2,12),
2DPS(12),FLOW(12),FLOBO(12),ESTFL(12),STHAX(12),STHIN(12),
3HE(2,12),CJ(2),EE(2,12) ,E1(2,12) ,EEM(2,12) ,EIN(2,12),
4EEL(12),EIL(12),CEE(2,12),CEI(2,12)
COMMON/MAIN/ ITERMX, IPEEK,VARYMX,BETTER,VARFAC,VARMIN, VARFC1
COMMON/RESULT/ STO(12),GFP(12),0BJECT,0BJ1, ITER, STOCA(12)
COMMON /AREF/ AA(600),JCOL(600), IROW(157),MAXA

O 0 ~N O

AA(K)-IS A ONE DIMENSIONAL ARRAY CONTAINING THE
VALUES OF THE CONSTRAINT COEFFICIENTS
JCOL(K)- DENOTES THE COLUMN OF THE K-TH COEFFICIENT
IROW(I)- DENOTES THE K NUMBER OF THE FIRST COEFFICIENT IN THE I-TH ROW
I- CONSTRAINT NUMBER '
J- VARIABLE NUMBER .
K- COEFFICIENT NUMBER IN AA ARRAY

SEE LAND & POWELL TO UNDERSTAND MORE
ABOUT CONSTRAINT MATRIX SPECIFICATION

OO 0606000000

DO 10 JI=MSTART,LASTM
10 TOTAL=DPS(JI)+TOTAL

MAXA=300

I=1

J=1

K=1

$p=0.0

DO 100 MN=MSTART,LASTM

SD=SD+DPS(MON)

MON=MN

IF(MON.GT.12) MON=MON-12

IF(K.GT.19) Go To 20

JCOL(1)=1

JCOL(2)=3

AA(2)=-2.0%SCALE

JCOL(3)=4

AA(3)=-2.0%SCALE
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JCOL(4)=9
IROW(1)=1
$(1)=0.0
JeoL(5)=1
AA(5)=1.0
JCOL(6)=2
AA(6)=1.0
JCOL(7)=9
AA(7)=1.0
$(2)=0.0
IROW(2)=5
JCOL(8)=5
AA(8)=1.0
JCoL(9)=7
AA(9)=EEM(1,MON) /EIM(1,MON) / ((1-EEL(MON))*(1-EIL(MON)))
$(3)=1.0
IROW(3)=8
JCOL(10)=6
AAC100=1.0
JCoL(11)=8
AACT1)=EEM(2,MON) /EIM(2,MON) /((1-EEL(MON)Y*(1-EIL(MON)))
$(4)=1.0 '
IROW(4)=10
JeoL(12)=3
AAC12)=1.0
JCOL(13)=5
AA(13)=-1.0
JeoL(14)=7
AA(14)=1.0
$(5)=0.0
IROW(5)=12
JeoL(15)=4
AA(15)=1.0
JCOL(16)=6
AA(16)=-1.0
JCOL(17)=8
AA(17)=1.0
$(6)=0.0
IROW(6)=15
JCOL(18)=9
AA(18)=1.0
$(7)=-1.0
IROW(7)=18
JeoL(19)=9
AA(19)=1.0
$(8)=1.0
IROW(8)=19
JeoL(20)=1
AA(20)=-24./1000.*ERF(CJ,STHAX(MON) )*SCALE
JeoL(21)=3
AA(21)=1.0*SCALE
JeoL(22)=4
AA(22)=1.0%SCALE
$(9)=1.0
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IROW(9)=20
FACT=1./(1+SINTER)**((TOTAL-SD)/365.)
€(1)=0.0

C(2)=SPICO(MON)*FACT
C(3)=0CO(MON)*FACT
C(4)=0CO(MON)*FACT
C(5)=CEE(1,MON)*FACT*(1-EEL(MON))
C(6)=CEE(2,MON)*FACT*(1-EEL(MON))
C(7)=CEI(1,MONI*FACT/(1-EIL(MON))
C(8)=CEI(2,MON)Y*FACT/(1-EIL(MON))
C(9)=STOVA(MON)*FACT

J=J+9

1=149

K=K+22

GO TO 100

JCOL(K)=4-1

JCOL(K+1)=J

JCOL(K+2)=J+2

AA(K+2)=-2.0%SCALE

JCOL(K+3)=4+3

AA(K+3)=-2.0*%SCALE

JCOL(K+4)=J+8

$(1)=0.0

IROW(I)=K

JCOL(K+5)=J-1

AA(K+5)=-1.0

JCOL(K+6)=J

AA(K+6)=1.0

JCOL(K+7)=J+1

AA(K+7)=1.0

JCOL(K+8)=J+8

AA(K+8)=1.0

$(1+1)=0.0

IROW(I+1)=K+5

JCOL(K+9)=J+4

AA(K+9)=1.0

JCOL(K+10)=J+6
AACK+10)=EEM(1,MON) /EIM(1,MON) /((1-EEL(MON)Y*(1-EIL(MON)))
S{1+2)=1.0

IROW(I+2)=K+9

JCOL(K+11)=J+5

AA(K+11)=1.0

JCOL(K+12)=J+7
AA(K+12)=EEM(2,MON) /JEIM(2,MON) / ({1-EEL(MON))*(1-EIL(MON)))
$(1+3)=1.0

IROW(I+3)=K+11

JCOL(K+13)=4+2

AA(K+13)=1.0

JCOL(K+14)=J+4

AA(K+14)=-1.0

JCOL(K+15)=J+6

AA(K+15)=1.0

S$(1+4)=0.0

IROW(I+4)=K+13
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JCOL(K+16)=J+3

AA(K+16)=1.0

JCOL(K+17)=J+5

AA(K+17)=-1.0

JCOL(K+18)=4+7

AA(K+18)=1.0

S(1+5)=0.0

IROW(I+5)=K+16

JCOL(K+19)=J+8

AA(K+19)=1.0

S(I1+6)=-1.0

IROW(I+6)=K+19

JCOL(K+20)=J+8

AA(K+20)=1.0

S(I1+7)=1.0

IROW(I+7)=K+20

JCOL(K+21)=J
AA(K+21)=-24./1000.*ERF(CJ, STMAX(MON) ) *SCALE
JCOL(K+22)=J+2

AA(K+22)=1.0*%SCALE

JCOL(K+23)=J+3

AA(K+23)=1.0*SCALE

$(I1+8)=1.0

IROW (I+8)=K+21
FACT=1/(1+SINTER)**((TOTAL-SD)/365.)
c(4=0.0

C(J+1)=SPICO(MON)*FACT
C(J+2)=0CO(MON)*FACT
C(J+3)=0CO(MON)*FACT
C(J+4)=CEE(1,MON)*FACT*(1-EEL(MON))
C(J+5)=CEE(2,MON)*FACT*(1-EEL(MON))
C(J+6)=CEI(1,MON)I*FACT/(1-EIL(MON))
C(J+7)=CEI(2,MON)*FACT/(1-EIL(MON))
C(J+8)=STOVA(MON)XFACT

J=J+9

I1=1+9

K=K+24

CONTINUE

N=J-1

IROW(I)=K

RETURN

END

REAL*8 FUNCTION ERF(CC,S)
REAL*8 CC,S

€C(1)=9.801*%0.305*%*4*1000/1000*EFFICIENCY/STASTO
CC(2)=CC(1)*(-TAIL WATER LEVEL)

DIMENSION CC(2)
ERF=CC(1)*$+CC(2)
RETURN

END
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SUBROUTINE SETABC

THIS SUBROUTINE CALCULATES THE COEFF.'S OF THE
HYDRO PRODUCTION CONSTRAINT, AND ALTERS THE SAME IN THE
SUBSEQUENT ITERATIONS

IMPLICIT REAL*8 (A-H,0-2)
LOGICAL CHANGB
REAL*8 INV,KMIN
INTEGER SIZE,SIZE1,XBASIS,YBASIS
COMMON/I0/ IOIN,IOOUT
COMMON/LINPCO/
1BOUND(156),C(156), INBASE(156) ,PIV(156),X(156),YAC(156),
2B(156),6(156) ,6R(156), ISEFF(156),5(156), SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, I1SBIG, ISDONE, ISTATE, ITR, ITRMAX, N,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/DATA/ MSTART,LASTM,NSTRIP,SCALE,STOIN, SINTER,
1STOVA(12),STASTO,SPICO(12),0C0¢12),ENLO(2,12) ,ENWI(2,12),
2DPS(12),FLOW(12),FLOBOC12),ESTFL(12),STMAX(12),STHINC12),
3HE(2,12),C4(2),EE(2,12),E1(2,12) ,EEM(2,12) ,EIN(2,12),
4EEL(12),EIL(12),CEE(2,12),CEI(2,12)
COMMON/MAIN/ ITERMX, IPEEK,VARYMX,BETTER,VARFAC,VARMIN,VARFC1
COMMON/RESULT/ STO(12),GFP(12),0BJECT,0BJ1,ITER,STOCA(12)
COMMON /AREF/ AA(600),JCOL(600), IROW(157),HAXA
COMMON /CONTROL/ KFLAG

O 00 ~N O

DIMENSION T(84)

THE KFLAG=1 MEANS THAT THE ROUTINE IS CALLED
ONLY TO RESOLVE THE LP WITHOUT ALTERING IT BEFORE

IF(KFLAG.EQ.1) GO TO 111
IF(ITER.GT.1.AND.MOREPR.GT.0) CALL IPRINT
BEG=0.

1=1

=1

K=1

OERF=ERF(CJ,STOIN)

LOOP TO CALCULATE THE COEFFICIENTS FOR EVERY TIME STEP
DO 200 MN=MSTART,LASTH
MON=MN
IF(MON.GT.12) MON=MON-12
THE RELEASE (GFP(MON)) AND STORAGE ESTIMATE (STOCA(MON)) CANDIDATES
CALCULATED IN OUTPUT SUBROUTINE ARE ACCEPTED TO
BE THE ESTIMATES FOR THE NEXT ITERATION

IF(ITER.GT.1) STO(MON)=STOCA(MON)
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IFCITER.GT.1) ESTFL(MON)=GFP(MON)

SUM=0.0
JK=K
IF(1.EQ.1) JK=0

TEMPORARY ARRAY OF RHS OF THE MN-TH MONTH'S CONSTRAINTS
T(I)=((BEG+STO(MON) )*CJ(1)*ESTFL(MON)*24/1000. Y*SCALE
T(I+1)=B(I+1)
T(1+2)=B(I+2)
T(I+3)=B(I+3)
TI+4)=B(1+4)
T(I+5)=B(1+5)
T(I+6)=DMAXT(STO(MON) -VARYMX, STHIN(MON))
TC(I+7)=DMINT(STO(MON)+VARYMX, STHAX(MON))
T(I+8)=B(1+8)

CALCULATION OF THE COEFFICIENTS

NOTE: THE HYDRO PRODUCTION CONSTR. FOR THE FIRST MONTH (I=1) IS

DIFFERENT THAN THE SUBSEQUENT ONES
UERF=ERF(CJ,STO(MON))
IF(I.EQ.1) GO TO 30
AAJMI=CJ(TI*ESTFL(MON)*24/1000.*SCALE

30 AAJ=(OERF+UERF)*24/1000.*SCALE
AAJP2=CJ(1)*ESTFL(MON)*24/1000.*SCALE
po 35 1J=1,5

35 PIV(1IJ)=0.0
IF(I.EQ.1) GO TO 40
PIV(1)=AAJNT-AA(JK)

40 PIV(2)=AAJ-AACJK+T)
PIV(5)=AAJP2-AA(JK+4)
IFC(ITER.EQR.1) GO TO 180
IF(I.NE.1) GO TO 45
PIV(1)=PIV(2)
PIV(2)=PIV(3)
PIV(3)=PIV(4)
PIV(4)=PIV(5)
PIV(5)=0.0

5 IF(PIV(T1)+PIV(2)+PIV(3)+PIV(4)+PIV(5).EQ.0.) GO TO 190
Ki1=IROW(I)
K2=IROW(I+1)-1
DO 67 KP=K1,K2
KV=KP-K1+1
67 AA(KP)=AA(KP)+PIV(KV)

GO TO 190

180 IK=JK+4

PIV(3)=-2.0%SCALE
PIV(4)=-2.0*SCALE
DO 185 L=JK,IK
IF(I.EQ.1.AND.L.EQ.JK) GO TO 185
AA(L)=PIV(L-JK+1)
185 CONTINUE ,
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190 BEG=STO(MON)
K=K+22
IF(I.GT.1) K=K+2
I=1+9
J=4+9
200 OERF=UERF
[%
Do 50 1=1,M
50 B(I)=T(ID)
[«
C INITIALIZING THE NECESSARY LAND AND POWELL VARIABLES
[
111 B16=1.E8
SMALL=1.E-6
M=9% (LASTM-MSTART+1)
N=9% (LASTM-MSTART+1)
MXSIZE=81
MAXM=108
MAXN=108
ISDONE=0
INREV=0
IR=0
ISBND=1
ITR=0
MNOW=M
NEGINV=0
NEGROW=0
NEWX=0
NEWY=0
R=0.0
SIZE=0
ISBIG=1
YAMINC=0.0
ISTATE=0
DO 300 1K=1,60
INBASE(IK)=0
PIV(IK)=0.0
X(IK)=0.0
YAC(IK)=0.0
G(IK)=0.0
GR(IK)=0.0
ISEFF(IK)=0.0
SLACK(IK)=0.0
Y(IK)=0.0
300 CONTINUE
DO 350 1K=1,100
XBASIS(IK)=0.0
XR(IK)=0.0
YBASIS(IK)=0.0
YR(IK)=0.0
Do 360 14=1,70
360 INV(IK,I14)=0.0
350 CONTINUE
C
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INVOKING THE LAND AND POWELL ROUTINES TO
SOLVE THE FORMULATED LP PROBLEM

CALL SOLVER

IF(MOREPR.EQ.3) CALL IPRINT
KFLAG=0

1000 RETURN
END
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DRIVER FOR LP ROUTINES
SUBROUTINE SOLVER
IMPLICIT REAL*8(A-H,0-2)
INTEGER SIZE,SIZE1,XBASIS,YBASIS
REAL*8 INV
COMMON /LINPCO/
1BOUND(156),C(156) , INBASE(156),PIV(156),X(156),YAC(156),
2B(156),6(156),6R(156) , ISEFF(156),5(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON /ERRORS/ ERR
ERR1=ERR
CALL DOANLP
IFC(ISTATE.GT.1) 60 TO 40
CALL CHACC
IFCISTATE.EG.1) GO TO 20
IF(IR.GE.IRMAX) GO TO 40

O 00 N O

IF WE COME OUT CLEAN OR SCREW UP TWICE IN A ROW IN THE SAME PLACE
(I.E. SAME ERROR > TOLERANCE) THEN EITHER IT WORKED OR WE'LL

NEVER DO ANY BETTER SO QUIT NOW ALREADY
IF(ERR.EQ.ERR1 .OR. ERR1.EQ.-1.) GO TO 30
CALL REVERT
ISTATE=11
ERR1=-1.
G0 T 10
ERR=0.
ISTATE=1
RETURN
END
THESE ROUTINES RESOLVE THE LP WITH MODIFIED COEFFICIENTS.
IF YOU LOOK HARD ENOUGH THEY ARE ALL MADE UP OF PARTS OF
LAND AND POWELL ROUTINES, SO I'LL BE BRIEF
SUBROUTINE CHGA
IMPLICIT REAL*8(A-H,0-2)
PIV CONTAINS CHANGES TO NEWY'TH ROW OF A MATRIX
INTEGER SIZE,SIZE1,XBASIS,YBASIS
REAL*8 INV
COMMON /LINPCO/
1BOUND(156),C(156), INBASE(156),PIV(156),X(156),YAC(156),
2B(156),6(156),GR(156), ISEFF(156),5(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130), YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON /AREF/ AA(600),JCOL(600), IROW(157), HAXA
DIMENSION PIVA(30)
IF(MOREPR.GT.0) CALL IPRINT
TOL1=TOL(1)

O 00 N O



(e e BN o BN o]

146

TOL4=TOL(4)
IY=NEWY
K1=IROW(IY)
K2=IROW(IY+1)-1

UPDATE BASIC COLUMNS
K3=K2-K1+1
DO 5 K=1,K3
PIVACK)=PIV(K)

5 PIV(K)=0.

10 DO 100 K=K1,K2
NEWX=JCOL(K)
INB=INBASE (NEWX)
DELTAA=PIVA(K-K1+1)
IF(DABS(DELTAAY.LT.SMALL .OR. INB.LE.O0) GO TO 100
THESE SHENANIGANS ARE TO AVOID CHANGING AA(K) TWICE WHEN WE GO

THROUGH THE LOOP AGAIN

PIVA(K-K1+1)=0.
AACK)=AA(K)+DELTAA
IF(ISEFF(IY).EQ.0) GO TO 100
XNEW=XR(INB)
YAMINC=DELTAA*Y(IY)
IF(DABS(YAMINC).LT.TOL4) YAMINC=O.
CALL NEWVEC
IF(DABS(GRCINB)).GT.TOL1) GO TO 70

COP-OUT (RESTART FROM BEGINNING)
ISTATE=0
6o T0 110
70 R=XNEW/GRCINB)
DO 80 L=1,SIZE
80 IF(DABS(GR(L)).LE.SMALL) GR(L)=0.
NEWY=INB
CALL CHBSIS
INREV=1
ISTATE=10
CALL DOANLP
IF(ISTATE.GT.1) GO TO 110
NEW SOLUTION MAY HAVE MADE SOME MORE COLUMNS BASIC, SO START
FROM BEGINNING AGAIN SO AS NOT TO LEAVE ANY OUT.
WE'LL EVENTUALLY STOP WHEN WE CYCLE THROUGH WITHOUT FINDING
ANY NEW BASIC COLUMNS TO CHANGE
G0 TO 10
100 CONTINUE
YAMINC=O0.
NEWX=0
NEGROW=0
NEGINV=0
IYEFF=ISEFF(IY)
SLKNEW=B(1Y)
CHANGE NON-BASIC COLUMNS
DO 20 K=K1,K2
J=JCOL(K)
DELTAA=PIVA(K-K1+1)
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IF(DABS(DELTAA).LE.SMALL) GO TO 20
INB=INBASE(J)
IF(INB.GT.0) GO TO 20
AACK)=AA(K)+DELTAA
IF(IYEFF.EQ.0) GO TO 20
YACJ=YACCJ)+DELTAARY(IY)
IF(DABS(YACJ).LT.TOL4) YACJ=0.
YAC(J)=YACJ
IFCINB.EQ.-1) YACJ=-YACJ
c LOOK FOR A VARIABLE TO BRING HOME TO THE BASIS, DEARIE]

IF(YACJ.GE.YAMINC) GO TO 20
YAMINC=YACJ
NEWX=J

20 SLKNEW=SLKNEW-X(J)*AACK)
IF(NEWX.NE.0) ISTATE=12
IF(DABS(SLKNEW) .LT.TOL(2)) SLKNEW=0.
SLACK(IY)=SLKNEW
SI=S(IY)
IF(IYEFF.EQ.O .AND. (SIXSLKNEW .GT.0. .OR. SLKNEW.EQ.0.)) GO TO 60
IFCIYEFF.NE.O .AND. SLKNEW.EQ.0.) GO TO 60
IFCIYEFF.NE.O) GO To 30

¢ 00PS] WE MADE A FORMERLY INACTIVE CONSTRAINT INFEASIBLE
NEGROW=TY
ISTATE=11
GO TO 60
RETURN SLACK OF ACTIVE CONSTRAINT TO ZERO, BY PRETENDING
TO CHANGE B INSTEADJ

30 R=SLKNEW
NEWY=IY
CALL CHGB
R=0.

60 IFCISTATE.EQ.11) YAMINC=O.
IFCISTATE.NE.1) CALL SOLVER

110 IF(MOREPR.GT.0) CALL IPRINT
RETURN
END

SUBROUTINE CHGB
IMPLICIT REAL*8(A-H,0-7)
c B VECTOR HAS ALREADY BEEN CHANGED; DELTA B IS IN PIV
INTEGER SIZE,SIZE1,XBASIS,YBASIS
REAL*8 INV
COMMON /LINPCO/
1BOUND(156),C(156), INBASE(156) ,PIV(156),X(156),YAC(156),
2B(156),6(156) ,GR(156) ,ISEFF(156),S(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON /AREF/ AA(600),JCOL(600), IROW(157),MAXA
IF(MOREPR.GT.0) CALL IPRINT
TOL1=TOL(1)

O 00 ~N O
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TOL2=TOL(2)

HOW BAD IS MOST INFEASIBLE VARIABLE OR CONSTRAINT? (WILL BE
NEGATIVE IF INFEASIBLE, O OTHERWISE)

HOWNEG=0.

WHICH VARIABLE IS INFEASIBLE

NEGINV=0

WHICH CONSTRAINT IS INFEASIBLE

NEGROW=0

CHANGE BASIC VARIABLES
PO 20 K=1,SIZE

XRK=XR (K)

WE WERE CALLED FROM CHGA

IF(NEWY.EQ.0) GO TO 5

IYEFF=ISEFF(NEWY)

XRK=XRK+R*INV(K, IYEFF)

GO TO 12

Do 10 L=1,SIZE

I=YBASIS(L)

DELBI=PIV(I)

IF(DABS(DELBI).LT.TOL2) GO TO 10
XRK=XRK+DELBI*INV(K,L)

CONTINUE

IF(DABS(XRK) .LE.TOL1) XRK=0.
IF(DABS(XRK-XR(K)).LE.SMALL) GO TO 20
XR(K)=XRK

J=XBASIS(K)

X(J)=XRK

IF(XRK.GE.HOWNEG) GO TO 15

HOWNEG=XRK

NEGINV=K

DRIVER=1 MEANS INCREASE VALUE OF XR(K) ‘COS IT'S NEGATIVE
DRIVER=1.0

G0 TO 20

BOUND J=BOUND (J)
IF(DABS(BOUNDJ-XRK).LT.TOL1) XRK=BOUNDJ
IF(BOUNDJ.EQ.-1. .OR. BOUNDJ-XRK.GE.HOWNEG) GO TO 20
HOWNEG=BOUNDJ -XRK

NEGINV=K

DECREASE XR(K) 'COS IT'S ABOVE ITS BOUND
DRIVER=-1.0

CONTINUE

CHANGE SLACK VARIABLES
DO 30 I=1,M

IF(ISEFF(I).NE.O) GO TO 30

SLKI=B(I)

LAST=IROW(I+1)-1

ISTART=IROW(I)

DO 35 LOOK=ISTART,LAST

J=JCOL(LOOK)

IFCINBASE(J).NE.0) SLKI=SLKI-AA(LOOK)*X(J)
IF(DABS(SLKI).LE.TOL2) SLKI=0.
SLACK(I)=SLKI
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1F(NEGINV.NE.O) GO TO 30

SI=S(I)

ABSLKI=DABS(SLKI)

IF(SI.NE.O. .AND. SI*SLKI.GE.HOWNEG .OR. SI.EQ.0. .AND. -ABSLKI

.GE.HOWNEG) GO TO 30

HOWNEG=- ABSLKI

NEGROW=I

CONTINUE

IF(NEGINV.GT.O0 .OR. NEGROW.GT.0) ISTATE=11

IF(MOREPR.GT.0) CALL IPRINT

RETURN

END

SUBROUTINE CHGC

IMPLICIT REAL*8(A-H,0-2)

C VECTOR HAS ALREADY BEEN CHANGED; DELTA C IS IN PIV

NOT SURPRISINGLY, THIS ROUTINE LOOKS A LOT LIKE THE DUAL OF CHGB

INTEGER SIZE,SIZE1,XBASIS,YBASIS

REAL*8 INV

COMMON /LINPCO/

BOUND(156),C(156) , INBASE(156),PIV(156),X(156),YAC(156),

B(156),6(156) ,6R(156), ISEFF(156),5(156),SLACK(156),Y(156),

INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND

COMMON /AREF/ AA(600),JCOL(600), IROW(157) ,MAXA

IF(MOREPR.GT.0) CALL IPRINT

TOL3=TOL(3)

TOL4=TOL(4)

YAMINC=0.

NEWX=0

CHANGE DUAL VARIABLES
DO 20 L=1,SIZE

YRL=YR(L)

DO 10 K=1,SIZE

J=XBASIS(K)

DELTAC=PIV(J)

IF(DABS(DELTAC).LT.TOL4) GO TO 10

UPDATE DUAL BASIC VARIABLES
YRL=YRL+DELTACXINV(K,L)

CONTINUE

IF(DABS{YRL).LT.TOL3) YRL=0.
IF(DABS(YRL-YR(L)).LE.SMALL) GO TG 20
YR(L)=YRL

I=YBASIS(L)

Y(I)=YRL

YRL=YRL*S(1)

IF(YRL.GE.YAMINC) GO TO 20

DUAL VARIABLE YR(L) IS DUAL INFEASIBLE

NEWX > N MEANS MAKE YR(NEWX-N) DUAL FEASIBLE
YAMINC=YRL
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NEWX=I+N
CONTINUE

CHANGE DUAL SLACKS

Do 30 J=1,N

IFCINBASE(J).LE.O) YAC(J)=-C(J)

DO 50 L=1,SIZE

YRL=YR(L)

I=YBASIS(L)

ISTART=IROM(I)

LAST=IROW(I+1)-1

DO 40 LOOK=ISTART,LAST

J=JCOL (LOOK)

IFC(INBASE(J).LE.0) YAC(JI=YAC(J)+YRL*AA(LOOK)

CONTINUE

DO 60 J=1,N

INJ=INBASE(J)

IFCINJ.GT.0) GO TO 60

YACJ=YAC(J)

IF(DABS(YACJ).LT.TOL4) YACJ=0.

YACCJ)=YACJ

IF(NEWX.GT.N) GO TO 60 -

IFCINJ.EQ.-1) YACJ=-YACJ

IF(YACJ.GE.YAMINC) GO TO 60

YAMINC=YACJ

PRIMAL VARIABLE X(J) SHOULD INCREASE TO REACH OPTIMALITY
(DUAL FEASIBILITY)

NEWX=J

CONTINUE

IF(NEWX.NE.0) ISTATE=12

IF(MOREPR.GT.0) CALL IPRINT

RETURN

END
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SUBROUTINE OUTPUT

€ THIS ROUTINE CALCULATES THE OBJECTIVE FUNCTION VALUES
C AND GIVES THE OUTPUT FROM THE PROGRAM

c

c

IMPLICIT REAL*8 (A-H,0-2)
CHARACTER*3 IMONTH
REAL*8 INV,KMIN
INTEGER SIZE,SIZE1,XBASIS,YBASIS
COMMON/I0/ I0IN,I00UT
COMMON/LINPCO/
1BOUND(156),€(156), INBASE(156) ,PIV(156),X(156),YAC(156),
2B(156),G6(156) ,GR(156) , ISEFF(156),S(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/DATA/ MSTART,LASTM,NSTRIP,SCALE,STOIN,SINTER,
1STOVA(12) ,STASTO,SPICO(12),0C0(12),ENLO(2,12),ENWI(2,12),
2DPS(12),FLOW(12) ,FLOBO(12) ,ESTFL(12),STHAX(12),STHIN(12),
3HE(2,12),€4(2),EE(2,12),EI(2,12),EEM(2,12) ,EIN(2,12),
4EEL(12),EIL(12),CEE(2,12),CEI(2,12)
COMMON/MAIN/ ITERMX,IPEEK,VARYMX,BETTER,VARFAC,VARMIN,VARFCT
COMMON/RESULT/ ST0(12),GFP(12),0BJECT,0BJ1, ITER, STOCA(12)
COMMON /AREF/ AA(600),JCOL(600), IROWCIST), MAXA
COMMON /MONTH/ IMONTH(12)
COMMON/CHANGES/ PROCHA

O 0 N O

C WRITES THE HEADING TO THE OUTPUT FILE

c

900

901

905

O OO o600

WRITE (6,900) ITER,ITR,STOIN,VARYMX

FORMAT(/,2X,'ITERATION',I3,'SIMPLEX ITERATIONS',IS,
1TINITIAL STORAGE',F7.1,'VARYMX',F6.1)

WRITE(6,901)

FORMAT(/,7X,'*',10X, 'THE RESERVOIR DATA',10X,'*',5X)
WRITE(6,905)

FORMAT(' MONTH * INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL',
1" ON EX OFF EX ON IN  OFF IN °,
2'  HE ON  HE OFF END STAGE',
2' MONTHLY BENEFIT')

OBJECT=0.0

J=1

BEG=STOIN

THE LOOP TO CALCULATE MONTHLY BENEFITS AND THE
CANDIDATES FOR STORAGE (STOCA(MON)) AND RELEASE (GFP(MON))
ESTIMATES

DO 100 MN=MSTART,LASTM
MON=MN

IF(MON.GT.12) MON=MON-12
GFP(MON)=X(J)
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STOCA(MON) =X (J+8)

BEMO=0.0

14=4-1

DO 70 KJ=1,9

BEMO=BEMO+C (1J+KJ)*X(IJ+KJ)
BEMO=BEMO-STHIN(MON)*C (J+8)

ZB=X(J)+X(J+1)

STAGE=STOCA(MON) /STASTO

WRITE(6,902) IMONTH(MON),FLOW(MON),GFP(MON),X(J+1),1B,
IXCI+4) , X(J+5) , X (J+6) ,X(J+T7) , X(J+2) ,X(J+3), STAGE, BEMO
FORMAT(2X,A3,' * ',F6.2,4X,F6.2,4X,F6.2,4X,F6.2,4X,
1F6.2,4X,F6.2,4X,F6.2,4X,F6.2,4X,F6.2,4X,F6.2,4X,F7.2,2X,F10.2)
J=4+9

LCULATION TO INSURE THAT THE CANDIDATES FOR THE NEW RELEASE
TIMATES (GFP(MON)) DO NOT DIFFER MORE THAN PROCHA TIMES FROM
E ALREADY ACCEPTED ESTIMATES (ESTFL(MON))

PROMENA=GFP(MON)-ESTFL(MON)
CHANGE=DABS(PROMENA)

VALTO=CHANGE/ESTFL(MON)

IF(VALTO.GT.PROCHA) PROMENA=ESTFL(MON)*PROCHA*CHANGE/PROMENA
GFP(MON)=PROMENA+ESTFL(MON)
STOCA(MON)=BEG+FLOW(MON) ~GFP (MON)
IF(STOCA(MON) .LT.STMAX(MON)) GO TO 75
STOCA(MON)=STMAX (MON)
GFP(MON)=BEG+FLOW(MON)-STOCA (MON)

IF(GFP(MON) .GT.FLOBO(MON)) GFP(MON)=FLOBO(MON)
IF(STOCA(MON) .GT.STMINCMON)) GO TO 77
STOCA(MON)=STHMIN(MON)

GFP(MON)=BEG+FLOW(MON) -STOCA(MON)
BEG=STOCA(MON)

OBJECT=0BJECT+BEMO

CONTINUE

WRITE(6,903) OBJECT

FORMAT(2X, 'THE OBJECTIVE FUNCTION VALUE IS ',F12.2)
RETURN

END
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LAND AND POWELL ROUTINES

SUBROUTINE ADDCON
IMPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE, SIZE1, XBASIS, YBASIS
COMMON /AREF/ AA(600),JCOL(600), IROW(157), HAXA
COMMON/LINPCO/
1BOUND (156),€(156), INBASE(156) ,PIV(156) ,X(156),YAC(156),
2B(156),6(156),6R(156) , ISEFF(156),5(156) ,SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
IF (SIZE1.GT.MXSIZE) GO TO 40
1 = NEWY - SIZE
PO 10 L = 1, SIZE
INV(L, SIZED)
INV(SIZE1, L)
ISTART = IROW(I)
LAST = IROW(I+1) - 1
DO 30 LOOK = ISTART, LAST
J = JCOL(LOOK)
IF (INBASE(J).LE.D) GO TO 30
K = INBASE(J)
AIJ = AA(LOOK)
DO 20 L = 1, SIZE
INV(SIZE1, L) = INV(SIZE1, L) - AIJ * INV(K, L)
CONTINUE
INV(SIZE1, SIZE1) = 1.0
XR(SIZE1) = SLACK(I)
ISEFF(I) = SIZE1
XBASIS(SIZET) = I + N
YBASIS(SIZET) = 1
YR(SIZE1) = 0.0
SIZE = SIZE1
SIZE1 = SIZE1 + 1
IF (SIZE.GT.ISBIG) ISBIG = SIZE
NUMSLK = NUMSLK + 1
NEWY = SIZE
60 TO 50
ISTATE = 4
RETURN
END

O 0N O

0.0
0.0
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SUBROUTINE CHBSIS
IMPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE, SIZE1, XBASIS, YBASIS
COMMON/LINPCO/
1BOUND(156),C(156), INBASE(156) ,PIV(156),X(156),YAC(156),
2B(156),6(156),6R(156), ISEFF(156),5(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/IO/IOIN, IOOUT
ITR = ITR + 1

O 00N O

MOSNEG = O

HOWNEG = 0.0
XOFNEG = 0.0
DRITEM = 0.0

TOL1 = TOL(1)
IF (INREV.EQ.1) GO TO 90
IF (R.EQ.0.0) GO TO 40
DO 30 K = 1, SIZE
XR(K) = XR(K) - R * GR(K) * XKPOS
XXX = XR(K)
IF (DABS(XXX).LE.TOL1) XR(K) = 0.0
J = XBASIS(K)
IF (J.LE.N) GO TO 10
XXX = XR(K)
I1=4J-N
SI = s(I)
IF(SI.EQ.0.0.AND.XXX.GT.0.0.0R.SI.EQ.-1.0) XXX = -XXX
GO TO 20
BOUNDJ = BOUND(J)
IF (DABS(BOUNDJ-XXX).LE.TOL1) XR(K) = BOUNDJ
XXX = XR(K)
IF (XXX.LE.BOUNDJ .OR. BOUNDJ.EQ.-1.0) GO TO 20
XXX = BOUNDJ - XXX
IF (K.EQ.NEGINV) XOFNEG = XXX
IF (XXX.GE.HOWNEG.OR.K.EQ.NEGINV) GO TO 30
MOSNEG = K
DRITEM = 1.0
IF (XR(K).GE.0.0) DRITEM = -1.0
HOWNEG = XXX
CONTINUE
IF (NEWY.NE.-1) GO TO 40
IT = INBASE(NEWX)
INBASE(NEWX) = -1
IFCIT.EQ.-1) INBASE(NEWX) = 0
IXOUT = NEWX
0BJ = OBJ - R * YAMINC
GO TO 120
IXOUT = XBASIS(NEWY)
IF (IXOUT.GT.N) GO TO 50
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INBASE(IXOUT) = O
IF (GR(NEWY)*XKPOS.LT.0.0.AND.NEWY.NE.NEGINV) INBASE(IXOUT) = -1
IF (NEWY.EQ.NEGINV.AND.XR(NEWY).GT.0.0) INBASE(IXOUT) = -1
50 If (NEWX.GT.N) GO TO 60
THOLD = INBASE(NEWX)
INBASE(NEWX) = NEWY
60 XBASIS(NEWY) = NEWX
IF(NEWX.GT.N) NUMSLK = NUMSLK + 1
IF (IXOUT.GT.N) NUMSLK = NUMSLK - 1
XRC(NEWY) = R
IF (NEWX.LE.N) GO TO 70
I = NEWX - N
IF (SCI).EQ.-1.0) XR(NEWY) = -R
GO TO 80
70 IF (IHOLD.EQ.-1) XR(NEWY) = BOUND(NEWX) - R
80 0BJ = OBJ - R * YAMINC
90 RR = 1.0/GR(NEWY)
DO 110 L = 1, SIZE
IF (DABS(INV(NEWY,L)).LT.SMALL) GO TO 110
RL = INV(NEWY,L) * RR
DO 100 K = 1, SIZE
INV(K,L) = INV(K,L) - RL * GR(K)
100 CONTINUE
INV(NEWY,L) = RL
IF (INREV.NE.1) YR(L) = YR(L) - RL * YAMINC * XKPOS
110 CONTINUE
120 IF (R.EQ.0.0.OR.XOFNEG.LT.0.0.AND.NEWY.NE.NEGINV) GO TO 130
NEGINV = MOSNEG
DRIVER = DRITEM
130 RETURN
END
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SUBROUTINE REVERT

IMPLICIT REAL*8(A-H,0-2)

REAL*8 INV

INTEGER SIZE, SIZE1, XBASIS, YBASIS

COMMON/IO/IOIN, I00UT

COMMON/LINPCO/
TBOUND(156),C(156), INBASE(156) ,PIV(156),X(156) ,YAC(156),
2B(156),G6(156) ,GR(156) ,ISEFF(156) ,5(156) ,SLACK(156),Y(156),
3INV(130,130),XBASIS(130) ,XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,

6 IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
7 MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
8 MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
9 SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND

FORMAT (1X, 20X, 'REINVERTED AT ITERATION ', I6)

IR = IR + 1

ITHOLD = ITR

INREV = 1

HOLD = SMALL

SMALL = 0.0

TOL8 = TOL(8)
DO 20 K = 1, SIZE
IF (XBASIS(K).LE.N) GO TO 20
I = XBASIS(K) - N
L = ISEFF(I)
IF (K.EQ.L) GO TO 20
XBASIS(K) = XBASIS(L)
XBASIS(L) = I + N
J = XBASIS(K)
IF (J.GT.N) GO TO 10
CONTINUE
DO 40 K = 1, SIZE
IF (XBASIS(K).LE.N) XBASIS(K) = -XBASIS(K)
DO 30 L = 1, SIZE
INVCK,L) = 0.0
INVCK,K) = 1.0
DO S0 J =1, N
IF (INBASE(J).NE.-1) INBASE(J) = O
CONTINUE
DO 90 K = 1, SIZE
NEWX = -XBASIS(K)
IF (NEWX.LT.O.OR.NEWX.GT.N) GO TO S0
CALL NEWVEC
NEWY = 0
DO 80 KK = 1, SIZE
IF (XBASIS(KK).GT.0) GO TO 80
ABDIF = DABS(GR(KK))
IF (ABDIF.LT.TOL8) GO TO 80
IF (NEWY.NE.O) GO TO 70
BEST = DABS(1.0 - ABDIF)
NEWY = KK
GO To 80
ABDIF = DABS (1.0 - ABDIF)
IF (ABDIF.GE.BEST) GO TO 80
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BEST = ABDIF
NEWY = KK
CONTINUE

IF (NEWY.EQ.0) GO TO 90
IHOLD = -XBASIS(NEWY)

IF (IHOLD.EQ.NEWX) IHOLD = 0
CALL CHBSIS

XBASIS(NEWY) = NEUX

IF (IHOLD.EQ.0) GO TO 90
NEWX = IHOLD

GO TO 60

CONTINUE

NUMSLK = 0
Do 110 K = 1, SIZE

J = XBASIS(K)

1F (J.GT.0) GO TO 100

I = YBASIS(K)

XBASIS(K) = N + I

NUMSLK = NUMSLK + 1

GO T0 110

IF (J.LE.N) INBASE(J) = K

IF (J.GT.N) NUMSLK = NUMSLK + 1
CONTINUE

SMALL = HOLD
DO 120 K = 1, SIZE

1

0.0
0.0

XR(K)
YR(K)

DO 140 K = 1, SIZE

I = YBASIS(K)
J = XBASIS(K)

7C = 0.0
IF (J.LE.N) TC = C(J)
T8 = B(I)

DO 130 JJ = 1, N
IF (INBASE(JJ).NE.-1) GO TO 130
TB = TB - BOUND(JJ) * ACI,JJ)
CONTINUE
DO 140 L = 1, SIZE
XR(L) = XR(L) + TB * INV(L,K)
YR(L) = YR(L) + TC * INV(K,L)
IF (DABS(YR(L)).LE.SMALL) YR(L)
IF (DABS(XR(L)).LE.SMALL) XR(L)
CONTINUE

0.0
0.0

NEGINV = 0
T=20.0
DO 180 K

1, SIZE

XRK = XR(K)

J = XBASIS(K)

IF (J.GT.N) GO TO 160

IF (ISBND.EQ.0) GO TO 150

IF (BOUND(J).EQ.-1.0) GO TO 150

IF (XRK.GT.BOUND(J)) XRK = BOUND(J) - XR(K)
IF (XRK.GE.T) 60 TO 180

G0 TO 170

Sae
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160 I=4J-N
IF (SCI).NE.0.0.AND.XRK*S(I).GE.T.OR.S(I).EQ.0.0.AND.
1 DABS(XRK)*(-1.0).GE.T) 60 TO 180
170 T = -1.0 * DABS(XRK)
NEGINV = K
DRIVER = 1.0
IF (XR(K).GT.0.0) DRIVER = -1.0
180 CONTINUE
IF (NUMSLK.GE.1) CALL REDUCE
CALL CHSLCK
CALL ISOPT
ITR = ITHOLD
INREV = O
0BJ = 0.0
D0 190 4 = 1, N
IF (INBASE(J).EQ.0) GO TO 190
0BJ = OBJ + X(J) * C(J)
190 CONTINUE
c WRITE (IOOUT, 9000) ITR
RETURN
END
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SUBROUTINE CHACC

IMPLICIT REAL*8(A-H,0-2)

REAL*8 INV

INTEGER SIZE, SIZE1, XBASIS, YBASIS

COMMON/LINPCO/
1BOUND(156),C(156) , INBASE(156),PIV(156) ,X(156),YAC(156),
2B(156),G6(156) ,GR(156) ,ISEFF(156),8(156) ,SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),

4 TOL(8),BIG,DRIVER, INREV, IR,

IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,

MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,

MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,

SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/I0/I0IN, I00UT
COMMON /AREF/ AA(600),JCOL(600), IROW(157),MAXA
COMMON /ERRORS/ ERR
FORMAT (1HO,'UNACCEPTABLE ERROR OF ',F16.8,' FOUND IN B-SLACK-AX 0
1F CONSTRAINT',16)

FORMAT (1HO,'UNACCEPTABLE RELATIVE ERROR OF ',F16.8,' FOUND IN B-S
1LACK-AX OF CONSTRAINT',I6/1H ,'THE ABSOLUTE ERROR IS ',F16.8,' AND
2 B(I) IS ',F16.8)

FORMAT (1HO,'UNACCEPTABLE ERROR OF ',F16.8,' FOUND IN YA-C OF BASI
1C VARIABLE ',16)

FORMAT (1HO, 'UNACCEPTABLE RELATIVE ERROR OF ',F16.8,' FOUND IN YA-
1C OF BASIC VARIABLE, ',16/1H ,'THE ABSOLUTE ERROR IS ',F16.8,' AND
2 C(J) IS ',F16.8)

IF (NUMSLK.EQ.0) GO TO 10

DO 5 K =1, SIZE

IF (XBASIS(K).LE.N) GO TO 5
I = XBASIS(K) - N
SLACK(I) = XR(K)
CONTINUE
po20J =1, N
IF (INBASE(J).LE.0) GO TO 20
YACCI) = -C(J)
CONTINUE

TOL2 = TOL(2)

TOL6 = TOL(6)

DO 40 I = 1, MNOW

ISEFFI = ISEFF(I)
YI = Y(D)
BAXSL = B(I) - SLACK(I)
ISTART = IROW(I)
LAST = IROW(I+1) - 1
PO 30 LOOK = ISTART, LAST
J = JCOL(LOOK)
INJ = INBASE(J)
IF (INJ.EQ.0) GO TO 30
AIJ = AACLOOK)
BAXSL = BAXSL - X(J) * AIJ
IF (INJ.GT.0.AND.ISEFFI.NE.O) YAC(J) = YAC(J) + YI*AIJ
CONTINUE
ERR = DABS(BAXSL)

O 00 N O
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IF (ERR.GT.TOL2) GO TO 60

ABSB = DABS(B(I))

IF (ABSB.LT.1.0) ABSB = 1.0

IF (ERR / ABSB .GT. TOLé) GO TO 65
CONTINUE

TOL? = TOL(7)
TOL4 = TOL(4)
DO 50 J = 1, N

IF (INBASE(J) .LE. 0) GO TO 50

ERR = DABS(YAC(J))

IF (ERR .GT. TOL4) GO TO 70

ABSC = DABS(C(J))

IF (ABSC.LT.1.0) ABSC = 1.0

IF (ERR / ABSC .GT. TOL7) GO TO 75
CONTINUE

GO TO 90

WRITE(IOOUT,9000) ERR,I

GO TO 80

RELERR = ERR / ABSB

WRITE (IOOUT, 9004) RELERR, I, ERR, ABSB
GO TO 80

WRITE (IOOUT, 9008) ERR, J

GO TO 80

RELERR = ERR / ABSC

WRITE (IOOUT, 9012) RELERR, J, ERR, ABSC
ISTATE = 7

RETURN

END
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SUBROUTINE DOANLP
IMPLICIT REAL*8(A-H,0-1)
REAL*8 INV
INTEGER SIZE, SIZE1, XBASIS, YBASIS
COMMON/LINPCO/
1BOUND(156),C(156), INBASE(156),PIV(156),X(156),YAC(156),
2B(156),6(156) ,GR(156) , ISEFF(156),5(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/I0/IOIN, IOOUT
IF (ISTATE.EQ.0) CALL FIRSTB
IF C(ISTATE.EQ.11) GO TO 20
IF (ISTATE.EQ.12) GO TO 50
CALL CHSLCK
IF(MOREPR.GT.0) CALL IPRINT
IF (ITR.LE.ITRMAX) GO TO 20
ISTATE = 5
GO TO 80
IF (NEGROW.EQ.O .AND. NEGINV.EQ.0) GO TO 40
IF (NEGINV.NE.O) GO TO 30
NEWY = NEGROW + SIZE
DRIVER = 1.0
IF (SLACK(NEGROW).GT.0.0) DRIVER = -1.0
NEGINV = SIZE1
CALL ADDCON
IF (ISTATE.EQ.4) GO TO 80
CALL SEEKX
IF (NEWX.NE.O) GO TO 50
ISTATE = 2
GO TO 80
CALL ISOPT
IF (NEWX.NE.0) GO TO 50
ISTATE = 1
GO TO 80
CALL NEWVEC
CALL SEEKY
IF (NEWY.NE.O) GO TO 60
ISTATE = 3
G0 TO 80
IF (NEWY.LE.SIZE) GO TO 70
CALL ADDCON
IF C(ISTATE.EQ.4) GO TO 80
CALL CHBSIS
CALL REDUCE
G0 TO 10
RETURN
END
REAL*8 FUNCTION A(I,J)
IMPLICIT REAL*8(A-H,0-2)
COMMON /AREF/ AA(600),JCOL{600), IROW(157),HAXA

O 00 ~N O
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COMMON/IO/IOIN, IOOUT

ISTART = IROW(I)

LAST = IROW(I+1) - 1

A= 0.0

DO 1 LOOK = ISTART, LAST
JHERE = JCOL(LOOK)
IF (JHERE.LT.J) GO TO 1
IF (JHERE.GT.J) RETURN
A = AA(CLOOK)
RETURN
CONTINUE

RETURN

END
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SUBROUTINE IPRINT
IMPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE, SIZE1, XBASIS, YBASIS
COMMON /LINPCO/

1BOUND (156),C(156) , INBASE(156),PIV(156),X(156),YAC(156),

2B(156),6(156),GR(156) , ISEFF(156),5(156),SLACK(156),Y(156),

3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),

4 TOL(8),BIG,DRIVER, INREV, IR,

IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND

COMMON /AREF/ AA(600),JCOL(600),IROW(157),MAXA

COMMON/I0/10IN, I00UT

8000 FORMAT ('0',' THE SIGN(I) VECTOR INDICATES THE SIGN OF THE I-TH CO
2NSTRAINT, O FOR EQ, 1 FOR LE, -1 FOR GE.')

9000 FORMAT ('1','NON-ZERO ELEMENTS OF THE A MATRIX, FOLLOWED BY THEIR
1COLUMN LABELS....')

9001 FORMAT ('0',12(4X,16))

9002 FORMAT(1X, 12F10.3)

9003 FORMAT (1X, 12(4X,16))

9004 FORMAT ('0','THE FOLLOWING VECTORS SHOW THE STARTING POINTS OF THE
1 SUCCESSIVE ROWS OF A IN THE ABOVE LIST OF THE NON-ZERO ELEMENTS.'
2'..0

9005 FORMAT ('0', 24(I5))

9006 FORMAT (1X, 24(I5))

9200 FORMAT ('0', 'OBJECTIVE ',F22.8)

9204 FORMAT ('0', 18X, 'J ', 10(3X,13,4X))

9205 FORMAT('O', 18X, 'I ', 10(3X,13,4X))

9208 FORMAT ('0', 11X, 'C VECTOR ', 10(F9.1, 1X))

9212 FORMAT('O', 7X, 'BOUND VECTOR ', 10(F9.4,1X))

9220 FORMAT ('0', 11X, 'X VECTOR ', 10(F9.4, 1X))

9228 FORMAT ('0', 14X, SHY*A-C,1X,10(F9.2,1X))

9232 FORMAT (///)

9234 FORMAT ('0', 12(6X,13, 1X))

9236 FORMAT ('0', 12(F9.1,1X))

9238 FORMAT ('0', 12(F9.0,1X))

9240 FORMAT ('0', 12(F9.4,1X))

9244 FORMAT (*0', 12(F9.2,1X))

9300 FORMAT ('0', 11X, 'B VECTOR ', 10(F9.1, 1X))

9304 FORMAT ('0', 15X, 'SIGN ', 10(F9.0,1X))

9308 FORMAT ('0', 11X, 'Y VECTOR ', 10(F9.4,1X))

9312 FORMAT ('0', 14X, ' B-AX ', 10(F9.4,1X))

9404 FORMAT ('1', 12X, 'COLUMN ', 7(6X,12,6X))

9408 FORMAT ('0', 12X, 'YBASIS ', 7(5X, I3, 6X))

9412 FORMAT ('0', 16X, 'YR ', 2X, 7(F12.4, 2X))

9416 FORMAT ('0', 'ROW XBS ', 4X, 'XR', 5X, 'INVERSE MATRIX'/)

9420 FORMAT (2(I3,1X), 8(F12.4, 2X))

9424 FORMAT (///5X, 8(5X, 13, 6X))

9428 FORMAT ('0', 5X, 8(5X, I3, 6X))

9432 FORMAT ('0', 5X, 8(F12.4, 2X))

9436 FORMAT ('0', 'ROW', 5X, 'INVERSE MATRIX CONTINUES'/)

9438 FORMAT (1X, I3, 2X, 8(F12.4, 2X))

0 00 N O
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FORMAT (*1%)

FORMAT('0',' BIG',E12.4,', DRIVER',F12.1,', INREV',112,', i
1R',112,', IRMAX',112,', 1ISBND',I12/1H ,'ISDONE',I12,', ISTATE',I
212,", ITR',112,', ITRMAX',112,', M',112,', MARKI',6I12/1H
3,' MARKK',I12,', MAXA',I12,', MAXM',I12,', MAXN',112,', MO
4RE',112,', MXSIZE',112/1H ,' N',112,', NEGINV',112,', NEGROW',
5112,', NEWX',I112,', NEWY',I112,', NUMSLK',6I12/1H ,° R,

6F12.5,', SIZE',112,', SMALL',E12.4,', TOL(1)',E12.4,', TOL(2)',
7E12.4,', TOL(3)',E12.4/1H ,'TOL(4)',E12.4,', TOL(5)',E12.4,
8', TOL(6)',E12.4,', TOL(7)',E12.4,', TOL(8)',E12.4,', XKPOS',
9F12.1/1H ,'YAMINC',F12.5)

FORMAT ('0','ISEFF'/1H ,4013)

FORMAT ('0', 'INBASE'/1X, 4013)

FORMAT ('0', 15, ' SIMPLEX ITERATIONS.')

FORMAT ('0','(N.B., THE MAXIMUM SIZE OF THE INVERSE DURING THE CAL
1CULATION WAS ',14,')")

IF(MOREPR.LE.O) RETURN

IF(MOREPR.EQ.1) GO TO 400

IF(N.GE.8) GO TO 90

CALL SPRINT

60 TO 400

WRITE (IOOUT, 9000)

LAST = IROW(MNOW + 1) - 1

ISTART = 1

IEND = ISTART + 11

IF (IEND.GT.LAST) IEND = LAST

WRITE (IOOUT, 9001) (I1J, IJ = ISTART, IEND)

WRITE (IOOUT, 9002) (AA(1J), IJ = ISTART, IEND)

WRITE (IOOUT, 9003) (JCOL(IJ4), IJ = ISTART, IEND)

IF (IEND.EQ.LAST) GO TO 105

ISTART = IEND + 1

G0 TO 100

WRITE (I0OUT, 9004)

ISTART = 1

IEND = ISTART + 23

IF (IEND.GT.MNOW) IEND = MNOW

WRITE (IOOUT, 9005) (I, I = ISTART, IEND)

WRITE (IOOUT, $006) (IROW(I), I = ISTART, IEND)

IF (IEND.EQ.MNOW) GO TO 200

ISTART = IEND + 1

GO TO 110

WRITE (I0OUT, 9200) OBJ

IEND = 10

IF (N.LE.IEND) IEND = N

WRITE (IOOUT, 9204) (J, J = 1, IEND)

WRITE (IOOUT, 9208) (CCJ), J = 1, IEND)

IF (ISBND.EG.0) GO TO 210

WRITE (IOOUT, 9212) (BOUND(J), J = 1, IEND)

WRITE (IOOUT, 9220) (X(J4), J = 1, IEND)

WRITE (IOOUT, 9228) (YAC(J), J = 1, IEND)

IF (N.LE.IEND) GO TO 300

WRITE (IOOUT, 9232)

ISTART = IEND + 1

IEND = IEND + 12
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.LE.IEND) IEND = N
(I00UT, 9234) (J, J = ISTART, IEND)
(I00UT, 9236) (C(J), J = ISTART, IEND)
SBND.EQ.0) 60 TO 235
(I00UT, 9240) (BOUND(J), J = ISTART, IEND)

(100UT, 9240) (X(J), J = ISTART, IEND)
(100UT, 9244) (YAC(J), J = ISTART, IEND)
230

= 10
NOW.LE.IEND) IEND = MNOW
(100UT, 9232)
(100UT, 8000)
(I00UT, 9205) (I, I = 1, IEND)
(I00UT, 9300) (B(I), I = 1, IEND)
(I00UT, 9304) (S(I), I = 1, IEND)
(1I00UT, 9308) (Y(I), I = 1, IEND)
(I00UT, 9312) (SLACK(I), I = 1, IEND)

1}

NOW.LE.IEND) GO TO 400
(I00UT, 9232)

T = IEND + 1

= IEND + 12

NOW.LE.IEND) IEND = MNOW

(I00UT, 9234) (I, I = ISTART, IEND)
(I100UT , 9236) (B(I), I = ISTART, IEND)
(I100UT, 9238) (S(I), I = ISTART, IEND)
(100UT, 9240) (Y(I), I = ISTART, IEND)
(I00UT, 9240) (SLACK(I), I = ISTART, IEND)
310
REPR.EQ.2) GO TO 600
=7
IZE.LE.IEND) IEND = SIZE
(I00UT, 9404) (L, L = 1, IEND)
(100UT, 9408) (YBASIS(L), L = 1, IEND)
(I00UT, 9412) (YR(L), L = 1, IEND)
(I00UT, 9416)
0K=1, SIZE
WRITE (IOOUT, 9420) K,XBASIS(K),XR(K),(INV(K,L),L=1, IEND)

IZE.LE.IEND) GO TO 500

T = IEND + 1

= IEND + 8

IZE.LE.IEND) IEND = SIZE

(I00UT, 9424) (L, L = ISTART, IEND)
(I00UT, 9428) (YBASIS(L), L = ISTART, IEND)

(1I00UT, 9432) (YR(L), L = ISTART, IEND)

(100UT, 9436)
5 K =1, SIZE
WRITE (IOOUT, 9438) K, (INV(K,L), L = ISTART, IEND)

440

(I00UT, 9232)
(100UT,9504)BIG,DRIVER, INREV, IR, IRMAX, ISBND, ISDONE, ISTATE,
ITR, ITRMAX, M, MARKI, MARKK, MAXA, MAXH, MAXN, MORE , MXSIZE, N,
NEGINV, NEGROW,NEWX, NEWY, NUNSLK, R, SIZE, SMALL, (TOL(K) ,K=1,8),
XKPOS, YAMINC

(I00UT, 9516) (ISEFF(I), I = 1, MNOW)
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WRITE (IOOUT, 9520) (INBASE(J), J =1, N)
WRITE (IOOUT, 9600) ITR

WRITE (IOOUT, 9604) ISBIG

RETURN

END
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SUBROUTINE CHSLCK
IMPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE, SIZE1, XBASIS, YBASIS
COMMON /AREF/ AA(600),JCOL(600), IROW(157) ,MAXA
COMMON/LINPCO/
1BOUND(156),C(156), INBASE(156) ,PIV(156),X(156),YAC(156),
2B(156),6(156),GR(156), ISEFF(156),5(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
IF (R.NE.0.0) NEGROW = 0
HOWNEG = 0.0
DO 10 J =1, N
YACJ = 0.0
K = INBASE(J)
IF(K.LE.O) YACJ
YAC(J) = YACJ
XJ = 0.0
IF (K.EQ.-1) XJ = BOUND(J)
IF (K.GT.0) XJ = XR(K)
X(J) = XJ
TOL2 = TOL(2)
DO 70 I = 1, MNOW
L = ISEFF(I)
Y(I) = 0.0
IF (L.EQ.0) GO TO 30
YI = YR(L)
Y(I) = YI
SLACK(I) = 0.0
LAST = IROW(I+1) - 1
ISTART = IROW(I)
DO 20 LOOK = ISTART, LAST
J = JCOL(LOOK)
IF (INBASE(J).GT.0) GO TO 20
AlJ = AACLOOK)
YAC(J) = YAC(J) + YI * AIJ
CONTINUE
GO TO 70
IF (INREV.NE.1) G6 TO 50
SLKI = B(I)
DO 40 4 =1, N
IF (INBASE(J).EQ.0) GO TO 40
SLKI = SLKI - A(I,Jd) * X(J)
CONTINUE
GO TO 60
IF (R.EQ.0.0) GO TO 70
SLKI = SLACK(I) - R * G(I) * XKPOS
IF (PABS(SLKI).LE.TOL2) SLKI = 0.0
SLACK(I) = SLKI
IF (NEGINV.NE.0) GO TO 70

O 0 ~N O
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SI = sS(I)
ABSLKI = DABS(SLKI)
IF (SI.NE.O.0.AND.SI*SLKI.GE.HOWNEG.OR.SI.EQ.0.0.AND.
-ABSLKI.GE.HOWNEG) GO TO 70
HOWNEG = -ABSLKI
NEGROW = I
CONTINUE
INREV = 0
IF (MARKI.NE.O) SLACK(MARKI) = XR(MARKK)
RETURN
END
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SUBROUTINE FIRSTB
IMPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE, SIZE1, XBASIS, YBASIS
COMMON/LINPCO/
BOUND(156),C(156), INBASE(156) ,PIV(156),X(156),YAC(156),
B(156),6(156),6R(156), ISEFF(156),5(156),SLACK(156),Y(156),
INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),

TOL(8),BIG,DRIVER, INREV, IR,

IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,

MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,

MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,

SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON/IO/IOIN, IO00UT
Do 10 4 = 1, N

INBASE(J) = 0
DO 20 I = 2, MNOW

ISEFF(I) = 0
DRIVER = 0.0
NEGINV = O
$s = s5(1)
BB = B(1)
IF(SS.EQ.1.0.AND.BB.GE.0.0.0R.5S.EQ.-1.0.AND.BB. LE.

10.0.0R.SS.EQ.0.0.AND.BB.EQ.0.0) GO TO 30

NEGINV 1

DRIVER 1.0

IF (BB.GT.0.0) DRIVER = -1.0
SIZE = 1

SIZE1 = 2

NEWX = N + 1

XBASIS(1) = N + 1

INV(1,1) = 1.0

XR(1) = BB
0oBJ = 0.0
YR(1) = 0.0
YBASIS(1) =1
ISEFF(1) = 1
NUMSLK = 1
MARKI = 1
MARKK = 1

ITR = ITR + 1
INREV =1
RETURN

END
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SUBROUTINE ISOPT
INPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE, SIZE1, XBASIS, YBASIS
COMMON/IO/IOIN, IOOUT
COMMON/LINPCO/
1BOUND(156),C(156), INBASE(156),PIV(156),X(156),YAC(156),
2B(156),G(156) ,GR(156) , ISEFF(156),S(156),SLACK(156),Y(156),
3INV(130,130) ,XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
YAMINC = -TOL(3)
NEWX = 0
DO 10 L = 1, SIZE
I = YBASIS(L)
SI = s(I)
1IF (SI1.EQ.0.0) 60 TO 10
YRL = YR(L) * SI
IF (YRL.GE.YAMINC) GO To 10
YAMINC = YRL
NEWX = I + N
CONTINUE
TOL4 = TOL(4)
DO 20 J =1, N
INBJ = INBASE(J)
IF (INBJ.GT.0.0R.BOUND(J).EQ.0.0) GO TO. 20
T = YAC(J)
IF (DABS(T).LE.TOL4) T = 0.0
YAC(J) = T
IF (INBJ.EQ.-1) T = -T
IF (T.GE.YAMINC) GO TO 20
YAMINC = T
NEWX = J
CONTINUE
RETURN
END

O 00 N O
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SUBROUTINE NEWVEC
IMPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE, SIZE1, XBASIS, YBASIS
COMMON/IO/IOIN, I0OUT
COMMON/LINPCO/
TBOUND(156) ,C(156) , INBASE(156),PIV(156),X(156),YAC(156),
2B(156),6(156) ,GR(156), ISEFF(156),5(156),SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),B16,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
XKPOS = 1.0
IF (NEWX.GT.N) GO TO 40
DO 10 K = 1, SIZE
GR(K) = 0.0
DO 30 L = 1, SIZE
I = YBASIS(L)
ALJ = ACI,NEWX)
IF (AIJ.EQ.0.0) GO TO 30
DO 20 K = 1, SIZE
GR(K) = GR(K) + AIJ * INV(K,L)
CONTINUE
IF (INBASE(NEWX).EQ.-1) XKPOS = -1.0
GO TO 60
I = NEWX - N
L = ISEFF(I)
DO 50 K = 1, SIZE
GR(K) = INV(K,L)
IF (S(I).EQ.-1.0) XKPOS = -1.0
RETURN
END

O 00 N O
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SUBROUTINE REDUCE

IMPLICIT REAL*8(A-H,0-2)

REAL*8 INV

INTEGER SIZE, SIZE1, XBASIS, YBASIS

COMMON/IO/IOIN, IOOUT

COMMON/LINPCO/

BOUND(156),C(156), INBASE(156) ,PIV(156) ,X(156),YAC(156),

B(156),6(156),GR(156) ,ISEFF(156),5(156) ,SLACK(156),Y(156),

INV(130,130) ,XBASIS(130) ,XR(130),YBASIS(130),YR(130),
TOL(8),BIG,DRIVER, INREV, IR,

IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND

MARKI = O

MARKK = 0

IF (NUMSLK.EQ.0) GO TO 80

IT = SIZE

DO 60 K = 1, IT
IF (SIZE.LE.1) GO TO 70
J = XBASIS(K)
IF (J.LE.N) GO TO 60
I=4J-N
SI = S(I)
IF(SI*XR(K).LT.0.0.0R.SI.EQ.0.0.AND.XR(K).NE.0.0) GO TO 60
IF (K.EQ.SIZE) GO TO 30
DO 20 L = 1, SIZE
INV(K, L) = INV(SIZE, L)
J = XBASIS(SIZE)
XBASIS(K) = J
IF (J.LE.N) INBASE(J) = K
SLACK(I) = XR(K)
XR(K) = XR(SIZE)
IF (NEGINV.EQ.SIZE) NEGINV = K
L = ISEFF(I)
ISEFF(I) = O
IF (L.EQ.SIZE) GO TO 50
DO 40 KK = 1, SIZE
INVCKK,L) = INV(KK,SIZE)
YR(L) = YR(SIZE)
YBASIS(L) = YBASIS(SIZE)
I = YBASIS(SIZE)
ISEFF(I) = L
XBASIS(SIZE) = 0
SIZE = SIZE - 1
SIZE1 = SIZE1 - 1
NUMSLK = NUMSLK - 1
Go TO 10
CONTINUE
IF (SIZE.LT.2.AND.XBASIS(1).GT.N) MARKK = 1
IF (NEGINV.EQ.O0.AND.MARKK.EQ.0) GO TO 80
J=0
IF (NEGINV.NE.0) J = XBASIS(NEGINV)
IF (J.GT.N) MARKK = NEGINV
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IF (MARKK.EQ.0) GO TO 80
MARKI = XBASIS(MARKK) - N
RETURN

END
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SUBROUTINE SEEKX
IMPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE,SIZE1,XBASIS,YBASIS
COMMON /LINPCO/
1BOUND(156),C(156), INBASE(156),PIV(156),X(156),YAC(156),
2B(156),6(156) ,6R(156) , ISEFF(156),5(156), SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130), YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON /AREF/ AA(600),JCOL(600), IROW(157),MAXA
NEWX=0
R=-BIG
PIVMAX=0.0
JMAXP=0
BESPIV=0.0
TOL3=TOL(3)
TOL4=TOL(4)
TOL5=TOL(5)
DO 10 J=1,N
PIV(J)=0.0
DO 40 L=1,SIZE
I=YBASIS(L)
SI=s(1)
YI=YRC(L)*SI
IF(DABS(YI).LT.TOL3) YI=0.0
RINVL=INV(NEGINV,L)
ISTART=IROW(I)
LAST=IROW(I+1)-1
DO 20 LOOK=ISTART,LAST
J=JCOL (LOOK)
IF(INBASE(J).GE.1 .OR. BOUND(J).EQ.0.0) GO TO 20
ATJ=AA(LOOK)
PIV(J)=PIV(J)+ATJ*RINVL
CONTINUE
IF(SI.EQ.0.0) GO TO 40
PIVOT=RINVL*SI*DRIVER
IF(PIVOT.GE.-TOL5 .OR. PIVOT.GE.-0.5 .AND.NEWX.NE.O
1 .AND. YI.LT.0.0) GO TO 40
IF(PIVOT.GE.-0.5 .AND. YI.LT.0.0) GO TO 30
RATIO=YI/PIVOT
IF(RATIO.LT.R .AND. NEWX.NE.0) GO TO 40
IF(RATIO.EQ.0.0 .AND. PIVOT.GE.BESPIV) GO TO 40
IF(RATIO.EQ.0.0) BESPIV=PIVOT
R=RATIO
YAMINC=YI
NEWX=N+1I
60 TO 40
IF(PIVOT.GE.PIVHAX) GO TO 40
YACP=YI :
JMAXP=N+1

O 00N O
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PIVMAX=PIVOT
40 CONTINUE
DO 60 J=1,N
INS=INBASE(J)
IFCINJ.GE.1 .OR. BOUND(J).EQ. 0.0) GO TO 60
54=1.0
IFC(INJ.EQ.-1) $J=-1.0
FUNC=YAC(J)*SJ
IF(DABS(FUNC).LT.TOL4) FUNC=0.0
PIVOT=PIV(J)*SJ*DRIVER
IF(PIVOT.GE.-TOL5 .OR. PIVOT.GE.-0.5 .AND.NEWX.NE.O
1 .AND. FUNC.LT.0.0) GO TO 60
IF(PIVOT.GE.-0.5 .AND. FUNC.LT.0.0) 60 TO 50
RATIO=FUNC/PIVOT
IF(RATIO.LT.R.AND. NEWX.NE.O) GO TO 60
IF(RATIO.EQ.0.0 .AND. PIVOT.GE.BESPIV) GO TO 60
IF(RATIO.EQ.0.0) BESPIV=PIVOT
R=RATIO
YAMINC=FUNC
NEWX=J
GO TO 60
50 IF(PIVOT.GE.PIVMAX) GO TO 60
PIVMAX=PIVOT
YACP=FUNC
JHAXP=J
60 CONTINUE
IF(NEWX.NE.0) GO TO 70
NEWX=JHMAXP
YAMINC=YACP
IF(NEWX.NE.O) R=YAMINC/PIVMAX
70 RETURN
END
SUBROUTINE SEEKY
IMPLICIT REAL*8(A-H,0-2)
REAL*8 INV
INTEGER SIZE,SIZE1,XBASIS,YBASIS
COMMON /LINPCO/
TBOUND(156),C(156), INBASE(156),PIV(156),X(156),YAC(156),
2B(156),6(156) ,GR(156) , ISEFF(156),5(156) ,SLACK(156),Y(156),
3INV(130,130),XBASIS(130),XR(130),YBASIS(130),YR(130),
4 TOL(8),BIG,DRIVER, INREV, IR,
IRMAX, ISBIG, ISDONE, ISTATE, ITR, ITRMAX, M,
MARKI, MARKK, MAXM, MAXN, MNOW, MORE, MOREPR,
MXSIZE, N, NEGINV, NEGROW, NEWX, NUMSLK, OBJ, R,
SIZE, SIZE1, SMALL, XKPOS, YAMINC, NEWY, ISBND
COMMON /AREF/ AA(600),JCOL(600), IROW(157),MAXA
$1=1.0
BOUNDJ=-1.0
R=BIG
NEWY=0
TOL5=TOL(5)
IFCISBND.EQ.O .OR. NEWX.GT.N) GO TO 10
IF(BOUND (NEWX).EQ.-1.0) GO TO 10
R=BOUND {NEWX)

O 00 N O



10

20

30

40
50
60

70

80

90

100

176

NEWY=-1

IF(NEGINV.EQ.0) GO TO 30

XRNEG=XR(NEGINV)

J=XBASIS(NEGINV)

IF(J.GT.N) GO TO 20

BOUNDJ=BOUND(J)

IF(BOUNDJ.GE.XRNEG .OR. BOUNDJ.EQ.-1.0) GO TO 20
XRNEG=XRNEG-BOUNDJ

RTRY=XRNEG/(XKPOS*GR(NEGINV))

IF(RTRY.GT.R) GO TO 30

R=RTRY

IF(R.LE.SMALL) R=0.0

NEWY=NEGINV

IF(R.EQ.0.0) GO TO 140

DO 90 K=1,SIZE

IF(K.EQ.NEGINV) GO TO 90

GK=GR(K)*XKPOS

IF(DABS(GK).LE.TOL5) GO To 90

J=XBASIS(K)

IFCJ.GT.N) SI=S(J-N)

IF(J.LE.N) BOUNDJ=BOUND(J)

XX=XR(K)

IF(GK.LE.0.0) GO TO 70

IF(XX.LT.0.0) GO TO 90
IF(J.LE.N.AND.BOUNDJ.EQ.-1.0.0R.J.LE.N.AND.XX.LE_BOUNDJ) GO TO 40
IF(J.GT.N .AND. SI.EQ.1.0) GO TO 40

GO TO 90

IF(XX.GE.GK*R) GO TO 90

R=XX/GK

IF(R.LE.SMALL) R=0.0

NEWY=K

IF(R.EQ.0.0) GO TO 140

GO TO 90

IF(J.GT.N) GO TO 80

IF(BOUNDJ.EQ.-1.0 .OR. XX.LT.0.0 .OR. XX.GT.BOUNDJ) GO TO 90
IF((XX-GK*R).LE.BOUNDJ) GO TO 90
R=(BOUNDJ-XX)/(-1.0%GK)

GO TO 60

IF(XX.GE.0.0 .OR. S(J-N).GE.0.0) GO TO 90
IF((XX-GK*R).LE.0.0) GO TO 90
GO TO 50

CONTINUE

DO 130 I=1,MNOW
IF(ISEFF(I).EQ.0) GO TO 100
G(I)=0.0

G0 TO 130

SLACKI=SLACK(I)

S$I=5(I)

GI=0.0

ISTART=IROW(I)
LAST=IROW(I+1)-1

DO 120 LOOK=ISTART,LAST
J=JCOL(LOOK)

INJ=INBASE(J)
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IF(INJ.LE.C) GO TO 110
GI=GI-AA(LOOK)*GR(INJ)

60 TO 120

IF(J.EQ.NEWX) GI=GI+AA(LOOK)
CONTINUE

G(I)=GI

IF(DABS(GI).LE.TOL5) GO TO 130
IF(SI.EQ.0.0 .AND. SLACKI.NE.0.0) GO To 130
IF(SI*SLACKI.LT.0.0) GO TO 130
GI=GI*XKPOS

T=SLACKI-GI*R

IF(T.GE.O. .AND. SI.EQ.1. .OR. T.LE.O. .AND.

R=SLACKI/GI
IF(R.LE.SMALL) R=0.0
NEWY=SIZE+I
GR(SIZE1)=GI*XKPOS
IF(R.EQ.0.0) GO TO 140
CONTINUE

RETURN

END

SI.EG.~-1.) GO TO 130
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APPENDIX F

SAMPLE INPUT AND OUTPUT FILE
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500,20
0.0014,0.002,0.001,0.0015,0.0007,0.002,0.002,0.01
5,1 :
30.,31.,30.,31.,31.
'SEP' 'OCT' 'NOV' DEC' 'JAN!
30,0
20.,0.3,2.,0.3
0.0,0.0,0.0,0.0,3700.
0.0,0.0,0.0,0.0,0.0
-534.6,-534.6,-534.6,-534.6,-534.6
14000. 18000. 14000. 18000. 18000.
8000. 8000. 8000. 10000. 9000.
-20000. -22000. -20000. -21000. -21000.
-12000. -12000. -12000. -14000. -12000.
2
6.0,5.0,6.0,7.0,6.
4.0,3.0,4.0,5.0,5.0
0.57,0.57,0.57,0.57,0.57
0.43,0.43,0.43,0.43,0.43
40.0 40.0 40.0 40.0 40.0
40.0 40.0 40.0 40.0 40.0
30.0 30.0 30.0 30.0 30.0
30.0 30.0 30.0 30.0 30.0
0.1 0.1 0.1 0.1 0.1 '
0.1 0.10.10.10.1
295.,1.
280.,280.,280.,280.,280.
300.,300.,300.,300.,300
1.5,1.5,1.5,1.5,1.5
0.0593701,-9.0836254
0.20,0.20,0.20,0.20,0.20
0.4,0.35,0.25,0.2,0.15
10.,0.




OUTPUT REPORT FROM THE EMSLP PROGRAM

THE INPUT DATA

* LAND & POWELL CONTROL DATA

500
0.
0.

20
001400
002000

0.002000 0.001000
0.010000

* PLANNING HORIZON DESCRIPTION

1
30.00

31.00 30.00

SEPOCTNOVDECJAN

* ITERATIVE PROCESS CONTROL DATA

20.

30
000000

* O0BJ. FUN

0.
-534.

0.00
000000
600000

14000.00
8000.00
-20000.00
-12000.00

0.001500

31.00

0.300000

0.00
0.000000
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0.000700

31.00

3700.00

0.000000

-534.600000 -534.600000 -534.600000 -534.600000
18000.00 18000.00

0
0.300000 2.000000
COST COEFF.
0.00 0.00
0.000000 0.000000
18000.00 14000.00
8000.00 8000.00
-22000.00 -20000.00 -
-12000.00 -12000.00 -

* SYSTEM DEMAND DATA

oo rO0MN

.000000
.000000
.570000
.430000

40.00
40.00
30.00
30.00

.100000
.100000

5.000000 6.000000
3.000000 4.000000
0.570000 0.570000
0.430000 0.430000

40.00 40.00
40.00 40.00
30.00 30.00
30.00 30.00

0.100000 0.100000
0.100000 0.100000

10000.00
21000.00

9000.00
~21000.00

14000.00 -12000.00

7.000000
5.000000
0.570000
0.430000
40.00
40.00
30.00
30.00
0.100000
0.100000

6.000000
5.000000
0.570000
0.430000
40.00
40.00
30.00
30.00
0.100000
0.100000

0.002000



* RESERVOIR & POWER PLANT DATA

295.000000 1.000000
280.00 280.00 2
300.00 300.00 3

1.500000 1.500000

0.059370  -9.083625

* RELEASE ESTIMATES

0.200000

0.200000

* FORECASTED INFLOW

0.400000

0.350000

80.00
00.00
1.500000

0.200000

0.250000

* SCALE FOR LP & DISCOUNT RATE

10.000000

0.000000

280.00
300.00

1.500000

0.200000

0.200000

REPORTS ON THE ITERATIVE SOLUTION PROCEDURE

ITERATION 1SIMPLEX ITERAT

x

MONTH *

SEP *
ocT %
NOov %
DEC *
JAN %

280.00
300.00
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1.500000

0.200000

0.150000

IONS  42INITIAL STORAGE 295.0VARYMX 20.0

THE RESERVOIR DATA
INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL ON EX

12.00 7.70
10.85 10.15
7.50 11.00
6.20 14.50
4.65 12.85

0.00
0.00
0.00
0.00
0.00

THE OBJECTIVE FUNCTION VALUE 1S -

ITERATION 2SIMPLEX ITERATIONS

®
MONTH *

SEP ¥
OcT %
NOV %
DEC *
JAN *

THE RESERVOIR DATA
INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL ON EX

12.00 7.70
10.85 10.15
7.50 10.43

6.20 14.7
4.65 13.21

0.00
0.00
0.00
0.00
0.00

THE OBJECTIVE FUNCTION VALUE IS -

ITERATION 3SIMPLEX ITERATIONS

MONTH

SEP
ocT
HOV
DEC
JAN

THE RESE

INFLOW GEN.FL.P
12.00 7.70
10.85 10.15
7.50 7.92
6.20 11.09
4.65 12.85

RVOIR DATA
OW  GEN.FL

0.00
0.00
0.00
0.00
0.00

THE OBJECTIVE FUNCTION VALUE IS
THE INITIAL DECREASE IS ACCEPTED

x

7.70
10.15
11.00
14.50
12.85

121671.92

*

7.70
10.15
10.43
14%.71
13.21

124343.48

LSINITIAL STORAGE

*

0.00
0.0C
0.00
0.00
0.00

0.00
0.00
0.00
0.00
0.00

.SP TOT.QUTFL ON EX

7.70
10.15
7.92
11.09
12.85
-127044.53

0.00
0.00
0.00
0.00
0.00

OFF EX ON IN

0.00
0.00
0.00
0.00
0.00

0.88
0.00
0.18
0.00
0.00

43INITIAL STORAGE 295.0VARYMX 20.0

OFF EX ON IN

0.00
0.00
0.00
0.00
0.00

295 . OVARYMX

OFF EX

0.00
0.00
0.00
0.00
0.00

0.88
0.00
0.30
0.00
0.00

OFF IN

N e N 3
[
=~

OFF IN

.24
.96
.24
.60
.60

[ = BT Y

HE ON

1.58
2.12
2.29
2.97
2.54

_HE ON

1.58
2.12
2.16
2.97
2.54

ON IN OFF IN HE ON

0.88
0.00
0.80
0.69
0.00

1.24
0.96
1.24
1.60
1.60

1.58
2.12
1.66
2.28
2.54

HE OFF

0.00
0.00
0.00
0.00
0.00

HE OFF

0.00
0.00
0.00
0.00
0.00

HE OFF

0.00
0.00
0.00
0.00
0.00

END STAGE

299.30
300.00
296.50
288.20
280.00

END STAGE

299.30
300.00
297.07
288.56
280.00

END STAGE

299.30
300.00
299.58
294 .68
286.48

MONTHLY

BENEFIT
-36920.5
-13930.3
-21663.0
-26469.6
-22688.2

HONTHLY

BENEFIT
~36921.1
~13930.3
-24334.0
~26469.6
-22688.2

HONTHLY
BENEFIT
-36921.12
-13930.37
-35245.78
-42234.98
1287.72



ITERATION 3SIMPLEX ITERATIONS

LOINITIAL STORAGE

182

295 .0VARYHX 20.0

* THE RESERVOIR DATA *

MONTH * INFLOW GEN.FL.POW GEN.FL.SP TOT.QUTFL OR EX OFF EX ON IN OFF IN
SEP * 12.00 7.70 0.00 7.70 0.00 0.00 0.88 1.24
ocT *  10.85 10.15 0.00 10.15 0.00 0.00 0.00 0.96
NOV % 7.50 10.43 0.00 10.43 0.00 0.00 0.30 1.24
DEC * 6.20 14.71 0.00 4.7 0.00 0.00 0.00 1.60
JAR ¥ 4.65 13.21 0.00 13.21 0.00 0.00 0.00 1.60
THE OBJECTIVE FUNCTION VALUE IS ~124343.48
ITERATION A4SIMPLEX ITERATIONS  43INITIAL STORAGE 295.0VARYHX 20.0

* THE RESERVOIR DATA *

MONTH * INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL ON EX OFF EX ON IN OFF IN
SEP *  12.00 7.70 0.00 7.70 0.00 0.00 0.88 1.24
ocY *  10.85 10.15 0.00 10.15 0.00 0.00 0.00 0.96
NOV  * 7.50 10.07 0.00 10.07 0.00 0.00 0.37 1.24
DEC * 6.20 14.81 0.00 14.81 0.00 0.00 0.00 1.60
JAN * 4.65 13.46 0.00 13.46 0.00 0.00 0.00 1.60
THE OBJECTIVE FUNCTION VALUE IS -125882.90
ITERATION SSIMPLEX ITERATIONS  43INITIAL STORAGE 295.0VARYNX 6.0

* THE RESERVOIR DATA *

MONTH * INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL ON EX OFF EX ON IN OFF IN
SEP * 12.00 7.70 0.00 7.70 0.00 0.00 0.88 1.24
ocT *  10.85 10.15 0.00 10.15 0.00 0.00 0.00 0.9
NOV  * 7.50 9.24 0.00 9.24 0.00 0.00 0.54 1.24
DEC * 6.20 14.75 0.00 14.75 0.00 0.00 0.00 1.60
JAN ¥ 4.65 13.39 0.00 13.39 0.00 0.00 0.00 1.60
THE OBJECTIVE FUNCTION VALUE 1S -125912.58
THE INITIAL DECREASE 1S ACCEPTED

ITERATION SSIMPLEX ITERATIONS  43INITIAL STORAGE 295.0VARYNX 20.0
* THE RESERVOIR DATA *

HONTH * INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL ON EX OFF EX ON IN OFF IN
SEP % 12.00 7.70 0.00 7.70 0.00 0.00 g.88 1.24
oCcT * 10.85 10.15 0.00 10.15 0.00 0.00 0.00 0.96
NOV % 7.50 10.07 0.00 10.07 0.00 0.00 0.37 1.24
DEC * 6.20 14.81 0.00 14.81 0.00 0.00 0.00 1.60
JAN % 4.65 13.46 0.00 13.46 0.00 0.00 0.00 1.60
THE OBJECTIVE FUNCTION VALUE IS -125882.90
ITERATION 6SIMPLEX ITERATIONS  44INITIAL STORAGE 295.0VARYHX 20.0

* THE RESERVOIR DATA ®

MONTH * [INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL ON EX OFF EX ON IN OFF IN
SEP % 12.00 7.70 0.00 7.70 0.00 0.00 0.88 1.24
ocY * 10.85 10.15 0.00 10.15 0.00 0.00 0.00 0.96
NOV % 7.50 8.02 0.00 8.02 0.00 0.00 0.78 1.24
DEC * 6.20 14.66 0.00 14.66 0.00 0.00 0.00 1.60
JAN % 4.65 13.36 0.00 13.36 0.00 0.00 0.00 1.60
THE OBJECTIVE FUNCTION VALUE IS -126245.70

HE ON

1.58
2.12
2.16
2.97
2.54

HE ON

1.58
2.12
2.09
2.97
2.54

HE ON

1.58
2.12
1.92
2.97
2.54

HE ON

1.58
2.12
2.09
2.97
2.54

HE ON

1.58
2.12
1.68
2.97
2.54

HE OFF

0.00
0.00
0.00
0.00
0.00

[ele]
00
00
00
00

HE OFF
00
.00
.00
.00
00

(=N« = I = I = )

HE OfF
00
00
00
00
00

.C)DOOO

HE OFF

0.00
0.00
0.00
0.0C
0.00

END STAGE MONTHLY

BENEFIT
299.30  -36921.12
300.00 -13930.37
297.07  -24334.05
288.56  -26469.66
280.00  -22688.28

END STAGE HONTHLY

BENEFIT
299.30  -36921.1
300.00 -13930.3
297.43  -25873.4
288.81 -26469.6
280.00  -22688.2

END STAGE MONTHLY

BENEFIT
299.30  -36921.12
300.00 -13930.37
298.26  -29484.18
289.7 -26469.66
280.97  -19107.26
END STAGE HONTHLY

BENEFIT
299.30  -36921.12
300.00  -13930.37
297.43  -25873.48
288.81 -26469.66
280.00  -22688.28

END STAGE MONTHLY

BENEFIT
299.30  -36921.1
300.00 -13930.3
299.48  -34784.4
291.02  -26469.6
282.31  -14140.1



ITERATION 7SIMPLEX ITERATIONS

MONTH

SEP
ocT
NOV
DEC
JAN

12.00
10.85
7.50
6.20
4.65

44INITIAL STORAGE

THE RESERVOIR DATA
INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL ON EX

7.70
10.15
8.02
14.66
13.36

0.00
0.00
0.00
0.00
0.00

THE OBJECTIVE FUNCTION VALUE IS
THE INITIAL DECREASE IS ACCEPTED

ITERATION 7SIMPLEX ITERATIONS

MONTH

SEP
ocT
NOV
DEC
JAN

*

x

INFLOW GEN.FL.POW GEN.FL

GLINITIAL STORAGE

THE RESERVOIR DATA

7.70
10.15
8.02
14.66
13.36

0.00
0.00
0.00
0.00
0.00

THE OBJECTIVE FUNCTION VALUE IS

ITERATION BSIMPLEX ITERATIONS

HONTH

SEP
ocT
NOV
DEC
JAN

*
*

*
*
*
*®

®

12.00
10.85
7.50
6.20
4.65

THE RESERVOIR DATA
INFLOW GEN.FL.POW GEN.FL.SP TOT.OUTFL ON EX

7.70
10.15
7.53
14.59
13.30

0.00
.00
0.00
6.00
0.00

THE OBJECTIVE FUNCTION VALUE IS
CONVERGED VOLUME
KET ITERATIONS

H

*

7.70
10.15
8.02
14.66
13.36

0.00
0.00
0.00
0.00
0.00

-126245.70

*

7.70
10.15
8.02
14.66
13.36
-126245.70

L4INITIAL STORAGE

7.70
10.15
7.53
14.59
13.30
-126205.4

.SP TOT.OUTFL ON EX

0.00
0.00
0.00
0.00
0.00

0.00

0.00

0.00

0.00

0.00
1

183

295 .OVARYMX

OFF EX

0.00
0.00
0.00
0.00
0.00

295 . OVARYMX

OFF EX

0.00
0.00
0.00
0.00
0.00

6.0

ON 1IN

0.88
0.00
0.78
0.00
0.00

20.0

ON IN

0.88
0.00
0.78
0.00
0.00

295.0VARYMX 20.0

OFF IN

1.24
0.96
1.24
1.60
1.60

OFF IN

1.24
0.96
1.24
1.60
1.60

OFF EX ON IN OFF IN

0.00
0.00
0.00
0.Q0
0.00

0.88
0.00
0.88
0.00
0.00

1.24
0.96
1.24
1.60
1.60

HE ON HE OFF

1.58
2.12
1.68
2.97
2.54

HE O

.5
1
.6
.9
.5

NN -

HE

N R o N

N

8
2
8
7
4

ON

.58

.58
.97
.54

00
00
o0
0o
00

(=T = I = = ¥ =]

HE OFF

0.00
0.00
0.00
0.00
0.00

HE OFF

0.00
0.00
0.00
0.00
0.00

299.30
300.00
299.48
291.02
282.31

END STAGE

299.30
300.00
299.48
291.02
282.31

END STAGE

299.30
300.00
299.97
291.58
282.92

END STAGE MONTHLY

BENEFIT
-36921.1
-13930.3
-34784.4
-26469.6
-14140.1

HONTHLY

BENEFIT
-36921.1
-13930.3
-34784.4
~26469.6
=14140.1

MONTHLY

BENEFIT
-36921.12
-13930.37
-37016.59
-26469.66
-11867.68



