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ABSTRACT

The operation planning of a hydro-electric utility is a complex problem

involving decisions about reservoir releases, energy supplies and many other

production related problems during a certain planning period. Mathematical

modelling (simulation and optimization techniques) is widely used to aid the

decision making process. This work presents a deterministic Linear Programming

(LP) based optimization model. The objective is to maximize the energy erport

benefits of the utility, while minimizing the costs of satisffing the domestic power

demand over the planning period. For the specified reservoir inflow and power

demand scheme, decisions about the energy production, e4port and import have to

be made for each time step.

An iterative algorithm named EMSLP (Energy Management by Successive

Linear Programming) was developed to solve the optimization problem. The

EMSLP algorithm has two iteration levels: at the first level a stable solution is

sought, and at the second the interior of the feasible region is searched to

improve the objective function whenever its value decreases.

The EMSLP algorithm has been tested using the Manitoba Hydro system

data. To evaluate the performance of the algorithm a comparative study has been

made with the EMMA (Energy Management and Maintenance Analysis) program

used in the Manitoba Hydro practice. The results of the comparison have shown

a number of advantages of the EMSLP algorithm.
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CHAPTER 1.

INTRODUCTION

The optimization of hydro power production (in broader sense reservoir

operation) has been a problem addressed by many researchers in the past three

decades. Due to the complexity of the problem none of the numerous optimization

techniques could model all the pertinent characteristics of a reservoir system

operation (multiple-reservoirs, multiple time-periods, stochastic inflows, and

nonseparable objective functions). However, this does not mean that there were

no successful applications of operations research techniques to the problem. For

real world problems, some simplifications are required to take into account the

characteristics of the reservoir system, the available data, and the modelling goal.

The simplified problem can be successfully modelled. The model can be used for

planning and operation purposes keeping in mind the assumptions made.

An algorithm for optimal midterm operation of an interconnected hydro

utility with a deterministic input is presented in this thesis.

1.1 PROBLEM STATEMBNT

There a¡e three major time horizons used in a hydro utitity planning

procedure: long, midi and short-term planning. Long-term planning involves

making strategic decisions about the system for several decades in the future.
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Midterm operation problems require decisions to be made in the system on a

weekly or monthly basis over ayearly period. Short-te¡m planning requires making

decisions on a daily or hourly basis.

The midterm planning horizon is divided into multiple weekly or monthly

time steps to cover the whole plaruring period. The hydro utility's goal in the case

of Manitoba Hydro is to satisõr the domestic load throughout the planning period.

In order to comply with its obligations the utility has to import energy in the

periods of energy deficiencies, i.e., when there is insufficient water for release

through the hydro power plants, or insufficient capacity in other domestic

generating stations. On the other hand, additional benefit can be obtained by

exporting the excess energy in periods when the production exceeds the domestic

demand. The energy price structure on the power market can also allow some

additional benefits by rationally scheduling the export-import policy (e.g., buþg

effì-peak priced energy to satis$r the domestic load and storing water for on-peak

priced production and possibly export).

To prevent an operation which would empty the reservoirs at the end of the

planning period (i.e., to be greedy in achieving higher benefits) there is an assigned

value of water for the last time period. The value reflects the future benefits from

the stored water.

Deterministic planning means that the stream flows in the hydraulic system,

the domestic load and the energy prices are known in advance for the whole
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planning period in each time step. These assumptions are far from realistic,

because each of the above model inputs is uncertain. Since the model does not

incorporate the uncertain future explicitiy, it has to be evaluated implicitly by

sensitivity analysis. The optimization has to be performed with different scenarios

of stochastic data to evaluate their impact on the operation policy. The way to

improve the operation policy is to update the forecasted input data whenever

additional information is available and to run the model again. Therefore, the

optimal policy obtained from the model is implemented only for the first time step.

For the next time step, the model optimizes with the new forecast.

1,.2 THE IDEA OF SUCCESSIVE LINEAR PROGRAMMING

The algorithm uses the technique of Linear Programming (LP) to optimize

the operation. Like the other mathematical programming techniques LP requires

the formulation of an objectìve function to be optimized and a constraint set to

limit the feasible solution space. In the problem of hydro production optimization

the objective is to maximize production benefits and minimize costs with respect

to the constraints which describe the system. In addition, LP requires linear

relationships in the objective function and the constraints, too. The problem of

hydro production optimization is nonlinear. Some of the nonlinearities can be

approximated by piece wise linearuation to the desired degree of accuracy, and

they do not represent a serious obstacle for the LP application. The major
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difficulty lies in the nonseparable character of hydro production function. The

multiplication of release, storage, plant efficiency and conversion constant give the

produced hydro energy. The release and storage are both decision variables in

the model and they must be separated in order to apply the LP technique. There

are numerous approximations which can bé applied to linearize the relationship.

The common to most of them is that the solution to the problem is obtained in a

sequence of iterative LP solutions. The assumed values used to linearize the

original function are updated after each iteration until the input is close enough to

the output value. This technique to solve nonlinear problems using LP is called

Iterative Linear Programming (ILP).

The algorithm presented in this thesis applies an approximation which

belongs to a special class of ILP. The nonlinear function is approximated around

a chosen point in the decision space by its first order Taylor series expansion. The

algorithms developed on the basis of this approximation are called Successive

Linear Programming (SLP) algorithms.

13 MODELLING APPRO)ilMATIONS

In addition to the already introduced simplified planning with deterministic

input, modelling of the hydro utility operation requires a number of other

facilitating assumptions. The calculation of the plant head and efficiency is

performed simultaneously by determining their product called Energy Rate Function
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(ERF). The calculation does not take into account the impact of discharge, i.e.

ERF is assumed to be the function of the storage exclusively. In reality the

efficiency and the tail water are both dependent on the discharge. In addition, the

representative ERF value for a time step is assumed to be the average of the

function value for the storage at the beginning and at the end of the time step.

It is also assumed that there is a linear relationship benveen the volume of

the water stored in the reservoirs at the end of the planning period, and the future

benefits from that storage. In reality the return per unit volume diminishes with

the increase of the amount stored. In the model it is assumed to have a constant

return per unit volume.

The model assumes that the generating capabilities are available for

production during the whole planning period. In reality every plant must have

outages due to maintenance. The operation planning has to take that into account.

The problem of maintenance can be included into the model in the same manner

as is done in the EMMA program, Manitoba Hydro (1986).

In case of multiple reservoir modelling the travelling times of water between

the reservoirs can be ignored. This assumption can be valid only for midterm

planning when the travelling time is negligible compared to the time step length.

In cases when this is not true additional modelling is required (e.g., by introducing

an artificial reservoir) to take into account the travelling time between the

reservoirs.
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CHAPTER 2.

REVIEW OF PREVIOUS WORK

2.I MATHEMATICAL MODELLING APPLIED TO HYDRO POWER

GENERATION

The problem of optimal management of hydro power generation has been

actively studied by a large number of researchers in various academic and research

institutions and electric utilities. Many successful applications of mathematical

models have been made. The method chosen depends on the characteristics of the

hydraulic and electric system, on the availability of data, and on the objectives and

constraints specified.

The operation of a hydro utility is nonseparably connected to the problem

of reservoir management. Hydro production is often one of the major purposes (if

not the only) of building a reservoir. The hydro production of a power plant

during a time period is a function of the released water and the forebay storage

level. The forebay is usually a reservoir. Even if it is not, as in the case of run

of river plant, the operation of the generation station can be largely influenced by

the releases from an upstream reservoir. The only hydro power plants which are

not related to reservoirs are the run of river hydro plants built on unregulated

rivers, but these are rare.

The methods applied for reservoir management, and also used for hydro-



electrical system operation, can be

major groups.

a) Linear programming;

b) Dynamic programming;

c) Nonlinear programming;

d) Simulation;

7

classified according to Yeh (1935) into four

Combinations of the above methods have also been reported in the literature.

Since the application of Linear programming (LP) will be discussed in detail in

section L.2, at this point the last three methods are addressed.

2.LJ Dvnamic Programming

Dynamic programming (DP) is a technique for optimization of multistage

decision processes. It is used extensively to optimize water resources systems. The

popularity of DP is due to the fact that the nonlÍnear and stochastic characteristics

of water resources systems can be translated into a DP formulation without

difficulties. DP is well suited to handle deterministic short term (daily, hourly), and

stochastic mid term (monthly or yearly) operation problems (Larson and Keckler,

1969). A deterministic model for a power generation system with pumpback

developed by Hall and Roefs (1966) also shows the applicability of the method ro

mid term planning. Young (1967) proposes a method to deal with the stochastic

character of the inflows while optimizing with deterministic DP. Reservoir
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operating rules are obtained using a combination of stream flow generation and DP

optimization of releases. The stochastic character of the inflows was taken into

account by generating a long inflow sequence by a Monte Carlo technique. The

release policy for this sequence was optimized by a deterministic forward DP. The

reservoir operating rule is a regression function of the release to the storage, inflow

and forecast of the next inflow. The generatedÆorecasted inflows and the optimal

storages are used as a sample to estimate the coefÏicients of the regression function

by the least square method. Applyrng the rule, the economic loss as a function of

the release is minimized for annual usage of a single reservoir.

However, Yeh (1985) has stated that the major drawback of DP in its

original form is the inability to handle big multiple reservoir systems. The memory

and computing time requirements are the major limiting factors. Each reservoir

requires at least one state variable (e.g., storage) which can have several values (in

the discrete case) at every stage (e.g., time step). The possible number of

combinations (state vectors) to be explored grow exponentially with the number

of state variables at each stage. The computational burden is unbearable for a

system of more than a few reservoirs. This problem is called the "curse of

dimensionality". In this section several DP based models are presented based on

the nature of the applied methodology rather than the chronological order of

appearance.
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The remedial measure to alleviate the "curse of dimensionality" is to

decompose the complex multiple state variable problem into a series of sub-

problems which can be solved recursively. The methods of dimension reduction

beside the decomposition of the original problem also follow an iterative solution

procedure. One of the methods is the Incremental DP (IDP) used by Larson and

Keckler (1969), systematized and referred to by Heidari et al. (1969) as Discrete

Differential DP (DDDP). The method starts with a trial state trajectory satisffing

a specific set of initial and final conditions and applies the DP recursive equation

to the neighborhood of this trajectory. At the end of each iteration step a locally

improved trajectory is obtained and used as the initial trajectory for the next step.

The procedure stops when no further improvement is identified, and it is assumed

that a local optimum is found.

Another method to alleviate the curse of dimensionality is called Incremen-

tal DP with Successive Approximations (IDPSA). The concept is to decompose the

multiple-state variable DP problem to a number of subproblems of one state

variable and to optimize one at a time while the others have assumed state

trajectories. In the following step another subproblem is optimized after the state

vectors were updated with the previous solution. The procedure is repeated until

the solution of the original problem converges. The method was first applied by

I-arson and Keckler (1969) for a multiple reservoir system. Nopmongcol and

Askew (1976) combined the incremental DP and the DP with successive approxima-
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tions. Their algorithm used IDPSA to obtain the input state trajectory combination

for the two-at-a-time IDP execution. The results of both IDP and IDPSA can be

influenced by the choice of the initial state trajectory, but this is a common problem

for many other iterative procedures.

Stochastic DP (SDP) can take into account the uncertainry of the input data.

One of data which is inherently random is the reservoir inflow, and its impact on

the operational policy has to be considered. SDP models can directly incorporate

this aspect of the analysis into the solution procedure. In the work of Daellenbach

and Read (1976) a stochastic dynamic programming model of the Swedish State

Power Board (Gustafsson, 1968) is described. All reservoirs and stream flows are

aggregated and presented by a single reservoir and a single hydro station. The

program derives water value curves as a function of reservoir level for the planning

period of 52 weeks. The reservoir levels are optimized to have a minimal thermal

energy production cost of the power system. The optimization is constrained by the

requirement to satisfy the specified demand for the given marginal cost structure

of thermal energy and the total amount of storable and non-storable stochastic

inflow. The historic sequence of weekly observations of stream flows during the

most recent 30 years is used as a sample to estimate the average water values.

The model is used in conjunction with a simulation model, which helps to aggregate

the stream flows and storage contents of the various river systems.
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Turgeon (1980) compares two DP techniques applied to the problem of

optimal operation of a multireservoir power system with stochastic inflows. One is

the one-at-a-time method (also referred to as DPSA in the above discussion). The

other is the aggregation/decomposition method. The first gives an optimal feedback

operating policy for each reservoir. The feedback term implies the assumption that

the turbine release from a particular reservoir is a function of the storage and

inflow of that reservoir, exclusively. An assumption that the release is related to

the storage in the other reservoirs, too, i.e. the open-loop solution, requires DPSA

execution for every time step, which is costly in computer time. The second,

aggregation/decomposition approach breaks up the original complex parallel

reservoirþower plant system into two components. One component is the actual

reservoir/power plant of the original complex system, while the other is an

aggregate of all the remaining elements of the system. In this way a two state

variable stochastic DP problem is formulated, which can be solved without

dimensionality problems. The procedure is repeated for every reservoir separately,

and the solutions are combined to result the solution of the original problem. The

two methods were applied to, and compared on the basis of, a system of six

reservoirs/power plants. In this evaluation, the aggregation/decomposition was

proven to be better.

Reliability-constrained DP arised from the fact that long range reservoir

operation has to trade off the return and the risk associated with not achieving it.
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A probabilistic DP model with discounting was formulated to solve the stated

problem. The probabilistic term stands for the independent, stochastic character

of the inflows in the model. The problem has been solved either using the penalty

function approach or the l-agrangian duality theory of nonlinear programming.

Ffowever, there are substantial difficulties in formulating a multireservoir problem

(e.g. interdependence of inflows). There are also no attempts to evaluate the

severity and duration of failures to satis$r the targets. The applicability of the

approach is limited to long term planning purposes.

For the problems where the objective function is separable and convex (in

the case of minimization) and the system can be described solely by dynamic

equations (i.e. linear dynamics, quadratic performance problem or LaP) an

analytical solution can be obtained. The methodology can be generalized for

multiple state variable problems without running into the dimensionality problem

like in the classical discrete DP. For the problems where the above conditions do

not hold, the objective function or the system dynamics equation can be expanded

into Taylor series. In this way, around the initial estimate the requirements for

the analytical solution are satisfied. The solution procedure for these non LQP

problems is iterative. The method has the name of differential DP and it was

introduced by Jacobson and Mayne (1970).

Turgeon (1981) presented an algorithm related to a DP approach. The task

was to optimize releases from a system of hydro power plants located in series on
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the same river. The solution procedure was based on the principle of progressive

optimality. The feature of the approach is that it does not require the discretiza-

tion of the solution space. It can also handle discontinuous return functions, and

the objective function does not have to be linearized nor approximated by a

quadratic function.

To conclude, DP is capable of handling a large scale of problems in

reservoir systems. According to the literature (Yeh, 1935) its major limitation is

the curse of dimensionality and numerous efforts have been made to alleviate this

problem.

2.L.2 Nonlinear Proqramming

Nonlinear programming (NLP) methods have not been applied to water

resources systems analysis as often as LP or DP. This is primarily due to the fact

that these methods are much less efficient in using computer time and memory

than the others. In addition, the mathematics is much more complicated, and the

methods do not lend themselves easily to stochastic problem solutions. The

remedial measure is to include a sensitivity capability in the algorithm. Of course

the application of these methods has its advantages, too. NLP can handle non-

separable functions (e.g. hydro production ) and nonlinear constraints.

For the general problem where the objective and constraints are both

nonlinear the penalty and/or barrier solution methods could be one of the choices
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(Yeh, 1985). Assuming convexity of the constraints the problem can be solved by

applying the Lagrangian dual procedure (Yeh, 1985).

H the problem is simpler, in the sense that the constraints are linear

functíons of the decision variables and only the objective function is nonlinear, one

of the solution techniques is the gradient projection method proposed by Rosen

(1960). The feature of the method is that it implements the feasible direction

algorithm without solving an LP at each iteration step. This is possible since the

set of active constraints is changing at most by one element at a time and the

required projection matrix can be calculated from the previous one by an updating

procedure.

Another method for the same class of problems (linear constraints, nonlinear

objective function) is the reduced gradient method. The method was used by the

Tennessee Valley Authority for scheduling weekly releases (TV,\ 1976). Rosenthal

(1981) applied a modification of the reduced gradient methodology to optimize a

nonlinear nonseparable objective function with a linear network flow constraints.

An unusual feature of the algorithm is the integer programming subproblem whose

function is to obtain the superbasic set and the search directions needed in the

reduced gradient method.

A summary comment on the NLP methods could be that the major obstacle

for their application is the rate of convergence and the overall high computer

requfements.
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2.L3 Simulation

Simulation is a mathematical modelling technique aimed at providing a

response of the system for a certain input. The input includes decision rules which

provide guidelines for the operation. The decision maker can examine the

consequences of difÏerent operation scenarios for an existing or planned system.

Simulation is extensively used in water resources. Some of the known models are

HEC-3, HEC-S, SIM I and II. For a more detailed review of models see Yeh

(1985). The advantage of simulation is that it can be more flexible, versatile and

detailed in the system description than the optimization techniques. On the other

hand, optimization looks to all possible decision scenarios, while simulation is

limited to a finite number of input decision alternatives.

The adopted operating rules used as input into simulation models are

summarized by Loucks and Sigvaldason (1932). They suggest that the operating

policies may include some of the following general concepts: target storage volumes,

allocation zones within the reservoir, flow ranges, and conditional rule curves

dependent on the expected natural inflows.

The combined use of optimization and simulation models is a common idea.

Loucks et al. (1981) suggest use of optimization to screen a great number of

feasible plans and to explore the remaining ones in more detail by applying a

simulation model. The general tendency in recent years is to incorporate an
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optimization scheme into the simulation model. One of these models is developed

by Sigvaldason (1976).

The practical application of optimization techniques in water resources

management is not so widespread due to the complexities of the water resources

systems and the existence of noncommensurable objectives. ln this regard,

simulation is an effective tool for studying the operation of the complex water

resource system incorporating the experience and judgment of the planner or design

engineer into the model.

L.2 LINEARPROGRAMMINGAPPLICATIONS

Linear Programming (LP) has been one of the most widely used mathemati-

cal programming techniques for optimization of water resources systems. The

technique refers to a special class of problems where the objective function and the

constraints are both linear or can be approximated by a linear relationship. The

major advantage of this technique over the others is that the solution algorithm

efficiently identifies the global optimum and there is a mathematical proof for the

existence of an optimal solution. LP softrvare packages are widely available, and

this feature makes its application especially attractive. The planner has to

concentrate only on the problem formulation and does not have to master every

detail of the LP solution procedure. The fact that LP problems can be solved very

efficiently gave special incentive to structure nonlinea¡ problems as linear
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optimization models. The nonlinearities may be resolved either by approximation

(".g., piecewise linearization of concave function to be maximized), or by

approximation and iteration (e.g., linearization of a nonseparable function). The

optimization of complex objective functions can be solved by piecewise linearization

and applying a variant of simplex method called separable programming (Daellen-

bach and Read, 1976).

The major obstacle for applying LP to the hydro utility operation problem

is the nonseparable character of the hydro production function. Recently Can et al.

(7982) described three methods to overcome the nonlinearity. The first method is

simlar to that applied in EMMA program of Manitoba Hydro: assume a constant

head during the time step and iteratively improve the assumption using the LP

solution. The second method calculates upper and lower bounds on the basis of

forecasted inflows. The head is assumed to be constant for specified intervals in

the hydro production calculation. The third method utilizes separable programming

to find the approximate optimal solution. The stage-storage curve is piecewise

linearized and two new variables are introduced to transform the hydro production

function in a separable form.

However, it has to be noted that with any applied linearizing approximation

the identified solution is not necessarily the global optimum as in the case of linear

problems.



18

The LP models can be divided into two big groups: deterministic and

stochastic. The short description of some of the recently developed models follow.

2.2.L Deterministic Models

Daellenbach and Read (1976) describe a deterministic LP model used by the

Pacific Gas and Electric (PG&E) Company of San Francisco (Miller and Thomp-

son, 1971, 1972). The program utilizes the increasing marginal thermal costs and

decreasing marginal efficiency of hydro-generation due to head loss by piece-wise

Iinear approximations. Each reservoir is represented individually. PG&E uses a

composite marginal fuel cost curve for the whole system. Its shape and location

depends on the level of thermal shut-down: the higher the shut-down level, the

higher the marginal fuel cost. The level of shut-down is estimated from the daily

system load curve after subtracting the power from the noncontrollable energy

sources (".g., contracted import, nuclear power and base loaded units), an

intelligent guess of the hydro production and adding the contracted export load.

On the basis of this analysis a preschedule of the thermal shut-down level for each

month is estimated with regard due to its effects on the size of the t¡ansmission

losses and the spinning reserve requirements. The analysis made at pG&E

indicates that the nonlinearity of the composite fuel cost curve can be approximated

adequately by six to seven linear segments, which reflect not only the characteristics

of the existing plants but also breaks in the cost of the fuel used. The objective
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function contains also the cost of the import enerry less the exported energJ if any.

Hydro production is given a zero cost coefficient. The objective is to minimize the

total cost over the planning period. Every power source is constrained by a

number of technical and behavioral limitations, but most of the constraints are

related to the modelling of reservoir and hydro plant operation. They include

constraints on storage levels, flow continuity, release limits, and for reservoir head

variation due to its nonlinear effect on the result. There is a minimum target level

for each reservoir to be met at the end of the planning period. The model is used

to aid the decision process of long term allocation of power sources in PG&E.

Takeuchi and Moreau (1974) have developed a method for finding optimal

operating policies for a multiunit water resource system that extends over two river

basins and serves multiple demands. The problem of determining optimal values

for control variables within a monthly interval (for a set of initial state variables)

is formulated as a convex piece-wise LP problem. The objective is to minimize the

monthly value of the loss function (i.e., immsdi¿1s losses) and to minimize the

expected value of the economic efficiency losses over all future months. The

economic efficiency losses are the unknown function of the end-of-month state

variables. That function can be estimated from the stochastic DP problem solution

within which the LP problem is nested. Special techniques are applied to obtain

a large number of solutions to similar LP problems which are needed as input for

the stochastic DP problem to find an approximate overall solution. The previous
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task involves the use of simulation in a recursive algorithm. Simulation is also used

to test the derived policy using the actual stream flow data. The method was

developed and tested to study the further development of a water resource system.

Draper and Adamowski (1975) have applied LP as a screening or allocation

model to provide information on system operation and response. This information

is later used in the preliminary design of hydroelectric power producing facilities.

The objective was to maximi ze the ability to generate continuous system power.

The constraints involved storage limits and power requirements. The inflow scheme

consisted of synthetically generated data. The nonlinear power response is

approximated by linear power-discharge relationship for three different storage

volumes.

Dagli and Miles (1980) formulated a model with the objective to maximize

the sum of average monthly hydrostatic heads of four power plants on the same

river over a yearly time horizon. Requirements were set to supply water for

irrigation, as well as maintaining river flows downstream of the reservoirs. The

authors applied a deterministic LP modelling procedure with updating, called

adaptive planning (AP). The idea of AP is to optimue the operations of the

system on the basis of deterministic stream flow forecast. The obtained result is

applied only for the first time step. To determine the operation of the system in

the next time step, the program is run again with the updated stream flow forecast.

In this way new additional information is added to the optimization. The obtained
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solution is not necessarily optimal but it is very close to the optimum. The model

was used for long term planning to determine the operating policies for a set of

four dams, each of them associated with a hydro-electric plant.

Bechard et al. (1981) developed a deterministic linear-separable program-

ming model to optimize the operation of the reservoirs located in the Ottawa River

basin. LP is used to perform the basic optimization steps which are later used in

the complex multi objective decision analysis. The model has the objective of

reducing flood damages and maximizing energy production benefits. The basic

approach is the multiple-objective optimization by weighting coefficients to trade

off the two objectives. By applying different weights a trade-off curve can be

obtained and later used by the decision maker to identi$r the best compromise

solution. However, certain difficulties were encountered due to the different

optimization time horizons of the two objectives. The energy objective requires one

year period since the load and reservoir elevation have a yearly repetitive cycle.

The flooding objective requires a time horizon of only three or four months of the

flooding season. The problem was solved by appþing a hierarchical approach. The

long-term, yearly optimization was performed with respect to the energy objective

only. The mid-term model of about 16 weeks included both objectives and took

into account the results from the long term optimization. The hierarchical

structuring was achieved by using the long-term optimal storages as targets to be

met by the mid-term model. The continuity between the mid-te¡m and the short-
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term model of about ten daily steps was provided in a similar way. All three models

are to be run sequentialiy with updated deterministic streamflow forecasts. The

hydro-electric system was represented in detail by two types of plants (run-of-river

and with reservoir) and three type of channels (controlled, fuee and generating).

The hydro power production is modelled with piece-wise linearization and an

iterative solution procedure to handle its non-separable nature. The model can be

used for operation planning. It can also be applied as a tool to determine the effect

of future development in the basin or the impact of modifying one or more

operating constraints.

Pereira and Pinto (1983) described a methodology to coordinate the mid-

and short-term scheduling of hydro-thermal systems. The technique is able to

incorporate the electrical problems encountered in the short-term planning into a

constraint which is added to the mid-term scheduling problem. This constraint

refers to the weekly target variable in the mid-term problem. In this way a

feedback is achieved between the short- and mid-term planning with only a few

modifications required in the specialaed algorithms used at each level. The

performance of the model was tested on a case study of the Brazilian Northeast

Network.
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2.2.2 Stochastic LP Models

Stochastic LP models are developed to incorporate the nondeterministic char-

acter of the input data (e.g., stream flows, cost coefficients etc.). The need for

modelling uncertainty is well described by Daellenbach and Read (1976).It is em-

phasized that the planning based on the expected values (e.g., streamflows) essen-

tially assumes that the costs of the positive and negative deviations from these av-

erages as well as the probability of such deviations are perfectly syrrmetrical, and

independent from period to period. None of these assumptions correspond to re-

ality. The uncertainty of the input data can be taken into account in deterministic

modelling through sensitivity analysis. However, the procedure does not consider

explicitly the stochastic character of the input data and may not lead to satisfactory

results.

There are several methodologies to be used for characterization of

nondeterministic parameters in LP models. A brief review follows.

The two-stage or stochastic programming with recourse is described by a

practical example presented in l-oucks et al. (1981). This method is able to deal

with constraints which include random variables. ln the work by Yeh (1985) the

importance of distinguishing the decision stages is emphasized to understand the

method. At the first stage the activity levels are determined. At the second stages,

after the occurrence of the random event, a correction follows minimizing the

negative effects of the activity at the first stage. In a water resource system the
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decisions taken in the first stage can be described as the target levels. At the

second stage the minimization of the losses of not meeting the set targets is

performed. The objective function has two parts: one where the effect of the

targetvalues is evaluated and the other which gives the expected value of losses not

meeting the targets from the first part. In order to solve this problem by LP the

probability distribution of the random event(s) has to be discretized. This results

in addition of multiple constraints pertaining to the second part of the objective

function to the set of constraints which limit the optimization of the first part of the

objective. The discretized problem can be solved simultaneously although there

are two decision stages. In case where the discretization is not possible a

nonlinear deterministic problem can be formulated. The major shortcoming of the

method is that it requires the evaluation of the recourse action by an adequate

estimation of losses from the effect of random variation. There are also

dimensionality problems due to the additional constraints and variables introduced

by the discretization of the distribution function of the random event.

An alternative method to represent uncertainty in an LP model is chance-

constrained programming. The method refers to problems with one or more

random coefficients in the constraint set (either on the right or left hand side). In

these situations, instead of applying the expected value of the random variable as

the RHS, chance constraints can be written to define the probability of failure of

that constraint. Chance-constraints can be converted into deterministic equivalents
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under the condition that the probability distribution of the random variable is

known. Chance constrained models did not find application to hydro power

optimization.

In conclusion, it should be emphasized that the major task of every decision

making under uncertainty is to try to derive a deterministic equivalent of the

stochastic problem. In cases where this is not possible the alternative is to apply

a Monte Carlo simulation to assess the impact of random effects on the operation.

The EMSLP algorithm described in this thesis is tested using the Manitoba

Hydro data. In order to evaluate the performance of the algorithm the results

were compared to the EMMA program runs (Reznicek and Simonovic, 1988a).

EMMA was made available for this research by the courtesy of Manitoba Hydro,

for which the author is specially grateful. To understand the differences in the

results obtained by the two algorithms, EMMA program has to be understood, too.

Therefore, the details of EMMA algorithm and the system on which it is used, are

presented in the following section.

Manitoba Hydro is responsible for the operation of the integrated power

systems of Manitoba Hydro and Winnipeg Hydro. The generation system is

composed of thirteen hydro power and th¡ee thermal plants. The total capacity is

4250 MW of which more than 90 Vo is hydro. The task of operations planning is
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to derive a schedule of reservoir releases, hydro generation, thermal generation and

energy exports-imports with the goals to meet the forecasted system demand

(energy and peek capacity requirements), maintain system reliability, and operate

economically (Banitt-Flatt and Cormie, L988).

The hydraulic system of Manitoba FIydro is very specific. There are a few

big, shallow reservoirs among which l-ake Winnipeg is the biggest. Due to its vast

area the level changes very slowly even if an excessive amount of water is released

during the time step. The operation range is very small, only several metres. The

down stream hydro power plants on the Nelson river do not have the capabilites

to store large amounts of water. They mostly operate as run-of-river plants. The

situation on the Winnipeg River i5 5imilar. The power production in the series of

plants depends on the release from Lake of the Woods and I-ac Seul. The above

facts are important for the assumptions incorporated in the EMMA program

regarding the iterative solution procedure. The head variations in the system during

the planning period are small. The developed algorithm is well suited for these

specific conditions of the hydraulic system.

The EMMA program was developed by the Computer Services Division and

the Energy Resources Section of Manitoba Hydro to suppofi the decision making

process (Manitoba Hydro, 1986). A deterministic LP optimization model was

formulated to determine operation plans for hydro generation, thermal generation

and inter-connections with maintenance of these facilities. The planning horizon
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is about a year (depending on the purpose of running the model) which permits

tradeoffs among current and future costs and revenues. The program has the

capability to formulate the LP problem based on the input data, to solve it using

an iterative solution procedure and to present the results in a form of reports.

Since the actual problem is formulated by the computer the program is very

flexible. Any configuration aggregated from the real Manitoba Hydro system can

be optimized. The power of the model lies in the possibility to optimize with a

different level of details depending on the set goal. The program is written

professionally and due to its flexibility, the program can have a very wide range of

applications not necessarily related to hydro-thermal power system operation (e.g.,

irrigation system).

The model's deterministic nature enables representation of the hydro-electric

system in great detail. The stochastic aspect of the input data is dealt implicitly by

performing the optimization with different stream flows and energy load, i.e.,

conducting a sensitivity analysis. The model is used in the manner of adaptive

planning (Dagli and Miles, 1980). The operating plan is optimized on a regular

basis as new information is available. The input data is updated using new

forecasts of precipitation, river flows, domestic energy loads, and export market

prices. Practically, only the poliry determined for the first time step is imple-

mented, while the others have the role to provide impact on that policy from the

aspect of long term planning. Consequently the time horizon in EMMA is divided
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into shorter steps in the near future and longer ones for the more distant future.

The shorter near future steps can be also attributed to the more certain forecasts

for this period.

The introduction of an optimization model provided not only a shorter time

frame of forecasting, analysis, review and implementation of the up-to-date

operations plan but also enhanced the comprehensiveness of the planning. This

aspect of the modeling with EMMA is extremely important for the operation of the

Manitoba Hydro system. The relative importance of the system components can

change depending on the current status of the reservoirs, the characteristics of

forecasted flows and predicted loads. The system operation has to reflect these

changes accurately. In order to ensure this condition, the model was built with the

aim of accurately representing the system components.

The modeling done in EMMA can be separated in three parts:

a) hydraulic system;

b) electrical system; and

c) maintenance system.

The hydraulic system is composed of reservoirs, lakes and rivers. Reservoirs for

hydro-electric production have usually two outlets: a spillway and a penstock

through the turbines. The lakes can be drained either through a control structure

or by natural, i.e., nonregulated outlet. The storage of the lakes and reservoirs can

be discretized to segments to approximate the nonlinear storage-stage curve by
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piece-wise linearization. The last segment in the last time step can be further

divided into sub-units of the discrete interval called figments to better describe the

price-volume relationship. Time delays introduced by open channel flow can be

modelled by introducing a fictitious (or dummy) lake of an appropriate stage-

storage and outlet rating characteristics. BeSide the above mentioned elements the

model can describe natural inflow to lakes and rivers and consumptive withdrawals.

The elements can be combined in any desirable fashion. There are few restrictions

in configuring the run-of-river generation stations. Explicit constraints can be

formulated to:

a) ensure that the sum of "figments" is equal to the storage of the last

segment;

provide mass balance for lakes;

set the final and initial lake stage to be equal;

limit the outflow from a powerhouse or spillway of a generation station as

a function of the upstream storage; and

limit the outflow from a control structure as a function of the upstream storage.

The electrical system consists of energy generating and transmitting elements

with the purpose of satisfying the domestic and contracted export energy load. The

domestic system load is specified in each time step by a deterministic load duration

curve. The load duration curve represents the intensity of the load during a time

step reorganued in a descending order. In other words for a certain load the curve

b)

c)

d)

e)
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specifies the time (or the fraction of the time step) when it is going to be exceeded.

The curve is approximated in the model by a number of strips and an instan-

taneous peak load. The width of the strip represents the fraction of the time step

while the length represents the average load. The load duration curve modelling

is represented in Figure 1. The load must be satisfied during each strip. The

energy price varies within a time step, which is the reason for designating on and

off peak strips. Thus, the cost and revenue functions are different for the on and

off peak strips, with on peak strips having a higher energy price than the off peak

ones.

The energy transferred from o¡ to the neighboring utilities is dealt with in

two different ways. The export or import can be either firm or interruptible. The

firm purchase or sale of energy means that it must be satisfied I00 Vo of the

contracted time, and therefore it is incorporated in the constraint set. The amount

of energy imported from or exported to the interruptible market depends on the

decisions made in the optimization process limited by the available tieline capacity.

The electrical system is described by formulating the following constraint

types:

a) supply and demand - to ensure that for every load duration curve strip, the

system load plus the firm exports are supplied from hydro generating

stations, thermal plants and imports;
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Figure 1. Load duration curve modeling (Barritt-Flatt and Cormie, 1988)
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b) hydro production - to convert the powerhouse discharge during a time step

using the production coefficients into energy for each load duration curve

strip;

c) run-of-river - to ensure flow continuity by load duration curve strip with an

upstream generating station;

d) hydro shaping - to ensure that the capacity utilized in the load duration

curve decreases moving from on to off peak, or remains unchanged for the

base loaded generation station;

e) thermal shaping - the same as d) but for thermal plants;

Ð tieline total load - to ensure that the export and import time does not

exceed the total time;

g) import fraction limit - to limit the total interruptible import energy to a

percentage of the required system energy for each time step;

h) contract energy Imit - to place a minimum on the total of all the contract

energy variables in all strips of all the load duration curves; and

i) waste heat - to limit the maximum capacity of the thermal plant when the

thermal pollution of the \ryater source downstream of the plant exceeds either

the specified maximum temperature change or the set maximum

temperature.

The maintenance scheduling in EMMA is performed by imputting an annual

maintenance plan based on the station requirements and system operation
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requirements and reviewing the same during the optimization process. The effect

of maintenance in the optimization is reflected by reducing the capacity and energy

capability of the station during the time step when it is scheduled. The possible

constraints for this issue are:

a) crew scheduling - to ensure that for a specified period crew holidays are

accounted for;

b) required maintenance - to ensure that for each plant sufficient maintenance

is done to meet the set requirements;

c) maintenance space - to ensure that after maintenance is accounted for and

the forced outage is subtracted there is enough capacity in the system to

meet the peak load;

d) available capacity - to ensure that the available capacity of the hydro or

thermal plant is not exceeded in a load duration strip; and

e) crew availability - to ensure that the maintenance done by a crew within a

time step does not exceed its availabitity in hours.

Except the mentioned major constraint groups there is a set of constraints

pertaining to energy grouping. These constraints are needed to maintain a balance

of generation in the electrical transmission system. Any energy variable in the

formulation can be included or excluded in these constraints by assigning an

appropriate membership coefficient. The right hand side of the constraint may be

a constant or a function of the domestic load for the interval covered by the
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constraint. The constraints are:

a) energy grouping by strips - to place a minimum value (as a function of

system load) on the total of the defined energy variables on the particular

load duration curve strip;

b) energy grouping by time steps - to place a minimum value (as a function of

system load) on the total of the defined energy variables in the particular

time step; and

c) energy grouping by period - to place a minimum value (as a function of

system load) on the total of the defined energy variables for the chosen

period of study.

The objective function contains all the LP variables with the assigned

appropriate cost coefficients. The cost coefficient can have the following possible

meanings (Barritt-Flatt and Cormie, 1988):

- storage coefficient

- may reflect flood damage for the upper segments

for the last time step it can denote benefits from the

future energy production

- a symbolic penalty coefficient to provide filling the

lower segments of the reservoir before the upper ones

- release

- the net benefit or cost of any release assignment
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- generated energy

- fuel cost of the production and/or

- the fixed cost of the plant maintenance

- import and export enerry

- the interruptible energy market structure

- the contracted price of the firm energy transfer

- scheduled maintenance

- non-economic preferences in the assignment of

maintenance

The problem of optimizing the operation of an interconnected hydro-thermal

utility is inherently nonlinear. There are different nonlinear relationships in the

problem: the stage-storage reservoir curve, the load duration curve, the hydro

production function, cost curves, etc. The LP solution technique can be applied

exclusively to a linear objective function subject to linear constraint set. It is

therefore required to substitute the original nonlinear relationships by a linear

approximation.

If the nonlinear relationship can be described as a univariate function (one

variable is function of the other) the problem is fairly simple: the function may be

piece-wise linearized. However, special care must be taken to ensure that the

linear approximation is satisfactory particularly as representing the original

relationships in the critical ranges.
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The problem is somewhat different when the relationship has to be described

by a multivariate nonseparable function, as in the case of hydro production given

by the following expression:

p : ¡; *Q*H*T*e(Q,H) (1)

the produced energy (E) is a function of discharge (Q), head of the power plant

(H), and efficiency (e) multiplied by the specific weight of water ( f,), and Êre

observed time period length (T). It has to be noted that the efÏiciency is the

function of discharge and head.

The discharge and the plant head are both directly and indirectly decision

variables, whose level has to be determined in the LP solution. Formulated as an

LP, this problem cannot be modelled directly. Thus, an iterative algorithm has to

be followed.

EMMA resolves the difficulty by assuming a constant value for the

production coefficients (PC):

PC : f, *T*H*s

Applyrng this assumption, the operations problem is

by an LP package.

(2)

linearized and can be solved
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The algorithm of EMMA program can be summarized as follows:

(a) start with a set of assumed production coefficients (for each of the variables

describing the produced energy);

(b) solve the LP problem;

(c) calculate the production coefficients using the obtained LP solution;

(d) compare the calculated coefficients with the assumed ones. If the difference

is less than the specified tolerance level for each of them then stop, the

solution has converged. If not, make an assumption for the next iteration

in the following manner. If the difÏerence between the assumed and

calculated coefficient is less than 3A7o of the assumed one, accept the

calculated coefficient as the assumption for the next iteration. If not, the

assumption for the next iteration is the assumption for the previous iteratjon

corrected by 30Vo in the direction of the calculated one. Go to step (b).

The flowchart of the algorithm is shown in Figure 2.

Experience has shown that the production coefficients for a network of hydro

power plants converge rapidly for well constrained problems. In cases where the

problem is ill-defined convergence may not be obtained. Typically, a convergence

tolerance of a few percent is used.
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SOLVE LP : R, ST

PC = PC(R, ST)

PC-PC < TOLERANCE

SOLUTION

R, ST

UPDATE APC

FIGURE LFÆEND:

APC - assumed production co€fficient set
PC - calculated production coefficient set
R - c¿lculated release vector
ST - calculaled storâge vector

Figure 2. EMMA Flowchart
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2.4 DESCRIPTION OF THE SUCCESSIVE LINEAR PROGRAMMING

MODEL OF J. GRYGIER

Grygier (1983) compared th¡ee algorithms for optimizing the operation of

a multi reservoir hydrosystem over a medium term. Besides a combination of LP-

DP and an optimal control algorithm the performance of a Successive Linear

Programming (SLP) algorithm was eliplored. Grglrier's work is the basis of the

research which is the topic of this thesis. His SLP algorithm is pertinent to

thedevelopment of EMSLP algorithm, and is therefore presented in detail in this

section.

The Grygier algorithm attempts to maximize the value of energy generated

by a hydropower system over the planning period, plus the expected future benefit

from the remaining water in the reservoirs at the end of the planning period. The

major assumption is that the produced energy can be sold on the market with no

limitations. The energy production during each time step is separated according

to the price into on-peak and off-peak energy. The on-peak production is,

however, maximized to a certain number of hours in the time step. It is also

assumed that the price for the water stored at the end of the planning period is

constant. The objectives, besides energy production, are incorporated into the

constraint set. For example, storage levels can be bounded above and below to

allow for recreation or flood control. The time of flow between the reservoirs is
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ignored due to the time scale of optimization (monthly time step). The only energy

source is hydro and thus it is treated implicitly in the formulation (i.e., there is no

energy variable in the formulation). The energy is expressed through the hydro

production function.

The constraint set includes:

flow continuity - to maintain conservation of mass in the reservoir;

minimum and maximum storage bounds - to take care of the physical

characteristics of the reservoirs and to be used in the solution search;

c) upper bounds on sum of on- and off-peak releases - to reflect the maximum

production capability during the time step, i.e., impose turbine flow limits;

d) upper bound on on-peak release - to limit the on-peak production; and

e) minimum energy - to ensure that a set minimum enerry is produced during

the time step since there is no load duration curve to be satisfied by the

system.

Even with the introduced assumption of constant water price the problem

is nonlinear due to the hydro production function, and the reservoir stage-storage

relationship. The linearization procedure pursued in this algorithm resolves both

simultaneously.

The major obstacle for applþg LP to the stated problem is the non-

separable character of the hydro production function. Some remedial measures

were analyzed previously by Can et al. (1982). SLP utilizes a substantially different
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approach.

The idea in SLP algorithm presented by Grygier is to apply a first order

Taylor series approximation to the hydro production function around the chosen

storage and release values. The application of the Taylor expansion to linearize

nonlinear problems and to solve them by LP iteratively is discussed by Palacios-

Gomez et al. (1982). The linearization procedure has the following form.

The energy equation (1) can be reformulated to:

E : ERF*R

where ERF stands for energJ rate function, and is expressed as

ERF : ü *H*"

(3)

(4)

and R designates the release

R:Q*T (s)

The assumption is that ERF is only a function of the head, i.e., of the

storage and that it is not dependant on the discharge. This assumption can be

supported with the reasoning that the discharge changes many times during the
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time step and its mean value (calculated in the LP solution) is a poor approxima-

tion to be used in the efficiency calculation for the whole time step. Thus,

ERF = ERF(ST)

To account for the storage value change during the time step, it is assumed that

the value of the ERF for the time step t is the average of the function value for

the initial and final storage:

ERF, : 0.5*(ERF(ST,-/)+ERF(SÐ) (7)

The energy equation for the T-th time period has the form:

E, : ERF,*R,

(6)

(e)

(8)

or:

E, : 0.5*(ERF(S!_/)+ERF(ST'))-R,

It can be noticed that in Eq. (9) there is a multiplication of release and a function

of storage (ERF) which makes the expression nonlinear and nonseparable. The
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complexity of Eq. (9) can be reduced by removing the ERF function from the

product. The simplification can be achieved by applying a first order approximation

of ERF in Eq. (9) instead of its real form. The approximation of a function by a

Taylor series is possible in the vicinity of some chosen point. In the model these

are the estimated values of storage at the beginning of the time step (i.e., at the

end of the previous time step) SÎn, and at the end of the time step St. The form

of Eq. (9) after introducing the first order Taylor approximation for ERF is:

E, = 0.5[ERF(S1,1) + ERF(Sî,) + DERF(SÎ,,) * (ST,_, - Str)

+ DERF (S1,) . (ST, - S1,)l * R, (10)

where DERF denotes the first derivative of ERF with respecr to ST. In Eq. (10)

there is now a product of ¡vo linear decision variables instead of a linear and a

nonlinear one. However, the nonlinearity is still present, although in a simpler

form. The remedial measure to remove the product of storage and release is to

apply the approximation introduced by l-oucks (1931):

SI * R, = S1, * R, * (SI - Sl) . & + sÎ, . (& - R) (11)
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where R, is the estimated i.e. known release value. It can be noticed that this

approximation is very similar to the one introduced for ERF except that it deals

with a multivariate function.

Finally, combining Eqs. (10) and (11) :

E, : 0.5*{[ERF(S1È/) + ERF(SÎ,)] * R, + DERF(SÎÊ/) * (ST,_, - S1,r)

* R, * DERF (S1,) . (ST, - S1,) . &) (12)

The linearization of the energy production represented by Eq. (12) requires

assumptions, i.e., estimates not only for storage but also for release.

It is important to note that the ERF function incorporates the efficiency as

well as the stage-storage relationship. Thus, there is no need to model this

relationship separately. For each power plant a differentiable ERF function has

to be derived. This can be done by determining a regression curve on the available

operation data of the plant. The ERF functions and the estimates for releases are

the part of the input into the model. The estimates for the storages are calculated

using the estimated releases, given the inflow scheme and the flow continuity

equation.
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The algorithm developed on the basis of the above problem formulation and

linearuation technique, can be described in the following steps:

a) initialize the control variables (e.g., storage variability (VARyMX), iteration

counter (ITER:O)) and calculate the coefficients of the LP problem on the

basis of the input data (except for the right hand side (RHS) of the storage

bounding contraints and coefficients of the hydro production in the objective

function and the minimum energy constraint);

calculate the coefficients of the hydro production in the minimum energy

constraint and the objective function using: the ERF and DERF (the first

derivative of ERF with respect to storage) values of the estimated storages,

the estimated storages and the estimated releases;

calculate the RHS of the storage bounding constraints allowing the storage

not to vary more than VARYMX around the estimated value;

solve the set LP problem, i.e, obtain the values for storage and release for

each time step, the objective function value; then set ITER:ITER+I;

decrease the value of vARYMX by mulriplyrng it with vARFCI factor

(< 1);

if the objective value is bigger than the one obtained in the previous

iteration (in the case of first iteration, the previous solution is zero) then

accept the calculated solution as the best so far, and use the calculated

storages and releases as input estimates for the next iteration; go to step b;

b)

c)

d)

e)
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e)
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otherwise decrease the value of VARYMX by multipþing it with a factor

(VARFAC < 1);

check whether VARYMX is less than the set tolerance level vARMIN; if

yes then stop the program execution;

g) otherwise go to c.

The flowchart of the algorithm is presented in Figure 3.

The algorithm has a special emphasis on obtaining the highest objective

possible. This fact is integrated into the di¡ections for the iterative procedure. The

algorithm takes different courses depending on whether there is an improvement

in the objective functíon compared to the previous iteration or not. If the objective

improves the newly obtained solution is used to recalculate the coefficients related

to the hydro production. If not, the coefficients remain unchanged, the feasible

space of the storage values is decreased by changing the right hand sides of the

storage bounding constraints and the LP is resolved. In this way a new, higher

objective function value can be identified. The reasoning for the above action can

be explained in a following way.

Since the objective function is essentially a nonlinear function the true

optimal solution (the extreme point) does not have to lie in the corner of the

feasible space. However, these are the only points the LP can identiff as optimal

ones. Therefore, the simple iterative application of LP can result in a suboptimal
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VÀRYMX = INIT

COEFF = F(AR, AS)

SOLVE LP : CR, CS, CO

VÀRYMX = VÀRYMX*VARFCT

AO=CO

ÀR=CR

AS = F, (AR)

STBND = Fr(AS, VARYMX)

VÀRYMX = VARYI4X*VARFAC

VÀRYMX < VÀRMIN
SOLUT]ON

cR, cs, co

STBND = Fr(AS, VÀRYMX)

FIGURE LEGEND:
AO - accepted objective funclion value
AR - accepted release vector
AS - accepted storage vector
COEFF - hydro-production constraht coefficient
CO - calculated objective function value
CO - cålculated objective function value
CR - cålculâted release vector

cs
INIT
STBND
VARFAC
VARFCl
VARMIN
VARYMX

- calculated storage vector
- initial storage variability
- storage bound vector
- factor (< 1)
- factor (< 1)
- minimum storage vâriability
- storâge variability

Figure 3. Flowcharr of rhe SLp algorirhm (Grygier, 19g3)
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solution. The specialty of the algorithm lies in its capability to search for an

optimum in the interior of the feasible region whenever there is a drop in the

objective function value. This feature is enabled by decreasing the feasible

solution space around the obtained storage trajectory. In practical terms, this

means that LP is able to examine new feasible points within the decreased

space. Previously, these points were in the interior of the solution space and

ignored by the LP, butnow are corner points and thus checked for optimum.

It is interesting to notice that the storage variability VARYMX is either

unchanged or has a decreased value going from one iteration to the other. In

other words it is decreasing during the program execution. This property is

used as a criteria to terminate the program execution. When the value of

VARYMX is less than a specified tolerance the program stops, assuming that

the optimum was reached. The convergence of the iterations is ensured by

making the solution space narrower and narrower around the identified

trajectories. This eventually achieves the condition that the last two solutions

differ less than the set tolerance.

Another feature of the decreasing solution space is that it prevents the

algorithm from bouncing back and forth between two extreme points infinitely

and enables the intermediate maximum to be identified.

Grygier (1983) claims that local optimum is always achieved and that for

the examined applications the global optimum was also identified. The
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algorithm was used to optimizs the 1,2-month operation of hydrosystems

consisting of a single reservoir, two reservoirs in series, and three in parallel

(with one being a pumped-storage facility). In comparison with the other

algorithms examined, Grygier (1983) claims that SLP is the easiest to implement

even though it is not the fastest method.
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CFIAPTER 3

Energy Management by Successive

Linear Programming (EMSLP)

3.1 PROBLEM FORMUIATION

The EMSLP algorithm developed during the research (Reznicek and

Simonovic, 1988b) has the task of optimizing midterm operation planning of an

interconnected hydro utility for a deterministic future. The operation involves

scheduling reservoir releases to obtain hydro power, and managing energy transfer

through the interconnections. The utility has to satisry the domestic power demand

described by the load duration curve in each time step of the planning period. The

load duration curve is approximated by a number of strips in which the load is

assumed to be constant. The energy price varies during the time step and

therefore a different energy price can be assigned to each load duration curve strip.

In periods of deficiency or if the energy price structure makes it rational the

demand is satisfied from import. On the other hand when the energy market,

reservoir storage and domestic load conditions make it desirable the energy can be

exported to increase the benefits of the utility. The operation has to comply with

the physical characteristics of the system and the operational licenses. The model

has the following decision variables :

a) hydro energy HEq¡ ;
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b) export energy EE,, i

c) import energy IEq, ;

d) turbine release R, ;

e) spilled release S, ; and

f) reservoir storage ST, .

where s denotes load duration curve strip and t the time step number. It has to

be emphasised that the above variables describe a single reservoir storage and

release, hydro energy from one power plant, and export-import through one tieline.

In case of a system where there are many of these elements another subscript has

to be added to denote the specific element in the system.

There are two different ways to impose bounds on the variables. One is

"simple bound" on the variable which is the same throughout the program execution

and does not depend on the values of other variables in the decision making

process. In this model the releases can have a lower bound to satis$r minimum

flow conditions and upper bound to limit turbine flow or comply with the down

stream discharge limits. These bounds are modelled without writing an explicit

constraint. The LP routine takes care of them implicitly. The other way is to write

explicit constraint in the problem formulation. The relationships which have to be

described and involve more than one variable are formulated as explicit

constraints. Constraints are also formulated if the "simple bounds" change from

one iterative solution to the other.
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3.1.1 The Constraint Set

The hydro production constraint describes the energy production in the hydro

power plant. The EMSLP uses the linearization procedure formulated by Grygier

(1983) and described thoroughly in Section 1.4. Rewriting F:q. (I2) in rerms of the

above defined decision variables and sorting the unknowns to the left and the

constants to the right of the equality sign, the hydro production constraint in the

t-th time step has the form:

-2* Z (HEsr) + [Em(st, ) + ERF(s! )]* (24 I 1000) *R, + DERF(sf,/ )

*R¡* (2411 000) * srÊ/ + DERF(sl) *R¡ * (2411000) * srr

: [DERF(Sî,-, ).S1_1 + DERF(Sî,) - S1,] *R1¡* (2411 000) (13)

On the left hand side the energy in the time step is represented by a summation

of the amounts allocated to each strip of the load duration curve. The conversion

factor 2411000 is needed to obtain the energy in GWh. The constraint is written

for each time step and for each power plant if there is more than one in the

system. The coefficients of the const¡aint are recalculated for every iteration when

a new estimated storage trajectory is accepted.

The flow continuity constraint for the t-th time step gives the mass balance

in a reservoir:
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-ST,_r+ST,+R,+S,:L (14)

The storage at the end of a time step has to equal the storage at the beginning

of the next time step plus the inflow minus the turbine and spilled release. It is

interesting to note that this constraint provides the link between the decision

variables of different time steps. The storage variables of two adjacent time steps

are directly involved. However, through the continuity constraints for the other

time steps they are all indirectly related to each other. In case of a multiple

reservoir system the constraint has additional terms depending on the system

configuration (e.g., for reservoirs in series upstream release is downstream inflow).

Tieline load constraint for every load duration curve strip s and time step

IE,,*RATIO/(IEF*EEF) + EE,, S EML",ÆEF*2411,000*DPS, (1s)

where RATIO denotes the export and import tieline capacity ratio, IEF and EEF

are the import and export efficiencies respectively, EMLqr is the maximum export

load in s during t and DPS, is the number of days in the t-th time step. This

constraint limits the amount of e;iported or imported energy depending on the

t:
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tieline capacity and the length of time covered by that particular strip. The export

and import variables describe the interruptible energy sales while the contracted

export or import has to be included in the load duration curve. This is a viable

way of modelling since the contracted energy requirement is known in advance and

has to be satisfied without violations. This means that it can be treated in a same

way as the domestic demand. Therefore it is possible to incorporate the two

known requirements into one, namely the domestic demand.

The supply and demand constraint for every load duration curve strip s and

time step t has the form of:

HEq,+IEq,-8E",, : L,,: (2411000)*DPS,*W', (16)

whe¡e \, denotes the system demand in s during t and Wo, is the load duration

curve width of s in t. This constraint ensures that the domestic hydro production

plus the import minus the export satis$r the energy demand in the particular strip

of the load duration curve.

The minimum and maximum storage constraints bound the storage variable

to comply with the physical characteristics of the reservoir, the operation license,

and some other potential objectives as recreation, flood control, etc. These

requirements can be modelled by placing a simple bound on the storage variable.

However, the explicit constraint formulation is needed to model the change of these
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bounds from one iterative solution to the other. The change of the storage bounds

modifies the feasible solution space and enables the search for an objective in the

interior of the original solution space. The constraints are imposed on minimum

storage in the t-th time step as follows:

ST, Z MAX(STMIN' ST,-VARYMX ) (17)

maximum storage in the t-th time step

ST, S MIN( STMAX,, S!+VARYMX ) (18)

where STMIN, and STMAX, are the minimum and maximum allowed storage in

t respectively and VARYMX is the allowed storage variabiliry. h Eq. (17) it is

required that the storage has to be greater than either the predefined minimum

(i.e. the "simple" bound) or it must not be less than VARYMX from the estimated

storage. The MAX operator ensures that the more stringent criteria is satisfied,

and therefore' that both are satisfied. The upper bound is calculated in a similar

manner. It is required that the storage has to be less than the simple bound, and

also less than the estimated storage increased by the value of vARyMX. The

value of the storage variability (VARYMX) and the estimated storages may change

from iteration to iteration. Therefore the right hand sides of the constraints are
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recalculated before each iteration.

The following constraint relates the hydro energy to release in the t-th time

step

> (HE,f) - ERF(STMAX¡)*R,*(2417000) s 0
S

(1e)

The relation of release to the produced hydro energy is not formulated explicitly

in the hydro production constraint Eq. (13). Besides the hydro energy and release

the left hand side of Eq. (13) also contains the storage variables. To stress the

importance of the relationship an upper bound is imposed on the energy production

in a time step. The production is limited to be not more than the released water

multiplied by the maximum possible value of the energy rate function (i.e., the

production rate when the reservoir is full).

3.L.2 The Ohiective Function

The objective is to maximize the internrptible energy export and the final

storage volume whüe minimizing the production costs of satis$ring the system

demand (hydro energy production, import, spiil costs). The benefit from the

domestic energy consumption is not included in the objective, since it is constant

and defined by the system demand. The mathematical form of the objective

function is:
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Maximize { 2 t Z (-HC",¡*HEq, + EBq,*EEq,-IC",,* IE",,)
ts

-SC,*S,+Br*ST,]) (20)

where HCq,, EBqa ICqp SC, and B, are the cost coefficients of hydro energy, export

enerry, import enerry, spill, and storage variables, respectively. The hydro energy

has an assigned cost of running the plant and since its major task is to satisSr the

domestic load those benefits are not included as explained above. However, if the

energy is exported it brings benefits to the system and thus has a positive

coefficient in the objective function. Similarly the imported energy decreases the

objective. As noted earlier, the energy in each strip can have a different price.

Besides the energy variables the storage variable for the final time step is also

included in the objective with a positive coefficient. In this way the release of all

the water from the reservoirs at the end of the planning period and with the

associated disregard for the future use of the system is prevented. However, it is

assumed that the benefits are linearly related to the stored water although this is

not so in reality. The water has an indirect value as a "fueI" for hydro production

during the planning period and in addition, it has a value at the end of the

planning period to take into account the benefits from the future production.

Thus, the algorithm tends to release either the water through the turbines or store

it for future production. Spill occurs only when it is physically necessary. Thus,
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there is no explicit need to penalize spill (i.e. to include the spill variables into the

objective), although the program has that possibility. The turbine releases are

omitted from the objective function because their effect is taken into account

indirectly through the hydro energy variables.

In conclusion it can be said that the problem formulation is similar to the

one existing in EMMd although there are differences. EMSLP cannot model

thermal plants and maintenance. There are no obstacles to adding these

capabilities to the formulation, but they were omitted because the research

emphasis was on the hydro production modelling and guiding the iterative solution

procedure. Due to the different linearization technique and ideas introduced in the

solution procedure the constraint set is different to that in EMMA. The major

difference is in the hydro production constraint (13) which reflects the SLP

approach to the problem. The storage bound [Eq. (17,18)] and hydro energy

release relation constraints are added as a part of the original work done in the

modelling.

2.2 THE EMSLP ALGORITHM

The simple modification of the ideas from Grygier's work was not possible

for the optimization problem of the interconnected utility described earlier. A new

algorithm EMSLP was developed to solve the problem (Reznicek and Simonovic,

1988 b). The EMSLP algorithm has rhe following steps.
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Set the LP problem according to the input data, and set the initial storage

variability VARYMX. Calculate and accept the initial solution based on the

estimated releases (the estimated storages are calculated using the flow

continuity equation). Calculate the hydro production constraint coefficients

from the solution.

Solve the LP problem.

compare the calculated storages with the accepted ones, and if the

difference is smaller than the tolerance, stop. The solution is obtained.

If the calculated objective function value is better than the previously

accepted one, then accept the calculated solution, but limit the change in the

release policy to 30% of the previous accepted solution. With this release

policy used as the estimate recalculate the coefficients in the hydro

production constraint. Reset VARYMX to its initial input value and go to

(b)

(c)

(d)

step (b).

(e) Otherwise decrease the value of VARYMX, and if it is still greater than the

set minimum (VARMIN), go to step (b).

(f) If not, then use the first worse objective after the last improvement and the

appropriate solution, as if it is better than the accepted one. Go to step

(d).

Note that whenever the value of VARYMX is changed, the bounds on the storage

variables are changed.

The flow chart of the algorithm is presented in Figure 4.
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VARYMX = INIT,
AO = -BIG

ÀR, AS

COEFF = F(AR, AS)

SOLVE LP : CR, CS, CO

CS-AS<VÀRMIN
SOLUTION IS:

cR, CS, CO

ÀO=CO

UPDATE AR

AS = Fr(AR)

VARYMX = INIT

STBND = Fr(AS, VARYMX)
VARYMX = VARyIrÍX*VARFAC

VÀRYMX = INIT

STBND = Fr(AS, VARYMX)

SOLVE LP : CR, CS, CO

VÀRYMX < 'VARMTN

AO - accepted objective function value
AS - accepted storage vector
COEFF - hydro proudction constrâint coefficients
cs - cålculated stor¿ge vector
INIT - initial storage variability
VARMIN - minimum storage variabiüty
VARYMX- storage variabiliry

AR - accepted release vector
BIG - a very big number
CD - cålculated objective function value
CR - calculated releåse vector
STBND - storage bound vector
VARFAC - facror (< 1)

EMSLP FlowchartFigure 4.
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The algorithm has two iteration levels. At the first level a search for a

stable solution is performed. At the second level the improvement of the objective

function value is sought, whenever the objective function value drops between the

two iterations. The search is performed by exploring the interior of the feasible

region using the decreased storage variability VARYMX in the solution procedure.

If the search for the better solution at the second level terminates unsuccessfully,

the algorithm returns to the first level and accepts the initially identified worse

solution. The search terminates on the first iteration level when a stable solution

is identified.

The coefficients in the hydro production constraints are recalculated only at

the first iteration level. At the second level, the lower and upper bounds on the

storage volume are changed. The initial wide range is decreased with every

iteration at the second level, approaching the accepted storage trajectory.

In Grygier's algorithm the storage variability is gradually decreased during

the iterative process from the starting value to the set tolerance level when the

program run terminates. According to the Grygier, the search ends with the local

optimum. The application of the same algorithm to the problem of interconnected

hydro utility led to suboptimal solutions, substantially inferior to the EMMA runs.

Therefore a new algorithm was sought.

EMSLP guides the iterative procedure in a manner difÏerent from that in

Grygier's algorithm. The change in the release policy from one iteration to the
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other is limited to be not more than a fraction (specifically 30Vo) of the accepted

policy. Due to the application of the limited change, the convergence and stability

of the iterative process is substantially improved. The storage variability has in

EMSLP a somewhat decreased role. It is used only in the search for a better

optimum at the second iteration level. The value of the variable does not

necessarily decrease during the program execution. It is reinstalled to the original

one at the end of the search on the second level. Therefore the storage variabilty

cannot be used as a convergence criteria as in Grygier's algorithm. Instead,

EMSLP checks whether the identified storage trajectory is close enough to the

estimated solution, used as input into the iteration. The search terminates only if

this condition is satisfied. These are the major differences between the two al-

gorithms and proved to be fruitful for the problem of interconnected utility. On

the other hand, EMSLP retained the feature of Grygier's algorithm to search the

interior of the feasible region to possibly identiff a better objective function value.

As noted earlier, the need for this search arises from the nonlinear character of

the objective function.
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CHAPTER 4.

Evaluation of EMSLP

THE CASE STTIDY

A small hydro-electric system based on the Manitoba Hydro system data was

designed to test the performance of the newly formulated EMSLP algorithm. The

bench mark for comparison were the results obtained by running the EMMA

program for the same case study. In order to enable the comparison the case study

had to be formulated to suit both of the models.

The system consisted of a single reservoil, power plant, and a tieline which

enabled to import energy to satisff the defined load and to eKport it if desired.

The case study is schematically shown in Figure 5. The reservoir size was chosen

to examine the impact of the head variation on the solution. The initial reservoir

stage at the beginning of the planning period was set to 90 m (295 ft). The

maximum stage was 91.5 m (300 ft) and rhe minimum 85.4 m (280 ft), with the

stage-storage slope of 8 million mr m-r (1 KCFS day ftr). The optimization time

horizon consisted of five monthly time steps. The load duration curve of the power

demand was discretized to two segments: one for on, and one for off peak demand

in each of the time steps as shown in Table 1.
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IMPORT EXPORT

E LECT RI C

SYSTEM

Figure 5. The Case Study
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Table 1 The discretized load duration curve

TIME STEP

DEMAND (Mw)

ON PEAK
OFF PEAK

The reservoir inflow had a winter

Northern Rivers, as shown in Table 2.

pattern typical for Manitoba or other

Table 2 The inflow scheme

TIME STEP

INFLOW (*t r-t)

11.3s 9.93 7.09 5.67 4.26

The cost coefficients for the objective function are shown in Table 3, and were

chosen to resemble a realistic case existing in the Manitoba Hydro practice (Table

3).

Table 3 The energy price

TIME STEP

PRrCE ($ cWH-1)

On peak import
Off peak import
On peak export
OfT peak export

5676
3455

20000 22000 20000
12000 12000 12000
14000 18000 14000
8000 8000 8000

21000 21000
14000 12000
18000 18000
10000 9000
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The convergence tolerance was set to 5Vo of the production coefficients (in

EMMA). The minimum value of the storage variability for the search of the

second level is also used as a convergence tolerance level at the first iteration level.

Therefore, the tolerance in the storage variability is set to have 5Vo accuracy of

ERF (in EMSLP). In this way, the convergence thresholds are made identical for

both models.

In order to compare the performances of the models the optimization

problem had to be simplified to suit both of them. EMMA models the efficiency

of the plant as a function of discharge, while EMSLP makes efficiency dependent

on the storage. The compromise has been made to take a constant value for

efficiency. EMMA also has the capability to calculate the tail water elevation

depending on the discharge from the reservoir, which finally affects the net head

of the plant. EMSLP treats the tail water elevation as a constant. Therefore a

constant tail water level was set to 46.67 m (153 ft). It is interesting to note that

with applying the above assumption for the efficiency the ERF function used in the

EMSLP model is reduced to be solely a function of the head. Since the tail water

is constant the head depends only on the storage in the lake. Finally, the

conclusion is that ERF is a linear function of the storage since the stage-storage

relationship is assumed to be linear.

In order to solve the problem both programs had nine variables in each of

the five time steps. EMMA generated six constraints in each time step, while
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EMSLP had nine.

Initially a high head plant was examined. That case had a possibility of

significant storage level changes during the planning period. The release

trajectories of the EMSLP solutions had up to 400 Vo higher objective function

values than the ones EMMA has identified as optimal. The difference is due to

the different linearization process applied to approximate the hydro production

function. EMMA's approximation is not suitable for the high head variation during

the planning period. To recognize the fact that reservoirs in Manitoba have a very

small operation range, the problem was changed to a low head variability case.

The operation range was decreased from 30 to 6 m (100 to 20 ft). As it was

expected, the decrease in the operational flexibility decreased the differences

between the results, too.

4.2 THE RESULTS OF COMPARISON WITH EMMA

The algorithms were compared for a range of different input data on the

basis of release policy, iteration number and objective function value. In the input

data the value of the final storage, generation releass limi1, and the imposed system

load were varied.
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4.2.I Final Storase Value Yariation

The value of the storage in $ per 2.45 million mi 11 KCFS-day) was varied

f¡om 3600 where it had no impact on the solution to 4800 where it had an

overwhelming impact on the release policy.

Tables C-1 and C-2 n Appendix C contain the results obtained by EMSLP

and EMMA" respectively. The reservoir levels obtained by the two algorithms are

different (see Figures 6-12). EMSLP tends to store the water at the first time step

and to release it later when the price of electricity is higher. EMMA releases a big

amount at the beginning time steps to obtain a short term benefit. The energy

production of EMSLP is higher than of EMMA due to a higher head maintained

during the planning period. The difference can be attributed to the more

significant role of the head in the EMSLP modelling of hydro production.

EMSLP responded to the increase in storage value at the value of $ 3700

by storing more water at the end of the planning period than the required lower

operation bound (85.4 m or 280 ft). In EMMA the storage value did not affect the

solution even at the $ 4200leveL Both algorithms kept a full reservoir at the 91.5

m (300 ft) stage when the benefit was set to $ 4800.

4.2.2 System Load Variation

The original load followed a pattern of a typical five month winter demand.

The values were proportionally varied by multiplying the original load with factors
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from 0.3 to 2. The results are shown in Tables C-3 and C-4 in Appendix C and

Figures 13-18.

In cases of factors of 0.3 and 0.5, both algorithms identified very similar

release policies. This similarity is easily e4plained: the load was low so it could

be satisfied from the domestic production, and the remaining water was saved for

the future production. The 0.8 case was also very similar in results, although the

EMSLP released less water, and had a 5% htgher objective value. The release

policies significantly difÏer in all the other cases. In these others, load is high

and the domestic production is not sufficient, import is needed. The available

water is released to meet the demand in both of the models but in a difÏerent

manner. The same tendency could be noticed for the storage value variation:

EMMA has large releases in the initial time steps, and in the final ones it can

release only the amount of the monthly reservoir inflow. Releases obtained by

EMSLP have followed the import price structure: whenever the cost is high the

release is high and vice versa. The objective function values differ in about 5Vo

with a tendency for a decrease when the load increases over the original value.

The decrease in the differences is due to the overwhelming impact of the import

cost.

4.23 Release Limit Variation

The turbine release capability was varied from 5.67 to 19.86 m3/s (0.2 to 0.7

KCFS). The results are presented in Tables C-5 and C-6 in Appendix C and

Figures 79-22.
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Tables C-5 and C-6 show that in the 19.86 case the release capability is not

constraining the release policies. In the 5.67 case spill occurs since the water can

be neither stored in the reservoir, nor released through the turbines. EMMA spills

a huge amount of water in the first time step. This is irrational, since the level of

the reservoir after the first time step is even lower than the initial 90 m (295 ft).

The rational action would be to maintain a full reservoir at the 9L.5 m (300 ft)

level. EMSLP maintains a full reservoir till the end of the planning period, and

spills only the excess water in each of the time steps when the need arises. This

difference gives the higher objective value in EMSLP. The 8.57 limit eliminates the

need for spill. The solutions are very simil¿¡, since the releases are bounded by the

limit. In the rest of the cases the impact of the release limit is not so dominant,

and significantly different release policies were identified. The objective functions

differ about 5% in favour of EMSLP.

Finally, the difference in the objective function values between EMSLP and

EMMA programs normalized to the EMMA results are presented in Figures 24 to

26. Figure 24 represents the comparison for storage value variation. Figure 25

shows the normalized difference for different system loads. Figure 26 represents

the comparison of objectives for the release limit variation experiments.
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CFIAPTER 5.

CONCLUSIONS

5.1 DISCUSSION OF THE EMSLP.EMMA COMPARISON RBSULTS

The variation of input data indicated that the two algorithms identify similar

solutions only when they are constrained to do so (e.g., very low release limit), or

when the optimization problem is very straightforward (e.g., very low system

demand). In cases when the requirement for trade off between production, export,

import, and storage use was noticeable, EMSLP presented better results than

EMMA (the final case in Tables C-1 and C-Z in Appendix C).

EMMA was not able to adjust the release policy to the existing price

structure as successfully as the EMSLP algorithm. When the system load was high

and energy had to be imported to satisff the demand (the last two cases in Tables

C-3 and C-4 in Appendix C) EMSLP tended to save the water during the time

steps when the import energy price was lower (see Table 3) and to satis$i the

demand mostly by import (see Figures 17 and 18). The water was released (i.e., the

energy was produced at a domestic power source) at time steps when the import

energy price was higher. This adjustment to the price structure on the energy

market could not be experienced in the EMMA results. However, by repeating the

model run and constraining the release the EMMA results can be improved. In

general, EMSLP tended to maintain a higher power plant head during the planing
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period and therefore obtain a higher power output for the same release (see

Figures 12,17 and 18). The operation with a higher head in the EMSLP case can

be attributed to the more important role of the storage variable in the hydro power

modelling. EMSLP identified a more rational solution in the case when a

mandatory spill had to occur from the reservoir during the planning period due to

the very low limit of the turbine release capabilities (see the first cases in Tables

C-5 and C-6). EMSLP spreads the spill throughout the planning period and keeps

the reservoir full maintaining the high head. EMMA spills a huge amount in the

first time step disregarding the impact on the head (see Figure L9). By interven-

tions in the constraint set and re-executing the model these irrationalities can be

avoided in the EMMA model.

The objective function value was the same in the cases of low system

demand and release limit but the difference of up to 5% was obtained for the

more complex situations with the trade-off between energy and storage. It has to

be added that the size of the reservoir substantially influences the variation in the

results: the bigger the reservoir operation range the bigger the variation. The

resulting differences always favoured EMSLP, as it is illustrated in Figures 5 to 7.

When the storage value or the load had extremely high values, the differences

between the objective function values obtained by the two programs decreased.

This is due to the overwhekning impact of that particular high input value on the

objective function. For example, high system load requires very high energy import
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and the reservoir operation, whether its rational or not, has only minor impact on

the objective function value ( the final case in Tables C-3 and C-4, and the

illustration in Figure 6). The number of iterations was very similar for both of the

programs. The releases were substantially different.

The behaviour of both algorithms has been examined with different choice

of the initial value for production coefficients. It is shown that the solutions of

both algorithms are independent of the initial value of production coefficients.

The EMSLP has also been tested on the impact of the allowed change in the

release policy from one iteration to another. The allowed change in release policy

of 30Vo seemed to give the best stability and the least number of iterations.

The newly formulated algorithm applied to the case study achieved better

results than the original EMMA algorithm. However, it should be emphasized that

the reservoir size and operation range play an important role in obtaining

difierences between the two results. EMMA and EMSLP results differ a little

when the models are applied to a run-of-river plant configuration, although some

irrationalities may be avoided by applyrng EMSLP. EMMA is applicable to run-

of-river and low reservoir operation range plants exclusively. The advantage of

EMSLP is that it is equally well suited for all kind of plant characreristics.
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5.2 DEVELOPMENT OF THE EMSLP RESEARCH

An original SLP algorithm has been developed to optimize the operation of

a hydro-electric utility. The algorithm identifies stable solutions due to the

improved iterative modelling of the hydro production function. The approximation

of the hydro production function with the first order Taylor expansion proved to

be more efficient than the constant production coefficient approach. The limitation

of the change in the release policy from one iteration to the other, and the

introduction of a stability check has made possible to apply the ideas from Grygier's

algorithm to the specific problem formulation of the interconnected hydro utility.

These additions have resulted in a completely new, two level algorithm with the

prime goal to identi$ a stable solution and to possibly improve the value of the

objective function by looking for the optimum in the interior of the feasible region.

53 DIFFERENCES BETWEEN EMSLP AND GRYGIER'S SLP MODEL

The problem of modelling the optimization of an interconnected utility

requires decisions about energy management and therefore the existence of energy

variables in the model. Grygier's model does not incorporate energy variables since

the only energy considered in the model is the hydro energy. The EMSLp

objective function and hydro production constraint are significantly different from

Grygier's formulation. The difference is due to the existence of energy variables

in the EMSLP model. The different problem formulation requires a different
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guidance of the iterative solution procedure. Instead of a search in a steadily

decreasing solution space (as in Grygier's algorithm), EMSLP follows a different

path. At the first level, iterations are performed over a solution space of an initial

width and occasionally the interior of the solution space is searched at the second

level when the objective function drops. Besides, Grygier's algorithm accepts the

LP calculated release poliry to be the estimate for the next iteration regardless of

the previous estimate. EMSLP evaluates the difference between the calculated and

assumed release policy (used to obtain the calculated one in the previous iteration).

The change of the estimated policy is limited to 30Vo in the direction of the

calculated release policy. With this measure the stability of the iterative process

is improved.

The introduced differences in the iteration process guidance and input

updating proved to be fruitful for the optimization of interconnected utility.

5.4 DIRECTIONS OF FUTURE RESEARCH

The current EMSLP model will be expanded in the future to have more

realistic representation of the physical system. The modelling of the power plant

efficiency will incorporate its dependence on the discharge, as well. The power

plant head modelling will be made more realistic with the inclusion of the tail water

dependence on the discharge. The above modelling improvements will be

introduced by a two dimensional energy rate function (function of storage and
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release). The new energy rate function will be derived from practical power plant

measurements by regression analysis. The evaluation of the enhanced model will

be done by comparing its performance to the EMMA model using the Manitoba

Hydro system data.

The EMSLP model implementation requires a thorough understanding of the

details related to input, solution algorithm guidance, etc. The model use can be

made more user friendly by creating a support environment which would provide

guidelines for the program execution. The capability of a knowledge based system

to serve as a support environment for the.EMSLP use will be assessed during the

future research.
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Appendix A: Notation

Br - benefit from saving the water for future production ($ (2.45 million

m3 or KCFS-day)-/)

DERF - is the first derivative of ERF over ST

DPS, - number of days in the t-th time step

e - efficiency of the hydro power plant

E,E, - energy, energy in t-th time step (kW h)

88,,, - expoft energy benefit in s during t ($ (GW h) 1)

EE,, - interruptible export en. in s during t (GW h)

EEF - export efficienry

EML', - maximum export load in s during t (MW)

ERF - energy rate function used in EMSLP (GW h (rrr, s-1 days)-1)

X - specific weight of water (kN --r)
H - head of the hydro power plant (rr)

HC",, - hydro energy production cost in s during t ($ (GW h)r)

E, - produced hydro en. in s during t (GW h)

I",, - reservoir inflow during t (-, s-/ days)

IC",r - import energy cosr in s during r ($ (GW h)1)

IEF - import efficienry

Eo, - interruptible import en. in s during t (GW h)
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L,,, - system demand in s during t (MW)

a - discharge (m3 sJ)

PC - production coefficients used in EMMA (GW h (-t sr days)-/)

R, - released water through the turbines in T (mi s-l days)

R, - estimated release through the turbines in T (ms ,-i days)

RATIO - export and import tieline capacity ratio

S, - released water through the spillway in t (m3 s-1 days)

SC, - cost of spilling warer ($ (2.45 million mr or KCFS-day)/)

ST¡ - stored volume at the end of t (*t s-1 days)

ST. - stored volume at the end of the final time step T (misr days)

S1, - estimated storage at the end of t (m, sr days)

STMAX¡ - maximum storage in T (mi s-/ days)

STMIN¡ - minimum storage in T (mr s-/ days)

VARMIN - tolerance limit for storage variation (mi 5-r days)

VARYMX- maximum allowed storage variation (mi s-r days)

Wo, - load duration curve strip width for s during t
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APPENDIX C

Tables of the Case Study Results



106

Table C-1. EMSLP results for different ending storage values

Planning Time Horizon Objective
Function

Iterations
Case l-evel

Release (1000$) 1st Total
I-evel

3600
(mi s-l

3700
(m3 s-'r

4000
(ms 5-r

4200
(mi 5-r

4500
(m3 s-r

4600
(mr 5-l

4700
(m: 5-r

4800
(mi 5-l

(m) e1.3
day) 218

(m) e1.3
day) 2I8

(m) e1.3
day) 218

(m) e1.3
day) 278

(m) e1.3
day) 218

(m) ei.3
day) 218

(m) e1.3
day) 218

(m) 91.3
day) 218

91,.5 90.8
288 283

97.5 91.5

288 21.4

91..5 91,.5

288 213

9L.5 91..5

288 213

91,.5 91..3

288 229

91,.5 91,.5

288 213

91.5 9I.5
288 214

91.5 91..5

288 214

88.1 85.4 -126
422 384

88.9 86.3 -126
41,4 377

88.9 86.3 -125
414 377

97.2 88.7 -124
208 358

91..1. 88.7 -121
195 195

91.5 91.0 -1.19

176 176

9r.5 91.5 -L17
L78 129

91.5 91.5 -L15
178 129

9

8

6

106
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Table C-2. EMMA results for different ending storage values

Planning Time Horizon Objective
Function

Iterations
Case Level

Release (1000$) Lst Toral
Level

4200
(m3 s-r

4500
(m3 s-l

4600
(mr s-l

4700
(ms s-r

4800
(m3 5-r

(m) 8e.3
day) 345

(m) e1.a
day) 209

(m) 8e.e
day) 346

(m) 8e.e
day) 346

(m) 8e.e
day) 346

90.0 88.6
299 343

91.5 91.5
298 213

90.0 91..5
298 75

90.0 91..5
298 75

90.0 9I.5
298 75

88.i 85.4 -133
222 385

88.9 90.3 -125
41,5 0

91.5 89.2 -123
176 349

91,.5 89.2 -122
t76 349

91,.5 91..5 -120
176 132
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Table C-3. EMSLP results for different system loads

Planning Time Horizon Objective
Function

Iterations
Case Level

Release (1000$) 1st Toral
Level

0.3 (m) e1.s
(mi s-1 day) I99

0.s- .(m) 91.s
(m' s-r day) 199

0.8- .(m) 90.7
(m' s-' day) 274

1.0- .(m) 91..3
(m' s-/ day) 218
1.s (m) e1..s

(mi s-1 day) 199

2.0- .(m) e1.s
(m' s-' day) 199

90.3 91.5
419 101

91.0 91,.5
353 168

91,.5 90.9
232 269

91,.5 91,.5
288 21.4

90.1 91..5

438 83

89.2 91.5
518 2

91,.5 91.5 L01
180 128

97.2 90.8 42
202 174

89.2 88.s -54
332 297

90.1 86.3 -126
41.4 377
90.1 85.4 -3L4
311 565

91.s 85.4 -504
L76 699

11

106
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Table C-4. EMMA results for different system load

Planning Time Horizon Objective
Function

Iterations
Case Level

Release (1000$) Lst Toral
I-evel

0.3 (m) e1,.s

(mi s-1 day) 199

0.s (m) e1..s

(mi s-I day) 199

0.8 (m) e0.7
(mi s-1 day) 275

1.0- .(-) 89.e
(m' s-' day) 345

1.s - .(m) 87.e
(m' s-' day) 530

2.0 - .(m) 89.0
(m' s-' day) 433

90.3 91.5

418 n2
91.0 91,.5

353 168

97.5 90.9
233 272

90.0 88.6
299 343

86.1 88.4
475 0

85.4 87.7
641. 0

91.5 91.5 100
176 132

91,.2 90.7 42
203 176

89.1 87.3 -57

339 304

88.1 85.4 -133
222 385

85.4 85.4 -331,
457 132

85.4 85.4 -52A
389 132
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Table C-5. EMSLP results for varying release limits

Planning Time Horizon Objective
Function

Iterations
Case Level

Release (1000$) 1st Total
I-evel

s.67 (-) 91.s

P(*t s-/ day) 170
S(mi s-/ day) 28

8.s7 (m) 91.0
(m3 s-r day) 243

1.1.35 (m) 91,.3

(m3 s-r day) 218

14.19 (m) 97.3

(m3 sr day) 2r8

19.86 (m) 91,.3

(mr sr day) 346

91..5 91.5

176 170
132 43

91.0 91..5

264 255

91..5 91..5

288 217

9L.5 91.5
288 21,4

91.5 91.5
298 352

91.5 91.0 -170
176 176
00
90.1 88.7 -13L
264 264

89.6 87.2 -r27
352 352

88.9 86.3 -126
41.4 377

88.9 86.3 -126
440 L58

9
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Table C-6. EMMA results on varying release limits

Planning Time Horizon Objective
Function

Iterations
Case Level

Release (1000$) Lst Total
I-evel

s.67 (m) 8e.6
P(m3 s-t day) 770
S(mi s-1 day) 203

8.s7 (m) eO.e

(mi sr day) 255

11.3s (m) 90.0
(m3 s-r day) 340

1.4.19 (*) 89.9
(mi s-/ day) 346

19.86 (-) 89.9
(mi s-r day) 345

91.0 97.5
116 170
00

91,.4 90.9
264 255

90.0 88.7
298 340

90.0 88.5
298 352

90.0 88.6
299 343

91.5 91.0 -171,

776 776
00

90.0 88.5 -132
264 264

86.8 85.4 -132
352 263

85.7 85.4 -134
440 158

88.1 85.4 -733
222 385

4

22



1.12

APPENDD( D.

The Fortran Program of EMSLP

Applied to the Case Study

D.l PROGRAM STRUCTTIRE

The EMSLP algorithm is programmed in FORTRAN IV language. The

program is composed of a main routine, six subroutines and the Land and Powell

routines for LP solving. The program structure is identical to Grygier's SLP

model. However, the routines are altered to model the interconnected hydro utility

operation problem. The CHGB and SOLVER routines are abridged from Grygier

(1e83).

The MAIN routine controls the program execution: invokes routines to set

and solve the initial problem, evaluates the solution, decides about the iteration

procedure, terminates the run when the stopping criteria is satisfied. It calls the

INPUT, SETA and SETABC subroutines to set or alter the LP matrices, CHGB

and SOLVER to solve the LP problem, IPRINT and OUTPUT to give reports of

the program execution.

The following subroutines are incorporated in the EMSLP program:

INPUT - reads in the input data file, prints the read data to the output file and

initializes release bounds and right hand side values of some of the constraints;

called by MAIN;
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SETA - sets the coefficients of the left hand side of constraints and calculates the

cost coefficients of the objective function; calls ERF function; called by MAIN;

SETABC - calculates the coefficients of the hydro production constraint (both right

and left hand side), the right hand side of the storage constraints and calls the

problem solving subroutines; calls ERF function and SOLVER; called by MAIN;

OUTPUT - calculates the objective function value and prints a report about the

iteration in the output file; called by MAIN;

SOLVER - a driver for the l-and and PoweIl (1973) routines which solve the LP;

called by MAIN, SETABC;

CHGB - resolves the LP with the modified right hand side; called by MAIN;

LP SUBROUTINES - written by I-and and Powell (L973) which solve rhe

formulated LP problem (see Appendix C).

The program has about two thousand lines. One thousand lines are the

MAIN routine and the six subroutines, while the l-and and Powell routines

represent the other thousand program ünes in the total. The executable version

takes 2741ß of memory on the hard disk of a personal computer. The execution

time varies depending on the number of iterations, but the typical values are one

to two minutes on an IBI\4/)ff personal computer with a mathematical coprocessor.

The FORTRAN source code is attached in Appendix C. A sample input and

output file are presented in Appendix D.
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D.2 VARIABLES

The following section describes the variables existing in the EMSLP pro$am.

The variables used in the program other than in the I-and and Powell

subroutines are :

CEE(S,T) - benefit from the exported energy ($/GWh)

CEI(S,T) - cost of the energy import ($/GWh)

CJ(S) - the coefficients of the energy rate function

DPS(T) - days per time step (days)

EE(S,T) - interruptible export energy (GWh)

EEL(T) - export energy loss (%/100)

EEM(S,T) - maximum expoft energy capacity (MW)

EI(S,T) - interruptible import energy (GWh)

EIL(S,T) - import energy loss (7al100)

EIM(S,T) - import energy cost ($/GWh)

ENLO(S,T) - power load of the system (MW)

ENWI(S,T) - load duration curve strip width (VollÙÙ)

ESTFI{T) - estimated release (KCFS*days or 28.37m3ls*days)

FLOBO(T) - discharge limit through the turbines (KCFS or 28.37m3ls)

FLOW(T) - reservoir inflow (KCFS or ?ß.37msls)

GFP(T) - release through the turbines(Generation Flow-Power)

(KCFS*days or 28.37m3 ls"days)
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HE(S,T) - the produced hydro enerry (GWH)

IMONTH(T) - time step notation - string

IPEEK - a variable to control the printing of output repofts

ITER - the iteration counter

ITERMX -the maximum allowed iteration number

LASTM - the last time step of the planning horizon

MSTART - the first time step of the planning horizon

NMONTH - number of time steps of the planning horizon

NSTRIP - number of load duration curve discretization strips

OB(ITER) - the value of the objective in the ITER-th iteration

OBJ1 - the accepted highest objecrive till the lasr iterarion ($)

OBJECT - the last objective tunction value calculated ($)

OCO(T) - operation cost of the hydro power plant ($/GWh)

PROCHA - the allowed change of the release policy from one iteration to the

other (%ln})

S - index of the load duration curve discretization strip

SCALE - a multiplication factor of the hydro production constraint to bring to scale

the coefficients

SINTER - the bank interest rate, important for bringrng all benefits and costs to

the present value
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SPICO(T) - the penalty for spilling water from the reservoir ($Æ(CFS*days or

$l(28.37m3ls*days))

STASTO -the slope of the storage-stage relationship (KCFS*days/ft or

(28.37 m3 I s* days)/0.305 m)

STMAX(T) - the maximum allowed storage in the reservoir (KCFStdays)

STMIN(T) - the minimum allowed storage in the reservoir (KCFS*days)

STO(T) - accepted reservoir storage (KCFS*days)

STOCA(T) - calculated reservoir storage (KCFS+days)

STOIN - the initial storage in the reservoir (KCFS*days)

STOVA(T) - the value of the stored water ($Æ(CFS*days)

T - index of the time step

VARFAC - the factor to decrease the allowed storage variation

(Vol100)

VARMIN - the lower boundary of the storage variation (KCFS*days)

VARYMX - the storage variation (KCFS*days)

The Variables needed in the routines of I-and and Powell to Solve the LP

problem (for detailed description of the meaning of the variables see I-and and

Powell (1973)):

AA(LOOK) - the array of the non-zero elements of the A coefficient matrix

B(I) - the array of the right hand sides of the constraints
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BIG - a large number treated as infinity

BOUND(J) - the array of upper bounds for each variable

C(J) - the elements of the linear function to be maximized

DRIVER - an indicator for new variable introduction to the basis

G(I) - the array of changes to SLACK(I) to be made at each basis change

GR(K) - the array of changes to the current basic variables,XR(K), to be made at

each iteration

INBASE(J) - the array to indicate whether the j-th variable is basic or not

INREV - an indicator for the CHSLCK variables

INV(KL) - the array of the reduced inverse matrix

IR - reinversion counter of the inverse matrix during the LP solution

IRMAX - the maximum reinversion number allowed

IROW(Ð - the array of elements which signt the starting points of rows

ofAinAA

ISBIG - the maximum size of the inverse encountered during the calculation

ISDONE - end indicator to avoid stop anywhere except the main routine

ISEFF(Ð - an array of elements indicating whether the i-th constraint is effective

and represented in the inverse

ISTATE - condition indicator

ITR - iteration number counter during the LP solution

ITRMAX - the maximum number of simplex iterations allowed
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JCO(LOOK) - the anay of column labels of the elements of A in AA

M - the number of original constraints in the problem

MARKI - identifies the constraint which is represented by a slack variable explicitly

in the basis

MARKK - identifies the row of the inverse containing the slack variable indicated

by MARKI

MAXA - the maximum number of elements that can be stored in the AA array

MAXM - the maximum number of the constraints allowed

MAXN - the maximum number of X variables

MNOW - the total number of constraints in the system

MORE - problem number indicator

MOREPR - printing control variable

MXSIZE - the maximum size of the inverse matrix

N - the number of the variables in the problem

NEGINV - the row of the inverse associated with an infeasible variable

NEGROW - the most infeasible row of the A matrix

NEWX - the next variable to be introduced to the basis

NEWY - the row which limits the basis change

NUMSLK - the number of slack variables that are explicitly present in the basis

OBJ - the objective function value

PIV(J) - the array of the pivotal row
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R - the limit of the value of the entering variable

S(Ð - the array of signs of constraints (1 for <=; 0 for :; -Ifor >:)

SI-ACK(I) - the array of the slack variables

SIZE - the size of the inverse matrix

SIZF.I - the size of the inverse matrix plus one

SMALL - a very small value

TOL(JK) - an array of tolerances that are used in the LP subroutines

X(J) - the values of the variables

XBASIS(K) - row labels of the inverse matrix, containing the numbers of the

currently basic variables

XR(K) - rhe values of the variables lisred in XBASIS(K)

XKPOS - entering variable indicator

Y(I) - the values of the variables of the dual problem

YAC(J) - the updated function row of the LP calculation

YAMINC - the element in the updated function row of the entering variable

YBASIS(L) - the array of the column labels of the inverse matrix containing the

numbers of the currently effective constraints

YR(L) - the values of the dual variables of the constraints üsted in YBASIS(L)
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D3 INPUT DATA

The program needs a variety of information as input. The data have to be

provided in the following order in the EMUL.DAT file.

- values of control variables of the l-and & Powell routines (ITRMÆL

IRMAX, TOI-(r));

- planning horizon descriprion (NMONTH, MSTART, DPS(T),

rMoNrH(r));

- the iterative process control data (ITERMX, vARyMX, VARFAC,

VARMIN, PROCHA);

- the objective function cosr coefficients (srovA(T), spICo(T), oco(T),

CEE(S,T), CEI(S,T));

- the system demand data (NSTRIP, ENLO(S,T), ENWI(S,T), EEM(S,T),

EIM(S,T), EEL(S,T),EIL(S,T));

- the reservoir and power plant dara (srolN, srASTo, srMIN(T),

STMAX(T), FLOBO(T), CJ(N));

- the initial release esrimate (ESTFL(T));

- the deterministic reservoir inflow forecast (FLOW(T)); and

- miscellaneous (SCALE,SINTER).

There are 8 tolerance values to be input ( l^and and Powell (L973)). Care

has to be taken that the number of data for each array complies with the specified

problem size. In the case of the one dimensional array it is the number of time
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steps specified in NMONTH. In the case

product of the strip number (given in

(NMONTH). The order is : speciff all the

next strip.

of trvo dimensional anay it is the

NSTRIP) and time step number

data for one strip and then for the

D.4 PROGRAM Ð(ECUTION

In this section the program run is presented in details. The execution starts

with calling the INPUT subroutine from MAIN. The INPUT subroutine reads in

all the pertinent data from the file EMUL.DAT. It also initializes some variables

needed for the LP routines of Land & Powell, sets bounds on the reservoir release

variables (the LP takes care about them implicitly, without requiring explicitly

written constraints) and sets the right hand sides of the constraints (except for the

hydro production constraint).

Further the MAIN routine calls the SETA subroutine. The matrix of the

coefficients of the left hand sides of the constraints is set according to the

requirements of the l-and & Powell routines (in the one dimensional AA array).

The only coefficients which are not calculated and assigned are the coefficients of

the hydro production constraints, which are assigned later. This subroutine also

sets the coefficients of the decision variables in the objective function.

After executing SETA,, the MAIN routine calculates the estimates for

storage levels. This is done using the initial storage level, release estimates and the
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deterministic inflow forecast balanced through the flow continuity equation. If the

so calculated estimated storage would exceed the set boundaries the estimated

release is altered to avoid the problem, and the storage is either at its lower or

upper bound.

At this point the program enters the iteration loop of solving the

optimization problem. The first iteration is specific since the coefficients of the

hydro production constraints have to be calculated and assigned based on the

estimated releases and storages. This is done in the SETABC subroutine. After

the LP is completely set up, the SETABC activates the Land and Powell routines

which solve the LP problem. From this point on, the program executes the

procedure in the MAIN routine which is the same for all of the subsequent

iterations.

The program checks whether the LP solution is feasible and optimal by

looking to the ISTATE value. If the ISTATE is different than one, the program

terminates the run reporting an infeasible solution. If it is feasible the OUTPUT

subroutine is called. After printing the heading of the report to the output file,

EMIZ.DAT, the routine enters a time loop. The computation in the loop is

repeated for every time step. Besides the calculation of the monthly benefit,

BEMO, (by summing the values of the decision variables of that particular month

multiplied by the appropriate cost coefficients), the routine also calculates the

release and storage estimates for the next iteration. This is performed by
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calculating the change in the release policy, PROMENA, between the accepted,

ESTFL(MON) and the newly calculated GFP(MON) release. The value of

PROMENA, actually its absolute value, CHANGE, is normalized by the

ESTFL(MON) to give the value of VALTO. VALTO is compared to the allowed

policy change fraction specified in PROCFIA. If the VALTO value is greater than

the PROCHA the GFP(MON) value is recalculated by adding/subtracting the

PROCHA multiple of the EMSLP(MON) to the EMSLP(MON) value. The

adding or subtracting depends on the original GFP(MON) value, i.e., on the sign

of PROMENA: if it is less than zero subtraction takes place, if not addition. In

this way the direction of the change is the same as indicated by the original

GFP(MON) value.

If the value of VALTO is less than PROCFIA the original value of

GFP(MON) is unchanged. After updating the release estimates the estimates for

the storage STOCA(MON) are calculated using the flow continuity equation.

Checking is done to ensure that the obtained STOCA(MON) is within the specified

bounds STMIN(MON) and STMAX(MON). If the bounds are violated, the value

of GFP(MON) is recalculated to have a feasible STOCA(MON) value (either

STMAX(MON) or STMIN(MON) depending whether the original was too high or

too low).

It is important to note that the values in the GFP and STOCA arrays are

just the candidates for the estimates of the next iteration. They are not accepted
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at this point, since the evaluation of the solution, based on the comparison of the

accepted and calculated objective function, is yet to come.

After the calculation of monthly benefits, i.e., obtaining the objective

function value OBJECT is printed to the output file. The control is returned to

the MAIN routine.

The NODROP variable cont¿ins the information whether the previous

iteration has brought improvement to the objective or not. The TRUE value

corresponds to the improved objective. Before the first iteration a TRUE value is

assigned to calculate the initial coefficients of the hydro production constraints in

the SETABC routine. Depending on the value of NODROP the program branches

into two directions.

If NODROP is TRUE the program compares the newly obtained objective

function value with the so far accepted objective function values of the previous

iterations. This is to avoid cycling in an infinite loop of iterations without achieving

a stable solution. If a loop is identified the program stops after reporting the cause.

If there is no loop the program joins to the "NoDROp is FAISE" branch.

The difference between the newly obtained solution and the accepted one

is compared to the tolerance limit. If the absolute value of the highest monthly

storage difference (AD) is less than the set minimum storage variability

(VARMIN) the iterative solution procedure terminates. A stable solution is

identified. If not, the program evaruates the obtained solution.
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The newly calculated OBJECT value is compared to the last accepted

objective function value stored in OBJI. If the new one is higher, the NODROp

gets the TRUE value and the solution is accepted. The value of the OBJ1 is

updated, and the storage variability is reset to its original, maximum value

(VARYMX:VARMAX). The progrâm goes into a new iteration at the first level.

The SETABC recalculates the coefficients of the hydro production constraints,

resets the bounds on the storage variables and finally solves the new LP by calling

the SOLVER routine. The control is returned to the MAIN routine.

In the case that there is no improvement in the objective value and the

NODROP gets a FAISE value after the comparison, the program enters the

second level of iteration. The task is to search the interior of the original feasible

region of the LP problem in order to possibly improve the objective function value.

The storage variability (VARYMX) is decreased by mulriplying it wirh rhe

VARFAC factor. The new value of VARYND( is compared to the tolerance limit

(vARMrN).

If it is greater or equal than VARMIN the bounds on the storages are

recalculated according to the new VARYMX value and the LP is resolved. It is

important to note that the coefficients of the hydro production constraints are not

changed, only the feasible region is decreased by changing the range of the possible

storage values.The execution continues from the beginning of the loop. Since the

NODROP has a FAISE value the program goes directly to the OUTPUT routine
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without invoking the SETABC. From this point on the execution is the same as

described above for the first iteration.

If the value of VARYMX is less than VARMIN the initial worse solution

(where the objective started to decrease) is accepted, and the program returns to

the first level of iteration. The value of VARYIID( is reset to VARMAX, the

storage bounds are recalculated and the LP is resolved. A TRUE value is assigned

to the NODROP in order to accept the solution. The execution continues from

the start of the loop as if an improvement in the objective has occurred.

To summarize, the program accepts solutions which improve the objective

and solutions where the objective drops after it is determined that the interior of

the original feasible region does not contain a better solution. The iteration

continues until the difference between the storage trajectories of the calculated and

the accepted solution is less than the defined accuracy.

D.5 OUTPUT REPORT

The output file named F,NIIZ.DAT contains the input data and reports on

the iterative solution procedure. The input data are printed in the output report

to be able to correct the potential errors and to be able to relate the solution to

the input data (lnput data sample is given in Appendi" F).

Every solution in the iterative process is documented by $"ing the values of

following variables for each time step: inflow to the reservoir, turbine release,
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spilled release, total release, on and off peak export and import energy, on and off

peak produced hydro energy and the monthly benefit value. Besides the report

gives the number of the solution, the number of simplex iterations done to obtain

the solution the current value of the storage variation variable VARYMX and the

objective function value (A sample of output file is enclosed in Appendix F).

The report can contain messages about accepting the worse solution at the

end of the search at the second iteration level or about identi$ring an infinite loop

of solutions. At the end of the output file the number of iterations at the ftst

iteration level is also reported.
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APPENDIX E

SOURCE CODE
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c

C THE I'IAIN ROUTINE

c

ITIPLICIT REAL,rS (A-H,O-Z)

LOGICAL NODROP

REAL*8 INV/KIIIN
INTEGER SIZE/ SIZEl /XBASIS/YBASIS
c01'il't0N/I0/ I0IN/ I00uT
cot'il'toN/LINPco/

1 BOUND ( 1 56), C (1 56), INBASE ( 1 56), p IV( 1 56),X(56) ty AC (56>,
2B( I 5ó),G (156), GR(1 5ó) / I SEF F ( 1 56), S ( 1 56), SLACK( 1 5ó), y (156),
3INV( 130, 130) / XBAS I S ( 1 30), XR( 130), YBAS I S ( 1 30), yR( 1 30),
4 TOL(8)/BIG/DRIVER/INREV/IR/
6 IRHAX/ ISBIG, ISDONE, ISTATE/ ITR, ITRt'tAX/ I't,

7 I'lARKI, I'tARKK/ ¡tAXt't, IIAXN/ ltN0U, l,l0RE/ il0REPR/

I l{xsIzE, N, NEGINV/ NEGRoll/ NEHX, NUI'ISLK,0BJ/ R,

9 sIZE/ SIZEl / St'tALL/ XKPOS, YAt'tINC, NEt'Y/ ISBND

COI.II.ION/DATA,/ ¡ISTART/ LASTIiI / NSTR I P / S CALE / STO I N / S I NTER,

1 sTovA ( 1 2 ), sTAST0, S p I CO ( 1 2 ) / 0CO ( 1 2), ENLO (2, I 2 ), ENU I (2, 12),
2 D p s ( 1 2 ), F LOW (12), F LOBO ( 1 2 ) / ESTF L ( 1 2 ) / STl'tAX ( 1 2 ) / STl,t I N ( 1 2 ),
3HE (2, 1 2), C J (2), EE (2, 1 2), E | (2,',| 2), Ê.Ett <2, 1 2), E t¡4 (2, 1 2),
4EEL( 1 2), ErL(12), CEE(z, 12), CE\ (2,12)

co¡il'toN / t'tA I N / I TE RT'tx / I p E EK/ VARyt'tX / B E TTE R / VAR F A C / VA RH I N / VAR F C l
cot'il'toN/ RE suLT/ sT0 ( 1 2 ) / G F P ( 1 2 ) / 0B J ECT/ OB J 1, ITER,SToCA ( 1 2 )

co¡tM0N / AREF / AA(ó00)/ JC0L(ó00), IRoU(157),t'tAXA
COl.II.ION /CONTROL/ KFLAG

COI'II'ION /CHANGES/ PROCHA

DII'lENSION OB(250)
IC=1

c

CALL INPUT

CALL SETA

c

CALOOPTO:
C - CALC. I4ONTHLY INFLOI.IS/OUTFLOIIS IN KCFS*DAYS

C - CALCULATE THE INITIAL STORAGE ESTII'IATES

c

BEG=STO I N

DO 5O I'IN=I4START/ LASTûI

I'l0N=ÌlN

IF (l'10N. GT. 12) il0N=lloN- 12

FLOt' (titoN)=FLOH (il0N)*DPS (¡t0N)

ESTF L ( HON ) =ESTF L ( lloN ) * DP S ( Ì,10N )

STO ( lil0N ) =BEG+ F L0U, ( I'ION ) - ESTF L (ltloN )

rF(sT0(140N). LE.STHAX(iToN)) c0 T0 20
ST0 ( I'ION)=STltlAX ( I'ION )

ESTF L ( l.loN ) =BEG - ST0 ( I'loN ) + FLotl ( iloN )

I F ( ESTFL (l'loN ) . Gl. FL0B0 ( tloN ) ) ESTFL(t'loN ) = FL0B0 ( I'loN )

20 IF(sro(l,roN).GE.sT]rrN0'r0N)) G0 T0 50

ST0(tloN)=STM IN (ll0N)

ESTF L ( l40N ) =BEG - STO ( ll0N )+FLOtl ( I't0N)

I F ( ESTF L ( I'ION ) . GT. F LOBO ( I,ION ) ) ESTFL (}ION ) = FLOBO ( HON )

50 BEG=STO(MON)

c
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C INITIALIZE VARIABLES FOR THE FIRST ITÊRATION
c

VA RtIAX=VARYtilX

OBJl=-BIG
NODROP=. TRUE.

c

C THE LOOP OF THE ITERATIVE SOLUTION PROCEDURE

c

DO 1OO ITER=1/ITERHX
TIOREPR=IPEEK-1

I F (I.IOREPR. LT. O. OR. I'IOREPR. GT. 3) fioREPR=O

KFLAG=0

IF(NODROP) CALL SETABC

IF(ISTATE.NE.1) GO TO lOOO

CALL OUTPUT

IF(.NOT.NODROP) GO TO 5OO

c

C THIS PART IS TO AVOID CYRCLING IN AN INFINITE LOOP OF SOLUTIONS
c

coù=B I G

D0 ¿i51 IK=1,IC
VAL=DABS (OBJ ECT-OB( IK) )

451 I F (VAL. LT. cot'l ) cot't=VAL

I F ( COI'I. GE. 0. 01 ) GO T0 550
!IRITE(6/*) | L00P FOUND/ IT STOPS'

G0 T0 1100

550 IC=IC+1

OB( IC)-OBJECT

c

5OO CONTINUE

c

C CONVERGENCE CHECK: THE STOPPING CRITERIA
c

AD=0.0

J=9

DO 55 TIN=I'ISTART/ LASTtiI

ll0N=lilN

IF (l'f0N. cT. 12) I'l0N=tl0N-12

DI F=DABs(sT0(iloN) -X( J ) )

IF(DIF.GT.AD) AD=DIF

55 J=J+9

IF(AD. LE.VARi4IN) t,RITE(6/¡t)' CONVERGED VOLUT'IE'

IF(AD.LE.VARIIIN) GO TO 11OO

c

C CONVERGENCE HAS NOT BEEN DETER}IINED SO PREPARE

C FOR THE NEXT ITERATION: DETERIIINE [,HETHER THERE I{AS AN

C II'IPROVE}IENT IN THE OBJECTIVE FUNcTION (NODROP=.TRUE.)

c

NODROP=OBJ ECT. GT. OBJ 1

c

C IF NODROP IS .TRUE. THE ITERATION CONTINUES AT THE

C FIRST LEVEL ( THE OBTAINED SOLUTION IS
C ACCEPTED AND USED AS THE ESTI¡IATE FOR THE NEXT ONE)
c
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IF(.NOT.NODROP) GO TO 79

VA RYIIX=VARI'lAX

OBJ 1 =OBJ ECT

G0 T0 100

c

C THE OBJECTIVE FUNCTION VALUE GOT IIORSE SO

C ITERATE AT THE SECOND LEVEL (TRY TO ITIPROVE THE OBJECTIVE

C BY EXPLORING THE INTERIOR OF THE FEASIBLE REGION BY

C LIIIIITING THE STORAGE VARIABILITY VARYIIX

c

79 VARYHX=VARYI'IX¡tVARFAC

c

C CHECK I,'HETHER THE ITERATION AT SECOND LEVEL IS FINISHED

c

IF(VARYHX.LE.VARI4IN) GO TO 99

c

C RECALCULATE THE RIGHT HAND SIDES OF THE STORAGE

C LII'IITING CONSTRAINTS AND RESOLVE THE LP USING THE UNCHANGED

C ESTII,IATE FOR STORAGES AND RELEASES ( I . E. THE SAI'IE

C COEFFICIENTS IN THE HYDRO PRODUCTION CONTRAINTS)

c

I=1

DO óO I.IN=I'ISTART,LASTII

l{0N=l'lN

I F (l'|ON. GT. 12) HON=HON-12

PIV(I)=0.
PIv(I+1)=0.
PIV( I+2)=0.
PIV(I+3)=0.
PIv(¡+4)=0.
P Iv ( I+5 )=0.
P I V ( I +ó ) = Dl'lAX 1 ( S TO ( llON ) - VARYT'lX, STl,l I N ( HON ) ) - B ( I +6 )

B( I+ó)=B( l+6)+pIV( I+6)
P I V ( I +7 ) =Dl'l I N 1 ( STo ( ¡l0N ) +VARYI'tX / STI'lAX ( itoN ) ) - B ( I +7)

B( I+7)=B( I+7)+PIV( I+7)
PIV( I+8)=B( I+8)

60 I=I+9
NEI,Y=0

CALL CHGB

IF(ISTATE.NE. 1 ) CALL SOLVER

IF(ISTATE.EQ.l) GO TO 97

c

C AN OTHER TRY TO SOLVE THE LP

c

t',RITE(ó/'t) 'A TRY FROI'l SCRATCHI

KFLAG=1

CALL SETABC

IF(ISTATE.NE.1) GO TO lOOO

97 IF(IPEEK. EA.l ) l,,RITE(6,902) (B(I+6),8(I+7),I=1 ,Ìti,8)
IF(IPEEK.EO.14) CALL IPRINT
IF( IPEEK.GE. 10) IPEEK=IPEEK-10
G0 To 100

c

C THE ITERATIONS AT THE SECOND LEVEL DID NOT FIND
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C A BETTER OBJECTIVE THAN THE INITIAL DECREASED ONE/

C SO ACCEPT THE FIRST DETERI'ÍINED SOLUTION AS AN

C ESTII'IATE FOR THE NEXT ONE

c

99 NODROP=. TRUE.

VARYHX=VAR14AX

t,RITE(ó,¡t) |THE INITIAL DECREASE IS ACCEpTED,

I=1

DO ó2 I'IN=}4START/LASTI'I

I'l0N=l'lN

I F (l,loN. GT. 12) iloN=HoN-12
PIV(I)=0.
PIV(I+1)=0.
PIV(I+2)=0.
PIV(I+3)=0.
PIv(I+4)=0.
PIV( I+5)=0.
PIV( I+6)=DHAX1 (sTo(t'toN) -VARYHX/ sTt'tIN(HoN) ) -B( I+6)
B( I+ó)=B( I+6)+P JV( I+6)
P I V ( I +7 ) = DM I N 1 ( STO ( HON ) +VARYI'IX, S TI'IAX ( I'ION ) ) - B ( I +7 )
B( I+7)=B( I+7)+PrV( I+7)
PIV( I+8)=B( I+8)

62 I=l+9
NEtIY=0

CALL CHGB

IF(ISTATE.NE.1) CALL SOLVER

IF(ISTATE.EO.l) GO TO 98
c

C AN OTHER TRY TO SOLVE THE LP

c

IIRITE(6,¡t) rA TRY FRgH SCRATCH'

KFLAG=1

CALL SETABC

IF(ISTATE.NE.1) GO TO lOOO

98 CALL OUTPUT

OBJl=OBJECT

1OO CONTINUE

G0 T0 1100

1000 ll0REPR=3

CALL IPRINT

t¡RITE(ó,'t) 'I Alil BACK FROII IPRINT'
902 FORI,TAT (8F10.3)

1 1OO CONTINUE

IC=IC-1
t,RITE(6/ 129) tC

129 F0Rt'tAT(' NET ITERATI0NS t ,14)
END
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SUBROUTINE INPUT

¡I.IPLICIT REAL*8 (A-H/O-Z)

CHARACTER*3 ITIONTH

LOGICAL NODROP

REAL*8 INV,KI'IIN

INTEGER SIZE,SIZEl,XBASIS,YBASIS
cot'il{oN/I0l IoIN/ r00uT
c0ñiloN,/L I NPC0/

1 BouND ( 1 56) t C (156), INBASE ( 1 56),p tV <156>,X<156) ty AC <156),
' 28(56),G(15ó),GR(15ó),rSEFF(156)/S(156)/SLACK(15ó),y(56) |

3 I NV ( 1 30, 1 30) / XBAS I S ( 1 30), XR ( 1 30), YBAS I S ( 1 30), yR ( 1 30) /
4 T0L(8),BIG/DRIVER, INREV/ IR,
ó IRI'IAX/ ISBIG/ ISDONE, ISTATE, ITR, ITRIIAX/ ¡I,
7 ¡IARKI/ l,tARKK/ ÌlAxll/ I{AXN/ l,lNo!,, l{oRE, }|oREPR/

8 HXSIZE, N, NEGINV/ NEGRot,/ NEIJX, NUI'ISLK,oBJ/ R/

9 sIzE/ sIzEl/ SI4ALL/ XKPoS, YAt{INC/ NEùty/ ISBND

CO}IIIION/ DATA/ ]iISTART, LASTI'I/ NSTR I P, SCALE, STO I N/ S I NTER/

1 sTovA ( 1 2 ) / STAST0/ Sp I C0 ( 1 2 ), oCO ( 1 2), ENLO (2, 12), ENUI (2, 12),
?Dp S (2), F Lolt ( 1 2 ), t LoBo (12),ESTFL ( 1 2 ) / STHAX ( 1 2 ), STt't I N ( 1 2 ) /
3HE <2, 1 2) ; c J (2), EÊ (2 | 12), El (2, 1 2), EEll (2, 1 2), El|¡i <2, 12>,
4EEL<1 2), ErL(12), CEE(z, 12), CEL (2, 12)

CO¡II'ION/]'.IAIN/ ITERI'IX/IPEEK/VARYI.IX/BETTER/VARFAC/VARI'IIN,VARFCl

c0l't1't0N/REsuLT/ sr0( 1 2) /GFp ( 1 2),08J Ecr/oBJ 1, ITER/ SToCA( 1 2)
cot'tHoN / ARE! / AA(ó00) / JCOL(600), IRorit(157)/],|AXA

cot'$roN/r'roNTH/ rHoNTH( 1 2)
coltlr0N/ cHANGES,/ PR0cHA

10 FoRr,rAT(10r5)

20 FoRNAT(óF11.2)

50 FoRr'rAT(6F12.6)

0PEN(5/ FILE='EHUL. DAT' )

OPEN(6/ F ILE='El'lIZ. DAT' )

I0I N= 5

IOOUT=ó

c

C READING IN THE NEEDED DATA AND I.IRITING IT TO THE

C OUTPUT FILE

c

t',RITE(ó/¡t) | 0UTPUT REPORT FR'¡l THE El'ISLP PR.GRAI'l'

IIRITE(ó,tt) I '

l'¡RITE(6,r() L
I.'RITE(ó,*) I THE INPUT DATA ¡

t',RITE(6/*) I ------------------- |

IIRITE(ó,*) t '

I,RITE(ó/¡t) r* LAND & P.t',ELL CONTR.L DATA'

i'IRITE(ó,:I) t I

READ(5,¡k) ITR¡IAX, IRlilAX

t,RITE(6/ 10) ITRt'tAX/ IRHAX

READ(5/¡t) (T0L(I), I=1,8)
lIRITE(ó/30) (TOL(I)/ I=1,8)

c

IIRITE(6,tt) t t

I,RITE(6/¡t) r* PLANNING H.RIZ.N DESCRIPTI.N'

l,,RITE(ó/¡t) I I

READ(5/*) NlilgNTH, I'ISTART
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HR ITE (6, 10) NtttoNTH/ I'|START

READ (5/*) (DPS( IT), IT=1,N1'IONTH)

t,RITE(6/20) (DPS( IT), IT=1 /NI{ONTH)
READ (5,:t) ( I¡IONTH( IT), IT=1,N}ioNTH)
t,RITE(6/¡l) ( II.IONTH( IT), IT=1 /Nl't0NTH)

I,RITE(ó/¡t) I I

l,lRITE(ó/*) r* ITERATIVE PR0CESS C.NTROL DATA'

[,rlRITE(6,:t) t t

READ(5/¡t) ITERI'lX, IPEEK

tIRITE(6/¡t) ITERI'lX, IPEEK

READ ( 5/ * ) VARYIi|X/ VARFAC/ VARlrl IN, PROCHA

!tR ITE (6, 30) VARyI'tX/ VARFAC, VARI{ IN, pRoCHA

l,lRITE(ó,*) t t

l¡RITE(ó/¡t) I* 08J. FUN C.ST C.EFF. I

l.lRITE(ó,*) I ¡

READ (5/¡t) (STQVA( IT) / IT=1, Nl'lgNTH)

t,RITE(6,20) (SToVA( IT), IT=1 /NiIONTH)
READ(5/*) (SPIC0( IT), IT=1 /NIIONTH)
tIRITE(ó,30) (SPICO( IT) / IT=1, N}|ONTH)

READ(5/ ¡t) (0C0( IT), IT=1 ¡NllgNTH)
IIRITE(ó/30) (0C0( IT), IT=1 / NIIONTH)

READ(5,*) (CEE(1,lf),!1=1 /Nl'loNTH)
IJRITE(6/20) (CEE(1 ,Í-Í) ,11=1 /NHONTH)

READ(5/'t) (CEE(2,IT), IT=1,NtlgNTH)

I,RITE(ó/20) (CEE(2, IT)/ IT=1/NI'|ONTH)

READ(5,*) (CE¡ (1,1T),7T=1/Nt'loNTH)

IIRITE(6/20) (CEI (1 / IT) / IT=1 /Nl,lONTH)

READ (5/*) (cEl (2, IT), IT=1 / Nl'loNTH)

tlR ITE (ó,20) (CEl (2, IT), IT=1, N!'|ONTH)

IIRITE(6,tk) ' t

IIRITE(6/*)'¡t SYSTEII DEIiIAND DATAI

I'IRITE(6,*)r t

READ(5/¡k) NSTRIP

URITE(6,10) NSTRIP

DO 50 NI=1/NSTRIP

READ (5/¡k) (ENL0(NI/ J ) / J=1 /Nl'loNTH)
l,lRITÊ(6,30) (ENL0(NI/ J ) / J=1,NHONTH)

D0 60 NI=1,NSTRIP
READ(5/¡t) (ENllI (NI / J ) / J=1,N1'l0NTH)

t,RITE(ó,30) (ENllI (NI, J ), J=1,NHoNTH)

READ(5/*) (EEl'l(1,1T),lf=1,NtloNTH)

tIRITE(ó,20) (EEll(1,1T),lT=1/Ni|ONTH)

READ(5/¡t) (EEH(2, IT), IT=1 /NllgNTH)
l,R ITE (6,20) (EE¡{.(Z, IT), IT=1 / Ni|ONTH)

READ(5/¡t) (EIH(1, IT), IT=1, Nl'lgNTH)

t,lRITE(6,20) (EItl(1 ,l'Í) ,lT=1 /Nll0NTH)
READ (5/¡k) (EIll(2, IT), IT=1 /NttloNTH)
t,R ITE (6, 20) (Elll(z, IT), IT=1 / NI'|ONTH)

READ (5/t() (EEL( IT) / IT=1, Nl'loNTH)

l,lRITE(ó/30) (EEL( IT), IT='l,Nùl0NTH)

READ(5/¡t) (EIL( IT), IT=1 /Nl'loNTH)
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t,RITE (6,30) (EIL( IT), IT=1, Nl'l0NTH)

I,JRITE(6/'t) I I

IIRITE(6rtr) r* RESERVgIR & POÌ,,ER PLANT DATAI

IIRITE(6,:t) ' '

READ(5/rr) STOIN/STAST0

URITE(ó/50) SToIN,STASTO

READ(5,*) (STl'lIN( IT) / IT=1/NllgNTH)
tIRITE(6,20) (STtlIN ( IT), IT=1 /N}|ONTH)
READ(5/*) (STllAX( IT) / IT=1/Nl'loNTH)

t,RITE(6,20) (STI'lAX(IT), IT=1,NlloNTH)
READ (5/¡t) ( FL0B0( IT), IT=1, Nt'loNTH)

IIRITE(6,30) ( FL0B0( IT), IT=1,N1'|ONTH)

READ(5/*) (CJ(IT), lT=1,2)
tIRITE(ó,30) (CJ ( IT) ,ll=1,2)

IIRITE(ó,*)r '

I.IRITE(ó,*) I * RELEASE ESTII.TATES ¡

TJRITE(ó,*)r t

READ(5/¡t) (ESTFL( lT),lÏ='llNl'loNTH)
URITE(6,30) (ESTFL( IT), IT=1 /NIIONTH)

ttRITE(ó,*) t I

t'IRITE(6/¡k) I * FgRECASTED INFL.U t

tIRITE(ó,tt) I t

READ(5/*) (FLQ[l( IT), IT=1,N¡'IONTH)

t,RITE(ó/30) ( FL0!l ( IT), IT=1 / Nll0NTH)

tIRITE(6/¡k) ¡ ¡

I,IRITE(6/¡K) I * SCALE FOR LP & DISCOUNT RATE I

!IRITE(ó,*)r I

READ(5/¡k) SCALE/SINTER

t¡RITE(6,30) SCÂLE/ SINTER

IIRITE(6/¡I) I ----------- ----------- |

IIRITE(ó,*) t t

t.,RITE (6/¡t) I REPORTS ON THE ITERATIVE SOLUTION PROCEDURE'

IIRITE(6/¡t) ' ¡

c

C INITIALIZE VARIABLES FOR LP ROUTINES

c

BIG=1 . E8

SiIALL=1 . E-6
I'l=9*Nl'loNTH

c

c INITIALIZE So¡tE BoUNDS 0N RELEASES , S0l{E RHS-S

c

LA STH=I'I START+NI'IONTH - 1

J=1

D0 1 00 l,lN=l'ISTART/ LASTI',1

I= ( HN- I'ISTART ) *9+'l

I'lON=14N

I F (tloN. GT. 12) ll0N=140N-12

FL0B0 (HoN ) =F L0B0 ( tloN ) *DPS ( I'loN )
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B0UND ( J ) = FLoBo ( I'l0N )

BoUND(J+1 )=-1.
BoUND(J+2)=-1.
BOUND(J+3)=-1.

BOUND(J+/t)=-1.

BoUND(J+5)=-1.
BoUND(J+6)=-1.
BoUND(J+7)=-1.
BoUND(J+8)=-1.
B( I+1 )=FL0l,l (l,t0N)*DPs (tl0N)

B ( I+2 ) =EEH ( 1, HON ) / ( 1 - EEL( ¡tON) ) t 24. / 1000. t 0pS ( l'toN) *ENU I ( 1 / ¡t0N )

B(I+3)=EEl,l(2,lloN)/(1-EEL(1,10N))it24./IOOO.*DPs(1'l0N)*ENt,I(2,tloN)
B ( I +4 ) = EN L0 ( 1, I'toN )'t24. / 1 000. * Dp S ( ltoN ) * ENt' I ( 1, HoN )

B ( I+5 ) =ENLo (2,l|ov)r,24. /1000. *DPS (lloN ) *ENt,I (2/ lloN )

B( I+8)=0.0
J=J+9

B (2) =B (2 ) +sTo IN

R ETU RN

END
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SUBROUTINE SETA

c

C THIS SUBROUTINE SETS UP THE A IIATRIX AND THE C VALUES/TOO

c

II,IPL¡CIT REAL*8 (A-H,O-Z)

REAL*8 INV/K¡IIN
INTEGER SIZE/ SIZEl /XBASIS,yBASIS
coliltoN/I0l I0IN/ I00uT
co¡t¡toN/L INPc0/

1 BOUND ( 1 56), C(156), INBASE ( 1 5ó), p IV( 1 5ó) / X ( 156),y AC<156),
28<156) tG(5ó), GR ( 1 56) / I SEFF (1 56) / S ('l 5ó), SLACK(56) ; (5Ð,
3 INV ( 130, 1 30), XBAS I S ( 1 30), XR ( 130),YBAS I S ( 130) / yR ( 130),
4 T0L(8), BIG, DRMR/ INREV/ IR,
ó IRi4AX, ISBIG/ ISD0NE/ ISTATE, ITR/ ITR¡lAX/ ¡1,

7 llARKI, ItARKK/ llAXlt/ ¡tAXN/ I'lNOl,'/ lloRE/ l{oREpR/
8 ¡IXSIZE, N, NEGINV/ NËGROI¡I/ NEiIX/ NUI,ISLK/ OBJ, R,
9 sIzE/ sIzE1, sl'lALL,' xKpos/ yAl{INc, NElly/ IsBND

cot't¡toN /DATA/ ltsTART/ LASTH/ NSTR I p/ SCALE / ST0 I N/ S I NTER/

1 sTovA( 12 ) / STAST0/ Sp I C0( 1 2) / 0CO<12),ENL0(2/ 1 2), ENt' I (2, 12),
2Dps ( 12), FLOU (12),FL0B0( 1 2), ESTFL( I2) / STIJAX( 1 2) / STtt IN( 12 ) /
3HE (2, 1 2) | C J (2), EE (2, 1 2), Er (2, 12), EEn (2, 1 2), Ettt (2, 1 2),
4EEL ( 1 2), EtL(12), CEE(z, 12), CEr <2, 12>

COTIHON/I'IA I N / I TERHX, I PEEK/ VARYI'IX, BETTER/ VARFAC/ VARI'I I N/ VAR F C1

cot'tltoN/REsuLT/ sTo( 12) /GFp ( 12), oBJECT/ oBJ 1 / ITER/ STOCA( 1 2)
coHl'toN / AREF / AA(600), JCoL(ó00), IROTJ(157)/¡|AXA

c

C AA(K)-IS A ONE DIIIENSIONAL ARRAY CONTAINING THE

C VALUES OF THE CONSTRAINT COEFFIC¡ENTS

C JCOL(K)- DENOTES THE COLUI'IN OF THE K-TH COEFFICIENT

C IROII(I)- DENOTES THE K NUIiIBER OF THE FIRST COEFFICIENT IN THE I-TH ROI¿

C I- CONSTRAINT NUI4BER

C J- VARIABLE NUI.IBER

C K- COEFFICIENT NU}IBER IN AA ARRAY

c

C SEE LAND & POI.,IELL TO UNDERSTAND IIIORE

C ABOUT CONSTRAINT I.IATRIX SPECIFICATION

c

DO 1O J I=I'ISTART/ LASTIiI

1O TOTAL=DPS(JI)+TOTAL

tIAXA=300

I=1

J=1

K=1

SD=0.0

D0 100 llN=IISTART/LASTlil

s D= s D+DP S ( I'!ON )

ll0N=tilN

IF (ll0N. GT. 12) I'l0N=ltl0N-12

IF(K.GT.19) GO TO 20

JCOL(1 )=1

JCOL(2)=3

AA(2)=-2.0*SCALE
JCOL(3)=4
AA(3)=-2.0*ScALE
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Jc0L(4)=9
rRor.l('l )=1

S(1)=0.0
JCOL(5)=1

AA(5)=1.0
JCOL(ó)=2
AA(ó)=1.0
J c0L (7) =9
AA(7)=1 .0
S(2)=0.0
IRotl(2)=5
JcoL(8)=5
AA(8)=1.0
J c0L (9) =7
AA ( 9 ) = E El'l ( 1, t'loN ) / E I I'l ( 1 / I'loN ) / ( ( 1 - EEL ( l{oN ) ) ¡t ( I - E I L ( l{oN ) ) )

S(3)=1.0
I ROtl (3 )=8
icoL(10)=ó
AA(10)=1.0
JCoL(11)=8
AA ( 1 1 ) =EEll (2, l'l0N ) / E ltt (2,¡to[) / ( ( 1 - EEL (tloN ) ) * ( 1 - E I L ( 1,10N ) ) )

S(4)=1.0
I R0tl (4) =10
JCOL(12)=3
AA(12)=1 .0
JC0L(13)=5
AA(13)=-1.0
JCOL(1/+)=7

AA(14)=1.0
S(5)=0.0
IR0tl(5)=12
JCOL(15)=4
AA(15)=1.0
Jcol(16)=ó
AA(16)=-1.0
JCOL(17)=8
AA(17)=1.0
S(ó)=0.0
IR0tl(6)=15
JCOL(18)=9
AA(18)=1.0
S(7)=-1.0
I R0lrl (7) =18
JcoL(19)=9
AA(19)=1.0
S(8)=1.0
IR0tl(8)=19
J C0L (20) =1

AA(?O)=-24. /1000. 'tER F ( CJ / STftlAX (l{oN) ) *ScALE

JC0L(21 )=3
AA(21)=1 .0¡tSCALE

J coL (22 ) =4

AA(22)=1.0't SCALE

S (9)=1 .0
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L39
I R0ll (9) =20
FACT=1 . /(1+SINTER)** ( (ToTAL-SD) /365.)
c(1)=0.0
C (2 )=SP I c0 (140N) * FAcT

C(3)=0Co(t{oN)*FAcT
c(4)=0co(1'l0N)*FACT
c(5 )=cEE ( I / ¡toN)* FACT¡t ( 1 -EEL(t{ON) )
c (6)=cEE(2, t'toN)*FACT* ( 1 - EEL(¡itON) )

C(7)=CEI ( 1, tloN) ¡t FACTl ( 1 - EIL(tloN) )
C(8)=CE I (2, ¡lON)*FACT/ ( 1 -EI L(l'lON) )
C (9) =STOVA ( HON) * FACT

J=J+9

I=I+9
K=K+22

G0 TO 100

JCOL(K)=J-1
JcoL(K+1)=J
JCoL(K+2)=J+2
AA ( K+2 ) =-2.0* SCALE

JCOL(K+3)=J+3

AA(K+3)=-2.0*SCALE
J CoL ( K+4 ) =J+8
S(I)=0.0
IRoIJ(I)=K
JcoL(K+5)=J-1
AA(K+5)=-1.0
JCOL(K+6)=J

AA(K+6)=1.0
JCoL(K+7)=J+1
AA(K+7)=1 .0
J C0L ( K+8) =J+8
AA(K+8)=1.0
s(I+1)=0.0
IR0t,( I+1 )=K+5

JCoL(K+9)=J+4
AA(K+9)=1.0
JCoL(K+10)=J+ó
AA ( K+ 1 0 ) = E El'l ( 1 , ¡loN ) / E I tl ( 1 , lloN ) / ( ( 1 - E EL ( I'loN ) ) * ( 1 - E I L ( lttoN ) ) )

S(I+2)=1.0
I ROtl ( I+2 ) =K+9
JCoL(K+11 )=J+5
AA(K+11)=1.0
JCoL(K+12)=J+7
AA ( K+ 1 2 ) =E Etl ( 2, lloN ),/ E I ll ( 2, tlON ) / ( ( 1 - EEL ( ilON ) ) * ( 1 - E ¡ L ( ¡tON ) ) )

S(I+3)=1.0
I Rotl ( I+3) =K+11
JCOL(K+13)=J+2

AA(K+15)=1.0
J CoL ( K+1 4) =J+4
AA(K+14)=-1.0
JCoL(K+15)=J+ó
AA(K+15)=1.0
S ( I+4 )=0.0
IR0t,( I+4)=K+13



c

c

c

c

1.40

JCoL(K+1ó)=J+3
AA(K+16)=1.0
JCoL(K+17)=J+5
AA(K+17)=-1.0
JC0L(K+18)=J+7
AA(K+18)=1.0
s(I+5)=0.0
IR0t¡t( I+5)=K+16
JcoL(K+19)=J+8
AA(K+19)=1.0
s(I+ó)=-1.0
J ROl,l ( I+ó) =K+19

JC0L(K+20)=J+8
AA(K+20)=1.0
s(I+7)=1.0
I ROI'l ( I+7 ) =K+20
JcoL(K+21 )=J
AA ( K+21 )=-24. /1000. *ERF ( cJ / STIIAX (t'loN ) ) *sCALE

J COL ( K+22 ) =J +2

AA(K+22)=1.0*SCALE
JCOL(K+23)=J+3

AA(K+23)=1 .0*SCALE

S(I+8)=1.0
IR0tl( I+8)=K+21
FACT=1 /( 1+S¡NTER)**( (T0TAL-SD> /365. )
C(J)=0.0
c ( J+1 )=SP I C0(l'loN)*FACT

c ( J+2)=0c0(l'loN) *FAcT

C ( J+3)=0C0( I|ION ) *FACT

C ( J+/r)=CEE ( 1 / l,loN) * FACT* ( 1 - EEL(¡l0N) )

c ( J +5 ) = c E E ( 2 / ¡loN ) * FAc T't ( 1 - EE L ( lloN ) )

C( J+6)=CEI (1, I'loN)*FACT/(1 -EIL(¡loN) )

c( J+7)=cEI (2/ lloN)¡tFAcT/(1 -EIL(lloN) )
C ( J+8) =SToVA(l,lON) * FACT

J=J+9

I= I+9
K=K+24

1OO CONTINUE

N=J-1

IR0tJ(I)=K
RETURN

END

REAL*8 FUNCTION ERF(CC,S)

REAL¡I8 CC, S

CC ( 1 ) =9. 801 *0. 305**4*1 000/1 000*E F F I C I ENCY./STAST0

cc(2)=cC(1)*(-TA¡L t,ATER LEVEL)

DIIIENSION CC(2)

ERF=CC(1 )*S+CC(Z)
R ETU RN

END
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SUBROUTINE SETABC

c

C THIS SUBROUTINE CALCULATES THE COEFF. IS OF THE

C HYDRO PRODUCTION CONSTRAINT, AND ALTERS THE SA}IE IN THE

C SUBSESUENT ITERATIONS

c

II.IPLICIT REAL*8 (A-H/O-Z)

LOGICAL CHANGB

REAL*8 INV/KI.IIN

INTEGER SIZE, SIZEl /XBAS IS/YBASIS

coHt'toN,/ I0l ¡0IN/ I00uT
coHt'toN/LINPC0/

1 BoUND ( 1 56), C (56), INBASE ( 1 5ó), p IV( 1 56) /X( 156),Y AC(56),
28(T56),c ( 1 5ó) /GR (1 5ó), I SEF F ( 1 56), S ( 1 56), SLACK(156),Y <156),
3 I NV ( 1 30, 1 30), XBAS I S ( 1 30), XR ( 1 30) / YBAS I S ( 1 30), YR ( 1 30),
4 TOL(8),BIG,DRIVER/ INREV/ IR/
6 IRI'|AX/ ISBIG/ ISD0NE/ ISTATE/ ¡TR, ITRl.lAX, l.t,

7 I|ARKI / fiARKK, I'tAXt't/ HAXN/ HNoH/ HoRE/ I'toREPR/

8 I'!XSIZÊ., N, NEGINV/ NEGRoU, NEUX/ NUI|SLK/ oBJ, R/

9 SIZE/ SIZE1, Sl'lALL, XKP0S, YAIIINC/ NE!'Y, ISBND

COI'IIION /DATA/ ¡ISTART/ LASTI'I, NSTR I P, SCALE, STO IN, S INTER,

1 srovA ( 1 2 ) / srAsr0/ sP I c0 ( 1 2 ), 0c0 ( 1 2), ENL0 (2, 1 2 ), ENH I (2, 12),
2Dps ( 1 2 ), F LOH ( 1 2 ), t LOBO (2>,ESTF L ( 1 2 ), STI|AX ( 1 2 ) / STfit I N ( 1 2 ),
3HE (2, 1 2), C J (2), EE <2, 12), E.t (2, 12), ÊEttl (2, 1 2), E t¡t (2, 12),
4EEL(2),E I L( 1 2), CÊE(z t12), CEt (2,12)
cot't¡toN/l'tAIN/ ITERT'tx/IPEEK/VARYI'|X/BETTER/VARFAC/VAR¡|IN/VARFCl

cot'liloN/RESULT/ ST0 ( 1 2), GFP ( 1 2), oBJECT,oBJ1 / ITER/ SToCA( 12)

coHt'toN / AREt / AA(600),JCoL(600), IROt,(157),i{AXA
COIiIIION /CONTROL/ KFLAG

c

DII'IENSION T(84)
c

C THE KFLAG=1 IIEANS THAT THE ROUTINE IS CALLED

C ONLY TO RESOLVE THE LP t,'ITHOUT ALTERING IT BEFORE

c

IF(KFLAG.EO.1) GO TO 111

IF(ITER.GT.1.AND.}IOREPR.GT.O) CALL IPRINT

BEG=0.

I=1

J=1

K=1

OERF=ERF(CJ/STOIN)

c

C LOOP TO CALCULATE THE COEFFICIENTS FOR EVERY TI}IE STEP

c

D0 200 llN=IISTART/LASTI'I

ll0N=l'lN

I F (t'|0N. GT. 12) tl0N=l'l0N-12

c

C THE RELEASE (GFP(¡ION) ) AND STORAGE ESTII'IATE (STOCA(}ION) ) CANDIDATES

C CALCULATED IN OUTPUT SUBROUTINE ARE ACCEPTED TO

C BE THE ESTT¡IATES FOR THE NEXT ITERATION

c

IF ( ITER. GT. 1 ) ST0(l'loN)=SToCA(lloN)
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I F ( ITER. GT. 1 ) ESTFL(TION)=GFP(I.ION)

sull=O.0
J K=K

IF(I.EO.1) JK=0

c

C TE¡IPORARY ARRAY OF RHS OF THE IIN-TH IIONTHIS CONSTRAINTS

c

T( I ) = ( ( BEG+ST0 ( t'lON ) ) *C J ( 1 ) *ESTFL (l,tON ) *24l1 000. ) *SCALE

T(I+1)=B(l+1)
T( I+2)=B( I+2)
T(I+3)=B(I+3)
T( I+4)=B( I+4)
T( I+5)=B( I+5)
T ( I +6 ) =DfilAX 1 ( ST0 ( I'loN ) - VA RYltX, STH I N ( t{oN ) )

T ( I+7) =Dl'l I N1 ( ST0 ( HoN ) +VARYllX/ sTilAX ( ltoN ) )

T( I+8)=B( I+8)

CALCULATION OF THE COEFFICIENTS

NOTE: THE HYDRO PRODUCTION CONSTR. FOR THE FIRST IIONTH (I=1)
DIFFERENT THAN THE SUBSEAUENT ONES

UERF=ERF (CJ/ ST0(lloN) )

rF(r.Eo.1) c0 T0 30

AAJHl =cJ ( 1 )*ESTFL (HoN) *24l1 000. ¡tsCALE

30 AAJ=(0ERF+UERF)*24l1000. *SCALE

AAJ P2=C J ( 1 ) *ESTFL(l'lON)*24l1 000. *ScALE

D0 35 IJ=1,5
35 PIV( IJ)=0.0

rF(r.Eo.1) G0 T0 40

P IV ( 1 )=AAJttll -AA ( JK)

40 PIV(2)=AAJ-AA(JK+1 )

P IV ( 5 )=AAJ P2-AA ( JK+4)

IF(ITER.EA.1) GO TO 180

IF(I.NE.1) GO TO 45

PIV(1 )=PIV(2)
PIv(2)=PIV(3)
PIV(3)=PIV(4)
PIV(4)=PIV(5)
PIV(5)=0.0

c

c

c

c

c

IS

45 IF(PIV(1)+pIV(2)+pIV(3)+pIV(4)+prv(5).E0.0.) G0 TO 190
K1=IROt,(I)
K2=IR0tJ(I+1)-1
D0 ó7 KP=K1,KZ

KV=KP-K1+1

AA ( KP ) =AA ( KP ) +P IV ( KV)

G0 T0 190

I K=J K+4

P IV (3 ) = -2.0*SCALE

P IV ( 4) =-2.0¡t SCALE

D0 185 L=JK/IK
IF(I.EA.1.AND.L.EA.JK) GO TO 185

AA(L)=PIV(L-JK+1 )

CONTINUE

67

180

185



190 BEG=sT0(l't0N)

K=K+22

IF(I.GT.1) K=K+2

I=I+9
J=J+9

2OO OERF=UERF

D0 50 I=1 ,ll
50 B(I)=T(I)

c

C INITIALIZING THE NECESSARY LAND AND

c

111 BIG=1 . E8

SHALL=1 . E-ó
t't=9* ( LAsTll - I'l sTART+ 1 )

N=9* ( LASTñ - IISTART+1 )

I'lXS I zE=81

üAXl4= 1 08

HAXN= 1 08

I S DON E=0

I N REV=0

I R=0

I SBND=1

ITR=0

I'tN0l.,=H

NEG I NV=0

NEGR0LI=0

NEIIX=0

NEIIY=0

R=0.0
SIZE=0

ISBIG=1

YAI'IINC=0.0

I STATE=0

D0 300 IK=1,ó0
INBASE( IK)=O
PIV( IK)=0.0
X(IK)=0.0
YAC(IK)=0.0
G(IK)=0.0
GR(IK)=0.0
IsEFF(IK)=0.0
SLACK( I K)=O. O

Y( IK)=0.0
3OO CONTINUE

Do 350 IK=1,100
XBASIS(IK)=O.O
xR ( IK) =0.0
YBASIS(IK)=0.0
YR(IK)=0.0
D0 360 lJ=1,70

360 INV(IK,IJ)=0.0
350 CONTINUE

c

143

POI|IELL VARIABLES
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C INVOKING THE LAND AND POI.JELL ROUTINES TO

C SOLVE THE FORHULATED LP PROBLEI'I

c

CALL SOLVER

c

IF(I'IOREPR. EA,3) CALL IPRINT

K F LAG=O

lOOO RETURN

END
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C DRIVER FOR LP ROUTINES

SUBROUTINE SOLVER

IHPLICIT REAL*8(A-H/O-Z)
INTEGER SIZE/ SIZEl /XBASIS/YBASIS
REAL*8 ¡NV

coltl,t0N /LINPCO/
1 BOUND ( 1 56), C (156), INBASE ( 1 5ó), p Iv( 1 56), x( 156),y Ac (5f),
28(156),G ( 1 5ó),GR ( 1 56), ISEF F (1 5 6),s(156),sLACK( 1 56), y (56),
3 INV( 1 30/ 1 30) / XBAS I S( 1 30),XR( 130) / YBASI S ( 1 30), yR( 1 30) /
4 ToL(8) / BIG/ DRMR/ INREV/ IR/
ó IRl.lAX/ ISBIG/ ISDONE/ ISTATE/ ITR/ ITRl,tAX, Lt/
7 ¡IARKI / I'IARKK/ l,tAx¡t, I|AXN/ HNOll, HORE/ ËOREPR/

8 ¡lxsIzE/ N, NEGINV, NEGROII/ NEt¡x/ NUl,tsLK, oBJ/ R/
9 sIzE , slz9l , sHALL/ XKPOS, yAllINc, NEt,ty, ISBND

COI'IHON /ERRORS,/ ERR

ERRl =ERR

10 CAL,L DOANLP

IF(ISTATE.GT.l) GO TO 40
CALL CHACC

IF(ISTATE.EA.1) GO TO 20
IF(IR.GE.IRÍ'IAX) GO TO 40

C IF I.IE COI'IE OUT CLEAN OR SCREI¡ UP TI¡ICE IN A ROII IN THE SAi{E PLACE
C (I.E. SAIIE ERROR > TOLERANCE) THEN EITHER IT I,IORKED OR IIE'LL
C NEVER DO ANY BETTER SO OUIT NOI.' ALREADY

IF(ERR.EO.ERR1 .OR. ERR1.EO.-1.) GO TO 30
CALL REVERT

I STATE=1 1

ERRl=-1.
G0 TO 10

20 ERR=O.

3O ISTATE=1

40 RETURN

END

C THESE ROUTINES RESOLVE THE LP I.JITH TIODIFIED COEFFICIENTS.
C IF YOU LOOK HARD ENOUGH THEY ARE ALL IIADE UP OF PARTS OF

c LAND AND potJELL RoUTINES, SO I'LL 8E BRIEF
SUBROUTINE CHGA

II.IPLICIT REAL*8(A-H/O-Z)
C PIV CONTAINS CHANGES TO NEIIY'TH ROI.' OF A }IATRIX

INTEGER SIZE/ SIZEl /XBASIS,YBASIS
REAL*8 INV

cor'tltoN /LINPCO/
1 BOUND ( I 56) / C (156), INBASE ( 1 5ó),p tu (156r,x(1 5ó), yAc ( 1 5ó),
2B(1 56),G ( I 5ó) / GR ( 1 5ó), I SEF F ( 1 5 6),5(56),SLACK( 1 56), y (156),
3 INV ( 1 30/ 1 30) / xBAS I S (1 30), XR ( 130), yBAS I S ( 1 30), yR( 1 30),
4 TOL(8),BIG,DRIVER/INREV,IR,
ó IRilAX/ ISBIG/ ISDONE/ ISTATE/ ITR/ ITRttAX/ t{,
7 IIARKI/ tilARKK/ l{AXll, llAXN, t{NOll/ lloRE, l{oREpR/
E litxslzEt N, NEGINV, NEGROH, NE['X/ NUilSLK, OBJ/ R/
9 sIzE/ SIZEl / SlilALL/ XKpOS/ yAllINc/ NEUy, ISBND

coilt'toN / AREF / AA(ó00), JCoL(ó00) / IROr,¡(157),HAXA
DIHENSION PTVA(30)

IF(}IOREPR.GT.O) CALL IPRINT
TOL1=T0L(1)



c

c

t46
T0L4= T0L (4 )

IY=NE!lY

K1=IROtl(IY)
K2=IROH(IY+1)-1

UPDATE BASIC COLUTINS

K3=K2-K1+1

D0 5 K=1,K3

P IVA ( K)=P IV ( K)

5 PIV(K)=0.
10 D0 100 K=K1,K2

NEt¡X=J C0L ( K)

INB= INBASE ( NEI.IX )

DELTAA=PIVA(K-K1+1 )

IF(DABS(DELTAA).LT.SI'IALL .OR. INB.LE.O)
THESE SHENANIGANS ARE TO AVOID CHANGING

THROUGH THE LOOP AGAIN

PIVA(K-K1+1 )=0.
AA ( K) =AA ( K) +DELTAA

IF(ISEFF(IY).EO.O) GO TO 1OO

XNEt¡=XR ( INB)

YAI'I I NC=DELTAA*Y ( IY)
I F ( DABS(YAIIINC) . LT. T0L4) YAI'Í INC=0.

CALL NEI.IVEC

IF(DABS(GR(INB)).GT.TOL1) GO TO 70

G0 TO 100

AA(K) TIJICE

c

c

c

c

t.,HEN I.'E GO

COP-OUT (RESTART FROI'I BEGINNING)

I STATE=0

G0 TO 110

R=XNE}I/GR ( I NB)

D0 80 L=1,SIZE
I F (DABS(GR(L) ) . LE. SI'IALL) GR( L)=0.
NEl,lY=INB

CALL CHBSIS

INREV=1

I STATE=1 0

CALL DOANLP

IF(¡STATE.GT.1) GO TO 110

NEt' SOLUTION ltAY HAVE I'|ADE SO¡|E ñORE CoLUi'|NS BASIC/ S0 START

FROI{ BEGINNING AGAIN SO AS NOT TO LEAVE ANY OUT.

lIE.LL EVENiUALLY STOP i.IHEN I.IE CYCLE THROUGH t.JITHOUT FINDING

ANY NEI.I BASIC COLUI.INS TO CHANGE

G0 TO 10

CONT I NUE

YAtlINc=0.
NEtIX=0

NEGR0t,=0

N EG I NV=O

IYEFF=ISEFF(IY)
SLKNEI,,=B ( IY)
CHANGE NON-BASIC COLU¡INS

D0 20 K=K1lKz

J=JcoL(K)
DELTAA=PIVA(K-Kl+1 )

100
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IF(DABS(DELTAA). LE. SIIALL) GO TO 20

INB=INBASE(J)

IF(INB.GT.O) GO TO 20

AA ( K) =AA ( K) +DELTAA

IF(IYEFF.EO.O) GO TO 20

YACJ=YAC ( J )+DELTAA*Y( IY)
IF(DABS(YAcJ). LT. TOL/+) YACJ=0.

YAC(J)=YACJ

IF(INB, EO. -1 ) YACJ=-YACJ

c L00K FoR A VARIABLE T0 BRING HOI|E T0 THE BASIS, DEARIEI

IF(YACJ.GE.YAI{INC) GO TO 20
YAll I NC=YACJ

N EflX=J

20 SLKNEtI=SLKNEtI-X( J )¡tAA(K)
IF(NEttX.NE.0) ISTATE=12

IF(DABS(SLKNEt'l). LT. TOL(2) ) SLKNET'I=O.

SLACK( IY)=SLKNEH

SI=S( IY)
IF(IYEIF.EO.O .AND. (SI*SLKNEU' .GT.O. .OR. SLKNEt.I.EO.O.)) GO TO óO

IF(IYEFF.NE.O .AND. SLKNEt,I .EO.O. ) GO TO 60

¡F(IYEFF.NE.O) GO TO 30

C OOPS] I.'E !,IADE A FORI'IERLY INACTIVE CONSTRAINT INFEASIBLE
N EG RO!¡= I Y

I STATE=1 1

G0 T0 60

c RETURN SLACK 0F ACTM CoNSTRAINT T0 ZERo/ By PRETENDING

C TO CHANGE B INSTEAD]

3O R=SLKNEt,I

NEIIY=IY

CALL CHGB

R=0.

ó0 IF(ISTATE. EO. 11 ) YAIIIINC=0.

IT(ISTATE.NE. 1) CALL SOLVER

110 IF(I'IOREPR.GT.O) CALL IPRINT
RETURN

END

c

SUBROUTINE CHGB

II,IPLICIT REAL*8(A-H/O-Z)
C B VECTOR HAS ALREADY BEEN CHANGED; DELTA B IS IN PIV

INTEGER SIZE, SIZEl /XBASIS/YBASIS
REAL*8 INV

cot'rH0N /LINPC0/
1 B0UND ( 1 5ó), C<156>, INBASE ( 1 56), p IV( I 5ó),X( 1 5ó) /yAC ( 1 5ó),
2B( 1 5ó), G ( 1 56), GR( 1 5ó) / I SEF F ( 1 5ó) / S (1 5ó) / SLACK(156),y (56),
3 INV ( 1 30/ 1 30 ) / XBAS I S ( 1 30), XR ( 1 30), YBAS I S ( 1 30), yR ( 1 30),
4 ToL(8),BIG,DRMR,INREV, IR/
6 IR¡|AX/ ISBIG/ ISDoNE/ ISTATE, ITR/ ITRHAX/ I'1,

7 ITIARKI / IIARKK/ llAXll/ llAxN/ llNOll/ lloRE/ HOREpR/

8 ilxslzÊ.t N, NEGINV/ NEGRoH/ NEUX/ NUI{SLK/ OBJ, R/

9 sIzE/ sIzE1, sl{ALL/ XKPoS/ yAìtINC/ NEtJy, ISBND

c0¡il'r0N / AREF / AA(ó00)/ JC0L(ó00), rRoLt(157),ilAXA
IF(HOREPR.GT.O) CALL IPRINT

TOL1=TOL(1 )
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ToL2=ToL (2 )

C HOI.I BAD IS I'IOST INFEASIBLE VARIABLE OR CONSTRAINT? (t,IILL BE

C NEGATIVE IF TNFEASIBLE, O OTHERI.'ISE)

H0t¡NEG=0.

C IIHICH VARIABLE IS INIEASIBLE
NEG I NV=O

C I'IHICH CONSTRAINT IS INFEASIBLE
NEGR0tl=0

c

C CHAI{GE BASIC VARIABLES

DO 20 K=lzSIZE
XRK=X R ( K)

C I.IE I.JERE CALLED FROI.I CHGA

IF(NEI.IY. EA.O) GO TO 5

IYEFF=ISEFF(NEI.IY)

XRK=XRK+R* INV(K/ IYEFF )

G0 T0 12

5 D0 10 L=1,SIZE
I=YBASIS(L)
DELBI=P¡V(I)
IF(DABS(DELBI).LT.TOL2) GO TO 1O

XRK=XRK+DELBI* INV (K, L)
1O CONTINUE

12 IF(DABS(XRK). LE.T0L1 ) XRK=0.

IF(DABS(XRK-XR(K)).LE.SI'IALL) GO TO 20
XR ( K) =XRK

J=XBASIS(K)

X(J)=XRK

I F (XRK. GE. HOI.INEG) GO TO 15

HOI,INEG=XRK

NEG I NV=K

C DRIVER=1 üEANS INCREASE VALUE OF XR(K) .COS IT'S NEGATIVE

DRIVER=1.0

G0 T0 20

15 BOUNDJ=BOUND(J)

IF(DABS(BOUNDJ-XRK). LT.TOL1 ) XRK=BOUNDJ

IF(BOUNDJ-EA.-1. .OR. BOUNDJ-XRK.GE.HOI,'NEG) GO TO 20
HotlNEG=B0UNDJ -XRK

NEG I NV=K

C DECREASE XR(K) ICOS IT'S ABOVE ITS BOUND

DRIVER=-1.0

20 CONTINUE

c

C CHANGE SLACK VARIABLES

D0 30 I=1,1'l

IF(ISEFF(I).NE.O) GO TO 30
SLKI-B( I )

LAST=IRotl( I+1) -1
ISTART=IROI.I(I)

DO 35 LOOK=ISTART/LAST

J=J C0L ( L00K)

35 IF(INBASE(J).NE.O) SLKI=SLKI-AA(LOOK)¡tx(J)
IF(DABS(SLKI). LE. TOL2) SLKI=0.
SLACK(I)=SLKI
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IF(NEGINV.NE.O) GO TO 30

SI=S(I)
ABS LKI =DABS ( SLKI )

IF(SI.NE.O. .AND. ST*SLKI.GE.HO!'NEG .OR. SI.EO.O. .AND. -ABSLKI

1 . GE. HOI,JNEG ) GO TO 30

HOI,,NEG= -ABSLKI

NEGR0!l= I
30 CONTINUE

IF(NEGINV.GT.O .OR. NEGRO!I.GT.O) ISTATE=11

IF(I{OREPR.GT.O) CALL IPRINT

RETURN

END

SUBROUTINE CHGC

II.IPLICIT REAL*8(A-H/O-Z)
c C VECToR HAS ALREADY BEEN CHANGED; DELTA C IS IN PIV

C NOT SURPRISINGLY/ THIS ROUTINE LOOKS A LOT LIKE THE DUAL OF CHGB

INTEGER SIZE, SIZEl /XBASIS,YBASIS
REAL*8 INV

cor'rHoN /LINPC0/
1 BoUND ( 1 5ó), C(56) / INBASE ( 1 5ó), P M 1 5ó), X( 1 5ó), YAC ( 1 56),
28(56),G(156),GR ( 1 5ó), I SEF F (',l 56), S ( 1 5ó), SLACK(1 5ó),Y (56),
3 INV( 1 30, 130),XBAS I S ( 1 30), XR( 130), YBAS I S ( 130),YR(130),
/r TOL(8),BIG,DRMR/INREV,IR,
ó IRI'IAX, ISBIG, ISDONE/ ISTATE, ITR/ ITRI'IAX/ I'I/

7 IIARKI / l,lARKK/ I'lAXll/ I'IAXN/ llNOH, I't0RE/ ll0REPR/

8 l4xsIzE, N, NEGINV/ NEGRO[,, NE[,X, NUI'ISLK,oBJ/ R/

9 SIZE/ SIZEl / St'lALL, XKPOS/ YAI'IINC/ NEt¡Y/ ISBND

co¡t1,t0N / AREI / AA(ó00), JCOL(600), IRolt(157),ilAXA
IF(I'IOREPR.GT.O) CALL IPRINT

T0L3=T0L(3 )

TOL4=T0L (4 )

YAH I NC=0.

NEtIX=0

c

C CHANGE DUAL VARIABLES

D0 20 L=1,SIZE
YRL=YR ( L)
D0 10 K=1,SIZE
J=XBASIS(K)

DELTAC=PIV(J)

IF(DABS(DELTAC).LT.TOL4) GO TO 1O

C UPDATE DUAL BASIC VARIABLES

YRL=YRL+DELTAC¡t INV (K/ L)

1O CONTINUE

IF(DABS(YRL). LT.ToL3) YRL=0.

IF(DABS(YRL-YR(L)).LE.SI{ALL) GO TO 20

YR ( L) =YRL

I=YBASIS(L)
Y( I )=YRL

YRL=YRL*S ( I )

IF(YRL.GE.YAI.IINC) GO TO 20

C DUAL VARIABLE YR(L) IS DUAL INFEASIBLE

C NEt.IX > N I'IEANS TIAKE YR(NEI.IX-N) DUAL FEASIBLE

YAI4I NC=YRL
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NEI,X= I+N

20 CONTINUE

c

C CHANGE DUAL SLACKS

Do 30 J=1,N
30 IF(INBASE(J).LE.O) YAC(J)=.C(J)

DO 50 L=l/SIZE
YRL=YR ( L)
I=YBASIS(L)
ISTART=IROII(I)
LAST=IRotJ(I+1)-1
DO 40 LOOK=ISTART/LAST

J=J COL ( LOOK)

40 IF(INBASE(J). LE.0) YAC(J)=YAC(J)+YRL*AA(LOOK)
50 CONTINUE

D0 ó0 J=1,N
INJ=INBASE(J)
IF(INJ.GT.O) GO TO óO

YACJ=YAC ( J )

IF(DABS(YAcJ ). LT. T0L4) YACJ=0.

YAC(J)=YACJ

IF(NEI.'X.GT.N) GO TO 60

IF(INJ. EO. -1 ) YACJ=-YACJ

IF(YACJ.GE.YAI'IINC) GO TO óO

YAI'IINC=YACJ

C PRII'IAL VARIABLE X(J) SHOULD INCREASE TO REACH OPTII.IALITY

C (DUAL FEASIBILITY)
NEtIX=J

óO CONTINUE

IF(NEtlX.NE.0) ISTATE=12

IF(¡IOREPR.GT.O) CALL IPRINT

RETURN

END
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SUBROUTINE OUTPUT

c

C THIS ROUTINË CALCULATES THE OBJECTIVE FUNCTION VALUES

C AND GIVES THE OUTPUT FROI'I THE PROGRAI'I

c

II'tPLICIT REAL*8 (A-H/O-Z)

CHARACTER*3 II.IONTH

REAL*8 INV/KTIIN

INTEGER SIZE,SIZEl /XBASIS/YBASIS
colil.toN/Iol I0IN/ I00uT
cot'il'toN/L I NPc0/

l BoUND ( 156) / C ( 15ó) , INBASE ( 156) ,ptU (56) ,X<156) ,y Ac(156> ,
2B<156),c<15ó), GR ( I 56), I SEF F ( I 5ó) / S ( 1 5ó), SLACK( 1 5ó) / y (56>,
3 INV ( 130/ 1 30) / XBAS IS ( 1 30), XR ( 130) / YBASIS ( 130) / yR( 1 30),
4 ToL(8)/BIG/DRMR/INREV, IR,
ó IRHAX/ ISBIG/ ISDONE/ ISTATE, ITR/ ITRIIAX, II/
7 ¡IARKI/ I'IARKK/ llAXll/ I'lAXN, ilN0l,,, l{ORE/ I.IOREPR/

8 llxsl zE, N, NEGINV, NEGROIJ/ NEHX/ NUI'ISLK/ OBJ/ R/

9 SIZE/ SIZEl/ SI'IALL/ XKPOS/ YA¡IINC/ NEtiJY/ ISBND

c0t'1il0N/DATA/ H START, LASTil/ NSTR I p, SCALE/ ST0 I N, S I NTER,

1 sTovA(12 ) / srAsro/ sp I c0( 1 2), 0c0( 12) / ENLo (2, 12), ENUÍ (2, 12),
2Dps ( 12 ), tLo|'/. <12) |FL0B0 ( 1 2) / ESTFL( I 2), STilAX( 12), STlt IN ( 1 2) /
3HE (2,',1 2), C J (2), EE (2,'.12), Et (2, 12), EEt| (2, 1 2), Êilt (2, 1 Z),
4EEL(12>, EtL<12), CEE (2. 12), CEt (2, 12>

cot|ilrt0N/¡tA I N/ I TER¡lx/ I pEEK/ VARyf{X, BETTER / VARFAC / VAR¡t I N/ VAR F Cl
c01'il't0N/RESULT/ ST0( I 2),GFp ( 12) ¿oBJ ECT, oBJ 1 / ITER, STOCA ( 12)
colil'roN / AREE / AA(ó00)/ JC0L(600), IR0t'(157),HAXA
coilt40N /HoNTH/ IltoNTH(12)
CO¡ITION/CHANGES/ PROCHA

c

C I.¡RITES THE HEADING TO THE OUTPUT FILE
c

t,,RITE (ó,900) ITER, ITR,STOIN,VARytitX
9OO FORHAT(,//2X, I ITERATION ' , I3l ' SI}IPLEX ITERATIONS' , I5,

1 | INITIAL ST0RAGE' ,t7.1, 'VARyt{Xr ,F6-1)
t,RITE(6/901 )

go',l F0RllAT(//7X,t*t,1OX,'THE RESERVoIR DATA"1OX,'*r/5X)
t{R I TE (6/ 905 )

9O5 FORÍ{AT(I HONTH * INFLOI.' GEN.FL.POI.' GEN.FL.SP TOT-OUTFL'/
1I ON EX OFF EX ON IN OFF IN 

"2I HE ON HE OFF END STAGE'

2I I.IONTHLY BENEF IT' )
0BJ ECT=0.0

J=1

BEG=STO I N

c

C THE LOOP TO CALCULATE I,IONTHLY BENEFITS AND THE

C CANDIDATES FOR STORAGE (STOCA(].ION)) AND RELEASE (GFP(I,ION))

C EST¡TIATES

c

D0 100 llN=llSTARTILASTlil

I'l0N=¡lN

I F (ll0N. GT. 12) l.l0N=ll0N-12

6FP(tlON)=X(J)
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ST0CA(troN)=X( J+8)
BEIIO=0.0

IJ=J-1
D0 70 KJ=1/9

70 BEilo=BEHO+C( IJ+KJ)¡kX( IJ+KJ)
BEHO=BEt'tO- STI't I N ( titoN ) * c ( J+8 )

ZB=X(J)+X(J+1)
STAGE=STOCA ( I,ION ) /STASTO

t,R I TE (6, 902 ) IlloNTH (l'loN ), FLot, ( HoN ) / GFp ( HoN) / X( J+1 ) .ZB,
1 X ( J+4), X ( J+5 ), x ( J+6),X ( J+7 ),x( J+2),x( J+3),STAGE, BEt'to

902 FoRllAT(2X,A3,' rr, tF6-2,lX,F6.?,4X,F6-2,4X,F6.2,4X,
1 t 6.2, 4X, F 6. 2, 1X, F 6.2, 4X, F 6. 2, 4X, F 6. 2, 4X, F 6. 2, 4X, t7 . 2 rzx,F 1 O. 2)

J=J+9
c

C CALCULATION TO INSURE THAT THE CANDIDATES FOR THE NEII RELEASE

C ESTI}IATES (GFP(IION)) DO NOT D¡FFER I{ORE THAN PROCHA TI}IES FRO}I

C THE ALREADY ACCEPTED ESTII.IATES (ESTFL(TION) )
c

PROI'IENA=G F P ( ¡ION ) - ESTF L ( IION )

CHANGE=DABS ( PROI'IENA)

VALTO=CHANGE /ESTF L ( I'ION )

I F (VALTO. GT. PR0CHA) PROI4ENA=ESTF L ( ltON ) *PROCHA¡t CHANGE/pROilENA

G F P ( tloN ) =PRol'IENA+EsTF L ( l'l0N )

sT0cA ( t40N ) =BEG+ FLoft (t't0N ) -c t p ( 1,t0N )

IF(STOCA(HON).LT.ST¡IAX(I{ON)) GO TO 75

ST0CA ( ¡loN )=STù|AX ( I'loN )

GFP (I'loN)=BEG+FLotl (ü0N) - ST0CA (HoN)

I F (G FP ( HoN ) . GT. F L0B0 (l'loN ) ) G F P ( I'loN ) = F L0B0 ( I'toN )
75 IF(STOCA(t,t0N).GT.STr'tIN(HON)) GO TO 77

ST0CA ( tloN ) =STtl I N ( I'l0N )

G F P ( llON ) =BEG+FLOt, ( l,lON ) - ST0CA ( tlON )

77 BEG=ST0CA(l'toN)

OBJ ECT=OBJ ECT+BEHO

1OO CONTINUE

c

c

t,RITE(ó/903) oBJECT

903 FoRMAT(2Xl'THE oBJECTM FUNCTION VALUE IS 
"F12.2)RETURN

END
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LAHD AIID POUELL ROUTIIIES

SUBROUTINE ADDCON

Il.IPLIC IT REAL*8(A-H/O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl/ XBASIS/ YBASIS

coHltoN /AREF / AA(600)/ JC0L(600), rRot,(157),!{AXA
cof.il'toN/LINPc0/

1 BoUND ( 1 5ó), C(156), INBASE ( 1 56) / p M 1 5ó),X (56),y AC(1s6),
28 <1 56), G (5ó ) / GR ( 1 56) / r SE F F ( 1 56 ) / S ( 1 5ó) / SLA CK(56),y (56) |
3 rNv( 130/ 1 30),xBAs I s ( 130), XR( 130) / YBASI S ('l 30), yR ( 1 30),
4 TOL(8)/BIG,DRMR/INREV/IR/
6 IRfiIAX/ IS8IG, ISDoNE, ISTATE/ ITR/ ITRIIAX, I'1,

7 I'lARKI, l'tARKK/ l{AXl'1, l,lAXN, l{NOU/ }lORE, llOREpR,

8 l,lxslzE, N, NEGINV, NEGRoi,,l/ NE[¡X, NUHSLK, OBJ, R,

9 sIzE/ sIzEl/ sHALL/ XKpoS, yAt{INC, NEt,y, ISBND

IF (SIZE1 .GT.I'IXSIZE) GO TO 40

I=NEIJY-SIZE
Do 10 L = 1, SIZE

INV(L/ SIZEl) = 0.0
10 INV(SIZE1, L) = 0.0

ISTART = IROtl(I)
LAST= IROH(I+1) - 1

D0 30 L00K = ISTART/ LAST

J = JC0L(100K)
IF (INBASE(J).LE.O) GO TO 30
K = INBASE(J)

AIJ = AA(LOOK)

D0 20 L = 1/ SIZE

20 INV(SIZEI, L) = INV(SIZEI, L) - AIJ * INV(K/ L)
30 CONTINUE

INV(SIZE1/ SIZEl) = 1.0
XR(sIZE1) = SLACK(I)
ISEFF(I) = SIZEl
XBASIS(SIZE1)=I+N
YBASIS(SIZE1) = I
YR(SIZE1) = 0.0
SIZE = SIZEl
SIZEl=SIZE1+1
IF (SIZE.GT. ISBIG) ISBIG = SIZE
NUHSLK=NUHSLK+1
NEt,Y = SIZE

G0 T0 50

40 ISTATE = 4

50 RETURN

END
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SUBROUTINE CHBSIS

IIIPLICIT REAL*8(A-H/O-Z)
REAL*8 INV

INTEGER SIZE, SIZEl, XBASIS/ YBASIS

col'rHoN/L I NPC0,/

1 BoUND ( 1 5ó) / C ( 1 5ó) / TNBASE ( 1 5ó), p IV( 1 56),X (56),y AC(156),
28 ('.156), G (15ó), GR ( I 5ó) / I SE F F ( 1 5ó), S ( 1 5ó) / SLACK(156),Y ( 56),
3 INV( I 30, 130), XBAS I S ( 1 30) / XR ( 1 30) /YBAS I S ( 130) / YR( 1 30),
4 TOL(8),BIG,DRIVER/INREV,IR/
ó IRHAX/ ISB¡G/ ISDoNE, ISTATE/ ITR/ ITRIÍAX/ I'1,

7 ltARKI, I'lARKK, I'lAXll, iIAXN/ l{N0H, l{0RE, l,l0REPR/

8 I'IXSIZE, N, NEGINV/ NEGRoI,/ NEI¡X/ NUIISLK,0BJ/ R/

9 SIZE ' SIZE'!, SI{ALL, XKPOS/ YAIIINC/ NEÌ.,Y/ ISBND

col'il'toN/IolI0IN/ I00uT
ITR=ITR+1
I'|oSNEG = 0

HoI,NEG = 0.0
XOFNEG = 0.0
DRITEItI = 0.0
TOLI = TOL(1)

IF (INREV.EA.1) GO TO 90

rF (R.EO.O.0) GO TO 40

D0 30 K = 1, SIZE

XR(K) = XR(K) - R * GR(K) * XKPOS

XXX = XR(K)

¡F (DABS(xxx).LE.ToL1) XR(K) = 0.0
J = XBASIS(K)

IF (J.LE.N) GO TO 10

XXX = XR(K)

I=J-N
SI = S(I)
IF(SI. EO.0.0.AND.XXX.GT.0.0.0R. SI. E8. -1 .0) XXX = -XXX

G0 T0 20

10 BOUNDJ = BOUND(J)

IF (DABS(BOUNDJ-XXX).LE.TOL1) XR(K) = BOUNDJ

XXX = XR(K)

IF (XXX.LE.BOUNDJ .OR. BOUNDJ.EO.-1.0) GO TO 20

XXX=BOUNDJ-XXX
20 IF (K.Ea.NEGINV) XOFNEG = XXX

IF (XXX.GE.HOIiINEG.oR.K.EQ.NEGINV) G0 TO 30

I'IOSNEG = K

DRITEI'I = 1.0
IF (XR(K).GE.0.0) DRITEI'I = -1.0
HOI.INEG = XXX

30 CONTINUE

IF (NEI.IY.NE. -1) GO TO 40

¡T = INBASE(NEt.IX)

INBASE(NEI,¡X) = -1

IF(IT.EO.-1) INBASE(NEt.,X) = O

IXOUT = NEI.IX

OBJ=OBJ.R*YAI'IINC
G0 T0 120

40 IXOUT = XBASIS(NEI,,Y)

IF (IXOUT.GT.N) GO TO 50
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INBASE(IXOUT) = O

I F (GR(NEt.IY)*XKPOS. LT. O. O. AND. NEt.IY. NE. NEGINV) INBASE( IXOUT) = -1

IF (NEIIY.EQ.NEGINV.AND.XR(NEIIY).GT.O.O) INBASE(IXOUT) = -1

50 IF (NEI.IX.GT.N) GO TO óO

IHOLD = INBASE(NÊI,IX)

INBASE(NEI.,X) = NEI,JY

60 XBASIS(NEI.IY) = NEI,JX

IF(NEI.,,X.GT.N) NUTISLK = NUIISLK + 1

IF (IXOUT.GT.N) NUHSLK = NUHSLK - 1

XR(NEllY) = R

IF (NEI,IX.LE.N) GO TO 70

I=NEI,X-N
IF (S(I).E4.-1.0) XR(NEtlY) = -R

GO TO 80

70 IF (IHOLD.EO.-1) XR(NEI.¡Y) = BOUND(NEIIX) - R

80 OBJ=OBJ-R*YAI'IINC
90 RR = 1.O/GR(NEIIY)

D0 110 L = 1, SIZE

rF (DABS(INV(NEr,rYlL)).LT.SHALL) GO T0 110

RL = INV(NEI.,Y/ L) ¡t RR

Do 100 K = 1, sIzE
INV(K/L) = INV(K,L) - RL * GR(K)

1OO CONTINUE

INV(NEtlY,L) = RL

IF (INREV.NE.l ) YR(L) = YR(L) - RL ¡I YAI.IINC * XKPOS

1 10 CONTINUE

12O IF (R.EO.O.O-OR.XOFNEG.LT.O.O.AND.NEI,'Y.NE.NEGINV) GO TO 130

NEGINV = ûIOSNEG

DRIVER = DRITEH

130 RETURN

END
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SUBROUTINE REVERT

I¡IPLICIT REAL*8(A-H,O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl/ XBASIS/ YBASIS

coHl'toN/IolIoIN/ IoouT
coHHoN,/L I NPCO/

1 BoUND (1 56) / C ( 1 56) / INBASE ( 1 56),p tV (156r,X( 1 56) / yAC ( 1 5ó),
28( 1 5ó) / G ( 1 56) / GR (1 56) / I SEF F ( 1 56) / S ( 1 5ó) / SLACK( 1 5ó),y (56r,
3INV( 1 30/ 1 30) / XBAS IS ( 1 30) / XR( 1 30), YBAS I S ( 1 30) / yR( 1 30),
4 TOL(8),BIG,DRIVER/INREV,IR,
ó IRHAX/ ISBIG/ ISDONE/ ISTATE, ITR/ ITRIiIAX, I.I/

7 llARKI, I'lARKK, I'tAXll/ llAXN, llN0t¿, l{0RE, l{0REPR,

8 IIXSIZE' N' NEGINV, NEGROI,, NEtlX, NUI{SLK,oBJ/ R/

9 SIZE/ SIZEl, SilALL, XKPoS/ YAI{INC/ NEl,¡Y, ISBND

9000 FORilAT (1X, zOX, 'REINVERTED AT ITERATIoN '/ 16)

IR = IR + 1

ITHOLD = ITR

INREV = 1

HOLD = STIALL

SftlALL = 0.0
T0L8 = ToL(8)
D0 20 K = 1, SIZE

10 IF (XBASIS(K).LE.N) GO TO 20

I=XBASIS(K)-N
L = ISEFF(I)
IF (K,EA.L) GO TO 20

XBASIS(K) = XBASIS(L)
XBASIS(L)=I+N
J = XBASIS(K)

IF (J.GT.N) GO TO 1O

20 CONTINUE

D0 40 K = 1, SIZE

IF (XBASIS(K).LE.N) XBASIS(K) = -XBASIS(K)

DO 30 L = 1, SIZE

30 INV(K/L) = 0.0
40 INV(K,K) = 1.0

D0 50 J = 1, N

IF (INBASE(J).NE.-1) INBASE(J) = 0

50 CONTINUE

D0 90 K = 1, SIZE

NEIIX = -XBASIS(K)

IF (NEt,IX.LT.O.OR.NEI.'X.GT.N) GO TO 90

60 CALL NEi,IVEC

NEIIY = 0

D0 80 KK = 1/ SIZE

IF (XBASIS(KK).GT.O) GO TO 80

ABDIF = DABS(GR(KK))

IF (ABDIF.LT.TOLS) GO TO 80

I F (NEI.IY. NE. O) GO TO 70

BEST=DABS(1.0-ABDIF)
NETJY = KK

G0 T0 80

70 ABDIF = DABS (1.0 - ABDIF)

IT (ABDIF.GE.BEST) GO TO 80
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BEST = ABDIF

NEI.,Y = KK

80 CONTINUE

IF (NEIJY. EO.O) GO TO 90

IHOLD = -XBASIS(NEIIY)

I F ( IHOLD. EO. NEI¡X) IHOLD = O

CALL CHBSIS

XBASIS(NElIY) = NEI.JX

IF (IHOLD.EA.O) GO TO 90

NEI¡X = IHOLD

co To 60

90 CONTINUE

NUTISLK = O

Do 110 K = 1, SIZE

J = XBASIS(K)

lF (J.GT.0) GO T0 100

I = YBASIS(K)

XBASIS(K)=N+I
NUIISLK=NUIISLK+1
G0 T0 110

1OO IF (J.LE.N) INBASE(J) = K

IF (J.GT.N) NUI'ISLK = NUI'ISLK + 1

1 10 CONTINUE

SI4ALL = HOLD

D0 120 K = 1, SIZE

xR(K) = 0.0
120 YR(K) = 0.0

D0 140 K = 1, SIZE

I = YBASIS(K)

J = XBASIS(K)

TC = 0.0
IF (J.LE.N) Tc = c(J)
TB = B(I)
D0130JJ=1rN

IF (INBASE(JJ).NE.-1) GO TO 130

TB = TB - BOUND(JJ) * A(I,JJ)
130 CONTINUE

D0 140 L = 1/ SIZE

XR(L) = XR(L) + TB ¡t INV(L,K)
YR(L) = YR(L) + TC * INV(K,L)
IF (DABS(YR(L)).LE.sllALL) YR(L) = 0.0
IF (DABS(XR(L)).LE.SI.IALL) XR(L) = O.O

140 CONTINUE

NEGINV = O

T=0.0
D0 180 K = 1, sIzE

XRK = XR(K)

J = XBASIS(K)

IF (J.GT.N) GO TO 1óO

IF (ISBND.EO.O) GO TO 150

rF (BouND(J).EA.-1.0) GO TO 150

IF (XRK.GT.BoUND(J)) XRK = BOUND(J) - XR(K)

150 IF (XRK.GE.T) GO TO 180

GO TO 170
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160 I=J-N

I F ( S( I ). NE. O. O. AND. XRK¡IS( I ). GE. T. OR. S( I) . EO. O. O. AND.

1 DABS (XRK)* ( -1 .0) . GE. T) G0 T0 180
17O T=-1.0*DABS(XRK)

NEGINV = K

DRIVER = 1.0
IF (XR(K).cT.0.0) DRIVER = -1.0

180 CONTINUE

I F (NUI.ISLK. GE. 1 ) CALL REDUCE

CALL CHSLCK

CALL ISOPT

ITR = ITHOLD

INREV = O

OBJ = 0.0
D0190J=1,N

IF (INBASE(J).EO.O) GO TO 190

OBJ = oBJ + X(J) ¡t C(J)
19O CONTINUE

c lJRITE (IoOUT/ 9000) ITR

RETU RN

END
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SUBROUTINE CHACC

II'IPLICIT REAL*8(A-H/O-Z)
REAL*8 INV

INTEGER SIZE/ SIZE1, XBASIS/ YBASIS

co¡ilt0N/L I NP C0l
1 BoUND ( 1 5ó), C<156) / INBASE ( 1 5ó), p IV( 1 56) / X ( 1 5ó) / yAC ( 1 5ó),
2B(156),c ( 1 56) / GR( 1 56), I SEFF (1 56), S ( 1 56), SLACK( 1 56) / y (156),
3 I NV ( 1 30, 1 30), XBAS I S ( 1 30), XR ( 1 30), YBAS I S ( 1 30), yR ( I 30),
4 TOL(8),BIG,DRIVER/INREV/IR/
ó ¡RllAX/ ISBIG/ ISDoNE/ ISTATÊ/ ITR/ ITRI'IAX, lt/
7 HARKI/ ñARKK/ l.tAxl't, I'iAXN, I'lNot,, iloRE/ l,tOREpR,

8 l,lxs I zE, N, NEG INV/ NEGRoll, NEIJX, NUHSLK, oBJ / R/

9 sIZE/ SIZEl/ SHALL/ XKPOS, YAl{INC, NEUY, ISBND

cot'lHoN/IolIoIN/ Ioour
c0t4H0N / AREF / AA(600),JCOL(ó00),IRoU(157),ltAXA
COÍ'I¡ION /ERRORS/ ERR

9000 F0Rt'tAT (1H0/ 'UNACCEPTABLE ERRoR OF 
"F16.8, 

I FOUND IN B-SLACK-AX O

1 F CONSTRAINT'/ I6)
9OO4 FOR¡|AT (1H0,'UNACCEPTABLE RELATTVE ERROR OF ' ,F16.8, I FoUND IN B-S

lLACK-AX OF CONSTRAINT',Iól1H / ITHE ABSOLUTE ERROR IS ',F1ó.8,' AND

2 B(I) IS '/F16.8)
9008 FoRilAT (1H0,'UNACCEPTABLE ERROR OF 

"F16.8, 
I FoUND IN YA-C 0t BASI

1C VARIABLE I,Ió)
9012 FORI.IAT (1HO/ I UNACCEPTABLE RELATIVE ERROR OF 

"T16.8, 

¡ FOUND IN YA-

1c 0F BASIC VARIABLE, 

"16/1H 
/',THE ABSoLUTE ERRoR IS ',,F1ó.8,' AND

2 c(J) IS ' , F1ó.8)
IF (NUI'ISLK.EO.O) GO TO 1O

D0 5 K = 1, SIZE
IF (XBASIS(K).LE.N) GO TO 5

I=XBASIS(K)-N
SLACK(I) = XR(K)

5 CONTINUE

10 D020J=1/N
IF (INBASE(J).LE.O) GO TO 20

YAC(J) = -C(J)
20 CONTINUE

T0L2 = T0L(2)
TOLó = T0L(6)
D0 40 I = 1, llN0l,l

ISEFFI = ISEFF(I)
YI = Y(I)
BAXSL=B(I)-SLACK(I)
ISTART = IROtt(I)
LAST=IRotl(I+1)-1
DO 30 LOOK = ISTART, LAST

J = JCOL(LOoK)

INJ = INBASE(J)

IF (INJ.EO.O) GO TO 30

AIJ = AA(LOOK)

BAXSL=BAXSL-X(J)*AIJ
IF (INJ.GT.O.AND. ISEFFI.NE.O) YAC(J) = YAC(J) + YI*AIJ

30 CONTINUE

. ERR = DABS(BAXSL)
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IF (ERR.GT.TOLz) GO TO óO

ABSB = DABS(B(I))
IF (ABSB.LT.1.0) ABSB = 1.0
IF (ERR / ABSB .GT. TOLó) GO TO ó5

40 CONTINUE

T0L7 = T0L(7)
TOL4 = T0L(4)
D0 50 J = 1, N

IF (INBASE(J) .LE. O) GO TO 50

ERR = DABS(YAC(J))

IF (ERR .GT. TOL4) GO TO 70

ABSC = DABS(c(J))
IF (ABSc.LT.1.0) ABsc = 1.0
IF (ERR / ABSC .GT. TOLT) GO TO 75

50 CONTINUE

c0 T0 90

60 URrrE( IooUT/9000) ERR/ I
G0 T0 80

65 RELERR = ERR / ABSB

t,RITE (I00UT, 900/+) RELERR, I/ ERR, ABSB

GO TO 80

70 ttRITE (IoouT, 9008) ERR, J

co r0 80

75 RELERR = ERR / ABSC

I,'RITE (IOOUT/ 9012) RELERR/ J/ ERR, ABSC

80 ISTATE = 7

90 RETURN

END
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SUBROUTINE DOANLP

II'IPLICIT REAL*8(A-H,O-Z)
REAL¡t8 INV

INTEGER SIZE/ SIZE1, XBASIS/ YBASIS

cot'il'toN/LINPc0/
1 BoUND ( 1 56), CQ56), INBASE ( 1 56) / p IV( 1 5ó), X (156),y AC<156),

2B( 1 5ó) / c ( 1 5ó) / GR ( 1 56), ISEFF ( 1 56), S(1 56), SLACK( 1 5ó),y (156),
3 INV( 130/ 1 30) / XBAS I S ( 1 30), XR ( 1 30), YBAS I S ( 130) /yR(130) /
4 TOL(8),BIG,DRIVER/INREV/IR/
ó IRt'tAX/ ISBIG, ISDONE, ISTATE, ITR, ITRI|AX, t't,

7 ITIARKI/ I'IARKK/ I'lAXll/ ¡IAXN/ llN0ll/ l{0RE/ }l0REPR/

8 llxslzEt N, NEGINV/ NEGRoLI, NEIIX/ NUI'ISLK/ oBJ/ R/

9 sIzE/ sIzEl, silALL, XKPOS, YAt{INC, NEI'Y, ISBND

cot'ilrtoN/I0lI0IN/ I00uT
IF (ISTATE.EO.O) CALL FIRSTB

IF (ISTATE.EO.11) GO TO 20

IF (ISTATE.EO.12) GO TO 50

1O CALL CHSLCK

IF(I.IOREPR.GT.O) CALL IPRINT

IF (ITR.LE.ITRTIAX) GO TO 20

ISTATE = 5

G0 T0 80

20 IF (NEGROi.'.EO.O .AND. NEGINV.EA.O) GO TO 40

IF (NEGINV.NE.O) GO TO 30

NEI.IY=NEGROI.I+SIZE
DRIVER = 1.0
IF (SLACK(NEGROI,I).GT.O.O) DRIVER = -1.0
NEGINV = SIZEl
CALL ADDCON

IF (ISTATE.EQ.4) GO TO 80

30 CALL SEEKX

IF (NEtJx.NE.0) G0 T0 50

ISTATE = 2

G0 TO 80

40 CALL ISOPT

IF (NEI.IX.NE.O) GO TO 50

ISTATE = 1

G0 T0 80

50 CALL NEI.IVEC

CALL SEEKY

IF (NEi.IY.NE.O) GO TO óO

ISTATE = 3

G0 T0 80

óO IF (NEI.'Y. LE. SIZE) GO TO 70

CALL ADDCON

¡F (ISTATE.EO.4) GO TO 80

70 CALL CHBSIS

CALL REDUCE

G0 TO 10

80 RETURN

END

REAL*8 FUNCTION A(I,J)
II'IPLICIT REAL*8(A-H/O-Z)
col'iltoN / AREE / AA(ó00), JCOL(ó00)/ IRoH(157),HAXA
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co¡tHoN,/IolIoIN/ I00uT
ISTART = IROI{(I)
LAST= IROTJ(I+1) - 1

A=0.0
DO 1 LOOK = ¡START/ LAST

JHERE = JCOL(100K)

IF (JHERE.LT.J) GO TO 1

IF (JHERE.GT.J) RETURN

A = AA(LOOK)

RETURN

1 CONTINUE

RETURN

END
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SUBROUTINE IPRINT

IIlPLICIT REAL*8(A-H/O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl/ XBASIS/ YBASIS

co¡tiloN /LINPC0/
1 BOUND ( 1 5ó), C (156),INBASE ( 1 56), pIV( 1 5ó),X( 156),y AC(J56),
28(156) /G( 1 56),GR( 1 56) / ISEFF ( 1 56), S ( 1 5ó), SLACK( 1 56) / y (56),
3 I NV ( 1 30, 1 30), XBAS I S ( 1 30), XR ( 1 30), YBAS I S ( 1 30), yR ( 1 30) /
4 TOL(8) / BIG, DRMR/ INREV, IR/
ó IR¡lAX/ ISBIG/ ISDONE, ISTATE/ ITR, ITRI,|AX/ l{/
7 l{ARKI, I'tARKK/ llAX¡t/ I'lAXN, llN0t.,/ l{oRE, t{oREpR/

I l,lxslzE, N, NEGINV/ NEGROT / NEUX, NUI{SLK, OBJ/ R/

9 sIzE, sIzEl/ st'tALL/ xKpos, yAilINc/ NEtly, ISBND

col'tHoN / AREF / AA(600), JCOL(600), IROt'(157),itAXA
coHt'toN/I0lI0IN/ I00uT

8000 FoRHAT ('0',' THE SIGN(I) VECToR INDICATES THE SIGN OF THE I-TH CO

zNSTRAINT/ 0 FOR EQ/ 1 FoR LE/ -1 FoR GE.')
9000 FoRt'tAT ('1"'NON-ZERo ELEHENTS OF THE A I{ATRIX, FoLLOI'ED By THEIR

lCOLU¡IN LABELS....I)
9001 FoRtrtAT <,O, ,12(4x,t6))
9OO2 FORÌ4AT(1X/ 12F10.3)
9003 FoRltAT (1X, 12(4X,t6))
9OO4 FoRHAT ('0','THE FoLLoUING VECToRS SHot' THE STARTING POINTS OF THE

1 SUCCESSIVE ROIJS OF A IN THE ABOVE LIST OF THE NON-ZERO ELEI'IENTS. ¡

2t..,)
9005 FoRl'tAT ('0', 24(I5))
900ó FoRHAT (X, 24(15))
92OO FOR¡|AT ('0,, 'OBJECTIVE 

"F22.8)9204 FoRl'tAT (r0'/ '.I8X, 'J '/ 10(3Xl13r4X>)
9205 FORt'lAT('O't 18X, 'I '/ 10(3X/I3,4X))
9208 FORHAT ('0', 11X, tC VECToR 

" 
1O(F9.1, 1X))

9212 FoRl'lAT('O" 7X, TBOUND VECToR 

" 
1O(F9.4,1X))

9220 FoRHAT (f0', 11X, tX VECToR 

" 
1O(F9.4, 1X)>

9228 FoRHAT <'0" 11X, sHy*A-C,1X,10(F9.2/1X))
9232 FOR¡{,AT (/ / l)
9234 FoR¡tAT ('O" 12(6X,13, 1X))
9236 FoRtttAT ('O" 12(F9. 1/1X))
9238 FoRHAT (,0', 12(F9.0,1X))
9240 FORHAT (,0" 12(F9.1,1X))
9244 FORHAT ('O" 12(F9.2t1X>)
9300 FoRì|AT ('0', 11X, ,B VECToR t, 1O(F9.1/ 1X))
9304 FoRl,tAT (tO' , 15X, 'SIGN ', 10(F9.0,1X))
9308 FoRl'tAT (,0', 11X, 'Y VECTOR 

" 
1O(t9.4,'lX>)

9312 FoRltAT ('0" 14X, ' B-AX 

" 
1O(t9.4,1X))

9101 FoR¡|AT <,1' , 12X, I CoLUllN | , 7(6X,12,6X))
9108 FoRHAT ('0" 12X, 'YBASIS 

" 
7(5X, 13, 6X))

94',12 FORHAT ('O" 16X, 'yR ', 2X, 7(F12.4, 2X))
9416 FoRllAT ('0', ,Roll xBs 

" 
4x, 'xR', 5x, 'INVERSE I{ATRIX'/)

9420 FoRltAT (2(13,1X), 8(F12.4, 2X))
9124 FoRt4AT (/ / /5X, 8(5X, I3, óX))
9428 FoRl.lAT ( ,0, , 5X/ E(5X, 13, óX) )
9432 FoRt4AT ('O' , 5X, 8<F12.4, 2X)>
9436 F0R1'lAT ('0', 'RO[,lrl 5Xl 'INVERSE ¡IATRIX CONTINUES'/)
9438 FORilAT (1X, t3, 2X, 8G12.4, 2X))
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9500 FoRl'tAT (r1¡)
9504 FoRl'lAT(,0'/' BlGt,E12.4, r/ DRIVER' ,F12.1," INREV' ,I12," I

1R' ,112,' , IRI'IAXr ,I12,t, ISBND' ,Ij2/1H / r ISDONE, ,l12tt, ISTATE' /I
212r' , rTRt ,112, ', ITRIIAX' ,r12r' , |l' ,112r' / IIARKI' ,112/1H
3r' l.lARKK' ,I12r', I'IAXA' ,112r' / I'IAXH, ,!12r' / HAXN' ,I1Zr,, l,lo

4RE' ,!12t | ¿ HXSIZE' ,112/1H ,' N' ,712t ', NEGINV' ,l12tt, NEGROII' /
5112," NEIIX' ,112,' / NEI¡Y' ,112," NUilSLK' ,112/1H ,' R',
6F12.5,t, SIZEr,l12,,, Sl,lALL',812.4, ', TOL(1)t 1812.4,t, TOL(z)t I
7812.4, ', ToL(3) | ,812.4/1H / ¡ToL(4)' ,E12.4, ¡/ TOL(5)' ,E12-4,
8f, TOL(ó) | ,E12.4, ', ToL(7)' ,812.4, ', TOL(g)' ,812.4,' , XKPOS' /
9F12.1/1H ,' YAilINC t ,F12-5)

9516 FoRt'tAT ('0',,ISEFF' /1H ,1013)
9520 FORI'|AT ( ,0' , ' INBASE, /1X, 4Ot3)
9600 FoRltAT (,0, , 15, ' SIilpLEX ITERATIoNS. ' )
9604 FoR!{AT (,0,,,(N.8., THE }tAXIf.tUtt SIZE 0F THE INVERSE DURING THE CAL

lcuLATI0N llAS |/14tt >' )
I F (I'IOREPR. LE. O) RETURN

r F (l'roREPR. EO. 1 ) G0 To 400
C IF(N.GE.8) GO TO 90

C CALL SPRINT

c G0 T0 400

90 [,RITE (IoOUT, 9000)
LAST = IROt,(l{NOtJ + 1) - 1

ISTART = 1

1OO IEND = ISTART + 11

IF (IEND.GT.LAST) IEND = LAST

IIRITE (I00UT/ 9001) (IJ, IJ = ISTART, IEND)

tIRITE (IooUT/ 9002) (AA(IJ), IJ = ISTART/ IEND)

t,RITE (I00UT/ 9003) (JCoL(IJ), IJ = ISTART/ ¡END)

IF (IEND.EA.LAST) GO TO 105

ISTART=IEND+1
c0 T0 100

105 t,RITE (I00UT, 9004)
ISTART = 1

110 IEND = ISTART + 23

IF (IEND.GT.HNOI,I) IEND = I{NOI.I

t,lRITE (I00UT/ 9005) (I, I = ISTART/ IËND)

t,RITE (I00UT,900ó) (IRoll(I), I = ISTART, IEND)
IF (IEND.EO.}INOII) GO TO 2OO

ISTART=IEND+1
G0 T0 110

200 r,¡RITE ( IOOUT/ 9200) OBJ

IEND = 10

IF (N.LE.IEND) IEND = N

i,RITE (I00UT, 9204) (J, J = 1/ IEND)

tIRITE (¡00UT, 9208) (C(J)/ J = 1, IEND)

IF (ISBND.EO.O) GO TO 21O

tIRITE (I00UT, 9212) (BoUND(J), J - 1/ IEND)
210 tJRITE ( IOOUT/ 9220) (X(J) , J = 1, IEND)

tIRITE (I00UT, 9228) (YAC(J), J = 1/ IEND)

230 IF (N.LE.IEND) GO TO 3OO

HRITE (¡00U1, 9232)
ISTART=IEND+1
IEND=IEND+12
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IF (N.LE. IEND) IEND = N

t,lRITE (I00UT, 9234) (J, J = ISTART, IEND)
t,RITE ( I00UT, 9236) rc(J), J = ISTART, IEND)
IF (ISBND.EO.O) GO TO 235
l,,RIlE (IOOUT/ 9240) (BoUND(J)/ J = ISTART/ IEND)

235 t,RITE (I00UT/ 9240) (X(J), J = ISTART/ IEND)
tIRITE (IO0UT/ 9214) <YAC(J), J = ISTART, IEND)
G0 To 230

300 IEND = 10

IF (l'lNoll .LE.IEND) IEND = ltNou

t,RITE (I00UT, 9232)
HRITE (I00UT/ 9000)
I,RITE (IOOUT/ 9205) (t, I = 1, IEND)
tIRITE (I00UT/ 9300) (B(I), I = 1/ IEND)
t,lRITE (I00UT,9304) (S(I), I = 1z IEND)
IIRITE (IOOUT/ 9308) (Y(I), I = 1, IEND)
tIRITE (I00UT,9312) (SLACK(I), I = 1, IEND)

310 IF (t'tNou. LE. TEND) GO TO 400
I,RITE (IOOUT, 9232)
ISTART=IEND+1
IEND=IEND+12
IF (llNOt,. LE. IEND) IEND = I'tNOU

TJRITE (IOOUT, 9234) (I, I = ISTART, IEND)
iIRITE (IoOUT / 9236) (B(I), I = ISTART/ IEND)
tIRITE (I0OUT/ 9238) (S(I), I = ISTART, IEND)
t,RITE (I00UT/ 9210) (Y(I), I = ISTART/ IEND)
I,RITE (I00UT/ 9240) (SLACK(I)/ I = ISTART/ IEND)
G0 T0 310

400 I F (t'roREPR. EO.2) Go T0 600
IEND = 7

IF (SIZE. LE. IEND) IEND = SIZE
lIRITE (I00UT/ 9404) (L, L = 1, IEND)

41O IIRITE (IOOUT, 9408) (YBASIS(L), L = 1, IEND)
I,JRITE (IOOUT/ 9412) (YR(L), L = 1/ IEND)

URITE (IOOUT, 9416)
D0 430 K = 1, SIZE

43O t'IRITE (IOOUT, 9420) K/XBASIS(K),XR(K),(INV(K/L),L=1/IEND)
440 IF (SIZE.LE.IEND) GO TO 5OO

ISTART=IEND+1
IEND=IEND+8
IF (SIZE. LE. IEND) IEND = SIZE
t¡RITE (IOOUT/ 9424) (L, L = ISTART, IEND)
tIRITE (I00UT, 9428) (YBASIS(L), L = ISTART, IEND)
t'IRITE ( I00UT/ 9432) (YR(L) , L = ISTART/ IEND)
tJRTTE (I00UT, 943ó)
DO 145 K = 1/ SIZE

145 I,RITE ( IoOUT, 9438> K, ( II'¡V(K, L), L = ISTART, IEND)
co T0 440

500 r,tRITE ( tOOUl , 9232)
l'IRITE( I00ur,9504)BIc/ DRIvER/ INREv/ IR/ IRI'tAx/ ISBND, IsDoNE/ ISTATE/

1 ITR/ITRlilAX/il/HARKI,lilARKK,llAXA,llAxll/ìiAXNrltoRE,llxsIzE,N,
2 NEGINV/NEGROtt,NEt,x/NEUY/NU¡tsLK/R/SIZE,S|{ALL,(TOL(K),K=1,g),
3 xKPos/YAtitINc

ó00 t¡RITE (IOoUT, 9516) (ISEFF(I), I = 1, ilNot,)
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i¡RITE (IOOUT/ g52O> (INBASE(J)/ J = 1, N)

HRITE (IOoUT/ 9ó00) ITR

HRITE (IOOUT/ 9ó04) ISBIG

RETURN

END
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SUBROUTINE CHSLCK

ITIPLICIT REAL¡I8(A-H/O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl/ XBASIS/ yBASIS

coHl.toN / AREF / AA(600),JCoL(600), IROTJ(157),ilAXA
coitt'toN/LINPc0/

1 BOUND ( 1 5ó), C (156), INBASE ( 1 5ó), pIV( 1 5ó), X( 156),y Ac(156),
2B (1 56) /G ( 1 5ó), GR ( 1 56) . ISEF F (156),S (1 5ó), sLACK( 1 56),y (56),
3 INV ( 1 30/ 1 30), XBAS I S ( I 30), XR ( 1 30) / YBAS I S ( 1 30), yR ( I 30),
4 TOL(8),BIG,DRMR/ INREV, IR,
ó IRI'IAX/ ISBIG, ISDONE/ ISTATE, ITR, ITRI,tÂX/ H,
7 ¡IARKI/ IIARKK/ ltAXl'1, I'tAXN/ l{NOH, }IORE/ I,tOREpR/

8 t'txsIzE. N, NEGINV/ i{EGROU, NEi,X/ NUI{SLK, OBJ, R,
9 sIzE/ sIzEl/ SÈIALL/ XKPOS, yAilINC, NElly, IsBND

I F ( R. NE. 0.0) NEcROt,l = 0

HOUNEG = O.O

D0 10 J = 1, N

YACJ = 0.0
K = INBASE(J)

IF(K.LE.O) YACJ - -C(J)
YAC(J) = YACJ

xJ = 0.0
IF (K.EO. -1 ) XJ = BOUND(J)

IF (K.GT.0) XJ = XR(K)
10 x(J) = xJ

TOLZ = ToL(2)
D0 70 I = 1/ llNott

L = ISEFF(I)
Y(I) = 0.0
rF (L.EA.0) G0 T0 30
YI = YR(L)
Y(I) = YI
SLACK(I) = 0.0
LAST = IROt,(I+1) - 1

ISTART = IROI.I(I)
DO 20 LOOK = ISTART/ LAST

J = JCOL(100K)

IF (INBASE(J).GT.O) GO TO 20
AIJ = AA(100K)

YAC(J)=YAC(J)+YI*AIJ
20 CONTINUE

G0 T0 70

30 IF (INREV.NE.I) GÓ TO 50

SLKI = B(I)
D0 40 J = 1, N

IF (INBASE(J).EO.O) GO TO 40
SLKI = SLKI - A(I,J) * X(J)

40 CONTINUE

G0 T0 ó0
50 rF (R.E0.0.0) G0 T0 70

SLKI = SLACK(I) . R * G(I) * xKPos
60 IF (DABS(SLKI).LE.TOLz) SLKI = O.O

SLACK(I) = SLKI
IF (NEG¡NV.NE.O) GO TO 70
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SI = S(I)
ABSLKI = DABS(SLKI)

I F ( S I. NE. O. O. AND. S I¡tSLKI . GE. HOI,'NEG. OR. S I. EO. O. O. AND.

1 -ABSLKI.GE.HOI.'NEG) GO TO 70

HOI.,NEG = -ABSLKI

NEGRotl = I
70 CONTINUE

INREV = 0

IF (iIARKI.NE.O) SLACK(I'IARKI) = XR(HARKK)

RETURN

END
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SUBROUTINE FIRSTB

IHPLICIT REAL*8(A-H/O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl/ XBASIS, YBASIS

c0t'il'toN/LI NPco,/

1 BOUND ( 1 5ó), C(156) | INBASE ( 1 5ó), p Iv(1 5ó), x ( 156),y Ac (56),
2B(156) /c ( 1 56) / GR ( 1 5ó), r SEFF ( I 5ó), S ( 1 5ó), SLACK( 1 56) / y (56) |
3 I NV ( 1 30/ 1 30 ), XBAS I S ( 1 30), XR ( I 30) / yBAS I S ( 1 30), yR ( 1 30),
4 fOL(8),BIG/DRIVER/ INREV/ IR,
ó IRt'lAX/ ISBIG/ ISDoNE, ISTATE/ ITR, ITRl,lAX, 11l

7 I'|ARKI / I'|ARKK, I'tAXil/ HAXN/ |{NOU/ HORE/ I{OREpR/

8 ilxslz1, N, NEGINV/ NEGRO!'/ NEHX, NUIISLK, OBJ/ R/
9 sIzE/ sIzEl, sHALL/ XKPOS/ yAl{INC, NEUy, ISBND

coltl'toN/I0lI0IN/ IoouT
Do10J=1,N

INBASE(J) = 0

D0 20 I = 2, l{NOl,l

ISEFF(I) = 0

DRIVER = 0.0
NEGINV = 0

SS = S(1)
BB = B(1)
I F (SS. EA.1 .0. AND. BB. GE. O. O. OR. SS. EQ. -1 .0. AND. BB. LE,

10.0.oR.ss.EQ.0.0.AND.BB.EO.0.0) G0 TO 30
NEGINV = 1

DRIVER = 1.0
IF (88.GT.0.0) DRMR = -1.0
SIZE = 1

SIZE1 = 2

NEl,lX=N+1
XBASIS(I)=N+1
INV(1,1) = 1.0
XR(1) = BB

OBJ = 0.0
YR(1) = 0.0
YBASIS(1) = 1

ISEFF(1 ) = 1

NUI'ISLK = 1

I'IARKI = 1

I'IARKK = 1

ITR=ITR+1
INREV = 1

RETU RN

END

30
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SUBROUTINE ISOPT

II'IPLIC IT REAL¡t8(A-H/O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl/ XBASIS/ yBASIS

cot{l.toN/ I0l IoIN/ I00uT
cot"['t0N/LI NPc0/

1 BoUND ( 1 5ó ), C (156), TNBASE ( 1 5ó), p tV (156),X(156),y 
^c 

U 56),
28(56) / G ( 1 5ó) / GR ( I 56) / rSEF F ( 1 56), S ( 1 5ó), SLACK(1 56) / y (56>,
5 I NV ( 1 30/ 1 30), XBAS I S ( 1 30) / XR ( 1 30), YBAS I S ( 1 30), yR ( 1 50),
4 ToL(8),BIG,DRMR/INREV/IR/
ó IRI,IAX/ ISBIG/ ISDONE/ ISTATE¿ ITR, ITRI.IAX, I{/
7 ¡IARKI / üARKK/ I'lAX14/ I'tAXN, llN0t.l/ H0RE/ ¡'toREpR/

8 |rlxslzÊ., N, NEcINV, NEGROH, NE[¡X, NUIISLK, OBJ/ R/

9 sIzE/ sIzE1, sllÂLL, xKpos, yAllINc, NE!,y/ IsBND

YAIIINC = -TOL(3)
NEÌ.IX = 0

D0 10 L = 1, SIZE
I = YBASIS(L)
SI = S(I)
IF (Sr.EA.0.0) G0 TO 10

YRL=YR(L)*SI
IF (YRL.GE.YAI'IINC) GO TO 1O

YA}IINC = YRL

NE[|X=I+N
10 CONTINUE

TOL4 = TOL(4)
Do 20 J = 1, N

INBJ = INBASE(J)

IF (INBJ.GT.O.OR.BOUND(J).EA.O.O) GO TO. 20
T = YAC(J)

IF (DABS(T).LE.TOL4) T = O.O

YAC(J) = T

IF(INBJ.Ea.-1)T=-T
IF (T.GE.YAHINC) GO TO 20
YAilINC = T

NEHX = J

20 CONTINUE

RETURN

END
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SUBROUTINE NEIJVEC

II'IPLICIT REAL*8(A-H,O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl/ XBASIS/ yBASIS

cofttl'toN,/ I0,/ I0 I N/ Io0uT
cot'f noN/LINPc0/

1 BoUND ( 1 56) tC (156), TNBASE ( 1 56), prV( 1 56) /X ( 156),y Ac(156),
2B(156),G(15ó),cR (1 56) / ISEF F ( 1 5ó) / S ( 1 5ó) / SLACK(56),y <156),
3 INV( 1 30/ 130), XBAS IS (130) / XR ( 1 30) / YBASIS ( 1 30), yR( 1 30),
4 T0L(8) / BIG, DRIVER/ INREV/ IR,
ó IRI'IAX, ISBIG/ ISDONE/ ISTATE, ITR/ ITRIIAX/ II,
7 I'|ARKI, ¡|ARKK, ¡tAXil/ l,lAXN/ ltNou, ñoRE/ !|OREpR/

8 l'IXSIZE, Nt NEcINV/ NEGRotl/ NE[,X, NUIISLK, OBJ/ R/

9 sIzE/ sIzE1, sl'tALL, xKpos, yAl.lINc/ NEUy, ISBND

XKPOS = 1.0
IF (NEI.IX.GT.N) GO TO 40

DO 10 K = 1/ SIZE

10 GR(K) = 0.0
DO 30 L = 1/ SIZE

I = YBASIS(L)
AIJ = A( I/NEt.JX)

IF (AIJ.EO.O.O) GO TO 30

D0 20 K = 1, SIZE

20 GR(K) = GR(K) + AIJ * INV(K,L)
30 CONTINUE

IF (INBASE(NE[,X).E0.-1) XKPoS = -1.0
G0 T0 60

40 I=NEtlX-N
L = ISEFF( I)
D0 50 K = 1, SIZE

50 GR(K) = INV(K/L)
IF (S(I).E0.-1.0) XKPoS = -1.0

60 RETURN

END
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SUBROUTINE REDUCE

II'IPLICIT REAL*8(A-H,O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl/ XBASIS, yBASIS

c0t'il40N/I0lI0IN/ IoouT
coHt'toN/L I NPCO/

1 BoUND ( 1 56), C(156) / INBASE( 1 56), p IV(1 56),X (56),y AC(56),
28(156),G(5ó) / GR( 1 5ó) / ISEFF (1 5ó), S ( 1 5ó) / SLACK( 1 56) / y (56),
3 I NV ( 1 30/ 1 30), XBAS I S ( 1 30), XR ( 1 30), YBAS r S ( I 30), yR ('.t 30),
4 ToL(8),BIG, DRMR/ INREV/ IR/
ó IRTIAX/ ISBIG/ ISDONE/ ISTATE, ITR, ITRIIAX/ ]I/
7 HARKI / HARKK, l,tAXt't/ I'IAXN/ l{NOl,t, H0RE, }t0REpR/

I I'IXSIZE, N, NEGINV/ Ì'¡EGRoU, NEI'X/ NUHSLK/ oBJ, R/

9 sIzE/ sIzE1, sl'lALL, xKpos/ yAllINc, NEIJy/ IsBND

ftlARKI = 0

l,lARKK = 0

TF (NUI'ISLK. EO.O) GO TO 80

IT = SIZE

D0 ó0 K = 1, lT
10 IF (SIZE.LE.1) GO TO 70

J = XBASIS(K)
IF (J.LE.N) GO TO 60

I=J-N
SI = S(I)
rF(sr*xR(K). 1T.0.0.0R. Sr. EO.0.0.AND.XR(K).N8.0.0) G0 T0 ó0
IF (K.EO.SIZE) GO TO 30

D0 20 L = 1, SIZE

20 INV(K, L) = INV(SIZE, L)
J = XBASIS(SIZE)
XBASIS(K) = J

IF (J.LE.N) INBASE(J) = K

30 SLACK(I) = XR(K)

XR(K) = XR(SIZE)
IF (NEGINV.EA.SIZE) NEGINV = K

L = ISEFF(I)
ISEFF(I) = 0
IF (L.EO.SIZE) GO TO 50

D0 40 KK = 1/ SIZE

40 INV(KK/L) = INV(KK/SIZE)
YR(L) = YR(SIZE)
YBASIS(L) = YBASIS(SIZE)
I = YBASIS(SIZE)
ISEFF(I) = L

50 XBASIS(SIZE) = 0
SIZE=SIZE-1
SIZEl=SIZE1-1
NUI{SLK=NUltlSLK-1
c0 T0 10

óO CONTINUE

70 IF (SIZE.LT.2.AND.XBASIS(1).GT.N) IIARKK = 1

IF (NEGINV.EA-O.AND.IIARKK.EO.O) GO TO 80
J=0
IF (NEGINV.NE.O) J = XBASIS(NEGINV)

IF (J.GT.N) ¡IARKK = NEGINV
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IF (I'IARKK. EA.O) GO TO 80

IIARKI = XBASIS(IIARKK) - N

80 RETURN

END
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SUBROUTINE SEEKX

II,IPLICIT REAL*8(A-H/O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl /XBASIS/YBASIS
cot't¡toN /LINPc0/

1 BoUND (1 5ó), C(156) / INBASE ( 1 56) / p IV(1 5ó),X(156),y AC (56),
28<156) tG(5ó), GR( 1 5ó) / I SEF F ( 1 56), S(1 56), SLACK( 1 5ó),y (156),
3 r NV ( 1 30/ 1 30), XBAS r S ( 1 30) / XR ( 1 30) / YBAS I S ( 1 30), yR ( 1 30 ) /
4 T0L(8),BIG,DRIVER,INREV/IR,
ó IRHAX, ISBIG, ISD0NE, ISTATE, ITR, ITRIíAX, I't,

7 l{ARKI, IIARKK/ HAXtit/ IIAXN/ l{N0Ul/ l,l0RE, I'l0REpR,

8 l{XSIZE, N, NEGINV/ NEGRoi,/ NETJX/ NUIISLK/ oBJ/ R/

9 SIZE/ SIZE1, SItALL/ XKpoS/ yAllINC, NEÌ,ly, ISBND

CoHHoN / AREF / AA (600) , J CoL(ó00) , IRoU ( 157), t'tAXA

NEI'lX=0

R=-BIG

PIVI'|AX=o.0
Jl'IAXP=0

BE SP IV=0.0
T0L3=TOL ( 3 )

TOL4=T0L (4 )

T0L5=ToL ( 5 )

Do 10 J=l/N
10 PIV(J)=0.0

D0 40 L=1,SIZE
I=YBASIS(L)
SI=S(I)
YI=YR(L)¡tSI
IF(DABS(YI). LT. TOL3) YI=O.O

RINVL=INV(NEGINV/L)

ISTART=IROI.,l(I)

LAsT=IR0H(I+1)-1
DO 20 LOOK=ISTART/LAST

J=J C0L ( L00K)

IF(INBASE(J).GE.1 .OR. BOUND(J).EA.O.O) GO TO 20
AIJ=AA(LOOK)

PIV( J )=PIV(J )+AI J*RINVL

20 CONTINUE

rF(sr. Ea.0.0) G0 T0 40

P I VOT=R I NVL*S I*DR I VER

IF(PIVOT.GE. -TOL5 .OR. PIVOT.GE. -0.5 .AND.NEt.IX.NE.O

1 .AND. YI.LT.O.O) GO TO 40

IF(PIVOT.GE.-0.5 .AND. YI.LT.O.O) GO TO 30
RAT IO=YI /P IVOT

IF(RATIO.LT.R .AND. NEIIX.NE.O) GO TO 40

IF(RATIO.EA.O.O .AND. PIVOT.GE.BESPIV) GO TO 40
I F (RATIO. EA. O.O) BESPIV=PIVOT

R=RATI O

YA¡I INC=YI

NEl.,X=N+ I
G0 T0 40

30 IF(PIVOT.GE.PIVIIAX) GO TO 40

YACP=Y I
JIIAXP=N+ I
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P IVI,IAX=P IVOT

40 CONTINUE

D0 60 J=1/N
INJ=INBASE(J)
IF(INJ.GE.1 .OR. BOUND(J).EA. O.O) GO TO 60
SJ=1.0
IF(INJ.EO.-1) SJ=-1.0
FUNC=YAC(J)*SJ

IF(DABS(FUNC). LT. T0L4) FUNc=0.0

P MT=P IV( J ) ¡tSJ*DRIVER

IF(PIVOT.GE. -TOL5 .OR. PIVOT.GE. -0.5 .AND.NElIX.NE.O
1 -AND. FUNC.LT.O.O) GO TO óO

I F ( P IVOT. GE. -0. 5 . AND. FUNC. LT. O. O) GO TO 50
RATIO=FUNC,/PIVOT

IF(RATIO.LT.R.AND. NEI.IX.NE.O) GO TO 60
IF(RATIO.EA.O.O .AND. PIVOT.GE.BESPIV) GO TO óO

IF(RATIO. EO.O.O) BESPIV=PIVOT

R=RATIo

YAIiI INC=FUNC

N Et,X= J

G0 T0 60

50 IF(PIVOT.GE. PIVIIIAX) GO TO óO

P IVI'IAX=P IVoT

YACP=FUNC

J IIAXP= J

60 CONTINUE

IF(NEr.rX.NE.0) c0 T0 70

NE tlx= J t'lAX P

YAlil I NC=YAc P

I F ( NEI.¡X. NE. O) R=YA1'I INC/P IVHAX

70 RETURN

END

SUBROUTINE SEEKY

IITIPLICIT REAL*8(A.H/O-Z)
REAL*8 INV

INTEGER SIZE/ SIZEl /XBASIS/YBASIS
c01'ilt0N /LINPC0,/

1 B0UND(15ó),C(56)/ INBASE(1 56) / pIV(1 5ó)/X(1 5ó),yAC(1 56),
28(156) tc(15ó),GR( 1 5ó), ISEF F ( 1 5ó), S ( I 5ó), SLACK(56),y (5ó),
3 INV ( 1 30, 1 30 ), XBAS I S ( 1 30), XR ( 1 30), YBAS I S ( 1 30), yR ( 1 30),
4 T0L(8),BIG, DRIVER/ INREV, IR/
ó IRMAX/ ISBIG/ ISDoNE, ISTATE, ITR/ ITRilAX/ ll,
7 l,tARKI/ I'tARKK/ I'tAXùt/ HAXN, t{N0!t, HoRE, I'tOREpR,

8 I'txsIzE, N, NEGINV/ NEGRoU, NEUX, NUHSLK, OBJ/ R,
9 sIzE/ sIzE1, s¡lALL, XKPoS/ yAl'lINC, NEUy, ISBND

cotil'toN / AREF / AA(600), JC0L(600), IRoU(157),fiAXA
SI=1.0
BOUNDJ=-1.0

R=BIG

NEtIY=0

T0L5=T0L ( 5 )

IF(ISBND.EA.O.OR. NEI.IX.GT.N) GO TO 1O

¡F(BoUND(NEUX). EO. -1.0) c0 T0 10

R=BOUND (NEt,,X)
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NEIIY= - 1

1O IF(NEGINV.EA.O) GO TO 30

XRNEG=XR(NEGINV)

J=XBASIS(NEGINV)

IF(J.GT.N) GO TO 20

BOUNDJ=BOUND ( J )

IF(BOUNDJ.GE.XRNEG .OR. BOUNDJ.EO--1.0) GO TO 20
XRNEG=XRNEG. BOUNDJ

20 RTRY=XRNEG/ (XKPOS*GR(NEGINV) )

IF(RTRY.GT.R) GO TO 30

R=RTRY

IF(R. LE. SI'IALL) R=0.0

NEt.,Y=NEG ¡NV

rF(R.8A.0.0) G0 TO 140

30 D0 90 K=1,SIZE
IF(K.EO.NEGINV) GO TO 90

GK=GR(K)*XKPOS

TF(DABS(GK).LE.TOL5) GO TO 90

J=XBASIS(K)

IF(J.GT.N) SI=S(J-N)
IT(J. LE. N) BOUNDJ=BOUND(J)

XX=XR ( K)

IF(GK.LE.O.O) GO TO 70

¡F(XX.1T.0.0) Go To 90

IF(J. LE. N. AND. BOUNDJ. EO. -1.0.0R. J. LE. N.AND.XX. LE.BOUNDJ) GO TO 40
IF(J.GT.N .AND. SI.E8.1.O) GO TO 40

G0 T0 90

40 IF(XX.GE.GK*R) GO TO 90

50 R=XXIGK

óO IF(R. LE. SHALL) R=O.O

NEl,,Y=K

IF(R.E0.0.0) G0 T0 140

G0 T0 90

70 IF(J.GT.N) GO TO 80

IF(BOUNDJ.EO.-1.0.0R. XX.LT.O.O -OR. XX.GT.BOUNDJ) GO TO 90
IF((XX-GK'TR).LE.BOUNDJ) GO TO 90
R= (BoUNDJ -XX) / ( -1. o¡tGK)

G0 T0 60

80 rF(xx.GE.0.0 .0R. s(J-N).GE.0.0) G0 T0 90
IF((XX-GK*R).LE.O,O) GO TO 90
GO TO 50

90 CONTINUE

D0 130 I=1/HNolt
IF(ISEFF(I).EO.O) GO TO lOO

G(I)=0.0
G0 T0 130

1OO SLACKI=SLACK(I)

SI=s(I)
G I=0.0
ISTART=IROI,I(I)

LAST=IRotl(I+1)-1
DO 120 LOOK=ISTART/LAST

J=J C0L ( L00K)

INJ=INBASE(J)
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IF(INJ.LE.O) GO TO 110

G I=G I -AA ( LOOK) *GR ( I NJ )

G0 TO 120

110 IF(J. EO.NEI.IX) GI=GI+AA(LOOK)

120 CONTINUE

G(I)=GI
IF(DABS(GI).LE.TOL5) GO TO 130

IF(Sr.EO.0.0.AND. SLACKI.NÊ.0.0) G0 T0 130
IF(SI*SLACKI.LT.O.O) GO TO 130
G I=G I*XKP0S

T=SLACKI-GI*R

IF(T.GE.0. .AND. SI.EO.1. .OR. T.LE.0. .AND. SI.E0.-1.) GO TO 130
R=SLACKI /G I
lF ( R. LE. SiIALL) R=0.0
NEI,,Y=S I ZE+ I
GR(SIZE1 )=GI*XKPOS

IF(R.EO.0.0) GO T0 140

130 CONTINUE

140 RETURN

END
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APPENDIX F

SAMPLE INPUT AND OUT?UT FILB
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5OO,2O

0. 001 4, 0. 002 to. oo1, 0. 001 5 / 0. 0oo7,o. oo2, o. 002/ 0. 01

511

30. ,31 . ,30. ,31 . ,31 .

,SEP. IOCT¡ INOVI ¡DEC' 'JAN'
30,0
20. ,0.3,2. ,O.3
0.0,0.0,0. 0,o.o,37oo.

0.0,0.0/ 0.0/ 0.0,0.0
-534.6, -534.6, -534.6, -534.6, -534.6
14000. 18000. 14000. 18000. I8000.
8000. 8000. 8000. 10000. 9000.

-20000. -22000. -20000. -21000. -21000.
-12000. -12000. -12000. -14000. -12000.
2

6.O,5 .O,6.O,7 .O,6.
4.O,3.0,1.O,5 .O,5 -O
0.57 tO.57 ,O.57 ,O.57 ,O.57
0. 43,O. 43,O. 13,O. 43,O. 43

40.0 40.0 40.0 40.0 40.0
40.0 40.0 40.0 40.0 /t0.0
30.0 30.0 30.0 30.0 30.0
30.0 30.0 30.0 30.0 30.0
0.1 0.1 0.1 0.1 0.1
0.1 0.1 0.1 0.1 0.1
?95. ,1 .

280. ,280. t280. ,28O. ,280.
300. ,300. ,3o0. ,300. ,3oo
1 ,5,1 .5,1 .5,1 .5,1 .5
0.0593701 , -9 .0836254
o. 20, o. 20, o.2o,o - 20, o. 20

o .4 ,o .35 ,O .25 ,O .2 ,O .15
10.,0.
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OUTPUT REPORT FROI'I THE EIISLP PROGRA}I

THE INPUT DATA

* LAND & POI.¡ELL CONTROL DATA

500 20

0.001400 0.002000 0.001000 0.001500 o.oooToo o.0o20oo
0.002000 0.010000

* PLANNING HORIZON DESCRIPTION

51
30.00 31.00 30.00 31.00 31.00

SEPOCÏNOVDECJAN

* ITERATIVE PROCESS CONTROL DATA

300
20.000000 0.300000 2.000000 0.300000

* OBJ. FUN COST COEFF.

0.00 0.00 0.00 0.00 3700.00
0.000000 0.000000 0.000000 0.000000 0.000000

-534.ó00000 -534.ó00000 -534.600000 -534.ó00000 -534.ó00000
14000.00 18000.00 14000.00 18000.00 18000.00
8000.00 8000.00 8000.00 10000.00 9000.00

-20000.00 -22000.00 -20000.00 -21000.00 -21000.00
-12000.00 -12000.00 -12000.00 -14000.00 -12000.00

It SYSTEH DETIAND DATA

2

ó.000000 5.000000 ó.000000 7.000000 ó.000000
4.000000 3.000000 4.000000 5.000000 5.000000
0.570000 0.570000 0.570000 0.570000 o.57oooo
0.430000 0.430000 0.450000 0.430000 0.430000

40.00 40.00 40.00 40.00 40.00
40.00 40.00 40.00 40.00 40.00
30.00 30.00 30.00 30.00 30.00
30.00 30-00 30.00 30.00 30.00

0.100000 0.100000 0.100000 0.100000 0.100000
0.100000 0.100000 0.100000 0.100000 0- 100000



0.200000 0.200000 0.200000 0.200000 0.200000

'OR€CASTEO 
INfLOU

0.400000 0.350000 0.250000 0.200000 0.150000

SCALE fOR LP & OISCOUT¡T RAT€

10.000000 0.000000

REPORTS ON THE ITERAI¡VE SOLUÍ¡ON PROCEDURE

ITERATIOTI 1S¡ËPLEX ITERAT¡ONS 4¿IHITIÀL STORAGE 295.OVARYIIX 20.O

. RESERVOIR & POI¡ER PLAIII OÂTA

295. 000000 1 .000000
280.00 280.00
300.00 500.00

1 .500000 1 .500000
0.059370 -9.083ó25

r RELEASE ESTIITATES

280.00 280.00 280.00
500.00 100.00 300.00
r.500000 1.500000 1.500000

181

oÊt Ex 0Í ¡H ott tr{ HE oH

o.oo 0.88 1.21 1.58
0.00 0.00 0.9ó 2.12
0.00 0.30 '1.24 ?.1ó
0.00 0.00 1.60 2-97
0.00 0.00 1.60 2-51

r THE RESERVOIR OATA I
ñONÍH T INILOU GEII.FL.POU GEII.TL.SP TOT.OUfFL OH EX OTF EX ON III

¡IERAT¡OT{ 2SIIIPLEX ¡IERAIIONS 43IIIITIAL STORÂGE 295.OVARYTlX 20.O

sEP r 12.00 7.70
ocr r 10.85 10.15
NOV . 7.50 11.00
oEc r 6.20 14.50
J^ñ r 4.65 12.E5
THE OEJECTIVE fUt{CTIOt{ VALUÉ

sEP r 12.00 7.70
ocr r 10.E5 10.'15

NOV r 7.50 10.43
DEC r 6.20 11.71
JAN r 1.65 13.21
TH€ OEJECTIVE TUNCTION VALUE

0.00 7 .70 0. 00 0.00 0. E8

0.00 10.1 5 0.00 0.00 0.00
0.00 1 1.00 0.00 0.00 0.1E
0.00 14.50 0.00 0.00 0.00
0.00 12.85 0.00 0.00 0.00

r s -12'1671 .92

OfF II{ HE ON HE OTF EIIO STAGE IIONIHLY

SENEF I T

1-21 1.58 0.00 299.30 -36920.5
0.9ó 2.12 0.00 300.00 -13930.3
1.21 2.29 0.00 ?96.50 -21óó3.0
1 . ó0 2.97 0.00 2E8. 20 -?.6469 .6
1.60 2.51 0.00 280.00 -226A8.¿

i THE RESERVOIR DATA T

iONTH T INfLOU GEtI.TL.POg GEX.FL.SP fOT,OUTTL OI{ EX

0.00 7.70 0.00
0.00 10.1 5 0.00
0.00 10.43 0.00
0.00 11.71 0.00
0.00 1 3.21 0.00
rs -121313.18

HE OFF EHO STAGE ITONTHLY

BENET IT
0.00 299.30 -36921.1

0.00 300.00 -1r930.3
0.00 297.o7 -¿4!54.0
0.00 e88.5ó -26169.6

0.00 280.00 -24ó88. ¿

¡TERÂTION SSIIIPLEX ITER^IIONS /.5INIIIAL SIORAG€ 295.OVARYIIX ó-o

r THE RESERVOIR OAÍA

ñONTH T ¡flFLOg 6EI{.FL.POV GEN.TL

sEP r 12.00 7.70 0.00
ocf r 10.85 10.15 0.00
t{ov r 7.50 7.92 0-00
DEc r 6.20 11.09 0.00
JAN r 4.65 1 2. E5 0.00
T8E OSJECIIVE RJt¡CTION VALUE IS

ÌXE II{If¡AL OECR€ASE IS ACCEPTED

SP TOT.OUTFL OH EX

7 .70 0. 00
10.1 5 0.00
7.92 0.00

1 1 .09 0.00
1 2.85 0.00

-127011.5t

oFF EX ON ll¡

o.00 0.8E
0.00 0.00
0.00 0.80
0.00 0. ó9
0.00 0.o0

Off II{ HE ON HE OFF EIID STAGE IIOI{THLY

BENEF¡T
1.21 1.58 0.00 ?99.30 -t692't.12
0.9ó 2.12 0,00 300.00 -13930.17
1-21 1.66 0.00 ¿99.58 -35215.78
1.ó0 2.28 0.00 291.68 -122t1.98
1.ó0 2.51 0.00 28ó.4E 1287.?2
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TIERAIION 3SIIIPLEX ITER^IIOI{S 46II¡IIIAL SIORA6E 295.0YÂRYIIX 20.O

r THE RESERVOIR DATA '
ñORÍH T INFLOU GEN.FL.POU GEN.TL.SP TOT.OUTFL ON EX OFT EX OH ¡II OFF IN HE ON HE OTT EHD SIAGE IIOI{IHLY

BENEFIT

1.21 1.5E 0.00 299.30 -36921.12

0.96 2.12 0.00 300.00 -13930.37

1.21 2.16 0.00 297.O7 -24331.05

1.ó0 2.97 0.00 288.56 -26169.66

1.ó0 2.51 0.00 ¿80.00 -22688.28

sEP r 12.00 7-70
ocT r 10.85 10.15
flov t 7.50 10.41
oEc r 6-20 14.71
JAN r 1.65 13.2',1

TIiE OBJECT¡VE fUt{CTIOTI VALUE

sEP r t2.00 7.70
ocf r 10.85 10.15
r{ov i 7.50 10.07
oEc . 6-20 14.81
J^N r 4.65 13.16
ÌIIE OBJECTIVE FUNCIION VALUE

0.00 7.70 0.00 0.00 0.88
0.00 10.15 0.00 0.00 0.00
0.00 10.43 0.00 0.00 0.30
0.00 11.7'1 0.00 0.00 0.00
0.00 13.21 0.00 0.00 0.00
IS -121313.48

tTERAtI0N 45lËPL€X lf€RAlIOr{S 43IltIIlAL STORAGE 295.oV^RY|X 20.0

r THE RESENYOIR OATA t
IiONTH T ¡NTLOg GEH.FL.POI¡ GEÍ.fL.SP TOT.OUTTL OII EX

0.00 7.70 0.00
0.00 10.1 5 0.00
0.00 1 0.07 0.00
0.00 1 4.81 0.00
0.00 13.16 0.00
rs -125882.90

0.00 0.88 1.2,1 1.58
0.00 0.00 0.9ó 2.12
0.00 0.37 1.?1 2.O9
0.00 0.o0 t.ó0 2-97
0.00 0.00 1.60 2.51

OFT EX ON IH OTI IH HE OI{ HE OFT END STAG€ IIONTHLY

gENEF IT
0.00 299.30 -36921.1

0.00 300.00 -13930.3
0.00 2.97.43 -¿5873.1

0.00 ?88,81 -¿6169.6
0.00 280.00 -2268A.2

trERAft0r{ 5s¡ËPLEX ¡TERATIoNS 45tHITt^L SÌORÂGE 295.oVARyttX

r THE RESERVOIR OAÍA t
IIOilIH T INTLOIJ GEII.FL.POI,/ GEII.FL.SP TOI.OUÌTL ON EX

sEP r 12.00 7.70 0.00 7.70 0.00
ocr r 10.85 10.15 0.00 10.15 0.00
ilov r 7. 50 9 .24 0.00 9 .21 0. 00

oEc r ó.?0 '14.75 0.00 14.75 0.00
JAN r 1.65 13,39 0.00 13.39 0.00
llrE OSJECTtVE FUNCT¡ofl VALUE IS -125912.58

THE INITIAL DECREASE ¡S ACCEPf€D

oFt Ex oN tN

0.00 0.88
0.00 0.00
0.00 0.51
0.00 0.00
0.00 0.00

ITERAIIOH 5S¡ItPL€X ITERAfIONS 4]IT{IIIAL STORAGE 295.OVARYI{X 20.O

r THE RESERVOIR OATÂ *

IíoHTH r tNTLOU G€r{.tL.POU 6EN.tL.SP r0T.OUltL 0N EX OFt EX OÈ IN

sEP r 12-00 7.70
ocr ¡ 10-85 10.15
NOV . 7.50 10.07
DEC r 6-20 14.81
JAN r 1.65 13.4ó
THÊ OSJECIIVE TUNCTIOI{ VÂLUE

OTF ItI HE ON HE OFF EI¡D STAGE IIOHTHLY

BEt.IEF IT
1.21 1.58 0.00 299.30 -36921.12

0.96 2.12 0.00 300.00 - 1 3930.37
1.24 1.92 0.00 298.26 -?9181.'lS
1.ó0 2.97 0.00 289.71 -26469.66
1.ó0 2.51 0.00 2AO.97 -19107.26

OfT ¡H H€ ON 
'IE 

OFF END STAGE I'IONTHLY

SENETII

1.24 1.58 0.00 ?99.t0 -16921.12

0.9ó 2.12 0.00 300.00 -13930.37

1.21 2.O9 0.00 297.13 -¿5873.48

1 . ó0 2.97 0. 00 288.81 -26169 .66
1.60 2.51 0.00 280.00 -22688.28

6.0

0. 00 7 .70 0. 00 0.00 0. 88
0.00 10.1 5 0.00 0.00 0.00
0.00 10.07 0.00 0.00 0.57
0.00 1 4.81 0.00 0.00 0.00
0.00 13.16 0.00 0.00 0.00

rs -125882.90

IIÊRATION óSIIPLEX ITERAIIOI¡S 44IIIIIIAL STORAGE 295.OVARYIII 20.O

r THE RESERVOIR OATÂ t
ñOflTH T ¡NFLOIJ GEII.FL.POU GEN.TL.SP TOI.OUfFL ON EX OTf ET OH II¡

sEP r 12.00 7-70
ocl r 10.E5 10.15

NOV r 7,50 E.02

oEc r 6.20 11.66

J^N r 4-65 13.3ó

IHE OBJECTIVE TUNCTION VÂLUE

OTF IN HE OII HE OTT

1.21 1 .58 0.00
0.9ó ¿-1¿. 0.00
1.21 1.ó8 0.00
1.ó0 2.97 0.00
1.ó0 2.54 0.00

Eilo sT^GÊ íOfllHLY
8ÊflEF I T

299.30 -ló921 .1

300.00 - 1 3930.3
299.18 -31781.1

?91.O2 -26469.6

282.31 -14140.1

0.00 7.70 0.00 0.00 0.88
0.00 10.15 0.00 0.00 0.00
0.00 8.02 0.00 0.00 0.78
0.00 11.66 0.00 0.00 0.00
0.00 1 1.3ó 0.00 0.00 0.00
rs -126215.70
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ITERATION TSIItPLEX ¡ITRAIIONS 44tfitltAL SToRAGE 295.oVARyËX ó-0

I IHE RESERVOIR DAIA t
IOI{TH T IH¡LOg G€N.FL.POg GEN.TL.SP TOI.OUIFL OII EX OFF EX ON IN O¡T ¡H HE ON HE OIT EIID SIAGE

sEP r 12.00 7.70 0.00 ?.?o o.oo
ocr r 10.85 10.15 0.00 10.15 o.Oo
Hov r 7.50 8.02 0.00 8. 02 o. oo
D€C r ó.20 11.66 0.00 11.66 o.OO
JAN r 4.65 13.36 0.00 13.3ó O.OO
THE OEJECI¡VE FUHCTION VALUE IS .126215.?O

THE INIfIAL OECREASE IS ACCEPIÉO

0.00 0.88 1.21 1.58 0.00
0.00 0.00 0.9ó 2.12 0.00
0.00 0.78 1.21 1.68 0.O0
0.00 0.00 1.60 ?.97 0.00
0.00 0.00 t.ó0 ?.51 0.00

?99.30
300. 00

299.18
291.O2

282.31

IIOIITHLY

8EilEFII
-56921.1
- 1 t930. 3
-317A1.1
-26169.6
-14140.1

tÌERÂTI0l TstfipLEx tÌÉRAT¡ONS /.4tNITIAL STORAGE 295.OVARYñX 20.O

r IHE RESERVOIR OAIÂ I
ITONIH T INFLOg GEN.TL.POIJ GEN.TL.SP TOI.OUTFL ON EX OTF EX OI{ III OFF tN HE OH HE OFT ÊND STAGE ITONTHLY

BEHÊFIT
sEp * 12.00 7-70 0.00 7.70 o.oo o.oo 0.88 1.21 1.58 o.OO 2gg.30 _36s21.1
ocr * 10.85 10.1s 0.00 10.15 o.Oo o.oo o.oo 0.9ó 2.12 o.OO 3oO.OO -1J950.3
NOv r 7.50 E.Oz o.oo 6.02 o.oo o.oo 0.78 1.24 1.68 o.OO 2gg.18 -!1781.1
DEc r 6.20 14.66 0.00 11.66 o.OO O.OO O.OO 1.óO 2.97 o.OO 2g1.O2 -26169.6
JÁN r 1.65 13.36 0.00 13.3ó O.OO O.OO O.OO 1.óO 2.51 O.OO 282.31 -14140.1
THE OEJECTIVE FUIICTION VALUE tS .126215.?O

ITERATION SSIItPLEX ITERÂIIONS 44INIIIAL SIORAGE 295.OVARYIIX 20.O

r THE RESERVOIR D¡,IÂ t
I'IONTH T ¡NfLOU GEil.FL.POg GEN.FL.SP TOT.OUTIL OtI EX OFF EX OI{ IùI OfF It{ HE ON HE OIT Et{D STAGE IIONIHLY

8ÊIIEF I T

1-21 1.58 0.00 299.30 -!6921.12
0.96 2.12 0.00 300.00 -1¡930.37
1.24 1.58 0.00 ¿99.97 -3701ó.59
1 . 60 2.97 0.00 291 . 58 -26469 .66
1.ó0 2.51 0.00 282.92 -118ó7.ó8

Nov r
DEC T

s€P r 12.00 7.70 0.00
ocT r 10.85 10.15 0.oo

?.70 0- 00 0.00 0.88
10.1 5 0.00 0.00 0.00
7.53 0.00 0.00 0.68

11.59 0.00 0.q0 0.00
1 3.30 0.00 0.00 0.00

-126205.11

7.50 7.53 0.00
ó.20 11.59 0.00

JAN r 1.65 13.30 0.00
THE OBJECTIVE TUT.ICTION VÁLUE IS
CONVERGED VOLUIIE

HEI ¡IERATIONS 5


