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Abstract

Research suggests that humans are poor statistical reasoners. When judging the probability of

dice outcomes, people often ignore the distinguishability of the dice, and consider only

combinations of dice, not permutations. One hundred and fourteen university students completed

a Dice Outcome Questionnaire presenting the same two-dice problems to be solved (a) through

intuition, (b) then through calculation prior to a demonstration, and (c) finally through calculation

following the demonstration. Later, participants attempted to solve an additional problem to test

generalization from two- to three-dice conditions and then completed a Demographics

Questionnaire, which included a question about brain area involvement in solving probability

problems. Frequency of correct answers was analyzed by a repeated measures three level

ANOVA. Solution-orientation had a significant overall effect, and pairwise comparisons

revealed no significant difference in the number of correct answers between intuition and pre-

demonstration, but post-demonstration answers were more often correct than answers given in

either of the other two orientations. These results suggest that students benefit from a

demonstration of probability problems solutions. In addition, results of chi square analyses

suggest that participants who get the highest number of correct answers to post-demonstration

two-dice problems get the correct answer to a single post-demonstration three-dice problem but

fail to correctly attribute problem solving activity to the left frontal brain area. These results

suggest that the most capable introductory psychology students generalize from two- to three-

dice problems, but lack the necessary physiological information to correctly attribute probability

solving to the left frontal lobe. Implications of these findings were discussed.
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Introduction

Many psychologists use probability theory in most of their research. Rarely, however, do

they review historical incidents involving probability theory. The present study is an exception.

Examining the history of probability theory, one will often come across the name of a

seventeenth century French literary writer named Antoine Gombaud (or Gombault) Chevalier de

Mere, sieur de Baussay (1601 - 1684). Often, he is mentioned because he had proposed dice

problems to the noted mathematician Blaise Pascal. These dice problems may have arisen

through de Mere's experiences at the gambling table. Many descriptions of de Mere state that he

was a gambler - an accusation he would most likely have denied (Ore, 1960). De Mere was a

French philosopher and he wrote literature. He considered himself an example of courtly

behavior and sociability was his ideal; he believed that the key to good conversation was that it

should be pleasant. He was charming, had good taste, and his conversation skills made him a

popular guest among the elite of Paris. De Mere had received a classical education, and served

briefly in the army. He spent half of his time at his estate in Poitou and the rest at the court in

Paris. De Mere was an arbiter of conflicts and an advisor to King Louis XfV (Ore, 1960). In his

writings, he explained the ethics of a noble life and emphasized pleasant consideration of others

(de Mere, 1687, as cited in "Livre Rare Book" (2002), www.livre-rare-

book. com/IvIati eres/dd/3 940. html ; B oudhors, 1 93 0).

De Mere's social gambling led him to several paradoxes probably well known even

before his time. He presented these problems to the noted mathematician Blaise Pascal (1623 -

7662), who is one of the founders of probability theory. Pascal as a child would attend meetings

of the Academie Libres with his father. When Pascal was sixteen, he published a treatise on



conic sections. Two years later, he developed a calculating machine. Pascal was a scientist of

math and physics, and he wrote about such topics in Iættres Provinciales and the Pensees. In

1651 or 1652, Pascal accompanied the Duke of Roannez on a trip to Poitou. De Mere was

present on this trip, and this is how Pascal and de Mere first met (Ore, 1960). The two became

acquainted through writing and discussing issues and they may have even gambled together.

Pascal wrote about gamblers in the Pensees (I-,evi, 1995). During their exchanges, de Mere

proposed probability problems to Pascaì.

Erroneous Reasoning on Probabilíty: de Mere

The first problem of de Mere to be discussed was uncovered in games of chance using

dice. The paradox is outlined as follows: Two players use one die with one player betting that a 6

will appear within four throws of the die and the other player betting against this (Von Mises,

1939; Gani, 1982; Dale, 1998). De Mere noticed that there was a greater chance of the positive

result, (that one 6 will likely appear within four throws of the die). A variation of this game uses

two dice. Here, the pair of dice is thrown, and the bet is that at least one double 6 will occur

within 24 throws of the dice. This time de Mere noticed that the win went to the player betting

against a double six within 24 throws. These results confused de Mere and led him to believe that

the arithmetic was wrong (Ore, 1960). De Mere's reasoning was that if the throw of one die can

have six different results, then the throwing of 2 dice can have thirty-six different results, six

times as many as with one die. Rolling a 6 is one of the six different possibilities in games with

one die; rolling a 6-6 is one of the thirty-six probabilities with two dice. De Mere believed that

the chance of getting one six when throwing one die four times is the same chance as getting 6-6

when throwing two dice 24 times. Through observation of actual dice-throwing, de Mere found
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he was wrong, because 25 throws were needed. He sought out Pascal's council. Pascal solved it

for him and corresponded with Fermat, another noted scientist of that era, who solved the

problem in a manner similar to that of Pascal (Szekely, i986). The paradox was solved through a

series of logical analyses and mathematical calculations, two topics that go beyond the scope of

the present research.

The second problem that de Mere posed to Pascal involves a particular game in which

two players each need a given number of points in order to win. If the game is, however,

interrupted or ended before the required number of points is achieved, he wondered how the

pnze can be divided up according to the cunent score situation (Von Mises, 1964). Pascal solved

this problem through the use of binomial coefficients, as illustrated by his Arithmetical Triangle

(Ore, 1960). Pascal gave this problem to Fermat, who solved it the same way as Pascal had

(Todhunter, 1949).

The third problem of de Mere (Kocherlabota, 1989), and the one that will be the focus of

this research, is as follows: "In the long run, which number is more likely, the sum of 11 or the

sum of 12, when throwing three dice?" There appear to be six ways a sum of 11 can occur: 6-4-1,

6-3-2,5-5- I , 5-4-2, 5-3-3, and 4-4-3; and six ways a sum of 12 can occur: 6-5-I, 6-4-2, 6-3-3, 5-

5-2, 5-4-3, and 4-4-4. Therefore, one might assume that sums of 11 and l2have an equal chance

of occurring, according to probability theory. de Mere noticed, however, that when he observed

the actual throwing of three dice, the results did not turn out as he expected because 1l occurred

more often. Later, de Mere presented this problem to Pascal.

For de Mere, each sum had six combinations, so he reasoned that each sum would have

equal probabilities. To solve this paradox, however, the order of the cast must be taken into
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consideration. Otherwise, not all results will be equally probable (Szekely, 1986, p. 1-9). Taking

the order of casting into consideration (permutations instead of combinations), 11 can be thrown

27 different ways with three dice; and 12 can be thrown 25 different ways with three dice (see

Appendix A). Thus, the chance of 11 is greater than the chance of 12. Classical probability can

be applied to this problem once the dice are considered distinguishable, that is, when the

outcomes are viewed as ordered triplets. Only then can one talk about or appreciate the likelihood

of occurrences.

In other wotds, a major flaw in thinking that creates this dice paradox is that one may

consider the dice to be indistinguishable, that is, order information is ignored, and the dice are

not considered different from each other (i.e.,6-4-l = 6-L-4 = 4-6-l = 4-I-6 = I-6-4 = l-4-6).

Thus, the classical description of probability cannot be applied to it (Kocherlabota, 1989), The

nature of the underlying problem is threefold: First, each die is distinguishable (a separate entity

because order information is important). Second, often in nature, empirical results do not match

theoretical expectations, so in choosing a probability model for describing natural phenomenon,

one's everyday notions about the world are not sufficient (Kocherlabota, 1989). Third, one must

consider the order of the cast (permutations) to ensure that all results are equally probable.

Erroneous Reasoning on Probability: Kahneman, Tversþ, and Others

More recent research has demonstrated that humans are not particularly good at

"probability calculations." Supposedly, errors in probability thinking are not limited to naive

persons for "they are also found in the intuitive judgements of sophisticated psychologists."

(Kahneman & Tversky, 1972, p.433). Kahneman and Tversky (1972) published a paper

examining how individuals evaluate the probabilities of uncertain events, especially in the
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context of probability learning and intuitive statistics. Kahneman and Tversky cite previous

research that found that people do not follow principles of probability theory when judging the

likelihood of uncertain events. These laws of probability and chance are not intuitive, nor are

they always easy to apply. Many people use subjective probability, which is defined as the

estimate of the probability of an event given by a subject or inferred from her or his behavior.

Subjective probability judgements may lead to errors (e.g., heuristics) and are hard to eliminate

(Kahneman & Tversky,lgl2). Kahneman and Tversky (I912) investigated the use of heuristics

insread of probability theory. Specifically, they examined the representaliv¿ heuristic. Using this

particular heuristic, probabilities of events are evaluated by the extent to which the events have

similar properties to their parent population, and reflect the salient features of the process by

which they are generated. The authors hypothesized that an event A is considered more probable

than event B whenever A seems more representative than B. For example, the gender binh order

of GBGBBG is judged as more probable than the birth order of BGBBBG, because the second

event does not reflect the actual proportion of girls and boys in the population. Both examples

can be correct, since each binh has a 50 7o chance of resulting in either a boy or a girl and each

birth sex is not influenced by the sex of the previous child. Ordering events by their subjective

probabilities coincides with their ordering by representativeness. This hypothesis was tested in a

questionnaire format. The results indicated that both high school and university students judged

an event to be more likely than another, if its outcomes were more similar to the population it

was drawn from. Students are not the only group of people to make intuitive mistakes.

Experienced psychologists view statistical significance as a representation of scientific truth

(Kahneman & Tversky, 1972). When one finds a significant result in a sample, it is expected to
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represent a real effect in the population, a belief which occurs with disregard for sample size.

Analyses need an appropriate sample size to ensure that the study has sufficient power to reject

the null hypothesis when it is false. Also, if an event appears more random, it will be judged as

more likely. More representative events are given higher probabilities. Equally representative

events are given equal probabilities.

When people are assessing the probability of uncertain events or quantities, they often

make mistakes by using another heuristic called availability. If an event's likelihood is assessed

by frequency or by the ease with which it is easily brought to mind or imagined, the individual is

using the availability heuristic. For example, when assessing the likelihood of passing a math

test, one may recall other easily retrieved instances of math tests. Representative and availability

heuristics can be useful; however, they can also lead to systematic and severe errors. Using

heuristics, people will ignore some factors that should be affecting probability judgements, such

as the prior probability or base-rate frequency of outcomes. Another common mistake people

make is the misconception of the meaning of chance (Tversky & Kahnem an, 1974). The

misconception of chance is that it is often viewed as a self-correcting process in which a

deviation in one direction induces a deviation in the opposite direction to restore equilibrium. A

popular example of this is the gambler's fallacy, in which the probability of a future event is

mistakenly thought to be affected by past results. For example, a couple which had three girls in a

row would expect the next pregnancy to be a boy. Often events have independent probabilities

that are not affected by past results. This misconception of chance is found in naive subjects as

well as in the statistical intuitions of experienced research psychologists (Tversky & Kahneman,

I97I) which may lead to incorrect interpretations of data.



Erroneous Reasoning on Probability: Current Status

Psychologists have been arguing for some time about the definition of probability

(Cosmides & Tooby, 1996). The Bayesian definition of probability states that probabilities refer

to subjective degrees of confidence. The frequentist definition of probability is that probabilities

refer to the frequencies of events in the world. Much of the literature in heuristics and biases

concluded that humans do not use Bayesian probability when examining evidence (Kahneman &

Tversky, 1972). Through a series of experiments examining use of Bayesian versus frequentist

probability, however, frequentist problems can elicit Bayesian reasoning with only slight changes

in the wording of the question (Cosmides & Tooby, 1996). This implies that humans may utilize

a calculus of probability, not just rule of thumb heuristics. Often in the past, whenever a clash

between intuition and probability theory occurred, the theory was considered wrong, not the

intuition (Cosmides & Tooby, 1996). By the 1970s, however, whenever a clash between intuition

and probability theory occurred, it was assumed that the intuition was wrong, not the probability

theory. Cosmides and Tooby (1996) challenged the assumption that intuition is flawed; they

present the possibility that intuition can have a sophisticated logic.

Much research suggests that statistically naive subjects draw incorrect probability

inferences (Girotto & Gonzalez,200l). Even experienced psychologists with training in statistics

can draw incorrect probability inferences (Tversky & Kahneman,I9TI). Originally these errors

were assumed to be due to the use of heuristics instead of statistical probability reasoning. More

recently, Cosmides and Tooby (1996) suggest that errors in probability reasoning may result

because the probability information in the question is not presented in a manner similar to how

information is acquired in natural settings. With this information Girotto and Gonzalez (200I)



8

analyzed possible sources of error in probability reasoning problems. Next, Girotto and Gonzalez

(2001) demonstrated that naive subjects solve problems when they can apply an informal

principle but do not solve problems when they cannot use the principle. Finally, the implications

of the results of the study allows for alternative views on the issue of human probabilistic

reasoning.

Girotto and Gonzalez (2001) hypothesize that the form of the question and the structure

of the problem information affect probability inferences. The usual problems examined require

subjects to draw probability inferences on the basis of probability data. Newer versions of the

problems require subjects to draw statistical inferences on the basis of statistical data. The two

types of problems provide both similar data and similar questions; the difference lies in the

presentation of the problem; probability (Bayesian) versus statistical (or frequentist) form. The

results demonstrated that subjects performed better when presented with the frequency problem

form than when presented with the probability problem form;46Vo gave the correct answer

compared to 167o, respectively (Girotto & Gonzalez,200I).

Hansen and Helgeson (1996) examined the effects of statistical training on choices under

uncertainty. The authors cite reports that show statistical training influences the way people

reason about uncertain events in everyday life. The authors examined differences between

statistically trained versus naive participants in strategies and preferences used to solve

probability problems. With less statistical training, one would have a less involved method of

decision making than statistically experienced people. When information on probabilities is

lacking, decisions would be simplified by focusing on a single outcome. Hansen and Helgeson

(1996) examined four hypotheses. The first was that statistically naive decision makers will
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prefer answers with minimal loss more so than the statistically experienced. Second, statistically

naive decision makers (a) process decision information in a less compensatory manner, (b) spend

more time on loss-related information, (c) access less information, and (d) spend less time

arriving at a decision, compared to statistically experienced decision makers. The third

hypothesis was that after statistically naive participants receive outcome distribution information,

they prefer more risky alternatives as do the statistically experienced. The last hypothesis

examined was that statistically naive participants receiving outcome distribution information (a)

process information in the same compensatory manner, (b) spend similar amounts of time on

gain and loss information, (c) access the same amount of information, and (d) spend the same

amount of time making a decision as do statistically experienced participants.

The results supported the fi¡st hypothesis and the first three parts (a-c) of the second

hypothesis (Hansen & Helgeson, L996). Both statistically experienced and naive participants

took about the same amount of time to solve the problems. The third hypothesis was not

supported. Once statistically naive participants received outcome distribution information, they

did not prefer more risky answers as do statistically experienced participants. There were no

significant simple effects for the fourth hypothesis. There were, however, significant interaction

effects between experience and distributional cue. Introducing the distributional cue made the

statistically naive individuals approach more distributional, preferring risky alternatives more

often compared to before they received the cue. Also, they used a more compensatory strategy

similar to the statistically experienced participants. The implications of this research is that given

appropriate cues, statistically naive decision makers perform similarly to statistically experienced

decision makers. There are differences between these two types of people, with statistical
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training providing some advantage in solving these probability problems.

Brase, Cosmides, and Tooby (1998) state that "human thought processes are rational to

the extent that they produce answers that conform to the strictures of normative theories drawn

from mathematics, probability theory, or logic" (Brase et al, 1998, p. 3). If so, then the rational

mind should be equipped with computational mechanisms that include normative principles

drawn from probability theory and apply this to problems requiring statistical inference. Most

research to date finds that human reasoning abilities are full of errors - heuristics, biases, and

fallacious principles that violate the rules of mathematics or probability theory. These ideas led

researchers to believe that the mind's reasoning faculties are full of errors, that cognitive

structures have "mental limitations" (Brase et al., i998). These limitations prevent people from

using rational strategies, so heuristics are used because they are easier. Brase et al. (1998) cite

many studies, however, demonstrating that nonhuman animals such as bumblebees and birds,

who have small nervous systems, can make judgements under uncertainty during foraging that

manifests as a well-calibrated statistical induction that human brains were considered too limited

to do (Brase et al., 1998). The authors suggest this is so because the nonhuman animals were

tested in an ecologically valid context, whereas humans were not tested in an ecologically valid

context. Human reasoners' performance on probability problems are sensitive to the format that

information is presented in and the kind of answers asked for. Presenting information in

frequencies rather than in proportions or probabilities of single events improves human decision

makers' performance. This information suggests that humans and other animals have inductive

reasoning mechanisms that hold certain principles, however, their design requires a certain

context (e.g., frequencies rather than probabilities) to perform properly. The authors stress the
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importance of context, that the human mind evolved to survive in a particular environment that

presented information in a particular way, and that is why humans have trouble with problems

requiring out of context information.

Shiloh, Salton, and Sharabi (2002) examined how individual differences in thinking

styles influence the use of heuristics for judgements under uncertainty. Their results

demonstrated that people with a high need for cognition - time to think and enjoyment of

thinking - and have a low faith in intuition are more likely to make normative-statistical

judgements, and avoid biases such as the gambler's fallacy. People who have great faith in

intuition and a low need for cognition tend to make more heuristic judgements than did the high

need for cognition group. In addition, Brugger, Regard, and Landis (1990) reported that belief in

the paranor-mal is associated with effors in probability judgement. Undergraduates had to choose

one of three possible answers regarding a game of pure chance using dice. Students had to

choose which of two events was more probable, or if both events had an equally likelihood of

occurring. Students who believed in extrasensory perception @SP) attributed more personal

involvement over randomly determined processes and made more errors in probability

judgements than did students who did not believe in ESP. These results support the notion that

there are individual differences in judgements under uncertainty.

Neural Substrates of Logical Reasoning

Not much is understood about the neural substrates of logical thinking. Having access to

technology such as positron emission tomography (PET) and functional magnetic resonance

imaging (fMRÐ allows researchers to view the living brain as it is engaged in various activities,

including cognitive tasks. PET is the use of a device that reveals the localization of the
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radioactive trâcer in the living brain. PET measures metabolic activity of the brain, which is

indicative of current brain activity (Carlson, 2001). An MRI images the brain by the interaction

between radiowaves and strong magnetic fields. The MRI passes a strong magnetic field through

a person's head. With this magnetic field, atoms in molecules in the head spin with a particular

orientation. A radio frequency wave that is passed through the body at this time causes these

spinning atoms to emit their own radio waves. Different molecules emit different energy at

different frequencies. MRI's are tuned to detect radiation from hydrogen molecules, which exist

in different concentrations in different brain regions. This radio wave information is then used to

image the brain. An fMRI is a modified MRI procedure that permits the measurement of regional

metabolism in the brain (Carlson, 2001). FMRI's detect oxygen levels in the brain's blood

vessels before, dunng, and after working on a particular task.

Houde, Zago, Mellet, Moutier, Pineau, Mazoyer, and Tzourio-Mazoyer (2000) did PET

scans of the brains of participants performing a logic task. First, participants performed the task

as they would without instruction. Much of this performance was based on perceptual biases and

other errors of reasoning mentioned above. Next, participants were trained to respond logically

and then perform the same logic task. PET scans revealed that as participants shifted from a

perceptual bias to a logical response, there was a shift in brain activity from the posterior brain

(occipital and parietal lobes, which mediate sensory processing and responding) to the left

prefrontal network, which includes the dentate gyrus, hippocampus, Broca's area, the anterior

insula and the pre-sensory-motor association cortex (pre-SMA). The frontal cortex is associated

with higher cognitive functions. The dentate gyrus is the site of activation during object and

spatial memory, and cognitive inhibition of perceptual responses; Broca's area and the anterior
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insula are structures involved in so-called inner speecå (Houde et al., 2000). The pre-SMA

activation suggested to the authors a state of readiness to apply a motor response (Houde et al.,

2000). Another study using fMRI to image the brain as participants answered mathematical

reasoning problems found increased activity in bilateral frontal ateas, similar regions to that

mentioned above, and are involved in cognitive processing (Prabhakaran, Rypma, & Gabriell,

200r).

Parsons and Osherson (2001) used PET to view the neuroanatomy activated as

participants solved deductive and probabilistic reasoning problems. Differences in instructions to

the participants elicited either deductive reasoning or probabilistic reasoning. Deductive

reasoning activates right brain areas, whereas probabilistic reasoning activates left brain areas

including the inferior frontal, posterior cingulate, parahippocampal, medial temporal, and

superìor and medial prefrontal cortices. These areas mediate cognitive tasks and some memory

tasks (Parsons and Osherson, 2001). The above data suggest that the neural substrates of logical

reasoning reside in the prefrontal cortex and sunounding areas of the human brain. Knowledge

and understanding of the neural substrates of logical reasoning is not common, however (Houde

et al., 2000), so people may underestimate the importance of the left side of the frontal lobe for

solving probability problems involving dice.

Hypotheses

Given the above information, it was hypothesized that (a) participants who try to solve

probability problems through intuition will give fewer correct answers than those who try to

solve such problems through calculation, (b) participants who try to solve probability problems

through calculation but before a demonstration of how to do the problems will give fewer correct
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answers than those who try to solve such problems through calculation but after the

demonstration, (c) participants who give the highest number of correct answers on post-

demonstration two-dice problems will be more likely to give a correct answer (i.e., to generahze)

to a single three-dice problem, and (d) participants will mistakenly attribute responsibility for

probability-solving activity to areas of the brain other than the left frontal lobe.
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Method

Participants

Participants were drawn from the University of Manitoba's Introductory Psychology

subject pool. One-hundred and fourteen students received course credit for their in-class

participation during a 60 minute class period. They ranged in age from 18 to 52 years of age (M =

23.1). Sixty-three females and 49 males (plus two participants who did not indicate their gender)

made up the sample. Based on data obtained from a demographics questionnaire (see Materials),

participants reported moderate experience in statistics or math (M = 2.8 on a four point scale) and

had little knowledge of statistics or math (M= 4.2 on a 7 point scale). Participants also had little

experience in brain physiology (M = 2.1 on a four point scale) and little knowledge of brain

physiology (M = 3.0 on a seven point scale). Participants indicated their proficiency in gambling

and games of chance as being only moderate (M = 3.4 on a 7 point scale) but were slightly

confident in their ability to solve probability problems similar to those with which they were

being presented (M = 5.0 on a seven point scale). Participants judged both experience and

knowledge of brain physiology as important for solving probability problems with dice (M = 4.4

on a seven point scale).

Materials

A Dice Outcome Questionnaire (DOQ) contained white, blue, yellow, and green pages

(see Appendix B). The first three colored sections compared the likelihood of two specific dice-

sides occurring in the long run when the number of possible sides varied from two through six. In

all questions, the two sums differed by only one number (e.g., 1 1 and I2).In some problems, the

higher sum was more likely to occur than the lower sum (e.g., 5 instead of 4), whereas in other



T6

problems the lower sum was more likely to occur (e.g., 9 instead of 10). In this questionnaire, the

lower sum always appeared first. In each pairing, the choices were equally probable if the dice

were considered indistinguishable, but not so if the dice were considered distinguishable. In this

latter case, one sum was always more probable than the other. In five cases, the odd sum was the

lower number and occurred first; in three cases. the even sum was the lower number and

occurred first. For example, in one problem, a 7 was presented before an 8; in another problem, 4

was presented before a 5.

For each pairing, the odd sum had the higher probability of occurrences. To avoid

students seeing this by running several calculations and catching on to a pattern, they were

initially told that they were to answer the questions without doing any mental calculations and

later that they were not to go back to check their previous answers until the end of the

experiment. Given this set of instructions, the students should not have been able to detect the

pattem that odd sums are always the correct answers.

The section containing the green page contained a single question which asked for an

answer to a three- rather than a two-dice problem (see Appendix B). This question tested the

capability of participants to generalize beyond two-dice problems.

A Demographics Questionnaire (see Appendix C) was administered after completion of

the DOQ. It asked the participants to give their age and gender. The questionnaire also asked

participants about their experience with the biology or physiology of the brain, about their

training and proficiency in math or statistics, and asked them how confident they were in their

abilities to answer the type of probability problems they just attempted to solve. Finally, this

questionnaire asked the participants about the location of the brain area most involved in solving
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probability problems with dice, and how important is the brain compared to knowledge in

solving these problems.

Procedure

Participants were told that this experiment was studying people's intuition regarding the

likelihood that certain dice-sums will come up more often than other dice-sums. When

participants were ready to start the experiment, they were asked to assume that they are playing a

dice game against an opponent to win more money than their opponent (see Appendices B and C

for the instructions given throughout the duration of the study). The game was explained to them,

and they were asked the following question, "'When two different sums are compared, which sum

would you bet on as coming up more often in the long run?"

Participants first were asked to answer by intuition or "feel." They were told not to

perform any mental or manual calculations to get the answer. Then they were asked to complete

the white pages of the DOQ (see Appendix B). The answers to all questions are given in

Appendix D, which was not available to the participants.

Once the white pages were completed, participants were asked to answer the same

problems through manual calculations on the blue pages.

Participants were then given a demonstration of solving the dice problem using two 2-

sided dice (see Appendix E). During the demonstration, the experimenter did not use the

following words: "distinguishable," "undistinguishable," "order of casts," "permutations," or

"combinations." Not saying these words was necessary so that the solution would not be given

away directly.

AII panicipants were then asked to calculate on the yellow pages the answers to the same
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problems.

Participants were then asked to answer a three-dice problem on a green page. If the

participants gave a high number of correct answers to the green questions, they not only would

have demonstrated that they understand the distinguishability concept, but also would have

demonstrated generalization from a two- to a three-dice problem.

Participants were then given the Demographics Questionnaire (see Appendix C), which

included a question about the location of the brain region most involved in solving probability

problems with dice.

Finally, participants were debriefed. The debrjefing informed the students about the

purpose of the experiment.
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Results

A repeated measures ANOVA was used to determine if there were any significant

differences in number of correct answers between the 3 sections of the DOe. These three

sections were titled "the intuitive solution (Intuit)," "the pre-demonstration calculation solution

(Pre-Demo)," and "the post-demonstration calculation solution (post-Demo).,,The means and

standard deviations foreach solution arc: M =3.3I,.SD. = 2.32; M = 3.31, SD =2.g5: and M =

4'32, sD = 2'88, respectively (see Figure 1 for a plot of the means and their standard errors). The

effect of solution-orientation was evaluated by the Greenhouse-Geisser test, F (1.g, 207.g) =

10'688, p < '001, rl2 = .086 (see Table 1), corrected for a significant Mauchly's test of sphericity.

Pairwise comparisons revealed no significant differences between Intuit and pre-Demo; however.

Post-Demo was significantly different from borh Intuit (p < .001) and pre-Demo (p < .001).

Therefore, hypothesis (a) was not confirmed (the Pre-Demo section did not have higher scores

than the Intuit section), but hypothesis (b) was confirmed (after viewing a demonstration,

participants gave more coffect answers).1

when Post-Demo scores were divided at the median, 56 participants had low scores (0-

4)' and 58 participants had high scores (5-8). Forty five participants correctly answered the three-

dice generahzation question (green page of the DoQ), and 69 participants answered incorrectly.

The resulting2x 2 chi-Square (see Table 1) yielded a significant association between post-

Demo correctness with two-dice and generalization correctness with three-dice. Therefore,

hypothesis (c) was confirmed (those participants scoring high in the post-Demo section correctly

generalized the solution to a three_dice problem).

Participants were again divided at the median into high and low post-Demo scorers. on
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Figurel . Mean Scores for Each Section of the Dice Outcome euestionnarre DOe). Codes for

DOQ Sections are: 1 = Intuit, 2 =pre-Demo, 3 = post_Demo.
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Table 1

Note. y' (1,N- II4)=7.42,p =.01.

Comparison oÍ Post-Det nonstration Correctness and Generalization Correctness

Generali zation Correctness

Post-Demo

Correctness

Correct Incor¡ect Total

Low scores 15 4l 56

High scores 30 28 58

Total 45 69 114



^^.¿¿

the other hand,25 participants answering Question H on the Demographics Questionnaire gave

the correct attribution of brain activity involved while solving probability problems to the left

frontal lobe, whereas 89 participants listed one of the other seven brain areas. To compare these

two numbers directly would seriously inflate the number of incorrect responses, because there

were seven opportunities to select an incorrect answer by chance and only one opportunity to

select the correct answer by chance. Accordingly, the 25 correct answers were compared to the

average incorrect answer by dividing the 89 misattributions by 7. The averâge number of

misattributions was 89/7 = I2.7 = 13. The resulting 2 X2 Chi-Square (see Table 2) yielded an

insignificant association between Post-Demo correctness and Brain Area Involvement.

Therefore, hypothesis (d) was not confirmed (participants did not attribute less responsibility for

probability-solving activity to the left frontal lobe than to the average of the other areas of the

brain).
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Table 2

Note. f (1, N - 38) = LI2, p = .29.

C ontp aris on of P o st - Detnon s t r at io n C o rre c tne s s and B r aín Att rib ut io n C o r re ctne s s

Brain Attribution Correctness

Post-Demo

Correctness

l,eft Frontal Lobe Other Brain Areas Total

Low scores L2 5 T7

High scores T3 8 21

Total 25 13 38
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Discussion

Humans typically are poor statisticians, and they do not intuitively apply the laws of

probability theory. What one naively intuits about the probability of events does not generally

match the objective probability. The aim of this study lvas to examine the nature of erroneous

reasoning about human probability and demonstrate that certain counterintuitive probability laws

can be taught by demonstration and will generalize to more complex problems.

The results of the present study suggest that although manually calculated solutions to

probability problems involving two dice fail to yield more correct answers than initial intuitive

solutions, people given the opportunity to view a demonstration of a correct solution have

improved chances of correctly solving such problems. Hypothesis (a) was thus not confirmed,

but hypothesis (b) was confirmed. A speculation to explain this result is that viewing a

demonstration will promote more probabilistic thinking than will written instructions. Having

extra time to think and write out solutions is not enough to promote probabilistic thinking. This

is in line with the results of research (Girotto & Gonzalez,200I; Hansen and Helgeson, 1996)

that suggests that only information presented in an appropriate manner will elicit rational

thinking.

Results also showed that people getting a high number of probability problems correct

after getting a demonstration tend to generalize from a two dice to a three dice problem.

Apparently, the participants understand the distinguishability concept and so can generalize to

more complex problems. This supports hypothesis (c) and the idea that humans may not be such

poor intuitive statisticians as is commonly believed (Cosmides & Tooby, 1996).

Finally, results showed that participants failed to attribute responsibility for problem
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solving activity with dice to the left frontal lobe of the brain as compared to the average of all

other seven brain areas. Such a finding does not support hypothesis (d) but rather indicates that

people generally lack the physiological information required to solve this problem. It was

hypothesized that participants would choose other areas over the left frontal lobe because

knowledge and understanding of the neural substrates of logical reasoning is not well known

(Houde et al., 2000). Participants in the present study apparently did not have the appropriate

knowledge of brain physiology to correctly identify the left frontal lobe as being responsible for

probability reasoning with dice.

All of these results taken together suggest that presenting probability information in the

form of (a) demonstrations of dice outcomes and (b) learning the special functions of each brain

area will promote more effective probability reasoning.

Research on judgements under uncertainty and people's ability to accurately use rational

probability rules ( e.g., Kahneman & Tversky, 1982; Girotto & Gonzalez,200I) has been

conducted under a single premise. This premise is that human cognitive processes are rational to

the extent that the rules humans use conform to the foundations of normative theories drawn

from mathematics, probability theory, and logic (Brase et al., 1998). Proponents of this viewpoint

assume that human cognitive structures should be able to correctly apply normative principles

taken from probability theory to accurately calculate problems of statistical inference. The

conclusions drawn from this kind of research suggests that humans are poor statistical or

probabilistic reasoners (e.g., Kahneman & Tversky, T972;Kahneman & Tversky, 1982).

More recent research found some puzzles in the premise. For example, evolutionary

biologists studying animal behavior (specifically judgments under uncertainty to test various
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mathematical models taken from optimal foraging theory) find that even animals with very small

nervous systems, such as the bumblebee or birds, can still accurately make judgments under

uncertainty when they are foraging that the human's brain is considered "too limited" to calculate

(Brase et al, i998). Are bumblebees really more rational than humans? The reply is that the

bumblebees were tested in ecologically valid conditions, whereas humans were not. Testing

humans in an ecologically valid context demonstrates that they are as rational as bumblebees and

birds. The research by Hansen and Helgeson (1996) and Girotto and Gonzalez (200I) described

earlier supports this hypothesis in that presenting information to humans in an appropriate

manner elicits correct probability judgements. Humans can rationally solve probability problems

when information is presented in frequencies rather than in probabilities. Under a frequency

format, people use base-rate information, producing answers that conform to the principles of

Bayes' rules (Cosmides & Tooby, 1996).In this way, the conjunction fallacy and the

overconfidence bias erors (present when information is presented in probabilities) are

eliminated.

Thus, it seems as if humans, similar to other animals, have inductive reasoning

mechanisms using rational principles; and these mechanisms require representations of

frequencies to function properly. The human mind does embody a calculus of probability. The

current research suggests that viewing a demonstration of the solution is very effective method of

conveying the distinguishability concept, perhaps even superior to written instructions.

Presenting information in an appropriate manner elicits rational thinking. Individuation is the

process of viewing the world as made of discrete entities. Perhaps at first, the participants did not

individuate the dice. However, they may have individuated the dice after seeins a demonstration



of the solution, so each die was finally viewed as a discrete entity, thus demonstrating an

understanding of the distinguishability concept.

A shortcoming of the present study is that the participants were never asked explicitly, at

any time whether they could explain or verbalize the distinguishability concept or whether they

intuitively understood the concept. To do so might have either biased their responses or provided

inaccurate perceptions due to a "hindsight bias." Still, further research should examine this issue.

Another shortcoming is the potential for practice effects. Each of the three sections of the DOQ

used the same questions (problems). To minimize this confounding, the experimenter instructed

participants not to return to previous pages and not to look ahead in the questionnaire. The data

analyses revealed that there was no significant difference between Intuit and Pre-demo

conditions, suggesting that practice effects probably played little role in the results.

Practical implications of this study suggests that certain counterintuitive probability laws

can be taught by demonstration. In fact, these laws may be applied and generalized to a more

complex problem, Replicating these results with different types of questions or problems and

different methods of demonstration will further uncover the true nature of humans reasoning

abilities. It is the researcher's contention that humans may not be as 'irrational' as once thought.

Perhaps other types of probability solutions can be taught by offering simple, non-explicit

demonstrations.

The major theoretical implication of the current study is that judgement under uncertainty

can be examined from a different viewpoint using a different approach. The premise of this

research may be changing back to the old view -- if there is a clash between intuition and theory,

then maybe the theory should be reviewed for its validity. Although at first people are not good
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probability reasoners, presenting a demonstration or example can reduce these errors. Humans

can quickly understand and apply counterintuitive probability laws, reducing enoneous reasoning

on probability. They just need a small amount of help, structure, or priming.
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Appendix A

Combinations and Permutations of Three Dice

Combinations of Three Dice

Sum of 11

6-4-l
6-3-2
5-5-1
5-4-2
5-3-3
4-4-3

Sum of L2

6-5-1
6-4-2
6-3-3
5-5-2
5-4-3
4-4-4

Permutations of Three Dice

Sum of 11 6-4-l
6-3-2
5-5-i
5-4-2
5-3-3
4_4_3

6-r-4
6-2-3
5-2-4

4-6-1
3-6-2
4-5-2
3-5-3

4-1-6
3-2-6
s-1-5
4-2-5
4-3-4

r-6-4
2-6-3
2-5-4

r-4-6
2-3-6
1-5-5
2-4-5
3-3-5
3-4-4

Sum of 12 6-5-I
6-4-2
6-3-3
5-5-2
5-4-3
4-4-4

6-r-5
6-2-4
5-3-4

5-6- 1

4-6-2
3-6-3
4-5-3
3-5-4

5-r-6
4-2-6
5-2-5
4-3-5

1-6-5
2-6-4

1-5-6
2-4-6
3-3-6
2-5-5
3-4-5
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Appendix B

DICE OUTCOME QI-IESTIONNAIRE

Assume you are playing a dice game against an opponent. The winner will receive a large amount of
money. The game involves two fair dice that will be "tossed" over 1000 times by a random number
generator. Your task is to select which of two sums of these two dice you will "bet on" in order to win
the prize money. You are to choose one and only one sum as your bet on all trials. Fortunately, YOU get
to choose first. This choice will be YOIIR bet for all dice-tosses with that specific pair of dice. Your
opponent will have to take the sum you did not choose. (Remember, neither of you can "change" sums
once the initial selection is made.) Also, assume that you will be playing with different pairs of dice (for
example, a pair may have six sides or five sides or four sides or three sides or two sides).

The question is: When two different sums of dice are compared, which sum would vou bet on as
coming up more often in the long run? Please indicate your selection in each comparison below by
marking an "X" in the appropriate box. Please mark one and only one box in each comparison and do
NOT perform any mental or manual calculations to get the answer, for we want your intuition or "feel"
for the answer at this point. Later you will have an opportunity to check the accuracy of your initial
selection.

TWO DICE, EACH WITH SIX SIDES NUMBERED FROM l TO 6

1. Which sum would you bet on expect to come up MORE OFTEN in the long run?

/ I the sum of the two dice = 6

lJ thesumof thetwo dice=1

/_l both sums are equally probable

2. Which sum would you bet on expect to come up MORE OFTEN in the lons run?

/ / the sum of the two dice = 9

- the sum of the two dice = i0

/_l both sums are equally probable

3. Which sum would you bet on expect to come up MORE OFTEN in the long run?

Ú the sum of the two dice = 11

I / the sum of the two dice = 12

la both sums are equally probable

Please turn to the next page and indicate your bets for a different pair of dice. Do NOT turn back to
previous pages and bets.
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TWO DICE, EACH WITH FIVE SIDES NUMBERED FROM 1 TO 5

4. Which sum would vou expect to come up MORE OFIEN in the lons run?

Ú the sum of the two dice =2

tJ tnesum of the two dice = 3

/J both sums are equallY Probable

J. Which sum would vou bet on expect to come up MOR-E OFTEN in the lons run?

/-l the sum of the two dice = 7

/ / the sum of the two dice = 8

lJ both sums are equally probable

Please turn to the next page and indicate your bet for a different pak of dice. Do NOT turn back to

previous pages and bets.
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TWO DICE, EACH WITH FOUR SIDES NUMBERED FROM l TO 4

6. Which sum would you expect to come up MORE OFTEN in the lone run?

I / the sum of the two dice = 4

lJ the sum of the two dice = 5

/_/ both sums are equally probable

Please turn to the next page and indicate your bet for a different pair of dice. Do NOT turn back to
previous pages and bets.
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TWO DICE, EACH WITH THREE S/DES NAMBERED FROM 1 TO 3

7. Which sum would vou expect to come up MORE OFTEN in the lone run?

/ | the sum of the two dice = 5

ll the sum of the two dice = 6

l-l both sums are equallY Probable

Please turn to the next page and indicate your bet for a different pair of dice. Do NOT turn back to

previous pages and bets.
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TWO DICE, EACH WITH TWO SIDES NUMBERED FROM 1 TO 2

S.Which sum would vou expect to come up MORE OFTEN in the lons run?

I I the sum of the two dice = 3

lJ the sum of the two dice = 4

l-/ both sums are equally probable

Please STOP and wait for further instructions. Do NOT turn back to previous pages and bets.
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The previous two-dice problems are repeated below, and you have the same task as before. When two

different sums of dice are compared, which sum would ]¡ou bet on as coming up more often in the long

run? Please indicate your selection in each comparison below by marking an "X" in the appropriate box.

Please mark one and only one box in each comparison. However, for these problems you are asked to
write out EACH wav vou can obtain each sum. (You can later check your calculated answers with the

intuitive answers you gave before.) As you list each way to obtain a specific sum, be sure to identify the

number each die-face shows, for example, | & 2.

TWO DICE, EACH WITH SlX S/DES NUMBERED FROM 1 TO 6

9. Which sum would vou bet on expect to come up MORE OFTEN in the lons run?

lJ the sum of the two dice = 6

I I the sum of the two dice = 7

lJ both sums are equally probable

10. Which sum would )¡ou bet on expect to come up MORE OFTEN in the lons run?

lJ the sum of the two dice = 9

/ I the sum of the two dice = i0

lJ both sums are equally probable

11. Which sum would you bet on expect to come up MORE OFTEN in the long run?

l_l the sum of the two dice = 11

I / the sum of the two dice = 1.2

lJ both sums are equally probable

Please turn to the next page and indicate your bets for a different pair of dice. Do NOT tum back to
previous pages and bets.
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TWO DICE, EACH WITH FIVE SIDES NUMBERED FROM I TO 5

12. Which sum would vou expect to come up MORE OFTEN in the long run?

/-l the sum of the two dice = 2

/ / the sum of the two dice = 3

/J both sums are equally probable

13. Which sum would J¡ou bet on expect to come ugMORE OFTEN in the long run?

I I the sum of the two dice = 7

lJ the sum of the two dice = 8

l-/ both sums are equally probable

Please turn to the next page and indicate your bet for a different pair of dice. Do NOT turn back to
previous pages and bets.
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TWO DICE, EACH WITH FOUR SIDES NUMBERED FROM 1 TO 4

14. Which sum would -vou expect to come up MORE OFTEN in the lons run?

lJ the sum of the two dice = 4

lJ the sum of the two dice = 5

l-/ both sums are equallY Probable

Please turn to the next page and indicate your bet for a different pair of dice. Do NOT turn back to

previous pages and bets.
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TWO DICE, EACH WITH THREE S¡DES NAMBERED FROM 1 TO 3

15. Which sum would )¡ou expect to come up MORE OFTEN in the long run?

I / the sum of the two dice = 5

l-J the sum of the two dice = 6

l-l both sums are equally probable

Please turn to the next page and indicate your bet for a different pair of dice. Do NOT turn back to
previous pages and bets.
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TWO DICE, EACH WITH TWO SIDES NUMBERED FROM 1 TO 2

16. Which sum would you expect to come up MORE OFTEN in the long run?

lJ the sum of the two dice = 3

/ I the sum of the two dice = 4

t-l both sums are equally probable

Please STOP and wait for further instructions. Do NOT turn back to previous pages and bets.
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The previous two-dice problems are repeated below, and you have the same task as before. When two
different sums of dice are compared, which sum would vou bet on as coming up more often in the long
run? Please indicate your selection in each comparison below by marking an "X" in the appropriate box.
Please mark one and only one box in each comparison. For these problems you are again asked to write
out EACH way ]¡ou can obtain each sum, However, now you have the advantage of having seen a
demonstration of how to ensure you get the correct answer to each problem. As you list each way to
obtain a specific sum, be sure to identify the number each die-face shows, for example, | & 2.

TWO DICE, EACH WITH SIX SIDES NUMBERED FROM l TO 6

17. Which sum would you bet on expect to come up MORE OFTEN in the long run?

lJ the sum of the two dice = 6

/ I the sum of the two dice = 7

t-t both sums are equally probable

18. Which sum would you bet on expect to come up MORE OFTEN in the long run?

/_l the sum of the two dice = 9

| / the sum of the two dice = 10

/J both sums are equally probable

19. Which sum would you bet on expect to come up MORE OFTEN in the lone run?

ll the sum of the two dice = 11

/ I the sum of the two dice = 12

lJ both sums are equally probable

Please turn to the next page and indicate your bets for a different pair of dice. Do NOT tum back to
previous pages and bets.
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TWO DICE, EACH WITH FIVE SIDES NUMBERED FROM 1 TO 5

20. Which sum would you expect to come up MORE OFTEN in the long run?

t-t the sum of the two dice = 2

/ / the sum of the two dice = 3

lJ both sums are equally probable

21. Which sum would you bet on expect to come up MORE OFTEN in the long run?

/ / the sum of the two dice = 7

tJ ,n"sum of the two dice = 8

l_l both sums are equally probable

Please turn to the next page and indicate your bet for a different pair of dice. Do NOT turn back to
previous pages and bets.
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TWO DICE, EACH WITH FOUR S/DES NUMBERED FROM I TO 4

22. Which sum would you expect to come up MORE OFTEN in the long run?

lJ the sum of the two dice = 4

lJ the sum of the two dice = 5

t-t both sums are equally probable

Pìease turn to the next page and indicate your bet for a different pair of dice. Do NOT turn back to
previous pages and bets.
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TWO DICE, EACH WITH THREE SIDES NUMBERED FROM 1 TO 3

23. Which sum would you expect to come up MORE OFTEN in the long run?

lJ the sum of the two dice = 5

/-J the sum of the two dice = 6

/J both sums are equally probable

Please turn to the next page and indicate your bet for a different pair of dice. Do NOT turn back to
previous pages and bets.
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TWO DICE, EACH WITH TWO SIDES NUMBERED FROM T TO 2

24. V/hich sum would you expect to come up MORE OFTEN in the lone run?

t-J ,n"sum of the two dice = 3

I / the sum of the two dice = 4

lJ both sums are equally probable

Please STOP and wait for further instructions. Do NOT turn back to previous pages and bets.
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We would now like you to do ONE more thing before you finish the study. We would like you ro make
one more comparison of sums EXCEPT THAT Now THREE DICE WILL BE usED (rather rhan rwo).
Again, for these problems you are asked to write out EACH wav you can obtain each sum, As you
list each way to obtain a specific sum, be sure to identify the number each die-face shows, for ãxampie,1&2&3.

THREE DICE, EACH WITH SIXS/DES NUMBERED FROM l TO 6

the sum of the three dice = I I

the sum of the three dice = 12

all three sums are equally probable

l_t

Please STOP and wait for further instructions. Do NOT turn back to previous pages and bets.
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A. Age:

Appendix C

Demographics Questionnaire
Gender:

B. How confïdent are you in your abitity to solve other probability problems similar to
those you just fTnished solving?
(Circle the MOST appropriate number.)

Notatallconfident 1 2 3 4 5 6 7 Vervconfident

C. How much exposure to information on statistics or math have you had (through books,
courses, etc. whether in high school, university, or elsewhere)?
(Check the MOST appropriate space.)

_1. I have had no exposure to information on statistics or math

-2.I 
have had very little exposure to information on statistics or math (e.g., one book read or

one course taken)

-3.I 
have had a fair amount of exposure to information on statistics or math (e.g., two books

read or two courses taken)

-4.I 
have had quite a lot of exposure to information on statistics or math (e.g., more than two

books read or two courses taken)

D. How much knowledge do you feel you have in statistics or math?
(Circle the MOST appropriate number.)

Noknowledge I 2 3 4 5 6 7 Considerableknowledge

E. How much proficiency do you feel you have in gambling and eames of chance? (Circle
the MOST appropriate number.)

Notatallproficient | 2 3 4 5 6 7 Veryproficient

Please continue on the reverse side of this page.
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F. How much exposure to information on brain physiology have you had (through books,
courses, etc. whether in high school, university or elsewhere)?
(Check the MOST appropriate space.)

_1. I have had no exposure to information on brain physiology

-2.I 
have had very little exposure to information on brain physiology (e.g., one book read or

one course taken)

-3. 
I have had a fair amount of exposure to information on brain physiology (e.g., two books

read or two courses taken)

-4.I 
have had quite a lot of exposure to information on brain physiology (e.g., more than two

books read or two courses taken)

G. How much knowledge do you feel you have in brain phvsiolog-v?
(Circle the MOST appropriate number.)

Noknowledge I 2 3 4 5 6 7 Considerableknowledge

11. Which area of the brain do you think is MOST involved in solving probability problems
with dice?
The diagram of the brain at the bottom of the page may assist you in giving an answer. (Circle
only ONE answer.)

1. Right frontal lobe
2.Left frontal lobe
3. Right temporal lobe
4.Inft temporal lobe

1. How important is the brain as compared to knowledge for solving probability problems
with dice? (Circle the MOST appropriate number.)

Brainmostimportant r 2 3 4 5 6 7 Experiencemostimportanr

ht Frontal Lobe
14.,/,

þht Temporal Lobe

læft Parietal Lo ieht Parietal l¡be

5. Right parietal lobe
6.I-,eft panetal lobe
7. Right occipital lobe
8. t eft occipital lobe

Front (Top View)

Back

I-eft Occrpitaì

c\-

-\\'

I
-t.,

&ht Occipital Lobe
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Appendix D

Correct Answers to the Dice Outcome Questionnaire

2 dice,6 sides

Page 1,6, 11

2 dice,5 sides

Page 2,7 , 12

2 dice,4 sides

Page 3,8, l3
2 dice,3 sides
Page 4,9,14

2 dice,2 sides

Page 5, 10, 15

- 7-r,l-l
4-3,3-4
53 )-5
5-1,1-5

?-? )-4
4-2

6-

) = 6-3,3-6
4-5,5-4

l0 = 6-4,4-6,
5-5

11 = 5-6, 6-5
12 = 6-6

J = 7-2,2-I
$= 1-1

7 = 5-? )-5
4-3,3-4

8 = 4-4,5-3,
3-5

{= 4-l, r-4,
)_? 7_t

3-l, r-3,
'') 'l

$=

a_) )_?

--J-J

J = 2-I, L-2

4- 2-2
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Appendix E

Demonstration

How many ways can you get a sum of 3 using two 2-sided dice?

Possibility #1 2,1= 3

Possibility #2 1,2 = 3

Therefore, with two 2-sided dice there are only two ways to get a sum of 3.
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Footnotes

rThe experimenter wanted to ensure that the demonstration was beneficial but at the same time

did not improve post-demonstration scores merely because the question in the demonstration

was identical to question eight in the post-demonstration. In other words, improvement in post-

demonstration scores could be due to memory of what was just presented rather than to learned-

distinguishability of how to solve dice problems. Therefore, a second ANOVA was run on

number of correct answers for only the first seven questions of each of the three sections of the

DOQ. The new intuitive, pre-demonstration, and post-demonstration means and standard

deviationsforeachsolutionwere:M=2.90,sD.=2.04;M=2.94,sD=2.4g;andM=3.J4,sD

= 2'57 , respectively. The effect of solution-orientation was evaluated by the Greenhouse-Geisser

test, F (2, 112) = 6.587, p <.002,\2 =.07I, corrected fora significantMauchly's test of

sphericity. Pairwise comparisons revealed no significant differences between Intuit and pre-

Demo; however, Post-Demo was significantly different from both Intuit (p = .001) and pre-Demo

(p = .001). These results based on seven questions are comparable to those based on all eieht

questions.


