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Abstract

In the framework of the Jacobi-weighted Besov and Sobolev spaces, we analyze the ap-
proximation to singular and smooth functions. We construct stable and compatible polyno-
mial extensions from triangular and square faces to prisms, hexahedrons and pyramids, and
introduce quasi Jacobi projection operators on individual elements, which is a combination
of the Jacobi projection and the interpolation at vertices and on sides of elements. Applying
these results we establish the convergence of the h-p version of the finite element method
with quasi uniform meshes in three dimensions for elliptic problems with smooth solutions
or singular solutions on polyhedral domains in three dimensions. The rate of convergence in
terms of A and p is proved to be the best.
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CHAPTER 1

Introduction

The finite element method (FEM) has rapidly developed as an important numerical
method for partial differential equations in theory, algorithm, and applications since the
1940’s, and becomes now the mostly used computational tool to solve large-scale engineering
and scientific problems. In the early years, FEM was used in structural mechanics such
as civil engineering, automobile industry and aerospace industry, and it has penetrated
almost every field of today’s engineering and sciences, such as material science, electric-
magnetic fields, fluid dynamics, biology, and finance. Numerous softwares of FEM have been
successfully used in industry, research and education such as MSC/NASTRAN, ANSYS,
ABAQUS, COSMIC, and many others.

According to the structure of finite element solutions, there are three approaches of the
finite element method: the h-version, the p-version and the h-p version. In the A-version,
the degree p of the elements is fixed at a low level and the accuracy is achieved by properly
refining the mesh. In the p-version, the mesh is fixed and the degree p of polynomials is in-
creased uniformly or selectively to achieve the accuracy. The h-p version is the combination
of the h-version and p-version, namely, refine meshes and increase polynomial degrees simul-
taneously and selectively (or uniformly) in order to achieve higher accuracy. The p-version
and h-p version are new developments, commercial and research codes based on the p and
h-p versions of FEM are now widely used in computational engineering and sciences, for ex-
ample, the commercial codes Pro/MECHANICA, PolyFEM, ProPHLEX, STRESSCHECK
and the research codes STRIPE, HP-2D and HP-3D.

The first theoretical paper on the p -version in two dimensions by Babuska, Szabd and
Katz was published in the early 1980s, it was shown in [9] that the p-version of FEM converges
at least as fast as the classical FEM with quasi-uniform meshes and it converges twice as fast
as the classical FEM if the solution has singularity of r7-type. Babuska and Suri improved in
[7] substantially the results of [9] and generalized to the h-p version in two dimensions in [8].
A detailed analysis of the p and h-p version in one dimension was given by Gui and Babuska in
[23]. Since then remarkable progresses for the p and h-p version in one and two dimensions
were made in the 1980s and 1990s, see e.g. [7, 8, 2, 19, 29, 30, 31, 41, 42, 44, 45|,
and the p and h-p version were implemented in commercial codes and used in practical
engineering computation. Despite these progresses, people had struggled for an appropriate
mathematical framework which is able to provide a uniform error analysis for the p and h-p
version of FEM in one, two and three dimensions and to lead to the optimal convergence
of the FEM solutions of the p and h-p version for problems on polygonal and polyhedral
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domains. After two-decades effort people realize very recently that the most appropriate
mathematical framework for error analysis of the p and h-p version is the Jacobi-weighted
Besov and Sobolev spaces. In a series of papers by Guo and his collaborators [3, 4, 5, 6, 34|,
a new analysis of the p and h-p version was given in which the approximation theory of the
FEM and BEM in two dimensions in this new mathematical framework was systematically
developed. It demonstrates that Jacobi-weighted Besov space is the most appropriate tool to
obtain optimal upper and lower bounds when dealing with singular solutions on polygons.
This framework has been generalized to the p-version and the h-p version of the BEM
(32, 33]. Thus the approximation theory for the p and h-p version of FEM and BEM in two
dimensions has been established in the framework of the Jocobi-weighted Besov and Sobolev
spaces.

Although significant progresses for the p and h-p versions FEM in one and two dimen-
sions have been made in the past three decades, the approximation theory of the p and h-p
versions of FEM in three dimensions is much less developed due to the complexity of three
dimensional problems, and only a few results are available, e.g. [10, 16, 40]. There are three
fundamental issues or difficulties in the analysis of high-order FEM in three dimensions. First
of all, design three types of Jacobi-weighted Besov and Sobolev spaces such that the three
types of singularities in three dimensions can be characterized precisely and the Jacobi pro-
jections of the singular functions in these spaces lead to the sharpest approximation errors.
Secondly, define local projection based operator which is a combination of Jacobi projection
and interpolation at vertices and sides of elements remaining the best approximation prop-
erties of the Jacobi projection. At the third, establishing stable and compatible polynomial
extensions of polynomials from faces of three commonly used elements in three dimensions
which realize global continuity of piecewise polynomial and remain the best approximation
of local Jacobi projections.

In despite of theoretical difficulties the computation and algorithms of the p and h-p
FEM have made remarkable progresses in the past decades. As the computer power grows
rapidly in speed and memory, many practical problems in engineering and sciences are mod-
eled and computed in three dimensions, which were not feasible ten or twenty years ago.
Because of the limitation on the capacity of computers many three dimensional problems in
the real world were reduced or simplified to two dimensional models for the computation,
which substantially minimized the reliability of the prediction based on the computation for
important engineering, scientific, public health, and financial decision. The high accuracy of
computational solutions on original three dimensional model problems significantly increase
the knowledge of problems in the real world, and make it possible to validate mathematical
models and to verify the computational results. Since the p and h-p versions FEM in three
dimensions provide higher accuracy and reduce significantly computational cost, they have
been applied to various fields of engineering and sciences such as mechanics, magnetoelec-
tric, biology and material science [15, 37, 39, 43, 46], and have been implemented in new
codes and enhanced in the existing codes. These codes with three dimensional p and h-p
FEM capacity have become very powerful tools to solve large scale engineering and scien-
tific problems and play an important role in computational engineering and sciences. The



1. INTRODUCTION 3

success of the p and h-p FEM in computation is a great challenge to mathematicians and
engineers, i.e., whether the theoretical research of the the p and h-p FEM in three dimensions
can provide a solid mathematical foundation and guidance for practical computations, e.g.
verification of three dimensional FEM codes (commercial and research) and verification of
the numerical results. This challenge has motivated researchers in recent years to establish
new mathematical framework for developing new approximation theory of high order FEM
in three dimensions, and also provides significant motivation of the thesis, which is a part
of the effort to establish a comprehensive understanding of the fundamental issues we are
facing now.

In this thesis, we shall develop the approximation theory of the h-p version of FEM with
quasi-uniform meshes in three dimensions in the framework of the Jacobi-weighted Besov
and Sobolev spaces. The h-p version with quasiuniform meshes is, from methodology and
approximation theory, the p-version on scaled meshes. The approach of the p-version gives
the p-dependence in the approximation errors, and a proper scaling argument will reveal
fully the information of the h-dependence. Hence, the analysis for the best approximation
of the h-p version with quasiuniform meshes is not feasible unless the optimal convergence
of the p-version in three dimensions is established. Fortunately, a comprehensive analysis
of the p-version in the framework of the Jacobi-weighted Besov and Sobolev spaces in three
dimensions recently appears in a series of papers [24, 25] by Guo, we are now ready to pursue
the best error estimation for the h-p version in three dimensions. Here we incorporate the
mesh dependence into the analysis for the p-version, and provide optimal estimates for quasi-
uniform meshes and quasi-uniform polynomial degrees.

We generalize the Jacobi-weighted Besov and Sobolev spaces on scaled cube @), =
(—h, h)3, and analyze the properties of Jacobi projection on Q. The errors in Jacobi pro-
jections with three different Jacobi weights for singular functions with vertex, edge and
vertex-edge singularities are investigated in terms of A and p (polynomial degree), which are
rigorously proved to be the sharpest.

Next we construct explicitly polynomial extensions on standard elements: cubes, trian-
gular prisms and pyramids which are proved rigorously to be stable and compatible with
FEM subspaces on tetrahedrons, cubes, triangular prisms and pyramids. The extensions
from a triangular face to a prism and from a square face to a pyramid are of convolution
type which realize continuous mappings: Héf(T )( or HS(F(S)) — H'(Qy) where Qg de-
notes one of these standard elements and T" and S are triangular and square faces. The
extension on a cube is constructed by using spectral solutions of the eigenvalue problem of
Poisson equation on a square face S and two-point value problem on an interval I. The
extension from a square face to prism is quite different from those in other cases, the norm
of the extension depends on p , but it is compatible with local quasi-projection operator on
prismatic elements and cause no loss of the rate of convergence of the finite element solution
of the p and h-p version.

The local quasi projection is based the Jacobi projection and associates with linear
or trilinear interpolation at vertices of elements and with the H'/? projection on each
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side of elements. These projections remain the sharp estimation of Jacobi projection and
make the difference of quasi projection on a common face of a pair of elements belong to
Héf(T )( or H&éz(S )), which make it possible to apply the polynomial extensions for conti-
nuity across the interfaces of elements.

By utilizing the polynomial extensions and local quasi projections on tetrahedrons, cubes,
triangular prisms we proved the best convergence of the h-p FEM for problems with smooth
solutions. For the singular solutions for problems on polyhedral domains, we use Jacobi-
weighted Besov and Sobolev spaces to characterize the various singularities and derives
their best approximabilities. Combining the approximation results for smooth functions and
singular functions, we obtain the convergence rate of the h-p version of the finite element
method with quasi-uniform meshes for elliptic problems on polyhedral domains, where the
singularities of three different types occur and substantially govern the convergence of the
finite element solutions.

The rest of this thesis is organized as follows: In Chapter 2, we first review the proper-
ties of Jacobi polynomial, then we quote important properties of Jacobi projections in three
dimensions, which have been established and will be used in coming chapters. In Chapter 3,
the Jacobi-weighted Sobolev spaces H*?(Q},) and Besov spaces B3?(Qy,) on a scaled cube
Qn = (—h,h)? and the errors in Jacobi projections with three different Jacobi weights for
singular functions with vertex, edge and vertex-edge singularities are given in terms of A and
p (polynomial degree), which are rigorously proved to be the sharpest. In Chapter 4, we
design polynomial extension on cubes by using spectral solutions of the eigenvalue problem
of Poisson equation on a square face S and two-point value problem on an interval I. The
extensions from a triangular face to a prism and from a square face to a pyramid are con-
structed by convolutions. The extension from a square face to prism is of neither convolution
type nor spectral solutions, the norm of the extension operator depends on p . In Chapter 5,
we introduce quasi projections on tetrahedrons, hexahedrons and triangular prisms. Then
we combine these quasi projections and polynomial extensions to derive the convergence of
the finite element solution of h-p version. Utilizing the sharp error estimation for singular
solutions in the Jacobi-weighted Besov and Sobolev spaces we prove the sharpest rate of
convergence of the h-p FEM for elliptic problems on polyhedral domains. The numerical
results of model Poisson equation on polyhedral domains and three dimensional elasticity
problems on polyhedral domains are presented in Chapter 6. In the last chapter we sum-
marize the major results in the thesis and make concluding comments on open problems we
will continue to pursue.



CHAPTER 2

Preliminary

2.1. Jacobi Polynomial

The Jacobi polynomial of degree n =0,1,2,... is defined as
(=D)"(1 —2) (1 +2)? d" (1 — 2)*t"(1 + )Pt

2 n! dx™
with  «, 8 > —1. These polynomials possess important properties, see e.g. [1, 21], which
are essential to the approximation of the high-order finite element method as the special
method.

(2.1) TP () =

(J1)
'n+a+1) (=1)"I'(n+p+1)
., — a,B( —
T () nT(a+1)’ T (=) n! (B +1)
(12)
Tal(—x) = (=1)" 7% ().
(13)
1
%Jgﬂ(x) =s(n+a+f+ 1) JH P (@),
and for £ > 0,
d* Pn+a+3+k+1)
a,B _ 2 gqaB _ 9k atk,B+k

(J4) J>P(x) are orthogonal with Jacobi weight wq g(z)

b m=n
/ I () J2P () wap(x) do = { T , I=(-1,1)

I 0 m#n
with
o 5(7) = (1 — 2)*(1 + )7
and
(2.2) ad _ 2070 M (n+ a4+ 1) T(n+ S+ 1)

" Cn+a+8+D)I'(n+1DI(n+a+p+1)
5
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By the Stirling formula [18]
[(s+1)=V2rss®e (1 + O(s 1/5))

we have asymptotic estimation
ga+G+1

“ntatftrl)

(2.3) ve?

(J5) J:,f(:c) are orthogonal with Jacobi-weight wq4x g4k (),

Yo m=n2k

/IJJ;Z%(%) . Jgkﬁ(ff) Waik,p4k(T) dv = {

0 otherwise
with
Wark,prk(T) = (1= 2)* (1 4 2)7**
and
(2.4) (ol 20t P+ a+B+k+1)T(n+a+1)T(n+ B +1)

Cn+a+p+1)TIn+1—-KI2nh+a+6+1)
By the Stirling formula, there holds asymptotically
2a+ﬁ+1n2k

2n+a+0+1)

(2.5) Vo

(J6) J*F(z) is the solution of the equation
—Jagu(z)+n(n+a++1u(x)=0, ze(=1,1)

where j;; is the differential operator

— _ o « -8 o a+1 s+1 7
Jap = (1= (1 +2) 7= (1—a)" (1 + )" =

Then X% = n(n + a + S+ 1) and Jacobi polynomials J*#(z), n = 0,1,2,... are the
eigenvalues and eigenfunctions of the Sturm-Liouville problem

j;gv =\, z € (—1,1).

(J7) For « € [—1,1], there holds

(2.6) [ TP ()] < Cn + 1)medes=i/2)

with C independent of o, 3, and for x = +1, we have more precise estimation
(2.7) TP (D] < Cla)(n+1)7, |J2P(=1)] < C(B)(n +1)°
with C(a) = (1+Oc and C(f) = ﬁ
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2.2. Jacobi-weighted Sobolev and Besov spaces on @ = (—1,1)?

2.2.1. Jacobi-weighted Sobolev space H*?((Q)) with integer k¥ > 0.  Let I =
(—=1,1),Q2 = (=1,1)? and Q = (—1,1)% be a cube and T;,i = 1,2,--- ,6 be faces of Q and
we denote v;; =, NI;,0=1,2,---,6, and by I'y and I's we denote the left face (2o = —1)
and the right face (zo = 1), by I's and I's the front face (x; = 1) and rear face (z; = —1),
by I'y and T'y the bottom face (z3 = —1) and the top face (z3 = 1), respectively. Let

3
waﬂ(:(:) = H(l + xi)aﬁ-ﬁi(l _ l’i)ai+ﬁi+3

i=1

be a weight function on Q = (—1,1)® with a = (a1, a,a3), a; > 0 integer and 8 =
(Gs, Bixs, 1 <i < 3), 5, Birs > —1 real number, which is referred to as Jacobi weight.

The Jacobi-weighted Sobolev space H*?(Q), k > 0 is defined as a closure of C* functions
furnished with the norm

il = 3 [ 1076 P atolis
|a|=0

where D%u = uger g0z 408, a0 = (o, 0, c3), la] = aq + a9 + ag, and B = (B1,- -+, F6), and
|u| gk .8(¢ is the semi norm involving only the k-th derivatives, i.e

iy = 3 [ 10w ()i
o=k
We shall write L3(Q) for H*?(Q). H*?(Q) is an inner product space with
(U, V) rrs(g) = /Do‘u D% w, gdz.
0<a| <k

For any function u € H*?(Q), k > 0, there is a Jacobi-Fourier expansion

U= Z CZ]IJB4 B (e Jﬁo 52( 2)J166763(I3)

1,7,0=0

where JPm+3:0m (g ) n = i,4,1; m = 1,2,3 are Jacobi polynomials of degree n with the
weights (.43, Bm in x,, which are defined in (2.1), and

1 5
Cijil = Bi el el / u(z) JP (:El)Jf“”ﬁ2 (22) J 7 (15) wo g(x)da
Yo YN Q

with Afm+3:6m given in (2.2).



2.2. JACOBI-WEIGHTED SOBOLEV AND BESOV SPACES ON @ = (—1,1)* 8

Due to the orthogonality of the Jacobi polynomials and their derivatives, we have

(2.8) HUHLz Z 5,020 60,62 P08
1,J,1=0

and

(2.9) ulfesgy =D D laulual e e

la|=kiza1,j>az,l>a3

with 75m+3’5’”(n =14,7,l and m = 1,2, 3) given in (2.4).
Using the asymptotic of 75:3;3’5’” given in (2.5), we introduce an equivalent semi-norm
and norm for H*?(Q),

(2‘10) |u|§{k,ﬁ(Q) o Z Z |Cw7 |2 Ba,61 2«117535,[32]2«12 56753[2043

la|l=ki>a1,j>a2,l>as

Z lewial?y ﬁ4,,51,y§35,52,yﬁ6,53(7[ ny +lz) — [u)2ma0)
i+j+H>k

I

and

(2.11) ||u||§1k,ﬁ(Q)

12

m
Z Z |ka|2 Ba,51 ﬁo,ﬁz 56,ﬁ3 <z~2+j2+l2>

0<m<k i+j+k>m

k
3 lesadP o oo (L4 2 2) =
i,5,l=0

1%

It is worth indicating that the equivalent constant of the equivalent norms and semi norms
of H®A(Q) depends on k.

To define the projections in the Jacobi-weighted Sobolev spaces we need to introduce
polynomial subspaces. By PI}(Q) and 735(@) we denote the polynomials on () with a sum of
of degree in all variables < p (total degree) and with degree < p in each variable (separate
degree), respectively. For 1 < x < 2, PJ(Q) is a polynomial space such that PI}(Q) C
Pr(Q) C P2(Q). By IIJ . we denote the Jacobi projection on P (Q) in L3(Q)

(2.12) 0 u= Y e (20) % () I (as),
(i,4,))eENT

where

(2.13) NY ={(t,5,0), i+ 7 +1<p}, NJ={(i,31),1,7,1 <p},

and NT C NP C MY for 1 < k < 2, for example,

(2.14) NPy ={(i,j,0),i+5 <p, 1 <p}.
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u, € PF(Q) is the projection of u on PF(Q) in H*(Q) if

(U — Up, V) e Q) = Z /QDO‘(u —up) D*vwapdr =0, Vv € PH(Q).

la| <k

It has been proved that Jacobi projection in L%(Q) is the Jacobi projection in H“?(Q),0 <
(< k, for u e H*?(Q).

2.2.2. Jacobi-weighted Sobolev and Besov spaces H*”(Q), B>%(Q) and B5"(Q).

Let B;’f; (@) be the interpolation spaces defined by the K-method

(#4(@), H(Q))
0.q
where 0 <0< 1,1 <q¢g<o00,s=(1-0){+ 0k, ¢ and k are integers, ¢ < k,

> dt\1/4
(2.15) fullsg0) = (/0 e ) 1< g < oo
and
2.16 U|| 25, =supt ! K(t,u
(2.16) Julsy ) = supt™* K(t.w)
where

K(tw) = inf (|0l + tlwlmog).

u=v+w

In particular, we are interested in the cases ¢ = 2 and ¢ = co. We shall write for s > 0 and
q=2

H2(@Q) = B33(@Q) = (H(Q). HY(@) |

with 0 < # < 1 and s = (1—0)¢+0k. This space is called the Jacobi-weighted Sobolev space
with fractional order if s is not an integer. It has been proved that B;g (Q) = H™P(Q) if s
is an integer m in two dimensions[5], it can be proved analogously in three dimensions.

The equivalent semi norm (2.10) and norm (2.11) for the space H*#(Q) with integer k
can be generalized to the the fraction-order Jacobi-weighted space H*”(Q) by replacing k
with s.

For ¢ = oo, we shall write
B(Q) = By(Q) = (H*(Q), H*(Q))

which is referred as the Jacobi-weighted Besov spaces.

0,00

The modified weighted Besov space B5#(Q) with v > 0 is defined as an interpolation
space

B(Q) = (H(Q), 1(Q))

6,00,v
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with a modified norm

(2.17) || ul

t—@
s, =sup K(t,u) —————.
s = S K)o

Remark 2.1. Since the Jacobi-weighted Besov space B*?(Q) and Sobolev space H*?(Q) are
defined by the standard K-method, they are exact of -exponent and the reiteration theorem
hold for B*#(Q) and H*#(Q) according to [11].

By the definition of the exactness of -exponent in [11], for any operator T : A; — B;,i =
0,1 furnished with an operator norm

IT[l: = 1T ;-

T is an operator Ag — By, where Ay = (A, A1)p and By = (By, B;)y are two interpolation
spaces which are exact of #-exponent, e.g., defined by the K-method, and

(2.18) 11l 3,5, < I~ 117

This provides us a very powerful and important tool while we generalize the approximation
results in integer-order Sobolev spaces to fraction-order Sobolev spaces and Besov spaces,
with or without weights.

The reiteration theorem (see, e.g. [11]) tells that if X; = (Ao, A1)g, with 6; € (0,1),i =
0,1 are f-exact, then for n € (0,1) and 6 = (1 — n)6y + nb;

(2.19) (Xo, X1)y = (Ao, A1)

This theorem implies that the Jacobi-weighted Besov space B*P(Q) and Sobolev space

H*5(Q) are well defined, which do not depend on the individual value of ¢ and k, but
the combination s = (1 — )¢ + 0k, and that ¢ and k can be non-integers.

Remark 2.2. Unfortunately the modified Jacobi-weighted Besov space B5#(Q) with v > 0 is
defined by a modified K-method and is not exact of f-exponent. Therefore, (2.18) and (2.19)
do not hold in general. In [3], a weaker exactness, which is called quasi exact of #-exponent,
was proved that

7]
17°[lo

(2.20) T4y, 5, < (1+Tog ot ) ITIITS.

Also, it was proved in [6] that the reiteration theorem holds only for a special case, which is
called the partial reiteration theorem,

(221) (X07X1>77,1/ = <A07 Al)@,u
if Xz = (A07A1>9i,i = 0, 1, or
(2.22) (Xo, X1)y = (Ao, A1)o



2.3. APPROXIMATION PROPERTIES OF JACOBI PROJECTIONS 11

if X; = (Ao, A1)p,0,t = 0,1. This partial reiteration theorem guarantees that the space
B3P (Q) = (HW(Q),H’“’ﬁ(Q» with v > 0 is well-defined, and that ¢ and k can be

0,00,v
non-integers.

The details of derivation of the partial reiteration theorems and quasi exactness of 6-
exponent are included in Appendix of [28].

We have the following embedding inequality of the Jacobi-weighted Sobolev spaces. See
[25].

Theorem 2.1. If u € H*%(Q) with s > 3/2 + Z Briis, then u € C°(Q), and

1<0<3
(2.23) lullcogy < Cllullassq)-

Hereafter Bpoy3 = max{f+1/2, Brr3+1/2,0} for 1 < £ < 3, where the index {+3 is modulo
by 6, i.e. (+3=10—3if(+3>6. In particular, H*?(Q) — C°(Q) if B, < —1/2,1 <1 <6
and s > %

2.3. Approximation Properties of Jacobi Projections

We quote important properties of Jacobi projections in three dimensions, which have
been established and will be used in coming chapters. We will not elaborate the details of
the proof, instead refer to [28].

Theorem 2.2. Let u € H*?(Q),k > 0, and let IIJ .u be the Jacobi projection of u on
Pr(Q),1 <k <2 with p > 0. Then there holds for any integer 1,0 <1 <k

(2.24) lu =10 ull o) < Clp+ 1)~ grsg).
Furthermore, if u € H*F(Q) with k > 3/2+ 37,13 Biivs, then

(2.25) = T ooy < Cp + 1)~ *3/2EasissPtsa) gy,

and on the faces I';;1 < i <6

(2.26) lu = T1 ullcoryy < Cp + 1)~ 072 ABirs=Binina=biezios) |y | g
and on the edges A;; = ;N fj,l <i,57<6

(227)  llu= I ulloogs,) < Cp -+ 1) 6=/ uaBiss e u] s g
with  # 1, j,i+ 3,j + 3, and at the vertices A,, =T;NT;NT;,1<4,5,1<6
(228)  [(u—TE ) (Ay)] < Clp+ 1)~ AmBmhimBs s sy .

Hereafter 3, = max{3 —I— ,0} . The indices ¢ and m are modulo 6, i.e. { means { — 6 if
(> 6.
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Forp >k —1, there holds
(2.29) u =T ul o) < Clp+ 1) lul grsg),
and in addition if k > 3/2+ 37,3 Bress, then

(2.30) lu = I8 cull cogy < C'(p + 1)~ 032 Rasess Bsd) | 1,

and on the faces I';;1 <1 <6,

(2.31) l|w — Hg,nuHCO(fi) < Cp+ 1)_(k_2—,6i—ﬁi+3—ﬁi+1,i+4—ﬁi+2,i+5)|u|Hkﬁ(Q)

and on the edges Njj =T;NT;1<1i,j <6,

(2.32) | — Hg,nuHCO(Aij) <C(p+ 1)_(3_5/2_,37;—51’_Bi+3—:@j+3—52,£+3)‘U‘Hkﬁ(Q)
with { # i, j and i+ 3,7 + 3, and at the vertices A,, = T; NT; NIy, 1 <4,5,1 <6,
(2.33) |(u — Hﬁ,nu) (An)| < C(p+ 1)—(’f—5/2—ﬁi—ﬁj—ﬁz—5i+3—5j+3—51+3)‘U‘Hkﬂ(Q).

Theorem 2.3. Let u € H*A(Q),s > 0, and let Hg,iu be the Jacobi projection of u on P;(Q)
with p > 0,1 < k < 2. Then for any integer | € [0,s) there holds

(2.34) Ju =112l sy < Cp+ 1)l o).
Furthermore, if u € H*A(Q) with s > 3/2 + > i<i<s Byiv3, then

(2:35) = 112 gy < C(p+ 1)~/ Zasiss s o

and on the faces I';;1 <1 <6

(236)  lu— T2 ulloogry < Olp + 1) O i Baid) ] o
and on the edges Njj =T, NT;,1<1i,j<6

(2.37) lu =TI cullcor,,y < Cp+ 1) 72t Prs=Bisa=Burss|u| s g
with  # 1, j,i+ 3,j + 3, and at the vertices A,, =T;NT,; N1, 1 <4,5,1<6
(2.38) |(u — Hﬁ ) (An)| < Clp+ ]_)_(5_3_52‘—61'_Bl_ﬁ_i+3_5j+3_ﬁ_l+3)|u|H5ﬂ(Q).

Theorem 2.4. Let u € B3%(Q),s > 0,v > 0, and let Hﬁ LU be the Jacobi projection of u on
Pi(Q) withp > 0,1 < x < 2. Then for any integer | € [0 s), there holds

(2.39) lu =10l sy < Clp+ 1)~ (1 +log(p + 1))"||ul
Furthermore, if u € Bs’ﬁ(Q) with s > 3/2+ 3 1 43 Boors, then

ByP(Q)

(2.40) lu — T2l corgy < Cp + 1)~ =32 Eicess Brera) (1 4 log(p + 1)) |ul
and on the faces Fi, 1<i1<6,
(2.41) [ — 115 ullcogr,y < Clp+ 1)~ 727 (1 + log(p + 1)) ||ul

BP(Q)

B (@Q)
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and at the 6dg€$ Aij = Fl N fj,l < ’L,j < 6,

(1+log(p+1)) lul
(p + 1)3—5/2—[31-—Bj—5¢+3—5j+3—5z,z+3

(2.42) |u — HgﬂuHCO(;\ij) <C

(o)

with  # 1, j,i+ 3,j + 3, and at the vertices A,, =;NT,;NT;,1<4,5,1<6

(1+log(p+ 1))
(p + 1)8—3—5i—ﬁj —Bi—Bir3—Bi+3—Bits

(243)  |(u-T,u)(A)| < C

lull g5 -

13



CHAPTER 3

Approximation Theory in Jacobi-weighted Spaces on a Scaled
Cube Q) = (—h, h)?

3.1. Jacobi-weighted Sobolev and Besov spaces on Q) = (—h, h)?

For analyzing the approximation properties for smooth and singular functions on a
scaled domain we first introduce the Jacobi-weighted Sobolev spaces H*?(Q},) and Besov
spaces B5%(Q;,) on a scaled cube Q) = (—h, h)>.

Let w} 5(x) be a weighted function on @, = (—h, h)?,

wg’ﬁ(x) = ﬁ <h-;xi)ai+ﬁi (h ;La:i>ai+ﬁi+3 _ ﬁ (1 N %>ai+6i (1 B %)ai+ﬁi+3

=1 i=1
with @ = (aq, ae, a3), o; > 0 integer, and § = (51, Bs, 83), 3 > —1,1 = 1,2, 3, real.

The Jacobi-weighted Sobolev space H*%(Q,), k > 0, is the closure of C* functions
furnished with the norm

g = > [ 1Du@)Pul (o
0<al<k / @n

and [u|gks(q,) denotes the semi norm involving only the k-th derivatives.

The Jacobi-weighted Sobolev spaces H*?(Q,) and Besov spaces B*?(Q},) can be intro-
duced as usual interpolation spaces by the K-method,

HY(Qn) = (H(Qu). HY(Q) . BY(Qu) = (H(Qu), H(@Qn), .

g, ,00

where 0 < 0 < 1,s = (1 — )l 4+ 0k, and k are integers, | < k, furnished with norms

< dt\ 1/2
8D Nulwsan=( [ *KE0PE)" T

Be8(Q,) = SUp K (t,u)
t>0
with
K(tu) = inf ([ollaragy + lwlimog,)-

The space H*?(Q)y,) is called the Jacobi-weighted Sobolev space with fractional order if s is
not an integer, and the space B*?(Q},) is referred as to be the Jacobi-weighted Besov space.

14
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The modified weighted Besov space B5”(Qy,) with v > 0 is an interpolation space defined
by the modified K-method,

B(Qn) = (H*(@Qu) H(@Qn))

with a modified norm
—0
(3.2) [l

ByP(Qn) — Stlig K(t,u) (1+ |logt|)”

Remark 3.1. The spaces H*?(Q),) and B¥?(Q) = By (Qy) are exact of f-exponent, but
B35(Qp,) with v > 0 is not, but weakly exact of #-exponent. Suppose that E realizes a
linear operator: H; — H™#(Qy),l = 1,2 with norms denoted by ||E|;, where H;,| = 1,2
are Banach spaces. Then E is a linear operator : (Hy, Ha)p, — (H™2(Qn), H™?(Q1))o.4.
such that for v =0

(3.3) VEN (13,1125, — (1m1-5(Qu) 125 @u)yo00. < IENTCILENS
and for v > 0

- 2
B 1Bl gt @@ S WEINIEIS(1+ log )

By the definition of interpolation spaces and a simple scaling, we have the following
proposition.

Proposition 3.1. Let u(x) and U(§) = uwo My, = u(h€) be functions defined on Qp, and Q,
respectively, where M, denotes a simple scaling v = h&, € € Q = (—1,1)3.

(i) u € H*5(Qy) with integer k > 0 if U(€) € H*5(Q), vice versa. Furthermore, there holds
forl <k

3_
(3.5) ul s = 27U msq)-

(ii) u € H*P(Qy) with non-integer s > 0 if U(&) € H*P(Q), vice versa.
(iii) v € BSP(Qy) with real s > 0 and integer v > 0 if U(E) € B9(Q), vice versa.

3.2. Approximation in the framework of Jacobi-weighted spaces on
Qn = (—h,h)?

Let Py (Qn) = P (Q)o My, be a set of polynomials of degree (separate) < p on the scaled
cube Q,, and let thﬁ be the Jacobi projection operator on P;(Qy),1 < £ < 2. Obviously,
for u € H*P(Qy,) with k > 0, up,(x) = Hg’hﬂu is the Jacobi projection of u € H*?(Qy,) on
Pr(Qn) if and only if Uy, (§) = up,(hE) is the Jacobi projection of U(§) = u(h§) on Pr(Q).
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Lemma 3.2. Let u € H*?(Qy), k >0, and let U(€) = uo My, = u(hf). Then
(3.6) |U = sl < O 2 [lull v
where p = min{k,p + 1}, and C is independent of p, h, k and u.

PRrROOF. For k = 0, it holds by (3.5) that

3
(3.7) IU = Upllaosq) < Ulluosq) < b2 lullmosqn)-
We now assume that the integer £ > 1. Then we have by (2.29) of Theorem 2.2

k
U= Ul < U~ Unllmms@+ 3. (U

Hm,ﬁ(Q) + ‘Up Hm,ﬁ(Q))
m=p+1
k
S C<|U|Hu,ﬁ(Q) + Z |U|Hm,/3(Q))
m=p+1
k
Here Z |Up|grm.s gy = 0 if 41 < k. By the scaling argument (3.5), we obtain
m=p+1

k
m—3 -3
U = Uplliesigy < C ) W™ 2lulumsg,y < CH72 ullgrsq,)-

m=p

O

Theorem 3.3. Let u € H*P(Qy,) and uy, be the Jacobi projection of u on Pri(Qn), 1 <k <2,
with p > 0. Then for 0 <1 <k,

h#
(3.8) |u — unpll 80, < CWHUHHW(Q,L)
with = min{k,p+ 1}.
Furthermore, if k > % + Zi”:l Biivs, then
c e
. — 5. < —— .
39 e e e P LR

The constant C' is independent of p, h, k and u.
PROOF. Let ¢ = £ and U(§) = u(h€). Then, due to Proposition 3.1, U(§) € H*?(Q),

n
and U, = H;’ﬁ Uy, 1 < k < 2, satisfies
U = Upllasg)y = U =Up =115 5(U = Up) s

< Clp+ 1) DU - Upllgrsg)

(f— _3
< Clp+ 1) " D2 |u grogg,)-
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The scaling argument (3.5) leads to

3_
||U—Uhp||Hlﬁ(Qh) = h2 l||(U—Up)||Hlﬁ(Q)
< Clp+ 1) % Dr Yl grsg,)-

If k> % + Z?:1 (3.3, then there holds by Theorem 2.2 and Lemma 3.2

U = Upllcogy < (U = Up = T (U = U)oy
Cp+ 1)—(k—3/2—2?:1 Biiss) || 7 — Upll i)
O(p + 1)~ (=322, Bi,wa)hu—%||u||HM(Qh)'

|u — uthCO(Qh)

IN

IA

O

By the argument of interpolation spaces, we have the approximation results in the spaces
H*(Qn) and BL*(Qu).

Theorem 3.4. Let u € H*P(Qy)(resp. B3P (Qr)) with s > 0,v > 0, and uy, be the Jacobi
projection of u on P;(Qn),1 <k <2 withp > 0. Then for 0 <1 <s,
(3.10)

R p+1,,
ff&ﬁ(Qh>(Tesllz;;;jijgzi(l +log——) |“L”Bzﬁ(Qh>>

=t
|u — Unpl| r8g,) < C( |

with pp = min{s,p + 1}. Furthermore, if u € H>*(Qy) (resp.By"(Qn),v > 0) with s >
2+ S Biivs, then for x € Qy
s
(3.11)  [u—upy(z)] < C@+g&%xg@ﬂﬂ“
_3
O@wkp+n:§;ﬁﬂawﬂl+bgp

H3P(Qn)

+1,,
) Nl ).
The constant C' is independent of p, h and u.

PROOF. We will prove the theorem for u € B5%(Q;,). Let [ and k be integers such that
0<I<s<k=10+1and By*(Qn) = (H"*(Qn), H**(Q1))o,00,, with 6 = 2=L € (0,1). We
have by Theorem 3.3

(3.12) lu = unpll sy < CH 'l misgg,
with g1 = min{p + 1,1}, and

!
(3.13) [ = unpll @y < CWHUHHW’(QU
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with pe = min{p + 1,1 + 1}. The weak exactness of -exponent (3.4) for the modified
Jacobi-weighted Besov space B57(Qy), together with (3.12) and (3.13) leads to

J,(1=0) (11 =1)+0 (2 —1) (p+ 1)~ E=Opprz=tyv
[ = unpll s,y < C (p + 1)6¢=D <1 +log Ryl ) el
hu—l 1\v
= Co (1 + (k= 1) log(p+ 1) + (s — p2) log E) leell @y
bl p+1,,
C(p + 1)8—l (1 + lOg h ) HuHBiﬁ(Qh)

Here we used the fact that (1 —6) min(p + 1,1) + 0 min(p + 1,1 + 1) = min(p + 1, 5).
If s > % + Z‘?Zl Bii+s, select [ and k such that 1 <! <s <k =1+1. Then by Theorem
3.3 there holds for x € Q)

(3.14) lu = wnpll oo,y < Cp+ 1) 22 Pird) =3 || s g,
and
(3.15) lu = unpllcog,) < Clp + 1)~ "2~ Z Bt =3 |[u| s g, ).

The exactness of #-exponent (3.3) for v = 0 and the weak exactness of f-exponent (3.4)
together with (3.14) and (3.15) leads to

=00k~ 3)+6(u2—3)

1)~ prz—3 \ v
) I

. (p+1)

|w — UthC'O(Qh) < C(p N 1)9(k—%)+(1—9)(l_g) (1 + log o 1)_(l_%)hm_% .
ped "

- C(p + 1) 8T B (1 + (k= Dlog(p +1) + (11 — p2) log E) [l 52 )
he s p+1

< _ 1+ loe Py 5 |

B C(p + 1)8_%_25:1 Bii+3 ( +log h ) ||u||Buﬁ(Qh)

Similarly, for u € H*?(Q),) we can prove (3.10) and (3.11) by applying (3.3) instead of
(3.4). O

3.3. Approximability of singular functions on scaled cube Q;, = (—h, h)?

In this section we will investigate the approximability of singular functions on a scaled
cube Qp, = (—h, h)3.
3.3.0.1. Approximability of vertex-singular functions. Let (p,0, ) be the spherical coor-
dinates with respect to the vertex (—h, —h, —h) and the vertical line L = {z = (x1, z2, z3) |
r

T = x93 = —h,x3 € (—00,00)} with p = {320 (z; + h)*}'/2, 6 = arctanx =
3
{(x) + h)* + (@2 + h)*}'/2 Ty + h

2 = arct 2).
it h € (0,7/2), and ¢ = arc anzl+h€(0,7r/)

arctan
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We now consider the singular functions with v > 0

(3.16) u(z) = p" log” pxn(p) 2(0,9)

with integer v > 0, where xn(p) = x(%), x(-) and ®(6, ¢) are C*° functions defined on the
cube such that for 0 < py < 1

h
Xn(p) =1 for0<p< $, Xu(p) =0 for p > hpo.

and
®(0,0) =0 for (0,¢) & Sk,

By Sk, we denote a subset of the intersection of the sphere of radius h and @)}, such that
the angles between the radial A; — z and the x;-axis are larger than ky. For 0 < kg < 7/4,
let

Rg = RZg,ng ={z € Qn[0<p<hpo,(0,¢) € Sk}, po € (0,1)

as shown in Figure 3.1.

Fig. 3.1 Cubic Domain Qj, and subregion R”

£0,K0

We quote the following theorems for h = 1 from [24].

Theorem 3.5. Let u(x) = p”log” px(p)®(0, ¢) with v > 0, and let = (B4, B2, B3, 1, Bs, B6)
with B; > —1,1 < i < 6. Then u € H*=%(Q), and u € B3’(Q) with s = 2y + 3 + S B
and € > 0 arbitrary, and

max{v — 1,0} if vy is an integer and v > 1,
(3.17) vt =

v otherwise.

Theorem 3.6. For u = p”log” px(p)®(0, ) with v > 0, there exists ¢ € Py(Q),1 <k <2
with p > 0 such that

(3.18) lu = ¥ll2i@) < Clp+ 1) (1 +log(p + 1) [Jull g+ g
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with 3 = 0,1 <i < 3,08 > —1,4 <1 <6, arbitrary. Also, there exists p(z) € Py(Q),1 <
k < 2,p>1+ 2y such that

(319)  Jlu— el < Clo+ 1)1+ log(p + 1)) [lul g2 g
and

_ 1 o
(320)  Ju=¢leoe < Co+ 1) D +log(p+ 1) [l s,

with Bi = —1/3,1 < i < 6. In (3.18)-(3.20) v* is given in (3.17).
If w = 0 on the plane m : Zf’ m(:cl—l— 1) =0,1 << s,s=1, or2, or3, then

there exist 1 € P;(Q) and ¢ € P“(Q) 1 <k <2,p>s such that v =0 and ¢ = 0 on
m, 1 <l <s, and

(3.21) lu =l z2g) < Clp+ 1)~ (1 + log(p + 1)) sl oy a0t

with B = 5,1 <0<3,8 > —-1,4<0<6, and

(3.22) lu =@l < Clp+1)" B+ (1 +1og(p + 1)) [[ugll 2y 5t ©
_ 1 o

(3.23) [ — @llcogy < Clp+ 1)~ 2 (1 + log(p + 1)) letsl] o sapie

with ﬂés] =5 — 3,1 < (<6 arbitrary, where
u(z)
[T i o (i + 1)

Due to Proposition 3.1 and Theorem 3.5, a simple scaling leads to the regularity of u in
terms of the Jacobi-weighted Besov spaces BS7(Qp,).

Theorem 3.7. Letu be given in (3.16) wz’thv >0andv >0, and let f = (ﬁl,ﬁg,ﬁg,ﬁ4,ﬁ5, Bs)

with §; > —1,1 < i < 6. Then u € B3’(Q,) and u € H*~ E5(Qh) with s =2y +3+ 30, 6
and e >0 arbztm'ry, and

Us =

max{v — 1,0} if 7 is an integer and v > 1,
(3.24) V=

v otherwise.

PRrOOF. Let 4(§) = u(h€). Then for v =0

(3.25) (€)= u(hé) = B CN(Q)@(0, 6) = Ww(E).
and for v > 1
(3.26) (€)= ¢ (log h + log €)"x(C)®(0, )
= WOX(O)P0.0) > (7’;) log” ™ hlog™ ¢ = 1"y (7’;) B (€) log” ™™
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where ¢ = /(& +1)2 + (& +1)2+ (& +1)% 0n(€) = X(Q)P(0,¢)log™ ¢ and w(§) =
Cx(Q)P(0 ,gb). Due to Theorem 3.5, w(¢) € H* 5P(Q) and 9,,(¢) € B3Y(Q) with s =
2y +3+ 386,68, >-1,1<i<6, and

m — 1 if v is an integer and m > 1,
(3.27) m* =
m otherwise.

The assertions of the theorem follow immediately from Theorem 3.5 and Proposition 3.1. [

A combination of Theorem 3.6 and a proper scaling gives a sharp estimation on the upper
bound of approximation error in the Jacobi projections for the singular functions.

Theorem 3.8. Let u(x) be as given in (3.16). Then there exist polynomials p,(z) and
onp() in Pr(Qn), 1 < k <2 with p > 0 such that

hit
(3.28) [ = Pnpll 2@y < CWF},@, h)
and

hat
(3.29) [ — @npll 1 (rny < Cmﬂ(}% h)
and

h'Y
(3.30) v = @npllco@,) < Cmﬂ(}% h).

The constants C in (3.28)-(3.30) are independent of h and p, where F,(p,h) is a log-
polynomial,

[ (1+1log p+1) for non-integer ~y,

ptlyv-1 ; 9
(3.31) F,(p.h) = (1 +log B=)"=" for integer v, v > 1 and p*®(0, ) € P, (Qn),
max{(1 + log )"~ log" 1} for integer v and
\ p12(0,¢) & Py(Qn).
If u =0 on the planes m, : Zf’ 1 y(xl—i-h) =0,1<(<s,s=1, or2, or3, then there
exist polynomials uy(x) and ppy(x) in Py(Qn),1 < k < 2 wzth p > s such that ¥y, and
©np(x) vanish on the planes mp, 1 <€ < s and (3.28)-(3.31) hold.

PROOF. By (3.25) for v =0

u(§) = u(hg) = "X () (0, ¢) = hTw(§).
Then (3.28) and (3.29) with v = 0 follow from Theorem 3.6 and Proposition 3.1 immediately.
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Due to (3.26) for v > 1
a(§) = h"("(log h +log €)"x(C)®(, ¢)

= WOX(O(60,0) ) (;) log" ™" hlog” ¢ = K" Y~ (;) B(€)log" " h

m=0 m=0
By Theorem 3.5, 0,,(£) € B27(Q) with s = 2y +2,3 = —1/3,1<i < 3,0, > —1,4 < i <6,
arbitrary, and due to Theorem 3.6, @y, (§) = 100, satisfies

(3:32)  [[0m(&) = @m(O)llr(ryy < Cp™ @V (1 +1og(p + 1) [0m(€) p2120q
with m* is given in (3.27).

If v is not an integer, let G(&) = h7SY,_(")@m(£)log” ™ h, and let p(z) = ¢(z/h) =
Hﬁhu with 5; = —1/3,1 <i <3,5; > —1,4 < i <6, arbitrary. Then there hold

1 14
o o I h”<1 +log ’%)
[@(€) — @ 11 (ro) < e ;(1 +log(1 + p))™ log 7 =C P15
and for £ = 0,1
3
_ ity . hatt p+1\¥
[u(@) — (@) geary = h2 7" |a(€) — P(E) rery) < CW (1 +log — ) :

Thus, for non-integer ~, (3.28) and (3.29) are proved.

max { (1 + log

If ~ is an integer, we have by (3.32)
i i Ch m-1 1
136 = @@ many < e (1o 3 + Z (1)t tostr 4 tiog )
ChY p+1yv-1 . 1
Ry ) log'7)

which implies (3.29) for integer .

If v is an integer and pY® (0, ¢) is a polynomial of degree 7 in Qp,, then 9y(§) = (7P (6, ¢)
is a O function in (). We rewrite (3.26) as

a(e) = h (vo £)log” h + Z < ) £) log”~ h) e (60(5) log” h + w(g)).

By the argument above, there exists a polynomial ¢,,(£§) € Py(Q),1 < x < 2 such that

1 v—1
(1+log(p + 1 o 1 1+ log 22
1(6) — Gu(©)l1 10 <cz( ) s D", _<c< ) |

(p+ 1)+ o
Let uo(x) = a($) = p"xn(p)®(0, @) log” h and w(x) = h7w(3). Then
(3.33) u(z) = uo(z) + w(z)
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Since uo(x) is a C* function, there exists a polynomial ¢o(z) € P(Qr),1 < r < 2 with
p > 0 such that

h3tY p+ 1\v-1
(3.34) o — SOOHHl(Rg) < Cm (1 + log T) .
Letting ¢(x) = @o(z) + pu(x) with ¢, (z) = K@, (). By (3.33)-(3.34), we have
(3.35) lw(z) = eu(@)mmy < CA[W(E) = Gul(E)lmr(ro)
Chzt p+ 1\v-1
TRy (1 +log —— )
and

|u(x) — <P(~”C)HH1(R{;) < w(z) - @w(x)HHl(Rg) + [Jug — <P0HH1(R{;)
Chat p+1\v-1
(p+1)2+t h )

which leads to the estimation (3.29) in the case that p?®(0, ¢) is a polynomial.

If uw = 0 on the planes 7,1 < £ < s, 7,,(¢) vanishes on the planes :7, : 35 ald(2;4+1) =

0,1 < /¢ < s, and due to Theorem 3.6 there is a polynomial H(§) € P/ (Q) sfatisfying (3.32).
Consequently, the polynomial ¢(x) € Py(Qy) vanishes on the planes 7,1 < ¢ < s and
satisfies the estimation (3.29).

Similarly, we can prove (3.28) and (3.30). O

(1 + log

3.3.0.2. Approximability of edge-singular functions. Let (r, ¢, z3) be the cylindrical coor-
dinates with respect to the vertex (—h, —h, —h) and the vertical line L = {z = (21, x9, z3) |

T, = a1y = —h,x3 € (—00,00)} with r = {327, (z; + h)?}'/2, and ¢ = arctan Ziz
(0,7/2).

We now consider the singular functions with o > 0
(3.36) u(x) =17 log"r xu(r) (¢)¥(zs)

with integer p > 0, where x,(r) = x(7),x(), ®(¢) and ¥(z3) are C* functions such that
forO0<rg<h

xn(r)=1 for0<r<ry/2, xn(r)=0 forr>r.
and for 0 < ¢p < 7/4
(p) =0 for ¢ & (¢o,7/2 — ¢o),
and for 0 < zg < h/2

U(z3) =1 forazsz € (—h+2z0,h —22), W(x3)=0 for |x3]>h— 2.
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Obviously, u(x) and v(z) have a support R} , = {z € Qn |0 <r <1, ¢y < ¢ <
/2 — ¢o, |x3| < h— 2} CQp. For0< ¢y < /4, let
Ry =Rl ;. ={x€Qun|0<r<rygy<¢<m/2— ¢, |zs| <h— 2z},

as shown in Figure 3.2.

h
70,$0,20

Fig. 3.2 Cubic Domain @), and subregion R

We quote the following theorems for h = 1 from [24].

Theorem 3.9. Let u(x) = r7logh ry(r)®(¢)V(xs3),u > 0, and let 5 = (b1, Be, B3, b1, B5, F6)
with B; > —1,1 <i < 6. Then u € H*5°(Q), and u € BZ;B(Q) with s = 20 + 2+ 31 + (o
and € > 0 arbitrary, and

max{y — 1,0} if o is an integer and p > 1,
(3.37) w=
W otherwise.

Theorem 3.10. For u(zx) = r7log" rx(r)®(¢)¥(x3),u > 0, there exists ¢ € Pj(Q),1 <k <
2, p > 0 such that

(338)  llu— vl < Co+ 1)1+ log(p+ D) |lul pareasg

with 3y = By = 0 and B; > —1,3 < i < 6, arbitrary. Also, there exists p(x) € Py(Q),1 <
k <2,p>0 such that

(3.39) llu—llm(ry < Cllu—@llgsg) < Clp+ 1)~ (1 + log(p + 1))“*IIUI|B;;W(Q)
and
(3.40) Ju = llesiay < Clo+ 1) (1+ log(p + 1) Jull goans g

with f; = —1/2,1 <i <6. In (8.38)-(3.40) p* is given in (3.37).
If u =0 on the plane m : Z?:1 ay}(xi +1)=0,1</¢<s,s=1,or2, then there exist
Ve PHQ) and ¢ € Py(Q),1 <k <2,p > s such that ¢ =0 and p =0 on m, 1 <L <5,
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and

B4 = vl < o+ 1) D0 ol 1) o g
with ﬁf] =s5,1</(< 2,/6; > —1,3 < ¢ <6 arbitrary, and

342l gl < O+ 10+ 08+ 1) ol s
and

343 il < Co+ D2+ log(p + D)l o

with B = s —1/2,1 < £ <6, where
u(z)
II- 121 1 z}($l+1)

For singularity with logarithmic terms we need to use the modified Jacobi-weighted Besov
spaces for the best approximation. Due to Proposition 3.1 and Theorem 3.9, a simple scaling
leads to the regularity of u in terms of the modified Jacobi-weighted Besov spaces.

Theorem 3.11. Let u(x) = 77 logh'r xu(r) ®(@)W(x3),u > 0 as given in (3 36), and let
B = (01, B2, B3, Ba; Bs, Bs) with B; > —1,1 < i < 6, arbitrary. Then u € B (Qh) and u €
H*=P(Qy,) with s =20 + 2+ B + B2 and £ > 0 arbitrary and p* as given in (3.37).

PRrOOF. Let 4(§) = u(h&). Then for p =0

Us =

(3.44) u(§) = u(hg) = h7r7x(r)®(¢)¥(&3) = h7w(E).
and for pu > 1
(3.45)  a(§) = hr?(log h + log r) (r)®(¢
= hor7x(r)®(¢)¥ (m) log'™™ hlog™r = h° Z (:1) U (&) logh™™ h

where r = /(& +1)2 + (& + 1) Um (&) = r7x(r)®(¢) log™ r and w(&) = r7x(r)®(¢) V(&)
Due to Theorem 3.9, w(€) € H*~ Eﬁ( Q) and ,,(€) € B22(Q) with s = 20 + 2+ 3 + f3, and

m — 1 if o is an integer and m > 1,
(3.46) m* =
m otherwise.

The assertions of the theorem follow immediately from Theorem 3.9 and Proposition 3.1.
O

Theorem 3.11 and Theorem 3.4 lead to the best approximation of the singular function
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Theorem 3.12. Let u(z) = r7 logh r xun(r) (p)¥(x3), u > 0 as given in (3.36). Then there
exists a polynomial Y(x) in Py(Qn),1 <k < 2,p >0 such that

3
ato

(3.47) lu=¥llL2q, <C Fu(p, h).

(p + 1)2e+D " *
Also there exists p(x) € Py(Qnr),1 <k <2, p >0 such that

hzte
(3.48) lw = @llmmn < CWFM(p> h)
and

hO’
(3.49) lu—@llco@g,) < CWFM(% h)
where

( (1 +1log 7%1)” for non-integer o,

(1+log ZEy#=1 for integer o, p > 1 and
(3.50) F,(p,h) = r7®(¢) is a polynomial of degree o in x1 and x4,

max{ (1 + log Z21)#~1 log" 1} for integer o and
r7®(p)V(x3) is not a polynomial of degree o in x1 and xs.

\

If uw = 0 on the plane m; : Z?Zl ay}(xi +h)=0,1 <0 <s,s=1, or2, then there exist
Y € PHQ) and o € PF(Q),1 <k <2,p > s such that =0 and p =0 on 7,1 <L <5
and (3.47)-(3.49) hold.

PROOF. By (3.44) for u =0
() = u(h§) = hrox(r)®(¢)¥(&s) = h7w(£).

Then (3.47) and (3.48) with p = 0 follow from Theorem 3.10 immediately.
Due to (3.45) for v > 1

u(§) = h7r?(log h + logr)"x(r)®(¢) ¥ (&s)

m M
= L7 x(r)@(¢)U(&3) Y < :,fb ) log" " hlog™r =h"Y (:1) U (€) log"™™ h
m=0 m=0

By Theorem 3.9, 0,,(§) € Bfnﬁ(Q) with s = 20 + 2+ 31 + (2, and due to Theorem 3.10, there
exists a polynomial ¢,,(€) € Pg(Q) satisfying

(351)  [0m(&) = Gl (re) < CP~* (1 +10g(p + 1))™ [[Um.6,(§)ll gr-2m5 g

with 6; = —=1/2,1 <1< 4,5, =2,i= 3,6 and m* is given in (3.46).
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If o is not an integer, let G(&) = A7l _o(#)Pm () logh™™ h, and let ¢(z) = @(z/h).
Then there hold

“w
1 he <1 + log ’%)

Che &
(14 log(l+p))"logt™™ — < C
;; g(1+p))" log TEE

(p+1)>

14(€) — G 11 (ro) <

>=

and
1

1 ha2te 1
) = o)l gy = W2 1(6) = €y < € (14 1o =)

Thus, for non-integer o, (3.48) is proved.
If o is an integer, we have by (3.51)

o I
a(6) -~ Ol ry < L(og ! mz( )1+1og1+p>>m og ™ 1)

(p+120 h
1 1 1
max{<1+logp+ )H log“ﬁ}

(p+1

which implies (3.48) for integer o.
If o is an integer and 7 ®(¢) is a polynomial of degree ¢ in 21 and xo, then 0y(§) = (7P(¢)
is a polynomial of degree o in in &; and &. We rewrite (3.45) as

a(€) = he <v0 £)logh h + Z ( ) £) logh™™ h) — B (170(5) logh h + w(g)).
By the argument above, there exists a polynomial ¢,,(§) € Py (Q),1 < x < 2 such that

o 1 n-l
h (1+log’%)

N - o= ) (1 +log(p + 1))t m 1
I9(6) = Zul6) e < 08 - (1) R e < 0
Let uo(z) = u(7) = (“xn(¢)P(¢) log" h and w(x) = h?w(7). Then

(3.52) u(x) = up(z) + w(z)

Since ugp(x) is a C*° function, there exists a polynomial go(x) € Py(Qr),1 < £ < 2 such
that
o

h p+ 1\x-1
(3.53) [wo — ol 1(rry < CW<1 + log N ) :

Letting o(z) = @o(z) + @u(z) With vy (2) = 7@, (5). By (3.52)-(3.53), we have
|u(x) — <P(~”C)HH1(R{;) < w(z) - @w(x)HHl(Rg) + [Jug — <P0HH1(R{;)

Chzto P+ 1\r-1
TSI (1 + log T )
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which leads to the estimation (3.48) in the case that r®(¢) is a polynomial of degree o in
z1 and zs.

If u = 0 on the planes 7,1 < £ < s, §,,(£) vanishes on the planes :77 : 37, al¥(z;+1) =
0,1 < ¢ < 5. Due to Theorem 3.10 there is a polynomial ¢,,(£) € Py(Q) satisfying (3.32).
Consequently, the polynomial ¢(x) € P/(Qn) vanishes on the planes m;,1 < £ < s and
satisfies the estimation (3.48).

Similarly, we can prove (3.47) and (3.49). O

3.3.0.3. Approximability of vertex-edge singular functions. Let (p,0,¢) be the spheri-
cal coordinates with respect to the vertex (—h,—h,—h) and the vertical line L = {x =
(x1,m9,23) | x1 = 19 = —h, 23 € (—00,00)} as in previous section.

We now consider the singular functions with real 7,0 > 0 and integers v, u > 0,
(3.54) u(z) = p? log” p sin? 0 log" sin 6 xp,(p) ©(¢)V(0)
where p = {(z1 + h)? + (z2 + h)? + (z3 + h)?}2, xn(p) = x(£), x(*) is defined as in previous
subsection, ®(¢) and W(#) are C* cut-off functions such that for 6, € (0,7/2)

VUH)=1 for0<0<6/2, WH)=0 ford >0
and for 0 < ¢p < /4
(p) =0 for ¢ & (¢o,7/2 — ¢o).
Let

RO Rp060¢0 {erh|O<p<p079€(0790>7¢€(¢07ﬂ-/2_¢0)
as shown in Figure 3.3.

Fig. 3.3 Cubic Domain @Q, and sub region R , .

We quote the following theorems for h = 1 from [24].

Theorem 3.13. Let u(x) = p”log” psin? Olog” sin Ox(p)P (@)W (0),v > 0, > 0, and let
B >—1,1<i<6. Thenu(x) € H%(Q) and u(z) € BY*(Q) with s = 2+ 2min{y + (1 +
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B3)/2,0} + 01+ (a2, € > 0 arbitrary, and

H Zf0-<’7+(1+/63)/27
(3.55) A={ ptve1/2 ifo=r+14+53)/2

p+v ifo>~v+ (14 53)/2.
Theorem 3.14. Let u( ) = pYlog” psin? Olog” sin Ox (p)P(p)W(0), v > 0, > 0, then there
exists Y(x) € PH(Q),1 < k <2 with p > 0 such that for 3; = 0,1 <i < 3,3 > —1 arbitrary,
4<4<6

(1+ log(p + 1))A

(356) ||u — wHL?(Q) S (p T 1)2+2min{o,'y+1/2} ||u||Bi+2min{0,'y+1/2},ﬁ(Q).

Also, there exists p(x) € PH(Q),1 < v < 2 with p > 0 such that for 3; = —1/2,i =
1,2,4,5,03 =0 =0

(1 + log(p + 1))*

(3.57) |u = @llm(ry) < (p + 1)2min{on+1/2} Hu||B§+2mi"{m“/2}’ﬁ(Q)
and

(1+log(p+1))*
(358) ||u - QOHCO < C(p n 1)2min{a,'y+l/2}—1/2 ||u||B;\+2min{o,'y+1/2},B(Q)

with X in (3.56)-(3.58) given in (3.55).

If u =0 on the plane 7 = 3o, y](x, +1
there exist 1 € P;(Q) and ¢ € 73“( )1 <k
m, 1 <0 <s, and

) =01 </ < s,8s=1, or2, or3, then
< 2,p > s such that v = 0 and ¢ = 0 on

u L*(@Q (p + ]_)2+2 min{o,y+1/2} Us B§+2 min{o,v+1/2},805] Q)

with ﬁf] =s5,1</(< 3,/6; > —1,4 < £ <6 arbitrary, and

T CQ+loglp+ D1
Tl ) = (p + 1)zmin{oys1/2y 1Tl glezmintoati/analdl )

and

C(1+log(p+1))*

(359) ||u - SOHCO < ( + 1)2min{a,-y+1/2}—1/2 Hus’|Bi+2min{0,'y+1/2}7ﬁ[s] @)

with B = s — 1 0=1,2,4,5,6 = 0,4 = 3,6, where
" u(z)
Hz 12121 z}($l+1)

Due to Proposition 3.1 and Theorem 3.13, a simple scaling leads to the following theorem.
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Theorem 3.15. Let u(z) = p? log” p sin? 0 log" sin 0 x4 (p) @(4)¥(0),v > 0,0 > 0 as given
in (3.54), and let 5 = (b1, B2, B3, Ba, B5, Bs) with B; > —1,1 < i < 6, arbitrary. Then

u e H5%(Qp) and u € BYP(Qn) with s = 2+ 2min{y + (14 33)/2,0} + By + fa,e > 0
arbitrary, and

Iz ifo<y+(1+8)/2,
(3.60) A={ p+v+1/2 ifo=~v+1+3)/2,
f+ v ifo >+ (14 0s)/2.

PRrOOF. Let a(§) = u(h€). Then for v = p =0

(3.61) a(§) = u(hg) = (7 sin” O x(C)P(P)W(0) = K w(E).
and for v > 1,u>1

(3.62) u(¢) = h'¢"(logh+log()” sin? O logh sin O x({)P (o)W (0)

= h7(7 sin? 6 log" sin 6 x (¢)P (o) ¥ (6) XV: <V) log”™™ hlog™ ¢

m
=y (;) T (€) log”™™ h

m=0

where ¢ = /(& + 1)2+ (& + 1) + (& + 1)2, §,,(€) = 7 log™ ¢ sin? 0 log" sin 8 x(C)®(¢) ¥ (6)
and w(&) = (7 sin? 0 x(()®(¢)¥(6). Due to Theorem 3.13, w(&) € H*55(Q) and 0,,(¢) €
ByY(Q) with s = 2 + 2min{y + (1 + 83)/2,0} + Bi + Ba,e > 0, and

m=0

f if o <4 (14 05)/2,
(3.63) An =13 p+m+1/2 if o =~+(1+06)/2,
pw+m ifo>~v+(140)/2.

The assertions of the theorem follow immediately from Theorem 3.13 and Proposition 3.1.
O

By using Theorem 3.15 and the approximation property described in Theorem 3.4, we
obtain the approximability of u(z).

Theorem 3.16. Let u(z) = p? log” p sin? 0 log" sin 0 x4 (p )

()W (0),v > 0,1 >0 as given
in (3.54). Then there exists a polynomial 1(x) in Py(Qn),1 < K

< 2 with p > 0 such that

hat
(3.64) lu =¥l r2q,) < C(p + 1)2(+min{y+1/2,0}) Fypu(p: h).
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Also there exists p(x) € PS(Qnr),1 <k <2, p>0 such that

hzt

(3.65) [l — SDHHl(RQ) S C(p + 1)2min{y+1/2,0} Foup, ).
and

WY
(3'66) ||u o (‘OHCO(Qh) < C(p + 1)2min{“/+1/2,cr}—1/2 F,W(p, h)’
where

(1 +log(p + 1))"(1 + log ZE1)"=1 for integer v,0, v > 1, u =0,
and p? sin® 0@(¢)¥(0) € P, (Qn),
(3.67) Fulp.h) = )
(1 +log(p + 1))"(1 + log Z1)¥, otherwise.

and
1 ifo #£y+1/2

w+1/2 ifo=~v+1/2.
If u = 0 on the plane 7 : Z?zlam(x,- +1)=0,1 <0< s,s=1, or2, or3, then

)

there exist 1 € PJ(Q) and ¢ € Py(Q),1 < k < 2,p > s such that » = 0 and ¢ = 0 on
7,1 <l <s and (3.64)-(3.66) hold.

PRrOOF. By (3.61) forv=pu=0
u(§) = u(hg) = h7¢7 sin” 6 x(C)2(¢) ¥(0) = A w(&).
Then (3.64) and (3.65) with v = p = 0 follow from Theorem 3.14 and Proposition 3.1

immediately.
Due to (3.62) forv > 1,u > 1

u(€) = h'¢"(logh+log ()" sin? O log" sin O x ()P (o)W (0)

= Rh7¢7 sin? 6 log" sin 6 x ()P (o) ¥ (0) Z < V) log"™™ hlog™ ¢

m=0

(3.68) i =

v

_ h7§:<;)@4@kg“mh

m=0
By Theorem 3.13, 0,,(§) € Bif(@) with s = 1 4+ 2min{y + 1/2,0}, and due to Theorem
3.14, P (&) = 0y, satisfies
(3.69) [0 (€) — @m(g)HHl(Ro)
< C(p + 1)—2m1n{0,’y+1/2}(1 + 1og(p + 1)))\m||'l~1m(€)||B§,ﬁ(Q)

with A given in (3.60).
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If v is not an integer, let G(&) = h7SY_ (") @m(§)log” ™ h, and let p(z) = ¢(x/h) =
I u with 8 = —1/3,1 <i < 3,8 > —1,4 <i < 6, arbitrary. Then there hold

~ ~ Ch'y . v Am v—m
I5(6) ~ 4@y < (p+1)2mmm+l/2};(m)ﬂﬂog(pﬂﬁ log! ™" I

hY(1 +log(p + 1)) (1 + log pTH)V
(p + 1)2min{o,'y+1/2} ?

IA

and

o N h2 (1 + log(p + 1))~ p+1\v
[u(@) = (@) || gy = h2[|a(€) — @) mr(ry) < C (o & Dfmmlen 172 (1+logT)

with fi as given in (3.68). Thus, (3.65) for non integer v is proved.
If v and o are integers, = 0 and p? sin® 6P () ¥ (0) is a polynomial of degree 7 in @y,
then (&) = (7sin? 0P(¢p)¥(#) is a polynomial of degree v in ). We rewrite (3.62) as

a(€) = h (UO £)log” h + Z ( ) £)log"~ mh) - m<vo(§) 1og”h+w(§)).

By the argument above, there exists a polynomial ¢,(§) € P;(Q),1 < x < 2 such that

1+1 1))Am—t
P\ W logp+ DY
m (p—l— 1)2m1n{0,'y+1/2}

[0(€) — PRy < Ch”Z

hY(1 + log(p + 1))* <1 + log p+1>
(p + 1)2min{en+172)

Let uo(z) = u(F) = p"xn(¢) sin” 0®(¢) ¥ (0) log” h and w(z) = h?w(F). Then

(3.70) u(z) = uo(z) + w(z)

Since ug(z) is a C* function, there exists a polynomial py(z) € Py (Qr),1 < £ < 2 such
that

<

h2+1(1 4 log(p + 1))
(3.71) g — <P0||H1(Rg) <C (p + 1)2min{o+1/2} (1 +log

Letting ¢(x) = @o(z) + pu(x) wWith @, (z) = h7@,(7). By (3.70)-(3.71), we have
Ju(r) — SO(@HHl(Rg) < Jw() = pu(x )HHl(Rg) + [Juo — 800||H1(Rg)
Chzt(1 + log(p + 1))* p+ 1\v1
(p + 1)2min{ot1/2} <1 ey )

which leads to the estimation (3.65) in the case that p”sin? 0®(¢)W(0) is a polynomial.

If u = 0 on the planes 7,1 < ¢ < s, §,,(£) vanishes on the planes 7, : 7, Eq (x;+1) =

0,1 < /¢ <'s. Due to Theorem 3.14 there is a polynomial ¢,,,(§) € P} (Q) satisfying (3.69).

p_l_ 1)1/—1
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Consequently, the polynomial ¢(x) € P;(Q) vanishes on the planes 7,1 < £ < s and
satisfies the estimation (3.65).
Similarly, we can prove (3.64) and (3.66). O



CHAPTER 4

Polynomial Extensions in Three Dimensions

4.1. Extension on a standard triangular prisms

4.1.1. Polynomial extension on a tetrahedron.  For the construction of polyno-
mial extensions on a triangular prism, we need quote results on the extension on a tetrahe-
dron from [40]. We denote, by K, a standard tetrahedron {(x1,x2,x3)|z1 > 0,22 > 0,23 >
0,71 + 29 + 23 < 1} in R? shown in Fig. 4.1, and 0K denotes the boundary of K. Let
T = {(x1,25)|11 > 0,25 > 0,21 + 25 < 1} be a standard triangle in R?, and let T';,1 < i < 3
be faces of K contained in the plane z; = 0 and I'y be the oblique face.

Fig. 4.1 The tetrahedron K

Munoz-Sola introduced the following operators [40]

2 T1+T3 T1+zo+r3—E1
(4.1) Fr f(@, 20, 23) = ?/ dﬁl/ f (&1, &)dEs,
3 Jx 2
and
(4.2) Ry f(x1, 29, 23) = (1 — 21 — x9 — 23)21 09 Fi f (21, T2, 3)
with
f(xlaxZ) - f<x17x2)

1’1113'2(1 — T — ZL’Q) '
34
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The operator Rx has the following decomposition:

(4.3)  Rgf(ri1,m9,23) = (1 —x1 — 29— x3)Riaf(x1, 29, 23) + 22 Ry13f (21, 22, x3)
+ 1 Rasf (21, 22, 23),

where
5 - 1,
(44) Rl2f(I1’x2’x3) :x1$2FKf12(x1,$2,x3)a f12(x17$2) = %,
1%2
(4.5) Riaf (21,05, 73) = (1 — 21 — w3 — 23) 2, Fic fia (1, 72, 5)
with

f(ffl, 932)

xi(1 —x — x9)

ﬁ3($1,$2)= yi=1,2.

The following theorems were proved in [40].

Theorem 4.1. Let Ry be the operator defined by (4.2). Then Rk f(x) € Py(K) for all
feP’(Ts), and

4.6 R <C 1
(4.6) | R f iy < ||f||H%(F3)>
(4.7) Rxflrs=f, Rkfl|r,=0,1=1,24,
where C'is a constant independent of f and p.

Theorem 4.2. For f € P)(0K) ={f € C°(0K) | f
polynomial Ex f € PI}(K) such that Ex flox = f and

(4.8) 1Ex iy < Cllf om0,

where C'is a constant independent of f and p.

r, € P;(Fi),l < i < 4}, there exists a

4.1.2. Polynomial extension on prisms from a triangular face. Let G =T x [
be a triangular prism with faces I';,;1 < ¢ < 5 shown in Fig. 4.2 where T' = {(Z1,%2) |
T1 > 0,79 > 0,71+ 7o < 1} and T = [0,1]. T;,1 < i < 3 are on the planes &; = 0, I's
is the face of G contained in the plane 3 = 1 and I'y is the face of G contained in the
plane #; + &3 = 1. Then I's = T and I'y = S = I x I. By P,(T) x P,(I) we denote a set
of polynomials with the sub-total degree in ; and T, < p and with the degree < p in Z3.
Obviously P, (G) C Py(T) x Py(I) C P2(G), it is denoted by P,>(G).

We shall establish polynomial extensions from the triangle 7" to the prism G.

Since the mapping M:

(49) T :Zi'l(l—Hli'g), xgzli'g(l—Hli'g), l’gZHi’g
maps the prism G onto a truncated tetrahedron Ky = {(z1, 72, z3)[v1 > 0,22 > 0,H >
r3 20,21 + 1z + a3 < 1} with H € (0,1) shown in Fig. 4.2. T';,i =1,2,3,4,5 are the faces

of Ky, I'y and I's contained in the planes 23 = 0 and 25 = H, respectively, and T;,i = 1,2, 4
are portions of the faces of the tetrahedron K. Hence, we need to construct a polynomial
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Fig. 4.2 The prism G and truncated tetrahedron Ky

extension operator Ry : PYO(T) — P Ky) @Py°(T) x Pi(Iy) with desired properties,
where Iy = (0, H), which can lead to a polynomial extension from a triangular face to the
whole prism.

We now introduce polynomial lifting operator Ry on Ky defined by

(4-10) RHf(xla $27I3) = RKf($17$27$3) - %RKf(SCh T2, H),

where Rp is the lifting operator on K given in (4.2).

Theorem 4.3. Let Ry be the operator given in (4.10). Then, Ry f(z) € P)(Kg) @ Py°(T)x
Pi(Iu) for f € PyXT) such that Ry f(x) |g,= f, Ruf |5,= 0,i=1,2,4,5, and

: <
1) 1Baf e < I G

where Iy = (0,H) and Ty = {(x1,22) | 1 > 0,29 > 0,21 + 20 < 1 — H}, and C is a
constant independent of f and p.

Incorporating Ry and the mapping M, we construct an extension Rg by
(4.12) REf (&1, @2, %3) = Ry f o M = U(&y, Ta, &3) — T3U (i1, T, 1).
where U(Z1,Z9,T3) = Rif o M. Suppose that Ry f(x1, 9, x3) = Zi+j+k§p aijkxix%x’?f, then
Ry fo M(Zy,%9,73) = U(Z1, T2, T3)
= Y apHMHEEE( - Hig)™ € PYT) x Py(D).
i+j+k<p
and

%RKf(ZL'l,ZL'Q,H) oM = ZZ’gU(i’l,ZINﬁQ, 1) S ,P;’O(T) X Pl([)

Therefore RE f(Z1,22,%3) = Ryf oM € PY(T) x Py(I) if f € PyO(T). We are able to
establish the polynomial extension from a triangular face to a prism.
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Theorem 4.4. Let Rl be the extension defined in (4.12). Then RLf € PyO(T) x Py(I) for
fePT) , RESf Iry= f and vanishes on OG\I's, and

(4.13) IRGS ey < CIS

where C' is a constant independent of f and p.

PROOF. Obviously, R}, : PYO(T) — PyY(T)xPp(I), and RS f = fforall f € P)Y(T), RLS |r,=
0,7 =1,2,4,5. Since the mapping M is trilinear,
IRES ) < ClIRu S| m (k)
Then (4.13) follows from (4.11) easily. O

3 )
HOO (Fg)

It remained to prove Theorem 4.3. To this end, we need the following lemmas.

Lemma 4.5. For 0 < h < a and any function g € L*(0,a), it holds that

(114) [ [ v < [Catpar

Also there hold iy e 2 .

(4.15) / B / o(e)de dw < / 2lg(x) Pda
e a—h 1 ot 9 1 e ,
(4.16) / B / g(eyde| dw < / (a — 2)lg(x)Pdr.

PRrROOF. By Schwarz inequality, we have

/Oa—h ’% /:Jrhg(g)dgrdx . /Oa—h ’% /:Jrh |g(§)|d€’2dx . /Oa—h . /:+h |g(§)|2d§,

t=x+h &=x+h
al-----
al----- =X &=x
h
a-h- a-
h

a-h a-h

Casel. O<h<a/2 Case2. O0<al2<h
Fig. 4.3 Case 1 and Case 2
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e Case 1 : 0 < h <a/2. There holds

/Oa—h ‘% /mx+hg(€)d§‘2dl’ . /Oa—h . /w:c+h @df

M TP o g9 e “hg(&)?
= /Od§/0 - dx—l—/h d€ g_hih dx—l—/G_hdﬁ - - dx

L[ [ [ o OO

[1i ) e < [oopa

/OH}% [ eifa < | elaorde

e Case 2 : a/2 < h < a. Similarly, there holds

/O h\% / " gerief o < /0 RS / o I

Hence, we have

and

o [Fe©) " g “ Mg
= /0 d§/0 . d:)s+/a_hd§/0 . dx+/h d¢ . h dx

[T [ oI [ (o OO

[l e < [uore

/OH’% /:Mg@dfrdx < = /0 " elg(o)de.

Therefore we always have (4.14) and (4.15) for 0 < h < a/2 or a/2 < h < a.
Letting n = a — & and & = a — h — = and using (4.15) we obtain

/Oa—h }% /xﬁhg(g)dgrd;p _ /Oa—h ‘% /:Jrhg(a o 2d93

[, 2. L[
< - / #lg(a— #)]°di = + / (a— 2)lg(z)%dz,
hJo hJo

which yields (4.16).

which implies

and

38
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Lemma 4.6. Let Rys(xy, 29, H) and Ri3(xy, x2, H) be the operators given in (4.4) and (4.5)
with x3 = H. Then

(4.17) | Ruaf(z1, 2o, H)| L2k pp) < C||(3615€2)%f($17$2)||L2(T)a
and fori=1,2
(4.18) | Rz f (w1, 20, H) || 25y < Clla? (1 — 21 — xz)%f(xh@)llym,

where C' 1s a constant independent of f.

PROOF. Note that
) 4 H 1—x3 l1—xo—x3
[ Raaf (21, 20, H) |25,y < ﬁA dI3/0 dl’z/g

zro+H N N
with ¢1(&) = / |f(&1,&2)|dEe. Hereafter f denotes the extension of f by zero outside

1

x1+H 2
E/m1 g1(&1)d&q| day

T. We apply heré Lemma 4.5 to ¢1(&;) with a =1 — 29 — 23, h = H,z = x1,& = £, then we

get
l—xo—x3 1 r1+H 2 1 l—xo—x3+H
/O (ﬁ/ g(&)d&) dry < E/o 1]g1(21) | day,

1

which implies
1 x1+H

1—z3 1—z2—x3
(4.19) / d932/ T
0 0 H 1
1 1—x3 l1-—xzo—x3+H
< — dx/ x
H /0 2 J '
H 1—x3 1 zo+H
e / - / E / o1, 6)1des
0 0 T2

H

l—x3s+H l—x1—xz3+H 1 xro+H 5 2
+/ I1d$1/ ‘ﬁ/ |f(931>52)|d§2’ dl)ﬁz}-
H 0 T2

Applying Lemma 4.5 again, we have

/1—%3
0

l—ay—a3+H | vo+H 9 1 1—z1—x3+2H ~
/ ‘—/ |f(931,§2)|d§2’ dry < —/ To| f (21, 22)|*ds,
0 H J,, H J,

gl(fl)dflrdil

2
dl‘l

xro+H _
/ | f(1,&2)]dEs

2
dIQ

1 z2+H 2 1 1—z3+H _
ﬁ/ |f(171>52)|d§2‘ dxy < ﬁ/ To| f (1, 12)[Pds,
T2 0

and
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which together with (4.19) yields

/01-x3 e /01 (& / e / o 76 &lder) da

T T2

H 1+H 1l—x3+H 1—x1+2H _
([an [ o[ an [ Jamilfenm) e,
0 0 H 0

H 1+H 1+H 1—x14+2H N L
(/ dl’l/ —l—/ dl’l/ >1’2$1|f(l’1,l'2)|2dl’2 S 2||(l’1l’2)§f||%2(T)
0 0 H 0

Therefore (4.17) follows immediately.
Let @1 be the mapping:

IN

IN

(4.20) X1 =To, To=1—1T1—Tg— T3, I3=x3,

which maps Ky onto itself, and let W; be the mapping:

(4.21) =&, &L=1-§6-&,

which maps T onto itself. Then f(&1,&) = f(&1, &)Wy = f(&s, 1—E—&) and Ryaf (21,32, H) =
Risf(x1, 79, 73) © Q1 |py—r. Therefore

| Rusf (21, 2o, H) || 205y < ||Rlzf(f17i27H)||L2(KH)SCH(&&)%JEHLZ(T)

1 1
< CO§7 (1 =& = &) fll2)-
For Rasf, we introduce mapping ()2 and Wa:
(422) Qg . 1 = 1-— 2%1 — .fi’g — 2%3, To — 2%1, T3 = 2%3,
which maps Ky onto itself, and
(4.23) Wo: &G=1-&-& &=6,
which maps 7T onto itself. Similarly
|Rasf (w1, w0, H)ll 1oy < | Baaf Gir, oo, H)ll 2y < Cll(6162)2 fll o)
1 1
< COf&5 (1 =& = &) fll2m)-
O

Lemma 4.7. Let Rys(xy, 2, H) and Ri3(xy1, x2, H) be the operators given in (4.4) and (4.5)
with x3 = H. Then fori=1,2

8R12f(a71,172,H) _1
. < 2 2
a2 Rt ) <o,
andt=1,2
aRi3f(x1>$2a H) —% -1
(2s) | FErg < Ol Sl 10w =) ),

where C' is a constant independent of f.
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PROOF. Note that

ORua f (w1, 05, H) _ 21, /“*H it /““*H-& fl&,&)
O, H? s 16

d&s

1

21y /mQJrH f($1,§2)d§2 L 2 /m1+H &,z +a+ H— 51)d§1
H? z2 62 H? z1 61(1’1+1’2+H—€1)
and
H
(4.26) }aR”f(xl’@’ >‘ <L+ L+
825‘1
where
2 r1+H ro+H ’ 2 ro+H
L = el /m1 d&; /m2 ‘f(géil&)‘dﬁz, I, = e /22 | f(21,&2)|dEs
2 r1+H
[3: m/@j ‘f(£1,$1+$2+H—£1)|d£1.
Note that
4 H 1—x3 l—xo—x3 1 r1+H 2
2 _
I3l Z2rey = ﬁ/o dx?)/o dx2/0 (ﬁ /x1 91(51)d§1) dxy
xro+H 3
. B |f(&, &) . . _ _
with g1(&) = fedgg. Applying Lemma 4.5 to ¢1(&;) witha = 1—2y—x3,h =
T2 1

H x=ux,& =&, we have

l—xzo0—2x3 1 r1+H 2 1 l—xo—x3+H
/ —/ 91(51)6151‘ dr; < —/ T
0 T H 0

xro+H r )
x 7
7l [ g as,
which implies

xy

2

1—x3 l—xo—x3 1 r1+H 2
/ d.flfg/ ﬁ/ gl(gl)dgl dl‘l
0 0 1
1 1—z3 l—xo—x3+H 1 zro+H _ 2
< — _
< H/o difz/o o /{E2 f(l"l,fz)d&’ dr,
H 1 1—x3 1
H{ / ~dn, /
0o 1 0

xro+H _
T /x2 f($1,§2)d§2

l—x3s+H 1 l—x1—x3+H 1 xro+H 5 2
+/ —difl/ ‘—/ f(x1>€2)d€2) difz}-
H xy 0 H 9

2
dIQ

IA
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Applying Lemma 4.5 again to the function go(&;) = f(x1, &), we have

4 H H 1 1l—x3+H _
(427) ||]1||%2(KH) S m/ dl’g/ —dl'1/ |f(l'1>1'2)|2dl'2

l—x3+H l—x1—x3+2H _
H2/ dl’g/ —dl’1/ |f(l’1,l’2)|2dl'2

1+H 1+H 1—xz1+2H
: /dm’l/ of, e [

< —||961 2 Il
Similarly we have by Lemma 4.5,

) 4 H 1—z3 l—xz1—x3 1 xro+H 2
(4.28)[| 2|72 s,y = T2 dzs dz T | f(x1,&2)|dE2| dxo
0 0 0 D)

4 H 1—x3 l—x1—xz3+H
< g [ e[ Can | ol 22) P
0 0 0

4 H 1 l1—z14+H 5 ) 4 1 )
< o [ dn e [ wlfenan)de = gl T

and
) 4 H l—xzo0—x3 1 r1+H N )
1 3] 72,y = 72 dx; difz T |f(§r, 21 + 20 + H — &1)|dEy| day
0 0 T
4 H l—xo—x3+H B
S ﬁ/ dl’g/ / $1|f(.§(71,$2 +H)‘2dl’1
0 0
4 H 1l—xo+H B
S ﬁ/ dSL’g/ dx / SL’1|f(LL’1,SL’2 +H)‘2d$1
0 0 0
4 1 1l—xo+H B
= m d.f(}g/ J,’1|f(l’1,l’2+H)‘2dl’1.
0 0

Letting z = x5 + H, we have

4 l—zo+H 4 [IHH 1—242H
—2/ dl’g/ o1|f(z1, 20 + H)|*dx, = —2/ dz/ z1|f(z1, 2) 2 dxy
H? J, 0 H? |y 0

4 1 1—=z 5 ) 4 ) )
- ﬁ/H dZ/O 21| f (21, 2)[Pdey < meffHLZ(T)a

which implies

(4.29) sl < 13 Hl’l FllZ )
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Combining (4.26)-(4.29), we have
HaRmf(il?l,il?z, H) ‘

_1
< Cllwy ? fll 2y

0rq L2(Kg)
Similarly, we can prove
8R12f(x1,x2,H)‘ _1
<C 2
| == L L <Ol flay
Let @; and W; (i=1,2) be the mapping as defined in (4.20)-(4.23). Then, for t = 1,2,
OR13 f(x1, 20, H) H@ngf xl,zg,H)‘ 1,
<C 2
e o = 2T gy <€ Z W

CUIET Flaery + 11— & — &) fllaer)-

IN

Similarly, we have for ¢t = 1,2

HaRggf(Zlfl,Z'g,H)
oy

\ [

<CY & fllee

1=1,2

Z HaRIZf Z'l,l’g,H ‘
oz,

L*(Kw) L2(Ky)

i=1,2

~.

IA

CUI& * fllzr + 10— & — &) Fllzeer)-
]

Proof of Theorem 4.3 Obviously, Ry f(x) € P)(Ky) @ Py°(T) x Pi(Iy) for f € PO(T).
Due to (4.10), we have

(4.30) | R f (21, T2, 23) | 51 ()
< HRKf(Ih@,SL’s)HHl (Ky) T H RKf(%,CCzaH)‘

HY(Ky)

By Theorem 4.1, there holds

(4.31) [[Ri f(@1, w2, 3) || miicn) < (|1 Bif (21, @2, 3) || 1) < C||f($17562)||H%(T)7
00

and by (4.3) and Lemma 4.6- Lemma 4.7, it holds that

< C(||Raaf (w1, w2, H) |1 acy + Y | Risf (1, @2, H)l 111 s ,))

i=1,2

H Ry f fl,Iz,H)}

HY(Kp)

< Ol 3 ¢y + Dl fleeay + (1= 210 = 22) 72 fll2ery) < CIf|

i=1,2

which together with (4.30)-(4.31) leads to (4.11) immediately. O

3 )
Hso(T)
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4.1.3. Polynomial extension on prisms from a square face. = We shall construct
a polynomial extension on prisms from a square face S = {x = (1,29, 23) | 0 < 21,23 <
1}, which is as important as the extension from a triangular face for error analysis and
preconditioning of high-order finite element methods in three dimensions [25].

Lemma 4.8. Let T = {(x1,79)|0 < 23 < 1 — 21,0 < 21 < 1} be the standard triangle and
I = (0,1). Then there is a polynomial extension operator Rk : H}(I) — HY(T) such that
Ryf € Po(T) if f(x1) € P)(I), and

(4.32) Ryflr = f(x1), Ry florg =0,

. 3 1
(4.33) IR Flirery < C(0 2 Al + 24l ) ¢ = 0,1.
with Cindependent of f and p.
PROOF. Let 9(z2) = (1 — x2)?. Then for ¢t >0

1

(4.34) [l ey < Cp'e.
We introduce a function W € Py, (T) by

(o, 22) = leo) (1= a0 = 22) flw1) + 21 flos +2)).
Then V(z1,0) = f(x1),¥(1,22) = ¥(z1,1 — 1) =0, and
(4.35) 1) 22y < Cp72 | fllzy,

(436) 1911y < € (0721 llmy + 21 2en)-

1
By the lifting theorem on the triangle 7" [35], there exists a lifting operator Ry : Hg (1) —
H(T)

Rrf = 21(1 — 71 — 1) /xlﬂ2 f(€) d¢

3 §(1-¢)

2
such that Rrf € P;(T),RTf /= f and Ry f [or\ = 0, and

|1 B fll vy < ClIS]]

which implies that Ry satisfies (4.33) with ¢ = 1. Unfortunately, the extension does not give
a precise information on || Ry f||z2(r), and the desired estimation (4.33) with ¢ = 0 may not
be true for Ry. Therefore we have to construct a new extension operator 7.

Note that ¥ — Rrf = 0 on dT. By Il we denote the orthogonal projection operator:
Hy(T) — PyOT), and let

1o
Hgh(I)

w, = Ryf + p(¥ — Ry f).
Then wy(z1,0) = f(z1) and w,(1, x2) = wy(x1,1 — 1) = 0, and
(4.37) U —w, = (I —z)(¥ — Rrf).
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Due to the continuity of operator Ry and a trace theorem, we obtain

(4.38)  ||wpllmery NN ey + |V = wpllar ey < YNy + [|¥ — Refll g
209 | grery + [Br fllavery < CUNY N aery + 15 )

Heo (1)
< Ul + 191,44 )

Let Ry f = w,. Then (4.36) and (4.38) leads to (4.32) and (4.33) with ¢ = 1. Note that
II7(¥ — Ry f) is the finite element solution in P)°(T) for the the boundary value problem:

<
<

< O W] g1y

—Au+u=f in T

u |6T: 0
with f = —A(¥ — Ry f) + U — Rpf. By the Nitsche’s trick, we have
(I =T2) (¥ = Rrf)|l 2y < Op~HI(I =) (¥ = Ref)ll iy < Op7 19|y,
which implies
(4.39) 19 —wpl 2y = (1 = Tz ) (¥ = Ref)ll 2y < Cp~ ¥y,
Combining (4.39) and (4.36) we have (4.33) for ¢t = 0. O

We construct a polynomial extension from a square face to the prism G with help of the
extension R in triangle 7"

(4.40) REf (w1, 9, 23) = Ry f (-, x3)

Theorem 4.9. Let I'y = S be a square face of the prism G as shown in Fig. 4.2, and let R?,
be the extension operator defined as in (4.40). Then Rgf € PHT) x Py(I) for f € P2O(Ty),
and

(4.41) RAf=f on Ty RLf=0 on OG\I'y,

(442) B lmn) < C(p 2 fualmnaen + 7 H | flinwn + P2 )
_3 _1

(443) |REF ey < C(pH 1S sy + 2721 o ).

PROOF. Obviously, R f € P)(T) x Py(I) and (4.41) holds. Due to (4.40)
1
R3Sl = [ ([P andn)ir < [ 1 aryios
0 T 0

1
< c /0 (017l + 5717 )
(07 sy + 27 1 B

IN

which leads to (4.43).
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Applying (4.40) to f(z1,23) and fu,(z1, z3), respectively, we have

1
Rt < [ (IRefTnn + RSl )dos

IN

1
o A e T A e

(50 ey + 07 1 F sy + Pl I3acs) )

which implies (4.42). O

IN

Remark 4.1. Tt is an open problem whether there exists a polynomial extension operator R2,
such that

(4.44) 1RES iy < CUANl g,y

Although (4.42) is not strong as (4.44), it gives the dependence of | RS f || g(c) on || f || mre(sy, t =
2,1,0 furnished precisely with a weight p~3/2, p=1/2 and p'/?, respectively. ThlS estlmatlon is
sufficient while applying the extension to a pair of elements sharing a common square face
for constructing a continuous piecewise polynomial in 77;'5(G). Hence, Theorem 4.9 plays an
important role in error analysis for the p and h-p versions of finite element method in three
dimensions on meshes containing triangular prism elements.

4.2. Extension on a standard pyramid

We denote, by A, a standard pyramid {(z1,z9,23) | 0 < 21 < 1,0 < 25 < 1,0 <
xg < l,x; + 23 < 1,29 + 23 < 1}in R3 shown in Fig. 4.4 . Let I';;1 < i < 3 be the
faces of A contained in the plane x; = 0 and I';,7 = 4,5 be the oblique faces, and let
S ={(x1,13) | 0 <2y <1,0 < xy <1} be a square in R%. Obviously, I's = S. For f in
L'(S), we introduce an extension operator Fi f on A by

T1+23 To+x3
(4.1) o) = [ da [ fle @)
3 Jx z2

It is easy to verify that if f € P)(S), then Fy f € P;(A) and it holds that Fy f(z1, 25,0) =
f(z1,29) and we have the following theorem.

Theorem 4.10. Let F) be the operator defined by (4.1). Then for any f in H%(S), there
hold

(4.2) [ Eaf 2y < Cllfllzes)
and
(4.3) [Ex Sy < ClF,

H3(S)'
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Fig. 4.4 The pyramid A

ProoF. We first extend f to a function defined on the entire plane R? so that
el < CIFG )l

where we have used the same notation f to denote the extended function as well. Then, we
have

+o00 +00
(4.4) Fpf(xy, 29, 03) = / (&1, &) H () — &1, w9 — &o, 13)d61dEy

= (f«H(-,z3)) (21,70, 73)
with H(x1, 2, 23) = Hi(z1, 23) Hy(72,73), and for i = 1,2
1
(4.5) Hi(w;, w5) = { o msmsl

0 otherwise.

Let f(&,&) and H(&y, &, x3) represent the Fourier transform of the function f(zy,22) and
H(xy, o, 23) in the 21 and x5 direction. Then by (4.4)

(4.6) Frnf(&1,&0,m3) = F(&1, &) H(E1, o, m3) = F(&1, &) Hi(€r, 3) Ha(&a, 73),

where

~ 1 1 0 . 1 efims — ] ‘
H1(€j,933) = —\/%:):_3/ e i dej = —\/%72'5-:53 ,j=1,2.
—3 J

Let Q = { (1, 22, 23)| —00 < &1 < 00, —00 < Ty < 00,0 < @3 < 1} (vesp., Q = {(&1, &, x3)| —
00 < & < 00,—00 < & < 00,0 < x3 < 1}). By Parseval’s equality, we have using (4.6)

IEANF ) < I Fall ) = HFAH?LII(Q) = Z /(~2 |f(&1, &) PIEH (&1, &2, w3) [P dE déadas

i=1,2

+ / e 8)

A (60, )| dsdadr + [ 17(60, &) PIEE: o) €y
T3 Q
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Noting that |H,(&;, z3)| < C for i = 1,2, we have
Mﬂéﬁ@@ﬁﬁ&&@mm@MﬁC@M@@W%@gwwam

which implies (4.2).
Letting u; = z3|¢;| for j = 1,2, we obtain

)Py = [
Hi(65, 8)2das = /
/0 ISP ’ 27T|§j| 0

which yields for j = 1,2

U

— 12 1611 — .
et 1’ du; = 1 / 1 cgsu]duj§£7
i m[&51 Jo u? [31

(1.9 L1, ) Pdsdeadns < € [ g6 ) Pdeudss
< Ol gy < ClIR
Note that

0 ~ 1
81’3 (51 €2>$3) = 2_(

1611»36%1%3 — ¢t 41~

Z511'3

ngl’gel&n — et2ms +1~

z521'3

H (&, w3) + (51,933))

and

0 ~ 2 0 2(1 — cosu;) + u? — 2u; sin u;
A6, 6m)| <5 DIGP g) Uy T S
’01’3 (&, &2, 5) 27 e S5l 4 ’

U

which imply

&1 2(1 — coswy) + u? — 2u; sin u;
/ ‘a—%H§1,§2,x3‘d9§3<—2/ J u4j j I du; < O8] + &)

J

(4.9) /|f &, &) (51752,$3)‘ d§id&adzs < C/ (1] + &N (&1, &)PdErdés
< Oy gy < CITIE
A combination of (4.7)-(4.9) leads to (4.3). O

Remark 4.2. Theorem 4.10 can be generalized to high order, F} f realizes a continuous map-
ping H™~2(S) — H™(A) for m > 1.

1
We now introduce an extension operator Ry : HZ(S) — H'(A)

(4.10) Raf(x1, 20, 3) = 2129(1 — 2y — 23) (1 — 9 — 23) Fp f (1, 9, 23)
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with f(21,25) = f(wl—“)) Due to the identity

z12x2(l1—21)(1—22
1
1’1113'2(1 — 1’1)(1 — 1'2)

B 1{ 1 . 1 . 1 . 1 }
N 2 leg(l — Il) 1’11’2(1 — ZL’Q) Il(l — 1’1)(1 — ZL’Q) 1’2(1 — 1’1)(1 — LUQ) ’

R has the decomposition:

(4-11) RAf(SCh T2, 333) = % {$2R145f($1, T2, 333) + $C1R245f(36’17 T2, 333)

+(1 — 29 — x3) Rioa f (21, 22, 23) + (1 — 21 — 23) Ryos f (w1, 72, 73) }
where
(4.12) Rigs f (1, 02, 23) = (1 — 21 — 23)(1 — 22 — I3)FAfz’45(I1, Ty, T3)
with fi45(:c1,x2) = %, i=1,2,and for s =4,5
(4.13) Ryasf(x1,29,23) = x129(l — 253 — ch)FAfus(SCl,@, r3),

f(l”l, 932)

1’1113'2(1 — 1'8_3) '

f12s($1,$2) =

We shall prove the desired polynomial extension theorem on the pyramid A.

Theorem 4.11. Let Ry be the operator as given in (4.10). Then Ry f(x1, 2, x3) € P)(A)
for all f € P)O(S), and

(4.14) | Raf(z1, 22, 23) || g (ay < C!|f($61,$2)!|H1 ;

(4.15) Raf |rs= 1, Ry f

where C' is a constant independent of f and p.

Fi:07 i:17274757

In order to prove this theorem, we need following lemmas.

Lemma 4.12. Let

T2+x3
(4.16) gp:%- F(an + @3, &) — far, €2)|dés
and
1 Tr1+T3
(4.17) 92 = 22 /I1 |f (&1, 02 + w3) — f(&§1, 72)|dEq

Then there holds
(4.18) lgallzzn) < Cllfllyy 5 5= 1.2
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PrROOF. We first extend f to square Sy = {(z1,22) | 0 <21 <2,0 < 2y <2} and
denoted the extension of f by f such that

135,y < CU g s

Let Q = {(x1,20,23) |0 <27 < 1,0 <23 < 1,0 <29 <1— 23} be a prism containing A,
there holds

HQIHLZ(A < H /””3 | f(% + x3,8) — f(551,§2 | dﬁzH

/ d:):1/ dzy /1 " /ZEQM3 | f(931+933,§2) f(21,6) |

Letting z = x4 + 3, we have

2
dgzj ds.

€3

2
6| day

1 /“"’2”3 | f(xl + x3,&) — f(%;&) |

1—zo
/0 z 3

_ /1 1 /Z|f($1+z—$2a§2)—f($1752)|
zo | 2 T X2

zZ — X9
Applying Hardy inequality of [40],

/ab ﬁ/:g(ﬁ)dgrdx < 4/;\9(;5)‘261%

2
d@) dz.

we have

/ dxz/o /wQHS | f(21 + 23,&) — fl21, &) |d§2)2dx3

0 x3

B / / |fx1+z_x2’€2)_f($l’§2)'d@)zdz
0 (z — 22)? ) )
_ / / s /Ifx1+z—x2,§2)—f(x1,§2)|d§2)2dx2

zZ — X9
< / |f T+ 2 — To, To) — f(Il,SL’z) ‘de
(z — x9)?

2
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which implies

+ 2 — @, ) |2
ol <4 [ o / o [ Utz Jlom Py,

Z — 1'2)2

— £ 2
= /d:m/ dxs V| flan 2 —w,) — flar,2) | I

(z — x9)?

1—x2 7 9
= 4/ d:)s1/ d;):2/ | f(xl +w,x2)2 f(z1,22) | dw
0 0 0 w
2 2—w 2 7 o ) )
< / dw/ dxl/ | f(llfl ‘|"lU,IL'2)2 f(l'1>l'2) | dy < C||f||2 . < C||fH2 .
‘ 0 0 w H2(S2) HE ()

Here we have used the equivalence of the norm [20] between ||u||§{ bs) and

2 2—w 2
T+ w,xre) — , T 2
HuH%z(s)—l-/ dw/ d;p1/ ’u( 1+ w, x2) — u(x 2)‘ dis
0 0 0 w
2 2 2—w B )
+/ dw/ de/ ‘u(a?1,£l?2+w) U(Zlfl,[lfQ)’ i,
0 0 0 w

Similarly, (4.18) for s = 2 can be proved. O
Lemma 4.13. Let

= : T,
(4.19) Ry f(@1, 29, w3) = 21 Fp f1(21, T2, 23), fi(21,22) = y

1

Then, if f € H3(S) and 2 f € L2(S), it holds that
(4.20) 1R f ey < CUA 3 5 + l2n ® fl22(s)
and
(421> Rif ‘FSZ [ Raf |F1: 0,

where C' is a constant independent of f and p.

PROOF. Obviously (4.21) holds. Due to the definition of Ry f and Fj|f|, there holds
|Ryf (21,29, 23)] < Falf|(z1, 22, 23)
which together with (4.2) leads to
(4.22) IRy fllz2) < Clifllzas)-
From (4.1) and (4.19), we get
OF 1 [retes
—Af(l"l,ifz, r3) = —5 / (f(z1 +23,82) — f(21,82))dEa,

8561 LL’3 o
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and
aR 1 r1+T3 T2+T3 7 1 Tr2+T3
8711]0(171,932,933) = = d&; 5 f(ilgz)dﬁz—x—%/mz [, &2)dés
x T2+T3
WU + 3, &)
x%(xl—l—xg) /22 f(ifl T3 52) )
Hence,
(4.23) Ofif _OFnf < L+
81’1 81’1
with
R £.6) ol
L =— d S 2 dey, [y = ———— + x3, dé&s.
=2 5/ € §2, 1o (e +3) )., |f(z1 + x5, &2)|dE2
Note that

1 1—x3 1—x3 1 To+x3 r1+x3 |f(£ é- >|
2 o = 1,62
[ illz20) = /0 d933/0 dl‘1/0 <:):§ /m2 dés ’ £ df)

1

e [

By using the Lemma 4.5, we have

/ /$2+m3 d£2 /xm—i-mg M(%ii&”d&>2dx2 < /01 </xm1+w3 @d&)iﬂza

1 1

1—x1 r14x3 f é— T 2
|[1||L2(A /d{El/ dl’g/ :173/ | (él 2)|d§1) das.

Letting z = z1 + x3, we get

/O'I—ml (xig /:m |f(§2,1x2)|d€) /x o / £ 61,9:2

Using Hardy’s inequality 327 of [36],

(4.2) [ 15 [o@ear<a [ lowra,

we obtain
L | f(&, )| L 2 LSz m))?
0z [l [ e s [ e

52
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which leads to

1 1 1 2
420) Il < 4 [ e [ an [
0 0 x1 <
1 1 z 2 1
_ 5/d@/"@/"ME§2Lwazqu?ﬂ@w>
0 0 0 z

We further note that by Lemma 4.5
1 /MM3 | f (21 +$3>€2)|d§2 2

1 1—x1 1—z3
L|? = d d —
AT / o / o] —
1—x1
/ dl’l/ dl’g l’l“‘l’g,l’g ’d 2—/ dl’l/ dl’g/
1’1+ZL'3
Letting z = x1 + x3, we have

(427) |5l / dml/ d@/ |fZ:L"2 |G )l _/ d@/ dm1/ |fzx2
2, T Z,T -1
/ d:):2/ dz/ |f72d931=/ dl)ﬁz/ |f72dzz [ f“%?(A)
0 0 0 0 0 z

From (4.23)-(4.27) and Theorem 4.10, we obtain

dl’g

[L’l + xrs, [L’g)
dl’g.
T + T3

8‘Rl 8FAf
< 2
(4.28) H Oz L2 H 91 o + Z |11 2y < HfHHz(s + 2y 2 fllzz))-
We next bound the term H 881‘2121” L From (4.19) we have
r1+T3 .
@(xl,zg,xg) = :c_; (f (&1, 2 + 23) f(&@z))dgl‘
01'2 x5 o gl

For 0 < 7 < &, there holds

OR 1 r1+23
8;2f (931,9:2,933)} < x_?),/ | (f (&1, 22 +23) — f(&1,22)) | dér.

Applying Lemma 4.12, we get

OR, f
(4.29) |G ey < Ul
We now bound the term H aale . Note that

w1z

aR 20 r1+T3 T2+T3 ,

—1f(x1’ x2’l’3) — __31 dé-l/ f(é-l 52)(152

8253 T3 Jo, 9 51
T1+T3 T2+T3
n x_; f(&, 20+ xs)d& n 55_;/ fla + I3,§2)d§2;
x5 Ja, &1 3 Jo, T+ a3
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and

8FAf 2 r1+T3 r2+T3

= —— d d
Bs (21, 2, T3) 3/ &1 /I2 f(&1,62)dé
1 r1+a3 1 r2+x3
+ —2/ (&1, wa + x3)dés + —2/ [ (@1 4 23, &)dEs.
$3 x1 $3 )
Therefore
OR,f  OFpf
4.30 — < Ji+ o+ J
( ) 03 03 S At
with
2 r1+T3 r2+x3 |f(€1 52)| 1 r1+T3
J = = d R A i Jpy= —r— d
1 e /xl &1 5 3 &2, 2 75(T1 + 73) /1 | f (&1, 22 + x3)|dé,
1 To+w3
Jo = — dés.
3 Z5(T1 + 73) / |f (21 + 23,&2)|dEy
Since 0 < 1 — “21 < zf and 0 <1 — ﬂ < ohs for 0 <z <& < 21 + 23, by the inequality
(4.26), we obtain
1
(4.31) [J1llz2a) < 20| 22a) < Cllay ® fllrzs),
and
1 T1+T3 r1+a3
I < = — d - d
| o] < 22 /xl |f (&1, 02 + m3) — f(&1, 72)]| §1+I3(x1+I3) /xl | f (&1, 22)|dE
= Jo1+ Jop.

By Lemma 4.12, there holds
(4.32) [L2allr2) < CIfI L1

and by Lemma 4.5, we have

1—x9 1—z3 T1+T3 |f(§1 1»2)|
4.33 J. d d ( / e )
(4.33) I 22||L2(A / xQ/ :):3/ x3 1+ 23 =
1— x2 2 1— T2 2
S / dx2/ d,f |f €1, T2 | d 1_/ d.f(: / de/ |f .Z’l,xQ dx3
S(Zl -+ 1’3 xl + LL’3
T1,T -1
< / de/ Mdfcl = ||z, 2f||2L2(S)
0 0 1

A combination of (4.32) and (4.33) gives

_1
(4.34) 12ll2a) < Ul )+ 121 Fllzzs)-
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Similarly, there holds

1 T2+I3 r2+x3
J < = — d O S— d
B o [ e )~ S+ s [ I s
= Js1+ J32.
Due to Lemma 4.12, there hold
(4.35) [ Js1llz2a) < ClSI 1 g

and by Lemma 4.5, we have

1 T2+x3 x1,
(4.36) [ Js2ll72a) = /dm;;/ / (_/ Ii(lii)ldw ds
1—z3 2 1-x 2
< /d:)s/ day |f‘”1’$2|d2_/ d, / d:)s1/ |f (21, 22)| LA Y g
ZL’1—|—1’3 x1+I3
< [ [ Mdmsnx;ﬁm%m-
0 0 T

Hence,

1
[ 32l[L2a) < Clly * fllzacs),
which together with (4.35) implies

1
(4.37) 1sll2(a) < CUFI 4 g+ 121 Fllzzes)-
Combining (4.30),(4.31),(4.34),(4.37) and Theorem 4.10, we obtain
OR, f OF\f

@39 Gy < [T e Z Al < CUS gy + Nl FlBagsy):
A combination of (4.22),(4.28)-(4.29) and (4.38) leads to (4.20). O
Lemma 4.14. Let Ri5 be the operator defined by

y . x1,T
(4.39) Rigf (1,02, 23) = 2102 F 5 fra(71, 12, 73),  fiz(21,72) = %

172

Then for all f € H5(S) and o, 2 f € L*(S), i=1,2, it holds that

(4.40) 1Bz fllaay < CU N3 6+ > ey * fllzags)
1=1,2

and

(441) R12f ‘1"3: Z — 1,2,

where the constant C' is independent of f and p.
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PROOF. From (4.39) and (4.1), we get for 0 < x; < &;,i=1,2

| Riaf (21,22, 23) | < Fa|f|(21, 22, 23).
By (4.2), it holds that

(4.42) [ Riafllz2a) < Cllfllz2cs)-

We next prove that the first order derivatives of Riof are in L?*(A) by comparing them
with the corresponding first order derivatives of R; f. From (4.39) we obtain

OR f X /mﬂ?’ /x2+x3 f(&1,8) T2 /x2+x3 f(r1,&)
B, (21,20, 73) = 2/, d&; 5 s d§s 2 ). 5 d&o
129 /MHS flxr + 23,&)

x3(xy + 23) &

SinceOSl—%glandogl 22 L for 2o < & < 9+ 13

d&o;

&2 — :c2+x3
ORpf  ORf
4.43 _ g
( ) 01'1 81’1 1+ L2+ I3,
where
1 T1+T3 r2+T3 |f(§1 62)| 1 zo+ts
1 ZL’% T1 51 T2 51 52’ 2 1'3(1’2 —|—;L'3) /:(:2 |f(x17£2)‘ 52
1 To+x3
Iy = ——— de.
P w312 + 73) /:L‘z 1F (@1 + 23, £2)ldEs
Due to (4.26), we have
_1

By the argument similar to that for Js, there holds

mn |.f 1'1,1'2 |2
(445) |L|2aq, < /dx2/ dx/ ol i,

1—x1
/d:rlf dxg/ |f:)::3:—’9;z| dxs </ dr / Md@ ||552 f||L2(s

For the third term, we have

1 T2+T3 1 T2+T3
L < - (@1 + 20,6) — f(21, 60)|d + ———— / F ()6,

= [371 + 1.

By Lemma 4.12, there holds

Msallzzny < CUFlL3
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which together with (4.45) imply

_1
(4.46) sz < CUI g3 ) + 12 ).

By (4.44)-(4.46) and (4.28), we obtain
5312f -1
| o SO s+ 2 Nl laacs)).
i=1,2
Since x; and xo are symmetric, we have

OR f 1
|25, < OO s+ 2 N fllis)).
i=1,2

. From (4.39) we obtain

(4.47)

(4.48)

We next bound the term H ag_;gf

L2(A)
8R12f 27129 /x1+x3 /MH3 f(é-lv 52)
= — d d
o T
T1+T3 T2+T3
b 129 / f(&1, w0+ $3)d£1 +— T / flxr + $37§2)d£2;

LL’3(SL’2 -+ LL’3) 51 LL’3(SL’1 + LL’3) 52

SinceOSl—%gg and 0 <1 — “22 < Z3 x2+x3 for xy < & < a9 + 23,
ORpf  ORf

4.49 — < Ji+Jy+J
( ) 03 03 = Athtds
where

2 T1+T3 T2+T3 |f(§1 52)| 1 T1+T3

= — d ey = d
J1 . N &1 5 2 S, Jo 3(T2 + 73) /xl | f (&1, x2 + x3)|dE
1 r2+x3
= dé&s.
J3 3(T2 + 73) /x2 |f (21 + 23,&2)|dEy

By the symmetry and (4.26), we have
(4.50) [ J1llz2(a) < 2[Jwy 2f||L2

Note that

1 T1+T3 1 r1+T3
| L] < 22 |f(€1,932+£53)—f(§1,$2)|d€1+m/ | f (&, z2)|déy

= J271 —|— jg.
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By (4.17) and

_ 1 r1+x3 T
TV TAT I / drs / / (- / T2l g ),
1—x2
< /d:)s/ dxs M /d:): / d:)sQ/ |f(z1,2)| dl’g
1’2+$3 ZEQ—I—Jfg
x1,T 1
< / dz, / Mdmsnxz o)
0 0 T2

we have

1
(4.52) 1 2llzzy < C(I Ny )+ 227 Fllis) )
Similarly, for the third term of (4.49),as 0 <1 — 2 < £ <]

&2 — r2+m3 -7

To+13 r2+x3
s [ o+ 00,8 — S, s+ —— / Fan, &)lde.

3 Ja, w3(0 + T3
By (4.16) and (4.45),
1
(4.53) 1allzze < C(1 Ny )+ 227 Fllzes) )
By (4.49)-(4.53) and (4.38), we obtain

_1
o SO s+ 2 Nl laacs)).
i=1,2

A combination of (4.42),(4.47),(4.48) and (4.54) leads to (4.40), and (4.41) follows easily. O
Lemma 4.15. Let Roy be the operator defined by

(4.54) H

(4.55) Rosf(z1,79,23) = @9(1 — 2y — 23) Fp foa(w1, 22, 73),
.  f(a, 1)
f24(551,932) = m

Then for all f € Hz(S), x;%f € L2(S) and (1 — 21 — x3) "2 f € L3(S), it holds that

(456) [ Roufllncay < C(If1Lya )+ Nl * Fllzags) + 10— 21 = 20) 7 fllz2cs))
and
(4.57) Rosf |rs=f, Roaf [r,=10, i=2,4,
where C' is a constant independent of f and p.
PROOF. Let the mapping M:

(458) r1 = 1— i’l — 12'3, To = 12'2, T3 = 12'3
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which maps A and S onto itself respectively, maps I'y and I's onto I'y and I's, and maps
Iy, Ty and I's onto T'y, I'y and T's, respectively. Letting f*(&1,&) = f(1 — &,&) and
m =1—E&,m =&, we have

B (1 - 273)1’2 T1+T3 T2+T3 f(é“l’ 52)
Raf = B [T g [ TR

1— o 1—x1 To+x3 f£x
_ (d-n 953)932/ d771/ f (771,772)61772
1 T

2
T3 —r1—23 2 2™

i :i' T1+T3 To+23 f* , .
— %/ dnl/ Mdm:}sz o M.
T3 Ja @9 M2

By Lemma 4.14, we obtain
_1
1Barflmey < C(I g+ D0 1877 Fllies) )

i=1,2

_1 -1
= C(Ifll 36, + 00— 21 = 28) 7 Fllzacs) + 127 Flaaes) )

and

R24f ‘1—‘3: f7 R24f

r=0, i=24.
O

Lemma 4.16. Let R4 be the operator defined by (4.13),then for all f € H%(S), r, 2’ f €
L2(S), i=1,2, and (1 — xy — x3)"2 f € L2(S), it holds that
_1
(459) Rl < C(1Sllyaq + 3 bl + 100 =1 =)l
and
(460) R124.f |F3: f7 R124.f |Fi: Oa 1= 1a 274a
where C' is a constant independent of f and p.
PROOF. Due to the identity
1 1 N 1
L&(l1-6) &&  &H(l—-&)
we have the following decomposition
Ruipaf (21,09, 73) = (1 — 21 — x3) Rio f + w1 Roa f,
by Lemma 4.14 and Lemma 4.15, we obtain

|Rizafllmray < ([ Raaf|lmray + | Roaf || mreay
_1 1
C<||fHH%(s> + >l 2 flliees) + 11— 21 — ) 2fHL2(S))'

i=1,2

IN
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O

Similar to Lemma 4.16, we can prove following lemma.

Lemma 4.17. Let Rys5 be the operator defined by (4.13), then for all f € H2(S), :)si_%f €
L2(S), i=1,2, and (1 — zo — x3) "2 f € L3(S), it holds that
(@60 | Bras i < C(1fll 3, + 3 o Fllisesy + 10— 22— 20) lsscs))
i=1,2
and
(4.62) Rissf [ry=f, Rixsf =0, i=1205,

where C' is a constant independent of f and p.

Lemma 4.18. Let Ry be the operator defined by (4.12), then for all f € H2(S), :Ei_%f €
L2(S) and (1 — z; — x3) "2 f € L3(S) , i=1,2, it holds that
(4.63) | Rias f 1| 1 (a) < C(”f”H%(S) + Z (1 — 25 — 23) 72 fll 1209y + ||xz’_§f||L2(S))>
i=1,2
and
(4.64) Risf [ry=f, Rusf =0, i=145,

where C'is a constant independent of f and p.

PRrROOF. Let the mapping M:
(465) 1 = 1-— .fi’l - .fi’g, Lo = 1-— 2%2 — .fi’g, T3 = .fi’g,

which maps A and S onto itself respectively, maps I'y and I's onto I'y and I's, and maps I';
and 'y onto I'y and I's, respectively. Letting f*(&1,&) = f(1 — &, 1 — &), we have

o (l=w —ay)(1 —wy —ag)ay [T rates f(&1,62)
Rusf = = / g / e

. . . . 1—x1 l—z2 *
(1 -2y —ax3)(1 — 29 $3)36’1/ dnl/ S (1, m2) dn,
1 1

ZE'% —x1—x3 —xo—T3 771772(1 - 771)
T do(l — 37 — 4 T1+T3 ZTo+23 *
_ T12o( A2371 $3)/ d771/ [ (m,m2) dny
x3 21 &2 mnz(1 —m)
= Ryguf" o M.
By Lemma 4.16, we obtain
* -, A \—1 px A_l *
IRusflmey < C(1F a0 + 10 =80 =a5) 3 Nz + 3 277l

i=1,2

_1 -1
= (I3 + 20 0= 2= 20) 7 Fllags) + e Fllzzis) ).

i=1,2
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and

R145f ‘1"3: fv R145f

An analogous result holds for Ryy5f because of the symmetry. U

r=0, i=14,5.

Proof of Theorem 4.11 . Obviously, Ry f € P;(A),RAf Iy= f, and Raf [oa\r,= 0. By
(4.11), there holds

IBAS Ny < C( > N Ris f (w1, w2, 23) ) + D ||Rl2jf(951>$2>933)||H1(A))-
i=1,2 J=4,5

Applying Lemma 4.16-Lemma 4.18, we obtain
[BAf ey <CUAN -

Hep(S)

Thus we complete the proof of the theorem. O

Remark 4.3. Analogye to the extension on a prism we may define, as proposed in [12], an
extension operator Rp on a cube D via a mapping from a cube onto a truncated pyramid
Ay, shown in Fig. 4.5.

N

I
;
|

oL ____—>Ez

[

ot

&

Fig. 4.5 A cube and a truncated pyramid Ay

RD.f = RAHfOM7

5 . x
Ry, f(wy, 20, 23) = RAf(x1>ZE2>I3)_EgRAf(ZBbiE%H)’

where the mapping

H(3+1)
2

:€i+1<1_H(§3+1)

MZZ'
v 2 2

>77;:1727 €r3 =
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maps the cube D onto the pyramid Ay as an analogue of Rs on a prism. It can be proved
analogously that

~ _ |
1o lsor < AL

It is easy to verify that Rpf € P2(D) if f € PyO(S), and Rpf € P2O(S) x Pop(I) if
f € P2°(S). Note that P1(S) is not a trace of P>(D) and P2°(S) x Pap(I) ¢ P2(D).
Therefore, ﬁD f is not compatible with the FEM subspace on cubic elements, the polynomial

extension Rp of convolution-type is not useful for error analysis of the p and h-p FEM on
meshes containing hexahedral elements.

4.3. Extension on a standard cube

i

r, D
N 1 Ig
T/

A I I S

N
r1

/l -1

Fig. 4.6 A cube D

Let D be a cube and I';,i = 1,2,---,6 be faces of D shown in Fig. 4.6, and let v;; =
IiNTyi=1,2,---,6. Asusual, I = [—1,1] and S = [-1,1]%

4.3.1. Polynomial extension from a face.  Let J; h (x) be the Jacobi polynomial
of degree j;
ap . (DA —2) (L a) P di(1l— a2
with weights a, 3 > —1, and let
1-— LU2 2.9 .
(42) (pZ(I) = Jzil(x% t= 1a273a"' )
2,2
\/ Vit
b 9.9 2%i(i+ 1)
where ;"% = —— : _ .
TR +3)

Proposition 4.19. p;(z),i =1,2,--- ,p — 1 form an orthogonal basis of PS(I),
(43) < ()OZ(SC),QO)(ZL’) >L2(I): 5ij7 1 < Z,j < p— 1.
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PROOF. Due to the orthonormality of Jacobi polynomials

<(,02'( ) QOJ >L2(I 2 = /1—$
\/72 \/7] 1

We introduce

PP (@) 2 (@) = 6.

1-— 1-—
(4.4) ez, 22) = @ia1)pj(x2) = : \/xlz)g(igg%)‘jf—%(xl)‘]f Alra), 1<ij<p—1
Yi 17_7 1

withn=(p—-1)(i—1)+ .

Proposition 4.20. {¢,(z1,22),n = 1,2,---, (p—1)*} forms an orthonormal basis of P>°(S)
in L*(S), i.e.

(4.5) <%#%>p@:@m 1<n,m<N,=(p—1)>
PROOF. Let n=(p—1)(i—1)+j,and m = (p—1)(i' — 1) + 4/, then
(1— a2 1 — a2)?
< Pns Pm >L2(S) = / 2.2 122 2221(x1)J2 21(371)611’1 /%Jffl(l?)(]jz’—l(l’?)dlé
Vil Vi YAl i)
= 5i,i’5j,j’ = 5nm

We consider an eigenvalue problem

—Au = \u, inS=(-1,1)?

(4.6) { A0 (=L.1)
r

and its spectral solution (X, v,) with ¢, € P>%(S) which satisfies

(4.7) /V@prqdzldxg = )\p/@quda:ldxg, Vq € 735’0(5).
S S

Selecting the basis {¢n (71, 22),n = 1,2,--- ,N,} as in (4.4) with N, = (p — 1)?, and let-
ting ¥y, (21, 22) = Zfﬁ’l cipi(x1, x2), we have the corresponding system of linear algebraic
equations

KC =AMC = \C,

where C = (c1,c9,- - ,ch)T,K = (l{:ij)ﬁ\g’zl with k;; = fs VpiVydridrs. Here we used
the orthonormality of ¢, (z1,72) in L*(S) which implies the matrix M = I. Therefore the

spectral solution of eigenvalue problem (4.7) is equivalent to the eigenvalue problem of matrix
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K. Since K is symmetric and positive definite, the eigenvalues A\, >0,k =1,2--- N, and
—
the corresponding eigenvectors C'®) are orthonormal, i.e

—

NP
< CW TO~— > e = 6,1, < kIS N,
=1

The corresponding eigen polynomial v, = Zgil cgk)gpn(:zl, x9). Then, due to the properties

of eigenvalues and vectors of K, we have the following theorem.

Theorem 4.21. The problem (4.7) has N, real eigenvalues, and the corresponding eigen-
polynomials {1y x(x1,29),1 < k < N,} are orthogonal in L*(S) and H*(S), which form a
L?-orthonormal basis of P2°(S).

PRrROOF. The problem (4.7) has N, real eigenvalues because the corresponding stiffness
matrix K is positive definite, and there hold for 1 <k, k' < N,

NP NP
’ — — (1
< Uiy Up ke >12(8)= Z ZcEk’cﬁk’ < @i, Y5 > =< C(k)7 ) >= Ok i/

j=1 i=1

and

[ VT badnides = 0 [ patdoides = A

s s

Therefore, {1,k =1,2,---, N,} is orthogonal in L*(S) and H'(S) and forms an orthonor-

mal basis in L*(S). O
We next consider a two-points boundary value problem

(4.8) { —0, 1 (@3) + Apvpr(es) =0, wzel=(-1,1),
UpJf(_l) =1, Up,k(l) =0,

and its spectral solution ¢, € P,(I) such that ¢, x(—1) =1, ¢, x(1) = 0 and

(4.9) /((b;,kq, + Ap kPprq)das =0
I
R 1— R
which is equivalent to find ¢, = ¢, + ng with ¢, € P)(I) satisfying
-~ ! -~ 1
(4.10) /(%,k(fcs)q (3) + Apr@pr(w3)g(zs))des = 5 /(Q'(I?)) — A1 — 3)q(23))ds.
I I

Since the corresponding bilinear form is coercive and continuous on Hg(I) x Hg(I), the
solution ¢, x(x3) uniquely exists in P7(I) for each A .

Lemma 4.22. (Inverse inequality)

(4.11) /|V¢p7k|2dx1da:2 < C’p4/ |wp,k|2dx1dz2,
S S

where C' is a constant independent of p and k.
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PROOF. Since ¥, (1, x2) € P20(S)

1’1,113'2 Zza’nm ($2) = an(xl)Ln(xQ)

n=0 m=0 n=0
where b, ( Z Gnm L (1) and { Ly, (x1),n = 0,1,--- ,p} is an orthogonal basis of P)([).

Due to inverse 1nequahty for a polynomial of degree n on I, we have

0 2
/S‘ aiﬁ;lk’ dridzy = /(Zb x1) Ly (x2) ) dxidzy = Z/ (21))2L2 (x5)day das
’ 1 1
- Z/ (bn(xl))2dx1/ Li(x2)dm2§6’p4/ bi(xl)dxl/ L2 (x2)dxs

-1 1

= Cpt Z nm/ L2 ( xldxlfL(:Egdxg Cp* Za

n,m=0 n,m=0
Similarly,
/‘a¢p’k‘2dxdz <C’4Zp:a2 /le(x)dx /IL(:E dry =C Za
; Oy 14T2 = Pmm:o nm B m\T1 1 B 2 2 = ano nm)

which leads to

/‘V¢p,k‘2dﬁf1dl’2 :/ [ agb;kr + ’85%;;’2} dxydzs

S Cp4 Z Ay, = Cp / |wp k| d!lfld[lj'g Cp

m=0

O

Lemma 4.23. Let A, be an eigenvalue of the problem (4.7), and let ¢;,7k(x3) be the corre-
sponding solution of two-point value problem (4.8). Then

1
@12 [ P+ el < OV B =120 N,
-1
PROOF. Since A, is an eigenvalue of the problem (4.7), then

>\p,k == /(vak)zdl’ldl’g.
S

By Lemma 4.22, there exists a constant 7 > 0 independent of p and £, such that 0 < A, <
np*. Then for each k, we always can find a unique integer 1 < M, < p satisfying

(4.13) n(My — 1) < Api < M.
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For each k, correspondingly we introduce the knots and the weights &, w;(i = 0,1, .-, My)
of the Gauss-Legendre-Lobatto quadrature formula of order M} on the interval [—1,1]. We
assume that the knots are ordered in such a way that £, = —1. Let x, be the Lagrange
interpolation polynomial of degree M} such that

1,  ifi=0,
Xk(81) = { 0, otherwise.
By the equivalence of discrete and continuous L? norms over Py, (—1,1) (see [14]), there
exists a constant ¢; > 0 independent of M), such that

1 My,
/ |Xk(x1)|2d$1 < ZXZ(&)%’ = C1Wp-
-1 i=0

see [17]) we obtain

1
2 C2
dr; < —,

[ st < 2,

and by the inverse inequality, we have

: _ 2
Since wo = 337773 (

1
/|n@m%ms@mﬁ.
-1

Setting ¢ = ¢, — X in (4.10) and by using the Cauchy-Schwarz inequality, we obtain
1
[ (600 4 Aua6pa) < O
—1
Lemma 4.23 follows immediately by this inequality and (4.13). O

Since f(z1,22) € Pr(S) and {t,(x1,22),1 < k < N,} is an orthonormal basis of
PO(S),

f(z1, 22) Zﬁk%k 1, T2)

with ﬂk fS Il,SL’g lpp k(l’l,l’g)dl’ldl’g Let

(4.14) &ﬁZEZ@%AﬁJ&%A%)

k=1

Obviously,

Np
Rpflr, = Zﬂk%,k(m, T9) = f(x1,22),

k=1
where I'y = {(x1, 22, —1)| — 1 < 21,29 < 1}.
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Theorem 4.24. Let D = (—1,1)3, and Ty = {(z1,29,—1)] — 1 < z1,29 < 1}, then for
f S 775’0(11), there exists RDf c ’PZ?(D) such that RDf‘Fl = f, RDf|8D\1"1 = 0, and

(4.15) | Bpfllmp) < Clf]l

Ho%{j(rl)’
where C' is a constant, which is independent of p and f.
PROOF. Let 9, and ¢, be defined as in (4.7) and (4.10), and let Rpf be given in
(4.14), then
Rpflr, = f, Rpflap\r, = 0.

Due to the orthogonality of the 1, in L?(S) and H'(S), and by using (4.7) and Lemma
4.23 we have

NP
1
IR 7200 = D Oh
; \/)‘ka
and
ORpf12 |ORpf12 |ORpf|2
2 o D D D
‘RDﬂHl(D) a /DO 0, +‘ 0T ’ +‘ 03 )dxlda:gd:cg
Np
= > 8 / (g1l de1devs / | B sl *ds + / [Vl *dr iy / (04l )
1 S I S I
Np Np
-3 g / (6 l? + Apilpsl)dzs < C S B2 D
k=1 k=1
Therefore
Np
(4.16) 1Rof 0y < C Y Bl + v/ M)
k=1
Note that

Ny Ny
Hf||2L2(r1) = Zﬂiv ||f“12r{3(r1) = Zﬁi(l + Apk)-
k=1 k=1

By interpolation space theory (see [38], Chap.1)

Ny Np
1
E{RPOD DEATR R IOLED DL AU VAWS
001" 1 k=1 k=1

which together with (4.16) implies (4.15). O

Remark 4.4. Theorem 4.24 can be proved on a cube (0,1)% by a simple mapping. Hereafter,
D = (0,1)? shall be the standard cube for the convenience in following sections.
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Remark 4.5. This polynomial extension without using convolution was first proposed by
Canuto and Funaro for the extension in square [13]. Since the polynomial extension of
convolution-type is sufficient on triangle and square elements, the generalization of this ap-
proach to a cube is much more significant because it is only polynomial extension compatible
to FEM subspace on a cube.

Remark 4.6. In [10] a similar extension was proposed by using spectral solutions of two
eigenvalue problems in one dimension and one boundary value problem on an interval without
detailed proof. Recently the same approach was developed in [16]. A genuine generalization
of Canuto and Funaro’s approach from a square to a cube should be based on the spectral
solution of an eigenvalue problem on a square, which is much better than the spectral
solutions of two eigenvalue problems on an interval. Moreover, this approach can be used
for a prism with non-square bases on which the eigenvalue problem can not be decomposed
into two one dimensional problems, e.g. a prism with triangular bases.

4.3.2. Polynomial extension from all faces. = We shall construct a polynomial
extension F which lifts a polynomial on a whole boundary of a cube D in three steps, which
is proved to be a continuous operator: Hz(9D) — H(T).

1 1
Besides the trace space Hg(I';), we need introduce Hgy(L';, it U Vi) with the norm:

+/ ® +/ s
HE (T v UYim) HZ(T;) r, dist(z, Vi) * r, dist(z, Yim) v

Theorem 4.25. Let D = [0,1]°, and I'y = {(x1,22,0)|0 < x1, 25 < 1}, then for f € P2(I'y),
there exists U € P2(D) such that Ulr, = f,U|p, =0, and

(4.17) Ul a2y < CHfHH%(Fl)’

where C is a constant, which is independent of p and f.

lull® = |lull® 4

PRrROOF. The proof is very similar with the proof of Theorem 4.24, except adopting the
basis

(VI | )0 < <)

for P2(T'y) instead of the basis {%Jgﬂ(ml)ﬁi(@),l <i,j < p—1} for P2O(Ty),
'Yiil'Yle

where L;(z1) and J>% (1) denote the Legendre and the Jacobi polynomials, respectively. [

Theorem 4.26. Let D = [0,1]3, and Ty = {(21,22,0) | 0 < x1,m5 < 1}, then for f €
P2(T1), flye =0, flys = 0, there exists U € P2(D) such that Ulr, = f, Ulp, = 0, Ulr, =
0, Ulp, =0,and

(4.18) U0y < ClA

1 b
HZ (T1,712Uy15)

where C is a constant, which is independent of p and f.
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PROOF. The arguments in the proof of Theorem 4.24 can be carried out here except

replacing the basis of P2°(I';) by the basis {

2 1-x .
A A @)Ly, 1 € i < p-1,0 €

j <p}for P PAIy) = {p € P2(T1) | @(£1, 25) = 0}. O
Theorem 4.27. Let D = [0,1]* be the cube and f € P}(0D) = {f € C°(dD), f |r,= fi €

PAI),i=1,--
that EDf |8D: f and

(4.19) 1ED fllamy) < CIfI 4

,6}, where T'; be the faces of cube D. Then there exists Epf € P2(D) such

HZ(5D)’

where C is a constant independent of p and f, D is the boundary of D.
PROOF. By Theorem 4.25, there exist Uy, Uy € P5(D), such that U|p, = f1,Uilp, = 0;

Uilr, = f1,Usr, = 0 and

(4.20) 1O [0y < Cllfll 3

Let ga = fg — U1|1"2 — U4|1"2 and gs = f5 —

1Uallzpy < Cllfall 1

— Uy|r,, then g, vanishes at the sides 7o

and 794 on I'; and g5 vanishes at the sides 715 and 45 on I's. By Theorem 4.26, there exist

Uy, Us € P2(D), such that Us|r, = ga, Uslr,

and

(4.21)  [[Gsllmoy < Cligall 4 ,

()(FQ Y12U724)

Let

gs=1fs— > Ulr, 96=

i=1,2,4,5

then

93"713 = _Uz"YIS - U5"7137 g3|“/23 = 07
96|"/16 = _U2|’YIG - U5|"/16’ 96|'Y26 =0,

1Us|| a1 (py < CHQ5H

|F5 2957U5‘Fj = 07] = 17274

2 (Ts,715 Uvas)

fo— > Uilrs

i=1,2,4,5

_U2|“134 - U5"7347 93‘735 = 07
_U2|’Y46 - U5|’Y46’ Je

Y56 0.

By Theorem 4.26, there exist Us, Us € P;(D), such that Us|p, = g3, Uslr, = 0,7 = 2,5,6;

Us|rs = g6, Us|r, = 0,7 =2,3,5 and
(4.22)  [|Usllmry < Cllgsll 4 :

Hoo(FB Y23U735)

Let U = U1 +U2+U3+U4+U5 +U6a then U|I‘Z - fhz

|Usl| (D) < C||96||

2 (T6,726 U%G)

= 2,3,5,6, and let g, =

—Ulry, g2 = f1—Ulr,, then it is easy to verify that ¢y = 0 on 9I'; and g4 = 0 on 9T'y. In

fact, since Uy |r,= f1 and U |p,= Uy |r,=

gl|'\/12 = (

= Us |r,= Us |r,= 0, there holds

J1=Ulr) e = filye — <(U1 + Uz +Us+Us+Us + U6)|F1> |12

= fl"YlQ - <f1 + U |F1 +U3|F2 + U, |F1 +U5 ‘Fl +U6 ‘FQ >|712 =0
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and since Us |y5= g3 |y = <f3 — Ui+ Uy + Uy + U5> |5 and Ug |py= 0, there holds

gl|'\/13 = (fl - U|F1)|’yl3 = f1|’yl3 - (U|F3)|’yl3 = f1|’yl3 - f3|’yl3 =0

Similarly, we have ¢;|,,; = 0 and ¢1/,,, = 0. By the symmetry we have g4 |sr,= 0.
By Theorem 4.24, there exist Vi € P2°(T'y) and V, € P>%(I'y) such that

‘/1|F1:gla ‘/1 i 7;:2737475767
‘/;1|F4 = g4, ‘/21|Fz = 07 1= 1a273a576a

and
Villroy < Cllgall g s Vallaoy < Cllaall s
oo( 1) O(F)
Let Epf =U + Vi 4+ Vy, then we have Epf|r, = fi, 1 = 1,2,3,4,5,6, and
(4.23) IEp fllms) < NUllms) + [IVillms) + 1Vallms)
6
< D Uil + Vil + 1Vallas)
<
< Ol + Ml sy +loellyy o sl g
+ 1 + 1 + 1 )
P T ||glr|HO; ool
First, we prove that
Due to (4.20), there holds

< Hfznm +cr|U1||H1 +0||U4HH1<Dsc<r|f2||m(r2)+||flr|mm) ||f4||H§(F4))-

By the definition of HgO(F 2,712 U Y24), we need to prove that

| fo = Urlr, — U, |?
(426) / T3 dl‘ldl':; S C’HfHH%(FlUFzUI‘zL)7
and

| fo = Urlr, — Ul |?
(427) /S 1 — X3 dl‘ldl':; S CHfHH%(FlUFzUFAL)'

Noting that Uy(xy, x3,0) = fi1(z1,x3) and Uy(z1,x3,0) = 0, there holds
92(171,1'3) f2 I1,933 Z U 931,552,933)|F2 f2 I1,933 Z U 931>0 933

1=1,4 i—1,4

= (fol@r,23) — fi(w1, 23)) + (Ur(w1, 23,0) — Ur (1,0, 23)) + (Us(1, 23,0) — Uy(21,0, 73)).
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Since the following norm is an equivalent norm for the space H 2 (MLuly) 2, 22],

1

10t gy & (Ml o, AR o+ DU )

H3(Ty)
where
D(fa, f1) /|f2 00t Alh, 1 OF dtydts,
to
we have
/ \f2(x1,:c3) — f1($1,3€3)| dzidrs < ||f||
; T3 2 (I UF)
UI,:L’,O-Ux,O;x ?
/‘ 1( 1,43 ) 1( 1 3)‘ dxldl'g:D(U1|F1aU1|F2)
5 T3
2 2 2
Cl 1||H2(F Ur's) = CHUlHHl(D) = CHleH’Z(F )’
and

Us(z1,23,0) — Uy(21,0, 2 2
/‘ 4(x1, 23 4( 1 3)‘ dxldl’gzD(U4|F17U4|F2)
T3

2
CLLEEY P

< Ol ) < CUfll g,

Therefore we obtain (4.26). Similarly, noting that Uy (x1, z3,1) = fa(x1, 22) and Uy (xq, 23, 1) =
0 we have

ga(1,23) = folwr, 05) = Y Uiy, 22, 23) |0, = folwr, 05) — Y Uy, 0, 25)

1=1,4 1=1,4

= (fol@r, 23) — falw1, 23)) + (Us(w1, 23, 1) — Uy(21,0,23)) + (Ur (21, 23,1) — Uy (21,0, 73)),

and
‘f2 $1,$C3 f4($173€3)|2
U - U, 0 2
/ ‘ 4 x17x37 1 4(«Tl7 xg)‘ d.f(:ldxg — D(U4|1"47U4|1"2)
2 2
< ONUR g,y < CNUEn ) < ClAIR,
and

/ ‘Ul(xhxg’ 1) - Ul(xl707x3)‘2
S 1—.]73

< Ol iy < CUAIR

dl’ldl’g = D(U1|F47 U1|F2)

< < 1”27@ UT's)
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Then, we obtain (4.27), which together with (4.25) and (4.26) lead to (4.24). Analogously,
we have

(4.28) lgsll 3 < CHf“H%(Flumurs)'

Hio(Ts5,7v15Uvas)

Furthermore, we shall prove that

4.2 =

(4.29) Hg?’HHojlo(F?,ﬁng%o) CHfHH? (0D\Ts)
and

4. < .
(4.30) ||96||H0%0(F6,726U'Y56) = C”fHH%(aD\Fg)

Due to (4.21),(4.24) and (4.28)

9500y = Mo = 3 Uileall iy < Wall iy + 2 10l

1=1,2,4,5 1=1,2,4,5

< Wsllya, +C 3 WUillinoy

1=1,2,4,5
<
< Wl ey + Oy + Wl ey ol g sl )
< ol ey + COAN 30 * Ml + 103 evomorn + 10 eonorn)
<

1
By the definition of Hj(I's, 23 U v35), we need to show that

B B B _ 2
s = Utlry = Uiley = Ul = Uil P 0oy

and

(4.32) / |fs = Uilr, — Uslp, — Uslry — Us|r, |2

H3(9D\Ds)’
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Noting that Us(z2,0,x3) = go(22, x3) and Usy(z2, 0, x3) = 0, we have

93(12, 23) = f3(wa,25) — Y Ui(w1, 2, 73)|r, = f(@a,75) —

i=1,2,4,5 i=1,2
= f3($27$3) - 92(3327%3) + 92(I2,36’3) - U1(0,$2,$3) - U4(0736’27$3
—U2(0,$2, $3) - U5(0, $27$3)

= fa(zg,23) — (fz(iB2>iB3) — Ui (22,0, 23) — U4(ZE2>0,$3)) + Us (22,0, 23)
—U1(0, 29, 23) — Ug(0, 29, 23) — Uz(0, 22, 23) — Us5(0, 22, 3)

= <f3(:c2,x3) - f2($27$3)> + (Ul(x?vo’x?’) B Ul(O,x2,x3)>
—|—<U4(:)32,0,x3) — U4(0,x2,:63)) + <U2($2,0,$3) — U2(0,$2>I3))
+<U5(:c2, 0,23) — Us(0, SCz,I?,))

and

/ PHCIED b G PRI
S L2

H3 (T3UTy)’

U i 7O7x _U O’I 7':(:
/ ‘ 1( 2 3):1: 1( 2 3>‘dl’2d[l§'3 = D(U1|F2a U1|F3)
2

< Cltl?,

- H? (ToUl's) —

< Cl oy < ClAIR

Us(29,0,23) — Uy (0
/ | 4($27 ,$3) 4( 7x27x3)‘dx2dx3 — D(lj'4|1—\27 U4|F3)
S

T2

< < 4||i1?(r UT's)

< CNUn o) < Al

Us(x2,0,x3) — Us(0, 29,
/| e 3)|dff2dxs D(Uslr,, Uales) < ClUaf3
2

< Ol < Cllgal? ClfIZ

OO(FZ 712U’yz4) H7 (F UFQUF4)

and

Us(x2,0,23) — Us(0, 29, T
/| o 3)932 e 3)|dx2dx3 D(Us|r,, Us|ry) < C||Us|I?

< ClUlinw) < Cllgsl” ClIfIR,

00 5,712 »}/24) HQ(FlUF4UF5)

Hence, we obtain (4.31).

S
wt

UZ(07 T, x3)

H? (TUT's)

H? (TUT's)

73
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Similarly, we can decompose gs(z2, x3) as follows
g3(x2,3) = (f3(z2,23) — f5(x2,23)) + (Ur(w2, 1, 23) — U1 (0, 22, z3))
+(Us(22, 1, 23) — Us(0, 22, 23)) + (Us (2,1, 23) — Us(0, 22, 23))
+(Usz(2, 1, 23) — Uz(0, 22, x3)),

and we have the estimates

|f3($2,$3) - f5($2,$6’3)|

S 1—$2

/ |Ur (22,1, 73) — Ul(o’xz’x3>|dx2d[£3 < C||U1||2
S

1— 29 HZ (T5UT3)

draydrs < ||f||

2(T3UTs)’

2
<Ol

drodrs < C|\ UL 4

H2(T5Ul'3)

/ |U4(3727 17353) - U4(0,362,$3)|
s

1—25'2

2
< CIAilR,y

1
/|U5 Ty, 1,73) U5(O>I2’$3)|dx2dx3 < C||Us]1?

1—25'2

< Cllgsl? 4 ClfIZ

Hoo(ro 'YL)U'YAL;) Hi(F UT4UT's)’

H? (I'sUT's)

and

1 — Us(0
/ (Ua(w2, 1, 23) = Ua(0, 22, m8)] ) 00 Clual? ,
T H?(F 5UI'3)

< CHQ2H2 1 Hf”2

2( 2,’712U’724) H2(F UlaUly )

Then we obtain (4.32). A combination of (4.31)-(4.32) and (4.25) leads to (4.29). By the
symmetry, we have (4.30).
Finally, we prove that

(4.3 903 ) < O oy =14

By (4.20)-(4.22) and (4.24), (4.28)-(4.30), we obtain
6
i=1
1
By the definition of H(I'1), we need to show that

H? (6D)’

|91 931>552)| |91 I1,$2)|
435 /7&6 dzo <CHf||H§(8D 7:)361 1dxo <C||fH
and

|91 931>552)| |91 I1,$2)|
4 36 /7d:c1dx2 < CHfHH?(E)D 7xd:c 1dxy < C||fH

H? (6D)"
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Since Us|r, = g2, Us|r, = 0, Us|r, = 0 and Us|r, = 0, we have

gi(z1,22) = fi(z1,22) — Ulz1, 22, 23)|r,
= fi(z1,22) — g2(w1, 22) + g2(@1, 22) — U1, 22, 23)r,
= i, w) = (falwr,22) = Urler, 0,5) = Us(w1,0,23) ) + U(21,0,22)
—Uy (21, %2,0) — Us(x1, 22,0) — Us(x1, x9,0) — Uy(x1, 22, 0)
—Us(x1,22,0) — Ug(x1, 22,0)

= <f1(551,1'2) - fz(l)fl,fz)) + <U1($1,0,1'2) - Ul(I1,372,0)>
+(Us1,0,22) = Us(wy, 22,0)) + (Ual1,0,22) = Ul 22,0))

+(U3(ZE1,O>CE2) - U3($1>$2,0)) + (UG(Zfl,O,CEz) — Uﬁ(l"l,ffz,o))-
Note that there hold
/ ‘fl(x17x2) - fQ(xl,.flf2>| dl‘ldl’g < ||f“
S X2

/ |U1($1a07$2) - Ul(I17$2aO)|2
o)

H2 FlUFQ)

dl’ldllfg = D(U1|F27 U1|F1)
< Clul?,

- H? (T,UTy)

/ |U4($1a07$2) - U4(I17$2a0)|2
1)

< OO py < C||fl”§{1,,(F X

dl’ldl’g = D(U4|F27 U4|F1)
< OlU4? ,

- H3(Touly) —

/ |Us(21,0, 22) — Us (1, 22, 0)|?
T2

C||U4||§{1(D) < O||f4||i{%(r )

dridzy = D(Us|r,, Uslr,) < C||Ua|)? 4

H? (TUly)

< Ol < Cllgal? <CIfI%,

oo( 2,712U724) 13 (11 UToUTs)]

dSL’ldSL’g (U3|F27U3|F1> < CHU3H2

H? (TUly)

/ \U3($1707$2) - U3($1,$270)|2
1)

< ClUslinw) < Cllgsll® ClfIZ,

O(Fs “/23U“135) HE (0D\Ts)’

and

dl’ldl'g (U6|F2a U6|F1) < C||U6||2

HZ (T,UTy)

/ \U6($1707$2) - U6($1,$270)|2
s )

< ClUsln) < Cllgl” » ClIfIR

0( 6,726 “156) H2 (8D\I's)’

Above inequalities lead to (4.35).
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Noting that Us|r, = g5, Ua|r, = 0, Us|r, = 0 and Ug|r, = 0, we can rewrite g; = f1 —Ulr,
as follows:

91($17x2) = <f1(331,1’2) - f5($1,x2)> + <U1(SC1, 1,1’2) - Ul(l’l,%’z,o))
(Ui 1 22) = Us(wy,22,0)) + (Us(n, 1,22) = Us [y, 22,0))
—|-<U2(x1, 1, x9) — Up(xy, 29, O)) + (Ug(xl, 1,x9) — Us(xy, 9, O))

+<U6(~”C17 1, 29) — Us(21, 22, O))

Arguing as above we can get the second inequality of (4.35).
Since Us|r, = g3, and Us|r, = 0, we can rewrite ¢; = f; — Ulr, as follows:

gi(z1,22) = <f1(931,1'2) - f3(931>552)> + <U1(0>i171,1'2) - U1($1,372>0)>
+<U4(O,l’1,l’2) — U4(ZL’1,ZL'2,0)) + <U2(O,l’1,l’2) — Ug(l’l,l'g,()))
+<U5(O,LU1,LU2) — U5(LU1,.§L’2,0)) —+ (U3(.§L’1, 1,2['2) — Ug(l‘l,l’g,O))

+<U6(O> T, $2) - Uﬁ(zla X2, O))a

it leads to (4.36).
Since Ug|r, = g6, and Us|r, = 0, we can rewrite g1 = f; — Ulr, as follows:

91($17x2) = <f1(331,1’2) - f6($1,x2)> + <U1(1,$1,$C2) - Ul(l’l,%’z,o))
—|-<U4(1,:B1,:B2) — U4($1,x2,0)) + (Ug(l,l’l,l’g) — Ug(atl,xg,()))
—|-<U5(1,:B1,:B2) — U5(:171,x2,0)) + <U3(1,:171,:172) — Ug(atl,xg,()))

+<U6(17 x1, T2) — Ug(21, 2, O))a

it leads to the second inequality of (4.36). Combining (4.35), (4.36) and (4.34), we obtain
(4.33) for i = 1. By the symmetry, we have (4.33) for i = 4, which together with (4.23)-(4.24)
and (4.28)-(4.30) lead to (4.19). O



CHAPTER 5

The convergence of the h-p version of the Finite Element Method

In this chapter we will investigate performance of the h-p version of the finite element
method in three dimensions in the framework of Jacobi-weighted Besov and Sobolev spaces.
We first deal with the problems with smooth solutions, then focus on the optimal convergence
for the problems with singular solutions.

5.1. A model boundary value problem

Am
Fig. 5.1 A polyhedral domain 2

Consider a boundary value problem

—Au+u=f in QCR?

(5.1) 9
=0 — =gq.
u |FD ) 8n‘FN g

where  is Lipschitz domain in R3, and I'p = UieD [, and 'y = Uie v Li are referred as the
Dirichlet boundary and the Neumann boundary where the Dirichlet and Neumann boundary
conditions are imposed. D is a subset of Z = {1,2,--- , I} and N =7\ D.

The variational form of (5.1) is to seek u(z) € HL(Q) = {u € H), | u =0 on I'p} such
that

(5.2) B(u,v) = F(v), Yve& HL(Q)
7
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where B is a bilinear form on H} () x HL(2) and F is a linear functional on H} (1), given
by

(5.3) B(u,v) = /(Vu -Vv+uv)de
and
(5.4) F(v):/gfvdij/F guv ds.

Let A = {Q;,1 < j < J} be a partition of . Qs are shape-regular tetrahedral,
triangular prism and hexahedral elements with plane or surface faces. We shall assume that
2;NQ; is either the empty set, or an entire side,or a whole face, or a vertex of ); and €);, and
assume that all vertices of €2 are vertices of some §2;. By M; we denote a mapping of standard
element (2, onto €2;, where (), is a standard tetrahedron K, or a standard triangular-prism
G, or a standard hexahedron D, shown in Fig. 5.2. By V;, Fj and v, ,, = F, N F,, we denote

the vertices, faces and edges of the standard elements, which are mapped onto vertices VZU ],
faces Fim and edges 72[]7]71 of the element 2; under the mapping M;.

TX3

N1 ‘ s
]
L ry /| 1

s r, /0)- o — =X,
Xz \ g 7/
M
/l -1

(@) (b) (c)

Fig. 5.2 Standard Elements
(a) Tetrahedron K, (b) Triangular prism G, (¢) Hexahedron D

Let Py (§2;) denote a set of pull-back polynomials ¢ on §; such that ¢ o M; € P (€)
with k = 1 if Qg is the tetrahedron K, P}°(Qy) = Py (T) x Py(I) if Q is the triangular
prism G, and x = 2 if Q, is the hexahedron D . For sake of simplicity we use P,,(£2;), which
is understood as Pl’fj (;) with K = 1, or 1.5, or 2 according to the shape of the element €, if
it causes no confusion. By P we denote the distribution of element degrees {pi,ps, - ,ps}.
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A finite element subspace of continuous and piecewise pull-back polynomials is defined
as

(5.5) SHHQAM) = S7(Q A5 M) N Hp(9),
ST M) = {p|pla, € Py (), 1 <j < T}

Let I, = (—h, h), we have the following one-dimensional Jacobi projection theorem.
Lemma 5.1. Let u € H*A(1},), and let up, = Hf)vhu be the Jacobi projection of u on P,(1)
with p > 0. Then for 0 <1 <k,

hp=t
(5.6) 1w — unpll g,y < CWH“HHkﬁ(Ih)a
with p = min{k,p+ 1}.
Furthermore, if p >k —1 and k > % + 6172 = % + max{(; + %, By + %, 0}, there holds

B3
1 [l zreos 1, -

(p+1)

Proof. Similar to the proof of Theorem 3.3. U

(5.7) lw = unplleor,y < €

Lemma 5.2. Let vy, = (a,b) withh =0b—a and u € H*(y,),s > 1/2. Then there exists an
operator m., = H*(vn) — Pp(yn) such that u(a) = my,u(a), w(b) = m, w(b) and there holds for
0<li<s

Rt
WHU’

with p = min{s,p + 1}, a constant C' independent of p and u, and 7, u = u if u € Py(y3).

(5.8) lu = myull ) < © H(3n)

Proof. We may assume without loss of generality that v, = (a,b) = I n = (—=%,%). For
u € Pp(vn), let my,u = u. For u & P,(y), we extend w on [, = (—h,h) preserving the
norm with a support in [ 8y, = (—%h, %h), and denote the extended function by w. Then

@€ H>~Y2(I,), and

< Collul

(5.9) Cillullzsen < llall s -y, H ()
By Lemma 5.1 the Jacobi projection i, = Hﬁhﬂ of @ on P,(I),) with 5 = (—%, —%) satisfies
hp=t

7= noll -3,y < ottt

with g = min{s,p+ 1}.
Let

610)  mu =t (- 0) () ) (@) + (w2 — (D))ol
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with ¢;(z) = (%)p and go(z) = (%)p. Then u(+%) = mu(+%). Note that for
0<i<p
(5.11) lgi(@) e,y < Cha 7l (p+1)172, i = 1,2,

2

and by (5. 7) there holds

h
) vl M_ ~ YlE W<C“2@+U( b1
Therefore
~ h h
lv = myullm,y < lla = ¢thHl,f%(Ih) + ‘“(_5) - ¢hp(—§) ||91||Hl(1%)

h h
+u(5) = bin(5) | l92linr,

2

< C(W T p+ )T 4 R+ DR 4 ) ]y
hH— l h,u—l
< _— < - . )
N C(p+ 1)8 l” ||Hs 2(1 ) — C(p+ 1)s—l||u||H (vn)
O

Lemma 5.3. Let T), = {(x1,22)|0 < 3 < h — 21,0 < xy < h} be the standard triangle with
size b and f(x1) € P)(In), In = (0,h). Then there is a polynomial w, € P (T}) such that
wy(x1,0) = f(x1) and wy(0, 22) = wy(x1, h — x1) = 0, and there holds fort = 0,1

(5.12) lwplarny < C (BB 31l + B34 Flliegr,)
with C independent of f, p and h.
Proof. Let the mapping M: £ = £ maps f € P)(I,) onto fe PY(I), I =(0,1), then

~ 1
(5.13) | Fllzey = h2 M1 ez [ Fllzay < ClFlmiy = Ch2 | Flany-

By Lemma 4.8, there is an extension w, € P,(T') defined on T such that w, |;= f and
Wy |or\ 7= 0, and there holds for t = 0,1

- 3.z 1,z
(5.14) @yl eery < CO 21 flry + 272 1 l2ay)

where T = {(Il,LEQ)‘O <xy<1— 1’1,0 < < 1}
Let the mapping My : x1 = h&;,x2 = h& maps W, € P;(T) onto w, € P;(Th), w, =
W, © My, then we have

(5.15) lwpllzzmy = Alpllzzery < Cho™ fllagn + 2721 fllzeen)
3 _3 1 1
c@aawﬂmwm+hw2wmnm0,

IA
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and
- _1, = 1, =
(5.16) [wplla1(7,,) Cliwpllgry < Co7 2 fllaray + 2 I1f 1 2y)

11 -1 1
< C(Rbp 31 lmay +h 0 i )

IN

5.2. Adjustment of local projection polynomials at the vertices and edges

Theorem 5.4. Let u € H*(Q;), k > %, where $Q; is a tetrahedron, or a triangular prism,
or a hexahedron with plane surfaces or non-plane surfaces. Then there exists a pull-back
polynomial ¢ € Py (§Y;) with p > 1, where k = 1, or 1.5, or 2 if Q; is a tetrahedron, or a
triangular prism, or a hexahedron, respectively, such that for 0 < ¢ <k

hH=t
(5.17) [u = @l meo,) < CwHUHH'ﬂ(Qj),

with p = min{p + 1,k}, and u = ¢ at vertices V; of Q;, 1 <1 < L,L = 4 or 6 or§,
respectively.

Proof. We may assume without loss of generality that (2; is a standard element, which is a
standard tetrahedron, or a standard triangular prism, or a standard hexahedron contained
in Q% = (—%, %)3 shown as in Fig. 5.3. Then u can be extended to Q, = (—h,h)? such
that the extended function (denoted by u again for simplicity) has a support C @ s and

preserves the norm,

Jull zrey) < Cllullar@ny < Cllullme@;).-

1 X1 m

X3
1
1/2 7 "
e} 1/2
==
1

(@) (b) ()

Fig. 5.3 Standard Elements inserted in Q; = (—h, h)?

(a) Inserted tetrahedron, (b)Inserted triangular prism, (c)Inserted hexahedron
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Since u has a compact support in Q,, u € H*%(Q,) with Jacobi weight 3 = (—%, —%, —%),
and

Cllullars@ny < llullarqny < Cllullarw).
By Theorem 3.3 the Jacobi projection ¢ = Hgﬁu of u on PF(Qy) satisfies for 0 < £ <k,

- - hH—1 hH1
@1&Hu—wm%mﬁcwu—wmw@wSC@:ﬂMmW@mSC@:ﬂMMmm

and
- hi—3 ht—3

(5.19) [u(Ve) = o(Vo)| < C’pk_% [l s (g) < Cpk_% [l mr (o)
where V/s are vertices onJ, namely, V; = (— %}Z —h%, —b ,VEL = (}%, —b b V;);L:h(—%, A4y,
Vi=(-%-%%),V%=(3-%3%,%=(-553%),Vr=(55,3) and Vs = (5,5, -5)

Let gi(z1) = (%5221) and go(z1) = (2522), and let gf(21) = (gi(21))",i = 1,2. Then
(5.20) 9% | srecry < Chz~Y(p+1)"2, fori=1,2 and 0 < <k,
where [ = (=4, 1),

If ©; is a hexahedron and & = 2, let ¢ = ¢ + > i<<s(u— &) (V))xu(z) with

xi(r) = 91(%)9{7@2)91(%3)7 x2(7) = g5(21) 97 (72) g7 (23),
(5.21) x3(z) = g1 (w1)g5(w2) g7 (w3),  Xa(x) = g7 (21) g} (22)g5 (23),
' X5(7) = g5 (1) 97 (72) 5(363)7 X6(7) = g7 (1) g5 (72)g5 (23),
x7(%) = g5(21)g5(72) g5 (23), Xs(x) = g5(1) g5 (v2) g7 (3).
Obviously, ¢ € P2(Q) and u(V;) = ¢(V;),1 < I < 8. By (5.18)-(5.20), we have for
0<i<k
(522) lu—dllaey < llu—olluea, +h " (p+1)"2 > l(u=¢)(V)
1<i<L

(ke 3_ s b3
< C((p+1) (k €)+h2 f(p_|_1)£ zik_ﬁ)HuHHk(Qj)
(p+1)"2

hr—t
< (7E5jpijg:znunﬂk@yy
If Q; is a tetrahedron and k = 1, xy(x),1 < ¢ < 4 are similar to the first four functions

in (5.21) except replacing ¢7(x;) and g¢5(x;) by g%g](zi) and gg ]( ), =1,2,31in (5.21) for
p > 3. Hereafter [a] denotes the smallest integer > « for a real number a. For p < 3,
xi(z),1 <1< 4 are selected such that x, € Pi(Q;) and x;(Vin) = im, 1 < 1,m < 4, ie.,

5:23) yi= OB ) = e, xola) = o). xalo) = gl
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Therefore ¢ = ¢+ 3,1, (u— ) (Vi)xa(z) € PLQ;) and ¢(V;) = u(V),1 <1 < 4, and (5.22)
holds. o

If Q; is a triangular prism and x = 1.5, x;(z),1 < [ < 6 are defined similarly as in
(5.21) except replacing ¢7(x;) and ¢5(z;),i = 1,2 by gF} and ggi}(:cg) for p > 2. For p =1,
xi(z),1 <1 <6 are selected as

xi(z) = =82 g (23), ya(z) = ga(21) g1 (23),
(5.24) 3(z) = ga(m)gi(ws),  xalw) = =2 gy (),

X5(7) = g2(71)g2(73), X6(7) = g2(72)g2(73)
Therefore ¢ = ¢ + > i<<e(u — o) (Vi)xi(z) € PL2(Qy) and ¢(Vi) = w(Vj),1 < 1 < 6, and
(5.22) follows easily. O

Let K be a standard tetrahedron with faces F; on the planes z; = 0,1 <7 < 3 and F; on
the planes z; + x5 + z3 = 1, shown in Fig. 5.2(a). By v;; = F; N F; we denote edges of K.
Let G = T x I be a triangular prism with faces F;,1 < i < 5 shown in Fig. 5.2(b), where
T ={(x1,22) | 21 > 0,29 > 0,21 + 22 < 1} and I = [0,1]. F;,1 < ¢ < 3 are on the planes
x; = 0, F5 be the face of G contained in the plane x3 = 1 and Fj be the face of G contained
in the plane x; + 29 = 1. Then F3 =T and Fy, =5 =1 x I. Let v, :F’iﬂﬁ’j,l <i<j3<5hH
be the edges of G. Let D = (0,1)? be a standard hexahedron.

Theorem 5.5. Let u € H*¥(Dy), k > 2, where Dy, is a standard hexahedron with size h.
Then there exists a polynomial 1 € P?(Dy) satisfying

(5.25) o= Vo < Ot lulmioy, 0 <1<k

et 1
5260 =l < O llloy. 1960 k-g,
(5.27) SO =), 1<l
(5.28) Uy = uby) 1<i<j <6,

where ;1 = min{p + 1,k}, Vi are the vertices of Dy, = (0,h)3, vi;,1 <i < j <6 are edges of
Dy, F;,1 <1 <6 are faces of Dy, and ., is the operator defined in Lemma 5.2.

Proof. Inorder to construct a polynomial ¢y € P2(Dj,) satisfying (5.25)-(5.28), let ¢ = ¢+,
where ¢ defined as Theorem 5.4 such that ¢(V;) = u(V}),1 <1 < 8 and satisfies (5.17). It
suffices to select the correction v, € P?(Dy) satisfying

(5.29) u,(V}) =0, 1<1<8,
%‘j) - ¢

(5.31) lopllieon) < CH =D ull e,y 0 < £ < k.

(5.30) v

plvi; = 7 (u

Yig o 1§Z<j§67
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Let g;; = Ww(u %j) -
(<k-11<i<j<6

v € 7719 (755). By Lemma 5.2 and trace theorem, there hold for

hmin(p-l—l,k— 1)—¢

(5.32) Jw — 7 (ulo ) ey < CWHUHHFWJ&
hmin(p—i—l,k—l)—f u—e0—1
< CWHUHHWDU < CWHUHHHDW
and
hu—(—l
(5.33) [u = @llaeey) < Cllu=ollaerp,) < CwHUHH’C(Dh)-
Hence, we have
(5.34) 1935l mre i) = my (ulyyy) — w+u = @l megy )

< lu— Wv(u|%j)“H‘(w) + flu— ¢||H‘(%j < Chu_l_ep“l_k||u||Hk(Dh)‘

Let v12 = gra(21)p(22)¥(23) with p(xs) = < —) ,(x3) = (1_F) . Then v13 |,,=

g12 and v13 |,,;= 0 for (ij) # (12). Obviously
1_ 41 14 41
el < CRETP72, ([¢llgeq,) < ChE~'p72, £2>0
and
U] me(s,) < CRTY, Sy =1, x I,

which together with (5.34) imply for £ > 0
|U12|§15(Dh) = = C<|912|§{f(zh)||80¢||%2(sh) + ||912||%2(1h)|90¢|§{€(sh))
C<h2(u—1—£)p2(z+1—k)h2p—2HuH%{k(Dh) X hz(“_l)pz(l_k)h2(1_z)p2(£_1)||U||?qk(ph))

< Chz(”_é)PQ(Z_k)||U||§{k(Dh)~

IA

Similarly, we can construct v;; € Pg(Dh) for 1 <1i < 7 <6 such that
(5.35) vi(V) =0, 1<1<8,

=0 for (m,n) # (i,5), 1 <m < n <6,

(536) Uij|'yij = g’l]7 U’ij TYmn

(5.37) [igllre sy < CH D ull ).

Let v, = > ;. ;<6 Vij- Then v, satisfies (5.29)-(5.31), and ¢ satisfies (5.25)-(5.28). [
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Theorem 5.6. Let u € H*(G}), k > 2, where Gy, is a standard triangular prism with size
h. Then there ezists a polynomial ¢ € P}°(Gy) satisfying

hr—t
(5.38) |u — ¢||H1(Gh) < Cpk_l HuHHk(Gh)a
it ,
(5.40) (Vi) =u(Vi),  1<1<6,
(5.41) Ul = my(uly,), 1<i<j<b.
If u € H*(Gy), k > 3, there holds for 1 <i <5
O(u — ) hi=s
5.42 H————) <C ;
(5:42) Oxg  mir) = ph=3 lullmen)

where pp = min{p+ 1, k}, V;,1 <1 <6 are the vertices of G, vij,1 <1i < j <5 are edges of
G, Fi, 1 <i <5 are faces of Gy, and ., is the operator defined in Lemma 5.2.

Proof. By Theorem 5.4 there is ¢ € P)°(Gj) such that ¢(V)) = u(V;),1 < I
satisfies (5.17). Analogously, we construct a polynomial extension ¢ € P)-*(Gj) by

w:(b‘F Z Uij-

< 6 and

1<i<j<5

It suffices to select v;; € P,°(G)) satisfying

(5.43) vy (V) =0, 1<1<6,

(544) Vijlyvi; = gij:ﬂ-’y(u “/ij)_gb%jv 1<i<yj<s,
Vijlymn = 0 for (mn) # (ij),1 <m <n <5,

(5.45) [vigll @y < CR 7P [l g,

Vij |p,=0for m #1i,j, and for t =0,1,m =1, j
VRS
(5.46) i || ey < CRP 2™ 27 ]| vy -

Note that g;; = m(uly,,) — ¢|,,, € P(7;), and due to Lemma 5.2 and trace theorem,
there holds for 0 </ <k —1land 1<i<j <5,

(5.47) 19iill ey = [y () — w4+ 1w — Gl ey
i iy + 1w = Bl ey < CA* D ull gy

There are two types of edges: an interface of two square faces such as v19, V14, 724 and an
interfaces of a triangular face and a square face such as o3, 713, V34, V25, V15, V45-

< fu—m(u
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For (ij) = (12), let
vig = gi2(23)p(21)Y(12) € 731'5(Gh)

where p(x;) = (1 — %ﬂﬂw( 92) = (1— ﬂ)[ Then v1(V;) = 0 at the vertices of G}, and
V12 = g12 on Y12 and vanishes on other edges of Gj. Obviously,

ol e,y < Chz=tp' H¢||Hf(1h < Chz~tpl=s , ¥l gee,y < Ch' P 0<e<k-1.

The arguments for edges of a cube in previous lemma can be carried out here except
replacing p by £, which implies for 0 < ¢ <k — 1

lviallge,y < Ch*” ‘p* ||U||Hk(Gh)
Furthermore, vis|p, = 0 for i = 3,4,5, and fori =1,2 and 0 </ <k —1

_1
lvizllmer) < Cllviell ey o ) < O oz 2 ||ull e

2(Gn

For (ij) = (23), it suffices to construct vo3 satisfying (5.43)-(5.46). Let the mapping
M: x = h&, which maps go3(z) € 7319(723) to go3(€) € 7319(%3), where o3 is an edge of the
standard triangular prism G, then

(5 48) ||923||L2(’yz3 =h" 2 ||g23||L2(’yz3 ||g23||L2 (423) < C|g23|H1(’yz3 Ch2 |g23|H1(’yz3

By the arguments of Lemma 8.4 of [28], there exists 053 € P, (@) such that g3 |5,,= Jos
and U3 |5,= 0 for i = 1,4, 5, and

15231177y < O 2115281702 (300) + 11928117255 )
N EET _1-
D3]l e 7y < C (02113l 1 50s) + P72 1823l 25 ) » fOr £ =0, 1

~ 1, _ ~
||U23||Ht(ﬁz) < C(I?t 2[|g23l| 22 (520) + P 1/2||923||Ht(a23)>a for t =0,1.
Let vg3 = U3 0 M1, then vag |,,,= go3 and ve3 |r= 0 for i = 1,4,5. Note that
lvasllznany < Chlltasliny:  lvaslliesy < Ch ™ 0l sy = 2,3
and
. 1
1325 )| 230) = P2l g23ll 2rma)s 1231|220y < G231 gy = ChE| o3| 11 (3
which together with (5.47) lead to
(5.49) vas |7y < ChD™2(|GaslFrr 5y + 19281172 (55))
< O 12923011 () + 19281172 (55)) < CRF D0 03k, -
and for t = 0,1

3_4 43 1y 41 it
23]l ey < C(h27"D' 72| goall b1 o) + h2 7P 72| g23 ]| L200)) < CWHuHm G
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1y 41 _ it
v e () < C<h2 D2 gasl|Fa ) + AR 1/2||923||Ht(723)) < CFH“HH"(GM
Similarly, we can construct v;; on all edges of G}, satisfying (5.43)-(5.46). Thus 1) satisfies
(5.38)-(5.41).
If ue H*(Gy), k > 3, (5.47) with £ = 2 gives

(5.50) 1952 (@3) [l 2y < CH 2>l rcry -
By the arguments of Lemma 8.4 of [28], we have
8612 2 _ ~ ~
(5.51) ‘8—53 LS P 312 ()7 u |+ PUG12(E) 7 500 I
01723 1, 1.
(5.52) 15y < (18l + 221920 2 )
and
8’(723 - ~
(5'53) ’ 853 Fy) - p||g23||§{1(;/23)—|—p3||g23||%2(;/23).
Combining (5.47) and (5. 48)—(5 51) we obtain
8’012 _ ov V12 _ 1~ ~
650 | 2 S PG < OO0 00 Bl + P20 i)
< OR2 (7 0 gha (@) 12 (o | + PP 1G02(23) [ 1 ) ) < CHPETSD P20 ]| v,
81)23 _ 81723
5.55 |52 cn!|| 52|
( ) Oxz lHY(Ry)  — 0&3 Il H(Fy)
_ 11 11
< Chp(Rip 3 lgasllin ) + B30 9ol 2o )
< O 2 Mlull e,
and
Ova3 ||2 O3
5.56 |52 on 2|2
( ) O3 HY(F) 053 HY(F)
< Ch7H(pllgeslli (sa5) + P 119281172 (50))
< Ch7*((phllgzs |7 (o) + P°B 19280122 100
< CR*5p M |ul Fv e,
Similarly there holds
Ovia u—2 5
(5.57) ‘8—:63 ey S OV v

Combining (5.54)-(5.56) we have (5.42) for u € H*(G},), k > 3. O
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Theorem 5.7. Let u € H*(K}),k > 2, where Kj, is a standard tetrahedron with size h.
Then there exists a polynomial 1 € P} (K}) satisfying

-t
(5.58) lu =Yl < CFHUHH’%Kh)a
et _
(5.59) lu=Yllaery < C———=llullmru,), 1<i<4,t=0,1
p 2
(5.60) (Vi) =u(Vy), 1<1<4
(561) w%’j :W’Y(u%‘j)7 1§Z<j§47

where p=min{p + 1, k}, Vi, 1 <1 <4 are the vertices of Ky, ;5,1 <1i < j <4 are edges of
Ky, F;,1 <i <4 are faces of K, and m, is the operator defined in Lemma 5.2.

Proof. By Theorem 5.4 there is ¢ € P} (K}) such that ¢(V;) = u(V}),1 <1 < 4 and satisfies
(5.17). Analogously, we construct a polynomial ¢ € P;(K n) by

=90+ Z Vi

1<i<j<4
It suffices to select v;; € P}(K}) satisfying
(5.62) by (V) =0, 1<i<4
(563) Uij|%‘j = 7T’Y(u|%'j) - ¢|'Yij7 1 S S ] S 4a
Vijlymn = 0 for (mn) # (ij),1 <m <n <4,
(5.64) 03l i1 ey < CRE' D lull regie, )

Vij |p,= 0 for m # 4,7, and for t =0, 1

1 g1l 1 g1
(5.65) l|vijll ey < CR* =2 2 M ull e,y visllaee) < CR772p 2 Flull g, .
Note that g;; = m(uly,,) — ¢|y,, € Pp(7;) and (5.34) holds for 0 < ¢ < k — 1 and
1 <i < j < 4. It suffices to construct vyy satisfying (5.62)-(5.65). Let M be the mapping
: & = h& which maps g;;(z) € P)(7i5) to §i;(§) € P)(3i;), where 7,5 is an edge of standard
tetrahedron K, and it holds that

~ _1 ~ ~ 1
(566) ||gij||L2(“7ij) =h"2 ||gij||L2(%'j)’ ||gij||L2(“7ij) < C|gij|H1(’yij) = Chz |gij|H1(%'j)'

By Lemma 4.8, there are extensions w,, € P;(Fm) on F,,,m = 1,2 such that w,, |51= 012
and 0, \aﬁm\m: 0, and there holds for t =0, 1

~ _3~ 1.,
(567) ||wm||Ht(F‘m) < C(pt 2 Hgl?”Hl(’?m) +pt 2 ||gl2||L2(’712))'
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We further extend @,,, m = 1,2 on whole boundary of K by zero extension on Fj and Fy and
denote the extended polynomial by w. Then for w € P;(&K ) there is a polynomial extension

Win K [40] such that W|3K =w, i.e.,W|ﬁm = Wy, m = 1,2 and W|ﬁm =0,m = 3,4, and
1
5.68) W20 < Clli]?2 :(w2 + [ 2 )
58) W < Clally o = (0007,
Due to (5.67) there holds for m = 1,2
1 o1 o ~
G nl3 < Clinly g Il < OO Ml + [lm0)
Let W =W o M~'. Then W/, = g12, W|p, = 0,m = 3,4, and
(5.70) (Wi, < ChPIWmu < CRY? (07 gzl o i) + 512l 2261n)
< Ch2 (7' 02| grall i sy + P72 912ll 22302)
< CR* ' M|ul| e i,
and form=1,2,t=0,1
i (B~ 1.
BT [Wlaer,y < CRTUW s, < CP (072 | Gioll i 510) + P72 1912l 220502 )
iy 43 1,
Chl t(pt 2h1/2“912HH1(“/12) +pt 2h 1/2||912HL2(’712))
< Chy_t_1/2pt+l/2_kHUHH’C(Kh)-

Let v12 = W. Then vy, satisfies (5.62)