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ABSTRACT

The aspécts of electromagnetic beaﬁ wave scattering at a planar inter-
face separating two lossless, homogeneous, isotropic dielectric media
vare considered. A general procedure is presented wherein the reflect-

ed and the transmitted fields for any well defined, symmetric and
collimated beaﬁ can be thoroughly analysed. The fields are expressed
as exact integral representations in termé of a continuous plane wave
spectrum, where the spectral density functions play a substantiai role.
Particular emphasis is given to the Gaussian profile which represents

the dominant beam mode in the radiation produced by a laser oscillator.
{

The range of regular incidence, i.e. below the critical angle of total
internal reflection is considered first. Newly identified complex
Gaussian beam modes are found to result from the interactionvprocess.
The existence of an angular beam shift, of both the reflected and trans-
mitted fields, has been verified by virtue of these higher order beam
modes. The different aspects of this angular beam shift are analysed
and discussed. At polarizing incidence, it is shown that there still
exists a reflected field whose characteristics are analysed and des-—
cribed in terms of these higher order reflected beam modes. By consid-
ering the problem for beams with non-Gaussian profiles, such as a
Cauchy beam or a truncated plane wave, the generality of the reported
phenomena is established. 1In particular, it is found that the angular
beam shift is a characteristic‘of the reflection or refraction process

for any well defined,symmetric and collimated beam.




iii

Two:aspects are considered for ﬁhe total internal reflection regime.

The Goos-Hanchen shift is analysed; in the .range far beyond the critical
angle, along with some aspects of the transient behaviour of a Gaussian
beam upon total internal reflection. The penetration of the field in

the rarer medium, due to a Gaussian beam that is incident at or beyond
the critical angle, is also considered. In particular, the field
features in the rarer medium, with its different wave species are
thoroughly and carefully analysed. While the obtained results are in
agreement with previous predictions, they are, as expected, in contradic-

tion with geometrical optics predictions.

{
i




iv

RESUME

Considerons les propriétés d'un faisceau électromagnétique dans le
‘plan de séparation de deux milieux diélectriques sans pertes, homogeénes
et isotropiques. Afin de permettre une analyse compléte du champ

réfléchi et du champ transmis, une méthode générale est introduite;

elle est applicable a tout faisceau symétrique et collimaté correcte-
ment défini. Les champs sont exprimés par des intégrales exactes qui
introduisent unispectre d'ondes planes, dans lequel les fonctions de
densité spectrale ont un role important. Le cas du faisceau avec un
profil Gaussien est traité en détail, etant donné qu'un oscillateur

laser rayonne un faisceau dont le mode dominant a un profil Gaussien.

En premier lieu, l'incidence & un angle plus petit que 1l'angle critique
de réflection totale est considérée. Il est etabli que les modes
complexes recemment découverts résultant de 1l'interaction entre les
faisceaux. L'existence d'un déplacement angulaire des faisceaux réfléchi
et transmis a été vérifice en vertu des modes d'ordres élevés. Les
différents aspects de ce déplacement angulaire sont analysés et discutés.
I1 est démontré qu'un champ réfléchi existe, méme lorsque 1'angle
d'incidence est polarisant ; les caractéristiques de ce champ réfléchi
sont analysées et décrites en fonction des modes d'ordres élevés. ILa
généralité du phénoméne rapporté est établie en considérant des faisceaux
qui n'ont pas un profil Gaussien, tels que le faisceau de Cauchy ou
qu'une onde plane tronquee. En particulier, il est démontré que le
déplacement angulaire est un phénoméne caractéristique de la réflection

ou de la réfraction de tout faisceau symétrique et collimaté correcte—

ment défini.




Dans le cas de réflection totale, deux aspects sont considérés. Le
déplacement de Goos-Hanchen est analysé pour un angle d'incidence plus
grand que l'angle critique de réflection totale et une analyse du
comportement en régime transitoire d'un faisceau Gaussien a incidence
critique est présentée. En particulier, les propriétés du champ dans
le milieu le moins dense, ainsi que les différentes sortes d'ondes du
champ, sont analysées en détail. Bien que les résultats obtenus sont
en accord avec les récentes prédictions, ils sont bien entendu en

contradiction avec les résultats fournis par 1'optique géométrique.
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ZUSAMMENFASSUNG:

Probleme der elektromagnetischen Strahlenbindelstreuung an einer ebenen
Grenze, die zwei verlustlose, homogene, isotrope dielektrische Medien
trennt, wird untersucht. Ein allgemeiner Losungsweg wird angegeben mit
dem die reflektierten und gebrochenen Felder fur beliebig klar
definierte, symmetrische und kollimierte Bundel grundlich analysiert
werden konnen. Die Felder werden als exakte Integrale uber kontin-
uierliche Spektren ebener Wellen ausgedrickt, wobei die spektralen
Dichtefunktionen eine wesentliche Rolle spielen. Besondere Betonung
w;rd der GauBschen Verteilung geschenkt, da diese die dominante

Wellenmode im Strahlungsfelde eines Lasers darstellt.

Der reguldre Einfallsbereich, d.h. jener unterhalb des kritischen Winkels
der totalen inneren Reflexion,wird zuerst untersucht. Neu identifizierte
komplexe GauBsche Blindelmoden wurden als Ergebnis der Bundelstreuung
gefunden. Die Existenz einer winkelabhingigen Versetzung des reflek-
tierten sowie auch des gebrochenen Strahlenbiindels wird mit Hilfe

dieser meuen Bindelmoden hherer Ordnung nachgewiesen. Die verschie-
denen Eigenschaften dieser winkelabhdngigen Strahlversetzung werden
untersucht und besprochen. Fiir polarisierenden Einfall wird gezeigt,

daB ein reflektierter Strahl eben doch existiert und dessen Eigen-
schaften mit Hilfe dieser reflektierten Biindelmoden hohererx Ordnung
analysiert und beschrieben werden konnen. Indem das Problem fur Strahlen-
biindel ohne GauBsche Verteilung, wie z.B. das Cauchy Bundel oder die

begrenzte ebene Welle, untersucht wurde, konnte die Allgemein-
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gultigkeit der herichteten Phinomene erstellt werden. Im besonderen
zeigte sich, daB die winkelabhangige Strahlversetzung eine charakteri-
stische Eigenschaft des Reflexions und Brechungsprozesses eines klar

definierten, symmetrischen und kollimierten Strahlenbiindels darstellt.

Im Bereich der totalen innerén Reflexion werden zwei Probleme behandelt.
Die Goos-Hanchen Verschiebung wird untersucht im Bereiche oberhalb des
kritischen Winkels der Totalreflexion zusammen mit einigen Problemen

des Impulsverhaltens eines GauBschen Bundels unter total reflektierendem
Einfall. Das Eindringen des Feldes in das dunnere Medium fur ein
GauBsches‘Bﬁndel fﬁr Einfall bei oder oberhalb kritischen Winkels wird
ebenfalls untersucht. Im besonderen werden die Feldeigenschaften im
dinneren Medium mit ihren verschiedenen Wellenarten grundlich und
sorgfaltig bearbeitet. Obwohl die erarbeiteten Ergebnisse mit kurzlich
gestellten MutmaBungen ibereinstimmen; stehen solche, wie erwartet,

nicht im Einklang mit Annahmen der geometrischen Optik.
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chapter one

INTRODUCTION

When a plane wave strikes a plane interface separating two homogeneous,
lossless, isotropic dielectrics, it gives rise to reflected and refract-
ed components in addition to the incident wave (Fig.l1l.1). The reflec-
tion and refraction phenomena depend on the dielectric constants of

the media 81 and 62 , the range of the incidence angle ei , and on
the polarization. If incidence is from the‘first medium, with 81 s

to the second medium, with Ez , then regular reflection and refrac-
tion occurs form the whole range of ei , 1.e. O<ei§ﬂ/2, if el<sz.

In case €1 is greater than €2 ,, regular reflection and refraction
takes place in the range 0<ei<ec , where Gc is the critical angle

of total internal reflection and is defined by sin_leC = (82/81)%.

In the range eizec there is total reflection, and no propagating

field is transmitted in the less dense medium (€§<€1)' For the case
of parallel polarization, total transmission ooccurs at the Brewster
angle 0, = tan_1(€2/€1)%< 6. > and the reflected field vanishes.

If the incident field is a beam wave, then there are different phenomena
involved due to the limited nature of the field. These differénces
appear for the regular reflection and refraction ranges, as well as

the total internal reflection regime. The study described here deals
with these different aspects. Investigation of the problem for beam
waves is of more interest and practical importance since beams describe

more realistically than plane waves or point sources the fields associated

with large aperture antennas or laser optical systems.
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Most of the earlier stﬁdies'were concerned with the phenomena of ref-
lection and refraction of a light beam incident upon a prism in the
range of the critical angle of total reflection. Three important
‘features of the problem were extensively investigated. Total intern-
alvrefiection'of a beam at a dielectric interface gives rise to the
lateral beam displacement (Fig.l.2), or the Goos-Hanchen shift as

well as secondary effects, which have found many applications in

several fields. A comprehensive review of most investigations regard-
ing this area was given in a dissertation by Lotsch [37], and the
iptérested reader is referred to that work for earlier bibliography.
H%wever, research into this area was continued after that without in-
terruption, to clarify some‘unrésolyed questions regarding effects
around the critical angle. Horowitz and Tamir [27,29], and Horowitz
[28,30] very recently developed an elegant approach for the treatment

of these phenomena, that, in addition to clarifying the critical angle

effects, provided some new results and explained the relation between

different features involved in the interaction process. In view of

the new development in laser technology and the importance attached to

laser beams and their applications in optical fields, the Gaussian
beam which describes the fundamental mode in laser oscillators -gained
substantial interest. The Gaussian profile was also considered by Ra
et al [47] and Bertoni et al [7], who employed a mathematical model
for the Gaussian beam as a complex ray [16] to discuss the reflected
field as well as the penetration of energy in the rarer medium upon

total intermnal reflection.
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However, a common feature in nearly all of these studies is that the
casé of regular incidence, i.e. excluding total internal reflection,
has not been treated thoroughly or rigorouély along with the phenomena
related to it. 1In the design of optical circuit elements, such as
couplers, filters, etc., which are used in beam guiding systems for
transmission éf light beams or millimeter waves, the properties of.
beam interaction at regular incidence are becoming of increasingly
higher practical importance, and need to be investigated. In response
to the above need, we first consider these aspects in the dissertation

under presentation.

{
'

Iﬁ order to study the propagation and scattering of beam waves in
detail, knowledge‘of the aspects of beam propagation as well as thorough
understanding of the different available analytical approaches for

beam wave‘representations are essential. A trapezoidal incident beam
was utilized in earlier studies, where small correction terms, that
account for diffraction effects due to the boundedness of the incident
beam were introduced [36]. Beams have also been analysed in terms

of beam modes, where fhe fundamental mode, which is the dominant one

in the coherent radiation generated by laser osqiliators, has a Gaussian
profile {84]. A mathematical model for this Gaussian profile in terms
of complex rays was also introduced very recently [16]. A brief review
of these different techniques is provided in the first part of chapter

two.



The first feature of the preseht work deals with beam interaction for
regular incidence. In order to analyse the phenomena involved and to
gain meaningful insight in their aspects we adopt the modal analysis
of beam waves. This'approach was also utilized before in the analysis

of total internal reflection of beam waves [27,28],

All symmetric collimated beams can be analysed in terms of an integral
representatioﬁ of coﬁtinuous plane wave spectra. These representations
describe the differént characteristics of different beam profiles
through their respective spectral density functions. .These spectral
density functions are normally concentrated and also symmetric about

a central wave number. Moreover, the spectral density functions have

a maximum at that wave number which corresponds to the central component
of the spectrum and which has the same direction of propagation as

that of the beam. The process of beam reflection and refraction is
affected to an extreme degree by the characteristics of their spectral

densities.

These aspects of the spectral functions are quite essential and at

the same time rewarding in the present work, where a general formula-
tion is being presented in Section 3.1 for beams that are symmetric
and well defined, but with arbitrary crossesection. The reflected

and transmitted fields are expressed as exact integral representations
of plane wave spectra. Approximate explicit expressionsbfor different
field components, that are rather simple to evaluate analytically,

are presented. 1In most cases, this approach leads to results that



are readily understandable and mathematically tractable and explicit.
In some cases, results could be evaluated ndmerically,and presented

graphically to show the effects involved.

By considering the Gaussian beam description, the properties of the
reflected and refracted beams, which are significantly different from
the incident fundamental mode are clearly identified, and explicit
analytical expressions for the effects involved are obtained. We find
that the reflected and the refracted fields are comprised in terms 6f
fundamental and higher order complex beam modes. These newly identi-
fied complex beam modes differ from the conventional beam modes in
several important aspects, and they describe the structure of the ref-
lected and the transmitted fields in a more convenient manner. As a
result, the structure of the reflected and the refracted beams, upon
superimposing all of these generated components, will - come to be
different in nature from the incident beam structure. A phenomenon
that is different in nature froﬁ the previously examined Goos-Hinchen
shift is found to be a characteristic of both the reflected and re-
fracted beams. This is the angular beam shift, which is not as sub-
stantial as the Goos~Hinchen shift. However, it does exist and can
be of significant importance. The different aspects of that shift

are examined, where we show that the angular beam shift, which depends
on the polarization, beam width, refraction index and on the angle 6f
incidence, occurs in the backward or forward directions. Section 3.2

deals with all of these features.



Careful examination of the effects encountered for the Gaussian pro-
file shows that the phenomena involved are not mainly dependent in

their existence on the beam profile. Moreover, a judicious examina-
tion of the main behaviour of the spectral density functions of all
collimated beams shows that their behaviour is similar. Thus, it is

expected that all collimated beams would .encounter the same effects.

These expectations are verified in the present work by treating a
different beam profile, mainly the Cauchy beam [28,30]. Analytical
results are obtained and comparison with those obtained for the
Gaussian serves to point out the generality of the phenomena in-
volved. However, in order to obtain explainable and tractable results,
the beam has to be collimated and the amplitude of the field should

not change abruptly. The importance of these conditions are demonstrat-
ed by examining the case of a truncated plane wave, where it is shown
that while consideration of secondary effects is important, results

are not so tractable as in the case of well defined beams. These two

different profiles are analysed in Section 3.3.

The total internal reflection range is considered, where the classical
expression for the Goos-Hanchen shift is obtained through utilizing

a modification on the approach presented in Section 3.1. The main

aim of considering this range is to examine some aspects of the transient
response upon total internal reflection. In electromagnetic theory,
research into the propagation of aperiodic disturbances has been over-

shadowed by research into the behaviour in disturbances that vary



sinusoidally with time. The case of a totally reflected beam is no
excéptiqn. The signals genérated in the laboratory and by natural
causes are predominantly of a transient nature. The transient phen-
omena resulting in total internal reflection of pulses, and their
physical relation to some important effects in seismic exploration
and radio wave propagation in the ionoéphere, have made their study
of great interest. Similar importance would have to be expected in
the newly explored field of optical beam propagation and scattering
'which needs more research. An attempt to explain some of the aspects
forvthis nearly untreated topic of total internal reflection of a
pulsed beam is examined by utilizing the resulting expression for the

totally reflected beams 1in Section 3.4.

The last feature of the present work deals with the field penetration
in the second medium upon total internal reflection of a Gaussian beam.
Research into this topic has been pursued along with the investigation
of the lateral displacement, as was also reviewed in detail by Lotsch
[37]. Ra et al [47] and Bertoni et al [7 ] examined the evanescent
field in the rarer medium as well as the energy transfer mechanism
across the boundary separating the rarer and the denser media. How-
ever, the nature of the transmitted field in the rarer medium depends
to an extreme degree on diffraction effects, especially close to
critical incidence. These diffraction effects are of common nature
for both the reflected and transmitted fields. Therefore, a rather
rigorous approach is also needed for a complete and thorough under-

standing of the different aspects of the field in the rarer medium.
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This was made available by Horowitz [28], who also arrived at a
rigorous formulation for the transmitted field, which accounts for
diffraction effects and is applicable for any well collimated beam,
at and around the critical angle. However, only the Cauchy profile
was treated by Horowitz, who stated that results for the Gaussian

profile cannot be easily derived [28].

In view of the practical importance of the Gaussian profile, and in
response for the need for clarifying the transmitted beam nature in
relation to the reflected beam behaviour around critical incidence,

we consider the transmitted beam for the Gaussian profile in chapter
four. Starting from Horowitz's formulation, the transmitted field is
evaluated through an approximate but accurate analytical solutionm,

that agrees with the exact numerical values of the field expression.
Although the explicit amalytical expression for the transmitted field
is rather complex, as was also the case with the Cauchy profile [28],

a graphical presentation of the results leads to clarification of the
transmitted field nature, as well as signifi;ant observations regarding
the aspects of total internal reflection around critical incidence .
These observations are in consistency with the results obtained at
critical incidence for the reflected field [27,28,29], regarding effects
that are of common napure'to both fields in the two media. Results

are discussed and compared with those previously obtained for the
Cauchy profile [28]. Agreement between the main characteristics of

the transmitted fields due to the two different profiles is noticed,
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as was anticipated by Horowitz [28]. Moreover, some aspects of the
fieid in the rarer medium, which were not possible to examine for the
Cauchy profile, mainly due to the nature of.the field amplitude dis-
tribution, are examined in detail. This includes the nature of the
field in the far range, that is nét covered by geometrical optic con-
siderations, where diffraction effects are expected to play the dominant

role.
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chapter two

LITERATURE REVIEW

In this chapter a brief review of the available rigorous approaches
for beam wave representation is introduced. The different aspects of
the process.of.total internal reflection are being summarized. These
aspects include the lateral displacement of the reflected beam from
the position predicted by geometric optics considerations or therGoos-
Hanchen shift, the penetration of energy into the rarer medium, and

the lateral wave field that extends well beyond the reflected beam

range.
2.1 RIGOROUS DEFINITIONS OF BEAMS
2.1.1 Beam Field As An Inhomogeneous Plane Wave

A beam of light has been defined as an inhomogenous plane electromag-
netic wave, linearly polarized with its amplitude different from zero
only in a limited range perpendicular to the direction of propagation
{36 ,37]. The treatment of such a beam is based on an approximate sol-
ution of Maxwell's equations. This approximation is due to the limited
extent of the beam field, and good only if the beam field changes slow-
ly over a distance of a wavelength. In general the incident field,as
shown in Fig.2.l, is represented by

dA(8))

i _ ' 5y ez . exp(if,) (2.1)
Ey = §lA(Bi)exp(1ei) 1alal- ——EEI— i
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with
— ~_2_11 _%'
Gl =5 (clte1 Ei)
1
and
v 27 . =
B X s o

A(B;) is an amplitude function of limited extent in the transverse
Ci direction,‘ él is a constant and ai_ is a correction factor.
The parameter &;, which was originally introduced by Lorentz [35],
is related to the far field beam diffraction angle [34,49]. While
such an approach provided sufficient means for calculating beam dis-
.Placement at total internal reflection, it does not yield an easy
éccess for determining the diffraction effects and to efficiently

trace the beam field, as is the case with the following representations.

2.1.2 Representation In Terms Of Beam Modes

This approach was introduced only very recently in virtue of the wave
nature of laser beams [34,49]. Laser beams have intensity distribu-
tionsthat are not uniform, but are rather concentrated near the axis

of propagation and their phase fronts are slightly curved. These
properties can be verified by examining the wave nature of the coherent

radiation of laser light which satisfies the scalar wave equation

V3 + kjw =0 s kl = 2m/A . (2.2)
1

For a beam travelling in the z direction, the field can be written

as P = U(x,y,z)exp(iklz) . (2.3)
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where U 1is a slowly varying complex function which characterizes
the main differences between a laser beam and a plane wave. From

equations (2.2) and (2.3) one obtains the paraxial wave equation

213 2
90 L 3T _ ik 5u/dz =0 . (2.4)
BXZ ayz 1 .

A solution to equation (2.4) takes the form [49]
U = exp[-i(P +(k1/2Q)ri)] , ri = x2 +y% . (2.5)

The parameter P(z) represents a -complex phase_shift which is associat~
ed with the propagation of the light beam, and Q(z) is a complex

beam parameter which describes the Gaussian variation in beam intensity'
with distance r1 from the optical axis, as well as the curvature of

the wave front [34], which is spherical near the axis (Fig.2.2).

Two real beam parameters which have significant physical meaning are A

usually introduced by the definition of Q as

- ixl/nwz . (2.6)

20 [ et

1/Q =

R(z) 1is thé radius of curvature of the wavefront that intersects the
axis at z , and w(z) 1is a measure of the decrease of the field
amplitude with the distance from the axis, which is Gaussian in form.
In essence w 1is the distance at which the amplitude is 1/e times
that on the axis, and is always termed as the beam radius or "spot
size". It attains its smallest value at the waist of the beam,

where the phase front is plane. If the distance z ’is measured from
the waist, the expansion laws for the beam assume a simpler form in

this case, and the beam parameters will be given by
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w?(z) = wi[l + (Alz/ﬂwi)z] 5 | (2.7a).
R(z) = z[1l + ani/klz)z] . (2.7b)

The beam contour is a hyperbola, with asymptotes inclined to the axis
at an angle

uo = Al/ﬂwo . 2.8)

which is called the far field diffraction angle of the fundamental

beam mode. In general, this fundamental Gaussian beam mode (equations

(2.3) and (2.5)) din its normalized form, is described by
w(rl,z) = (wb/w)exp{i(klz - &) - r"i°(l/w2 + ikl/ZR)},
with o(z) = arctan(llz/ﬂwi) . (2.9)

A beam of this kind is produced by many lasers thaf oscillate in the
fundamental TEM00 mede.

There are other solutions that satisfy the paraxial wave equation
(2.4). These solutions form a complete and orthogonal set of func-
tions which are called_”modes of propagation' [34,49]. Every arbit-
rary distribution of monochromatic light can be expreésed as an ex-
pansion of these modes [23]. 1In a Cartesian s?stem of coordinates

they are represented by

Y = H (V2x/w)*H_(/2y/w)exp{-i[P + k /2Q (x® + y2)1} , (2.10)
m,n m n 1

’
with m and n being the transverse mode numbers,and Hv is a
Hermite polynomial which satisfies the differential equation
a%y dn
V

- 2x —2 4 2H = 0 ) (2.11)
dx? dx
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The intensity pattern in a cross-section of a higher order beam mode
is described by the product of Hermite and Gaussian functions. How-
ever, the parameter R(z) is the same for all modes, implying that

the phase front is the same, and changes with 2z in the same manner
as described by equations (2.7b). However, the phase shift o (z)

is a function of the mode number as

0] (z) = (n + m + 1)arctan(} z/mw?) . (2.12)
n,m 1 0

2,1.3 Representation In Terms Ovaomplex Rays

Deschamps [16] proposed a different way of describing a heam field
that is Gaussian, by displacing the location of a source into a complex

ik,r = . .
1% /r , which satis-

space. Starting from Green's function G(r) = e
fies the scalar wave equation, with r being the distance.from the
observation point to the origin, then the origin is moved into complex
space. If the origin (0,0) is replaced in a new coordinate system
by (x=0, z = ia), then r becomes complex and the function G(x),
near the z axis will represent a Gaussian beam. This can be visual-

ized by considering that for x << I z—ia| , T can be approximated
as

= =y 2 2% I S .=

r = [(z-ia)® + x°]° 2 z - ia + 5 °x [ (z-ia) , (2.13)
then, G(r) takes the form

expl[ik (z-ia)] ik _
— . exp{—L (x%/(z-ia))} . (2.14)
(z—ia) 2

G(x,z) "N
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The dependence on x is identical to that of the fundamental

Gaussian beam mode as defined in equation (2.5), and the phase varia-
tion with =z 1is accounted for by the secdnd exponent in equation
(2.14). However, along the =z axis, G(0,z) differs from Y(0,z)

by the factor [exp(klg)]/(—ié). Therefore, the Gaussian beam is
equivalent paraxially to a spherical wave with its centre at a complex

location. However, attention must be drawn to the regions of validity

of this identification. 1In particular G(r) is singular when r=0,
which occurs on a circle of radius a with centre (0,0) and axis
0z. This circle is also a branch line for the functiom r(x,z). The

choice of the branch cuts then determines the field amplitudé[24,47].

One clear advantage of Deschamps' approach is due to the fact that G(x)
satisfies the wave equation exactly, which is not the case with the
previously mentioned ones. Moreover, it provides a more convenient
way of treating beam scattering and diffraction problems, on the

basis of the wide literature available for Green's functions. There-

fore, it seems to provide a better representation for a Gaussian beam

field. However, the analytical procedure might become tedious and

the extraction of the physical features of the problem becomes rather

involved afterwards.

A Gaussian beam has been analysed also in terms of complex rays, origin-
ating from a com;lex point, by Keller and Streifer [32]. However, their
approach is valid only if 2z is much larger than a , as compared to
Deschamps' representation which is valid even for distances z=0, if

x| < a.
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2.2 . TOTAL INTERNAL REFLECTION OF A BOUNDED BEAM

The theory of reflection, refraction and diffraction of electromagnet-
ic waves at a planar dielectric interface has been well explored for
plane wave, line or point source excitations. However, for a field of a
bounded nature? i.e. a beam wave, there are additional phenomena in-
volved which make the problem of great interest. Almost all of the
studies that have been done were concerned with the case of incidence
from a denser medium onto a second rarer dielectric medium if total
internal reflection is encountered. If a bounded beam is incident

at an angle greater than the critical angle, the béam is totally
reflected, and three important features of the problem have to be
discussed. The actual reflected beam is displaced laterally in the
forward direction from the position predicted by geometric optics
considerations. In addition to that lateral shift, which is often
called the Goos-Hanchen shift [22], there is a relatively weak trail-
ing illumination that extends well beyond the reflected beam and is
attributed to lateral waves [51l]. Furthermore, there is a penetra-

tion of energy in the rarer medium, where the field has been charact-

erized as mainly evanescent. These different aspects will be briefly

reviewed in the following.

2.2.1 The Goos-Hanchen Shift

Newton [42] suspected that total internal reflection does not take

place at the geometric interface between the two media, but the path
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of a light ray is rather a parabola, with the vertex being within the
less dense medium. The phenomenon has.been studied experimentally
with little success, until about three decades ago when Goos and
Hanchen [22] measured the lateral shift experimentally. They suggest-
ed a theoretical interpretation of this effect, which was verified
later by Artmann [6 1, Fragstein'[21], and Wolter [58]1 who called_it
the "Goos-Hanchen shift" in recognition of their work. Since then,

a significant amount of studies has been pursued, mostly by.German
authors [37]. However, Renard [48] questioned previous results on
the basis that they predict nonvanishing values for the shift in the
}imit of grazing incidence. He adopted a éuggestion mainly due to
Picht [46], which suggests that some energy enters into the medium of
the lower index on one side of the beam, and comes back into the
medium of higher index on the other side of the beam. A translation
of energy mechanism, based on the assumption that the amount of energy
in a strip equivalent to the Goos-Hdnchen width on the left of the
beam in the denser medium, is the energy needed in the central part
of the beam to establish the so-called "surface" waves in the rarer
medium. A comprehensive review of previous investigations regarding
this area has been given by Lotsch [ 37], who also used the approxi-
mate approach of Section 2.1.1 to evaluate the Goos—-Hdnchen shift and
his results agree with Renard's [48]. However, all of these treat-
ments eluded a satisfactory answer to beam displacement when the in-
cidence angle is at, or very close to, the critical angle of total
internal reflection, as they predict an infinite value for the shift,
a fact.that is not in agreement with experimental results. Horowitz

and Tamir -[27 ,29] and Horowitz [28,30] very recently developed a
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genuine formulation that clarifies this point, employing a beam pro-
file as described in the férmulation of a fundamental Gaussian laser
beam in Section 2.1.2. They arrived at an expression for the lateral
displacement that, unlike previous results, accoﬁnts for both angles
of incidence that are arbitrarily close to the critical angle of total
reflection, as well as for a finite beam width., Moreover, they veri-'
fied that for é beam incident near the critical angle, the shift is
strongly dependenf on the beam width, being proportional to the~square

of the beam width, if incidence is exactly at the critical angle.

2.2.2 Diffraction Effects
¢

The second aspect related to totally reflected beams is the trail-
ing weak illumination that.extends beyond the region of the totally
reflected beam, in a manmer that cannot be interpreted in terms of
conventional geometric optics. This kiﬁd of diffracted field seems
to have been observed earlier by Maecker [38], and its theoretical
“analysis was attémpted by 0ott {43]. Some experimental results

[ 2,44] have verified the existence of such a phenomenon, and des-
cribed its properties. ‘It was noticed that the luminous field comes
to be more considerable when the angle of incidence is very close to
the critical angle of total reflection, and decreases with increas-
ing the distance parallel to the interface away from the reflected
beam region. However, application of a more rigorous electromagnetic
theory was needed to clarify the poorly understood nature of that

feature. This was partially accomplished by Tamir and Oliner [51],
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who examined the trailing illumination through a rigorous approach.
They identified such a trailing illumination as being thé field of a
well known lateral wave [51], which is acéounted for by the reflect-
~ed field component that is additional to the geometric optics compon-
ent. However, their analyses are restricted to points far away from
the reflected‘beam as the asymptotic result used by them is not valid
at points withiﬁ,.or close to that beam domain. Thus it was not
;possible to identify the.nature or the behaviour of the resulting
lateral Qave field in the reflected beam domain. This aspect was
ciarified later by Horowitz [28,30] and Horbwitz and Tamir [29], using
a rigorous diffraction theory that represented an improvement on that
of Tamir and Oliner [51]. An improved-result was‘obtained which
holds within,lclose to and far away from the reflected beam region;
thus permitting a consistent interpretation of the reflected field
~in its entire rénge. In particular, it was explained by‘Horowitz
and famir [29] that the resulting lateral wave field component in its
near raﬁge, interferes with the geometric optics component. This
interfereﬂce is destructive on one side of the geometric reflected
beam axis and constructive on the other side, thus contributing to

the lateral displacement of the reflected beam centre.

In general, the lateral wave constitutes a diffraction effect that
is always attached with total internal reflection and has different
propagation characteristics_as'coﬁpared to other kinds of guided
waves. A comprehensive and lucid description of its different as-

pects has been given in the literature [19,51,52]. However in view
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of the importance of the lateral wave in the present work, a brief

review of some of its important features will be presented.

2.2.2.1 Properties of Lateral Waves

. Lateral waves arise, mathematically, as a part of the continuous

" spectrum. In the integral representation of the field in the complex

wave number plane, which is usually carried asymptotically in the
form of a steepest descent representation, they arise as branch cut
waves [52]. When observation points lie near the range of total
internal reflection, then the steepest descent path encounters the
branch cut. In such a case, the path éf integration has to be de-
formed and the integral around the branch cut has to be taken into
consideration [10]. This leads to the lateral wave, that exists
only in the range of total internal reflection and is excited more

near the branch region, i.e. for angles close to the critical angle.

In order to study the lateral wave propagation properties, we consid-
er its analytic expression for the case of a line source excitation,
given by [51] _
AL exp(ik [L +L)+ik,L )
_ 11 2 2

11)lat - n?-1 (L )3/2
2

: (2.15)

with n being the index of refraction (k /k ), and AL is a corstant.
1 2 ‘

The ray diagram for the lateral wave field along with the field struc-

ture are as shown in Fig.2.3. The phase behaviour in equation (2.15)

may be accounted for by a ray that is incident on the interface at the
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cfitical angle, and then is refracted and travels along the inter-
face in the lower medium. Alohg its path, it sheds energy continuous-
ly into the upper medium, in the direction of the path Lz. This
continuous leakage of energy at the interface is reflected in the
amplitude variation of L;g/z. This way, the lateral wave resembles
an inhomogeneous plane wave that travels along the direction GC as
shown in Fig.2.3. It should be noted that equation (2.15) is not

valid in the near range, i.e. L2=O, and it must be replaced by a

different expression [10,20] which is valid for this range.

2.2.3 Field In The Rarer Medium

The characteristics of the field in the rarer medium, as well as the
energy exchange mechanism across the interface were examined extensive—
ly along with the studies of the Goos-Hanchen shift, as was summarized

in the lucid work of Lotsch [37].

However, diffraction effects play a major role in establishing the
reflected beam and its displacement. Since the field in the rarer
medium is dependent on both the incident and the reflected fields,

the nature of the transmitted field of a totally reflected beam will
be greatly affected by diffraction phenomena. Such an effect will

be considerable if the beam incidence angle is very close to critical
incidence, being the range in which the lateral wave field is more
significant. Therefore, for avbetter and clearer understanding of the

phenomena, a rigorous evaluation of the transmitted field is mneeded.
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A rigorous expreésion for the transmitted field of a collimated beam
was given by Horowitz [28], who applied it to a Cauchy profile. By
recourse to approximation techniques, Horowitz [28] obtéined results
that yield considerable information regarding the nature of the trans-
mitted field and its penetrétion into’the rarer medium. The field was
shown to penetrate the rarer medium a depth that represents only a
limited portion of a beam width,and a pencil-like field exists close
to grazing angles even if the beam incidence angle is beyond the
critical angle. Furthermore, the angular domain occupied by that
beam decreases with increasing the beam width or as the beam incidence
angle becomes greater than the critical angle. Ra et al [47] dis-
cussed the same problem through employing the approach outlined in
Section 2.2.3. 1In addition to deriving the classical expression for
the Goos-Hanchen shift, they considered the field in the rarer medium
for angles of incidence that are not close to the critical angle.

They approximated the "evanescent"fields in the second medium on the
basis of a "local inhomogeneous plane wave" that exists near the inter-
face in a region which can be few wavelengths in depth. In this
region the evanescent field is dominant over the refracted field. The‘
energy translation that results in the shift of the "centre of
gravity'" of the beam was then described on the basis of this plane
wave approximation and an expression for the Goos-Hanchen shift that

agrees with Lotsch's [36] was obtained.
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chapter three

BEAM INTERACTION IN THE RANGE THAT DOES NOT INCLUDE THE NEAR VICINITY

OF CRITICAL INCIDENCE

Beam reflection and refraction for regular incidence, i.e. excluding
the total internal reflection regime is considered first in this
chapter. A general formulation is being presented for beams that are
symmetric and well defdned, but with any cross~éection. The Gaussian
beam profile is treated and explicit analytical results are obtained.
Careful inspection of the results reveals new phenomena occuring in
such an interaction process. In particular, newly identified complex
Gaussian beam modes are generated and they result in an angular deflec~
tion of the bean ﬁpon reflection or refraction. This angular beam
deflection is examined in its explicit amalytical form. Other beam
profiles are considered, where it is demonstrated that the results
obtained for the Gaussian profile are of a general nature. Mainly,
the angular beam deflection is a characteristic of the reflection or
refraction process- for any well defined and collimated beam. Most

of these results have been reported in the literature [ 2, 3, 4].

For the range of total intermal reflection, the Goos-Hanchen shift is
treated, and the classical expression for the lateral displacement is
obtained. The resulting total reflected beam, which is a good approxi~
mation for the field in the range that is not close to critical incid-
ence, is then utilized to examine the transient behaviour upon total

internal reflection.
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3.1 ANALYTIC FORMULATION

We consider a time dependence of exp(-iwt) and a coordinate system

" as shown in Fig;3.l with the aperture located above. the interface. at

a height hl. The incident field profile is assumed to be symmetri-

cally distributed around the z; axis, limited in the X, direction,

- and diffraction-free at thé plane zi=0, where it is givén by

V(x;,0) = F glx;,w) | o (3.1)

The constant F is a nofmalizing factor,and the amplitude distribu-
0
tion function g(xizy) describes the shape of. the beam with w being

a beam parameter that determines the extent of the beam in the trans-

verse direction. The amplitude function g(xi{y) should be slowly

. varying over a period of a wavelength, so that the concept of a beam

does not lose its meaning [10]. In the range —h1<z<0, this field

can be expressed in the Fourier form

o]

winc(x,z) =v(l/2ﬂ) J ¢(y)exp{ilyx + 61(z+h1)]dY s (3.2)

where the wave numbers +y and B in the x and z directions,
. . 1

respectively, are related.through the dispersion relation

v2 + g% = k2 , vy = k sing s (3.3)
1 1 1

with ¢(y) being the spectral density function, which is the trans-

form of the field at the aperture plane, given by

oo}

oly) = J w(k,—hi)exp(—iyx)dx . (3.4)

o

In this way, the incident field may be viewed as the superposition of
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plane waves, each propagating as exp[i(yx + B z)] with different
1
spectral amplitudes depending on the particular value of y = k sinf.
1
Direct evaluation of equation (3.2) at any plane z, > 0 will give

a clear description of the beam, along with its propagation character-

istics away from the aperture.

The reflected and transmitted beam fields can be formulated in a sim-
ilar manner. EFach incident plane wave component of the spectrum will

IIIIII contribute a reflected and a refracted component, both being modified
by the Fresnel reflectance p(y) and transmittance T(y) , respective-
ly. Therefore the reflected and transmitted fields can be obtained

by summation over all the reflected and refracted plane wave components

of the spectrum, each with the appropriate phase function, so that

I

Voopp (652) = (1/2m) I O(Y)¢(Y)6XP{1[YX—BI(Z+h1)]}dY ,(3.5)

-—C0

Y (%,2)

(1/2m) f T(Y)¢(Y)exp{i[YX+62(2+h1)]}dY , (3.6)

-0

tran

with B being the wavenumber in the z direction for the second medium,
2
defined according to
v2 + g% = k? , (3.7)
2 2
and the familiar expressions for the reflectance p(y) and transmittance

T(y) are given by

(kz__Yz) 5 (k /k )2 Ckz"Yz)%
parallel polarization: p(y) = —1 B 12 2 — , (3.8a)
(kz_YZ)g + (k /k )2 (kz__YZ)f
1 1 2 2
(ki"Yz)% - (kz__YZ);z’
normal polarization: pCY) = , (3.8b)
2_ o\%E 2_. 2\%
(kl—y Y2 + (szy )Z
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T(y) = 1 + p(y) . (3.8¢)

- The functional form of ¢(y), and p(y) or T(y) determines the prop-
erties of the solution. TFor a symmetric beam, ¢(Y) will be symmetric
around a certain wave number Yy T klsinei . This wave number corres-
ponds to the central component of the spectrum which has the same
direction of propagation as that of the beam. The function o Cy)
exhibits a maximum at this central wave number, and starts decreasing
as vy varies around Y; on both sides of the spectrum. The function
P(Y), and consequently T(Y) display somehow a different behaviour

that is mainly non-symmetric about Yi .

The integrals (3.5) and (3.6) need to be evaluated over the entire

real vy axis, Therefore, the properties of p(y) or T(y), Bl and 62
have to be examined in the yy plane. There are branch point singulari-
ties at Yg = ikl and Y. T ikz for either polarization case. The
first branch point, Yg = k1 » corresponds to grazing incidence, a

case with no significant physical meaning and therefore will be ex-
cluded from the present analysis. The second branch point corresponds
to the case of total internal reflection, which has already been ex-
amined in detail, for different beam shapes, by Horowitz and Tamir
[27,29], and Horowitz [28,30]. The range under consideration in the
present analyses is that of regular incidence, i.e. excluding the
region of total internal reflection. 1In this range, the field hehaviour

is still affected by the characteristics of pCY) and T(y) which vary

with the variation of vy for each plane wave component in the spectrum.
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Comparing equations (3.5) and (3.6) with (3.2), it can be noticed

that the resulting reflected or refracted fields will be different
from the symmetric incident field, mainly due to the variations imposed
by the nonsymmetric behaviour of p(y) or T(y) around a central

value Y o In general, a numerical evaluation of equations (3.2),
(3.5) and (3.6) would explain these differences. However, approximate
analytic evaluation of these integrals will provide a rather clear

and simple explanation of the phenomena involved in the process of

beam reflection and refraction.

3.1.1 Analytical Evaluation Of The Fields

In view of the properties of the spectral function ¢(y) mentioned
above, and through careful examination of any of the field integrals
of (3.2), (3.5) and (3.6), it is expected that, for a well defined
beam, the major contribution to the integral results from those plane
wave components around the centre of the beam. In particular, for

Yy mnot too close to Yo and/or Yg , most of the contributions result
from values of vy close to Yi = klsinei , and contributions for

Yy >> y; may be neglected. This suggests, in case the aperture is not
far away from éhe interface and in the well collimated region of the
beam [27], that a paraxial approximation can be applied. Consequent-
ly, the analysis will be carried out by expanding 81 and 62 around

the principal value Y; as

6, L - G-9)
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To explain the aspects of the above approximation, we observe that, if
only the first two terms in equation (3.9) are, for example, used in
evaluating the incident field as given by equation (3.2), the result-
ing expression will give a field configuration that is similar to the
distribution at the aperture. However, taking the‘next.higher order
term will result in a description of the diffraction effects that are
encountered by the beam far away from the aperture plane. This, in es-
sence, is the Frésnel.épproximation, which is an excellent approxima-

tion in the paraxial range [27].

The reflected field integral of equation (3.5) contains thé reflectance -
p(Y), which is in general a smoothly varying function for the present-
ly considered case of two lossless homogeneous isotropic media. Hence

b

it can be expanded in a Taylor series as

: n
) 3% y) . rYy)
p(Y) = nzo { ——s;%— - =} . (3.10)

Y=Y

~Utilizing equations (3.9) and (3.10), and introducing a variable of

integration 0 = (Yi—Y)/(klcosei), then the reflected field, as given

by equation (3.5), assumes the form

l‘Urefl(xr’zr) = nzo wrn(xr’zr)

(klcosei/Zw)exp[iklzr]-nzo Ian(ei) , (3.11a?
with

n
B (8;) = (1) (k cosp,)"/nl) 2 o) ) , (3.11b)
: oY Y=Yy

and



35

I = J $(0) o"exp(-ik x o + iB%02)dg - (3.11c¢)
n : 1 T T b4

with 2 _ oo
Br = kl(z hl)/2cosei ,

where X and z, represent the reflected beam coordinate system as

shown in Fig.3.1.

The integral in (3.1lc) can be looked upon as either a Fresnel trans-

form [45] or in the more general case as a Fourier transform. From

the properties of Fourier transforms [ 9], the tra?sform of an even
function is even;.and if the function is odd, its transform will be
odd. . The integrand in equation (3.1lc) is even for n even or zero,
and odd for odd values of n . Consequently,it follows that a typical
reflected field component wrn will have a symmetric distribution for
even values of n in addition to n=0 , while wrl’ wrs ... will be
asymmetric. The total reflected field will be a superposition of

all of these components. However, in view of the smallness of the
quantities on the right hand side of equation (3.10), and by the
definition of the normalized coefficients Bn(Gi) of equation (3.11b),

we>may anticipate that not all of the components will have the same

significance. Therefore, it is expected that the reflected field con-
figuration will be different from the incident field. These differences,
for a particularly specified media, depend on the angle of incidence

of the beam as well as on the polarization, as can be seen from the
definition of the normalized Taylor coefficients of the reflectance
Bn(ei) of equation (3.11b). To emphasize the above points, the values

of Bn(ei) are plotted for n=0,1,2 and 3 within the range 0 < ei <

(STE]

in Fig.3.2a for the parallel polarization case, and in Fig.3.2b for
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the normal polarization case.

It should be noted that similar considerations will apply to the trans-
mitted beam as expressed by equation (3.6), where use has to be made

of equations (3.8c), (3.9) and (3.10).

The present procedure will be applied to different beam profiles to
gain more physical insight in the different aspects involved in such

an interaction process.

3.2 . EFFECTS FOR THE GAUSSIAN BEAM

In this section}we consider a beam with a Gaussian cross—section.

Such a choice is important from a practical point of view, as it rep-

resents the fundamental or. the dominant mode of the coherent radiation
generated by lasers. The analytic properties of this kind of radia-

tion were discussed in Section 2.1.2.

3.2.1 The Incident Beam

The formulation of the incident beam is chosen in accordance with [271,
as shown in Fig.3.3, where the waist of the beam is located at the
inclined plane z, = 0 , with its radiant flux axis along the positive
z; direction. For such a beam profile, the amplitude distribution
function g(xi,wo) will be Gaussian, and by choosing the normaliza-
tion factor Fo = l/(ﬂ%ﬁo), the field W(XJ,O) in accordance with

equation (3.1), will be represented by the form



Zj = xsin@; x(zxh))cos;
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V0,00 = emp [-Ge /v )] (3.12)

mw
e

with ¢ being Hy or Ey for parallel or normal polarization,
respectively. The beam parameter w  represents the 'spot size" at
0

the waist, where the phase front is plane,as was described in Section

2.1.2.

As the field departs away from the aperture, its properties start
changing, and the propagation characteristics of the beam can be ob-
tained in a straightforward manner by utilizing the approach outlined
in the previous section. Substituting equation (3.12) into (3.4),

the spectral density function for this beam profile will be given by

oY) = (l/cosei)exp{—[(Y—yi)wo/(Zcosei)]2} . (3.13)

We notice the symmetry of this spectral density function about the
central wave number Yy = klsinei , as well as the decay in amplitude
for values of 7Y > Yo By making use of equation (3.13), and con-
sidering the first three terms in the expansion of 81 as given by

equation (3.9), the incident field expression of (3.2) will yield

% , 2
lPinc(xi,zi) = (/7w wi)e‘—xln[lklzi - (xi/wi) | N (3.14a)
where

(3.14b)

W; = Wj + i(2/k1)(zi - Xitan@i) ,
and W represents a complex width for the incident beam at any
plane z, # 0, in agreement with equation (2.7a). From inspection
of equation (3.14b) and using Fig.3.3, it is observed that with

(zi - xitanei) = hl/cosei = R(zi) at the interface, the incident

beam represents a cylindrically diverging wave with a radius of

curvature R(zi) as defined in equation (2.7h).
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3.2.2 The Reflected Beam

The reflected beam is obtained by substituting the appropriate spec-
tral function of the Gaussian beam as defined by equation (3.13) intov
the reflected field expression of (3.11), which consequently can be

written in the form

k oo
= —L : n _ - 2
Wrefl(xr,zr) = 5 exP(lklzr) ) Bn(ei) JO exp[ ikloxr (Okiwr/z) ldo ,

n=o
—00

(3.15a)
where wr' represents the complex width of the reflected beam and is
given by .

w2 = Woz - 2i(z=h )/(k cosf) . (3.15b)

A

The evaluation of (3.15a) is carried out in Appendix A, and it follows,

with t = x /w_, that (3.15a) becomes
T r'r :

wrefl(t ’Zr) B Z lprn(t z,)

r r,r
n=o
exp(ik z_) B_(8,)
-y ™2 2L (e Yexp(-t?) , (3.16a)
2 v n=0 ‘(klwr)n nox t

where Hn(t) represents the Hermite polynomial of order n, with a
complex argument in view of the definition of tr and equation (3.13b),

and is given according to [39] by

n/2
-1 m 2¢ n-2m
Hy(£) = n! mzo (m!)(r(l—ZIZI)! ° (3.16b)

In order to interpret equation (3.16a) properly, properties of modal
beam waves [39] need to be considered, where we define the modified

beam mode of order n by
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1

g (t) =

n r (k w )n
1 ¥

. _2 ’
Hn(tr)exP(lklzr'tr ) . - (3.17D)
These modified beam modes differ from the conventional higher order
Gaussian beam modes, as defined in Section 2.12 by equation (2.9),
in several important aspects which will be discussed in Section 3.2.6.
The reflected field can be expressed in terms of these modified beam
modes gn(tr) as

exp(ik z ) '
o~ =_..__..__!'_..r_.u ~— n/2 I !
Vregr = L ¥ % L DB (8)g (£ ). 7 (3.18)
 n=o0 . T w n=o0
. r
‘Comparing equations (3.18) and (3.14), it is noticed that there exists
a significant difference between the incident and the reflected beam
configurations. While the incident beam at the aperture is strictly
Gaussian, i.e. a fundamental beam mode, the reflected beam>is compriséd

in terms of a summation of different reflected components. The first

reflected component, for which n=o0 in equation (3.18), is given by

v

Yo r

(t,,2,) = B_(8,)" (exp(ik 2 ~t2))/(r vD) (3.19)
and represents a fundamental reflected beam mode, with its waist at

zr=0. This component differs from the incident field as given by
‘équation (3.14) only by the Taylor coefficient Bo(ei) which represents
the reflectance corresponding to a plane wave with an angle of incidence
ei’ i.e. the central component in the Fourier spectrum, for which Y=Y
Hence, wro represegts the geometrically reflected field, i.e. the

field which does not depend on the variations of p(y) in (3.8a) and in

(3.8b) with each individual plane wave component propagating at any

Yy = k sin® , when e#ei, and 91 defines the optical axis of the
. .



incident beam as in Fig.3.3. The higher order reflected components
wrn(qzl) are generated due to the nénlinear behaviour of p(y),

and are proportional to both the normalized derivatives of the ref-
lectance as can be seen from equations (3.10) and (3.11b), as well

as the product (klwr). The generation of these higher reflected
beam components will cause beam spreading and shifting. These changes
in the reflected beam structure will be examined in the following

section.

3.2.3 Beam Shift For Regular, Nonpolarizing Incidence

We consider the reflected beam field at regular incidence and exclud-
ing the neighborhood of and Brewster's polarizing incidence. Equation

(3.18) is reformulated in a more appropriate form as

wrefl = wroexp[ﬁn(l+Fr)] (3.20a)
- _ 2 3
= wroexp[Fr l/ZFr +l/3Fr ceees] ,
with
_ _ 1’1/2. n
7.l = |nzl( D™ alm (e)] <1, (3.20b)
and
|1/0_| = 2w]wr/xl| > 1, b =B (8,)/B(6,) . (3.20¢)

Collecting terms of equal powers in tr , and by the definition of

(3.20b) and (3.16b), equation (3.20a) results in

~ . : 2 {3 3.21
wrefl wroexp{po+1tr(pl1+p12)+tr(p21+pzz)+1trp3} , ( )

where
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'_ 212 _ 2.4
p0 arbz ZBzar s
= 20 b
P O 1 ’
= -203(h b -6h
P, r( 12 3) ?
p = -202(2b -b%)
21 r 2 1 »
P = 8a*b b s and
22 r s
p =28u(b+ b)) ,
3 r 3 1 2

and terms of higher order in 0. have been neglected by definition

of (3.20c¢).

From inspection of equation (3.21), and in those cases for which the

imaginary part of wi

(equation 3.15b) becomes significant, i.e.

when zr becomes comparable with wi/ll, a shift of the reflected
beam centre exists. Utiliziﬁg equations (3.2Q), and by the definitions
of tos ar,and ao = (l/klwo) , the shift .Zgr in the X, direction

is found to be

Im{(p11 + plz)/wr}

AX o -
r

N

Re{(1 + P, + pzz)/wi}

b  Im{w 2}
r

R

WWH

1 Re{w 2}
T

R

20°b (h -z)/cokH, s (3.22)
01 1 1 :
where higher order terms in o, can be neglected since it was verified

b tation that << 1 << and ( + ) << 1.
y computati po ’ p12 P11 ’ le Pzz

Inspection of equation (3.22) shows that ZE? - does not yepresent a
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constant lateral beam shift,_as is the case with the Goos~Hinchen
shift for the total internallreflection regime. It should be noted
that EE? depends on the distance =z away from the interface and
will vanish exactly at the interface if h1 = 0. Hence it correspoﬁds
to an angular deflection ZE; , of the reflected beam axis from the
geometrical optics axis at 6 = Gr .+ This angular deflection is

given by

Aer = Axrcosﬁi/(hl—z)

= 20%b : | (3.23a)
0 1

and the projected beam shift along the x direction at the interface

(z = 0), as illustrated in Fig.3.4, becomes

Ax

’Axr/cosei

2

20°b h /cos?0, , ‘ , (3.23b)
011 1

where Ax = Ax(@i)‘ is plotted for both polarization cases in Fig.3.5.

The angular beam shift will be encountered for propagation from the
less dense to the denser medium (€1<€2) and vice versa (€1>€2),
excluding the range of total internal reflection for which the above
analysis does not hold. The existence of such a shift is implicity
contained in a treatment by Nemoto and Makimoto [41],vusing a modal

expansion of the beam; however, it was neither analytically described

nor explicity identified. The cognizance of the angular shift was

simultaneously reported by Ra et al [47, eq.7b];and their result,

obtained by using the approach outlined in Section 2.1.3 agrees with

our expression for the angular shift as given by equations (3.23).
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The angular beam deflection 'Z§¥ is a unique paraméter; as it depends
on the beam diffraction angle ao = (k.lwo)—1 of (2.8), the angle of
ingidence Bi, i.e. b1(ei)’ but not on the beam waist location above
the interface hl, nor on the distance from the interface z_ ., as
is the case with z%; and Ax . Its dependence dn bl(ei) means

that it is polarization dependent. Therefore, it must be interpreted

separately for the two different polarization cases.
Beam Shift for Normal Polarization

It is observed from inspection of Fig.3.2, that for normal polariza-
tidn b1 is positive, starting with b1(8i=0) = 0 , and then increases
steadily for 0<6i<90° . Therefore, the angular beam deflection will
always occur in the forward direction for the normal polarization

case, i.e. Z§¥>O , as is illustrated for Ax ='Z§(9i) in Fig.3.5.
However, for incidence from the denser to the less dense medium, our
treatment.holds for the range below the critical angle. In particular,
the angular beam shift as given by equation (3.23a) is valid in the
range O<Gi<6c—ao , since fdr Gi close to Gc(6c=sin_1(€2/€1§5),

the lateral beam shift occurs as was analysed in detail by Horowitz

and Tamir [27].
Beam Shift for Parallel Polarization

The behaviour of the shift for this polarization case is significantly

different. Z@; is not unidirectional since B and, hence b ,en-
a 1

counter a change of sign as the incidence angle ei exceeds Brewster's

angle 65 = tanjl(ez/al)%. In particular, through careful inspection

> <
of Fig.3.2, we notice that B = 0 and b S 0 for 6, = 6,. Thus, beam
0 < 1 i> "B
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deflection occurs for O<ei<eB mainly in the backward direction,
whereas it occurs in the forward direction for 6B<Si<90 . However,
in the case of incidence from the denser to the less dense medium
(€1>€2), forward beam deflection according to equations (3.21), (3.22)
and (3.23) occurs only within the range (6B+ao)<ei<(ﬁc—ao), where

0 is smaller than the critical angle, and the lateral Goos-Hanchen

B

shift starts to occur for ei > (ec—u ).
0

The change in the shift direction around the Brewster angle, and the
behaviour of Zgg in Fig.3.5, suggests that the range around GB

is a transition region. In this region, the reflected beam properties
are expected to change drastically. Thus, the reflected field in this
range need to be carefully examined and the phenomena involved have

to be interpreted. Understanding of such phenomena, will lead to a
clear physical insight into the mechanism causing the beam shifting

process, as will be discussed in the following section.

3.2.4 Behaviour At Polarizing Incidence And The Beam Shifting

Mechanism

Within the range (6B~ao)<ei<(63+a3’ the beam shape deteriorates from
its Gaussian configuration, and the reflected field displays two dis-
tinct weak peaks deflected off the optical axis (@r=ei)' This behaviour
can be further understood by analyzing beam incidence exactly at

- %
Brewster's angle GB = tan ‘(e /e )°.
2' 1
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In case the heam incidence angle ei coincides with © the

B H]

geometrically reflected component of the field wr of equation (3.19)
0

vanishes since BO(GB) = 0, and only the higher order reflected

components wrn(qzl) will contribute. From inspection of Fig.3.3.

and equation (3.18), it is apparent that only the reflected beam

components wrl and wrz will have significant contributions, where

2trarB1(eB)

12

wrl(tr,zr) "exp[i(ﬂ/2+klzr)—t§] , (3.24)

e
W
r
and
2_;, 2
4 (tr 2)OLrB2 (GB)

b4

wrz(tr,zr) -exp[i(w+k1zr)—t§]. (3.25)

%
r

Thus, it is found that. wrl(tr=0) = 0 , while wrz(tr=0) # 0 and,

therefore, a very small field should be observed at the centre of the
reflected beam although wro =0 for ei = eB. As wf1 is dominating for Xr#o’
its characteristics, as given by equation (3.24), at any constant

plane z, display two weak peaks, whose maxima in the region close

to the interface and for small values of hl, are displaced off the

beam centre along the X, direction by

=+ w2l | (3.26)

However, the asymmetry of wr (aﬂz ) is disturbed slightly by the

. 1 T
existence of wrz(tr,zr), causing a slight shift AxrB of the asym-
metrical beam structure, which can be evaluated employing an expansion
similar to that used in equations(3.20)and (3.21) to obhtain Z§¥ of

(3.22), where
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)
L1 Bz(@B) Im{wr }
rB  k B (0.)

1 1 B

Re{wr_z}

B (6,) (h -2)
2 B 1
0 BI(GB) cos@i

-

20, s (3.27)

and the angular deflection becomes

_ B (65)
AD = 2% =2

rB 0 B (6 ) o (3.28)
1 B

This behaviour at the Brewster angle exactly can be visualized more
clearly by the aid of the crude graphical demonstration of Fig.3.6,
where the approximate configurations of wro’ wrl and wrz (however,
they are not to the exact scale), as well as the resultant reflected
fields are shown. It can be seen that wrz affects wrl in a manner

.. < -
similar to the effect of wrl on wro for Gi > (6B + ao).

By recognizing that the phase of a reflected wave component in the
Fourier spectrum of the reflected field changes abruptly by m as the
angle of incidence passes through the Brewster angle, Lotsch [37]
anticipated a phenomenonanalogous to the Goos-Hanchen shift. However,
in view of our analysis, it can be concluded that this is not the case.
Moreover, the behaviour of the field around and at the Brewster angle,
as presented here, is consistent, and explainable in terms of these

particular phase variations around SB.

The change of the shift from backward to forward direction can now be

explained in view of the above analysed behaviour at Brewster's angle.

- It iskapparent from the symmetrical and asymmetrical properties of
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Fig. 3.6 Reflected field behaviour at and around

the PBrewster angle
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wro and wrl respectively, as aemonstrated in Fig.3.6,that for éi<eB’
beam deflection is in the backward direction, whereas for ei>eB it
is in the forward direction; as ei increases from GB to 6B+0L0 ’

the forward deflected beam peak starts to.appear and becomes steadily
more dominant as 61>9B so that the backward deflected béam peak
disappears for 0, = (6B+qo) . Therefore, the range (GB—QO)<61<(SB+QO)

is the transition region within which the reflected beam properties

change from backward to forward deflection..
3.2.5 The Transmitted Beam

The transmitted field in the second medium as expréssed Ey equation
(3.6) can be obtained by using the approach outlined in Sectiomn 3.1.
However, to clearly describe the properties of the transmitted beam,
we introduce a virtual aperture over which the pﬁase front of the
transmitted beam will be planar. This is achieved by the transmitted

coordinate system, as is shown in Fig.3.3, which is chosen so that

x, = (x—l)coset - (h2+z)sin6t , (3.29a)
z = (x-2)sinf,_ - (z+h )cosd , (3.29b)
t t 2 t
9 = h tanf, - h tand , (3.29¢)
1 i 2 t
h =h (k /k )(cosd, /cos®,)? . (3.294d)
2 1 2 1 t i

The optical axis of the refracted heam can be related to that of the
incident beam by Snell's law, i.e. sinei = (kz/kl)sinet , and can be

described by (Fig.3.3)
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x = hitanei + ztan@t . (3.29e)

The transmitted beam field as is expressed by equation (3.6), and

through substitution from equation (3.13), can be reformulated as

I S T vk af 2
wtrans(x’z) = chosei J T(y)exp{-[(y k131nei)wo/(2cosei)]
+ iBlhl + i(yx+82z>}dy . (3.30)

The evaluation of equation (3.30) is similar to that of (3.15a),

where Taylor expansions of sz and T(y) are obtained using equations
(3.9), (3.8c) and (3.10), and where most of the contribution to
equation (3.30) will result from regions around the refracted beam

axis, namely at Y = k sinet =k sinei.
2 1

Introducing the complex transmitted beam width W, as

. 1
w2 =w 2+ 2i(z+h )/(k cosf ) , (3.31a)
t 0 2 2 t
where
]
w = w (cosB /cosh.) , (3.31b)
0 0 t i
with -
o | = Tew |7 << 5 e = /), (3.31c)

and defining a new variable of integration

T, = ~(Y—kzsinet)/(kzcoset) s (3.32a)
so that '
n
T(y) = nzo T T, Gyg)
("-Tt)n 37T ()
= ) —— (k cosf ) e > (3.32b)
n! 9 t n
n=0 aY

Y=Y5
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the expression for the transmitted beam can be evaluated similar to

the reflected beam, giving

wtrané(tt’zt) = (Coset/cosei)exp{i[(klhl/cosei)
- (kzhz/coset)]}-nzowtn(tt,zt) ,  (3.33a)
where
_ % n/ n .
th(tt,zt) = (1/m Wr)(~l) 2Tn(Gt)OLan(tt)exp{lkzzt--tf:} .

(3.33b)
From comparison of equations (3.33) with the incident field as given
by equation (3.14a), it is found that upon incidence of a fundamental
Gaussian beam mode, higher order transmitted beam compomnents, in
addition to the fundamental transmitted beam mode, are generated,

as was the case with the reflected beam given by equation (3.16a).

Tt should be noted that due to the particular choice of the transmitted
coordinate system as defined by equations (3.29), a common multiplier
appears for all transmitted beam modes to ensure continuity of the
fields across the interface. The additional phase term [(klhl/cosei)
-(kzhz/coset)]' expresses the phase relations between the waist of

the incident beam (Xi=0’ ziiO) and that of the virtual image (xt=0,
zt=0) of the refracted beam (Fig.3.3) with respect to the point of
intercept of the optical beam axis with the interface (z=0). The
amplitude factor (coset/cosei) ensures continuity of the incident
fundamental beam, the reflected and transmitted fundamental as well

as higher order beam components.
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The generation of the higher order transmitted beam components causes
the transmitted field to undergo changes which can be analysed in a
manner similar to that presented for the reflected beam in the pre-
ceding section, resulting in an angular deflection Zﬁé of the re-~

fracted beam, where

i, = 2a§ (cosGi/coset)z [Tl(et>/T0(et>] . (3.34)

Furthermore, by the definition of o(y) in equation (3.8a, 3.8b) and
the relation T(y) = 1 + p(y) for either polarization case, the beam
shift effects can be straightforwardly interpreted. From inspection

of Fig.3.2 and Fig.3.5, it is found that ‘A'e‘t 2 0 for el/ez z2 1. At
polarizing incidence, the fransmitted field is not altered significant~-

ly, since the fundamental transmitted mode is dominating, though an

angular beam shift will exist as shown in Fig.3.4.

We notice from the analyses presented so far that the transmitted and
reflected beams have a common attribute; they both are comprised in
terms of a series summation of reflected and refracted components,
which were called modified complex beam modes. In order to clarify
the nature of these modes, we consider their detailed general proper-—

ties in the following sectiomn.

3.2.6 Complex Gaussian Beam Modes

The reflected or the transmitted fields were comprised of a geometri-

cally reflected or refracted components, n = 0 in wrn or wtn of
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equation (3.18) and (3.33) respectively, in addition to higher order

components that can be reformulated for n > 1 as

. An xr Xr )
wrn = . >n+1 Hnﬁa;)exp[lklzr - (G;) ] , (3.352)
T
¢y e *¢
— ot 3 — R 2
lptn - n+i Hn<w )eXP[lkzzt (w )" ’ (3.35b)
(wt) t : t
with
A =% (0,) AP (3.35¢)
n n- i k1 ’ )
2 coset klhl k2h2 i n
- 2 > _— o (—
Cn m <cosei)eXP{l[(cosei) (cos8t>]} (kz) Tn(ei)'(3'35d)

Equations (3.35a) and (3.35b) represent higher order reflected or
refracted components, modified by the multipliers An and Cn, which
depend on the properties of the media and the angle of incidence Gi
of the beam. Apart from that, these higher order components represent
a set of newly identified, complex Hermite-Gaussian beam modes, that
are essentially different from the conventional Hermite-Gaussian beam

modes for a laser oscillator that are described in Section 2.1.2.

We notice in these newly identified modes as expressed by equations
(3.35a) and (3.35b) that there is symmetry between the complex arguments
of the Hermite and Gaussian functions. The argument of the Hermite
functions for these new modes is complex, by the definition of W, or
v in equations (3.31la) or (3.15b), whereas it is real for the con-

ventional ones. Moreover, the Hermite-Gaussian functions, in the

conventional modes, reduce at the waist (z=0) to



57

H (%) exp (~x2/u?) s (3.36a)

while for the new complex modes wrn or wtn , at either the waist

B

of the reflected or refracted beam (zr=0 or zt=0), they become
Hn(x/w)exp(—lewz) . (3.36b)

The conventional modes form a complete orthogonal set [49], while
the new ones do not. However, it should be noticed that both the
new and conventional modes satisfy the same differential equation,

i.e. the paraxial wave equation of (2.4).

These complex Gaussian beam modes, resulted in the present work. from
an integral representation over an angular spectrum of plane waves
that satisfies the scalar Helmholtz equation, and they form an essen-
tial part in describing the fundamental beam scattering process in a
physically significant problem. Nevertheless, their essential analyti-
cal properties can be obtained, on basis of fundamental mathematical
treatment, that will contribute more towards basic understanding of
their nature. Such an analytic investigation was very recently
provided by Siegman [50], who was led to recognize these new functions
while examining the nature of the conventional Hermite-Gaussian modes.
Due to the inelegant lack of symmetry in the conventional solution,
Siegman [50] suggested an alternative in terms of complex Gaussian

eigensolutions to the paraxial wave equation as

~

V_(x,2) = (ao/a)“+lﬁn(/éx)exp(—6x2) , (3.37a)

where
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Q2) = [1/R(2) - 1A [me®(2)]" ,
c =c(z) = ikl/zacz) . (3.37b)
These solutions are not orthonormal, rather they form a biorthogonal
set [50] with the Hermite functions
¢ (x) = Hn(/é_*X) , (3.38)

such that the orthogonality relationship

0, ~ o 5
J ¢;(X)Wm(x)dx J Hn(/Ek)Hm(/Ek)e—cx dx

—c0 —£0
| , (3.39)

. Knanm

holds.

The complex Gaussian eigensolutions of (3.37a) are exactly, apart from
a constant, the same symmetric complex Gaussian beam modes reported
in the description of the reflected or refracted beam, as stated in
equations (3.35a) and (3.35b). They form an essential part in des-
cribing the beam scattering process treated here, and this gives more
physica} insight into their nature, and as-was predicted by Siegman
[50], provides one clear example where these newly identified modes;
with their greater simplicity, may be useful. While they resulted
here from the treatment of such a simple configuration, we expect
that they could provide more useful and simple means in describing

beam propagation and scattering in more general and involved problems.
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3.3 OTHER BEAM PROFILES

While the analyses introduced in Section (3.1) were proposed for any
well defined collimated beam, they have been applied only to a Gaussian
beam profile. However, the related phenomena need to be examined

for other beam profiles. Mainly, the existence of the angular shift
needs to be verified for different beam profiles as was the case with
the Goos-Hanchen shift reviewed in chapter two, in spite of the differ-

ence in phenomena behind these two different shifts.

Careful examination of the cause, as well as the mechanism of angular
shifting shows that the phenomena involved are not mainly related to
the beam profile. The process of beam reflection and refraction is
affected, to an extreme degree, by the characteristics of their spec-
tral densities ¢(y) as defined in equation (3.4). Since the main
behaviour of the spectral densities of all collimated beams are simi-
lar, it is expected that all collimated beams would encounter the same
effects. Moreover, a judicious examination of the shifting phenomena
for the Gaussian beam, for which different beam modes are generated
and cause the angular shift, and the analysis in Section 3.1, implies
that a similar effect should exist for non-Gaussian beams. However,

the extent of the shift may not be the same for different beam profiles.
These aspects are discussed in this section, where two completely

different beam profiles are considered. The first one is that of a

well defined collimated Cauchy beam, for which explicit analytical
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results are obtained. Discussion of the results,as well as comparison
with those of the Gaussian profile,point out the  generality of the
phenomena involved. However, if the beam is not as well defined as
these two profiles, the nature of the results change. This is.demon—
strated through the second example considered in this section where

a limited plane wave that is described in Brekhovoskikh's [10]
analysis of the total internal reflection regime 1is considered.
Analytical results for this case are provided and their nature is

discussed and compared with results for the other configurationms.

3.3.1 Cauchy Profile

3.3.1.1 Analyses Of The Fields

We consider an inverse square or a Cauchy Profile [28,30], and the
same incidence conditions as described in Section 3.1. The amplitude
distribution function g(xi,b) of (3.1), for this case, is given at

Zi=0 (Fig.3.1) by
g(x;,b) = 1/[1 + (x,/b)?] , (3.40)

where the beam width at the aperture is 2b, and for a well defined
beam, the condition klb >> 1 has to be satisfied. According to

equation (3.4), the spectral demsity function ¢(y) in this case is
¢(y) = (mb/cosd)expl- |[y=v; [b/cost } . (3.41)

Substituting equation (3.41) into the incident field as given in

equation (3.2), and making use of the Fresnel approximation, i.e.
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Considering terms up to n=2 in equation (3.9), the incident field,

with F0 of (3.1) taken to be unity, takes the form

= ; : 2 2
winc— (klb/Z)exp(iklzi) J exp{—klblcl—l[klﬁxi+8i0 1}do

(3.42)

b

=00

with 82 = k (z+h )/(2cos8.)
Ci 1 1 i

The evaluation of equation (3.42) is carried out in Appendix B, and

the result is

.winc(xi,zi) - (klb/E/asi)exp(iklzi—in/a)-{f(ai)+f(az)} . (3.43a)

where:

f(a) = [exp(—iaz/r)]'[1-erf(a/:I/2)] s (3.43b)
*
and a; is the complex conjugate of a; as given by
a; = kl(b+ixi)/8i . (3.43¢)

with erf(y) being the error function [25]. The reflected field,
as defined by equation (3.11), can be evaluated in a similar manner
by using equation (3.41) as shown in Appendix B. The first two

components are accordingly given by

RECEERIE (klb-/ﬁ/4sr)-B0(ei)exp(iklzr—iw/é)o{f(ar)+f(a:)},(3.44a)

b, Gxh2) (-klb-JF/asi)Bl(ei>exp{iklzr-iw/4}-{-iQrf(ar)+iQ:f(a:)} ,

(3.44b)
with

v
Il

2
. = - e
kl(b+1xr)/8r , Br kl(hl z)/2cos r

(3.44¢)

and . .2
kl(b+1xr)/28r

L
il
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For the transmitted field, the similar components are given by
Ve, Reoze) = AL -

(kzbt75/4st)~To<et)-exp(ikzzt-iw/4)-[f(at)+f(a:>], (3.45a)

b, = AL

t1 t
[—kzbt/ﬁ/4Bi]Tl(et)'exp{ikzzt—iﬂ/4}?{—iQtf(at)+iQtf(at)} ,

with (3.45h)
= e 2 =
bt b coset/cosei s Bt kz(h2+z)/(20036t) R
_ . _ . 2
a, = kz(bt+lxt)/8t and Qt = kz(bt+lxt)/28t , (3.45¢)
At = (coset/cosei)'exp{i[klhllcosei—kzhz/cosﬁt]} . (3.454)

where the coefficients TO(Gt), Tl(et) are defined by equations (3.8),

(3.10) and (3.11b).

3.3.1.2 Interpretation And Comparison

Equation (3.43) gives a good approximation for the incident beam in
the paraxial range. Diffraction effects encountered by the beam as
it departs from the aperture are accounted for in this expression,
and they could be estimated depending on the specific parameters
involved (i.e. hl,z,b). In the well collimated region and close to
the aperture, a good approximation of the field can be obtained. 1In
this range, an assymptotic approximation can be used for the error

function for large argument, as given hy [25]
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n-1
erf (Vx) = 1-(1/mexp(-x) ) (-1)kp(k+%)/ka+%)+eXE#-X)Rn ’
. =0 |

R_ - e N (3.46)

Employing the first two terms only for the incident field of equation

(3.43),will result in

winc(x,z) = [l+(xi/b)2]—1° exp[iklzi] . (3.47)

However, considering higher order terms will give an indication of
diffraction effects, which are small in this range, but increase

with increasing the distance away from the aperture.

The reflected field is a superposition of the geometrically reflected
contribution wro , which resembles the incident field, and the high-
er order components, which are dominated by the first one, i.e. wrl'
The behaviour of wrl can be described in the well collimated region

of the beam close to the interface, by inserting the error function

expansion of equation (3.46) into equation (3.44b), which gives

b, ® Bl(Gi)°{(—Zixr/b)/kjb2}'(1+(xr/b)"-)'2 exp(ik z.) . (3.48)

This is an asymmetric component with respect to the reflected beam
axis, and it has close resemblance with the corresponding term for
the Gaussian beam, as glven by equation (3.18). Both normalized
components are shown in Fig.3.7, for the same incidence conditions
and beam widths (b=w). It is noticed that wrl attains a maximum at
a distance b//3 for the Cauchy beam, compared to that of w//2 for
the Gaussian case. This behaviour could be visualized by careful

examination of the two respective spectral functions, as shown in
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Fig.3.8, where it is noticed that $(y) for the Cauchy beam as given
by equation (3.41) decreases faster than the Gaussian one as given
by equation (3.13), for smaller deviations from the central component

Yi = k151nei.

The behayiour in the range of Gi close to the Brewster's angle-
can be explained‘in‘a manner that agrees with earlier results for the
Gaﬁssian beam. The field in this range is dominated mainly by W¥l ’
as the effect of the higher order components in this case is much

less significant. At ei =0

B exactly, the field will be mainly

composed of wrl (wr0=0) » which will display two weak peaks héving
a phase difference of T , as can be predicted from equation (3.48).
This behaviour is expected and is explainable in view of the behaviour
of the reflectanée a;éund eB (FPig.3.2), and the characteristics of

the spectral function as shown in Fig.3.8.

It should be noted that the transmitted coordinate system X 52, of
Fig.3.3, that was originally introduced for the Gaussian profile, per-
mits easy access to describe the nature of the transmitted field in
this case also, as can.be seen from equation (3.45); with the common
multiplier At "to ensure the continuity of the field across the inter-
face. In general, the tranémitted beam components, as given by
equation (3.45) can be analysed in a procedure similar to the reflect-
ed field. However, a common effect between the reflected and the

transmitted beams is the existence of the angular shift, which will

be examined in the following.
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3.3.1.3 Angular Beam Shift

The differences between the incident field structure and the reflect-
ed or refracted fields, as discussed in the previous section, will
also result‘in the angular beam deflection. An approximate expression
for this effect can be analytically derived in the present case of a

Cauchy beam profile.

Equation (3.46) is utilized in (3.44a), so that the geometrically

reflected field can be approximated as
~ . 2 ° 1 °
Uy, Bpoz) = B (8) {1/11+Gx_/p)*]} exp (ik z )
[1-2182« [1-3x2/b%1/ (1+x2/b%)% + 0(x_/b)"} . (3.49)

It is expected that, due to the smallness of wrl as compared to
wro ,» the shift will occur in the range close to the beam axis, i.e.
in the range Xr/b << 1. Thus, the beam structure will be examined
in this region. Employing the same expansion for the error function

as given by equation (3.46) in (3.44b), and keeping only terms up to

(xr/b)2 , the total reflected field will take the form

lprefl = Lpro + 11Url

R

Bo(ei)'(l/(l+xi/b2))exp(ik12f—i§2)-Frb , (3.50a).
with
22 = ( (h -2z)/k cosB,){1-3x2/b2}/(1+2x2/b%) ,  (3.50b)
1 1 1 r T
LI [1—{2ibl (xr/b)/(klb(l+X§/b2))}eXP(iEZ)J

and b1 = Bl(ei)/BO(ei) . (3.50c)



68

The term Frb then represents an approximate correction factor, and

the field can be further approximated as

wrefl‘: FolBa(ei)eXp{iklzr—iEZ}/{l+[(Xr—D)/chZ} ,
where

D=-cb , b2=02(1-(c/2)?) , F = (I-(c/)H) T ,
g1

and

g
Il

(2ib /k b)sexp(ig?) . (3.51)
1 1

2

However, since ¢ 1is small, ¢“ << 1 and bC b , we get F ~ 1,

01

Thus, an approximate expression for the field will take the form

Vref1 = Bo(ei)'eXP(iklzr)/(l+(Xr‘D)2/b2) > (3.52)

where the shift Axr in this case is given by

Ax_ = 2b (-z+h )/ (k2b2%)coss, (3.53)
r 1 1 1 i

which can be translated into an angular deflection of the reflected

beam axis of

AQ o~ Y 2h2 - .
56, = 2+{B (8,)/B_(6,)}/ (?b?) (3.54)

This is an approximate indication of the deflection of the reflected

beam axis from the position predicted by geometric optics. A similar
effect would be encountered by the traﬁsmitted Cauchy beam and can be
easily obtained by applying the above analysis to equations (3.45).

While the expression for the angular beam shift assumes the same form

as that of the Gaussian beam , as was shown in Section 3.2.3, the shift

for the two cases is not necessarily identical in view of the differ-
ent definitions associated with the beam parameters b and wo. Further-

more, the angular shift for the Cauchy beam as given by equation (3.54)
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is derived through an approximation of the component wr , while
1
for the Gaussian beam it has been evaluated by the resulting exact

expression for wr in (3.18).
‘T

Thus, it is seen that the choice of such a profile, though being of
less practical importance, yields results that are analytically
explainable and tractable. The close correspondence of the Cauchy
beam results, and those of the Gaussian, points out to the generality
of the phenomena involved. An important aspect of both beam profiles
is that. they are collimated and well defined. If the beam definition
is not consistent with this condition, results will not be as explain-
able. This will be emphasized by considering a different configura-

tion of a truncated plane wave 1in the following section.

3.3.2 Limited Plane Wave

The incident field in this case is defined in accordance with
Brekhovskikh [10], where at the aperture the field amplitude function

of (3.1) is given by

J 1 -A S x <A .
g(x.,A)= (3.55)
* 0 x, > A
i
Such a field has its amplitude changing abruptly at X, = A , which

was not the case with the previously considered beam profiles. The

spectral density function as defined in (2.4), is given in this case

by
o(y) = [sin(y~Yi}°A]/ﬂ(y—Yi) > (3.56)
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and the incident and the reflected fields will be described by

winc(x’z) = f {sin(Y—Yi)A/w(y—Yi)}exp[iyx+iBlz]dy (3.57a)

00

wrefl(x,z) = J p(Y)'{sin(Y—yi)A/w(y—yi)}°exp[iyx—'if31zv]dy .
-~ ' (3.57b)

Upon applying (3.9) and (3.10), and following a similar approach to that of

Appendix B, equations (3.56a) and (3.57b) yield for the fields

winc(xi,zi) = (/F/Zgi)exp(iklzi)F{erf(ail)+erf0xiz)}

with (3.58a)
ui% = (/:I/Zéi)[Acoseiin] , Ei = {kl(hl—z)/ZCosﬁi}%_
and ' |
wro = Bo(ei)(/iw/zér)exP(iklzr){erf(ar1)+erf(ar2)} (3.58b)
v, = Bl(Gi)(Zi/ffér)'exp{i(klzr+ﬂ/4)
+ iklcoser[A2c0326r+xi]/2(z+hl)}sinur3 (3.58¢c)
with |
o = (/:I/zér)kl-(Acoser—xr) ,
o = (/:I/ZE;)kl'(Acoser+xr) ,
o,, = (k Ax cos?® /z) , B = {kl(z+h1)/2coser}%.(3.58&)

Similar considerations will apply to the transmitted field.

The incident field,as given by equation (3.58a), is symmetric about
its axis (xi=0), and is somehow descriptive of the field far away from
the aperture. As expected, the geometrically reflected component

wro has the same behaviour as the incident field, being modified by
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the reflectance pri). The first component er of (3.58¢), which
vanishes at the centre of the beam in consistency with similar compon-
ents for the Cauchy and the Gaussian beam, will cause the total ref-
lected field in general to be different from the incident field. This
emphasizes the importance of taking second order effects into account
for a complete description of the process of reflection and refrac-
tion. However, explicit analytical formulae for these differences

are not tractable in this case, due to the way the field is defined,

and the consequently resulting physical phenomena.

Physically it is understood that an infinite plane wave that is
incident on a screen located at the aperture plane (zi=0) and which

has an opening of 2A, will be the practical approach of generating

such an incident radiation. Therefore, it is expected that edge
diffractiqn effects will contribute more, especially in the near range,
close to the interface. While these diffraction effects were disregard-
ed, as a first approximation, in the treatment of the Goos-Hanchen
shift [10], they play a substantial role in the field structure of
equations (3.58). TFig.3.9 shows the incident field as given by (3.58a),
at a constant zi% 0 plane away from the aperture. The geometrically
reflected field of (3.58b) will then have a similar oscillatory nature,
and this affects the higher order reflected cbmponents, and also causes
their contribution, in view of their smallness, to be somehow screened.
In general, such a behaviour is egplainable in terms of the spectral

density function ¢(y) of (3.56), which was plotted in Fig.3.8. The
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remarkable difference between ¢(y) 1in this case and the case of
the Gaussian or the Cauchy beam is noticed. This emphasizes the |
importance of the early condition stated in defining the beam; in
particular the amplitude function of (3.1) should not vary ébruptly
over a period of a wavelength. While in the more accurate treat-
ments of the Goos-Hanchen shift [36] the alternate approach of beam
representation in Section 2.1.1 was introduced; the more appropriate
approach in treating the problem as described here, is to make use
of an apodization technique [26]. This in turn reduces.the problem
of reflection and refraction of a limited plane Wa§e to the probleﬁ

discussed in Section 3.2.

3.4 TOTAL INTERNAL REFLECTION AND THE IMPULSE RESPONSE

The analysis presented so far has dealt with the range of regular
incidence. If the incidence angle ei approaches the critical angle
ec , mainly close té‘the range ei Z(GCfao), total reflection phenomena
start appearing. Beam effects for angles of incidence that are
arbitrarily close to the critical angle, have been treated rigorously
[28]1 as summarized in chapter two ; An expression for the Goos-
Hinchen shift that is valid for a wide range of the incidence angle

ei , 1.e. ei 2 ec , was obtained and it reduces to the classical
expression [27] if the incidence angle is far beyond the critical

angle.

In this section we also consider the range of total reflection for
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incidence angles that are not too close to the critical angle, i.e.

Gi >> GC . The classical expression for the Goos-Hanchen shift [10],
in this range, is derived by utilizing an approach that could be used
for any well collimated beam. This approach is a modificatioﬁ of the
analysis in Section 3.1, to make if applicable for the total internal
reflection regime. However, the main goal here is not as much to
obtain an expression for the Goos—Hanchen shift, but rather to make

use of the obtained results in examining the transient characteris-

tics of a pulsed Gaussian beam upon total internal reflection.

The transient aspects upon total internal reflection at a dielectric
interface have been studied mostly for a localized pulsed line or
point source excitations [20,31,33]. As was mentioned in chapter

two , for the c.w. case, the process of reflection depends to a great
extent on the considered kind of excitation. Therefore, we would
expect that, for a pulsed excitation that extends in the transverse
direction, i.e. a beam wave whose time variation is not harmonic in
nature, there will be different analytical and physical aspects in-
volved. Brekhovskikh [10] considered total internal reflection of a
certain radiation that have space-time variation according to an in-
verse square distribution. He showed that, upon total internal reflec-
tion, the fields undergo substantial changes once they deviate from

their usually preassumed harmonic time variation.

Total internal reflection of an impulsive Gaussian beam will be dis-

cussed also in this section. A standard procedure to determine the
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response [56] is to apply Fourier or Laplace's inversion to the solu-
tion obtained on basis of harmonic time dependence. The response
due to any other time variation could be systematically derived by

utilizing the convolution principle.

3.4.1 Derivation Of The Goos-Hanchen Shift

An incident Gaussian beam formulation, exactly as was defined in
Section 3.2, is assumed; However, the incidence conditions are
different in the present situation. We assume the beam to be incident
from the denser to the less dense medium (€1>€;), and the incidence
angle ei is not too close to the critical angle, i.e.'ei >> ec .
We recall the analysis of Section 3.1, which needs to be modified to
be applicable for the total internal reflection regime. In particular,
for 'ei >> Gc,p(Y), as defined in (3.8a) and (3.8b), will be complex

and of unit amplitude. For example, p(y) for the normal polarization

case will be given by

p(Y)| = expliG(y)]
Y>Ye
- %
= exp{-2itan ![(y2-k2)%/(k2—2)%]} (3.59)
2 1

while the amplitude of p(y) is constant in this range, the phase
function G(y) varies for each plane wave component in the angular
spectrum as Yy varies around a central value Yy < klsinei . Thus

G(y) can be expanded in a Taylor series about Y; = k sin6i >y, =
1

k sinf , so that
1 c
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Y=Y
Upon making use of equations (3.60), (3.7) and (3.9) in (3.11a), the

reflected field can be expressed as

Vrep1 00| = (e /2mrexplitk 246 (8] *
6.>0
/ i Ve
J exp{-02 (k w_/2)-ik ox_-icG (0,)}do s "(3.61)
1T 1 T 1 1

with the reflected beam coordinates X, and z,  as defined in Fig.3.1,

the reflected beam width w_ as given by equation (3.15b); and only

the first two terms in the expansioﬁ of (3.60) have been retained.

It should be noted that the term exp[iGo(Bi)] represents the reflec-
tance p(Yi) asspciated with the central plane wave component at

Yi = klsine:.L - The evaluation of (3.61) can be carried out in a straight-
forward manner as in Appendix A where the reflected beam will take

the form
wrefl(xr,zr) = (/7 Wr)eXP[iGo (ei)] .

exp[—(xr+G1(Gi)/kl)z/wil-exp[iklzr] . (3.62)

The nature of the reflected field of (3.62) can be seen immediately
upon comparison with the incident beam as.given by equation (3.l4a).
The centre of the reflected beam in (3.62) is shifted laterally to

the right, i.e. in the forward direction, where the shift along the

interface in the positive x direction (Fig.3.4 ) becomes for the
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normal polarization case

G (eizL L
D_L = - —1—1:——— = (Al/'ﬂ)‘sinei/(sinzei—sinzec)2, . (3.63a)
1

and for the parallel polarization case
. __Gl(ei)“-(x/)- L, e
|- ~——i€z—~* = Q@ /m 31nei/[sln ec(51n 6i7s1n Gc) 1, (3.63b)
which are the classical results as given in [10]. However, it should
be noted that these expressions account for angles of incidence ei
that are not too close to the critical angle, thus disregarding branch
singularity effects at critical incidence exactly. This.means diffrac-

tion effects are not considered, as they decay exponentially with the

deviation from critical incidence [29,511].

The reflected field expression of (3.62) will be utilized in the

analyses of the transient case next.

3.4.2 Beam Transient Effects Upon Total Internal Reflection

The prototype case of an' impulsive Gaussian beam, i.e. its time
variation is described by a delta function ; will be considered here.

A familiar approach to determine the impulse response is to apply
Fourier or Laplace's inversion to the solution obtained on the basis
of preassumed harmonic time dependence. However, the ease with which
the transform can be performed is markedly affected by the particular
form of the frequency response for a specific prohlem. For some cases
it might be possible to get understandable results from the inversion
formula, but in most cases it is not so feasible, The case of total

internal reflection of a Gaussian beam, especially in the range close
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to the critical angle [27], is an example of those latter cases.
Nevertheless, an attempt to get some insight into the nature of the
transient behaviour of an impulsed Gaussian beam is being considered
through utilizing the rather simple expression of a totally reflected

beam of equation (3.62).

3.4.2.1 Solution For The Gaussian Beam

From a careful inspection of beam propagation characteristics, as

is explained in Section 2.1.2, it is noticed that there are diffrac-
tion effects that accompany beam propagation away from the aperture.
These diffraction effects are frequency dependent as is implied by
equation (3.14b). Thus it is expected that a beam which is well
cpllimated at the waist, and has a time variation as §(t - zi/cl},
would have different characteristics as it reaches the interface.

To examine that, we consider the beam as described by equation (3.14b),

which by analytic continuation in the complex frequency plane, with

k = -is/ec , assumes the form
1 1
is exp{—xizﬁz/(ﬁ +s 1)}
Vx;52,,- 7)) = —¢ - (3.64a)

1 T ea[d + s !]2

with 0

-4
A= (2c2z,) % , & =w?/a’ (3.64b)
11 0 0

The inverse Laplace transform of (3.64a) will describe the field

nature in space-time configuration. To achieve that, the behaviour

of W(~is/c1) needs to be examined carefully in the complex s plane.
There are singularities at s = ~l/§0 , which correspond to a hranch

point due to the denominator, as well as an essential singularity as
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implied by the exponent. Physically, these singularities are en-
countered when diffraction effects come to be significant so that the
imaginary and real parts of the complex beam width as defined in
(3.14b) come to be comparable. However, the main concern here is to
examine the effect of total internal reflection. If the aperture is
located very close to the interface, diffraction effects will not

be significant, and the effect of the singularities at s = l/ﬁ0

may be disregarded. The reflected beam will be examined within the

limits of such an approximation.

The reflected beam may be formulated in terms of an inverse Laplace

transform as

wHie
1 (" .
wrefl(xr’zr’t) =53 J exp[s(t—zr/cl)]wrefl(xr,zr,—ls/cl)ds , (3.65)

w-ic
where X_,2_,-is/c is the analytic continuation of the time
wrefl( r? %y’ / 1) vy 1 f m
harmonic solution of (3.62) in the complex s plane. Defining a
new time variable t = t—zr/c s which is the time from the arrival
0 1
of the first disturbance at a certain point z. along the reflected

beam geometric optical axis, then the reflected field can be expressed

as
/ Wi
wrefl(xr’zr’to) = (1/2m® 2wr) Jaaiwexp(sto)'exp(iGo(ei)) .
EXP{-[(Xr-iGl(ei)c1/s)/wr]2}ds . (3.66)

It has to be noticed that G (ei) is frequency independent, and so
2
is Vs since the mirror reflected coordinates will he close to the

interface as well. Equation (3.66) can be rewtitten in the form
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Wi v
- . . 2 282
wrefl(xr,zr,to) (VI/ZWl) f- eXP(StO) eXpI,tr(l+.s<) 1ds
w—i
Hioo _
= (v1/2ﬂi) f exp(st0)°F(s)ds ’ (3.67a)
w—-io

with the constants V.o v, given by
= 1/ Yexp(iG_(9,)) i 67
v, = mw Jexp (i , O3 . v2 = elGl(ei)cl/xr s (3.67b)

and the problem now reduces to the evaluation of the jinverse Laplace
transform of the function F(s) . It should be noticed that F(s)
vanishes at the origin, i.e. zero frequency. Careful examination of
the properties of this function in the complex s plane, shows that
its inverse transform should exist. The derivation of this inverse
transform is carried out in Appendix C , where we ohtain for the
reflected field
. v'% . 2

wrefl(xr’zr’t) = [1/m W exp[lGo(Gi)]exp(—xr/wr){é(t—zr/cl)
v 2v %, 2y (e % - %

i( 1G1(6i)clxr/wr) Jl((ZGl(ei)clxr/wr)(t zr/cl) )Y/ (& zr/cl)

. _ 2n—'__ n__. 2N
. (t zr/cl) (-7 16 (8;)e /w1

n=1 n! *« (2n-1)!
0 +1 -iG (6.)c 2n -iG (0.)c 2n 4 G (8.) z  n-%
1" 1177 1175 1 Try 2,

+ z n!(2n—l)!( w ) ¢ W ) - 2 clxr(t- c )

n=1 T r W, 1

-ix ¢ G (ei) % %
(2] — 1 = (t-z_/ec ) ) . (3.68)
20, o= w? r
T

with 6(t~zr/c ) being the Dirac Delta function, J (x) is the
1 1 ,
Bessel function of order one [55], and Sn o are Lommel's functions
>
[17]. The above solution should be valid for any time t >z /c, but
r 1

it must be understood that it bears the same paraxial approximation

as in the time harmonic case.
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3.4.2.2 Discussion

There are significant differences between the configuration of the incident
and that of the reflected field as given by (3.68). These differences
stem from the incident field's impulsive nature, and the dependence

of the lateral shift on the frequency as described by equations (3.62)

and (3.63).

The first term in equatien (3.68) represents a geometrically reflected
impulse, with a sharp boundary, and is not displaced as was the case
for the reflected field in the timé harmonic analysis. However, this
impulse is modified, as it must be, by the geometric reflectance

p(ei) which is given by exp[iGo(ei)] in this case. It is then
followed by a wake which is given by the extra termé in equation (3.68).
These additional terms,in the form they appear in (3.68), do not give
an indication about the different physical aspects of the solution.
Nevertheless, a clearer physical understanding may be achieved by
examining the behaviour of the solution upon the arrivél of the early
response, mainly at t = zr/c1 or t0 = 0. In the classical case of

a liné or point source excitation this is termed the behaviour near
the wavefront, and it is usually obtained by examining the behaviour
of the field expressions in the complex frequency plane, for large
values of the frequency variable s. The asymptotic value of the
solupion in (3.68), for t0 = 0 , can be obtained by considering the

behaviour of the functions involved for small values of t0 . This

will yield
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IJbrefl(xr,zr,to) = {eXP(iGO(ei))/ﬂ%wr}eXp(—xlf/wﬁ ){GCtO)—ZiGl(ei)clxr/wﬁ

£ Gj(ei) cj
. 1 L 1 _ 2
+5 [ = Q- 2x /w )21} . (3.69)
r

The second term in (3.69),which is independent of t , arises from
0
the behaviour of the Bessel function for small argument ; mainly the

relation [55]

J (Lu) daJ

Lim (b ting, e din 5 15 G- ()] = 12, (3.70)

The last term in (3.69) appesars due to the last two quantities in
(3.68), and by making use of the leading term in the asymptotic expan-

sion of Lommel's functions [57].

It has been verified that the asymptotic value of the solution as

given by (3.69), can be derived through a rather differeﬁt approach.

If the field expression in the complex s plane as given by (3.67)

is asymptotically approximated for large values of s, i.e. as s»w ,

and the inverse transform of the obtained series expansion is evaluated,
the result will be identical to that of equation (3.69). This agree-
ment is in consistency with a Tauberian theorem [11], and provides

a method for checking tHe accurécy of the general solution as given in

(3.68).

While the first term in (3.68) or (3.69) represents an impulse, with
a sharp boundary behind it, the second term has a completely different
behaviour. It represents a field that appears as a discontinuous step

exactly at t = 0, and then oscillates similar to a damped sinusocidal
0
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wave for t0 > 0 . Moreover, the field of this disturbance vanishes

at the centre of the beam, exists on both sides with a phase différence
/2 on one side, 37/2 on the other, as compared to the initial response.
A similar effect was encountered in the treatment of the impulse response
of a wave guide by Collin [14]. As was mentioned earlier, Brekhovskikh
[10] treated a special case of a pulsed radiation that is bounded in
time and space according to an inverse square distribution. He found
that the reflected field, upon total internal reflection, consists

of two parts; a pulse with a similar configuration as the incident

one, in addition to a pulse with a modified form. While the first

two terms in (3.68) and (3.69) are similar in nature to those of
Brekhovskikh, we get extra terms due to the difference in the nature

of the incident field as assumed in Section 3.4.1.

The last two terms in (3.68) start to appear only after the sharp
boundary of the pulse, i.e. for t0 > 0. If their series represent-
ations are compared with the second term in (3.68), we notice that
they are bounded. Mainly, it is found that they decrease as t0
increases,‘and vanish as t -« ., While no specific criterion for
their nature could be established, it seems they present a wake that
trails after the sharp boundary of the impulse, as was the case with
the second term. This is a consequence of the assumed nature of the
incident field. 1In particular, the incident beam is being comprised
in terms of plane wave components, and each has a different phase

shift upon total internal reflection. 1In the transient analysis, it

is not expected that the responses due to the associated plane waves



84

will’arrive at a certain observation point with the same relative.
phases as they had at the start. We may understand this phenomenon
by realizing that a Gaussian heam can be constructed, in the harmonic
analysis, from the field of a line or point source, on hasis of
Huygen's principle, as was shown by Tamir and Oliner [51]. Hence, in
a two-dimensional configuration the transient behaviour of the bean
is expected to be related in a way to the two-dimensional time-space.
Green's function, or the problem of an impulsive line source. For
the latter, it was found that a characteristic of the solution is
the wake that trails after the sharp boundary of the pulse. 1In
particular, the response of an impplsive line source is described

by

Vpepy (1) = ﬁ(t—r/cl)/Zw(tz-rz/c?)% (3.71)

with H(t) being the Heaviside unit step function. From (3.71)

it can be immediately seen that the initial impulse lasts for an
infinitely short duration, butAthere is no sharp boundary behind the
wavefront. Thus there exist the "after effects'", which are in
violation of Huygen's principle [54], and are characteristics of the
two-dimensional, time~dependent Green's function. These “after
effects” and the wake that trails the initial impulse, as given by
the next three terms in (3.68) for t0 > 0, are close in nature,
egpecially in view of the fact that if a beam is made up of rays
coming from a line source distrihution at the image coordinates, each
ray will have a different corresponding phase associated with it due

to total internal reflection at the interface.
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chapter four

FIELD IN THE RARER MEDIUM UPON TOTAL INTERNAL REFLECTION OF A

GAUSSTAN BEAM

The transmitted field for a Gaussian beam at and around critical
incidence will be examined in this chapter. While Horowitz and Tamir
[27,29] treated the behaviour around, and‘exactly at ¢ritical incidence,
upon reflection of a beam, that is, having Gaussian or Cauchy profile,
only the Cauchy profile was considered in the rarer medium [28]. Ra et al
[47] employed Deschamps' [16] representation for the Gaussian beam to
s%udy the evanescent field in the rarer medium. However, their results
are restricted to certain regions in space and for a limited range of

the incidence angle _ei, mainly Bi > GC

Through the analysis of the reflected field around critical incidence,
Horowitz and Tamir [27,29] developed a unified theory for the Goos-—
Hinchen shift and related phenomena. The relation between this lat-
eral shift, and the diffraction effects which involves the lateral
wave field, and its interference with the geometric optical field

was analysed thoroughly. Moreover, they discussed in detail the prop-
erties of these lateral waves in the far field region as well as their

dependence on such factors as the beam width and the angle of incidence.

We recognize that the beam field extends into the region below the
interface, and therefore, it is expected to have a behaviour related

to the reflected field. Moreover, in order for the field to be
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continuous across the interface, the field in the rarer medium must
have some evidence of diffraction effects that occur in the denser
medium. Subsequently, examining the behaviour of the field in the
rarer medium will add more insight to fhe understanding of different
phenomena involved. Knowledge of fhe different aspects of the prob-
lem is required for applications involving. large aperture antennas

and laser optical systems.

In this section we consider the field in the rarer medium, upon incid-

ence of a Gaussian beam, for the total internal reflection regime. The

- field is evaluated through an approximate, but accurate, analytic sol-

ution by starting from equations (4.6) and (4.7) in [28]. The obtained
analytic solution is cbmpared with the exact numerical solution show-
ing very close agreement. The characteristics of the field will be
examined through a graphical display of the results. Through careful
inspection of the presented graphs, the nature of the field in the

rarer medium can be visualized and thus leads to a meaningful explana—
tion of the mechanism of total internal reflection and related phenomena.
By drawing conclusions from the observed behaviour of theAfield, the
aspects of the results are compared with available results for a simi-
lar case [28], as well as results that are of a common nature to both

the transmitted and reflected beams, such as lateral waves.

4.1 SOLUTION FOR THE FIELD IN THE;RARER MEDIUM

The field in this case is the same as was given by equation (3.30).
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However, for the case of the total internal reflection, the reflectance,
p(Y), and consequently the transmittance T(Yy) are complex. By using
equation (3.8c), the transmittance in this case can be written [28]

in the form

T(Y) = T(yy) + ely)rly) ' , (4.1a)

with

r(Y) = p(M/p(y;) - 1 , Y = klsinei . (4.1b)

Thus the field can be written as

¥ (x,2) = —p——

N [T(Yi)I1 + D(Yi)Iz] . (4.2a)
T cos .
i

The integrals I and I  are being given by
1 2

I = J exp{-[(y-v,)/2cos6,1* + i[yx + 8 h + B z]}dy , (4.2b)
1 : i i 11 2
12 = J r{y) - exp{—[(Y—Yi)/Zcosei]2 + i[yx + Blh1 + Bzz]}dy . (4.20)

In general, the integrals in (4.2b) and (4.2c¢) cannot be solved exact-
_____ ly. However, an approximate evaluation may be obtained by means of
approximate techniques. As was mentioned before in Section 3.1, the
major contribution for the integrals arises‘from points around vy = Y-
However, Yy is equal or close to Yo for total internal reflection,
which is the case under consideration. 1In such a case the square root
term in equations (3.8a) or (3.8b) accounts for a branch point singular-

Z
ity at the value = . Due to this singularity, the quantity (kz_Yz)g
y Y =Y. g ”

and consequently r(y) varies rapidly for vy = Yoo and this rapid
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variation affects the integrals (4.2b) and (4.2c). 1In order to evalu-
ate these integrals,we recall the approach of Horowitz and Tamir [27,
28] that was used for treating the reflection of beam waves as well

as the transmitted field for a Cauchy beam. Defining the variable
T=0-38= (sinb_ - y/k )sech, R (4.3)
c 1 i

where 0 1is as defined in Section 3.1, and the parameter & ,which
determines the deviation of the angle of incidence of the beam ei

from the critical angle, GC is given by

§ = (sinei - sinec)/cosei . (4.4)

The proper expansion of Bz(Y)’ and hence r(y) in the neighborhood
of critical incidence will be in terms of O% or T%. Retaining the
first threevterms in the expansion of 82 and the first two in the
expansion of r(Y), and by using (4.3), (4.4) and (3.8), the integrals

I and I can be written in the form
1 2

: %
I = (k cosei) + exp(Q) J exp {iultz + iazT - B%1?} . (4.52a)
1 1
e % e g H 2.2
12 = (klcosei) « exp(R) - f(%) {T%=(-8) }exp{Cux;‘+1a2T—B T°}dT,(4.5b)
where

Q = -k?w282/4+i{k xsinf +k zg +k h [cosB.+8sin6.~8%/2cos0.1} , (4.5¢c)
1 c 1 %0 11 i i i

2
- A = _ . -Sh A—2W6 '.
a klzg1 s O kl{ Xcosei+hs1n9i S l/cosei+zg2 k —§~] R (4.5d)

2

82

k?{w?/4-1ih /Zkcos® } , (4.58)
1 1 c
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and the Taylor expansion coefficients [28], &8 , & , £ are found from
o "1

the expansion of B as
2

_ = L E &
82 = kl nzo g, © (T°-(=6)%) , (4.5f)
A ;’ ) .
=k Zo g ()" , (4.5g)
_ 1
gn = E —é;;—z,—)—ﬁ ,.L_;2/=(_6);2/ ’ _ (4.5h)

and

e 2 . 20 % . . %,
f(Qi)— 4 (k1/k2) 81neicos GC/{cos 61(31n61+31nec)
2 b, . 2 .2 ' .
[cos®0, + (k /k )"(sin®6,-sin®6 )] b (4.51)

The preceding analytic formulation describes the field in the rarer
medium due to an incident Gaussian beam configuration. However, to
recognize the physically‘meaningful features of the problem through
this formulation, we have to proceed with the evaluation of the integ-

rals of (4.5a) and (4.5Db).

4.1.1 Evaluation Of The Integrals

The integrals of (4.5a) and (4.5b) involve branch point effects. Thus
it is important to identify the proper branch. This is achieved by
taking into consideration the radiation condition [27] which requires
that the imaginary part of 82 must be positive. Thus the imaginary
parts of T% and (—6)% must be greater than zero. The integrals

I and I can be rewritten as
1 2
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Z
I1 = (klcosei%(exp(ﬂ)){ J exp[—ocl"rz - icxz'r - B272%]dt
.0
N S 2.2
+ exp[lOLl’L' +io T - B*t“ldt} , (4.6a)
0
, % 5 2.2
I = (k cosO.) exp(R)-£f(0)i T exp[-a T° - i T - Bt ldT
2 1 i i . 1 2
% , ¥, . 2.2 . F
+ | T exp{lalT + ia T - Bétél}dr - i -Il} , (4.6Db)

0

A common participant in ail of these integrals is the quantity -
exp[—Bsz]. According to equation (4.5e) the real part of R? ‘is
positive, and >!B|>>1, in view of the assumption of a well defined
beam, i.e. kw>>1. Therefore, any of the above integrals will possess
a sharp peak around T = 0, and the contribution of the neighborhood
of that peak forms the major value of the integral. This suggests
that the integrand can be approkimated in that neighborhood in an
appropriate manner, for which a sufficiently accurate estimation can
be found. 1In essence, this is Laplace's method of integrals [13,15],

and we find that an excellent approximation is provided for 11 or I,

5
by considering the first three terms in the expansion of expf{ ;g‘i%}
B 1

4 ]
or T%‘exp{ iglz%} in equations (4.6a) and (4.6b), respectively.
1
The foregoing arguments have been verified, for several representative
examples, by exact numerical evaluation of (4.6a) and (4.6b), and
comparing it with the proper respective approximation which, for

example, in case of I1 will be
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[}

. %
I1 ~ (klcosei)exp(ﬂ){ J [1 - ulTZ + uiTZ/Z]exp(—iazT - B21?)art
0

o .
+ J [l:+ i@lT% - aiTz/Z]exp(iaZT - B272)dr} , | 4.7)
0
Table 4.1 shows a comparison between the exact numerical value of the
integral in (4.6a) and the approximate numerical value by computing
the integral in equation (4.7). The close agreement between the two
estimations can be easily noticed. Furthermore, it is expected that
the agreement will improve more for larger values of the parameter 8, and
hence,the beam width to wavelength ratio w/h1 » that is of more sig-
nificant practical importance. Nevertheless, a closed form expression
for I1 and I2 , in te?ms of an infinite seriés summation can be found.
By expanding the first exponent in both parts of Il, and also the first
exponent in 12 combined with T% in an infinite series about 1=0,
results in an infinite sum of integrals. Each can be evaluated accord-
ing to the formula [25]
)
JxV'l exp (-Bx’-yx)dx = (28)™V/% exply?/88%1 D_ (v/(28)%) . (4.8)
0
Making use of equation (4.8) and the identity (9.248.1) in [25], and

after some manipulation, we get

I1 = (klcosﬁi)'exp(ﬂ)°exp{—a2/882}'/fﬁ .

§ a?‘exp(—inﬂ/4)’ ( dz )
o { D s (4-9)
n=o0 n!(232)§%£ n/2 V28

and



92

TABLE 4.1

Values of the integrals in equations

N (4.6a2) and (4.7), for oo =o0o = 0.5
1. 2

Exact numerical Value of Numerical value of the
lBl the integral in (4.6a) approximate integral in (4.7)
100 (8.8551 + 13.3124)107° (8.8551 + 13.3134)107°
:' 2 . = 2 . =4
50 (1.7693 x 10 + i9.6571 x 10 )} 1.7693 x 10 © + 19.6624 x 10
-2 . -2 -2 -2
10 8.7584 x 10 + 11.2120 x 10 8.7582 x 10 + 1.2150 x 10
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V2meexplin/4-a®/88%]
I = (k cosB,)+exp(Q)£(8,) 2 :
2 1 1 1 (282)3/'4

» "f SO 1. eXp[-i5'IT(;:1—1)/4] . D (L)}_ iF 1y, ‘(4_10)

n=1 ! 5 2;i n/z V28 !

(n~1)1(28%)

with Dn(v) being the parabolic cylinder function of order n and
argument v [25]. As mentioned before, the first three terms in these
infinite summations are sufficient for a reasonable approximation.
Substituting equations (4.9) and (4.10) into (4.2a) yields the analytic
expression that describes the field in the rarer medium, which is re-
lated to the properties of the field in the denser medium. Again, as
a further test on the accuracy of our present épproach, we calculate
the exact numerical value of the analytic field expression obtained

by considering only the first three terms of the series summation of

equations(4.9) and (4.10). Then we evaluate (4.2a) by exact numefical

integration of the integrals I1 and I2 » The two evaluations are shown

in Table 4.2 , for a wide range of distances x , where close agree-

ment is noticed.

So far, the results are not in a form to emphasize the behaviour of
the transmitted field, nor can the different features involved»in the
process of the transmission of a Gaussian beam ét total internal
reflection be visualized easily. Nevertheless,considerable insight
into the physically meaningful features of the problem can be gained

through the following group of graphical presentations.
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TABLE 4.2

The transmitted field amplitude in the region immediately

below the interface in the rarer medium:

a) th values obtained upon employing the analytic results of (4.9)
and (4.10) in (4.2a). b) Values obtained by direct exact numerical
integration of equation (4.2a). The incident Gaussian beam amplitude

is normalized so that = 1.0 at the centre of the beam (xi=0),

Wy e
h1=0, and (k1/k2) = 1.94. The ratio x/w represents the distance
on the x axis, normalized to the beam width w which is IOK1 in

this case.

% th Ven
~2.0 0.080446 ©.081218
~1.75 | .15605 0.15363
-1.5 .27735 ©0.27593
-1.25 .45240 .45188
“1.0 67877 67944
~0.75 0.93921 .94129
-0.5 1.2019 1.2057
-0.25 1.4267 1.4323

0.0 1.5753 - 1.5827

25 1.6224 1.6312

.50 1.5624 1.5724

.75 1.4114 1.4220

1.0 1.2012 1.2126

1.25 .96978 .98172

1.5 .75022 .76256

1.75 .56401 .57676

2.0 .41935 .42369

2.25 .31422 .31882

2.50 . 24105 . 24526

2.75 | .1911 .19506

3.0 .15679 .16135
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4,2 DISCUSSION OF THE RESULTS

The results for the transmitted beam are presented in the form of a
group of graphs that show the amplitude of the field for a wide fange
of most of the parameters involved. For simplicity, h1 is taken to
be zero, and the’field values are normalized to the valué of the field
at the centre of the incident beam which is taken to be unity. The

%
ratio kl/k2 is taken to be 1.94 in all the cases considered here.

4,2,1 Field In The Geometrical Optics Range

This includes a description of the field directly below the interface
(z=0) and in the region of the existence of the incident beam and the
shifted reflected beam. Fig.4.1l shows the transmitted field profile
for different beam widths and the two polarization cases. It is
noticed that the maxima are shifted to the right of the incident
beam centre (x=0), an amount SC that varies with the beaﬁ width as
well as the polarization. That shift Sc’ normalized to the wave
length Xl in the first medium, is larger for parallel polarization
than it is for normal polarization,for the same beam width,and under
the same incidence condition. Thevvalue of SC increases by increas-—
ing the beam width, but the ratio of SC/W decreases. The maximum
value of the field is appreciably less than 2 for small beam width,
and is larger for normal polarization as shown in Fig.4.l. However,
as the beam width increases it comes very close to 2 and the differ-

ence between the two polarization cases cannot easily be distinguished.

The above ratio was chosen so that comparison can be made with

available results [27,28,29].

’
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————— Norma! Polarization
Pardllel Polarization

X/W
a) 3
!
b) X/W
o
W=1000 X\
c) L I ! T X/W
3

a. 4.1 The transmitted field in the rarer medium:

a) w = 10X , b) w = 100X , ¢) w = 1000X
1 1 1
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Moreover, the field is not symmetrical on béth sides of these maxima,
having a larger amplitude to the right than it is to the left for the
same distance measured on both sides of thé maxima.

To relate these results to the different aspects of the phenomena of
total internal reflection of a well collimated Gaussian beam, we re-
call the characteristics of the totally reflected beam at critical
incidence [27,28]. The centre of the reflected beam is shifted a
finite amount DC (the Goos-Hanchen shift) at critical incidence
(ei=ec), which depends on the polarization as well as the beam width.
‘The transmitted beam field, to an approximation based on the physical
optics consideration, will be the resultant of two fields. The

first one is that of the incident beam, which is strictly Gaussian

and with its centre at x=0. The other field is that of a reflected
beam, with its centre shifted to the right (x>0) by'the amount of Dc’
and which,in the dominant part of it,is Gaussian. As shown in Fig.4.2,
the resultant transmitted field, in the region around the centres of
both the reflected and incident fields, will result in a configuration
that is different in profile, with its maximum shifted to the right by
an amount SC. The larger the value of DC, the larger will be Sc’
and the smaller will be the value of the maxima for the transmitted
beam for the same beam width w. Horowitz and Tamir [27 ,29] showed
that at critical incidence, the Goos-Hanchen shift Dc is larger for
parallel polarization than for normal polarization by a factor of

(k /k )?>1. The behaviour of the field for the two polarization cases,
1 2
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as can be seen from Fig.4.1, and consequently the difference in the
value of the two corresponding.maxima as well as their locations are
consistent with the previously mentioned results. However, we must
cautiously recognize that this behaviour is relative to the beam
width w , since DC is relatively a small portion of the beam width
27 ] as it does not increase linearly by increasing w. It is worth-
while, at this point, to examine the variation of Sc for varying
values of beam width w. Fig.4.3 shows the approximate normalized
values of SC/)\1 , against the normalized beam width w/)\1 s for’both
polarization cases. We notice that SC increases by increasing the
beam width. Thus it can be concluded that Dc also increases by
increasing w , and that agrees with equation (46) of [27]. However,
the rate of increase of SC' is slower than the rate at which w isg beihg
increased, in view of the different respective scales in Fig.4;3,
which suggests that while the ratio Sc/w is large for smaller beam
width, it decreases by increasing the beam width. That behaviour ex—
plains to an extent the gradual shifting of the maximum more towards
x=0 for larger values of w as well as its increase in relative value
as compared to the transmitted profile for smaller w (Fig.4.1), keep-
ing in mind the way the preassumed Gaussian profile decreases far away
from its centre as defined by equation (3.12). Also, it is partially
due to this behaviour that the significant distinction between the
transmitted beam profiles for the two polarization cases, considering
the same beam width, is not clear for larger beam width w as it is

for smaller w (Fig.4.1).
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Thé»ratio Dc/w was shown [29] to be decreasing with increasing w ,
reaching zero for a beam of infinite width, which is in agreement with
predictions of classical electromagnetic theory [8], i.e. a vanishing
shift for an incident plane wave. In view of the aforementioned dis-
cussion regarding the relation of SC to DC and the behaviour in
Fig.4.3,it can be concluded that similar considerations would apply

to the ratio SC/W.

The foregoing conclusions were based on the physical optics approxima-
tions as implied by Fig.4.2. However, that kind of approximation does
npt yield a complete and exact quantitative picture regarding all the
phenomena involved in the present problem. As was mentioned before,
the resulting transmitted field as described in Fig.4.1 was not
symmetric on both sides of its maxima. The field is larger to the
right than it is to the left,when considering two points that are
equidistant from the field maxima. This non-symmetry is more distinct
and clear for a beam with smaller width w, than for that of a larger
w. This observation is in complete agreement with the expectations of
energy flow from the left to the right, that has a role in creating
the Goos-Hanchen shift, as was discussed by [ 7,28], and in detail by
[37]. 1Tt is clear that such a behaviour cannot be explained by strict
geometric optical terms, since the simple model of Fig.4.3 results

for a transmitted beam configuration that is always symmetrical with

respect to its maximum value. Furthermore, from Fig.4.1, it is observed

that the field decays differently on both sides. While the decay to

the left (x<0) is fast, it is slower to the right (x >0), and the
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field extends further on this side in a range that is several beam widths.
This range is out of the reach of physical optics considerations. We
recall the analysis in Section 4.1, and thé fact that the field result-
ing as a consequence of a branch singularity, constitutes diffrac—

tion effects»[28,52]. While fhese diffraction effects, at critical
incidence, are weaker than the geometrical optics fields, they constitute
a major factor in establishing the shift DC [28,29]. Furthermore,

they depend in part on the beam width w, and play a major role in

the properties of the shift Sc . Their effect regarding the present
problem will be discussed later.

!

4.2.2 Variation Of The Field With Penetration Depth

The discussion so far has been concerned with transmitted field charac-
teristics in the region immediatelyAbelow the inﬁerface (z=0). We»
also need to trace the field and its propagation characteristics in

the rarer medium for depths that are distant from the interface (z>0).
Fig.4.4 shows the normalized field values at different depths of
penetration (z = constant), and for different values of beam width w.
The distances in the x direction are normalized with respect to the

beam width in each case.

It is noticed that the field drifts more in the positive x direction
as 2z 1s increased. This drift is accompanied by a decay in ampli-

tude, as can be seen by the values of the maxima at different depths,

as well as a change in the field configuration. The non-symmetry of
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Fig. 4.4  YVariation of the transmitted field with the depth of
penetration z in the rarer medium at critical incidence:

a) w= 101 , b) w = 100X , C) w= 1000Al
1 1



104

thé field around its maximum value that was noticed at 2z=0 increases
more for larger values of z. bThis results in beam spreading more to
the right, and the field is by no means collimated as is the case

with the incident beam or the refracted beam for non-total reflection.
All of the above mentioned effects depend to a great extent on the beam

width w.

Further insight into the preceding observation can be gained through
the following considerations. TFig.4.5a displays the maximum value of
the relative amplitude of the field at different depths z; and for three
d?fferent cages of beam width w. It can be clearly seen that as the
béam width increases, the depth of penetration of the field increases.
Contoursbof constaﬁt amplitude, for !wt = 0.8[ , are plotted for two
different beams in Fig.4.5b, where both coordinates are normalized to
the beam width in every casé. From these contours we notice the shift-
ing property of the field towards the right, as well as the variation
of that shift as the beam width w wvaries. It is also clear that as
the beam width increases, the field contours move towards the interface;
hence the field will be contained within an angular region close to the
interface. This behaviour can be further emphasized by consideration
of Fig.4.5c in which the locations of the maxima are traced. We can
easily notice that as the beam width increases, the trace of the maxima
gets closer to the interface. Moreover, in view of the way the field
spreads on both sides of its maxima, as is displayed by Fig.4.4, it

is obvious that the field values in the region bounded by any of the

maxima curves in Fig.4.5c and the interface to the right (x>0) are
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stronger than the field values to the left of the same maxima curve.
These observations are in perfect agreement with results obtained
before, under the same conditions, for the Cauchy beam [28]. Further-
more, a similar interpretation in terms of energy transfer from one
side of the beam that results in field build up on the other side [36,

48], can be attributed.

The behaviour of the field so far seems to be in contradiction with the
physical optics expectation, where total internal reflection results
in a field that has infinite extent in the rarer medium and travels
pgrallel to the interface’of separation. However, from the previous
discussion about the effects of increasing the beam width w, it

can be seen that as the beam width becomes infinite,the incident field

will be that of an incident plane wave, and the results will be consis-

tent with the predictions of geometric optics. Furthermore, a simple
ray optical argument may be utilized to describe the basic behaviour

of the field in the following manner.

In the ray diagram of Fig.4.6a, rays are constructed for different
ranges of incidence angle ¢, in the denser medium. For a ray AO, thaf
is incident at an angle el< ec , there is a geometrically reflected
ray OA' , and a ray OA'', that is refracted according to Snell's law
at an angle et>el. As the angle 61 increases, et starts increasing
until it reaches 7/2 if 61 coincides with ec' This is explained by
the ray CO, which results in a totally reflected ray OC', and a re-

fracted ray OC'' where the latter propagates parallel to the interface
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in fhe second medium. Any ray that has an incidence angle greater
than the critical angle will always have its refracted component pro-
pagating parallel to the interface, as is the case with the ray BO.
According to the Fourier representation we use, it was mentiéned

in Sections 3.1 and 3.2 that the Gaussian beam is comprised in terms
of an angular spectrum of plane waves, with density that is described
according to the speétral density function of equation (3.13). If the

beam is incident at the critical angle ec’ then the central component

of the spectrum will have the same angle of incidence GC » and hence
it will have the behaviour described by the ray CO. For the remaining
components, half of them will have angles of incidence greater than
ec’ and the other half will be at angles that are less than GC. The com-
ponents with 8>6C will be totally reflected and therefore will con-
tribute to the refracted field in the direction of the rays OC'' and
OB''. However, the other components that have angles of incidence
less than ec’ will follow a path similér to that of the ray AOA''
where each component will be refracted with different refraction
angle depending on the particular incidence angle, which in turn de-
pends on that component's particular location in the spectrum. Thus,
we will have half of the spectrum propagating parallel to the inter-
face,and the other half will propagate at refraction angles that»are
in general less than 7/2. To a first approximation, the superposition
of all of these components results in a field which spreads within an
angular domain close to the interface, and does not propagate parallel

to the interface. This is in agreement with the results stated above.
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It was mentioned that the beam width w plays a major role in deter—
mining the transmitted field spread and angular domain. This aspect
can also be expldined in terms of the behaviour of the spectral func-
tion in Fourier analysis. We recognize that the spread of the spectral
function is inversely proportional to the beam width, as implied by
equation (3.13). This property is displayed in Fig.4.6b, where three
different spectr;l functions that correspond to three different values
of w are shown. A beam with smaller w will have its spectral
density spread more in the frequency domain. Thus the components of
the spectrum with angles of incidence less that BC , will have a wider
angular range. This will result in a range of refraction angles that
are far different from T/2 , and the resultant transmitted field will
be at an angle to the interface as mentioned before. As the beam
width increases, the spread of the spectral density function decreases.
Hence, the angular range of the components with 6 less than GC be-
comes more narrow. This results in refraction angles that are more
closer to 7/2. Therefore a beam with a larger width will be contained
in a smaller angular domain that is closer to the interface. In the
limit as the beam width reaches an infinite value, which is the case
of plane wave incidence, the spectral demsity function results in only
one central component and we will obtain a field that is in agreement

with the geometrical optics results [8 ].

4.2.3 Diffraction Effects

In the results presented so far, there are some observations that
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eluded satisfactory explanations. For example, we stated that in the
region immediately below the interface (z=0), the field decays fast

in the region to the left (x<0), while this decay is slower on the
other side,and a non-negligible field is present to the right,outside
the range specified by geometric optical measures. Moreover, this
non-negligible field amplitude is extremely dependent on the beam width
W, as well as the polarization. Even in the range covered by geometric
optical fields, the transmitted field distribution, if viewed in
terms of distances along the x axis that are normalized to beam width
values, is different for different beam widths. Beams with smaller
values of w result in fields that are less concentrated to the left
and extending more in the positive x direction,»than those fields

resulting due to beams having larger widths.

It should be recognized that the results presented here come from fhe
field expression of equation (4.2), which must give an indication of

the transmitted field in the rarer medium, with all of its wave species.
There is a branch singularity.in that field expression. whose contribu-
tion must be implicitly contained in the present results. While the
significance of the field due to this branch singularity has not been
explicitly analysed for the transmitted Cauchy beam at critical incidence
[28], its effect for the reflected field is well understood. As was
mentioned in Section 2.3, Horowitz and Tamir [27,29] discussed the
properties of the field due to this singularity, which presents lateral
wave fields in its far and near ranges, gnd they showed that such a diffrac-

tion effect [52] has a major effect in deciding the Goos-Hanchen shift.
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Since the transmitted field is related to the reflected field, these
diffraction effects must be implicitly contained within our solution
as given by equations (4.2), (4.9), (4.10) and their role needs to be

emphasized.

Generally, these diffraction effects constitute a field which is weak-

er than the geometric optical components [52], and thus their detection
is more difficult in the spatial range considered so far, as they occur
essentially together with other field components. However, it might

be possible to observe the lateral wave field under certain exception-

al conditions. For example, if certain specific spatial regions which

are accessible to diffraction effects more than to geometric optical

fields can be found.

The lateral wave field travels exactly parallel to the interface follow-
ing the path of the ray OB'' in Fig.4.6a, and the field amplitude has
its maximum value in the region just below the interface in the rarer
medium (z=0). We showed before that the major part of the transmitted
field in the geometric optics range travels at an angle to the inter-
face. This suggests that in the spatial region which is just immediately
below the interface (z=0), and extends in the far range to the right,
i.e. several beam widths away in the positive x direction, diffrac-
tion components have an access to such a range and they will almost

have the major contribution in the non-negligible field that exists
there. Therefore, the properties of this field should largely have a

lateral wave nature, and this will be examined here.
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Fig.4.7 shows the field for both polarization cases, for a beam width>
of lOOXl, at z=0, and for a wide spatial range along the x axis.

It is clear that the field decays fast in the negative x direction
to the left, and it eventually vanishes in a distance of a few beam
widths. 1In the positive x direction the field starts to decay slow-
ly at a distance equal to 3w , until it reaches about 4w where the
field decays slowly and at a different proportional rate. Moreover,
the distinction between the two polarization cases starts showing up
gradually starting at a distance that is approximately equal to 2w ,
up to a distance of about 4w where the difference reaches a nearly
constant value, with the field for the parallel polarization case being

larger.

It was shown through experimental [2 ,12] and theoreﬁical investiga-
tions[28J, that the field of a lateral wave fans out gradually,away
from the geometric optical field and thus occupies a very wide region,
and its spatial reduction with distance in the far range is proportion-
~al to X_Z/S. Checking this rate of reduction against the decay of the
field in Fig.4.7, it is found that starting at a distance of about

X = 4w the agreement is up to two decimals and increases with in-

creasing the value of x.

We recall from the properties of lateral waves as discussed by
Osterberg and Smith [44 ], Tamir and Oliner [51], that the field ratio
for parallel polarization is related to that of normal polarization

by the ratio (k /k )2. This is precisely, up to three decimal points,
102
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the ratio of the fields in Fig.4.7, for the far range of x, where
the difference of the two curves stays approximately constant. We
also recall the recent work of Horowitz and Tamir [29 ] and Horowitz
[28,30] which deals with the properties of lateral waves at critical
incidence. They discussed the lateral wave in the near field, in the
denser medium, where it was shown that it presents an interference
mechanism that is destructive to the left, and constructive to the
right. There is an excitation coéfficient for this lateral wave that
is given by f(ei),as in equation (4.5i), which reduces to the afore-
mentioned ratio of (kllkz)2 at critical incidence. The range of
2w<x<5w was defined to be a transition region between the Gaussian

X 3/2 variation

variation exp[-(x/w)?] of the reflected beam and the
of the trailing illumination of that beam, i.e. lateral waves in the
reflection domain. The field behaviour as shown in Fig.4.7 agrees
with their results, thus showing that lateral waves also extend into
the region below the interface with similar properties.  Moreover,
lateral waves must present a similar interference mechanism for the
transmitted beam, as is the case with the reflected field. While such
an effect is not obvious from the field equations of (4.9), (4.10)

and (4.2), it is dimplicitly contained in the field graphs of Fig.4.7
and Fig.4.1. The difference in the transmitted field behaviour for
positive and negative x , as well as its non-symmetry about its
maxima may be attributed to such an interference effect. Furthermore,
the lateral wave is larger for parallel polarization and this explains

the difference in field configuration for the two polarization cases

in the near field region. However these differences in field configura-
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tion were dependent on the beam width as well. Therefore, we need to
consider the behaviour of the field in the far range for different

values of w.

Fig.4.8 represeﬁts the transmitted field for two different beams whose
beam width ratio is Wl/Wz = 100. In addition to the previéus properties
contained in Fig.4.7, we notice different characteristics for the

field in the far and near ranges. For the beam with smaller width,

the field in the fér range is larger than that for a beam with larger
width. The ratio of the two is very close to 10, as can easily be

seen from Fig.4.8. This suggests that the fields in the rarer medium in
'the.far range which are dominated by lateral waves vary according to

the inverse square ratio of their beam widths, which is in agreement
with the result obtained for the lateral wave field in the denser

medium [29]. Furthermore; we can conclude that the tail end of the
non-vanishing field at 2z=0 represents an extension, in the rarer
medium, to the trailing illumination [51 ] that accompanies total internal
reflection of a beam; and which decreases as the beam width increases
reaching the limit of the nonexistence of a lateral wave for plane

wave incidence (w=%).

From the observations mentioned in the previous'paragraph, an inter-
pretation can be introduced for the difference in the transmitted
beam profiles in the near field range for large and small beam widths.
As the lateral wave field amplitude is larger for a beam with smaller
w , its effect should be more noticable in this case. The effect of

the interference mechanism that is attributed to the lateral wave field
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[28,29], will result in a larger value for the ratio ’DC/w, and hence in
a larger ratio for Sc/w, for a beam with smaller width, as can be visual-
ized from Fig.4.3. This will contribute to the difference in the prop~

erties of the field profiles for beams with different values of w.

Whereas the main qualitative aspects éf the far range field discussed
above are consistent with theoretical and experimental descriptiohs of
lateral waves, we recognize that there is a slight difference in the
quantitative compariéon. As mentioned before, lateral waves were not
expressed in their separate analytic form, but were rather predicted
according to the field equétions of (4.2), (4.9) and (4.10). 1In these
equations there are approximations in both the analytical and numerical

procedures involved. Moreover, the assumption that the field in the

“far range and for z=0 is dominated by the lateral wave field is based

on the approximation that other field components will have a vanishing
amplitude in this range. However, as z increases, contributions from
tﬁe other part of the field cannot be disregarded, expecially in view
of the éngular spread of the beam. This is the reason why the exponen-

tial decay of lateral waves in the =z direction away from the interface

110,51] cannot be explicitly deduced from the present approach.

Even for a beam with smaller w , that results in a lateral wave field
with larger amplitude, the spread of the beam in its angular
domain is more pronounced,' which makes the distinction of the lateral

wave field at any 2z # O plane more difficult.
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4.2.4 Field At Angles Beyond The Critical Angle

The transmitted field encounters some major changes as the incident
beam angle Gi comes to be larger than the critical angle Sc. The
field becomes more concentrated in the region just below the interface
and in the incident and reflected fields' range, as can be seen from

Fig.4.9. There is also more drift towards the positive x direction

‘

in that range. However, at a distance of about x = 2w the field
starts decaying again. As the depth of penetration increases the’
field amplitude encounters a reduction that increases by increasing
the incidence angle ei. This behaviour is shown in Fig.4.10, where
it is also noticed that the field drifts more to the right, thus
occupying a smaller angular domain that is closer to the interface.
Such aspects can be clarified more by considering the field amplitude
as it varies with =z , at three different planes, i.e. x=0 and x = +y,
as shown in Fig.4.11, for ei=ec+.5° along with the corresponding
values for ei=ec . These observations are in agreement with previous-

ly obtained results [28,47].

The classical expression in the literature [28,51,52] fof a lateral

wave field pertaining to points at the interface (z=0) in the denser

medium shows that the amplitude of the field, for a certain beam width,
decreases as the angle of incidence exceeds the critical angle. The

decay of the field amplitude at any incidence angle ei » as compared

to the amplitude at critical incidence [29,52], is given approximately accord-

ing to the ratio [f(@i)/f(ec)]'exp{—(kIWG/Z)z}, where f(@i) and § are as
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Fig. 4.10 Variation of the transmitted field with =z for

incidence angles beyond the critical angle (w=lOA1)
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given by equations (4.5j) and (4.4) respectively. Since the lateral
wave field extends in the rarer medium, a corresponding decay must
hold in our presentation for the spatial range in which we shpwed
that the field exhibits lateral wave characteristics. This is pre-
cisely the behaviour of the field in its far range, as can immediately
be seen from Fig.4.12. The agreement with the above mentioned decay
ratio holds up to a second decimal point in the far range of the
field, mainly starting from a distance of about x = 4w as is obvious
from Fig.4.12, where the field values are presented for three cases

-of the incidence angle Gi that are different from ec .



123

N ’ - -
( YOT = & ‘uogaezyaeyod ToyT=aed) ﬁm 978ue 9O5USPTOUT 8yl JO s8ni=a

3Ju212JJIp 03] ‘sofuexl aej pue Jeou oy3l UT PTSTJ PoIITUSUBI] Byl

1'% *S14

Crmeney
=
oo
g




124

chapter five

SUMMARY AND CONCLUSIONS

The problem of electromagnetic beam wave interaction with a plane inter-
face separating two dielectric media is considered, along with its
different features. The rapidly developing field of integrated optics,
where electromagnetic beams are widely used, makes the present problem
of significant practical interest. Moreover, in the design of optical
circuit-elements, which are used in beam guiding and transmission, and
in applications regarding millimeter waves, the different involved

phenomena investigated here could be of extreme importance.

While the phenomena related to total internal reflection of a light
beam have drawn the interest of physicists since the end of the last
century, there still exist some unresolved questions regarding the
general aspects of reflection and refraction problems. In addition

to clarifying some of the aspects related to total internal reflection,
the present investigation leads to some new phenomena related to the

problem in the case where total internal reflection is not encountered.

The choice of a profile for the beam is an important aspect from both
analytic and practical points of view. The Gaussian profile has received
substantial interest recently, in view of its accessibility to analysis
as well as its relation to laser beams. Anticipating future experi-
ments we adopt this profile as an example for a well defined, symmetric

collimated beam in the major part of this work.
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In the first phase of the present dissertation the case of regular
reflection and refraction, i.e. excluding total internal reflection

is considered. Through a rigorous integral representation, the total
reflected or refracted fieldsare comprised in terms of geometrical
optics fields, and additional higher order components. These extra
terms, which are not explainable on basis of geometrical optics consid-
erations, represent a correction that will contribute significantly

towards the structures of the reflected and refracted fields.

Consideration of these aspects for an incident Gaussian beam, shows
that the additional terms, for either the reflected or refracted beams,
represent a set of modified complex Gaussian beam modes. Examining the
analytical properties of these new modes, we find that while they are
not orthogonal as is the case with the conventional modes of a laser
oscillator, they satisfy a certain bi-orthogonality relationship.
Moreover, they are symmetric, and in view of their greater simplicity
provide a new tool of describing beam scattering in more complicated
and involved problems. They play an essential role in the description
of the beam scattering process treated here. In particular, it is
found that there exists a beam shifting or deflection phenomenon, which
is different in nature from the Goos—Hanchen shift, and is a character-

istic of both the reflected and refracted beams.

This shift is relatively small for either polarization cases as it depends

on the square of the ratio of the wavelength to the beam width, which
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is a small ratio for a well defined beam. Since the shift increases
linearly with the distance off the interface, it displays an angular
deflection of the optical axes for both the reflected and refracted
beams. This is a principal difference in the nature of this shift

as compared to the Goos—Hanchen shift. Moreover, the angular beam
shift depends on the behaviour of the reflectance or the transmittance

and their higher derivatives,which in turn depend on the incidence

angle of the beam, as well as the refractive index. Thus, only for
beam incidence at a principal angle Gi » for which the reflectance or
the transmittance displays appreciable slope, and for appreciable
distances off the interface, should the beam shift be of practical
significance. The range of the incidernce angle, i.e. whether smaller
or larger than the polarizing angle, in addition to the polarization,
determines the direction of the shift for either the reflected or

the transmitted fields, which could be determined by judicious inspec-
tion of the behaviour of the reflectance or the transmittance, respec-

tively.

The region in the vicinity of the Brewster angle is recognized to be

a transition region, within which the reflected beam properties change
from backward to forward deflection. At polarizing incidence, it is
shown that there still exists a reflected field, whose characteristics
are analysed and explained in terms of higher order reflected beam

modes. While this result is in contradiction with geometrical optics
expectations,it is readily explainable from the properties of the angular
spectrum representation as implied by the properties of the spectral

density function in the utilized Fourier analysis.
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The refracted field is described hy the use of a convenient representa-
tion, where»the beam structure for non-total reflection is analysed.

In addition to effects which are nearly similar to those encéuntered
for the reflected beam, the refracted beam undergoes a change in beam
width which depends on the refractive index as well as the angle of

incidence.

In the angular spectrum representation utilized here the different
characteristics_of different beam profiles are described through their
different sﬁectral density functions, which show nearly similar behaviour
for all symmetric collimated beams. Since the process of beam: reflecj
tion and refraction is affected to an extreme degree by the character—
istics of their spectral densities, it has to be anticipated that all
collimated beams would encounter the same effects. This is verifiéd

by considering the problem for a beam with a Cauchy profile, where
explicit analytic results are obtained and compared with those of a
Gaussian beam. It is noticed that the main features of the involved
phenomena are also present in the case of the Cauchy profile. This
points out the generality of the results presented here, as was the
case with the Goos-Hanchen shift, in spite of the different aspects
causing both phenomena. However, it should be noticed that results

are tractable and explainable as long as the incident beam is well
defined and collimated. If the beam definition deviates from these
conditions, other effects arise and have to be taken into considera-
tion. The considered case of an incident field due to a truncated

plane wave provides an example for these latter cases.
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It is also verified that, by introducing some modification on our
approach, the classical expression for the Goos~Hanchen sﬁift, which
is valid for the range of incidence not too close to the critical
angle, can be straightforwardly obtained. Such an expression, in its
simple form, is utilized in examining some aspects of the transient
phenomena upon total internal refléction. It is found that if the
incident beam is impulsive in nature, the totally reflected field
changes substantially from its steady state form. The early response
due to an incident'pulse is a reflected pulse, as is expected,
followed by a wake which is a consequence of the preassumed radiation

as well as the total internal reflection process.

The last aspect of the present work clarifies some of the unresélved
questions regarding the existence of the field in the rarer medium due
to a Gaussian beam that is incident at or around the critical angle.

It is found that the transmitted field in the region immediately below
the interface, in its far and near ranges is affected by the reflected
field nature and the different wave species involved. 1In particular,
diffraction effects that are strongest in the vicinity of the critical
angle and contribute towards the reflected field structure and its
lateral displacement, play a similar role in establishing the behaviour
of the transmitted field. These observations are in consistency with
the nature of the phenomena existing around critical incidence as well"
as the continuity of the fields across the boundary of separation.-
Moreover, it is noticed that the transmitted field spreads as it propa-

gates in an angular domain that is different from grazing angles.



129

This aspect, while being in contradiction with geometrical optics pre-
dictions, is explainable in terms of the characteristics of the spectral
dénsity function and éimple ray optical considerations around the
critical angle. The beam width is a major parameter in establishing

the various features of the transmitted beams. As the beam width in-
creasés, and the incident field in the limit approaches a plane wave,
results reduce to those deduced on the basis of geometrical optics

predictions.
Suggestions for Future Research

While the angular beam shift has been treated for a Gaussian beam, and

for the less practically important case of a Cauchy profile, its

characteristics for beams due to large aperture antennas or any bounded
electromagnetic radiation in different practical problems, provide a

subject that should be of both theoretical and practical importance.

The modified complex Gaussian beam modes resulted in the present work
from an integral representation over an angular spectrum of plane waves.
However, when complex values are assigned to the source coordinates in
the expressions for the field radiated by a line or point source, the
resulting fields can provide a representation for the fundamental
Gaussian beam mode. This fact may be utilized to describe the proper-
ties of the conventional, as well as the modified complex higher order
Gaussian beam modes. Investigating these aspects for.higher order modes

may lead to a better understanding of their general behaviour, especially
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when treating more involved and complicated scattering problems.

In the transition region around the Brewster angle GB , an anti-
resonance effect was observed. In particular, it was noticed that the
amplitude of the first reflected component increases when approaching
GB, and it attains its maximum value exactly at the Brewster angle.
This phenomeron requires further investigation to examine its relation
to the existing zero that is displayed by the reflectance at GB.
The analysis presented for the regular incidence case are not valid
once the critical angle is approached, as total internal reflection
phenomena start to appear. However, the transition in this range from
angular beam deflection to the Goos-Hanchen shift around critical
incidence needs to be examined. In particular a unified approach is
needed to provide an explanation of this transition region. This was

not possible in the present analysis due to the analytic properties

of the functions involved .

From the transient analysis of a totally reflected Gaussian beam in
the range beyond the critical angle, it is recognized that the tran-
sient problem is rather involved and tedious. A complete description
of the transient phenomena has to include analysis of the lateral
wave, which displays different characteristics for the transient
regime, as well as the field in the rarer medium. Rigorous examination

of these different features should become rather rewarding.
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Properties of the transmitted field in the rarer medium at and around
critical angle were examined through graphical representation of the
computed results., This did not allow specific identification of the

different wave species that constitute the transmitted field in

their explicit analytic formulation. Further investigation of the
rather involved analytic expression for the transmitted field provided
in the present work shall contribute towards a complete and precise

understanding of such a physically significant problem.
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Appendix A
EVALUATION OF THE INTEGRAL IN EQUATION (3.15a)

To obtain a solution for (3.15a), the relevant integral expression for

general n may be written as

Eﬁ = Bn(ei) J Onexp[—(Oklwr/Z)z—iklcxr]dO . _ a.1)

-0
Defining B = (klwr/Z)2 , O = iklxr » and separating the integral so

that

fﬁ = Bn(ei){ J o"exp [-BoZ-ac]dg + (-1)" f o"exp[-Bol+ac]do} . (A.2)
0 0

Making use of the relation [25]

J x" texp [-Bx®-yx]dx = (28)_v/2F(V)EXP(YZ/SB)D_v(Y//fé) , (A.3)
0
then (A.2) becomes

T =8 (0,028 ™2 rirlyexpl T2/ (801 -

{ 1)(E/(zﬁ)%) - D l)<4&/<2§>%)} , (A.4)

D—(n+ ~(nt+

where Dn is the parabolic cylinder function [39], being related to

the Hermite polynomial as

Dn(z/Z%) = 2—n/2exp(~zz/2)Hn(z) . (A;S)

Using the linear relation [25]

- Tt T . LI .
DV(Z) = P [exp(zvl)D_v_l(lz) + exp (- Z+vi) D_v_l( iz)] , (A.6)

it can be shown that (A.4) results with (A.5) in

I = ian(Gi)Zﬂ%Cklwr)_(n+1)Hn(xr/wr)exP(fx;/wi) . (A.7)
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AEEendix B

EVALUATION OF THE FIELD INTEGRALS FOR THE CAUCHY BEAM

For the evaluation of (3.42), we consider the integral

_ o _ sp2.2
Jwexp( klbIOl 1k10xi 1810 Ydo

i =
0
- 0
{ve]
= J exp[-ik o(x,~-ib) - iB%0?]do
1 i i
0
[oo]
+ J exp[ik o(x,+ib) - iB2%c?ldt
1 1 1
0
=1 +1I . (B.1)
01 02
Consider , for example, I ,» which through a change of variable

01

can be written as

H
I

. (l/Bi)exP(iu2/4) J exp(-it?)dt

0/ 2 :
= —ikl(b+ixi)/Bi (B.2)

Q
I

and yields [22]
1= (/B exp(ia2/4)- (1/2)%-{(1/2 + 1/2D)-[C(a/VID)-15 0/ VID 1}, (B.3)

with C(z) and S(z) being Fresnel integrals, which are related to the

error function through the relation [39]

C(z) + iS(z) = 1/2(1+i)erf(/m[1-i]z/2) . (B.4)

Utilizing (B.4) in (B.3) and evaluating 102 in a similar way, the
result in (3.43) is obtained. The evaluation of the results in (3.44a)
and (3.45a) follows identical steps. For (3.44b) and (3.45b) use is

made of the above results as well as the relations
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n

In = j tnexp[at-iﬁztzjdt = gﬁh-j exp@it—ithz)dt . ' (B.5)
1} . aOL Q
and the relation [25]
n+, a
= 2 :
s erf(x) = (1) (2/¥/mMexp(-x YH_(x) , (B.6)

with Hn(x) "being the Hermite polynomials as defined in- (3.160).
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Appendix C
EVALUATION OF THE INVERSE LAPLACE TRANSFORM IN EQUATION (3.67a)

To obtain a solution for (3.67a), we look for the inverse Laplace

transform of TF(s) , which can be written as

F(to) =75—1 {exp(~tf,[l+v2/812)}

=Jj_1{[exp(—ti)]'[exp(—szti/s) - exp(—tivi/sz)]} . (c.1)
Defining
2v2t:_ =8 , vzot; = g2 , (C.2)

then (C.1) takes the form
F(t ) = 'lexp(-28/s)] * L 'exp(-d?/s?)]

=F (£t ) *F (¢t ) . (€.3)
1 0 20

The evaluation of F (t ) dis performed using some functional relation
0

in [18], and is given by

) (C.4)

1 -1 L 1
F (t) =68(t) + &%t 21 (287%¢%
1 0 0 -0 1 0

where I (x) is the modified Bessel function of the first kind, with
1

unity order [55]. For F (t ) , a series expansion is followed and
2 ¢
evaluated term by term, where the result comes to be
© t 2n+1.(fl)n.(d)2n

F(t)=26(t)+ ) L . (C.5)
2 0 0 n=; n! (2n-1)!

Then F(t ) as defined in (C.3) can be ohtained from (C.4) and (C.5)
0

upon making use of the convolution integral
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t
Q
F(t ) = J F (0)F (£ -1)dr
0 0 1 2 0
Lo Lz L2 o (£ -1)2"71 (-1)"a?"
= J [§(T)+e=T °1 (28%7%]-[&(t -T) + Z 0 ldT.
0 ‘ ! o n= (2n-1)1 n!

(C.6)
Upon making use of the properties of the delta function, equation

(C.6) will result in

- n—1(_l)nd2n
T TP 0
F(t ) = 8(t )47t °1 (28%¢%) + ) + 1 , (C.7)
0 0 0 1 0 n= (2[1"’.]_) ! n!

where Iq is defined by
t

[0 - =% % %
} oo g® J (tO—T)2n 1?1 (2c®T%)dT . (c.8)

X
I =) 0é’l
" on n=1 0

n W

Any of the integrals an in (C.8), can be evaluated by two different
and separate approaéhes. The first one is by using the series repres-—
entation of Bessel functions and evaluating the resulting integral

term by term through the relation [53]

X

j Ya_l(x—y)s—ldy
0

1
2mi

F'(@)T (B)exp (xs)
Sa+B

k+ico
f ds
k-

_ Il . X@+B“1 (C.9)
T (o+8)

and then summing over the resulting series. An alternate approach

would be to use a modification of Sonine's integral [55]

/2 S (z)
j a0

J (zsin®)sin U(0)-cos2VT1(g)dp = —LHVLV=UT
u uw; vl
0 27 "z T

Both approaches give for (C.8)
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Iq - z (._l)n+1’d2n

. % L
(4ic)t0n g (2877, (€.11)
n=g

20, 27—

with Sn being Lommel's functions [17]. Upon substituting the
3

results in (C.7) and (C.11), (3.68) is obtained.
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