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ABSTRACT

The aspects of electromagnetic beam wave scattering aË a planar ínter-

face separating two lossless, homogeneous, isotropic dielectric media

are considered. A general procedure is presented wherein t.he reflect-

ed and the transmitted fields for any rvell defined, symmeËric and

collimated beam can be thoroughly analysed. The fields are expressed

as exact integral representations in terms of a continuous plane wave

spectrum, rvhere the spectral densíty functions play a substantial ro1e.

Particular emphasís is given to the Gaussian profíle which represents

the d.ominant beam mode in the radiatíon produced by a laser oscillator.
I
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The range of regular i-ncidence, i.e. below the critical angle of total

internal reflection is considered first. Newly identified complex

Gaussian beam modes are found to result from the interaction process.

The existence of an angular beam shífË, of both the reflected and Ërans-

mitted fields, has been verífied by virtue of these higher order beam

modes. The different aspects of this angular beam shifË are analysed

and discussed. At polarizing íncidence, it is shovm that there sËil1

exists a reflected field whose characËeristícs are analysed and des-

cribed in terms of tÎ¡-ese higher order reflected beam modes. By consid-

ering the problem for beams with non-Gauss.ian profiles, such as a

Cauchy beam or a truncated plane wave, the generality of the repolted

phenomena is established. fn particular, it is found that ttLe angular

beam shift is a characterÍstic of the reflection or refraction process

f or any r,¡ell def ined, symmetric and collimaËed beam.



Two aspects are considered for the t.otal internal reflection regime.

The Goos-Hänchen shift is analysed, in the ïange far beyond Ëhe critical

ang1e, along with some aspect,s of the transient behaviour of a Gaussian

beam upon total internal reflection. The penetraËion of the field irr

the rarer medium, due to a Gaussian beain that is incident at or beyond

the critical angle, is also considered. In particular, the field

features in the rarer medium, with its different rrave species are

thoroughly and carefully analysed. llhile the obtained results are ín

agreement with previous predictions, they are, as expected, Ín contradic-

tion \,rith geometrical optics predictions.
i
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RESI]I4E

Considerons les propriétós dtun faÍsceau électromagnétique dans le

plan de séparation de deux milieux diélectriques sans pertes, homogènes

et isotropiques. Afin de permettre une analyse complète du champ

réfléchi et du champ transmis, une méthode génárale est introduite;
elle est applicable à tout faisceau symétrique et collimaté correcte-

ment défin1. Les champs sont exprimás par des intágrales exacËes quí

introduisent un spectre dtondes planes, dans leque1 1es fonctíons de

densité spectrale ont un role important. Le cas du faisceau avec un

p5ofi1 Gaussien est traité en détail, êtant donné qutun oscillateur

laser rayonne un faisceau dont le mode dominant a un profil Gaussien.

LV

En premier lieu, ltincidence à un angle plus petit que 1'ang1e critique

de réflection totale est consídérée. 11 est etabli que les modes

complexes recemment découverts résultant de Itinteraction entre 1es

faisceaux. L'existence dtun déplacement angulaire des faísceaux réfléchi

et transmis a été vérifiáe en vertu des modes drordres élevés. Les

différents aspects de ce déplacement angulaire sont analysés et discutés.

11 est démontré qutun champ réfléchi existe, môme lorsque 1'angle

drincidence est polarisant ; 1es caract6rístiques de ce champ réfléchi

sont analysées et décrites en fonction des modes d'ordres élevés. La

généralité du phénomène rapporté est établie en considérant des faisceaux

qui n'ont pas un profíl Gaussien, tels que 1e faisceau de Cauchy ou

qutune onde plane tronquée. En particulíer, il est démontré que le

déplacement angulaire est un phènornène caractárístique de la r6flection

ou de La rêf.raction de tout faisceau symétrique et collimaté correcte-

ment définí.



Dans le cas de réflection totale, deux aspects sont consídérés. Le

déplacernent de Goos-Hänchen est analysá pour un angle drincidence plus

grand que ltangle crÍtique de ráflection totale et une analyse du

comportement en r6ginre ËransiËoíre dtun faisceau Gaussíen à incidence

critique est présentée. En partículier, les propriétés du champ dans

le milieu le moins dense, alnsi que les différentes sortes d'ondes du

champ, sont analysóes en d6tai1.. Bien que les résultats obËenus sont

en accord avec 1es récentes prédictions, ils sont bien entendu en

contradiction avec les rósultats fournis par ltoptique géornétrique.



ZUSAM}',IENFASSUNG

Probleme der elektromagnetischen SËrahlenbündelstreuung an eíner ebenen

G¡ertze, díe zwei verlust.lose, homogene, isotrope dielektrische Medien

trennt, wird untersucht. Ein allgemeiner Lösungsweg wird angegeben miË

dem die reflektierten und gehrochenen Felder für beliebíg klar

definierte, symmetrisctrc und kollimierte Bündel gründlich analysiert

werden können. Die Felder werden als exakte Integrale über kontin-

uierlíche Spektren ebener Inlellen ausgedrückt, wobei die spektralen

Dichtefunktíonen eine wesentliche Rolle spielen. Besondere BeËonung

wird der Gaußschen Verteilung geschenkt, da diese die dominante
I

Wellenmode im Strahlungsfelde eines Lasers darstellt'

vl-

Der reguläre Einfallsbereich, d.h. jener unterhalb des lcritischen i'linkels

der totalsn inneren Reflexionrü/ird zuersË untersucht. Neu identifizj-ette

komplexe Gaußsche Bündelmoderl \^rurden als Ergebnis der Bündelstreuung

gefunden. Die Exístenz einer winkelabhängigen Versetzung des reflek-

tíerten sowíe auch des gebrochenen Strahlenbündels wird mit Hilfe

díeser neuen Bündelmoden höherer Ordnung nachgewiesen' Die verschie-

denen Eigenschaften dieser winkelabhängigen Strahlversetzung \'rerden

untersucht und besprochen. Für polarisierenden Einfall wird gezeigt,

da$ ein reflektíertel Strahl eben doch existiert und dessen Eigen-

schafren mir Hilfe dieser reflektierten Bündelmoden höherer Ordnung

analysiert und beschrieben werden können. Indem das Problem für Strahlen-

bündel ohne Gaußsche Verteilung, wie z.B. das Cauchy Bündel oder die

begrenzte ebene trr]el1e, untersucht wurde, konnte die Allgemein-



gültigkeit der herichteten Phänomene erstellt werden. fm besonderen

zeigxe sich, daß die r¡inkelahhängige Strahlversetzung eine charakteri-

sËische Eigensehaft des Reflexions und Brechungsprozesses eines klar

definierten, synunetrischen und kollimierten Strahlenbündels darstellt.

Im Bereich der tótalen innerèn Reflexion werden zweí Probleme behandelt.

Die Goos-Hänchen Verschiebung wird untersucht im Bereiche oberhalb des

la itischen Inlínkels der Totalreflexion zusammen rnít einígen Problemen

des Impulsverhaltens eines Gaußschen Bündels unËer total reflektierendem

Eínfall. Das Eíndringen des Feldes in das dünnere Medium für ein

Gaußsches Bündel für Einfall bei oder oberhalb laitischen lüinkels wírd

ebenfalls untersucht. Im besonderen \¡rerden die Feldeígenschaften im

dünneren Medium miË ihren verschíedenen trüellenarten gründlích und

sorgfältíg bearbeítet. Obwohl die erarbeiÈeten Ergebnisse mit kürzlích

gestellten Mutmaßungen übereinstimmen; stehen solche, wíe erwartet,

nicht ím Einklang mit Annahmen der geometrischen Optik.
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chapten one

INTRODUCTION

l{hen a plane wave strikes a plane interface separating two homogeneous,

lossless, isotropic dielectrics, it gives ríse to reflected and refracË-

ed components in addítion to the incident wave (Fig.1.1). The reflec-

tion and refraction phenomena depend on the dÍelectric constants of

the rnedia e and e^ , the range of Ëhe íncidence angle 0, , and on
l2

the polarízation. If incidence is from the fírst medium, with ,, ,

to the second medium, wíth ar, then regular reflectÍon and refrac-

tion occurs for", the r¿hole range of e* , i.e. O<0"<r12, íÍ e-<s .
l-'l-t2

In case e is greater than e , regular reflect.ion and refracËion
1"2

takes place in the range 0<0.<0c , where 0n is the critical- angle

of toÈal internal reflection and ís defined by sín-10^ = (e /e )L.c21
In the range 0.>0 there ís toËa1 reflectl-onrand no pïopagating

" l-C

field is transmitted in the less dense medium (e.<er). For the case

of parallel polarizati.or-, toËal transmissíon oocurs at the Brewster

angle 0B = tan- | (erler)U. 0", and the reflected f ield vanl-shes.

If the incídent field is a beam wave, then there are differenË phenomena

involved due to the liuLíted nature of the fíeld. These differences

appear for the regular reflection and refractiorÌ ranges ' as Well as

the total internal reflection regime. The study described here deals

with these different aspects. InvesËígation of the prohlem for beam

r¡iaves is of more interest and practical importance since beams describe

more realistically than plane r,{aves or poinË sources the fíe1ds associated

with large aperture antenrias or laser optical systems
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Most of the earlier studies \,rere concerned r¡iËh the ptr-enomena of ref-

lectj.on ancl refraction of a lÍgÏr-t beam incident upon a prism in the

range of the critical angle of total reflection. Three important

features of the problem T¡¡eïe extensively investigated.. Total intern-

al reflection of a beam at a díelectric ínterface gives rise to the

lateral bearn displacement (Fig. L.2), or the Goos-llänchen shifË as

well as secondary effects, which have found many applications in

several fields. A comprehensÍve review of most investigations regard-

ing this area v/as given in a dissertation by Lotsch [37], and the

interested reader is referred to thaL work for earlier bíbliography.

H'oru,r"r, research into this area was continued after that without in-

terruption, to clarify some unresolved questions regarding effects

around the critical angle. Horowixz and. Tanrir l27r2g], and HorowLlz

[28,30] very recently developed an elegant approach for the treatment

of these phenomena, that, in addition to clarifying the critical angle

effects, provided some nelr results and explained the relatíon between

different features involved in the interaction process. In vier.^l of

the new development in laser technology and the ímportance attached to

laser beams and their applications in optícal fields, the Gaussian

beam which describes the fundamenËal mode ín laser oscillators gained

subsËantial interest. The Gaussian profíle was also considered by Ra

et al l47l and Bertoni et al [7], who employed a mathematícal model

for the Gaussian beam as a complex ray [16] to discuss the reflected

field as well as the penetration of energy in the rarer medium upon

total internal reflection.
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Hol¡lever, a conmon feaËure in nearly all of these studies is that the

case of regular incidence, Í.e. excluding total ínternal reflection;

has not been treated thoroughly or rigorously along with the phenomena

rel-ated to it. Tn the design of optical circuit elements, such as

couplers, filters, etc., which are used in beam guiding systems for

transmission of light beams or rnillimeter r¡raves, Ëhe properties of

beam interaction at regular incidence are becoming of increasingly

hÍgher practical ímportance, and need to be invest.igated. rn response

to the above need, r¿e first consider these aspects in the dissertatíon

under presentation.

rn order to study the propagatíon and scattering of beam waves in

detail, knowledge of the aspects of beam propagation as well as thorough

understanding of the different available analytical approaches for

beam wave representations are essential. A trapezoídal incident beam

r¿as utilized in earlÍer studies, where small correctíon terms, that

account for díffraction effects due Ëo the boundedness of the incident

beam were introduced [ 36]. Beams have also been analysed in terms

of beam mocles, where the fundamental mode, which is the dominant one

in the coherent radíation generated by laser oscillators, has a Gaussian

profile i341. A mathematícal model for this Gaussian profíle in rerms

of complex rays was also introduced very recently I 16] . A brief revíew

ol: tlrese different techniques is provided ín the first part of chapten

Lwo.



The firsË feature of the present r¿ork deals with beam ínteractíon for

regular incfdence. In order to analyse the phenomena involved and to

gaín meaningful ínsight in thefr aspects we adopt the modal analysis

of beam r¡zaves. Thís approach was also utilized before in the analysis

of total internal reflection of beam T^raves l27 r29l .

All syuunetric colliunted beams can be analysed in terms of an íntegral

represenËation of contÍnuous plane rüave spectra. These representations

describe the different characteristics of different beam profiles

through their respective spectral density functions. These spectral

density functions are nornally cqncentrated and also syrrnetric about

a cenËral wave number. Moreover, the spectral density functíons have

a maximum at that v¡ave number r¡hich corresponds to the central component

of the spectrum and which has the same direction of propagation as

that of the beam. The process of beam reflectíon and refracËion is

affected to an extreme degree by the characteristics of their spectral

densities.

These aspects of the spectral functions are quite essential and at

the same time rewarding in the present work, where a general formula-

tíon is beíng presented in Section 3.1 for beams Ëhat are syunnetric

and well defined, but with arbiËrary crossêsection. The reflected

and transmiËted fields are expressed as exact integral representatÍons

of plane \,rave spectra. Approxirrate explicit expressions for different

field components, that are rather sinple to evaluate analytical1y,

are presented. In most cases, this approach leads to results that



are readily understandahle and mathernatically tractable and explicít.

In some cases, results could be evaluat,ed mlmericallyrand presented

graphically to show the effects involved.

By consídering the Gaussian beam description, the propertÍes of the

reflected and refracted beams, which are signiflcantly different from

the incident fundamenËal mode are clearly identified, and explicit

analytical expressions for the effects ínvolved are obtained. LIe find

that the reflected and the refracted fields are comprised in terms 6f

fundamental and hígher order complex beam modes. These newly identí-

fíed complex beam modes differ from the conventional beam modes in

several important aspecËs, and they describe the structure of the ref-

l-ected and the transmitted fields in a more convenienË manner. As a

resulÈ, the structure of the reflected and the refracted beams' upon

superimposing all of Ëhese generated components, will come to be

different in nature from the incident beam structure' A phenomenon

that is different in naËure from the previously examined Goos-Hänchen

shÍft is found Ëo be a characterisËic of both the reflected and re-

fracted bearns. Ttiís ís the angular beam shift, which is not as sub-

sËantial as the Goos-Hänchen shift. However, it does exist and can

be of sígnÍficant importance. The different asPects of that shíft

are examined, where we show that Ëhe angular beam shift, which depends

on the poLarization, beam width, refraction index and on the angle óf

incidence' occurs in the backward or forward directions' Section 3'2

deals with all of these features.



Careful examination of the effects encountered for the Gaussian pro-

file shows that the ptr-enomena invol-ved are not mainly dependent in

their existence on the beam pròfile. Moreover, a iudicious exaruina-

tion of the main behavíour of the spectral density funcËions of all

collimated beams shows that their behaviour is similar. Thus, it is

expected that all collimated beams would encounËer the same effecËs..

These expectations are verified in the present work by Ëreating a

dífferent beam profile, mainly the Cauchy beam [28,30]. Analytícal

results are obtained and comparison with those obtained for the

Gêussian serves to point ouE

volved. However, in order to obtain explainable and tractable results,

the beam has to be collimated and the amplitude of Ëhe field should

not change abruptly. The importance of these condítions are demonstrat-

ed by examíning the case of a truncated plane v/ave, where it is shovm

that while consideratíon of secondary effects is important, results

are not so tractable as in the case of well defined beams. These two

different profiles are analysed in Section 3.3.

the generality of the phenomena J-n-

The total internal reflectíon range is considered, \,r'here the classical

expression for the Goos-Hänchen shift is obtained through utilizing

a modification on the approach presented in Section 3.1. The maín

aim of consideríng this range is to examíne some aspäcts of the transient

response upon total internal reflection. In electromagnetic theory,

research ínto the propagation of aperíodíc disturbances has been over-

shadowed by research into the behaviour in disturbances that vary



sínusoidally with tíme. The case of a totally reflected beam ís no

exception. The signals generated in the laboratory and by natural

causes are predominantly of a transíent natuïe. The transient phen-

omena resulting in total interna1 reflection of pulses, and their

physical relation Ëo some important effects in seismic exploration

and radio r.^rave propagation in the ionosphere, have made their study

of great interest. Similar ímporËance would have to be expecËed in

the newly explored field of optí-ca1 beam propagation and scattering

which needs more research. An attempt Ëo explain some of the aspecËs

for thís nearly untreated topíc of total internal reflection of a

pplsed beam is examined by utilizíng the resulting expression for the

totally reflecled beams in Section 3.4.

The last feature of the present work deals wíth the fÍeld penetratíon

in the second medium upon toËa1 internal reflecËion of a Gaussían beam.

Research into this topic has been pursued along r,¡ith the investigaËion

of the lateral displacement, as \^ras also revier,red in detail by Lotsch

137 l. Ra et a1 147 I and. BerËoni et a1 [ 7 ] examined Ëhe evanescent

field in the rarer medíum as well as the energy transfer mechanism

across the boundary separating the rarer and the denser medía. How-

ever, the nature of the transmitted field in the rarer medium depends

to an extreme degree on diffracËíon effects, e6pecía11y close to

critical incidence. These diffraction effects are of common nature

for both the reflected and Ëransmitted fields. Therefore, a rather

rigorous approach is also needed for a complete and thorough under-

standing of the different aspects of the field in the rarer medium.



Thís was made available by Horowitz lZAl , r^rho also arrived at a

rigorous formulation for the transmitted fie1d, which accounts for

diffraction effecËs and ís appllcable for any well collimated beam,

at and around the critical angle. However, only the Cauchy profile

\"/as treated by Horov¡itz, who stated that resulËs for the Gaussian

profile cannot be easily derived Ï281.

l0

In view of the practical importance of the Gaussian profile' and in

response for the need for clarífying the transmitted beam nature in

relation to the reflected beam behaviour around critical incidence,

wÞ consider the transmitted beam for the Gaussian profile in chaptez'

fouz'. Starting from Horo\rLtzt s formulation, the transmitËed field is

evaluated through an approximate but accurate analytical solution,

that agrees with the exacË numerical values of the field expression.

Although the explícit analytical expression for the transmifted field

ís rather complex, as was also the case with the Cauchy profíle Í281,

a graphical presentation of the results leads to clarification of the

transmitted field nature, as well as significant observations regarding

the aspects of total ínternal reflectíon around critical incídence .

These observations are in consistency with the results obtained at

critical incidence for the reflected field ï27,28,29), regardÍng effects

that are of common nature to both fíe1ds in the two medía. Results

are discussed and compared luith those previously obtained for the

Cauchy profíle [28]. Agreement between the main characteristics of

the transmitted fields due to the two different profiles is noticed,



as was antÌ.cipated by llorowitz I2Bl. Moreover, some aspects of the

field in the rarer medium, which \üere not possible to examine for the

Cauchy profile, mainly due to the nature of the field amplitude dis-

tribution, are examined in detail. This includes the nature of the

field in the far range, that is not covered by geometrical optic con-

siderations, rnrhere diffraction effects are expected to play the dominant

role.

11



chapten tuo

LITERATURE REVTEI^I

In thj-s chapter a brief review of the available rÍ-gorous approaches

for beam wave representaËion is introduced. The different aspects of

the process of total internal reflect.ion are being summarized. These

aspects include the lateral dísplacement of the reflected beam from

the position predicted by geometric optics considerations or the Goos-

Hänchen shíft, the penetration of energy into the rarer medium, and

the lateral wave fíe1d that extends well beyond the reflected beam

rånge.

T2

2.r

2.T.7

RIGOROUS DEF]N]TIONS OF BEAMS

A beam of light has been defined as an inhomogenous plane electromag-

netic \^/ave, linearly polarized with its amplitude different from zero

only in a limÍted range perpendicular to the dírection of propagation

[36,37 ]. The treaLment of such a beam is based on an approxímate sol-

ution of Maxwellts equations. This approximation is due to the limíËed

extent of the beam field, and good only if the beam field changes slow-

ly over a distance of a wavelength. In general the incídent fieldras

shor,¡n in Fig.2.I, is represented by

Beam Field As An Inhomogeneous Plane inlave

EA
v

= AjA(ßi)exp(ior) - ,õ,"1 qr+ ' exp(ioi) (2.L)



IJ

E"io ) 1 Trapezoída1 beam descriotion



\7íth

and

ô-
a

I

er = 2lt . rtiÀei

2n
)t

A(ß:) is an amplitude functíon of limíted extenË ín the transverse
l_-

Çi direction, 
1I 

is a constant and "1 ís a correction factor.

The parameter cx', rhi.h was origÍ-nally inLroduced by Lorentz [:S1,

ís related to the far fíeld beam diffractíon angle [34,49]. While

such an approach provided sufficient means for calculating beam dís-

glacement at total internal reflection, ít does not yield an easy

access for determi-ning the diffraction effects and to efficiently

trace the beam field, as is the case with the following representations.

T4

_7/(c te '' - E,)11 r

0t
I

2. L.2

This approach was introduced only very recently in virtue of the wave

nature of laser beams I34 ,49 l. Laser beams have intensity distribu-

tionsthat are not uniform, but are rather concentrated near the axis

of propagation and their phase fronts are slightly curved. These

properties can be verified by examining the wave nature of the coherent

radiation of laser light which satisf ies the scalar r,./ave equation

Representation In Terms Of Beam Modes

For a beam travelling in Ëhe z

as (r = U(x,y, z)exp(1krz)

V',þ+k',lt= 0 ,
I

k - 2r/X
11

direction, the field can

(2.2)

be writËen

(2.3)



where U is a slowly varying

the maín differences between

equations (2.2) and (2.3) one

â2u a 
2u

--râx2 ày'

A solution to equatíon

15

complex function whích characLerizes

a laser beam and a plane wave. From

obtains the paraxial wave equation

The parameter P(z) represents a complex phase shift

ed with the propagation of the líght beam, and Q(z)

beam parameter which describes the Gaussl-an variation

with dÍstance t, from the optical axis, as well- as

the wave front [34], which is spherícal near the axls

U = exp[-i(P

2ík ðU/ðz = 0
1

(2,4) takes the form [49]

+(k /2Q)r2)l , t2 = x2 + y2
111

Two real beau parameters r^rhich have signl-ficant physical meaning are

usually introduced by the defínition of a as

R(z) is the radíus of curvature of the wavefront that intersects the

axis at z , anð. w(z) is a measure of the decrease of the field

aurplitude r,¡ith the distance from Ëhe axis, r^¡hích is Gaussian ín form.

Tn essence vr is the distance at which the amplitude is f/e times

that on the axis, and ís always termed as Ëhe beam radius or "spot

size". It attains its smallest value at the v¡aist of the beam,

where the phase front is plane. If the dístance z Ls measured from

the waist, Ëhe expansion lar,rs for Ëhe beam assume a simpler form ín

this case, and the beam parameters will be gíven by

t/Q=fr-ir,/n"

(2.4)

i¿hich is associat-

is a complex

1n beam intensJ-ty

the curvature of

(Fie.2.2) .

(2. s)

(2.6)
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,2 çr¡ =

R(z) =

The beam contour

at an angle

$/1t1 + çx zlrwl)2J , (2.7a)
0t0

z[t + (t¡r'/x r)'] (2.7b)
0t

is a hyperbola, wlth asymptotes inclined to the axis

0 =|/nw (2.8)
010

whÍch is cal-led the far field. díffraction angle of the fundamental

beam mode. In general, this fundamental Gaussian beam mode (equations

(2.3) and (2.5)) in its normalízed form, ls described by

þ(r ,z) = (w /w)exp{i(k z - Q) - r2.(L/*2 + ik /2R)},
10111

with Õ(z) = arctan (\ z/rw2) (2.g)
10

A beam of this kind ís produced by many lasers Ëhat oscill-ate in the

fundamental t*o 
o 

mcde.

L7

There are other solutions thaË satisfy the paraxial wave equation

(2.4). These solutíons form a complete and orthogonal set of func-

tions which are called "modes of propagatlontr [341497. Ewery arbit-

rary distribution of monochromatÍc light can be expressed as an ex-

pansíon of these modes 1231. In a Cartesian system of coordinates

they are represenËed by

ú,n,r, = H^(/tx/w),nn(/-2V/w)exp{-ilP + kr /2Q G2 + y2)l} , (2.10)

with m and n being the transveïse mode numbers rand ,u is a

Hermíte polynomíal which satísfies the differential equation

d,2tt
V

ox

dH\)2x - +2vH =Q\l
dx

(2.LL)



The l-ntensÍty pattern in a cross-sectlon of a higher order beam mode

is descríbed by the product of Herrp.ite ancl Gaussian functíons. Hor.¡-

ever, the parameter R(z) is the same for all modes, implyl-ng that

the phase front is the same, and changes wiLh z in the same manner

as described by equations (2.7b). However, the phase shtft Aþ)

is a function of the mode number as

18

2.r.3

(z) = (n -r m * l)arctan(X z/ttw2)
trrm- 1 0

Deschamps [16] proposed a differenË way of descrfbíng a hearn field

Ëhat is Gaussían, by displacing the location of a source into a complex

space. Starting from Greenrs function G(;) = .tk'i/i , which satis-

fies the scalar r¡Iave equation, with i b"ing the distance from the

observation point to the origin, then the origín l-s moved l-nËo complex

space. If the origin (0r0) is replaced in a new coordinaËe system

by (x = 0, z = tã), then ; becomes complex and Ëhe functlon G(;),

near the z axís will represenË a Gaussian beam. This can be visual-

ízed. by considering that for x (( | z-iãl , ; can be approxirnated

Representation In Terms Of,Complex Rays

AS

i+tþ-iá)2+*274=,-
then, c(i) takes the f orm

(2.L2)

G(x, z) 't,

exp[ik (z-ia)]
1

(z-iã)

-1ía*2 .x2 / (z-iã)

ik
.*p{J (x2 I G-iã))}

2

(2.L3)

(2.L4)



The dependence on x ís identical to that of the fundamental

Gaussian beam mode as defined in equation (2.5), and Ëhe phase varia-

tion wíth z t-s accounted for by the second exponent in equation

(2.14). However, along rhe z axis, G(0,2) díffers from þ(0,2)

by rhe facror Iexp(k-ã)]/(-iã). Therefore, the Gaussian beam is
1

equivalent paraxially Ëo a spherical wave with its centre at a complex

location. However, attention must be drawn to the regions of validity

of this identification. In partícular e (i) ís singular 1rhen i=0,

which occurs on a círcle of radius ã with centre (0,0) and axis

Oz. This circle is also a branch line for the function i(x,z). The

choice of the branch cuts then determines the field amplitude[24r47].

One clear advantage of Deschamps' approach is due Ëo the fact that G(;)

satisfies the wave equation exactly, which is not the case wíth the

previously mentioned ones. Moreover, it provides a more convenient

way of treating beam scattering and diffraction problems' on the

basis of the wide líterature available for Green's functions. There-

fore, ít seems to provide a better representation for a Gaussían beam

fie1d. Ilowever, the analytical procedure might become tedious and

Lhe extraction of the physical features of the problem becomes rather

involved afterwards.
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A Gaussian beam has been analysed also in ternis cf

ating from a complex point, by Keller and Streifer

approach is valid only if z ís much larger than

Deschamps' representation which is valid even for

l;l < ã.

complex rays, origin-

lZzl. Hov¡ever, Ëheir

ã , as compared to

dístances z=0, if
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The theory of reflection, refraction and diffraction of electromagnet-

ic waves at a planar dielectric interface has been well explored for

plane \^/ave, line or point source excitations. Hovrever, for a field of

bounded nature, i.e. a beam v/ave, there are additional phenomena in-

volved whích make the problem of great interest. Almost all of the

studies that have been done vrere concerned with the case of incídence

from a denser medium onto a second Ta-rer dielectric medium if total

internal reflection is encountered. If a bounded beam is íncident

At an angle greater than the critical angle, the beam is totally

reflected, and three important features of the problem have Ëo be

discussed. The actual reflected beam ís displaced 1aterally in the

forward direction from the position predícted by geometrÍc optics

considerations. Tn addition to that lateral shift, which is ofËen

called the Goos-Hänchen shift 1221, there is a relatively weak trail-

ing íllumination that exËends r,ve1l beyond the reflected beam and is

attributed to lateral waves [51]. Furthermore, there is a penetra-

tion of energy in the rarer medium, where the field has been charact-

erized as mainly evanescent. These different aspects will be briefly

reviewecl in ti-re following.

TOTAL INTERNAL REFLBCTION OF A BOUNDED BEAM

20

2.2.r

Newton

place

The Goos-llänchen Shift

l42l suspected that total

at the geometric interface

internal reflection does noË Ëake

between the tÌro media, but Ëhe path



of a 1íght ray is rather a parabola, with the vertex beíng within the

less dense medium. The phenomenon has been studied experimentally

with litt1e success, until about three decades ago when Goos and

Hänchen [22] measured Ëhe lateral shift experimentally. They suggesË-

ed a theoretical interpretation of this effect, which was verified

later by Artmann [6 ], Fragstein [21], and Wolter [Sti] who called ít

the "Goos-Hänchen shift" i-n recognition of their work. Since then,

a sígnifícant amount of studies has bean pursued, mostly by German

authors t37]. However, Renard t48] questioned previous results on

the basis Ëhat they predict nonvaníshing values for the shift in the

|ímit of gxazLng incidence. He adopted a suggestion rnainly due to

Picht 1461, which suggests that some energy enters into the medium of

the lov¡er index on one side of the beam, and comes back into the

medium of higher index on the oEher side of the beam. A translation

of energy mechanism, based on the assumption that the amount of energy

in a strip equivalent to the Goos-Hänchen width on the left of the

beam in the denser medium, is the energy needed in the cenËral part

of the beam to establish the so-called t'surface" \raves in the :rarer

medíum. A comprehensive review of previous investigations regarding

this area has been given by Lotsch I 371, who also used the approxi-

mate approach of Section 2.I.L to evaluate the Goos-Hänchen shift and

his results agree with Renardrs t4B]. However, all of these treaË-

ments eluded a satisfactory ansluer to beam displacement when the in-

cidence angle is at, or very close to, the critical angle of Ëotal

internal reflection, as they predict an infinite value for the shift,

a fac:- that is not in agreement with experimental results. Horowitz

and Tamir 127,29 I and HorowiËz l2B,3O I very recently developed a

2I



genuine formulation that clarifies this point, employing a beam pro-

file as described in the forrnulation of a fundamental Gaussian laser

beam in Section 2.7.2. They arrived at an expression for Ëhe lateral

displacement that, unlike previous results, """o,rrrts 
for both angles

of incidence that are arbitrarily close to the critical angle of total

reflection, as well as for a finite beam width. Moreover, Ëhey veri-'

fíed that Lor a beam incident near the criËical angle, the shifÈ is

strongly dependent on the beam width, being proportíonal to the square

of the beam width, if incidence is exactly at the cri¡ical angle.

22
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Ij

The second aspect related to totally reflected beams is the trail-

ing weak íllumínation that extends beyond the regíon of the totally

reflected beam, in a manner ËhaË cannot be interpreted in terms of

conventional geometric optics. This kind of díffracted field seems

to have been observed earlier by Maecker [:A]' and its Ëheoretícal

analysis \n/as atËempted by Ott tA¡]. Some experimental results

| 2,44] have verified the exístence of such a phenomenon, and des-

cribed its properties. Tt was notíced that the luminous field comes

to be more considerable when the angle of incidence is very close to

the critical angle of total reflection, and decreases with increas-

íng the distance parallel to the interface away from the reflected

beam region. However, application of a more rigorous electromagnetic

theory was needed to clarify the poorly understood nature of Ëhat

feature. This was partially accomplíshed by Tamír and Oliner [51]'

Diffraction Effects
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who examined the trailing illumination Ëhrough a rígorous approach.

They ídentified such a trailing illumínaÊÍon as being the fíeld of a

well known laËeral r,save [Sf ], which is accounted. f or by the ref lecË-

ed field component thaË is addítional Ëo the geomeËrÍc optics compon-

enÈ. However, Ëheir analyses are restricted to points far away from

the reflected beam as the asymptotic result used by them is ncit valid

at points within, or close to that beam domain. Thus it was noË

'possible to id.entify Ëhe nature or the behaviour of the resulting

lateral wave fíe1d in the reflected beam domain. This aspect r¡/as

clarified later by Horowitz LzB,30l and HorowiËz and Tamír lzgl, using

4 rigorous diffraction theory thaË represerited an improvement on Ëhat

of ramir and oliner [51]. An improved. resulË was obtained. which

holds within, 
. 
close to and far away from the reflected beam regíon;

thus permitting a consistent ínterpretation of the reflecËed field

ín its entire range. rn particular, íË was explained by Horowitz

and Tamir l2gl thaË the resulting lateral r¿ave field component in ÍËs

near r-ange, inËerferes with Ëhe geometríc optics component. This

interference is destructive on one sÍde of the geometric reflected

beam axis and construcËive on the other síde, thus conËributing to

Ëhe lateral displacement of the reflected beam cenËre.

r.n general, Èhe lateral wave constitutes a diffraction effect that

is always attached \^rith toËal internal reflectÍon and has different

propagatíon characteristics as compared to other kinds of guided

r^raves. A comprehensive and lucid description of its different as-

pecËs has been given in Ëhe literature [19,5Lr52]. However in view



of the ímportance

review of some of

2.2.2.I Propertíes of Lateral I^Iaves

Lateral \¡raves arise, mathematically, as a PaTt of Ëhe continuous

spectrum. In the inËegral rePresentation of the field 1n the complex

wave number plane, r.rhich is usually carrf-ed asyrnptotically in the

form of a steepest descent representation, they arise as branch cut

f¡raves ISZ). I,{hen observation points lie near the range of Ëotal

ínternal reflectíon, then the steepest descent path encounËers the

branch cuË. In such a case, Ëhe path of integration has to be de-

formed and the integral around the branch cut has to be Laken into

consideration [10]' Thís leads to the lateral Ttave' that exists

only in the range of total ínternal reflection and is excited more

near the branch region, i.e. for angles close to the crítical angl-e'

of the lateral wave 1n

its important features

24

the present work, a brfef

will be presented.

In order to studY the lateral wave

er íts analytic exPression for the

given by [51]

r¡ith n being the Índex of refraction (kt/k2), and \ is a constanË'

The ray dtagram for the lateral wave field along wiËh the field struc-

ture are as shov¡n in Fíg.2.3. The phase behaviour in equation (2.15)

rr,ay be accounted for by a ray that l-s incident on the interface at the

A-
,L

lIYlat 2 .n-r

propagation Properties, we consid-

case of a line source excít,aËion,

('2. ls)
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critical angle, and then is refracted and travels along the inter_

face in the lower medium. Along its path, j.t sheds energy conËinuous-

ly into the upper medium, in the dírection of the path 
"r. 

This

continuous leakage of energy at the i.nterface is reflected in the

amplitude variation of t-s/2. This way, the lateral \¿ave resembles
2

an inhomogeneous plane wave that travels along the direction 0" as

shor^m in Fig.2.3- rr should be noted thar equation e.rÐ is not

valid ín the near range, í.e. Lr=O, and it must be replaced by a
different expression [Lo,2o] which is valid for this range.

¿o

2.2.3
¡

The characteristics of the fíeld

energy exchange mechanísm across

ly along with the studies of the

in the lucid work of Lorsch 1371.

Field In The Rarer Medium

llowever, dÍffractíon effects play a major role in establishing the

reflected beam and íts displacement. since the field in the rarer
medium is dependent on both the ínciclent and the reflected fíelds,
the nature of the transmitted field of a totally reflected beam r¿ill

be greatly affected by diffractíon phenomena. such an effect will
be considerable if the beam íncidence angle is very close to critíca1
incidence, being the range in which the lateral wave field i.s more

significant. Therefore , for a better and. clearer understanding of the

phenomena, a rigorous evaluation of the transmitted field is needed.

in the rarer medium, as well as the

the ínterf¿ss \.ìere examined extensive-

Goos-Hänchen shíft, as \das summarized



A rigorous exPressÍon for Ëhe transmitted fíe1d of a eollinâted beam

was given by Horowitz 1281, who applíed it to a Cauchy profile. By

recourse to.approximation techniques, Horowi tz 128] obtained results

that yíeld considerable informatíon regarding the nature of the trans-

mitÈed field and its penetration into the rarer nedium. The field was

shov¡n to penetrate Ëhe rarer medíum a depth that represents only a

lirnited portion of a beam widthrand a pencil-like field exists close

to grazing angles even if the beam íncidence angle is beyond the

critical angle. Furthermore, the angular domain occupíed by that

beam decreases r¿ith increasing the beam widËh or as Ëhe beam incidence

angle becomes greater Ëhan the critical angle. Ra et aI [47] dis-

cussed the same problem through employing the approach outlined in

Section 2.2.3. In addition Ëo deriving the classical expression for

the Goos-Hänchen shift, they considered the field in the rarer medium

for angles of incídence that are not close to the critícal angle.

They approximated the rrevanescent"fields in the second medium on the

basis of a "local inhomogeneous plane tnravet' that exísts near the inter-

face ín a regíon which can be few wavelengths in depth. In Ëhis

region the evanescent fíe1d Ís dominarit over the refracted fie1d. The

energy translation that results in the shift of the 'fcentre of

gravityil of the beam vras then descríbed on the basis of this plane

T¡rave approximation and an expression for the Goos-Hänchen shifË thaË

agrees with Lotsch's [ 36] r¿as obtained .
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chaptez' t;hree

BEA,I.Í INTEMCTION IN T}IE R{NGE TIIÄT DOES NOT INCLUDE TT{E N&\R \IICTNITY

OF CRITICAL INCIDENCE

Beam reflection and refraction for regular incidence, i.e. excluding

the total internal reflect.ion regime is considered first in this

chapter. A general formulation is being presented for beams that are

sylìunclrlc uucl wcJ--L clcf.l"netl, buI wlUh ûny cross-scctlon. The Guuesian

beam profile is treated and explicit analytical results are obtained.

Careful inspectíon of the results reveals new phenomena occuring in

such an interaction process. In parËicular, newly ídentífj-ed complex

Gaussian beam modes are generated and they result in an angular deflec-

tion of Ëhe beam upon reflection or refraction. This angular beam

deflectíon is examined in its explicít analytical form. Other beam

profiles are considered, where it is demonstrated that the results

obtained for the Gaussian profile are of a general nature. l'Íainly,

the angular beam deflection is a characteristic of the reflection or

refraction process- for any well defined and collimated beam. Most.

of these results have been reported in the literature I Zr 3r 4f.

28

For the range of total internal reflection, the Goos-Ilänchen shift is

treated, and the classical expression for the lateral displacement is

obËained. The resulting total reflected beam, r¿hich is a good approxi-

matíon for the field in the rarlge that is not close to critical incid-

ence, is then utilized to examine the transient behaviour upon total

internal reflection.



3.1

ItIe consider a time dependence of exp(-ii'lt) and a eoordinate system

as shown ín Fig.3.1 r^rith the aperture located above. the interface at

a height h-. The incident field profile is assumed to be synrnetrí-1-

cally distríbuted around Ëhe z. axís, limíted in the x, directionr

and diffraction-free at thé plane "í=0, where it ís given by

tf (x, ,0) = P g(x, ,w) ' (3.1)' l-- o - l--

The constant F 1s a normaLíztng faetorrand the amplitude distribu-
0

tíon functíon g(x.,w) descríbes the shape of the beam wíËh hr being

a beam parameËer ËhaË determines the extenË of Ëhe beam in the Ërans-

verse direction. The amplitude function g(xrrx) should be slowly

varyíng over a períod of a r¡avelength, so that the concept of a beam

does not lose íts meaníng t10]. In the range -hr<z(O, Ehis field

can be expressed in Èhe Fourier form

ANA].YTIC FORMULATION

29

where the wave numbers . y

respectÍ-velj, are related

úirr" (*, ,) =

"y2*ß2=k2 r Y=k-sinO ' (3.3)
11 I

r¿ith ö(V) being Ëhe speetral densiËy functlon, which is the trans-

form of the field at the aperture p1ane, given by

r-
0(y) = I ú(*, -h- )exp(-iyx)dx (3.4)

'-* 
I

In this way, the incident field may be viewed as the superposition of

r-(I/2n) lOtvlexp{i[yx
J

-æ
and B in the x and z directions,

I

through the dispersion relation

+ ß (z+h )ldy
1t

, (3.2)
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Apêrture Plone
z=-hl

I

fø

Med (l) k¡

Med (2) k2

FÍg. 3.1 Incident ancl reflected coordinate system



plane waves, each propagating as

spectral amplitudes depending on

DirecË evaluaËion of "q.rrtion 
(3.

a clear description of the beam,

istics away from the aperture.
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The reflected and transmitted beam fields can be formulated Ín a sím-

ilar manner. Each íncident plane \.{ave component of the specËrum \,{i11

contribute a reflected and a refracËed component, both being modified

by the Fresnel reflectance p(y) and t.ransmittance r(y) , respective-

ly. Therefore the reflected and transmitted fields can be obtained

by summation over all the reflected and refracted plane hrave components

of the spectrum, each wiËh the appropriate phase function, so that

exp[i(yx + ß z)] $/irh differenr
I

the particular value of y = krsínQ.

2) at any plane "L, 0 will give

along with its propagation character-

üref 1(x,z) = (t/2t¡)

ú..rr,(x,z) = (t/2n)

being the wavenumber

according to

^(2 
-l ß2 = kz

r^rith ß
2

defined

and the familiar expressions for the reflectance p (y)

T(y) are given by

J o Cvl Q (v) exp{ i [vx-ß ,("*nr) J ]ay , (3 .s)

parallel polarization: p(y) =

t:
IrCvl0(y)exp{i[yx+ßJ2

-oo

in the z directLon for the second medium,

normal polari-zation:

(zfhr)Jlay ,(3.6)

(uz-rz¡? - (k.,/k")2 (k1-y2)U

p(Y) =

(r<z-rz¡4
1

tl.l-t')Z
(k2-yz¡Jz + &'r=y')t

(3 '7)

and transmitEance

(kr /k2) z çLz-^rz¡4

^^L(ki-y')',

, (3 .8a)

(3 .8b )



The functional form of ó(y), and p(y) or T(y) derermines rhe prop-

erties of Ëhe soiution. For a syrnmetric beam, 0(V) will be symmetríc

around a certaín wave number yi = krsinO. This wave number corres-

ponds to the central component of the spectrum which has the same

direcËíon of propagatíon as that of the beam. The function ó(v)

exhibit.s a maximum at this central wave number, and sËarts decreasíng

as y varies around yi on both sides of the spectrum. The funcËion

p(Y), and consequently T(Y) display somehov¡ a different behaviour

that is mainly non-syÍ)metric about yi

The integrals (3.5) and (9.0) need to be evaluated over the enËire

real y axis, Therefore, the properties of p(y) or T(y), ß. and ß,

have to be examíned in the y plane. There are branch point singularÍ.-

ties at y = +k and y - +k for either poLarízation case. The'g r 'c - 
2

first branch point, y* = k, , corresponds to grazing incidence, a

case wiËh no signi-fícant physícal meaning and Ëherefore will be ex-

cluded from the present analysís. The second branch poínt corresponds

to the case of total internal reflectíon, whích has already been ex-

amined in detaí1, for different beam shapes, by Horowitz and Tamir

[27,29], and Horowitz [28,30]. The range under consíderatíon in the

present analyses is that of regular incidence, i.e. excluding the

region of toËal internal reflectíon. In this range, the fíeld hehaviour

is still affected by the characteristics of pC"¡) and TCy) whîch vary

wíth the variation of y for each plane \¡/ave component, in the spectrum.

r(Y) = I + p(y)

32
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Comparing equatlons (3.5) and (3.6) with (3.2), it can be noríced

that the resulting reflecËed or refracted fields will be different

from the symmetric incident field, mainly due to the variations imposed

by the nons)¡mmetric behaviour of p(y) or T(y) around a central

value yi . In general, a numerical evaluation of equatÍons (3.2),

(3.5) and (3.6) would explain these differences. However, approximate

analytic evaluaÈion of these ínËegrals will províde a rather clear

and sirnple explanation of the phenomena involved in the process of

beam reflecËíon and refraction.
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3.1.1

In view of the properties of the spectral funetÍon O(V) mentioned

above, and through careful examinatíon of any of the fíeld int,egrals

of (3.2¡, (3.5) and (3.6), it is expected that, for a well defined

beam, the major conEributíon to the integral results from those plane

r¡rave components around the centre of the beam. In particular, for

y not too close to y" and/or y, , most of the contríbutions result

from values of y close Eo yi = kr"ir0i , and contributions for

y tt yi may be neglected. This suggests, in case the aperture is not

f.ar away from the interface and in the well collimated region of the

beam 1271, that a paraxial approximation can be applied. ConsequenË-

ly, the analysis will be carrÍed out by expandíng $ and $ around

Analytical EvaluaËion 0f The Fields

the principal value

ß =l
I, 2 n=O

V. AS
'a

aoß,
!rz

^"dY

, (Y-Yr)t

l"J
'Y,.

c3. e)



To explain the aspects of the above approximaLion, r,¡e observe that, if
only the first tvro terms in equation (3.9) are, for example, used in

evaluating the incídent field as glven by equat,lon (3.2), Ëhe result-

ing expression w111 gl-ve a field configuration that is sinilar to the

distribution at the aperture. However, taklng Èhe next hl-gher order

term wíll result in a description of Èhe diffractlon effects that are

encounËered by the beam far away from the aperture plane. This, in es-

sêncê¡ is the Fresnel- approxímation' r¿hich ís an excellent approxÍma-

tíon in the paraxíal range [27].
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The reflected field integral of equation (3.5) contains thä reflectance

p (y), which is in general a smoothly varying functíon for Ëhe present-

ly considered case of two lossless homogeneous ísoËropic medía. Hence,

it can be expanded in a Taylor seríes as

Utílizing equatíons (3.9) and (3.10), and introducj.ng a variable of

integration s = (Vr-f)/(krcosOr), then the reflecËed fieldras gíven

by equation (3.5), assumes the form

^np(v) = | 1 a^'P(vl

n=o âyt

(v-v. )nIaì
| ' ' 

"t 
J

I v=v,

wíth

üret1{*r, zr) = I
r1=

=(k

and

Bn(eí) = ((-1)n. (k,cosor)n¿n!) 4 oCvl 
¡- i)Y 
lY=y,

úrr, (x. , z, )

,cos0./2n)explikrrr,.r,lo rnBn(0Í), (3.lla)

(3.10)

, (3. ttn¡



I
n

I^tí th 
^ zu'r

where x and
1

shown ín Fíg.

The integral

form [45] or

f-
= I 0(o^)

J

= o-("-n
I
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onexp(-lkrxro + iß2o2)do ,

) /2cos0.
lL.t

z
t

3. 1.

represent the reflected beam coordÍnate system as

the properties of Fourier transforms [ 9 ], the Ëransform of an even

functíon is even; and íf Ëhe function is odd, its transform r¿ill be

odd. The íntegrand in equation (3.11c) is even for n even or zero,

ln

l_n

(3.11c) can be looked upon as either a Fresnel trans-

Ëhe more general case as a Fourier transform. From

and odd for odd values of n .

reflected field componenË Ür' will have a syrünetric dístríbution for

even values of n in addítíon to D=0 , whíle ûrr, ür3 ... wíll be

asymmetric. The total reflected field r¿ill be a superposition of

all of these components. However, in view of the smallness of the

quantitíes on the ríght hand side of equatíon (3.10), and by the

definiËion of the normalízed coeffícíents Bn(0í) of equation (3.llb),

T^7e may antícipate that not all of the components will have the same

signifícance. Therefore, it ls expected that the reflected field con-

figuratíon will be different from the incidenË field. These differences,

for a partícularly specified media, depend on the angle of incidence

of the beam as well as on the polarLzatior¡ as can be seen from the

definitíon of the normalized Taylor coefficíents of th-e reflectance

Bn(0í) of equation C3.11b). To emphasize the above points, the values

of Bn(Oi) are plotted. for n=0r1r 2 arrd 3 \,r-ithin Ëhe range O a 9. . ä
in Fig.3.2a for the parallel polarization case, and in Fíg.3.2b for

(3 .11c)

Consequently, it follows that a typÍcal
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the normaL polarizaËion case.

IË should be noted that similar consÍderations w-ill apply

rnitted beam as expressed by equation (3.6), rrhere use has

of equations (3.8c), (3.9) and (3.10).
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The present procedure will

gain more physical insight

an interaction process.

3.2

In Èhís sectionrhre consider a beam with a Gaussian cross-sectl-on.

Such a choice is l-mportant from a practical point of view, as it rep-

resents the fundamental or the dominant mode of the coherent radiaËíon

generated by lasers. The analytic properties of this kínd of radía-

tion were discussed in Sectíon 2.L.2.

EFFECTS FOR THE GAUSSIAN BEAM

be

an

applied to different beam profiles to

Ëhe differenË aspects involved in such.

to

to

the trans-

be made

3.2.L

The formulation of the incident beam is chosen in accordance with [Zl ],

as shornm in Fig.3.3, where the waíst of the beam is located at the

inclined plane ,í = 0 , with lts radiant flux axis along the positive

z. direction. For such a beam profile, the amplitude disËribution
l_

functíon g(*Í,to) will be Gaussi-an, and by choosing the nornaliza-

tl-on factor v = I/(r8, ), the f ield rf (x ¡O) in accordance with
001

equatíon (3.1), will be represented by the form

The Incident Beam
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TÍith Ú being t, ot u, for parallel or normal polarization,

respectively. The beam parameter *o represents the "spot size" at

the waist, where the phase front ís plane'as T¡/as described in Sectíon

2.L.2.

1

ü (*i, O) = i- exp I- (x. /wo) 21

1T -\,r
0
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As the field departs away from the aperture, its properties start

changing, and the propagation characteristics of the beam can be ob-

tained in a sËraighËforward manner by utílizing the approach outlined

in the previous section. Substituting equation (3.12) into (3.4),

the spectral density function for this beam profile wíll be given by

tr^Ie notice the syrnmetry of this spectral densíty function about the

central wave number Yí = krsinO. , as well as the decay in amplitude

for values of Y t Yi By making use of equation (3.13), and con-

sldering the first three terms in the expansíon of ß, as given by

equation (3.9), the incident field expression of (3.2¡ will yield

ô(y) = (1/cos0r)exp{-[ (v-vr)wo /(2cos0. ) J2]

(3.12)

Úrrr"(xr, ri) = (t/nbw')exp[íkrz. - (x./wr)2J ,

where

*? = *' + i(z/k )(2. - x.tano.)
i o t' l- l- l-

and ri Tepresents a complex vridth for the incj-dent beam at any

plane z. + 0, in agreement with equation (2.7a). From ínspection

of equaEíon (3.14b) and using Fig.3.3, it is observed that with

(r, x.tanO.) = hr/cosO. = R(ri) at ttle ínterface, the incident

beam represents a cylindrically diverging wave with a radius of

curvature n(zr) as def ined in equati-on (2.7b).

(3.13)

(3.14a)

(3.14b)



3.2.2

The reflected beam is obtaÍned by substítutÍng the appropríate spec-

tral function of the Gaussian beam as defined by equation C3.13) into

the reflected field expression of (3.11), which consequently can be

wri.tten ín the form

k
ürefl(xr,z-,.) = 7t "*o(ikrzr) -l^ 

rr,,ur, 
f-o""*[-tkrox.-(okrwr/2)']do,n=o 
-æ (3.15a)

where r, represents the complex width of the reflecËed beam and is

given by

The Reflected Beam

40

The

wíth

evaluation

t =x/w

*ï = 11 - 2í(z-hr)/(krcosor)

Úrefl (tt'zr) a

exp (1k z_-)_ 1r -

f*,

where H_ (t) representsn'
complex argument in view

and ís given according to
n/2

H-(t) = n! In

of (3.15a) is carríed ouË in Appendíx À, and

t , Ëhat (3.15a) becomes

I úrr, {.r.
n=o

I çÐ"/z
n=o

In order to interpret

beam r^¡aves [39] need

beam mode of order n

")

the HermiËe polynomial

of the definiËion of

[ 3e] by

(-t)m(zt)n-2m 
om! (n-2n) !

B (0.)Da.
(kw)n- I r-

(3. lsb)

it fo11ows,

tur, (tr) exp (.-tf ) , (3. 16a)

of order n, with a

a, and equation (3.13b),

equatíon (3.16a)

Lo be considered

by

properly, propertÍes of modal

where we define Èhe modified

c3.16b)



Ïhese modified beam modes differ from the conventíonal higher order

Gaussían beam modes, as deflned in Section 2.1-2 by equaËíon (Z.g),

in several important aspects which will be díscussed in Section 3.2.6.

The reflected field can be expressed ín terms of these modified beanr

modes gn(tr) as

1
o lll .ì 

=_-n T ,. .n(I( r^r )
lr'

41_

Hn(tï)exp(ikr.r-"Ï )

Comparíng equaËions (3.18) and (3.14), it is noticed that there exists

a sígnifícant difference between the íncident and the reflected beam

configurat,ions. While Ëhe íncídent beam at the aperture ís strictly

Gaussian, i.e. a fundamenËal beam mode, the reflected beam is comprised

in terms of a sunrnation of differenË reflected components. The flrst

reflected component, for which n=o in equatiot (3.18), ís given by

ür"tt= I ü.rr=
n=o

exp (ik, z, )
L

Tl2w

(3. u)

. I (-t)t/'Br, (or) sr, (rr) . ' (3. t8)
n=o

and represents a fundamental reflected beam mode, with its waist at

,r=0. This conponent differs from the incídent fíeld as given by

üro (., ,rr) B0 (0f )' (exp (ik 
rzr-tz)) / tn '^(>

equation (3.14) only by the Taylor coeffícíent B0(0i) which represents

the reflectance corresponding to a plane wave with an angle of incidence

0i, i.e. the central component in Ëhe Fourier spectrum, for whLch y=yi.

Hence, U_ represents the geometrÍcally reflected field' i.e. the
r0

field which does not depend on the variatÍons of p(y) in (3.8a) and in

(3.8b) with each lndívidual plane I¡Iave conponent propagaËing at any

y = k.sín0 , when 010r, and 0i defínes the optical axis of the
1

(3.19)



incídent beam as in Fig.3.3. The higher order reflected components

qJrn(qf) are generated due to the nonlinear behaviour of p(y),

and are proportiönal to both the normalized derivatives of Ëhe ref-

lectance as can be seen from equatíons (3.10) and (3.11b), as well

as the product (krwr). The generation of these higher reflecËed

beam components wíl1 cause beam spreading and str-ifting. These changes

ín the reflected beam structure will be examined in the following

section.
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3.2.3

We

ing

(3.

consíder the reflecËed beam fíeld at regular incidence and

the neighborhood of and Brewsterrs polarizing incidence.

18) ís reformulated in a more appropriate form as

Vretl = üro.*P lÍ,n(l+Fr) I

= ú exolF -t/2r2 +1/3F3 . .... I'f6 r r ' t

Beam Shift For Regular, Nonpolarizing Incídence

with

and

Ir/*-- | ='.r

Collecting terms of

(3.20b) and (3.16b)

ú='retI
where

lr,l = | I.c-r>'/'urrof"rr(rr)l < I ,
n=r

2rlw/), l>>t b =gr r' t' ' n

equal powers ín t, , and

, equation (3.20a) results

exclud-

Equation

rl,, 
o.*P{P o+itr 

(p 
r r*o r, )+tf (p

(3.20a)

(0.)/B c0.)nl-01-

by

in

the definition

(3.20b)

27
*p )+it3pÌ, (3.2L)

'22 f^.3

(3. 20c)

o1:



D = g"2b2 - 2h2a a

'o T z 2 T

o =2crb'11 r t

p = _2o-1(t b _6b )
t2 ! I 2 3

p = _zu? (zt _a2)-2t r z 1

D =Ba4bb ,22 r t3
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p =eol(at+bh) ,-3 r 3 t 2

and terms of hígher order in o, have

of (3.20c).

From inspection of equation (3.2L), and

Írnaginary part of ,i (equation 3.15b)

rnrhen z becomes comparable with *'/XT-ol
beam centre exists. Utilizing equatíons

of t-, 0,and o = (1/k w ), the shiftt- r o I o

ís found Ëo be

and

been neglected by deflniËfon

k' ne{w-2}-T

= 2a2b (h -z) /cobO,ol I l-

where higher order terms in 0a can

by eomputation thaË p <( 1, p <<
0 t2

'l
/\va--

TZ

in those cases for which the

becomes signifícant, i.e.

, a shift of the reflected

(3.20), and by the defínltíons

G in the x directíon1T

rm{(p,., * p.,r)/wr}

ne{(1 * pr, + p,r)/r'r}

b
I

- ( -21Imt\¡I J
1

Inspection of equation (3 .22) shows tt¡-at Ax, does not rePresenË a

neglected

, and (p

be

P
11

(3 '22)

since ít l¡as verifíed

* p ) << 1.
27 22



constant lateral beam shift, as is the case with the Goos*llänchen

shift for the total internal reflectíon regime. It should be noted

r^
will vanish exactly at the ínterface if n, = 0. Hence it corresponds

to an angular deflection ¡E-

geometrícal opt.ics axis at

gíven by

44

and

(z

¡6' = 
-Ãx 

cos$ , / (h -z)tTl-1

= 2a2b
0l

the projected beam shift along

- 0), as illustraËed in Fig.3.4'

r
ô

, of the reflected beam axis from the

= 0 Thts ansular deflection isr"

Zî = Axr/cos0.

= 2a2b h /cos20,011 r

where Âx = Ax(0, ) ís plotted
a-

The angular beam shift will be encountered for propagatíon from the

less dense to the denser medlum (er<er) and více versa (er>er),

excluding the range of total internal reflectíon for wh:ich Ëhe above

analysis does not hold. The existence of such a shifË is implicity

contaíned in a treatment by Nemoto and Makimoto [41], usíng a modal

expansion of the beam; however, it was neither analytÍcally described

nor explicity identifÍed. The cognizaÍLce of the angular strift was

simultaneously reported hy Ra eË al l47 r'eq.7hl;and their result,

obtained by usíng tÌr-e approach outlined in Section 2.I.3 agrees wiËh

our expression for the angular shíft as gíyen by equations c3.23).

the x directíon

becomes

(3.23a)

at the interface

for both poLaxizatíon cases in Fig.3.5.

(3. 23b)
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The angular heam deflectíon 40, is a unÍque parameter, as ft depends

on the bearn diffraction angle o^ = (k-w-) I of (2.8), the angle of0 10
f-ncídence 0., i.e. b C0,), but noË on the beam waist location abovel-- r - l-'-

the ínterface hr, nor on the distance from the int.erface ,, , âs

is the case with Zl. and Ax Its dependence on b, (0r) means
lr

that it is polarízatíon dependent. Therefore, ít rmrst be interpreted

separately for the Ëwo dífferenË polarizatÍon cases.

Beam Shift foz. Noy,maL PoLatization

47

It is observed from ínspecËion of Fig.3.2, that for normal- poLariza-

tion b is positive, startíng \"rith b (0.=0) = 0 , and then increases11r
steadily for 0<0i<90o Therefore, the angular beam deflection wj-ll

always occur in the forward directíon for the normal polarization

case, i. e. OU-rtO , as is illustrated for Ix = Ix(Or) ín Fig.3.5.

However, for incidence from the denser to the less dense medium, our

treatment holds for the range below the critical angle. In particular,

the angular beam shift as gíven by equation (3.23a) ís valid in the

range 0<0,<0^-o , sínce for O. close to O-(O-=sin-t(e /. þ) ,C 0 i' C- C - 2' 7'

the lateral beam shift occurs as r{as analysed ín detaíl by Horowitz

and Tamir lZll.

Beatn Shift foz, PavaLLeL Polaz'izat¿on

The behavíour of the shifË for this polarization case is significantly

different. T0- is noË unidirectional since B and, hence b , en-rol
count.eï a change of sign as the incidence angle 0i exceeds Brewsterrs

angle 0B = Ëarr-' (e 
r/e ,)Z 

. In particular, througtr- careful inspection

of Fíg. 3.2, wenotice that n ì O and b I O tor 0, é 0-. Thus, beam
¡ ( r -j. ) 'b



deflection occurs for 0<0.<gB rnaÍnly fn the back¡niard direction,

r,rhereas it occurs ín the forward direction for 0¡a0ra90 . However,

in the case of incidence from the denser to the less dense medium

I2
and (3.23) occurs only within the range (O'+ao).0r.(O"-cro), where

0- is smaller than the crítical angle, and the lateral Goos-Hänchen
B

shíft starts to occur for 0. > (0 -cl ).lco

The change in the shift dírection around the Brewster angle, and the

behavíour of *-, in Fig.3.5, suggests that the range around 0U

is a transiEion region. In this region, the reflected beam properties

are expect.ed to change drastically. Thus, the reflected field in this

range need to be carefully examined and the phenomena involved have

to be interpreËed. Understanding of such phenomena, will lead Èo a

clear physical insight ínto the mechanism causíng the beam shífting

process, as will be discussed in the following section.

4B

3.2.4

tr^Iíthin Ëhe range (g'-oo).0i.(08{a), the beam shape deteriorates from

its Gaussian configuration, and the reflecËed field displays two dis-

tinct weak peaks deflected off the optical axis (01_=0i). Thís behavÍour

can be further understood by analyzing beam incidence exactly at

Brer+sterr s angle 0B = tarr- t te r/ e 
,)U 

.

Behaviour At Polarizine Incídence And The Beam Shiftine

Mechanism



In case Ëhe heam Íncidence angle 0i coincides with 0U , the

geometrically reflected component of the fteld üro of equation (3.19)

vanishes since B0 (08) = 0, and only the higher order reflected

component,s ü- -(n>1) will contribute. From ínspection of Fíg.3.3'rn'-
and equatíon (3.18), it is apparent Ëhat only the reflected beam

component" ür, "td ür, will have significant contrfbutÍons, where

49

and

úr r(tr, zr) ':
r

4Gl-Ðu182 (oB)

V \L ¡L J'12'-l-'-x' n8*r

Thus, it is found that rfr, (tr=0) = 0 , while rfrr(tr=O) f 0 and,

therefore, a very small field should be observed at the centre of the

reflected beam although ü.0 = 0 for 0i = 08. As Úr, is dominating for xril,

its characteristics, as given by equaËíon (3.24), at any constant

plane ,, display two weak peaks, whose maxíma in the region close

t.o the interface and for small values of hr, are displaced off the

beam centre along the *, direction by

2trorB, (ou)
L

'tÍ'2w
expIi (r/2+krzrl-tit , (3.24)

.expIi(n+t<rzr)-t]J . ß.25)

However, the asymmetry of rl;rr(trr"r) is dísturbed slightly hy Ëhe

existence of þrr(rr,zr), causing a sltght shif t fAu of the asym-

metrícal beam structure, which can be evaluated employing an expansíon

similar to Ëhat used in equatlons(3.20)and (3.2L) to ohtain I-x, of

(3.22), where

Àxr tlwlI. /lzl (3.26)



^^rB -

and the angular deflection becomes

I
ì:_Ã

I
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82 (gB) rm{w -2}

qTqJ

B (0-) (h -z)
a-.22l)1
'oo B- (0-) cos0.

1Þl-

This behaviour at Ëhe Brewster angle exacËly can be visualized more

clearly by the aid of the crude graphícal demonstraLion of Fig.3.6,

where the approximate configurations of úro, úr, "rd úr, (however,

they are not to the exact scale), as v/ell as the resultant reflecËed

fíelds ane shown. IË can be seen that 111r, affects Úr, tt a manner

simílar to the effecË of ú., or rÞro for O. I (0u i ao).

By recognízLng Ëhat the phase of a reflected \^/ave component in the

Fourier spectrum of the reflecËed field changes abruptly by 'tl as the

angle of íncidence passes through the BrewsËer angle, Lotsch [37]

anËicipated a phenomenonanalogous to the Goos-I{änchen shift. However,

in view of our analysis, it can be concluded that this is not the case.

Moreover, the behaviour of the field ar:ound and at the Brer¿ster angle,

as presented here, is consistenË, and explainable ín terms of these

parËicular phase variations around 0B.

B (o-)
-Ãñ--n^.22IJ

^orB-"*oB(0J
1ö

ne{r^i -2 }r

(s.zt)

(3. za¡

The change of the shíft from backward to forward directi.on can now he

explained in vier¿ of the above analysed behaviour at Brer¡¡sËer's angle.

It is apparent from the syunnetrical and asymmetrical properties of
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q,

\

* üru
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Fíg. 3.6 Re.f lecte<l fiel<l behaviour at ancl arouncl

r-he Brewster anglê

ítL¿

ti= 0,

*r,

xr,

*to

xrl wr

t,= 0B +Go



ú and ú ïespecËively, as demonsËrated Ín Fig.3.6rËhat for 0r<031'ro 'rt
bean deflectíon is in the backward directlon, whereas for 0it0u tt

is ín the forr¿ard direction; as 0r- increases from 0, to 0gfuo ,

Èhe forward deflected beam peak starts to aPpear and becomes steadily

rnore dominant as 0.r0S so that Ëhe backl^Iard deflected beam peak

disappears for 0, = (or+clo) . Therefore, the range (0S-Oo)<0i<(08{Û0)

is the Ëransi'tion region r¿Lthin whl-ch the reflected beam properties

change from backward to forward deflection'
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3.2.5

The transmitËed field in the second medium as exPressed by equatíon

(:.0¡ can be obtained by using Ëhe approach outllned ín section 3.1'

However, to clearly describe the properties of the transmitted beam,

we introduce a virtual aperËure over whích the phase fronË of Ëhe

transmitted beam will be planar. This is achieved by the transmitted

coordinatesystemrasisshor'minFig'3'3rwhichlschosensothat

The Transmitted Beam

x=t

z=

(x-t) cos0.

(x-1,) sinO,

2121

The optical axís of the

íncídent bearn bY Snellrs

described by (Fíg.3.3)

t

9" = h tan0.
1r

=h(k/k

- (h 
r+z) 

sin0,

(z+lnr) eos0.

h tanO.
2E

) (cosO./cos0r) 3

refracEed beam can

law, i.e. sínO, =

(3.29a)

(3.2eb)

(3.29c)

(3.29d)

that of the

and can be

be related to

(or/Or)sing, '



* = h, Ëano . + ztanot (3.29e)

The transrnitted beam field as is expressed by equation (3.6), and

Ëhrough substituiion from equation (3.13), can be reformulated as

53

ú.."rr" (x,r) = ,^ku.
l_

+ ißlhl +

The evaluaËion of equation (3.30) is sírnilar to that of (3.15a),

where Taylor expansions of ß, and f(y) are obtained using equations

(3.9), (3.8c) and (3.f0¡, and where most of the contribution to

equation (3.30) will result from rggions around the refracted beam

axis, namely at Y, = krsitOt = krsinO.

I

.J 
t,t, "*p{-[ 

(y-krsin0r)ro / (2cos0r) J 
2

lir**u,"rru, (3.30)

Introducing the complex transmitted beam r¿idth rL as

where

2I¡t = ú;r
L0

with
lo.

and defíning a

I
't¡7

0

2 + zí(z*h 
r) / 

(krcosO.)

= wo (cosOa/cos0r)

| = lurr.l-t .. r ; tt = (x./w.)

so that

new variable of íntegration

tt=

r(y)

- (y-krsin0.) / (krcos0.)

: f -n'n r'^, I
I L L LY . 1L E N '1n=o

, .n

= , 
(-tt) 

(k coso.rn anr(T) ¡ ,
!cE-IIln=o - dy lr:r,

(3.31a)

(3. 31b )

(3.3rc)

(3. 32a)

(3.32b)



the

the

expressíon for th.e transmítted beam can be evaluated sínilar to

reflected beam, giving

rnrhere

úrrrr," (tr,zr) = (cosO./cosOr) exp{i [ (urn, /cosO . )

(k 
,h ,/ coso 

r ) I ] 
.rrlo*.r, (t ,, z ,) ,

51+

L 
(-r)"/2rrr{or)of,Hn(tr)exr{it rz.-tl}ü.rr(ra, ,r) = (L/r''wr)

(3 .33b)

From comparison of equations (3.33) wiËh the incident field as given

by equation (3.L4a), it is found that upon incidence of a fundamental

Gaussian beam mode, higher order transmitted beam components, in

addítion to the fundamental transmitted beam mode' are generated,

as \¡/as the case wíth the reflected beam given by equa¡ion (3.16a).

It should be noted that due to the partícular choice of the transmitLed

coordinate system as defined by equations (3.29), a corunon multiplier

appears for all transmitted beam modes to ensure continuity of the

fields across the ínterface. The additional phase term [(Urnr/cos0r)

-(k h /coso_)] expresses the phase relations between the waist of
22 L

the incident beam (*i=0, ,i=0) and that of the virtual image (*t=0,

,t=O) of the refracted beam (Fig.3.3) with respect to the point of

íntercept of Ëhe optícal beam axís with the interface (z--0). The

autplitude factor (cos0a/cosO.) ensures continuity of the incident

fundamental beam, the reflected and transmítted fundamental as well

as higher order beam comPonents.

(3.33a)



The generation of ttr-e higher order transmitted beam components causes

the transmitted field to undergo changes whÍch can be analysed in a

manner similar to that presented for the reflected beam in the pre-

ceding section, resulting in an angular deflection Ã0-'t of Ëhe re-

fracted beam, where
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Furthermore, by the definition of p(y) in equatiot (3.8a, 3.Bb) and

the relation T(y) = f + p(y) for eithex po7-arizaËion case, the beam

shift effects can be straíghtforwardly interpreted. From inspection

of tr'ig.3.2 and Fig.3.5, iË is found that Z-0r I 0 for er/e, ? L. At

polarizing íncídence, the transmitted field is not alËered significanË-

1y, since the fundamental Ëransmitted mode is dominating, though an

angular beam shift r¡i1l exist as shown ín Fig.3.4.

¡E- s
t ,"i (cos0./cos0.) 2 [Tr (0r)/T0 (0r) ]

tr^le notice from the analyses presented so far that the tranqmÍtted and

reflected beams have a conmon attribute; they both are comprised in

terms of a serj-es surnmation of reflected and refracted components,

which were called rnodífied complex beam modes. f.n order to clarify

the nature of these modes, lre consider theír detailed general proPer-

ties ín the following sectl-on.

(3.34)

3.2.6

The reflected or

ca1ly reflected

Complex Gaussian Beam Modes

the transmitted fields were

or refracted componentsr D =

comprised of a geometri-

0 ín il, ortf of'rn 'fn



equation (3.18)

components that

vr'

and (3.33) respectively,

can be reformulated' for
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.A
_n

(r ) 
t*t

r

C
_n

(r )t*i't'
with

ü.rt

H (-l) exp I ik z
nV/ - ì TT.

X l.
H f--:) exn I ik z
n-Il7' c Lt-

ón

Equations (3.35a) and (3.35b) represent hígher order reflected or

refracted components, modified by the multiplíers A' and Crr, which

depend on the propertíes of the media and the angle of incidence 0.

of the beam" Apart from that, these higher order components represent

a set of newly ídentified, complex Hermite-Gaussian beam modes, that

are essentially different from the conventional Hermi-te-Gaussian beam

modes for a laser oscillator that are described ín Section 2.I.2.

in additíon

n>1 as

x
- él'r

h/
T

X

- r- tr 2 rtrn, 
' 

J

t

1

. cos0 kh
cn = 'n c"r"oilexp{it (;*il)-

l_ l-

_1-
n'28 (0. ) (+

nlK

to higher order

r*-r"l_

, (3.35a)

, (3.35b)

I^Ie notice in these newly identified modes as expressed by equations

kh
cffirrt.

(3.35a) and (3.35b) that there is symmetry between the complex arguments

of the Hermite and Gaussían functions. The argument of the Hermite

functions for these ner¿ modes is complex, by the definition of tt or

r, in equations (3.:fa¡ or (3.15b), whereas it is real for the con-

ventional ones. Moreover, the Hermite-Gaussian functions, in ttr-e

conventional modes, reduce at the r¿aist (z=0) to

, (3 ' 35c)

{i)"t'cor) .(:.3sd)
2



whíle for the nerr complex modes ür, or üar, , at either Ëhe waist

of the reflected or refracted beam ("r=O or zr=0), they become

H (n")exp (-x2lw2)
n97

The conventional modes form a complete orthogonal seË [ +g], while

the new ones do not. However, it should be noticed that both the

new and convenËional modes satisfy the same differential equation,

i.e. the paraxíal wave equation of (2.4).
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Hrr(x/w) exp(-x2 /w2)

These complex Gaussian beam modes. resulted in the present work. from

an íntegral representation over an angular spectrum of plane \^raves

that satísfies the scalar Helmholtz equation, and they form an essen-

ti-al part in describing the fundamenLal beam scattering process in a

physically significant problem. Nevertheless, their essential analyËi-

cal properties can be obËained, on basís of fundamental mathematical

treatment, that viil1 contribute more Ëor¡rards basic understanding of

their nature. Such an analytic investigation \.^/as very recently

províded by Siegman [50 ] , who was led to recogníze these new functions

while examíning the nature of the conventional Ilerrruite-Gatrssian modes.

Due to the inelegant lack of symmetry in the conventional solution,

Siegman [50 ] suggested an alternative in terms of complex Gaussian

(3 .36a)

(3. 36b)

eigensolutions 1-o the paraxÍal r^Iave equation as

.l,rri", ") = (80 /8) 
t+tHr, (/ê*)exp (-õx2 )

where

(3. 37a)



These solutions are not orthonormal, rather they form

set [50] r^rith the l{ermite functions

^
Ô- (x) = H- (Æ*x) ,'n n

õ(") = lL/R(z) - tÀ /nw2(")l-r
I

õ = ã(z) = ik lzee)I

5B

such that the orthogonality

ræ^* ^I O"C"),t, (x)dx =j 'n"'m- -

-ó

holds.

The complex Gaussian eigensolutÍons of (3.37a) are exactly, apart from

a constant, the same synrneËric complex Gaussian beam modes reported

Ín the description of the reflected or refracted beam, as staËed in

equatíons (3.35a) and (3.35b). They form an essential Part in des-

cribíng the beam scattering process treated here, and this gives more

physical insight ínto their nature, and as was predícËed by Siegman

[50], provídes one clear example where Ëhese newly identified modes,

wiËh their greater sirnplicity, may be useful. I^lhile they resulted

here from the treatment of such a simple configuration, \^7e expect

thaË they could provide more useful and símple means in descrihing

beam propagatlon and scatt.ering 1n more general and involved problems.

relationshíp

f-
I n (/ex)H (/ex)e
Jnm
-þ

,
K6

(3.37b)

a biorthogonal

nnm

-cx2 -dx

(3.38)

(3.3e)



3.3

I^Ihi1e the analyses introduced in Section (3.1) were proposed for any

well defined collimated beam, they have been applied only to a Gaussian

beam profile. However, the related phenomena need to be examined

for other beam prof iles. Mainly, the exj-stence of the angular sh-ift

needs to be verifíed for different beam profiles as vlas the case wiËh

the Goos-Hänchen shift revievred ín chapter tüo, ín spite of the differ-

ence in phenomena behind these two dífferent shifts.

OTHER BEAI4 PROFILES

59

Careful examination of the cause, as well as the mechanism of angular

shifting shows that the phenomena involved are not mainly related to

the beam profile. The process of beam reflection and refraction is

affected, to an extreme degree, by the characËeristics of their spec-

tral densities ó(V) as defíned in equation (3.4). Since the main

behaviour of the spectral densities of all collímated beams are simi-

!a'r, it is expected that all collimated beams would encounter the same

effects. Moreover, a judicious examination of the shifting phenomena

for the Gaussian beam, for which different beam modes are generated

and cause the angular shift, and the analysis in Sectíon 3.1, implies

that a sinr-ilar ef fect should exist for non-Gaussian beams. However,

the extent of the shlft may not be the same for different beam profíles.

These aspects are discus.sed in Ëhis section, rúhere tqo completely

different beam profiles are considered. Th-e first one 1s that of a

well defined collimated Cauchy beam, for which- explicit analytical



results are ohtained. Discussion of the resultsras \^¡e11 as comparison

with those of the Gaussian profile,point out the generality of the

phenomena involved. However, if the beam is not as well defíned as

these two profiles, the nature of the result.s change. This is demon-

strated through the second example considered ín thLs secËion where

a limited plane wave that is described in Brekhovoskikhr s h0 ]

analysis of the total internal reflectíon regime is considered.

Analytical resulËs for this case are provided and their nature is

discussed and compared wíth results for the other configurations.
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3.3.1

3.3.1.1 Analyses 0f The Fields

Cauchy Profíle

InIe consider an inverse square or a Cauchy Profile [28130], and the

same incidence condiËions as described in Section 3.1. The amplitude

distributíon functíon g(x.,b) of (3.f), f.or this case, ís given at

z,=O (Fig.3.1) by
I-

g(xr,b)=L/[1 +(x./b)2] , (3.40)

where Ëhe beam r¿idth at the aperture is 2b, and for a well defined

beam, the condition Urb tt t has to be satisfied. Accordíng to

equation (3.4), the spectral density function Ó(V) in Ehls case is

0(v) = (nb/cosO. )exp{- lv-v, lt/cos0r} (3.41)

Substituting equatíon (3.41) into

equation (3.2), and making use of

the

the

incident fíeld as given in

Fresnel approximation, i.e.



conslderÍng terms up to

wlth F of (3.1) Ëaken

rll
'inc

0

(ic
t

r.rith QÍ. = Or(z+h,)/(2cos0.)

The evaluation of equation (3,42) 1s carried out ín Appendl_x B, and

the result ís

üirr"(xi, rí) = &raln¡+g-)exp(ikrz.-in /4)-{t(a.)+tC"ilt , (3.43a)

where
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b / 2) exp (ik, zr)

n=2 ln equatlon (3.9), the lncLdent ff.eld,

to be unlty, takes the form

r-
| "xp{-t ¡ lo l-i trcJr

f (a) = [exp(-ia2 /r)]. [1-erf (a,trî/Z)]

ú
and ^i is the complex conjugate of "i as given by

"i = k, 1t+ixr) /ß, (¡.43c)

wl-th erf(y) being the error function 1251. The reflected fleld,

as defined by equation (3.11), can be evaluated in a similar manner

by using equation (3.41) as shornm in Appendix B. The first two

components are accordingly given by

+
üro (*r,rr) = (krb ll/+gr).80 (0i)exp(lk, z.-íy¡/4)"{f (ar)+r(a.)} ,(3.44a)

ú., (*. ,rr) (-k,b' ,ñ /4gi)Br (0i)e*t{ik, zr-ítr /4}. {-rQrt {"r)+iCft t"il } ,

urith 
c3 ' 44b)

1ox.+ß?o2l Ìdo (3.42)

and

a =lcr

0 =k'r

(3. 43b )

(b+íx ) /ßrrr

(b+ix ) /zg2lrr

ßi = o, (hr-r) f 2cosa, ,

(3.44c)



For the transmitËed field,

úro (*r, za) = Aa

k b /r/4ß )'T'2 t 't' 
o

62

with

ú -A'tl t

l-k 
2b JTt / 

4ß i I r 1 
(0 

r ) 
. exp { ik, z, - ít¡ / 4} " {-rQ r

the similar components are given by

?t(0r)'exp(ikrz.-i-t¡/4). Ir(a.)+f (a.) 1 , (3.45a)

Ar = (cosO./cos0r) 'exp{i Inrn, /cosO .-krhrlcos0.l ] (3.45d)

where the coeffícients T0(0r), Ti(0r) are defined by equations (3.8),

(3.10) and (3.1lb).

ba = b'cos0a/eos0 .

a_ = k (b_+íx,)/ß.L z't t"'t

3.L.2 Interpretatíon And Comparison

t

and

Equarion (3.43) gíves a good approxímation for the incident beam in

the paraxial range. Diffraction effects encounËered by the beam as

ít departs from the aperture aTe accounted for in this expression,

and they could be estimated depending on the specífic parameters

involved (í.e. hr,z,b). fn the well collimated region and close to

the aperture, a good approximation of the field can be obËained. In

this range, an assymptotic approximation can be used for the elror

function for large argumenË' as given hy l25J

B?t

qr

=lç
2

=k

¿¿
r(a.)+iQ.f(a.)Ì ,

(3.4sb)

(2cos0.) ,(h +z) /
2

,G r+ixr) 128|- , (3.45c)



n-1
erf (¡Æ) = 1- (l/n) exp (-x) I

k=0

R - o(x-n-å)
n

Employing the fírst two terms only

(3.43)¡will result in

il;rrr" (x, r) = [1+(xr/b) 2]-

63

However, consÍdering higher order terms wíll glve an indicat.ion of

diffraction effects, which are sma1l in thís range, but increase

with increasing the distance avray from the aperture.

(-r)kr (k+å) 7 ç*t<+å¡*e¿eÉ¡)*,,

The reflected field is a superposition of the geomeËrf.caIly reflected

contríbution Ü , which resembles the incidenË fíeld, and the high-'r0
er order components, whích are dominated by the first one, í.e. ürr.

The behaviour of ür, can be descríbed in the well col-limated region

of the beam close to the interface, by inserting the error functÍon

expansion of equation (3.46) into equation (3.44b), whích gives

for the incident field

l. exp Iikrz. ]

(3 - 46)

of equation

úr, = Br(0i) "{(-2ixr/Ð/k:b'ì.. (1+(xrlb)')-' exp(ikrzr)

This ís an asyrunetric component with respect to the reflected beart

axis, and it has close resemblance with the corresponding term for

the Gaussian beam, as gfven by equaËion (3.f8). Both normaLized

components are shov¡n in Fig.3.7, for the same incidence conditions

and beam widths (b=w). It is noticed that Úr, attains a maximum àt

a distance b//î for the Cauchy beam, compared to th.at of *lÐ for

the Gaussian case. This behaviour could be visualized by careful

examination of the two respective spectral functions, as shown ín

(3.47)

(3.48)
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Fig.3.B, where it Ís noticed that OCy) for the Cauchy beam as given

by equatíon (3.41) decreases faster than the Gaussian one as given

by equation (3.13), for smaller devl-atíons from the central component

Y. = k sínO..'r I l-

The behaviour in the rarige of 0. close to the Brewsterts angle

can be explained in'a manner that agrees with earller results for the

Gaussian beam. The field in this range is dominated mainly by ür, ,

as the effect of the higher order components ín this case is much

less signifÍcant. At 0i = 0g exactly, the field will be mainly

composed of úr, (úro=0) , which will display two weak peaks havf-ng

a phase dl-fference of î , as ean be predicted from equation (3.48).

This behavíour ís expected and is explainable in view of the behavfour

of the reflectance around 0U (Fíe.3.2), and the characteristics of

the specËral functíon as shornm ln Fig.3.B.
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It should be noted that the transmitted coordínate system xtrzt of

Fig.3.3, that rras originally introduced for the Gaussían profíle, per-

mits easy access to descríbe the nature of the Ëransmitted field ín

this case also, as can be seen from equation (3.45), wiËh the conunon

multipliet At to ensure the conËinuity of the field across the ínter-

face. In general, the transmitted beam components, as given by

equaËion (3.45) can be analysed in a procedure similar to the reflect-

ed field. However, a common effect between the reflected and the

transmítted beama is Ëhe exisËence of the angular strift, wtdct¡- wÍll

be examined in the following.
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3.3.1.3 Angular Bean Shift

The differences between the incldent field structure and the reflect-
ed or refracted fields, as discussed ín the prevÍous section, will
also result in the angular beam deflection. An approximate expression

for thís effect can be analytl-cally derived in the present case of a

Cauchy beam profile.
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Equation (3.46) is utilized in (3.44a), so rhar the geometrfcally

reflected field can be approximated as

üro (*, , rr) = B0 (oi) . {t/ [r+(x r/b)z ] ]. exp Cik, zr) .

Ir-zigÏ. [L-3x2 /b2 J / Q+xÏ/br)' + 0 (xrlb) a ]

It is expected that, due to the snatrlness of ú., as compared to

tro , the shift will occur in the range close to the beam axÍs, l.e.

in the range xr/b << 1. Thus, the beam structure will be examined

in this region. Employing Ëhe same expansion for the error functlon

as given by equation (3.46) ir (3.44b), and keeping only terms up to

(xr/b)2 , Ëhe total reflected field r.¡ill take Ëhe form

t¡i th

rll 3tref I

=

ü, +ú'ro 'rl

B0 (0i) " Gl 0+":/bz))exp (ikrzr-iI2 ) .Frb ,

and

õ2

Frb

b
1

( (h -z)
I

[ 1-{2ib
I

B (0.)/B
1l

(3.4e)

/k, cosor) " {t-gx2 /t 2 
} / (L+zx2r/ b2 )

(xr/b) / (k, b (t+x2r/b2) ) Ì exp cif,2 ) l
(0.)

¡l-

(3. 50a)

(3. sob)

(3. sOc)



The

the

term

field

Frb

can

where

then represents an approximate correction factor, and

be further approximated as

úref I'= to,.uo (0r)exl{íkrzr-Ll2 }/{1+l (*r-D) lbclz}

6B

and

c = (zlbt /krb) - exp (il2 )

However, since c is small, c2 <<

Thus, an approximate expression for

D=-cb

Vrett = Bo (0r) 'exp (ik 
,rr) / 

(r+(xr-D) 2 /b2)

where the shift Ã"_ in this case is given by

oå = ot (L-(cl2)2)

which can

beam axís

,F
01

Ãç = 2b ,(-z*h .) / (k:b' ) cosg .

(3. sl)

1 and b^gb ,weget F -
L 0l

the field will take the form

be translated into an angular deflectíon of the reflected

= (1- (e/Z¡z¡- t

of

A0 = 2.{B (0.)/B (0.)}/(k2b2)
r-ltg].il

This is an approximate indication of the deflection of the reflected

beam axis from the position predicted by geometric opËics. A similar

effect vrould be encountered by the transmitted Cauchy beam and can be

easily obtained by applying the above analysis to equations (3.45).

While the expression for the angular beam shift assumes the same form

as that of the Gaussian beam , as \"ras bhoirn in Section 3.2.3, the shift

for the trro cases is not necessarily identical in vier,¡ of the differ-

ent definitions associated with the beam parameters b and wo. Further-

more, the angular shift for Ëhe Cauchy beam as given by equation (3.54)

ì 1 l

1.

(s.sz¡

(3.s4)



is derived through an approximation of the component ür, , whíle

for the Gaussian beam it has been evaluaËed by Ëhe resulting exact

expressíon for tr, in (3.18) .

Thus, it is seen that the choice of such a profile, though being of

less practical ímportance, yields results that are analytically

explainable and tractable. The close correspondence of the Cauchy

beam results, and those of the Gaussian, points out to the generality

of the phenomena involved. An ímportant aspect of boËh beam profÍ-les

is that they are collimated and well defined. If the beam definition

is not consíst.ent hríth this condition, results will not be as explaÍn-

able. This rvi11 be emphasized by consÍdering a differenË configura-

tion of a truncated plane wave in the following section.
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ta¡)

The incident

Brekhovskikh

of (3.f) is g

Limited Plane Wave

fie

[10

ive

g (x. ,4) =

Such a field has

T¡/as not the case

spectral density

by

ld in this

], where at

nby

ll(
Lo
its amplit

with the p

function a

case is defíned in accordance with

the aperture the field amplitude function

-A ( x. < A
l_-

x. >A
a

ude changing abrup

reviously consider

s defined Ln (2.4)

0(v) = [sin (y1 . ) "e] /n (r-vr)

(:. ss )

tlYat x.= Arwhích

ed beam profiles. The

, is given in ttr-is case

(3. s6)



and the incÍdenr and rhe refl-ecred fielils will be descríhed by

l@
Úrr."(x, ") = J {sin(y-y. )a/n{y-yr) }exp Iiyx+i3rz]dy (3.sla)

r-
úref 1 G,z) = 

1 
p (y)' {sin(y-y. )A/ri(y-yr) } .exp [íyx-Íß ,r]dy

simírar "nn"""ï'llo]n'. ",
Appendíx B, equatíons (3.56a) and (3.57b) yield for rhe fields

ürr,.(*r_, r..) = (ñ/28ìexp(ik, z.).{erf(crrr)*erf (orr)} ,

t¡ith (3.58a)
7ort = Ui/28) [acosorlx.J , Ei - {0, (hr-r)/Zcosêr}ä

2

and

IU

úr, = Bl (0i) Qíl,ñß).exp{i (k 
rzr+n 

/ 4)

+ iklcos0, [A2cos2er+xi] / 2 (z+h 
r) 

]sinor,

with

cr = ç/-r/28 )k . (Acos0 -x )rlt-I-rr'

cr = 1/__i/zB )k . (Acoso *x )t2 't' I r t'

ûro = B0 (0i) ç,tr2r / z9)exp (ik, zr) {erf.(o"r)*erf (orr) } (g. se¡)

Sírní1ar considerations will apply to the transmitËed field.

o, , = (krAxrcos 20 
r/ z) , E, - {k, (z*h 

,) /2eosa,}å. (s. ss¿)

The incident field,as given by equaËlon (3.saa), is symmetrlc about

its axís (x.=0), and is somehow descriptíve of the field far away from

the aperture. As expected, the geometrically reflected component

{j-- has the same behaviour as the incident field, being rnodified by'I0

(3.58c)



the reflectance p(yi). The first component ür, of C3.5Bc), nhl-ch

vanishes at the centre of Ëhe beam in consistency r¿iËh similar compon-

ents for the Cauchy and the Gaussian beam, will cause the total ref-

lected field in general to be different from the incident field. This

emphasizes the importance of taking second order effects into account

for a complete description of the process of reflection and refrac-

tion. However, explicit analytical formulae for Ëhese differenees

are noË tractable in this case, due to the way the field is defíned,

and the consequently resulting physical phenomena.

7L

Physically it is understood that an infinite plane wave that is

incídent on a screen located at the aperture plane ("i=0) and which-

has an opening of 2A, will be the practical approach of generating

such an íncident radiation. Therefore, it is expected that edge

diffraction effects will conÈríbute more, especially in the near range,

close to the interface. While these diffraction effects \^rere disregard-

ed, as a first approximation, in the treatment of the Goos-Hänchen

shift [10], they play a substantíal role in the field structure of

equations (3.58). Fig.3.9 shows the incident field as given by (3.58a),

at a constant z.* 0 plane away from the aperture. The geometrically

reflected field of (3.58b) will then have a similar oscillatory nature,

and this affects the higher order reflected components, and also causes

their contribution, in view of their smallness, to be somehor¡ screened.

In general, such a behaviour is explainable in terms of the spectral

density functíon 0(y) of (3.56), which was plotted in Fig.3.B. The
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Fig. 3.9 Incident field due to a limited plane roave

at z. - À , (A=60 ). )11 I



remaïkable difference between 0(y) ln thÍs case and the case of

the Gaussian or the Cauchy beam is rioËlced. This ernphasizes the

importance of the early conditíon stated in definíng the beam; in

partícular the amplítude function of (3.1) should not vary ahrupËly

over a period of a wavelength. WhÍ1e in the more accuïate tleat-

menËs of the Goos-Hänchen shift t36] the alternate apProach of beam

representatíon in Section 2.!.1 r,ras introduced; the more appropriate

approach in treating the problem as described here, is to make use

of an apodizatíon technique 1261. This in turn reduces the problem

of reflection and refraction of a lirniËed plane úrave to Ëhe problem

discussed in Section 3.2
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3.4

The analysís presented so far has dealt with the range of regular

incidence. If the íncidence angl. 0i approaches Ëhe critícal angle

0" , mainly close to the range 0, =(0"-oo), total reflecLíon phenomena

start appearíng. Beam effects for angles of íncidence that are

arbitraríly close to the critícal angle, have been treated rigorously

l2B ] as sunmarized in chapter' ù¡o . An expressíon for the Goos-

Hänchen shift that is valid for a wide range of the incidence angle

0i , i.e. 0, I 0", was obtaíned and iË reduces to the classical

expression Í27] tf the incldence angle is far beyond the critícal

angle.

TOTAL INTERNAL REFLECTION AND THE IMPULSE RESPONSE

In this section \,/e also consíder the range of Ëotal reflection for



íncidence angles that are not Ëoo close to the crítical angle, i.e.

0- >> 0_ The classical expression for the Goos-Hänchen shift [fO],l_c
in this range, is deríved by utilizing an approach that could be used

for any well collimaËed beam. This approach is a modification of the

analysis in Section 3.1, to make it applicable for the total internal

reflectíon regime. Hol'¡ever, the main goal here is not as much to

obtain an expressíon for the Goos-Hänchen shift, but rather to make

use of the obEained results in examining the transient characteris-

ties of a pulsed Gaussian beam upon Ëota1 internal reflection.
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The transient aspects upon total internal reflection at a díelectric

interface have been studíed mostly for a localized pulsed líne or

point source excitations LZO,3tr33]. As vras mentioned in chapter

ttto, for the c.w. case, the process of reflection depends Ëo a greaË

extent on the consídered kind of excitation. Therefore, we would

expect that, for a pulsed excitation that extends in the Ëransverse

dírection, i.e. a beam wave whose tíme variation is not harmonic in

nature, there v¡íll be different analytical and physical aspects in-

volved. Brekhovskikh [10] considered total ínternal reflection of a

certain radiation that have space-Ëime variation according to an in-

verse square disËribution. tle showed that, upon total internal reflec-

tion, the fíelds undergo substantial changes once they deviate from

their usually preassumed harmonic time variation.

Total inËernal reflection of

cussed also in thi-s section.

an

å

impulsive Gaussian beam rqill be dis-

standard procedure to determine the



response Is6l is to apply Fourier or Laplacers inversion to the solu-

Ëion obtaíned on basis of harmonic tíme dependence. Ttre response

due to any other time variatíon could be systematically derived by

utilizing the convolution principle

3.4.L
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An incident Gaussian beam formulation, exactly as 
.r¡ras 

defined in

Section 3.2, is assumed. However, Ëhe incidence conditions are

Derivation Of The Goos-Hänchen Shift

different ín the present siËuation. We assume the beam Ëo be incidenË

from the denser to Ëhe less dense medium (arrtr), and the Íncídence

angle 0i is not too close to the critical angle, i.e. 0i rr 0" .

I^Ie recall the analysis of section 3.1, which needs to be ¡rodifÍed to

be applícable for the total internal reflection regime. In partícular,

for 0. >> 0",9(y), as defíned in (3.8a) and (3.8b), will be complex

and of unit amplitude. For exarnple, p(y) for the normal polarízatíon

case will be given by

whíle the amplitude of p(y) is constant in this range, the phase

function G(y) varies for each plane vrave component in the angular

spectrum as y varies around a central value yi = krsÍn0, . Thus

C(y) can be expanded in a Taylor series about yi = kr"tr0i t y" =

k sin0 . so that
1 C'

o(v)l = e]çptic(y)l
lY>Y.

= exp{-2iËan- r | (yr-n:)z / &2 -y2)+ l} (3. se)



G(y) = I o"e Co.)*nl
n=o

r n(-1tn= 
-l- 

srt\-al- . (krcosOr)n
n=o

Upon makíng use of equations (3.60), (3.7) and

reflected field can be expressed as
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úref t(0i) I = (kr/2r).exp Ii(nrrr*.0 (0r) ]
10.>elr- c

f î*t-"' (to.r*rl21-ik,oxr-íoc, (0. )Ìdo

with Ëhe reflected beam coordinaËes x, and z, as defined in Fig.3.1,

the reflected beam wídth r, as given by equatíon (3.15b); and only

the fírst two terms in the expansíon of (3.60) have been retalned.

IÈ should be noted that the term expliGo(0Í)] represents the reflec-

tance o(vr) associated with Ëhe central plane T¡rave component at

Y, = k sinO- The evaluation of (3.61) can be carried ouË in a sËraight-'l- I a

forward manner as in Appendix A r¿here the reflected beam will take

the form

ônc

^ndy

l,=,,
(3. e) in (3.11a), rhe

(3.60)

úretl (xr,zr) = (L/r wr) exp Iie 
o 

{or) J .

exp [- (*r*G, (0i) /kr )" /*'r).exp Iik, z, I

The nature of Ëhe reflected field of (3.62) can be seen immediately

upon comparison with the incident beam as given by equatior (3.14a).

The centre of the reflected beam in (3.62) is shifted laterally to

the right, í.e. in the forward direction, where the shíft along the

int,erface in the positLve x direction (Fig.3.4 ) becomes for tlre

(3. 61)

(3.62)



normal polarizatÍon case

oI

and for

oil

G (0.)rr aJ, 
^= -' - ? = (À-/n).slnO- /(sin20.-"ir,rO")å,

kll-
l

Ëhe parallel polarization case

Gl(oi) l[ ,= - --lr ki-:* = CÀr/n)sino./[sin20"(sin20.-sinro")ZJ , (3.63b)
i.

whích are the classical results as given ín [to]. However, iË should

be noted that these expressions account for angles of incidence 0.

that are not too close to the critical angle, Ëhus disregarding branch

singularity effects at crítical l-ncidence exactly. Thís means diffrac-

tíon effects are not considered, as they d.ecay exponentially with the

devíation from critical incidence Í2g ,5L1.
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The reflected field expression of (3.62> will be utílized in the

analyses of the transient case next.

3.4.2

The prototype case of an impulsíve Gaussian beam, i"e. ÍËs time

variatíon Ís described by a delta funcËion , will be considered here.

A familiar approach to determine the impulse response is to apply

Fourier or Laplacers inverslon to the solution obtained on the basis

of preassumed harmoníc time dependence. However, the ease with r.¿hiðh

the transform can be performed is rnrkedly affected by the. particular

form of the frequency response for a specific prohlem. For some caqe$

it might be possible to get understandahle results fron ttrc inversion

formula, but in most cases it is not so feasible. The case of total

ínternal reflection of a Gaussian beam, especially in the range close

(3. 63a)

Beam Transient Effects Upon ToËal Internal Reflection



to the critical angle 1271, is an example of ttlose latter cases.

Ilevertheless, an attempt to get some insight into the nature of the

transient behavíour of an impulsed Gaussian beam is being considered

through utilizing the raËher simple expression of a totally reflected.

beam of equation (3.62).
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3.4;2.1 Solution For The Gaussian Beam

From a careful inspection of beam propagation characterístics, as

is explained in section 2.r.2, it is noticed that there are diffrac-

tion effects that accompany beam propagation away from the aperture.

These diffraction effects are frequency dependenË as is implied by

equation (3.14b). Thus it is expected that a beam which is well

collimated at the waist, and has a tj-me variation as ô(t - z./c_),

would have different characterístics as it reaches the interface. 
I

To examine that, \,üe consider the beam as described by equation (3.14b),

which by analytic continuation in the complex frequency p1ane, with

k = -is/c , assumes the form
l1

with

l-s.tlj(xirz.r- c-) =
t

The inverse Laplace transform of (3.64a) will describe the fÍeld

nature in space-time configuration. To achieve that, the behaviour

of ú(-is/c.) needs to be examined carefully in ttrc complex s plane.
I

There are si-ngularitíes at s = -1/âo , which corïespond to a hranch

point due to the denominator, as well as an essentíal singularíty as

exp{-x.2â2l (ân+s-1) }

0

t-

â= (2c2")-" , â =*'/â'' 1 L' o o

,t.arc * "-tlå
(3.64a)

(3.64b)



implied by the exponent. Physícally, these singularitÍes are en-

countered when diffraction effects come to be significant so that the

imaginary and real parts of the complex beam width as defined in

(3.14b) come to be comparable. Hor,¡ever, the main concern here is to

examÍne the effect of total internal reflection. If the aperture is

located very close to the interface, diffraction effects r¡il1 not

be significanË, and Lhe effecË of the singularities at s = Ilâo

may be disregarded. The reflected beam r,¡ill be examined witfuln the

limits of such an approximatíon.
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The reflected beam may be formulated in terms of an inverse Laplace

transform as

Vretl (xrrzr,t) =

where úrefl (*r,rr,-is/cr)

harmonic soluÈion of (3.62)

new time varíable to= t-2,

of the first disturbance at

beam geomet.ric optical axis,

1
¿ïlL

ril+i-
l_ expIs (t-"r/cr) Jrlr"rl(*., zr,-j.s/cr)ds , (3.65)

w-i*

as

üref I (xt'zt't

is the analyËic contínuation of the time

in the complex s plane. Defi-ning a

/c ' which is the time frorn the arríval
I

a certain point ,, along the reflected

then the reflected fíeld can be expressed

, ¡w*í@
) = (I/2tt3' 'r,-) I .*p (st ) 'exp (iG (0-. ) )

0' t' J*_i- 0' ' 0 I

exp{- [ (xr-iG, (0r) c ,/s) /rrJ 2 ]as (3 .66)

noticed that G (0i) is frequency independent, and so
0

ttre mirror reflected coordinates r,¡ill be close to the

r¿ell. Equation (3.66) can be reíÈitten in the f orm

It has to be

is wr, since

interface as



ürefr (*r,rr,ro) = (vr/2ni) 
f]t*"*n{-".

= (vr lzri)

r¿ith the constants t, , u,

v, = (1/nbrr)"*p(ico (0i))
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and the problem now reduces to Ëhe evaluation of the fnverse Laplace

transform of rhe function r(") rr should be noticed that T(")
vaníshes at the origín, i-.e. zero frequency. careful examinatíon of

the properties of thís function l-n the complex s plane, shor^rs that

its ínverse transform should exist. The derivaËion of this inverse

transform ís carried out in Appendíx c , where r,re ohËain for the

reflected fíeld

úref I (xr,zr,t) = tL/rãw, expIiGo (0i) ]exp(-xrlwl){õ(t-zr/cr)

- i(-ícr (0. )c ,*r/rl)t" t ,r(2cr 
(0i)crxr/rf ) (r-zr/c 

r)+) / {t-zr/c r)u

r î G-zrlcr)"-t. (-r)t[-icr(0i).r/rrJ,t
-1-

n=t n! (2n-1) !

w-1-
r,.il+i-
I exp(st
J_
w-i-
gi.ven by

v

o).expf-rfCr+ ;')'la"

).¡'(s)¿s ,
0

vr=-iGr(0r)cr/x, ' (3.67b)

+ i (-1)'+' ,,:5

(3 .67 a)

s (21
2Ilr 2fl- t '

with 6(t-z_/c ) being the Dirac Delta funcríon, J (x) is rhe11 f
Bessel function of order one [55], and s are Lomrnelfs functions

Iltfl

117 ]. The above solution slr-ould be valid f or any time t > z /c , butr' 1'
ít must be understood that it bears the same paraxial approxLrnation

as in the tíme harmonic case.

(0,)c 2n -iG (0.)c zn 4 G (0.)
1 r 1r t I ]- t, I l'
;-) (--î_ ') - 

- 
crxr(t-

Trúr-
-ixcGfr

w2r

G,) g
'] +

" (t -zr/c ,) )

T t¿

r.
")I

n-$

(3. 68)



3.4.2.2

There are significant. differences between the configuration of Ëhe incídent

and that of the reflected field as given by (3.68). These differences

stem from the incident fieldfs impulsive nature, and the dependence

of the lateral shift on the frequency as described by equations (3.62)

and (3.63).

The first term in equatíon (3.68) represents a geometrically reflected

impulse, wíth a sharp boundary, and j-s not displaced as r¡/as the case

for the reflected field in the tÍme harmonic analysis. However, this

impulse is modifíed, as it must be, by the geometric reflectance

p(0i) which is given by expliGo(0i)] in rhis case. Ir ís rhen

followed by a wake which ís given by the exrra terms ín equation (3.68).

These additional terms,in the form they appear in (3.68), do not give

an indication about the different physical aspects of the soluËion.

Nevertheless, a clearer physical understanding may be achieved by

exami-ning the behaviour of the solution upon the arrival of the early

response, mainly at t = zr/c, or to È 0. In the classical case of

a line or point source excítation this is termed the behaviour near

the '¡avefront, and it ís usually obtaíned by examining the hehaviour

of the field expressions ín the complex frequency p1ane, for large

values of the frequency variable s. The asymptotic value of the

solution in (3.68), for ao = 0 , can be obtained by considerfng the

Discussion

B1

behaviour of the functions involved for small values of t

will yield

. This



úref1(xr,zr,ro) = {expCic0(0i) )/ntrr}exp(-x2lwf l{OCro)-2icr(0r)c ,*r/r1

The second term

the behaviour of

relation t55l

r c2(0.) c2+,f " t? (L - 2xr/wr)21Ì
I,l7 -r

B2

I1m tu+o

in (3.69),which is independenr of ao ,

the Bessel function for small argument

J ([u) dJ
-i- Ì= tim {-'L}= ri*u U+0 dU U-+0

The last term in (3.69) appâars due to the last two quantities in
(3.68), and by making use of the leading term in the asympËotic expan-

sion of Lommelrs functions ISZ 1.

rt has been verifíed that the asymptotic value of the solution as

given by (3.69), can be derived through a rarher different approach.

rf the fíe1d expression in the complex s plane as gíven bv ß.67)
is asymptotically approximated for large values of s, i.e. as s-)co,

and the inverse transform of the obtaj-ned serj-es expansion ís evaluated,

the result will be identical to that of equaËion (3.69). This ag:ee_

menË is in consistency with a Tauberian Ëheorern [11], and provides

a method for checkíng the accuracy of the general solution as given in
(3.68).

I{hile the first term in (3.68) or (3.69) represents an impulse, with
a sharp boundary behind it, the second term has a completely different

behaviour. It represents a field that appeaïs as a discontinuous step

exactly at t- = 0, and then oscillates simílar to a damped sinusoidal
0

L
2

(3.6e)

arises from

; mainly the

[.r^ (¿u)-¡^ (tu) ] = 9,/2.
vz

(3.70)



wave for Ë > 0 . Moreover, the field of th:is distu¡bance vanishes
0

at the centre of the heam, exists on borh sides with a phase difference

¡/2 on one side, 3r/2 on the other, as compared to the initial response.

A similar effect \,ras encountered in the treatment of the impulse response

of a r¡ave guide by iollin lfa]. As was mentioned earlier, BrekhovskÍkh

[ 10] treated a special case of a pulsed radiation that Ís hounded in

time and- space according to an ínverse square distribution. He found

that the reflected field, upon total internal reflectíon, consísts

of two parts; a pulse with a simílar configuration as the incident

one, in addition to a pulse with a modified form. Ilhi.le the firsË

two terms in (3.68) and (3.69) are símilar in nature to those of

Brekhovskikh, we get extra terms due to the difference in the nature

of Ëhe incident field as assumed in Section 3.4.1.

83

The last tvro terms ir (3.68) sËart to appear only after the sharp

boundary of the pulse, i.e. for t > 0. If their series represent-

atíons are compared with the second term in (3.68) , we notice that

they are bounded. Maínly, íÈ ís found that they decrease as to

increases, and vanísh as t +€o. Ilhíle no specífic criterion for

their nature could be established, it seems they present a wake that

trails after the sharp boundary of the impulse, as $¡as the case r,rith

the second term. This is a consequence of the assumed naËure of Ëhe

incident field. In particular, the incident beam is being comprised

in terms of plane r¡rave components, and each has a dÍfferent phase

shift upon total internal reflecÈion. In the transf.ent analysis, it

is not expected that the responses due to the associated plane \,raves



r^iill arrive at a certaín obqervaËfon point r,¿íth the sarne relatíve
phases as they had at ttrc start. l,Ie may undeastand this phenonenon

by realizing that a Gaussian heam can be constructed, in the harmonlc

analysis, from the field of a line or poÍnt source, on hasis of

Huygenf s prínciple, as r¿as shown by Tarnir and oliner t5il. Hence, in
a two-dimensional configuration the Ëransient behaviour of the beam

Ís expected to be relatdd in a T,,ray to the two-dímensional time-space.

Greenrs function, or the problem of an ímpulsive 1i-ne source. For

the latter, it r¿as found that a characteristic of the solutLon is
the v¡ake that trails afÈer the sharp boundary of the pulse. rn

particular, the response of an impulsive line source is described

by

B4

with H(t) being the Heaviside unit srep funcrion. From (3.71)

it can be irmnediately seen that the initial irnpulse l_asts for an

infinitely short duraËion, but there ís no sharp boundary behind Ëhe

wavefront. Thus there exist the "after effects", which are in

violation of Huygents principle [54], and are characteristícs of the

two-dimensional, time-dependent Greenrs function. These "after

effects" and the wake thaË trails the iniËial impulse, as given by

the next three terms fu (3.68) for ao t o, are close in naturer

especially in víew of. the fact that if a beam is made up of rays

coming from a line source distrihuËÍon at the image coordinaËes, each

ray will have a dífferent corresponding phase assocl.ated wtth ít due

to total internal reflection at ttle interface.

úref 1(t,r) = H(t-rlc -) /2r(tz-rz /"?)bll
(3. 71)



chapter fouz'

FIELD IN THE RARER MEDIUM UPON TOTAL INTERNAL REFLECTION OF A

GAUSSIAN BEAM

The transmitted field for a Gaussian beam aË and around critical

incidence will be examined in this chapter. While Horowitz and Tamir

Ï27,2g ] treated Ëhe behaviour around, and exactly aË êritical incid.ence,

upon reflection of a beam, that is, having Gaussian or cauchy profile,

only the Cauchy profile was considered in the rarermedium t28]. Ra eË al

l47l employed Deschamps' [t6] representation for the Gaussian beam to

study the evanescent field in the rarer medium. However, their results

are restrícted to certain regions in space and for a lirnited range of

the incídence angl. 0i, mainly 0i r 0".

Through the analysis of the reflected field around critical incidence,

Horowitz and Tamir 127 ,29 ] developed a unified theory for Ëhe Goos-

Hänchen shift and related phenomena. The relation between this 1at-

eral shift, and the diffraction effects which ínvolves the lateral

wave fÍe1d, and its interference with the geometric optical field

was analysed thoroughly. Moreover, they díscussed in detail Ëhe prop-

ertÍes of these lateral \¡zaves in the far field region as well as their

dependence on such factors as the beam width and the angle of incidence.
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we recognize that the beam fíeld extends into the region below t.he

interface, and therefore, iË is expected to have a behaviour related

to the reflected field. Moreover, in order for the field to be



continuous across the interface, the field in the rarer medium rmrst

have some evidence of diffraction effects that occur in the denser

medium. subsequently, examining the behavíour of the field ín the

ïarer mediurir will add more insight to the understanding of different
phenomena Ínvolved. Knowledge of the dífferent aspects of the prob-

lem is required for applications involving large aperture antennas

and laser optical systems.
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In this sectíon we consider the field ín the ïarer medium, upon íncid-

ence of a Gaussian b'eam, for the total internal reflection regíme. The

field is evaluated through an approxinate, but accurate, analytic sol-

ution by startíng from equaríons (4.6) and (4.7) ín tzgl. The obËained

analytic solution ís compared wÍth the exact numerical solution sho¡¿-

ing very close agreêment. The characteristics of the field will be

examined through a graphical display of the results. Through careful_

inspectíon of the presented graphs, the nature of the fíeld in the

rarer medium can be visualized and thus leads to a meaningful explana-

tion of the mechanism of toËal internal reflecËion and rel-ated phenonena.

By drawing conclusions from the observed behaviour of the field, the

aspects of the results are compared with available results f.or a simi-

lar case l2Bl, as well as resul-ts that are of a cotnmon nature to both

the transmitted and reflected beams, such as lateral r¡7aves.

4.r

The field in this case is the same as !¡as gíven by equation (3.30).

SOLUTION FOR THE FIELD IN THE RARER MEDIIIM



However, for the case of the total ínternal reflectíon, the reflectarice

p(y), and consequently Ëhe transmiËtanee T(y) are complex. By using

equation (3.8c), the transmittance in thís case can be v¡ritten [28 ]

Ín the form

r(Y) =r(yr) +p(vr)r(y)

with
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r(Y) = p(y)/p(vr) - r

the field can be writ.ten asThus

The i

f=
1

I-
2

rÞ.(*, ") = 
,Èr*" tr(Yi)r, * p(Yr)rr1

ntegrals
oo

I
I exp{-t

J

-6
co

I
I r(v)
)
-@

and I are being given by
.2

(v-vr)/2cosorJ 2 + í-ly* + ßrn, * B r"Tjay

Y. = k sínO.'l- 1 I

In general, the integrals in (4.2b) and (4.2c) cannot be solved exact-

1y. However, an approximate evaluation may be obËained by means of

approxirnate techniques. As v¡as menËioned before in Sectíon 3.1, Ëhe

major contributíon for the integrals arises from points around Y = Yi.

However, y, is equal or close ao Yc for total internal reflection,

which is Ëhe case under consideration. In such a case the squar. .ooa

term ín equations (3.8a) or (3.8b) accounts for a branch point singular-

ity at the value y = y". Due to this singulariËy, the quantity (k2-y2)U

and consequently t(y) varies rapidly for Y = Y., and this rapid

.xp{-t(v-vr) /2cos0r)2 + i-ly* + ßrn, * ßrrl}ay . G.zc)

(4.Ia)

(4. lb)

(4.2a)

(4.2b)



variaËion affects the integrals (4.2a) and (4.2c). rn order to evalu-

ate these intefiralsrwe recall the approach of. Horowitz and Tamlr [27,
2Bl that was used for treating the reflectíon of beam \¡raves as well

as the transmitted fíeld for a cauchy beam. Definíng the variable

BB

where a is as defined in sectÍon 3.1, and the parameter 6 rwhÍch

determines the deviation of the angle of incídence of the beam o.

from the critical angle, 0. is given by

r = o - ð - (sinO" - y/kt)secO. ,

The proper expansion of ßr(V), and hence r(y) in Ëhe neighborhood

of critical incidence will be in terms of o+ ot tZ. RetainÍng the

first Ëhree t.erms in the expansion of 3, and the first two in the

expansion of r(y), and by using (4.3), (4.4) and (3.8), rhe inregrals

I and I can be !¡ritten in the form

5 = (sin0. - sinO")/cosO.

f = (k cos0=) . exp(A)
.1 1 l-

f = (k cosO.) . exp(CI) . f(e )211--1

where

Í^l = -k2w2ô2/4+i{trxsín0"*krrâo*krn, Icos0.*ðsín0.-ô2/2cos0r1], (4.5c)

(4. 3)

lt-
I "*p {icr t-'
Jt

o, = krrê, , o, = kr{-xcos0.*hsin0.-6hr/cos0.f ,¿r-U'Sl

ß2 = k2{v¡2/A-in /Zkcos1 } ,ltc

(4.4)

* icrr - g''r2j
2

f+L
I {r'-(-ô)-'}exp{(icr
J7
-co

rZ+ía 
rr-ß2'cz\dr, 

(4. 5b)

(4.5a)

(4. sd)

(4.5d)



and the Taylor

the expansíon

ß=
2

expansion

ofß as
2
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k, I *r. (rt-(-o)å)o
' n=o

coefficíents [28 ],

= k., I ârr{tå¡"
' n=o

and

f (0i) = -0. (k, /k, ) 2sin0 
. cos20"/{"o"å0, (sino .*si no 

")+ 
.

-1on n!

dnß

^^^ErBrB0t2

The preceding analytic formulatíon describes Ëhe field in the rarer

medium due to an incident Gaussian beam configuration. However, to

recognize the physically meanÍngful features of the problem through

this formulation, rnre have t.o proceed with the evaluaËíon of the integ-

rals of (4.5a) and (4.5b).

Icos20. * (k, /kr) (sin20.-sin20")] ] .

I,Ll12=(-ô)-P

are found from

4.L.7

(4. sf )

G'5e)

The integrals of (4.5a) and (4.5b) ínvolve branch point effects. Thus

íË is important to ídentífy the proper branch. This is achÍeved by

takíng into consideration the radíation conditíon [27 ] which requires

that the imaginary part of B 

" 
must be posiËíve. Thus the inaginary

k1-parËs of T'2 and (-ô)-' must be greater than zero. The íntegrals

I and I can be rewritLen as

Evaluation 0f The InËegrals

(4. str)

(4. sí)



I, = (krcosO.). (exp(0)){

IL
+ | exp[ia 'r-2 +

to I

I, = (krcos0r).exp(Q)

90

I
0

+ | .å"*p {io ,8 +
Jo I

"*p¡-a'c+ -I

io r - ß2t21¿tÌ
2

A common partícipant in all of these integrals is the quantity

exp[-ß2T2]. Accordíng to equation (4.5e) the real part of ß2 í"

posiËíve, and lßlrtf, in view of the assumption of a well defined

beam, i.e. kw>>l. Thereforer âDy of the above integrals will possess

a sharp peak around T = 0, and the contríbution of the neighborhood

of that peak forms the major value of the integral. This suggests

that the inÈegrand can be approxírnated in that neighborhood ín an

appropriate manner, for whích a sufficiently accurate estímation can

be found. In essence, this is Laplacers method of integrals [13115],

and we fÍnd that an excellent approximation ís províded for t, o, 
f,,

by considering the first three terms in the expansíon of ."pt ;lll-åt
t¿ , -o.rt 

^ a*l '
orr-2'expt ,:.1:Zj in equations (4.6a) and (4.6b)¡ respectívely.^ r-clrT

The foregoi-ng argumenLs have been verl-fied, tor several representatÍve

examples, by exacË numerical evaluation of (4.6a) and (4.6b), and

comparing it with the proper respective approxímation which, for

example, in case of I will be

luk.f (0.Xi I t-'exp[-a r'2 -L Jo t

ic¿ 'r - 32r2ld^r
2

ío, 'r - gz'c2],d'r - ioå. r ]2t

ícrr - ß2'rzld'c
2

(4.6a)

(4. 6b)



I-
I

(krcos0r)exp (f)), 
Jr 

t,

+l.rr
Jo

Table 4.1 shows a comparison between the exact numerical value of the

integral in (4,6a) and the approximate numerícal value by computing

Ëhe integral ín equation (4.1). The close agreement between the tr¿o

estirnations can be easily noticed. Furth.ermore, it is expected that

the agreement will improve more for larger values of the parameter ß, and

hence,the beam width to wavelength ratío w/Àr , that is of more sig-

nÍficant practical importance. Nevertheless, a closed form expression

for I and I , in terms of an Ínfínite series sumnation can be found.!2
By expanding the firsE exponent in both parts of Ir, and also the firsË

exponent in I combíned with T+ ín an ínfínite series about T=0,
2

results in an infíníte sum of integrals. Each can be evaluated accord-

ing to the formula l25l

L
+ icr, r'' - o"2't2/2lexp(io .r - g2-r2)a.tj

Il-2

9L

- orrb + u2r2 /zlexp(-io,rt - g2rz)dt

|.-*u-'
I,0

Making

afËer

(4.7)

exp(-ßx2-yx)dx = çzg¡-v/' "*p ly'laß'l o_u e/eÐ4)

use of equation (4.8) and the identíty (9.248.L) ín l25J,and

some manipulation, r¡re get

I, = (krcosOr) 'exp (CI) . exp{-cl, /8ß2}. rm .

æ

o{ Ï

n=o

and

ot."*p (-Lrn/4)
1

nt 1zg"¡*

cI,

D , ( -J-)\nl 2 /2ß

(4. a)

(4.e)
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TABLE 4.1

Values of the integrals in equations

(4.6a) and (4.7), for o, = o, = 0.5

lel
Exact numerical Value of
the integral ín (4.6a)

100

I

50

_?
(8.8551 + i3.3724)10 -

10

(r.7693 x 1o-2 + i9. 657r x ro-4)

8.7584 x ro-2 + i1. 2r2o x ro-2

Numerical value of the

approximate integral ín (4.7)

(B.Bss1 + í3.3134)10-3

L.76g3 x L0-2 + i9. 6624 x r0-

8.7582 x 1o-2 + 1.2150 x ro-2



t, = (krcos0r).exp(Q).f (0i)

{J
n=1

with D- (v) being the parabolic cylinder function of order n andn

argument v 1251. As mentioned before, the fiïst three terms ín these

inflnite sunnnations are sufficient for a reasonable approxÍmation.

substj-Èuting equations (4.9) and (4.10) into (4.2a) yields rhe analyric

expression thaË describes the field in the rarer medíum, which is re-

lated to the properÈies of the field ín the denser medium. Agaín, as

a further test on the accuracy of our present approach, we calculate

the exact numerical value of the analytic field expression. obtained.

by consídering only the first three terms of Èhe series summatíon of

equations(4.9) and (4.10). Then we evaluate (4.2a) by exaet numerical

íntegration of the integrals r, and r, " The two evaluations are shor^m

in Table 4.2 , for a wide range of dístances x , where close agree-

ment is noticed.
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/2n. expli¡r / 4-a2 /Bg2 l
2

(zgz¡t / +

So far, the results are not in a form to emphasíze the behaviour of

t,he transmiLted field, nor can the different features involved in Ëhe

process of the transmission of a Gaussian beam at total internal

reflection be visualized easily. Nevertheless,considerable insíght

ínto the physícally meaningful features of the problem can be gained

through the fo1lowíng group of graphical presentations.

(4.10)



The transmitted fíeld anplitude in the region irnmediatelv

a) ú* values obtained upon ennploying Ëhe analytic results of (4.g)
and (4.f0¡ in (4.2a). b) Values obtained by direct exact numerical
íntegration of equatíon G.2a). The incident Gaussian beam ampliÈude
is normalízed. so that l{rrrr"l= 1.0 aË the centre of the beam (x.=0),
h.=0, and (k-/k ) = 1.94. The ratio x/w represents the dÍstance112
on the x axis, normalized to the beam width w v¡hich is 10À in
this case

below the interface in the rarer medium:
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TA3LE 4.2
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I.2t26
.98L72

.7 6256
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.42369

.31882

.24526
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.16135



4.2

The results for the transrnitted beam are presented in the form of a

group of graphs that shor¡ the amplitude of the field for a wide range

of most of the parameters involved. For sírnplícíty, n, is taken to

be zero, and the field values are normali-zed to the value of Ëhe fíeld

at the centre of the incídenË beam which is taken to be unity. The

ratÍo k lk is taken Ëo bè L.94 Ln all the cases consl-dered herel

DISCUSSION OF THE RESIILTS
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4.2.I

Thís includes a descripËíon of the field directly below the interfaee

(z=0) and in the regíon of the existence of Ëhe incident bean and the

shifted reflected beam. Fig.4.1 shows the transmítted fíeld profíle

for different beam widths and the two polarization cases. It is

noticed that the maxima are shifted to the ríght of the incident

beam centre (x=0), an amounË S" that varies with the bçan wídth as

well as the polarization. That shifa S", normalized Ëo the wave

length ). in the first medium, is larger for parallel polarízation
1

than it is for normal polatization,for the same bearn width,and under

th" =r*" incídence conditÍon. The value of S- increases by increas-
c

íng the beam wídth, but Ëhe ratio of S./w decreases. The maximum

value of the field is appreeiably less than 2 for sma1l beam wídth,

and is larger for normal polarizatíon as shown in Fig.4.1. However,

as Èhe beam width increases it comes very close Xo 2 and Ëhe differ-

ence beËrrreen the two polarízatÍ.on cases cannot easíly be dístinguished.

Field In The Geometrical Optics Range

The above ratio was chosen so that comparison can be nade with
avaílable results l27,2B,Zgl.
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Moreover, the field'is noË s)¡mmetrical on both sides of these maxima,

having a larger ampliËude to the right than ít is to the left for the

same distance measured on both sides of the maxima.

To relate these results to the different aspecËs of the phenomena of

total internal reflection of a well collímated Gaussian beam, T.üe re-

call the characteristics of the Ëota1ly reflected beam at critical

incidence 127,281. The centre of the reflected beam is shífted a

finite amount D" (the Goos-Hänchen shift) at critical incidence

(0,=0^), which depends on the polarLzation as well as the beam width.-a c"
Tþe transmitted beam field, to an approximation based on the physíca1

optics consideration, will be the resultant of two fields. The

fírst one is that of the incident beam, whích is strictly Gaussian

and with its centre at :<=0. The other field ís that of a reflected

beam, wíth its centre shifted to the right (x>0) by the amount of D",

and which, in the dominant part of it, is Gaussian. As shown ín Fig.4.2,

the resultant transmitted fie1d, in the region around the centres of

both the reflected and incident fields, will result i-n a configuration

that is díffe::ent in profile, wíth its maximum shífted to the right by

an amount Sc. The larger the value of D", the larger will be S",

and the smaller will be the value of the maxima for the transmitt.ed

beam for the same beam r¿idth vr. Horowítz and Tamir 127 ,29 ] showed

that at critical incidence, Ëhe Goos=Hänchen shift O" is larger for

parallel polarization than for normaL polarization by a factor of

(k /k )2>L. The behavíour of the field for the two polarizatíon cases,
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as can be seen from Fíg.4.1, and consequently the difference in the

value of the two corresponding maxíma as well as their locations are

consistent with Ëhe previously mentioned results. However, we must

cautiously recognize t}:at thís behaviour is relative to the beam

vridth w , since D" is relatively a small portion of the beam wídth

p7 I as it does not increase linearly by increasing \^/. It is worth-

while, at this point, to examine the variation of S. for varying

values of beam width r¡/. Fig.4.3 shows the approximate normalized.

values of S^/À , agaínst the normalized beam r^rídth w/x , for bothc 1 t-
polarization cases. tr^/e notice that S" increases by increasing the

bèam r¡idth. Thus it can be concluded that D" also increases by

increasing w , and that agrees with equation (46) of tZ7l. However,

the rate of increase of S" ís slower than the rate at which w ís being

increasecl, in víew of the different respective scales in Fig.4.3,

which suggests that while the raËio S"/w is large for smaller beam

wídth, it decreases by increasing the beam width. ThaË behaviour ex-

plains to an extent the gradual shifting of the maximum more towards

x=0 for larger values of w as well as its increase ín relative value

as compared to the transmitted profile for smaller w (l'íg.4.L), keep-

ing in mind the way the preassumed Gaussian profile decreases far away

from its centre as defined by equation (z.tz¡. A1so, it is partially

due to this behaviour that the signifícant distinction between the

transmitted beam profiles for the two polarízation cases, consídering

the same beam width, is not clear for larger beam wídth r^/ as it is

for smaller w (Fig.4.1).
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The ratio D /w was shown [ 29] to be decreasing with increasing w r.c
reaching zero.f.or a beam of infiníte vridth, which is in agreement with

predictíons of classical electromagnetic theory [8], i.e. a vaníshing

shift for an íncident plane \^/ave. In view of the aforementioned dis-

cussion regarding the relation of S" to O" and the behaviour in

Fig.4.3,iË can be concluded that similar consideratÍons would apply

to the ratio S /w.
c
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The foregoing conclusions were based on the physical opËics approxima-

tíons as implied by Fig.4.2. However, that kind of approximaËion does

npt yield a complete and exact quantíËative picture regarding all the

phenomena involved ín the present problem. As was mentioned before,

the resulting transmitted field as described in Fig.4.1 was not

symmetric on both sides of j-ts maxima. The field is larger to the

right than ít is to the left, when considering two points that are

equidistant from the field maxiroa. This non-symmetry is more distínct

and clear for a beam with smaller width w, than for that of a larger

\,/. This observation is in complete agreement r.vith the expectations of

energy flow from the left to the right, that has a role in creating

the Goos-Hänchen shif t, as \¡/as discussed by | 7 ,28 ], and in detail by

I37 l. It is clear that such a behaviour cannot be explained by strict

geometric optícal terms, since the sirnple model of Fíg.4.3 results

for a Ëransmitted beam configuration that is always symmetrical ¡uith

respect to its maximum value. Furthermore, from Fig.4.1, it is observed

that the field decays differently on both sides. tr^ihile Ëhe decay to

the left (x<0) is fast, it is slower to the ríght (x >0), and the



field extends further on this side in a range that is several beam widËhs.

This range is out of the reach of physical optícs considerations. I^Ie

recall the analysis in Section 4.1, and the fact that the field result-

ing as a consequence of a branch singularíËy, constiËut.es díffrac-

tion effects [ 28,52]. While these diffraction effects, at critical

íncidence, are r¿eaker than the georuetrical optics fields, they constitute

a major factor in establishíng the shíft O" 128,291. Furthermore,

they depend in part on the beam width w, and play a major role in

r02

the properties of the shift S"

problem will be discussed later.

I

L '', '')

The discussion so far has been concerned with transmitted field charac-

teristics in the region immediately below the interface (z=0). I^Ie

also need to trace the field and its propagation characterisËícs in

the rarer medium for depths that are distant from the interface (z>0).

Fig.4.4 shows the normaLized field values at different depths of

penetration (z = constant), and for different values of beam width w.

The distances in the x direction are normalizeð, with respect to the

beam width in each case.

Variation Of The Field With Penetration Depth

Their effect regarding the presenË

It is noticed that the field drifts more ín the positi-ve x dírection

as z ís increased. This drift is accompanied by a decay in amplí-

tude, as can be seen by the values of the maxima at different depths,

as well as a change in the field configuratíon. The non-symmetry of
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the field arourld its maximum value that was noticed at z=0 increases

more for larger values of z. This results in beam spreadíng more to

the right, and the field is by no means collímated as is the case

wíth the incident beam or the refracted beam for non-total reflection.

All of the above mentioned effecËs depend to a great extent on the beam

wídth \,,/.
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Further insight ínto the preceding observation can be gained through

the following considerations. Tí-g.4.5a displays the maximum value of

the relative amplitude of the field at different depths zi and for three

different cases of beam width rr. It can be clearly seen that as the

beam width increases, the depth of penetratíon of the field increases.

Contours of constant amplitude, for lú- = O.gl , are plotted for two"t | '

different beams in Fíg.4.5b, sihere both coordínates are normalized to

the beam wídth in every case. From these contours \,¡e notice Ëhe shift-

ing property of the field towards the right, as rrel1 as the variation

of that shift as Ëhe bearn width \,ìr varíes. It is also clear that as

the beam width increases, the fíeld contours move toi¡ards the interface;

hence the field r¡ill be contained within an angular region close to the

interface. This behaviour can be further emphasízed by consideration

of Fig.4.5c in v¡hich the locations of the maxima are traced. I,Ie can

easily notice that as the beam width íncreases, the trace of the maxima

gets closer to the interface. Moreover, in view of the way the field

spreads on both sides of its maxima, as is displayed by Fig.4.4, iË

is obvious that the field values in the regíon bounded by any of the

maxima curves in Fig.4.5c and the interface to the right (x>0) are
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stronger than the field values to the left of the same maxima curve.

These observations are ín perfect agreement wiËh results obtained

before, under the same conditíons, for the Cauchy beam [28 ]. Further-

more, a similar ínterpretation ín terms of energy transfer from one

side of rhe beam that results in field build up on the other side 136,

48 ], can be attributed.
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The behavíour of the field so far seems to be in contradiction vrÍth ¡þs

physical optics expectation, where total internal reflection results

in a fi-eld that has infinite extent ín the rarer medium and travels

pprallel to the interface of separation. However, from Ëhe previous

discussion about the effects of increasing the beam width w, it

can be seen that as the beam width becomes infinÍte,the incident field

will be that of an incídent plane \{ave, and the results will be consis-

tent v/ith the predíctions of geometric optícs. FurËhermore, a sirnple

ray optical argument may be utilized to describe the basic behaviour

of the fíeld in the following manner.

In the ray diagram of Fig.4.6a, rays are constructed for dífferent

ranges of incidence angle Q, in the d.enser medium. For a ray AO, that

is incident at an angle 0ra 0" , there ís a geometrically reflected

ray OAr , and a ray OA", that ís refracted according to Snellts law

at an angle 0at0r. As the angle 0, increases, 0a starts increasing

untí1 it reaches rl2 if 0t coíncides with 0". This is explained by

the ray CO, which results in a totally reflected ray OCr, and a re-

fracted ray OC" where the latter propagates parallel to the inËerface
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in the second mediurn. Any ray that has an incidence angle greater

than the critical angle will always have its refracted component pro-

pagating para11e1 to the inËerface, as is the case with the ray BO.

Accordíng to the Fourier representation \^/e use, iË was mentioned

in Sections 3.1 and 3.2 that the Gaussian beam ís comprísed in terms

of an angular specËrum of plane \^/aves, with densiËy that is descríbed

according to the specËral density function of equation (3.13). If the

beam is incídent at the critical angle 0", then Ehe cenËral component

of the spectrum r¿í11 have the same angle of incidence 0" , and hence

it will have the behaviour described by the ray CO. For Ëhe rernaining

components, half of them r,¡ill have angles of incídence greater than

0^, and the other half will be at angles that are less than 0^. The com-c- - c

ponents with 0t0" will be totally reflected and therefore r.¡i1l con-

tribute to the refracted fíeld in the dírection of the rays OCt t and

OB". However, the other componenËs that have angles of incÍdence

less than 0-, wíll follow a path similar to that of the ray AOAI'
c-

where each componenË r^rí11 be refracted with different refracÊion

angle depending on the partícular incidence angle, which in Lurn de-

pends on that componentrs particular location in the spectrum. Thus,

we v¡ill have half of the spectrum propagaËíng parallel to the inter-

face,and the other half will propagate at refractíon angles that are

in general less than r/2. To a fírst appro:rimation, the superposiËion

of all of these components results in a field which spreads within an

angular domain close to the interface, and does not propagate parallel

to the interface. This is in agreement \,/íth the results stated above.
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rt was mentioned that the bearn width r,r plays a major role in deter-

nining the transmitted field spread and angular domain. This aspecË

can also be explained in terms of the behaviour of the spectral func-

tíon in Fourier analysis. We recogníze that the spread of the spectral

function is inversely proporËional to the beam v¡idth, as implied by

equat,ion (3.13). This property is displayed in Fig.4.6b, where rhree

different spectral functions that correspond to three dífferent values

of r^r are shown. A beam with smaller s/ will have its spectral

density spread more in the frequency domain. Thus the componenËs of

the spectrum rnrith angles of incidence less that 0" , will have a r,,¡.ider

angular range. This r"rill result in a range of refraction angles that

are far different from T/2, and the resultant transmitËed field will

be aË an angle to the interface as mentioned before. As the beam

\.ridth increases, the spread of the spectral density function decreases.

Hence, the angular range of the components wíth 0 less than 0" be-

comes more narrovr. This results in refraction angles that are more

closer to Tt/2. Therefore a beam with a larger width will be contained

in a smaller angular domain that is closer to the inËerface. rn the

linit as the beam r¿ídËh reaches an ínfinite value, which is Ëhe case

of plane wave incídence, the spectral density function results in only

one central component and we r..¡ill obtain a field that i.s in agreement

v./ith the geometrícal optics results t B ].
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4.2.3

rn the results presented so far, there are some observations that

Diffraction Effects



eluded sati-sfactory explanatÍons. For example, we stated that ín the

region immedl-ately below the int,erface (z=0), the field decays fast

in the region to the left (x<0), while this decay is srower on the

other síde, and a non-negligible field is present to the right, outsÍde

the range specified by geometrÍc optÍcal measures. Moreover, this

non-negligible field anplitude is extremely dependent on the beam width

w r as r,¡ell as the polarízation. Even in the range covered by geometrÍc

optical fields, the transmítted field distribution, Íf viewed in

terms of distances along the x axis that are normalized Ëo beam width

values, is different for different beam widths. Beams with snaller

values of w result in fíelds that are less concentrated to the left

and extending more in the positíve x dírection, than those fieLds

resulting due to beams having larger widths.

It should be recognized that the results presenÈed here come from the

fiel-d expression of equation (4.2), wtrieh must give an indl-cation of

the t.ransmitted field ín the rarer medium, with all of its wave specíes.

There is a branch singulariËy in that field expression whose contribu-

tíon must be implicitly contaíned ín the present results. While the

significance of the field due to this branch síngularíty has not been

explicitly analysed for the transmitted Cauchy beam at critlcal incidence

[28], tts effect for the reflected field is well understood. As was

mentioned in SecËíon 2.3, Horowitz ar.d Tamir Í27,29 ] dÍ.scussed the

properties of the fíeld due to thís singularíty, which presenËs lateral

wave fields in its far and near ranges, and they showed that such a diffrac-

Ëion effect ISZ] fras a major effect in decidíng the Goos-Ilänchen shift.
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Since the transmitted field is related

diffraction effects must be implicítly

as given by equaËíons (4.2), (4,9), (4.

emphasized.

Generally, these diffraction effects constítute a field wfuich is weak-

er than the geometric optical components 1521, and thus their detectíon

is more difficult in the spatial range consídered so far, as Ehey occur
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essentially together with other field components. However, it might

be possible to observe the lateral r¿ave field under certain excepËion-

a1 conditíons. For example, if cerËain specific spatial regions whióh

are accessible to diffraction effects more than to geometric opËical

fíelds can be found.

to the reflected field, these

contained r^rithin our solut.ion

10) and their role needs to be

The 1aÈera1 v¡ave field travels exactly paral1e1 to the interface follor¿-

ing the path of the ray OBr I Ín Fig. 4.6a, and the field amplitude has

its maximum value in Ëhe region just below the ínterface in the rarer

medium (z=0). I^Ie showed before that the major part of the transmitted

field in the geomeËric optics range travels at an angle to the inter-

face. This suggests that in the spatial region r.rhich ís jusË ímmediaËely

below the ínterface (z=0), and extends in the far range to Ëhe right,

i.e. several beam wídths away in the positive x dírecËíon, diffrac-

tíon components have an access to such a range and they will almost

have the major contribution in the non-negligible field that exists

there. Therefore, the properËies of this field should largely have a

lateral wave nature, and thÍs will be examlned here.



Fig.4.7 shows the field for both polarization cases, for a beam width

of 100À., at z=0, and for a wÍde spatial rarì.ge along the x axis.
1

rt is clear that the field decays fast in the negatíve x directl_on

to the left, and it eventually vaníshes in a distance of a few beam

widths. rn the posítive x directíon the fíeld starts to decay slow-

ly at a distance equal to 3w, unÈil it reaches about 4w r^rhere the

fiel-d decays slowly and at a dífferent pïoportional rate. Moreover,

the distínctíon between the two poLarization cases starts showing up

gradually startíng at a disÈance thaË is approximately equal t.o 2w ,

up to a distance of about 4w where the difference reaches a nearly

constant value, wíËh the fíe1d for ùhe parallel polarízation case being

larger.

It r,¡as shovm through experímental lZ ,tZ] and theoreËical investÍga-

tions[28 ], that the fíeld of a lateral wave fans out graduallyra\¡ray

frour the geometric optical field and thus occupies a very wide region,

and its spatial reduction with distance ín the far range is proportion-
I

al to x-zt 3. Checklng thís rate of reduction against Ëhe decay of the

field in Fig.4.7, it is found that starËíng at a distance of about

x = 4w the agreement is up to two deeimals and increases wíth in-

creasing the value of x.

LI2

I^Ie recall from the properties of lateral r,raves

Osterberg and Smith l+t+1, Tamir and Oliner [51]

for parallel polarízatíon is related to that of

by the ratio (kr/k)z. This ís precisely, up

as discussed by

, that the field raËio

normal po1-ariization

to three decirnal poinËs,
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Ëhe ratÍo of the fields tn Fig.4.7, for the far range of x, where

the difference of the Ëvio curves stays approximaËely constant. I^le

also recall the recent r^¡ork of Horowitz and Tamir 129 I ana Horor¿itz

[Zg,90 ] which deals r¿ith the properties of lateral waves at critical

incidence. They discussed the lateral wave in the near field, ín the

denser medium, r¡here it was shornm that iË presents an interference

mechanism that ís destructive Ëo the left, and constructive to the

right. There is an exciËation coefficient for this lateral wave Ehat

is gíven by f(0i),as in equation (4.Si), whích reduces Ëo the afore-

mentioned ratio of (k /k )2 at critical incidence. The range of
l2

2w<x<5r¡ was defined to be a transition region between the Gaussian

variation exp[-(x/w)2] of the reflected. beam and Ëhe *-t/z variation

of the trailing illumínation of Ëhat beam, i.e. lateral T¡/aves in the

reflection domain. The field behaviour as shovm in Fig.4.7 agrees

with their results, thus showing that lateral waves also extend into

the region belorv the interface with similar properties. Moreover,

lateral \^raves must present a similar interference mechanísm for the

transmitted beam, as is the case with the refleeted field. I^Ihile sueh

an effect is not obvious from the fietd equations of (4.g), (4.10)

and (4.2¡, ít is implicitly conËained in the field graphs of Fí9.4.7

and Fig.4.l. The difference in the transmitted field behavÍour for

positíve and negatíve x , as ¡,rell as its non-synmetry about its

maxima may be attributed to such an interference effect. Furthermore,

the lateral wave is larger for paral1e1 polarízatior and this explains

the difference ín field configuration for the two polarízation cases

in the near field region. However these differences in field configura-

7l_4



tion qrere dependent on the heam width as well . Therefore, T¡7e need to

consíder the behaviour of the field in the far range for differenË

values of \^r.

Fig.4. B represents the transmitted field for two dl-fferent beams whose

beam width ratio ís *r/r, = 100. rn addition to the previous propertÍ.es

conÈaíned in Fig.4.7, we notice dífferent characteristics for the

field in the far and near ranges. For the beam with smaller width,

the fíeld in the far range is larger than that for a beam with larger

width. The ratio of the two Ís very close to 10r âs câo easil_y be

seen from Fíg.4.8. This suggests that the fields ín the rarer medium fn

the far range which are doulinated by lat.eral waves vaïy accordlng to

the inverse square ratio of thel-r beam rnridÈhs, which ís in agreement

r¿iÈh the result obtained for the laËeral wave field ín the denser

medium l2gl. Furthermore, \¡re can conclude that Ëhe tail end of the

non-vanishfng fíeld at z=0 represents an extension, ín the rarer

medium, to the traíling illumination tSf ] that accompaníes total ínternal-

reflectj-on of a beam; and which decreases as Ëhe beam width Íncreases

reaching the límit of Ëhe nonexistence of a lateral- wave for plane

wave incidence (w:-)

From the observations mentioned ín the previous paragraph, an inter-

pretation can be introduced for Èhe dífference in the transmítted

beam profiles ín the near field range for large and sma1l beam widths.

As the 1at.era1 wave field amplitude is larger for a beam with smaller

\,r , its effect should be more notícable in this case. The effect of

the interference mechanism that is attributed to the lateral wave field
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Í28129], will result ín a larger value for the ratio D./w, and hence ln

a larger ratlo for S"/w, for a beaur wLth smaller width, as can be visual-

l-zed from Fíg.4.3. Thls wtll contribute to the dffference Ín Lhe propJ

ertles of the field profiles for beams with different values of w.

LL7

Whereas the main qualitative aspects of the far range field díscussed

above are consistent with theoretical and experimental descriptions of

Lateral vlaves, I^Ie recognize that there ís a sli$ht difference ln the

quantitatíve comparison. As mentÍoned before, lateral \¡raves \"rere noË

expressed in theír separate analytic form, but were rather predicted

accordíng to the fíeld equaÈl-ons of (4.2¡, (4,9) and (4.10). In rhese

equatlons there are apprirximatlons in both the analytical and numerical

proeedures lnvolved. Moreover, the assumption that the field 1n the

far range and for z=0 is doml-nated by the lateral wave field is based

on the approximatlon that other field components vrill have a vanl-shing

amplltude ín this range. However, as z increases., conËribuÈl-ons from

the other part of the fíeld cannot be disregarded, expeclally ln view

of the angular spread of the beam. Thls is the reason why the exponen-

Lial decay of lateral waves in the z directlon away from the interface

[10, s1]

Even for a beam wíth smaller \¡r , that results in a lateral wave field

wlth larger amplitude, the spread of the bearn ín its angular

cannot be expllcttly deduced from Èhe present apprciach.

domain is more pronounced,'which unkes ttLe dlstinctlon of the lateral

r,qave field at any z i 0 plane rnore dlf ficult.



4.2.4

The transmitted {ield encounters some major changes as the irrcident

beam angle 0, comes to be Larger than the critical angle 0 The-lc
field becomes aore concentrated in the region just below the interface

and in the incídent and reflected fieldsr range, as can be seen from

Fj-1.4.9. There is also more, drift towards the positive x direction

in that range. However, at a dístance of about x = 2w the fíeld

starËs decaying again. As the depth of penetration increases the

field amplitude encounters a reduction that íncreases by increasi-ng

the incidence angl. 0i. This behaviour is shoi¿n in Fig.4.10, where

it is also notj-ced that the field drifts more to the right, thus

occupying a smaller angular domain that is closer to Ëhe interface.

Such aspects can be clarified more by considering the field amplitude

as it varies with z , at three different planes, i.e. x=0 and x = t!,r,

as shown in Fig.4.II , f.ox 0.=0.*.5o along with the corresponding

values for 0-=0^ . These observatíons are in agreement with previous-l_c
ly obtained results [28,47].

Field At Angles Beyond The CrÍtícal Ansle

118

The classical expression in the literature [28 ,51-,52] for a lateral

wave fíe1d pertaining to points at the interface (z=0) in Ëhe denser

medj-um shows that the amplitude of the field, for a certain beam wi-dth,

decreases as the angle of incidence exceeds the crítical angle. The

decay of the field anplitude at any ínci-dence angle 0, , as compared

Ëo the amplitude at critical incidence [29r52], is gíven approximately accord-

ing to rhe rarío tf(0i) /f(Oc)l.exp{-(krwô/2)'}, rh.r. f(0i) and ô are as
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Fíg. 4.10 Variation of the

incídence angles

Y,/W

Z=5Àr

--__\:_::b.
Z=2Àl

x/w

transmitted f ield ¡,¡ith z for
beyond the crítical angle (¡v=10À



0.
6

7/
\,1 !'i

g.
 4

.L
L

T
he

 tr
an

sn
ilt

eC
 f

ie
lc

i -
¡a

ria
Ë

ío
n 

i¡i
th

 o
en

eL
ra

tio
n 

de
pt

h 
z,

cc
ns

ta
nt

 v
al

ue
s 

of
 

x,
 a

nd
 t

w
o 

di
ffe

re
nt

 i
nc

id
en

ce
 a

nq
le

s

fo
r 

w
 =

 1
0À

T

z/
\.i

at
 t

hr
ee

 d
iff

cr
en

t
(0

_.
=

0^
 a

nd
 e

_.
=

3_
 *

 l
o)

,
l_

cl
c

ts ¡-
-



given by equations (4.5j) and (4.4) respectívely. Since the lateral

r^/ave fíe1d extends in the rarer medium, a corresponding decay musË

hold ín our presentation for the spatial range in which we showed

that the field exhibíts lateral wave characteristics. This is pre-

cisely the behaviour of the field in its far range, as can iunnediately

be seen from Fig.4.L2. The agreement with Ëhe above mentioned decay

ratio holds up to a second decimal point in Ëhe far range of the

field, rnainly startíng from a distance of abouË x = 4w as ís obvious

from Fig.4.1-2, where the field values are presented for Ëhree cases

L22

of the incídence angle 0, thrrt are different from 0
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chapten fíue

SU}MARY AND CONCLUSIONS

The problem of electromagnetic beam 'n¡ave interaction with a plane inter-

face separating two dÍelectric media is considered, along with its

different features. The rapidly developing field of ínËegrated optics,

where electromagnetic beams are widely used, makes the presenË problem

of sígnificant practical interest. Moreover, in the design of opti.cal

círcuit-elements, whích are used in beam guidíng and tlansmissíon, 
.and

in applications regarding millimeter waves, the different j-nvolved

phenomena investigated here could be of extreme ímportance.

L24

trnlhile the phenomena related to total internal reflection of a light

beam have drar^m the interest of physicisËs since the end of the last

century, there stí1l exíst some unresolved questions regarding the

general aspects of reflection and refraction problems. In addition

to clarifyíng some of the aspecLs related to toËal internal reflection,

the present investígatíon leads Ëo some ner,r phenomena related to the

problem in the case where total internal reflection is not. encountered.

The choice of a profile for Ëhe beam ís an important aspect from both

analytic and practical points of víe¡¿. The Gaussian profíle has receíved

substantial ínterest recently, in view of its accessibility to analysis

as well as its relation to laser beams. Anticipating future experi-

ments we adopt this profile as an example for a well defined, symmetríc

collimated beam in the major part of this work.



In the first phase of the present dissertation the case of regular

reflection and refraction, i.e. excluding total internal reflectíon

is considered, Through a rigorous inËegral representation, the total

reflected or refracted fields are comprised in terms of geomeËrical

optics fields, and additional higher order components. These extra

terms, which are not explainable on basis of geometrícal optícs consid-

erations, represent a correction that r¿ill contribute significanËly

towards the structures of the reflected and refracted fíe1ds.

L25

Consideration of Ëhese aspects for an incident Gaussian beam, shows

Ëhat the additíonal terms, for either the reflected or refracted beams,

represent a set of modified complex Gaussían beam modes. Examining the

analytical properties of these new modes, we find that while Ëhey are

not orthogonal as is the case with the conventional modes of a laser

oscillator, Ëhey satisfy a certain bí-orthogonality relationship.

Moreover, Ëhey are syrnmetric, and in vie¡¿ of their greater simplicity

provide a ne\¡/ tool of describing beam scattering ín more complicaËed

and involved problems. They play an essential role in the description

of the beam scattering process treated here. In particular, iË is

found that there exists a beam shífting or deflection phenomenon, which

is different in nature from Ëhe Goos-Hänchen shift, and is a character-

istic of both the reflected and refracted beams.

This shift is relatively sma1l for either polarizatíon cases as it depends

on the square of the ratio of the wavelength to the beam lvidth, whÍch



is a sma11 ratio for a ive11 defined beam. Since the shift increases

linearly wíth the dístance off the interface, it displays an angular

deflection of the optÍcal axes for both the reflected and refracted

beams. This is a princÍpal difference in Ëhe nature of this shift

as compared to the Goos-Hänchen shift. Moreover, the angular beam

shift depends on Ëhe behaviour of the reflectance or the transmittance

and their higher derivatívesrwhich in turn depend on the incidence

angle of the beam, as well as Ëhe refractive index. Thus, only for

beam incidence at a príncipal angle 0, , for r¡hich the reflectance or

the transmiËtance displays appreciable s1ope, and for appreciable

distances off the inËerface, should the beam shift be of practical

significance. The range of the incidence angle, i.e. whether smaller

or larger Lhan the polarizing ang1e, in addition to the polarízation,

determines the dírectíon of the shift for either the reflecËed or

the transmitËed fíelds, whietr- could be determined by judicious inspec-

tion of the behaviour of the reflectance or the transmíttance, respec-

tíve1y.

The region in the vicinity of the Bre¡¡rster angle is recognized to be

a transition region, within ',¡hich the reflected beam properties change

from backv¡ard to for¡¡ard deflection. At polarizing incídence, it is

shown Ëhat there stil1 exísts a reflected fie1d, whose characteristícs

are analysed and explained in terms of higher order reflected beam

modes. I^Ihile this result is in contradiction with geometrical optics

expectations,it is readily explainable from the properties of the angular

spectrum representation as implied by the properties of the spectral

density funcLion in the utilized Fourier analysis.
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The refracted field is descrtbed hy the use of a convenient representa-

tion, where the beam stïuctufe for non-total reflection is analysed.

In addítion to effects t¡hich are nearly slmilar to those encountered

for the reflected beam, ttr-e refracted beam undergoes a change ín beam

width which depends on the refractive index as well as Ëhe angle òf

incidence.

In the angular spectrum representation utilized here the dlfferenË

characterístics of different beam proffles are described through theír

different spectral densíty functions, which show nearly sírnílar behavíour

for all syurmetric collímaËed beams. Since the process of beam r reflec-.

tion and refraction is affected to an extreme degree by the character-

ístics of their spectral densiËíes, it has Ëo be anttcipated thaË a1L

collimated beams would encounter the same effects. This is verifíed

by considering the problem for a beam wíth a cauchy profile, where

explicít analytic results are obtained and compared with those of a

Gaussian beam. It ís noticed that the maín features of the ínvolved

phenomena are also presenË in the case of the cauchy profÍle. Thís

poínts ouË the generality of the result.s presented here, as was the

case r,rith the Goos-Hänchen shift, ín spite of the different aspects

causing both phenomena. However, it should be noticed that results

are tractable and explainable as long as the incident beam l-s r"¡ell

defined and collimated. If the beain definition devlates from these

conditions, other effects arise and have to be taken into considera-

tion. The considered case of an incident field d.ue to a truncated

plane vrave provides an example for these latter cases.
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rË is also verified that, hy i.ntroducing some modificaËion on our

approach, the classical expression for the Goos-Ilänctrcn shffË, which

is valid for Ëhe range of f.ncidence not too close to the crltical

angle, can be straigtr-tforwardly obtained. such an expression, in its

sirnple form, is utilized in examining some aspecËs of the transíent

phenomena upon total internal reflecËion. rt is found that íf the

incÍdent beam is impulsive in nature, the totally reflected fíeld

changes substantially from its steady state form. The early response

due to an incident pulse is a reflected pulse, as is expected,

follor,red by a wake whÍch ís a consequence of the preassumed radiation

as well as the total internal reflection process.

t2B

The last aspect of the present work clarifies some of the unresolved

questions regardíng the existence of the field ln the rarer medíum due

to a Gaussian beam that ís incident at or around the critical angle.

It ís found that the transmitted field in the region ímmediately below

the interface, in l-Ës far and near ranges is affecËed by the reflected

fíeld nature and the different \¡/ave specíes involved. In partícular,

diffraction effects that are strongest in the vicinity of the critical

angle and contribute towards Èhe reflected field structure and its

laËeral displacement, play a similar role in establishing the behavlour

of the transmitted field. These observaËions are in consistency with

the nature of the phenomena existing around critical incidence as well

as the continuity of the {ields across the boundary of, separation.

Moreover, it is notÍced that the transmítted field spreads as 1t propa-

gates in an angular domain that is different from grazíng angles.



This aspect, wtr-Í.le being Ín contradiction wlth geometrical optics pre-

dictions, is explainable in t.erms of the characËeristj-cs of the spectral

density function and sirnple ray optical considerations around the

criËical angle. The heam width is a major parâmeter in establishing

the various features of the transmitted beams. As the beam width in-
creases, and the ineident field in the limit approaches a plane r¡rave,

results reduce to those deduced on the basÍs of. geometrical optics

predictíons.

Suggestions fot, Futune Reseaz,ch
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I^Ihile the angular beam shift has been treated for a Gaussian beam, and

for Ëhe less practically importanË case of a cauchy profíle, its
characterístics for beams due to large aperture antennas oï any bounded

electromagnetic radiation in different practical problems, provfde a

subject that should be of both t.heoreËíca1 and practical importance.

The rnodifíed cornplex Gaussian beam modes resulted in the present work

from an integral representatÍon over an angular spectrum of plane T¡raves.

However, when complex values are assigned to the source coordinaËes ín

the expressions for the field radiated by a line or point source, the

resulting fields can provide a representation for the fundamental

Gaussian beam mode. This fact may be utilized to descrÍbe the proper-

ties of the conventional, as r^2e11 as the modified complex hlgher order

Gaussian beam modes. Investigating these aspects for higher order modes

may lead to a better understanding of their general behaviour, especially



when treating more involved and complicated scattering problems.

fn the Ëransition region around the Brewster angle 0u , an anti-

resonance effect r¡¡as observed. In parËicular, it was noticed that the

amplitude of the first reflected component increases when approaching

0r, and it attains its maximum value exactly at the Bre¡^rster angle.

This phenomercn requires further investigation to examine its relaËion

to the existing zero that is dlsplayed by the reflectance at oB.

The analysis presented for the regular incj-dence case are not val_id

once the critical angle is approached, as total internal reflecËion

phenomena start to appear. However, the transition in this range from

angular beam deflection to the Goos-Hänchen shift around critical

incidence needs to be examined. rn particular a unified approach is

needed to provide an explanaËíon of this transition region. Thís was

not possible ín the present analysis due to the analytic properËíes

of the functions ínvolved .
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From the transient analysis of a totally reflected Gaussian beam in

the range beyond the critical angle, it is recognized that Ehe tran-

sient problem Ís rather involved and tedious. A complete description

of the transient phenomena has to include analysis of the lateral

wave, which displays different characteristics for the transient

regime, as well as tlLe field in the rareî medium. Rigorous examination

of, these different features should become rather rewardíng.



Properties of the transmitËed field in the raïer rnediuni at and around

critical angle r,lere examined througtr- graphical representation of the

computed results., This did not a11ow specific identification of the

different wave species that constitute the transmitted field in

their explicit analytic formulati-on. Further investigation of the

rather involved analytic expression for the transmitted field provided

in the present work shall contribute towards a complete and precise

understanding of such a physically significant problem.
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Appendix A

EVALUATION 0F THE IIJTEGRAL IN EQUATTOI'I (3.15a)

To obtain a solution for (3.15a), the relevanË integral expression for

general n may be wriËten as

r--^
rr = 8.,(0i) 

.Jo"exp[-(okrwr/2)2-ikroxrJdo (A.t)

_--
Defíning E = (krwr/Z)' , o = ikrx, , and separating the integral so

that
r-* r@

Tr, = ur,(0i){.Joot.*ot-ßo2-ooldo + (-r)t 
Joo""*o¡-6ozrsì1ao} G.z¡

llaking use of the relation [25]
fæ

J "*lexp[-gx2-yx]dx = ç2g¡-v/'t(v)exp(y2lsg)D-v Q/lTÐ , (A.3)
U

then (4.2) becomes

Tr, = Br.(gi) t2ßl-(n*r) /z y(n+l)exp[ ã2l(aþ¡ 1 .
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where D is the parabolíc cylinder function [39], being relaËed Ëon

the Hermite polynomial as

nnG/zt) = 2-n/zexp(-22 /z)HnG)

Using the linear relation 1,251

lu(z) = r(vtuiexpÇrvi)D-v-rGz) * expC- ].vi)
I ¿'tl

it can be shovm that (A.4) results wittL (3^.5) in

r = inB (0.)zr?(t< w ¡-(n*1)" C* /v¡ )exp (-x2 /,,¡2¡nnIfInÍT'ft

(4.4)

D (-íz)l
-V- I

(A.s)

CA.6)

(t.t)



Appendix B

EVALUATION OF T}IE FIELD INTEGRALS FOR TIIE CAUCI{Y BEAM

For Ëhe evalua

f'*nt-u

i .*p I-i
)o

r-+ i."o,0
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tion of (3.42), we consíder the integral

,blol - ikrox. - iß?oz)ao

k,o(x.-ib) - i8?o'l¿o

liklo (x.+ib) - tßloz Jat

- I +I
0l

Consider , for example,

can be written as

02

0l

cÌ

= (1/ßi) exp(iu2 /4)

1

and yields

= -ik

,0, = G/ßi)exp(ío2 /Ð- (r/2)2-{(t/, + rl2í)-tc(a//Ti)-is(a//Ír)l}, (8.3)

wiËh C(z) and S(z) beíng Fresnel integrals, whÍ.ch are related to the

error functíon through the relation [39]

(b+ix .) /B .l- l-

[22]

I , which through a change of
01

I*"*n(-it2)at
o,/ z

C(z) + iS(z) = Il2(1+i) ert(/tr[L-i]z/2)

Utilizing (e.+) in (8.3) and evaluaËÍng to, ,n a similar way, the

result in (3.43) is obtained. The evaluation of the results in (3.44a)

and (3.45a) follows identical steps. For (3.44b) and (3.45b) use is

made of the above results as well as the relations

(s. r)

variable

(8.2)

(8.4)



- f- n - -ig2r'ju. = d- f-"*(sr-ig2r2)dt ,
tr = jo t t*Plo 

asr Jo

and the relation [25]

,Dtl

;ñ 
erf (x) = C-r)n(z /ñ)exp(-x2)nr(x) ,

with itr(x) being the Hermíte polynomials as defíned

l-34

(B.s)

(¡- o)

ir (9.16b).



Appendix C

EVALUATIOI{ OF THE

To obtain

transform
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F(ro) = Ã-t

- ¡'-l-,þ

INVERSE LAPIACE TRANSFORM IN EQUATION (¡.67a)

a

of

solution for (3.61a), we look for the inverse Laplace

f (s) , which can be lrritten as

{exp (-t2 [1+v, /" ] 
2 

) ]

Defining

2vt2=e . ,2.t2=d22t - 2 r

then (C.1) takes the form

[ [exp C-til i . Iexp (-2v ,tl/s)

F(r0) =S-t Iexp(-êls)J * û t [.*p çd2 /s2)]

=F(t)*F(t)I020

The evaluation of t, (ao

in [18 ], and ís given by

L-L
F(t)=ô(r)+ô?t2t

10001

- exp (-t2rv2ls2)JI

where I (x) is
L

unity order [55].

evaluated Ëerm by

) is performed using some

F(t)
20

the modified

For F (t20
term, r¿here

LL(zê'"'', ,
0

CC. 1)

Then F(t ) as
0

upon making use

= ô(t )
0

(c.2)

Bessel function of the

)raseriesexpansion

the resulË comes to be

,\'0-rL-

(c.3)

functional relaËion

n=l

defined

of the

. zn*1. ¡--1)t. (d) rn

n! (2n-1) !

in CC.3) can be obtained

convolution integral

(c'4)

fÍrst kind, wit,h

is followed and

¡roin CC. 4)

(c. s¡

and (C.5)



F(Ë )
0

Ë

r0= lF
I

U

fto=l16
I'0

(r)F Ct -t)dt
I20

L 1, LL
(t)+è'2r--'I (.2è-'?^r-'z1. tô (r -t),I 0

(.c'e¡

Upon malcing use of the properties of Ëhe delta function, equation

(c.6) will resulr in
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L_L j-L
F(r ) = 6(r )qi'2¿'21 (2è2t2)

0001 0

where

_f'I=)0,
4unn

+i
n=l

is defíned by

Any of lhe integrals Iu, in (C.8), can be evaluated by

and separate approaches. The first one is by using the

entation of Bessel ftnctions and evaluating the resulËing

term by term through the relaËÍon t53]

Cr -t)zn-t (-t¡n¿zn
t,

+i
fi= I

t
o ô2 i l. --lzn-rrn Jo o

r n-l (-t)td"

(2n-1) ! n!

x

I no-t(*-y)þ-1dy =
Jo

=

t
(2n-1) ! n! q

I dr.

-+r e"Lrt)a^r
1

+I

and t

would

r ¡t/zl.rlu'0

Both

, I¡-Lí æI f '-' * f (cr) f (ß) exp (xs)
2Tr:- I ct+ßJ- c

k-1æ

f (cr) f (ß) 0*ß- r

f (cr+ß)

hen

be

(zs

summing over the resulting seríes. An alternate approach

to use a modification of Soniners integral [55]

(c.t)

(c'e)

tv¡o dífferent

series repres-

integral

.1rnu ) s ln'

approaches give for (C.B)

-" (o ) . "o""rt (o ) dg =

ds

e
u+V

2t*t "v*lf (,.r)

V-u*
(z)

(c. e)

(c.10)



= I (-r)t+1¿," c4iê) t n-8

n=l o

r,¡ith S being Lommelts
Drfl

results in (C.7) and (C.11)

l-37

s ( zèLr?t
2fl, 2Il- I '-

functíons I171. Upon

, (3.68) is obtained.

substituting the

(c .11)



1. Abramowitz,,H. and stegun, r., Handbook of Mathematical FuncËions,
Dover Pub., New York, L965.

2. Acloque, P. and Guillemet, c., "sur 1'onde de reflexion totale'r,
C.R. Acad. Sci. 250, pp.4328-4330, 1960.

3. Antar, Y.M.M. and Boerner, I,,i.M., ttGaussian beam j-nteraction r¿íth
a planar dielectric interface", Can. J. phys. 52, pp.962-972, L974.

4. Antar, Y.M.M. and Boerner, LrI.M., "Generation of complex Gaussian
beam modes in beam interactíon with a planar dielectric inter-
face", IEEE Trans , Æ-ZZ, pp.837-839, I97 4.

5. Antar, Y.M.M. and Boerner, I^I.M., "A generarized approach to beam
wave interaction wíth a dielectric interface", Appl. phys., in
press, L975.

6. Artmann, K., "Berechnung der seitenversetzung des totalreflek-
tierten Strahles", Ann. physik. , (6) 2, pp.B7-L02, L948.

7 . Bertoni, H. L. , Felsen, L. B. , and Ra, J.W. , ttEvanescent f ields
produced by Ëotally reflected beams", fEEE Trans. Ap-¿!l, pp.
730-732, L973

B. Born, M. and Wolf, E., Principles of OpËics, Second EditÍon,
Pergamon Press, New York, 1964.

9. Bracer¿e11, R.M., The Fourier Transform and lt.s Applications,
McGraw Hill, New York, 1965.

10. Brekhovskikh, L.M., trnlaves in Layered Media, Academic press,
New York, 1960.

11. Brown, W.P., A Theoretical Study of the ScaËtering of ElecËro-
magnetic Impulses by Finite Obstacles, CTT Antenna Laboratory
Teehnical ReporË No.28, 1962.

L2. Bryant, H.C., ttl,ateral T¡raves on a plane air-water interface'l
J. Opt. Soc. Am., 63, pp.1009-1013, L973.

13. Carrier, G.F., Krook, M., and Pearson, C.E., Functions of a
Complex Varíah1e: Theory and Techniques, McGraw-HÍll, Nerr york,
L966.

14. Collín, R.E., Field Theory of Guíded Waves, McGraw-Hill, New
York, 1960.

138

REFERENCES



15. De Bruijn, N.G., Asymptotic Methods in Analysis, North-Holland
Publishíng Company, AmsËerdam, Second Editíon, 196I.

16. Deschamps, G.4., "Gaussian beam as a bundle of complex raysrt,
Electron. Lett., 7, No.23, pp.684-685, L97L.

L7. frdélyi, 4., Magnus, W., OberheËtinger, F., and Trícomi, F.G.,
Higher Transcendental Functions, Y.2. (Bateman ManuscripË Project),
McGraw-Hill, New York, 1953.

18. Urdélyir' 4., Magnus, LI. , Oberhettingeï, F., and Trícomi, F.G.,
Tables of InËegral Transforms, V.1. (Bateman Manuscript Project),
McGraw-Hill, New York, 1954.

1-9. Felsen, L.B., "Lateral Waves",Electromagnetíc Theory, Edited by
J. Brown, Pergamon Press, Oxford, pp.IL-44, 7967.

20. Felsen, L.8., and Marcuvítz, N., Radiation and Scattering of
Waves, Prentice HalI, Inc., Englewood Cliffs, N.J. , 1973.

2L. Fragstein, C. Von., "Zur Seitenversetzurrg des totalreflektierten
Lichtstrahles", Ann. Physik (6), 4, pp.277-278, L949.

22. Goos, F., and Hänchen, H., ttEin neuer und fundamentaler Versuch
zur TotalreflexÍon", Ann. Physik, (6), l, pp.333-346, L947.

23. Goubau, G., and Schv¡ering, F., "On the guided propagation of
electromagnetic wave beams", IRE, Trans., AP-9, pp.248-256, I96L.

24. Gowan, E., and Deschamps, G.4., Quasi-Optical Approaches to the
Diffraction and Scatteríng of Gaussian Beams, Technical Report,
No. 70-5, AnËenna Lab., Univ. of lllinoís, 7970.

25, Gradshteyn, I.S. and Ryzhik, I.M., Tables of Tntegrals, Series
and Products, Academic Press, New York, L965.

26. Gruber, L.S. and Thompson, 8.J., "0n the apodization of coherenË
ímaging systemsr', OpËical Engineering, 13, pp.45L-454, L974.

27. Horowítz, B.R..and Tamir, T., "Lateral displacement of a light
beam at a dielectric interface", J. Opt. Soc. An., 6L, pp.586-
594, L97L.

28. Horowitz, 8.R., Critical Angle Effects for Optical Beams at a
Dielectric InËerface, Ph.D. Dissertation, Polytechnic fnstitute
of Brooklyn, New York, 1912.

29, Horor,¡itz, B.R. and Tamir, T., "Unif ied theory of total reflection
at a dielectríc interface", App1. Phys. 1, pp.31-38, L973.

139



30. Horowítz, 8.R., "Total reflectj.on of a light beam at a dielectric
interface: A comparative study", Appl. Phys. 3, pp.41l--41-6, I974.

31. Jones, D.S., The Theory of Electromagnetism, MacmÍllan, New york,
L964.

32, Keller, J.B. and Streifer, InI., "Complex rays with an application
to Gaussian beams", J. Opt. Soc. Am., !_1 r. pp.40-43, I97L.

33. Kline, M. and Kay, I.W., Electromagnetic Theory and GeomeËrical
OpËics, Johm I,Iíley, New York, L965.

34. Kogelnik, H. and Li, T., "Laser beams and resonators", Proc. IEEE,
54, pp.I3I2-I329, L966.

35. Lorentz, H.4., Abhandlungen über Theoretische Physik, B.G. Teubner,
Leipzíg, Berlin, 1907.

36. Lotsch, H.I(.V., 'rReflection and refraction of a beam of light
at a plane interface", J. Opt. Soc. Am., 58, pp.55l-561, 1968.

37. Lotsch, H.K.V., "Díe Strahlversetzung bei Totalreflexion: Der
Goos-Hänchen Effekt; Dr.-Ing. Dissertation. Technical UniversiËy
of Aachen, F.R. Germany, L970. Also, Optik lJ, 1-16, 189, 299,
and 553, in English, L970-L97\,

38. Maecker, H., "Quantitativer Nachweis von Grenzschichtwellen in
der Optik", Ann. Physik, (6) 4, pp. 409-43L, L949.

39. Magnus, W., Oberhettinger, I'. and Soni, P.P., Formulas and Theorems
for the Specía1 Functíons of Mathematical PhysÍcs, Sprínger-
Verlag, Ner,¡ York Inc., New York, L966.

40. Morse, P.M. and Feshbach, H., Methods of Theoretical Physics,
Part 1, McGraw-Hi1l, New York, 1953.

140

4L. Nemoto, S. and Makimoto, T., "ReflecËion and transmission of a
tv¡o-dímensíona1 Gaussian beam at the plane interface of dielectrics",
Electron. Commun., Japan, Þ!-5, pp.30-37, L97L.a.

42. Newton, I., Optiks, Dover, New York, L952.

43. Ott, H. , "Zur Reflexion von Kugelwellen'j Ann. Physik, 4., pp.
432-440, 1949.

44. Osterberg, H. and Smith, L.W., "Transmíssion of optical energy
along surfaces: Part 1, homogeneous mediar', J. Opt. Soc. Am.,
54, pp. 1073-1078, 7964.



45. Papoulis, 4., "Fresnel transforns r"rith aþplicatíons in díffrac_
tíon theory", proceedi.ng of the symposiurn on Mod.ern optics,
Polytechnic Press, New york, pp.453-466, L967.

46. PichË, J., Zur Theorie der Totalreflexion,Abhandlungên ,
Akademie-Verlag, Berlin, 1956.

47. Ra, J.w., Bertoni, tI.L. and Felsen, L.8., 'tReflection and trans-
missíon of beams at dielectric interface", srAM J. App1. Math.,
24, pp.396-413, I973.

48. Renard, R.H., "Total reflection: A new evaluatÍon of the Goos-
Hänchen shífr", J. Opt. Soc. Am., 54, pp.1190-1197, Lg64.

49. siegman, 4.E., An rntroduction Èo Lasers and Masers, prel-iminary
editÍ.on, McGraw-Hill, New york, 1968.

50. siegman, 4.E., "Hermíte-Gaussian funcËions of complex arguments
as optíeal-beam eigen functions", J. Opt. Soc. Am. , 63, pp.
1093-1094, t973

51. Tamir, T. and oliner,4.4., "Role of the lateral wave ín total
reflection of light", J. Opt. Soc. Am., 59, pp.942-949, Lg6g.

52. Tamir, T., ttlnhomogeneous $rave types at planar structures: I.
The lateral wave'f, Optik, Sonderabdruck 36., seíte ZOg-239, L972.

53. Titchmarch, 8.c., Theory of Fourier rntegrals, oxford univ. press,
London, Second Edítion, 1962.

54. Van der Pol, B. and Bremmer, H., Operational Calculus, New york,
Cambridge Univ. Press, 1959

141

55. Inlatson, ,G.N., A Treatise on the Theory of Bessel Functions,
Cambridge Univ. Press, Cambrídge, England, 1958.

56. Weston, V.H. and Hemenger, R.-, "High-frequency
a coated sphere", J. Res. Nat. Bur. SËandards,
1962.

57. hlhittaker, E.T. and Watson, G.N., A course of
Cambrídge Univ. Press, Fourth Editíon, L969.

58. I^Iolter, H., "Investigation of the ray displacement at total
reflection of light, by the method of intensity minumum specífí-
cation", (in German), Z. Naturforsch, 5a, pp.143-153, 1950.

scattering from
66, pp.6I3-6L9,

Modern Analysis,



VITA

Yahia M. M. Antar was born November 18, L946 in Meit Temeumra, Mansoura,

EgypÈ. He finished secondary education in Ranhle School in AlexandrÍa,

where he was ar¿arded a scholarship to joÍn the Faculty of Engineering,

Alexandria University where he received the Bachelor of Science degree

r,rith honours in electrical engineering in July 1966. He was selected

as an instructor in the Department of Physics and. Applied Mathematícs

in the FaculËy of Engineering, Alexandria. rn January of. L97o he was

awarded a teaching and research assistanËsfui-p from the Department of

Electrical Engineering, university of Manitoba, rqhere he obtained his

Master of science d.egree in Electrical Engineering in May LIIL. He

was awarded a University of Manitoba Graduate Fellowship and a Scholar-

ship from Ëhe Natíonal Research Councíl of Canada later in tr{ay L973 to

continue his graduate studies towards the ph.D. degree. since then he

has been engaged ín Ëhe area of microwave opËics and scaËteríng theory.

rn April or. L975 he was awarded a post-Doctoïate Ferrowship, for one

year, by the Natíonal Research Councíl of Canada to continue his research

aË the Uníversity of Manitoba. which he intends Ëo start after completion

of the requirements for the Ph.D. degree.

r42

Mr. Antar is a student member of the InsËitute of Electrical and Elec-

tronics Engineers and the Optical Society of America.


