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ABSTRACT

This thesis describes various algorithms for solving computational problems in
cubic fields of negative discriminant.

A method for finding all the non-isomorphic complex cubic fields with discriminant
D > -106 is described. Three different methods were used to find the class number of each
of these fields. The speed of these techniques is discussed and several tables illustrating the
computational results are presented.

Since the above method for constructing cubic fields is not suitable for a large
absolute discriminant, a description is given as to how all the non-isomorphic cubic fields,
which have the same given fundamental discriminant, can be computed by means of the
CUFFQI algorithm of Shanks. A description is given of the implementation of this
algorithm and its complexity is also discussed. The results of running this algorithm for
certain discriminants are also presented.

An improved version of the Williams, Cormack and Schmid algorithm for
evaluating the regulator of a pure cubic field is presented. By using this algorithm and the
Open Architecture Sieve System (OASIS), some pure cubic fields which have large
regulators were found. Furthermore, a brief description is given as to how OASIS can be
used to find several values of D such that the cubic polynomial x3+D has a large asymptotic
density of prime values. The Hardy-Littlewood constants which characterize this density
are also evaluated.

Finally, we show how the infrastructure idea of Shanks can be used to produce a
fast algorithm for determining principal factors in pure cubic fields. This algorithm was
implemented on a computer and was used to test a conjecture of Mayer by determining the

existence of principle factors for certain pure cubic fields with large absolute discriminant.
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Chapter 1.
An Introduction to Computing
in Complex Cubic Fields

§1.1 Introduction,
Let f(x) € Z[x] be any polynomial of degree n (= 2), which is irreducible over the

rationals Q. If p is any fixed zero of f(x), denote by K = Q(p) the algebraic number field
of degree n formed by adjoining p to Q. Let f(x) have s xeal zeros py, P2, P3, =+, Ps and 2t
complex zer0s Pgy1s Psa1s Pse2s Pse2s s Pt Psyry Where this ordering of the n = s+2t
is fixed. If n = 2, then the algebraic number field is either a real quadratic field or a complex
quadratic field depending on the values of s and t. Also, if n = 3, we can only have the
two cases of t = 3, s = 0 or t = s = 1. In the first case we say that the corresponding field is
totally real; in the second case we say that the corresponding field is complex. Thus, if & is
the real zero of
f(a,b,c;x) = x3 -ax2 + bx - ¢,
an irreducible cubic polynomial with rational coefficients a, b, cand s = t = 1, then Q(d) is

the complex cubic field formed by adjoining 3 to the rationals. Furthermore, we say that

f(x;a,b,c) is a generating polynomial of Q(3). In the case when a = b =0, we call Q(d)

(8§ = \3/?:) a pure cubic field.

The purpose of this thesis is to develop efficient computational algorithms to solve

certain problems which arise in the study of complex cubic fields. In this chapter, we give a
brief description of the background material required for this thesis. In §1.2, we give a
brief description on the topic of algebraic number theory. Since we make extensive use of
Voronoi's algorithm in this thesis, we provide a short sketch of this algorithm in §1.3. We
further note that most of the problems we deal with here involve the determination of ideal

bases, the fundamental unit, and the class number of a complex cubic field. Thus, it is of



importance to discuss some previous developments on these topics here. Finally, a brief

summary of this thesis is provided in §1.5.

§1.2 Definitions.

In this section we summarize many well-known properties concerning algebraic
number fields. Most of these can be found in any standard text such as Stewart and Tall
[ST79), Hua [Hua82) (also, see [Wil85]). If we define n mappings oj (i=1, 2, -+, n) of K
into the set of complex numbers by o;(p) = pj, 03(a+B) = oi(a) + o3(B), and
oi(ap) = o;(a)oi(B) , for any a, f € K, then oj(p) = p, for some j, and the n-1
conjugates of a. € K are given by oj(c), where 1 < i=n, buti = j. In the case ofn=2or
3, we use & or o, a" respectively to denote the conjugates of a.. We denote the trace of a

& K to be

n
Tr(o) = Y 0y(@).
i=1
We also denote the norm of ot € K to be

N(a) = [ Joy(@).
i=1

o, €K (i=1,2,3, k) are rationally independent, denote by [ag, dp, O3, *++, 0]

the set {ixiai | x; € Z}. If GLy(Z) is the group of all k x k matrices with entries from Z
=

and determinant =1, then [a, 0y, 03, =+, ay] = {B1, B2, B3y -+ By] if and only if

(1.2.1) A = MB,

where A is the vector (0y, Gg, 03, -+, 0x), B = (B1, B2, B3, -+ By) and M € GLy(Z).

We will require the following result (see [Hua82] p.376).

Theorem 1.2.1, Let a be the gcd(aqy, a3a, 413, < 81x), Where ay € Z (j=1,2, -,

k). There is a matrix M € GLy(Z) whose first row is made up of the entries ajq/a, a1,/3,

ais/a, -, a/a. A



Let Ox be the ring of algebraic integers in K. There exist wq, wg, »+, 0y € Ok

such that Ok = [wy, 9, -, ;] and the set {wy, Wy, »+, wp} is called a basis or Z-basis

of Ok. By virtue of Theorem 1.2.1 and (1.2.1) we may assume that there exists a basis of
Ok, where 1 = 1. If we put y;; = 0;(0) and define Alay, 0, <+, o] = (det(¥ijnxn)?s
then the discriminant D of K is defined to be A[wq, 0y, -+, w,]. Also, if o and a1l are
both in Oy, then we call o a unit of K. In fact, a necessary and sufficient condition for an
algebraic integer o to be a unit is that N(a) = +1. By the well-known theorem of Dedekind
we know that the non-torsion part of the group of units of O has s + t - 1 generators,

known as the fundamental units of Ok. If €4, €5, ***, €5,1.1 15 @ System of fundamental

units of Oy, we define the regulator R of Ok to be |det(log|oj(e;)])]. In the case of
s+t-1=1, we use &g (> 1) to denote the fundamental unit of Og and R = loge,,
Since O is a commutative ring, a subset a of Oy is an (integral) ideal of Oy if

for any o, p € a we must have o + B € a and af € a for any { € Og. If By, B2, -+, Py

m
€ Ok we denote by (B, By, «, B) the set {E‘r;i[ii | &; € Ok}; we see that this set is
i=1

an ideal of O and we say that By, B2, -+, By are generators of this ideal. Furthermore, if
a is any ideal of Oy, then a = (B, By, -+, By) for some B; € Og (i=1,2,3, -+, m)
and m is finite. We also have the following
Theorem 1.2.2. If a is any ideal of Oy, then there exist o; € Og (i=1,2,3, -+, n)
such that

Gp =a310;

Gp = 2310y + 82200

Op = ap101 + appW3 + «++ + 8y Wy,
where ay €Z, 2;;>0(1=1,2,3,,nj=1,2, =, 1) and

a=[ag, 0 03,1, 0p]. W

Also, there exist By, Ba, B3, +++, B, € Ox such that



as= {inﬁi]xie Z(i=123, -, n)}.

This set {81, B2, B3, =+, By} Is said to be a basis or Z-basis of a.

An ideal a = (o), which is generated by the single generator o, is called a principal
ideal. The ideal (1) = O is called the unit ideal. If a = [ag, 09, 03, «-, 0y ] and b = [By,
B2, B3, v, Byyl, we define the product ab to be that ideal generated by the km generators
aifj1=1,2,.,kj=1,2,.., m). Ifa and b are two ideals of Ox and there exist
non-zero o, f &€ Ok such that (a)a = (B)b, then a and b are said to be equivalent and we
write this as a ~ b. This is a true equivalence relation which partitions the set of ideals Ok
into a finite number h (the class number) of distinct equivalence classes. If we denote these
classes by Cy, Cy, «++, C, and define CiCjtobetheclass {abla€ C,bE G}, then
under this operation these equivalence classes form a group G called the class group of K.
The identity of this group is the class of principal ideals. We also note that if a = [0, ay,
a3, -+, &) is an ideal of Ok and AA = uB, where A, u € Ok, A = (] @y a3 - an),
B = (81, By, B3, o+, Bpy), then b = [B1, Ba, B3, ++, Byl is an ideal and a ~ b.

We say that the ideal a divides the ideal b (a | b) if there exists an ideal ¢ such that

b = ac. It can be shown that a | b if and only if a D b. If a | (a1}, then we say that a
divides o (aa). If a | a-B, when o, B € Ok, then we say that o and B are congruent
modulo a (ot = B (mod a)). If we denote by N(a) (the norm of a) the number of distinct
residue classes modulo a, then

Alag, g, 03, -+, ap] = N(a)2D,
where a = [aq, 0y, as, -, 0,). Also, if a = (&), then N(a) = [N(a)|. Furthermore,
N{ab) = N(a)N(b). Throughout this thesis, we will assume that the ideals we are

considering are not the zero ideal (0).

It is an easy matter to see that we can always embed 1 into a Z-basis for Ok. If

w1 =1, we see from Theorem 1.2.2 that a = [ay, a, a3, -+, O], where a;; € Z.



This value of aj; is unique for a and is the least positive rational integer in a. We denote it
by L(a).

We say that,a is a primitive ideal if it has no rational integer divisors except 1. In
other words, if (e) | a, where e € Z , then e must be =1 if a is primitive. A reduced ideal
is a primitive ideal a such that there does not exist any non-zero o € a that satisfies
loj(a)] < L(a) fori=1,2, -, n. There are only a finite number of reduced ideals of
Ox.

§1.3 Voronoi's algorithm,

In this section we briefly describe Voronoi's algorithm for determining the minima
in a cubic lattice. For more details the reader is referred to Voronoi[Vor96], Delone and
Faddeev [DF64], Williams, Cormack and Seah [WCS80] or Williams and Dueck [WD84].

Let F be a cubic field of negative discriminant. In order to find the fundamental unit
of F, Voronoi's Continued Fraction algorithm is often used. This algorithm, which is
particularly suited to the problem of finding the fundamental unit in a complex cubic field,
is an extension of the Regular Continued Fraction algorithm, as used in real quadratic
fields, to the case of cubic fields. It should be noted that Voronoi gave algorithms for
application both in the complex cubic case and in the totally real case; however, we will
focus our aftention here on the complex cubic case only. Our discussion will be based on
the description of the algorithm given in [DF64] (pp. 273-304).

If o € F and its congugates are o' and a", define the point A € R3 corresponding
to a by

A=(0,Mg L)
where 1, = (0 - a") / 21, Eo = (@' + a") / 2, i2 = -1. Note that
a'at = [ = o> = ng? + Lo

If \, u, v E F and A, u, v are rationally independent, we define the lattice L

(R3 D L) of F with basis {A, u, v} by
L={ah+bu+cv|ab cEZ}



When o € F and A € L, for the sake of brevity we will often use the notation o € L to
denote that it is really the corresponding point A that is in L. We also use aL to denote the
lattice with basis {a}, au, av}. If A (or @) is any point of L , we define the norm body
NB(A) of A to be
NB(A) = NB(e) = {(X, ¥, 2) | x, ¥, ZER; [x| < o, y2 + 22 s |22}
Here, if o] = |B] (0, B € F), we must have a = =f3 (see p.274 of [DF64]).). We say that
(= 0) is a (relative) minimum of L if NB(¢) N L = {(0, 0, 0)}. If ¢ and 1 are minima of L
such that
0<d<y, ¢'¢">9'p"
and there does not exist a € L such that ¢ < w <y and w'w" < ¢'¢", we call ¢ the
minimum of the first kind adjacent to ; and we call ¢ the minimum of the second kind
adjacent to ¢.
Since the term "puncture” is mentioned in the subsequent chapters, we define the
puncture of any © € L to be a point w = (§,1g) in the X-y plane of R3, where
Eq=(2Q-Q'-Q"/2, ng=(R'-Q")/2i
Consider now the sequence
(1.3.1) 01, 65, 63, =+, By, ++vy
where 8, is a minimum of L and 8;,; is the minimum of the first kind adjacent to 8; for

i=1,2,3, . We call such a sequence a chain of minima of the first kind. If 8;,, is the

minimum of the second kind adjacent to 8;fori=1, 2, 3, ..., we call (1.3.1) a chain of
minima of the second kind. By Minkowski's theorem (see [DF64]) it can be shown that
‘there always exist such chains in L. Voronoi actually gave two algorithms, one for finding
chains of minima of the first kind and one for finding chains of minima of the second kind.
However, he provided a detailed proof for the first of the two algorithms only. In this
thesis we will confine our attention to a method for obtaining a chain of minima of the

second kind for L.



It should be emphasized here that Voronoi's algorithm produces all the minima of

L. For example, if 1t is 2 minimum of L and u > 8y, then p = 8, for some n in a chain of
the second kind. Let Ok = [1, w;, ®,] and let L be the lattice over F with basis {1, w;,
w,}. Since [N(a)] = 1 for all nonzero a € Ok (N(a) € Z), we see that 1 must be a
minimum of L. By using Voronoi's algorithm, we can find

8, =1, 85, B3, =+, B, +ovs
a chain of relative minima of the second kind for L. Since ¢y € Ok we must have gy €L
and since N(eg) = £g8'8g" = €gleg'[? = 1, £g must be a minimum of L; thus, at some point,
we must find a minimal k (> 1) such that N(8,) = 1. In this case we have

gg = Oy
and

R = logby.
We also point out that for a given ideal a, Voronoi's algorithm can be used to find all the
reduced ideals which belong to the same ideal class as a. For a given reduced ideal a,, we
can use Voronoi's algorithm to produce a sequence of equivalent reduced ideals

a1, 2z, a3, 1, Ay,
At some point we find a; = a; for some minimal i (i > 1). When this occurs we know that

all the reduced ideals belonging to the same ideal class as a; have been determined.

§1.4. Bibliographic Information.

In the course of conducting computational work in any algebraic number field, three
important (and difficult) problems frequently have to be dealt with. These are:
determination of ideals of Oy (usually in their Z-basis form), computation of a set of
fundamental units of K (or at the very least the regulator of K), and the evaluation of the
class number (and possibly the class group structure) of K. For a discussion of these
topics in the context of a general K the reader is referred to the book of Pohst and

Zassenhaus [PZ89). As it will be necessary for us to deal with these problems as they relate



to complex cubic fields, we will provide, in this section, a brief description of the progress
which has been made on them. Further bibliographic information on the particular
problems addressed by this thesis will be provided in the introductions to the variuos
chapters. In this section we will first discuss the problem of determining the ideals of Op.
After that, we will recount the previous developments on finding the fundamental unit and
class number of a general complex cubic field. This will then be followed by a lengthy
summary of the progress of determining the fundamental unit and class number of a pure
cubic field, a subject on which there is a surprising amount of literature. Our approach to

the discussion of each of these topics will be chronological.

The problem of determining the ideals of Oy can be divided into two sub-
problems. The first is the factorization of rational primes into prime ideals of Op, and the
second is the calculation of the Z-bases of the ideals of Oy with prime power norms.
These two problems were completely solved by Voronoi. In his voluminous master's
dissertation [Vor94] (also, see [DF64]), he worked out methods for determining the
decomposition of the rational primes. He also determined Z-bases not only for the prime
ideals in any cubic field, but for products of certain prime ideal powers as well. From this
information he was able to show how a Z-bases for any ideal of O could be determined.
Since the time of Voronoi, several papers have appeared which deal with the problem of
determining how the rational primes factor into prime ideals of Op. In [Wah22], Wahlin
gave a detailed table for the factorization of any rational prime in Op. This problem was
further studied by Jaeger [Jae30], Hasse [Has30], Tornheim [Tor55], Arai [Ara81A] and
[Ara81B]. Also, Martinet and Payan [MP67] dealt with this problem in a more general
context. Finally, we mention that Llorente and Nart [LN83] presented a method which is
very similar to the one given in [Wah22]. All these methods determine the factorization of a
rational prime by making use of the generating polynomial of the cubic field. We note that

there is a convenient table for practical use given in [LN83].



We now turn to a discussion of previous results on the problems of finding the
fundamental unit and class number of a complex cubic field. A theory of units in cubic
fields was outlined by Hermite [Her50] to Jacobi in 1850. His principle was applied by
Charve [Cha80] to the calculation of a unit for cubic number fields. Charve utilized ternary
quadratic forms with a single continously varying parameter for the calculation of a unit of
a cubic field with negative discriminant. As a result, he was able to develop a method for
finding a complete system of reduced forms, which consequently produces a unit of the
cubic field. However, by neglecting the principle of Hermite's idea, Charve's method does
not necessarily find the fundamental unit.

In 1893 a table of fundamental units of Q(%/E) for ¢ = 23 was included in an
unpublished manuscript of Voronoi (see Vol. 3, p.252 of [Vor52]). In the following
January, Voronoi completed the work "On a certain modification of the algorithm of
Jacobi" (see Vol. 1, pp. 121-180 of [Vor52]). In this unpublished manuscript, he gave an
algorithm for finding the fundamental unit of a complex cubic field. In fact, his research on
finding the fundamental unit of a cubic field with negative discriminant was in a complete
state at this time (see Vol. 1, p.282 of [Vor52]). However, he delayed publication of his
results until 1896 when his doctoral dissertation [Vor96] appeared. In this remarkable
work he presented algorithms for finding the fundamental unit(s) in both complex and
totally real cubic fields. We should mention here that these ideas were recently extended to
other algebraic number fields by Buchmann [Buc82] (also, see[Buc85A] and [Buc85B]).
Furthermore, as mentioned earlier, Voronoi provided two methods for finding the
fundamental unit eq of a complex cubic field; one finds £¢ (> 1) and the other one finds
go! (< 1).

To the best of our knowledge, the first table of units and class numbers for general
cubic number fields was given in 1899 by Reid [Rei99]. He found 161 cubic number fields
having positive or negative discriminant. For each field, he gave the class number, the

discriminant, a basis, and the factorization of certain rational primes into their ideal factors.
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Units were also given for most of the fields. However, the units found are not necessarily
fundamental.

In 1913, Berwick [Ber13) developed, from geometric considerations, a process for
deriving the expansion of a cubic irrationality, for the case of a generating equation having
one real root, so that periodicity ensues in every case. For a complex cubic field F, he
showed that an ideal of O can be linked up with an equivalent ideal by a substitution
derived from the coefficients of the expansion, and that every ideal is equivalent to one of a
finite number of reduced ideals. He then went on to give a method for linking up all the
equivalent reduced ideals in one closed cycle. Hence, this closed cycle produces the
fundamental unit of F. We further point out that Berwick's method is very similar to
Voronoi's algorithm for finding the chain of the second kind; that is it computes €.

We should also mention the method discussed by Arwin [Arw29]. He presented
some results concerning equivalent ideals and the construction of units in cubic fields. He
then went on to sketch a method for finding two independent units in a totéliy real cubic
field.

By using Voronoi's algorithm, Delone and Latyseva (see p.303 of [DF64])
calculated a table of fundamental units for all complex cubic fields with discriminant no
larger than 379 in absolute value.

In [WZ72)], Williams and Zarnke presented two tables of machine calculated
fundamental units for various complex cubic fields. Instead of finding all the complex cubic
fields with discriminant less than a given bound, they found the fundamental unit for those
complex cubic fields having the absolute value of the coefficients of the generating
polynomial less than a given bound. In one table they used 10 as the upper bound, and 50
was used in the other table. The fundamental unit and generating polynomial for each of the
complex cubic fields were provided in both tables. The fundamental units were found by
using Voronoi's algorithm. They also gave a description of the algorithm of Voronoi,

which is useful for the purpose of programming this algorithm on a computer. In the
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following year, Angell [Ang73] used a computer to produce a table of all complex cubic
fields with negative discriminant greater than -20000. For each of the 3169 complex cubic
fields that he found, he gave the generating polynomial, fundamental unit, and the class
number. Again, Angell made use of Voronoi's algorithm in his computations.

In 1985, Dueck and Williams [DW85] presented a fast (assuming the Generalized
Riemann Hypothesis) algorithm for finding the class number and class group of a complex
cubic field. This method extends to the complex cubic case the ideas of Lenstra [Len82]
and Schoof [Sch83] in the real quadratic case. The algorithm was implemented and used to
determine the class number and class group structure for all pure cubic fields Q(%/E), with
2 =c¢ = 30000.

Another recent development in finding the fundamental unit of a complex cubic field
is that of Brentjes [Bre81]. By using arguments from plane geometry, Brentjes developed a
two-dimensional continued fraction algorithm. He further showed how this algorithm can
be applied to solve the unit problem in complex cubic fields. Also, he gave a table of
fundamental units for some miscellaneous complex cubic fields.

At this point, we have listed all the paper, known to us at the time of writing, on the
topics of finding the fundamental unit and class number of general complex cubic field.
We should also point out that there are serveral general methods for finding units in
algebraic number fields. For examples of these, see Billevich [Bil56], Buchmann [Buc86],
[Buc87], Buchmann and Pethd [BP89], Pohst and Zassenhaus [PZ77), [PZ82], [PZ89],
Pohst, Weiler and Zassenhaus [PWZ82], Steiner and Rudman [SR76], [RS78), and
Steiner [Ste76). For the remainder of this section, we will focus on the problems of
determining the fundamental unit and class number in a pure cubic field.

Besides their application to Charve's method, Hermite's ideas were also
implemented by Zolotarev [Zor69] in 1869. Indeed, Zolotarev was the first to develop
Hermite's suggestion in the case of a pure cubic field. In his little known master's thesis

"On an indeterminate equation of the third degree" published in Russian in 1869, he
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developed a method for finding the fundamental unit of a pure cubic field. His idea is based
on the study of successive minima of a certain positive ternary form containing a
continuously varying parameter. Although Zolotarev's method is remarkable, it requires
further supplements in order to find all the successive minima. Because of the need to
include these supplements in his method, the practical value of Zolotarev's method is
reduced significantly.

In 1890, Mathews [Mat90} found a solution of the diophantine equation

F.(x,y,2) = x3 + cy3 + ¢2z3 - 3exyz = 1
forc=2,3,4,57,11. As
N(x+ ay + a2z) = F.(x,y,2)

where a3 = ¢, this solution yields a unit of Q(\af_c) forc =2, 3, 4, 5, 7, 11. However,
Mathews was unable to show that these units are fundamental (in fact they are
fundamental). In the following year, Meissel [Mei91] derived a new method for solving
F.(x,y,z) = 1. By using this method, he found solutions for all cube-free values of ¢ where
c < 82. Also, he admitted the uncertainly of his method for finding a solution which is
fundamental. Although he illustrated the use of congruences in determining whether or not
a given solution is fundamental, he was not able to show that all of his solutions were so.

In connection with his theoretical investigation of pure cubic fields, Markoff
[Mar92] gave several units and a few class numbers for some pure cubic fields. He gave a
table of units of Q(?/E) for 2 = ¢ = 70. With the exception of those given for ¢ = 28 and
55, the other units are fundamental. In 1900, Dedekind {Ded00] described a method for
determining the class number of a pure cubic field Q(%/—c) . He found some more values of
the class number by using Markoff's table and incidentally proved certain of the units
found by Markoff to be fundamental units.

With the exception of Voronoi and Berwick's methods, most of the other methods
do not necessarily provide a fundamental unit. Instead, most of the existing methods tend

to find a unit and then determine whether or not that unit is fundamental. General criteria
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for a unit to be fundamental were developed by Nagell [Nag23]. In his paper [Nag23], he
gave a list of units of Q(\3/E), most of which are fundamental. Unfortunately, there are a
few errors in his table; these occur when ¢ = 41, 55, 180, 182. In the same year, Wolfe
[Wol23] provided the minimum positive solutions of the equation Fe(x,y,z) = 1 for
¢ < 100 which, in the case of ¢ square-free and ¢ # =1 (mod 9), yields the fundamental
unit for Q(f/?:). There are several errors in his table, namely in the following cases:
¢ =72, 82, 85, 96, 97.

In 1928 Pocklington [Poc28] gave a method for finding units of Q(wa/—c) which he
claimed to be practical and convenient. In his paper, little attention was given to the
theoretical aspects of his method. He presented a table, containing the fundamental unit and
its reciprocal of Q(%/E) for ¢ = 33. Although he successfully calculated these fundamental
units by using his method, he was unable to prove that his method always produces the
fundamental unit. The basic idea of his method is similar to that of the algorithm of
Voronoi. Besides Pocklington's paper, another method for finding a unit of a pure cubic
field was also introduced at about this time. This is the method of Pierce [Pie26]. His
technique makes use of approximations to the real zero of the generating equation in the
determination of units in pure cubic fields. Unfortunately, this method does not necessarily
produce the fundamental unit.

In [Usp31], Uspensky gave a method for finding units in pure cubic fields. He
retained the basic principle of Zolotarev's method, but departed from Hermite's
requirement to consider minima of a variable ternary form. According to the author, the
main feature of his method is that it can be applied to numerical examples with comparative
ease. However, his method does not necessarily find the fundamental unit. He pointed out,
though, that if the unit found is not fundamental, then the fundamental unit can easily be
obtained.

A complete and error-free table of the class number and fundamental unit of Q(%/E)

for ¢ =< 50 was given by Cassels [Cas50]. Although Cassels did not show that all his units
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are fundamental, Selmer [Sel55] later verified that the units are indeed fundamental,
Furthermore, Selmer [Sel55] provided a table of class numbers and fundamental units of
Q(\a./_c) for all ¢ = 100. Later he [Sel] extended this table to ¢ = 250.

It seems that Cohn {Coh57] was the first researcher who used a computer to find
the class number of a pure cubic field. He implemented Dedekind's method on a computer
and obtained class numbers for some pure cubic fields for which he could easily determine
the regulator,

After computers became widely available, it became possible to do much more
work in this area of research. In [Wad70], Wada used the computer TOSBAC-3300 to
compute a table of fundamental unit of Q(%/E) for 2 < ¢ = 250. In the same year, Sved
[Sve70] used the algorithm of Szekeres [Sze70] to calculate units of Q(?/’é) for
2 = cs 199, She did not stop after finding one unit, but tried to obtain more. Her reason
was that if all units are powers of the first one that she found, then it would be reasonable
to suppose the first one to be fundamental. Some of the big units found by Sved were later
checked by te Riele (see [Bre81]), and they were proved to be fundamental. On the other
hand, there is no mathematical certainly that the Szekeres algorithm will always produce the
fundamental unit.

In 1971, Beach, Williams and Zarnke [BWZ71] computed a table of the
fundamental units and class numbers for all Q(\3/_c) (1 = ¢=998). We also mention that
they used Voronoi's algorithm for determining the fundamental unit and Dedekind's
formula {Ded00] for calculating the class number, an idea which they got from [Coh57].

In [BWB76], Barrucand, Williams and Baniuk gave two different computational
techniques for determining the class number of a pure cubic field. The first technique made
use of a transformation of the Dirichlet series, and the second made use of the Euler
product to estimate the Artin L-function at 1. This second technique is similar to the method
used in [Sha74]. Both techniques are much faster than the computational technique of

[Coh57] and [BWZ71]. They were implemented on an IBM computer, and the class
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number for each pure cubic fieid Q(%/’E:) for ¢ < 9999 was obtained. The authors noted that
the second method appears to be faster than the first. However, the second method is not
mathematically rigorous. In {Wil76), Williams used the Euler product method to determine
the class number of each of the pure cubic fields Q(\3/— q), where q (= -1 (mod 3)) is a prime
and q < 35100. He also examined the stability of the percentage of these fields having
class-number one.

In [JH78], Jeans and Hendy presented a method for determining whether or not a
known unit of a pure cubic field is fundamental. The main feature of this method is that if
the unit tested is not fundamental, then the method can be used to produce the fundamental
unit, Jeans and Hendy used this method to prove that Sved's units for ¢ = 167, 177 are
fundamental.

In 1978, Eisenbeis, Frey and Ommerborn [EFO78] used a modification of an
algorithm of Birch and Swinnerton-Dyer to develop a technique for computing the 2-rank
of the class group of Q(w3./_c). Using this method and the class number table of [BWB76],
the 2-rank of the class group of Q(%/'é) was computed for ¢ < 10000, They noticed that for
those fields Q(%/—c) such that ¢ = 8 (mod 9) the percentage having class number one was
surprisingly high (about 60%). In order to test this further, Williams and Shanks {WS79]
used an improved version of the Euler product method, as described in [BWB76], to
determine all those pure cubic fields Q(?/E) having ¢ = 8 (mod 9), ¢ < 2x10% and h = 1.
They also suggested a few interesting ideas for improving their algorithm. We should also
mention that these computations were extended to values of ¢ < 106 by Tennenhouse and
Williams in [TW86). These computations added further confirmation of the phenomenon
noticed in [EFO78].

At an AMS meeting held in San Fransisco, Atkin [Atk81]} discussed a new
technique for finding a unit of Q(?/E). Atkin's method, which is reminiscent of that used in
the real quadratic case by Pohst and Zassenhaus [PZ76), is almost entirely distinct from

Voronoi's algorithm. His method is to factorize algebraic integers of small norm, and use
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the Chinese remainder theorem to find the positive fundamental unit less than unity. He
also suggested that his method appears to be faster than Voronoi's algorithm. However, its
main weakness is its dependence on some luck in order to obtain the fundamental unit.
Indeed, he admitted that his method did not produce the fundamental unit in a few
instances.

Although it cannot be proved at this time, the coefficients of the fundamental unit
for a complex cubic field tend to increase exponentially as the absolute value of the
discriminant increases. In order to avoid the large amount of precision required for the
computation of the fundamental unit, it is now customary to compute the regulator of a
complex cubic field instead, when the absolute value of the discriminant is large. In
[WCS80], Williams, Cormack and Seah gave a modified version of Voronoi's algorithm
for obtaining the regulator of a pure cubic field Q(%/E). This new algorithm has the
advantage of executing relatively rapidly for large values of c¢. It also eliminates a
computational problem which occurs in almost all algorithms for finding units in algebraic
number fields: this is the problem of performing calculations involving algebraic irrationals
by using only approximations of these numbers. A table of regulators and class numbers of
Q(\s/_c), where ¢ s 105, and the class number of Q(\S/_c) is not divisible by 3, was
computed. This method was subsequently improved by Williams {Wil80] for certain pure
cubic fields.

In [Sha72], Shanks discussed. a technique for finding the regulator of a real
quadratic field rapidly when the discriminant is large. His idea allows one to improve the
speed of the continued fraction scheme by allowing one to proceed almost directly from the
nth step to the mth step in the continued fraction, where m is approximately equal to 2n. A
few years later, Lenstra [Len82] and Schoof [Sch83] presented another version of the ideas
‘in [Sha72]. Both Shanks (see [Sha76] and [WS79]) and Lenstra (in [Len82]) pointed out
that it should be possible to extend Shanks' ideas to the cubic case. In [WDS83], Williams,

Dueck and Schmid showed how Shanks' idea could be extended to Voronoi's algorithm.
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They also discussed at length an algorithm for finding the regulator and class number for
pure cubic fields Q(i”/'c). Unfortunately, there is a major deficiency of the algorithm. The
problem is that there is no mathematically rigorous proof to show that the value of h, the
class number, produced by the algorithm is correct. On the other hand, the authors
suggested that if h is small, then their method is very likely to find h correctly. In spite of
the slight lack of confidence in h, however, the regulator found by the algorithm is correct.
Assuming a Generalized Riemann Hypothesis, it was shown that the new algorithm can
find the regulator and class number correctly in O(c?3+€) operations. Consequently, when
h is small, the new algorithm is a significant improvement over Voronoi's O(cl*e/h)
algorithm for finding R.

In [WD84], Williams and Dueck used an analogue of the nearest integer continued
fraction algorithm to determine the regulator of a pure cubic field. This method can be used
to find the regulator in about 75 percent of the time needed by Voronoi's continued fraction
algorithm. They implemented the method and determined the regulator of Q(f/’c) for ¢
= 91000.

Recently, Nakamula [Nak88] presented a table of fundamental units and class
numbers for all the pure cubic fields having discriminant between -300 and -270000. The
method used by Nakamula is based on [Nak81] and [Nak82]. For a pure cubic field I with
discriminant D, we define the elliptic unit to be &g, where € is the fundamental unit of F
and h is the class number of F. The method utilizes the elliptic unit for the simultaneous
determination of the fundamental unit and class number of F. The significance of the
method is that no calculation in F is needed. Indeed, this method is completely different
from Voronoi's algorithm. In fact, it computes the fundamental unit and class number by
performing some arithmetic in an imaginary quadratic field Q(vD) and approximating the
value of the Dedekind eta function.

Before we leave the topic of finding the fundamental unit of a pure cubic field, we

should mention some other algorithms for finding units or the fundamental unit in Qo).
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The major weakness of these methods is that they are only suitable for certain pure cubic
fields; thus, little emphasis is placed on these techniques here. One such technique utilizes
the Jacobi-Perron algorithm on which there is a lengthy literature. As an example, we
mention the paper of Bernstein [Ber74]. The Jacobi-Perron algorithm is periodic (and
therefore useful in computing units) for certain values of ¢ only. For most other ¢ values,
the Jacobi-Perron algorithm does not seem to be periodic. Thus, this method appears to be
of limited utility. We should also remark that the fundamental unit of some pure cubic fields
can be found by using the method given by Stender [Ste69]. The basic idea behind this
method is some inequalities given by Nagell [Nag23]. However, it is also only suitable for
pure cubic fields Q(%/E) in which ¢ has a certain parametric form. Later, Rudman [Rud73]
extended Stender's results, Finally, Williams [Wil76] extended Rudman's results by
developing a method for finding the fundamental unit of certain pure cubic fields explicitly

in terms of solutions to the Diophantine equations x2 - 3y2 = -2 and 2 - 3u2=1.

§1.5 Summary.

Terms used here, which have not yet been defined, are discussed in the introduction
to the relevant chapter. In Chaptef two, we present an algorithm which can produce all the
non-isomorphic complex cubic fields with discriminant less than a given bound. This
algorithm is implemented and used to find all the distinct complex cubic fields with
discriminant D > -106, In the following chapter we discuss three different methods for
finding the class number of a complex cubic field. The class number is computed for each
of the fields generated from the previous chapter. Also, the regulator and class group
structure are determined for each of these fields.

In Chapters 4 and 5, we describe a different method for finding all the non-
isomorphic complex cubic field for a given large fundamental discriminant. This method is

an automated version of the CUFFQI algorithm of Shanks. Chapter 4 deals with the
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theoretical aspects of the CUFFQI algorithm. The computational aspects of CUFFQI,
including a detailed description of the algorithm, are discussed in Chapter 5.

In Chapter 6, we give a fast computational technique for finding the regulator of a
pure cubic field. This technique is a modified version of the method given in [WDS83].
This method was implemented and tested on some pure cubic fields with large regulators.
In Chapter 7, we present a method of finding cubic polynomials of the form x3+c(cEZ)
which have a high asymptotic density of prime values.

In Chapter 8, we describe a new computational technique for finding the principal
factors for a pure cubic field. This algorithm was implemented and applied to some pure

cubic fields with large discriminant.
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Chapter 2.
Construction of Complex Cubic Fields.

§2.1 Introduction.

In the last 10 years, there has been a series of new developments in the construction
of totally-real cubic fields. Llorente and Oneto [LO82] first produced a complete table of
totally-real cubic fields with discriminant D < 103, By using a different method, Ennola and
Turunen [ET85] computed a table with discriminant D < 5 x 10°. Recently, with an
improved version of the method developed in [LO82], Llorente and Quer [LQ88A]
produced a table with discriminant D < 107, However, since the work of Angell [Ang73]
little work seems to have been done on the tabulation of complex cubic fields. In this
chapter, we will describe an algorithm which was used to produce all the non-isomorphic
complex cubic fields with discriminant D > -10°, This method is a modification of the
method used in [LQ88A]. We further point out that the previously mentioned table of

Angell (see also Shanks [Sha75]) only dealt with fields with discriminant D > -20000.

§2.2 Definitions.
Any cubic field F can be generated by the zero of an irreducible (over the rationals
Q) polynomial
(2.2.1) f(a,b,c;x) = x3 - ax? + bx - c,
where a,b,c € Z. The discriminant of the polynomial f(a,b,c;x) is given by
(2.2.2) D(a,b,c) = a2b? + 18abe - 4b3 - 4a3c - 27 2.
Further, the discriminant D of the field F is given by
(2.2.3) D(ab,c) = D12,
where I = I(a,b,c) is the index of the polynomial f(a,b,c;x). We further point out that a field
generated by the polynomial f(a,b,c;x) is also generated by the polynomial

(2.2.4) f(a',b';x) = x3 - a'x + b,
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where
a' = 3a2 - 9b,
b' = 9ab - 2a° - 27c.
The discriminant D(a",b"} of this polynomial is given by
D(a',b) = 4a” - 2702 = DI = D(271)?
for I given by (2.2.3).

For every prime p € Z and integer m, v,(m) denotes the greatest integer k such that
pk divides m. If there exists a prime p such that vp(a') 2 2 and vy(b') = 3, then we replace
the coefficients a' by a/p? and b' by b'/p3. These replacements do not change the field F
generated by f(a',b';x) but they reduce the size of the index of the polynomial f(a',b";x).

It should also be mentioned (see [LQ88A]J) that
(2.2.5) D = dT?,
where d is the fundamental discriminant of the quadratic field Q(vVD),

(2.2.6) T=3"T; (0sms2),
and Ty is a square free integer such that GCD(Tp,3d) = 1.

§2.3 Bounds on the coefficients and the index of the polynomial f(a,b,c;x).
The basis of our construction of the complex cubic fields is the following Theorem

of Angell {Ang73] (misprint corrected).
Theorem 2.3.1. Let F be a cubic number field with discriminant D < 0. There is at least
one polynomial which generates F such that if the zeros of the polynomial are a, B =iy
(o, B and y are real numbers), then 0 < < 1, > O and

S =S(oByy) = (@-p)? + 3y s VID|.
Since a,b,c are given by

a=a+2B,b=2ap+ B2 +y3 c=alp? +y?),

we deduce the following Lemma from Theorem 2.3.1, (2.2.2) and (2.2.3).
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Lemma 2.3.1. Let F be any cubic field with discriminant D < 0. Then F is generated by
some polynomial f(a,b,c;x) such that a,b,c € Z,
O0<a<3+2DY0<b<(@+vVD])/3,
and O0<c<(a®-3+2vD)/6.
Also, the index I = I(a,b,c) must satisfy 3v3I < (124a2 + 432a + 4V[D] + 729)1/2,
Proof. We know that
S> (a-p)>
and f =(a-0a)/2; hence
S > (a-3a)%/4.
We know that 0 < . < 1 and V|D] > S; therefore, we have
3 +2|DV4 > a.
By putting y2 = b - 20,3 - B2 and = (a-¢) / 2 into the equation
S=(a-pY+34
we get
S = (3a - 2)2/2 - (a2 - 3b).
But (3c: - 2)%/2 > 0 and V[D] > S; thus, we can conclude that
S >3b-a?
and (VD] +a%) /3 >b.
By using the substitutions for v2 and P, we can write
¢ = a(b - aa + a?),
and S = (a-B) +4?
> 02 - 3a0 - a%/2 + 3b
= 3(b - ac + 02) + 30.%/2 - a%/2.
However,

b-aa + o = ¢/
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thus we get
S = 3c/a + 3022 - a%/2
and VID/3 + a2/6 - 1/2> S/3 + a%/6 - 112 > c.
As for the index I, we know that
DI2 = a2b? + 18abe - 4b3 - 4a3c - 27 ¢,
- Since a, band c are positive integers, we have
43 + 4a3c + 27 ¢2 > |D|I2.
By using the upper bounds on a, b and ¢, we can easily deduce the bound for the index
L.E
As a consequence of Lemma 2.3.1 we see that if we wish to determine all the
possible complex cubic fields with discriminant D satisfying [D| s B, where B is some
bound, we need to examine only a finite number of triplets (a,b,c) as possible coefficients
of the generating polynomials of the form (2.2.1). The integers in these triplets must satisfy
0<a<3+2BY4
(2.3.1) 0 <b<(a?+vB)/3,
0<c<(a-3+2vVB)/6,
and the index I(a,b,c) must satisfy

(2.3.2) I(a,b,c) < Ig = (124a% + 432a + 4V]B[ + 729)1/2,

§2.4 The algorithm to construct complex cubic fields.

As mentioned earlier, our algorithm for determining all the complex cubic fields
with discriminant D satisfying |D| s B is, with some minor modifications, very similar to
the algorithm employed in §3 of [LQ88A]. The first modification occurs in step 1(a).
Instead of eliminating the pair (a',b") when there is a prime p with vy(a’) = 2 and v,(b) 2
3, we replace a' by a'/p?, and b' by bY/p> and then return to the beginning of step 1. In the
case considered by [LQ88A] the pair (a'/p2,b'/p?) will already be among the finite number

of pairs being considered; hence, (a'/p?,b'/p3) would be a duplication. In our case,
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however, we do not have the same situation since our (a\b'} is obtained via the
transformation in (2.2.4). The second modification occurs in step 2. During the process of
determining the irreducibility of f(a',b';x) over Z, if none of (11), (12) or (13) in part A of
[LQ88A] §2 holds, then if f(a',b';x) is reducible it must have a zero m € Z such that m | b’
and [m] < v[aT + [b7. This change must be made because, in this instance, either or both of
a' and b' can be negative. This is not the case in [LQ88A].

Before we present our version of the construction of complex cubic fields, we first
present a theorem of Llorente and Nart [LN83] which is the basis of our algorithm.
Theorem 2.4.1. Let a and b be the coefficients of the generating polynomial f(a,b;x) =
x3-ax +b, A be the discriminant of the polynomial f(a,b;x) and D be the field
discriminant of the generating polynomial f(a,b;x). Also, we define Sy = v,(A) and
Ap = A/pSp for every prime p. The value of vp(D) for a prime p can be obtained as
follows (Since in some cases not all entries are needed in the determination of v,(D), we

use '---' to denote that this entry is not germane):

For p = 2 we have the following:

v5(a),vy(b) S, A;=3(mod 4) vo(D)
odd 3
va(a)zvy(b)z1 even yes 2
v5(a)=0 or vo(b)=0 even 0




For p = 3 we have the following:

v4(a),va(b) a=3(mod 9) b2 S, v4(D)
V3@>va(b)z1 - 5
vi(a)=vs(b)=2 --- --- --- 4
v3(a)z1,v3(b)=0 yes #4(mod 9) - 4
va(a)=vs(b)=1 - 3
va(a)z1, v4(b)=0 no #a+1(mod 9) 3
yes #a+1(mod 27) 3
and
=4(mod 9)
va(b)>v3(a)=1 1
v3(a)z1, v4(b)=0 no =a+1(mod 9) 1
yes =a+1(mod 27) odd 1
v4(a)=0 --- 0
- yes =a+1(mod 27) even 0
For every prime p > 3 we have the following:
v(a),v,(b) S, v,(D)
vp(a)zvy(b)=1 even 2
vp(2)=0 or vp(b)=0 odd 1
v,(a)=0 or v,(b)=0 even 0

25
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We now present Algorithm 2.4.1 for determining all the complex cubic fields with

discriminant D = -B.

Algorithm 2.4.1.
For each triplet {(a,b,c) satisfying (2.3.1), perform the following steps to determine if
f(a,b,c;x) is a generating polynomial of a complex cubic field with discriminant D
satisfying |D| < B. If this is the case, the discriminant D and the index I of the field are
computed. Also, during the computation, divisors Iy of I and Dy of D are determined. If,
during this process, we find that I 2 I(a") or |[Dg| = B, then the pair (a',b") is eliminated.
1) - Compute a' = 3a2 - 9b, b' = 9ab - 243 - 27¢ and S(a',b") = 271g, where 27 Ig is
given by (2.3.2) as the bound on the index of f(a',b";x).
2)  Inthe case of a' = 0, determine whether or not the pure cubic cubic field
F = Q( (b")!73) has its discriminant in the correct range. Eliminate (a',b") if it is out
of range. Otherwise, go to step 10.
3) Initialize I=Tg=Dg=1.
4)  Compute M = GCD(a',b'"). For each prime factor p of M, do the following:
a) Hvy(a)=2and vp(b') 2 3, then replace a' by a'/p? and b' by b'/p3. Go to the
beginning of this step.
b) Compute v(D) and v,(I) by using Theorem 2.4.1.
c) Ifvy(D)is even, then compute Ty « To p and Dy < Dy p? (Tg is as defined in
(2.2.6)).
d} If v,(D) is odd, then compute Dg < D p.
e) If p =3 then determine T by using Theorem 2.4.1 (T is defined in (2.2.5)).
f) Compute Iy < Ip ppD,
g) 1f 1 svp(b) < vp(a'), then f(a',b'x) is irreducible.
5)  Ifirreducibility of f(a',b';x) has not been established in step 4 (g), then test whether

f(a')b';x) = 0 for all possible values of x such that x | b' and |x| < V][aT + p']. If
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f(a',b";x) = 0 for some x, then f(a',b';x) is reducible and the pair (a',b") is
eliminated.

If 2 is not a factor of M, then do the following:

a) Compute v,(D) and v,(I) by using Theorem 2.4.1.

b) If vo(D) > 0 then Dy « D 22D,

¢) Compute Iy« Iy 2v20),

If 3 is not a factor of M, then do the following:

a) Compute v5(D) and v3(T) by using Theorem 2.4.1.

b) If v3(D) > 0 then Dy « D 3v3(D),

¢) Compute Iy « Iy 3v3(D,

d) Determine T by using Theorem 2.4.1.

Let Iy = S(a',b") / Ig. For every prime p where p?>1y>p>3, pisnota factor of M
and D(a',b") = 0 (modulo p?), do the following:

a) Compute v,(D(a',b")).

b) If v,(D(a',b?)) is odd then vp(D) =1 and Dg < Dg p.

¢) Compute v(I} = [vp(D(a',b))/2] and Iy « Ig p¥p(),

d) Compute the new value of I; where Iy = S(a',b")/Ip.

e) If Ip> S(a’b') then the pair (a',b’) is eliminated.

Let Dy = D(a',b") /1. If B = [Dy the pair (a',b") is eliminated. Indeed, in this case it
is either |D] 2 B or I = S(a',b").

LetDy = (DIIDO)TZ. The pair (a',b") is eliminated in the following cases:

a) If Dy is not square free (in this case I 2 S(a',b")).

b) IfDy=Dg=1 (inthiscase d = 1).

If the pair (a',b") has not been eliminated in the preceding steps, F is a complex
cubic field with discriminant D = Dy. During this process, d = DgD, (d is defined in
(2.2.5)), T and I = I3 have been computed and they are recorded in a data file.

Stop.
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After this algorithm has been executed we will have discovered all the fields with
ID| < B; however, for any given D we may have several fields which are isomorphic.
There are many methods that we can apply to eliminate isomorphic fields; for example, see
Pohst {Poh87]. However, such algorithms were not needed in our case. We found that by
using the algorithm given in §13 of Delone and Feddeev [DF64], we could effectively and

rapidly eliminate all the isomorphic fields generated by Algorithm 2.4.1.

§2.5. Computationai results and tables.

The entire procedure described in §2.4 was programmed in FORTRAN with some
assembly language subroutines and run on the Amdahi 5870 computer in the University of
Manitoba Computer Centre. We first tested our programs by putting B = 20000. In about
30 CPU seconds we produced a table of fields which agreed with that of [Ang73]. When
we put B = 100, it required 4 hours and 11 minutes of CPU time to find all the non-
isomorphic complex cubic fields with discriminant D < -108, Of this time, about 63 CPU
seconds were needed to eliminate the isomorphic fields. 7

A large table, giving the values of D, a, b, T, R, h for each of the 182417
non-isomorphic complex cubic fields with negative discriminant > -10, has been deposited
in the UMT (Unpublished Math. Tables) file. In this table, we use the symbols a, b to
represent the coefficients of a generating polynomial of the form x3 - ax + b for the field
F. Also, T? is the value of the largest square which divides the discriminant D of F (note
that this is not the same T as in (2.2.5)), R is the regulator and h is the class number of ¥
(the computation of R and h will be discussed in the following chapter). In this section we
will give a brief discussion of some of the information provided by these computations.

In Table 2.5.1, we give the number of fields that were constructed for values of |DJ
within certain intervals and the number of these that were non-isomorphic. The intervals
were selected in such a way that the upper bound on each interval is a perfect square. In

Table 2.5.2 we present the number of the discriminants in our range for which there are
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exactly k non-isomorphic fields having that discriminant. In Table 2.5.3 we give those
discriminants that have 9 non-isomorphic fields with the same discriminant. In Table 2.5.4

we present the distribution of Table 2.5.2 for certain intervals.

Interval for |D] Number of Fields Non-isﬁ?n}g{;;ﬁi?:fl;‘ieids
1 - 100489 69471 17140
100490 - 200704 46762 17946
200705 - 300304 42431 18004
300305 - 400689 41879 18329
400690 - 501264 41096 18493
501265 - 600625 39414 18317
600626 - 700569 38992 18441
700570 - 801025 39049 18617
801026 - 900601 38196 18471
900602 - 1000000 38641 18659
182417

Table 2.5.1.
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k Number of Discriminants

1 149204

2 1683

3 5510

4 3216

5 0

6 56

7 0

8 0

9 13

>9 0

Table 2.5.2.

Discriminant k Discriminant k
-274348 9 -738575 9
-301676 9 795199 9
-414511 9 -821464 9
-429679 9 -864244 9
-659263 9 -941016 9
-677487 9 -957427 9
-706547 9

Table

2.5.3.
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Interval for |[Dj\ k 1 2 3 4 5 6 8 9

1 - 100000 14564 | 167 | 422 | 216 0 2 0 0
100001 - 200000 14863 | 170 | 521 | 287 0 2 0 0
200001 - 300000 14870 | 161 | 559 | 291 0 4 0 1
300001 - 400000 14893 | 170 | 528 | 348 0 5 0 1
400001 - 500000 14897 | 180 | 556 | 349 0 9 0 2
500001 - 600000 15109 | 161 | 569 | 318 0 5 0 0
600001 - 700000 14905 | 170 | 564 | 362 0 5 0 2
700001 - 800000 15028 | 182 | 576 | 337 0 10 0 3
800001 - 900000 15000 | 160 | 591 | 348 0 7 0 2
900001 - 1000000 15075 | 162 | 624 | 360 0 7 0 2

Table 2.5.4.

In Table 2.5.5, we present the number of fields of which the discriminant is exactly

divided by 3" where n = 0,1,3,4,5.

Number of fields

B W

n

126542
41213
9785
3247
1630

182417

Table 2.5.5.
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The total number of non-isomorphic complex cubic fields with discriminant less

than -10° is 182417, giving the empirical density 0.182417. In Table 2.6.1, we exhibit the

density of the non-isomorphic cubic fields for which -L <D <0,

L Density L Density
100489 170566 600625 180194
200704 174815 700564 .180810
300304 176788 801025 181376
400689 178240 900601 181832
501264 179371 1000000 182417

Table 2.6.1.

Davenport and Heilbronn [DH71] have proved a theorem which says that this density

should approach the asymptotic limit of (4z(3)! ~ 0.20798. If, however, one were to

plot the density versus L, ie would be seen that this density increases so slowly that the

first impression would be that it will not achieve the Davenport-Heilbronn (D-H) limit.

Thus, it remains a challenging problem, assuming that the D-H limit is not in error, to

explain the origin of this very slow convergence. This problem was indicated by Shanks in

[Sha76] and [Sha75] and, on the real side, in [Sha76] and [LQ88A], where the problem is

further aggravated by even slower convergence. To date and to our knowledge, no good

quantitative explanation of this phenomenon has been given.
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Chapter 3.
Computation of the Class Number
in Complex Cubic Fields.

§3.1. Introduction.

Once the table of complex cubic fields with discriminant D < -10% had been
constructed, the next step was to evaluate the class number for each of the fields. In order
to do this we made use of the analytic class number formula
(3.1.1) 2aRh = VD|®(1),
where h is the class number, R is the regulator, and D is the discriminant of F. Further,

D(s) = TR(s)/L(s)
is the Artin L-function at s and

(1) = lim d(s),

s—1

where Lp(s) is the Dedekind zeta function and ¢(s) is the Riemann zeta function.

The purpose of this chapter is to describe three different techniques for evaluating
the class number of a complex cubic field. Two of these methods involve the use of the
Euler product to estimate the Artin L-function at 1, and the third makes use of a
transformation of the Dirichlet series. These techniques were implemented and run on the
Amdahl 5870 computer in the University of Manitoba Computer Centre. Each obtained the
same results, but with rather different timings. We also provide several tables illustrating
some of the results of these computations. These tables describe the distribution of the

various fields, their regulators, their class numbers, and their class group structures.

§3.2. Computation of the regulator.
In order to compute the class number by (3.1.1) we were required to obtain the

regulator. We adapted the algorithm of Voronoi as modified in Williams, Cormack, Seah
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[WCS80] to the general (negative D) cubic case with the minor modification that, instead of
using the formulae as given in §4 of [WCS80], we used different formulae for g, 1, and
Ty Let w =(qq + qpd + q39%)/0,, where qy, qp and q3€Z, and 8 is the real zero of the
generating polynomial x3 - ax + b, and let ' and " denote the conjugates of w. Also,
(€M) is the puncture of w. As in [WCS80], we note that

Ep = Cw-0'-w")/2,

Ne = (0" - ©")/2i (12 = -1),
and Cp = (0" + 0")/2.
Hence, we have the following formulae:

E, = (-2aq3 + 3928 + 3q38%)/20,,
and Co = (291 + 2aq3 - q20 + q38%)/20,,
where a is the coefficient of the generating polynomial x> - ax + b. Since |D] is small
(|D| < 10%) we found that a double precision FORTRAN program was sufficient for the
evaluation of a very good approximation to R. All of the regulators were evaluated in about
89 minutes of CPU time. The largest regulator that we found has an approximate value of
1609.6035. In Table 3.2.1, we provide the number of fields for which the regulators lie

within certain intervals.

Interval Number of fields Interval Number of fields
0<R<200 137746 1000<R<1200 286
200<R<400 31558 1200<R<1400 103
400<R<600 9042 1400<R<1600 16
600<R<800 2771 1600<R<1800 1
800<R<1000 894 1800<R 0

Table 3.2.1.
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§3.3. Computation of the class number via the Euler product.

From (3.1.1) we see that, in order to evaluate h, we need to find an approximation
to ©(1) which is sufficiently good that we can evaluate h (an integer) unequivocally. There
are two basic approaches that can be used: ®(1) can be estimated by using the Euler
product formula or it can be estimated by using the Dirichlet series. In this section, we will

discuss the Euler product techniques.

We first remark that we can write (1) as the Euler product

(3.3.1) o(1) = I;[f(pl

where the product is taken over all the rational primes, and, for each such prime p, the
value of f(p) depends upon how the principal ideal (p) splits or factorizes in F. These

values are given in Table 3.3.1.

Type Factorization of (p) f(p)
A pp'p" p2/(p? - 2p +1)
B ®) p2/(p? + p +1)
C pq p2/(p?- 1)
D p%q p/(p - 1)
E p3 1

Table 3.3.1.
Here we use p, p',p", ¢ to denote distinct prime ideals iﬁ F.
In order to determine the splitting type of (p), we used the following theorem of
Llorente and Nart [LN83].
Theorem 3.3.1. Let a and b be the coefficients of the generating polynomial
f(a,b;x) = x> - ax + b, A be the discriminant of the polynomial f(a,b;x), Sp = vp(4) and

A=A /pSp.The principal ideal (p) factorizes in F as follows (Since in some cases not all
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entries are needed in the determination of vp(D), we use '---' to denote that this entry is not

germane):
Factorization of (2).
va(a),va(b) S2 Ay Type
1svy(b)svy(a) E
12v5(a) < va(b) : D
1<vy(a), O=v,(b) -- --- C
0=v,(a), I1<v,(b) odd D
0=vy(a), 1<v,(b) even =3(mod 4) D
0=vy(a), 1<vy(b) even =5(mod 8) C
O=vy(a), 1<v,(b) even =1{mod 8) A
O=vy(a), O=vy(b) B
Factorization of (3).
v3(a),v3(b) a b S3 A3 Type
1svy(b)=va(a) --- - --- --- E
I=vs(a)<vs(b) - D
0=v3(a), Osv4(b) | =-1(mod 3) - --- C
O=v3(a)=v5(b) =1(mod 3) - B
0=v3(a), 1sv4(b) | =1(mod 3) -- --- --- A
Isvs(a), O=v3(b) | #3(mod9) | =a+1(mod 9) --- D
Isvy(a), O=v3(b) | #3(mod9) | #a+l(mod9) E
1svz(a), 0=v3(b) | =3(mod 9) | =a+1l(mod 27) odd --- D
Isv3(a), O0=v3(b) | =3(mod9) | =a+l(mod 27) even, | =-1{mod3)] D
Isvy(a), O=v3(b) | =3(mod 9), | =a+1(mod27) | =6,even =l(mod3) | B
1sv3(a), 0=v3(b) | =3 (mod 9), | =a+1(mod 27) | >6even | =l(mod3) | A
1=sva(a), O=v3(b) | =3 (mod 9) |#a+1 (mod 27) -~ E
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Vp(a),vp(b)

p (mod 3)

Type

15v,(b)sv(2)
1=v,(a)<vy(b)
15v,(a),0=v,(b)
15v,(2),0=v,(b)
15vy(2),0=v,(b)
0=v,(),0<v,(b)
0=v,5(2),0<v,(b)
0=v,(a)=v,(b)
0=v,()=v,(b)
0=v(&)=vp(0)
0=v,(a)=v,(b)

cvenl

cven

even

O @ » 9 0 » @ > O U

In the case where it was necessary to determine whether or not f(a,b;x) has some root

(mod p), we used the Lucas function technique mentioned in Williams and Zarnke

[WZ74], with the algorithm for determining the value of the appropriate Lucas function .

(mod p) being that of Williams [Wil87]. Theorem 3.3.1 was implemented in assembly

language.

Set

F(Q,D) = | [ 1(q),
psQ

where the product is evaluated over the rational primes. Since ®(1) in (3.2.1) is given as an

infinite product, we must determine how large to make Q such that

* We use y to denote that f(a,b;x) has some root (mod p), and n to denote that f(a,b;x) has

no roots (mod p).
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H(Q,D) = v|DIF(Q,D)/(2nR)
is within 1/2 of h. When this occurs, h = Ne(H(Q,D)), where we denote the nearest integer
to x by Ne(x).

One way of determining Q in the computation of h is to use the heuristic of Shanks
mentioned in [Sha76A]. H(Q,D) can be evaluated by using the first 500, then 1000, 1500,
2000 etc. primes until H(Q,D) is within 0.1 of the same integer H for 6 successive
evaluations. When this occurs, it is declared that h = H. This heuristic is easy to implement
and executes fairly rapidly; but, unfortunately, it is not a mathematically rigorous method of
computing h.

Another method which can be used is that of Buchmann and Williams [BW89]. The
details of the method are discussed in [BW89]; we only mention here that in our case we
have D given by (2.2.5) ny = 6, C(t) = 2C(t)/3, and ¢; + 2¢,? = 3. Given a known
divisor h™ of h, this technique makes use of the Euler product to determine h in
O(|D|1*#/(h*R)?) elementary operations for any € > 0. However, the truth of the Riemann
Hypothesis on gy, where L is the normal closure of F, must be assumed in order to be able
to assert that the class number is correct.

Further, in cases for which R is small, a value for h* must be found which is large
enough that our technique does not take much time in executing. To do this we simply
produced (by trial) a non-principal reduced ideal a in F such that the least value of m (>0)
for which
(3.3.2) a™ ~ (1)
is sufficiently large. We then put h* = m. In order to do this we started m at 1 and
increased it until we found a value for which (3.3.2) holds. Further, for ideals a and b,
where b is a reduced ideal equivalent to aj, we found ¢, where ¢ is an ideal equivalent to
the ideal al*1, in the following manner: If the norms of a and b were relatively prime, then
the theorem of Voronoi [Vor94] for multiplying two ideals, as given in Williams, Dueck

and Schmid [WDS83], was used to find c. However, if the norms of the two ideals were
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not relatively prime, we used the Voronoi algorithm as described in [WCS80], to obtain
some a', where a' ~ a and the norms of a' and b were relatively prime. The theorem of
Voronoi [Vor94] for multiplying ideals a’ and b could then be applied to find c. The
process of finding m was not very time consuming because the fairly small value of |D|
guarantees that h will not be large. We used the algorithm of Voronoi to find all the reduced
principal ideals in F, and the reduction technique described in Williams [Wil85] to
determine whether or not (3.3.1) holds for a particular m value. In our application, we
found that a value of h* could be found such that h™ > K/6, where R is our first
approximation to h (using 500 primes in the Euler product, say). We are now able to
present the entire algorithm of Buchmann and Williams which was used in our
computation.

Algorithm 3.3.1,

1) Compute F(500,D) and set h = Ne(H(500,D)).

2) Initialize h* = 1.

3) Pick a non-principal ideal a and find the least m such that a™ ~ (1).

4) h" <« h" (m/GCD(m,h")).

5) Ifh" < h/6, then go to step 3.

6) Initialize Q = 5000.

7) Compute F(Q,D) and set i = Ne(H(Q,D)/h").

8) Compute C(Q) and A(Q,D) = C(Q)(4+3logQ)VQ + 3/Q.

9) Compute T = V|D|F(Q,D)/2Rx - .

10) Compute Y = |t] + ([DPF(Q,D)(eMD)-1)/2Rx.

11) IfR - Y/h™ - [H + Y/h™] > 1, then stop.

12) Otherwise, set Q < Q + 5000 and go to step 7.

13) Stop.
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Both of these methods of utilizing the Euler product to compute h were
implemented in FORTRAN (with some assembly language subroutines) and run. The
Shanks heuristic method required 8 hours and 16 minutes of CPU time to find all the class
numbers, whereas the method of Buchmann and Williams with the assumption of the truth
of the Riemann Hypothesis required 14 hours and 10 minutes of CPU time. The large
difference in these times is a result of the fact that the Shanks heuristic usually (80% of the
time) required that no more than 3000 primes for the evaluation of H(Q,D) and only rarely
required that more than 5000 primes be used. On the other hand the use of Algorithm 3.3.1

demanded that 5000 or more primes be used in most cases.

§3.4. Determination of h from the Dirichlet Series.

As noted in [BLW87], we can write
(3.4.1) o(1) = > aG)il,
j=1

where a(j) is a multiplicative function, a(1) = 1, and the value of a(p™), where p is any

rational prime, is given in the table below (see Barrucand, Loxton, Williams [BLW87]).

Type n a(p”)
A any n+1
B n=0 (mod?3) 1
B n=1 (mod3) -1
B n=2 (mod3) 0
C n=0 (mod?2) 1
C n=1 (mod?2) 0
D any 1
E any 0

Table 3.4.1.
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It can be noted that a(p®) s d(p"), where we represent the number of divisors of k by
d(k). It follows that a(k) = d(k).
Also, the formula (3.4.1) can be transformed into
o] o0
O(1) = ) a@)jledC+ C ) a(HEGC),

o]

where C = 2n//[D] and E(y) = S'f eXx-1dx,

Before we proceed any further, we now must define the function M(m) as follows:
(3.4.2) M(m) = max{d(j)j-! | m<j=s3m}.
We will show how this function can be utilized in the sequel; hence, but first require some
results concerning it.
Lemma 3.4.1. Given any integer n = 2, there exists an integer m such that

n/3 <m = n/2 and d(m)/m =z d(n)/n.

k
Proof. Letn = Hp}-ai,
i=

where o; = 1, and py is the smallest prime factor of n.

Let

pp=2k+r where r = 0 or 1.

By using the multiplicative property of d and the fact thatk < pj we can easily deduce the

following:
d(n) _ k(oq+1)d(kn/py)
n oyprd(kytkn/py)
Thus, if m = kn/py, then

d(m) _ d(n)oypid(k)
m nk(o+1)

Also, since p; = 2k + 1, it is easy to show that n/3 s m s n/2.

But
a1pdk) . 1P
k(O‘.l'{'l) k((l]_-{-].)
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2(11
(ap+1)
= 1.
So we have

From this result it is a simple matter to deduce
Theorem 3.4.1, Let n > 3m. Then
M(m) = max {d(j)ji"1|m<jsn}.
Proof. Suppose M(m) = d(n)/n, whenn > 3m.
We define
S(n) = kn/p;
as defined in Lemma 3.4.1. We also define
S'(n) = S(S™1(n)).
Since 8™1(n)/3 = S*(n) = S™1(n)/2,
the value of S™(n) decreases monotonically as r grows larger. Let S'(n) be the first number
in the sequence

n, S(n), S%(n), ..., Sf(n), ...

such that
SYn) s 3m.
Also,
dS'(m) | d(S-1(n) | d(n)
S‘(n) St-l(n) n
Hence the theorem holds. [ |

By using Theorem 3.4.1 and (3.4.2), and replacing n by 3m, we can conclude that only the
numbers between m and 3m+1 are needed to be inspected in the calculation of M(m). Now,

if we put
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m

Am) = Sag)jleiC+ CYa()EGC),
(m) J;acm edC + ;a@ (o)

]

then, by using the reasoning of [BLW87], we get

(3.4.3) |B(1Y/C - A(m)/C| < (2M(m)emC) / C(eC - 1).
Thus, by (3.4.3) and (3.1.1), we get

(3.4.4) lh - A(mY/CR| < (2M(m)e™C)/ CR(eC- 1).
It follows that, if m is sufficiently large that

(3.4.5) (2M(m)emC) < CR(eC - 1)/2,

then

(3.4.6) h = Ne(A(m)/CR).

Under the assumption (later verified) that we would never require a value for m in (3.4.5)
that exceeds 2000 (for values of |D| < 10%), we found by, using Theorem 3.4.1 to tabulate
M(m), that
M(m) < 7.4(log m)}/m (m < 2000).

Thus, in order to determine h, we can use any value of m in (3.4.6) such that
(3.4.7) (log mym-lemC < 0.0338CR(eC - 1),
provided that such a value of m <2000. In fact, for the range of D values that we
considered we never needed a value for m which exceeded 1109, in order for (3.4.7) to
hold. We are now able to present Algorithm 3.4.1.
Algorithm 3.4.1.
1) Use Newton's method to solve the equation

(log m)m-lemC = (,0338CR(eC - 1).

2) Compute A(m). |
3) Compute h = Ne(A(m)/CR).
4) Stop.
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This technique is not only mathematically rigorous but, surprisingly, is very much
faster than both of the techniques based on the Euler product. To find all the class numbers
by this method required only 60.8 minutes of CPU time, using a program written in
FORTRAN and supplemented by assembly language routines for evaluating a(k) and E(y).
In view of the complexity of the Dirichlet series method (O(D1/2+%)), one would expect the
methods of §3.3 to be faster; however, these complexity measures have more relevance
when |D} is targe rather than when |D]| has the small values which we were considering. It
turned out that, for these values, the asymptotically faster method was actually considerably
slower than the Dirichlet series method. For much larger values of |D|, of course, this

situation would be reversed.

§3.5 Results.

In Table 3.5.1, we give the number of non-isomorphic fields that we found with
class number h within a certain range. The largest class number found (162) occurs for
discriminant -885871. In Table 3.5.2, we present a more complete picture for values of
h =20. In Table 3.5.3, we give the number of fields of which the class number is
divisible by p where p =2,3,5,7,11,13,17,19,23,29. In Table 3.5.4, we provide all the

fields that have class number bigger than 100.



Range of h Number of Fields

1-10 172789
11-20 6380
21-30 1897
31-40 691
41-50 324
51-60 148
61-70 91
71 - 80 36
81-90 29
91-100 14
>100 18

Table 3.5.1

45
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h Number of Fields h Number of Fields
1 97451 11 844
2 26335 12 1652
3 22586 13 601
4 7746 14 515
5 4477 15 843
6 5950 16 477
7 2134 17 312
8 2100 18 642
9 2931 19 273
10 1079 20 221
172789 6380
Table 3.5.2

P Number of Fields

2 48327

3 36322

5 7146

7 3309

11 1210

13 828

17 414

19 333

23 179

29 101

Table 3.5.3
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D A B h
-386855 7 2394 108
-456231 711 -7462 109
-499359 1911 -35350 123
-529444 -726 -700 104
-606279 -171 260 145
-703364 442 -3924 118
-714932 -17 4068 103
-719911 329 -2320 104
-814575 135 2170 129
-885871 -91 140 162
-893252 -861 11068 103
-930719 -1419 21940 144
-960456 894 32240 129
-968228 535 -4944 156
-968359 553 -5352 102
-978715 -528 2149 104
-983528 217 5670 141
-999431 253 -1596 134

Table 3.5.4

§3.6. The Cohen and Martinet heuristics.

In Table 3.6.1 we give the density of fields with |D| < L and class number
h = 3¥hg, where 3 J/ hg and hy s 10. According to the heuristics of Cohen and Martinet

(C-M) [CM87), we would expect the asymptotic densities to be 0.518642, 0.259321,
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0.086440, 0.025932 and 0.012349 for hy = 1, 2, 4, 5, 7, respectively. If, once again, the
densities given in Table 3.6.1 were to be plotted then, in the case of hg = 1, 2, 4, an
aggravated case of what occurred for the Davenport-Heilbronn (D-H) theorem, as
discussed in §2.6, would be noticed, and it might reasonably be conjectured that the C-M
heuristic limits are inaccurate. However, in view of the fact that we do not have an
explanation of the similar situation with D-H, we do not consider it wise to invalidate the

C-M heuristic limits. We do not know where they are going, or how fast, in the case
hg =1, 2, 4. We are pleased to put these facts before the reader and urge him to conduct

his own investigation. However, it should be noted that the columns for hg = 5, 7, which
seem to be increasing, have already passed the C-M prediction; this is also a problem which

needs further investigation.

L\hy | 1 2 4 5 7 8 10

100000 |0.73499 |0.16050 |0.03838 |0.02770 0.01209 |0.00833 |0.00423
200000 |0.71319 0.16955 |0.04396 10.02740 }0.01253 |0.01018 [0.00532
300000 {0.70309 [0.17207 |0.04682 }|0.02805 [0.01322 {0.01058 [0.00572
400000 |0.69635 [0.17330 |[0.04843 [0.02863 |[0.01359 {0.01140 ;0.00591
500000 |0.69051 [0.17498 [0.04961 [0.02918 [0.01390 [0.01179 |0.00606
600000 |0.68584 [0.17713 |0.05037 [0.02913 |0.01373 [0.01247 |0.00635
700000 |0.68252 (0.17788 [0.05102 [0.02943 [0.01399 (0.01281 [0.00641
800000 |0.67957 |0.17926 ]0.05165 [0.02943 |0.01396 |0.01306 |0.00648
900000 |0.67706 {0.18006 {0.05202 |[0.02941 |0.01394 |0.01337 |0.00651

1000000 | 0.67521 10.18072 10.05228 |0.02945 |0.01381 [0.01341 [0.00675
Table 3.6.1




49

§3.7. Class group structure.

Once we had calculated the class number of our 182417 fields, it was a relatively
simple matter to determine the structure of each class group. Only 3959 of these class
groups are non-cyclic. In Table 3.7.1 we give the number of these non-cyclic class groups

for a given n-rank.

n n-Rank Number of Occurrences

2 3055
12
868

16

SN B W W N N
[N I S T )

3963

Table 3.7.1

Finally, in Table 3.7.2 we present those fields that have the most interesting class group

structures. Here C,, denotes the cyclic group of order n and the values of a and b are those

for which f(a,b;x) generates the corresponding cubic number field.



D

a b Class Group Structure
-300551 49 -169 CGxCGx G
-421423 453 -5015 CxCx G
-421423 -276 -3395 CxGCGx G
-542251 19 151 CGxCGx G
-841304 741 -9110 CGxGCGx G
-864023 91 -379 CxGCx G
-344411 139 1914 G xCx Cy
-379591 -15% 3107 C, x G x Cy
-433243 -229 1526 C,x G x Cy
-612263 31 606 CxCxCy
-562123 228 4115 C x G x Gy
-694543 473 -4272 C, x Gy x G4
-894348 0 182 Cy; x C3 x G4
-936684 84 -350 Cy x C3 x G
-936684 -42 154 Cyx G x G
-280468 795 -9056 Cq x Cy
-393828 -285 2684 Cq x Cy4
-532463 37 -165 Cy x Cy
-555976 899 -10626 Cq x Cy4
-655483 -28 145 Cq x Cy
-716131 -133 2538 Cy x Cy
-751819 98 -409 Cq4 x C4
-787663 -267 -4295 Cq x C4
-898175 175 1275 Cs x Cy
-989156 -149 310 Cq x Cy

50



D a b Class Group Structure
-359131 44 -161 Cy x Cg
-375387 498 -10465 Cq x Gy
-653971 -46 99 Cy x Cg
-749723 40 -193 C4 x Cg
-804443 52 -225 C4 x Cg
-865851 516 -6613 Cy x Cg
-173287 -55 32 Cs x Cs
-304196 2307 -43508 Cs x Cs
-383827 -240 22489 Cs x Cs
-746287 1443 41650 Cs x Cys
-641196 -6 154 Cg x Cq
-782648 19 342 Cs x Cq
-864243 60 -253 Cs x Cg
-914683 -28 175 Cs x Cg
-939843 30 197 Cs x Cq

Table 3.7.2
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Chapter 4.
Introduction to CUFFQI

§4.1 Introduction.

In Chapter 2, we presented an algorithm for finding all non-isomorphic complex
cubic fields with discriminant larger than a given bound. However, this algorithm is
impractical for determining all the non-isomorphic cubic fields for a given large
discriminant, D. The major problem with this algorithm is that there are too many possible
generating polynomials to be inspected; therefore, a different approach is needed. Over 60
years ago, Berwick[Ber25] presented one such method for obtaining all distinct cubic fields
having discriminant D. Although this method is sound, it is somewhat inefficient and was
not really designed for actual implementation. After Daniel Shanks [Sha72] described the
idea of the infrastructure in real quadratic fields, he (see [Sha76B], [Sha87], [Sha88] and
[Sha89]) introduced a different method, Cubic Fields From Quadratic Infrastructure
(CUFFQI), to construct all the non-isomorphic complex cubic fields having the same fixed
fundamental discriminant D. Unfortunately, no complete description of the CUFFQI
algorithm exists, as yet in the current literature. In his preliminary write-up of the algorithm
[Sha87], Shanks did not present his algorithm in a form which is suitable for
implementation on a large computer. Indeed, the work done here was initiated at Shanks'
request to render his algorithm into a form which can be easily automated. We will discuss
the size of the intermediate calculations which are produced and the complexity of the
algorithm. These are issues that Shanks did not address fully in his work. Thus, the
purpose of this, and the following chapter is to present a computational version of the
CUFFQI algorithm. As in {Sha87], we will also restrict our discussion to the construction
of the complex cubic fields having a fundamental discriminant.

A fundamental discriminant is the discriminant D of the quadratic field K = Q(vn),

where n is a square-free integer and D is given by
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1 (mod 4)
2 or 3 (mod 4).

=
1]

n
D={4n n

Also, for a, B € K, denote the module aZ + BZ by [a, p]. Put

0_{1 D =2 or 3 (mod 4)
T L2 D s 1 (mod 4).

For w=(o-1++vD)/0o, we have
Ok= [Lw],
where Ok is the maximal order of K.
For a given D (< 0), our task is to find a generating polynomial
(4.1.1) x3-ax? +bx - ¢, (a,b,cEZ)
for each of the non-isomorphic complex cubic fields having discriminant D. Also, it is
important to keep the coefficients and the index of the generating polynomial as small as
possible. The number of distinct cubic fields of discriminant D can be determined by using
a well known theorem by Hasse [Has80].
Theorem 4.1.1. (Hasse) If the discriminant of a quadratic field Q(vn) is D and the

3-rank of the class group of Q(vn) is r, then there are precisely

r-
m=£32_12

non-isomorphic cubic fields of discriminant D. W

Hasse did not provide an efficient method of determining these m fields. Our
objective here was to develop an algorithm which could construct all the non-isomorphic
cubic fields having discriminant D by performing computation in the quadratic field
QD).

One of the bases of Shanks' algorithm is a theorem of Scholz[Sch32]. In order to
present this theorem, it is necessary to introduce the idea of dual discriminants. We say

that D and D' are dual discriminants if
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-3D

4,12 D'=———,
( ) ged(3,D)?

where D and D' are both fundamental discriminants. Clearly, D' = -D/3, in the event that

3|D, and D' = -3D when 3 { D. For the rest of this chapter and the following chapter,
D' is the dual discriminant of D. The relationship between the 3-ranks of Q(vD) and
QD" is given by
Theorem 4.1.2.(Scholz) If D < 0 and the 3-rank of Q(vD) is 1, then the 3-rank of its
dual field Q(¥D) iseitherrorr-1. H

The first case is called non-escalatory, whereas the second case is called escalatory.
For example, the complex quadratic field Q(v-4027) has a 3-rank of 2 and its dual field

Q(v12081) has a 3-rank of 1. Hence, this field belongs to the escalatory case.
In [Sha87], Shanks wrote the following:

"We may assume our algorithm as a constructive

version of Scholz's theorem with attention paid to the

infrastructure of the real quadratic field."
Shanks' idea is that we can construct all the non-isomorphic cubic fields having a given
discriminant D by performing all the computations in the field Q(vD") (D'>0) which has
discriminant D'. For example, there are 4 distinct complex cubic fields having discriminant
-4027. These fields can be constructed by performing the CUFFQI algorithm in the
quadratic field Q(v12081). Generating polynomials with coefficients a,b,c (see (4.1.1)) of

these fields are shown in Table 4.1.1.

a b c index
0 -15 1
1 7 -8 1
0 10 -1 1
1 27 76 7

Table 4.1.1
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The algorithﬁ we used to produce the polynomials in Table 4.1.1 is the CUFFQI algorithm
modifier to make if suitable for automation. Also, our approach was to use ideals rather
than binary quadratic forms. In the remainder of this chapter, we present the theoretical
aspects of CUFFQI which show that all the complex cubic fields with discriminant D can
be found in the real quadratic field Q(vD"). The computational aspects of this algorithm,

including a detailed description of its implementation, are given in the following chapter.

84.2. Quadratic Generators,

We first mention the following simple lemma.
Lemma 4.2.1.Given any cubic field Q(p) where p is a zero of an irreducible cubic
polynomial, there exists an equation of the form
(4.2.1) x3-30x + A= 0,
where Q, A € Z, and a zero of this equation & such that Q(p) = Q(E).
Proof. We may assume that p is the real zero of
(4.2.2) agy> +ayy2+ayy +a3=0
for some ag, ag, aj, a3 € Z. By performing the simple linear transformation & = 3agp + a;
on (4.2.2.), we can easily deduce that Q(p) = Q(E). W

As in §2.2, without loss of generality, we may assume that
(4.2.3) if p | A, then p? ,( Q for any prime p.

It is well known that the polynomial discriminant A of (4.2.1) is given by

A =27(4Q3- A2
= 1()°D,

where I(E) (= 0) is the index of € in Q(E). Since D is a fundamental discriminant, we either
have 3 X D or 3| D. Thus, we can easily deduce that if 3 ,( D, then 9 | I(E); whereas if
3| D, then 3| I(E).

Put
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3|D and D' = -D/3
o Jen
1(5)/9 3/DandD'=-3D
We have
A = -27D'B?,
where B € Z and
4Q3 = A2. B2D’ (B>0).
If we put A = é—%@, then we have A + A= A and A\ = Q3, where A is the conjugate

of X in the field K. Also, since B = 0, we have A - A = 0. For this reason, we can see that
AE OK. Thus we have proved the following lemma.

Lemma 4.2.2, Let K = Q(v D). Given any cubic field Q(p) of fundamental

discriminant D, there exists a

r = A VD (ABEZ)
such that A € Oy, A = X, Q% = N(1) (Q € Z) and Q(p) = Q(&) for some zero & of
x3-3Qx + A=0.

We call such a A a quadratic generator for the cubic field Q(p).

If we let (A) = a = (u)h, where h is a primitive ideal of OK andu € Z, we can
prove
Lemma 4.2.3. For a and A defined as in Lemma 4.2.2, we have (A) = a = (u)h, where
u is a square-free integer, u | D' and h is a primitive ideal of OK.
Proof. Here, we will show that u must be a factor of D' and square-free. We describe
the prime factors of u through the use of the following cases.
Case 1, p>3. If p& || u, then we have p® || gcd(A,B) and it follows that p2% | Q3,
By (4.2.3), we can see that oo = 1 or 2.
Subcase 1.1. o = 2. In this subcase, we get p2 | A and p2 | Q. Hence, we have p2 || A
and vp(3Q) = vp(A) = 2. By using Theorem 2.4.1, we have p? | D. (For the rest of this
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proof, Theorem 2.4.1 is used without reference.) However, D is a fundamental
discriminant, so we get a contradiction.
Subcase 1.2. a = 1. In this subcase, we have either p || A or p? | A. In the first case,
we have vp(3Q) 2 vp(A) = 1 and we must have p% | D. Once again, we get a contradiction.
In the second case, we have p> | D'B2. Since p || gcd(A,B), we have p || B and it follows
that p | D".
Case 2. p=3. We have the same situation as in Case 1, o is either 1 or 2.
Subcase 2.1. o = 2. In this subcase, we have 32| A and 32 | Q. This also implies that
we have v3(3Q) = v4(A) = 2. Hence, we have 3° || D, and we get a contradiction.
Subcase 2.2. o = 1. In this subcase, we have either 3 || A or 32 | A. In the former case,
we have v3(3Q) = v3(A) = 1, and 33| D follows, again, a contradiction. In the latter case,
we have 27 | D'B2 and, since 3 || B, it follows that 3| D".
Case 3. p=2. Inthis case, we must consider two subcases: 4 |uand 2 || u.
Subcase 3.1. 4 ]u. Since 4 |u, we have 4 | Q; also, 2 | gcd(A,B). According to
(4.2.3), we know that 8 ,{/ A. Now, if 2| A, then we get v(3Q) =z vo(A) 2 1, therefore
4|D'and 4 | A. In the event that D'/4 is even, because

(A/4)2 - (DY/4)(B/2)* =0 (mod 2),
we would have 8 | A, a contradiction. In the event that D'/4 is odd, we get

AltsBR2=1 (mod 2).

As a result, we have A—”;—\/—P: € Oy and é#ﬁ—@ ¢ Oy. This implies that 4 || u and

4 | N(h), and therefore, since 2 ramifies in K, we have (2) | h. Again, this is not possible

because h is a primitive ideal. Thus, we have shown that 4 ,{/ u.

Subcase 3.2. 2|} u. In this case we have 2 | Q. If D' is odd, then the assumption that
. A+BYD’ :
2 f’ A implies that ——F—¢ Og and 2 f u. Now, we have either 2 || A, 4 || A or
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8 | A. In the first case, v5(3Q) 2 vo(A) =1 and we have 2| D'. If 4 | A, we have 4 | B
and
(A/4)2 - D'(B/4)? = 2(Q/2)3.
If Q/2 is odd, then we get
(A/4)? - D'(B/4)% = 2 (mod 4),
and this is not possible. Hence, Q/2 is even. If 4 || A, we get v5(3Q) = v,(A) = 2 and
2| D' If 8| A, then, because 4 | Q, we get a contradiction.
Summarizing these results, we have shown that, if p | u, then p |Ju and p is a factor
of D', Thus, we have proved the lemma. H
By Lemma 4.2.2 we know that, for every distinct complex cubic field with
discriminant D, there exists a quadratic generator A of this cubic field in the real quadratic
field Q(vD"). Thus, if we wish to construct a generating polynomial of a complex cubic
field having discriminant D, we need only find a suitable quadratic generator, Hence, the
quadratic generators will be of considerable interest to us throughout this chapter. We next

show that if A is a quadratic generator, then the ideal a = (A) is the cube of another ideal of
Theorem 4.2,1. If a is an ideal of OK, N(a) = Q3, a = (u)h, where h is a primitive
ideal of OK and u] D', then there exists a primitive ideal b of Oy such that b3 = a,

Proof. Certainly, we can write a as
m

=| | a
a P,
1=

where p; (i = 1, 2,..., m) are distinct prime ideals of Ok, and @; are positive integers. We

also have

m
i=1
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Now, there are 3 possibilities for each pj; where p; is used, here, to denote a rational
prime.

Case 1. p; = (p;). In this case, we have p; | u, and by Lemma 4.2.3 we get p; | D'.
Since D' is the discriminant of the field K and p; is inert in K, this is impossible.

Case 2. p;?=(p). In this case, we have N(p,) = p; and p;*i || Q3. Hence, we get
3 [ o;. Further, o = 3 as o = 6 implies that p;? | u, which is impossible.

Case 3. piﬁi, = (pi). (p; = py. In this case, no f)j = py for any j, k € {1,..., m}.
(Otherwise, we have (p;) | (u)h and p; [ u. By Lemma 4.2.3 it follows that p; | D' and we
get a contradiction.) Consequently, since N(p;) = p;, we know that p;%i || Q3, and
therefore 3 | o,

By putting
m

b= Hpiai/3

i=1

our result follows. We can further say that b must be a primitive ideal. W

Before proceeding any further, we introduce a theorem of Hasse[Has30]. This
theorem is of some importance in the proof of the second property of A. We should point
out that a different proof of Hasse's theorem is given in [LN83].
Theorem 4.2.2.(Hasse) Let D" be the discriminant of a cubic field. If d" denotes the
discriminant of Q(vD") we have

D" = d"32ME2,

where
(2) E = p1p;...pg is a square-free integer (p; denotes a rational prime),

ged(E,3d") =1 and pj = (%—) (mod 3) for all i.
i

(b) Osms2;if3 ,f/ d",thenm=1landifd"=3(mod9), thenm=2. W
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We have seen that, if A € Oy is a quadratic generator of some cubic field, then (A) = b3
for some primitive ideal b of O . We now present a result which gives us some
information about any A € O such that the ideal (A) is a cube of a primitive ideal of O.

Theorem 4.2.3. Let D be a fundamental discriminant of a cubic field. For K = Q(vD"),

let b be any primitive ideal of OK such that b3 = () for some A € OK, and put

A+BvD’

A= 35— then if Q3 = N(A) and & is a root of

E3-3QE+A=0,
then Q(E) is either a cubic field of discriminant D or a cubic field of discriminant -27D'
Proof. Let D" be the discriminant of Q(&). The polynomial x3 - 3Qx + A has discriminant
(4.2.4) A = I(8)2D" = -27D'B? = 4(3Q)? - 27A%
where I(€) is the index of §. Since D' = -3D or -D/3, we have

39DB2 3D

- 21 - . RZ =
(4.2.5) A=1(PD" = 27D'B2= { o0 s W

If a = (A), then a = (u)h, where h is a primitive ideal of OK and u € Z. Let p denote a
prime ideal. If p is any prime such that p | u, there are 3 possibilities and they are as
follows:

Case 1. (p) = p. In this case we have p | b3. Hence, we have p | b and this contradicts the
fact that b is a primitive ideal.

Case 2. (p) = pp (p = p ). In this case, we have p | b> which implies that p | b and p | b3
which implies that p | b. Thus, we have (p) | b and this is a contradiction because b is a
primitive ideal.

Case 3. (p) = p2. In this case, we have p | D'. Also, if p? [ u, then p* | b3. Thus, we have
p? | b and it follows that (p) | b. Again, we have a contradiction.

Thus, as before, we find that u | D' and u is square free. Furthermore, we can easily
deduce that the condition p? | Q and p3 | A is not satisfied for any prime p.

By Theorem 4.2.2 we know that



61

(4.2.6) D" = D32mE2
where (E, 3D) = 1, E is square-free integer and 0 s m s 2.
Suppose p > 3. If p?| D", then, by Theorem 2.4.1, we have
vp(3Q) = Vp(Q) 2 vp(A) = 1.
By (4.2.4), we get p2 | D'B2 and p | B follows. Since p| A and p | B, we get p | u which
implies p | D'. On the other hand, we have p | E and p ,r D by (4.2.6). Hence, we get
p ]/ D' by (4.2.5) and this is a contradiction. If p || D", then p || D by (4.2.6). Similarly,
if p || D, then p || D". Also, if p )/ D", then p ,r D. Again, if p X D, then p ]/ D" It
follows that
plID" <« p|D.
Suppose p = 2. If 23 | D, then 23| D" by (4.2.6). On the other hand, if 23 | D",

then 23 | D by (4.2.6).
If 22 || D, then 2 [ E and 22 || D" by (4.2.6); whereas, if 22 || D", we have either

22|Dor2 [/ D. 1f2 ] D, then 2 { D' It follows from Theorem 2.4.1 that 2 | A and

2| Q; hence, we have 2 | B. Now, by (4.2.4), we have A/2 = B/2 (mod 2), which means

that
(A/2) + gB/Z)\/]TE Ox.

Therefore we deduce that 2 | u and 2 | D', but this is impossible. Hence,
22| D"« 22||D

and 23||D" « 23| D.

Further, by (4.2.6), we see that 2 r D if and only if 2 { D". Thus we have shown that

E=1and D" = D32™, where m = 0, 1 or 2.
We are now left with the case of p = 3. If 3 /{ D, then we have D' = -3D. Also, we

know m = 1, by Theorem 4.2.2. Thus, we have
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w_ 4D
D=2

33
non
Y

If3|D, then D'= -D/3 and 3 | D'. We have
D" = -32m+lpy,
If m = 2, then 35 | D". We either get 3 | Q and 27 | A or by Theorem 2.4.1,
v3(3Q) > v3(A) = 1. In either case, it follows that 3| A and 3| Q. If 9| A, then
27 | D'B?, and hence 9 | B and 9 | u. Since u is square-free, we get a contradiction. On
the other hand, in the case where 3 | A we get 3| B and 3 | u; it follows that 3 | D', which
is impossible. Thus, we have shown that m = 2 when 3 | D. Hence, we can only have
w_JdD m =0
D=2 m=1. H
We now summarize the above results. We have shown that for every cubic field of
discriminant D, there exists a quadratic generator A of this field. Also, for a given
quadratic generator A, we have (M) = b3, where b is a primitive ideal of Ox.
A+BYD’
2

Furthermore, if A = is any algebraic integer of K such that A = A and (A) = b3,

where b is a primitive ideal , then the field Q(E), where Q3= N(A) and £ is a zexo of
x3-3Qx+A=0,
has discriminant D or -27D'". We will say that this is the cubic field produced by A. Thus,
our objective will now be to find a quadratic generator for each distinct cubic field of
discriminant D by searching for those values A € Oy such that (1) = b3, We will also
A+ByD",

want our values of A to be small. (ie. |A] and [B| are small for A = —=—)

§4.3 Quadratic generators and ideal classes of order 3.

Suppose that Ay and A, are quadratic generators of cubic fields of discriminant D
and that (A;) = by3 and (Ay) = b,3, where by, b, are primitive ideals of Ox and by # by,

We have yet to discuss the possibility that two quadratic generators, Ay and Ay, generate
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the same complex cubic field. In this section, we present a theorem which shows that A4
and A, generate two distinct complex cubic fields if by # b,. Before we do so, we must
present the following results.
Lemma 4.3.1. (Berwick[Ber25]) Let & be a zero of the polynomial

x3 - 3Qx + A,
then if A is as defined in Lemma 4.2.2, we have

AM-QE+A) -A-QE+2)°=0. W
Lemma 4.3.2, If € is a zero of an irreducible cubic polynomial

x3-30x+ A
and

E3.aE+bE-c=0
then we can only havea=0,b=-3Qandc=-A. H

Let Fy and F, be two complex cubic fields with the same discriminant D. By

Lemma 4.2.2, we know that there exists a quadratic generator Aq for Fy and a quadratic
generator A, for Fy, where Aq, A, € Og. We also know that N(A;) = Q; (i = 1,2).
Further, by Lemma 4.3.1, we know that

M(-Q1Ep +Aq)> - Ay(-Qi81 + Aq)® =0,
(43.1) M(-Qa8z + A9 - Aa(-Qaf +39)* = 0.
We can now prove

Theorem 4.3.1. (Berwick[Ber25]) Fl = F2 if and only if there exists § € K, such that

()

Proof. Without loss of generality we may assume that &4 and &, are both real. Put
o = -Qif; and F; = Q&) (i = 1,2). Clearly, Q(&;) = Q(&,) if and only if Q(p;) = Q(py).

Also, Q(py) = Q(py) if and only if there exist p, q, 1,s € Q such that

PPt g .

P1
l'pz + S



If

M()s 3

then because

L1ty (from (4.3.1))
}»1 1 + 7\.1
and
Pathy (from (4.3.1))
7\.2 2 + ?\.2
we get
(4.3.2) P1+M B oot
P1+ A1 Py + Ay

(since pq, P2, M, Ay are all real).
We now write (4.3.2) as
1+?~1‘7-\1=-E P2+ A2
Py + Ay B(Pz + 712)
If we solve for py, we get

_ (B -MB)py + MyAgB - AP .
p2(B - B) + AoB - AP

Putting
r=1,
MB - AP
p-p
MAaB - AyhoB
p-p
_MB - Ao
B-p

p:

q:

64

we see thatp = p, Q = q, S = s; hence p, g, 1, s € Q. Therefore, we can conclude that

F; = F,. By using similar reasoning we can also obtain the same result when
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MO\ R
7.&1 (B) }"2.

Now suppose that F; = F,. We must have

PP2* 9 here p, q, 1, s € Q and 1,5 not both zero.

and py =
Ipy + 8

Hence,

p
. N 3 -\ 3
_ ot Aar Py + Y
p+ Agr 2+v )

a+ ?»13. Putu=(p+ 7-‘11')3}‘1 and we get
P+ }\.11'

- - 3
_fpP2+ gt Arpy + Ags
Py + q+ Aqrpy + Ags

Rl bl

where y =

(4.3.3) u(py + )% - wlpp +1)° = 0.

We can write (4.3.3) as
(- 102> + 3Gy - w)p2? + 3wy - wyApy + (uy? - wr?) = 0,
a cubic equation in p, with rational coefficients. If u = I, then we must also have
Yi = YR
and

Yy=1v.
Thus, we have Ay = Ay, which is a contradiction to the definition of a quadratic generator

If u = 1, then put

al:ﬂl'_-lfl,
w-u
w2 ol
a2=w- ;_w’

no-n
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aye WY

W

We see that aq,a,, a3 € Q. Since &, is a zero of the irreducible cubic polynomial

x3 - 3Q0% + Ay

66

and by definition p, = -Q,&,, we can see that p, is a zero of the irreducible cubic

polynomial

x3-3Q,%x - A,Q,°.
Hence, by Lemma 4.3.2 we have

ay =0, ap = -Q53, a3 = -A,Q,°%.
Since LL =
T

, we have

-2 |-z

Yo/ u) - y2
(n/n)-1
PO/ -y

(y/v) -1
=y

Q=2 =

Thus, we get 023 = y\-( . Further, we know
(/)3 - 43
(n/p)-1

=y (Y +Y) .

Since Q3 =yy, we get Ay =y + v. We can now conclude that y = A, or Ay, which implies

that

- 3 -
Patra) _ A2
(92+Y)3 2+ M Ay
= 3

Our result follows, on putting = p + Ar. - |
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Corollary 4.3.1, Let (A1) = by? and (A) = b,3, where by, b, are primitive ideals of
OK' If bl # b2, 1-32, then Fl = Fz.

Proof. From Theorem 4.3.1, we know that if Fy = F, then there exists some § € K

MBY A he
7-\.1 B 5\.2 A

We may assume with no loss of generality that p € O If

7-\.1 B 1Y)

then by3b,3(B3) = b13b,3(3). It follows that we have biby(B) = b1b,(B) and by ~ b,

such that

Similarly, we can show that if
M B\ 2o
MA\BJ) A
|

If r is the 3-rank of K = Q(vD"), then K processes precisely 3" - 1 non-principal

then b1 ~ b2.

ideal classes of order 3. By using the above results, we can eliminate half of those ideal

classes since they are the conjugate ideal classes of the other half. Hence, there are exactly

r -
1+ (—3—711 ideal classes, counting the principal class, which are required in the

generation of distinct complex cubic fields. In the next section we discuss the number of
distinct cubic fields that can be generated in each of the distinct, non-conjugate ideal classes

of order 3 and in the principal ideal class.

§4.4 Number of distinct cubic fields from each ideal class of order 1 or 3,
We now want to determine the number of non-isomorphic cubic fields that can be
generated from each of the ideal classes of order 1 or 3, excluding the conjugate ideal

classes. We divide these ideal classes into two categories: the principal ideal class and the
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non-principal ideal classes. In order to present our theorem, we introduce the following

lemmata.

Lemma 4.4.1. Let gg be the fundamental unit of K. If b3 = (Ay), b5? = (A,) and
by ~ by, then there exist € K and i € Z such that 0 s { s 2 and Ay = u3gyih,. (For the

rest of this chapter and the following chapter, we use €gto denote the fundamental unit of

the real quadratic field K.)
Proof. Since by ~ by, there exist non-zero o, B € O such that
(@by = (B)by.
By raising both sides to the 3rd power, we get
(a?)be? = (B
Consequently, we have
a3hg = 3y,
where 1 is some unit of K. Since 1) = +g¢forsomen € Zandn=3j+i(0sis 2, and
n,i,j € Z), we have
A = (B / o)eg) eglhy.
We can write p = (([3 { a)egl)3 and the result follows.

Lemma 4.4.2. If () where v €K, then 3 | i.

: ol .
Proof. Without loss of generality, we may assumev €Z + vD'Z. Puty = %. Since

vV
Eol Y 3
o \s

we have y = y; hencey € Q. Now
N NP =+ 1,

so we have
2 _ +1

B N(v)3 '
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Since N(v) € Z, we have [N(v )| = t2, where t EZ and y = 1/ t3, Put v = a + by D" where

v

a,bEZ. Then gy = (-{-)3 and

13]2(a3 + 3ab2D").
£ |t >1,let p® | t. IfpP || 2a and B < a, then

a2 + 3b2D' = 0 (mod p3%-PF),
But a2 - b2D' = 0 (mod p*®) and B < ¢; hence

4b2D' = 0 (mod p2%),
If p = 2, then p?® | b2D', and p>® | a2 Hence, we have p* | a and we get a contradiction.
If p = 2, then p2®-2 | b2D', and we see that p2%~2 | a2, Consequently, we have p®1|a
and a contradiction. Thus, we have t | 2aand |v/t|€ Og. Since g4 = (v/1)3, we can
conclude that3|i. H
Lemma 4.4.3. Under the conditions of Lemma 4.4.1, if by is not a principal ideal, A
and A, produce the same cubic field if and only if i = 0.

Proof. By Lemma 4.4.1, we have
M eghy

g
Thus, if 3 | i, we see that Ay and A, produce the same cubic field by Theorem 4.3.1. Also,

if A, and A, produce the same cubic field, then for some § € K, we get

3 -
7.\.1 B ?-\.2 }"2

. 3 -
Wegihy (E) ey
weg'hy \B by M

uB)y*r; _ Eg'hy
WB%hy  ggihy

hence,

If

then
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.Y
80 'V3
where v = u B and v € K. Hence, by Lemma 4.4.2, 3 | i.

On the other hand, if
UBY*Ny _ Eolhy
WB)*hy Eohe

then
MHUBY 8o = oM (uB)’

()

Putting p = 3\22/(@0‘(“6)3) , we have p = p; hence p € Q. Since N(A,) is the cube of a

or

rational integer, then p is the cube of a rational, i.e. p = 3 and t € Q. Putting
y = upt € K, we see that y3 = M2 /et € Ok. By using the reasoning employed in
Lemma 4.4.3, we get y € OK. Now

()2 = ().
and (Ay) = by, so this gives by? = (y). Since by? and b,> are principal ideals, we know
that by must also be a principal ideal and we get a contradiction. By combining the above
results, we have proved Lemma 4.4.3, [ ]

Lemma 4.4.4. If A =v3,where v E OK, then A does not produce a cubic field.

Proof. Let

A+ BYyDT a+b\/D_r3
e g)

Put Q3 = N(\) = N(v3). We have

2 2ny
ac - b<D
Qz——T——

and
4A = a3 + 3ab2D",

Therefore, we have
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x3-30x+A=(x+a)(x?-ax+ (a2+3b2D")/4) .
Since this is a reducible polynomial, A cannot produce a cubic field. W
Lemma 4.4.5. Only one cubic field can be produced from all A such that b3 = (A),
where b is a principal ideal.
Proof. Suppose Aq and A, generate distinct fields and (A) = by3, (A;) = b,3, where by
and b, are principal ideals. It follows that
A=k’ = ggllvy?
where v, 4y € OK and 0 s iy s 2. Similarly, we also have
Ay = Mahty® = €g'2v)3
where v,, i, € Ok and 0 s iy s 2. By Lemma 4.4.4, if ij = 0, where j € {1,2}, then

does not produce a cubic field. For this reason, iy , i; € {1,2}. We now have

)\.1?\.2 Eg i1 +i2 V{Va 3
N }‘.2 8011 +i2 V1V2

If iy + i3 = 0 (mod 3), then the fields generated by Ay and A, are identical by Theorem

4.3,1. Also,
Mhy _gg't 20wy
}\1?\.2 8011 "12 ViVa

thus, if iy - i = 0 (mod 3), then the fields generated by Ay and A, are identical. Therefore,
if Ay, Ay generate different fields, we have iy # 15 oriy # -iy (mod 3). Since 3 X i; orip,
this is not possible, hence, we can conclude that there is only one cubic field produced
from all values of A such that b3 = () and b is a principal ideal. W
By using the above lemmata, we have shown that the following theorem holds.

Theorem 4.4.1, Let C be any ideal class such that C3 = PI, where PI denotes the
principal ideal class. If C = PI, all the values of A € O such that A = A and b3 = (A) for
primitive b € C produce the same cubic field. Further, if C = PI, all the values of A €
O such that A = A and b3 = (\) for primitive b € C produce only 3 distinct cubic

fields. B
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Note that, in the case where b € PT and b3 = (A), then A; (i = 0,1,2) produce the 3
distinct cubic fields which can be produced where
A =gl (1=0,1,2).
For any 1 € K such that A; (i = 0,1,2).€ Og. Of course, A and A always generate the
same field.

Suppose that the 3-rank of the class group in Q(vD") is r' and the 3-rank of Q(vD)
r -
is 1. By Hasse's theorem, there are exactly -Qz—ll complex cubic fields. On the other

hand, by Theorem 4.2.1 we know that we can generate precisely

3(3"-1) _ 3rtl.g
L+ =5 ="

distinct cubic fields. For this reason, if r = r'+1 (escalatory case), then all the fields
generated by the CUFFQI algorithm are distinct and have discriminant D. None of the
fields generated in this case can have discriminant -27D'. If r = ' (non-escalatory case),
then we get all the cubic fields of discriminant D and an additional 3" cubic fields of
discriminant -27D'. In this case, a criterion for determining whether the generating
polynomial has field discriminant D or -27D' is needed. By using Theorem 2.4.1, we have
a simple such criterion. In the case where 3 | D, the generating polynomial x3-3Qx+A has
field discriminant D if and only if one the following conditions holds:

) 3/Q9]A

i) Q# 1 (mod3), A%=3Q+1 (mod 9),

i) Q =1 (mod 3), A% = 3Q+1 (mod 27).

In the case where 3 { D, the generating polynomial x3-3Qx+A has field discriminant D if

and only if
Q =1 (mod 3) and A2 = 3Q+1 (mod 27).
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Chapter 3.
Computational Aspects of CUFFQI

§5.1. Introduction.

We have seen in the preceding chapter that, if we want to find all of the
non-isomorphic cubic fields which have a given fundamental discriminant D, we need only
find their quadratic generators. For each given ideal class of order 3 (excluding conjugate
classes), only 3 of the generators need be computed, and for the principal class only one
need be found. Thus the problem now becomes one of determining each of the ideal classes
of order 3 and then, in each of these classes, determining 3 quadratic generators Ay, Ay, Az
such that (A;)} = b;3, where b; is some ideal in the class, A; is not large, and A; / A = u3 for
some u € K wheni=j(ij €0, 1, 2). We must also determine some small A such that
() = b3, and b is principal.

In this chapter, we show how the CUFFQI algorithm determines these A values.
We discuss an algorithm to find an ideal a such that a3 = (A) and A is small. We then
present an algorithm to find this small A when only a is given. In addition, the complexity
of the CUFFQI algorithm is analyzed. The results of running the CUFFQI algorithm on a
main frame computer for certain D, where it is known that Q(vD) has a large 3-rank of its
class group, including 3 fields with a 3-rank of 6 given in Quer[Que87], are also

presented. Since this algorithm attempts to find a small A, we also discuss the bounds on

the coefficients and the index of a generating polynomial which the algorithm produces.

§5.2. Continued fractions, ideals and infrastructure.
In order to implement the CUFFQI algorithm, we require a number of results
concerning the continued fraction expansion of an expression of the form (P + vD/Q,

where P, Q, D' € Z and D'(>0) is not a perfect square. These results are well known and

are presented here for the convenience of the reader.
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As in Stephens and Williams[SW88], we let Py, Qy € Z be such that
Qq | D' - Py? and put |
b =9y =(Py+VvVD)/Q,
By putting q; = [¢]” and using the well-known formulae
Prer = Qg - P
Quep = (D' - P2 ) / Qy,

(5.2.1) Qgs1 = [Py + VD) /1 Qi1 21 (k= 0,1,2,..)),
we can expand ¢ into the simple continued fraction
1
(5.2.2) b =qq + T
qq 1
qy + ... T
Am-1 + 7
m-1 ¢)m

where ¢, = (P, + VD")/ Q. Here, we call the above formulae the Forward
Single-Step Continued Fraction Algorithm. We now proceed to introduce the Backward
Single-Step Continued Fraction Algorithm for a given ¢, , ;. We first require the following
lemma.
Lemma 5.2.1.(Williams and Wunderlich[ WW87]) If, in the continued fraction of
¢ = ¢g, we have -1 < ¢; <0, then

Qg = {(Pyy1 + VD) / Q)
forallk=1. W
Hence, if -1 < 51 < 0, then, for a given pair (P}, ,Qy,1), we can find P, and Q, by using
the following formulae:

Q= (D'- P2k+1) !/ Qgyps

G = [(Pyyq + VDD 71 Qi
(5.2.3) Py = qQp - Pryq

If we put 6, =1 and define

*We use [a] to denote that integer such thata - 1 < [a] = a.
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n-1
(5.2.4) 6,"! = [1% (> 1),
=
then
(5.2.5) 8,8, =(-1™Q, ,/Q,
and
(5.2.6) 0, = (1" 1A 5 -0B,5) = (-1)"(G, 5 - VD'B,,) / Qg
where
(5.2.7) Gy = QpAy - PgBy = P, 1By + Qu 1By g

Here A,=0,A =1, B,=1, B;=0, and
(5.2.8) Ajp1 = Q018 + A Biyg = 63,1B; + By (1=-1,0,1,2,.).
If we put ; = |[(§;)Y| and p, = [B,], then by (5.2.1)

Py =[(Py + VD) / Q4

and

n-1 n-1
Also, by (5.2.6) and (5.2.7) we have
Pn =1(Gpp + BypvD) / Qp |
=[ By (Ppoq + VD) + Q4B 3) / Qg |.

It is known that there is a connection between the continued fraction expansion of

(P + v'D)/Q and the ideals in the real quadratic field Q(vD"). Here, we briefly describe
some of the results which are relevant to our work, A detailed description of these
theorems, proofs and results is given in [WW87]. We first give an important definition.
Definition 5,2.1. We say that j is a reduced ideal in OK if j is primitive and there does
not exist any nonzero o € j such that both |o] < N(j) and |af < N(j) hold.

With the above definition, we are now able to present some of the well-known

properties of reduced ideals.
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Theorem 5.2.1. Let j be a primitive ideal; then j is a reduced ideal in Oy if and only if
there exists some B € j such that j = [N(§), B], B > N(j), and -N(j) < < 0. H
Corollary 5.2.1. If j is a reduced ideal in OK, then N(j)<vD". H

Theorem 5.2.2. If j is a primitive ideal in Ok and N(j) < vD"/ 2, then j is a reduced
ideal in Og. H

If j is any reduced ideal in O, then j = [N(j), ¢ + w], where ¢ € Z and
w = (0-1+vD'Yo, and we may certainly assume that 0 < ¢ < N(j). Since N(j) <vD', we
see that there can only be a finite number of reduced ideals in Q. We further point out
that, if j is a reduced ideal, then the conjugate of ideal j is also a reduced ideal.

Now, given an ideal j (= j1), we can use the Forward Single-Step Continued
Fraction Algorithm, as given above, (applied to B/ N(j;) = (P + VD" / Q) to produce
a sequence of ideals

jl,.jz,j3, ,jn
such that

Jjx=[Qx1/0,(P.;+vD) /o] (k= 123,.,n),

(NG1B)is = (NG
where 1 <s = n. Also, pg = 85" IN(jy), ps € OK (ps > 1) and we have

(NGD)s = (Pi1-
We mention further (Theorem 4.2 in [WW87]) that, for some m = O(log N(j)), we get j,
reduced for any n =z m.
Theorem 5.2.3. ((WW87]) If, by developing ¢g = (P + vD") / Q into a continued
fraction, we find the least m (= 1) such that 0 < Qg1 < VD" then j, (= [Qnu.1/0 .,
(P,,.;+VD'Yo)) is a reduced ideal in Ok and

1<6,71<2Q0/ Qpu1 = 2N(1) / N(im)
or

N(im) < Pm < 2N(j).
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Let j; (= [Qg/ o, (Py + VD" /o)) be any reduced ideal. The Forward
Single-Step Continued Fraction Algorithm applied to j; ( ¢y = (Py + vD") / Qq) yields a
purely periodic sequence of all the reduced ideals ~ jq, with a minimal p € Z* such that
Jp+1 =J1 and 6,.1 = N(j)eg (g is the fundamental unit of Q(VDT), due to the following
results,

Theorem 5.2.4. Ifj = j; is a reduced ideal in Oy, then -1<$; <0. W
Corollary 5.2.2. If j; is a reduced ideal in O, thenso is j, foranym=1. M

We define the distance between two equivalent reduced ideals j, and j; (j,, ~Jj1) as

8 = 8(in »d1) = log (V pu/Py ) = log (o / VRGDNGR) )

We note that, since P, + VD" > 1Qp-1» we have (i1, J1) > 6(y , j1) > O for any
n>1, and 6(j, , j1) = 0 if and only if n = 1. The notion of distance was first discussed
by Shanks[Sha73] and later refined by Lenstra[Len82] and Schoof{Sch83]. In this chapter,
we use Lenstra's distance definition. Notice that distance is only defined between ideals of
O that are equivalent and reduced. Furthermore,

8(ip+1,41) =loggg =R,
where jp,1 is defined as above and R is the regulator of Q(v/D"). We also note that

8(n » 1) = R - 8(n » j1)-

Letiy (= (1)), iy, i3, ..., I, ... be the sequence of reduced principal ideals in OK

and suppose that j; is any reduced ideal in Oy. Let

(wh = jyip,
where u € Z and h is a primitive ideal in OK. If j; and i,, are known, then the algorithm of
Shanks as given in Section 6 of [MW87] can be used to find u and h. Also,

h ~ j;.
Let h,, be a reduced ideal equivalent to h = hy, which we find by using the Forward

Single-Step Continued Fraction Algorithm on hy, with m defined as in Theorem 5.2.3.
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Since hp, ~ j1, and hy, is reduced, we have hy, = j; for some t. Hence, we now present a
modified version of a theorem of Williams and Wunderlich WW87].
Theorem 5.2.5If 85 = 8(js , j1), 8, = 81y, i1), 8 = 8(j; , j1), then
§ = g + 8, + 1 (mod R)
where 1| < log 2D".
Proof. Let Iy = (), (NGDYs = (0')i1, (N(hDhgy = (p" )1y Since (u)hy = jgin, we
get u2N(hy) = NGig) N(ip).
Also,
(NUIN(EpIhy = (0" nuisiy 5

hence,
(NUS)N(.jl)N(in))hm = (pnp'sp"mu).jl’
and
\ PsP mlY
(N{1)hy = ‘_""""‘?\?0 3N(Tj'
Also,
; EPpP'sP ' mu
&y =8(h,,ji) =lo - -
t= Olfm, J1) = log (Nos)N(ln)mﬁvm—wm
Iog( )+ log( + log( p mt + loge.
m

where ¢ is a unit of K. Putting

log( p mu
m

& = 8(js , 1) + d(i, , iy) + n (mod R).

we have

2NN
By Theorem 5.2.3, we have p", < 2N(h{) = ——(JM, and it follows that
u

n< log(—zg————————- Us; l”)

Since vN{js) , vN{i,) < VD', we have 1§ < log(2D"). On the other hand, by Theorem

5.2.3, we have N(h,) < p"}, , and it follows that
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log(———————%) <.
Hence, we have log(D™1) <1, and we have proved the above theorem. W

With the above idea we can develop algorithms of complexity O(R12D'®) to find
the regulator of Q(v'D") and to find the value of 8(i, , (1)) for a given reduced principal
ideal i;. Also, we can develop a fast algorithm, of complexity O((D8)?), to find jy for
given values of & and j; such that j, has a distance closest to & from jy. In solving the first
problem, we refer the reader to [BW88B]. As for the last two algorithms, since they are
not, to the best of our knowledge, documented in the literature, we include them here.

In finding the distance 8(i; , (1)) for a given reduced principal ideal i, we assume
that the regulator R of Q(vD") is known. We first generate a list of reduced principal ideals
i =(1), iy, .., g igqs - » I Here s and t are determined by 8(is , (1)) ~ RY/2 and

O(iy , (1)) > 8(ig, (1)) + log(2D").
Ifi, =i (1sjst), then 8(i;, (1)) = 8(i;, (1)). If i; = -'j (1=<]jst),then
8(i, » (1)) =R - 8(i; , (1)).
Otherwise, put iy, equal to the reduced ideal equivalent to igis, where 8(iy, , (1)) ~

28(is, (1)) and 8(iy , (1)) < 28(ig, (1)) + log(2D'). We let ink be a reduced ideal

equivalent to i(i,,)* (k € Z). We note that
O(iy, » i) = kd(iy; , (1))
and
O(ty;,  » In;) - B(in, , in, {) < 20(, (1)) + 2log(2D").
Starting k at one, we increase k until a reduced ideal iy, for which ink or iy €
{ip i oy ih Iy, =145 (1 sj s 1), then
O(ir, (1)) = R + 8(ij, (1)) - 8(iy, » in).
If iy, =ij (1 =js1), then

6(ir ’ (1)) =R - 6(i ) (1)) - 6(ini ) ir)

We now present this algorithm in full,
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Algorithm 35.2.1.

Given: s,tand R.

1)
2)

3)
4)

5)

6)
7)
8)
9)

10)
11)
12)
13)
14)

15)

Initialize dist* « 0.
Use the Forward Single-Step Continued Fraction Algorithm to generate a list of
reduced principal ideals and their distances (ideals iy, and 8(iy,(1)) where
k = 1,2,..,8,...,1).
Compute u and b where (u)b =i i,
Use the Forward Single-Step Continued Fraction Algorithm to reduce b, and
produce a reduced principal ideal i jwhere (N(b))i, = (p,,)b.
Compute 8(i;,(1)) where
| 8(iys (1)) = 28(1,(1)) + Logl(pu] - 1og(N(iy)) - 0.5log(N(iy, ).
Ifir=1; (1 <j <), then goto step 12.
If ir = T; (1 <j <), then goto step 14.
Compute u and b where (u)b =i .
Use the Forward Single-Step Continued Fraction Algorithm to reduce b, and
produce a reduced principal ideal i, where (N(b))i,, = (pb.
dist < dist + 8(i,(1))+ log|(p Ju] - 0.510g(N(i,)N(i IN(.)).
Set i; < i and goto step 6.
DISTANCE « R + 6(ij,(1)) - dist.
Goto step 15.
DISTANCE «< R - é(ij,(i)) - dist.

Stop.

+We use 'dist' to denote the distance 8(i,lk, ip).
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The next algorithm is to find a reduced ideal j, for given values of 8 and j; such
that &(jy ,j;) = d. If we have a reduced principal ideal i with 8(i ,(1)) ~ 8, then, by
using Theorem 5.2.5, we can find a reduced ideal j; equivalent to i.j; with a distance close
to 6. We then use either the Forward Single-Step Continued Fraction Algorithm or
Backward Single-Step Continued Fraction Algorithm, depending on whether 3(jy , j;) > 8,
to find a reduced ideal which has a distance closest to 8 from j;. As for the problem of
finding in, we first find m and v such that

& =2My,
where u (€ Q) < 10 and m € Z. We use the Forward Single-Step Continued Fraction
Algorithm to find a reduced principal ideal i with a distance close to u and then use m

"doubling" steps (find ium“; see [Sha72]) to find i . The following is a detailed

description of the algorithm.
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Algorithm 5.2.2.

D
2)
3)
4)
5)
6)

7}
8)
9
10)
11)

12)
13)

14)

15)

16)
17)

18)

19)

Initialize i < 0 and DIST « 8.

If DIST < 10 goto step 6.

DIST « DIST /2.

ie—i+1

Goto step 2.

Use the Forward Single-Step Continued Fraction Algorithm on (1) to find i

(~(1)) which has a distance less than but closest to DIST.

Setm < 1.

Fori=1tomdo
Compute u and b where (u)b =i .
DOUBLE < 28(i, , (1)).
Use the Forward Single-Step Continued Fraction Algorithm to reduce b and
produce a reduced principal ideal i_.(i.e. (N(D))i, = (p,)b)
Compute 3(i_, , (1)) <~ DOUBLE + log|(p,)u - log(N(i,)) - 0.5log(N(i,))-
If 8(i, , (1)) < DOUBLE, apply the Forward Single-Step Continued Fraction
algorithm on i, as given in (5.2.1), to find ideal i, such that
8(, , (1)) = DOUBLE.
If 8(i,, , (1)) > DOUBLE, apply the Backward Single-Step continued Fraction
Algorithm on i_, as given in (5.2.3), to find ideal i, such that
(i, , (1))~ DOUBLE.
Set i, < i,

End For.

Compute u and b where ()b = i j;.

Use the Forward Single-Step Continued Fraction Algorithm to reduce b and

produce a reduced primitive ideal j_ such that (N(b))j, = (p')b-
Compute 33, ,jq) < 6@, (1) + logl(p' )yl - 0.510g(NG . INGING,))-
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20)  If0(j,,Jq) <O, apply the Forward Single-Step Continued Fraction Algorithm on
Jpp 38 given in (5.2.1), to find ideal j, such that 8(j, ,j;) =~ 9.

19)  If8(, .y > 8, apply the Backward Single-Step Continued Fraction Algorithm on
Jm @ given in (5.2.1), to find ideal jy such that 8(jy ,Jj;) ~ o.

20y  Stop.

§5.3. Determination of an ideal a such that a® = (A) and XA is small.

In Shanks' CUFFQI algorithm, the approach to constructing A is to find a fixed
reduced ideal a such that a3 = (A) and A is small. Certainly, we know that a is either a
principal ideal or an ideal of order 3. Thus, we must first produce the group G3 of all the
ideal classes of K whose cubes are principal and then eliminate from Gy the conjugate
classes. Let G'5 denote this set of ideal classes. The problem of finding the generators for
G3 can be solved by using the Baby Step - Giant Step method of Shanks [Sha71} in
O(D'1/4+8) operations under suitable Riemann Hypotheses, as given in Lenstra[Len82].
We then divide the task of constructing a generating polynomial for each distinct complex
cubic field with discriminant D into two subproblems.The first problem is to compute, for a
given ideal aj, where aq is an ideal class of G'5 and a; is reduced, an ideal a, ~ a; such
that a;3 = (A) where A is small. The second problem is to find A for a given ideal a such
that a3 = (A). In this section, we describe a solution to the first problem. Since we want a
small A, it is important for us to select an ideal which can provide such a A. By Theorem
4.4.1, we need only find three distinct ideals a; in each of the non-principal ideal classes in
G'3, and only one ideal a, in the principal ideal class.

We first consider the case where a (a; = (1)) is a principal ideal. Here we have

ar=(p) and a2 =(p;?) = (p, / ¢0)-
If we put A = pr3 / €g, since
INO)| = NG = N(ap?,

we have
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] = N(a,)3eq / p,2.
In order for [X] and |A] to be small, we want
Rl = v = N(a)*'2,
as [\R] = N(a,)3. Thus, we want
eoN(a)¥2 / p,3
to be close to 1. However,
38(a, , a;) = log( p,> / N(a,)>?),
and we have
log [A] = (R + log(N(a,)*?)) - 38(a, , ay).
Hence, we want R ~33(a, , a;) in order to have [A| ~ N(a )32. Consequently, we want
an ideal ag such that
5(ag,a;) <R /3,
and d(agy,a1)>R /3.
We then select either ag or a_ ; to be a_ depending on which ideal has a distance closer to
1/3 of the regulator. We can now give the algorithm for the determination of ideal a,
(a; ~ (1)).
Algorithm §.3.1.
1) Use the Large Step Algorithm, as given in [SW88] for example, to compute the
regulator R of Q(vD").
2) Use Algorithm 5.2.2 to find the ideal ag (~ (1)) such that
0(ag,a1) < R/3 < d(ag,q.,2q).
3) If [8(ag,ay) - R/3| < [8(ag,q.a1) - R/3|, set a, < ag; otherwise set a, < ag,;.
4) Stop.
We now consider the case where a; is not a principal ideal. We let a; be a reduced

ideal in a class of G'3. If we put

(5.3.1) 312 = (uy)by, where u; € Z and b, is a primitive ideal,



then
(5.3.2) (N )b, = (p" )by,

where b is a reduced ideal equivalent to b;. Multiplying b, by a;, we get

(5.3.3) b,a; = (uyeq, where ¢; ~ (1) and u, € Z.

Let ¢, be a reduced ideal equivalent to ¢;. Then
(5.3.4) (N(ep)e, = (pe;.
Let ¢, be the conjugate ideal of ¢,. Then
e, = ¢ ~ay° ~ (1),
and
(5.3.5) ¢, = ¢g= (6).
Now, if we put
(N(ap)a, = (p')ay,
then we have
(53.6) (N = (@' as.
The product of (5.3.1) and (5.3.3) is
bm313 = (uyu,y)byey,
and, from (5.3.2), (5.3.4) we get
(P" P> = (uu,N(b ON(c, )b ¢,
or (p" P2y = (uu,N(bIN(ey))e,.
By using (5.3.5), we get
(p"mpt)a13 = (uguyN(b1)N(e,)8y).
From (5.3.6) it follows that
(P"mPN(ap))a> = (uguN(bN(e 8" ).
We have ar3 = (M), where
u;u,N(b;)N(c)8,p",>
p"mptN(a1)3 '

But, since N(a,)® = [N(M)| = |\ N, we get

A=

85
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lX | = N(ar)3N(a])3p ”mpt
u;u,N(b)N(c,)8,p'>

Also, N(c ) = N(e,) = [N(8,)| and we now have

- N(a)*N(a)*p" o6

[ = :
p' Juqu,N(b;)N(e)N(eg)
Letting
(5.3.7) y = N(a)*%p"yp 8
" u;u,N(bN(e)N(cy) *

we have

7 = N(a )>N(a,)*?y

p2

As in the previous case, in order to have |A|=~ [A] =~ N(a,)%/2, we want
yN(a }¥?N(a;)*? /o' 3 to be close to 1. Since
5(a; , ay) = log(p',/vN(a)N(ay)),
and &(a, , a;) is monotonically increasing with r, we select that ideal a; such that
d(as , a1) < (log v) / 3,
and

d(asy1, 81) > (log v) / 3.

Once we find a,, we chose a, = a; or a ,; such that 8(a, a;) is closest to (logy) / 3.
As mentioned earlier, we must find 3 distinct A's in each of the non-principal ideal
classes in G'y. By Theorem 4.4.1, we know that
Nl = (N(a)3N(a;)32y eg') / p',2, where i=0,1,2,
produce all the (3) distinct complex cubic fields of which the ideal class containing a_ is

capable. Thus, we must find 3 ideals whose generators produce 3 other distinct complex

cubic fields. These 3 ideals can be found by obtaining a,, such that
6(ari ,a1)~ (logy +i(logeg)) /3, wherei=0,1, 2.
Thus, for a given non-principal reduced ideal a; in a class of G'3, the algorithm to find the

3 distinct ideals a. is as follows:
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Algorithm 5.3.2.

D
2)
3)
4)
5)
6)
7)
8)

9)

10)
11)
12)
13)
14)

Compute u; and b; where (u;) by = a2,

Find a reduced ideal b, (~b;) such that (N(b;))b, = (p")b;.
Compute u, and ¢; where (u,) ¢; = b a;.

Find a reduced ideal ¢, (~c;) such that (N(c))e, = (p,)c;.

Use Algorithm 5.2.1 to find the distance 8 between ¢, (= ¢ ) and (1).
Compute logy < log(N(a;)*?p",,pp) + 8 - log(uyu,N(b)N(e)N(e ) /2).
Initialize 1 « 1.

Use Algorithm 5.2.2 to find ideal ag such that 8(ag, a;) < (logy) /3
and (logy) / 3 < d(ag,1 , a1).

Set a, < agif [8(ags1, a;) - (logy) /3| <[8(as , ay) - (logy) / 3}
otherwise put a, < a__ 4.

Save a,.

y < v + logeg / 3.

e i+1.

If i <3 goto step 8.

Stop.

§5.4. Bounds on A and B where A = (A+BvYD")/ao.

In the previous section, we presented a method for finding a reduced ideal a; such

that a3 = (\), where A (> 0) is small. In this section, we determine bounds on A and B,

where A = (A+ByD")/o. In order to do so, we must first determine bounds on A and [A|.

As stated earlier, a_ can be either ag or a, ¢, where ag and a ; are defined in §5.3. We

first discuss the bounds in the case where (A) = ar3 = as3.
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. N(a)3N(a,)>?v
Case 1. |A| = (a,) | (Pl) where v =y, (as defined in (5.3.7)), or v = ¢g . In this
Ps
case we know that
VN(aS)3/2N(aI)3/2

> 1,

logP?
so we have [N| > N(a)*2. Since [AR| = N(a,)® and vD" > N(a,), by Corollary 5.2.1,
we have
(5.4.1) D34 5 N(a)¥2 > [A| = N(a)? /[Al.
Also, since a is selected such that
log(v) - 3logp + 3/2 log(N(as)) +3/2 log(N(al))
< 3logpg,1 - 3/2 log(N(ag, 1)) - 3/2 log(N(a,)) - log(v),

we have
P’ YN@YPNGa )Y
VN(aS+1)3/2N(aI)3/2 ps3
or
956 WSS ps3 ps+13 2,

= >V
N(as+1)3/2N(as)3/2N(a 1) 3 N(as+1)3/2N(aS)3/2N(al)3

where ¢ = (Pg + VD) / Qg_q. It follows that

3/2
R -
N(as+1)3/4 N(as)SMN(al )3/2

and this gives
3/2
N(as)Sws / > I-;\.i.
N(as+1)3/4N(as)3/4

Also, N(ay) = Q.4 / 0, so we have
N(as)3/4 (Ps + ml)3/2

o2 N(as+1)3/’4

> | A

(5.4.2)

But, as vD"> N(a,), we now have
(5.4.3) 23 D978 = 231202y DN3/2 (yDT)3/4 > |A.
Since |AR| = N(ag)?, we can easily deduce that

|A| > D388,
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Although the upper bound for |A| derived here is 8D'%/8, in most cases the actual
size of }7\! tends to be much smaller. Indeed, according to the Gauss-Kuzmin Law, if
¢; = (P; + vD")/ Q, then we would expect the probability of ¢; occurring between n
and n + 1 to be approximately

log[1 + 1/(n? + 2n)] / log2,
Forn=1,2 and 3, this gives the values 0.415037, 0.169925 and 0.93109, respectively.

Thus, about 0.678 of the time we might expect

(5.4.4) 4> Lt VD

1

Based on this information and (5.4.2), we can say that, for approximately two thirds of the

values of A, we would probably get
, P.+vD"}372 _
(5.4.5) 8D'3 > N(ay)¥“N(ag, )% (—SO'S_“) > [X].

We now consider the bounds in the case where (A) = ar3 = as+13.

71 - N@s41)N(a)) v o ‘
Case 2. |A|= 3 , where v has the same definition as in Case 1. In this
lPs1l
case we have
N(ag1)¥2N(a;)* v
lpssil® ,

so N(ag,1)*? > [N follows. Therefore we have
(5.4.6) D345 [R).
Since |AK| = N(a,)®, we have
I\ > D34,
Furthermore,
log(v) - 3log|pg| + 3/2 log(N(ay)) + 3/2 log(N(a;))
> 3loglpg.1] - 3/2 log(N(a,, 1)) - 3/2 log(N(a,)) - log(v).

Hence, we obtain

N(as+1)3
N(as)3/4N(as+l)3/4 1])83/2

N
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where ¢ = (P, + VD) / Qg ;. Since [\A|= N(as+1)3, we now have
(5.4.7) N(ag,1)**N(a > 92 > [ = Neag,1)® /[M).

Also, Y = o(Pg + VD") / N(ay) and we get
03/2(1)S £ mr)3/2N(as+l)3/4
N(as)3/4

(5.4.8) 8D'9/8 > > A

Again, by using the Gauss-Kuzmin Law we can expect to have a smaller upper bound for

[A] in most instances. By Corollary 5.2.2 and Lemma 5.2.1, we know that [¥) = qs.
Hence, by (5.4.4), we would expect that 4 > q; about 67.8% of the time. Based on this
information and (5.4.7), the following inequality
(5.4.9) 8D"*/4 > N(ag, )¥N(a >4 ¢ 32 > ||
probably holds for about two thirds of A values.

We have now determined the bounds on A and JA] for both cases. Since

M+ A
vD© '’

in either case we can say that 67.8% of the time we would expect to have

4.50D"3/4 5> (8D3/4 4+ D' (o /2) > |A|,

I2A / o| < |A| + [A|, and |2B/ o] <

(5.4.10) 4.50D'1/4 5> (8D'1/4 4 D'14) (5 / 2) > |B.
Also, the following bounds
4.50D'9/8 > (8D'9/8 + D4 (o / 2) > |A|,
4.50D'5/8 5 (8D"/8 + D' (0 /2) > |B]
are unconditional.

It is well known that any cubic field F having discriminant D has a reduced binary
cubic form F(x,y) = a1x3+a2x2y+a3xy2+a4y3 with discriminant D associated with it. In
[ET85], Ennola and Turunen present a method for constructing a generating polynomial
f(x) = x3-ax+b from this binary cubic form F(x,y) such that F(x,y) and £(x) correspond to
the same cubic field F. Although Ennola and Turunen deal with totally real cubic fields

only, this method can also be applied to complex cubic fields because the change from
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positive discriminants to negative discriminants does not affect the proof of the method.
Also, in [ET85] it was pointed out that the discriminant of f(x) is DE? where E is the index
of the polynomial f(x). Furthermore,

E<2D14/v27
is given in [MB12]. As a result, we can conclude that there exists a generating polynomial
with discriminant D and index I for the cubic field F such that
(5.4.11) 1< 2DV4/y77,
However, we have no idea of how to find the F(x,y) here; nevertheless, by comparing
(5.4.10) and (5.4.11), we can say that most of the generating polynomials constructed by
the CUFFQI algorithm have indices which are not much larger than those bounded by
(5.4.11). Furthermore, we can conclude that the generating polynomials constructed by the

CUFFQI algorithm have relatively small values for their coefficients and index.

§5.5. Construction of A.
In the previous section we presented a method for obtaining a reduced ideal a such
that a3 = (A) where A (> 0) and [X] are small. In this section, we describe an algorithm

which can determine what this A value is, given a.

Let
(5.5.1) aZ = (u)b
where u € Z and b is prmitive. Put by = b. We then have
(5.5.2) (NO )by, = (0 )by,
where b, = a, for some m. Since (b, = al , we get
(5.5.3) (uN(by))a = (p)a>.

On multiplying (5.5.3) by a, we see that
(Pm)a® = aN(b;)N(a)),

but N(a) = N(a) = N(b_,) and [N(p_)| = N(b;)N(b_,); hence
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a = (A) = (uN(b;)N(b,)p,, 1) = (up,,)-
It follows that
7\.80k = uf)m

or
k

A= uf)mﬁo' )
where k € Z. Although k could be any integer, the following theorem allows us to restrict
the possible values of k, in the case where the regulator is not exceptionally small.

Theorem 5.5.1. Suppose that (N(b;))b,, = (p,,))b; and A = up_)mso‘k hold. If
C1 <A < Cy, where Cq, Gy € Q, and log e > max{log(D'/Cy) , 10g(2C,)}, then

(5.5.4) A= up
or
(5.5.5) A = up,gp

Proof. Let s be the least value (1 s s s m) such that b is a reduced ideal. Hence, by

Theorem 5.2.3, we have

Py = N(b;)8, = N(b,)8sxs

where
Om = OsXss
(5.5.6) 1/eg<ys <1,
and
(5.5.7) N(b) / (2N(by)) < 0 < 1.

On multiplying (5.5.6) by (5.5.7), we get
N(by) / (2N(by)eg) < Oxs < 1;

thus,
N(b) / (2e0) < N(b1)Bsxs < N(by),
or

uN(b,) / (2¢0) < up,, < uN(b,).
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k, we have

uN(b,) / (2eg%*1) < A < uN(b,) / gk,

Since A = up ey

But since C; < A and D' > N(a)? = u2N(b1), we obtain the following inequality

D'/ ek > (uN(by)) / £g* > C1.
Hence,

D'/ Cqy > ggX.
On the other hand, we know that D'/ C; < g, and therefore we have k < 0. As for the
upper bound for A, we have C, > A and it follows that

- Co> uN(by) / (289"*1)

and

g1 > uN(by) / (2C;) > 1/ (2Cy).
Thus, we get

2C, > gk L,
Once again, we know that 2C; < g, and, as a consequence, we have k = -1. Our result

follows. H
In §5.4, we have shown that 8D'/8 > A > D*/8 / 8. Hence, we can now apply

Theorem 5.5.1 to find M if the regulator is bigger than log16D'%/8, In the case where
R < log16D'9/8 the determination of a small A can be done by using a direct search
because there is a limited number of reduced ideals in each of the ideal classes. Thus, this
theorem can be used here, as we are not interested in the discriminants which have small

regulators.

In (5.5.5), since ¢q is usually very large, it is convenient to modify (5.5.5) so that
A can be easily constructed. From (5.5.2), we have
(5.5.8) (N(b )by, = (Ppy)by,
Putting a, = by and a, = b_, we then get

(5.5.9) (N(ay))a, = (p'pay,
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The product of (5.5.8) and (5.5.9) is
(N(bN(b ) = (0P p)-
But, since (N(b;)N(b_)) = (p,,0,,,), We get
My =Py
where 1) is a unit (i.e. ) = eoi and i € Z). Since N(a,) < p'; < gg and
1/eg < p,, < N(by), we have
n =p'/ py > N(@) / N(by).
By 5.5.1, we have N(a,)2 = uzN(bl) and we get
n>u?/N(a)>1/vD"
Since we are only interested in D' where gy > 8D'9/8, we get
11l=p't/-{)mzlandi20.

If p', = p,, we get

b
I

up'.ep.

It follows that

A/ (up').

Since u, p'y > 1 and 8D%/8 > &, we get

€0

gg < 8D'9/8,
which is a contradiction. Hence, we have
M =p/py>1andi>0.
Ifi=2, we have
€02 < g9/ Py < €02,
and we get a contradiction. So i must be 1 and p/, = 805;11, From this result we can find A
by using
(5.5.10) A =up eg=up
Unfortunately, in attempting to determine A, there is no a priori way of knowing

which of up,, or up', is A. Therefore the approach that we utilized is that of attempting to
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compute both ﬁm and p',. The process is terminated as soon as the lesser of uﬁm or up'y is

found, which we put as our A value. We illustrate this idea by

Algorithm 5.5.1.( Given an ideal a, find }).

1) Compute u and by where (w)b; = a2,

2)  Initialize a; < by.

3) Set j« 2.

4) Perform a single step of the Forward Single-Step Continued Fraction Algorithm on
Ay and bj-i to get a; and bj.

5) Compute 51' where (N(by))b; = (p)b;.

6) If bj = a then goto step 11,

7) Compute p'j where (N(al))aj = (p'j)al.

8) If a; =a then goto step 13.

9  jej+l

10)  Goto step 4.

1)  » < up;.
12)  Goto step 14.
13y A« up’; .
14)  Stop.

Before we leave this section, it is important to describe a technique that was used in
the computation of A and B where
A=(A+BYD)/o =up, or up,.
In the first case, we know that
Pm = N(b)B,,

and

e O ra3ur5).

where the Aj's and By's are defined in (5.2.8) andb; = [Q/r, (P +vD") / r].
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Thus, we have

h=uN(b)e, = “(Q/G)('l)m-l(Am-z : Bm-z(P +Om))'
= u(-l)m‘l(m“"2 —m2” mBmQ).

(o]

2 pR2
Since N(A) = ]A—'Iz)B—l, we get
g

A= U(QAm_2 - PBm_z) = UGm'z, B= UBm_z.
In order to minimize the precision required for the computation of A, we use the following
recursive formula. Letting G , = -P, G.; = Q, we then find from (5.2.7) that
(5.5.11) Gis1 = 9i41G; - Gy
We now consider the second case, where A = (A + BYD") / ¢ = up',. From

§5.2 we know that

0, = ('1)i'1(At-2 - By £ Bm))’

where the A/'s and B/'s have the same definition as in (5.2.8). Also,
(N(ap)8pa, = (N(a))a; andb; =a; =[Q /o, (-P + VD) /o].
Now,
Q0 = (-1)"(QA, + PB, - B ,vDY,
and
QB'|= QA., + PB,, + B, ,vD".

Thus, since Q6" | = op',, we have
u(QA,, + PB,) + uB,_ D"
o

ho= up't=

As in the previous case, we get
A = u(QAt_z + PB,) = uG, ,,
B =uB,,,
where G, =P, G_; = Q and the G¢'s (t 2 0) has the same definition as in (5.5.11).
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§5.6. The CUFFQI algorithm.

Since we have now discussed all of the components of our version of the CUFFQI
algorithm, we are able to present the overall algorithm. For a given fundamental
discriminant D and its dual discriminant D', the following algorithm constructs all the
complex cubic fields having fundamental discriminant D. We assume that the 3-ranks of the
class group of Q(vD") and Q(vD) are known.

Algorithm 5.6.1.

Given: D(<0), 3-ranks of the class group of Q(vD") (= 1) and QD ) (= 1").

1) Compute the regulator of Q(vD') (see, for example [BW88B])).

2) Use the Baby Step - Giant Step method as described in [Sha71] and [Len82] to
produce the generators of Gs. Use the generators to construct G'.

3) Use Algorithm 5.3.1 to find an ideal a in the principal ideal class.

4} Store a in LIST.

5) For each ideal class in G'3, do the following:

6) Apply Algorithm 5.3.2 to find ideals a, i=1,2,3.

7) Store ay, (i=1,2,3) in LIST.

8) End For.

9) For each ideal a in LIST, do the following

10) Apply Algorithm 5.5.1 to construct A =(A +BvyD") / 0.
11) Store the generating polynomial x3 - 3N(a)x + A in a data base.
12)  End For.

13)  If r' = 1" then goto step 15.
14)  Use the criterion as given in §4.4 to eliminate all the generating polynomials that do
not have a field discriminant D,

15)  Stop.
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§5.7. The complexity of the CUFFQI algorithm.

In this section we discuss the complexity of the Algorithm 5.6.1. It is known that
the complexity of finding the regulator is O(RY/2D'¢). The Baby Step - Giant Step method
of Step 2 has a complexity of O(D'/4+8) under the assumption of the Generalized
Riemann Hypothesis (GRH) as noted in {Len82]. Having found the generators, we can
construct G'3 in O(%—l— D'E) operations. Thus, the complexity of Step 2 is O(D'}/4+¢) 4
0(3—;—1— D'E) if the Generalized Riemann Hypothesis holds. On the other hand, we must

note that the construction of G'3 can be done unconditionally in O(D'0-508+€) gperations as
mentioned in [MW87]. In Step 3, if the regulator is known, then the complexity of
Algorithm 5.3.1 is O((3D")®). Since the regulator is computed in Step 1, we can see that
Step 3 has a complexity of O((8D')®). In Step 6, the complexity of Algorithm 5.3.2
depends on the complexity of Algorithm 5.2.1. Since Algorithm 5.2.1 has a complexity of
O(R2D'®), we can conclude that Step 6 can be done in O(RY2D*) operations. However,
there are 3%1- ideal classes in G's. Thus, the overall complexity for Steps 5-8 is

r-
Q(%i R”ZD'E). In Step 10, we must consider the number of steps in the continued

fraction expansion which are required in the determination of A, In §5.4., we showed that
[A] is less than 8D'?/8, therefore we have

log|M < log(8D'¥/8),
Also, as noted in Stephens and Williams[SW88], if it takes m steps to go from one reduced
ideal to another equivalent reduced ideal, then the distance between these two ideals must
be at least (m-2)log((1+V3)/ 2). From this result, we can see that the maximum number of

steps to construct A for a given ideal a is approximately

mlog(8D'/8) _ e
2log(1+v3y3) - 0P
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Since the multiplication of 2 ideals has a complexity of O(D'¢), we can conclude that this
r+1_
ideals stored in

step has a complexity of O(D'¢). However, there are precisely

2
) . 3r+1_1
LIST. Therefore, the overall complexity for Steps 9-12 is O( o) D'S). Finally, the

criterion for eliminating cubic fields with discriminant -27D" has a complexity of O(1). By
combining all these results, we conclude that the CUFFQI Algorithm has an unconditional
complexity of O(D'0-308+€) However, if the Generalized Riemann Hypothesis holds, the
CUFFQI algorithm has a complexity of O(%—l— R”zD’S). Furthermore, the above

complexity can be improved in most cases due to a heruistic of Cohen and Lenstra[CL84].

According to [CL84], the probability that the 3-rank of K equals to r is less than 32,

T
Thus, we would expect r to be small in general. In that case, 3—21 also tends to be small.

Hence, we would expect the CUFFQI Algorithm to have a complexity of O(R/2D') jn

most cases, if the Generalized Riemann Hypothesis holds.

§5.8. The Tschirnhausen Algorithm of Shanks.

For a generating polynomial which is constructed by the CUFFQI algorithm, there
is no guarantee that the index we obtain has the least possible value. Although there is no
known fast algorithm for obtaining a generating polynomial with a minimal index,
Shanks[Sha87] pointed out that there exists a method which may reduce the size of the
index for a given generating polynomial. Shanks calls this method "Tschirnhausen". Its
basic idea is to transform one generating polynomial to another that corresponds to the
same field; the only difference is that the new polynomial should have a smaller index.
Although this method is basically sound, there is no concrete approach to implement this
algorithm such that the smallest index of a generating polynomial for a given cubic field is
found.

This method is based on the following theorems:
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Theorem 5.8.1. ([Sha87]) For a given generating polynomial x3 - 3Qx +A with
polynomial discriminant -27B2D!, let Q = 1 (mod 3), A = 2 (mod 9), and W = V (mod 3),
where W=(Q-1)/3, V=(A-2)/9. Then, by making the substitution x = 3y + 1
and dividing by 27 in the expression x3 - 3Qx +A, we get
Vay?-Wy+(V-W)/3=0,
with polynomial discriminant -B2D', H
Theorem 5.8.2. ([Sha87]) If
f(y)=y3 +ay?+by+c=0
has index I and if a translation y = z + s gives us
22+ A'z2 + Bz + H2 = 0
where f(s) = 0 (mod I2), f'(s) = 0 (mod I), A' = £ "(s), B=1f'(s)/1, H=1f(s)/ I2,
then the transformation u = HI/ z gives us
ud + Bu? + AHu + I[H2 =0
with index H. H
With these two theorems, we are now able to present a version of the
Tschirnhausen algorithm.
Algorithm 5.8.1.
Given: a generating polynomial f(x) with discriminant D and index L
1} Employ Theorem 5.8.1, if applicable,
2) Find the smallest positive$ s that satisfies f(s) = 0 (mod I2) and £ '(s) = 0 (mod I).
3) For each s', where £(s") = 0 (mod I2) and f'(s") = 0 (mod I), which lies between
s + 501 + 1 and s - 501 - 1, find the corresponding H.
4) If the smallest H in step 3 is less than I, then apply Theorem 5.8.2 and goto step
2.
5) Stop.

S$We first solve for x such that x satisfies the congruences f(x) = 0 (mod ) and f'(x) =0
(mod I). Then we use the standard lifting technique to find s.
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This algorithm can easily be modified if necessary. In Step 3, the bounds are
selected by a series of trials and they can be changed if needed. Further, if there are two or
more H's which are smaller than the current index at a given round, it is possible to apply

Theorem 5.8.2 to each value of H . It is, however, very time consuming,

§5.9. Computational results and tables.

The entire algorithm of CUFFQI was programmed in FORTRAN with 16 bytes
precision and run on an Amdahl 5870 computer. The program is capable of handling any
fundamental discriminant which is less than 30 (decimal) digits. First, we ran the program
for 3 of the discriminants D which are given in Quer[Que87]. They are

D = -408368221541174183,

D =-3082320147153282331,

D =-3161659186633662283.
For each of these discrminants, it is known that Q(vD) has a 3-rank of 6. The result of this
computation is included in Appendix 1. We found that the running time ranged between 35
CPU seconds to 3 CPU minutes depending on the size of the regulator of Q(vVD").

We also ran this program for many other D values. They include all the D values
which were published in Llorente and Quer[LQ88B] and Diaz y Diaz, Llorente and
Quer[DLQ88]. We present a few examples to demonstrate the results of our computation.
In Table 5.9.1, we provide a generating polynomial, x3 + ax2 + bx + ¢ for each of the non-
isomorphic cubic fields with discriminant -35102371403731. Here the 3-rank of
Q(T05307T142TT193) is 4 and the 3-rank of Q(v-35102371403731) is 5. In Table
5.9.2, we present a generating polynomial, x3 + ax? + bx + ¢, for each of the non-
isomorphic cubic fields with discriminant -250930267537731. In this case the 3-rank of
Q(v83643422512577) is 4 and the 3-rank of Q(v-250930267537731) is 4 (n is used to
identify the corresponding cubic field). In Table 5.9.3, we show how some of the prime

ideals split in each of the complex cubic fields which are listed in Table 5.9.2. This table
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shows that all the cubic fields in Table 5.9.2 are indeed non-isomorphic. 'X" is used to
denote the cubic field in which the prime completely splits and ' ' is used to denote the
cubic field in which the prime is inert. Only primes p such that (D/p) = 1 are used here.
The Tschirnhausen algorithm was programmed in ALGEB, a multi-precision
package written by David Ford, and was run on a MicroVAX II computer. The reason for
using ALGEB instead of FORTRAN was that large integers (exceeding the precision that
can be conveniently handled by other languages) might arise during the computations. We
performed the Tschirnhausen algorithm on each of the generating polynomials listed in
Appendix 1, and the results are also included in Appendix 1. Further, we performed the
Tschirnhausen Transformation on each of the generating polynomials listed in Table 5.9.2.
These newly transformed polynomials, some of which have smaller indices, are presented
in Table 5.9.4. By inspecting these newly transformed polynomials, as given in Appendix

1 and Table 5.9.4, we found that every index is less than 2D /4427,



a b c Index
1 -578736 321679764 240
1 738275 -165877164 259
0 -1291312 12261401687 10765
1 -77031 -31892292 27
1 561334 -3198044, 142
1 -690579 -1281628656 1107
1 -2231671 -1291832346 125
1 15665 859992 1
1 812686 -325680036 378
0 27018 1117533 1
1 -1598101 -857071276 315
0 188012 31398797 1
0 190922 146098889 125
0 -442384 350443673 323
0 1197704 504514291 1
1 57941 23354306 21
1 -1069851 -446685102 117
0 -1137574 60538903 413
1 2205633 -31362882656 27529
0 937124 415185025 197
0 325574 337190269 289
1 -284947 -66241510 27
1 -618857 -314229506 221
1 1093046 112034484 398
1 457395 -114555122 145
1 -3647 1142146 1
0 1175114 1616577429 1351
1 1355679 -14432864 533
1 -2050329 -3819257804 3199
1 92001 -28820682 27
1 1633331 -563591374 861
0 2818847 25218994514 22060
1 -3049137 3592613016 2589
i 3734 -2277492 2

1 -2548840 -1721132464 624
1 714773 -90608686 219
1 774690 -300379292 350
1 -8704 0124164 8

1 238883 -36825646 51
1 -389472 -118778624 64
1. 386819 -263429556 245
0 -1097182 161496361 413
1 831173 69969510 263
0 1244 1140339 1
0 G28082 344135933 1

1 78136 3566404 8

1 216864 249262596 216
1 208116 -192612752 172
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a b c index
0 -71767 70304884 62
1 -1121471 561805666 287
1 54779 2873154 5
1 503793 -168608174 191
0 16346 1395395 1
0 207173 100295184 82
1 -262977 277322956 239
0 -1584874 551065895 829
1 -1886776 -1065968064 328
0 314567 366651062 316
0 174023 607237034 532
1 -148089 -51688334 41
G 51632 4695667 1
1 -1628427 -2349505580 1937
1 702911 318829188 343
0 -20626 9699 1
0 -1596838 4071256409 3635
1 421829 -528770874 473
1 16263 819604 1
0 -2150812 5888489541 5273
1 829881 367617726 411
1 1453654 -218404172 622
0 -339574 189354585 179
1 410769 -100091906 125
1 156883 -1090374 21
1 -3152161 2188239588 343
1 2502255 -282051198 1359
0 -172381 67574366 64
1 1426638 -100538100 582
0 36971 9523242 8
1 -527129 -150665466 27
1 3035958 -690974804 1886
1 -05882 -89699820 78
1 -68757 7009606 1
1 -2128454 1289431716 426
1 -783859 270017716 33
0 462659 141410114 64
0 1513586 835756907 377
1 -361511 -165387836 125
0 -1517848 171863563 649
1 3339498 499841964 2106
1 -7344 -9127376 8
1 -15629 1360696 1
1 79006 134299804 118
1 2205881 999838326 1411
1] -57709 7398178 8
1 . -1373105 -668208384 219
1 18803 -30763510 27
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a b c index
1 1018853 -1629536844 1471
1 721221 340436754 363
1 -666337 293755614 181
1 449975 -82410000 125
1 -137021 ~ -36499524 27

1 -2585007 5268208540 4403
1 -1995974 -6610135476 5718
1 -155526 -887452364 778
1 288175 103961748 105
1 718791 1224221128 1093
1 -216555 38732932 1

0 284897 163615892 134
1 366705 2873268 75

1 67104 6222448 8

0 -19654 418755 1

0 2478848 1508929703 125
0 304112 64560397 1

1 919948 -120026516 316
1 -618009 447749064 357
0 2466218 1535537399 323
1 -169281 144969544 125
1 -246629 -784826496 687
1 596038 -1225341276 1086
0 146843 23500966 8

1 756848 526163520 512

Table 5.9.1
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n a b c Index
1 0 1801704 943731441 51
2 0 1539618 3597043217 1155
3 0 20337711 47506527742 10428
4 1 -205142 -133008540 42
S 0 -1133960 -470878908 24
6 0 19687368 385851387789 126087
7 0 -8784303 26228064564 9210
8 0 -5562264 2171939783 1803
9 0 -77622 3789009 3
10 1 -64761 11108646 3
11 0 -17096691 66793401040 23658
12 0 -434874 917094677 303
13 0 9882096 13159847993 1803
14 1 -884512 323586356 16
15 0 -5731716 23550437615 7917
16 0 -3484218 1766513119 1005
17 0 9362487 11583358362 1164
18 0 16175226 102066140493 32457
19 0 -4509426 5968374449 2301
20 0 3968958 5531149143 1515
21 0 11011737 14675231772 1374
22 0 -438888 15245434147 5001
23 0 -17152809 20182838598 11148
24 0 9944994 12427521651 969
25 0 12519408 170882600643 375
26 0 3915498 7824786489 2373
27 0 10221762 12630572109 375
28 0 1844772 1714532539 465
29 0 4129143 8978380474 2748
30 0 22442889 43783344036 5106
31 1 -1389537 -656072616 59
32 1 -17459 -90194502 3
33 0 -12068088 430902459 5295
34 0 2993046 10785586153 3477
35 1 1452971 7215486128 2377
36 1 1547976 -148057536 248
37 0 21799644 48471791215 G363
38 0 670677 4303664104 1410
39 0 113376 17307423 3
40 0 5159883 4549176954 192
Table 5.9.2
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mpi 5 |7 [47167[71[79] 8| 103]107]109] 127179 181191197
1 X X | X X | X X

2 | XX X |1 X X

3 X X

4 | X | X | X X | X X

S X X
6 X X

7 | X X X | X

8 X X X X | X

9 X | X X X

10 X X X1 X X

111 X X X | X X
12 X X X
13 X X

14 X X

150 X | X X | X

16 X | X X |1 X X | X X
17 X X X X X1 X
18 X | X X | X[ X
19 X X X X
201 X X X X X | X X

21 X | X

22 X X X
23 X X{X | X X [ XX
24 X X
25| X X X X [ X X
26 X X X X | X [X[X
27 [ X X | X X | X

28 X X X I X X[ X
29 X X X X X
30 X | X X X
31 X

32 X X

3B X XX X X X X
34 X X1 X X | X
35 X X | X X

36 X X X1 XXX X | X
371 X X X

381 X X X X
39 X X | X XX X

40 X X | X ]| X] X X

Table 5.9.3




n a b c Index
1 0 -1801704 943731441 51
2 0 -1539618 3597043217 1155
3 5239 -3344331 518574012 223
4 1 -205142 -133008540 42
5 1 -1133960 -470878908 24
6 -155 15768 72626112 24
7 4757 5279265 2442722250 515
8 3089 110544 1019603712 752
9 0 77622 3789009 3
10 1 -64761 11108646 3
11 727 69375 369656250 125
12 0 434874 917094677 303
13 -4048 4100832 3912021387 1473
14 1 -884512 323586356 16
15 724 -9000 1113328125 375
16 3649 -653562 781813620 882
17 24419 -862407 7637004 81
18 -382 272646 212950377 81
19 3274 -243972 15096861 81
20 0 -3968958 5531149143 1515
21 3187 4872015 706358286 717
22 1795 -1963668 752870544 388
23 1627 417717 658278252 243
24 20926 4575888 529191249 739
25 0 -12519408 17088260643 375
26 -851 2208510 2034790548 926
27 0 -10221762 12630572109 375
28 0 -1844772 1714532539 465
29 5045 -4283301 934014972 583
30 -2071 1605123 369475266 269
31 1 -1389537 -656072616 59
32 1 -17459 -9194502 3
33 4952 8373060 8743236375 1285
34 9676 -6523860 1119194937 1029
35 627 -418080 3702187008 1248
36 1 1547976 -148057536 248
37 -1588 980400 432804675 215
38 0 -670677 4303664104 1410
39 0 -113376 17307423 3
40 0 -5159883 4549176954 192

Table 5.9.4
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Chapter 6.
Pure Cubic Fields with Large Regulators

§6.1 Introduction.

Let 8 be the real zero of x3 - ax? + bx - ¢, an irreducible cubic polynomial with
rational integer coefficients a, b, ¢, and negative discriminant D(a,b,c). Let Q(d) be the
cubic field formed by adjoining 0 to the rationals Q. If a = b = 0, we say that Q(8)
(8 = cl/3) is a pure cubic field. Let D = D(0,0,c) be the discriminant of the pure cubic
field F = Q(8). We may assume that c=mn? (m,n € Z) with m, n square-free and

ged(m,n) = 1. In this case, we have

D= { -3rr121%22 when mz = n? (mod 9)
-27m™n otherwise.
The regulator of Q(8) is R = logeg, where ¢ (>1) is the fundamental unit of F.

In Patterson and Williams [PW85] a search was made to find pure cubic fields with
large regulators. The search was terminated when ¢ > 231-1 because, in spite of using the
rapid method of Williams, Dueck and Schmid [WDS83] (the WDS method), it was still
very time-consuming to compute R. The purpose of this chapter is to provide a modified
WDS method which executes more rapidly. We do this in order to extend the search begun
in [PW85] to find values of ¢ which lie between 231-1 and 1012, A brief description of the
WDS method is given in §6.3, and a description of our modifications are presented in §6.4
and §6.5. Further, we are especially interested in those values of ¢ which provide a large
C(c) value, where

C(c) = R/ (mn loglog (3D?))
as defined in [PW8S5]. Basically, C(c) is a measure which can be used to test the truth of
the Generalized Riemann Hypothesis for {p. We would expect C(c) to be less than

~ 1.18738 if the GRH holds (for details, see [PW85] ). We should also point out that the
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largest previously determined C(c) value for 28 < ¢ < 231 - 1 is 0.677194 for c=60435383.
In §6.2, we describe a method which is similar to that used in [PW85] for selecting certain
values of ¢ for which R and C(c) are likely to be large. Finally, the results of this search are

provided at the end of this chapter.

§6.2 Strategy for finding values of c.
From (3.1.1) we have

(6.2.1) hR = @%;Tb(l—)
where ©(1) = lim1 CIE(S) is given by the Euler product
s— s

(6.2.2) (1) =T £(p).
p

Here, the product is taken over all the rational primes, and for each prime p the value of
f(p) depends upon how the principal ideal (p) splits or factorizes in F. Thus, in order to
maximize R we must minimize h and get (1) as large as possible. By Honda [Hon71],

the values of ¢ for which 3 is not a divisor of the class number have the following form:

i c=3

(i) c=p  wherep=-1({mod 3),

(i) c=3p wherep=2,5(mod?9),

(iv) ¢=9p wherep=2,5(mod?9),

(v) c=pgq wherep=2(mod9),q=35{mod9),
(6.2.3) (vi) c=pq? where p=q=2,5(mod?9),

and p, q are primes. In [PW85] it is suggested that the values of ¢ of types (v) and (vi) are

likely to have smaller C(c) values. Also, values of ¢ such that ¢ # +1 (mod 9) are likely
to have larger R values. Thus, we elected to search for values of ¢ of three different types:
(i) c=p  wherep=25(mod?9),

(ify c=3p wherep=2,5(mod?9),
(6.2.4) (ify c=9 wherep=25(mod?9),
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where p is a prime.

We now discuss the problem of maximizing ®(1). Since

Ky = f
1 pz-l}I:I}()d 3) (p)

converges (approximate value 1.414064387), we are only interested in the primes
p = 1 (mod 3) in maximizing ®(1). Hence, we see that, if r; is the ih prime of the form

1+3t (t € Z*), then ¢ values which should give large ®(1) values are those for which

(;)3 =1( =1, 2, .., n), for as large a value of n as possible. In fact, this is the
1

strategy utilized in [PW85] for finding values of ¢ which are likely to have a large R value,
However, this strategy has a major drawback due to the possibility that a value of ¢ (= ¢;)
which has m (m < n) consecutive cubic residues might have a larger ®(1) value than a
value of ¢ (= ¢,) which has n consecutive cubic residues. The reason for this is that ¢y
might have a large number of cubic residues for the ry's > rp,,, whereas ¢, might have a
large number of cubic non-residues for the r's > r. Hence, we used a different approach

for finding values of c. Our strategy was first to select all the probable ¢ values which

satisfy (6.2.4) and are cubic residues of the first 15 primes 15 Igs vy I g
(i.e. (;)3 =1fori=1,2,.,15). For each such value, we determined the number of
1

values of r; such that (;—)3 = 1 for the next nine 1y's (i.e.i = 16, 17,..., 24). If this value
1

had 6 or fewer, we used the Euler product method to find a reasonable estimate E (for
details, see §6.4) of hR. For each pair of E and c values, we computed
C(c) = E/ (mn loglog(3D?)) of C(c). If C(c) was 0.67 or above, then the regulator of
Q(c!3) was computed.

Finding values of ¢ which have 15 consecutive cubic residues requires that we find
solutions of simultaneous linear congruences, a problem best solved by using a number
sieve (see Lehmer {Leh80]). In our case, we were able to use the latest development in

aufomated sieving called the "Open Architecture Sieve System" (OASIS) of Stephens and
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Williams [SW90]. This system features a specially-designed computer - the Open
Architecture Sieve - that is capable of testing possible solutions to a system of linear
congruences at a rate of over 200 million numbers per second. We found that it took about
84 minutes for OASIS to inspect all the probable ¢ values between 231 - 1 and 1012, and
1251 numbers were generated. For the remaining work, we used a FORTRAN program
with some assembly language subroutines on an Amdahl 5870 computer to find values of ¢
and C(c). After 85 CPU hours, in which over 99% of the time was spent in the
approximation of hR, 72 numbers were found. Execution was slow because all the primes
of the form 1+ 3t (t € Z) up to 108 were used to compute a good approximation to hR for
each given value of c.

Our results are provided in the following tables. In Tables 6.2.1, 6.2.2, 6.2.3 and
6.2.4 below, we give the number of ¢ values that we found such that ¢ is a cubic non-
residue for i (i = 1, 2,..., 9) values of the rj's where j = 16, 17, ..., 24. In Tables 6.2.5,
6.2.6, 6.2.7 and 6.2.8 we give those values of ¢ for which C(c) exceeds 0.670. In the
course of our search, we found that there is only one ¢ {c = 144646415187) value for

which there is a single cubic non-residue for the first 24 r;'s. In §6.6. we show that this ¢

value gives the best C{c) value in our search.



# of ¢ values

0

0

19

48

82

98

86

58

Rl ke o0 L I e QNN KO S S S I T

11

Table 6.2.1
(c=p=2(mod 9) )

# of ¢ values

0

3

11

62

78

124

105

39

O OO =3 Oy s ) D e e

15

Table 6.2.2
{(c=p=5(mod 9) )
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# of c values

1

0

11

32

47

97

76

35

O OO =3 JON [ ;s [0 0D et e

12

Table 6.2.3
(c=3p, p=2,5(mod 9))

# of ¢ values

0

1

5

12

15

28

24

12

O (00 I~ Oy ([ W o [ e

4

Table 6.2.4
(c=9p, p=2,5(mod 9) )
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c C(c) c C(c)

7823785241 0.68098 289191889433 0.67094
10389989063 0.68213 292277713727 0.67949
23002424327 0.67234 506642469059 0.67443
43595987609 0.67183 576605603657 0.68446
79600195163 0.69223 578450121761 0.70008
90307528193 0.67639 748224663941 0.69798
119087387453 0.67762 800855660207 0.68013
195511299437 0.68791 844409282933 0.67081
21355190977 0.67387 988024756357 0.67365
234187560641 0.69329

Table 6.2.5
(c=p=2(mod 9))
¢ C(c) c (o)
23904870683 0.67078 399933625181 0.68002
41843313959 0.67906 404698499087 0.67827
57913659383 0.67417 416520048911 0.68003
58182013553 0.67641 464191218707 0.69844
79834584857 0.67784 466353166469 0.67562
113913197789 0.67652 471882449219 0.67301
122089073261 0.67120 493979588159 0.67711
130962864677 0.67287 530161973249 0.67061
136544134973 0.67739 533183662103 0.67011
210018369371 0.67179 760106056289 0.67246
226956644069 0.67751 778769068631 0.67084
272330743901 0.67609 792802846373 0.67644
327552647297 0.67185 902875793639" 0.67580
336949891277 0.69213
Table 6.2.6

(c=p=5(mod 9))
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c C(c) c C(c)
74354863227 0.67939 293203999941 0.67695
99052148229 0.67581 362264296659 0.67926
102879790287 0.67027 413557332189 0.69612
117807496071 0.67043 455271781749 0.67854
144646415187 0.71023 748671032481 0.67041
229362553239 0.68346 912685074153 0.68285
291987409839 0.68079

Table 6.2.7
(c=3p, p=2,5(mod 9) )

c C(c) c (o)
11382801093 0.67118 505919205819 0.68434
109324288107 0.67974 648369068283 0.67996
149832113787 0.67959 654007847319 0.67139
298968550119 0.68056 683030699469 0.67983
368636786253 0.67510 747241701597 0.67167
373775618061 0.67943 937165977747 0.67508
433769568597 0.67296

Table 6.2.8

(c=9p, p=2,5(mod 9) )
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§6.3 Calculation of R by using the WDS method.

In order to describe the WDS method, we must first discuss some of the results
concerning the continued fraction algorithm of Voronoi [Vor96] and reduced ideals in cubic
fields. The brief discussion here is analogous to that in §5.2. For a detailed description, we
refer the reader to [WCS80] and [WDS83].

We define an ideal a to be primitive if a has no rational prime divisors. We say that
a is a reduced ideal in Oy if a is primitive and there does not exist o € a such that o, = 0

and both |o| < N(a),Ja"| = |a'| < N(a) hold. With this definition, we are now able to

present some of the properties of reduced ideals.
Theorem 6.3.1. If a is a reduced ideal of OF, then N(a) < vID]73.
Theorem 6.3.2. There exist only a finite number of reduced ideals of Op.
Let ij (= (1)) be the unit ideal. We can use Voronoi's algorithm to generate a list of
reduced principal ideals equivalent to iy, together with a sequence of elements Bg(l), eg(2),

Bg(3), ... of F, each of which exceeds 1. These reduced ideals can be arranged in a

sequence
(6.3.1) i1, 49, 13, oy a1, ik oo
where

(N(ig.1)8,% Dy = (N(iy))i.1-

If we define 6, = 1 and
k-1

o= [] 0, x>
i=1

we get
(Bn)in = (N(ip)i;.
We say that log8,, is the distance from iy to iy, written as
&y = 8(i, , i) = logh, .
Also, we note that this notion of distance in cubic fields is the extension of Shanks'

infrastructure idea (see §5.2) given in Williams, Dueck and Schmid [WDS83]. Since
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0,0 > 1, we have 8(ip,1, i1) > 8(in, i1) > 0 for n > 1, and 8(iy , i1) = O if and only
if n = 1. The number of reduced principal ideals is finite; at some point in (6.3.1) we get
ip41 =iy and 8,1 = g9 > 1, where ¢q is the fundamental unit of F. Thus, dps+1 = R.
Furthermore, i, = ig if and only if 8; = mR + &5 (m € Z). Therefore, if i, = i, then
n = qp+s where q € Z.,
Suppose that i, and i, are two reduced principal ideals with distances 8, and &,,. If
(Wa; = ipim ,
where u € Z and ay is a primitive ideal in Oy, then we can use the reduction algorithm on
p.277 in [WDS83] (also, see [Vor96]) to find a reduced ideal ay (~ a;) such that
L(appwag = (L(ap)a;
where py < 1. Since ay, is a reduced principal ideal, we have ay = i, for some integer t and
d; = 8 + 8,y + 1. Here, 1 can be explicitly evaluated and -2log|D/3} < n < 0. We note
that, since 0, < 9, + &,,, we can apply Voronoi's algorithm to i, to find a reduced
principal ideal i; such that
0j <8y +0m < 841
We now sketch the WDS method given in [WDS83].
The first step is to use Voronoi's algorithm (see [WDS83] and [WCS80]) to
generate a sequence of reduced principal ideals
iy(~ (1)), ip, i3,00
such that §; < T < §,1 and T is some input parameter. At the same time we also compute
the distance §; for each of the above ideals i; (1 = j < t). Since storing all t reduced ideals
may require more storage than the computer is capable of handling, we choose to store only
1/x of them where x is also an input parameter. Thus, we only store the reduced ideals ijy
(=1, 23, .. ,t/x). Here, we assume that x | t. In the case where x ( t, we increase the
value of T in order for X to be a factor of t. We also store the corresponding values of djy.
If, during the process of generating these ideals, we find that N(i;) = 1 for some j, then

R = 8.
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If R is not found, in this step we continue the process by using the Euler product method to
find an estimate E of hR. We first note that L is an input parameter. We then find n and U
such that
E-L=2"U
where n € Z and 2U > §; = U. We search through the list of ideals {i1y, io, I3y i}
to find iy such that 8,1 > U > &,. The Doubling algorithm on pp. 277-278 in {WDS83)
can then be used n times to find a reduced ideal iy, with 8, ~E-L and 3, <E- L.
Starting at i), we use the Search algorithm on p.280 in [WDS83] to attempt to find an
ideal, iy, such that
E-L <&,<E+Land i =i,

where i, € {i1(~ (1)), iy, i3,..., i;}. If i is not found, then we must increase the size of
L. On the other hand, if i is found, then we probably have hR = §, - §,. However, we
certainly have h"R = §, - §,, where h* € Z. Although h*R is known, the values of h* and
R remain to be determined. The next step, therefore, is to find h”, For an input parameter
b, we find B such that (B+1)8, > h*R/b > B3,. Assuming that R = h*R/b, we use the
following technique to find h™ and R. Since R = h*R/b, we have h* <b. We now
attempt to find all the primes less than b which divide h™. If p is such a prime, then
8s = h*R / p for some s. If we let

h'R

p

where 2U, > 8, = U}, we can repeat the above procedure to find a reduced ideal iy, and 8,,,

= 2y,

such that &y, <h’R/pand h™R/ pis close in value to 8,,. We can then apply
Voronoi's algorithm to iy to find iy .1, iy42,... until we either find iy such that
N(iy) = 1, in which case p | h", or we can find iy such that 8, > h*R / p, in which case p
[ h*. If we find a prime p which does divide h*, we must replace i, by iy, 8, by 8y, and
repeat the above procedure to determine the precise power of p that divides h*. When this

process has been completed for all primes less than b, we probably have the values of h*
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and R. However, we cannot be certain that R = h*R/b . Thus, we must use the Search
algorithm on p.280 in [WDS83] to determine whether or not R < h*R/b. If R < h*R/b,
then R and h™ are calculated in this step. At the end of this process, we certainly have h*
and R. Notice that while there may be some doubt about h = h*, the value R is correctly
computed.

The algorithm described above was implemented in FORTRAN-H (extended) for
an Amdahl 5870 computer. The purpose of this implementation was to determine the speed
of the WDS method on a faster machine. The extended precision allowed us to operate on
numbers of up to 33 decimal digits. For values of ¢ < 1012, this amount of precision is
sufficient except for two of the subroutines required in the reduction algorithm on p.277 in
[WDS83]. (This problem also occurred in [WDS83].) These two subroutines were
modified by using special purpose multi-precision FORTRAN language subroutines, and
are capable of handling up to 60 decimal digits. Also, we found that Voronoi's algorithm,
except for the inversion process, for finding an adjacent reduced ideal iy to a given reduced
ideal i, (we call this process a "baby step") required double precision. As a result, the
speed of performing a baby step could be increased. This program was run with Q = 108,
T = 50000, b = 5000, x = 15. On running the program, we found that the amount of
time taken to perform a baby step was about 0.75 of a millisecond. The average time
required to perform an ideal operation (Here and in the sequel, we use the term "ideal
operation" to mean the multiplication of two reduced ideals followed by the reduction
operation.) was about 37.5 milliseconds. The speed of the program was tested on a few ¢
values which were selected from those mentioned in §6.2. We found that the WDS method
was somewhat slow in computing regulators for ¢ > 231-1. For example, it took 21 CPU
minutes to compute R (= 3208632480642.32164235) for Q(9980247563571/3). Hence,
possible modifications to the WDS method were investigated. By studying the running time
of the program carefully, we found that most of the computing time was spent on

calculating E and executing the search step. Indeed, it took about 5 CPU minutes to
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compute an approximation of hR and 11 minutes to execute the search step. As a result,
modifications were focused in these two sections. In the following section, we discuss the
number of primes of the form 3t+1 that are needed to obtain a reasonable estimate of hR

here. In §6.5, we present a new technique for determining h*,

§6.4 Estimation of hR by using the Euler product method.
From (6.2.1) we see that, in order to estimate a value E of hR, we must obtain a

reasonable approximation of ®(1). Since

kp= ][ f{p)

p=-1({mod 3)
converges (approximate value 1.414064387), we can approximate ®(1) by evaluating the

product over the primes p = 1 (mod 3) only. If we set

Q
FQ= I f(p)

p=1(mod 3)
TQ= I f(p)
p=l(mod 3)
p>Q
and
Q
Ky = 1(3) K1 IT f(p)
p=-1(mod 3)
plec
then

®(1) = K F(Q)T(Q).

Hence, we can estimate hR by calculating

E(Q) = %. (c # =1 (mod 9))

Thus, the real difficulty lies in knowing the value of Q to use such that E(Q) gives a

reasonable approximation to hR.
In [WDS83], the authors used Q = 10% for ¢ = 2x107, Q = 107 for
2x107 < ¢ < 2x108, and Q = 108 for 2x108 < ¢ < 231-1. Now
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[E(Q) - hR| = L(Q)
where L(Q) = (V3¢ 3xF(Q) | 1 - T(Q) | ) / 2. In order to estimate | logT(Q) |, the authors
of [WDS83] used the technique of Cornell and Washington [CW85] of applying the
effective form of the Chebotarev Density Theorem as given by Oesterlé [Oes79] (this is

conditional on the GRH on {;, where L is the Galois closure of F). We get

[ 10gT(Q) | s B*(Q) + 3/Q

where

B'(Q)= (4+\3/1-%gg) om0 [(i* Biq) lod’et+ 6(%},%2)]'

It follows that
[1-T@Q)}< L*(Q)
where

L*(Q) = MAX(e'B'(Q-3/Q, ¢B*(Q)+3/Q),

Indeed, we have

() - b= O (2 12£E20.0)

Consequently, we would expect that E(Q) should give a reasonable approximation to hR
when Q is fairly large. In our early computations, we elected to use Q = 108, However,
tests showed that using Q = 108 was very time-consuming. In fact, it took roughly 5 CPU
minutes to compute E(10%) for a given ¢ value. As a result, possible reduction of the Q
value was investigated. In order to determine a good value of Q to be used, we conducted
some preliminary numerical experiments. In these experiments, ten ¢ values were selected.
For each of these ¢ values, we give (E(j x 107) - h*R)/ h*R forj = 1,2,..,10 and h*R in
Table 6.4.1. Also, we calculated [E(Q) - h*R], L*(Q) and | E(Q) - h*R |/ L*(Q), where
Q = 2x107 and 108, for each of the selected ¢ values. The results of these calculations are

presented in Tables 6.4.2 and 6.4.3.
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Q\c 7823785241 23002424327 57913659383 99052148229
1x107 -0.0000325 -0.0000774 -0.0001353 -0.0000927
2x107 0.0000217 -0.0000421 -0.0000873 -0.0000357
3x107 0.0000062 -0.0000330 -0.0000555 -0.0000117
4x107 0.0000053 -0.0000339 -0.0000611 -0.0000117
5x107 (0.0000166 -0.0000324 -0.0000453 -0.0000024
6x107 0.0000194 -0.0000165 -0.0000298 -0.0000057
7x107 0.0000165 -0.0000076 -0.0000119 -0.0000096
8x107 0.0000252 -0.0000092 0.0000039 -0.0000139
9x107 0.0000151 -0.0000190 -0.0000031 (0.0000072
1x108 -0.0000058 -0.0000204 -0.0000036 -0.0000065
h™R 24471813751.0 71695952039.6 | 182377744503.5 |314016080815.0
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Q\c 144646415187 336949891277 792802846373
1x107 0.0000035 -0.0001671 -0.0001565
2x107 0.0000260 -0.0000424 -0.0001204
3x107 0.0000047 -0.0000547 -0.0000899
4x107 -0.0000062 -0.0000304 -0.0000536
5x107 -0.0000084 -0.0000156 -0.0000510
6x107 -0.0000015 -0.0000204 -0.0000572
7x107 -0.0000084 -0.0000213 -0.0000677
8x107 -0.0000112 -0.0000138 -0.0000454
9x107 -0.0000138 -0.0000075 -0.0000383
1x108 -0.0000080 -0.0000085 -0.0000341
h*R 483332596164.3 1104246425511.4 2555110143668.6
Q\c 998024756357 34619128889 508595764309
1x107 -0.0001723 0.0000625 -0.0000197
2x107 0.0000160 -0.0000016 -0.0000580
3x107 0.0000122 -0.0000007 -0.0000238
4x107 0.0000212 -0.0000174 0.0000174
5x107 -0.0000147 -0.0000450 0.0000039
6x107 -0.0000120 -0.0000219 -0.0000037
7x107 -0.0000064 -0.0000203 -0.0000042
8x107 0.0000015 -0.0000300 0.0000100
9x107 -0.0000021 -0.0000191 0.0000032
1x108 0.0000045 -0.0000157 -0.0000000
h*R 3208632480642.3 21894297483.9 319479555147.7

Table 6.4.1
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c L'(Q |EQ-h"R] | L"(Q/EQ):-h*R|
7823785241 1547869338.38 531969.60 2909.70
23002424327 4674962978.72 3015558.71 1550.28
57913659383 1219747432431 15928861.77 765.75
99052148229 21305815300.59 11207057.58 1901.11
144646415187 33123650563.56 12550500.37 2639.23
336949891277 77375654059.76 46817702.02 1652.70
792802846373 183024759155.98 | 307557294.28 595.09
998024756357 231148357011.06 51268820.34 4508.56
34619128889 1352716920.57 1495270.82 904.66
508595764309 22624202014.28 518929.04 43597.87
Q=2x107
Table 6.4.2
¢ L*(Q) | E(Q)-h"R | L*(Q)|E(Q)-h"R |

7823785241 670480832.74 141019.05 4754.54
23002424327 2022324049.19 1462240.14 1383.03
57913659383 5270539966.63 655956.97 8034.89
99052148229 9201240060.24 2044119.68 4501.32
144646415187 14299894299.77 3875529.37 3689.79
336949891277 33371333212.28 9333186.71 3575.56
792802846373 78861835122.28 87132527.82 905.08
998024756357 99583491545.35 14294790.29 6966.42
34619128889 586488640.28 225436.99 2601.56
508595764309 9753816491.95 5008009.65 1947.64

Q=1x108
Table 6.4.3
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By looking at the entries in Table 6.4.1, we notice that E(2x107) is a fairly good
estimate of hR for each of the ten ¢ values. Indeed, the value of (E(2x107) - h*R)/ h*R is
very small in all ten cases. From Table 6.4.1 we can see that the approximation to hR
improves only slightly as the value of Q grows larger. Hence, this empirical evidence
suggests that Q = 2x107 would be sufficient here, and there is only a minimal gain by using
Q = 108. Furthermore, the time required to compute E(2x107) was 1 CPU minute in
comparison to the 5 CPU minutes needed to compute E(108). Although E(108) is a better
estimate than E(2x107), the difference can easily be made up by having a few extra ideal
operations. Here, the time required for those extra ideal operations was between 2 CPU
seconds and 20 CPU seconds. Thus, we would expect the running time to be reduced by a
significant amount with Q = 2x107 in our computations. In Tables 6.4.2 and 6.4.3, we
notice that there is a big difference between the actual value of [E(Q) - h*R| and L*(Q).
Indeed, the value of |[E(Q) - h™R| is much smaller than the theoretical bound L*(Q) of
[E(Q) - h™R| in all ten cases. We also point out that the above phenomenon was noticed in
Nield and Shanks[NS74] and [BWB76). Thus, this empirical evidence suggests that

[E(2x107) - h™R] is much smaller than expected.

§6.5 A new technique for determining h*.
In our technique for finding h*, we first produce all the primes less than b in

descending order. For each prime p, where pg < b, instead of finding a reduced ideal iy

such that 8, ~ h"R / p, we find a reduced ideal i, such that
h*R/pgsd.sh’R/pg+ 8,

If ps | b, then i, must be an ideal i; in the list {iy, ip,..., i;} and 8, = h*R / p_ + o;.

Thus, in order to determine whether pg | h*, we first have to check if iy € {iy, iy,..., i;}.

If this is the case, say i¢ = ij where 1 =j=t, then we have to check whether or not

8. =h"R / ps + 8. Hence, we have p | h* if and only if both conditions hold. Further,

if pg | h*, then we must repeat the above procedure to determine the precise power of p, that
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divides h". However, since we only store 1/x of the reduced ideals {ij, i3,..., i;}, we
have to employ a technique used in [WDS83] in order to determine whether
i. € {iy, ip,..., i;}. We first apply Voronoi's algorithm on i, to find
(6.5.1) fgn fes1s fes2s o s fornet.
We then compare each of the reduced ideals of (6.5.1) with {i, isy,..., i;}. If one of the
reduced ideals of (6.5.1) is in {i1y, ipx,..., ig}, then i € {iy, i5,..., i;}; otherwise,
io & {iy, ip,..., i}. As for the problem of finding an ideal i,, we employ the following
technique.
Initially, we create a list of reduced ideals

LIV TP IPPN ITPR iy
where iy =i, and itj (j > 1) is a reduced ideal equivalent to (itj.1)2 with 6tj ~ 26tj_1
(3j=0,1, 2,..,, n) and 6tn >h*R/2> 6‘11-1' For a prime pg, we must find a reduced
ideal i, with distance d, where

h*R /py< 8, <h R/ pg + 8,
From the preceding prime pg, 1, we have obtained an ideal iy, such that

h*R / Pgs1 <Oy < h*R / Pgs1 + Ot
Hence, we first must find an ideal ig with distance & such that

8s~h"R /pg-dy
and

h*R/p, < 8s+ 8, s h™R/p.+ 8,
If ig is obtained, then i, can be found by obtaining a reduced ideal equivalent to igi,, with
distance 8, ~ 8¢ + 8. Now, we put h"R / Dg - Oy, as 1§ where 1 is real. Put q = [r] + 1,
and we have

h"R /py<qd + 8, s h"R/p,+ 3,
Suppose we represent q in binary as

q=ay 2K +ap g 281 4.+ 2y

where ay =1, aj=0or1(j<k). Note that k =[log, q]. Consequently, we have
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qét = ak Zk 6{ + ak_l 2k'1 61 + ... + ao 61.

Since 8,, ~ 2%8,, we can now find an ideal i. with distance close to gd, by finding a
1§ t S qo by g

reduced ideal equivalent to
k

i
L
j:

aj=1
We are now able to present the algorithm for finding h* when h*R is known and

R > h*R/x.

Algorithm 6.5.1

1) By using the Doubling algorithm on pp.277-278 in [WDS83], we use i, to create a list
of reduced ideals iy, &, iyy,..., Iy Where iy = iy, itj. ( > 1) is a reduced ideal
equivalent to (i‘j-l)z’ étj ~ 218, and 6, 2zhR /2 = 8

2) Let py, pa,..r Py be the sequence of primes where py,q1 > X > py,.

3) Put E«<~ h™R, h" « 1.

4) Puts<-m,a< (1) and 8" < 0 (8" is the distance between a and (1) ).

5) Putz< [E/pg-98']+1and j< O,

6) Put rem < z mod 2 and z « (z - rem)/2.

7) Ifrem =1 then find a reduced ideal equivalent to ai[j with distance close to &' + 6tj
and replace a by this reduced ideal. Also, replace & by the new distance between a
and (1).

8 Putjej+1. Ifz>0, then goto step 6.

9) If a =iy for some ideal iy € {iy, ip,..., i} and 8' = E / pg + &) (the case where
ps | h™), then replace E <= E/ pg, h* < h*pg and goto step 5 (to determine the
precise power of p; that divides h*).

10) Put s« s-1. If s> 0, goto step 5.

11)  We now have R = E and h*. We terminate the algorithm.
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In using the WDS method, we must find a reduced ideal with distance close to
h*R/p for a prime ps. Since h°R/pg = 2°U where 2U > &, > U, there are precisely n

£

ideal operations required. In fact, we can determine n by calculating I-logz(iﬂ -I
PsOt

Thus, the total number of ideal operations required for computing h” is

NUMI = I-log2(}—l—8- 'I .
pidy
pi<

On the other hand, the number of ideal operations required by Algorithm 6.5.1 is
determined by the number of ones in the binary representation of q (see (6.3.1)); hence, the

Although the upper bound is k+1, in most cases the actual number of ideal operations tends

to be much smaller. Indeed, the probability of needing only k/2 or less ideal operations is
1/2. Thus, we would expect the average number of ideal operations to be k/2. As a result,

we would expect the total number of ideal operations required by Algorithm 6.5.1 for

computing h* to be

1 r h*R /p
NUMzz‘Z lo ( i+] - )]+1)]+1
2 - g2 [piél Pi+1
pic
i h*R Pi+1 - Pi
2 togy (75) ] + [toga(BELZE) | 4
| 082 -y %82\ D1
3

1 z; r h*R 12 Pi+1-P b

~ = lo (-—— ] + [10 L ‘)] + 7.

2 g2 plat 2 g pl+1 2
Pi< Pi<

Here, the b values range between 2000 and 26000 (For details, see §6.6). In order to

=

(O Ry

determine a bound on

gby=b/2+pb) /2,



where

p(b) = Z [1og;
Pi<

Pit+1 - Pi)]
Pi+1 ’
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we computed g(b) for b = j x 2000 (j = 1,2, ..., 13). The results are summarized in Table

6.5.1.

b b/2 p(b)/2 g(b)
2000 1000 -954 46
4000 2000 -1985 15
6000 3000 -3039 -39
8000 4000 -4097 -97

10000 5000 -5195 -195
12000 6000 6241 241
14000 7000 -7345 -345
16000 8000 -8437 -437
18000 9000 -9521 -521
20000 10000 -10588 -588
22000 11000 11697 -697
24000 12000 -12818 -818
26000 13000 -13884 -884
Table 6.5.1

From Table 6.5.1 we see that the value of g(b) is either very small or negative for b lying

between 2000 and 26000, Hence, we would expect

Pi

NUM2 ~ %-2 [1og (2—._;3;)]
i<

or less. As a result, by comparing NUM1 and NUM2, we would expect that Algorithm

6.5.1 is usually faster than the WDS method by at least a factor of 2. Indeed, on average,
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we found that our computations were improved by a factor of two. In the following

section, we present some of our results,

§6.6 Implementation and computational results.

The new technique for computing h* was implemented in FORTRAN-H (extended)
and added to our program. In this section we first discuss some of the computational
techniques which were used to get the best possible performance out of this modified WDS
algorithm.

As mentioned in [WDS83], the selection of input parameters b, x and T can affect
the running time of the program. However, after a series of experiments, we learned that
the running time of this modified WDS algorithm, on this particular computer, did not
heavily depend on the values of the input parameters for the ¢ values in which we were
interested. In other words, we found that the modified WDS algorithm can achieve optimal
performance by using values of the input parameters which are merely close to the optimal
values. In finding these values, we analyzed our program carefully. Given our estimate E,
there are four major steps involved in our program. These are: generating a sequence of
reduced ideals at the beginning, finding h*R, finding h™ by using the technique given in
§6.5, and executing the Search algorithm. We further point out that there are other cost
factors involved in our computation of R; however, these are insignificant in comparison to
the four major factors listed above. Thus, we only consider the above four factors in
determining the values for b, x and T. We put t; to be the time required for a baby step and
t2 to be the time required for an ideal operation. Empirically, there seem to be roughly T
reduced ideals with distance less than T (see [WDS83]); hence, the time required for
finding all the reduced ideals with distance less than T is approximately Tt1: Here, for an
input parameter L, we attempt to find h*R in the range of E-L and E + L. In our
computations, we used L = 107. Consequently, the maximum number of ideal operations is

2L/ T. In this step, x baby steps are required after each ideal operation. Thus, after



132

generating all the reduced ideals with distance less than T, the total amount of time required
for finding h*R is at most

2Lty /T + 2Lxty / T.

The next step is to find h*. From §6.5 we would expect
1 1
7 J0B/GT) (=7 ), (loa(E/T) - logp))
p< p<b

ideal operations to be required for finding h*. Also, it is well known that there are about

b /logb primes less than b, and that Tlogp = b. Furthermore, there are about bx / logb
p<b

baby steps involved in this step. Hence, the time required for this step is approximately
t2 10 E 1) bXt1

logb logb
As for the last step, there are E/(Tb) ideal operations and Ex/(Tb) baby steps. By

combining the above information, we deduced the following approximate cost formula:

og(E
(6.6.1) Cost-Tt1+2Lt1/T+2th2/T+—(—%gT[Q 1
bxt
I:gtl) + Ety/(Tb) + Ext;/(Tb).

Putm=E/(Tb),f=t;/t;, and s = T/ x where s is the number of reduced ideals that can
be stored in memory. In our case, we used s = 15000. If we divide (6.6.1) by t{, then we

have
(6.6.2) cost /t; = E/mb + 2Lmb/E + 2L{/s + fm + E/(sb)
+ bf(log(bm)/(2logb) - 0.5) + E /(sm logb).
By applying a simple optimization program to minimize (6.6.2), we found the values of the

input parameters T, x, b, as given in Table 6.6.1 for our computations,
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range of E T X b
2.5x1012 < E < 3.5 x1012 109000 7 5200
1.5x1012 < E < 2.5 x1012 97000 6 4500
0.5x1012 < E < 1.5 x1012 80000 5 3500
1x1011 < E < 0.5 x1012 62000 4 2800
1x1010 < E < 1 x10!! 32000 2 1200
Table 6.6.1
n
In order to calculate logB,, efficiently, we did not compute Elogeg(i), i.e., a sum of
i=1

logarithms. Since we only stored 1/x of the reduced ideals {iy, iy, ... , i;}, there was no
need to calculate the distance for each of the reduced ideals in {iy, iy, ... , i;}. Thus, since
the logarithm routine is fairly expensive, we only computed log8,, the distance 8(i,,i;),

when n is a multiple of x. Our technique was to accumulate the partial product

¥ = Oﬁ(-leg(i) (j € Z), and then we found logBj+1)x by computing logy + logbix. By

{=ix
doing that, we made t/x log calls instead of t log calls.

The reduced ideals {iy, ipy, ... , ij} were sorted according to their norms by a fast,
general sorting routine. A binary search was then used in determining whether or not a
reduced ideal is in {ijy, iy, ... , i;}. Also, the reason for not using the hashing technique
as in [SW88] was that a binary search is sufficient here as there is a smaller number of
reduced ideals in the cubic case. Furthermore, the amount of time required for this sorting
routine is not sufficiently significant to put into the cost formula (6.6.1).

With this program we computed the regulator for each of the ¢ values listed in
Tables 6.2.5, 6.2.6, 6.2.7 and 6.2.8. The results are given in Tables 6.6.2, 6.6.3, 6.6.4

and 6.6.5. On running the program, the amount of time required to calculate R for the 72

values of c ranged from 3 CPU minutes to 6 CPU minutes, depending on the size of R.




134

For example, we found that it took approximately 6 CPU minutes to compute a value of R
when R = 3 x 1012, Indeed, the empirical evidence suggests that the modified version of
the WDS method is at least twice as fast as the WDS method. Further, we noticed that the
number of ideal operations was reduced by at least a half for all 72 values of ¢ .

In Tables 6.6.6, 6.6.7, 6.6.8 and 6.6.9 we give those values of ¢ for which C(c)
exceeds 0.67. Since the largest value of C(c) which we found is 0.71022, we have

nothing here that comes near to violating the truth of the GRH. Finally, we note the

extremely slow growth rate of C(c).

(c=p=2(mod 9))

C Reg C(c)
23904870683 74360135722.99645259 0.67077275
41843313959 33094292192.03615571 0.16976353
57913659383 13026981750.24716053 0.04815486
58182013553 18384322720.18053770 0.06764258
79834584857 253424953087.77135657 0.67783839

113913197789 361903194404.34921469 0.67651288
122089073261 96256524295.71490745 0.16779435
130962864677 103565808272.07382961 0.16821174
136544134973 434963928415.16482834 0.67737366
210018369371 332851167470.67811113 0.33590143
226956644069 725904714515.34610324 0.67748729
272330743901 870425045478.12549857 0.67608950
327552647297 520882901191.45680660 0.33591585
336949891277 110424642551.13602578 0.06921194
399933625181 322331191581.21099557 0.16999830
404698499087 1301526122837.74667670 0.67828714
416520048911 671621878653.61094955 0.34000806
464191218707 769385074481.28168411 0.34922223
466353166469 373864433808.38242721 0.16890383
471882449219 1507455651942.82695608 0.67299765
493979588159 1588163346721.72358785 0.67708588
530161973249 1689042680572.24642275 0.67060357
533183662103 106093622991.44474078 0.04188209
760106056289 2434590810678.76723680 0.67244265
778769068631 2488810685892.40970593 0.67082793
792802846373 2555110143668.59048090 0.67642064
902875793639 727483484062.22751900 0.16895244
Table 6.6.2.




c Reg C(c)
7823785241 3058976718.87499310 0.08512205
10389989063 16316808775.70248071 0.34105523
23002424327 71695952039.63348539 0.67232981
43595987609 68250877078.51356758 0.33591874
79600195163 258037319824.43576461 0.69222350
90307528193 71584383791.57154194 0.16909875
119087387453 379081653253.00307911 0.67760221
195511299437 634232638209.06787717 0.68790980
213555190997 679070755886.13331129 0.67385903
234187560641 383340113167.02583430 0.34664279
289191889433 229419759805.75951183 0.16773323
292277713727 939375172155.04811478 0.67949046
506642469059 405699943450.78211886 0.16860900
576605603657 938078184059.62577770 0.34223861
578450121761 962547107755.33815249 0.35003772
748224663941 2487275521768.01072796 0.69798231
800855660207 2595400816922.10179405 0.68012886
844409282933 337501024293.08100605 0.08384916
968024756357 3208632480642.32164235 0.67365702
Table 6.6.3.
(c=p=S5(mod 9) )

C Reg C(o)
74354863227 118219208940.00823437 0.33969638
99052148229 157008040407.51241785 0.33790086

102879790287 161784724853.09948311 0.33512745
117807496071 185498213308.43441708 0.33520544
144646415187 483332596164.31738229 0.71022119
229362553239 370061626156.76861086 0.34172868
291987409839 040224821906.25218496 (.68078629
293203999941 469426903290.87622223 0.33847595
362264296659 582900527602.53955311 0.33963793
413557332189 1365180219088.64133022 0.69610916
455271781749 732974717472.36287067 0.33926184
748671032481 149399876779.40296544 0.04189960
912685074153 743106728645.80169956 0.17071284
Table 6.6.4.

(¢=3p, p=25(mod 9) )
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C

Reg

o)

11382801093
109324288107
149832113787
298968550119
368636786253
373775618061
433769568597
505919205819
648369068283
654007847319
683030699469
747241701597
937165977747

5810544987.74325251
7204486886.90727397
15835396468.88462638
159084722456.55309343
389797878393.40392194
198906240697.19946591
29165074213.28352701
54359845814.67733653
173378898677.59148687
172692640909.58856560
730740526365.54282163
158071066939.24904727
498996299308.56052858

0.33557701
0.04248299
0.06795788
0.34027878
0.67509407
0.33971471
0.04287279
0.06843249
0.16998872
0.16784507
0.67982679
0.13432992
0.33754109

Table 6.6.5.

(c=9% ,p=25(mod 9))

C(c)

C
23904870683
79834584857

113913197789
136544134973
226956644069
272330743901
404698499087
471882449219
493979588159
530161973249
760106056289
778769068631
792802846373

0.67077275
0.67783839
0.67651288
0.67737366
0.67748729
0.67608950
0.67828714
0.67299765
0.67708588
0.67060357
0.67244265
0.67082793
0.67642064

Table 6.6.6.
(c=p=2(mod 9))
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c C(c)
23002424327 0.67232981
79600195163 0.69222350

119087387453 0.67760221
195511299437 0.68790980
213555190997 0.67385903
292277713727 0.67949046
748224663941 0.69798231
800855660207 0.68012886
998024756357 0.67365702
Table 6.6.7.

(c=p=5(mod 9))

C C(c)
144646415187 0.71022119
291987409839 0.68078629
413557332189 0.69610916

Table 6.6.8.

(c=3p, p=25(mod 9))

c C(c)
368636786253 0.67509407
683030699469 0.67982679

Table 6.6.9,

(c=9 , p=2,5(mod 9) )
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Chapter 7.
Cubic Polynomials Which Have a
High Density of Prime Values.

§7.1 Introduction,

Let f,(x) = x3 + ¢ (¢ € Z* and ¢ is cube-free) and let P(n) represent the number of
prime values assumed by f.(x) forx =0, 1, 2, 3, .., n. In [FW90], Fung and Williams
describe a method of finding quadratic polynomials of the form x2 + x + A (A € Z1)
which have a high asymptotic density of prime values. The basis of their strategy is Hardy
and Littlewood's [HL23] conjecture F. In [HL23), an analogous conjecture, Conjecture K,
is given for the cubic polynomials of the form x3 + ¢. Thus, this conjecture allows us to
extend Fung and Williams' idea to the cubic case.

For the case of polynomials of the form x3 + ¢, Conjecture K of Hardy and

Littlewood (also, see Bateman and Horn [BH65]) can be given as

(7.1.1) Po) ~ X2 1 (n)
where
d
Le(m) =3 f TN
2
and

(7.1.2) k(c) = H p——'pa_c(lp).
p>

The product of (7.1.2) is taken over all the odd primes p = 1 (mod 3) with p | ¢, and a.(p)

denotes the number of solutions of the congruence
x3 = -¢ (mod p).

By using
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3VD 2(p-3 P
= 0

ac(p)=3
where
= the discriminant of Q(%)’
R = the regulator of Q(?./E),
h = the class number of Q(?/_c),
Davenport and Schinzel [DS66] computed «(2) = 1.29 and «(3) = 1.38. The main
difficulty of (7.1.3) is that the three infinite products shown above converge very slowly.
As a result, k(2) and k(3) were only computed to three significant figures. Further, in
Shanks and Lal [SL72}, the authors give a modified version of (7.1.3) as follow5'

(7.1.4) (o) = D1 nl %5%% H1 ]_11 S
Pl P

ac(?)=3

pal{mod 3) p=1(mod 3) p=-1(mod 3)
where
_ { 1 when ¢ #=1 (mod 9)
T2 34 when ¢ ==1 (mod 9)’

Up = 1.064378253083636.
By using (7.1.4), they easily computed «(2) and x(3) to sixteen significant figures where

k(2) = 1.298539557557843

k(3) = 1.390543938783812.
Although the infinite product of (7.1.4) converges fairly quickly, the evaluation of k(c)
remains a difficult problem due to the requirement for h and R. Indeed, as mentioned
earlier, the computations of h and R are very difficult when c becomes large. In fact, to the
best of our knowledge, no k(c) values other than x(2) and k(3) have ever been computed.
Also, little work seems to have been done on finding polynomials of the form x3 + ¢

which have a high density of prime values.

The purpose of this chapter is to find cubic polynomials f.(x) which have a high

asymptotic density of prime values. As in [FW90], we do this by determining those values
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of ¢ for which the Hardy-Littlewood constant k(c) should be large and then evaluating x(c)

to nine significant figures.

§7.2 Strategy for finding values of c.

In order to find large asymptotic values of P (n), we attempt to find values of ¢
such that x(c) is large. According to (7.1.4) this means that we would want (-%)3 = -1 for as
many of the small primes p of the form 3t + 1 (t € Z*) as possible. Also, we can look at
this from the point of view of restricting the number of possible small prime divisors of
fo(x). Clearly, if (%)3 = -1, then p cannot divide f.(x) for any value of x. Thus, if (%)3 =-1
for many small primes p, then the composite values that f (x) can assume are considerably
restricted. It follows that f.(x) should have a relatively high density of prime values.
Furthermore, we can maximize x(c) by finding values of ¢ which have small hR values.
Since we are interested in finding values of c that have cubic non-residues for as many
small primes as possible, we have also accomplished the task of minimizing hR. As in
§6.2, we can minimize h by searching the values of ¢ for which 3 is not a divisor of h. In
our investigation, we elected to inspect the values of ¢ that satisfy

c=2,4,50r7 (mod?9).
Here, ¢ may be either a prime or a composite, However, ¢ must be cube-free,

If we let N; denote the least positive integer such that N; = 2, 4, 5 or 7 (mod 9) and
N,
(F% = -1 for all odd primes p of the form 3t + 1 (t € Z+) and p s 1, where 1j is the jth
prime of the form 3t + 1 (t € Z*), then N; should be a good candidate for the kind of ¢

values that we are seeking. In Table 7.2.1 we give all the values of N; fori=48§,49, ...,

63.
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i r; N; i I N;
48 547 2438812372 56 643 104543075198
49 571 2438812372 57 661 104543075198
50 577 10996650403 58 673 538487125013
51 601 10996650403 59 691 538487125013
52 607 10996650403 60 709 538487125013
53 613 10996650403 61 727 976698454244
54 619 10996650403 62 733 976698454244
55 631 104543075198 63 739 976698454244
Table 7.2.1

If we put N; 1 = N; above and define Nj; G > 1) as the least integer greater than
Njj-1 such that Ny 5 =2, 4,5 or 7 (mod 9) and (N ;/p)3 = -1 for all odd primes p < 1, then
N;; are good candidates as well. Thus, instead of attempting simply to tabulate more N;
values than those given in Table 7.2.1, our strategy was to find Nygjforj=1,2, .., m,
where Nyg 1y < 1012 < Nyg 1.1. By doing that, we were able to find all the Nj; values,
which are less than 1012, for i = 48 andj =1, 2,3, . To find these values of Ni,j , we
made use of OASIS (see §6.2) again. After 25 days of continuous use, 335 numbers were
found. Having these candidates for ¢, the next problem is to determine those that yield the

largest x(c) values by using (7.1.4).
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§7.3 Computation of x(c).
Put

p<Q
p=1l({mod 3)
3(p+1
1@ 3t
1@ p(p-1)2
ac(p)=3
p>Q
p=1(mod 3)
We now have
\/DYU(} 1 1
(7.3.1) K(C) = —=5— TAhR F1(Q) T1(Q) 1 - p_3 I ll - -p—z
ol P

pul{mod 3) p=-1{mod 3)
By examining (7.3.1) we see that two problems arise in computing x(c): (1) determine hR,

(2) find Q such that

(7.3.2) K(C) ~ ‘;DJ;OFl(Q) H H1 L

p=1(mod 3) p=-1{mod 3)

approximates x(c) to 9 significant figures.

Clearly,
1 +1
1oTelo!I1-_£ELl_ ool 1 - gg))
8 hQ)=log p(p-1)° g( p(p-1)2
cp= ch 3
> Q >
P-l mod 3 p= (mod 3)
Since
10g(1_3(p+1) _3+D) 1730+ 1 3+DN?
p(-1)2) " p(p-1)? ~ 2\pp-n2) T 3\p(p-1)2 K
we have

log T1(Q) = -Hy(p) - Ha(p),

where



143

1
H - __(&l ,
1) Zp(p-i)2
ac(p)=3
p>Q
pml{med 3)
1 (p+1)
H = _Qil
2p) = ; : 2\p(p- 1)2 _(p(p 1)2) )
ac(p)=
p> 0
p=1{mod 3)

We first point out that it is a simple matter to show that
H < Q+1
1(P) < 2By

where B = [Q/6]. Also, we can easily deduce that

1
Hy(p) < BE

Thus, we get
Q + 1 1
(7.3.3) [ log T1(Q) | < 120(B+1) 35(}3.,.1)3

Now if
|log Ty(Q) | <b,
then (7.3.2) will approximate x(c) to n significant figures if b < log((1 + VI + 4K) / 2),
where k = 1017 / 2, Hence, by (7.3.3), if Q = 108 is used, then (7.3.2) will yield x(c) to 9
significant figures. To test this we evaluated (7.3.2) for a few ¢ values found in §7.2 with
Q = 108 and Q = 2x108. In every case both computations agreed to 9 (or 10) significant
figures.

There remains the problem of determining hR. For this problem we used the
algorithm given in the previous chapter to calculate h* and R. However, as mentioned
earlier, we cannot be certain thath™ = h. Thus, we used the technique as described in §3.3,
with a slight modification, to determine h. However, we have to assume the truth of the
Riemann Hypothesis by using this method. The slight modification occurred in the process
of finding a factor of the class number. In §3.3 we determined a factor of h by finding the
least possible value of m (>0) such that a™, where a is a reduced non-principal ideal in

3
Q(V'¢c), is a principal ideal. To do this we simply started m at 1 and increased it until we
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found a value for which am ~ (1). Here, since a factor of h™ is very likely to be a factor of
h, we check whether or not am ~ (1) if m | h*, By doing that we can significantly reduce
the amount of time required in determining whether or not a reduced ideal is a principal
ideal. We also mention that the method of Buchmann and Williams [BW88A] was used in

principal ideal testing.

§7.4 Computational results.

The method described above was programmed in FORTRAN with some assembly
language routines (most of the routines were used in previous chapters) and run on an
Amdahl 5870 computer. Furthermore, we note that F1(108) and an approximation of hR
(an estimate of ®(1) ) were evaluated simultaneously. For each of the ¢ values found in
§7.2, a value of k(c) accurate to 9 significant figures was computed. These x(c) values
were computed in a total of about 42 CPU hours. The average time required to compute a
K(c) was about 7.5 CPU minutes, in which approximately 5 CPU minutes were spent on
computing an estimate of ®(1) and F;(108). Here, we denote by q(c) the least prime of the
form 3t + 1 (t € Z) such that (-q—(%)-)g, = 1. In Table 7.4.1, we give all the numbers ¢
found by OASIS with g(c) = 619. We also provide the corresponding values of x(c) and

q(c).




c K(c) q(c)
10996650403 1.81356011 619
104543075198 1.82475834 661
122883799502 1.81250056 619
237182386703 1.78034645 631
340870581083 1.83002720 631
381969885083 1.79428621 619
389033752831 1.83409736 643
402240958123 1.81205265 619
429028811221 1.81274409 643
430691378353 1.82393826 643
435910653383 1.80811828 619
440461112263 1.84706577 619
532836531769 1.81689408 619
538487125013 1.83171092 709
630118608667 1.81203407 619
669006592193 1.76803531 631
673223095339 1.81247198 619
674479164343 1.81437510 619
681623186513 1.84979174 673
742110523157 1.81429693 661
787504388899 177876018 619
843080148857 1.78063201 619
855128785102 1.81289427 631
942297660302 1.83917524 619
954038967746 1.82940050 691
976698454244 1.80071119 739

Table 7.4.1
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In Table 7.4.2, we give those values of ¢ from among the 335 numbers such that
K(c) > k(c') for all the ¢' which are less than ¢. We also give the corresponding value of
P(10°) and 3P(105) / L(105). In Table 7.4.3 we give the values of P,(106) and 3P (106)
/ Le(108) for each of the last three ¢ values listed in Table 7.4.2. By looking at Tables 7.4.2
and 7.4.3, we notice that 3P.(n) / L.(n) (where n = 105, 10) and x(c) are quite close in
each case, and these results provide a confirmation of Conjecture K, Furthermore, in Table

7.4.4 we give all those ¢ values which have k(¢) > 1.84.

c K(c) P,(105) | 3P,(105)/L (105)
2438812372 177585201 24618 1.7769806
7553108903 1.78730681 24719 1.7848207

10996650403 1.81356011 25113 1.8134923
13039426573 1.82833223 25149 1.8162004
34274419666 1.83146052 25334 1.8302770
34619128889 1.85557534 25770 1.8617847
159758632562 1.8732072 25986 1.8789978
Table 7.4.2
c K(c) P(106) | 3P,(106)/L(106)
34274419666 1.83146052 47897 1.8293839
34619128889 1.85557534 48558 1.8546347
159758632562 1.8732072 49101 1.8762230

Table 7.4.3




c x(c)

34619128889 1.85557534
159758632562 1.87320715
205832276347 1.85622111
312945553748 1.85221205
320632593626 1.84120352
356454347681 1.86130129
440461112263 1.84706577
446441115179 1.86326589
446947523507 1.84948261
482302370219 1.85817382
502621065553 1.85094250
508595764309 1.86818077
513572881378 1.86202993
573548961598 1.84042512
647287308887 1.84695743
681623186513 1.84979174
694044605252 1.84127308
704813954582 1.84766015
716323539649 1.84112544
765362309177 1.84071454
857474554759 1.84648899
985522446218 1.84022139
987450298774 1.84562855
994791922204 1.84761623

Table 7.4.4
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Chapter 8.
Computation of Principal Factors
in Pure Cubic Fields.

§8.1 Introduction,

Let ¢ be a positive cube-free integer and, F = Q(\S/?:) be the pure cubic field formed
by adjoining \3/—0 to the rationals Q. We say that any algebraic integer of F is primitive if it is
not divisible by a rational integer greater than 1. Also, we let S be the product of the primes
which completely ramify in F. Further, we let 3 = ¢ = mn2 and 83 = ¢ = m2n , where

m > n, m, n are coprime square-free integers. Note that §2 = ns, 82 = m& . We have

g= f3mn c#xl(mod9)and3 fc
T 1l mn otherwise.

Denote by o' and «" the conjugates of any o € F, and write

eo=(81 +80+20)/3 (21,8, 8 € Z).
Note that since N(gg) = 1, we have g;3 = 27 (mod mn).

If there exists a primitive f (€ Op) such that

g0 = B/ N(B),
where k € Z and 3 I k, then each rational prime which divides N(3) must completely
ramify in F. Indeed, we know that N(B) | S2. After Barrucand and Cohn [BC70), [BC71]
we call such a value of N(B) a principal factor of $2. In [BC70] it is further pointed out that
there are exactly six distinct principal factors of §2 if principal factors exist for F. If
principal factors exist for F, then there exist the unique primitive algebraic integers xa.;,
0y, 03, =fq, B4, =33 of F such that

g =3 /N(e)  (k=1lor2(mod3)andi=1,2,3),

ekt = B3 /N(B;) (=1ifks=1(mod3),j=-1ifk =2 (mod3)).
Here N(c;), N(B;) are divisors of $2 and are the principal factors of F. These numbers are

discussed in some detail in [BC70] and [BC71].



149

In fact, if & € O, N(a) | $%, and N(a) = 3%d;d,2d4ds2, where T € Z,

0 =71 =2, m=d;dyds, n = dydsdg, then the six numbers
o, 8ct / (dadyds), Sau/ (dydads), 02 / (dads), 802 / (ddad4ds?), 802 / (dydy2dyds)
are all in Op, and each of their norms divides S$2. Thus, each of the elements of the set
{3%d;d,2d,ds?, 3%d;2d3dsdg2, 3Tdpds2d,2ds,
3Vd;%d,ds2ds, 3Vd;d32ds2dg, 3Vdy2d3d dg?l,

where (t,v) = (0,0), (1,2) or (2,1), is a principal factor whenever N(a)} | S2. Furthermore,
if one of the principal factors is calculated, then the other five principal factors can be casily

found.

Let p be a primitive cube root of unity and G be a cubic field of negative
discriminant. We put Q = Q(p) and L. = G(p). Then the Galois group of the normal field L
is generated by B and v, where B3 = Y2 = 1 and B = Wp2. If x € L, then we put
x' = xB and x" = xB% Also, we define F' = FB and F" = FB2, If we let E; denote the
unit group for the algebraic number field J, we see that

E¢y=EpxEpxEgprxEg
is a subgroup of Ey. We put

*=[E{:Ep).
By Berwick [Ber32], we know that r* is either 1 or 3. Furthermore, Berwick mentioned
that r* = 3 if and only if there exist ¢ € Z*, y € F* such that

qeq = v°.
Indeed, Barrucand and Cohn [BC71] showed that if r* = 3, then there exist ¢ € Z* and
y € F¥ such that qeq = y3. However, they also proved that in a pure cubic field, F, there
might not exist q € Z* and y € F¥ such that qeg = y3 if r* = 3. Thus, Berwick's criterion
in this case is false.

In [BC71], the authors proved that if H is the class number of L and h is the class
number of F, then

H = r*h2/3,
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a result that was later generalized by Moser [Mos78]. Also, using the results of [BC71],
together with a later result of Halter-Koch [Hal76] (afso, see [Set78]), we have the
following
Theorem 8.1.1, Consider the equation
(8.1.1) e’/ €9 = p'8°, BEL=F(p),0=i<2,

(i) (8.1.1) has no solution if and only if r* = 1,

(if)y (8.1.1) has a solution with i = 0 if and only if principal factors exist for F,

(i) (8.1.1) has a solution with i = 0 if and only there exists a unit | € L such that

the relative norm ,

(8.1.2) NpoM)=p. @
In other words, principal factors exist for F if and only if

e/ £g = p'63,
whére pZ+p+1=0,8 EL (if Q € Q(p), i = 0). We further point out that case(iii) of
Theorem 8.1.1 can occur only for pure cubic fields. Thus, if G is not a pure cubic field,
then principal factors exist for G if and only if r* = 3. Also, the equation (8.1.2) is the
cubic analog of the so-called non-pellian equation

x2 - Dy2 =-1.

Brunotte, Klingen, and Steurich [BKS77] have shown that r* is 3 if and only if

g, = 3 (mod mn),
where

ep=(g1+ 80 +80)/3 (21,8 83 € 2).
This allows us to find a method of distinguishing between (i) and the other two cases (ii)
and (iii) of Theorem 8.1.1. Indeed, this idea was implemented by Williams [Wil82], but
the technique is O(c) in complexity. However, we cannot distinguish between (ii) and (iii)
of Theorem 8.1.1 by using this method. Consequently, a different technique is required for

the determination of the existence of principal factors for F.
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We define e by putting e = 1 when principal factors exist for F and e = 0 otherwise.

For a pure cubic field, we have three possible principal factorization types:

(1) PF Type I: (Case (ii) of Theorem 8.1.1) e = 1, r* = 3,
(2) PF Type II. (Case (i) of Theorem 8.1.1) e = 0, r* =1,
(3) PF Type III: (Case (iii) of Theorem 8.1.1)e =0, r* = 3.

In [Wil82], Williams discovered and implemented an O(c) algorithm to find the principal
factors of S2. This algorithm was used to search for principal factors for all Q(%f?:) with
2 = ¢ = 15000. Recently, this algorithm was improved by Mayer [May88], but this
improved algorithm is still of time complexity O(c). For all such ¢ s 105, Mayer has found

all fields with principal factors. His results can be summarized in Table 8.1.1.

Type # of fields % of total

PFI 62068 75.45%

PE1I 16935 20.59%

PF Il 3261 3.96%
Table 8.1.1

In his computations, the average running time (on an IBM PS/2 with Turbo Pascal) forac
value at 103 is approximately 1.56 minutes. Hence, we would expect the running time
required for ¢ = 1012 to be about 30 years per number. As a result, a faster technique
would be needed in order to determine the existence of principal factors for Q(%/_c) when ¢
is large (here, ¢ =~ 1012),

In this chapter, we show how the infrastructure idea can be used to produce a fast
algorithm for finding principal factors in pure cubic fields. Also, we present a fast
technique for determining whether r* = 1 or 3. This algorithm was implemented on a
computer and was used to test a conjecture of Mayer [May88] by determining the existence

of principle factors for certain pure cubic fields with large discriminant.
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§8.2 Ideals of Op.

In order to describe our algorithm for determining principal factors for F, it is
necessary to discuss a method for finding a basis of an ideal, a', where aa' = (L(a)).

We first note that we can factor a into a product of two ideals, say a = aja,, by
using the following lemma of [WDS83].
Lemma 8.2.1. If

a={P,P*(-u+5),P"(V+V'6+62) }

g

is a primitive ideal of O (P, P!, P", u, v, v\, 0 € Z), then a = a;a, where

aj = { Py, Py (-c + 8), P1"€Cz+_;5+_52) }

a, = { Py, Py (-u+9), P2"(V tVo+ 52) }

O

Py = gcd(P,S), P,=P/Py,

Pq' = gcd(P',S), Py =P/ Py,

P{" = gcd(P",S), P,"=P"/P{". &
Our next step is to find a1' and a,' separately. If a;" and a,' are known, then we find a' by
multiplying a1' and a,'. To find a;' we use the following lemma. Let £ € Z be defined as
being a solution of the system of congruences

&%= ¢ (mod o2)

3E220 (mod o).
Lemma 8.2.2. Put T = ged(o,Pq). If a; is as defined by Lemma 8.2.1, then a;'= b

b={ Py, Py T) (c+8), (PE") (°2 * f * 62) 3

Proof. We know that N(a;) = PyP;'P;" and a;3 = (f) where f € Z. Since N(a;)3 = |f]3,

where

we have
a3 = (P1P1'Py").

If we multiply both sides by a4, we get



153

agay' = (P1P1'Py"ay"

But aja;' = (Pq). It follows that
a1 = (P1'P1")ay"

On the other hand, by §6 of [WDS83], we know that
a12 = (P1'P")b,

b= { Py, Py/(PyT) (¢ +8), (PT,,)(CZ i f i 62) }

Thus, we have a;'=b. B

where

In the case where ged(L{a;),0) = ged(P5,0) = 1, we can find a,' by using

Lemma 8.2.3. If

32={ Py, Pyl (-u+ 5),P2"(V+V(;6 +62) }

where gcd(P,,0) =1, then
V+ V'8 +82
azlz{Q’Ql(_U+6),Q[|( + S+ )}’

0]

where

Q"=1,Q' =P, /Py, Q =Py,

U=v,V=-v-vV,

V'=u+ puP /P, = (E-u)(Py/ Py)1 (mod o).
Proof. We first note that L(a;) = L(ay") = P, = Q. Since asa,' = (L(ay)) , we have
N(aja,") = L(a,)3 (i.e. PP'P"QQ'Q" = P3). We can easily deduce that
Q'Q" = (P, / P,'Py"). Since ged(P,,0) = 1, then Py" = Q" =1. As a result, we get
Q' = P,/ Py'. The remaining unknowns are U, V and V'. We can find those values by
determining

U (mod Q/ QY,

V' (mod cQ'/Q"),

V (mod 0Q /Q").
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We can see that

1 2
QT;%&H@)(V+if+6 )E(Eﬂ

It follows that

QIP2 H

; SUvDY+82(- ' 2 2
Uv+0(v-Uv)+82(-U+v )) _ P2x+P2y(-E+6)+Pzz(6 +EO+E )
o4 o

where x, y, z € Z. We get

QP," 6(U+v)) ( )

or
Q'Py"(-U+v) = Pyz.
Thus, we have
U= v' (mod Py / Q'Py").
Since Py" = 1, we can put U = v'.

Also, we have

\¥ 2
P,'Q" (~u+d ( +V'd+9d

)em»

9]

By using the above technique, we get

Py'Q"(V'-u) = Pyz
where z € Z. It follows that

-u =0 (mod Py /P,'Q").

Since Q' = P, / Py'; we have

V'-u=0(mod Q' /Q")
or

V'=u+uQ'

V' + 52
where u € Z (here, Q" = 1). Since (V tVOo+D ) € Op, we must have
o

= £ (mod o).

Therefore,
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u+ pQ' = € (mod o).
Thus, if we find p such that

= (E-u)Q"! (mod o),

then
Vi=u+puQ'.
Similarly, we have
Pz"Q"<V + v;a + 62) (V + V'8 + 62) & (P,
We then get

Py "Q"(v+v'V'+V) = Pyoz,

where z € Z. Hence, we get

V=-Vv-v (mod "Q")

Since Py’ = 1, we can put
V=-Vv'-v. R

We now can find a basis of a' by computing a;'a,".

In the case where gcd(L(ay),0) = 1, we know that 39| L(a,), where 3| g, q € Z*;
also, this can only occur when ¢ = =1 (mod 9). We first factor a, into a product of two
ideals, say a, = byb,, such that 3 | L(b,) and ged(L(b1),L(b,)) = 1. In other words, we
have to find by and by, where L(b;) = 39 and L(by) = L(a;) / 39. By §5 of [WDS83], we
know that by must be one of r, r¥, r2i*1 §i rs rsi, where i € Z and (3) = rs2. In order
to determine the basis for by, we can use the results described in p.253 of [WDS83]. As
for the problem of finding a basis for by, we can use

Lemma 8.2.4. Given that

by - { Py Py (g 4 8) P3"\V3 + XZ’B + 62) }

is a primitive ideal of Og (P3, P3!, P3", us, v3, v3', 0 € Z), we can then find Z bases for

bl, bz such that b3 = b1b2 when
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bi={ P, Py (u; + ), P"(‘“”'“E’) }(1_12)

and
P3 =P1P), ged(Py,Py) =1,
P3'=Py'Py, Py' [Py, Po'| Py, ged(Py\Py) = 1,
P3" =P1"Py", P1" [Py, Py" [Py, ged(Py",Py") = 1.
Proof. Clearly, Py, Py, P;",P,, Py, P," are casy to find. By using the Corollary of
Lemma 5.1 of [WDS83], we see that is is sufficient to find the values of
u; (mod P; /P,
vi' (mod oP;'/P;"),
vi (mod oP;/P").
By Theorem 5.3 of [WDS83], we have
u; = ug (mod P/ P{'),
Uy = u3 (mod Py / P5").
Thus, we have u; =u, = u3.
Also, we know that
v1' = v3' (mod oPy'/ P3"),
vy' = v3' (mod oPy' / P3"),
vy =vy+ug(v3' -vy') (mod oPy /P3"),
vy = vy + uy{ va' - vo' ) (mod oP, / P3").
We show here how to get v;, v{, (i = 1, 2).

Since

Py (v +v'6+6)EOF,

we have

4oy 2 2 2
Pl"(v1+v;65+65 ):x+y(-§+6)+z(§ +§6+6).

From this result we get
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P;" =z,

Pi"vj' = oy + 2§,

P{"v; = ox - yof + zE2.
Consequently, we get

Pi"vi' = oy + P}"E,

Pi"vi = ox - (Pi"v{' - P"§)E + P{"E2.

Thus,

v{'=E (mod o/ P")
and

Vi = -Vi'g + 252 (mod o/ Pi”)'
Since

vit = v3' + 1y'0Py' / P3" = v3' + 1joPy / (P3."Py"),
where t;' € Z, we have

vy' +17'0P;' / (P3.;"P{") = &€ (mod o / P;").
Put

i = kiPa" + 57,
where 0 = ;' < P5;". Then, we can deduce that

8;'oP{' / (P3.;"P{") = & - v4' (mod o / P;").
It follows that

$Pj' = P3.{"P{"(§ - v3) / 0 (mod P3,;").
Since ged(Pi',P3.") = 1, we get

si'= (P;)"'P3"(§ - v3) / o (mod Py ;")
Hence,

vi' = vq' + 5;/0P{" / P3" (mod oP;' / P;").

We note that

Vi =Vsg + Ui(V3' - Vi') + i‘iOPi / P3"
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where r; € Z. Again, we put
r; = KiPa" 45,
where 0 s s; < P4;". We now have
5i0P; / (P3.i"P;") = -v'E - €2 - v3 - uj( v - v ) (mod o / P;").
By using the above technique, we can easily deduce that
$iPi = P3i"Py"(-vi'§ - 2 - v3 - ui( v3' - v )) / 0 (mod Pyp").
Since ged(P{,P3;") = 1, we get
si= -(P)'P3" (Vi€ + E% + v3 + uj( v3'- v{'))/ 0 (mod Py ;").
As a result, we have
vi=v3 +8;0P; /Py" (mod oP; /P{"). A
Once we have by and by, we can obtain a,' by finding by'b,". To find b,', we can
use Lemma 8.2.3. As mentioned earlier, by is one of r, v, r2*1 ¢l rs, rsi*!, Thus, by

using the fact that (3) = rs?, we can easily determine by' by using the following table.

by by
r I's
I.2i si
r2i+1 rsi+1
Si r2i
Is r
rsi+1 1.21‘+1
Table 8.2.1

We point out here that if a is reduced, it is not necessarily the case that a'is
reduced. This is the reason why the Voronoi algorithm, starting with (1), does not possess
the nice symmetry properites that the regular continued fraction expansion does in the

quadratic case,
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Ifi;=(1),letl snsp (Bp+1 = €0)s (B,L(i1))i, = (L(iy))i; and
(pjL(b1))b; = (L(b;))by, where by =iy, b; is reduced and by is not reduced. Since
bj~by =iy ~ iy = (1),
we must have b; = iy for some q. Furthermore, we can calculate the distance between iq
and iy by using
Theorem 8.2.1, ([Wil85])) If 8, = 8(i,,i1), 6q = 8(ig,l;) and m = log(L(i,)p;), then
8 =R -8, +m.
Also
-2log(v3[D]) < < log(v3D]). W

We require the following results in our algorithm for determining the existence of
principal factors for F.
Lemma 8.2.5. Let j be é primitive ideal. If i2 = (u) j where u € Z, then L(i)2 = uL(j).
Proof. By §6 of [WDS83] we have
i=iqi,

where L(i) = P = PyP, with Py = L(iy), P, = L(iy), gcd(P1,P;) = 1 and Py = gcd(P,S).

Now
i12 = (P1"P1")1
2 = (P22,
where
L{jy) = Py,

L(jp) s P2/ Py",

Py' = ged(P',S), P1" = gcd(P",9).
Since P{'Py" [P and u = P;'P;"P,", we have

L(i)2 = P;2P,2 and uL(j) = P;'P;"P{P,2.
It follows that L(i)2 = uL(j). M
Lemma 8.2.6. If Bg(r) is as defined in §6.3, then Bg(’) < 6mn.
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Proof. We can easily deduce this by using the results derived in the proof of Lemma 6.2

of [WCS80]. W

§8.3 Determination of Principal Factors in F.
In order to describe our algorithm for finding principal factors for F, we must use

several results from [Wil81]. One of these is

Lemma 8.3.1.(Williams) Let k € Z and 3 ,r k. If e = 1, then there exists y € OF such

that
N(y) = 3%t2, 5 = 8455, t = tyt,
sty ] m, a0l n, T € {0, 1, 2}
8y=8/(s)>1,8,=8/(s;) >1 N(y) < 3'mn
and

et =y3/N(y). B
Theorem 8.3.1 (Williams) If e = 1 and y is defined as above, then if i; = (1), either

y=0;
where
B, = 6geq"
(1<gsp, qE€Z,R=08,,) or
xy/3=186,
where ¥ is a value of
X, + X,0; + X3, (X1, Xp0 X3 € Z)
such that
{X1 + msyt Xy + nsgt X3 = 0 (mod 3) when 1t =2
Xy = ms,t X, = nsyt X3 (mod 3) whent=0o0r1,
0<x <3
and

F(x) <9
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for
F(0) = X, 246,2X,2+8,2X3%-8, X1 X5-8,X1X5-8,8,X,X5. W
In the case where y = 0, we have
o = 0 / N(B))
Thus, we get
(8.3.1) kR /3 <log 6, <kR /3 + log(9mn) /3.
If we know kR, we can find all the possible 8,'s which satisfy (8.3.1) by using the method
described in §6.3. For each of these 8.'s, we check whether or not N(8,) | $2. From §6.3

it is known that (8)i; = (N(ip))i;. Thus, if i, has a basis of the form
' 2
{ P,P‘(-u+6),P"(V+V6+6) }

g

then we can easily deduce that N(6,) = P2/ (P'P") by using the formula for finding N(6,)
as given in [Wil82] (also, see [WCS80]). If N(6,) | S, then y = 6,. Now 8, = 84809,
where 1 < g s p and q € Z. Hence, by using Theorem 5.3 of [Wil81], we know that there
can be at most 2 distinct values of g (1 =g s p), g1, gy such that N(8g,) |S2. Ife=1
and there are exactly j such values of g (j = 0, 1, 2), we use the notation of Mayer [May88]
and say that F is an M; field. If j < 2, F is called an exotic field. We note, by Theorem 5,14
of [May88], that if 3 | c, then F can never be an exotic field. In [May88], Mayer gives a

table of counts of M; fields for the ¢ values upto 100000, and they are as follows:

Type # of fields % of M; fields
My 59164 95.32%
M; 2818 4.54%

M, 86 0.14%

Total 62068 100%

Table 8.3.1.
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We now consider the case where F is an exotic field (i.e. y = 8;) and let 8, be as

defined above. Also, we note that
¥ = 0.2 /A =y3 /N(y)
where A € OF If 8, =%y /3, we get
(8.3.2) 27h = N(y)x°.
Hence, since 0 < % < 3, we get
A < N(y) < 3'mn = 9mn.

Also, since F(x) < 9, we can easily deduce that

| = A" < N(y) < 3*mn s9mn.

Put
A=(x+y8+28)/3

where x,y,z € Z. By using a technique employed in [Wil81], we get

x|, 8lyl, Szl < A + 2]

Consequently, we have

Ix], 8]y}, 8lz] < 3N(y) < 3(3%mn) s 27mn.

Thus the values of the coefficients in A never get very large.

If we know, for a certain 8, , the value of A, our task is to determine whether or not

(8.3.2) holds. If (8.3.2) holds, then we can attempt to find the principal factors for F. On

the other hand, if (8.3.2) fails, then it is not possible to find a principal factor using this

particular 8 . In this section, we present an algorithm for determining the principal factors

of $2 under the assumption that O, =%y /3 and A is known. In the following section, we

present a method for finding A.

By multiplying both sides of (8.3.2) by N(y)?, we get
(3%st2)3 = 27N(y)2\ = 27(3%%s2t4)),

Since
X = Xl + Xzal + X362

and
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A= (x+y8+28)/3,

we get

(8.3.3) 3T3(stX; + 5, X0 + 5,X38)3 = s2(x + y& + 28) / 3.

From (8.3.3), we can easily deduce that

(8.3.4) 3%2(s313X 345, 2 mn2X,3+5,°m2n X3+ 652mn X, X,X;) = s2t x,
(8.3.5) 3%1(515%2X, X+ sts,°m X X5 245, 25,mnX,2X,) = s2t y,
(8.3.6) 3% 1(5,522X  2X 4551 20X X2 4515,2mnX,X52) = s2t z.

On the other hand, we have
(8.3.7) N(sty) =3>Ts2N(8,)
= 563X 345,°mn2X,3 45, m2n X53-3s2tmn X, X, X 5.
If we compare (8.3.7) and (8.3.4), then we find that
(8.3.8) 3¥mnX;X,X3) = x - 3N(8)).
Thus, if principal factors exist for F, then we have (8.3.8). Since T € {0, 1, 2}, we can
divide (8.3.8) into two cases: t=2and T < 2.

We first consider the case where T = 2. For this case, we shall require a lemma of
[Wil82] to limit the possible values of Xj, X, X3. Here, we let 8, = min(8;,8,) and
Oy = max(dy,9,).

Lemma 8.3.2.(Williams) Let n € Q[8] and u = st?y where % is the least positive value
of Xj + X,0; + X308, such that X;, X5, X3 € Z, F(3) < 9,
Xy + msyt X, + nsqt X3 =0 (mod 3).
If it is not the case that
Xy = ms;t X; = nsyt X3 (mod 3),
then x < 3 if and only if one of the following is true.
() msyt =ns;t =1 (mod 3), &, < (V33 - 1)/ 2. In this case ¥ is one of 8,,-1, 8y4-5,,.
(if) msyt =ns;t = -1 (mod 3), 8,,< 2. In this case ¥ is one of d+1, SOy, 2-8,,.

(iii) msyt = 1 (mod 3), ns;t =-1 (mod 3), 8, < (V33 - 1)/2. In this case y is §,,-1.
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(iv) msyt = -1 (mod 3), ns;t =1 (mod 3), < V33 - 1)/ 2 or dm < 2. In this case ¥ is
one of §,+1, dy4-1,2-5,,. M
We can limit the minmum value of x, yet further. We do this in
Theorem 8.3.2. Suppose that y is defined as in Theorem 8.3.1. If % is the least positive
value of X + X;8; + X38; such that Xy, X,, X3 € Z, 0 <% < 3, F(x) < 9,

Xy + msyt Xy + nsit X5 = 0 (mod 3),
and it is not the case that

X =mst X, = ns;t X3 (mod 3),
then

0 =wy/3
is a minimum of OF where @ = 8,-1 when ms,t = 1 (mod 3) and @ = 8,+1 when
ms,t = -1 (mod 3).
Proof. We know that ¢ =%y / 3 is a minimum of OF, where ¥ is given by the previous
lemma. We note that if w = ¥, then by Lemma 8.3.2

% € {Oy-Op, 81, 2-8}.
Also,8=wy/3 € OF by the reasoning of Theorem 8.3.1. But

F(x) € {00 +8,00+8m2, 4+28,,48,,2, 1+8y,+8,42}
and

F(w) = 148,,+8,,2 or 1-5,,+5_.2 .
In any case, since 1 < &, < & we have F(w) < F()). We also note that @ < 3. If @ = %
then w > x and 8 > ¢. Also, {0 < [¢|. If 8 is not a minimum of OF, then there must exist
a minimum y of OF such that

W <8, 0<yp <8

"It follows that

Y <y, <yl
By Theorem 8.3.1 and Lemma 8.3.2, we get
v=3Y/y € {dy-8y, Opg-1, 8-, 8041, 2-0,, ).
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Also, since |g'| < [6'], we have F(v) < F(w) which is not possible by the selection of .
Thus, our result follows. H
It follows that, if T = 2, we must have X;X,X3 = 0 and x = 3N(8,) for some 6,
where A, = A=(x + yd + 25) / 3. Also, (X1, X3, X3) = (1,1,0), (1,0,1), (-1,1,0),
(-1,0,1). From (8.3.5) and (8.3.6) we can derive that
(8.3.9) 3ms,3 X X;53-515,2X 5y +5,28,X,2-305,° X X,3 = 0.
Here, we have two subcases.
Subcase 1, X, = 0. In this subcase we have X; = -1 or 1, X5 = 1, and 8; > 3,. By
(8.3.9) we get
(8.3.10) 3ms, /sy = Xyy.
Also, by (8.3.6) we obtain
(8.3.11) 355t =z
Since X, = 0, we must have
8,3 =83/ (5;1)3 = m2n / (5,°t3).
If we divide (8.3.10) by (8.3.11), then we get
X1y /z=m/(s;pt).
If we raise the above equation to the 3rd power, we have
X,y3 /23 =m?/ (s,33).
It follows that
nXyy3/mz3 = m2n / (5,383) = 8,3,

Since 8, > 1, we can conclude that

% \3/-%—=62>1.

Furthermore, we can easily deduce that

(8.3.12)

sy=m/ged(m,y/3),
s,=ged(n,y/3),

t=2z /3s,,
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X, = sgn(z).
Subcase 2. X3 = 0. In this subcase we have X; =-1or 1, X; = 1, and 8, > §;. By using
the same technique as in Subcase 1, we get
3nsy /sy = X4z
and
3tsy=y.
Since X3 = 0, we must have
8,3 = 83/ (s,t) = mn? / (s,3t3).
Again, by using the same method as in the previous case, we get
mX,z3 / (ny3) = mn?/ (s,°t3).

This means that
3

.\/?

0/ (spt) =98 =

Z
y
Thus, since §; > 1, we must have

\3/§> 1.

(8.3.13) -3
Also, we can deduce that
s; =ged(m,z/3),
ss=n/ged(n,z/3),
t=y/3,
Xy = sgn(y).
Since the product of §; and d, is one, we see that only one of (8.3.12) and (8.3.13)

can occur. Thus, we can distinguish between Subcase 1 and Subcase 2 by determining

which of
z

i/%_or y\?/%)l'

Once we know which case, we can determine sy, 8, t and X; by using the above formulae.

Y
z

We now have the values for N(y) = 9s;s,t%, X,, and X3, and can determine whether or
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not (8.3.2) holds. If (8.3.2) holds, then 9s;s,t% is a principal factor for F. Otherwise, we
cannot find principal factors for this given . We now summarize our algorithm as follows:
Algorithm 8.3.1. Given: 8, A; = (x + y8 + z8) /3 and x = 3N(8,).

1) Compute temp < |z/ y] Efﬁiﬁ

2) If temp > 1, then goto step 5.

3) Compute s; =m/ged(m,y/3),s;=gcd(n,y/3),t=2z/3sy X, = sgn(z).

4} Goto step 6.

5) Compute s; =ged(m,z/3 ),sy=n/ged(n,z/3),t=y/3,X; = sgn(y).

6) If (8.3.2) holds, then 9s;s,t2 is a principal factor; otherwise, (8.3.2) cannot hold.

7} Stop.

We now consider the case where T < 2. In this case we have X;X,X; = -1 and

X = 3N(8;) - 3°mn. The equations (8.3.4), (8.3.5), (8.3.6), together with (8.3.7),
become

st2X;3 + s;mn2X,/(s,2t) + s;m?nX4/(s;2t) = 33-TN(B,)-3mn,

$1tX, + s,mX;/s; + mnXs/(s,t) = 31Ty,

$5tX5 + 510X /s, + mnXy/(sqt) = 317z,
Put py = s,tXy, pg = 51nXy/sy, p3 = mnX,/(s;t). Here, by using the last two equations
above, we have

PL+ P2+ p3 =317z,

P1P2 + P1P3 + PoP3 = -n31Ty,
(8.3.14) p1p2P3 = -mn?
It follows that py, p,, P53 are the three distinct roots of
(8.3.15) p3 - 31202 - n31Typ 4+ mn? = 0.
Also,

-p1/ p3 = st?Xy / (mn),

-2/ py = 810Xy / (s5%1),
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(8.3.16) -p3/ Py = s;mX3 / (514).
Thus, we see that
3% mnpy / p3 |, 3% mnp, / pq |, 3% mnps/ p, |
are principal factors for F.
By using the above equations, we obtain
-mn(py / P3 + Pa/ Py + P3/ P2) = 33 N(B,)-3mn
and
P1%p2 + P13 + p3%p3 = n(3*™N(8,)-3mn ).
Furthermore, since
(P14 P2+ P3)(P1P2 + P103 + P2P3) - 3P1P2P3
= (P1%02 + 1032 + P2%03) + (P1P22 + P12P3 + Pap3?d),
it follows that
(P1P2%+P12p3+p2ps?) = -3%Tnyz+ 3mn®-(p12p,+0103%+p2%03)
= -32-2Ty7 . n33IN(B,) + 6mn?.
If we define
E(x,y,2) = X2y + zy2 + z2x,
then we have
E(01,02:03) = E(P2:p1,P2) = E(P2,P3,P1) = n(33™N(8,)-3mn).
On the other hand, we have
E(p1:p3,07) = -322Tnyz - n3*™N(8,) + 6mn?= E(p1,0,,p3)
and
E(p1:3:P2) = E(P2,1,03) = E(P3,02,01).
Let p,p",p" be the roots of (8.3.15). If E(p,p',p") = n(33-*™N(6,)-3mn), then
39 mnp /p" |, 3% mnp'/p |, 3% mnp" / p'|
are principal factors of S%. Further, by the conditions of Lemma 8.3.1, the least of these
must be | (mnp;)/ p3 | = st If E(p,p',p") = n(33N(6,)-3mn), then we replace p' by p"
and p" by p'. This is because if E(p,p",p") = n(33'TN(8r)-3rnn), then
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E(p,p",p") = n(33-*N(8,)-3mn).
Also, in the case where E(p,p",p") = n(33"*™N(8,)-3mn) we have

|mnp /p" | = | mnp; / p3 | or | mnp, / py | or | mnps / p, |.
Again, the least of these is | mnp; / ps |-

If p, p', p" are the roots of (8.3.15) and p, p', p" € Z, it is a simple matter to use
Newon's method to find one of them, say p. When p is determined, we then have to find
the other two zeros p' and p" subject to

E(p,p',p") = n(3>™N(8,)-3mn)).
If this does hold, since E(p,p',p") = E(p,p",p") , we get

g =(p-p)p'-p")p" - p)=E(p,p",0) - E(p,p',p")

= 9(mn? - 3% nyz - 2(3YHN(D,)).

Now,

pr-p"=(p%-p'(p +p") +pp")(pP"-p"(p +p) + PP/ g
By (8.3.14), we can deduce that

p2-p'p +p") +pp" =3p?-2(39p'z - 317yn
and

p2-p"(p + ) + pp' = 3p"2 - 231"z - 31Ty,
This means that

pp" = (9(p?p" - 23 Mz(p?p"+p'p"?) - 3yn(p'+p"?)

+4(329p'p"2?% + 2(3%)nyz(p'+p") + 32%y2n2) / g.

By using the fact that

p'+p"=3"z-p
and

p'p" = -n31Ty - p(317z - p),
we find that

pl-p" = w = (3%mn’z + 3(33%)nyz? + 4(3-2%)n2y?
+(6(3-*923+7(3 2nyz-mn?)p-(2(329)z2+2(3 Hny)p".
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Since

pl=(p' +p"+p'-p")/2
we get
(8.3.17) p'= (Bl z-p)+w)/2

Also, we have
(8.3.18) p"=317Tz.p.p\

Once p, p', p" are known, the least of |p / p"|, [p'/ pl, |p" / p'| gives us |py / p4| as
noted above. We proceed to find p,. With the values of p;, p, and ps, we use (8.3.16) to
find the values for X, X,, and X;. We verify our solution with (8.3.2). Here is a detailed

description of the algorithm for t < 2.

Algorithm 8.3.2, Given: 8, A, =(x + yd + z8) /3 and x = 3N(8,) - 3'mn.

1) Use Newton's method to find a root, p, of (8.3.15).

2) Use (8.3.17) and (8.3.18) to find p' and p".

3) |p1/ ps| < min{lp/p"|, |o'/ o], [p" / p]}. The remaining root is p,.

4} Use (8.3.16) to find X;, X,, and X;.

5) If (8.3.2) holds, then 3% mnp, / p4| is a principal factor for F; otherwise, (8.3.2) does
not hold.

6) Stop.

§8.4 Construction of A's.
Note that ife=1,8,=%y/3 and
et =v3 /N(y) =83 /A for A € Op,
it is important that we determine the upper and lower bounds for 6, in order for us to find
. Since 8,3 = y3%3 /27 and 0 < y < 3, we get
8,3 <vy3,

But, as o = y3 / N(y), it follows that
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0,° < N(y)eok.
By Lemma 8.3.1 we have
0. < N(y)ggk < Imne*
and
38, < kR +log(9mn).
Also, since
0, =vy%'/3,
we have
18" = P> /9.
But [6",2 = N(8,) / 6, (because [8'[> = 8'.0") and |y'}> = N(y) / y; hence, we have

N(8,) /6, < N() /¥
or

8, > N0y / NG&).
It follows that

6,3 > N(8;)%eo* / N(y)?
and

35, > kR + 3logN(6,) - 2log(9mn) > kR - 2log(9mn).
Thus,
(8.4.1) (kR - 2log(9mn))/ 3 < §, < (kR + log(9mn))/ 3.
Since

&, > ((r-1) / 4)log2
(see [Wil86]) (empirical evidence suggests that 6, = 1.12r), there are only O (log(mn))
values of &, to check if kR is known.
Hence, for each 8, which satisfies (8.4.1), we need to find the corresponding A,
such that
¥ =03/ A,

We first note that
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Ars1 = BN
If A, is known, then all the subsequent A, {1, Ary9, Ay, ---can be found by using Bg(f),
8,01, 8,(#2), ... Thus, our main objective is to find an initial A, .
By §6.3 we know that, for any 1, there exists a reduced ideal i, such that i, =1,
1<susp, §,=08,-jR,and 0 <d, <R. In fact, if
N(6,)3egk / N(¥)? < 8,3 < N(Y)ep¥ < Imnegk,
we have
N(8,)%eo! / N(y)? < 8,3 < N(y)eo! < Imney,
where i = k mod 3 and can only be 1 or 2. If k = 2 (mod 3), we can replace k by 2k and
therefore we may assume without loss of generality that k = I (mod 3). Hence, we may
assume that
(8.4.2) N(8,)%eq / (Omn)? < 8,° < N(y)gy < Imne,,
Suppose we have any u and i;,. We can use the technique given in §8.2 to compute
i, and then use our reduction algorithm to find ¢ ( < 1) such that
(8.4.3) (dsL{iyMis = LANI,’
and ig is reduced. Here, we know that 8 ~ R - 6, by Theorem 8.2.1. We next compute
(8.4.4) i2 = (V)a; (v E Z).

We now use our reduction algorithm again to find a, and y,, such that

(8.4.5) (vL(ap)a, = (L{ay)a;
and a,, is reduced. By using (8.4.4) and (8.4.5) we get
(8.4.6) (vyyL(a)ay, = (L(ay))is™

On the other hand, by squaring both sides of (8.4.3) we get
(¢S2L(iu')2)i52 = (L(is)z)iu 2

By using (8.4.6) to replace i, we have
(vivL(apes*L(iy)ay = (L(ay) LM,

It follows that
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21 1 32
(VYVL(T();D)SZL(IU) )av = (L(av))iuQ.

Initially, since L(is)2 > vL(a;) by Lemma 8.8.1, we know that

27 11 N2
(VYVL(?_I()S?LOB) ) = LG,2

We now continue to increase the value of v and ¥, until we have

FARCIRY:
(VYVL(?()iq))szL(lu) ) < L(iu)?'

and

(Wwﬂﬁ?%%ﬂy)>L@ﬁ.

In that case, we have
(VYV+1L(31)¢32L(iu)2) N L(iu)z S L(iu)2
L(is)2 8 g(i) 6mn

by Lemma 8.2.2. Hence we now have

L(i,)? JL(a1)0s2L(3i,)? ,
6(mn < . (S(is)z ) s L(lu)z-

(8.4.7)

Since ig ~ (1) and a, is reduced and principal, we have a,, = i,. Put

o = VYVL(31)¢52L(iu)2
L(is)? '

Since (w) i, = (L) i,% = (1( 1)8,2), we get
(@L(i) = (L{)88y2).

(8.4.8)

It follows that
(8.4.9) 88,2 = eglw,
where j € Z. Although j could be any integer, the following theorem allows us to restrict
the possible values of j in the case when the fundamental unit is not exceptionally small.
Theorem 8.4.1, Suppose that 8,0,2 = ggJw and 8, < (9mneg)!3. If g > (9mn)>, then
j=1.
Proof. Since

0,2 > N(8,)% = N(i,)% = L(i,)? = L(i,)? = o,

we have 8,2/ w > 1. Thus, j > 0.
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Suppose that j = 2. We first note that

. 8,2
g < 1L
w

Hence, we get
6,2 . (6mn)0,2

< 6mn(9mneqy)?3,
o  L(iy)? (9mngo)

ggsegil<

It follows that
g < (6mn)3(9mn)2.
Consequently, if eg > (9mn)°, thenj=1. W
We can use the method we are about to describe here to find A, if g5 > (9mn)°. In
the case where gg < (9mn)? , the determination of A; can be done by a direct search method
because there is a limited number of reduced ideals in the principal ideal class. Here, we are

especially interested in those pure cubic fields which do not have small regulators. We have

6,0,2 = ggw.
If p=86,/86,, then

8,3 = gqo.
Put

AM=w/p,
and we have

8,3 /7 = ¢

Since (see [WDS83] p.242) we know that L(i,) = 3mn and that L(i,) | N(8,,) for
any reduced i, and in our case gy > (9mn)?, we know that we can find 8, and i, such that
0,3 < L%/ (Omn)? < N(8,)%ey / (9mn)?,
Bus1’ > Lline1)%e0/ (9mn)2.
For this i,, we have the following
Theorem 8.4.2. For the selection of i, above, we have
1< p < (9mn)’.

Proof. Since p = wep/ 6u3, we get
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p > (9mn)weq / (L(i,)%e0) > (Omn)2 / LG, )A(L(,)? / 6mn) > 1.
Also,
p=weg/0,0 <w©Omn)28,M%/ Lliy,1)?
< L(i,)%(9mn)%(6mn)® (by Lemma 8.2.2 & (8.4.7))
< (3mn)2(9mn)%(6mn)° < Omn)’. m@

Before we leave this section, it is important to describe the technique that was used
in the computation of A, , where A, = (x + y8 + z8) / 3. In the process of finding A, the
coefficients can get fairly large. Thus, in order to eliminate the precision problem, we
elected to compute A, modulo p where p is a large prime. The main difficulty in computing
Ay is to calculate yy, ¢ and p. To solve this problem, we applied a method of Williams as
given in §5 of [Wil82].

We note that

(nL(ap)ay = (Laay,
where ag is not reduced and a, is reduced. In using the reduction algorithm of Voronoi to
reduce ay, a sequence of ideals ag, ay, a3, , *++, a, is found. For each ideal a;, Voronoi's
algorithm generates the integers o, Ml(i), Mz(i), M3(i), NI("), NQ(E), N3(i). If we put

ve® = M D + MyD8 + M;D82) / o,

ya® = (N, O + NyD5 + N3 D82y / o,
then the module Z + y,\Z + y,0Z is the fractional ideal (1 / L(a;))a;. Thus, if we define

i1
Yl = 1, Y] = l—lyg('),
1=

Y1 =Yg Gio1 = a0y,
then {y.1, Yk, Cx} is a basis of (1 /L(a;))a1. It follows that there exist rational integers
1),y 2,0, x,®), y,&), 2,8 such that

Yieen = X1+ y1 Wy + 2,0,

Cre1 = %O+ 7201 + 2500,

Thus, if we put
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ti = (G1® + G008 + G3H82) / oy,
Cx = (H{W + H,008 + H;0082) / oy,
we get
G;tk+) = x, (G (K) 4 y, WG, &) 4 2, WK,
(8.4.10) H&+D = x,0G® 4+ y,00G,kD 4 2, 0OHE (1=1,2,3)
Also, G{(D) = o1, G, =0, Gy =0, G, = M; D), G, = M,(D, G, = M, (1),
H{®@ = Ny D, Hy® = NyM), H4@ = Ny D),

If we start with k = 1 in (8.4.10), we can use (8.4.10) as a pair of congruences
modulo p to find y, (mod p). However, we do need to show how to find x;(9, y;(®), 2,0,
k =1,2. Let M;"®), M,*®), M3*(K), N;*®), N,* 8, N3*&) be defined by

1/ 38D = (M 00+ My" R + My"]82) / o,
yp&D / yg(k'l) = (N;"® + Ny K5 + N3 K82y / o
Again, by using the method of [Wil83], we have

B x1® = My0ON, "0 - M, (ON,* (), Ep"x,0) = NN, " (K) - N4 (ON,*(K))

E; "z;10 = M50OM, " ® - M, 00M,*®), Ey 25 = NN, () - N, (M, " (),

ox;® = M{®y, 0OM; @z, 0ON, K)oy x, 0 = N1 By, 00N, ®. 2, 0N, "),
where By " = My (ON;*(0) - M, RON, "),

Similiarly, we can apply the above technique to find ¢ and p. If y,, ¢ and p
(mod p) are known, we can easily compute A, modulo p. Hence, we can determine X,, Y,,
Z,, W, € Z/pZ such that

A; modulo p = (X, + Y, 8 + Z.8%) / W,.
Once we find the initial A, modulo p, we can use

Mrs1 = (0,00)%, modulo p
to compute the subsequent Ap,q, Ary, Apyz, «- modulo p. If principal factors exist for F
and F is an exotic field, then one of the above A's satisfies (8.3.2). In that case we convert

K+ Y S+ Z,8%) / W, to (x + yd + z8) / 3 by finding W1 (mod p). From §8.3 it is known
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that [x|, |y|, |z| < 27mn. Thus, if p > 54mn, then the coefficients x, y and z can be

computed exactly. We further illustrate the above idea for constructing A, by

Algorithm 8.4.1. (Given that kR, p is a prime and p > 54mn.)

1y

2)

3)
4)

Use the method discussed in §6.3 to find h%R where h* € Z.1f 3 | h*, we will have
a reduced principal ideal ig such that 8(ig,i) = h*R/3 and ig = 11. In this case,
replace h™ by h™ /3 and repeat until we find that 3 1 h*. Putk = h* and we have
kR.
Find a reduced ideal i, such that 38, < 3log(L(i,)) + kR - 2log(9mn)

and 38;,1 > 3log(L(i,)) + kR - 2log(9mn). Now, we have i, =1i,.

Use the method presented in §8.2 to Compute i,
Use the reduction algorithm to find ig such that (o;L(3i,')ig = (LA, In the
process of finding i, we also calculate logdg and ¢g modulo p by using the method

discussed above,

5) Compute f and a; where i = (f)a;.

6)

7)

8)

9

10)
11)
12)
13)
14)
15)

Use the reduction algorithm to find a,, such that (y,L(a))a, = (L(a,))a;. In the
process of finding a,, we also calculate logy, and y, modulo p by using the method
discussed above.
Increase the value of v until
2logL(i,) - log(6émn)} < log(vva(al)cbszL(iu)z) - 2logL(is) s 2logL(i,) holds.
Use (8.4.8) to find w modulo p.
Setj < 1 and b; < i,
Use Voronoi's algorithm on b; to find by, 1.
Use the technique above to compute 85,1 modulo p where by = (8j,1)bj41 -
If bj,1 = a, then goto step 15.
j<i+ 1.
Goto step 10.
Find A, modulo p (= (X; + Y8 + Z,8%)/W,) where A, = o / 841 modulo p.
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Stop.

§8.5 The overall algorithm,

Since we have discussed all of the components of the algorithm for determining

principal factors for F, we are now able to present the overall algorithm. For a given pure

cubic field F, the following algorithm determines whether or not principal factors exist for

F, in the former case, then this algorithm will also find the principal factors.

Algorithm 8.5.1,

Given: Q(\3/'E:), p is a prime and p > 54mn.

D

2)
3)
4)
5)

6)

7)

8)
9)
10)
11)
12)
13)

Apply Algorithm 8.4.1 to find kR, A; modulo p (= (X+Y,3+Z:8%) / Wy), 8,0, 1,
and §;.

Set count = 1.

Seti=rand dist = §,.

Use the formula presented in §8.3 to find N(6;)

If N(6;) | S% then N(6;) is a principal factor for F. Print the principal factor and goto
step 20..

If X; = W;N(8;) (mod p), then convert (X, + Y, + Z,;5%)}/ W, to (x + y& + z8)/3
by finding W1 (mod p), apply Algorithm 8.3.1 and goto step 9.

If X; = W;{(N(8;)-3%1mn) (mod p), then convert (X, + Y8 + Z,32)/ W, to

(x + y8 + z8) / 3 by finding W1 (mod p), apply Algorithm 8.3.1 and goto step 9.
Goto step 10.

If a principal factor is found, then print that principal factor and goto step 20,
Compute Aj,1=(8,M)%A; (modp) where Ajyq mod p=(Xy1+Yi418+Z 102/ Wiy 1.
Apply the Voronoi algorithm on Bg(i) to find Bg(i+1),

Compute dist < dist + logeg(i).

Setie—i+1,
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14) If dist < (kR + log{(9mn))/ 3, then goto step 4.

15) If count = 2, then goto step 19.

16) Set count < count + 1, kR < 2kR.

17) Apply Algorithm 8.4.1 (except step 1) to find A, modulo p
(= (Xp+Y,3+2,8%) / Wy), 8,0, i, and 8.

18) Goto step 3.

19) Print 'Principal factors don't exist for Q(?/E)'.

20) Stop.

Before we leave this section, it is important to discuss the complexity of the above
algorithm. In step 1 of Algorithm 8.4.1, it is known that the computation of kR is
O(c?/5+¢) if the GRH for L, holds. If we do not assume the GRH, there is an algorithm
for finding R of O(R/2¢¢) (see [BW88)). As for the remainder of Algorithm 8.4.1, it is
known that all those operations involving ideals have a complexity of O(c®). Thus, the
complexity of Algorithm 8.4.1 is O(c2/5+€) under the truth of GRH. We further point out
that Algorithm 8.3.1 and Algorithm 8.3.2 have a complexity of O(c®). Since there are only
O(loge) values of A to check, we can conclude that Algorithm 8.5.1 has a complexity of
O (c2?/5+¢) if GRH holds. Also, Algorithm 8.5.1 has a complexity of O (cl/2)

unconditionally.

§8.6 Determination of r*.

If e = 0, then r* can be either 1 or 3. In [Wil82], we have seen that the value of r*
can be calculated by using the Voronoi algorithm. However, this method is very time
consuming if gq is large. In this section we describe a new theorem for determining r*. In
order to develop our criterion for finding r*, we have to present the following results.

Denote by A/3 (mod mn), where A € Z, the value of A/3 (mod mn) when 3| A or

the value of 3" 1A (mod mn) when 3 | mn.
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Lemma 8.6.1. If o = (a; + 220 + 238)/3€ O, B = (by + b3 + b38) /3 O,
y=ap = (cy +cd +c38) /3€ Op, then
¢1/3 = (a1/3) (b1/3) (mod mn).
Proof. We know that
3¢y = agby + a3b,08 + ayb38d.
If 3 | mn, then since 3¢q = a;b; (mod mn), we get
¢1/3 = (a1/3) (b1/3) (mod mn).
If 3 | mn, then 3 | ged(a;, a9, a3) and 3 | ged(by, by, bs). It follows that
3¢y =agby (mod 9mn).
Thus, we have
¢1/3 = (a1/3) (b1/3) (mod mn). M
With this lemma we have the following
Theorem 8.6.1. Let g5 = (g1 + g,0 + g40) / 3 be the fundamental unit of F. If 3 | k
(k€ Z) and
N =g = (G + G,0 + G30) /3,
then g; = 3 (mod mn) if and only if G; = 3 (mod mn).
Proof. By the previous lemma, we have
G,/3 = (g3/3)% (mod mn).
Also, since N(gg) = 1, we have
81> + 8278 + 23°0° - 3008985 = 27.
Hence, we have
(g4/3)° = 1 (mod mn).
Consequently, we have
G,/3 = (g4/3) (mod mn) or G4/3 = (g1/3)? (mod mn).
If G4/3 = (g4/3) (mod mn) , then
G = g1 (mod mn).
IfG/3= (gi/3)2 (mod mn), then
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(G1/3)(g1/3) = 1 (mod mn).
Hence, we have
Gigy = 9 (mod mn).
It follows that g; = 3 (mod mn) if and only if G; =3 (mod mn) . &

We know that r* = 3 if and only if g; = 3 (mod mn). Consequently, it is important
to have a criterion for determining whether or not g; = 3 (mod mn). We can determine that
by using
Theorem 8.6.2. Let ¢gX = 83 /A, where 6, A € O, A= (x + y5 + 28) / 3, k€ Z,
3 | k. If ged(N(8),mn) = 1, then we have g; = 3 (mod mn) if and only if x = 3N(6) (mod
mn).

Proof. Let e5% = (Gy + G0 + G38) /3, 8 = (t; + t,0 + t58) /3. We get
27N(B) = t;3 + 1,383 + 1,383 - 385ttt

Thus, we have
(t;/3)® = N(B) (mod mn).

Also, ?\eok = 03, and we obtain
(t;/3)3 = (Gy/3)(x/3) (mod mn).

Hence,

(8.6.1) N(8) = (G/3)(x/3) (mod mn).

Here we divide our proof into two cases; when 3 | mn and when 3 | mn.We first
consider the case of 3 | mn. In this case, if x = 3N(6) (mod mn), then
x/3 = N(0) (mod mn). By (8.6.1) we get G; = 3 (mod mn). Thus, we have

gq = 3 (mod mn),
by Theorem 8.6.1. On the other hand, if g; = 3 (mod mn), then G;/3 = 1 (mod mn).
Thus, we can easily deduce that
x = 3N(0) (mod mn).
In the case where 3 | mn, if we have x = 3N(8) (mod mn), then

x/3 = N(0) (mod (mn/3)).
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By (8.6.1) we get

N(8) = N(6)(G,/3) (mod (mn/3)).
This means that

G4/3 =1 (mod (mn/3)).
It follows that

gy =3 (mod mn).
On the other hand, if g, = 3 (mod mn), then G; = 3 (mod mn). Hence, we get
G,/3 = 1 (mod (mn/3)) which implies that

x/3 = N(0) (mod (mn/3)).
Thus, we have x = 3N(0) (ﬁlod mn). B
Lemma 8.6.2. Let6 € OF, If p | mn and p@ || N(B), then p< | (6), where (p) = p3.
Proof. Lety = 0'0" € OF; we have

D3| (B)().
If pB || (8), where B < a, then p3-B | (y). It follows that N(p)3%-B | N(y). Since
N(p) = p, we get p32-B | N(B)2. Since f < a, we have 3a-f > 20 and 3t - B = 2 + 1.
Thus, we have p29+1 | N(8)2 and p*1 | N(B), a contradiction. W
Corollary 8.6.2. If 6 is a minimum of OF, then p3 { N(8) if p | mn.
Proof. In this case we have p3 | (). Hence, we have 6 = py, where y € OF.It follows
that © cannot be a minimum. W

By using the above results, we have the following theorem for determining whether

or not g; = 3 (mod mn).
Theorem 8.6.3. Let gk = 63 /A, where 6, A€ O, 3 [ k, A = (x + y6 + 28) / 3. We
have

g; = 3 (mod mn)
if and only if

x/f = 3N(6)/f (mod (mn / 31))
where 31 || mn, f = gcd(N(8),m2n2).
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Proof. Since
heok = 63,
we get
(8.6.1) 63 + 1,783 + 15383 + 688ttty = 3(xG; + G288 + G3yd8)
where 8 = (t; + 1,8 + 38) / 3. Also,
27N(6) = t;3 + 1,38 + 15383 - 3851, t,t5.
Further, if p | mn and p | N(8), we have pl || N(8) for j = 1 or 2 by Corollary 8.6.2. Now
pl || £ and ged(N(0)/f , mn) = 1. Since pJ | (8) and p3 | (A) , we have A = piu; hence, A =
fv. Putting v = (r; + 1,0 + 138) / 3, we get x = fry, y = frpy, z = fry. Now if pl | N(8), then
p | t;. Further, if j = 2, then p | tyt5. Thus, f| t;tst; and
t;3 + £,38% + 1,383 = 27N(8) (mod 3fmn).
By (8.6.1) we have
27N(8) = 3xG; (mod 3fmn).
1t follows that
Q(N(6Y/L) = (x/f)G; (mod mn).

Since m and n are square-free numbers, we have either 3 [ mn or 3 || mn. We first
consider the case where 3 [ mn. If g; = 3 (mod mn), then we have G; = 3 (mod mn) by
Theorem 8.6.1. Consequently, we get

x/f = 3(N(8)/f) (mod mn).
On the other hand, if x/f = 3(N(8)/f) (mod mn), we get
9(N(0)/f) = 3(N(6)/f)G; (mod mn).
Thus, 3 = Gy (mod mn) and g; = 3 (mod mn).

We now consider the case where 3 | mn. In this case we have

3(N(B)/1) = (x/)(G4/3) (mod (mn/3))

Here, g; = 3 (mod mn) implies that G;/3 = 1 (mod (mn/3)). Hence,
x/f = 3(N(B)/f) (mod (mn/3)).

On the other hand, if (x/f) = 3(N(6)/f) (mod (mn/3)), we get
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3(N(B)/f) = 3(N(8)/D)(G/3) (mod (mn/3)).
This means that G;/3 = 1 (mod (mn/3)). Hence, we have g; = 3 (mod mn). &

Hence, we can use the above theorem to determine r*, However, the amount of
precision required to compute x can get quite large. In order to reduce the amount of
precision we can use the following technique to find r*.

We note that

8%/ \ = g
where 0, € Op, A=(x+y5+28) /3, k€ Z, 3 | k. 1f 8,3 ~ gX, then A should be
small. Thus, we select 6, such that
6,2 > o
and
0,.1° < gok.
Consequently, A > 1. Since 8, = eg(“-Deu_l, we have
A < (85013,
It follows that
A < (6mn)?,
Since
N = AN = NGBy,
we get
V] < N(8,)2.
From §8.3 we have deduced that |x| < A + 2[\'|. Since N(8,,) < 3mn, we have
x| < (7mn)3.

We now select three distinct primes py, py, p3 such that

P1p2p3 > 8(7mn)?

and py, p2, p3 = 14mn.By using these three primes, we find
x/f = r{ (mod pq),
x/f = ry (mod py),
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x/f = 14 (mod p3).
Put P = pypsp3 and P; = P/ p; (i = 1, 2, 3). By the Chinese Remainder Theorem, we know

that if
EiPi=1(modp) (i=1,2,3),

then
3
x/f = Z(EiPiri) (mod P).
1=1
Here, our objective is to find x/f (mod mn). We note that [x/f| < P/8 and
3
W= 3 i) - P
1=

where j € Z. Thus,

3
P/2<4x/f= 2(4EiriPi) -4jP<P/2.
i=

We define 4&;1; = k; + p;s;, where 0 s k; < p;. Note that 0 < s; < 4p;. Hence, we can easily

deduce that’
i 3 3
(48riP) = Y (Pik)) + PY's;.

Thus, we get
3 3
-1/2< X(Piki)/P + zsi -4j<1/2.
1= =]

Since

3
0< Z(Pik;)/P <3,

we have

3 3 3
72 <172 - E(Piki)/P < zsi -4j<1/2 - };(Pikl-)/P < 1/2.
i=1 1=1 1=

Hence, we obtain
3
0<( si+7/2)/4-j<1.

Thus,
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j= [(zgsim)/s].

We can now compute j by using numbers which do not exceed 56mn. Once j is known, we

can find x/f (mod mn) by computing

3
};@iPm) - jP (mod mn).

§8.7. Computational Results.
Algorithm 8.5.1 was implemented in FORTRAN-H (extended) for an Amdahl 5870

computer. The extended feature is sufficient for ¢ values which are less than 1.1x1012, We
further note that this program is a modification of the program used in Chapter 6, along
with some additional subroutines. A glance at Table 8.3.1 of §8.3 reveals that there seem to
be very few My fields; nevertheless, Mayer [May88] has conjectured that there exists an
infinitude of such fields. In order to test this conjecture and our program we decided to
search for M fields for large values of ¢. To find such ¢ values, we used a theorem of
[May8&8].
Theorem 8.7.1. If ¢ = mn? = 22, *4 (mod 9), m > n, m = -n {(mod 3), and Q(x3/_c) has a
principal factor with norm 3n2, then Q(?/E) is of type

M, <> m > 8n,

M; < 8n>m > an,

My« on>m
where o ~ 1.400805873 and 1.40080587 is an approximation of a positive zero of the
polynomial x4 +x3+x -8 € Z[x) &
To simplify matters, we elected to examine values of ¢ (= 2, £4 (mod 9)) for which m and
n are the distinct primes p, q respectively. In this case the only possible principal factor sets

are

Sy = { 3% 3pq, 3p?, 9q, 9p?q?, 9p}
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S, = {94 9pq, 9p?, 3, 3p?q?, 3p}

S3 ={ ¢% pg, p% g, P*q% p}

Sq = {3, 3pq?, 3p%q, 9, 9p%q, Ipq?}.
If N(e) is a principal factor for a € OF then

o=x+yd+ zd
and

x3 + pg?y3 + p2qz3 - 3pgxyz = N(a).
Thus, if q = 1 (mod 3) we must have (N(a)/q); = 1. We further restrict our ¢ values by
insisting that p = -1 (mod 3), q = 1 (mod 3), (9p/q)s = land (3/q); = 1. It follows that
since (9p/q); = land (3/q); = 1, we must have (3p/q); = 1 and (p/q)s = 1; hence S,, S, Sy
cannot be principal factor sets for these ¢ values. It follows, then, that if we select a ¢ value
where ¢ = pg? = +2, +4 (mod 9), p > q, p, q are primes, p = -1 (mod 3), q = 1 (mod 3),
(9p/q)s = 1, (3/q); = 1 and e = 1, then 3¢? is a principal factor for Q(\3/E). Furthermore, if
aq > p and the above criteria hold, then by Theorem 8.7.1 Q(%) is of type M.

We tested our program by finding all the ¢ values where

¢ =pq?= 2, x4 (mod 9), 1x1012 < ¢ < 1.01x1012,

aq >p > q, p, q are primes, p = -1 (mod 3),

q=1(mod 3), (9p/q); = 1, (3/q)3 = 1.
There were 185 c values found. For each of these ¢ values, we determined whether or not
principal factors exist for Q(%/'é). Curiously, it turned out that ¢ = 1 for every one of these ¢
values. All 185 pure cubic fields were computed in about 3.5 CPU hours, in which over 3
CPU hours were spent on computing kR. In fact, if kR is known, then the average running
time required for a ¢ value, where ¢ = 1x1012, is approximately 6 CPU seconds. In Table
8.7.2 below, we give the first 18 ¢ values (all the ¢ values which lie between 1x1012 and

1.001x1012) and the corresponding principal factor found by our program,
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c m n principal factor
1000176144971 16691 7741 32x7741
1000178086007 14543 8293 3x82932
1000203058121 12329 9007 32x9007
1000267680551 10559 9733 3x97332
1000312204757 13397 8641 3x86412
1000331866217 14033 8443 32x8443
1000344830099 11171 9463 32x9463
1000399868177 10457 9781 32x9781
1000429179257 10193 9907 3x99072
1000564085237 14957 8179 32x8179
1000675948847 13127 8731 3x87312
1000733088683 16883 7699 327699
1000738466033 14657 8263 3x82632
1000740540089 12809 8839 3x88392
1000770294071 17231 7621 32x7621
1000794654569 14489 8311 3x83112
1000862291183 10247 9883 32x9883
1000882120313 11177 9463 3x94632

Table 8.7.2

As we were easily able to find 185 M|, fields for large values of c, our results
provide some numerical confirmation of Mayer's conjecture. It is remarkable that every
field tested did have principal factors. If it could be proved that the Diophantine equation

x> + pq?y? + p?qz’ - 3pgxyz = 9p
is always soluble when the primes p, q satisfy the conditions that pg? = +2, =4 (mod 9),
p=-1(mod 3), g=1 (mod 3), 9p/q); = 1, (3/9); = 1, aq > p, then Mayer's conjecture

would gain even more confidence.
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Chapter 9.
Conclusion
§9.1 Open Problems.

In the previous chapters, we discussed a number of computational algorithms for
solving various problems in complex cubic fields. These problems include: the construction
of all non-isomorphic complex cubic fields for a given bound on the absolute discriminant,
the computation of the class number and class group structure of a complex cubic field, the
determination of all non-isomorphic complex cubic fields for a given fundamental
discriminant, the calculation of the regulator of a pure cubic field, the search for cubic
polynomials of the form x3 - ¢ which have a high density of prime values, and the
computation of principal factors in a pure cubic field. In this chapter, we conclude our
thesis by discussing a few unsolved problems that are related to it.

In Chapter 2, we discussed an algorithm for finding all non-isomorphic complex
cubic fields for a given bound. As we merntioned earlier in Chapter 4, this algorithm is
inefficient when the absolute value of the given bound is large. Furthermore, it is of some
interest to continue the investigation of the Davenport and Heilbronn densities by extending
the upper bound on the absolute discriminant. In order to do this, we need an efficient
algorithm for counting the number of non-isomorphic complex cubic fields for a given
bound on the absolute discriminant without actually finding the generating polynomial for
each field. Although we do not have such a fast computational algorithm for solving this
problem, it may be that the paper by Davenport and Heilbronn [DH71] could be used to
shed some light on this problem.

In Chapters 4 and 5, we presented a computational version of the CUFFQI
algorithm of Shanks. Unfortunately, this algorithm is restricted to discriminants which are
fundamental. Hence, the next logical step would be to generalize the CUFFQI algorithm
such that it can produce all the non-isomorphic complex cubic fields for any given

discriminant. Although we do not know how to implement such an algorithm at this point,
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it is possible that some of the ideas in [Ber31] could provide some techniques for solving
this problem.

In Chapter 6, we gave a fast algorithm for computing the regulator of a pure cubic
field. Since parallel processors are widely used at the moment, it would be of some interest
to see if it is possible to implement a parallel algorithm for finding the regulator of a pure
cubic field or indeed any complex cubic field. If such an algorithm exists and we have
access to a parallel machine, then we should be able to find some pure cubic fields with
large regulators.

Let ¢ be a positive cube-free integer. In Chapter 7, we investigated cubic
polynomials of the form x3 - ¢ which have a high density of prime values. It would be of
some interest to investigate more general polynomials like x3 + bx - c.

The problems mentioned above represent only a sample of the many open problems
related to this thesis. There is much more work yet to be done in the development of

algorithms for solving problems arising in cubic number fields.
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Coefficients of the generating polynomials X + AX + BX + ¢ for all the
distinct cubic fields with negative fundamental discriminant D.

Note: 1) A, B and C are the coefficients of a generating polynomial of a
complex cubic field before Tschirnhausen transformation is applied.

2) A’, B’ and C’ are the coefficients of a generating polynomial of a
complex cubic field after Tschirnhausen transformation is applied.
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3

Coefficients of the generating polynomials X + AX + BX + C for all the
distinct cubic fields with negative fundamenta)l discriminant D.

Note: 1)

2)

D = -3082320147153282331

(1) A=
a’'s
c'm=

(2) A=
a'=
c'm

(3) A=
3=
c'=

(4) A=
a’'ms
Cc'-

(5) A=
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(=R

(6) A=
a’'m=
c'm

(7) A=
ar=
c'm

(8) A=
al'=
[

(9) A=
a’'m
c'=

(10) A=
Q-
C'=

(11) A=
a's
(=R ]

(12) A=
a’'m
c'=

(23) A=
am
c'=

(14) A=
a’'m

A, B and C are the coefficients of a generating polynomial of a
complex cubic field before Tschirnhausen transformalion is applied.
A’, B’ and C* are the coefficients of a generating polynomial of a
complex cubic field after Tschirnhausen transformation is applied.
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144817
416860622638

-563831857 C=
3
~5498036344584

-100492019 C=
1
~729007893642

ind’w

b=
ind’'=

b=
ind‘m=

b=
ind’=

b'm
ind’wm

b=
ind’=

b'm=
ind’ =

b'=
ind‘m=

h'm
ind’m

b'm
ind’m=

b=
ind’m

b=
ind’=

bhfm
ind’ms

b=
ind’'=

b=
ind’'=

b=
ind’m

b=
ind/m

1331

~1870812214694 INDEX=
-209805459
4321

5958323630596 INDEX=
-590197229
6649

567367621356 INDEX=
-128493505
259

-17561600076692 INDEX=
123795864
5832

3133068035374 INDEX=
-182291007
8839

10415182217652 INDEX=
~898465845
3009

~376068777110 INDEX=
18922183
1117

194712604294 INDEX=
146724169
2105

26701253678 INDEX=
-16201429
27

139311205549 INDEX=
7580962
413

20840352506 INDEXm
6078901
64

329432802344748 INDEX=
4421956
343

4915355597524 INDEX=
~546360312
64

6476521262860 INDEX=
483125059
5693

-5498036344584 INDEX=
-563831857
5671

~729007893642 INDEX=
-100492019
1827

4321

6649

259

46607

8839

3009

1117

2105

27

413

64

974577

64

12862

5671

1827



(31)
a-
cf

(32)
a'm
cim-

(33)
a'm
Cc'=

(34)
a'm
c’m

(35)
a'm
=

(36)
a‘m
¢l

(37)
arm
c'm

(38)
a’'m=
c’'m

(39)
a’tm
-2 ]

(40)
a‘m
c'm

(41)
a’'m=
ctm

(42)
alm
c’'m

(43)
a’'m
c'=

(44)
a'm
c’'m

(45)
a’'m=
¢'-

(46)
a'm=
c’m=

(47)

a'm

Am

A=

Am

Am

A=

Am

Am

Am

Am

A=

A=

Am

Am

B=

Bm

Bm

B=

B=

B=

B=

B=

Bw

Bw

Bm

B

Bm=

~69672446 Cw

1l b=

1286631308004

~327635760 C=
71115
643549712416

~266940662 Cw
[+]
2301763118213

-261731665 C=
201823
12663558144

221587565 C=

ind’m

b'=
ind’'=

b=
ind’'=

brm
ind'=

1l b'm=

458459891358
494122521 C=
24306
1936814422023
~245367257 C=
o]
1882588100228
276164784 C=
1
-2045856649580
-3046599 C=
1
-9350451432
~57287742 C=
1
730857204756
403433183 C=
43683
37933056

72480914 C=

ind'm

b=
ind’m=

L=
ind’m=

b’
ind’'=

b=
ind’'=

b'w
ind’'m=

b’
ind’=

1 b'=

-370263640492

118953691 Cw~

ind'=

1l b'm

204472690144

285163966 C=
54303
303290991250

12730189 C»=
[+]
12726586510

770541745 C=
91318
245515365836

55710502 Cw=

ind’'=

b'm
ind’=

brm
ind/m

b=
ind'm=

1286631308004 INDEX=
-69672446
3750

-10807268013248 INDEX=
396901297
4537

2301763118213 INDEX=
-266940662
4661

2170054954542 INDEX=
~100059840
1728

458459891358 INDEX=
221587565
3995

-5885198556426 INDEX=
-85793084
9503

1882588100228 INDEX=
~245367257
3446

~2045856649580 INDEX=
276164784
8000

-9350451432 INDEX=
~3046599
27

730857204756 INDEX=
~571287742
2106

251809882274 INDEX=
-117056
64

-370263640492 INDEX#
72480914
1302

204472690144 INDEX=
118953691
1597

~1945936183724 INDEX=
129570025
6175

12726586510 INDEX=
12730189
64

=-13123112610518 INDEXw
270630373
5941

407226486753 INDEXm
55710502

3750

31264

4661

4241

3995

21447

3446

8000

27

2106

9261

1302

1597

7954

64

45851

1295



c'm

(48)
ar-
c'm

(49)
alm
Cc'm=

(50}
a’'=
[

(51)
Btm
c’'m

(52)
a’'=
c’'w

(53)
a'=
c’'m

(54)
a’'=
Crm

(55)
a’=
c'm=

(56)
a’m
cim

(57)
A=
c’m

(58)
a‘m
o=

(59)
a’'m
Cc'm

(60)
a’m
c’m

(61)
a’'=
crm=

(62)
a‘m
A

{63)
a’'m
c’'m

A=

A=

Am

Am

Am

A=

Awm

Am

Am

Am

Am

A=

Am

Am

Am

A=

B=

B=

B=

B=

B=

Bm

B=

B=

B=

Be=

B

B=

Bm

Bm=

Bw=

407226486753

789041331 C=
30519
1867275539792

309238825 Cw=
1
-2010030782784

-4055654 C=

ind’m=

b=
ind‘w

b=
ind’'=

O b'=

3161793041

-831942938 C=
-25433
1756326131740

10374276 C=

ind’=

b'=
ind’m=

1l b'=

-7453135844

18738951 C=
1
-176668121484

-498541627 C=
119643
1957277282752

742191418 C=
93963
17035330576

-866689532 C=
~25840
1979324842211

704848220 Cm
19155
3150303950884

769554341 C»=
19282
1942818382653

103290825 C=
1
-419572462778

258309783 C=
56632
363048498153

-209138370 C=
1
1415943602596

~639087203 C=
[+}
6531485795506

-224764037 C=
1
3076514562370

ind’w=

b'm=
ind'=

b'm
ind’'=

b/m
ind’m

b=
ind'm=

b’'m
ind’'=

b’m
ind’'m=

b
ind’'=

b=
ind’'=

b=
ind’'=

bfm
ind’'=

b’m
ind’'=

3282406639768

-2010030782784

3161793041

11136360120063

-7453135844

~176668121484

~7237424360430

4386818239527

12199187799637

10987864618956

10711716180436

-419572462778

-2270283899490

1415943602596

6531485795506

3076514562370

1295

INDEX=
87042916
8308

INDEX=
309238825
8589

INDEX=
-4055654
1

INDEX=
322541682
9766

INDEX=
10374276
44

INDEX=
18738951
531

INDEXw
933861544
10648

INDEX=
-76371449
1331

INDEX=
294676902
9613

INDEX=
98569951
9001

INDEX=
11435720
6973

INDEX=
109290825
1799

INDEX=
165656534
6647

INDEX=
~209138370
2386

INDEX=
-639087203
5912

INDEX=
-224764037
8257

27053

8589

18415

44

531

17263

26441

21419

38884

39957

1799

8217

2386

5912

8257



(64)
a‘m
c'm

(65)

a’=
[

(66)
a‘m
c'm

(67)
a'm
C-

(68)
a‘m=
¢'m

(69)
a'm
c'=

(70)
a’m
c'=

(71)
artm
c'=

(72)
arm=
c=

(73)
a’=
c’'=

(74)
a'ms
cr=

(75}
a’'m
o=

(76}
a’'=
c’'m-

(77)
a’m
c’'m
(78)
ERE )
c’m
(719)
a'm

[

(80)
a'=

Am

Am

Awm

A=

A=

Am

A=

A=

Am

Aw

A=

Am

B=

Bm

B=

Bwm

Bm

Bm

B=

B=

~196201851 C=
1
1698938996224

=-243939410 C=
1
-1466713713468

-36273259 C=
1
-260280995464

774844221 C=
51334
6544984333797

213211369 C=
1
3833475078718

272056301 C=
1
668214252656

=102797395 C=
1
1300353980172

361295383 C=
1
2086719678280

-81423207 C=
1
344223490264

73581703 C=
0
678865785508

517131503 C=
1
813327814826

~863620859 C=
~6143
772082187072

-522211436 C=
~10688
2024064885553

-336691514 C=

b'=
ind’=

b=
ind’'=

b=
ind'=

b'm
ind'=

b=
ind’'m

b=
ind’'m

b=
ind’m

b=
ind’'=

br=
ind’'=

b=
ind’=

b=
ind’ =

b=
ind’m=

b=
ind’ =

O b=

2377915259121

3649141 C»=
327577272

-102709384 C=
—70812957515;

24081319 C=

ind’'=

b=
ind’'=

b'=
ind =

1698938996224 INDEXm
-196201851
3935

-1466713713468 INDEX=
~243939410
66

-260280995464 INDEXw=
-36273259
729

-2295982545932 INDEX=
641208414
16023

3833475078718 INDEX=
213211369
11887

668214252656 INDEX~
272056301
5481

1300353980172 INDEXw
~102797395
3661

2086719678280 INDEX=
361295383
93867

344223490264 INDEX=
~81423207
581

678865785508 INDEX=
73581703
2134

813327814826 INDEX=
517131503
13611

-38903953797756 INDEX=
60986072
2632

10892898266673 INDEX=
208740606
8321

2377915259121 INDEX=
~336691514
1

327577270 INDEX=
3649141
8

~708129575152 INDEX=
-102709384
1728

82181832428 INDEX=
24081319

3935

66

729

25493

11887

5481

3661

9967

581

2134

13611

111453

29233

1728

278



(81)
a‘m
o=

(82)
a’'=
c’-

(83)
a’m
[~

(84)
a’m
[ 3

(85)
a’'=
c'm

(86)
a’'m=
c’m

(87)
alm
c'm

(88)
a’=
c’=

(89)
a’m
c’/m

(90)
a’'w
c'm

(31)
a‘m
c’m

(92)
a’'m
cim

(93)
8-
c’'m

(94)
a’m
c’m

(95)
a’=
crm

(96)
a‘ms
C'm

A=

Am

Am

A=

A=

Aw

Am

Am

Am

Am

A=

Am

A=

Am

Bm

B=

B=

B=

Bm

Bw=

B=

B=

B=

B=

Bm=

Bm

Bm

Bm

82181832428

~659360576 Cm
~26647
3770661231152

-174326884 C=
1
1449576728336

~-31050600 Cm=
1
98789335812

60072471 C=
1
-634347901994

18069808 C=

ind’'=

b=
ind'=

brm
ind’'=

b'=
ind'm=

b’ =
ind’'=

0 b'=

8442015013

416053313 Cw
42486
32166589539

57230401 Cm
¢}
918900261906

-833994461 C=
o}
9305737677968

=582003419 C=
-21494
3081663101313

~111389012 C=
1
1158333155664

-500446787 Cm=
1
6014755893236

134324291 Cm=
71683
11823208512

353934265 C=
47571
92741369036

134729795 Cm=
1
1616464113450

-488459369 C=
83269
64000000

324237029 C=
1
-1725137540446

ind’m=

b=
ind’w

b'=
ind’'=

b'/w
ind’=

b=
ind‘=

b
ind’'=

b'=
indg’'=

b=
ind’=

b=
ind’m

b’m=
ind’'=

b'=
ind’=

br=
ind'=

278

~9517320971072 INDEX=
248819527
13553

1449576728336 INDEX=
~174326884
3396

98789335812 INDEX=
-31050600
216

-634347901994 INDEX=
60072471
1951

8442015013 INDEX=
18069808
91

~779394469726 INDEX=
-7768082
1799

918900261906 INDEX~
57230401
2764

9305737677968 INDEX=
~833994461
2402

8869811775024 INDEX=
244459364
12167

1158333155664 INDEX=
-111389012
3156

~6014755893236 INDEX=
-500446787
12419

-620454223852 INDEX=
-26006920
2152

-911597086358 INDEX=
31689778
3394

1616464113450 INDEX=
134729795
5105

~-26667009141714 IRDEX=
3788125
125

=1725137540446 INDEX=
324237029
8385

20528

3396

2186

1951

91

9939

2764

2402

20817

3156

12419

2553

8051

5105

77961

8385



(97) Am

a’'m
c'm

(98) A=

a‘m
c’=

(99) A=

a‘m
Cc'm-

(100)
a’m
[

(101)
a’m
C-

(102)
a‘m
c’'m

(103)
arm
c'=

(104)
Al
C-

(105)
am
(o2 4

(106)
a’m
c’m-

(107)
a’ms
Cf-

(108)
a’'m
c'm

(109)
a’'m
Cm

(110)
alm
Q/m

(111)
a‘m
c’'m=

(112)
a‘m
C'=-

(113)
a’'=

A

Am

A=

A=

Am

Am

Am

A=

Am

Am

A=

A=

Am

37823264 Cw

1 b=
148033126656 ind’'m=
~101455763 C=
0 b'm
503016522414 ind‘m
-191609084 C=
O b'=
2532378781899 ind’'=
59278944 C»
1 b'm
904849475716 ind'm=
549787618 C=
37564 b'm=
134468434375 ind’'=
250559331 Cw=
1l b'm
558589625926 ind’'=
-345310949 C=
1l b=
~3044670134024 ind‘'=
~38867897 C=
1l b=
=257712938226 ind’'w
~253990341 C=
1 b=
1725738266926 ind’=
328846366 C=
50211 b'=
230964454018 ind‘'=
851406232 Cm
12728 b=
1003420322253 ind‘'=
34323694 C=
1 b=
~2702562001964 ind’'=
-101996249 C=
1l b'=
1173487917346 ind‘'=
-297133269 C=
1l b'=
~2072243484494 ind’'=
-23446046 C=
0 b'=
43698397905 ind’'=
-283023922 C=
lb'=
-5304973129716 ind’'=
~138849249 C=
lb'=

148033126656 INDEX=
37823264
512

503016522414 INDEXw
-101455763
928

2532378781899 INDEX=
-191609084
6859

904849475716 INDEX=
59278944
2728

180325508244 INDEX=
7788450
3025

558589625926 INDEX=
250559331
4811

~3044670134024 INDEXw
-345310949
5269

-257712938226 INDEX=
-38867897
711

1725738266926 INDEX=
-253990341
2197

2872431286828 INDEX=
117695029

4607

21592624462469 INDEX=
—20557456
3789

-2702562001964 INDEX=
34323694
8002

1173487917346 INDEXw
~101996249
3269

-2072243484494 INDEX=
-297133269
1889

43698397905 INDEX=
~23446046
1

-5304973129716 INDEX=
-283023922
14734

930345514618 INDEX=
-138849249

512

928

6859

2728

14695

4811

5269

711

2197

10882

69893

8002

3269

1889

14734

2027



(114)
a’‘m
Cc'=

(115)
a’'=
c’'m=

(116)
a’'m
(=34

(117)
ar=
c'm

(118)
a’'=
c'm

(119)
a’'m
c’'m

(320)
a’'m
c/m

(121)
E
cim

(122)
a’'m
c'm

(123)
a’m
cfm

(124)
a’'m
C'm

(125)
a'=
¢'m=

(126)
a’=
c'm

(127)
a’m
C'=

(128)
a'=
o=

(129)
a’'m
c'm

Am

Am

A=

A=

Am

Am

A=

A=

A=

A=

Am

Am

A=

Am

Aw

Am

B=

B=

B=

B=

B=

B=

B

B=

Bm

B=

930345514618

296510379 C=~
6172
2363182675317

~42009750 C=
1
225203100748

232463475 C=
1
389645902276

-364079385 C=
1
~5075860999928

-48852870 C=
1
199936711132

391834863 C=
1
102597135606

~651820555 C=
~18091
1709678318436

-189945376 C=
1
1062684067440

-1994936 C=
1
-2913128924

-245643983 C=
Q
1556764671934

-256273664 C=
1
1744052287168

-906638825 C=
~472
59678956719

116510548 C=
1
~413356016004

~17540759 Cm
1
29705512104

-12666795 Cm=
1
~246926067318

-260957867 C=
0
1788125293798

ind’m=

b=
ind’'=

b’ =
ind’'=

b'=
ind’m=

b=
ind’'=

hfm
ind’'=

b=
ind’=

b=
ind’'=

b=
ind’m

b'm
ind’m

b=
ind'=

b'm=
ind’'=

hiw
ind’'=

b=
ind’=

b'=
ind’'m=

b=
ind’'=

b'w
ind'=

2027

16124836591558 INDEXm
5706954
7011

225203100748 INDEX=
«~42009750
590

389645902276 INDEX=
232463475
4199

-5075860599928 INDEX=
~364079385
12769

199936711132 INDEX=
-48852870
446

102597135606 INDEX=
391834863
8841

8788129877856 INDEX=
308117706
9798

1062684067440 INDEX=
~189945376
1000

~2913128924 INDEX=
-1994936
8

1556764671934 INDEX=
-245643983
1412

1744052287168 INDEX=~
~256273664
2192

643708647403816 INDEX™
840750
177

-413356016004 INDEX=
116510548
1884

29705512104 INDEX=
-17540759
27

-246926067318 INDEX=
~12666795
729

1788125293798 INDEX=
~-260957867
2224

48077

590

4199

12769

446

8841

17809

1000

1412

2192

1904911

1884

27

729

2224



(130)
a‘m
crm

(131)
al=
c'm

(132)
a’'=
-

(133)
a’'m
Cclm

(134)
a'=
c’'=

(135)
A=
c'm

(136)
a'm
c'm=

(137)
arm
c'=

(138)
a’'=
c'm=

(139)
arm
c’m

(140)
a’m
cim

(141)
a‘m
c’'m

(142)
a’m
c'm

(143)
a’‘m
cim
(144)
a’'m
¢'m
(145)
a’'m
-

(146)
a’'m

RAm

A=

Am

Am

Am

Awm

A=

Am

A=

Aw

Am

A=

Am

Aw

A=

Am

Am

B=

B=

B=

B=

B=

B=

B=

Bm

-1

Bm

B=

B=

Bm=

B=

B

16693491 C=

1l b'=

244913954436

414638434 C=
19935
4605774983382

246357779 C=
1
-378199878070

=29282459 C=
0
64710069686

8087249 C=
1
~2202273142

~923284302 C=
-9357
968616128182

-74616372 Cw=
1
-328236836724

-105196554 C=

ind'm=

b'm
ind’m

b=
ind’m=

b=
ind’=

b'=
ind’'=

b'=
ind’m

b=
ind’=

1 b'm

1759988539708

-368307539 C=
1
~2773449230862

501227857 Cm
6367
1372021485340

~197407215 C=
1
~3488417517878

~7587428 C=
(s}
42993736323

778525005 C=
50622
1130093481377

-90052749 C=
1
~807630326606

335104402 C=
48686
121367109375

-15619944 C=
1
32122527796

-265124929 Cm=

ind’=

b m
ind'=

br=
ind’'m

b’ m
ind'=

b'=
ind’'=

h'=
ind‘m=

him
ind'm=

b=
ind'=

bh'm
ind’'=

b'=

244913954436 INDEXw
16693491
729

~6245645755764 INDEX=
22553239
14867

~378199878070 INDEX=
246357779
4545

64710069686 INDEX=
~29282459
64

-2202273142 INDEX~
8087249
27

~27247022665940 INDEX=
95116249
3617

—-328236836724 INDEXw
~74616372
636

1759988539708 INDEX=
~105196554
5062

~2773449230862 INDEX=
-368307539
1593

26319868650142 INDEX=
-8492253
4169

-3488417517878 XNDEX=
-197407215
9829

42993736323 INDEX=
-7587428
125

1246285842292 INDEXw
-452960228
7847

-807630326606 INDEX=
-90052749
2183

2717642354097 INDEX=
79218000
3375

32122527796 INDEX=
-15619944
64

~1962997238182 INDEX=
=265124929

729

20838

4545

64

27

74038

636

5062

1593

78940

9829

125

25019

2183

10655

64

3093



(147)
a'm
C'=

(148)
a’m
-

(149)
alm
c'm=

(150)
a’m
c'=

(151)
alm
c'm

(152)
a’m
Cc'm

(153)
a‘m
Ccim

(154)
a'm
¢'m

(155)
a'=
c'=

(1586)
a’m
c'm

(157)
a’m
c’'m

(158)
a'ms
C-

(159)
a’m
c'=

(160)
a’‘m
c'm

(161)
a’m
cim

(162)
a’r=
C'm

Am

A=

Am=

A=

Am

A=

Am

Am

Am

Am

Am

A=

B=

Bm=

B=

B=

Bwm

Bm

B=

B=

B=

B=

B=

B

B=

-1962997238182
204263677 Cm
[+}
2458379358978
194631501 C=
56706
3487632913
-767558419 C=
1
8208848594738

~314696656 C=

ind’'=

b=
ind‘w

b'm
ind‘'m=

b'=
ind‘m

1l b'=

2149709470500

-4843375 C=
1
~4118208828

~84490987 C=
1
947449927724

250572919 C=
)]
1192758665500

2840671 C=
1
-8933632716

229557026 C=~
1
1673247676988

~-223327238 C=
88114
160388388283

-22033247 C=
1
-40846869510

322970699 C=

ind‘m

b'm
ind’'=

bh'm
ind’'=

b=
ind’m=

him
ind’=

b=
ind'=

b=
ind‘’m

b=
ind‘=

1l b'm

532202228736

447189738 C=
1
1233025704436

-320148311 C=
89237
78937648308

=5799400 C=
1
-73180794364 -

517090345 Cm
6695
1115663017980

ind'=

b'm
ind’'=

h'=
ind’=

b=
ind’=

b
ind'=

3093

2458379358978 INDEX=
204263677
8000

-2143069914392 INDEXw
17456896
703

8208848594738 INDEX=
-767558419
1863

2149709470500 INDEX=
-314696656
200

-4118208828 INDEX=
-4843375
1

947449927724 INDEXm=
~84490987
2661

1192758665500 INDEX=~
250572919
5734

~8933632716 INDEXm
2840671
27

1673247676988 INDEX=
229557026
6342

4733226861019 INDEX=
224426430
3449

~40846869510 INDEX=
-22033247
27

532202228736 INDEX=
322970699
6797

1233025704436 INDEX~=
447189738
11374

=5279384086622 INDEX=
~162704358
2358

=-73180794364 INDEX=
-5799400
216

28311147330678 INDEXw
~44857246
3626

8000

7057

1863

200

2661

5734

27

6342

13483

27

6797

11374

14197

216

84855



{163)
a'm
c’'m

(164)
a’'m-
[ 2

(165)
a’ms
c’'m

(166)
a’r=
Cc'm

(167)
a'w
c’'=

(168)
a'm
Cr-

(169)
a’'=
c’m

(170)
a‘m
c’m-

(171)
a’‘m
c’/m

(172)
a'm
cf=

(173)
a'=
c’'=

(174)
alt=
cim

(175)
a’=
c'm

(176)
arm=
Ccim

(177)
a'm
c'im

(178)
a’'=
c'=

(179)
a'm=

Awm

A

A=

p-

Am

A=

Am

Am

Am

A=

A=

A=

Am

Am

Am

A=

A=

B=

Bm

B=

B=

Bm

B

B=

Bm=

Bm

B=

B=

B=

Bm=

-604052331 C=
-19237
3009064538432

653474051 C=
58077
898952694148

24832403 C=
133827
2985984

-306583892 Cw
1
-2536898131344

~305468033 C=
201269
110120341250

~303813864 C=
~1193
448644280128

171921 C=
1
-336702554

855898 C=
[}
145847313

113373298 C=

brm
ind’m=

b'm
ind’'m=

bm
ind’=

b’ wm
ind’=

bh'm
ind’=

b=
ind'=

brm
ind'm=

b=
ind’'m=

1l b'=

487906893364

18533745 C=

ind‘=

1l b'm

-134729263028

101664307 C=
0
223448431384

150616876 C=
5087
3831800649984

-14091443 C=
0
20538807234

~-387147729 C=
1
-3369422479346

-517478160 C=
1
-4537909060844

-1410392 Cm
1
2778356800

-150975129 C=

ind/=

bém
ind’=

b=
ind’m

b=
ind’m

b=
ind’=

b=
ind’=

b'=
ind =

10748026051506 INDEX=
169500152
10568

-732675818196 INDEX=
-440217479
6859

241670719844 INDEXm™
-945344
64

-2536898131344 INDEX=
-306583892
4356

2628319016732 INDEX=
~295463355
4765

85590523350324 INDEX=
2996081
1331

-336702554 INDEX=
171921
1

145847313 INDEX=
855898
1

487906893364 INDEX=
113373298
1994

-134729263028 INDEX=
18533745
409

223448431384 INDEX=
101664307
1342

9978831089321 INDEX=
-1262736
11376

20538807234 INDEX=
-14091443
8

-3369422479346 INDEX=
~387147729
4913

-4537909060844 INDEX=
-517478160
736

2778356800 INDEX=
-1410392
8

~866172378884 INDEX=
~150975129

26943

19153

729

4356

4850

253248

1954

409

1342

29609

4913

136

1451



(180)
a’m
crm

(181)
ar'=
c'm

(182)
a’'=
Cci=

(183)
a’m
c’m

(184)
a’'=
c'm

(185)
a‘m
C'=

(186)
a‘'=
c'm

(187)
alm
Ccim

(188)
a’m
c'm

(189)
a’'s
c’'=

(190)
a’'m
o=

(191)
a’'m
Cc'm

(192)
a’'=
crm-

{193)
am
c’'m

(194)
a’'=
c'm

(195)
a’'ms
c’w

Awm

A=

Am

Am

A=

A=

Am

A=

A=

A=

Am

A=

A=

A

A=

Am

Bw

B

B=

Bm=

Bm=

B~

Bm

Bw

B=

B

Bm

~-B866172378884

63205653 Cw
1
189328270896

-41612807 C=
[+]
300767687318

~674223917 C=
[+}
7142503615576

~89077992 C=
1
-2523844347020

-232032942 C=
3
-2359655738244

108866566 C=
s}
105304291971

-508828037 C=
=3148
700529284499

~308118810 C=

ind’'=

h'm
ind’m-

b=
ind’'=

b=
ind’'=

b=
ind'm

b=
ind’=

b’m
ind’'=

b=
ind'm

1l b'=

~3636926593308

90704546 C=
1
184920633396

46732795 Cm
96399
8146944

-86958304 C=
1
312097765764

-5677249 C~=
1
23885857076

49467223 C=
1
-1293554125074

3663808 C=
1
~140748560

30024479 C=
1
122078395896

-264723541 C=
0
1754728898248

ind'=

b=
ind’'=

b=
ind‘=

b=
ind’ =

b'=
ind'=

b=
ind’'=

b'=
ind’'=

b/ =
ind'=

b'm
ind’'=

1451

189328270896 INDEX=
63205653
801

300767687318 INDEX=
~41612807
836

7142503615576 INDEX=
~674223917
7010

-2523844347020 INDEX=
~B9077992
7408

-2359655738244 INDEX=
-232032942
5706

105304291971 INDEXw
108866566
1331

53802052515736 INDEXm=
11063866
2101

-3636926593308 INDEX=
-308118810
8826

184920633396 INDEX=
90704546
1126

-660673802808 INDEX=
1334848
64

312097765764 INDEX=
-86958304
8

23885857076 INDEXw
~5677249
69

-1293554125074 INDEX=
49467223
3849

~140748560 INDEX=
3663808
8

122078395896 INDEXm=
30024479
407

1754728898248 INDEX=
-264723941
1702

801

836

7010

7408

5706

1331

158699

8826

1126

1989

63

3849

407

1702



(196)
arm
c'm

(197)
a‘m
C/m

(198)
a’'m
c'=

(199)
a‘m
Q'=

(200)
a'm
c'-

(201)
a'=
c'=

(202)
a’'=
Q-

{203)
atm
c'm

(204)
a’m
[

(205)
alm
crm

(2086)
a’m
c'm

(207)
a’m
c'm

(208)
a‘'m
ofm

(209)
arm
c’/m

(210)
a'm
c’'m

(211)
a’'=
c‘m

(212)
a‘m

A=

A=

A=

Am

Am

RAw

Am

Am

A=

Am

Am

Am

Am

Am

A=

A=

B=

B=

P

B=

B=

B=

B=

B=

B=

B=

B=

Bm

B=

588767383 C=
40552
2327199333075

28296496 C»
0
100370573865

-15813771 C=
1
-25872131124

583751753 C=
146156
16133606027

217929008 C=
58433
289899192552

~426303616 Cm
1
3728355335348

-871552077 C=
~15676
1732691186829

~378840752 C=
[+]
2873544043443

~425218315 C=

b=
ind’=

b=
ind’'=

b=
ind’=

b=
ind’m

b=
ind’m=

b=
ind’'m=

b=
ind’'=

b=
ind’'=

1l b'=

-47468906065384
-20339659 C=
73963
230160719808
289598315 Cm=
51668
132351305375
-38766815 C=
136244489500
-518289539 C=
o
5793908981550
70797733 C=
[+]
248169361126
546496 Cm
0
299966591
~490832753 C=
~-13885
2638300641662

-312848894 C=

1

ind’=

b=
ind/'m=

bhrm
ind’'m=

b=
ind’m=

bL'm
ind’'m

b'=
ing’=

b'=
ind‘m

bh'=
ind‘m

178298235730 INDEX™
175140750
11955

100370573865 INDEX=
28296496
343

~25872131124 INDEXw
-15813771
27

753739697744 INDEX=
95658970
1331

2706228896420 INDEX=
171174869
5737

3728355335348 INDEX=
-426303616
4608

19137858667414 INDEXw=
109475490
5979

2873544043443 INDEX=
-378840752
1331

~4746890606584 INDEX=
~425218315
9879

-2286684405216 INDEX=
-230533128
5832

32814586050 INDEX=
6049330
4855

136244489500 INDEX=
-38766815
295

5793908981550 INDEXm
-518289539
10648

248169361126 INDEXw
70797733
1000

299966591 INDEX=
546496
1

9901447990436 INDEX=
150738479
9967

3358502389836 INDEX=
-312848894

16283

343

27

16221

8808

4608

48469

1331

9879

6767

5615

295

10648

1000

26558

7686



c’/m

(213)
Btm
c/m-

(214)
a’=
cfm

(215%)
a’‘=
(=B

(216)
a’m
Clm

(217)
a‘m
-

(218)
a’'=
c’=

(219)
a’'m
clm

(220)
alm
c'm

(221)
a’tm
[ 38

(222)
a’m
c'm

(223)
a’m-
c'm

(224)
a's
-

(225)
am
c'm

(226)
a’m
c'-

(227)
a’'m=
=

(228)
a'm
cr-

Am

A=

A=

A=

Am

Aw

Am

Am

Am

A=

Am

A=

A=

Am

Am

P

B=

Bm

B=

Bw

B=

B=

Bm

B=

Bm

3358502389836

~24207426 C=

1

-257528096460

517267565 Cm=

24159

3396163740416

255580293 C=

1

-767173881956

653650609 C=

28013

1935860713772

233262922 C=

o)
89080875539

~419931587 C=

1

3342993567880

-65837635 Cm=

1

320832759746

670938223 C=

54534

840556723825

=197671461 Cm

1
1974728793556

427128829 Cw

45839

350883688712

~477152696 Cm

-8692

2017481547023

134936356 Cw

(4]
74046128889

258149366 C=

1

~375566143564

-106382 Cw

775538921 C=

0
338139567

11394

1673771447167

-1139345 C=

1
576915712

ind’=

b'm
ind‘=

bt
ind’=

b=
ind’'=

b=
ind’'=

b'm
ind'm

b=
ind'=

b'm
ind’'m=

hfm
ind'=

b'm
ind'm

L=
ind'm

h'=
ind’m

bm=
ind‘'=

bh'm
ind’=

b=
ind’=

b'=
ind’=

bm
ind’'=

7686

-257528096460 INDEX=
~24207426
750

5645474267022 INDEXw=
9607696
12592

~767179881956 INDEXw
255580293
5179

4580982555038 INDEX=
16299891
9101

89080875539 INDEX=
233262922
4067

3342993567880 INDEX=
~419931587
1343

320832759746 INDEX=
-65837635
729

~-9940876657530 INDEXm
~372729890
9035

1974728793556 INDEX=
-197671461
4913

1904423524818 INDEX=
101512359
5823

18538272932417 INDEX=
36122382
6137

74046128889 INDEXw
134936356
1799

~375566143564 INDEX=
258149366
4854

338139557 INDEX=
~-106382
1

~21904723942356 INDEX=

32465104
4913

576915712 INKDEX=
~1139345
1

750

21419

5179

23372

4067

1343

729

35463

4913

11528

53567

1799

4854

69343



(229)
a‘m=
(28 ]

(230)
a’=
c'=

(231)
a'm
=

(232)
alm
c'm

(233)
a’'m
c'=

(234)
a‘ms
c’'m

(235)
a’‘ms
[ R

(236)
a’'=
(=M

(237)
a’'m
c’'m

(238)
Al
[ ]

(239)
a’'=
c'm

(240)
arm=
c'=

(241)
a'=
o=

(242)
a'm=
c'm

(243)
a'm
c'm

(2448
a'=
c'm=

(245)
alm

A=

Am

Am

Am

A=

A=

A=

A=

Am

Am

A=

Am

An

Aw

A=

Am

Am

Bm=

B=

Bm

Bm

B

B=

B=

B=

B=

Bm

B=

Bm

B=

Bm

Bw

B=

543481846 C=
142655
66577774374

67557575 Cm
1
-421587358128

434986591 C=
42419
28954837812

~29782142 Cm=
0
454042841053

669454 C=
0
264029105

~5362811 C=
2
10297338108

-182675982 C=
1
-1302038983116

152200463 C=
1
-762266798844

-270367474 C=
40209
3130800440414

-2198879 C=
1
1298971636

~27181862 Cm=
1
55734011956

874173045 C=
134315
8391375398

~584967624 C=
1
5739504035524

130652003 C=
1
~219400997794

~77249365 C=
1
1169866367588

-265241915 Cw
1
1712207374726

-62951409 Cm=

b=
ind'm=

b'm
ind’'m

b'=
ind’m=m

bhim
ind'=

bfm
ing'=

b=
ind'=

b=
ind'=

-
ind'=

b
ind’'=

h'm
ind’'m=

-2
ind'=

b'=
ind’m

bhim
ind’=

b'=
ind'm=

b=
ind'm=

b=
ind‘=

b=

4746363992611 INDEX=
=192173523
2913

-421587358128 INDEX=
67557575
1399

-686881565142 INDEX=
9870074
1658

454042841053 INDEX=
-29782142
1331

264029105 INDEXm=
669454
1

10297338108 INDEX=
-5362811
27

-1302038983116 INDEX=
-182675982
2634

-762266798844 INDEX=
152200463
3109

7263898254516 INDEX=
~706538279
12241

1298971636 INDEX=
-2198879
1

55734011956 INDEX=
-27181862
34

18925316417952 INDEX=
64228273
1471

5739504035524 INDEX=
~584967624
5368

~219400997794 IKDEX=
130652003
1821

1169866367588 INDEX=
-77249365
3375

1712207374726 INDEX=
-265241915
1211

-524108676222 INDEX=
-62951409

20141

1399

10533

1331

27

2634

3109

208594

34

63279

5368

1821

3375

1211

1443



(246)
a'=
c'm

(247)
a’'m=
c’m

(248)
a‘m
c'-

(249)
a'm
c’'m

{250)
a’'m
cim

(251)
alm
cfm

(252)
a’'m=
c'=

(253)
a’lm
c'm

(254)
arm
c'm-

(255)
a'm
c’/m

(256)
arm
Cc’'m=

(257)
a’m
-3

(258)
a'm
[ A ]

(259)
a'=
crm=

(260)
a'm
c'=

(261)
a’'m
cim

Am

A=

A=

A=

A=

A=

Am

A=

A=

A=

Am

Am

Am

Bm

B=

Bw

Bm

Bm

B=

B=

B=

Bm

Bm=

B

B

-524108676222

108134980 C=
1
-2529710622864

-148632278 C=
0
698735187277

-490888547 C=
[}
4409054142562

507971099 C=
92995
24857531296

2322770 C=
1
3092604828

=725192699 Cw
1010521
330687430128

-160460591 C=
1
1487043581638

-257720747 C=
1
2612795711614

-1627544 C=

ind'=

bh’=
ind’m

bhim
ind’m=

b’m
ind’'=

b'=
ind’'=

b'm
ind'm

b=
ind'm=

b=
ind’'m=

b=
ind’'=

0O b'm=

867672961

366717560 Cw
1
6748400400

~102008471 C=
1
726854948706

244700330 C=
55363
244417023694

~351114095 C=
100306
756544812361

243108949 C=
49867
5300365600

=113746869 Cw=
1
-601701987056

-65506521 Cm=
1
208370824804

ind‘=

b
ind'=

b=
ind’m

b'=
ind'm

b'm
ind'=

b=
ind‘=

b=
ind’=

b=
ind’m

1443

=-2529710622864 INDEX=
108134980
7596

698735187277 INDEX=
-148632278
125

4409054142562 INDEXw=
-490888547
4096

18993473348088 INDEX=
86792121
2119

3092604828 INDEX=
23227170
10

~10707213984056 INDEX=
~363495396
3828

1487043581638 INDEXm™
~160460591
3743

2612795711614 INDEX=
-257720747
6131

867672961 INDEX=
-1627544
1

6748400400 INDEX=
366717560
8000

726854948706 INDEX=
-102008471
1803

3087928023756 INDEX=
151246705
4913

-5994640752908 INDEX=
526510558
6859

3526775909850 INDEXw~
21230205
685

-601701987056 INDEX™
-113746869
1123

208370824804 INDEX=
-65506521
125

7596

125

4096

57707

10

22567

3743

6131

8000

1803

10126

16081

11296

1123

125



(262)
a‘'m
o=

(263)
a'=
crm-

(264)
a’m
cr'm-

(265)
ar=
c’'m

{266)
a’'ms
c'm

(267)
a’m
c'=

(268)
arm
c'm-

(269)
a' -
c'=

{270)
a‘'s
c'm

(271)
arm
c'w

(272)
a’'=s
crm

(273)
alm
¢'m

(274)
a’'=
c’m

(275)
alm
c’m

(276)
a‘m
c’m

(277)
a’m
c'=

(278)
a’'m

Am

Am

A=

A=

Am

Am

Am

Am

Am

Am

Am

Am

Am

A=

Be=

Bw

B

B=

PB=

B=

B

B=

Bwm

B=

P

B=

B=

Bm

-303525617 C=
1
2194744346464

-22781834 Cw

b=
ind’'m=

0 b'm

306620189869

210781180 Cm
1
2142502297296

653263 C=
1
-269706464

-628907609 C=
1
~6115981440302

39872184 C=
90785
2041200

-200106924 C=
1
-2843094352772

204416505 C=
54038
129609375

-628682257 Cm
65469
107688979244

=227790352 Cm
1
1606419374244

-265474335 C=
46310
1699810573595

-68000811 Cm=
74310
267026481023

~383007584 Cm

ind'm=

bfm
ind’'=

b=
ind’'=

b=
ind’'=

h'm=
ind‘ =

b=
ind’m=

b=
ind’=

b’
ind’=

b
ind’'=

b'=
ind’'=

b'm
ind'=

0 b=

3293092543269

~535657367 Cm
~7226
1464386444325

33371473 C=
1
202042722850

-722621382 C=
1
-8176589319236

188106979 Cm
10803

ind'=

bhfm
ind/'=

)
ind’'=

b=
ind’=

b=

2194744346464 INDEXm
~303525617
2431

306620189869 INDEX=
-22781834
899

2142502297296 INDEX=
210781180
7236

~269706464 INDEX=
653263
1

~6115981440302 INDEX=
-628907609
2197

~941062456880 INDEX=
~684639
27

-2843094352772 INDEX=
-200306924
7772

~2566946263050 INDEX~
3380750
125

13487143600956 INDEX=
~163853426
1738

1606419374244 INDEX=
-227790352
2696

7615693991008 INDEXw
-545622206
8791

2813649872128 INDEX=
-257077772
5671

3293092543269 INDEX=
~383007584%
4699

23041391281290 INDEX=
59387060
4685

202042722850 INDEX=
33371473
637

-8176589319236 INDEX=
-722621382
9794

-6120944992694 INDEX=
—-94552646

2432

899

7236

2197

2800

7772

8295

35651

2696

21995

8303

4699

66717

637

9794

18353



(279)
a'm
c'm

(280)
a's
C’'m

(281)
a’-
.

(282)
a’m
ci/m

(283)
a’'m
Cc'=

(284)
a’=
c/m

(285)
a'm
c'=

(286)
arm-
clm

(287)
a'm
clm

(288)
8-
c'=

(289)
a‘m
c'm

(290)
a’'ms
C'm

(291)
a’'m
Cc'm

(292)
a’m
c’'m

(293)
a'm=
c'm

(294)
a’'m
C'm

Am

Am

Am

Am

A=

A=

Am

Am

Am

Am

A=

Am

B=

B

Bm

Bm

Bm

B=

B=

Be

Bm

B=

5382932624228

-360943590 Cw
115237
669305075250

12427381 C=
—3575055277;

390478834 C=
-7690505912

-15416479 C=
1
23295701556

633440194 C=
1
-292072246412

-98180779 C=
1
2544505297016

353011418 C=
1
1665951251820

-738992 C=
0
417070977

654320205 Cm=
27754
1517632306749

173582974 C=
0
1246751638037

-571612797 C=
1
6111353008084

304044154 C=
965
353010841602

276334141 C=
51773
69968459952

~59195262 C=
1
~901781126540

~531420269 C=
0
4783675634816

112885522 Cw»
o}
414882289731

ind’m=

brm
ind’'=

b*=
ind’=

b=
ind’ =

) 3]
ind’m

b'm
ind’=

bm
ind’=

b
ind’'=

b/
ind’m

him
ind’m

b’m
ind’'=

him
ind’=

b -
ind’m

b=
ind’=

b=
ind’'=

b=
ind’'=

b*m
ind’'=

17126

-4365237263812 INDEX=
=549379735
8065

=-35750552772 INDEX=
12427381
117

~7690505916 INDEX=
390478834
8790

23295701556 INDEX=
-15416479
1

-292072246412 INDEX=
633440194
1g182

2544505297016 INDEX=
-98180779
7449

1665951251820 INDEX=
353011418
9022

417070977 INDEX=
-738992
1

4692922139646 INDEX=
~-8438092
83021

1246751638037 INDEX=
173582974
4517

6111353008084 INDEX=
-571612797
9209

108372099932676 INDEX=
-42725717
1049

2477363196930 INDEX=
66545199
2787

-901781126540 INDEXw=
-59195262
2618

4783675634816 INDEX=
-531420269
2386

414882289731 INDEX=
112885522
1837

10250

117

8790

18182

7449

9022

23589

4517

9209

320802

9008

2618

2386

1837



(295)
a’m
Ci=

(296)
arm
¢'m

(297)
a‘m
[ 24 J

(298)
a'=
c’'=

(299)
a’=
c’=-

(300)
a’'m
[

{301)
a'=
c'm

(302)
a’'m
c'm=

(303)
a‘m
c'm

(304)
a’'m
c'm

(305)
a’m
c'm

(306)
a’‘m
¢'m

(307)
alm=
c/m

(308)
a’'=
crw

(309)
a’'=
c'm=

(310)
a'-
c/m

(311)
a’'m

A=

Am

Am

A=

Awm

A=

Am

A=

A=

A=

A=

Am

Bw

p=

B=

B=

Bw

Bm

Bw

B

B=

B=

Bm

B=

B=

B=

705329461 C=
90960
203890045343

295783445 C=
1
2853024292722

167389085 C=
1
~450926759500

~892854272 C=
~l7821
1330042983140

-278015 C=

bfm
ind‘=

b=
ingd’ =

b'm
ind’=

b=
ind’m=

l b=

342461686

~382601992 C=
1
3195589660944

~119351219 C=
0
556545541570

~126316750 C=
1
-1889757757308

-279391519 C=
1
-1833120486162

584610938 C=
37637
2998900952754

299471318 C=
1
1603207150404

-1322425 Cw
1
~676294074

~522226736 C=
-18832
3784035171875

~307971237 C=
1
4389124568274

124444179 Cm=
75775
138048

188560399 C=
1
525884265190

15235732 C=

ind’=

brw
ind’'=

bh'wm
ind’m=

b=
ind’'=

bh’=
ind‘ =

b'=
ind’=

b*=
ind’'=

b=
ind'm=

ht=
ind'=

h'=
ind’m=

h'=
ind’m

bh'=
ind’'=

b’=

7345916259974 INDEX=
-259514486
4913

2853024252722 INDEX=
295783445
10241

-450926759500 INDEX=
167389085
2805

14472836505561 INDEXw
216604578
6638

342461686 INDEX=
-278015
1

3195589660944 INDEX=
-382601992
4096

556545541570 INDEX=
-119351219
712

-1889757757308 INDEXw
~126316750
5354

-1833120486162 INDEX=
~279391519
1063

-1462221478396 INDEX=
152228261
13411

1603207150404 INDEX=
299471318
7574

-676294074 INDEX=
=-1322425
1

9835147550965 INDEX=
128622000
12125

4389124568274 INDEX=
~307971237
11439

495659596446 INDEX=
-86536
8

525884265190 INDEX=
188560399
3335

113608383831 INDEX=
15235732

30464

10241

2805

30185

4096

712

5354

1063

16674

7574

25739

11439

2157

3335

343



(312)
a’'m
c'm

(313)
a’'ms
Cc'm

(314)
A'm=
c’/=

(315)
a'=
c'-

(316)
a’'=
Cl-

(317)
a’'=
c'm

(318)
a‘m
crm

(319)
a‘=
[-28

(320)
ar=
C’m

(321)
a’'m
c'm

(322)
a’'m
c’-

(323)
a’=
c'm

(324)
a’m
c'=

(325)
a’'m
c'm

(326)
a’'=
Cc'=

{327)
a’'=
c'=

A=

Am

A=

Am

Am

Aw

Am

Am

A=

Am

Am

A=

Am

A=

A=

Am

B=

B=

Bm

B=

Bm

B=

Bm=

B=

Bm

P

B=

Bw

PB=

Bm=

B=

113608383831

111237745 C=
54245
18380704404

272009579 C=
62160
2092156149483

-479331011 C=
o}
4127463752962

-155522399 C=
1
871454604136

-101855216 C=

ind’m=

b'm
ind’'=

b'=
ind‘=

b=
ind‘m

b=
ind’=

0O b'=

2171388772655
-51862124 Cm

0

143755596799

~279525985 C=
1
-2667395433004

-24744195 C=
b
-160876074800

144034144 C=
o
798859236987

-860601561 C=
-7160
885713271937

142058251 C=
1
-527193566364

=371028300 C=

ind‘=

b'm
ind’m=

b=
ind’ m

b'=
ind'=

brm
ind’m

b=
ind’'=

bim
ind’m

l1 b=

~-2762260996100

18565012 Cm
0
111726756521

~-59796615 C=
567520017ZSé
525952545 Cm=
2898805096342
373691833 C=

1
1248779376576

ind’=

b=
ind‘m=

b=
ind‘m=

b=
ind’=

hiw
ind’=

343

3873225536922 INDEX=
-49595338
1262

5917155682838 INDEX=
544574068
10709

4127463752962 INDEX=
-479331011
2512

871454604136 INDEX=
~155522399
1331

2171388772655 INDEX=
-101855216
6319

143755596799 INDEX=
~51862124
1

-2667395433004 INDEXw™
~279525985
5829

-160876074800 INDEXm=
~24744195
455

798859236987 INDEX=
144034144
3077

26860079032168 INDEX=
108764134
3457

=527193566364 INDEX=
142058251
2481

~2762260996100 INDEX=
-371028300
740

111726756521 INDEX=
18565012
343

567520017250 INDEX=
-59796615
1595

2898805096846 INDEX=
525952545
16199

1248779376576 INDEX=
373691833
9021

11541

18243

2512

1331

6319

5829

455

3077

741213

2481

740

343

1595

16195

9021



(328)
a'm
cfm

(329)
a’m
crwm

(330)
a’'=
Cr-

(331)
a'=
cm

(332)
a'm
[ ]

(333)
a’'m
c’'m=

(334)
al'm
Cc'm

(335)
A
cim

(336)
a'‘=
(=34

(337)
a’‘ms
Cm

(338)
a'=
c'm

(339)
a’m
c'=

(340)
a'=
Clm-

(341)
a'=
crm

(342)
a’'m
c'=

(343)
a'm
-

(344)
a'=

A=

A=

A

Am

Am

Am

A=

A=

Am

Am

Am

Am

Awm

Am

Am

Am

Am

Bm

B=

B=

B=

B=

B=

Bm

B

Bw

B=

B=

B=

B=

B=

-110888165 C=
1
1111544859042

393671284 Cm
(4}
3107520950787

211774733 C=
1
-589881845656

-55691708 C=
0
165449708157

-27166801 C=
1
68941131324

-161417689 C=
85368
48205341483

50611756 C=
1
-76122367152

-634223819 C=

b'm
ind’'=

b'=
ind’m

b'=
ind’=

b'm=
ind’'=

b=
ind’m

hrm
ind’'=

b=
ind’=

0 b'm

6150123135110

~542319284 C=
0
4861056690431

4172759 C=
1
8513666396

29584386 C=
121227
998

~48755092 C=
1
~376309410736

647846884 C=
51437
2371420673600

163836305 Cm
1
-688981430998

-775459891 C=
-23151
1030053792500

~173120661 C=
1
-1427245%01874

365513377 C=
10181

ind’'=

b=
ind‘m

b'=
ing’ =

b'=
ind‘'m=

b'm=
ind‘=

b=
ind’=

brm
ind’'m

b=
ind/=

b=
ind’'=

him

1111544859042 INDEX=
~110888165
3009

3107520950787 INDEX=
393671284
12797

-589881845656 INDEXm
211774733
3921

165449708157 INDEX=
-55691708
125

68941131324 INDEX=
~27166801
125

3465408147428 INDEX=
-121173338
2197

-76122367152 INDEX=
50611756
468

6150123135110 INDEX=
-634223819
512

4861056690431 INDEX=
-542319284
1

8513666396 INDEX=
4172759
27

331472944324 INDEX=
-16559
1

-376309410736 INDEX™
-48755092
1044

4466065918905 INDEX=~
-666508955
13315

-688581430998 INDEX=
163836305
3141

-9094714228980 INDEX=
384448030
9710

-1427245901874 INDEX=
-173120661
3333

12724342572626 INDEX=
-69727905

3009

12797

3921

125

125

9987

468

512

27

998

1044

22969

3141

10925

3333

38492



(345)
a’'m
c'm

(346)
arm
¢

(347)
a’m
c’'m

(348)
a’'s
c'm

{349)
a’m
[

(350)
a'=
cr'm

(351)
a'm
Cc'm

{352)
a’m
[

(353)
a‘m
crm=

{354)
a’m
c'm

(355)
a’'m
c'm

(356)
a’m
c'm

(357)
a'm
c'm

(358)
a’m
C'=

(359)
a’m
-2 ]

(360)
a’m=
c'=

A=

A=

Am

Rw

Awm

Am

A=

A=

A=

A=

A=

Am

Am

Am

Am

Am

B=

B

B=

B=

Bm

Bw

Bm

Bw

Bm

B=

Be=

B=

B=

Bm

B

2365330359132
296786905 C=

ing’ -

1l b'=

-1042210560834

-363980093 C=
0
2835054424024

~403485895 C=
-5126
1429879834665

462312820 C=
50935
1488405979980

707986999 C=
66611
4719902720

-176251759 Cm
1
1534966275876

252568503 Cm=
71586
381843885999

617745348 C=
121261
240231744

-710079262 C=
1
~7397514132316

58673077 C=
4]
1682479354

17774608 C=»
198599
8000

294498460 C=
1
1157981292400

-459047527 C=
1
4248864139374

34913384 C=
1
106018582848

-870505766 C=
~5158
649732197143

-454167227 C=
0
3740680995846

ind’=

b=
ind’=

brm
ind’m

brm
ind’=

b'm=
ind’'m

b'=
ind’w-

L’m
ind’'=

L=
ind’=

b=
ind’'=

bh'=
ind’'=

Dt
ind'=

b'=
ind’=

b=
ind’m

L=
ind’'=

b=
ind‘=

b=
ind‘=

7839

~1042210560834 INDEX=
296786905
6591

2835054424024 INDEX=~
-363980093
2798

-26399186552532 INDEX=
17884638
4293

-3809464411172 INDEX~
313454829
9651

1204390139180 INDEX=
32639488
512

1534966275876 INDEX=
-176251759
3679

14299501988686 INDEXm
~-91223834
2197

15553684872016 INDEXm
-10334952
216

-7397514132316 INDEX™
~710078262
3834

1682479354 INDEX=
58673077
512

30851285501 INDEX=
-36792
8

1157981292400 INDEXm™
294498460
6700

4248864139374 INDEX~
-45%047527
5711

106018582848 INDEX=
34913384
392

54233154008977 INDEX=
26405406
2029

3740680995846 INDEX=
~454167227
1000

6591

2798

77585

15980

21754

3679

42569

49244

3834

512

125

6700

5711

392

157823

1000



(361) A=
arm
Cim

(362) A=
a‘m
cim

(363) A=
a’'=s
c’'-

(364) A=
a‘m
C'-

1l B=

-5661662 Cm=
0
42551571059

22900209 C=
1
-2135254616

~-134714 C=
(o}
338411279

135557015 C=

1
-572678466288

b'=
ind’=

brw
ind’=

b=
ind’=

bh'm
ind’'m

42551571059 INDEX=
~53661662
125

-2135254616 INDEX=
22900209
125

338411279 INDEX=
-134714
1

~572678466288 INDEX=
135557015
2471

125

125

2471



3

2

Coefficients of the generating polynomials X + AX + BX + C for all the
distinct cubic fields with negative fundamental discriminant D.

Note: 1) A, B and C are the coefficients of a generating polynomial of a
complex cubic field before Tschirnhausen transformation is applied.

2) A’, B’ and C' are the coefficients of a generating polynomial of a
complex cubic field after Tschirnhausen transformation is applied.
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ind’=

bm
ind’'=

b=
ind’'m

b=
ind’mw

b'=
ind’'m

b'm
ind’'m

h'm
ind‘m=

b'm
ind’=

btm
ind’'=

b=
ind'=

b=
ind’=

bh'm
ind’=

bm
ind’=

b=
ind‘ =

bm
ind’=

b=
ind’=

350

-9580725062496 INDEX=
653576000
8000

~358070676666 INDEXw
~13151491
1045

237627437104 INDEX=
74249904
1000

519477646937 INDEX=
184954154
12247

7129175222 INDEX=
6156443
27

218478309904 INDEXm
-68329560
64

372463107217 INDEX=
~94482044
343

-494885319600 INDEXw
258752060
4900

1152050115213 INDEX=
-200793338
1045

888534875987) INDEX=
-352957227
9347

92979092613 INDEX=
-35831588
125

19663583884746 INDEX=
113205723
967

8277635646758 INDEX=
6621765
1405

17039090844 INDEX=
63101239
566

5340892425444 INDEX=
-512399448
8568

1681740255288 INDEXw
~266952115
295

27903

1045

1000

13519

27

64

343

4900

1045

34777

125

46520

241442

566

8568

295



(328)
a’'m=
c’'m-

(329)
a’'m
c'=

(330)
a'=
c'm

{331)
a‘m
c'm

(332)
a’m=
o=

(333)
a'=
c'=

(334)
a’m
[ R

(335)
a’'=
c’'=

(336)
a‘m
(-3

(337)
a’rm
Cc’m

(338)
a’m
Cc'm

(339)
a’m
Clm

(340)
a’rm
cfm

(341)
ar-
[ ]

(342)
a’'m=
c-

(343)
a'm
c'm

(344)
a’w=

A=

Am

A=

Ax

A=

Am

RAm

A=

R

A=

Am

Am

Am

Am

Awm

Am

Am

Bw

B

B=

B=

B=

B=

Bm

Bma

B=

B=

Bw

-1237799 C=

lb'm

630507430

625313860 C=
52880
2740082880899

85636832 Cw
1
506597825012

~-618018465 C=
-15820
1933692861761

428636335 C=
0
3841535461244

248385235 C=
12504
5099906608545

516946685 C=
41543
1015158434540

4235449 C=

ind’=

b=
ind’=

L=
ind’m=

L=
ind’=

b=
ind’'=

b=
ind’m

b=
ind‘wm

lb'=

-66642520776

90446821 C=
1
544027483822

-105786927 C=
—43496219265;

587165296 C=
112243185587;

—46246829 Cw
25564223992g

~40717022 Cm
108766824932

-8122340 C=

ind‘=

bh'm
ind’=

b=
ind’'=

b=
ind’m

b=
ind’'=

b=
ind'=

0O b'=

8916407977

-718313336 Cm=
0
8010301106931

538462117 C=
81438
1868953098625

-163397408 C=

ind’'=

brm
ind’=

b=
ind’m

630507430 INDEX=
~-1237799%
1

540857737907 INDEX=
-752324066
12571

506597825012 INDEX=
85636832
1728

-9445044083576 INDEX=
273526024
9479

3841535461244 INDEX=
428636335
15022

-6726787150812 INDEX=
-51615284
15511

-213272133900 INDEX=
86975698
8758

~66642520776 INDEX=
4235449
195

544027483822 INDEX=
90446821
1861

-434962192652 INDEX=
-105786927
343

1122431855872 INDEX=
587165296
16336

255642239928 INDEX=
~46246829
658

108766824939 INDEXw
-40717022
125

8916407977 INDEX=
=8122340
1

8010301106931 INDEXm=
~-718313336
8891

8513220108934 INDEX=~
678723928
12167

1720445067493 INDEX=
-163397408

17659

1728

21521

15022

20145

13235

185

1861

343

16336

658

125

8891

28573

4445



(345)
a's
C'/m

(346)
a’m
c’m

(347)
a’'m=
c’/m

(348)
a’m
Cc'=

(349)
a’'=
c’'m

(350)
a'm
c'm

(351)
a’'=
c'm

(352)
alm
c'm

(353)
a‘m
(=R

(354)
a’'m
c'=

(355)
a‘=
c'm

(356)
arm
Cc'm

(357)
A=
(38 )

(358)
ar=
Ccim

(359)
a’'=
cf=

(360)
al‘m
Cc'm

Am

Am

A=

A=

Am

A=

A=

Rm

Aw

A=

Am

Am

A=

Am

Bw

B=

B=

B=

B=

Bm

-1

Bw

B

B=

B=

B=

1720445067493
-59138429 C=
1
283295735832
580626565 C=
33047
1476335226600
~254091093 C=
1
1558865664316

=-206930 C=

ind’'m=

b=
ind’'=

b'=
ind’'=

b/=
ind’=

0 b'=

344109273

485349491 C=

ind‘m

1lb'=

1447546193280
8694373 Cm

0

15551689910

161745397 C=
52854
105504735625

~462041282 C=
0
4646898233665

549968710 C=
39065
3255345037670

-219700343 C=
0o
1423522051270

-176639780 C~
llo872
41812196499

23076635 C=
1
277692020064

~379088652 C=
89549
218069419788

256986543 C=
51379
3420893268

119424752 C=
1
1000698847152

155715092 C=

1
1196789957040

ind‘m=

L=
ind'=

b=
ind'm

h'm
ind’'=

b=
ind'=

brm
ind'=

b=
ind’m

b=
ind’'=

b'w
ind’'=

b=
ind‘=

bhim
ind'=

him
ind'm=

4445

283295735832 INDEX=
-59138429
651

2678490108998 INDEX=
7231185
9165

1558865664316 INDEX=
-254091093
1

344109273 INDEX=
-206930
1

1447546193280 INDEX=
485349491
12749

19551689910 INDEX=
8694373
64

2883080437672 INDEX=
-104256950
3475

4646858233665 INDEXw
-462041282
7721

1345067087700 INDEX=
155426237
14717

1423522051270 INDEX=
-219700343
1972

2515057066493 INDEX=
~130911318
2469

277652020064 INDEX=
23076635
821

6026483838748 INDEX=
-273040143
3747

2622927938108 INDEX=
15259038
618

1000698847152 INDEXw=
119424752
3272

1196789957040 INDEX=
155715092
4124

651

17576

12749

64

8737

7721

15030

1972

6859

821

15532

8957

3272

4124



(361) A=
alm
L]

(362) A=
a‘m
Cr-

(363) A=
a’m
-

(364) A=
a’m
ci=

-308362888 C=
2
2885500659392

~115449997 Cm=
1
1747658002308

359311255 C=
100369
134461691136

-388753803 C=
1
5037572234764

- R
ind‘wm

b
ind’'=

b’=
ind’'=

b’=
ind‘=

2885500659392 INDEX=
-308362888
5832

1747658002308 INDEX=
-115449997
4913

19799626362300 INDEX™
212221200
4944

5037572234764 INDEX=
~388753803
11633

5832

4913

58365

11933



