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ABSTRACT

Optimization problems appear in a variety of fields. The problem
may involve construction of an optimal or most economical design,
planning optimal inventory, allocation of scarcé resources or finding an
optimal trajectory of a rocket. During the past five decades there has
been very rapid growth of optimization models and efforts to solve them.
To understand the optimization sgstem as a whole it is important to
understand the components and their interactions. Study of nonlinear
programmong (NLP) problems stems from the fact that they form an

important component of the optimization system.

In (NLP) optimality coditions and duality have ptayed very important role
both theoretically as well as computationatly and have been studied by
several researchers under different types of generalized convexity
assumptions. Based on optimality condition several computational
procedures for solving nonlinear programs have been devised or are being
devised. A dual problem provides alternative ways of solving a nonlinear
program and serves the purpose of generating the bounds for the optimal
solution of the primal problem.

In the present thesis we prove, under generalized convexity
assumptions, optimalty conditions and introduce duality models for a
variety of NLP problems. In Chapter 2 we prove the Fritz John type
sufficient optimality theorem and various duality results for the

Mond-Weir dual problem assuming quasiconvexity assumption of the




(iii)

objective and strict pseudoconcavity of a linear combination of compo-
nents of the constraints. An advantage of Fritz John type optimality
conditions is that we do not require any form of constraint
quatifications imposed on the constraints to prove their necessity. This
in turn implies that we do not require the assumption of constraint
qualifications in the proofs of Direct and Strictly Converse duality
theorems. In Chapter 3, we further extend the results of Chapter 2 under
slightly more general and different conditions of generalized convexity
of the constraints.

Chapter 4 deals with generalized minmax programming problem. In this
chapter, under weaker convexity assumptions, we (i) prove the Fritz John
type sufficient optimality conditions, (ii) introduce a Mond and Weir type
dual program and using the Fritz John tgbe conditions prove duality
theorems, (iii) apply the results proved to obtain the duality of a
generalized fractional programming problem.

In Chapter S we introduce second order duality for a
quasibonvex programming problem and under generalised bonvexity
assumptions, prove Weak, Direct and Strict Converse duality theorems
using Fritz John conditions. Chapter 6 deals with Mond-Weir type
duality for multiobjective programming problems in which the
constraints are pseudolinear with respect to the same kernel function
and the objective functions are pseudolinear with different kernel

functions.




CHAPTER 1
INTRODUCTION, NOTATIONS AND DEFINITIONS,
NONLINEAR PROGRAMMING PROBLEMS

AND SUMMARY OF THE THESIS

1. INTRODUCTION

Nonlinear Programming (NLP). The (NLP) problem arises in a number

of different forms and may be found in the natural sciences, physical
sciences, business and government, engineering, economics, and

mathematics. In its most abstract form, we minimize (or maximize)
something sub‘ject to certain type of limitations. Suppose, for example,
we minimize the cost of both producing an item and holding it in stock

| by selecting an appropriate production schedule. However, the schedule

cannot be chosen freely. Perhaps we must meet certain demand

requirements for the item or there may also be a limitation on the
amount that can be produced at any one time. Thus we must select a

production schedule that minimizes the total cost and also satisfies

certain constraints.
Generally speaking, for the NLP problem something must be

minimized (or maximized). However, limitations in the form of
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constraints restrict the actions we may take to achieve this minimum
(or maximum).

Mathematically, we are given a function f : X° 5 R, where, R
is the set of reals and X° is an open set in R", the n-dimensional space
such that if x € X° then f(x) is a point in R. Our goal is to select an x to
minimize f(x). For this reason we call f(x) the objective function .

However, the point x is not chosen arbitrarily because we may be given
m constraint functions, where ¢, : X0 R or g: X% > R™ and x must
~satisfy

g(x)20,i=1,2,....,m,

Consequently, we have the following problem (called primal problem

denoted by (P)) in which we attempt to

(P) minimize f(x)
XES
so that
s={x|xex®,g(x)20,i=1,2,....,m)

={x | xe X0, g(x)20}.

A point that achieves the minimum is called an optimal point . Any %

that satisfies all the constraints is termed feasible .




2. APPLICATIONS OF NONLINEAR PROGRAMMING

Bazaraa and Shetty [4], Schaible [66], Crouzeix et al [33] and

Zangwill [82] etc. have given plenty of applications of the NLP in a
variety of fields. In the present.section we mention some of those
applications to get a feeling for the usefulness of the NLP problem.
(i) Economics. The NLP is closely related to the science of allocating
scarce resources in a manner either to maximize efficiency or, if one is
dealing with consumers, to maximize the utility. The objective function
can indicate efficiency, which we attempt to maximize, while the
constraint can specify the limitations imposed by the scarce resources.
Similarly, the objective function can be consumer utility and the
constraints can be specified on consumer’s limited income.

In a general setting, it may be impossible to determine the
precise form of the fuctions; neverthelesé. in specific applications
precise formulation is often straight forward. For example, consider a
particular industrial plant, say a leather shoe manufacturer. Here,
efficiency may become profit, and the consiraints may be interpreted as

manpower, space available, machine capacities etc. In such a specific
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situation the quantitative data are often available, and the NLP problem
can then be precisely formulated and solved.

(ii) Cost-Benefit Analysis. The important concept of cost-benefit
analysis falls within the context of NLP problem . In cost-benefit
analysis there is no profit function but instead there is a general
welfare-benefit function. TwQ closely related NLP problems arise here,
either maximize benefit subject to a cost limitation or minimize cost
with the benefit above a minimum level. With the vast amount of data
available to various government agencies, particular cost-benefit
analyses can often be well modeled by NLP.

(iii) Scientific Applicétions. NLP problems often arise in the physical
sciences as well. In physics, for example, the objective function could be
potential energy and the constraints the various equations of motion.
Minimizing the objective function would determine a stable configuration
of the system. Correspondingly, by changing the objective function, we
can determine the configuration with the largest thermal energy, kinetic
energy, etc. Similarly a problem in chemistry is to determine the

molecular structure that minimizes the Gibbs free energy.




3. DUALITY FOR NLP PROBLEM AND ITS INTERPRETATION
In duality we have another problem (called the Mond-Weir [58]
dual problem, denoted by (D)) which is related to (P). With y € R™, this
problem is stated as:
(P) Maximize  f(u)
subject to
Vi) - yt vglu) = 0
yt glu) g0
yz0
Let the NLP problem (P)4 represent an industry’s objective of
minimizing its cost of producing a particutar product. Thus, the
objective function f(x) represents the net cost of production when the

industry is operating at a level x. In addition, the industry requires m
raw materials but starts production with an amount b, ,i=1,2 .., m of
raw material i available. Define

ri(x)
as the quantity of raw material i used when operating the industry at

level x. Also,




gi(x) = b, - r,(x)
tf

g,(x) >0
then the excess raw material is left over with the industry after
production, while should g,(x) < 0, then insufficient raw material was

initially available to the industry to achieve production level x. In NLP
‘terms the industry’s problem of minimizing the final net production cost
becomes,

Minimize (%)

subject to
g(x20 i=1,2,....,m.
Now let y.2 O be the unit price at which raw material i is purchased or

sold at the market. Should g,(x) > 0, by selling raw material to the
industry the market can realize a revenue of
- Uig;(x)

from the producer.




7
Interpretation [82]. We now interpret the dual problem as follows.
When the industry operates at an optimum level X = ,
(i) f(u) represents the net cost to the industry,
(ii) Vf(u—). represents the marginal cosf of production of the product,
(iii) -V(y'g(L)) represents the total marginal revenue to the market,
then, economically, at optimum level (or at the equilibrium) ,the
marginal cost of production must be equal to the marginal revenue. This
gives

Vi) - V(y'gu)) = 0

which is the first dual constraint. Second interest of the market is to

keep
ygx)so for i=1,2,...... m

so that there is never any excess material left with the industry to sell
it back to the market to reduce its (market's) revenue. This constraint
leads to

ytq(u) <0
which is the second constraint of the dual.

Again as given in Zangwill [82], at the optimal solution

ar(u(b))

5o,




This shows that y, is the marginal change in the optimal value of the
objective function f(x) at x =u. On an intuitive basis y, , for which
g—k 20 forallk =1, 2, ..., m, indicates the approximate increase in the
objective function per unit increase in the availability of resource
k=1,2, ..., m. Thus the y, be interpreted [82] as the imputed price of
resource k.

Thus we see that by using the dual problem at the optimal
solution, the market can control the movements of the industry’s net
cost and its own sales revenue from the sales of the raw marerials to
the industry, with the help of the knowledge about y's.

Therefore, n the present thesis we study the duality of
different NLP problems. For this purpose, first of all we introduce some
mathematical notation and definitions used in the sequel, then the
different problems dealt with in the thesis and the results proved for
them by other researchers. Lastly, in this Chapter, we give a summary of

the work done in this thesis.

4. NOTATION AND DEFINITIONS

For x,yeR", by xSy we mean XiSY; for all i; x <y means
X;sy; for all i and Ks<Yg fOr at least ones, 1 <s<n. By x<y we
mean x;<y, for all i. Consider numerical function h: DR defined on

some open set D in RN containing the convex set SC D. Let C denote

the class of single valued continuous functions and let CP, p=1,2, ..,

1




(p being finite) denote the subclass of all those h € C, of which every

p-th order partial derivative exists and is continuous. For h e C! let v.h

denote the gradient of h and for h eC2 let sz h denote the Hessian of h.

We define a kernel function K: S xS x[0,1] =R, such that K = K[x, U, Al

> 0 and is continuous in X, where A e[ 0,1]. Define k : S xS R, by

k= 1lim K, sothat k= k(x, y) >0. We assume that the kernel function
A0

is uniformly bounded. Let (x)! denote transpose of vector x.

Then at Xxe S the function h is called

1.  Beevex (Bector [5], Bector and Singh [20]) with respect to
(i) K ifforallyins and Ael0,1]
h(dy +(1 - A)x) £ KA h(y) + (1-KA) h(x)

(ii) k if for all y in S, and h differentiable,

kIh(y) - h()1 2 (Y - )V, h(x)

Note. [t is easy to see that every convex function at x e S is a Beevex

function for K=1(or k=1).
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2. Bonvex (Mond and Weir [59], Bector and Chandra [13]) if for all y

inS and for all n eR",

h(y) - h(x) 2(y - MLV, h(x) + V2, h(x) ] - w21t V2, h(x)
3.  Pseudobonvex (Mond and Weir [59], Bector and Chandra [13])if for

ally inS and for all neR",

(U - OV, () + V2, (%) M1 20 = h(y)zh(x) - 121t V2, h(x)
4.  Strictly Pseudobonvex (Bector and Bector [14])if for ally in S and

for all ne R,
(Y = Y, ") + V2, 1) M120 = h(y) >h(x) - 121t V2, h(x)

5. Quasibonvex if for all y in3 and for all neR",

(i)  (Mond and Weir [59], Bector and Chandra [13])

h(y) sh(x) - 121t V2, h(x) m = Y - LV, h(x) + V2, h(x) 150,

or

(ii) (Bector and Bector [14])

h(y) <h(x) - 121TV2, h(x) n = (y - xt [V, h(x) + V2, h(x) ] 50 ,

h is strictly beevex (strictly bonvex) at X ¢ S if in the definition of a

beevex (bonvex) function strict inequality holds. h is called beecave
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(strictly beecave) at x e S with respect to K (or k respectively, when h

~is differentiable) iff -h is beevex (strictly beevex) at X € S with respect
to K (or k respectively, when h is differentiable). A function h s
pseudolinear at x € S when it is both beevex and beecave at xe S. Wwe
similarly define boncave and generalized pseudoboncave functions and
assume that the reader is familiar with other definitions of
(generalized) convex functions [Mangasarian [S4] and Craven [31].

A function h is said to be a convex(bonvex)-like (convex and
generalized convex, bonvex and generatized bonvex) function on the set S
if it is convex(bonvex)-like at every point of S.

5. SOME NLP PROBLEMS
(i) Nonlinear Programming Problem. Along the line of Mond and

Weir [S8] consider the following nontinear programming problems,

®) Minimize  f(x) (1)
XES
and
(PE) Minimize  f(x) (2)
XEX
where,

@  X° is an openset of R";
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@ T:X0-R, g:X0->RM and h: X0~ RK are differentiable

functions.
i) S ={xxex gx) 20}: O
(v) X ={xixeX% g(x) 20, h(x) =0}; (4)

Evidently, if equality constraints in X are absent, (PE) becomes (P).

Optimization problems appear in a variety of fields. The problem
may involve construction of an optimal or most economical design,
planning optimal inventory, allocation of scarce resources or finding an

optimal trajectory of a rocket [4]. During the past five decades there has

been very rapid growth of optimization models and efforts to solve them.
Engineers, mathematicians, scientists, managers, social scientists and
behavioral scientists have been called upon to solve many complex
problems. To understand the optimization system as a whole it is .

important to understand the components and their interactions. Study of

nonlinear programming problems stems from the fact that they form an

important component of the optimization system.
Several computational procedures for solving nonlinear programs

have been devised or are being devised [4]. Duality plays an imprtant role
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in nonlinear programming. A dual problem provides alternative ways of
solving a nonlinear program and serves the purpose of generating the
bounds for the optimal solution of the primal problem.

Sufficient optimality condit}ons for such problems are important
both theoretically as well as computationally and have been studied by
Kuhn-Tucker [S0], Mangasarian [S54], Bector and Grover [9], Bector and

Gulati [11], Singh [69] and Skarpness and Sposito [73]. Mangasarian [54]
assuming f to be pseudoconvex, g, (1 = {1;g,;(x) =0, x € X}) tobe

quasiconcave and h to be both quasiconvex and quasiconcave a X € X,
showed that, if (x, Yy, z) is a solution to the following Kuhn-Tucker [50]

type conditions :

VIr(x) - ytglx) - zth(x)] = 0 (5)
ytalx) = 0 (6)

g(x) 20 (7)

h(x) =0 (8)

y € RM, z e Rk, yz20, (9)

then % is (PE)-optimal.
Bhatt and Misra [22], assuming f, g and h to be convex at X € X,

showed that the above conditions (5)-(8) with the additional restriction
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z 20, are sufficient for x to be (PE)-optimal.

Assuming f to be convex and g to be strictly concave at X e S,

Mangasarian [S54] showed that, if (X, Q—O, y) is a solution to the

following Fritz John type [S4] conditions

Viyof(x) - ytg(x)1 = 0 (10)

utg(x) =0 (1)

a(x) 20 (12)

Yo € R, y € RM, (Yo, W) 2 0, (13)

then x is (P)-optimal.
Assuming f to be pseudoconvex at x € X and g, and h to be strictly

pseudoconcave at X € X, Bector and Gulati [11] and Skarpness and
Sposito [73] proved that, if (X, Yg. U, Z) is a solution to the Fritz John

type conditions

Vigor(x) - y'g(x) - 2*h(x)] = 0 (14)

ytg(x) =0 (15)

g(x) 20 (16)

h(x) =0 (17)

U €R, y eRM zeRK, (4o 1) 2 0, (18)

z ¢ RK, z20, (19)
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then x is (PE)-optimal.

Recently, Bector and Bector [15] showed that if (x, y, z) is a
solution to (5)-(9), f is quasi convex at x € X and th + Zth s
strictly pseudoconcave at % € X, then x is (PE)-optimal. Furthermore,
they proved Weak, Direct and Converse duality theorems for the
Mond-Weir dual problem.

(i) Minmax Programming Problem. We now consider the following
nonlinear minmax program as the primal problem (P) whose Fritz John

type optimality conditions and duality we want to discuss.

(P) Minimize Maximum  {f;j(x)} (20)
X€S ISigp

where,
(i) s={xeRMn(x)g0, k=1,2, ..., m} isnonempty and compact,

(i) f; (1gigp) h, (1Isk £m) are real valued and differentiable

functions.
Minmax programs are encountered in discrete approximation where the
Chebychev norm is used [3]. Furthermore, minmax programs arise in goal
programming where a decision maker wishes to bring several ratios as

close as possible to certain predetermined values [48]. The individual
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goal functions are usually ratios of economic or technical terms such as
revenue, cost, profit, time, amounts, etc. More details on the
applications of minmax fractional programming are given. in [65,66). A
goal program involving ratios gives rise to a minmax fractional program
if the Chebychev norm is used, as discussed in [26]. Charnes and Cooper
[26] stress that this norm has a natural appeal for problems of equity or
equality. This is demonstrated, for example, by Vogt's development of
an 'Equal Employment Opportunity Index’ [77] and by the problem of
allocating state funds to educational institutions as discussed by
Charnes, Cox and Lane [27].

An application of minmax fractional programming is discussed
by Ashton and Atkins in [1). The authors consider ratios that are used in
financial planning such as liquidity, return on capital, earnings cover,
dividend cover and earnings per share.

The first duality results for minmax programs (p>1) were given by J.
von Neumann [78] in his paper on an expanding economy. A treatment of
this model using recent quasiconvex duality resuits can be found in

Crouzeix [32] and Crouzeix et al [33]. Among other authors who have
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studied minmax fractional programs we mention Rubinshtein [62] who

examined a special linear fractional program using a geometric concept
of duality, Gol'stein [39] who examined the case that f; are ratios of

nonnegative convex functions to positive affine functions using
saddle-point results and Passy and Keslassy [60] who investigated
certain fractional programs using duality results based on a
generalization of Legendre's transformation.

Recently, some duality results have been obtained for minmax
fractional programming problems involving several ratios. Of particular
interest are those by Jagannathan and Schaible [45], Chandra, Craven and
Mond [25], Bector, Chandra and Bector [17] and Bector and Suneja [19].
Jagannathan and Schaible [45] obtained the duality results via Farkas'’
Lemma while Chandra, Craven and Mond [25] have studied the duality of
such problems through a ratio game approach. Bector, Chandra and Bector
[17], using a result proved by Crouzeix, Ferland and Schaible [34,35] and
using Kuhn-Tucker conditions [S0], established the duality results and
related different duals obtained for a minmax fractional programming

problem. Bector and Suneja [19] used a Lagrangian approach [4] to obtain
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the duality results for nondifferentiable generalized minmax fractional
programs.

(iii) Bonvex Programming. Lately, there has been a trend to generalize
and refine convexity of functions and sets and apply them in
mathematical programming problems. Hanson [40,41], Craven [31],
Mangasarian [S4] and Martos [S6] respectively introduced the concepts of
functionally convex [40], invex [41,31], pseudoconvex [54] and explicit
quasiconvex [56] functions. (Other interesting references are Ponstein
[611], Bector [5,8], Mond [S57], Mond and Weir [S3], Bector and Chandra {13],
Bector and Singh [20], Vial [75], Avriel, Diewert, Schaible and Ziemba
[2], 2Zang [81], etc.).

Mangasarian [S4] first formulated a second order dual to a
nonlinear pregram and established appropriate duality theorems for both
second and higher order duality. Mond [S7] introduced a class of second
order functions (named bonvex and boncave functions by Bector and
Chandra [13] ) and proved appropriate duality and symmetric duality
results for the class of second order duality. Later, Mond and Weir [S9]

introduced the class of second order pseudo and quasi convex functions
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(independently named pseudo and quasi bonvex functions by Bector and
Chandra [13]) and proved duality results under more general conditions
of second order generalized convexity (i.e. generalized bonvexity).
Recently, Bector and Bector [15], assuming quasiconvexity
ofthe objective function and strict pseudoconvexity of the constréints,
proved a Kuhn-Tucker sufficientroptimalitg theorem and established
duality results for the Mond and Weir dual [58] using Kuhn-Tucker
conditions. Furthermore, Bector and Bector [14] extended, on the lines of
[15] the duality results contained in [15,58] for second order duality
under weaker convexity conditions.
(iv) Multiobjective Pseudolinear Programming. We now »
consider the following pseudolinear multiobjective program

(P) and call it the primal problem .

) Vv-minimize  (f,(0, 1,60, o T,00) 21
subject to
g,(x) s 0, (i=1,2,..,m). (22)

where,

(i) the symbol "V-minimize" stands for vector minimization, minimality
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being taken in terms of "efficient points” or "Pareto optimal solu-

tions” as defined below,
@ f:R">RP, g:R"= R, withf=(f.f) .., T)and g=1(g,g, ... g)
respectively,

(i} the function f., i = 1,2,...., p, is pseudolinear with respect to a

kernel function k, (i.e. k(x, y) >0) and the function g, j=1, 2,...., m,

is pseudolinear w.r.t. a kernel function G (i.e.G(x, y) > 0).

In the recent past, duality in multiobjective programming,
involving nonlinear functions, has been of much interest and various
contributions have been made in this field by different researchers (e.g.
Bitran [23], Brumelle [24], Craven [30], Ivanov and Neshe [42], Kawasak |
[438], Lai and Ho [S1], Singh [71,72], Tanino and Sawaragi [74] and Weir
[78] ). These studies differ in their approaches aor in the sense in which
"optimality” is defined for a multiobjective programming problem.

Recently, Bector, Chandra and Durgaprasad [18] discussed the
duality of a pseudolinear multiobjective programming problem in which
the constraints are linear and the objective functions are pseudolinear
[Bector [S,8], Bector and Singh [20], Chew and Choo [22]). The purpose of

the present chapter is to study Mond-Weir [S8] type duality for multi-
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objective programming problems in which the constraints are pseudo-
linear with respect to the same proportional (kernel) function and the
objective functions are pseudolinear with different proportional (kernel)
functions. The' main difference between the probitem (21), (22) and the

problem considered by Bector et al [18] is that in Bector et al [18] the

kernel functions k, of the corresponding functions f; in the primal

objective are assumed to be the same (i.e. k; = k) whereas in the present

work we assume those kernels k/s to be different .
6. SUMMARY OF THE THESIS.

The results proved in the thesis are contained in Chapters 2 - B.
We summarize them as follows.
(i) Chapter 2. Mond-Weir Duality. The purpose of the present chapter
is to extend the results proved by Bector and Bector [15] further by
proving for (P_E) the Fritz John type sufficient optimality theorem and
various duality results for the Mond-Weir dual problem assuming
quasiconvexity assumption of f and strict pseudoconcavity of a linear
combination of components of g and h. An advantage of Fritz John type
optimality conditions is that we do not require any form of constraint

qualifications imposed on the constraints (e.q. see [15]) to prove their
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necessity. This in turn implies that we do not require the assumption of
constraint qualifications in the proofs of Direct and Strictly Converse
duality theorems as is done in Bector and Bector [15].

(ii) Chaptei‘ 3.  Sufficient Optimality Conditions and Duality for a
Quasiconvex Programming Problem. In this chapter we extend the
results proved by Bector and Bector [15] further by proving for (PE) the
Fritz John type sufficient optimality theorem and various duality results
for the Mond-Weir dual problem assuming the quasiconvexity of f,
quasiconcavity of g and h and strict pseudoconcavity of one component of
g. The results proved in this chapter are different from those of Chapter
2 because when the components of g and h are individualy quasiconcave
their nonnegative linear combination may not be strictly pseudoconcave.
(iii) Chapter 4. Generalized Minmax Programming Problem. In this
chapter we consider a minmax problem and, under weaker convexity
assumptions, |
(i)  prove the Fritz John type sufficient optimatity conditions,
(ii)  introduce a Mond and Weir [S8] type dual program and using the
Fritz John type conditions prove duality theorems.
(iii) apply the results proved to obtain the duality of a generalized

fractional programming problem.
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(iv) Chapter S. Second Order Duality for a Quasibonvex Programming

Problem. The purpose of this chapter is to introduce a second order dual
problem for (P) given by (1), on the lines of Mond and Weir [58] and
Bector and Bector [14], and under generalised bonvexity assumptioné, to
prove Weak, Direct and Strict Converse duality theorems using Fritz John
[S4] conditions.

(v)  Chapter 6. Duality for Multiobjective Pseudolinear Programming.
The purpose of this chapter is to study Mond-Weir [58] type duality for
multiobjective programming problems in which the constraints are
pseudolinear with respect to the same kernel function and the objective
functions are pseudolinear with different kernel functions. The main

difference between the problem (21), (22) and the problem considered by

Bector et al [18] is that in Bector et al [18] the kernel runctions ks of
the corresponding functions f,'s in the primal objective are assumed to
be the same (i.e. k; = k) where as in the present work we assume those

kernels ki's to be different .

Remark. A formula in Chapter A will be numbered as (X) and a

formula of Chapter B used in Chapter A will be referred to as (B. V).
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CHAPTER -2

FRITZ JOHN DUALITY IN NONLINEAR PROGRAMMING

1. INTRODUCTION

On the lines of Mond and Weir [S8] consider the following

nonlinear programming problems,

®) Minimize  f(x) (1
XES
and
(PE) Minimize  f(x) (2)
XEX
where,

@  X° is an open set of R";

@ f:X0-R, g:X0-RM and h: X0 - RK are differentiable

functions.
(iii) S ={x; x € X% g(x) 20}; (3)
(iv) X = {x; x € X%, g(x) 20, h(x) = 0} ; (4)

Evidently, if equality constraints in X are absent, (PE) becomes (P).

In the present chapter we prove for (PE), under differentiability




25

assumptions, Fritz John sufficient optimality conditions for a nonlinear
program in which the objective function is assumed to be quasiconvex,
and the linear combination of the components of the constraint functions
is assumed to be strictly pseudoconcave. Furthermore, we establish
duality theorems for Mond-Weir type duality under the above generalized
convexity assumptions. An advantage of Fritz John type optimality
conditions is that we do not require any form of constraint
qualifications imposed on the constraints to prove their necessity (e.g.
see [54]). This in turn implies that we do not require the assumption of
constrtaint qualifications in the proofs of Direct and Strictly Converse
duality theorems as in Bector and Bector [4].
2. OPTIMALITY

wWe now prove the following Fritz John sufficient optimality
theorems for (PE) assuming the quasicbnvexitg of f and the strictly
pseudoconcavity assumption of a linear combination of the constraint

functions g and h.
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Theorem 1 (Sufficient Optimality Theorem). Let y, ¢ R, gy ¢ RM, Z

e RK and let X € X along with Ug: Y. z satisfy the Fritz John type

conditions (1. 14) - (1. 18). If, at x with respect to X, (i) f is
quasiconvex ([61], 3f, p.116) and (ii) gtg + Zth s strictly

pseudoconcave, then x is a global optimal solution to (PE).

Proof. If x is not a global minimum for (PE), let %0 ¢ X be such that
f(x0) < 1(x) (5)
Since f is QX ([61, 3f,p. 118) at x therefore, (5) yields

(x0 - V) g 0

Using yg 2 0, this implies,

(x0 - ' VYol () 5 0 (6)
Using (1. 18), (4), (1. 15) and (1. 17) and x0 ¢ X we get,

uta(x0) + Zth(x0) 2 gtg(x) + Ztn(x) (7)
since ytg+ zth is SPCV at X e X, (7) gives

(x0 - W ylg) + zth(x) 1> © (8)

From (1. 14) and (8) we obtain
(x0 - LV, f(R) > 0 (9)

(9) contradicts (6). Hence the result follows.
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Remarks 1.

@i It is very important to observe here that the proof of Theorem 1
requires the strict pseudo concavity of gtg + Zth without which the
strict inequality (8) and hence (3) will not hold .

(i) If we assume yYp > 0 in (1. 14) and (1. 18) then we recover the
theorem of Bector and Bector ([15], Theorem 3.1)

@) It is well known [54] that, when a continuous quasiconvex function
is minimized on an appropriately restricted convex set, a local
minimum may not be global. However, the assumptions in Theorem |

always yield a global minimum.

3. DUALITY
We consider the following dual (DE) suggested by Mond and Weir
(58] for (PE).
(DE)  Maximize f(u)
subject to
Viyof(u)-ytgu) - zth(w)l = 0 (10)
ytgtu) + zth(w) s 0 (1

Yo € R, y e RM, z ¢ RK Yo, Y =0 (12)
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We now prove the following theorems relating (DE) to (PE).

Theorem 2 (Weak Duality). Let x be (PE)-feasible and (u, y,, y, 2) be

(DE)-feasible, If, for all feasible solutions (x, u, Ugr Us 2), T is quasi-

convex ([61], 3f, p.116), and gtg +zh s strictly pseudoconcave then,
Infimum (PE) 2 Supremum (DE)

Proof. If possible let f(x) < f(u). Since for all feasible solutions

(%, U, U 4, 2) fis QX , we have ([611, 3f, p.1186)

(x - Wtorw) g0
or usingyp=20
(x - Wlvyf) g0 (13)
Since x is (PE)-feasible, (4), (12) and (11) yield
ytg(x) + zth(x) 2 ylg@u) + zthu) (14)
Strong pseudo concavity of gtg + z'h for all feasible solutions

(%, U, Yo U, 2) and (14) give

(x - Wiviytgu) + zthw) > o (15)

From (10) and (15) we have (x - u)thor(u) > 0. This contradicts (13).

Hence the result follows.

Corollary 1. Let x be (PE)-feasible and let (U, y, Y, 2} be (DE)-feasible
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such that f(x) = f(u) and let the hypotheses of Theorem 1 hold. Then ¥
is a global optimum for (PE) and (u, g‘o. u, z) is global optimum for (DE)

with the corresponding optimal objective value f(x) and f(u)
respectively.
Theorem 3 (Direct Duality). Let % ¢ X be a local or global optimum
of (PE). Then there exists (Yo, U, 2) such that (X, UYg. Y, 2) is feasible
for (DE) and the corresponding values of the objective functions of (PE)
and (DE) are equal. If, also, the hypotheses of Theorem 1 are satisfied,
then x and (X, Ug. U, Z) are, respectively, global optima for (PE) and
(DE).
Proof. Since X € X is a local or global optimum of (PE), there exist Q"O
€ R, U € RM, Z ¢ RK such that the conditions (1. 14)-(1. 18) are satisfied
[54].
Now from (1. 15), (1. 17) and (1. 18) we have

gtg(x) + Zth(x) = 0 (16)
Therefore, (1. 14), (16) and (1. 18) yield that (X, yg, Y, Z) is
(DE)-feasible. Equality of the objectives follows from the fact that
each of them is equal to f(x). If the hypotheses of Theorem 2 are

satisfied then, using the equality of the two objectives and Corollary 1,
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we see that x and (X, Yo, Y, Z) are, respectively, global optima for (PE)
and (DE).
Theorem 4 (Strict Converse Duality). Let (PE) have an optimal
solution x and let the hypotheses of Theorem 2 hold. Let (U, Uy, U, Z) be
an optimal solution of (DE). If, for all feasible solutions (%, u, yg, 4. 2),
f is quasiconvex, and gtg +Zh s strictly pseudoconcave, then u = x,
that is, u is an optimal solution of (PE).
Proof. We assume u = x and exhibit a contradiction. Since X is an
optimal solution of (PE), Theorem 3 yields that there exist yg € R,
yeRM, ze RK such that (x, Uo. U, 2) is an optimal solution for the
dual problem (DE). Since (u, Yg. Y, 2) is also optimal for (DE), it
follows that
f(x) = f(u) (17)

From (4), (12) and (11) we have, for feasible X and (U, Yo, U, 2),

ylg(x) + Zth(x) 202 gta@) + Zth(w) (18)
Since for all feasible solutions (x, u, Yo, Y, 2), Etg(?) +Zth s strictly
pseudoconcave, (18) gives

(x - Hviyte@) + Zth@)l > o (19)
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(19), along with (10), gives
(x - WV > 0 (20)
In (17), using the quasiconvexitg of f for all feasible solutions
(%, U, Ug, Y, 2), we have
x - WV s o

Using Ug 2 0

(x - HUYr@) 0 (21)
(20) and (21) contradict each other. Hence the result follows.
Remark 2, It is important to point out here that we did not make any
constraint qualification assumption in Theorems 3 and 4 . This is
because we made use of Fritz John necessary optimality conditions [S4]
in the proofs of those theorems. However, in Theorems 3.7, 3.8 of ([15],
a constraint qualification was assumed to hold.
Theorem 5 (Converse Duality). Let (%, Ug, U, 2) »be a local or global
optimum of (DE). Let f, g, heC2 f be QX, ytg+ zth be SPCV for
all feasible solutions of (PE) and (DE) and let V[ ytg(x) + zth(x) 1= 0. If,
in addition, the n x n matrix V2[ yof(x) - gtg(x) - zth(x) 1 is positive or

negative definite, then yg > 0, and % is an optimal solution of (PE).
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Proof. As in Mond and Weir ([S8], Theorem 8, p. 272) we have, by the
generalized Fritz John Theorem given by Mangasarian and Fromovitz [S3],
that there exist v € R, veR", weR, sp€eR and s e R™M such that

TVI(X) -~ V2Gof(x) - glg(®) - Zth(x) v

- wvl gtgx) + Zth(x) 1= 0 (22)
vivex) + sp = 0 (23)
VieM={12..m},  vivg® - wg ) +s;=0 (24)
VkeK={l,2 ..k}, viTh (%) - wh (%) = 0 (25)
VI Gof () - gta®) - Zth(x) 1= 0 (26)
wl gta(x) + zth(&x) 1= 0 (27)
VI Gof(x) - gtg(x) - Zth(x) 1= 0 (28)
gtg() + Zth(x) < 0 (29)
(Yo, 4. 2) = 0 (30)
(o 120 G31)
SgUp = O (32)
(VieM) siy; = 0 (33)
(v, v, W, sp 8) =0 (34)

and (z, w,50,8)20 (35)
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Multiplying both sides of (23) by yg and using (32) we obtain
vl viG) = 0 (36)
(26) and (36) yield,
Vil gtgx) + Zth(x) 1= 0 (37)
Premultiplying (22) by vt and using (37) we get
2l R) - VIV gorx) - gla) - Zth) v = 0 (38)
We now claim that

T>0. (39)
Otherwise from (38) we would have v!v2[ yof(%) - uta(x) - Zth(x) v = o,
which, since the matrix V2[ yof(x) - ytg(x) - zth(x) 1 is positive or
negative definite by hypothesis, yields v = 0 and this in turn from (22)

gives wvlytg(®) + Zth(x)] = 0. With the hypothesis Vlgtg(x) + zth(x)] = 0,

this gives w =0 and, puuting v=0, w =0 in(23) and (24) we get,
Sp =0, 5=0 VieM Therefore, v=0>v=0,w=0, 55=0,5=0

which contradicts (34). Hence (39) holds.

Again, multiplying (38) by Uyg and using (36), we obtain

Uovt V2l Yof () - Ola(x) - ZHhx) v = 0

or UovH V2 Yof (%) - glg(x) - Zth(x) I(gev) = 0 (40)

Using the hypothesis that V2[ yof(x) - ytg(x) - Zth(x) 1 is positive or
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negative definite we get from (40)

Upv =0 with gp20 (41)
We claim yo > 0, otherwise (10) gives vigtgx) + zth(x)) = 0, which
contradicts the hypothesis that VIytg(x) + zZth(x)] = 0 . H.ence Up > 0

and, therefore, from (41) we have v = 0. This, in conjunction with (22),

yields,
TVIG) - wVl gtg) - Zth(x) 1 = o. (42)
From (28) we have
YoVI(x) - VIgtg(x) + Zth(x)] = 0 (43)
(42) and (43) give
(v - Gow)VIgtg(x) + Zth()] = 0 (44)

since VIgtg(x) + Zth(x)] = 0, (44) yields
w = t/yg > 0 (because = > 0, yg > 0) (45)

Since v = 0, therefore, (45) and (24), (25) gives
gi(x) 2 0 VieM

and h (%) = 0 Vkek

i.e. X is (PE)-feasible and hence using the hypothesis of the theorem
and Corollary 1, we see that X is optimal for (PE) as the values of the

two objectives at % and (%, yg. U, Z) are equal.
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4. CONCLUDING REMARKS.

(i)

(ii)

(iii)

Fritz John sufficient optimality criteria have been established for
differentiable functions under generalized convexity assumptions.
The objective function f is assumed to be quasi convex (6117, 31,
p.118) and gtg + Zth is assumed to be strictly pseudoconcave .
Under these generalized assumptions various duality theorems are
proved for Mond-Weir duality. These results are generalizations of
results of Bector and Bector [15], Mangasarian [54], Bector and

Grover [9], Bector and Gulati [11], Singh [63], Skarpness and Sposito
[73].

Similar results can also be established under the assumptions of
quasiinvexity [30] on the objective function and quasiinvexity/
strict pseudoinvexity on the constraints.

It we replace (1. 14) by the inequality

(x - DUYGVIE) - V(g + NI 2 0 for x e X0 where, as in
[S4], XP is the closure of X® and we make slight modifications in
the statement of Theorem 1, we can still prove it following the

same lines of proof.
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CHAPTER 3

SUFFICIENT OPTIMALITY CONDITIONS AND DUALITY FOR A
QUASICONVEX PROGRAMMING PROBLEM

1. INTRODUCTION.
On the tines of Mond and Weir [S8], consider the following

nontinear programming problems:

(P) minimize f(x), (D
XES

(PE) Minimize f(x) , (2)
XEX

where

M mMm={12.,m} K=(1,2, ..., k},
(ii) X9 is an open set of RN,
(i)  f:X0->R, g:X0>RM and h:x0- RK are differentiable
functions.
(iv) S ={x; x € X0, g(x) 20)
= {x: x € X%, gi(x)20,i¢M, (3)
(v) X = {x: x € X0, g(x) 20, h(x) = 0} (4)

= {xi x € X, g;(x) 20, i €M, h(x)=0,kek}, (5)
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Evidently, if K =¢ (null set), (PE) becomes (P).

Mangasarian [54], assuming f to be pseudoconvex, g; (with

[={i; gj(x) = 0, i € M}) tobe quasiconcave and h to be both quasiconvex

and quasiconcave at x € X showed that, if (X, §, z) satisfies the

following Kuhn-Tucker type conditions:

VIf(x) - ytg(x) - zth(x)1 = 0, (6)
ytg(x) = 0, (7)
gx) 20, (8)
h(x) =0, (9)
y € RM, z e Rk, y=0, (10)

then % is (PE)-optimal.

Bhatt and Misra [22] assuming all of f, g, h to be convex at x ¢ X,

showed that the above conditions (6)-(10), with the additional
restriction z 20, are sufficient for x to be (PE)-optimal.

Assuming T to be convex and g to be strictly concave at X € S,

Mangasarian [S54] showed that, if (X, Q';J. y) satisfies the following

Fritz John type conditions:
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Viyof(x) - ylg(x)1 =0, (11)
utg(x) =0, (12)
gx) 20, (13) 5
Yo €R, yeRM  (yo, y) 20, (14)

then % is (P)-optimal.

Assuming f to be pseudoconvex at x € X and g (where I= {i; gi(x)=0))

and h to be strictly pseudo concave at x € X, Bector and Gulati {11] and
Skarpness and Sposito [73] proved that, if (X, Yo, U, Z) satisfies the

following Fritz John type conditions:

Viyof(x) - ytax) - zth(x)1 = 0 , (15)
ytgx) =0, (16)

gx)20, (17)

=0, (18)

Uo € R, U €R™M, z¢eRK, (4o y)20, (19)
z ¢ RK, z20, (20)

then x is (PE)-optimal.

Recently, Bector and Bector [15] showed that, if (x, y, z) satisfies

(15)-(19), f is quasi convex at x € X and gtg + 2t s
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strictly pseudoconcave at x € X, then x is (PE)-optimal. Furthermore,
they proved weak, direct and converse duality theorems for the
Hond—Weir dual problem. The purpose of the preseht chapter is to extend
the results proved by Bector and Bector [15] further by proving the
Fritz John type sufficient optimality theorem and various duality
theorems for the Mond-Weir dual problem under quasi convexity
assumption on f and quasi concavity/strict pseudo concavity on
components of g and h. This problem is different from the problem
considered in Chapter 2 in that a linear combination of quasiconvex/
strictly pseudoconvex functions may not be a strictly pseudoconvex
function.
2. OPTIMALITY

We now prove the following Fritz John sufficient optimality
theorems for (PE) under the quasiconvexity assumption on f and

generalized concavity assumptions in different forms on g and h.

Theorem 1 (Sufficient Optimality Theorem). Let y, e R, y e R™, Z

e RK and let X € X along with Uo Y. Z satisfy the Fritz John type

conditions (15)-(19). If at x with respect to X, (i) T is quasiconvex




40

(@x) (1611, 31, p.116), (ii) for i e 1 (1={i; g;(x) =0, i e M}), i=s, g is
QV, but for i=3s, g4 is strictly pseudoconcave (SPCV) with !—J—s >0

and (iii) V k e K, z hy 18 quasiconcave (QV), then X is a global

optimal solution to (PE).
Proof. If % is not a global minimum for (PE), let x% € X be such that
1(x0) < 1) 21)
Since  is QX ([61], 3f, p. 116) at x therefore, (21) yields
(x0 - ivrx) g0
With yYg =0 this implies,
(x® - VG,rR) g 0 (22)
Let
I={ii gi(®) =0, ieM}, J={i;gj(x) <0, i eM}suchthat 1UJ=M
This, in view of (16), (17), and (19) yields
U, = 0 (23)

Again, as in ([S4], p. 152), we have

g; (x 20 =gi(x) for i€l (24)
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Since Viel, i=s, g; is QV andfor i=s, g4 is SPCV

with ug > 0, it follows that from (24)

(x0 - %)tvg(x) 2 0 Viel,i=s
(x0 - ?)ths(x_) > 0 for i=s,
and hence,
(x0 - 0t tg, (0> 0 (25)
Since y; = 0 from (23), we have that
(x" - 0ty tg, (= 0 (26)
(25) and (26) yield |
(x0 - )tvytgx) > 0 (27)
Now V k€K z,h (x0) = Z h (x)
It follows from the quasiconcavity of Z_khk' V k € K, that
(x0 - )VZh ()20  Vkek (28)
(27) and (28) yield
(x0 - )tolytax) + Zth(x)] > 0 (29)

(15) and (29) together give

(x0 - VYL () > 0 (30) |
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This contradicts (22). Hence the result follows.

Remarks 1.

(i) It is very important to observe here that in the proof of the
Theorem 1 it is the strict pseudo concavity of gg With ys>0

without which the strict inequality (25) and hence (30) is not

possible. Thus, for (PE) global optimality of x satisfying
conditions (15)-(20) with QX objective function is solely
dependent upon the strict pseudoconcavity of one of the constraint
functions with positive multiplier. Hence, the importance of the
theorem lies in the fact that, once we have solved a nonlinear
programming problem with QX objective and QV constraints, all we
need to ensure the global optimatity of the sc;lution (and this is

crucial) is to show that at the optimal solution just one constraint

function corresponding to a positive multiplier is SPCV.

(ii) If we assume Yo > O in (15) and (19) then the Theorem 1 gives

a Kuhn-Tucker type sufficient optimality theorem under weaker
convexity assumptions on the objective function and constraints

that are different from Bector and Bector [15] and Mangasarian [S54].
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(iii) We can also prove the Theorem 1 by replacing the assumption

VKkeK, zh, isQV' by 'VkeK, h, isboth QVand QX .

(iv) Taking K = ¢ in Theorem 3.1 we recover the Fritz John sufficient
optimatity theorem for (P) that generalizes the results of Bector

and Grover [9].

(v) It is well known [S4] that when a continuous QV function is
minimized on an appropriately restricted convex set, a local

minimum, in general, may not be global. However, the assumptions

in Theorem 1 always yield a global minimum.

3. DUALITY

We consider the following two of the dual (DE) suggested by Mond

and Weir [58] for (PE).

(DE)  maximize f(u) ,
subject to
VIyof (W) - 2 yigi(w) - 2 zeh (W1 =0, (31)
ieM keK
yigiu) 0, VieM (32)
2k (W) S0, VkeK (33)

o Y20, VieM Vkek. (34)
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We now prove the folloWing theorems relating (DE) to (PE).

Theorem 2 (Weak Duality). Let x be (PE)-feasible and (u, Yo: Y. 2) be

(DE)-feasible. If, for all feasible solutions (x, u, Ugr Us 2),

(i) fis QX ([61], 3f, p.116), and
(i) VvieM i=s, gjis QV,butfori=s, ggisSPCY with yg >0
and VK eK, zyh, is QV,

then, infimum (PE) 2 supremum (DE)

Proof. If possible let f(x) < f(u). Since for all feasible solutions

(%, U, Yo, U, 2), f is QX , therefore ([61], 3f, p.1186),

(x - W) g0
With Ug 2 0 this gives
(x - W)tVYef(u) 5 0 (35)
Using (34), (4) and (32) we have,

Yigi(x) 2 0 2 yigiu), VvieM. (36)

Since for all feasible solutions (x, u, Yy, Y, 2) and for ieM, i=s,

gy isQV VieM butfor seM, gg is SPCV with yg > 0, (36) gives
VieM i=zs (x - u)thigi(u) 20 (37)

s €M (x - u)thsgs(u) >0 (38)

Similarly, using (4), (33) and the quasiconcavity of zh, V k €K
we have

VkeK (x - Wvzh, W20. (39)
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(37), (38) and (39) yield

x-wt[3 yigi(w) + 2 zkhk(U)] >0 (40)
€M keK

(31) and (40) give (x - u)thof(u) > 0, which contradicts (35).

Hence the result follows.

Corollary 1. Let x be (PE)-feasible and (U, Y, y, 2) (DE)-feasible

such that f(x) = f(u) and let the hypotheses of Theorem 2 hold. Then X
is a global optimum for (PE) and (u, Yy, Y, 2) is a global optimum for

(DE) with the corresponding optimal objective values (X} and f(h—)
respectively.

Theorem 3 (Direct Duality). Let x e X be a local or global

optimum of (PE). Then there exists (Yo, U, 2) such that (X, Ug, U, 2) is
feasible for (DE) and the corresponding values of the objective functions
of (PE) and (DE) are equal. If, also, the hypotheses of Theorem 2 are
satisfied, then x and (X, Yg, U, 2) are, respectively, global optima for
(PE) and (DE).

Proof. Since x € X is a local or global optimum of (PE), there exist yp €
R, UeRM, ZeRK such that the conditions (15)-(19) are satisfied
([54], p.170).

From (18), (17), (18) and (19) we have

VieM ygig(x)=0, VieM Zh()=0 (41)
Therefore, (15), (41) and (19) imply that (x, yp. U, 2) is (DE)-feasible.

Equality of the objectives follows from the fact that each of them is

equal to f(x) at x and (x, Uo. Y, 2) respectively. If the hypotheses of
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Theorem 2 are satisfied, then using the equality of the two objectives
and Corollary 1 implies that x and (X, Yo, Y, 2) are, respectively, global
optima for (PE) and (DE).

Theorem 4 (Strict Converse Duality). Let (PE) have an optimal

solution ¥ and let the hypotheses of Theorem 2 hold. Let (U, Uy, U, Z) be
an optimal solution of (DE). If, for all feasible sotutions (x, u, Yg, y. 2),

(i) f is QX, and

(i) YieM i=s,gjisQV,butfori=seM, ggisSPCV with yg >0

and VkeK, zh is Qv ,

then u =X, that is, u is an optimal solution for (PE).
Proof. We assume U = x and exhibit a contradiction. Since X is an
optimal solution of (PE), therefore, Theorem 3 yields that there exist y,
eR, yeRM zeRK suchthat (X, Yo y, 2) is an optimal solution for
the dual problem (DE). Since (u, Ug. Y, z) is also optimal for (DE), it
follows that

f(x) = f(u) (42)

Using the quasiconvexity of f and yp = 0, we obtain from (42)

(x - Wtvyf) g 0 (43)

quasiconcavity of g; vV ieM, i=s, strict pseudo é:oncavitg of g5 with

Q—S >0 for i=s,i€eM and quasiconcavity of Ekhk VkeK, we have

(as in Theorem 2)
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& -0 [3 gig@ + S Zhe@l >0 (44)
ieM keK

(31), the feasibility of (U, g, U, 2) and (44) give (x- Wtvyr@ > o,
which contradicts (43). Hence the result follows.

Remark 2. It is important to point out here that we did not make any
constraint qualification assumption in Theorems 3 and 4. This is
because we made use of Fritz John necessary optimalitg conditions [S54]
in the proofs of those theorems. However, in Theorems 3.7 and 3.8 of
[15] a constraint qualification was assumed to hold.

Theorem 5 (Converse Duality). Let (X, Yo, Yy, z) be a local or

global optimum of (DE). Let f, g, he C2, for all feasible solutions (x,

U, Yo Y. 2), T be QX, g; be QV VieM i=s, but for i = s let g5 be
SPCV with ug > 0, let Zzh, be QV V k € K and let for all ieM, all k

ek the vectors Vy;gi(x), Vzh (x) be tinearly independent.

if. in addition the nx n matrix V2[ gof(x) - yta(x) - Zth(x) 1 is
positive or negative definite, then —S-J—o >0 and x is optimal solution to
(PE).

Proof. As in Mond and Weir ([S8], Theorem 6, p. 272), by the

generalized Fritz John Theorem given by Mangasarian and Fromovitz
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[S3], there exist ©e¢R, veRM, weRM peRK syeR and s e RM such

that

TVI(R) - V2GR - ytgx) - zth(x) v

- V[SwiHigi + Spzeh ] =
ieM kek

vii(x) + s = 0
vthi(R—) - wgi(x) +s; =0, (V i € M)
Vih () - peh () = 0, (¥ k € K)
VIVIGf (%) - pg(x) - Zth(x) 1= 0
wiyigi(x) =0, (VieM)
PrZihe(x) = 0, (¥ k € K)

Vigof(®) - ta®) - 2t 1= 0

yigi(x) <0, (ViemM),
zeh ()50, (V k € K),
o UP20, W05 Z)=0., (VieM VkeKk),
SoUp = 0
siy; = 0, (VieM),

(T, v, W, p, sg.8)2 0

(‘Ul Wl P. 50, S) .>= 0

(45)

(46)
(47)
(48)
(49)

(50)

(51)
(52)

(53)
(54)

(55)
(56)
(57)

(58)
(59)
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Multiplying (46) by Yo and using (56), (47) by y; and using (57) and

(48) by 2z, and using (51) we obtain

vigev i) = 0 (60)
Viogig =0, (Vi €M), (61)
viozeh ) = 0, (V K € K). (62)

From (61) and (62) we have

VIV wiljgi(0) + 3 przghg(x)1 = 0 (63)
€M keK
or VIS wiVyigi(R) + 2 pr VzZghye ()1 = 0 (64)
€M keK

Premultiplying (45) by vt and using (63) we have
IR) - VIV 2[gef () - gla() - ZthGlv = 0 (65)
We now claim that
T >0 (66)
Otherwise, from (65) we have viV2[yyf(x) - ylg(x) - Zth()lv = 0. This
along with the hypothesis V2[yof(x) - gtg(x) - Zth(x)] is positive or

negative definite yields v = 0. Therefore, from (45) we have
VIZwiyigi(®) *+ 2 przkh ()] = 0
ieM keK
that is Swivyigi(x) + > prVzhg(x) = 0 (67)
i€M keK 7

For all i €M and all k € K, using the linear independence of the

vectors VY;gi(x) and Vzph,(x), we obtain that from (67) w; =0, V i € I,
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P = 0, ¥V k € K, which along with v=0 yield s =0 ands; =0V ieM,

Thus,

T=0=>v=0, w=0, p=0, 5=0, s=0
a contradiction to (58). Hence (66) holds.
Using (60) in (65), with yg =0 we obtain

(Yovh) V2[yof(¥) - gta®) - 2] (Gov) = 0 (68)
By hypothesis, V2[yof(x) - ulg(x) - Zth(X)1 is positive or negative
definite, therefore, from (68) we have
Ygv = 0 with ygv =0 (69)
We now claim that yg > 0, otherwise from (52) we obtain

> Vyigi(x) + > Vzph(x) = 0, which contradicts the fact that, V i e M
ieM keK

and V k € K Vyjgi(x) and Vzghy(x) are linearly independent. Hence yg > 0
and, therefore, from (638) we have v = 0. This, in conjunction with (45)

yields,
TVI(X) = SwiVyigi(®) + 2 pxVzhe(x) . (70)
€M keK

From (52) we have

YoVI(x) = ZVY;gi(x) + XVzhe(x) . (71)
ieM keK '
From (70) and (71) we get
2T = YW IVU;gi(x) + 2(T - YoPk)VZKhy(x) = 0 . (72)
ieM keK :

Using the hypothesis that for all i €™M and for all k € K the vectors

Vyig;(x) and Vzhy(x) are linearly independent, we get from (72)
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T = YW VieM (73)
and
T = YoPy VkeK (74)

Using (73) with v =0 in (47), and using (74) with v =0 in (48),
respectively, we obtain
gi(x) 20 VieM
and
h(x) = 0 VkekK
which shows that x is (PE)-feasible. Also, the values of the two
objectives at (PE)-feasible X and (DE-2)-feasible (X, Yo, U, Z) are
equal, therefore, using Corollary 4.1 and the hypothesis of the theorem
we see that x is (PE)-optimal.
5. CONCLUDING REMARKS.
(i) Fritz John sufficient optimality criteria have been established for
differentiable functions under generalized convexity assumptions.
The objective function is assumed to be quasiconvex ([61], 3f,
p.116) and the constraint functions are assumed to be quasi-
concave/strict psuedoconcave in various forms. Under these
generalized assumptions various duality theorems have been proved
for Mond-Weir duality. These results are generalizations of results
of Bector and Bector [15], Mangasarian [S4], Bector and
Grover [39], Bector and Gulati [11], Singh [69], Skarpness and Sposito

[73] and Bector, Bector and Klassen {10].
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Similar results can also be established by assuming quasiinvexity
[31] of the objective function and quasiinvexity or strict pseudo-

invexity of the constraints.

(iii) If we replace (15) by the inequality

(iv)

(x - UYLV - V(EtgR) + ZthENI = 0 for x € RO where, as in
[54], X0 is the closure of X? and make slight modifications in
the statement [S4] of Theorem 3.1, we can still prove it following
same pattern of proof.
As in Mond and Weir [58] we can have a general dual
(DEG) maximize f(u)

subject to

VIyof(u) - ytqu) - zth)l = o

ZUiQE(U)+ZZjhj(U)SO. x=1,2,..°r
iEl°< jeJd o
y=0

where, different notations are same as in ([58], p.267). Assuming

quasiconvexity assumption of f and strict pseudoconcavity

assumption on g5 with corresponding yg > 0 and quasiconcavity

of ZUtQi‘“szhj' x=1,2,..r,
1€1 o [
i=s

we can prove Theorems 1-5, with appropriate modifications in their

statements, in an analogous manner.
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CHAPTER 4

A DUALITY MODEL

FOR A GENERALISED MINMAX PROGRAM

The purpose of the present chapter is to consider a generalized

minmax programming problem, in which several functions are to be

optimized simultaneously and the overall objective is to minimize

(maximize) the largest (smallest) of the objectives, and, under weaker

convexity assumptions,

(i) prove the Fritz John type sufficient optimality conditions,

(ii)  introduce a Mond and Weir tupe [24] dual program for the minmax
programming problem and, using the Fritz John type conditions

prove duality theorems,

(iii) apply the resuits proved to define a form of duality for a

generalized fractional programming problem.

Such problems have numerous applications, as given in Chapter 1.

1. FRITZ JOHN TYPE OPTIMALITY Conditions

We now consider the following nonlinear minmax program as
the primal problem (P) whose Fritz John type optimality conditions and

duality we want to discuss.
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(P) Minimize Maximum  {fj(x)} (1)
XES lsigp
where,
(i) s={xeRNn(x)g0, k=1,2,..,m} isnonempty and compact,

(i) f; (1 gigp) h (1 sksm) are real valued and differentiable

functions.

We have the following problem (EP) from (P).

(EP) Minimize q (2)
X.q
subject to
fi(x) gq i=1,2,...,p (3)
h(¥)s0  k=1,2,.,m (4)
x e R", geR (5)

(EP) is equivalent to (P) in the sense of the following Lemmas 1 and 2.
Lemmal, If x is P-feasible then there exists a q € R such that (x, q)
is EP-feasible and if (x, q) is EP-feasible then x is P-feasible.
Lemma2. X is optimal to (P) with the corrresponding optimal
objective value q iff (%, Q) is optimal to (EP) with the corresponding

optimal objective value q.
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Before we introduce a dual (D) to (EP) (and hence a dual to (P) we
state and prove the following Fritz John type optimality theorems.

Theorem 1 (Fritz John Necessary Optimality). Let x € S be

P-optimal with corresponding optimal value of P—'objective equal to q.

The there exist Up € R, § € RP, z € R¥ such that (X, Yo, U, Z, @) satisfies

Vigtr(x) + zth(x)1 = 0 (6)
(vi=1,2,..p) yi(ri(x) -q) =0 (7)
(vk = 1,2,...,) zhy (%) = 0 (8)
(Vi =1,2,...,p) fi(x) -qs0 (9)
(Vk = 1,2,...,m) h(x) £ 0 (10)
p
2. Yi = Yo (11)
i=1
Uo, Y. 220 (12)

Proof. Follows from Lemma 2 and Mangasarian [54, Theorem 11.3.1, p.170].

Theorem 2 (Fritz John Sufficient Optimality). Let (X, Yo, U, 2, Q)

satisfy conditions (8) - (12). If at k, y 'f(*) is quasiconvex and Z th(")
is strictly pseudoconvex, with respect to S, then x is P-optimal

with the optimal P-objective value q.
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Proof. If X ¢S (with q as the corresponding value of the
P-objective) is not P-optimal, then let x* =%, € S (with @* as the

corresponding value of the P-objective) be such that

qQ*< q (13)

Up 9® SUg G (14)

(12), (3), (7) and (15) gives

MEICOFITIION (16)
Using the hypothesis that Q_tf(-) is quasiconvex at X, we have, from (18),

-0t v G g0 . (17)
Using (12), (4) and (8) we have

Z th(x*) <0 = Z th(x) . (18)
Using the hypothesis that Z th() s strictly pseudoconvex at x with
respect to S, from (18) we have

(-t v(Z thx) < 0. (19)
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From (I18) and (6) we have
(x<-)t v(g 't 1(x) > 0 (20)
(17) and (20) contradict each other. Hence the result.
2. Duality
In this section we consider the following Mond and Weir [S58] type
dual (D) and, under weaker convexity assumptions on gtf(-) and zth(+),
establish different duality theorems relating the primal problem (P)

and the dual problem (D).

(D) Maximize T
subject to
Viytreu) + zthw) = o (21)
ytr(u) 2 yem (22)
zth(u) 2 0 (23)
-

2 Yi = Yo (24)

i=1
MNe€R, Yo€R, UeRP, zeRM, (yg, y, 2) 2 0 (25)

We now prove the following theorems relating (P) and (D).
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Theorem 3 (Weak Duality). Let x be P-feasible and (u, yg, U, 2, M)
be D-feasible. If, for all feasible solutions (x, u, Yo, U, 2, M), gtf(-) is

quasiconvex and z'h(:) is strictly pseudoconvex, then Inf (P) 2 Sup (D).

Proof. For P-feasible X (and hence EP-feasible (X, q) and D-feasible

(U, Yo, Y, 2, 1)), we let

qg<m (26)
and show that this leads to a contradi'ction. From (26) we have using
Ug 20

Yod YoM (27)
Using (24), (3) and (22) in (27) we obtain

MRIOFITRI) | (28)
Since g—t f(-) is quasiconvex for all (x, u, Yp, Y, 2, M), (28) yields

&-wtv@tr@) o » (29)

Using (23), (25) and (4) we have
z th(x) £ Z thiu) | (30)

Since, for all feasible solutions (X, U, Ug, Y, 2, M), Z h(*) is strictly

pseudoconvex, (30) yields

-t 7 (Zthw) <o (31)
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From (21) we have for all feasible (x, u, Up, Y, 2, M)

(x-u)t wigt r@u) + 2t hw = 0 (32)

Now (31) and (32) give for all (x, u, Ug, U. 2, M)
(x-w)t vt rw) > o, (33)
which contradicts (29). Hence the result.

Corollary 1. Let x be P-feasible (and hence (X, q) be EP-feasible)

and (U, Yo, U, 2, M) be D-feasible such that q = 7. Let hypothesis of
Theorem 3 hold. Then x is P-optimal with the corresponding optimal
P-objective value q and (u, Yg, Y, 2, M) is D-optimal with the
corresponding optimal D-objective value 7.

Theorem 4 (Direct Duality). Let x be a local or global optimum of

(P). Then there exist yg € R, y € RP, ze RM, | ¢ R such that

(X, Up» 4» 2, M) is D-feasible and the corresponding objective values of

(P) and (D) are equal. If the hypothesis of Theorem 3 is also

(D), respectively.
Proof. Since x is P-optimal, (x, q) is EP-optimal and, by Theorem 1,

there exists yYp € R, y € RP, Z ¢ RM such that
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Vgt +zth =0 (34)
vi=12,.p) y; 1) -ql =0, (35)
(Vk = 1,2,...,m) z he(®) =0, (36)
(vi=12,..p) () -qs<o0, (37)
(vk = 1,2,....m) h(x) <0, (38)
p__ —

2Yi=Yo. (39)

i=1
and (Up, Y. 2)2 0, (40)

(35) and (36) yield, respectively
v 200 g (41)

and zh&) z0 (42)

Comparing (34), (41), (42), (39) and (40) with (21) - (25), we see that

(X, Ug, U, 2, @) is D-feasible with q=m.

Theorem 3 and Corollary 1 yield that x is a global optimum to (P)
with corresponding P-objective value q and (X, Yp, U, z, M) is a

global optimum to (D) with corresponding D-objective value T.

Theorem 5 (Strict Converse Duality) Let x be P-optimal with q

as optimal value and let the hypothesis of Theorem 3 hold. If
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(U, Yg, U, 2, M) is D-optimal and If, for all feasible solutions

(X, U, Yo» U, 2, M), U UF() is quasiconvex and zth(:) is strictly
pseudoconvex, then U = x, that is, U is the optimal solution of (P).
Proof. We assume that U =X and exhibit a contradiction. Since X is
an optimal solution to (P), therefore, (x, q) is EP-optimal. Hence by
Theorem 1 there exists (yg*, y*, z*) such that (X, yp*, g*..z*, Q is

D-optimal. Since (u, Yg. U, 2, M) is also D-optimal, it follows that

g

oM - (43)

el

This implies for yp = 0 Uo

o=

As in Theorem 3, we obtain from (43)
gty =gty | (44)

Since J 'f(*) is quasoconvex for all (x, u, Yo, Y, 2, M), (44) yields

Dt vyt s o . (45)
Using the hypothesis that Z () is strictly pseudoconvex, we obtain
.on the lines of Theorem 3,

-t v th@) <o, (46)
and hence‘

-0t v@ @) > 0. (47)

(45) and (47) contradict each other. Hence the result follows.
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Theorem 6 (Converse Duality). Let (X, Ug, U, z, M) be a local or

global optimum of (D) and let, for i=1,2,...,p, f; € C2 and, for k=1,2,....m,
h, € C2. If, for (D),

(i) the vectors Vz ph (x) are linearly independent for all k=1,2,...,m,

the vector V(y 'f(x)) = 0, and

(i) the (n x n)-matrix Vz[g_tf(?() +Z th(X)] is positive or negative
definite,

then (x, m) is EP-optimal and, hence, x is P-optimal with m =q as

the optimal P-objective value. If the hypothesis of Theorem 3 holds

optimum for (D).

P
Proof. We claim that yg > 0. If Yo =0, then, from (24), > y; = 0.

i=1
This, along with (25), yields g—l =0 for all i=1,2,...,p and hence (21)
m

gives V(z 'h(x)) = 0, that is, 3 V(z | h (%)) = 0, which contradicts
k=1

the hypothesis that for k=1,2,..,m the vectors Vz h.(x) are linearly

independent. Hence

Yo > 0 (48)
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s€R,sg€R, 85€eR, 8 eRP and p e RM such that

V2 g U@y + ZhEN v+ w V@ HE) + s v(Etr{(??)) =0 (49)
| T-WwWlUg=0 (50)
Vi =1,2,...p) PIUFG) + @ 1(x) + 8, + 59 =0 (51)
(Vk = 1,2,...,m) pt 7 h )+ s () + =0 (52)
wﬁ+so¥ao=o (53)
o gty » Z el = 0 (54)
w (UG -G M) =0 (55)
sz thx) =0 (56)
THE-rzo  (57)
zh&) 20 (58)
sd%lg—i ~Up) =0 - (59)
i=
SoUpg =0 (60)
(Vi=12,..p) §{yj =0 (61)
(Vk = 1,2,...m) P Zg =0 (62)

Ui = Uo (63)




64

(. v, w,sq, S, 8, 8, U) =0 (64)
(v, w, s, 8g, 8, H) 20 (65)
. U220 ©)
(48) and (60) yield §p = 0 (67)
(53) and (67) yield Sp = WM (68)

Multiplying (51) by y; and using (61) and (68) we have

(Vi =1,2,....p) Pt U@ + w@if () - g =0
or E @ D) + w(@ ) - M go) = 0 (69)

Using (SS) in (69) we obtain

Ly by =0 (70)
Multiplying (52) by Ek for all k = 1,2,...,m and using (56) and (62) we

have
pt (@ th(x)) = 0 | (71)
(70) and (71) yield
LoV ) + s VK TG = 0 (72)
Premultiplying (49) by pl and using (72) gives

vty ) + 2 thGdw = 0 (73)
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Using the hypothesis that the matrix v?m‘tf(?) + 2 LX) is positive or
negative definite in (73), we get

»=0 , | (74)
we now claim that

T >0 (75)
If not then © =0 = wyg =0 from (50) = w =0 since Yy > 0. This in

turn, yields from (68) that sy =0, from (S1) that § =0 and from (49)

m

that s 3 Vz | hi(x) = 0, which, on using the hypothesis that the vectors
k=1

V?z_k hk(g) for all k = 1,2,....m are linearly independent, yields s = 0.

Using » = 0,5 =0 in(52), we get p =0. Therefore © =0 yields
(T, w, s, 8p, 8§, p) = 0, a contradiction to (64). Hence T > 0. This, in

turn, with (50) and (48) results in
w >0 (786)

We now claim that s = 0O because, if s = 0 we obtain from (49) and
(74) that o V(y (X)) = 0 which, in conjunction with the hypothesis

that v(y (=) = 0, yields w =0, a contradiction to (76). Hence

s>0. (77)
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(78) atong with (51), (74) and (68) yields

“i=12,.p) fix)sm (78)
(77) along with (52) and (74) yields
vk = 1,2,...m) h(x) £ 0 (79)

It follows from (3), (78) and (79) that x is P-feasible with 7 =4q. B

«

Corollary 1, we get rest of the theorem.
3. APPLICATIONS

In the present section we consider an application of the results
proved in the previous sections to generalized fractional programming.
Generalized Fractional Programming. A generalized fractional
program as considered by Crouzeix, Ferland and Schaible [10],
Jagannathan and Schaible [19], Chandra, Craven and Mond [6] and Bector,

Chandra and Bector [4] is as follows:

(GFP) v¥ = Min  Max  [9;(x)/¥i(x)] (80)
XES 15igp

where,

(Al). S isas in (P),
(A2). ¢9;,¥;, i=1,2,..,p and hk, k=1,2,.. m are differentiable

functions on RN,
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(A3). ¥i(x)>0, fori=1,2,..,p and X €S,
(Ad). If wifori=1,2,..p,isnotaffine, then ;(x) 20 for i =1,2,..,
pand X € S.

If we take ‘Pi' ~¥i i=1,2, .. p, and he k=1,2,..,m; asconvex

functions and let f; = ¢;/\¥,;, thenfor ye RP, z ¢ RM with (y, 2) 2 0,

P m
> yifi(x) + 3 zehe(x) i.e. ytr(x) + zth(x) are neither convex nor
i=1 i=1

concave, or neither generalized convex nor generalized concave, as
assumed in Theorems 2-6. Therefore the results proved in the present
paper are not directly applicable to (GFP) on the lines of (D). However,
by using a result of Crouzeix, Ferland and Schaible [11] we relate (GFP)
to a parametric problem on which we can apply the results proved in the
present paper and thus can obtain dual problem (GFD) on the lines of (D).
Crouzeix, Ferland and Schaible [11] considered the following
minmax nonlinear parametric programming problem in parameter v

(GFPy)  F(v) = Min  Max  [9j(x) - v¥{(x)] (81)
XES 1gigp

and extended a result of Jagannathan [17] and Dinkelbach [13] as follows.
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Lemma 3. If (GFP) has an optimal solution x,* (hereafter denoted

by x*) with optimal value of the (P)-objective as v*, then F(v*) =10
and, conversely, if F(v*) = 0, then (GFP) and (GFP,,x) have the same

optimal solution set.

Now if we take

fi(x) = 3(x) - v (x) (82)

then, on the lines of (D) we get the following dual.

(GFD) Maximize m

subject to

vl yto) - v gtv) + zthwl =0
uto) - vytvw) 2 yon

zth(u) 20

MER, Yo€R VER, yeRP, zeRM (Yo, 4. 2)20

We now see that, under assumptions (A1) - (AS) on the functions

involved, duality theorems similar to Theorems 3—5‘relating (GFP) to
(GFD) exist.
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4. CONCLUDING REMARKS.
In the present paper we considered a generalized minmax (maxmin)

programming problem, proved the Fritz John type sufficient optimality

conditions and, using Fritz John type optimality conditions, discussed
duality under weaker convexity assumptions. As an application of the
results duality for a generalized fractional programming problem is

obtained. These results can be extended further to more general

concepts of {(generalized) invexity [8], (generalized) p-convexity [30],
and (generalised) semi-local convexity [21] of the functions involved in
(P), for continuous programs and programming problems in complex and

Banach spaces.
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CHAPTER -5

SECOND ORDER DUALITY FOR A QUASIBONVEX
PROGRAMMING PROBLEM

The purpose of the present chapter is to introduce a second order
dual problem for (P) given by (1. 1), on the lines of Mond and Weir
[S8] and Bector and Bector [14), and, under generalised bonvexity

assumptions, prove Weak, Direct and Strict Converse duality theorems

using Fritz John [S4] conditions. We introduced bonvex (BX) and
generalized bonvex functions in Chapter 1. The motivation for naming

them as (generalized) BX functions is that they are bidifferentiable and

behave like {generalized) convex functions. The class of BX functions is
included in the class of Pseudobonvex (PBX) and quasibonvex (QBX)

functions and the class of strictly bonvex (SBX) functions is included in

the class of strictly pseudobonvex (SPBX) functions; the sum of a number

of BX functions is a BX function.
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1. DUALITY

Primal Problem. We consider the following primal problem :

® Minimize f(x) (1)

X € X
where

(i) %O is an open set of RN,

iy M={1,2,..,m}
(iii) f:X0->R and g: X0~ RM are differentiable functions, and
(iv) %X ={x xeX9 g(x)=0} (2)

={x; xeX0, gi(x)20, ieM} (3)

Dual Problem. We now introduce two duality models (D-1) and (D-2)

and prove duality theorems relating them to (P).

(D-1) Maximize f(u) - 1/2 ptvzf(u) p _ (4)
subject to
Viyef(u) - 3 uigi(wl + V2[yoef(u) - ¥ yigiWlp =0 (5)
ieM ieM
(VieM) yigi(u) - 172 ptv2(y g W) pso  (6)

(VieM Yo, Yj 20 (7)
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(D-2) Maximize f(u) - 1/2 ptVQf(u) p (8)
subject to

VIyef(u) - gtg(u)] + V2[yof(u) - gtg(u)] p=0 (9)

utg(U) - 1/2 ptvz(gtg(u)) pgoO (10) |

Yo € R, y e RM, ' Ug, U20 (11)

Theorem 1 (Weak Duality). If, for all P-feasible solutions x and
D-feasible (u, Ug, Yy, p) f is QBX at u with respect to X and
(@ for (D-1):VieMand i =s, gj is QBV but for i = s, gq4 is SPBV, Ys>0,

(b) for (D-2): ytg is SPCV at u with respect to X,

then

Infimum (P) = Supremum (DE)
Proof. If possible let f(x) < f(u) - 1/2 ptv2f(u) p. Since f is QBX at
u with respect to X, therefore, using (6) we have
(x - WHVIW) + V2(u) pl 50

or using Yo 20
| (x = WHT (Yol () + V2(yol (L)) Pl S0 (18)
(@) Using (13), (9) and (12) we have,

VieM  yjgi(x) 20 2(y;gu) - 172 ptV2yigi(u)) p (19)

Since for i€e¢M, i=s g; is QBV, therefore, y;g; is also QBV for

ieM, i=s and y;20. Hence (19) yields

ieM, i=s  (x - WHVQGiW) + V20y;0W) Pl 20 (20)
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Similarly for i =s€eM g is SPBV with y4 > 0, therefore, (18) yields
(x - WHV(Y;g;() + V2(y;g;(u)) pl > 0 21)
(20) and (21) yield

(x - WHUV( 3 yigiW) + v2( T yjgiw) pl > 0 - (22)
ieM €M
(11) and (22) yield

(x - WU (yefu)) + V2(yefu)) p1>0 (23)

(23) contradicts (18). Hence the result follows.

(b) Using (8), (17) and (16) we get

ytg(x) 2 0 2 ytg@) - 172 ptv(yte(u)) p (24)
since ytg is SPCV at u withrespect to X, (24) yields
(x - WHV(Ytgw)) + V2ylg(w)) pl >0 (25)

(15) and (25) yield {(23) which contradicts (18). Hence the result.

Corollary1. Let X be (P)-feasible and (U, Yp. Y, p) be (D)-feasible
such that f(x) = f(0) - 172 ptw2f(u) p. Let the hypothesis of Theorem 1

hold. Then X is a global optimum for (P) and (u, Yo, Y, p) is a global-

optimum for (D) with corresponding optimal objective values equal to
f(x) and () - 1/2 ptw2f(u) p.
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THeorem 2 (Direct Duality). Let X be a local or giobal optimum of

(P). Then there exist Ug € R and y ¢ RM such that (X, yg, U, p = 0) is
D-feasible and the corresponding objective values of (P) and (D) are
equal. If, also, the hypotheses of Theorem 1 are satisfied then % and

(X, Yo, U, p = 0) are respectively global optima for (P) and (D).

Proof. Since X is a local or global optimum of (P), therefore, there
exist Up € R, Yy € RM [54] such that
UoVr(x) = YoVg(x) = 0

glgxy = 0

Yo,U20
This implies that (X, yg. U, p = 0) is D-feasible and the corresponding
values of (P) and (D) are equal. Since the hypotheses of Theorem 1 hold,
therefore, by Corollary 1, x is global optimum for (P) and
(X, Up. 4, P = 0) is global optimum for (D).
Theorem 3 (Strict Converse Duality). Let (P) have an optimal
solution and let the hypotheses of Theorem 1 hold. If (u, Yp, Y, P) is an
optimal solution of (D), f is QBX at u with respect to X, and
(@ for (D-1) gj is QBVI VieMand i 2zs, and gg is SPBV with

!_J-s >0 for i=s€eM, at u with respect to X, or

(b) for (D-2) ylg is SPBV at u with respect to X,

then u = %, thatis, U is an optimal solutions of (P).

Proof. We assume U = x and exhibit a contradiction. Since % is
P-optimal, Theorem 2 yields that there exist yg € R, Yy € R™ such that

(X, Yp, U, p = 0) is D-feasible and D-optimal. This implies
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f(x) = f(u) - 172 ptver(u) p (26)

Since (u, Q—e-. Q_ p) is D-optimal, it is D-feasible also.

(a) Hence, from (11), we have

Vigof@) - T Uigi@1 + VALl @) - 3 gigi@l p = 0 (27)
ieM ieM

Using the hypothesis that at u with respect to X, gy isQBV VieM
and 1 =s,and gg is SPBV with yg>0 for i=seM, at u with

respect to X, we obtain, as in Theorem 1,

(x - HUVS gigi@! + V23 yiqi@) pl > 0 - (28)
ieM ieM
(27) and (28) yield

(x - WUVYef) + V2ol (W) pl > 0 (29)
Since f is QBX at u with respect to X, (26) yields
x-wt[ vr@) » vr@p 1<o

or using yg 2 0
(x - WHUVYEr(W) + V24ef(W) p 1< 0 (30)

(29) and (30) contradict each other. Hence the result.

(b) Hence, from (15) we have

VI, M@ - Gtg@@) + V2ATef@ - gtg@I p = 0 31

T TLTLT S AR m S AT A 8T AT,
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Using (17), (8) and (16) we have
yta(x) 2 0 2 gtg@) - 1727 ptw2g)) p
Since ylg is SPBV at U with respect to X,

& - WY vytgu) + v2ytg(u) pl > 0 (32)
As in part (a), from (32) and (27) we get that (29) and (26) give
(30) which leads to a contradiction.
Remark. [t may be pointed out here that in Theorems 2 and 3 we have
not assumed any constraints qualifications. This is because we have

used Fritz John conditions in their proofs.

2. CONCLUDING REMARKS.

(i) The Mond-Weir type second order dual program is introduced and
using Fritz John conditions , Weak, Direct and Strict Converse
duality theorems are proved, under generalized bonvexity
(generalized boncavity) assumptions.

(ii) The results can be easily extended to higher order dual programs as
is done in Mond and Weir [19] and for (generalised) binvex i.e. second

order invex functions.
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CHAPTER 6

DUALITY FOR A MULTIOBJECTIVE PSEUDOLINEAR
PROGRAMMING PROBLEM

1. PRIMAL PROBLEM.
We now consider the following pseudolinear multiobjective

program (P) as the primal problem .
P) V-minimize (r, (=), £,(x), ..., fp(x)) (1)
subject to

g,(x) £ 0, (i=1,2, .., m. (2)

Here,
(i) the symbol "V-minimize” stands for vector minimization, minimality
being taken in terms of "efficient points” or “Pareto optimal solu-

tions” as defined below,
(i) f:R" —RP with f = (f,, o oo, fp) and the function ., i =1, 2,..., p,

is pseudolinear with respect to the kernel function K, (K.(x, y) > 0),

(i) g:R"-»R™ with g =(g,, @,. ..., g,,) and the function gy, J=h 2..,m

is pseudotlinear with respect to the kernel function G ( G(x, y) > 0 ).
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The purpose of the present chapter is to study Mond-weir [58] type
duality for the above multiobjective programming problems in which the
constfaints are pseudolinear with respect to the same proportional
(kernel) function and the objective functions are pseudolinear with
different proportionat (kernel) functions. The above problem was
considered by Bector et al [18]. The main difference between the problem

(1), (2) and the problem considered by Bector et al [18] is that in Bector

et al [18] the kernel functions K,’s of the corresponding functions fi's in
the primal objective are assumed to be the same (i.e. K; = K) where as in

the present work we assume those kernels K;'s to be different .

In the next section we shall use the following temma which is easy to

prdve.
Lemma 1. Let p € R™, ju 2 0 and let each function g for j=1,2,.m,

be pseudolinear with respect to the kernel function G. Then the function

u'g is a pseudolinear function with respect to G.

Let X denote the set of all feasible solutions of (P).
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Definition . A point % e X is said to be an efficient (Pareto Optimal)

point of (P) if there does not exist any x e X such that

f(x) < f(X). (3)
Remark 1. For a vector maximization problem an efficient solution is
defined similarly.
To eliminate the anomalies, if any, on the points in the constraint set of
(P) we assume that the constraint functions of (P) satisfy the
following constraint quatification given by Kanniappan [11].
Assumption 1 (Constraint Qualification ). For (P) we assume the
following Slater's type constraint qualification (CQ) (Kanniappan [11]) :

Let ¥ be efficient to (P). Then there exists x' e X for each i = 1, 2,..., P
such that g (x') <0 fork=1,2, .., m, and f,(x") < fj(FE') for j = i.

1. OPTIMALITY CONDITIONS. For a pseudolinear programming problem

Choo and Chew [6] proved the following necessary and sufficient

conditions.
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Theorem 1 (Necessary Optimality Conditions). Let x* be

P - efficient. Then there exist A €RP and € R™ such that

VIA T ¢ pt gl = O @
ptglx<) = o (5)

glxx) £ 0 (6)

A>0, pz O (7)

Theorem 2 (Sufficient Optimality Conditions). Suppose

(i) == satisfies (4) - (7),

(ii) the function forn 1=1,2,....., , P, is pseudolinear at x* with
respect to the kernel function K, (i.e. K,(x, 4) > 0), and

(iii) the function g j=1,2,.... m, is pseudolinear at xx with

respect to the kernel function G (i.e. G(x, y) > 0 ).
Then x* is (P) - efficient (Pareto Optimal ).
2. DUALITY
In the presenf section we introduce the Mond - Weir [58] type dual

problem (D) to (P).




81

(D) V-maximize (r,(u), 1,0, ..., fp(u)) (8)
subject to
VIAt1@) + ptgW)l = o (9)
ptglu) 2 © (10)
A>0, Hz 0 (11)
Theorem 3 (Weak Duality ). Suppose

(i) % is P-feasible and (u, A, y) is D-feasible,

(ii) for all feasible solutions (x, u, A, ) the function foo 1=1,2..,p
is pseudolinear with respect to the kernel function K; (Ki(x, y) >0),
and

(i) the function g,, j=1,2,....,m, ispseudolinear with respect to

the kernel function G (i.e. G(x, y) > 0 ).

Then  f(x) < f(u).

Proof. If possible let f(x) < f(u).

=3 fi(x) s fi(u) for all i=1,2,....,m, (12)
fk(x) < fk(u) for some i = k . (13)

The pseudolinearity of f., i=1,2,....,m, (12) and (13) yield
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(x - u)t vf(u) 50 for all i=1,2,...m (14)

~and (x -t vf (u) <0. for some i =k (15)

From (11), (14) and (15) we have

(x -u)t v(ATrw)) <0 . (16)

(2), (11) and (10) give ptglx) s ptg). (17)

(17), hypothesis (iii) of the theorem and Lemma 2.1 give

(x - W v(ptgw)) 5 0. (18)
From (8) and (18) we obtain

(x - v(atrw) 2 o. (19)
(16) and (19) contradict each other. Hence the result.
Corollary 1. Suppose

(i) Xis P - feasible and (i, X, Ji) is D - feasible, with () = f(G) and

(i) the hypotheses of Theorem 3 hold.
Then X is P-efficient and (U, X, JI) is D-efficient.

Proof. If possible let X be not P-efficient. Then there exists a

P-feasible x° such that

f(x9) < f(x). (20)

But f(x) = (@) . (21)
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Therefore, (20) and (21) give

f(x% < f(0) .
which contradicts the conclusion of Theorem 3. Hence X is
P-efficient. We can similarly prove that (0, X, I) is D-efficient.
Theorem 4 (Direct Duality ) . Suppose X is P-efficient. Then there
exist X € RP, i e R™ ( X > 0, jl 2 0) such that (%, X, [I) is D-feasible
and the corresponding objective values are equal. Furthermore, if the
hypotheses of Theorem 3 are satisfied, then (X, X, ) is D-efficient.
Proof. Since X is P-efficient, there exist, by Theorem 1 A ¢ RP, il e RM

(X >0, I 20) such that (%, X, JI) satisfies

VIALRR) + [tg®] = o (22)
ptg(R) = o (23)

g®) g 0 (24)

A>0, 120 (25)

(22), (23) and (25) imply that (X, X, j) is D-feasible. Equality of the
objectives follows from the fact that each of them is equal to f(X). If

the hypotheses of Theorem 3 are satisfied, using the equality of the two

objectives and Corollary | we get (X, X, JI) is D-efficient.
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Theorem 5 (Converse Duality). Suppose (U, X, JI)is D-efficient at

which the Assumption 1 type (CQ) holds for dual constraints. If

(i) {w(r,(@), i = 1,2, .., p} are linearly independent, and

(ii) the matrix V2(Atr(0)+ it n(0)) is positive or negative definite at
@ X, o

Then U is feasible for (P).

If in addition,

i) Theorem 3 (the Weak Duality Theorem) holds,

then U is P-efficient.

Proof. Since (U, X, JI) isD-efficient, we rewrite (D) in the form of (P)

and use necessary optimality conditions of [71]. Therefore there exist

NeR, 8eRP, , peR, weRM and o eRP,, (5, p, w, G)20 such that

P
VIZ &M+ pitgd] - v2[ Xt(@) + ntg@] m =0 (26)
i=1
V(@) + o, =0 (i=1,2 .. p) (27)
pgy(@) -t V(g@) + w;=0  (j=1,2, .., m), (28)
VIR (@) + ftg] =0 (29)

ftg(d)) z 0 (30)
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V2R P@) + Jtg@] m =0 31)

n({Tg®) = o, (32)
s™X =0, w'l=o0, | 3)

XN>0, 120 (34)

Since X > 0,(33) yields G =0 (35)
(27) and (35) give A T(v(r,@) = 0 (36)

~

Multiplying (28) by ﬂj and summing over j and then using wt'p =0 from

(33) we get
(v it g@)) - p( [t g@) = o0, (37)

From (37) and (32) we have, nT(V (}* g(@)) = 0 (38)
(36) and (38) results in

P
vV [ 2§10 + plitg(@)] = 0 (39)

i=1

Pre-multiplying (26) by n' and using (39) we get

nt V2 [ Xt + gtg@lm =0
which by hypothesis (ii) of the theorem implies
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Next, in (26), we substitute from (29) for V(Jitg(0Q)) and from (40) for
n to get

2 (8- pAp v(r(@®) =0

i=1

Since, by hypothesis (i) of the theorem, the vectors {v(f,(0)), i =1, 2, ...,p)
are linearly independent, the above equations give
8; = pA, foratl i=1,2,...,p (41)

We now claim that p > 0. Because if p = 0 then from (41) this means

that 8, = 0 and from (40) w = 0 and this along with (36), contradicts

(8,p,,0) 2 0. Thus p > 0 as claimed. This also gives §; = X;p > 0 for all i.
Therefore, (40) gives
pgj(ﬁ) * ;=0 for all j=1,2, ..., m
i.e. gj(G') =-(wi/p)s0 forall j=1,2, .., m,
Thus 0 is feasible for (P).
Since the P-objective at P-feasible U is equal to the D-objective at
D-feasible (U, X, Ji), the result follows by using hypothesis (iii) of the
theorem and Corollary 1. |
4. CONCLUDING REMARKS. o

Under the the pseudolinearity assumptions on the constraint and the

objective functions, various duality theorems have been proved for

Mond-Weir [58] type duality for a multiobjective programming problem.
These results can probably be further generalized under appropriate

assumptions of more generalized convexity and will be the topics of

further research.
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