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ABSTRACT

The low-field (0-700 Oe), low-frequency (2400 Hz) a.c.
susceptibility in a driving field of about 0.12 Oe RMS, the
zero-field d.c. and a.c. resistivities and the high-field
magnetoresistance of a series of random PdGd alloys, ranging
in concentration from 2 to 10 at.% Gd have been measured in
a temperature-interval between 1.5 K and 10 K using a
variety of electric and magnetic response technigues in
order to investigate co-operative magnetic transitions in

these alloys.

A phase-locked magnetometer was used to measure a.c
susceptibility. The resistivity measurements employed a
conventional four-probe method. For measurement of the
high-field resistivity, a superconducting magnet capable of

producing fields up to about 85 kOe, was used.

Down to the lowest achievable temperatures with the
present equipment the least concentrated alloy with 2 at.%
Gd appears to remain in a paramagnetic state. The 3 and 4
at.% alloys show characterstics of a para- to ferromagnetic
transition below a critical temperature. The higher
concentration alloys appear to exhibit more complex
ordering; for the latter it is conjectured that below an

ordering temperature, a helical magnetic structure



(presumably with a non-vanishing ferromagnetic component) in
the d-band of Palladium may be energetically favoured due to

interactions of the band electrons with the local impurity-

moments.
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Chapter 1

THEQRIES OF DILUTE ALLOYS

1.1 INTRODUCTION

Dilute alloys formed through the substitution of small
amounts (a few atomic %) of a Hund's rule magnetic impurity
(e.g. a transition or a rare-earth element) into a host---
metallic or non-metallic--- have long been studied in an
effort to understand the microscopic interactions which
exist between}any pair of the dissolved impurity moments.
Magnetic ordering at low-temperatures in such alloys is
inextricably linked with the presence of these interactions.
The first question to be answered is, however, what happens
to the impurity state as it is embedded in the host? Non-
metallic hosts usually do not disturb the ionic state; the
impurities exhibit the Hund's rule magnetic moment (crystal
field effects may need to be accounted for). The presence of
a broad conduction band in metallic hosts, however, tends to
delocalise the magnetic electrons (the d-electrons in
transition metals and the f-electrons in the rare-earths)
and thereby destroy the localised moment. Further, for
certain hosts the existence of localised moments may depend
upon the temperature as well. A local moment at high
temperature may dissipate completely as the temperature is

lowered.



Two slightly different approaches to the problem of
localised moments in metallic hosts have been in existence
for some time. One due to Friedel [1,2] and refined by
Anderson [3], attempts to find out the conditions for moment
formation at an impurity site. It uses the Hartree-Fock
single-electron formulation adding as weak perturbations the
Coulomb and other intra-ionic interactions responsible for
the Hund's rule in the atomic d- and f-shells. It then
describes the electronic states of the impurity's magnetic
shell in terms of virtual bound states. A virtual bound
state is an electronic state which is strongly admixed with
the free-electron conduction states and has a finite energy
width. Critics of this approach disagree with the strong
emphasis it places on the itinerant aspects of the local

moment problem.

The other approach typified by the Hirst model
(configuration-based approach) [4] is a moments-survival
approach. It predicts the conditions under which an impurity
loses it's original Hund's rule ionic configuration of
electronic states and hence it's moment, when placed in a
metallic environment. It concludes that the perturbation of
the many-electron ionic configurations of the impurity by
interaction with the conduction electrons can only rarely
wipe out the localised moments. Explicit conditions on the
relative strengths of various kinds of electronic

interactions for survival of moments are predicted by the
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model. In the present study the Hirst model seems to be more
appropriate as we shall observe later. However, for
comparison, both approaches merit a more detailed

exposition.

1.2 PROBLEM OF MOMENT RETENTION

1.2.1 The Friedel-Anderson Model

(a) Anderson's Explanation:

When the 3d-shell of a first-row transition impurity atom is
placed in a metal, it experiences a perturbation due to the
conduction states that are degenerate with the impurity
state corresponding to a given spin o. The d-state,
therefore, acquires a partial free character -- a process
termed "mixing”. 1In the vicinity of the impurity the state
of an electron is described by a mixture of ionic and
conduction states. In the Anderson picture, it results in
the formation of a virtual bound state. The characterstic
feature distinguishing it from a normal state is the
following: the normal bound state has a single electron
bound to the core. However, the mixing between the
conduction electrons and the valence electrons of the
impurity weakens the effect of the binding potential such
that it is no longer able to support a normal bound state.
The nuclear charge is then screened by a charge cloud
contributed by a component of the total wave-function of the

system in a time averaged sense. No single electron forms



this cloud. Whereas the unperturbed impurity state was
well-defined in energy, the new state has a width in energy,
and hence is spread out in space. Mixing thus results in a

partial delocalisation of bound electrons.

If the virtual level width A is not too large, the usual
intra-atomic Coulomb interactions that are responsible for
the Hund's rules in isolated impurity must also be
important. They cause a splitting in the energies of the
opposite spin states. Both spin-up and spin-down states
then acquire a width due to mixing with the conduction
electrons. For potentially magnetic impurities these two
states must be one on either side of the host Fermi level
(fig 1.1). The one below the Fermi level will be occupied
and the actual formation of moments at a site is determined

by an interplay of three factors:

a) conduction electron density
b) admixing strength, measured by A
c) "energy step" U between opposite spin states in the

band.

A higher conduction-band density favours delocalisation. The
stronger the delocalisation effect, the more ineffective is
the exchange U in maintaining the spin-imbalance in the d-
band; local moment is thus weaker. A similar tendency is
favoured by a mixing strength A which is larger than the

intra-band spin splitting U. If one or more of these
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Fig.(1.1): Impurity sub-levels Eo and Eo+ U
perturbed by s-d mixing interactions.
The broadened sub-levels are marked

Ed; and Eg-.
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parameters are altered to favour spin-flips, ultimately the
situation breaks down co-operatively and the impurity loses

all its localised moment.
(b) Mathematical Outline of Anderson's Approach:

The impurity in Anderson model is represented essentially
through its d-shell Hamiltonian, with an explicit inclusion
of the spin-dependent, intra-d shell electron-electron

Coulomb correlation energy, U. Thus,

H = Eo (ng, * ng.) + Ung,ng_
(1.1)

Eo is the energy of the unperturbed d-state of the impurity;
ngy 15 the occupation number for the spin state o and U is
the correlation energy that is responsible for localised

magnetism.

The total alloy system is then represented as a sea of
free electrons (conduction electrons of the host) containing
in its midst a d-state impurity which senses its environment
through a mixing Hamiltonian, Hp4. In such a picture, the

alloy Hamiltonian is written as

*
lz-:d' ek Cka.cko- + {Eo(nd+ + nd_) + Und+nd_}

#* %
* Z Vkd (Cke?de * 2dcCko)

(1.2)



The first term is the free-electron energy in terms of the
free electron creation and annihilation operators, CE@ and
Cre respectively. The introduction of the d-state creation
and annihilation operators aév and ay, in the third term,
portrays mixing of the ionic and conduction states; V4
represents the matrix element of the admixing interaction

between these states.

The Anderson Hamiltonian describes an interacting multi-
fermion assembly. The use of the Hartree-Fock approach
simplifies it to a single-electron problem. This
simplification is achieved on the premise that the
interactions are weak enough tc be renormalised. In that
limit the pair interaction term Ung,ng_ in the impurity

Hamiltonian must be replaced by
Und+<nd_> + U<ng_>ng.,
The one-particle energies in that approximation are

H = H

cond * E Egelde * Hkd

(1.3)

where,

Ede = Eo + U <ngq _g >

(1.4)

are the spin-dependent energies for the d-state. If a spin-
up state is occupied and has an energy Eo, a spin-down state

will have the energy Eo+U in an unperturbed case.



Using the equations of motion approach to determine the
evolution of the d-state and the conduction states under the
influence of mixing, or following Anderson, using the
Green's function technique, modified d-state energies are

given by

Eje = Eo0 + U <ng _g > - 14

(1.5)
where

E6=E0+P{E|de|2/(€“€k)}
(1.6)

is the d-state shifted in energy due to mixing, and

A = m.

delZ‘ p(e)

(1.7)

is the energy width that the d-state acquires, again, due to
mixing. p(e) is the conduction electron density of states.

The density of states for the virtual level is a Lorentzian:

pyg(e) = A/n. [(e - By, )2 + A2)

(1.8)

A self-consistency condition is obtained when integration is
performed over the density of states (egn 1.8) to calculate
the d-state occupation number. When combined with eqn(1.5)

it leads to a set of two self-consistent equations :



<ngg> = 1/m. Cot™'[Ey - e + U.<ng _g >1/A

f
(1.9)

For magnetism of the d-state, these must admit of a solution
such that <ng.> # <ng-> for given values of A/U and

(Eo - ef)/U. Non-magnetic solutions correspond to an
equality of <ng.> and <ng->. The transition curve
demarcating the magnetic and non-magnetic regions follows an
equation obtained from egn{(1.9) with the use of the fact

that <ng+> = <ng4->:

U.pd‘(ef) = 1
(1.10)

In fig.(1.2), the transtion "phase diagram” is shown. The
magnetic region corresponds to Updc(ef) > 1, It is clear
that when the unperturbed d spin-states Eo¢ and Eo+U are
symetrically disposed about the Fermi level, local moments

can form for the largest values of A, limited by U/m.
(c) Critique of the Model:

A major objection to the model is that it places a rather
strong emphasis on the itinerancy of d-electrons. It allows
a free interchange of electrons between the d-states and the
conduction states with no reference to the ionic energy
conservation rquirements. The basis for these deficiencies

is the starting assumption. The natural state for an
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fig.(1.2): Magnetic phase diagram in

Anderson's model.
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impurity in a metal is assumed to be completely itinerant.
The electron cor?elations, which are normally quite large in
isolated ions, are only assigned a secondary rolg in moment

formation.

A related feature is the use of Hartree-Fock approach.
It sets a limit on the range of parameters U and A for which
the model is valid when consistency with the uncertainty
principle is required. An electron in the virtual bound
state can only remain bound so long as to avoid
communication about the occupation or otherwise of other
spin-states or orbitals. Since the addition of an electron
raises the energy by U approximately, the one-electron life-
time is h/U. This must be provided by the mixing

interaction. This requires
h/A < h/U
or, simply that

u/a < 1
(1.11)

In the limit U/A >>1, the correlation effects are very
important and the H-F approach is invalid. But, this also
is the limit in which local moment is formed. Thus, the
Anderson model does not seem to be equipped to treat the

local-moment magnetism in the strongly magnetic limit.



12

1.2.2 The Hirst Model

(a) Hirst's Explanation:

The configuration-based approach of Hirst [4) pictures an
impurity as preserving its bare-ion level structure with
well-defined configurations 3d"™ or 4f" and with the usual
intra-confiqurational splittings such as the L-S multiplets,
crystalline electric field levels and spin-orbit levels etc.
even when subject to interactions with the conduction
electrons. These impurity states can only be perturbed;
rarely can they be destroyed completely by such inter-
actions. The intra-ionic Coulomb interactions represent a
tendency towards the formation of ionic many-electron states
belonging to definite configurations 3@" or 4f"; mixing
interactions tend to break the configurations with attendant
itinerancy of the 3d or 4f electrons. A competition between
the two tendencies is the crux of the local moment problem.
In contrast to the Friedel-Anderson model this model does
not treat the Coulomb and other intra-ionic interactions as
weak perturbations; instead it treats the mixing
interactions as perturbations on the ionic level structure.
Hence integral occupancy of ionic levels is a central
feature of this model. In this formulation the problem
reduces to one of moment retention. The condition for moment
retention is that "the stabilisation energy of the bare-
impurity ground state, relative to levels belonging to
higher configurations be large compared to the mixing width"

[4].
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(b) Mathematical Outline of Hirst's Approach:

First, the description of the d-state of the impurity in the
Hirst model incorporates the ionic energy level scheme; the
natural state of the impurity in the metal is assumed to

have a largely ionic character. So,

H; = -Vn + Un(n=-1)/2 + Hjnira

(1.12)

The first term, proportional to the occupation number n of
the 3d or 4f state, is the nuclear-electronic binding
energy. The_§econd represents the Coulomb pair-wise
interactions between the electrons of the magnetic shell.

Hintra takes account of the other intra-ionic splittings.

Secondly, the mixing Hamiltonian uses a partial-wave
description for the conduction electrons, assuming that
mixing conserves angular momentum. So,

* #*
Hka = 2 Vkd (Cklg 215 * 2le Ckia )

(1.13)

The conduction electrons are described by a free-electron
Hamiltonian, as before. The notation is similar to that of
the Anderson model. The mixing strength is measured again
by A, the rate at which mixing transitions occur when the
configurational energetics allow. It is given as in

egqn.(1.7). While A is taken as a measure of the



14
delocalisation tendency, U is taken to be indicative of the
degree of localisation. A potentially magnetic impurity will

have

u/a >> 1

(1.14)

The condition above assumes a certain stable configuration
for the impurity. What determines the stability? The

impurity Hamiltonian H; suggests an answer when expressed as

E(n) = U/2. [n - npipl? + const.
(1.15)
where
Dmin = V/U + 1/2

(1.16)

For given values of V and U, the configuration with minimum
energy occurs when the deviation from npjp is the least.
Hence V/U controls the configuration stability. Egn.(1.15)
is pictured in fig.(1.3) and a case of configuration
stability for n = ng is depicted. The intra-ionic

splittings are depicted schematically.

A stable configuration no is separated from the
neighbouring ones, no+1 and no-1 by energies ngc. Eexc 1is
the energy needed to transfer an ionic electron to the

conduction band, at least at the Fermi level. Egyx, is the



Configuration energy, E(n)

15

—— - —m— e ——

l |

No~—1 No Dmin No+ 1

Shell occupation number, n

Fig.(1.3): Configuration energies in the Hirst
model. Intra-configurational splittings

are represented schematically.
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corresponding requirement to add a conduction electron
"sitting" at the Fermi level to the impurity configuration.

The respective values are,

EéXC = VvV - (I'lo - 1)U + Ef
(1.17)
and
Eéxc = -V + neU - Gf

(1.18)

ln contrast to Anderson's model, the position of the
impurity ground energy with respect to the Fermi level of
the host is inconsequential. It is the difference between
neighbouring configuration energies that is physically
significant. A configuration in the absence of mixing is

stable provided, simply, that

+
Egxe > O

(1.19)

Configuration stabilty conditions [egns (1.19)}] can be so
manipulated by varying V that a stable configuration no
crosses over to another stable one, ng-1 (say). At the
point, called "configuration crossover", where the two are

equally stable with respect to npyjp
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(1.20)

The presence of mixing tends to cause instability of ionic
configurations. However, it can act only in accordance with
the energy conservation requirements of the configurational
scheme. To the lowest order the mixing processes within the
lowest levels of a stable configuration are "frozen". Higher

order processes lead to an effective mixing strength

I - |de‘2 / Eexc
(1.21)
where
Eé;c = (Eéxc)_1 + (Eéxc).1 ]

(1.22)

The condition for configuration stability in the presence of

mixing requires more than just that
+
Egxe > O

it needs the excitation energy Egy. to exceed the mixing

strength
i.e. Egxe > A

This prevents an impurity in its ground state, stable in the

sense of the above inegquality, from making a spontaneous
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mixing transition. Thus only such impurity levels as are
energetically unstable relative to levels belonging to other
configurations may experience a life-time broadening due to

mixing transitions.

A configuration stability diagram [fig.(1.4)]
conveniently summarises the above observations. The locus

of all points given by
Eexe = A4
or

A/U = -v2/U? + (2n-1)V/U - n(n-1)

(1.23)

in the A-V plane gives the boundary between stable and
unstable "phases" of the impurity moment. Above the locus
Eexe < &. An isolated impurity enjoys stability of a
configuration n over a range of values of the binding
potential V. For a V outside of that range another
configuration becomes stable. The integers on the V-axis
correspond to configuration cross-over. The range of
stability of a configuration becomes progressively smaller
as the mixing strength increases, until at the limiting
value of A an almost bound state can be supported only by a
single binding strength. For A larger than that, Anderson's
description is more appropriate as the configurational

structure suffers a complete breakdown. For A below the
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limiting value U/4, the impurity shows inter-configuration
fluctuations for an appropriate range of V because of the
proximity of the cross-over point. Mixing drives these
spontaneous fluctuations. In this region the configurations

have a definition to within a value A.

Interestingly the 4f impurities lie very close to the V-
axis in the stability diagram. For them, A/U~10-3 chiefly
because the 4f shell is deep within the atom, well-screened
by electrons in the outer shells. Hence in a metallic
environment, such impurities are most likely to demonstrate
moment localisation with some possibility of crossover. 1In
PAdGd, even though one of the parameters favouring
delocalisation of moment -- the Fermi density of states —--
is high due to s-d hybridisation in pure Pd, localised Gd
moments can still be observed. The Hirst model is
particularly well-suited for a description of such
impurities. For 3d impurities, A/U could assume a range of
values, demonstrating a VBS type of behaviour for some hosts
(e.g. Al) but a near-ideal local behaviour for others (such

as Mn in noble-metals).

1.3 INTERACTION BETWEEN LOCALISED MOMENTS

The question to be answered next deals with the possible

mechanisms of interaction between a pair of impurity atoms
embedded in a metal, given that they have stabilised their
moments in the sense of the Hirst or of the Anderson model

(Uepleg) > 1),
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1.3.1 The RKKY Mechanism

The roots of the RKKY interaction mechanism can be traced
back to the early problem of contact hyperfine interactions
between nuclear moments and the s-state electrons. Zener [5]
proposed that electron-electron interactions of a form
similar to that of the contact hyperfine interactions were
the cause of ferromagnetism in metals. The so-called s-d
model proposed that the conduction electron spins interact

with a localised spin through

Ho = -JLE. 8(F)

(1.24)
where S is the local spin and J is the exchange parameter.
Schrieffer and Wolff [6] have shown that indeed the Anderson
Hamiltonian transforms to the s-d Hamiltonian for a well

localised spin in the limit of weak mixing (U/A >> 1).

Rudermann and Kittel [7] treated the problem of contact
interactions mathematically. Their results supported well
the early suggestion of Frohlich and Nabarro [8] that such
interactions could lead to a polarisation of nuclear
moments. Once the form of the polarisation was obtained by
Rudermann and Kittel, the original suggestion of Zener was
applied in greater detail to ferromagnetism in metals by

Kasuya [9] and by Yosida [10a].

Thus there was a new possible mechanism of interaction,

named the RKKY interaction after those credited for its
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development, between two well separated local spins. The
exchange interaction -J8.8 causes a polarisation of
conduction electron spins around the spin S. Two distant
spins then interact through the associated polarisation
clouds. The nature and strength of the effective
interaction depend on the inter-spin separation and the
range of the electron spin polarisation around a given local
spin. The extension to the problem of impurity spins in a

non-magnetic host is rather direct.

To investigate the character of spin polarisation induced
in the conduction band of a linear, stationary, and
translationally invariant host due to a single localised
impurity, it is assumed that the interaction is through an
effective magnetic field the magnitude of which is

obtainable from the s-d model.

Eeff = J/guB —S. 5(E| )

(1.25)

The effective field is then decomposed into its Fourier
components. The spin polarisation S(f) of the conduction
electron gas in response to the effective field is

calculated through the linear response theory:

s(¥) = 1/qug g H(g) x(g) exp(id.T)
(1.26)
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where x(g) is the wave-vector dependent susceptibility. The

Fourier transform of the effective exchange field Heff 1is

-

ﬁeff(q) = J/guB S
(1.27)
Substitution leads to
g(r) = g §/gzu§ g x(q) exp(ig.rt)
(1.28)

The response is proportional to the Fourier transform of
x(g). The latter is calculated in the second-order

perturbation limit for a non-interacting electron gas.

x(q) = 243 p(ef) Fla/2k¢)
(1.29)
where
F(x) = 1/2 [ 1 + {(1-x2)/2x} 1n |(1+x)/(1-x)]| ]
(1.30)

is the usual Lindhard function. Combining eqn.(1.29) with

eqn.(1.28), the nature of the spin polarisation is given by

8(¥) = -cJ [Cos 2ker/(2k¢r)?® - Sin 2kgr/(2kgr)?] g
(1.31)

The constant C is related to the Fermi energy € the Fermi
momentum and the lattice point density in the crystal. The

polarisation s(r) [fig.(1.5)] is the RKKY polarisation.



o
(o]
e
a
z (a) (b)
—
(o}
0
o
‘a
w
0 =~/
D N
r(&)
| | l | I |
0 1 2 3 4 5 6 7
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RKKY polarisations around an impurity.
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At large distances (k¢r >> 1) from the impurity the

polarisation shows r~ 3-damped oscillations with a period
w/kf. Most of it is confined to a small region around the
impurity. The sense of the polarisation (whether parallel
or anti-parallel to the impurity spin) is determined by the
sign of the exchange coupling J (whether +ve or -ve). These
characteristics can give rise to several interesting
ordering phenomena in dilute magnetic alloys because the
polarisation provides a long-distance indirect mechanism for
interaction between moments. Thus, for example, an impurity
spin §j localised at site j may interact with the
polarisation cloud associated with that at site i according

. ).S8.. Hence the RKKY

to an interaction of the form —Jg(fi] i

coupling energy is (replacing fij by ¥, for convenience)

Hrkky -J(T) S;.S;

J(r) = -CcJ? [Cos 2kgr/(2ksr)® - Sin2ker/(2k,r)*]
(1.32)

In real metals and alloys, the approximation of independent
electrons is seldom valid. For example, in Pd which has a
narrow d-bands, the inter-electron Coulomb effects assume
significance. The free-electron susceptiblity that enters
egn.(1.28) must then be replaced by a more appropriate

expression.

Wolff [11], using the random phase approximation (RPA)
calculated the spin-density induced by an external magnetic

field in a degenerate, interacting electron gas to be
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§(q) = {gu? F(q) / [1-9F(qg)]1} B(q)

where B(g) is the Fourier transform of a weak, externally

applied magnetic field in the z-direction, and

Flgq) = - E [nk.q — Nkl / le(k+g) - e(k)] >> 0
(1.33)

gives the wave-vector dependent susceptibility function. 1In
the RPA, the presence of Coulomb interactions renormalises
the electronic energies to
e(k) = h2k2/2m - 1/(27)% f v(k-k')dk'
k<kf

(1.34)
Secondly, it induces exchange scatterings between the
virtual particles created by the applied field. Through the
denominator [1 - ¥F(qg)], this leads to an enhancement of the
normal RKKY polarisation. The effect 1s most pronounced for
small g due to the monotonically decreasing nature of F(q).
The function 8(g) is sharpened in g-space and that means a
larger width in real space for its Fourier transform, S(T).
The effective range of polarisation is pushed out and the
magnitude is enhanced [fig.(1.5)]. The screening of Coulomb
interactions causes the range to be further enhanced by
giving v a wave-vector dependence that tends to sharpen the

low-q region in 8(qg).
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The true range of RKKY’polarisation in actual alloys
depends on the shape details of the Fermi surface. The r3
drop in oscillation amplitude is a consequence of a
spherical Fermi surface assumed for calculation. Pd metal
has a complex Fermi surface [12,13]. The structure has flat
and cylindrical sections to it. The amplitude attenuation

1

for flat geometry is r~' and is r~? for a cylindrical one

[14].

Finally a comment about the divergence of s(g) as vF(q)
approaches unity: the infinity is related to the approach
towards electron-gas ferromagnetism which involves
interactions strong enough to invalidate Wolff's treatment,
based as it is, on a perturbation expansion about an

unpolarised ground state of the electron-gas.

1.3.2 Covalent Admixture Mechanism

Between two localised impurity moments, the admixture
interaction occurs through a mixing of the localised orbital
of one with that of another. The inter-impurity distance
determines the process through which such a mixing of states
is brought about. In dilute alloys, for example, where
large inter-impurity separations are involved, the
conduction electrons are the "carriers" of the interaction.
It occurs through a process known as 'Double Resonance
Coupling'. B.Caroli [15a] and A.Blandin [16] have treated

this problem in the Green's function formalism. In more
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concentrated alloys or in pure metals a direct admixture
process, treated formally by T.Moriya [17], is effective. A

description of the above processes follows.
(a) Double Resonance Coupling:

Consider two isolated, non-degenerate, localised, moment-
bearing states. The coupling between them, when they are
brought to a distance R can be qualitatively understood in
terms of the Anderson's model. A free-electron with spin o
and wave-vector k gets scattered from the first impurity.
For a 3d impurity the 1=2 component of the plane wave
suffers a resonance scattering. Hence the phase-shift § of
that component is the most dominant of all. The asymptotic
form of the scattered wave-function is, therefore,

represented as

Ve (k) = exp(ik.r) + exp(idg) Sin & .exp(ikr)/kr
(1.35)

At the second impurity, this electron suffers another
resonance scattering which depends upon the phase-shifts
produced by the first impurity through the modified wave-
function y,(k). The Anderson's approach remains valid for
the second impurity provided the mixing elements Vkq are now
evaluated with w,(k) instead of the plane-wave states. Thus

in the Anderson Hamiltonian <k|V|d.> are replaced by
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<¢¢(k)|Vldz> = Viglexp(ikR) + Sin 8,. exp{i(kR + &¢)}/kR]
(1.36)

This expression is easily obtained if yg (k) is referred to

an origin at impurity 2 for evaluating the matrix element.

The effective energy shift T'} and the level-width A% of the
virtual d-state on the second impurity are obtained by

replacement of <yg,(k)|V|d,> into the Anderson's expression:

r - iA = Z ]de]?'/(e+ iS_ Ek)
k

(1.37)
The result is
Cy— iAYy = T,- iA,- Ap Sin 8g.exp{i(2koR + 84)1/kER?
(1.38)

where electrons are assumed to be free with energy h?k2/2m.
I'; and A, are the displacement and the level-width
respectively for the second impurity considered in
isolation. The presence of the first impurity modifies
these parameters to their new, energy-dependent values I}
and A}. This, in turn, causes the population n% of the
localised d-electrons on the second impurity to become
variable and, consequently, an indirect coupling exists
between the two impurities. For distant impurities, only
the electrons in the vicinity of the Fermi level are

relevant for coupling.



30
The coupling energy between two non-degenerate d-states
in the Hartree-Fock approximation at low-temperatures

(kgT << A) is given as [15b,16]:

E;(R) = E¢/r £ Sin 89.5in 8%.Cos(2k;R+87+6%)/(ksR)3
o
(1.39)

§7 and 8% are thé phase-shifts produced by two isolated
impurities. The expression assumes collinear moments. In
case of an arbitrary angle 6 between moments m; and m;, the
interaction energy contains a magnetic coupling term besides
a non-magnetic term that represents the energy obtained in
bringing the two impurities to a distance R from their
initial infinite separation. The effective magnetic

coupling energy 1is
_ . ¢ .- o’ LIl 3
Ei = Ef/2vr°_Za”Sln 61.51n 52.COS(2kfR"‘51+62)/(kfR) Mmy.Mp2

where m = 2ugSj. Ej(R) can be written with an effective

exchange interaction J(R),
E;(R) = J(R) S:.S:

J(R) = A Cos(2kgR + §)/(ksR)3
(1.40)

A and & depend upon e, and the phase-shifts §7. In dilute
random alloys, it is extremely difficult to say anything
about the sign of the double-resonance coupling. The radial

dependence of the inter-impurity double-resonance
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interaction closely resembles that of the RKKY interaction.
Furthermore, because the asymptotic limit (kfR >> 1) for
which the form of the admixture coupling is valid, 1is
usually approached even at near-neighbour separation this
type of coupling is effective at close range. For larger
separations it is much weaker. Hence making the distinction
between the direct and indirect admixing mechanisms
depending upon the range over which they are effective 1is
only an artifice. Finally, a necessary aspect to note is
that the resonance coupling has been treated in the Anderson
picture which is really only applicable in cases where

localisation 1is, at best, weak.
(b) Direct d-d Admixture Process:

The problem of the sign of interaction between two
neighbouring, magnetic virtual d-levels (U/A >> 1 in the
Anderson picture of localised moments) immersed in a sea of
conduction electrons and interacting with each other through
direct d-d admixture has been treated by Alexander and
anderson [18] and by Moriya [17] using the Hartree-Fock

approach.

The sign of the direct interaction between these levels
is found to depend upon the location of the (single-
impurity) spin-up and spin-down virtual sub-levels relative
to the Fermi energy (assumed to be a fixed parameter). 1If

one of the sub-levels (either Eg or Eg+U) falls much closer
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to the Fermi energy than the other, the interaction between
the neighbouring d-levels is expected to be ferromagnetic.
In this case, economy in energy is achieved by an actual to
and fro transfer of an electron with a given spin between
the two virtual levels. When one sub-level at each of the
neighbouring sites has a higher density of states near the
Fermi energy, such transitions are favoured. 1If, on the
other hand, the spin-up and spin-down virtual sub-levels at
each of the two impurity sites are symmetrically disposed
about the Fermi energy, the neighbouring virtual d-levels
prefer an antiferromagnetic exchange. 1In this case, the
total energy of the system is reduced by a virtual transfer
of electrons from a full spin-up level on one atom to the
empty spin-up level on the other and vice-versa. This
process does not require a high level-density at the Fermi

surface.

Alexander and Anderson [18] calculated the energy changes
brought about by the presence of d-d mixing in the two
situations described above. The starting Hamiltonian is
written in the Anderson picture for two single-impurity
virtual d-levels. A d-d mixing term is added to it. The

form of the mixing is

% %
Hyq = Z [ Vizawwaz+ V2iazeraiw]
o

(1.41)
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where V,, represents the transfer integral between the d-

states and a¥, , a are the creation and annihilation

ia
operators for electrons with spin o at site i. The energy
change is calculated both for the parallel and for the

antiparallel interactions.

a) For the parallel case,

SE = -VZ2 [ p* + p7]
(1.42)
where
p? = a/lr.{(ef- Eo- Un"7)2 + A2}]
(1.43)

is the density of states for the single-impurity, virtual
sub-level corresponding to spin ¢ and n9 1is the
corresponding occupation number. As before, A is the level-
width.

b) For antiparallel interactions,

SE = -2v2/U

(1.44)

Which orientation is preferred in the presence of direct d-d
interactions depends upon the relative magnitudes of the

energy gain. Hence for parallel alignment,
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u/2 [ p* +p- 1 > 1

(1.45)

This condition determining the orientation of the two
moments is independent of the mixing strength, V, so long as
it remains weaker than the intra-band exchange U (i.e. V/U
<< 1). The following simple rules governing the relative

orientations of the neighbouring d-shells emerge:

Atoms with nearly half-filled d-shells (such as Mn) have

a tendency for antiferromagnetic coupling.

With a rise in the number of d-electrons there is an

increasing trend towards ferromagnetic d-d interaction.

1.4  ORDERING OF MOMENTS

The RKKY interaction mechanism leads to some interesting
ordering effects in dilute magnetic systems. When two
distant local moments interact through the first zeros of
the associated long range oscillatory conduction electron
polarisations ferromagnetism results. Phenomenologically,
the situation is described quite well by the Weiss mean-
field theory which takes account of such long range
interactions in terms of an effective field at the site of

each local spin.

An interesting possibility occurs when the long-range
oscillating character of the RKKY polarisation favours the

formation of long-period magnetic structures.
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Turov [19] presents the example of simple spiral
structures to illustrate the conditions under which those
structures may bé favoured. A spiral structure with its

axis in the z-direction has spin components descibed by

Sn = S Cos(Q.Rp)
y )

Sn = S Sin(Q.Rp)
s = 0

(1.46)

where S is the mean value of the ionic spin. The coupling
between any spin pairs is described through the effective
Hamiltonian

Z J(Rjj) S;.S;j

Heft = - -

where the effective coupling constant can be written as

J(R;

ij) = const. X F(q/2k¢) .exp(iq.Rjj)
q

(1.47)

in linear response theory (section 1.3.1), where F(q/2k¢) or
F(g) in short, is the Lindhard function giving the wave-
vector dependent susceptibility for a free conduction

electron gas [egn.(1.30)].

With the use of eqns(1.46) the energy of a simple spiral
with wave-vector Q could be found from the effective

Hamiltonian to be given as



E(Q) = -NS2J3(Q)
(1.48)
where J(Q) is the Fourier "cousin" of J(Rij), i.e.
J(Q) = Z J(Rj;) exp(-iQ.R;j)
(1.49)

The largest value of J(Q) minimises the energy and, the
value of Q that maximises J(Q) gives the periodicity of the
most stable spiral structure. The value Q=0 corresponds to
ferromagnetism in the alloy. A maximum in J(Q) at non-zero
O stabilises a spiral structure with periodicity d=27/Q. To
be sure that a maximum in J(Q) exists, the energy difference
between the spiral and ferromagnetic structures must be
considered. If Umklapp processes are allowed so that the
scattered wave-vector g may differ from its "resonant" value

Q by a reciprocal lattice vector K, i.e. if

1/N. Z exp(ig.R;) = &(g - K)
1
(1.50)

then the energy difference can be expressed as [egns(1.48)

and (1.47)]

J(Q) - J(0) = const. Z [F(R + Q) - F(K)]
K
(1.51)
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The sum on the right contains pairs of terms with vectors K
and -K. Assuming Q to be small, any such pair can be

expanded as

F(K + Q) + F(RK - Q) - 2F(K) =~ F''(R).Q*?

(1.52)
The function F(q) is singular at g=2k;; its second
derivative changes sign.
F''(gq) < O for q < 2kg
F''(q) > O for q > 2kg
(1.53)

The terms in the sum [egn(1.51)] for which K < 2ky; (i.e.
K/2 penetrates the Fermi surface) make a contribution that
decreases with increasing Q. On the other hand, terms with
K > 2k; (those with K/2 lying outside the Fermi surface)
have an opposite effect; the contribution increases with
increasing Q. The sum must therefore, possess a maximum at
an intermediate non-zero Q value. This fact is directly
related to the existence of Kohn anomaly in the Lindhard
function {or equivalently in the wave-vector dependent
susceptibility x(q)} at g=2k;. Further, if Umklapp processes
were disallowed in this simple picture, the energy
difference J(Q) - J(0) would contain only one term,
corresponding to K=0, and hence, the Kohn anomaly would be

unable to ensure maximisation of J(Q). Then, spiral
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structure stabilisation would not follow as a normal
consequence of a singularity in the function F(qg). Yosida
and Watabe [20] made a numerical calculation of the curve
J(Q) - J(0) for a heavy rare—earth hexagonal crystal with
c/a = 1.57 on the basis of the simple theory outlined above.
It provided support for the essential arguments of the
theory when its predictions were compared with the known
inter-layer turn angles for the spins on hexagonal lattice
planes of the h.c.p. heavy rare-earths Tm and Er. More
complex ordering patterns may result when lattice
anisotropies are accounted for. The various possibilities
are depicted in fig.(1.6). These magnetic structures have
been known to exist in pure rare-earth metals and, as
described above, the essential mechanism is the long-range
oscillatory interaction amongst atoms. The concept of
helical spin arrangement in a dilute alloy with randomly
distributed magnetic impurities is not immediately obvious
until it is realised that static spin modulations (with
wave-vector g) in the conduction band may be stabilised by
the intra-band exchange interactions once they are excited
by the s-f exchange interaction between the conduction

electron spins, s;, and the impurity spins, S

i j?
Heg= -3 Z sj.Sj 8(rj- Rj)
1]

The form of the spin-density wave is
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s(R) = <-j L s; 8(rj- Rj)> = DN Cos(g.R) e
1

(1.54)

so that it has a spin polarisation described by a wave-
vector g. This wave simply has an aligning effect on the
impurity spin through the s-f interaction. The vector g for
spin-density wave (SDW) stabilisation is not necessarily
commensurate with the lattice periodicity, being determined,
in the Hartree-Fock approximation, solely by the self-
consistency condition [22al]. The effect of such a wave on
the properties of alloys is similar to that of helical
ordering of local moments in the pure rare-earths. Data on
dilute ¥YGd and ScGd alloys has been interpreted in terms of
the Overhauser-type SDW stabilisation by Sarkissian and

Coles [23] and by Southern and Sherrington [24].

Palladium metal, which is the host for Gd in the present
study, has holes in its d-band, which bear a small moment.
A coupling between Gd moments and the d-holes exists through
exchange interaction. A strong exchange interaction exists
amongst the d-holes. Could it not be that the moment-
bearing impurity, Gd, induces an SDW in the d-band which is

subsequently stabilised by the strong intra-band exchange?



Chapter 1II

THEORIES OF ELECTRIC AND MAGNETIC BEHAVIOQUR OF
DILUTE ALLOYS

2.1 INTRODUCTION

The preceding chapter outlines the framework for describing
the state of a magnetic impurity embedded in a metallic host
and the modes in which it can interact with another impurity
placed in the same host. The attempt now is to set up a
framework for understanding the results of any measurements
on electrical resistivity and magnetic susceptibility
designed to derive information on the local-moment phenomena

in the alloys of interest, namely PdGd.

2.2 ELECTRICAL PROPERTIES

The electric properties of dilute alloys containing magnetic
impurities are frequently understood in terms of the s-d
model. The model was suggested originally by Zener. The
anomalous resistivity of CuMn alloys reported by Gerritsen
and Linde [25] led other researchers [9a,26,27] to
investigate the other magnetic properties of this system
and, subsequently, to interpret the results gqualitatively on
the basis of s~d exchange. Yosida [28] is credited with
quantifying the s-d model for the specific case of

resistivity of CuMn alloys (which are now known to be spin

- 41 -
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glasses for ¢ £ 5 at.% ). Yosida simulated the system in
terms of two oppositely ordered groups of spins. He also
mentioned an appropriate modification for the case of
ferromagnetic alloys. Long and Turner [29] did a similar
calculation for a Palladium-based system, PdFe, taking into
account the special electronic structure of this host. All
these resistivity calculations are limited to first order
perturbation. The s-d model which forms the basis of these
calculations may lead in the second order to a low-
temperature logarithmic divergence in the resistivity -- the
so-called Rondo effect -- provided that the effective s-4d
interaction is negative in sign (i.e. J < 0). This effect
was first obseved by De Haas and Van den Berg (1933) at
Leiden in impure samples of Gold. As already observed in
section (1.3.1), the same s-d Hamiltonian is responsible for
an effective, long-range coupling between two distant
magnetic impurities in the second order. The following
discussion is limited to first order calculations of

resistivity only.

2.2.1 The s—-d Model

Yosida's calculation assumes that while the impurity loses
its s—-electrons to the host conduction band, it retains its
d-electrons and its level structure. The d-moment dynamics
are explicitly neglected except via the exchange
interaction. The n-body Hamiltonian for this system is

perturbed by
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H' = Z Vi(rj- Ry) - 2 Z J(r;- Ry,) s;5,
in in

(2.1)
where r; refers to the electronic coordinates and Rp to the
ionic ones. V is the translation symmetry-breaking
potential which arises due to the valence difference between
the impurity and the host. It usually has a screened
Coulomb form. J is the exchange parameter, with s; and Sp
representing the conduction-electron and impurity spins
respectively. The exchange term is simple in form because
an orbital moment on the impurity is assumed to be either
non-existent (as in case of S-state ions such as Mn, Gd
etc.) or guenched due to crystalline electric fields in the

host matrix [30].

The Hamiltonian [egn.(2.1)] is transformed to a field

representation:
H' = 1/lewv(k,k').exp[i(k—k').Rn].(aL_ak+ + a:LakL)
—1/N'gkg(k—k').exp[i(k—k').Rn].{(aigak+ - aiLak_).Sg

# R » -
+ aptag_Sp +* akLaksSnpi

(2.2)

V(k,k') and J(k,k') are related to the matrix elements of V
and J between the conduction electron states |k> and |k'>
which are plane waves only in the lowest order of

approximation because the periodic symmetry is broken. Both
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are assumed to depend only on the magnitude of the
difference (k - k'). Sg, St are the three components of the
localised spin S, in the field-operator formalism, whereas
aﬁ, and aky are the field operators for the conduction

electron assembly.

The response of the conduction electrons to the applied
electric field is calculated next. At any impurity site the
interaction with the conduction electron would depend upon
the relative orientation of their spins. Thus the
distribution functions f*¥ for the spin-up and spin-down
conduction electrons would, in general, be different from
each other and also from the equilibrium distribution fo in
the absence of an electric field. The assumption is that,

to first order

£5(Ey) = £o(Ey) - kyE & (E,) dfo/dE,

(2.3)

where ky is the wave-vector component in the direction of
the applied electric field E and &% are functions to be
determined through the use of the transport equation. The
current densities due to spin-up and spin-down electrons are

then given by

it = -e/v E [£5(Ey) - £o(Ey)]. hky/m
{(2.4)
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where V is the total volume. Upon substitution for fi(Ek)
and subsequent evaluation of the sum as an integral over k-
space upto the Fermi limit, the current densities are given

in terms of & :

it = cEe$/2 @i(ef)

(2.5)
From the elementary relation j = E/p, the resistivity is
calculated as
p = [® (ef) + @'(ef)]'1/ce$/2
(2.6)
The functions &% are calculated using the transport
equation.
(3f/Bt), + (Bf /Bt), = 0
(2.7)
where,
(Ef/ﬁt)f = (Efo/EEk).eE.hkx/m
(2.8)

is the rate of change of the electronic distribution due to
the applied electric field. The corresponding quantity due
to the collisions is calculated using the Golden Rule for

transition probabilities, taking appropriate account of the
probabilities of occupation or non-occupation of the initial

and final states k and k' related by scattering. Separate
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calculations are made for elastic and inelastic processes.
The latter involve flips of the scattered conduction
electron spins and of the impurity spin whereas the former
do not. This results in a rather large expression for the
resistivity. However, the essential result is that in the
paramagnetic phase the contribution to the electrical
resistivity due to exchange scattering is temperature

independent, and is given as [28],

Ap

acJ2{<S§> + <S§> + <S§>}

acJ2s(s + 1)

(2.9)
where,

a = 3mm*Q/2e?he?

(2.10)

Q@ denotes the volume per palladium atom and e;, the Fermi

energy.

Yosida's calculation adapted to the case of systems
ordering ferromagnetically yields for the s-d resistivity

[31]:
Ap(T) = ac {[ V2 + J2<S2> + J?T]

~ 4J2V2<S8,>2/[ v2 + J%<S2> + J?r]}

(2.11)

where, in these equations
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r(s,s,,H/T) = [S(S+1)- <S%>- <S,>].[1 + tanh(qgugH/2kT)]
(2.12)

The magnetic resistivities in the absence of external fields
can be calculated for two temperature extremes —- T=0 and
T=Te —-- assuming strong potential scattering due to

impurities.

Ap(0) ac V2

(2.13)

and

Ap(T ) ac[V? + J25(1+4S)]

(2.14)

Then the difference furnishes an estimate for J; the former
can be estimated from the measured resistivity.

Subsequently, V can also be estimated using eqgn.(2.13).

2.2.2 Long and Turner Model

For alloys with an exchange-enhanced host such as Palladium,
a modification to Yosida's result for ferromagnetic

resistivity was formulated by Long and Turner [29].

The presence of 0.36 holes/atom in the Pd d-band [32]
causes additional terms to appear in the Hamiltonian. They
represent exchange interactions of the d-holes with the

localised impurity moments S, and with the conduction
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electrons. The state of the d-band and its coupling to the

impurity is described by the following terms:

e, (k) Ci, _C + 1 Zn.. .n
d dko “dko -

Hy= Z i+ -

ko i
(2.15)

This represents the d-hole Hamiltonian which takes into
account a strong localisation of the d-holes through the
inclusion of an exchange energy I between the holes with
opposite spin orientations located on the same site. ed(k)
are single-particle d-hole energies. C¥ and C represent the

creation and annihilation operators for the d-holes in the

specific momentum (k) and spin (o¢) states.

Hig = Jig Z PnSn-04{(Rp)
(2.16)

This Hamiltonian represents the d-hole coupling to the
localised moment. The numerical parameter p, allows this
exchange to proceed only if Rp is a localised-impurity site.
od(Rpn) is the d-hole spin-density at the impurity site,
represented in terms of Pauli matrices o, as

# :
od(Rp) = 1/N. kZC:l Egcdkﬁla .Cdkﬁoaﬂexp(lq.Rn)

(2.17)
The terms related to resistive processes include the
symmetry-breaking impurity potential and the usual
conduction electron-impurity exchange. 1In addition, the s-
electrons now interact with the d-holes in the Pd matrix. A

brief description follows:
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Hgq = U Z g4(R,).o5(R,)

n n

(2.18)

where o04(R,) has a representation and an interpretation
similar to that for o4(R_ ). The operators involved, however
now refer to the conduction electrons. The Hamiltonian

represents the conduction-electron - d-hole exchange.

Hig = Jig E PnSp-0g (Ry)
(2.19)

This is the usual exchange between local impurity spin and

the conduction electrons.

H = V I E PnCs k+qa *Cska€XP(ig.Rp)
B (2.20)

In second-quantised notation, this is the Hartree-Fock

potential due to the presence of the impurity.

The total Hamiltonian then consists of these above-listed

terms in addition to the conduction electron kinetic energy.

The model treats the scattering problem in two separate
temperature domains -- a low-temperature domain where the
dynamical states of the impurity spins are described in
terms of spin-waves excited in the coupled impurity-host d-
band system and, a high-temperature domain (T -> T.) where

the dynamics of the spin are better described in terms of an
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effective-field picture. Expectation values <S> and <S2>
for the impurity are obtained for the two temperature
ranges, to be used later in the Yosida's result
appropriately modified for a ferromagnetic system. The

essential features of the result are the following:

a) At low temperatures the expectation values of S, and
S2 vary as T3 72,

b) In the mean-field limit, both expectation values show
direct proportionality to (T¢-T)/T¢. However, while
<Sz> vanishes at T¢, as expected, <Si> reduces to a

constant value of S(S+1)/3.

The model then concerns itself with the problem of including
the additional resistive mechanisms that arise due to the
presence of the d-holes into the Yosida's result. For
example, a negligible contribution to resistivity arises due
to scattering of s-electrons from the polarisation of the Pd
d-band by the impurity spin. Additionally, an s-electron
can now scatter indirectly from an impurity spin through a
preliminary scattering from an electron-hole pair which
propogates in the matrix and subsequently scatters at an
impurity site through the interaction H|y. Use of the
conventional many-body techniques allows an 'effective
exchange interaction', Jg¢s, to be defined between the

conduction electrons and the impurity.
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Jes¢ = Jis * Uxpd-Jid
(2.21)

Use of the effective exchange parameter in place of the
usual Jjg, and substitution of the values for <§,>, <S2> in
the Yosida's result, appropriately modified for a ferro-

magnetic system lead to the conclusion of the model.

At low-temperatures (T -> 0), the resistivity has the

form given by,

Ap(T) = Ac + Bc~17/2,T73/2
(2.22)
where
A = a (V2 - Jgff)z/(v2 + JZeg)
(2.23)

and B has a more cumbersome expression though it depends
basically on the same parameters as A. The interesting
feature is that the T3 /2 dependence results from electron-
magnon scattering. The random nature of the alloy modifies

the spin-wave resistivity from T2 to T3 /2,

At temperatures approaching the transition point, the
magnetic resistivity should, according to this model, show a
linear dependence on the fractional "distance" away from the

Curie point, (T¢-T)/T¢.
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Ap(T) = ac [A" - B"(Tc-T)/Tc]
(2.24)
where
A' = V2 o+ J2..5(5+1)
(2.25)

and B' has a more complex form but it depends on the same
guantities V, S and Jg¢¢. Above the Curie point, the spin
disorder is complete; the resistivity contribution remains
unaltered above that point. The linear decrease in magnetic
resistivity below the ordering temperature reflects an
increasing degree of magnetic order in the alloy. The
resistivity "knee" observed in ferromagnetic systems in a
temperature range around the ordering temperature has a
rather simple explanation in the Long and Turner model. The
linear dependence of Ap(0) on concentration agrees well with
the experiments. VYet, the suggested linear dependence of
the spin-disorder resistivity Ap(T¢) - Ap(0) on
concentration and, a c~'/2-dependence of the coefficient of
T3 /2 term in eqn.(2.22) is not supported experimentally.
Long and Turner trace this failure to the mean-field
assumption that the polarising field has a linear dependence

on cC.

The effect of an externally applied magnetic field H on
the resistivity can be easily derived from Yosida's result

[33]. The longitudinal magnetoresistance, defined as
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Apm(H,T) = p(0,T) - pp{H,T)
(2.26)
is predicted to be dependent upon the ratio H/T:
Apm{H,T) = ac {J2<S,>tanh §/2

+ 4V2J2<S5,>2/{v2+ J2[S(S+1)-<S,>tanh §/2]}

(2.27)

where, for convenience the ratio gugH/kT has been

abbreviated as 6.

2.2.3 The Magnetic Structures and Electrical Resistivity

A possible consequence of s-f exchange in rare—earth metals
and some dilute alloys is the occurrence of periodically
modulated magnetic structures. The incongruence, in
general, of the modulation wave-vector Q with the reciprocal
lattice vector K has interesting conseguences. The periodic
magnetic structure has its own "magnetic" reciprocal lattice
superimposed on the "structural" reciprocal lattice. The
former has its own Brillouin zone planes located half-way
between the length Q of the "magnetic structure cell”
prependicular to the direction of the wave-vector Q. At
these boundaries, sometimes referred to as antiferromagnetic
superzone boundaries, the electronic energies become
discontinuous as a function of k. The Bragg reflection

condition is then modified to
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(2.28)

in the reciprocal space. The condition simply reaffirms
that additional points are present in the reciprocal space
at (K = Q). Due to the presence of additional Brillouin
zones at *Q/2 {and at (K * Q)/2, in general}, the
conduction electron spectrum is modified in the vicinity of

those zones if a mechanism through which the conduction

n "

electrons can "see" the magnetic structure exists. Quite
obviously, a spin-dependent electronic exchange is such a
mechanism. AR energy gap of the order of the exchange
strength appears in the conduction spectrum. Fig.(2.1)
represents a case where Q || ¢, so that along the k,-axis in
reciprocal space, the length of a magnetic cell is Q, with
Brillouin zone boundaries at *Q/2. The energy spectrum
E(k,) then has the periodicity Q. The dashed curve
represents a repeat of E(k,) curve but centered at Q. The
intersection with the original E(k,) curve appears at Q/2.
The exchange interaction causes the intersection to be
replaced by an energy gap at wave-vectors k, = *Q/2 due to
the fulfilment of the Bragg conditions at those values. The
size of the gap is determined mainly by the exchange

strength, and is temperature-dependent, vanishing gradually

as the temperature is raised towards the Néel point.
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Fig.(2.1): (a) Modification of conduction electron
spectrum due to magnetic zone
boundaries at *Q/2.
(b) Energy gaps (width 2A) appear at
x9/2, [19]
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During the transition through the Néel point, boundaries
of the zones related to the newly established periodic
magnetic structure appear in the Fermi neighbourhood. The
associated energy gaps, of the order of the s-f exchange
constant, in the spectrum of the conduction electrons make
large areas of the previous Fermi surface unavailable to
them. So long as the thermal energy is adegquate to raise
the electrons across the energy gap to available states the
resistivity does not rise. With falling temperature,
however, a temperature-dependent rise occurs. As the
temperature declines further, the initial magnetic order
gets more and more firmly established; the collective
fluctuations in it diminish and consequently, the
resistivity component due to scattering of electrons from
such fluctuations also decreases. The two processes
together lead to a maximum in the resistivity. Maxima below
the respective ordering temperatures in the resistivity of
the higher concentration (¢ 2 6 at.% Gd) PdGd samples are

noted in the present study.

2.3 MAGNETIC PROPERTIES

Magnetic phase transitions form part of a class of phenomena
observed in a variety of physical systems, which can be
characterised by singularities or divergences in the second-
order derivatives of an appropriate thermodynamic potential
near the transition point. These are variously termed as

'continuous transitions' or ‘'second-order' critical
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phenomena. These phenomena are cooperative processes
because they involve a multitude of mutually interacting
particles. A macroscopic approach to the description of the
state of magnetic systems is embodied in the mean-field
theories where the magnetic milieu of an elementary spin is
described in terms of an average effective field due to the
rest. Although such theories do allow for the existence of
phase transtions and critical phenomena, their gquantitative
description of the divergence of the susceptibility (a
second-order derivative of the Gibb's free energy with
respect to H) or of the convergence of magnetisation (not a
second-order derivative of G) to zero in the critical region
is at variance with experimental evidence. Following
Guggenheim, power laws may be more suited to deal with the
processes in the critical region. Critical phenomena are
characterised by an increase of microscopic fluctuations of
the order parameter (magnetisation) and the correlation
lengths in the neighbourhood of the critical point; the
mean-field theories completely neglect such fluctuations and
hence are inadequate to deal with them. Thus, for T close

to T¢ in a ferromagnet, several critical exponents can be

defined:
x(t) ~ (=)= T < Te
x{t) ~ t°7 T > Te
M{t) ~ tP T < T¢

= 0 T

v
<)
(2]
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M(H) ~ H'/8 T = Te¢

where t=(T-T¢)/Tc is the reduced temperature; H is the
internal field in the specimen (taking account of the
demagnetising effects), x and M are the susceptibility and
magnetisation of the sample, respectively and v, B and § are
the critical indices. Statistical models have been
developed in an attempt to simulate the critical behaviour.
The most studied models are the Ising and the Heisenberg
models. They attempt to simulate the magnetic behaviour in
terms of a regular lattice of magnetic atoms with pair-wise,
short-ranged exchange interactions. Whereas the former
model simplifies the problem by assuming a high degree of
uniaxial anisotropy, the latter assumes a completely
isotropic exchange. The forms of the exchange terms in the

twO cases are
H = LI JjS5;.5; (Ising)
1]

J.: S .S, (Heisenberg)

H = ? iji 2i °°j

— M

(2.29)

With these interactions as the starting point, each model
obtains a set of critical exponent values. The two sets thus
obtained differ from each other [Table 2.1]. As indicated
by the table, the critical exponents are sensitive to the
dimensionality of the lattice. 1In the present work, Pd4dGd

may be considered a three-dimensional system of randomly
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distributed spins. Also listed in the table are the common
experimentally determined values of the critical indices for
ferromagnetic systems. Agreement of these with the Ising
and Heisenberg calculations is much better than with the
classical theories (i.e. those based upon well-established

thermodynamic principles).

TABLE (2.1)

Theoretical values of some critical exponents [34-37]

Exponent
Model = = |-----—--— oo o e e e
a 8 v 8
Classical 0 0.5 1 3
2D- Ising 0 0.125 1.75 15
3D- Ising 0.125 0.312 1.25 5
3D- Heisenberg -0.13 0.38 1.37 4,45
3D- Disordered -1 0.5 2 5
Ferromagnetic < 0.16 0.33 1.33 4.1
systems

An extensive list of critical exponents, defined for each
thermodynamic function can be found in the book by Stanley
[37]. Using thermodynamics, several inequalities amongst
them have been established. Efforts have been directed at

verifying them both theoretically (using the values for
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critical indices calculated in various models) and
experimentally. Many of the inequalities seem to be
satisfied as equalities provided experimental errors in the
determination of the indices are accounted for. No
theoretical proofs for the equalities exist. In the absence
of these, it cannot be said as to how many indices are

needed for a complete description of the critical phenomena.

To justify the equalities relating the various critical
exponents a useful idea is that of scaling although it is
based on a theoretically unproven hypothesis. It yields an
equation of state for the magnetic system which can be
compared against experiment. It defines power-law indices
for all quantities of interest in a magnetic system and
yields relations amongst these exponents similar to the
inequalities mentioned earlier but with the difference that

the latter are validated as eqgualities. Widom's equality

[38]

y' = B (8§ - 1)
(2.30)

is the most relevant in the present study because at least
two of the indices in the equality are obtainable through

the susceptibility measurements alone.
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2.3.1 Scaling Hypothesis

To introduce the scaling ideas, Gibb's free energy G(t,H)
near a critical point serves as a useful thermodynamic
potential. An unproven assumption that G(t,H) is a
generalised, homogeneous function is made. Mathematically,

it means that

G(A\at,APH) = A G(t,H)
(2.31)

Immediately, an equation of state follows from the fact that

magnetisation M is given by
M = -(3G/3H),
and can be expressed as

M(t,H) = ab-1 wm(a2t,abn)
(2.32)

This equation furnishes the various magnetic critical

exponents in terms of the unknown constants 'a' and 'b'.

g = (1-b)/a
~' = 4y = (2b-1)/a
§ = b/(1-b)

(2.33)

Widom's equality [eqn.(2.30)] follows as a corollary. A

consequence of the scaling theory is the symmetry of the
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critical indices about T¢. For this reason ' and v are not

differentiated above.

A calculation of § on the basis of measurements on
magnetisation in field require a prior knowledge of T,
according to the power law M(0,H)~h'/6, The estimates are
therefore, dependent on the accuracy of T¢. This is an
uncomfortable situation. In the scaling theory it is
possible to define & in a way independent of Curie
temperature estimate. Such a definition is more suited to
the experimental conditions. First, by choosing the
parameter A such that A = t '/2 the equation of state

[egn.(2.32)] can be re-written with the help of eqns.(2.33)

as
M(t,H) = tP M(u/t7*8)
(2.34)
Since the measurements in this work have been on
susceptibility rather than on magnetisation, a more
appropriate form of the equation of state is
x(t,H) = H- V7P p(u/t7+B)
(2.35)

In the critical region, x(t,0) must diverge. Physically, of
course, the divergence is limited and manifests itself as a
critical peak. The peak is seen even in an applied magnetic

field, although it is suppressed and shifted to a higher
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temperature. The peak position at any field H can be

obtained from egn.(2.35) by requiring that

| (Ex(t,H)/ﬁt)tp = 0
(2.36)

The result is

/7t
tp,\,H/ﬂ

(2.37)

This provides an additional means to check the scaling
theory against the experiment. The value of the peak
susceptibility is then obtained from the equation of state

[egqn.(2.35)].

X (tp,H) ~ H(1/5 -1)

(2.38)

The scaling hypothesis is thus adapted to the experimental

situation.

RKadanoff et al [39] provide a microscopic plausibility
argument which justifies intuitively the scaling ideas
introduced through the generalised, homogeneous Gibb's

function approach earlier. It proceeds as follows:

A system of spins, considered as an Ising lattice, has
two alternate ways of description. One [fig.(2.2)] is to
treat the lattice (with spacing ao) as being composed of

individual spins ¢ arranged on the lattice sites assuming
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Fig.(2.2): Kadanoff site- and cell-pictures.

¢ is the correlation length.
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that only the nearest-neighbours interact through the z-
components of the spins. The Gibb's free energy per spin
G(t,H) is written as a function of parameters t and H which
describe the crucial effects of spin-spin interactions and
the spin-external field interactions respectively. The
second way [fig.(2.2)] is to divide the lattice into cells
of side L, associate a moment u with each cell, and then to
consider it as a collection of mutually interacting cells.
The difference between the two is merely one of scales. The
Gibb's free-energy may now need to be written in terms of
new parameters £, h. Because they describe the inter-cell
interactions and cell-external field interactions

respectively, they may depend upon the size L of the cell.

In the critical region, the pairwise interactions between
spins (or cells) remain short-ranged whereas fluctuations in
the order parameter grow in range, indicating large
correlation lengths. When the magnetic spin-spin (or cell-
cell) correlations span a large region of the lattice the
details of the spin-spin (or cell-cell) interactions are
rendered unimportant. Hence, the cell description and the
site description must be completely equivalent under those
conditions. This indicates that h and t must be
proportional to H and t respectively. As mentioned before,
h and t may depend upon the cell size. The assumption is

that
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£ = LYt

where x and y are two new parameters.

By calculating the variation of the Gibb's free energy
for an infintesimal variation of the magnetic field by
using either the site or the cell description, Kadanoff

relates the cell moment u to the spin moment ¢ as

(2.39)

where d accounts for the dimensionality of the system. If H
is independent of the position r of the spin (or the cell)
the average <o¢o> and <u> for the same physical problem must

be identical functions of the respective variables. Thus,

<o> = F(t,H) = LX9 p(LYt,LXH)
(2.40)

This leads immediately upon integration with respect to h to
the result which forms the basis of the scaling theory -- a

homogeneous, generalised form for the Gibb's function.
G(LYt, LX) = L9G(t,H)

provided the restriction 1 << L << ¢/ap is relaxed to allow

all values of L. ¢ measures the correlation length.

The reasonable assumption that at the critical point the

fluctuations in the order parameter become so long-ranged



67
that they lose sensitivity to the details of the interatomic
interactions and that the nature of these fluctuations
depends only on the symmetries of the order parameter and
the dimensionality of the problem also forms the basis for
the 'universality hypothesis'. According to the latter all
phase transitions of a given order occuring in physically
different systems are identical; only, the variables
describing the transition need to be renamed. Kadanoff has
demonstrated that scaling follows from the hypothesis of
universality in his formulation. It is possible to verify
the scaling hypothesis in the current system PdGd from the
susceptibility measurements performed. As discussed in
Chapter V, scaling hypothesis appears to hold for the
present PdGd system for, at least, the lower concentrations

considered.

2.4 DISORDERED SYSTEMS AND MAGNETIC SUSCEPTIBILITY

Dilute random alloys such as the PdGd alloys currently under
study possess a compositional disorder. The magnetic
impurities are distributed statistically on the lattice
(perhaps, with some short-range magnetic order, which
subtracts from perfect randomness). The earlier treatments
[40-42] of disordered magnetic alloys have used the
molecular field approximation for an Ising model in which
the spins interact through the RXKY interaction. The
indirect coupling between randomly distributed spins leads

to a distribution P(h;) of internal fields. Depending upon
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the approach followed and the temperature range considered,
P(hj) could be a Lorentzian or a Gaussian. Incorporating
this distribution of internal fields into the Weiss mean-
field theory produces a broad maximum in susceptibilty x(T),
the temperature at the peak being directly proportional to
the impurity concentration. The approach obviously fails to
account for a rather sharp cusp in the low-field a.c.
susceptibility at a "freezing" temperature T¢ observed
experimentally [43] in some alloy systems. These are now
known as "spin-glasses" , a term first coined by B.R. Coles
with reference to the strange magnetic behaviour of AuCo
system. The term often refers to a magnetic state where a
spin-disorder has been "frozen" into the alloy such that
there is no net magnetisation in the alloy, yet there are
long time-correlations between spins on various lattice
sites. Edwards and Anderson [44] proposed a novel mean-
field theory based on the Heisenberg interaction Hamiltonian
for a spin pair, in order to explain the spin-glass
susceptibility cusp. Soon afterwards followed an Ising
model based calculation of susceptibility, incorporating the
long-range RKKY interactions. It adopted essentially the
same approach as that of Edwards and Anderson. This model
due to Sherrington and Kirkpatrick [45], found a magnetic
phase diagram which predicts three possible types of
magnetic state for the random spin system -- spin-glass,
ferromagnetic and paramagnetic -- depending upon the

detailed characterstics of the interaction. It predicts
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phase transitions between these ground states as the
interaction characterstics were changed, through a change of
impurity concentration, for example. The SK model
calculations in the ferromagnetic regime of concentration
have been applied recently to a study of the systematics of
the experimentally observed susceptibility peaks in the
vicinity of a phase transition in PdMn by Roshko and
Williams [46]. The calculations reproduce the behaviour
with changing applied fields in fair detail. A comparison
of the model calculations with scaling predictions leads to
the conclusion that as the internal field distribution
broadens, the region of validity of the scaling predictions
diminishes. Deviations from ideal scaling are observable in

PdGd alloys at higher concentrations.

In the following sections a review of the Edwards-
Anderson and Sherrington-Kirkpatrick approaches to the
problem of susceptibility peaks in disordered Heisenberg or

Ising systems is presented.

2.4.1 The Edwards-—-Anderson Model

An actual RKKY spin-glass system is modelled in terms of
randomly distributed, classically described magnetic dipoles
which, nevertheless, interact in a Heisenberg-like manner.

The interaction Hamiltonian is
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H=-2J

S:.S;
i -l

i]
(2.41)
where Jj; is a pair-wise interaction parameter. Standard
statistical-mechanical procedure is applied to write down
the free-energy, and hence the magnetic response of the
system. However, the random site distribution of magnetic
atoms on the lattice is simulated by conceiving of a lattice
of magnetic atoms with randomly distributed "exchange" bonds
Jijj. Thus with each J;; there is a probability factor ej;
associated. This probability of having a particular
interaction Jij operative is included in the definition of
Jij itself. The true free-energy must therefore be averaged
over all possible distributions {Jij} that occur with a
probability P{Jij}. If F(Jij) is the free-energy for a

given distribution the ensemble free-energy is

F(T,H) = J F(J;;).P(J;;) ady;
(2.42)
where
F(Jjj) = -kT log {Tr exp(-gH)}
(2.43)
P(J;:) is assumed to be a Gaussian for simplicity.
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P(Jj;) = expl-d};/23%p8]

where po is the density of occupation and J? = Z J%.. The
configuration average of F(Jij) as indicated in egn.(2.42)
involves an average of the logarithm of the partition
function (this averaging procedure is valid only for
guenched random systems where the position of a spin is not
free to change as the temperature is allowed to vary). A
replica-technique is invoked here to perform the average
most easily. It is based on the following limit:

log z = lim. (z" - 1)/n

n—o
(2.45)

where

n
z" =1 2z, = Tr. exp [—ﬁanga)

(2.46)

The averaging thus needs to be done on the n th power of z.
The -index a may be interpreted as refering to the a th
"replica" which is identical to the given disordered system.
On substituting the Hamiltonian [egn.(2.41)] into egn.(2.46)
and on performing the configuration average over the

distribution P(J;;), the following expression is obtained:
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<z"> = Tr exp [3p/2po Z Z S?.S? S?«S?]
ijap

(2.47)
where

2J32/3(kT) 2

it

P/Po
(2.48)

The configuration average above, therefore, allows the
argument of the exponential to be interpreted as a
fictitious effective Hamiltonian with interacting replicas

of a homogeneous system. The trace in eqn.(2.47) involves

an integration over spin variables and is evaluated using a
variational procedure. Once evaluated, the free energy can
also be calculated. A replica correlation factor

qc,"3 = <S?.S?> appears in the expression for free energy. It
is assumed that a single correlation factor dgg = 9n

describes the disordered state, such that

S ACIRE
The parameter g, which symbolises the spin-correlation
between Gibb's-like replicas of the disordered system, plays
the role of an order parameter. Through its relation to the
free energy, it also appears in the thermodynamics of the
system. In particular, its relation to the magnetic

susceptibility is

X = xol(1 - q)
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Xo = a/T

(2.49)

Above the spin-glass temperature, Tgsgr the "frozen"
correlations are broken; hence q = 0 and the susceptibility
behaves as that for a paramagnet. Just below the "freezing"
temperature the order parameter g, as obtained by Edwards

and Anderson, 1s

gl(r) = -1/2 [ 1 - (ng/T)Z]
(2.50)
Therefore, from equations (2.49) and (2.50)
X = Xo ~— O(ng—T)z
(2.51)

Egn.{(2.51) together with the fact that x = xo for T > Tsg
represents an asymmetric cusp in the susceptibility at the

"freezing" temperature

Tig = 232/9k3

(2.52)

The asymmetry is considered to be the effect of a simple
mean-field approximation and may be removed in better
approximations. Experimentally, the cusps are observed to

be symmetric about the "freezing" temperature.
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Although the EA solution turned out to possess certain
unphysical instabilities (such as a negative entropy at low
temperatures), the new replica technigque to deal with
disordered systems and with the order parameter g useful for
their description, were two extremely valuable ocutcomes of
the EA attempt. More advanced replica technigues have since

been used [47,48].

2.4.2 The Sherrington-Kirkpatrick Model

Sherrington and Kirkpatrick (referred to as SK) solved a
disordered Ising model with long-range interactions [45] of
the RKKY type. 1In this model the interactions of a given
spin are not limited to the nearest neighbours only. The
spin interacts with all other spins but with a Gaussian
distribution of interaction strengths Jij' similar to that

assumed in the EA model.

P(Jjj;) = [2m32]17172 exp [-(J;; - Jo)2/23%]

(2.53)
Jo and J are scaled

Jo = Jo/N , J = J/N17/2

(2.54)

so that Jo and J are intensive variables. This is a useful
procedure because the model works in the thermo-dynamic
limit, N -> oo . The configuration averaging over Jij's

leads to
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n -
<e"> = Trq exp {Z [830/2,2 sfsf + (53)2/a 7, s¢ses8sf1}
1§ -
' (
The trace here is evaluated by the method of steepest
descents. The thermodynamic limit is taken before the
n -> 0 limit in the replica solution. An expression for the

free energy, along with the self-consistency equations for

the magnetisation m(T) = <<S;>.>; and the spin-glass
parameter g(T) = <<§;>%>; are obtained.
g = (27)"'72 [ dz exp(-z2/2) tanh? »(z)
m= (27)"'72 | dz exp(-z2/2) tanh v(z)
(2.56)
where,
v(z) = g [Jg?'”/2z + Jom]
(2.57)

The nature of the magnetic state of the disordered alloy is
determined by the values of g and m. A non-vanishing
magnetisation m and the spin-glass parameter g indicate
ferromagnetism. With a non-zero g and m = 0, the state is a
spin-glass one. Depending upon the ratio Jo/J one or the
other type of magnetic state sets in as the temperature is
reduced below the greater of Jo or J. A magnetic phase
diagram is obtained using egns.(2.56) and (2.57) in terms of

the dimensionless parameters kT/J and Jo/J [as shown in
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fig.(2.3)]. The SK model exhibits magnetic phase
transitions. A ferromagnet to spin-glass phase transition
is predicted by ﬁhe model. The SG phase boundary is defined
either by egns.(2.56) and (2.57) with g # 0, m —$ 0 or by a
divergence of the calculated susceptibility. To calculate
x(T), the Hamitonian contains an added field term which
appears subsequently in the arguments of the tanh functions

in egns.(2.56). The result is

x{(T) = [1 = q(T)] / [kT - Jo{1 - g(T)}]
(2.58)
= x© /(1 = Jox ()
where x °) is the result for 3o, = 0. However, once again

this simplest solution due to SK is similar to the mean-
field solution of the EA model and shares its instabilities
when applied in the spin-glass region. These deficiencies
have been removed to some extent by the improved replica
technigues. However, one important conclusion relates to
non-ergodicity of the SK model. The spin-glass order
parameter has unequal time and ensemble averages. Further,
the model overlooks the short-range spin-correlations which
exist in critical systems, and hence cannot be expected to

describe phase transtions accurately.

The effect of fluctuations in disordered magnets can be
quite simply considered within the framework of an effective

field theory under various approximation schemes. Southern
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[49] has summarised the approximation techniques used for
the purpose. He also demonstrates that it is possible
within an effective-field picture to arrive at the SK order
parameter equations for m and g. He uses an Ising model
with a random distribution of exchange bonds between spins
to simulate the spatial disorder. A Gaussian distribution
of bonds needs to be assumed. This effective-field approach
has the advantage that the spurious low-temperature
behaviour due to the use of replica technigues for the SK

model may be avoided.

Roshko and Williams [46] applied a generalisation of this
effective-field approach (with an arbitrary spin Ising
model) to stuay numerically the results of an SK-like model
in the ferromagnetic regime. A comparison with the
experimental data on ferromagnetic PdMn alloys and with the
scaling predictions was also made. They found the
qualitative features of the data to be reproducible in
considerable detail. The generalised equations for the

= . = .2
order parameters m = <<§;>p>; and q = <<§;>3>, are

(2w)-172 [ dz exp(-z2/2) S.Bg[BS(Jom + Jq' 7?2z + h)]

=)
I

(27)- 172 [ dz exp(-z2/2) s2?B3[BS(Jom + Jg'’2z + h)]

Q
I

(2.59)

For S = 1/2 these are identical to the corresponding SK
equations. Numerical solution of these equations with a
Gauss-Legendre quadrature in conjunction with Newton's

method yields a ferromagnetic ground state for
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Jo/3 2 1.25

A comparison with the scaling theory was quite useful in
that it substantiated its predictions that the ferro-
paramagnetic transition peak decreases in height and moves
up in temperature as the applied field increases, for pure
ferromagnets (Jo/J -> o). The power-law predictions of the
scaling theory are followed with uniquely defined critical
indices. The values of these indices were, expectedly those

predicted by the usual mean-field theory.

However, if the presence of competing interactions
broadens the effective field distribution, the calculations
showed that the "apparent" value of the critical index §,
obtained by fitting a single power law over the whole range
of frequently used experimental field and temperature ranges
decreases. A reduction in the range of fit brings back the
indices to the values expected for the m.f. theory. Data on
PdMn alloys show similar behaviour [50a b,51)]. The effect
of an increasing competition between ferromagnetic and anti-
ferromagnetic spin interactions is thus found to lead to a
reduction in the range of validity of scaling. Intuitively,
such a result should be justifiable in the RKadanoff picture
of scaling. He considered large correlated regions that
exist near a phase transition due to the presence of
critical fluctuations to be equivalently describable on

different scales and showed how this concept led to scaling.
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If two competing kinds of fluctuation are present this
equivalence of the description of the system on any scale
smaller than the correlated dimensions may not be valid.
Scaling predictions would thus not be expected to hold. The
present data on PdGd, appear to indicate no substantial

competition between opposing interactions.



Chapter I1I1I

REVIEW

3.1 PURE PALLADIUM

Palladium metal is of specific interest among transition
metals for its peculiar electronic structure. 1In metallic
state, there is a hybridisation of the full 4d-states with
the empty S5s-states; as a result 0.36 holes/atom are
generated in the d-band and a compensating 5s-band is formed
[fig.(3.1)]. The 5s electrons are "light" compared to the
narrow d-band electrons. The former are thus largely
responsible for conduction processes and the latter for the
magnetic properties of Palladium. Because the conduction
band is formed through an itinerancy of the d electrons, the
Fermi level lies within the narrow d-band. The result is a
high density of states at the Fermi surface. This has
consequences both for the electrical and magnetic properties

of the metal.

Palladium has been known to exhibit a T2-dependence of
resistivity at low temperatures. The specific heat and the
resistivity data [52] point to a non-magnetic origin of this
term. The s-band to d-band scattering induced by electron-
electron interactions, which manifest themselves as either
the charge-density oscillations of the Baber mechanism [53]
or the spin-density fluctuations in the Palladium d-band

- 81 -
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Fig.(3.1): Schematic representation of the

band structure of pure Palladium

and the associated Fermi surface.
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[54-56] are believed to be the cause of this T2-behaviour.
A high d-band density of states at the Fermi surface favours
a unidirectional interband scattering. The phonon-induced
interband scattering also has its share in resistivity but
it is much less effective than electron-electron scattering

at low temperatures.

The high paramagnetic susceptibility and the specific
heat are also manifestations of a large density of states at
the Fermi level. Mueller et al [12] and Anderson [13]
calculated the value for the latter to be 1.14 states per
unit energy per spin direction per atom. The high
susceptibility of Palladium qualifies it to be referred to
as an incipient ferromagnet. The usual expression for Pauli

susceptibility

Xo = 2#% p(ef)

(3.1)

is not sufficient to describe the magnitude of xo even with
the large value of p(es) for Pd. Stoner considered the
intra d-band electron-electron Coulomb correlations. He
showed that the Pauli susceptibility is enhanced by what is

known as the "Stoner enhancement factor":

x = xo/[1 - p(ef).I]

(3.2)
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where I is the electron exchange parameter and p(eg)is the
density of states at e;. The Stoner factor [1 - I.p(e¢)] !

may be as large as 15 in Palladium [57].

Besides a large value, the susceptibility shows a strong
temperature dependence with a maximum at 85 K. Several
possible causes have been proposed. Neutron diffraction and
specific heat experiments [58-60] have however, demonstrated
an absence of any ferromagnetic ordering. The most accurate
band structure calculations of Mueller et al and Anderson
referred to earlier have not been able to quantitatively

match the temperature variation of susceptibilty.

Nevertheless, it is the high value of susceptibility that
makes Palladium a magnetically interesting host. Alloying
it with a few tenths of an atomic percent of Cobalt or Iron
is sufficient to produce a spontaneous moment at low
temperatures [61,62]. The indirect interaction of the
separated impurity ions through the RKKY polarisation of the
Pd d-band due to s-d exchange, is ascribed to be the cause
of a spontaneous moment. A similar behaviour is noted with
Manganese substituted in Pd instead of Fe or Co. However,
larger Mn concentrations are reguired. The behaviour of Mn
in Pd is rather well understood as a result of a large
volume of work carried out on the system [33,50a b, 63,64].
The PdMn system provides a nice reference for the study of
the less commonly studied P4dGd system because both Mn and Gd

are S-state ions and are known to exhibit local moment
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behaviour down to very low temperatures in dilute alloys
with Palladium. Hence it i1s instructive to review the

generally accepted and known facts about both the systems.

3.2  MANGANESE IN PALLADIUM

Starting from the earliest resistivity measurements by
Sarachik and Shaltiel [65] and Williams and Loram [31b], a
consensus has emerged that the PdMn system exhibits a
variety of ordering behaviour [66] ranging from the
paramagnetism of pure Palladium tc¢ the anti-ferromagnetism
of Manganese. For lowest concentrations (27 < ¢ < 575 ppm)
PdMn is a spin glass because distant Mn impurities interact
via the tails of the long-ranged RKKY polarisation
[£fig.(3.2)]. Ferromagnetism is observed for 0.1 < ¢ < 2.5
at.% Mn. This is due to the Mn-Mn indirect interactions
through the exchange enhanced ferromagnetic sections of the
RKKY polarisation. For 2.5 < c¢ £ 5.0 at.% Mn, the
possibility of direct nearest-neighbour anti-ferromagnetic
Mn-Mn interaction increases. Frustation effects are
noticeable in the decreasing magnitudes of the ordering
temperatures as ¢ increases above 2.5 at.% Mn [fig.(3.3)].
Above 5 at.% Mn, the direct antiferromagnetic Mn-Mn
interactions are in full competition with the long-ranged
ferromagnetic, indirect RKKY interactions. This results in
a spin-glass state for the system. Mn concentrations above
25 at.% result in the formation of intermediate compounds.

The RKKY polarisation of the Pd matrix around a Mn impurity
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Fig.(3.2): Interaction between distant
impurity moments through the
tails of the associated RKKY
polarisations; the situation
depicted leads to a spin-glass

state.
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ion causes "giant" moments to be detected for the dissolved
Mn ions. Star et al [67] measured a value u = 7.5ug in the
ferromagnetic concentration regime. High field
magnetisation measurements by Smit et al [68] indicated that
"the giant moment of Mn in Pd gradually decreases from 7.7ug
for ¢ = 0.48 % to 5.3ug at ¢ = 9.8 %". The latter is close

to the free-ion value.

The conclusions about PdMn find support in measurements
on specific heat [63,69], on magnetisation [70], on
resistivity [31b] and on magnetoresistance [33]. The low-
field a.c. susceptibility measurements [50al] further confirm

the resistivity measurement results.

One question that has been debated is how best to
represent a giant moment —-- as a giant spin or as an
enhanced g-factor. Two main approaches exist. Specific
heat and magnetisation measurements are describable in terms
of a normal ionic spin and an enhanced splitting factor for
PdMn. The magnetoresistance measurements of Kleiman and
Williams [33] indicate an enhancement of both the spin and
the Landé factor. The latter approach has the advantage
that it describes also the data for PdFe and PdCo more
satisfactorily than the former, which needs to assume a
distribution of g-values to obtain any good degree of fit to
the observed data. The physical origin of such a

distribution is unclear.
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3.3 GADOLINIUM IN PALLADIUM

While ferro-magnetic behaviour has been noticed in PdGd
alloys [71,72] no evidence of giant moments is found. On
the contrary it has been debated whether Gd has a dwarf

moment in Pd.

Crangle [73] reported the earliest observation of
ferromagnetism in PdGd from his magnetisation measurements
in fields upto 20 kOe for alloys upto 10 at.% Gd. The
results indicated a lower than free-ion value of saturation
magnetic moment per Gd-atom and a concentration dependence
of that value. The moment per atom decreased with
decreasing Gd concentration. The ferromagnetic transition
temperatures were deduced using the Arrott plots of H/o vs
0%, and were found to be concentration-dependent as well.
However, Sarachik and Shaltiel [65] found no evidence of a
ferromagnetic transition through their resistivity
measurements at temperatures about T¢ deduced by Crangle.
Bellarby and Crangle [71] found peaks in specific heat
measurements on PdGd with ¢ = 3, 5 and 7.7 at.% Gd which
indicated magnetic phase transitions. The transition
temperatures, however, were not in agreement with Crangle's
first determination of T.'s. Later measurements by Cannella
et al [72] on low-field a.c. susceptibility, x(T) and on the
electrical resistivity clearly indicated the presence of
magnetic ordering below well-defined temperatures in alloys

containing 2, 3 and 5 at.% Gd. The ordering temperature
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estimates agreed with the specific heat peak temperatures of
Bellarby and Crangle. The work of Zweers et al [74] on the
specific heat of some well homogenised alloys between 1.2 K
and 20 K also showed sharp-peaked magnetic contribution.

The existence of ferro-magnetism in dilute PdGd alloys is,

therefore, fairly well established.

The other question, that regarding the size of Gd moments
in Pd, had first been addressed by Peter et al [75]. They
detected a significant negative g-shift through EPR
measurements. In a later publication [76] Shaltiel et al
described more EPR measurements to study the coupling
between valence electrons and magnetic impurity ions in
metals of high paramagnetic susceptibility; the PdGd system
is one of those studied. Again, a temperature-dependent
negative g-shift is described. At the lowest temperatures
the magnitude of shift is about 0.06. It increases
gradually to about 0.12 at temperatures around 30 K and
remains constant thereafter. Coles et al [77] advanced an
explanation for the observations. They suggested a positive
5s-4f exchange but a negative 4d-5s hybridisation.

Together, this would lead to a weak anti-ferromagnetic
matrix polarisation around the Gd ion, explaining the weak
negative g-shift. As mentioned previouly, Crangle's high-
field (upto 20 kOe) magnetisation data had indicated a lower
than free-ion value for the saturation moment of Gd in Pd.

Guertin et al [78] extended the magnetisation measurements
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to higher fields (upto 150 kOe) on alloys with
0.2 £ ¢ £5 at.% Gd. They concluded that the saturation
moment was concentration independent and equal to the free-
ion value within experimental error. Later high-field
magnetisation (upto 210 kOe) and susceptibility experiments
by Guertin et al [79] on 2 at.% Gd alloy again provided no
conclusive evidence for dwarf moments. The magnetisation
data in fields upto 215 kOe of Praddaude et al [80] placed a
lower limit on the saturation Gd moments at the frée—ion
value. The upper bound is set by experimental
uncertainties. It is currently believed, therefore, that no
dwarf moments exist in PdGd. The moments are close to the

free—-ion value.

An attempt to empirically fit the slow trend to Gd-moment
saturation even in high magnetic fields led Pradduade et al
[80] to propose an interesting but ad hoc idea. The

empirical formula designed to fit the observed data was

o = aHAH(H + Ho). B {BIVA(H + Ho)} + xXmaH

(3.3)
where
a = NgugS
B = [gug(l - 8)/k 1.1/(T - 6)
The factor (1 - §) accounts for s-f exchange interaction and

6 is the paramagnetic Curie temperature that results from
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Gd-Gd interactions. Xmyat has the interpretation of the Pd
matrix susceptibility. The quantity +H.Ho is related to the
concept referred to above. It has the interpretation of a
matrix polarisation dependent anisotropy field that acts
perpendicular to the applied field. The suggested possible
origins for the fields were either the direct Gd-Gd
interactions and/or a negative s-f exchange interaction.
The anisotorpy field is weakly concentration dependent. For
2 at.% Gd, the value estimated for the anisotropy field from
the fit of the empirical relation [egn.(3.3)] is about 17

kOe.

3.4 GADOLINIUM IN OTHER HOSTS

The literature has a substantial amount of data on the
magnetic behaviour of alloys of Gd with other metals. A
study of the alloys of Gd with Yttrium and with Scandium is
particularly interesting insofar as it may help to clarify

the observations on the P4dGd alloys in the present work.

The resistivity data on ¥Gd alloys (c < 10 at.% G4d)
obtained by Sarkissian and Coles [23] has been interpreted
in terms of an Overhauser type stabilisation of a spin-
density wave in the d-band of the host through a localised
exchange interaction with the impurity moment. The
orientation of an impurity spin at a site then depends upon
the position of the site relative to the phase of the spin-

density wave. The ¥YGAd resistivity shown in fig.(3.4) first
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rises below the temperature marked Ty, passes through a
maximum and then declines at lower temperatures. The same
behaviour is als& noted below the Néel temperature in
Chromium and in some helically ordered rare-earths. The
helically ordered YGd and ScGd alloys yield a susceptibility
maximum at the ordering temperatures determined from the
resistivity data. As the GAd concentration is reduced below
a certain value (¢ = 2.6 at.% Gd) the characterstic
behaviour of resistivity vanishes abruptly although the
susceptibility maxima remain in the x vs T curves. These
more dilute alloys have a temperature dependence of
resistivity characterstic of a spin-glass, i.e. have a T37/2
variation at low-temperatures. This indicates that at 2.6
at.% Gd in Yttrium, there is magnetic transition from a
helically ordered state to a spin-glass state. A much
larger solute concentration is required to show any ordering
at all in Scandium-based alloys but the results are similar.
More recent single-crystal resistivity data on ¥YGd system
[81,82] has indicated that the helical order that sets in at
2.6 at.% Gd in Y is preserved in alloys with Gd
concentrations as high as 68 at.% Gd. Beyond that a
completely ferromagnetic order is seen. The transition
alloy Y + 68 at.% Gd shows the presence of an
antiferromagnetic state at an interval of 2 K below the
temperature of ferromagnetic ordering. The resistivity curve
therefore possesses an antiferromagnetic resistivity maximum
preceding the ferromagnetic saturation of resistivity, as

shown in fig.(3.5).
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The existence of an antiferromagnetic component in the
magnetic order in ¥Gd and ScGd systems has an independent
confirmation in the numerous neutron diffraction studies
performed on these systems [83-85]. The rise in the
resistivity of these alloys below the respective ordering
temperatures is believed to be due to magnetic super-zone
gap effect [86]. A similar rise in resistivity similar to
that described in above systems has been noted in Pd4dGd
alloys (with ¢ 2 7) in the present study. If a similar
mechanism is at work in this case, at least a qualitative

explanation of the resistivity maxima is straightforward.
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Chapter IV

EQUIPMENT AND EXPERIMENTAL PROCEDURES

4.1 SAMPLE PREPARATION

The P3Gd alloy samples ranging in concentration from 2 at.%
Gd to 10 at.% Gd (nominally) were prepared by dilution of a
Pd + 10 at.% Gd master alloy. The latter was obtained by
melting together appropriate quantities of pure specimens of
Pd (99.999 % pure, supplied by Sigmund Cohn) and of
Gadolinium (99.99 % pure, supplied by Rare Earth Products)
in an inert Argon atmosphere on the water-cooled hearth of
an arc-furnace. Gadolinium has a lower melting point (1356
C) compared to that of Palladium (1552 C). To minimise
losses of Gd in the simultaneous melting process it was
wrapped in a Pd foil and then melted. After the first
melting the maximum possible uncertainty in the Gd
concentration was estimated assuming that all losses could
be attributed to evaporation of Gadolinium. If A, and A,
are the atomic weights of Gd and Pd respectively and wi, w3
are the respective masses used in alloying, the uncertainty

in the master alloy concentration is given by

Ax = x - B/(a + B)
(4.1)

where,
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a = A1/A2 = 1.478 ’ ﬁ = &)1/&)2

Here, x refers to fractional nominal concentration of the
alloy. 1In the worst case scenario adopted above, the
compositional uncertainty is expected not to exceed 0.1 at.%
Gd. The importance of proper homogenisation, especially in
PdGd alloys has been emphasised by other researchers [69].
The master alloy was therefore turned over and remelted 9
times in succession. The small weight losses were very
likely a result of surface evaporation of Pd and hence
should not affect the concentration significantly. The
master alloy was cold-rolled, etched, wrapped in Tantalum
foil and then annealed under vacuum (3 x 10°¢ torr) for 48
hrs. at about 1000 C (as measured by a Pt + 13 at.% Rh vs
Pt thermocouple) and then qguenched under iced water.
Dilution of the master alloy pieces with varying amounts of
pure Pd was done to obtain lower concentration samples. The
samples so obtained were cold-rolled, cut into pieces and
annealed and quenched in a manner similar to that described
above. The solubility limit of Gd in Pd is about 12 at.¥% at
about 1100 C [87]. The higher concentration alloy samples
-- 7 at.% to 10 at.% Gd -- were lowered into liguid Nitrogen
for storage to retard the process of clustering and
precipitation. The same samples were used to cut smaller
pieces for both the a.c. susceptibility and the resistivity

measurements.
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The samples for susceptibility measurements were
typically 1.250 x 0.105 x 0.010 cm® in dimensions. A single
sample strip of this size was found inadequate to give
sufficiently large susceptibility signals when external d.c.
biasing fields were switched on. Hence a host of them
stacked one on top of the other lengthwise, held together

and separated by pieces of masking tape, were used.

The samples for the zero-field a.c. resistivity
measurements were also thin rectangular strips about 10 cms

long and approximately 0.1 cms wide.

Following completion of all measurements on the system of
alloys, about two and a half years after the initial
preparation a Pd + 8 at.% Gd sample was examined under a
JEOL transmission electron microscope to check for the
presence of ordered intermetallic Pds;Gd compound phases. A
circular disc of the sample was cut for this purpose from
the resistivity specimen and polished with a solution of 50
% methanol, 33 % Nitric acid and 17 % Phosphoric acid in a

twin-jet electro-polisher.

Another unpolished piece of the specimen was examined by
an X-ray energy-dispersive technique to obtain rapid
estimates of concentrations of Gd and other impurities in P4
using the EDAX hardware and software. The sample was
cleaned on the surface with methanol and brushed with Freon.

No other preparation was necessary.
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4.2 MAGNETIC SUSCEPTIBILITY

A.c. susceptibility of PdGd samples was measured as a
function of temperature in a number of externally applied
d.c. fields. A description of the equipment and the

measurement technigues follows.

4.2.1 The Cryostat Assembly

As shown in fig.(4.1) an inner double-walled glass dewar
narrows down to a long tail at the bottom. It is meant to
contain liquid Helium into which a sample probe could be
lowered. An open liquid N, dewar surrounds the He dewar.
Two sensing coils L; and L, whose purpose will be made clear
later, are so arranged inside the liquid N, bath as to
surround the tail section of the inner dewar. Two
concentric external d.c field coils capable of producing
fields up to 1 kG along the sample axis when connected in
series, are also arranged within the liquid N, bath.
Individually, the field coils could produce 215 Oe/amp and
186 Oe/amp respectively. Both are constructed with a 22
gauge enamelled Copper wire. The two sensing coils are
constructed to be closely similar to each other. Each has
4000 turns of 35 gauge enamelled Copper wire wound on a
nylon core-former. The measured inductances of the two
coils are 205 mH and 202 mH respectively. The liquid N,
bath serves two purposes -- it cools and maintains
temperature uniformity in the field- and sensing coils, and,

provides an extra thermal insulation for the liquid Helium
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contained in the inner dewar. The degree of thermal contact
between the inside of the He-dewar and the outer N, jacket
can be varied by controlling the pressure in the vacuum

space separating them.

The sample probe consists of a machined Cu-block wound
with a nichrome heater wire (50 £) to which a long bundle of
thin Copper wires is soft-soldered. The block-and-tail
assembly is suspended at ﬁhe end of a long, hollow stainless
steel rod which, in turn, is anchored to a metal plate at
the top of the cryostat assembly. The Cu-wire tail holds
the sample in the narrow tail-section of the inner dewar.
Provision is made so that the sample probe may be moved
vertically toiallow positioning ¢f the sample at the centre
of the sensing coil L,. A Germanium resistance thermometer
is embedded above the sample in the Cu-wire bundle, just
outside the magnetic field region to avoid interference in
temperature readings in the presence of externally applied
magnetic fields. This constraint causes some difficulties
in precise temperature measurements above 4.2 K (discussed

later in Chapter V).

4.2.2 Temperature Control and Measurement

In the range of interest (i.e. between 2 K and 7 K
approximately) two temperature control techniques were used.
Below the boiling point of He, a continuous sweep of

temperature was obtained by pumping on the Helium bath
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surrounding the sample. A constant current back-off power
supply was employed to compensate for the vertical component
of the earth's field at the sample so as to always cool the
sample in zero field. Data were taken as the system was
allowed to gradually warm up at a controlled rate, both in
zero and non-zero applied d.c. fields. The warm-up rate was
controlled by a combination of pumping-speed regulation and
use of the nichrome heater. Above the boiling point of He,
the heat leak into the system was found to be sufficient to
cause a gradual rise in temperature. The amount of heat
leakage could be controlled by increasing or decreasing the
thermal link beween the sample space and the N, bath around
it. No heating currents through the nichrome heater were
needed. The usual warm-up rates were approximately 1.5

K/hr.

The Ge-resistor, calibrated from 4.2 K to 100 K by
Cryocal (city, Florida) and, from 1.4 K to 4.2 K in our
laboratory against Helium vapour pressure, was the only
thermometer needed for temperature measurement in the
working range. The resistor was unaffected by thermal and

magnetic cycling.

The temperature-measuring Ge-resistor output was fed into
the X-channel of a Phillips PM8120 X-Y recorder. A back-off
circuit had to be employed in the Ge-resistor output circuit
(which fed the X-channel input) to bring the signal on

scale. However, to measure the temperature the Ge-output



104
was monitored directly on a DANA 5330 (module 700) DVM
capable of measuring voltages accurately to = 1 uv. A
current of 10 uA was supplied to the Ge-resistor by a
constant current source and was periodically monitored
through a DVM by measuring the voltage this current produced
across a standard 1 k@ resistor. The Germanium resistor

circuit and the back-off control circuit are depicted in

fig.(4.2).

4,2.3 Measurement of Susceptibility

Fig.(4.3) shows the essentials of a phase-locked
magnetometer designed by I. Maartense [88] for the
measurement of susceptibility. Two sensing coils L, and L,
are arranged in two different resonant LC circuits which are

set initially to have equal resonant frequencies
w = (L1C1)_1/2 = (LzCz)—1/2

Circuit 2 is driven by the first resonator circuit. The
measurement of susceptibility is based on the fact that if a
magnetic sample is inserted into the coil L,, the coil
reactance and hence also the frequency of the second
resonator circuit is altered , leading to a phase difference
between the responses of the two LC-circuits. The phases
may be compared in a phase detector which produces a
correction voltage to restore the frequency w; of the second
LC-circuit to its initial value through a voltage-controlled

reactance in that circuit. The control voltage required to
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Fig.(4.3): Block diagram of Phase-locked magnetometer.
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equalise the frequencies w,; and w; is a measure of the
magnetic susceptibility. The output of the phase detector
circuit is connected to the Y-channel of an X-Y recorder in
order to obtain a continuous record of susceptibility with
changing sample temperature (the latter driving the X-
channel of the recorder). The signal height in volts can be
converted to susceptibility values provided a calibration
factor is known. The calibration of the susceptibility has
been described previously by Ho [66]. Gd,0; is a paramagnet
at 77 K. At any given temperature it's susceptibility is
given by the Curie law. A comparision of the output signal
from the phase detector circuit and the calculated
susceptibility at a given temperature gives the calibration
factor: 8.58 x 107% emu/V-Oe. It is expected to be good to
within 10 %. This rather large uncertainty in absolute
value is a result of varying filling factors for different
samples in the sensing coil L, and of changing demagnetising
fields for samples with different shapes. However, relative
susceptibility for a given sample is probably accurate to 1

part in 104,

4.3 ELECTRICAL RESISTIVITY

Both the d.c. and a.c. resistivities of the PdGd samples
were measured. While the former was measured at a fixed
temperature (boiling point of Helium) the latter was
measured as a function of temperature in the range 1.4 K to

10 K. The effect of an applied magnetic field (70 kG) on
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the a.c. resistivity was also studied. The d.c.
measurements employed the usual four-probe potentiometric
method to obtain accurate resistivity values at 4.2 K. The
low-frequency a.c. resistivity measurements, on the other
hand, provided more accurate values for the changes in
resistivity with changing temperature because they are not
subject to the effects of thermal emf's. In conjunction
therefore, accurate values of the electrical resistivity at

all temperatures of interest could be obtained.

4.3.1 The Cryvostat Assembly

The Helium dewar contains a 5 in. long, high-conductivity
Copper sample chamber attached at the lower end of a much
longer (41 inches) stainless steel tube which is suspended
from a brass plate on the cryostat head assembly
[fig.(4.4)]. Surrounding the sample chamber is the gas-
thermometer bulb used for monitoring the temperature of the
sample space. The two are in good thermal contact through
the thin, high-conductivity Copper walls. Another coaxial
cylinder outside the sample space separates it from the
surrounding Helium bath. The enclosed region contains an
exchange gas, usually Helium, whose pressure can be varied
in order to regulate the degree of thermal linkage between
the sample space and the surrounding Helium bath. Hence it
may be referred to as the vacuum space or the isclation
chamber. A very long tube connected to the interior of this

chamber emerges at the top of the cryostat head and
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facilitates pressure control. A stainless steel needle tube
runs down the length of this tube going via the vacuum-
chamber into the gas-thermometer bulb. This tube conveys
the pressure changes in the gas-thermometer to an external
pressure gauge. The whole assembly of vacuum-chamber,
sample space and bulb is placed inside a superconducting
solenoid (SHE Manufacturing Co., U.S.A.). While in
operation, the dewar housing this assembly contains liquid
Helium. A thermal jacket is provided for the Helium dewar
by liguid N, contained in a surrounding dewar [not shown in
fig.(4.4)]. As stated above, the cryostat head is designed
as an anchor for various inserts. Additionally, as shown in
fig.(4.5), it also has the necessary attachments for liquid
He transfer, magnet current supply, and for the control and
measurement of pressure in the sample space, the vacuum
space and the Helium space. A large Copper tube attached to
the cryostat head, as shown, 1is connected to a 500 l/min,
rotary pump for pumping the interior He-space in order to
cool the system below the boiling point of ligquid Helium.
When this is not desired, the flap valve on the Copper tube
serves as an emergency release for gaseous Helium, in case
the superconducting magnet accidentally goes normal. The
current supply to the magnet is carried down the length of
two lead-coated brass tubes. A superconducting heater
switch is located close to the magnet and its leads are
anchored into a plug at the bottom plate of the cryostat

head.
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Both the cryostat head and the cryostat are supported by

a thick Aluminum plate which is the top of a cage [not shown
in fig.(4.4)] enclosed on four sides by plexiglass and

plywood to ensure protection of the dewars and the magnet.

4.3.2 The Vacuum System

The flow-chart in fig.(4.6) shows the associated vaccum
system. Three different pumping systems are contained in
the chart. The first relates to the Helium space but its
details are not indicated in the diagram because it is an
isolated, mechanical pump-based system (pump 3) with a
provision for control of the pumping speeds through three
different-sized valves arranged "in parallel"”. The second
has a mechanical pump (pumping capacity 100 1/min.)
connected to the sample space. The pressure inside the
sample space can be monitored through any of the two sets of
manometers or gas-thermometer pressure gauges connected to
it. For this purpose set 2 of the manometers was frequently
used. Finally, the third system uses mechanical pump 2 and
diffusion pump 2 with access to the vacuum-chamber. The
pressure in this segment of the system can be monitored by
the manometer set 2. The reference side of the gas-
thermometer is accessible to both pump sets 1 and 2. The
various pumping systems are inter-connected to provide

greater versatility for the system.
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This system allows temperatures above and below 4.2 K to

be stabilised and measured, as described below.

To cool the sample chamber below 4.2 K a small amount of
Helium gas is introduced into the vacuum-chamber with the
help of the gas ballast shown in fig.(4.6). The valves 7
and 9 must be opened to the ballast, along with the
intervening regulator needle valve b. To avoid damage to
the manometers the valve 15 must be kept closed initially
and then carefully opened once the exchange gas has been
transferred to the vacuum-chamber. A very small pressure,
typically 10 cms Hg, is sufficient to provide a good thermal
link between the external He-bath and the sample chamber.
Then, the pressurised Helium gas from the supply cylinder is
admitted into the sample space by opening valves 7 and 10 to
the gas ballast. Pressurised He gas starts to condense. As
it condenses, the crude pressure gauge attached to the gas
ballast drops continuously. The Helium input is continued
until no rapid reduction in the pressure of He gas is
registered on shutting off the supply cylinder. The
condensation in the sample chamber is then complete. The
exchange gas from the surrounding vacuum-chamber is then
evacuated using pump set 2. The valves 3, 5, and 12 must be
open to achieve a good isolation vacuum. Once evacuation is
complete the temperature in the sample space can be lowered
by pumping on it with mechanical pump 1. The pumping

capacity of the rotary pump and transport of ligquid Helium
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through thin-film creep limit the lowest achievable
temperature to approximately 1.5 K. The sample space
pressure 1is measﬁred using manometer set 1 (which was later
replaced by an electronic Datametrics Barocell Pfessure
Sensor, capable of measuring up to 1000 Torr). Vapour
pressure tables are used to calculate the sample temperature
from the measured pressure, following correction for room

temperature and local gravity.

The operation of the vacuum system for attaining
temperatures above 4.2 K involved a complete evacuation of
the isolation chamber. A Pirani gauge attached to the
pumping line provides a measure of the pressure inside. The
sample temperature may be raised above that of the He-bath
by using a heater‘on the sample insert in conjunction with a
feedback control circuit. 1In this case the sample

temperature is measured by gas-thermometer 2.

4.3.3 Sample Insert

The insert, shown in fig.(4.7), is a rectangular Copper
plate 10.5 cms x 2 cms in dimensions, soldered to the end of
a long, narrow stainless steel tube which carries various
current and voltage leads for the four samples mounted on
the insert. The stainless steel tube also carries, around
its lower end, a thin Cu-wire heater element. The same
winding runs down the Copper insert and is held in place by
G.E. Varnish which is a good thermal conductor and a good

electrical insulator. On each side of the sample insert are
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mounted two sets of brass wedges which are electrically
insulated from the insert base. They are used to clamp down
the thin, long sample strips lengthwise with the help of
screws and nylon washers. Connections to the current leads
are made on the samples once they are in place. All the
voltage and current leads are connected to a "switch-board"
box from where the connecting leads run to the appropriate

external circuits.

4.3.4 Temperature Stabilisation and Measurement

Temperature stability below 4.2 K is achieved by the use of
a manostat (not shown in the flow-diagram) in the pumping
line connected to the sample space, while the temperature is
measured by monitoring the vapour pressure above the Helium
liquid contained in the sample chamber using Mercury and oil
manometers (or by the Datametrics electronic pressure
sensor). Above 4.2 K an a.c. bridge circuit containing a
temperature sensitive carbon resistor is used for
temperature stabilisation and a gas-thermometer for its
measurement. Each of these four components of the
stabilisation and measurement system is discussed below in

more detail.

(i) Manostat:- This device works by either making or
breaking contact between the evacuating pump and the sample
chamber depending upon whether the pressure inside the

sample chamber is higher or lower than a variable reference
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pressure locked into it. The design of the manostat is

shown in fig.(4.8).

It consists of a 0.01 inch thick latex rubber sheet
stretched between two perforated brass retaining plates. One
of the plates, which has 177 regularly spaced holes of 1/16
inch diameter each, forms the top of a gas reservoir. The
other plate is connected to a mechanical pump and the sample
chamber through two perforated ports, respectively. A small
valve provides a facility for connecting the manostat
reservoir to the line leading into the sample chamber and

hence for changing the reference pressure.

Initially the reservoir is opened to the sample chamber
while the latter is being pumped down. The pressure in the
reservoir thus reflects the vapour pressure inside the
sample chamber. To stabilise a certain vapour pressure {and
hence the sample-space temperature) the small valve referred
to above is closed to the manostat thus breaking the
connection to the sample chamber. If subsequently, the
reference pressure exceeds the He vapour pressure in the
sample space, the two-port plate inlet is sealed. It remains
sealed until the vapour pressure has risen just enough to
force it back against the reservoir pressure. Some gas is
allowed to be evacuated thus until, once again, the
reservoir pressure just exceeds the vapour pressure. The
presence of 177 holes on the reservoir plate is intended to
permit fast response and to protect against membrane rupture

in case of sudden, large pressure changes.
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(1i) Manometer System and the Barocell:- For the first of
the two sets of resistivity measurements performed during
the course of this project, the vapour pressure of liquid
Helium in the sample chamber was measured using a
combination of Mercury and Apiezon B low-vapour pressure oil
manometers. The former was used from the atmospheric
pressure down to about 2 cms of Mercury; the pressure in the
range of 4 cms to 2 cms of Hg was monitored on both
manometers and an average conversion ratio was obtained to
convert the oil manometer pressures directly to equivalent
Hg manometer readings. Lower pressures were measured on the
oil manometers alone. The manometer meniscus levels were
read to *0.001 cm using a Griffin and George Ltd.
cathetometer. The barometric heights measuring the vapour
pressures were corrected to standard gravity (local value of
g is 980.99 cm/sec?). Further, their measured values at
room temperature were reduced to those at 0°C. From the
published Helium vapour pressure tables [91], the
temperatures corresponding to these corrected vapour

pressures at various settings were calculated.

In the repeat set of measurements the manometer system
was replaced by an electronic pressure sensor, as mentioned
earlier. The device [89] is based on the variable
capacitance principle. The pressure sensing element in the
barocell is a high-precision, stable, capacitative

potentiometer the variable element of which is a thin,
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highly pre-stressed metal diaphragm stretched between two
fixed capacitor plates. It separates two gas—-tight chambers
which are connected to the external pressure ports. Any
pressure differential across the diaphragm deflects it,
thereby changing the relative capacitance of the diaphragm
and the fixed capacitor plates. The Barocell is arranged in
an electrical bridge circuit, which is balanced when the
pressures on each side of the diaphragm are equal. Hence
when evacuated on the measuring side (the reference side 1is
evacuated and sealed), the imbalance signal is zero. Any
imbalance in the circuit produces an output voltage (%10
VDC) proportional to the applied pressure. Pressure changes
as small as 1 x 10°% Torr can be detected with appropriate
voltage measuring devices. In the present experiments,
pressures were measured only to about 0.1 Torr. The
proportionality factor for conversion of the barocell output

reading to the pressure reading is 100 Torr/volt.

(iii) A.C. Bridge Circuit:- The circuit used for
temperature control above 4.2 K contains two standard 1 k&
resistors, one in each of the upper two arms of the bridge.
The third arm has a variable resistor R. The fourth arm
carries a temperature-sensitive Allen-Bradley resistor, in
thermal contact with the sample insert inside the cryostat
[fig.(4.9)]. The fact that the resistance of the AB resistor
decreases very rapidly (roughly logarithmically, as shown in

fig.(4.10)) as the temperature is increased, is exploited to
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control the temperature. In the balanced condition of the
bridge, the AB resistor is equal in resistance to the
variable resistor R. A new lower value for the resistor R,
chosen from the resistance-vs-temperature characterstic for
the AB resistor to correspond to a reqguired higher
temperature, can be "dialled". The bridge responds through
the generation of an imbalance signal which is fed into a
phase sensitive detector and amplifier. The amplified output
is used to drive a current proportional to the positive
difference between the resistance of the AB resistor and the
set resistance R through the heater coil wound on the sample
insert. The temperature in the sample chamber is raised.
The value of the AB resistor falls towards the dialled value
of R with rising temperature, and thus reduces the
difference signal from the bridge. Were it not for the
cooling effect of the He-bath, the heater current would
simultaneously drop until it was reduced to zero. However,
in order to maintain a given temperature above that of the
Helium bath, the heater current stabilises at an appropriate
value. At this point the AB resistor has achieved the lower
desired value fixed by the resistance R. The bridge circuit
acts to nullify any deviations from this state by either
supplying or stopping an additional feedback current to the
heater. The sample chamber temperatures are stabilised
thus. Upto 25 K the bridge output is sufficient to supply
the requisite heating power. An auxiliary Heathkit (IP-27)

power supply connected in series with the output of the
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phase detector extends the heating capacity up to room

temperature. In the present study, it wasn't needed.

(iv) The Gas Thermometer:- Temperature measurements above
4.2 K were performed using a non-linear gas thermometer.
The latter used a Wallace and Tiernan (62A-4c-0125) pressure
gauge capable of measuring pressures up to 125 inches of
water and connected to the gas thermometer bulb surrounding
the sample chamber through a 0.024" inner diameter,
stainless steel tube. Helium gas was used to fill the
thermometer bulb because its behaviour is very nearly
"ideal". However, deviations from linearity are caused by
the presence of dead spaces in the measuring devices and the
connecting tubes. The volume of the dead space in the
pressure gauge depends linearly on pressure. Corrections to
the ideal gas law are made in order to compute the correct
temperatures from the measured gas pressure readings. A

virial expansion of PV to first order in P is utilised [90].

PV = AT + B'(T).P

(4.2)
where
A = Ao/273.15

For Helium gas the constant Ao, has a value 0.999488 N-m/°K
The values for the constant B'(T) are tabulated in the above

reference. The expansion accounts for the deviations from
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the ideal behaviour. For simplicity of analysis the gas
themometer is divided into three interconnected compartments

[fig.(4.11)].

(a) the gas thermometer bulb with a volume V and a

temperature T.

(b) the pressure gauge dead space volume V' + dead space
volume V,; of the portion of the connecting tube that lies
outside the cryostat; both dead spaces are at room

temperature T'.

(c) the dead space volume V, of that portion of the
connecting tube which runs down the cryostat into the bulb;

a temperature gradient from T' to T exists along the length.

The modified gas law [egn.(4.2)] for such an
interconnected assembly can be approximately (neglecting
temperature discontinuities at the boundaries of the

conceived compartments) written as

Z pv;/(T; + BP) = const.
1

(4.3)
where
B(T) = B'(T)/A

The pressure P of the gas is identical in all compartments
due to inter-connectedness. The three terms in egn.(4.3)

are
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Term 1 : PV / [RT + B(T)P]
Term 2 : P(V'+ V;) / [RT' + B(T')P]

Term 3 must be separately calculated as it involves a

temperature gradient along the tube length:

ar(1)/dl = -

(4.4)

Contributions to term 3 come from the elemental volumes dv,
each at a temperature T(l) depending upon its location
relative to the top end of the tube length L;. The form of

the contributions is
Pdv / [RT(1) + B{T(1)}.P]

A summation over all such elemental contributions, with
B{T(1)} replaced by its value B{(T'+T)/2} at an average
temperature (T'+T)/2, gives the third term. The volume
integral can first be transformed to an integration over the

tube length through
dv = 7wr2dl

and then over temperature with the use of egn.(4.4). The
result of integration between appropriate temperature limits

is
Term 3 = PV,/R(T'-T) . 1n {(T'+C)/(T'-C)}

where,
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C = P/R . B{(T"+T)/2}

The sum of terms 1, 2 and 3, assuming that the pressure
gauge volume V' is directly proportional to the pressure
(i.e. V' = Vo+ aP), must be a constant according to the

modified gas law. Thus
V/[RT + B(T)P] + P(Vy+ Vo+ aP)/[RT' + B(T')P]

PV,/R(T'-T). 1n {(T'+C)/(T'-C)} = const.

(4.5)

The gas thermometer bulb volume V can be measured at room
temperature. ‘The constructed volume of the bulb used in
this study is 2.992 cu inches. At any other temperature its
volume can be calculated using the coefficient of expansion
of Copper. The only two unknown coefficients above are Vo
and a. To calculate these the gas thermometer is calibrated
at the boiling point of Helium (4.213 K) and the triple
point of water (273.16 K) with a fixed amount of Helium gas.
Egn.(4.5) evaluated at both temperatures must give identical
constants. Hence this calibration generates one equation
relating Vo and a. Another relation is obtained by reducing
the Helium gas pressure in the bulb and re-calibrating at
the same two temperatures. A simultaneous solution of the
two equations yields values for Vo and a [66]. The results

of this procedure in the present case are

Vo = 1.027 cu inch , a = 1.0557 cu inch/atm.
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For high-field resistivity measurements above 4.2 K another
gas thermometer with different constants was used. The
constant in egn.{(4.5) can subseqguently be determined by
measuring a known temperature To and substituting in that
equation. Then eqgn.(4.5) is ready to be used for
temperature calculation at any given pressure. An iterative
procedure is used for its solution. For the first
calculation two assumptions are made:

v(T) =~ V{(To)

B(T) = O

Term 3 ~ 1/T'

The temperature so estimated corresponds roughly to an
ideal-gas estimate. The neglect of the logarithmic term in
egn.(4.5) is accounted for next. The first estimate of
temperature is substituted on the left side of egn.(4.5)
while retaining the first two assumptions above. This
yields a second estimate of temperature. Next, the thermal
contraction of the gas thermometer bulb and the non-zero
value of the virial coefficient B are allowed for. Hence
the final estimate of the sample temperature! The
calculated temperatures are estimated to be good to within

0.5 %.
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4.4 D.C. RESISTIVITY MEASUREMENT

In the four-probe technique for d.c. resistivity measurement
a known current, i, is sent through the sample and the
voltage drop V across the wedge-mounts is applied in
opposition to a precisely measurable variable voltage in a
potentiometer. At the null-point the unknown sample voltage
V exactly equals the standard potentiometer voltage. The
resistance of the length of the sample between the wedge-

" mounts is given by the Ohm's law, R = V/i.

A block diagram of the requisite arrangement for the
measurement of sample resistivities is shown in fig.(4.12).
The sample current, i, is provided by a highly stable (1
part in 10%) Guildline 9770 B constant current source,
referenced by a standard-cell which is one of six housed in
a thermally regulated Guildline 9152T6 standard-cell
enclosure. A Tinsley 3589 R Auto Diesselhorst potentiometer
was calibrated to give the value of the sample voltage
directly in terms of the highly stable emf of another of the
six cells mentioned above. The voltage source for the
potentiometer is a Guildline 9781 supply. The calibration
cell and the voltage source are both connected to the
potentiometer through a Tinsley 4092 reversing switch. The
unknown sample voltages to be measured, chosen one at a time
by a Guildline low-thermal selector switch (9145 A10) are
also applied to the potentiometer through the reversing

switch. The latter enables a thermal emf-free measurement
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Fig.(4.12): Block diagram of the arrangement for

measuring d.c. resistivity.
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of sample voltages. This is accomplished by two successive
measurements of the sample voltage V, one direct and the
other with all rélevant voltages reversed. The average of
the two results may be taken as an accurate measﬁre of the
true sample voltage. A similar measurement of potential
across a series standard resistor (Guildline, 0.1 @),
accessible through the selector switch, gives the sample

current.

4.5 A.C. RESISTIVITY MEASUREMENT

To measure accurately the small changes introduced in the
sample resistivity by controlled changes in temperature a
back-off voltage signal, directly proportional to the sample
current, is subtracted from the sample voltage. The
difference signal is thus rendered free from the effects of
sample current fluctuations to the first order. This
difference is measured accurately with the use of a
Princeton Applied Research HR8 precision lock-in amplifier.
The latter is essentially a detection system which obtains
large signal-to-noise ratios by converting a selected
spectrum of frequencies in the input signal to an equivalent
bandwidth about d.c. and then filtering out all but an
extremely narrow band of frequencies around the d.c.

component.

The circuit used for measuring the a.c. resistivity is

shown in fig.(4.13). A low-frequency (37 Hz) signal
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obtained from a General Radio 1311-A audio oscillator 1is
applied to the sample under observation and also to a
series-connected, variable Kelvin-Varley type resistor.

This choice of operating frequency avoids the problem of
interference from the line frequency components and from the
high-frequency skin-effect. The difference between the
sample voltage and the adjustable series resistor voltages
is fed to the input of the PAR, which is tuned to the
driving frequency of the a.c signal. For high differential
sensitivity in the resistivity measurements interference
from stray quadrature components in the signal across the
sample must be eliminated. This is achieved by the use of a
variometer, c6nsisting of a stationary coil of 150 turns of
no. 30 Copper wire with two rotatable secondary coils having
250 and 10 turns respectively of the same wire, in the input
circuit. With the back-off circuit connected, the
guadrature signal is nullified at the input to the lock-in
amplifier by using the variometer to provide a compensating
guadrature signal. The device also provides an accurate
quadrature signal for setting the phase of the lock-in
amplifier. The quadrature-free input signal is converted to
an equivalent noise-free d.c. component inside the lock-in
amplifier and subsequently amplified by a d.c. amplifier.
The output is measured on a Keithley DVM. Once the
resistivity is known accurately from d.c. measurements at
4.2 K it can be calculated at all other temperatures from

the small signal changes measured using the a.c. equipment.



Chapter V

DATA ANALYSIS AND DISCUSSION

5.1 A.C. SUSCEPTIBILITY

5.1.1 Correction of the Data

The measured susceptibilities of the various PdGd alloys
need two corrections. The first is a simple background
correction. In the absence of a sample in the sample-insert
the bundle of Copper wires at its lower extremity should
fill both sensing coils equally and hence no net signal
should result. 1In practice, however, the background signal
is non-zero and negative (i.e. diamagnetic). The reasons
lie in small differences in the construction of the two
sensing coils, non-uniformities in the bundle of Copper
wires and, perhaps, also in the proximity of temperature-
sensing elements like the Germanium resistor and the
thermocouple wires (both of which are embedded in the bundle
of wires) to the field region. The background correction
was determined by measuring the difference signal at a
typical high value of magnetic field (usually 400 Oe,
because at high fields, the zero-correction is significant
in relation to the strongly suppressed susceptibility
signals from the samples) in the temperature range of

interest. Temperature—independent signals of typical

- 136 -
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magnitudes about -0.025 V were obtained. These were added

to the measured susceptibilities (in volts).

The second correction is due to the sample geometry. A
magnetic field applied to the sample produces a
demagnetising field within it and the net field inside the

sample is given by

(5.1)

where M is the magnetisation induced in the sample and N 1is
the demagnetisation factor. The purely geometrical factor N
is extremely difficult to estimate for all but the simplest

of sample shapes.

Eqn.(5.1) leads to an expression

Xtr. = xrn/(‘l = Nxp)

This equation suggests that the maximum values of the
measured susceptibilities (corrected for background) are

limited by the requirement that

1 - Nxp, 2 0

(5.3)

The demagnetisation factors of the samples were estimated by
regarding them as ellipsoids with principal axes equal to

the sample dimensions [92] and evaluating the appropriate
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elliptic integrals. Next, the magnetisation M in eqn.(5.1)
was estimated by "integrating” the susceptibility as a

function of field using the trapezoidal rule.

M(To) = Z x,(To).AH,
!

(5.4)

Since the lengths of the intervals AH; were rather large and
their numbers statistically very small, such an integration
procedure is rather crude. Nevertheless, in view of the
uncertainty in the values of the demagnetisation factors,
arising due to an idealised ellipsoid calculation, these
estimates for M are not unreasonable. The values obtained
for N and M as above were finally used to obtain the
internal fields corresponding to the applied external fields
using egn.(5.1). The "true" values of the sample

susceptibilities were calculated using egn.(5.2).

Corrections to the temperature-readings of the Germanium-
sensor were found to be necessary for all temperatures above
the boiling point of liguid Helium (4.2 K approximately)
because of the relative placement of the Ge-resistor with
respect to the sample in the sample-insert. The former is
located higher than the latter. Temperatures above 4.2 K
are achieved in the present equipment by simply allowing the
liquid Helium surrounding the sample and the Ge-sensor to
boil away, and controlling the rate of heat-leak into the

system. Since the Ge-sensor lies higher in the sample-
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holder, liguid Helium falls below its level first. The
resistor consequently starts to warm-up whereas the sample,
being still immersed, stays at the Helium-bath temperature.
Thus, the temperature-readings by the Ge-sensor do not, any
longer, reflect the true sample temperatures. This build-up
of a temperature-differential between the Ge-resistor and
the sample continues slowly until enough Helium is lost
through boiling that its level falls below that of the
sample. At that point the latter also begins to warm-up
out-of-step with the Ge-resistor. As more heat leaks into
the system, the initial temperature differential begins to
decline and, at higher temperatures, the thermal equilibrium
between the thermal-sensor and the sample is restored. Once
again, then, the Ge-readings begin to measure the sample

temperatures directly.

The range of Ge-sensor temperature-readings (just above
the boiling point of liguid Helium) where the sample
response is frozen at its 4.2 K value while the Ge-resistor
drifts upwards in temperature slowly is hereafter referred
to as the "dead range". Samples of such a region actually

observed during the experiments are presented in fig.(5.1).

One way of obtaining the "true" sample temperatures is to
shift the temperature-scale above 4.2 K using a height-and-
slope matching technigque as illustrated. However, this
method assumes inherently that the maximum initial

temperature-differential AT® = (T2, - T2) between the Ge
Ge s
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Fig.(5.1): "Dead range" around 4.2 K (arbitrary y-scale)
(a) 8 at.% : 150 Oe
(b) 7 at.% : 200 Oe
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-sensor and the sample is maintained at all temperatures
above 4.2 K. An improved approximation allows the former to
decrease with increasing temperature. Hence, at any

temperature, Tge, Of the Ge-sensor the differential 1is

(Tge - Tg) = AT = AT2.x T° /Tge

(5.5)

In some cases, it was difficult to locate TZ. because of a
very weak temperature-dependence of the sample response just
above and below the "dead range". 1In such cases a
calibration graph called TRUECAL was drawn [fig.(5.2)] to
find the true sample temperatures, given a Ge-sensor
reading. Previous "good" temperature assignments for cases
where the dead range is sharply defined were used to obtain
the calibration graph. Focr most cases plotted on the graph,
the "true" sample temperatures calculated as above agree
closely with one another. An "average" calibration line was
used. If the heating conditions in the dead range are
similar the spread in sample temperature estimates is cf the
order of 0.1 K. While the temperatures above 4.2 K for the
7 and 8 at.% alloys could be dealt with simply by the
decreasing temperature-differential method outlined above,
some of the high-field measurements for the 9 and 10 at.%
alloys regquired the use of TRUECAL graph. The rather large
temperature inaccuracies associated with this procedure

translate into large error bars on the T -vs-H®®% graphs.
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fields.
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5.1.2 Results
The zero-field susceptibility, x(0,T) of the 2 at.% sample
shows a monotonic decline above 1.6 K. A Curie-Weiss plot,
shown in fig.(5.3) has a linear section (extending from
1.825 K upto the vicinity of the Helium A-point) which
extrapolates to a paramagnetic Curie temperature of about
1.65 K. A value of (1.7 * 0.2) K has previously been
reported by Cannella et al [72]. However, a rather large
value for the effective Gd-moment is obtained from the
measured slope. This, perhaps, is a direct conseqguence of

not being in the true paramagnetic regime.

The temperature-dependent, zero-field susceptibilities of
the other (3 £ ¢ < 10 at.% Gd) samples have, at least, one
feature in common. In the vicinity of the ordering
temperature, x(0,T) increases rapidly with decreasing
temperature, passes through a maximum (the Hopkinson peak)
and then decreases slowly at the temperatures beyond
[fig.(5.4)]. These maximum values for x(0,T) lie in the
range 0.5-1 emu/g-Oe and represent from 50-15 % of the limit
set by the demagnetisation factors estimated using the
elliptic integral method. The appearance of the Hopkinson
peak is a bulk effect related not to critical ordering
effects but to the domain-wall dynamics. In addition to

~this peak, the 5 to 10 at.% alloys exhibit a second, broader
peak at a lower temperature in their zero-field

susceptibilities. A typical example of the double-peak
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structure is presented in fig.(5.5) for the 5 at.% alloy.
(The zero-field susceptibility data for other high

concentration samples is compiled in appendix A.)

When a large part of the Hopkinson susceptibility is
removed by applying small external fields (10-30 Oe), the
data on all of the above alloys reveals secondary peaks at
temperatures above those of the respective Hopkinson's
peaks. The gualitative dependence of these secondary peaks
on field is very similar in all cases. As shown in
figs.(5.6) and (5.7) for a typical case of 3 at.% alloy,
while the principal maximum is strongly suppressed and
quickly pushed downward in temperature, the height of the
secondary maximum is reduced to a smaller extent and its
position is pushed up on the temperature scale. A
progressive rounding of the peaks also occurs with
increasing fields. As mentioned in Chapter II, such a
behaviour is seen in PdMn alloys undergoing a paramagnetic
to ferromagnetic transition. The scaling law [egns.(2.36)
and (2.37)] correctly reproduces the systematics of their
critical peaks. A more detailed comparison between PdMn and

PdGd reveals some interesting facts.

Specifically, the additional peaks in the zero-field
susceptibility of PdGd alloys with ¢ 2 6 at.% have no
counterparts in the PdMn system in any of the three distinct
concentration regimes. In PdGd system, these peaks may very

well be associated with bulk magnetisation effects.
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However, anticipating the data on magnetic resistivity of
these alloys (section 5.2.2), it is of interest to note that
the position (in temperature) of the additional
susceptibility peak for a given alloy corresponds rather
closely with that of an interesting feature noted in the
corresponding magnetic resistivity; it falls close to the
higher temperature edge of the peak noted in magnetic

resistivity [see figs.(B.9)-(B.13)].

Next, though in comparably concentrated specimens of PdMn
and PdGd the susceptibilities at the respective principal
maxima are comparable their suppression in the former is
more rapid than in the latter. Consequently, the secondary
peaks emerge at somewhat lower fields (2-5 Oe) in PdMn.

Once established, however, the critical peaks have heights

twice as large in PdGd as in PdMn.

Further, in PdMn the concentration-dependent
susceptibility at the critical peaks (for a fixed biasing
field) follows its phase diagram (i.e. Tg—vs—c diagram). It
increases slowly with rising concentration in the
ferromagnetic regime (c < 2.5 at.%) and decreases sharply in
the spin-glass regime (5.5 < c < 10) [66]. 1In the
intermediate range, it remains essentially independent of
concentration or, at best, only very weakly dependent on it.
However, in the PdGd system an unambiguous, continuous rise
in the peak suscpetibility follows a rise in concentration,

at least up to 9 at.% Gd, as demonstrated by Table (5.1).



151

I
- | #2o"0 | 6100 | 81L0°0 | 910°0 | %100 | 1100 | 600°0 | oOO1L
_ I _ I _ I I I
€00 | s£0°0 | 820°0 | €200 | 200 | <100 | ®L0°0 | Li0°0 | s¢
_ _ | | _ | I |
v¥0°0 | €500 | 8v0°0 | 900 | 8200 | ¥2Z0o-0 | 8100 | %100 | oOs
| I I I | | I I
¥90°0 | s80°0 | 8.0°0 | 850°0 | ¥v0°0 | 6£0°0 | 8200 | 2z0°0 | 9oOF
| I I I I I I I
szL"0 | 810 | s9t°0 | 910 | L1t-0 | ¢480°0 | ¥90°0 | s0°0 <| o0
I | | _ _ _ I I
or | 6 | 8 | L | 9 | e} | i4 | € I (=20)
||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||| | H

*Duod yztm siolre aojg

(20-6/Mwa) X |

saybiray jead L3rirrigiidaossns jo asusapuadap uoiTjleaIjusduUuo)d

(1°G) ATAVYL




152
As will be discussed below, a quantitative analysis of
the critical susceptibility peaks in the context of scaling
hypothesis leads to values for the critical indices,
especially for the index §, which are difficult to explain

on the basis of a simple competing-interactions picture.
The Index 6&:

This index not only charaterises the field-dependence of

magnetisation
M(H) a H'/? at T = Te

but, as the scaling law shows, also describes that of the

susceptibility at the critical peaks,
x(H,tp) a H' /8~ tp = (Tp - Te)/Te > O

Provided that the critical fluctuations are the dominant
source of susceptibility at these peaks, a double-
logarithmic plot of the peak susceptibility against the
internal field provides a direct estimate of & through its
slope (1/86 - 1). Moreover, the value so determined is
independent of the choice of the ordering temperature for

the alloy.

A uniqgue value of 6 adeguately describes the data for the
lower concentration samples (3 < c £ 6 at.% Gd) over the
nearly two decades of the experimental field-range

[fig.(5.8)]. The value of & for the 3 and 4 at.% samples,
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Fig.(5.8): Critical peak plots for alloys with
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as Table (5.2) shows, are close to those reported in
ferromagnetic alloys such as PdMn [50] and amorphous
ferromagnets [51,93]. For the 5 and 6 at.% alloys the §
values increase. A similar behaviour is reported in some
amorphous systems [94] with concentrations approaching the
critical value for the disappearance of the local moments.
The ferromagnetic & values observed in alloys up to 4 at.%
Gd are consistent with the picture of well-localised Gd-
moments interacting with one another through the long-range
polarisations induced in the d-band of Palladium.
Furthermore, the s-f exchange is too weak [72] to threaten
the stability of Gd-moments in Palladium through mixing with

non-localised conduction states.

The rise in é§ values with increased concentration of
Gadolinium (from 3 to 6 at.%) contrasts with the behaviour
noted in the PdMn system. In the latter, the broadening of
the internal field distribution caused by competing ferro-
antiferromagnetic interactions leads to a decrease in §
values, not to an increase. Indeed, model calculations by
Roshko and Williams [46], based on a Gaussian distribution
of internal fields whose width increases with concentration,
reproduce the experimentally observed critical peak
behaviour in PdMn. If a similar broadening of the internal
field distribution follows an increase in Gd-concentration
in the PdGd system, the direction of change in the 6-values

with rising concentration is quite surprising.
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An increase in Gd-concentration above 6 at.% causes the
critical peak plots [figs.(5.9) and (5.10)] for such alloys
to exhibit a rather abrupt decrease of slope (in magnitude)
in the vicinity of 150 Oe, yielding apparently smaller &-
values for the high-field regime than those for the lower
fields. A similar gualitative trend observed in PdMn alloys
with concentrations between 3 and 5 at.% Mn could be
reproduced by the model calculations mentioned above. Yet
again, however, the quantitative details of the critical
peak plots for PdGd and PdMn alloys differ significantly.
Whereas in the latter the low-field values increase towards
that noted in "good" ferromagnets (approx. 4.2) and, the
high-field values decrease progressively with rising Mn-
concentration, the reverse is noted for the not-so-dilute (7
at.% and above) PdGd samples. The high-field values
increase from 3.2 for the 7 at.% alloy to 4.8 for the 10
at.% alloy [see Table (5.2)]. Because the low-field slopes
of the critical peak plots are close to -1, the associated
6-values are quite high (> 10) and are also subject to large
errors resulting from the smallest of uncertainties in the

slopes.

The origin of the above-mentioned effects is unclear.
However, it may be stated with confidence that a competing-
interactions approach of the type used to explain the
behaviour of PdMn alloys is inadeguate in the case of PdGd
alloys. The magnetic behaviour of the latter system may be

more complex than that of the former.
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The Index «:

Unlike the parameter §, which could be estimated without
reference to the ordering temperature of the alloy under
consideration, the index 7y needs an apriori estimate of T¢

for its evaluation since it is defined through the power law
-7
x(0,t) a t T > T¢
The scaling equation
(Tp- T¢)/Te e« HI/7HP

furnishes a f}rst estimate of T, as the y-intercept of the
straight line obtained by plotting the critical peak
temperatures Tp against a reasonable power (approximately
0.56) of Hj. The data for all the alloys studied is
summarised in figs.(5.11), (5.12) and (5.13). Within
experimental uncertainty, the scaling law equation written
above is satisfied. The slopes of the straight line fits
and the estimated ordering temperatures, T{" , are listed in
Table (5.2). 1In general, the scaling estimates fall below
the susceptibility inflection points and close to the
principal maxima. Similar situation exists for PdMn alloys
which exhibit mixed ordering [50]. However, the slopes of
the straight-line fits are comparable to those reported for
ferromagnetic PAMn alloys [50]. The initial estimates for
the ordering temperatures lead to rather large values for v

when, in accordance with the scaling eguation, a double-
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logarithmic plot of x(0,t) against t is made. If the

scaling equality of Widom [38]
vy-= (& -1)

remains valid, enhanced B-values are predicted.

Furthermore, the exponents (y+8) in the scaling equation are
also enhanced above the value assumed in the scaling plots
of Tp against H$®®. This is in contrast with the trend
deduced from a double-logarithmic plot of (Tp- T.) against H;
(not reproduced) which, though not sufficiently precise to
enable an independent estimate of (4+8), nevertheless
favours values of (y+8) less than, not greater than 2. The
alternative to this inconsistency was to re-adjust the
initial estimates of T¢ in order to achieve values of v
(roughly about 1.5 to 1.6) which are consistent both with
Widom's equality and with the assumed exponent

(y+8)~' = 0.56, when a conventional value of § (roughly
between 0.35 and 0.40) is used. Shifts between 0.15 to 0.2
K were reguired to achieve this consistency. The re-
adjusted estimates, Td?’ and the corresponding y-values,

v (2}, obtained are also listed in Table (5.2). The y-values
have been derived from fits spanning a range

4 x 1072 £t <2 x 10°', as shown in figs.(5.14) and (5.15).
Such an analysis has been carried out only for
concentrations below 7 at.% Gd. For higher concentrations
the data show structure and preclude any meaningful
straight-line fits through them. No y-estimates for them

are thus available.
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Following Ho et al [50], estimation of the critical
amplitudes and hence the effective Gd-moments was attempted

using the y-plots and the mean-field approximation.

x(H=0, T>T¢) = Nudss/3k(T-6)

(5.6)

Within the mean-field approximation 6 is identical to the
Curie temperature and, y = 1. The above expression may be

re-written as

x(H=0, T>T¢) = At~ 7

(5.7)

where t is the reduced temperature and A is the critical

amplitude which is related to the effective moment by

A = Nudss/3kTe

(5.8)
in the mean-field approximation.

Hence if the 7y-plots are extrapolated to t=1 (i.e. T=2T.)
the above equation can furnish estimates for the effective
moment. A meaningful result (7.4 ug) is obtained only for
the 3 at.% alloy. A rather tentative choice of 4 (hence of
Tc) and, perhaps, non-validity of the mean-field
approximation in the higher concentration samples prevent
reasonable estimates for the effective moments to be

obtained for them.
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5.2 ELECTRICAL RESISTIVITY

The low-temperature resistivity of dilute PdGd alloys has
two essential temperature-dependent contributions. The
first -- pure host resistivity -- is controlled by the
specific electronic structure of Palladium. The second,
called the impurity resistivity, results from the presence
of imperfections and impurities (including Gd) in the host
lattice. Hence, it is convenient to write the total

resistivity as

p(T) = pp(T) + p;(T)

(5.9)

The scattering of electrons from the randomly distributed
Gd-moments causes the impurity resistivity p; (T) to be
temperature-dependent. The presence of static imperfections
and non-magnetic impurities in the host lattice is
responsible for a temperature-independent component, po, of

the impurity resistivity. Hence, p;(T) may be written as

pi(T) = po + Ap(T)

(5.10)

where Ap(T) is sometimes referred to as the magnetic
contribution to resistivity because it arises as a result of
magnetic interactions between the conduction electron spins
and the dissolved Gd-moments. Equations (5.9) and (5.10)

lead to
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p(T) = {po + pp(T)} + Ap(T)
(5.11)

The separation of the alloy resistivity into these
apparently independent components is a useful first
approximation, and an example of what is known as the
Matthiessen's rule. 1In its generalised form the rule
asserts that the various resistive scattering mechanisms
present in a solid produce a net resistivity which may be
obtained as a sum of the resistivities due to each mechanism
acting independently. 1In the present work, the magnetic
component Ap(?) is isolated from the total measured
resistivity of the alloy through a simple subtraction of the
Gadolinium-free host resistivity {i.e. po+ pL(T)}, assuming

that Matthiessen's rule remains valid.

The validity of the above assumption depends upon the
extent to which the various mechanisms normally believed to
be responsible for causing deviations from the Matthiessen's
rule can either be neglected or ruled out. First, the
thermal effects can be neglected because the temperature
range examined is extremely small and lies below 10 K; both
the geometrical form factor and the atomic volume are
essentially temperature-independent in that range.

Secondly, at low temperatures the modification of the host
phonon spectrum due to the presence of a small number of

impurities in the lattice is not important for two reasons:
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one, the phonon resisitivity is almost completely
extinguished at the working temperatures (between 1.5 K and
10 K) and second, at such low temperatures the spectrum, if
at all, is dominated by long wave-length phonons which are
insensitive to the presence of a few alien atoms in the
lattice. The above two mechanisms, therefore, may not be
expected to cause significant breakdown of Matthiessen's
rule. In all metals generally, the difference in relaxation
time anisotropies due to the various scattering mechanisms
is expected to cause deviations from Matthiessen's rule
[95]. However if the solute resistivity dominates, the
deviations from the rule are proportional to the weaker,
pure-host resistivity and independent of the solute

concentration [95].

The resistivity of the pure sample of Palladium
(resistivity ratio p(300 K)/p(4.2 K) = 100) used in this
investigation is shown in f£ig.(5.16). The data were fitted
to a T2-curve in the range 1.5 K £ T £ 4.5 K, as shown in
fig.(5.17). Schindler and Coles [55] have previously
reported a T2?-dependence up to 7 K for a sample of pure
Palladium with a resistivity ratio in excess of 1000. Such
a dependence may result from two types of processes -- a
non-magnetic process involving scattering from charge-
density fluctuations, or a magnetic one involving scattering
from spin-density fluctuations in the d-band of the

incipient ferromagnet, Pd. There is disagreement on the



Resistivity, p (uf-cm)

0.113

0.112

0.111

0.110

0.109

170

‘Temp (K)

Fig.(5.16): Resistivity-vs-temperature characterstic

for pure Palladium.

10



171

0.1095 T T T T
-]
£
7
0.1090fF G . - _
Q
= — 0.112—
T (K)]?2
[T (KR)] )
[¢:]
0.1085 ! L 1 ' — b
0 5 10 15 20 ©n
(ad
[
<
S
t
0.111-*
©
=
-7
(9]
3
0.110-
0.109—
] ] | i | i { ]
0 10 20 30 40 50 60 70 80 90

[T (K)]2

Fig(5.17): Resistivity-vs-T? for pure Palladium.

The inset shows the low-temperature region

on an expanded scale.



172
question of the dominant mechanism. Nevertheless, as an

experimental result, the Pd resistivity may be expressed as

= ' 2
ppd po + AT

(5.12)

with pd = 0.108601 uQ-cm and A= 2.92 x 10°% uQ-cm/°K2. The
value of A obtained here agrees to within 8 % with that

quoted previously by Purwins et al [96] and others.

The solute resistivity dominates the pure-host
resistivity (represented in eqgn.(5.12) as AT2?) for even the
least concentrated of PdGd alloys studied, as can be seen
from the total magnitudes of the alloy resistivities (which
are greater than 5.5 uQ-cm at 4.2 K). Consequently,
deviations from Matthiessen's rule should remain very weak,
provided that the perturbations to the host band-structure

due to the presence of Gd-impurities stay insignificant.

Hence the question: Up to what concentrations do the Gd-
impurities not modify the Pd band-structure appreciably? A
plot of residual resistivities (extrapolated for T = 0)
against Gd-concentration was fitted to a straight line
passing through the origin. As discussed later, such a
procedure indicates that Gd concentrations as high as 7 at.%

may allow the use of Mattheissen's rule.



5.2,1 Correction of the Data

Assuming, therefore, that the Mattheissen's rule remains
valid for ¢ £ 7, the pure-host resistivities at various
temperatures were simply interpolated from the experimental
data and subsequently subtracted from the measured zero-
field alloy resistivities at corresponding temperatures. In
the absence of an alternative, the same procedure was used

for concentrations above 7 at.%.

To treat the resistivity data in high-fields (70 kG), an
alternative approach was adopted because no independent
measurements of the high-field pure-Pd resistivity were
made. The T?-dependence noted in the zero-field data on
pure Pd in the temperature range 1.5K < T < 4.5K was also
assumed to hold in the presence of an applied magnetic
field. The coefficient A in egn.(5.12) was assumed to carry
the field-dependence and the latter was approximately

estimated from a paper by Schindler and Laroy [97].
A(H) = A - 2.8 x 107'%H

Within the range of applicability of the T2?-behaviour, an
applied field of 70 kG modifies the host resistivity by up
to 0.3 % . In the high-field case, the T?-behaviour was
assumed to be valid up to temperatures about 6 K because in
this temperature interval, the deviations of the zero-field,
pure-Pd resistivity from a T2-curve are only about 0.1 % of

its value at the lowest measured temperature. Since the
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field-dependent correction of 0.3 % (or larger at
temperatures above 4.5 K) exceeds this error, it was
considered worth applying to the data. The corrected host
resistivities were subtracted from the alloy resistivities
measured in 70 kG to obtain the magnetic component in

accordance with Mattheissen's rule.

5.2.2 Results

Two sets of zero-field resistivity measurements on PdGd
alloys, separated in time by about 2.5 yrs were performed,
the first set being immediately after the samples were
prepared and homogenised. For the most part, the gross
features, such as a sharp linear decline below an ordering
temperature followed by a non-linear decay at still lower
temperatures, are reproduced. The differences are seen in
the position of the various characterstic features on the
temperature axis and in the different magnitudes of
resistivity changes between similar temperature zones. The
differences are larger for larger concentration alloys. The
3 at.% GAd sample shows almost no change in the guantities of
interest. The 4 at.% Gd sample, shows approximately 9%
smaller decline in resistivity between 4.2 K and 1.5 K. The
"kink" in the resistivity is broader compared to the first
measurments. Both these facts point to the existence of
greater amount of disorder in the material and may be
ascribed to aging of the samples. The resistivity of the

rest of the alloys shows larger decreases between 4.2 K and
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1.5 K. The total resistivity in all these cases at 4.2 K is
higher in the second set of measurements than in the first.
Again, this has an easy explanation as an aging effect. 1In
view of this interpretation, the following discussion will
be based exclusively on the first set of resistivity

measurements.

The first sample in the series, Pd + 2 at.% Gd, shows a
negative temperature coefficient of resistivity between 1.5
K and 4.5 K [fig.(5.18)]. The total fractional decline of
resistivity (compared to its value at 4.5 K) in this
temperature range is well above the limits of resolution of

the eqguipment; therefore, this result merits consideration.

The data between 2.20 K and 4.43 K could be fitted to a
Kondo-type logarithmic expression [98] {see inset in

fig.(5.18)}

p = A + B 1ln T

(5.13)
with
A = 5.7748 uf-cm
B=1.17 x 1073 uQ-cm

If GAd impurities are assumed to be responsible for this
logarithmic behaviour, the effective s-f exchange constant J
can be estimated since the constants A and B are both

related to it.
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A= pdy [1 + JN(e¢).1n(k/D)]

B = pgdq’ IN(eg) i
where

psq’ = acd?s(s + 1)

is the paramagnetic resistivity. Here a is a parameter
related to the band properties of Pd having a value 5.88 uQ-
cm/at.%-(evV)? and ¢ is the concentration in atomic percent.
Interestingly, the estimate thus obtained for J, -0.014 eV,
agrees with the value reported previously [99] from EPR g-
shift measurements on alloys of much lower concentrations.

A fairly concentrated sample such as Pd + 2 at.% Gd is not
likely to show a single-impurity behaviour due to strong
polarisability of the Pd-matrix. An early study by Sarachik
and Shaltiel of the resistivity of PdGd alloys with Gd
concentrations as low as 0.1 at.% did not reveal any Kondo
behaviour. Further, a subsequent study by Cannella et al
[72] on a 2 at.% sample simply suggested a cooperative
transition to a ferromagnetic ground state below 1.5 K, a
value which falls well below the 'Kondo temperature' of

3.1 K estimated for the alloy in the present case. The
behaviour becomes even more difficult to comprehend when it
is noted that the estimates of J obtained from the
measurements on higher concentration samples are

concentration-independent and considerably smaller
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(0.003 eV), in close agreement with the values reported by
Cannella et al [72]. It is possible that this unexpected
Kondo behaviour is a result of other rare-earth impurities,

possibly Europium, in this alloy.

The resistivity data for PdGd alloys with concentrations
between 3 and 5 at.% Gd are presented in fig.(5.19). A weak
temperature-dependence of resistivity changes into a much
stronger one as the temperature falls through a narrow range
of values about a critical point for each of the alloys
considered. The behaviour reflects the characteristics of a
Long and Turner model system [29] which has been cooled
through its ferromagnetic ordering temperature. The
resistivity declines linearly below the ordering temperature
in all three cases. However, the ordering temperature
itself is sharply defined only for the 3 at.% alloy. 1In
other alloys, the discontinuity in the first temperature-
derivative occurs through a range of temperatures; the range
widens as the concentration increases from 4 to 5 at.% Gd.
Further, the ordering temperature increases with

concentration.

As mentioned above, the Long and Turner model [p.48]
provides a good qualitative description of the resistivity
behaviour in these alloys. Just above the ordering
temperatures, the well localised Gd-moments are disordered;
the resistivity contribution due to this source is thus

saturated and consequently, temperature-independent. Below
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the ordering point the moments begin to order co-
operatively. Some of the inelastic spin-flip scattering
channels start to freeze out. As the temperature falls
further below the ordering point, more and more inelastic~
channels are removed leading to a sharp reduction in the
resistivity. The Long and Turner model predicts an
additional feature in the resistivity, arising due
scattering from spin-waves in the coupled d-band - impurity
spin system at very low temperatures. The predicted
T3 /2-dependence is not observed down to about 1.5 K in any
of the above three alloys. Perhaps, the lowest achieved
temperature in this study 1is still an appreciable fraction
of the ordering temperatures of the alloys. Spin-waves are

not significantly excited at such temperatures.

If indeed, the above explanation 1is correct, it can be
said that the alloys with 3 < ¢ £ 5 at.% Gd undergo a
transition from a paramagnetic to a predominantly ferro-
magnetic state as the temperature falls below the ordering
temperature. While in the 3 at.% alloy, a sharp transition
must indicate a correspondingly sharp distribution of
internal fields at impurity sites, the gradual smearing of
this transition with rising concentration must result from
the increasing probability of direct impurity-impurity
interactions. As inferred from the susceptibility data
these interactions, which are expected to be

antiferromagnetic, do not seem to compete with the long-
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range RKKY exchange in the same manner as observed in
moderately concentrated PdMn alloys. Further, an
increasingly stronger magnetic response (as evidenced by the
a.c.bsusceptibility) with increasing Gadolinium -
concentrations also signals an increase of the ferromagnetic

component in the ordered state.

In the resistivity of PdGd alloys with ¢ > 5 at.% , peaks
emerge below the respective ordering temperatures. An
example is presented in fig.(5.20) for the case of 6 at.%
alloy (other data is in appendix B). For ferromagnetic
alloys based on exchange enhanced hosts such as Palladium,
no such peaks are predicted by the Long and Turner model.
However, the other predicted features are observed in the
experimental data. The resistivity still exhibits a very
weak temperature—-dependence at higher temperatures. As the
temperature is lowered, initially it declines but within an
interval of a few-tenths of a degree it begins to rise,
attains a maximum value above the saturated spin-disorder
resistivity and then resumes its decline which remains
linear until very low temperatures (compared to the
respective ordering temperatures) are attained. At these
low temperatures the resistivity shows a T3/2-decline, as
expected for disordered ferromagnetic systems with
significant electron-magnon scattering. The behaviour in
the vicinity of the peaks is similar to that observed in

some YGd alloys [23] which were predicted to show helical
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ordering above 2.6 at.% Gd by Southern and Sherrington [24].
An Overhauser stabilisation [22] of a spin-density wave
(SDWw) in the conduction electron gas of the host .by
interactions with the impurity moments is believed to cause
a spiral magnetic structure in YGd alloys. On the other
hand, a peak in the resistivity of a 9 at.% PdGd alloy noted
by Schiffrin [100] was ascribed to the presence of
undesirable Pds;Gd phases in his sample by Guertin et al

[79].

While none of the samples was examined microscopically at
the time of the first resistivity measurements, a disc-
shaped specimen of the 8 at.% Gd alloy, cut from the
resistivity sample strip was studied under a transmission
electron microscope after completion of all measurements on
it to check for the presence of the above-mentioned inter-
metallic phases. Diffraction patterns taken from several
areas of the sample did not reveal any super-structure spots
upon indexing with an f.c.c. lattice parameter of 3.956 &
(for 8 at.% alloy) [101]. One tiny area (less than 0.26 u x
0.33 u) did, however, show mixed even and odd, along with
the regular unmixed f.c.c. indices on the pattern. A second
examination of the sample after re-annealing at 1030 °C for
42 hours under vacuum (3 x 108 torr at room temperature)
showed no signs of an ordered cubic structure despite a
thorough scan through the "transparent" areas of the sample.

Since this repeated heat treatment was similar to that given
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initially it can be said with reasonable certainty that
ordered phases did not consititute a significant fraction
of the random PAdGd alloys; that resistivity peaks are,

indeed, intrinsic to them.

An Overhauser-type of mechanism, similar to that proposed
in YGd alloys may cause the appearance of resistivity peaks.
The exchange between the Pd d-band electrons (which are more
strongly polarisable than the s-electrons) and the impurity
might lead to the stabilisation of a periodic spin-density
wave in the former. The introduction of a magnetic
periodicity uncorrelated with the lattice structure could
cause new Brillouin zone boundaries; the associated energy
gaps in the spectrum of conduction states could be
established in the vicinity of the Fermi surface. Depending
upon the exact situation of the Fermi energy in relation to
the new boundaries, the Fermi surface may be sliéed or
distorted. The attendant depletion of the scattering states
for the Fermi electrons would cause the resistivity to rise
above the spin-disorder limit. As the temperature drops,
the thermal energy gets progressively insufficient to excite
electrons across the energy gap into the new conduction
band. The resistivity, therefore, continues to rise until
the thermal excitation energy is wholly inadequate to raise
electrons to the new conduction band. Further lowering of
temperature below that of ordering only serves to Suppress

the fluctuations in the collective magnetic order and hence,
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to decrease the resistivity in the same manner as in the
lower concentration PdGd alloys where the increasingly more
stable ferromagnetic order leads to a decline in spin-

disorder resistivity. -

Estimation of Exchange Constants:

Assuming that complete disorder exists above the ordering
temperature, the spin-disorder resistivity can furnish an

estimate of J, through

[Ap(Tc) - Ap(0)] = acd?s(1 + 4S)
(5.14)

In high concentration alloys for which the ordering
temperatures are comparatively higher, a T3/2-behaviour is
noted in the resistivity at the lowest temperatures
examined. Plots of incremental resistivity vs T3/2 for
alloys from 7 to 10 at.% Gd are shown in figs.(5.21) and
(5.22). Estimates for the residual resistivities, 4p(0),
for use in egn.(5.14) may be obtained by a linear
extrapolation of the above plots to T = 0. For samples
between 3 and 6 at.% Gd, which do not exhibit such a

T3 /2-dependence within the experimental temperature range,
an estimate for Ap(0) is difficult. However, the values of
Ap(T) at the lowest achievable temperatures (roughly 1.5 K)
provide a lower bound on the value of J. An upper bound on
its value is obtained by linear extrapolation of the Ap-vs-T

curve to T=0. A plot of the incremental resistivities of
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the 3, 4 and 5 at.% alloys is presented in fig.(5.23).
Similar plots for all other samples examined are compiled in

appendix B.

J could also be estimated from the slope of the linear
part of the Ap-vs-T curves. The expression relating J to

the slope is
J2? = {(252+ 25+ 1)/acS(s+1)[40/35(s+1) - 5]}.Tc[d(Ap)/dT]Tc

~ 1,712 x 10-3 [d(Ap)/dT]Tc.Tc/b

(5.15)

A free-atom value for Gd-spin, equal to 7/2, has been used
to calculate the constant in accordance with the values
obtained from magnetisation measurements by Praddaude et al
[80] and by Guertin et al [79]. Approximate values of Tg¢,
as obtained from the resistivity measurements themselves,
were used. The positions of the 'kink' in the resistivity
of the lower concentration alloys are taken as the
respective estimates of their ordering temperatures. For
samples exhibiting peaked structures in their resistivities
(c 2 6) temperatures above the peak where the resistivity
starts to rise just before saturating have been taken as
their ordering temperatures. For c¢, nominal concentration

values were assumed.
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The values of J|; derived by the two methods mentioned
above are listed in Table (5.3) and agree within the limits
of evaluation. 1In fact, the slope measurements give a very
nearly constant value for J up to ¢ = 7 at.% . The spin ~
disorder resistivity method then yields almost constant
values, within experimental errors, for all but the 10 at.%
Gd alloy. The value 0.003 eV may be taken as the
concentration-independent estimate for the conduction
electron-local spin exchange coupling, J. This is in
agreement with the value 0.003 eV obtained by Cannella et al
[72] through resistivity measurements on PdGd alloys with
c £ 5 at.% and, with the value (0.003 + 0.0005) eV obtained
earlier by the EPR line-width measurements performed on Gd
in single crystals of Pd by Devine et al [99]. Alsoc listed
in Table (5.3) are the values for the effective exchange
constant between the localised Gd moment and the d-holes of
Pd, which are calculated using the Long and Turner model

formula [29]

kKT = |J;ql? cSN(0)/24 R§(z/2)273
(5.16)

where N(0)Kg? is the enhanced d-state density and z = 0.36
electrons/atom. They are consistently lower than the
effective GA moment-conduction electron exchange J. Finally
listed in Table (5.3) are the residual resistivities of the
various alloys as determined from the resistivity

measurements and the values for the lattice periodicity-
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breaking potential V calculated on the basis of Long and
Turner model. The estimated values of the former are
plotted in fig.(5.24) as a function of alloy concentration.
In the previous discussion it was suggested that a linear-
relationship between the two quantities is indicative of
applicability of Mattheissen's rule. While the
concentrations are uncertain, the linear plot passing
through the origin suggests that the deviations start to
appear at concentrations about 7-8 at.% Gd. They grow as
the concentration rises. The incremental resistivities for
alloys with concentrations as high as 7 at.% may be
interpreted as magnetic impurity contributions to the alloy
resistivity. As a corollary therefore, it follows that the
estimates of J|g from spin disorder resistivity [Ap(T¢) -
Ap(0)] are likely to be reasonably good. By the same token,
the Long and Turner model estimates for the non-magnetic
potential V are fairly good. While the exchange constants J,g4
and J;q show almost no concentration dependence, the

symmetry-breaking potential does, as must be expected.

It is interesting to note that in Table (5.4) the second
set of resistivity measurements on apparently aged samples
give values for the local-moment-conduction electron
exchange constants (as estimated from the slopes), for
alloys with ¢ £ 6 at.% Gd which very nearly equal those
obtained by first set of resistivity measurements. In
general, the slopes are reduced but the ordering

temperatures are increased for these alloys.
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5.3 MAGNETORESISTANCE

In order to clarify the nature of the ordered ground state
in PAGd alloys, the field- and temperature-dependence of

resistivities of these alloys were studied. -

The resistivities, at three different fixed temperatures,
were measured as a function of field up to 85 kOe. 1In
general, all alloys showed a negative magneto-resistance at
low fields. This is consistent with the gradual removal of
spin-disorder in these alloys by the external applied fields

which act to re-orient the disordered, local Gd-moments.

The lowest fixed temperature investigated, 1.5 K, lies
below the ordering temperatures for all alloys (except,
possibly, for the 2 at.% sample, where it is comparable to
T.) while the second, 4.2 K, is higher than the ordering
temperatures for most alloys (except for 8, S and 10 at.%)
and the third, 10 K, is well into paramagnetic range for all

alloys considered.

At 1.5 K, in zero-field, all alloys are ordered. If this
ordered state is considered to be simply ferromagnetic, the
proximity to saturation (or complete spin alignment) would
depend upon the reduced temperature T/Tc and hence on the
concentration, being larger for larger concentration alloys
at the above temperature. Thus the residual spin-disorder
resistivity should be smaller for larger Gd-concentrations

and at 1.5 K the more concentrated samples should exhibit a
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weaker negative magnetoresistance. The data presented in
fig.(5.25) does not conclusively support this contention.
For the 2, 3, and 4 at.% alloys the magnitudes of the
negative magnetoresistance are very nearly the same. For~
concentrations beyond while no definite trend is

discernible, these magnitudes are larger than those for the

above three alloys.

Fig.(5.25) also shows a rise in the magnetoresistance at
high fields. This rise is, most probably, caused by the
Koehler term, i.e. the curvature of the conduction electron
orbits in an applied field. 1Indeed, the general shape of
the resistivity-vs-field curves can be qualitatively
understood as a combination of two effects:

(a) decline in spin-disorder resistivity (spin-wave or

single-particle) with rising fields and,

(b) increase in the Koehler term, Apj.
Since the residual resistivities of the alloys are much
larger than that of pure Palladium, an estimate of the
Koehler resistivity in the alloys (at 1.5 K, in 70 kOe
field) was made from the data on a typical ferromagnetic
sample with 3 at.% Gd. The approach followed is described

below.

Even for free-spins, the magnetisation (i.e. the
Brillouin function) approaches 97 % of its saturation value
in an applied field of about 40 kOe at a temperature of

approximately 2 K (i.e. H/T = 20). 1In the present case, in
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70 kOe at 1.5 K (i.e. with a ratio H/T = 47), the spin-
disorder resistivity may be expected to be completely
removed. The remaining resistivity must then be a sum of
the residual resistivity (due to lattice perturbations and
defects) and the Koehler resistivity. The magnitude of the
latter can thus be estimated by subtracting the zero-field
residual resistivity at 1.5 K (assumed field-independent)
from that measured in 70 kOe at the same temperature. Such
an approach yields an estimate of about 3 x 10°3% uQ-cm (at
1.5 K in 70 kOe) for the Koehler term. At smaller fields,
the latter will obviously be smaller than this estimate. As
the external field is reduced to zero the magnitude of the
Koehler term will be governed by the strength of the

internal molecular field alone.

The field-dependence of resistivity, shown in figs.(5.26)
and (5.27), at the other two fixed temperatures does not
yield further information about the detailed nature of
either the ordered ground state or the various interactions
possibly present in the PdGd alloys because these
temperatures fall in the paramagnetic regime, in general.
The qualitative features of the data data are explainable,

once again, in terms of the two effects mentioned above.

The generally larger magnitudes of the negative
magnetoresistance at 4.2 K and 10 K compared to those at 1.5
K are consistent with an increased presence of thermal

disorder which the applied external fields must now
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overcome. The increased disorder would require higher
magnetic fields for its suppression. The observed shift of
the position of fhe resistivity minimum for a given alloy
towards higher fields is consistent with the abo?e -

expectation.

The temperature-dependent resistivity of PdGd alloys in
fixed external field (70 kOe) also shows some interesting
features. The s-d model calculations of Long and Turner
[29] predict a T3®’/? dependence of zero field resistivity in
ferromagnetic alloys well below T which arises due to
electron-magnon scattering in the disordered alloy system.
As mentioned previously, such a dependence is, indeed,
observed in alloys with a Gd-concentration above 6 at.%.
When modified to include the effect of an applied magnetic
field [102], a strong suppression of the T3 /2-resistivity,
resulting from the introduction of a gap in the magnon
spectrum, is predicted. If the PdGd alloys are considered
as simple ferromagnets, the effect of the applied fields
must be to simply suppress the resistivity which must,
nevertheless, continue to rise with rising temperatures.
While this is observed for the 3 and 4 at.% alloys
[fig.(5.28)], the temperature-dependent resistivity of some
higher concentration alloys [figs.(5.29) and (5.30)] shows a
negative temperature-coefficient in a fixed applied field of

70 kOe. Since the Koehler term, given by
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Ap/p(0) = F [H/p(0)]
(5.17)

involves the zero-field resistivity which is very weakly
dependent on temperature, it may be assumed to be
independent of temperature within the narrow experimental
range of temperatures. Hence, the observed negative
temperature-coefficient will not be affected to any
significant extent even if the Koehler correction is

accounted for.

Again, while the situation remains somewhat ambiguous,
the negative temperature-coefficient of resistivity may
imply a weak anisotropy which is overcome in the presence of
an applied field and a small thermal energy. A helical
arrangement of impurity spins (with a non-trivial ferro-
magnetic component) which collapses to a ferromagnetic order
in the presence of a strong magnetic field can give rise to

the observed effect.

5.4 SUMMARY AND CONCLUSIONS

We present the first systematic study of the low-field a.c.
susceptibility and the low-frequency a.c. resistivity of the

PdGd system over an extended concentration range.

The EPR data on small amounts of Gadolinium dissolved in

Palladium had revealed that the former retains an ionic-like
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S-state, just as Manganese does in the same host. Previous
measurements of some of the above properties of PdGd alloys
over a limited concentration range (c £ 5 at.%) by Cannella
et al [72] were interpreted as indicating a purely ferro--
magnetic ground state below the respective, measured Curie
temperatures. Extensive studies of the related PdMn system
have established that while the indirect long-range RKKY
interactions between distant Mn-impurities (through a
polarisation of the d-band) are always present, direct 34-
overlap interactions can occur when the average inter-
impurity separation roughly equals the third-neighbour
distance. Furthermore, such direct interactions are
antiferromagnetic. Indeed, any direct overlap interactions
between ions with exactly half-filled shells are expected to
be antiferromagnetic [17]. The effects of such interactions
are clearly visible in PdMn alloys with concentrations above
2.5 at.% Mn. At a concentration of about 5 at.%, these
interactions are strong enough to compete effectively with
the ferromagnetic ones of the RRKY type and modify the
ground state from predominantly ferromagnetic to spin-glass.
In view of the more localised nature of the Gadolinium 4f-
wavefunctions the near-neighbour interactions are expected
to become important only at concentrations higher than 2.5
at.% Gd. However, given the fact that Gd-impurities retain
their half-filled shell structure, such interactions are
expected to be antiferromagnetic and, hence, to produce a

phase diagram with features similar to that for PdMn.
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Measurements of resistivity and a.c. susceptibility were
made as a fuction of temperature (range 1.5 K to 10 K) and
as a function of'applied field (range 0 to 700 Oe). They
confirm that the 3 and 4 at.% alloys undergo a tfansition—to
a predominantly ferromagnetic state below their respective
Curie points. A relatively straightforward analysis of the
systematic behaviour of the secondary susceptibility peaks
with changes in temperature and field in the light of the
scaling hypothesis furnishes estimates for the various
critical indices v, 8, and § which are in good agreement
with those reported for other ferromagnetic systems, both
crystalline and amorphous. The negative magnetoresistance
observed in these alloys is consistent with local-moment
behaviour and, the zero-field resistivity shows the effects
of interactions between these randomly distributed,
localised moments. The Long and Turner model (described in
Chapter 1I) for ferromagnetic alloys based on an exchange-
enhanced host, such as Palladium, correctly predicts the
various features observed in the zero-field magnetic
resistivities of these alloys. The magnetic resistivity
above the Curie temperature is saturated. Below it, the
predicted linear decline with decreasing temperatures is
observed. However, the T3 /2-behaviour, predicted by the
Long and Turner model to occur at temperatures well below
the Curie point is not observed in any of the two alloys,
probably because the lowest achieved temperatures in the

susceptibility study remain a substantial fraction of the
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respective ordering temperatures. Nevertheless, the above
evidence for a ferromagnetic ground state is guite strong.
The sharp discontinuity in the first temperature-derivative
of resistivity when the local-moments order indicates that
the distribution of internal fields is sharply peaked in the
3 at.% alloy. A broadening tendency becomes apparent as the
concentration rises up to 5 at.% Gd. This effect is perhaps
a result of increased probability of near-neighbour Gd-Gd
interactions. A reduction in slope of the ordering
temperature-vs-concentration plot [fig.(5.31)] is consistent
with the statistical increase in the direct exchange which,
if antiferromagnetic as anticipated, would compete with the
long-range, ferromagnetic, indirect RKKY exchange and
possibly cause frustration in the ground state similar to

that observed in the more concentrated PdMn alloys.

Here, the present study raises some guestions about the
true nature of the ground state in more concentrated
specimens of PdGd. Contrary to the above expectations, the
ground state in the higher concentration alloys does not
appear to be frustrated in the same manner as in the more
concentrated PdMn alloys. The strong magnetic response
(high susceptibilities at the critical peaks) which persists
up to concentrations as high as 10 at.% Gd, unlike that
observed in PdMn system where it is suppressed above a
concentration of 2.5 at.% Mn as a result of increasing

competition between opposing interactions, provides evidence
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against a substantial presence of similar opposing
interactions in the P3dGd system. The surprising rise of §-
values with increased concentration is opposite to that
observed in PdMn alloys having significant competition
between opposing interactions. As the calculations by
Roshko and Williams [46] demonstrate, the broadening of
internal field distribution resulting from the above
competition cannot lead to a concentration-related increase
in the 6 values. Therefore, it appears that the ground
state in higher concentration PdGd alloys may be
fundamentally different from that observed in the more
concentrated PdMn alloys. Although increasing &§-values have
been previously reported for amorphous systems with
concentrations reaching the critical value for the
disappearance of magnetism in them, in the present case,
localised-moment behaviour is expected to persist at all
concentrations of interest. The reason for the rise in §-

values is not clear.

The resistivity and the susceptibility data indicate
together that it might be possible to catagorise the PJdGd
alloys with ¢ < 4 at.% Gd as predominantly ferromagnetic.
For concentrations beyond, classification may be possible
only when the magnetic structure of the ground state is
further clarified. The present data do not rule out the
possibility that in more concentrated PdGd alloys (c > 6 or

7 at.%) stabilisation of a spiral structure (presumably with
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a non-vanishing moment) having features similar to those
predicted to occur in YGd alloys by Southern and Sherrington
[24] and observed by other researchers [23,82] may be
energetically favourable. The observed peaks in the -
resistivity of the more concentrated PdGd alloys are similar
to those observed in helically ordered ¥YGd alloys.
Interference from the presence of other intermetallic
phases, in particular, from Pd;Gd which is antiferromagnetic
below 7 K, is not expected to be the cause of these
resistivity peaks. 1In addition to the negative results
obtained through the TEM studies in search for other
intermetallic phases of Palladium and Gadolinium in the
present alloy samples, the consistently higher ordering
temperatures (compared with those obtained by previous
studies) above 5 at.% Gd, according to Zweers [74], are

consistent with less inhomogeneous samples.

The present study offers only tentative answers to the
question of the true nature of the ground state in alloys
with ¢ 2 6 at.% Gd. The ground state in 3 and 4 at.% alloys
appears to be predominantly ferromagnetic. Above these
concentrations the situation becomes more complex. A study
of the a.c. susceptibility and the a.c. resistivity on a
series of alloys with more closely spaced Gd-concentrations
at and around the ferromagnetic limit (approximately 4 at.%
Gd) may reveal the details of change in the nature of the

ordered state. 1In particular, the strange rise in the §-
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values with rising concentration needs corroboration. Once
corroborated, it would reqguire a satisfactory theoretical
explanation. Another related question is whether an
increase in Gd-concentration above 10 at.% Gd would -
ultimately lead to a frustrated ground state of the type
noted in the PdMn system. As Table (5.1) shows, the
susceptibilities of the 10 at.% alloy at the critical peaks
in small, non-zero fields are suppressed below those for the
9 at.% alloy. Additionally, the ordering temperatures seem
to approach a plateau at a concentration of about 10 at.% Gd
suggesting that increasing competition between opposing
interactions may be gaining importance. Again, studies
furnishing good estimates of the ordering temperatures are
required on samples with closely spaced concentrations
around 10 at.% Gd. Special attention would be reguired for
the preparation of such high concentration alloys in view of
the low solubility of Gadolinium in Palladium (12 at.% at
1000 °C). A study of the a.c. susceptibility may again
prove useful. However, in this respect, it must be pointed
out that problems in temperature measurement above the
boiling point of liquid Helium limit the ability to
conclusively decipher any trends in the concentration-
dependence of ordering temperatures at higher
concentrations. Hence, the suggested study will first need
to address the more technical problem of accurate
temperature measurement in a rather difficult range of

temperatures.
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Fig.(A 1): Zero-field a.c. susceptibility of
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Fig.(A 2): Susceptibility of Pd + 3 at.% G4

in various biasing fields.
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of Pd + 4 at.% Gd.



(emu/g-0Oe)

x(T)

0.00

2.5

30

40

50

B 75

Temp (K)

Fig.(A 5): Susceptibility of Pd + 4 at.$%

in various biasing fields.

Gd



x(T) (emu/g-Oe)

0.014

0.012

0.010

0.008

0.006

0.004

0.002

Temp (K)

Fig.(A 6): Susceptibility of Pd + 4 at.% Gd

in various biasing fields.
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Fig.(A 11): Susceptibility of P4 + 6 at.% Gd

in various biasing fields.
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Fig.(A 13): Zero-field a.c. susceptibility
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in various biasing fields.
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Fig.(A 16): Zero-field susceptibility of:
Pd + 8 at.% Gd.
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Fig.(A 18): susceptiility of Pd + 8 at.% Gd

in various biasing fields.
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Fig.(A 19): Zero-field a.c susceptibility

Pd + 9 at.% Gd.
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Fig.(A 20): Susceptibility of Pd + 9 at.% Gd

in various biasing fields.
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in various biasing fields.
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