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ABSTRACT 

A research program was designed to investigate the characteristics of three-dimensional 

laminar wall jet flow of both Newtonian and two shear-thinning non-Newtonian fluids.  

The non-Newtonian fluids were prepared from xanthan gum solutions of various 

concentrations.  Both experimental and numerical methodologies were employed in this 

study.  The wall jet was created using a circular pipe of diameter 7 mm and flows into an 

open fluid tank.  The initial Reynolds numbers based on the pipe diameter and jet exit 

velocity ranged from 250 to 800.  The velocity measurements were conducted using a 

particle image velocimetry technique.  The measurements were conducted at several 

streamwise locations to cover both the developing and self-similar regions.  For the 

numerical study, the complete nonlinear Navier-Stokes equation was solved using an in-

house colocated finite volume based CFD code.  A Carreau model was employed for the 

non-Newtonian fluids.  The viscosity in the governing equations was obtained explicitly.   

From the PIV measurements and CFD results, velocity profiles and jet half-widths were 

extracted at selected downstream locations to study the effects of Reynolds number and 

specific fluid type on the jet characteristics.  It was observed that the numerical results are 

in reasonable agreement with the experimental data.  The decay of maximum velocity, jet 

spread rates, skin friction coefficient, streamwise velocity profiles, and secondary flows 

depend strongly on the initial Reynolds number irrespective of the fluid.  The results also 

show that the jet spreads more in the spanwise direction than in the transverse direction in 

the early flow development whereas the reverse is true in the downstream region.  

Important differences were observed when the results for the non-Newtonian fluids were 

compared with those for Newtonian fluid.    
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Chapter 1 

INTRODUCTION 

1.1 Overview  

This work pertains to the experimental and numerical study of three-dimensional laminar 

wall jet flow of both Newtonian and non-Newtonian fluids.  The first section of this 

chapter provides an overview of wall jet flows.  This is followed by a brief discussion on 

non-Newtonian fluids and their behavioural characteristics.  The techniques employed to 

study fluid flows are then highlighted.  The motivation and objectives, and the structure 

of the present work are also presented.  

1.2 The Wall Jet 

“The wall jet flow can be defined as a shear flow directed along a wall where, by virtue 

of the initially supplied momentum, at any station, the streamwise velocity over some 

region within the flow exceeds that in the external stream” (Launder and Rodi, 1983).  A 

typical production of this flow is a discharged of a fluid from a tube directed parallel to 

the bottom plane wall of a tank of the same medium.  In a wall jet flow, the surrounding 

ambient medium can be quiescent, co-flowing or counter-flowing.  Also, depending on 

the specific application, the ambient medium may be decelerating or accelerating.  

Figure 1.1 shows a sketch of a typical three-dimensional (3D) wall jet flow, and also 

defines the Cartesian coordinate system and some of the flow nomenclature, employed in 

this study.  A jet is released from a circular orifice into a similar infinite quiescent 

medium.  The velocity increases transversely from zero at the wall to a maximum, um, at 

distance zm from the wall and then decreases progressively to zero (Fig. 1.1b).  The 
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Figure 1.1: Schematic diagram of a 3D wall jet flow.  
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region extending from the wall to zm (i.e., zm ≤ 0) is often referred to as the inner region 

while the flow region from zm to the outer edge of the flow (zm > 0) is the outer region.  

The characteristics of the inner region of a wall jet resemble those of a viscous boundary 

layer whereas the outer region is akin to a free jet flow.  The free jet has its initial 

momentum gradually carried over to the ambient fluid (entrainment) which in turn leads 

to an ever widening jet.  Meanwhile, in the case of the flat plate or classical boundary 

layer flows, the wall friction diminishes the initial momentum as the flows evolved 

downstream.  Since these two flows, boundary layer and a free jet, have quite different 

characteristics, the interaction between the inner and outer regions of a wall jet produces 

a flow field that is relatively more complex than the classical boundary layer or the free 

jet.  In fact, the wall jet flow sustains a momentum loss on the bottom plane wall and 

spreads in all the non-wall bounded direction into the ambient fluid like the free jet.  It is 

therefore not surprisingly that the wall jet has been used as a prototypical flow to conduct 

fundamental research on complex shear flows   

The jet half-widths (z0.5 and y0.5) are defined as the distance measured from the origin to 

the respective location at which u is one-half of um (Fig. 1.1b).  As the jet develops 

downstream, it entrains more ambient fluid.  As a result, the local maximum velocity 

decays with increasing downstream location, and the jet half-widths in both the 

transverse and spanwise directions increase.  These wall jet flow parameters are very 

useful for the description of flow behaviour.  For example, the variation of um with 

streamwise distance from the jet exit provides an insight into the decay of the velocity 

field.  The jet half-widths (y0.5 and z0.5), on the other hand, represent the spread of the jet 
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in the spanwise and transverse directions while zm indicates the thickness of the inner 

region. 

As shown in Fig. 1.1a, the flow passes through two basic stages as it evolves in the 

streamwise direction.  These stages are the developing region which is immediately 

downstream of the efflux section, and the fully developed wall jet flow which occurs 

further downstream.  In the fully developed wall jet region, the flow has evolved to 

achieve a self-preserved state or self-similar condition with the downstream direction 

(Glauert, 1956; Gorla and Jeng, 1971; Hari, 1973).  This implies that the velocity profiles 

normalised by the corresponding local streamwise maximum velocity (u/um) and 

transverse distance from the wall normalised by the jet half-width (z/z0.5) become 

universal and independent of streamwise location for two-dimensional (2D) flows.  In the 

case of three-dimensional (3D) flow, the normalised velocity (u/um) plotted against the 

normalised spanwise distance from the origin (y/y0.5) is also universal and independent of 

streamwise location. 

1.3 Non-Newtonian Fluid 

Fluids come in so many forms ranging from gaseous state to semi-solid state.  Examples 

include air, water, mud, ice, lava, and painting oil.  These fluids can be classified as 

Newtonian or non-Newtonian.  As is well known, the viscosity of a Newtonian fluid is 

constant at specific temperature and pressure, and independent of the shear rate.  

Examples of Newtonian fluids are air and water.  On the other hand, the viscosity of a 

non-Newtonian fluid is not constant and is a function of the shear rate.  Common 

examples of non-Newtonian fluids are mud, ice, lava, painting oil, toothpaste, drilling 
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mud, chocolate, blood, milk, clay, liquid cement, high molecular weight liquids such as 

polymer melts, and solutions of polymers (such as aqueous solution of xanthan gum), as 

well as liquids in which fine particles are suspended (slurries and pastes).  Obviously, this 

unusual property of a non-Newtonian fluid makes it more complex compared with a 

Newtonian fluid.   

Rheology is the study of deformation and flow of matter.  Normally, rheology involves 

fluids such as non-Newtonian fluids that behave “unusually” or in a wide variety of ways.  

Today, there are a lot of industrial and domestic fluid flow applications in which 

rheology plays a key role.  These include biological macromolecules behaviour in 

biotechnological industries, the transport of foams and yield-stress fluids in oil drilling 

and enhanced oil recovery (EOR), and the study of volcanism and convection through 

Earth’s mantle and outer core.  In all these problems, rheology helps in the understanding 

of the behaviour of the particular fluid.   

Typically, for non-Newtonian fluids, the slope of the viscosity (shear stress) versus shear 

rate curve is not constant as the shear rate changes at a given temperature or pressure, or 

varying temperature or pressure or both temperature and pressure.  This non-linearity and 

other behaviours such as inhibition of stretching, elastic or plastic effects are usually used 

to characterise non-Newtonian fluids.  This work focuses on the non-linearity of the fluid.   

In general, there are three types of the non-linear fluids (Tanner, 1985).  These are: 

 Time-independent fluids in which the shear rate is only a function of the shear stress. 

These are usually termed as non-Newtonian viscous fluids or generalised Newtonian 

fluids. 
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 Time-dependent fluids in which the relation between the shear rate and shear stress 

takes into account the time the fluid has been sheared. 

 Viscoelastic fluids in which the fluid exhibits partial elastic recovery after 

deformation.  This class of fluids usually have characteristics of both solid and 

fluids. 

Both time-dependent (thixotropic and rheopectic) and viscoelastic fluids are beyond the 

scope of this study.  The time-independent fluids may be sub-classified into three distinct 

categories.  These are shear-thinning or pseudo-plastic, shear-thickening or dilatants, and 

yield stress or viscoplastic fluids.  This classification is based on the nature of the 

relationship between the shear stress and the shear rate or flow rate and pressure drop.   

As shown in Fig. 1.2, the viscosity of shear-thinning fluids decreases with increasing 

shear rate.  Previous experimental studies have shown that this type of fluid displayed 

two “Newtonian” regions, namely a lower region and an upper region which correspond 

to the limits of very low and very high shear rates, respectively.  Figure 1.2 also 

demonstrates that the viscosity in these two Newtonian regions is constant.  Examples of 

this type of fluids include polymers such as aqueous solution of xanthan gum, molten 

polystyrene, polyethylene oxide in water, blood, synovial fluid, and some paints.  For 

shear-thickening fluids, the viscosity increases as the fluid is subjected to a higher shear 

rate.  Most of the shear-thickening fluids tend to show shear-thinning behaviour at very 

low shear rates.  Examples of shear-thickening fluids include clay slurries, and solutions 

of certain surfactants.  A viscoplastic fluid will not flow unless shear stress is applied.  

The shear stress must exceed a critical value known as the yield stress of the fluid.  
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Examples of viscoplastic fluids are toothpaste, drilling mud, nuclear fuel slurries, 

mayonnaise, greases, oil paints, and blood.  This work will consider only shear-thinning 

fluids.  Since rheology is a broad subject, only the basics that are relevant to the present 

study will be discussed.  A more vivid and comprehensive discussion on rheology can be 

found, for example, in Barnes et al (1989), Tanner (1985), and Macosko (1994).  

 

Figure 1.2: Viscosity versus shear rate of shear-thinning fluid. 
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numerical results.  This is particularly true for a relatively complex flow such as a three-

dimensional wall jet flow of a non-Newtonian fluid. 

A number of measurement devices of varying sophistication are now available for 

conducting velocity measurements. Most of these devices, for example, hot-wire 

anemometer and laser Doppler anemometry (LDA) are point-wise measurement 

techniques.  Although these measurement techniques have an excellent spatial resolution, 

the need for a technique that can provide instantaneous measurements of the flow 

velocity at several positions either in two-dimensional (2D) or three-dimensional (3D) 

domain is vital.  The particle image velocimetry (PIV) method is a multi-point measuring 

technique that is capable of providing whole field instantaneous flow velocity 

measurements.  Furthermore, the PIV technique is non-intrusive measurement.  It is also 

well suited for estimating velocity gradients and derived quantities such as vorticity.  

These features have made the use of PIV in many fluid mechanics applications very 

attractive.  In this study, the PIV technique is used to perform the experimental 

measurements. 

1.5 Applications of Wall Jet Flows 

Wall jet flows have diverse biomedical and engineering applications.  In neurobiological 

and neural tissue engineering, for example, a wall jet flow is used as mass transport 

enhancement in a bioreactor perfusion system.  This novel three-dimensional neural 

culture represents a more realistic approximation of the brain (Cullen et al, 2007).  

Recently, it has been shown by Mautner (2004) that the use of laminar wall jets in 

biosensor microfluidic systems for fluid mixing enhancement can be advantageous in the 
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deoxyribonucleic acid (DNA) hybridisation.  This is because it requires no additional 

micromachining or flow channel wall coating to obtain the required flow channel 

properties.  

Applications of wall-jet detector biosensor can be found in electrochemistry (Itagaki et 

al, 2000; Simison et al, 1999; Saad et al, 2000).  Other applications include control of air 

contaminants in ecology and process hygiene (Curd, 1981; Saad et al, 2000; Settles et al, 

1998), ceramic plasma actuator panels (Roth, 2003), and airless spray painting (Settles et 

al, 1998).  It is worth mentioning that most of the aforementioned applications involved 

non-Newtonian fluids. 

Traditionally, the wall jet has been applied in diverse fluid engineering and heat transfer 

applications such as film cooling on turbine blades, boundary-layer control over a wing in 

aerodynamics (Wang and Sun, 2000), cooling mechanism employed in Intel chip based 

Acer
TM

 Timeline systems (3810T, 4810T and 5810T) ultrathin laptops, fibre in headbox 

and black-liquid (tar) in gun in pulp and paper (Bibeau, 2007), flow in stirred tank 

(Bittorf and Kresta, 2004), heating, condensate removal and ventilating, evaporation 

enhancement in defrosting of vehicle windscreens, gas turbine combustion chamber walls 

(Curd, 1981; Issa, 2006), petrochemical industries, liquid food processing industries 

(Gorla, 1984), window deicing, paper drying, metals annealing, heating of metal ingots 

(Gorla and Jeng, 1971).  

1.6 Motivation and Objectives 

As discussed in the previous sections, there are both practical and fundamental interests 

in understanding the characteristics of wall jet flows.  A number of studies have been 
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conducted to investigate the characteristics of 2D laminar wall jet flows of Newtonian 

fluid.  Admittedly, most practical wall jet flow applications are three-dimensional.  It 

should be noted that the three-dimensional wall jet flow of non-Newtonian fluid is far 

more complicated than either free jet or classical near-wall flows such as fully developed 

channel flows and zero pressure gradient boundary layer.  Yet, the 3D wall jet flow of 

non-Newtonian fluid has not received any research attention.  There is a need, therefore, 

to conduct detailed research to advance understanding of 3D wall jet flow of non-

Newtonian fluid.  This would lead to the design of more efficient engineering systems 

and optimise wall jet applications.   

The objectives of the present study are:     

 Provide detailed velocity measurements in 3D laminar wall jet flows of both 

Newtonian and non-Newtonian fluids at various Reynolds numbers. These results 

will form the basis of the numerical results. 

 To compute the 3D laminar wall jet flows studied experimentally using an in-

house code, and to use these results to study the effects of Reynolds number and 

the specific fluid on the wall jet characteristics. 

1.7 Methodology 

To achieve the above mentioned objectives, three different types of fluids were used.  

These are a Newtonian fluid (water) and two shear-thinning non-Newtonian fluids 

prepared from aqueous solutions of xanthan gum.  The experiments and numerical 

analyses are conducted over a wide range of Reynolds numbers in the laminar flow 

regime (250 ≤ Rej ≤ 800, where Rej is based on the maximum velocity at the pipe exit and 
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the pipe diameter).  The velocity measurements are made using a planar PIV technique.  

An in-house numerical code based on colocated finite volume method was used to obtain 

the CFD results.  The code solved the general governing equations of both non-

Newtonian and Newtonian fluids.  The SIMPLEC (Semi-Implicit Method for Pressure-

Linked Equations Consistent) algorithm is used to solve pressure-velocity coupling 

equation.  To take advantage of convergence without compromise of accuracy, deferred-

correction method was employed.  Deferred correction approach tends to promote 

numerical stability as it ensures that the coefficient matrix is more diagonal dominant. 

The benchmark experimental data sets are used to validate the CFD results.  

1.8 The Structure of the Thesis 

This thesis consists of five chapters and appendices.  A comprehensive literature survey 

is presented in Chapter 2.  The literature survey summarises the most relevant theoretical, 

numerical, and experimental investigations on laminar wall jet flows of both Newtonian 

and non-Newtonian fluids.  The methodology used in the present work is reported in 

Chapter 3.  Results and discussion are presented in Chapter 4, while conclusions and 

recommendations for future work are presented in Chapter 5.  A detailed description of 

the PIV system and measurement uncertainties are provided in Appendix A while details 

on the mathematical models and numerical procedure are presented in Appendix B.  
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Chapter 2 

LITERATURE SURVEY 

2.1 Overview 

The diverse applications of wall jet flow indicated in Section 1.5 necessitated extensive 

research on both laminar and turbulent wall jet flows in the past decades.  These studies 

employed analytical, experimental and numerical methodologies.  In this Chapter, a 

review of previous research on laminar wall jet flows of both Newtonian and non-

Newtonian fluids is presented.  Prior to the presentation of the review, a summary of 

prior works on rheological properties of shear-thinning non-Newtonian fluid is presented.   

2.2 Shear-thinning Non-Newtonian Fluid 

2.2.1 Introduction 

As mentioned in Chapter 1, the apparent viscosities of most non-Newtonian fluids are a 

function of the velocity gradient (or shear rate).  For shear-thinning fluids, the apparent 

viscosity decreases with increasing shear rate.  This is due to the alignment of the fluid 

molecular particles in the flow field.  Application of a shear rate to a resting fluid results 

in an instantaneous alignment of molecular particles in the direction of shear, thus 

providing a lower resistance to flow.  This means that, for an advection dominant flow 

which is characterised by high shear rates, one would expect a lower participation of the 

viscosity on the flow dynamics.   

Unlike Newtonian fluids for which the viscosity-shear rate relation is universal, the 

apparent viscosity for non-Newtonian fluids, specifically, shear-thinning is not uniquely 

described in all flows.  It is therefore imperative that one has to develop a ‘new’ relation 
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for viscosity and shear rate that incorporate the unusual characteristics of the fluids.  In 

this section, the various relations used to describe the apparent viscosity are summarised 

and their limitations for shear-thinning fluids are presented.  This is followed by a 

description of the experimental approach used in previous works to obtain the viscosity-

shear rate relationships.  

2.2.2 Constitutive Equations  

In Fig. 1.2, it was observed that shear-thinning non-Newtonian fluids may exhibit three 

distinct regions.  These comprised of a lower Newtonian region where the apparent 

viscosity (μ) is independent of shear rate (Λ).  In the second (intermediate) region, the 

apparent viscosity decreases with increasing shear rate.  Mostly, the power-law equation 

which will be discussed later is used to describe the fluid characteristics in this region.  

The last region is the upper Newtonian region where the slope of the apparent viscosity is 

also independent of the shear rate.  Both a minimum and a maximum effective viscosity 

(Newtonian regions) which every real non-Newtonian fluid has exhibited, depend on the 

physical chemistry at the molecular level.  This notwithstanding, any model or relation 

describing the apparent viscosity should be able to fit at least the intermediate or second 

region.  However, for flow problems involving high, low or zero shear rates, all the 

regions including the Newtonian regions are essential (Steffe, 1996; Denier and 

Dabrowski, 2004; Denier and Hewitt, 2004; Gutfinger and Shinnar, 1964). 

Constitutive equations are used to describe the relationship between force and 

deformation in materials such as liquids.  There are many variances of constitutive 

equation that have been proposed to mimic the behaviour of shear-thinning non-
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Newtonian fluids.  The most common of these models are shear-dependence power-law 

based, Bingham, and Herschel-Bulkley.  This study will focus on shear-dependence 

power-law based models and a brief description of them will be given.  A more in-depth 

description of these models and other non-Newtonian models can be found in Macosko 

(1994), Steffe (1996), Tanner (1985) and Bird et al (1987).  Further, the analysis of 

shear-thinning fluid in this work will only involved the effect of steady shear rate. The 

rationale is that previous studies demonstrated that the extension and elongation effects 

are weak in aqueous solutions of xanthan gum and could be predicted on the basis of 

shear viscosity alone (Lindner et al, 2000).  Also, the elastic property of xanthan gum 

based fluids is negligible (Lindner et al, 2000).  Therefore, the fluid of interest is inelastic 

with negligible inertia effects.   

For shear-thinning fluids, power-law model is the simplest and most commonly used 

viscous constitutive relation.  The constitutive relation given by Bird et al (1987) is 

1)( n
              (2.1a) 

Λ = [2{( u/ x)
2
 + ( v/ y)

2
 + ( w/ z)

2
} + ( u/ y + v/ x)

2
 + ( u/ z +  w/  x)

2
 + 

 ( v/ z +   w/  y)
2
]

1/2
            (2.1b) 

where µ is the apparent viscosity, λ is a measure of the consistency of the fluid with 

higher values representative of more viscous materials, n is the power-law index, and Λ is 

the shear rate which is a function of the second invariant of the rate-of-strain tensor (Eqn. 

2.1b).  For shear-thinning fluids, n is less than unity while n is greater than unity for 

shear-thickening fluids.  It should be remarked that Newtonian fluids can be considered 

as a special case of power-law non-Newtonian fluids with n = 1; in this case, λ becomes 

the dynamic viscosity.  
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Equation 2.1 is a good approximation to data from viscosity-shear rate relation for many 

polymeric liquids, and is well suited for a steady simple shear flow.  This model 

accurately represents the shear-thinning region in the viscosity curve shown in Fig. 1.2.  

This model has unbounded viscosity function for both limits of shear rates.  At both low 

and high shear rates, the apparent viscosity should approach a constant value instead of 

infinite and zero values, respectively, since n is usually less than unity.  In view of these 

limitations, the validity of Eqn. (2.1) for shear-thinning fluids is restricted to a finite 

range of shear rate.  In fact, it has been suggested that this model is not suitable for flows 

which possess a point of inflection in the velocity profiles (Denier and Dabrowski, 2004; 

Denier and Hewitt, 2004; Gutfinger and Shinnar, 1964).  Since the velocity profiles for a 

wall jet has an inflection point, the simple model represented by Eqn. (2.1) is not suitable 

for wall jets.  Obviously, any other model that accounts for these shortcomings associated 

with Eqn. (2.1) is implemented at the expense of simplicity. 

To account for both the minimum and maximum effective apparent viscosities, Cross 

(1965) proposed the following model: 

1
2 12

0( ) ( )[1 ( ) ]
n

            (2.2) 

This four-parameter model also displays a nonzero bounded viscosity at both the upper 

and lower limits for some fluid flow applications.  Therefore, Carreau (1972) proposed 

the following a power-law based model (Eqn. 2.3) to correct the singularities in the Cross 

model (Eqn. 2.2): 

1
2 2

0( ) ( ) 1 ( )
n

            (2.3) 

where μ0 and μ  are the viscosities at the limits of low (zero) and high (infinity) shear 
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rate, respectively, for shear-thinning fluid and the converse is true for a shear-thickening 

fluid, θ is a characteristic time scale, which measures the scale at which shear-thinning 

effects becomes eminent, and all other parameters have their usual meaning. This model 

accurately models the shear-thinning region and Newtonian plateaus observed at low and 

sometimes high shear rates.   

Subsequently, Yasuda et al (1981) proposed the following five-parameter model:  

/)1(2/1

0 ])(1[/)()( n            (2.4) 

where β describes the transition region between the zero-shear rate and the power-law 

region, and all other parameters have their usual meaning.  For β = 2, Eqn. (2.4) becomes 

identical to Carreau model (Eqn. 2.3).  There are also other models which tend to rectify 

the failure of the power-law model.  For example, the Sisko (1958) model, which was 

originally proposed for lubricating grease, can describe the flow properties of shear-

thinning materials at high shear-rate measurements such as yogurt for four to five 

decades of shear rate (Barnes et al, 1989).  It should also be emphasised that the above 

mentioned models are only for steady shear flows, and do not describe normal-stress 

phenomena, unsteady shear flows, or flows which are not predominantly shear flows.   

2.2.3 Fluid Characterisation 

In the application of non-Newtonian fluids, one has no foreknowledge of the relation that 

describes the apparent viscosity and its dependence on the shear rate.  Therefore, fluid 

characterisation has to be performed.  During fluid characterisation, measurements are 

taken at several shear rates with corresponding viscosity values, and are extrapolated to 
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estimate the values.  This method helps to detect rheological behaviour that may have an 

effect on processing, and also to estimate the viscosity-shear rate relation.   

In the present work, an aqueous solution of xanthan gum (XG), which is one of the most 

common shear-thinning non-Newtonian fluids, is used.  This high molecular weight 

extracellular polysaccharide produced by the bacterium xanthomonus campestris is used 

extensively in industry as a stabilising agent due to its unusual properties (Meyer et al, 

1993; Zirnsak and Boger, 1998).   

There are numerous studies on xanthan gum.  Torrestiana et al (1989) obtained 

rheological behaviour for various concentrations of xanthan gum.  The pseudoplastic 

behaviour of the xanthan gum solutions was in good agreement with the basic power-law 

model (Eqn. 2.1).  Escudier and Smith (1999) used aqueous solution of xanthan gum as 

test fluids in their experimental study of turbulent flow in axisymmetric channels with 

sudden expansion.  The relationship between the viscosity and shear rate for xanthan gum 

was well represented by the Cross model.  Recently, Arzate et al (2004) performed fluid 

characterisations of three aqueous dispersions of xanthan gum.  An inelastic shear-

thinning fluid with the power-law curve was observed for all the solutions.  In Table 2.1, 

a summary of xanthan gum based test fluids employed in previous studies are reported 

and most of them were described by the power-law model (Eqn. 2.1).  The possible 

reason for this is that the operating shear rates were not low and high enough to predict 

the Newtonian regions of the fluid.  It is worth commenting that most of the power-law 

model fluids were prepared from more than one solvent.  Generally, the molecules of 

xanthan gum are sensitive to bacteriological degradation and therefore, for any long 



 18 

period of experimentation a biocide agent is required (Escudier et al, 1995).   

Table 2.1: Summary of previous test fluids (Xanthan Gum) 

Authors Grade Solvent XG Biocide 

Power law Model 

Torrestiana et al (1989) Food  Water, Sucrose 0.5–10 kg/m
3 

- 

Stokes (1998) Technical Water, Sucrose  0.30 wt% - 

Bachmann et al (2000) - Glycerin, Sodium 

Iodide (NaI), Water 

0.433g / litre - 

Arzate et al (2004) - Water  0.3-0.7 wt% -. 

Daugan et al (2004) - Water  750-3000 ppm NaN3 

Dressler (2006) Food Wheat syrup, water 0.02 wt% Na N3 

de Vicente et al (2006) Food Deionised Water 0.005-0.2 wt% NaN3 

Smolka and Belmonte 

(2006) 

Commercial Water/KCL 0.039, 0.078 

wt% 

- 

Cross Model 

Escudier and Smith 

(1999) 

Food  Water  0.25 wt% Kathon 

Carreau–Yasuda Model 

Escudier et al (2001) Food Water 0.25 wt% FD
* 

Sisko Model 

Escudier et al (1995) Food Purified water 0.15 wt% FD
* 

Cavasada and Pinho 

(2004) 

Food Water 0.10-0.25 wt% Kathon 

* FD = formaldehyde 
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2.3 Wall Jet Flows 

Wall jet flows are usually characterised by the decay of the local maximum streamwise 

velocity (um), the spread of the jet in both spanwise (y0.5) and transverse (z0.5) directions, 

and similarity of the streamwise velocity profiles.  In addition, other quantities such as 

vorticity distributions, skin friction coefficient, and exterior momentum flux are useful in 

providing a better understanding of characteristics of wall jets.   

2.3.1 Velocity Decay, Spread Rates, and Skin Friction Coefficient 

Tetervin (1948) was one of the pioneers to conduct analytical studies on the two-

dimensional (2D) laminar wall jet flow of a Newtonian fluid.  In his analysis, it was 

assumed that both the velocity decay and the growth of the jet vary as a power of the 

downstream distance.  The governing equations were solved using numerical integration.  

It was shown that the local maximum velocity decayed as one-half-power (um  x
-1/2

) 

while the jet half-width increased as three-quarter-power of the downstream distance (z0.5 

 x
3/4

).  Subsequently, Glauert (1956) carried out a similar analysis for both 2D laminar 

and turbulent wall jets of a Newtonian fluid in which he employed the boundary layer 

theory for the inner region and modeled the outer region as a free jet.  Glauert showed 

that, in fact, the constant of proportionality in the expression of the velocity decay and the 

jet half-width given by Tetervin (1948) depends significantly on Reynolds number 

through the fluid viscosity and the jet exit velocity.  In addition, he showed that the skin 

friction also depends strongly on the fluid viscosity.  It is worth commenting that using 

the expressions um  x
-1/2

 and z0.5  x
3/4

, it is easy to recognise that the local Reynolds 

number, Rem (= um z0.5 / ν) will increase as one-quarter-power of the downstream 

distance.  
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Subsequent to these early analytical works on 2D wall jets, several experimental (Bajura 

and Szewczyk, 1970; Tsuji et al, 1977; Cohen et al, 1992; Peters et al, 2008) and 

numerical (Issa, (2004, 2006); Gorla and Jeng, 1971) studies have been conducted to 

better understand the characteristics of wall jets of Newtonian fluid.  The jet exit 

Reynolds number (Rej), which is based on the maximum velocity at the jet exit and the 

slit height (d) was varied from 40 to 770.  The results from these studies were consistent 

with the previous analytical studies by Glauert (1956) and Tetervin (1948).  Issa (2006) 

who employed commercial CFD code (Fluent) also reported that the local skin friction 

coefficients (Cfj = w / 0.5ρu
2

j, where w is the wall shear stress, ρ is density and uj is 

maximum velocity at the jet inlet) decreased with downstream distance.  It should be 

noted that, with the exception of the PIV measurements by Peters et al (2008), all the 

experimental studies employed hot-wire anemometry.   

Recently, Bhattacharjee and Loth (2004) investigated the effect of different inflow 

profiles (parabolic, ramp and uniform) and Reynolds numbers (100 < Rej < 10,000) on 

the velocity and temperature distributions in 2D laminar and turbulent-transition co-

flowing wall jet flows of a Newtonian fluid using a direct numerical simulation (DNS).  

The results show that the jet thickness which was defined as z value where u = 0.25um 

tends to decrease as the Reynolds number increased for laminar flow (Rej < 550).  

However, in the transitional regime (700-2,000), the jet grows with an increase in 

Reynolds number.  This later trend was attributed to the significant level of instabilities 

of the wall jet as the Reynolds number increases.  The entrainment of the ambient co-

flow was also observed to be influenced by the inflow velocity profile, especially at 

higher Reynolds numbers.  In general, the ramp profile consistently gave the lowest 
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entrainment, while the uniform profile gave the highest entrainment.  This was attributed 

to the discontinuity of the uniform profile at the edge (the difference of the uniform 

velocities and the co-flow inflow velocities) which gave rise to a very high local gradient.  

It was argued that increased initial velocity gradients tend to create instabilities, and thus 

vortices which in turn increase momentum transport and scalar diffusion rates.   

Since Glauert’s (1956) work on a Newtonian fluid, a number of researchers have 

employed his approach to predict wall jet flows of non-Newtonian fluids.  Unfortunately, 

only a few of these studies report the velocity decay, spread rates and skin friction 

coefficient.  Filip et al (1991), for example, employed an analytical technique to 

investigate similarity conditions for laminar wall jets of power-law fluids past 

axisymmetric bodies.  The functional dependence of the jet half-width and local 

maximum velocity decay on the power-law index, consistency and the streamwise 

distance was determined.  It was reported that these wall jet characteristics are not only a 

function of streamwise distance but also the fluid properties such as the power-law index 

and consistency.  On the other hand Gorla (1984) observed that, the skin friction 

coefficient decreases as the fluid becomes more shear-thinning or shear-thickening.   

Krechetnikov and Lipatov (2002) theoretically analysed the self-similar solutions of 2D 

and 3D laminar wall jets of both Newtonian and shear-thickening non-Newtonian fluids.  

The similarity exponents for 2D laminar wall jet flow of the Newtonian fluid were in 

good agreement with those reported by Glauert (1956).  For the 3D laminar wall jets of 

Newtonian fluids, it was established that the similarity exponent for both local maximum 

streamwise, um and spanwise, vm velocities should be less than -0.5.  Similarly, the 
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exponent of the jet half-width in the transverse direction (z0.5) varies from 0.75 to 2.0 

with the downstream distance.  The corresponding exponent for the spanwise jet half-

width (y0.5) varies from 0.125 to 2.0.  For the 3D laminar wall jets of shear-thickening 

non-Newtonian fluid, it was concluded that the similarity exponents for the three velocity 

components and jet half-widths were a function of the fluid behaviour index.   

Craft and Launder (2001) numerically studied the spreading mechanisms in 3D laminar 

and turbulent wall jet flows.  A computation of the laminar wall jet was performed in the 

similarity region of the flow.  It was reported that the spread rates (dy0.5/dx and dz0.5/dx) 

vary linearly with downstream distance.  In addition, both spread rates depend on the 

local Reynolds number, Rem.  For the laminar wall jets the jet spreads more rapidly in the 

transverse direction than it does in the spanwise direction.  In contrast, the turbulent wall 

jets spread more in the spanwise direction than in the transverse direction.  They reported 

that the ratio of the spread rates (dy0.5 / dz0.5) for turbulent wall jets varies from 0.97 to 

15.3 for various turbulence models.  Based on these observations, it was concluded that 

there is insignificant streamwise vorticity and that viscous diffusion is principally 

responsible for the growth of 3D laminar wall jet.  

Adane and Tachie (2008a, 2008b) numerically studied the effects of Reynolds number 

and power-law rheology on the characteristics of 3D laminar wall jet flows.  The 

Reynolds number varies from 77 to 310 whereas the power-law index, n ranges from 0.4 

to 1.0 with n = 1.0 being a Newtonian fluid.  They reported that the wall jet 

characteristics such as the jet growth, jet half-widths, skin friction coefficient, and 

maximum velocity decays depend significantly on Reynolds number and fluid type, 
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specifically the power-law index.   

2.3.2 Similarity of Velocity Profiles 

As the wall jet evolves downstream, the dimensionless velocity profile also changes and 

then becomes universal in the similarity region.  In fact, it has been shown that the 

velocity profile in the similarity region has no upstream memory effect (Issa, 2006; 

Glauert, 1956).  However, the onset of the self-similar region may depend on both the 

inlet Reynolds number and the flow field.  For instance, for 2D laminar wall jet flow of 

Newtonian fluid, it was found that the self-similar region begins at x / d = 18 for Rej = 

377 (Bajura and Szewczyk, 1970), x / d = 10 for Rej = 635 (Tsuji et al, 1977), and x / d = 

30 for Rej = 466-725 (Cohen et al, 1992).  For Rej = 500, Kanna and Das (2005) reported 

that the flow becomes self-similar at x / d = 18.  Adane and Tachie (2008a, 2008b), on the 

other hand, reported the onset of self-similarity for Rej = 77-310 to be x / d = 5 

irrespective of the fluid.   

Glauert (1956) presented an analytical streamwise velocity profile for 2D wall jet flows.  

The results from subsequent experimental studies (Bajura and Szewczyk, 1970; Tsuji et 

al, 1977; Cohen et al, 1992; Peters et al, 2008) showed very good agreement with the 

analytical profile obtained by Glauert (1956).  Bajura and Szewczyk (1970) performed 

experiment on a Newtonian fluid and for the Reynolds numbers in the ranges: 270 ≤ Rej ≤ 

770.  They reported a single velocity profile in the self-similar region for each Reynolds 

number studied.  There was no distinguishable difference between the experimental and 

analytical profiles in the region z/z0.5 ≤ 1.25.  Similar observations were also made in 

other previous experimental works (Cohen et al, 1992; Tsuji et al, 1977).  The agreement 
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between the measured velocity (Bajura and Szewczyk, 1970; Cohen et al, 1992; Tsuji et 

al, 1977) and the analytical profiles close to the outer edge (z/z0.5 > 1.25) is not 

particularly good.  On the contrary, the PIV results presented by Peters et al (2008) 

collapsed onto the analytical profile even in the outer edge (z/z0.5 > 1.25) of the jet.  It is 

not clear if the discrepancy between the experimental and analytical data in the outer 

region is due to the limitation of the hot-wire anemometer.  It is also worth mentioning 

that none of these experimental works was able to make measurements in the immediate 

vicinity of the wall (z/z0.5 < 0.08).  In general, irrespective of the technique employed, it 

was observed that the velocity profile does not depend on the inlet Reynolds number.  

Meanwhile, the numerical results (Issa, (2004, 2006); Kanna and Das, 2005) also showed 

a very good agreement with the analytical results by Glauert (1956).   

Tsuji et al (1977) also reported that the velocity profiles at Rej = 635 were in better 

agreement with laminar analytical profile (Glauert, 1956) up to approximately x/d = 45.  

On the contrary, the velocity profile at x/d = 60 was rather in a better agreement with the 

analytical profile reported for a turbulent wall jet (Glauert, 1956).   

As indicated in the earlier paragraphs, wall jet flows of non-Newtonian fluids have not 

received significant research attention.  Gorla (1984) analytically established the 

existence of the similarity condition for 2D laminar wall jet of a non-Newtonian fluid in 

plane, divergent and convergent surfaces.  It was observed that in the inner region, the 

normalised velocities obtained on the convergent surface are higher than those in a plane 

and divergent surface.  Meanwhile, in the outer region the reverse is true; that is, the 

normalised velocities are lower on a convergent surface and higher on a divergent 
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surface.  Similar analysis was performed by Filip et al (1991) for laminar wall jet flows 

of power-law fluids past axisymmetric bodies.  They consider shear-thinning, Newtonian 

and shear-thickening fluids.  The similarity profile was observed to be fluid dependent.  

In the region z/z0.5 > 0.3, the shear-thinning fluid has higher normalised velocities 

whereas the shear-thickening fluid has lower normalised velocities.  However, in the very 

near-wall region (z/z0.5 ≤ 0.3), there was no difference among the profiles.   

Craft and Launder (2001) presented the similarity profiles in both transverse and 

spanwise directions at various x/d locations for their 3D laminar wall jet.  It should be 

noted that the x/d locations were defined in terms of local Reynolds number, Rem which 

ranges from 38 to 308.  They reported good agreement among profiles.     

The numerical results presented by Adane and Tachie (2008a, 2008b) also showed a self-

similar condition in both the transverse and spanwise directions and irrespective of the 

inlet Reynolds number for fluids with higher power law index (n = 0.7 and 1.0).  At a 

lower value of n (i.e., n = 0.4), however, the profiles particularly those at a lower 

Reynolds number (Rej = 77) failed to collapse onto a universal curve.  It should be 

mentioned that all the previous works on non-Newtonian fluids are based on the power-

law model (Eqn. 2.1).   

2.3.3 Vorticity Distributions 

One of the applications of the wall jet is in the area of mixing as mentioned in Chapter 1.  

This mixing is done through vortex generation, a phenomenon that influences the 

spreading of the jet.  Previous studies (Craft and Launder, 2001; Bhattacharjee and Loth, 

2004) argued that the spreading mechanism in laminar wall jet flows is dominated by 
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viscous diffusion.  In fact, Craft and Launder (2001) attributed the higher spread rate 

observed in the spanwise direction than in the transverse direction to an intense 

streamwise vorticity generated in turbulent flow.  Meanwhile, the relatively lower jet 

spread rate in the spanwise direction compared to the spread rate in the transverse 

direction was attributed to the insignificant streamwise vorticity generated in a laminar 

wall jet.   

The governing equation of the flow is given as: 

2 p
t

v
v v v         (2.5) 

where v is a velocity vector, t is time, p is pressure and all other variables have their usual 

meanings.  The above equation (Eqn. 2.5) can be rewritten in terms of the streamwise 

vorticity, x as follows: 
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where the streamwise vorticity, / /x v z w y , spanwise vorticity, 

zuxwy // , transverse vorticity, xvyuz // , and all other variables 

have their usual meanings.  Based on the coordinates system adopted in the present work, 

counter-clockwise rotation is taken as positive.   

The vortex turning ( y and z, term II) is responsible for the generation of the streamwise 

vortex whereas viscous diffusion (term III) basically diffused the vorticity (Launder and 

Rodi, 1981; Craft and Launder, 2001).  In wall jet flows, the vortex stretching (term I) 

actually reduces the vorticity since /u x  is always less than zero.  In the similarity 
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region of wall jet flows, the streamwise vorticity produces a laterally outward secondary 

flow and thereby intensifies the interaction between the jet and the ambient fluid which in 

turn increases the spread in the spanwise direction.  Craft and Launder (2001) showed 

that the streamwise vorticity in the inner region is positive but negative in the outer 

region.   

2.4 Closure 

The review of previous studies led to the following observations: 

 There are no experimental works conducted to study the characteristics of 3D 

laminar wall jet flows of both Newtonian and non-Newtonian fluids.   

 There have been only analytical studies on the 2D laminar wall jet of non-

Newtonian fluid. 

Even the previous numerical studies on the non-Newtonian fluid are based on power-law 

model for which the apparent viscosity is unbounded.  Thus, there is a need to provide 

benchmark experimental data sets to provide a better understanding of 3D laminar wall 

jets of both Newtonian and non-Newtonian fluids, and also for the purpose of validating 

both numerical and analytical results.  
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Chapter 3 

EXPERIMENTAL AND NUMERICAL TECHNIQUES 

This chapter provides an overview of both the experimental and numerical techniques 

used.  Prior to the presentation of the techniques used, a description of the procedure 

employed for the preparation of the test fluids and their rheology is presented.  The 

experimental test facility and measurement technique used are described.  This is 

followed by the description of the numerical technique.  A more thorough description of 

the techniques can also be found in Appendix A and Appendices B for the experiment 

and numerical methods, respectively. 

3.1 Fluid Characterisations 

3.1.1 Test Fluids 

The non-Newtonian fluids were obtained by preparing aqueous solution of xanthan gum 

(commercial food-grade) with a filtered tap water as solvent.  Two stock solutions were 

prepared by dissolving 0.005 wt% and 0.01 wt% of xanthan gum in the solvent.  In the 

forthcoming sections, the fluids corresponding to 0.005 wt% and 0.01 wt% of xanthan 

gum will be denoted by XG005 and XG010, respectively.  The tap water was only 

filtered to take out the debris and not the minerals.   

The stock solution of the xanthan gum was prepared by thoroughly dispersing the 

required amount of gum in the solvent.  The xanthan gum solution was continuously 

stirred at ambient temperature of 23 C until the gum was evenly dissolved (including the 

disappearance of all microgels).  A typical stirring of the solution lasted for about 2-3 

hours at a speed of 200-300 rpm.  The aqueous solution was allowed to sit for at least 6 
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hours before use to allow a complete hydration of the molecules.  

3.1.2 Rheology 

All measurements of viscometric characteristics were carried out using a controlled 

shear-rate TA Instruments rheometer with stainless steel 0.04 m diameter parallel plate 

geometry.  The measurements were performed at a temperature of 23 C.  Temperature 

control of the TA rheometer was achieved via a plate that uses the Peltier effect to control 

the temperature of the sample to within 0.1 C.  The flow curves (i.e. shear viscosity 

versus shear rate) for the test fluids and the solvent are shown in Fig. 3.1.  Figure 3.1 

showed a shear-thinning behaviour with the two Newtonian plateaus for the xanthan gum 

based solutions (XG005 and XG010).   
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Figure 3.1: Shear viscosity data of the test fluids. 

The relationship between the apparent viscosity and shear rate is well represented by the 

Carreau model (Eqn. 2.3) for both test fluids.  Using a least-square method, a curve 
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fitting of this model to individual solutions (XG005 and XG010) was performed, and the 

model parameters are summarised in Table 3.1 for all the test fluids.  From Table 3.1, the 

XG010 solution is regarded as the most viscous fluid with the zero shear rate viscosity 

being almost one hundred times the infinite shear rate viscosity.  It is worth mentioning 

that the aqueous solutions of the xanthan gum are known to demonstrate weak extension 

and elongation effects and could be predicted on the basis of shear viscosity alone 

(Lindner et al, 2000).  Also, the elastic property of these fluids is negligible (Lindner et 

al, 2000).  In fact, for the present test fluids, the elasticity which is measured by the 

normal stress was below the measurable tolerance of the rheometer.  Therefore, the fluids 

are considered inelastic with negligible inertia effects.     

Table 3.1: Carreau model parameters 

Fluids μ0 (Pa•s) μ  (Pa•s) θ (s) n 

Water 1.0 x 10
-3

 - 0 1.00 

XG005 0.055 1.0 x 10
-3

 2.66 0.21 

XG010 0.110 9.98 x 10
-4

 1.50 0.26 

 

3.2  Experimental Procedure  

3.2.1  The Wall Jet Facility 

A schematic diagram of the set-up for the wall jet facility is shown in Fig. 3.2 while a 

picture of the experimental set-up during a typical measurement in the symmetry plane is 

shown in Fig. 3.3.  As shown in these figures, the set-up consists of the test section, a 

variable speed centrifugal pump (model no. 75211-62) supplied by Cole-Parmer Canada 

Inc. (Montreal, Canada), tubing, and a storage tank.  This variable speed centrifugal 
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Figure 3.2: Schematic diagram of the wall jet facility. 

 

Figure 3.3: A picture showing an experimental set-up for measurements in the symmetry 

plane. 
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pump with maximum flow rate of 7 gallon/min was used for the higher flow rate 

experiments.  For the lower flow rate experiments, it was not possible to generate the 

wall jet flow with a constant velocity using the centrifugal pump.  Therefore, the flow 

was generated under gravity.   

The inlet pipe has diameter, d = 7 0.21 x 10
-3

 m and is 1.10 m long (157d) to ensure a 

fully-developed flow at the exit section.  The pipe is made from steel.  To facilitate 

optical access and flow visualization, the walls of the test section were constructed from 

0.025 m thick transparent acrylic plates having a refractive index of 1.47.  The test 

section of the channel has a length of 1.00 m (143d), height of 0.30 m (43d), and width of 

0.50 m (71d).  The coordinate system used here is the same as that in Chapter 1.  

3.2.2  Test Conditions 

Measurements were made for the following three different fluids: Newtonian fluid 

(water), and two non-Newtonian fluids (XG005 and XG010).  The wall jet flow was 

characterised by a generalised inlet or initial Reynolds number, Rej at the pipe exit which 

is given as:  

2 1/n n n

j j oRe u d               (3.1) 

where uj is the maximum velocity at pipe exit and all other parameters have their usual 

meanings.  The Newtonian fluid can be considered as a special case of a power-law based 

non-Newtonian fluid.  In this case, n = 1.0 whereas the viscosity at zero shear rate, μ0 

becomes the dynamic viscosity of the fluid with the characteristic time scale, θ taking a 

value of zero.   

The Reynolds numbers for the measurements were in the range: 250 ≤ Rej ≤ 800.  Due to 
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optical challenge at the inlet of the jet (x/d = 0), the measured inlet velocities were 

obtained at x/d  0.5.  Table 3.2 provides a summary of the expected exit jet velocity (uj) 

which is obtained from Eqn. 3.1 and the measured jet velocity (uj
m
).  It should be 

remarked that the more viscous fluid will have higher velocity at the same Reynolds 

number.  It is clear from Table 3.2 that the expected velocity is approximately 0.0 to 6% 

higher than the corresponding measured values.   

Table 3.2: Summary of inlet jet velocities, uj (m/s) with Reynolds numbers 

Rej Newtonian XG005 XG010 

 uj  uj 
m

 uj  uj 
m

 uj  uj 
m

 

250 -  0.106 0.100 0.224 0.214 

310 0.044 0.042 - - - - 

420 -  0.142 0.135 0.302 0.300 

800 0.114 0.110 0.203 0.203 0.438 0.425 

 

For each test condition corresponding to a Reynolds number (Rej), measurements were 

conducted in various x-z and x-y planes positioned either at the plane of symmetry (y = 0) 

or zm.  These measurements were performed over a streamwise distance that covers both 

the developing and self-similar regions.  The experimental procedure is given in the next 

section. 

3.2.3  Measurement Procedure 

The velocity measurements were performed using a particle image velocimetry (PIV) 

technique.  A detail description of the principle of PIV is presented in Appendix A.  

Therefore, only the various components of the specific PIV system, image acquisition 
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and post-processing are presented in this section.  

The flow was seeded with 10 m hollow glass spheres seeding particles having a specific 

gravity of 1.4.  Based on the analysis and expressions provided in Section A.1.3 

(Appendix A), the settling velocity and particle response time were estimated to be vs = 

2.18 x 10
-11

 m/s and tr = 7.78 x 10
-6

 s, respectively for the Newtonian fluid.  The 

corresponding values based on apparent viscosity at zero shear rate for XG005 and 

XG010 are 3.96 x 10
-13

 m/s and 1.41 x 10
-7

 s and 1.98 x 10
-13

 m/s and 7.07 x 10
-8

 s, 

respectively.  An Nd-YAG dual pulsed-laser (120 mJ/pulse) of 532 nm wavelength was 

employed to illuminate the flow field.  Measurements were performed in both the 

symmetry plane of the jet (y = 0) and the x-y plane at zm.  For the measurement in the 

symmetry plane, the laser sheet was positioned at the bottom of the channel and the 

camera at the side.  A 12 bit HiSense 4M camera (2048 pixels  2048 pixels CCD array 

size and a 7.4 μm pixel pitch) was used to image the flow field.  Several planes of 

measurements were made in order to cover the region 0  x/d  70.  The measurement 

plane had a field of view of 90 mm  90 mm.  The time interval between pulses was 

chosen such that the maximum particle displacement was 25% of the interrogation 

window size.  The particle image diameter was estimated to be dp = 1.99.  This value is 

very close to the recommended value of dp  2 pixels required to minimize peak locking 

(Raffel et al, 1998).  In fact, histograms (Fig. A.3, Appendix A) of the raw velocity 

vectors confirmed that there was no observable peak locking.  

The PIV images were post-processed using the adaptive-correlation option of 

FlowManger 4.50.17 (Dantec Dynamics, Ramsey, New Jersey, USA) to obtain the 
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instantaneous velocity vectors.  Interrogation windows (IWs) of ∆x = 16 pixels × ∆z = 16 

pixels with 50% overlap were used to process the images.  The corresponding physical 

spacing between vectors was ∆x = 0.35 mm  ∆z = 0.35 mm in the symmetry planes.  The 

adaptive correlation uses a multi-pass fast Fourier transform (FFT) cross-correlation 

algorithm to determine the average particle displacement within the IW.  A three-point 

Gaussian curve fit was used to determine particle displacement with sub-pixel accuracy.  

Based on preliminary convergence test, for the Newtonian fluid, it was decided to use 

450 and 700 instantaneous image pairs, respectively, to compute the velocities for Rej = 

310 and Rej = 800 experiments. Meanwhile, 750 instantaneous image pairs were used to 

compute the velocity vectors for the non-Newtonian fluids.   

A similar procedure was employed for the measurements in the x – y plane.  Here, the 

camera was positioned at the top of the channel and the laser sheet was shot from the 

side.  The measurements were made at a field of view of 61 mm  61 mm for several 

planes in the region 0  x/d  45 for x – y planes.  The instantaneous images were post-

processed with IW of 32 pixels x 32 pixels with 50% overlap, and the corresponding 

physical spacing between vectors was 0.48 mm.   

3.2.4  Measurement Uncertainty  

Measurement uncertainty analysis was performed following the methodologies proposed 

and explained by Coleman and Steele (1995) and Forliti et al (2000).  A complete 

description of the uncertainty analysis is presented in Appendix A.2.  In general, a 

complete uncertainty analysis involves identifying and quantifying both the bias and 

precision errors in each part of the measurement chain.  In PIV technique, the accuracy of 
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velocity measurement is limited by the accuracy of the sub-pixel interpolation of the 

displacement correlation peak.  Other sources of measurement uncertainties include 

particle response to fluid motion, light sheet positioning, light pulse timing, and size of 

interrogation window.  Detailed analyses of bias and precision errors inherent in PIV 

technique are available in Prasad et al (1992) and Forliti et al (2000).  Forliti et al (2000) 

showed that the Gaussian peak-fitting algorithm has the lowest bias and precision errors.  

On basis of the size of interrogation window and curve fitting algorithm used to calculate 

the instantaneous vector maps, and the large number of instantaneous images used to 

calculate the velocity, the uncertainty in the velocities at 95% confidence level is 

estimated to be  1.9% for the measurements in the Newtonian fluid.  Close to the plane 

wall, uncertainties in velocities are estimated to be  2.7%.  The corresponding values for 

the non-Newtonian fluids are  3.2% and  3.5%, respectively. 

3.3  Numerical Procedure 

3.3.1 Governing Equations and Boundary Conditions 

The governing equations for an incompressible flow may be written in tensor form as 

follows:  

Continuity equation:  

0i

i

u

x
  (3.2) 

Momentum equation: 

ji i i
j

j j j i i

uu u u p
u

x t x x x x
 (3.3) 
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where ui represents the velocity component corresponding to the Cartesian coordinate xi, 

p is the pressure, and μ is either the dynamic or apparent viscosity depending on the fluid.  

Based on the fluids rheology given in Section 3.1.2, the apparent viscosity is computed 

using Eqn. 2.3. 

The boundary conditions used for the computational domain shown in Fig. 3.4 are as 

follows:  

i) Inlet (x/d = 0): a fully developed pipe flow profile in the region 0 < z/d < 1 and 0 < 

y/d < 0.5, specified; otherwise, u = v = w = 0.  For the Newtonian fluid, the velocity 

profile is given as u(r)/ub = 2 [1 – (2r/d)
 2

], where ub is the bulk velocity, and r is the 

local radius which is a function of y and z.  There is no analytical solution for 

Carreau fluid; therefore, a complete pipe flow was computed. The fully developed 

profiles will be presented and discussed subsequently (Section 3.3.2).   

ii) Outlet (x/d = 143): pressure, pspec = 0   

iii) Symmetry plane (y/d = 0): d(u, v, w, p)/dy = 0.  This was done to take advantage of 

the symmetric nature of the 3D wall jet flow field.  

iv) Side wall (y/d = 35.5): u = v = w = 0. 

v) Bottom wall (z/d = 0): u = 0, v = 0 and w = 0. 

vi) Top surface (z/d = 43): d(u, v)/dz = 0, and w = 0. 

It should be remarked that the computational domain is a replicate of the experimental 

domain including the coordinate system, i.e., streamwise, spanwise and transverse 

directions corresponding to x-, y- and z-axes, respectively; x = 0 at the pipe exit, z = 0 on 

the bottom wall and y = 0 in the symmetry plane of the jet.  In the experimental set-up, 
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the top was open and therefore zero gradient was assumed with u and v at z/d = 43 

obtained by using first-order approximation.  At the outlet plane (x/d = 143) where 

pressure was specified, the normal velocity, u was obtained from the mass flux.  Previous 

work (Adane and Tachie, 2008a) demonstrated that using zero-gradient at the outlet plane 

produced instability of the solver.  It is therefore prudent to specify the pressure which is 

here taken as zero since one would expect nearly uniform distribution of the velocity at 

the outlet.  Also, the outlet is far from the region of interest and therefore would not have 

a significant effect on the solution.  The viscosity at the boundaries was obtained by first-

order extrapolation.  Meanwhile, the pressure at boundaries where pressure was not 

prescribed was obtained by a linear extrapolation from the two nearest neighbouring cells 

(Ferziger and Perić, 2002).    

 

Figure 3.4: Schematic of the present computational flow domain with boundary 

conditions. 
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3.3.2 Fully Developed Velocity Profiles at Pipe Exit  

The fully-developed velocity profiles normalised by the bulk velocity, U (= u/ub) for the 

two non-Newtonian fluids (XG005 and XG010) at Rej = 250, 420 and 800 are shown in 

Fig. 3.5.  The transverse distance, z is normalised by d, i.e. Z = x/d.  In each of the plots, a 

fully-developed profile for laminar flow of Newtonian fluid is shown for comparison.   
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Figure 3.5: Comparison of the fully-developed velocity profiles at various Rej: a) XG005 

and b) XG010 with Newtonian fluid superimposed. 
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Unlike the parabolic velocity profile for the Newtonian fluid, the profiles for the two 

shear-thinning non-Newtonian fluids are typically „plug-like‟ in the core region.  For a 

given xanthan gum concentration, the profile becomes flatter as the inlet Reynolds 

number decreases.  When the inlet Reynolds number is kept the same, the fluid with a 

higher concentration (XG010) becomes flatter.  In the regions: Z ≥ 0.7 and Z ≤ 0.3, there 

is no significant difference among the various profiles for XG005 fluids.  These profiles 

are also similar to the Newtonian velocity profile in the regions: Z ≥ 0.75 and Z ≤ 0.25.  

Although the various profiles for XG010 are also similar in the regions, Z ≥ 0.75 and Z ≤ 

0.25, these profiles are distinctly different from the profile for the Newtonian fluid.  It 

should be noted that the ratio of the maximum velocity to the bulk velocity (uj/ub) is 1.65, 

1.68 and 1.73, respectively for Rej = 250, 420 and 800 for XG005.  The corresponding 

values for XG010 fluid are 1.58, 1.62 and 1.66 for Rej = 250, 420 and 800, respectively.  

These values are significantly lower than uj/ub = 2.0 for the Newtonian fluid. 

3.3.3 Numerical Solution Method 

The conservation equations (3.2) and (3.3) were discretised using a colocated finite-

volume method for general orthogonal grids which is described in detail in Ferziger and 

Perić (2002).  Here, only a brief summary is provided, more details can be found in 

Appendix B.  The standard central difference scheme (CDS) is used for the diffusion 

terms.  In order to achieve a more accurate representation of the convective terms, the 

CDS was implemented in the form of a deferred correction (Khosla and Rubin, 1974) to 

the first-order upwind approximation (UDS).  The main advantages of deferred correction  

are stability, simplicity, and computer-memory saving.  The deferred correction approach 

tends to promote numerical stability as it ensures that the coefficient matrix is more 
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diagonal dominant.  The discretisation of the equations (3.2) and (3.3) becomes: 

0f

f

m  
     

           (3.4) 

, ,P i P k i k

k

C u C u b                (3.5) 

For a specific nodal point, „P‟ index k runs over the six nearest neighbours, 
fm and ui (u, 

v and w) are the mass fluxes through the control volume faces and nodal velocity, 

respectively.  Meanwhile, the coefficients Ck consists of contribution from the implicitly 

treated parts of both convection and diffusion fluxes, whereas bφ contains the pressure 

term for the respective velocity component and the explicitly treated parts of convection 

and diffusion.  It should be mentioned that at convergence the UDS terms are expected to 

cancel out leaving only CDS terms.  Also, the deferred correction approach is 

implemented by using a blending factor ranging from 0.0 to 1.0 with 0.0 corresponding to 

UDS whereas 1.0 is for CDS.  For results presented here, a blending factor of 1.0 was 

used.  For the time integration, a three-time level implicit method scheme is employed via 

deferred correction with first order implicit Euler scheme.  The time integration is 

formally Ο (∆t
2
) accurate.  The under-relaxation parameter was incorporated to account 

for the nonlinear nature of the equation systems and stability of the solver (Patankar, 

1980). 

Pressure-velocity coupling on the colocated grid was achieved with interpolation scheme 

suggested by Rhie and Chow (1983).  A segregated solution approach using the 

SIMPLEC algorithm (Van Doormaal and Raithby, 1984) was used.  A Poisson equation 

solved for the pressure-correction field by enforcing mass conservation is as follows: 
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m m

P P k k m

k

C p C p b                (3.6) 

where bm is an artificial mass source for each control volume left after mass conservation, 

and m

kC  is pressure-correction coefficients.  The boundary velocities are assumed to be 

prescribed and are not corrected except at boundaries where pressure values are 

prescribed.  This condition is equivalent to specifying a zero gradient on the pressure 

correction.  The velocities on pressure prescribed boundaries are, however, corrected.  

The resulting algebraic Eqns. (3.5 and 3.6) for nodal velocities and pressure correction, 

respectively, were solved using a 3D version of the strongly implicit procedure (SIP) 

solver (Stone, 1968).  The solution algorithm consists of a sequential solution of the three 

discretised momentum equations and the pressure-correction equation.  The velocities, 

mass fluxes and pressure are then corrected.  These values are used to update the 

coefficients and to calculate the viscosity in the case of the non-Newtonian fluids for the 

next outer iteration.  The viscosity is thus treated explicitly.  For each SIMPLEC iteration 

(outer iteration), up to five and fifteen SIP iterations are performed for each of the 

velocity components and the pressure field, respectively.  The SIP iterations are 

terminated if the residual level drops by a factor of five.  A solution to a tighter tolerance 

yielded no advantage since the variables need to be updated in outer iterations.  The 

convergence criterion, which is the residual norm (the sum of absolute residuals over all 

control volumes) for each equation, was set to 10
-4

.  It is noteworthy that pseudo-time 

marching algorithm was performed for the Newtonian fluid at Rej = 800.  Even for such 

flow conditions, only a steady-state condition was sought.  All the simulations were 

performed on a Sun V20z machine with 4031MB memory.  The longest computing time 
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for the Newtonian fluid is 3 days at Rej = 800 for the medium grid which is 6.27 million 

cells.  Preliminary results show that the velocities decrease to zero very early for the non-

Newtonian fluids.  Since these fluids required a very significant amount of computing 

time, the streamwise distance was reduced to x/d = 100.  It should be noted that this 

region is still far from region of interest.  Even with such a relatively small domain, a 

typical computation time was 3 days for the medium grid (6.68 million cells).   

A thorough checked for internal consistency was performed on the code that implements 

the numerical model.  As will be presented and discuss in Section 3.4, various benchmark 

problems including lid-driven cavity flows and fully-developed channel and pipe flows 

were used to validate the code.  In addition, 3D laminar wall jet flows were computed 

using a commercial CFD code, Fluent.  In all the test cases, very good agreement was 

obtained.   

3.3.4 Mesh Independence 

The goal of this section is to determine the grid structure that ensures acceptable 

numerical accuracy.  Three grid meshes were used to investigate the mesh sensitivity of 

the computation.  The computational domain shown in Fig. 3.4 was divided into a 

number of control volumes by assigning nodes on respective direction.  The grid was 

uniformly spaced in the pipe region, and beyond that region clustered grids were used for 

both transverse and spanwise direction.  In the streamwise direction, geometric expansion 

was used for grid spacing.  The test was conducted using coarse, medium, and fine grids 

made up of coarse (3.47 million cells), medium (6.27 million cells) and fine (12.9 million 

cells) for the Newtonian fluid.  The maximum and minimum grid sizes (Δx, Δy and Δz) 
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are given in Table 3.3.  The streamwise nodes were kept constant for all the three meshes 

investigated.  Preliminary tests were performed to assert that the chosen number of nodes 

showed no significance influence on the results.  The corresponding meshes used for the 

two non-Newtonian fluids are coarse (2.85 million cells), medium (6.68 million cells) 

and fine (14.99 million cells), and the maximum and minimum grid sizes are also given 

in Table 3.3.  A sample of the computational mesh is shown in Fig. 3.6. 

Table 3.3: Mesh sizes in m 

Mesh x (min, max) y (min, max) z (min, max) 

Newtonian Fluid 

Coarse 6.26 × 10
-4

, 4.60 × 10
-3

 1.40 × 10
-4

,  2.39 × 10
-2

 1.40 × 10
-4

, 2.34 × 10
-2

 

Medium 6.26 × 10
-4

, 4.60 × 10
-3

 1.40 × 10
-4

,  1.72 × 10
-2

 1.40  × 10
-4

; 2.00 × 10
-3

 

Fine  6.26 × 10
-4

, 4.60 × 10
-3

 1.13 × 10
-4

,  1.16 × 10
-2

 1.13 × 10
-4

; 1.30 × 10
-3

 

Non-Newtonian Fluids (XG005 and XG010) 

Coarse 1.91 × 10
-3

,  2.09 × 10
-3

 9.46 × 10
-5

,  2.40 × 10
-3

 9.46 × 10
-5

,  2.93 × 10
-3

 

Medium 1.91 × 10
-3

,  2.09 × 10
-3

 5.74 × 10
-5

,  2.01 × 10
-3

 5.74 × 10
-5

,  2.45 × 10
-3

 

Fine  1.91 × 10
-3

,  2.09 × 10
-3

 3.85 × 10
-5

,  1.06 × 10
-3

 3.85 × 10
-5

,  1.29 × 10
-3

 

 

Based on the jet half-widths in the similarity region, the maximum difference between the 

coarse and medium grids was 0.46% for the Newtonian fluid.  In terms of local maximum 

velocity examined, the maximum percentage change was 0.21%.  The corresponding 

differences between the medium and fine grids were 0.21% and -0.21%, respectively.  

For the non-Newtonian fluids the differences in jet half-widths are 2.30% and -0.90%, 

respectively, for the coarse and medium, and the medium and fine grids. Meanwhile, for 
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the local maximum velocity the corresponding differences were -2.50%, and -0.98%, 

respectively.  Based on these tests, the medium grid for each fluid was used for the 

present work.   

 

Figure 3.6: A sample of the computational mesh. 

3.4 Validation of the Numerical Procedure 

It is imperative that validation tests are performed for any numerical technique (CFD) 

employed for studying any fluid flow to assess its capability and accuracy.  In the 

validation procedure, the numerical results are compared with either experimental results 

or other previous numerical or analytical results.  The flow geometry for validation tests 

need not to be identical to that of the end application.  However, the underlining flow 

physics and phenomena should be similar.   
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In the present work, various benchmark problems were used to assess the accuracy of the 

finite volume solver and validate its results.  The benchmark problems selected for this 

study are: developing flow field in a channel and lid-driven cavity flows.  These 

benchmark cases are carefully selected to investigate the ability of the code to accurately 

compute laminar, Newtonian, non-Newtonian, and incompressible flows.  These test 

problems were also chosen because they are either similar to a wall jet which in the sense 

that they possess a point of inflection in the velocity profile or they have similar physical 

phenomena such as vortex dynamics.  Moreover, they represent classical benchmark 

problems that have been carefully investigated by previous researchers and are well 

documented in the literature.   

In the subsequent sections, individual test cases of the aforementioned flows are 

described and presented in detailed.  The results from the present CFD code were 

compared with those from previous studies.  The first part discussed the developing flow 

field in a channel, and then followed by the study of lid-driven cavity flows.  The last 

section presents the work on mesh generation of circular pipe.   

3.4.1 Developing Flow Field in a Channel 

The fluid dynamics behaviour of flow through channels (non-circular ducts) has a wide 

application in heat transfer such as compact heat exchangers.  Consequently, there have 

been extensive studies on such geometries analytically, numerically, and experimentally.  

Most of these studies involved Newtonian fluid and 2D channel flow.  This is due to its 

simplistic analysis where the flow becomes one-dimensional in the fully developed 

region.  In the non-circular ducts, however, the developing flows analysis is three-
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dimensional.  It is also not uncommon for one to encounter non-Newtonian fluids in 

many industries such as chemical, pharmaceutical, biological, and food.  Since these 

fluids have their viscosities being a variant, the flow dynamics become complicated.  

This further increases the complexity of the analysis of flow in non-circular channels, 

especially those involving non-Newtonian fluids.   

In addition to the above-mentioned practical applications, the availability of numerous 

analytical, numerical and experimental results has made these flows a suitable benchmark 

problem.  Therefore, both 2D and 3D flows were computed for both Newtonian and non-

Newtonian fluids.   

3.4.1.1 Flow geometry and description 

Most of the prior studies on 3D channel flows employed analytical (Han, 1960; 

Schechter, 1961), numerical (Curr et al, 1972; Gervang and Larsen, 1991) and 

experimental (Goldstein and Kried, 1967) techniques.  The general observations from 

these studies are that there is a good agreement among the results in the fully developed 

region.  For the Newtonian fluid, while, there is a better agreement between numerical 

and experimental results in the developing region, analytical techniques produced 

velocity and pressure in the developing region with significant variation (Curr et al, 

1972).  The obvious reason was the neglect of the cross-stream or transverse velocities 

and the non-linear terms in the streamwise momentum equation (Curr et al, 1972).  

Although some attempts have been made in the past to analytically predict channel flow 

of non-Newtonian fluids, it does appear that exact solution is still not available.   

The present CFD code which has been fully described in Appendix B was used to 
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compute the flow in 2D channel shown in Fig. 3.7.  The computations were performed 

for both Newtonian and non-Newtonian fluids.  The generalised Reynolds number was 

defined as: 

             (3.7) 

where ρ is density, Ub is the bulk velocity, h is the channel height, θ is a characteristic 

time scale, o is the apparent viscosity at zero shear rate, and n is the power-law index.  

For a power-law fluid, λ which is the consistency index replaces o and the characteristic 

time scale becomes 0.  In the case of a Newtonian fluid which can be considered as a 

special case of the power-law non-Newtonian fluid; n = 1 and the consistency index, λ 

becomes the dynamic viscosity of the fluid.  Three different power-law fluids (i.e. n = 

1.0, 0.7 and 0.5) were used, and for each fluid the computation was performed at 

Reynolds number, Re = 245.  The rheological data for the power-law non-Newtonian 

fluids from Li et al (2005) and Dressler (2006) were used for the two non-Newtonian 

fluids.  These are: n = 0.5214, ρ = 1000 kg/m
3
, λ = 3610.9 mPa•s

n
 and n = 0.702, ρ = 

1090 kg/m
3
, λ = 0.1803 Pa•s

n
.   

 

Figure 3.7: Schematic diagram of a square section channel.  
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The 2D case of Fig. 3.7 was achieved through the use of boundary conditions.  The 

boundary conditions consist of the following: 

x = 0: u (0, z) = Ub;   x = L: d (u, w, p) / dx = 0;   z  [0, h]: [u, w] = 0 

y  [0, b] = symmetry: d (u, w, p) / dy = 0 

Three-dimensional flows through a square channel (Fig. 3.7) by Goldstein and Kried 

(1967) and Han (1960) were computed for a Newtonian fluid.  The flow geometry shown 

in Fig. 3.7 consists of a 0.01 m square section (b x h) channel and 1.0 m (l) long.  The 

Reynolds number based on the channel height and bulk velocity (Eqn. 3.7) is 387.  It 

should be mentioned that for a square cross-section, the channel height is the same as the 

hydraulic diameter.   

For the non-Newtonian fluid, the analytical (Schechter, 1961) and numerical (Gervang 

and Larsen, 1991; Lima et al, 2000) works were computed.  Gervang and Larsen (1991) 

computed a non-Newtonian fluid through a rectangular cross-section channel.  The 

channel cross-section is 0.001 m high and 0.016 m wide.  Gervang and Larsen (1991) did 

not provide the length of the flow domain and therefore, 2.6 m was chosen for stability 

and better convergence of the present code.  The Reynolds number of the flow is 

approximately 3 using Eqn. (3.7) with h being the channel height.  The rheological data 

for the fluid are: n = 0.37, ρ = 1000 kg/m
3
, λ = 8.5 Pa•s

n
.  Schechter (1961) and Lima et 

al (2000) studied various aspect ratios of the 3D channel flow with square cross-section 

as a special case.  The works by Schechter (1961) and Lima et al (2000) were based on 

dimensionless form of the governing equations; therefore, the flow parameters including 

a well-defined Reynolds number were sketchy.  Moreover, they studied various power-
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law fluids which have power law index ranging from 0.4 to 1.5.  For a comparison with 

the present study, a Reynolds number of 100 and power law index, n = 0.5 was selected.  

Also, a Carreau shear-thinning fluid (Carreau model) with similar power law index (n = 

0.5) is investigated and to be compared with power-law fluid.   

The rheological data for the power-law fluid was given by Barnes et al (1989) and they 

are: n = 0.5, λ = 50 Pa•s
n
.  This fluid is called molten chocolate which has density of ρ = 

1500 kg/m
3
 (Chhabra and Richardson, 1999).  The corresponding data for Carreau fluid 

are: n = 0.49, θ = 11.0 s,  = 0.001 Pa•s, ρ = 1003 kg/m
3
, and o = 8.20 Pa•s

n
.  This non-

Newtonian fluid was prepared from 0.85 wt% Separan AP30 and water (Chhabra and 

Uhlherr, 1980).    

The boundary conditions for the 3D Channel flows consist of the following: 

x = 0: u (0, y, z) = Ub;  x = L: d (u, w, p) / dx = 0;  z  [0, h]: [u, v, w] = 0 

y  [0, b]: [u, v, w] = 0 

The viscosity at the boundaries was obtained by first-order extrapolation.     

3.4.1.2  Results and discussion  

Figure 3.8 shows the velocity profiles of the three power-law fluids for the 2D channel 

flow.  The expression for the analytical solution is given as: 

1
( ) 2 1 2

1 1
1

n
n

b

u z n z

U n h
              (3.8) 

where all the symbols have their usual meaning.  Equation 3.8 also indicates that the 

normalised maximum velocity is only a function of fluid behaviour.  The grid used for 

this flow is 150 x 2 x 46 for streamwise, spanwise and transverse direction, respectively. 
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In Fig. 3.8, there is no distinction between the present and analytical results irrespective 

of the fluid.  The velocity profile changed from a pure parabolic to the so-called “plug-

like” nature as the degree of the shear-thinning, n increases.  In a better sense, the sheared 

layer near the wall tends thinner as the fluid becomes more shear-thinning.     
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Figure 3.8: Normalised fully developed velocity profiles for various power-law fluids in 

a two-dimensional channel flow. 

For Newtonian fluid, three meshes were employed to study 3D channel flows.  These 

grids are coarse (32 x 32), medium (64 x 64), and fine (100 x 100) corresponding to the, 

spanwise and transverse direction, respectively.  For each mesh, 200 node points were 

specified on the streamwise direction.  This is because it is widely known that the channel 

flows are insensitive to the streamwise direction and any effect on the flow physics 

results from the cross-stream flows (Curr et al, 1972).  The grid independent tests showed 

that the maximum difference between the coarse and medium for the maximum 

centreline velocity was 0.32%.  The corresponding value for the medium and fine was 

0.06%.  Figure 3.9 shows the maximum centreline velocity, Uc (= uc / Ub) along the 
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streamwise direction, X (= x / h) for various grids.  In terms of pressure coefficient Cp (= 

(Pin-Pout) / 0.5ρUb) the difference between coarse and medium, and medium and fine 

were -0.54% and 0.23%, respectively.  Based on these tests, the medium grid was chosen 

and compared with previous works in the subsequent discussion.   
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Figure 3.9: Centreline velocity development with streamwise direction 3D channel flow 

of Newtonian fluid. 

The streamwise velocity profiles at two selected axial stations (X = 2.9 and fully-

developed section) in the mid-plane, Y = 0.5 (where Y = y / h), are shown in Fig. 3.10a.  

There is no noticeable difference between the present results and the measurements by 

Goldstein and Kried (1967).  Han‟s results over-predicted the velocities at X = 2.9 in the 

core region of the flow.  This was also evident in the maximum centreline velocities 

along the channel (Fig. 3.10b).  As noted in Section 3.4.1.1, the reason for the deviation 

of Han‟s analytical results is attributed to the neglect of the cross-stream velocities and 

the non-linear terms in the streamwise momentum equation.   

Figure 3.10b shows that the flow becomes fully developed after X = 32.5.  In the present 
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results, the maximum centreline velocity, Uc in the fully developed region was found to 

be 2.094.  This value is in excellent agreement with 2.096 0.1% and 2.096 reported by 

Goldstein and Kried (1967) and Han (1960), respectively.  The entrance length which is 

defined as X value at 99 percent of maximum Uc values was found to be 27.69 compared 

to 34.83 by Goldstein and Kried (1967) and 29.10 by Han (1960).   
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Figure 3.10: Comparison of the present and previous results: a) velocity profiles and b) 

centreline velocity for 3D channel flow of Newtonian fluid. 
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The velocity profiles for the non-Newtonian fluids are presented in Figs. 3.11 and 3.12.  

The vertical axes of these figures, the transverse and spanwise distances, are normalised 

by the height, h whereas the horizontal axes are normalised by the bulk velocity, Ub.  

That is, Z = z / h, Y = y / h and U = u / Ub.  In Fig. 3.11, the results at the mid-plane in 

transverse, Z = 0.5 and spanwise Y = 8 directions are compared with the previous study 

by Gervang and Larsen (1991).  For the purpose of validation, the mesh (22
2
) used by 

Gervang and Larsen (1991) were employed, and 100 grid points were specified in the 

streamwise direction.  It should be mentioned that Gervang and Larsen (1991) provided 

no data on the streamwise direction.  A very good agreement between the present and 

previous results is observed.  Similar observation is made for Fig. 3.12, where there is no 

marked difference between the present and previous numerical results.  Good agreement 

between the numerical and analytical (Schechter (1961) results is only observed in the 

region closed to the walls (Z < 0.2 and Z > 0.8).  The analytical result over-estimated the 

normalised velocities in the core region including the maximum velocity.  It should be 

remarked that, Fig. 3.12 shows no clear distinction between the power-law model profile 

and that of the Carreau model.   

3.4.2 Lid-Driven Cavity Flows 

3.4.2.1  Introduction 

The lid-driven cavity is one of the simplest flow geometries with complex flow structure.  

For this reason, it is widely used as a benchmark for CFD code validations.  For example, 

it exhibits numerous complex fluid dynamics phenomena such as eddies, recirculation 

zones, complex 3D patterns, and velocity singularities at the cavity corners.  Some of 

these phenomena are found in wall jet flows.  These flow dynamics pose a challenge for 
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Figure 3.11: Fully developed streamwise velocity profiles: a) Y = 8 and b) Z = 0.5 for 

3D channel flow of power-law non-Newtonian fluid. 
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Figure 3.12: Fully developed streamwise velocity profiles for 3D channel flow of non-

Newtonian fluid fluids. 
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any numerical methods especially if the fluid property is not constant as in the case of 

non-Newtonian fluids.  The singularities will obviously be a challenge for the power-law 

model.   

For the Newtonian fluids, Koseff and Street (1984) reported the existence of end wall 

effect in 3D cavity flow which was absent in 2D cavity flow.  The end wall effect 

produces different flow patterns resulting in the formation of eddies and vortices.  This 

effect also depends on the width to length ratio of the cavity (Koseff and Street, 1984).  

Recently, Shankar and Deshpande (2000) also reported that, at Re  1000 the flow field 

becomes unsteady with loss of symmetry about the mid-plane. 

In the case of power-law non-Newtonian fluids for the 2D cavity flows, the peak values 

of the velocities are influenced by both Reynolds number and power-law index 

(Neofytou, 2005).  This observation was attributed to viscous effect.      

In the subsequent sections, the discussion of present work on both 2D and 3D lid-driven 

flows is presented.  The problem definitions and boundary conditions are first discussed, 

and the present results are compared with prior experimental and numerical works.  The 

lid-driven flows of both Newtonian and non-Newtonian fluids were computed.   

3.4.2.2  Problem definition  

Most of the previous studies on this subject have been for 2D flows, especially those of 

the Newtonian fluid.  The study of three-dimensional lid-driven flows has focused on 

Newtonian fluid (Koseff and Street, 1984; Shankar and Deshpande, 2000; Lilek et al, 

1997; Lo et al, 2005).  The 3D lid-driven flows computed for Newtonian fluid will be 
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compared with experimental studies by Koseff and Street (1984), and numerical works 

by Lilek et al (1997) and Lo et al (2005).  Koseff and Street (1984) made laser Doppler 

anemometer (LDA) measurements of Reynolds numbers ranging from 1,000 to 10,000.  

The flow configuration is shown in Fig. 3.13.  This figure showed a reproduction of 

Koseff and Street (1984) experimental setup.  The flow geometry is of 0.150 m square 

section channel (H x L) and 0.450 m long (B).  The computation is only performed for 

the Reynolds number of 3,200.  At this Reynolds number one would expect unsteady 

flow field (Shankar and Deshpande, 2000).  Thus, this problem will be used to validate 

the time-marching version (pseudo-transient) of the present code.  The Cartesian 

reference frame described in Section 3.4.1 is utilised with the origin at the lower left 

corner of the cavity (see Fig. 3.13).   

 

Figure 3.13: Schematic diagram of the lid-driven cavity.  
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Lilek et al (1997) solved the 3D lid-driven flow using a finite volume based colocated 

code by employing SIMPLE algorithm for velocity-pressure coupling.  It should be 

mentioned that Lilek et al (1997) work was for code validation and they only compared 

results from various mesh sizes (8
3
 - 128

3
).  Here, only the mesh (64

3
) at Reynolds 

number of 1,000 was used for comparison.  Lo et al (2005) on the other hand used a finite 

difference method to solve the vorticity transport equation for various Reynolds numbers 

(Re: 100 – 2,000) using a cubic cavity.  Their computational results at Re = 1,000 will be 

compared with the present results.  For both works (Lilek et al, 1997 and Lo et al, 2005), 

Fig. 3.13 was modified to a cuboid with a size of 1.0 m.   

The two-dimensional lid-driven flow of non-Newtonian fluids by Neofytou (2005) was 

computed.  Neofytou (2005) employed a finite volume colocated code based on SIMPLE 

algorithm to study the non-Newtonian effects on the lid-driven flows.  The convective 

terms of the governing equations were discretised using QUICK whereas CDS was used 

for the diffusion terms.  Various non-Newtonian constitutive equations including power-

law model were implemented for the viscosity.  The Reynolds number defined similar to 

Eqn. (3.7) was 100.  In the present study, the 2D lid-driven flow was achieved through a 

smaller width (0.1 m) and boundary conditions.  The present code will be used to solve a 

cubic cavity of Re = 1,000 for four power-law non-Newtonian fluids with water being a 

special case and one Carreau fluid.   

The rheological data for the non-Newtonian fluids are:  

(i) n = 0.4, λ = 0.5 Pa•s
n
 and ρ = 1063 kg/m

3
.  This fluid corresponds to synovial fluid 
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with its rheological data taken from Barnes et al (1989) and the density from Dai et 

al (1997).    

(ii) The other two power-law fluids are n = 0.5 and 0.702, and the Carreau fluid, n = 

0.49 whose rheological data are already given in Section 3.4.1.1.  

3.4.2.3  Boundary conditions and numerical solution 

The boundary conditions of the lid-driven cavity consist of the following: 

2D Lid Cavity: 

x  [0, L]: [u, w] = 0;   z = 0: [u, w] = 0;   z = h: u = Ulid 

y  [0, b] = symmetry: d(u, v, w, p)/dy = 0.   

3D Lid Cavity: 

x  [0, L]: [u, v, w] = 0;  z = 0: [u, v, w] = 0  z = H: u (x, y) = Ulid 

y  [0, B]: [u, v, w] = 0 

The lid velocity, Ulid values are tabulated in Table 3.4.  These values are based on Eqn. 

3.7 and the fluid properties given in Sections 3.4.2.2 and 3.4.1.1.  The viscosity at the 

boundaries was obtained by first-order extrapolation.     

Table 3.4: The lid velocities, Ulid (m/s)  

Re Newtonian Power-law Carreau 

2D  n = 0.50  

100 - 2.232  

3D n = 1.00 n = 0.702 n = 0.50 n = 0.40 n = 0.49 

1000 1.000 0.250 10.357 0.624 2.407 

3200 3.200  - -  

A grid independent study was only performed on the test cases whose meshes were not 

available in the previous works.  The flow domain shown in Fig. 3.13 was computed 
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using structured grids.  The mesh for 2D flows consists of 50 x 2 x 50 (coarse), 100 x 2 x 

100 (medium) and 200 x 2 x 200 (fine) on the streamwise (x), spanwise (y), and 

transverse (z), respectively.  Two nodes were specified in the spanwise direction in order 

to achieve the two-dimensionality of the flow.   

For 3D flows, 64
3
 mesh was used for Re = 1,000.  The grids were geometrically 

expanded and contracted in all three directions in wall vicinities.  A number of meshes 

were used to perform grid independence tests at the Re = 3,200.  The grid independence 

tests were conducted using uniformly distributed grids made up of coarse (40
3
), medium 

(60
3
), and fine (90

3
).  A comparison of these meshes with previous works for Re = 3,200 

will be discussed later.  

A three level time-marching algorithm was used for Re = 3,200.  A pure central 

differencing scheme (CDS) used for all the terms in all the governing equations produced 

several instabilities at this Reynolds number.  Therefore, the results presented here are 

based on 20 % of UDS and 80 % of CDS.  The convergence criterion was set to 10
-5

 and 

10
-4

 for the Newtonian and non-Newtonian fluids, respectively.   

3.4.2.4  Results and discussion  

Table 3.5 summarised the results obtained for 3D lid driven flow of Newtonian fluid at 

Re = 3,200 for various grids used.  In addition, the present results are compared with 

previous experimental (Koseff and Street, 1984) and numerical (Acosta, 2001) results.  It 

is clear from Table 3.5 that the medium (60
3
) mesh showed the least discrepancies.  The 

percentage difference between the present result and measured data is: 3.5% for umin, 

7.5% for wmin and 31.5% for wmax.  These discrepancies are, however, less than those 
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observed between previous numerical results (Acosta, 2001) and measurements.  A 

comparison of normalised streamwise velocity (U) profiles taken at the symmetry plane 

(y = B /2) is shown in Fig. 3.14.  From Fig. 3.14 and with 1 – 10 % measurement 

uncertainty reported by Koseff and Street (1984), the general inference is that, there is 

very good agreement between the present and previous results.  Similarly, the velocity 

profiles plotted in Fig. 3.15 at Re = 1,000 show no noticeable difference and that all the 

results are in good agreement. 

Table 3.5: Grid independent test and previous results 

 Mesh [Wmax , W,min] Umin 

 40
3 

0.21, -0.35 -0.23 

present  60
3 

0.25, -0.43 -0.29 

 90
3 

0.29, -0.46 -0.33 

Koseff and Street  0.19, -0.40 -0.28 

Acosta  0.20, -0.35 -0.22 
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Figure 3.14: Normalised streamwise velocity profiles at symmetry plane.  
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Figure 3.15: Comparison of normalised velocity profiles at symmetry planes.  

The 3D flow structures which are presented in terms of the streamlines and velocity 

vectors are shown in Fig. 3.16.  In this figure, three orthogonal central planes, x, y and z 

(see also Fig. 3.13) are shown for clarity.  The axes are normalised by H, i.e, X = x / H, Y 

= y / H and Z = z / H.  Figures 3.16a and 3.16b correspond to the x-z planes at Y = 1.5 

(mid-plane) and 2.88 (end-wall), respectively which are shown by dash lines in Fig. 

3.16c.  Additionally, Figs. 3.16c and 3.16d, respectively show the flow patterns in the 

planes X = 0.5 and Z = 0.5.  It should be recalled from Fig. 3.13 that Z = 0.5 plane is 

parallel to the moving lid.  The figure clearly revealed that the flow is made up of one 
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Figure 3.16: Flow visualisation of a 3D lid driven flow at planes: Y = 1.5(a) and 2.88 

(b), X = 0. 5 (c) and Z = 0.5 (d). 
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core circulation cell and three secondary eddies (Figs. 3.16a and 3.16b).  These features 

are more intense in the symmetry plane than the end-wall plane.  Furthermore, Fig. 3.16 

(c, d) also show the presence of corner vortex.  As the top lid (wall) moves in the positive 

x direction, one would expect the fluid to take the opposite direction for the return flow.  

This is evidently seen in the velocity vectors shown in Fig. 3.16d.  All these observations 

are similar to those reported by Koseff and Street (1984).   

The w–x and z–u plots for the present and previous results for a 2D lid driven flow of 

non-Newtonian fluids are shown in Fig. 3.17.  Except for the peak values of w where the 

difference between the present and previous results is about 11%, there is good 

agreement between them.  It should be remarked that the fluids may be difference in 

terms of its consistency.  This is because the previous work solved the dimensionless 

governing equations which obviously omit some of the fluid properties.  This might 

affect the secondary velocity, w.  Another factor that might have contributed to the 

discrepancy of the w values is the three-dimensionality of the present case.  The 2D was 

achieved through the boundary condition.   

The streamlines and the velocity vectors on the symmetry plane are shown in Fig. 3.18.  

There are one main and two bottom corner vortices.  These observations are consistent 

with those made by Neofytou (2005).  The location of the vortex eye shown in Fig. 3.18 

by dash lines was (0.73, 0.80) which was the same as that reported by Neofytou (2005).   

The results of the 3D lid driven flows of various power-law based fluids for Re = 1,000 is 

shown in Fig. 3.19.  The plots shown in Fig. 3.19 were obtained at mid planes (X = 0.5 

and Z = 0.5).  It can be seen from Fig. 3.19 that, n = 0.4 has its normalised velocity 
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Figure 3.17: Comparison of normalised velocity profiles for 2D Lid driven flow. 

 

Figure 3.18: Flow visualisation of a 2D lid driven flow of power-law shear-thinning 

fluid, n = 0.5. 
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Figure 3.19: Comparison of normalised velocity profiles at symmetry planes for various 

power-law and Carreau shear-thinning fluids at Re = 1,000. 

values substantially lower than those for n = 1.0.  This is true for both u and w.  Thus, 

decreasing n value resulted in a reduction of the velocities.  This is due to the fact that the 

higher n values tend to exhibit lower apparent viscosities around the centre of the cavity 

which allows for higher velocity gradients to occur (Neofytou, 2005).  In Fig. 3.19, the 

Carreau fluid that is close to power-law fluid with n = 0.50 is also shown.  Although 

these fluids are completely different in reality since one is chocolate and the other is 

Separan AP30 based fluid, the rationale for this comparison is to qualitatively assess the 

limitation of the power-law model.  The comparison (Fig. 3.19) shows that in the regions 
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(0.76 < X < 0.97) for W and (0.15 < Z < 0.49) for U, the velocities are higher for the 

Carreau fluid than the power-law fluid (n = 0.50).  Meanwhile, in the region 0.13 < X < 

0.67 for W, the values for Carreau fluid are lower than those for power-law fluid.  Beside 

these discrepancies, there is no difference between the profiles of both fluids.   

The flow patterns (Fig. 3.20) indicate that, by decreasing n the centre of the main vortex 

(vortex eye location) moves horizontally towards the right of the cavity.  For instance, the 

vortex eye location for n = 1 was at (0.59, 0.47) whereas for n = 0.4, it was (0.7, 0.49).  

This is contrary to the observation made by Neofytou (2005) for his 2D case, where he 

reported that the centre of the main vortex moves towards the upper right corner of the 

cavity as n decreases.  The probable reason might be due to the three-dimensionality.  

Another interesting observation is that the corner bottom vortices decreases in size with 

decreasing n.  In fact, n = 0.4 has only one corner bottom vortex with the height almost 

23.3% of that for n = 1 (Fig. 3.20a).  In a typical shear-thinning fluid, the apparent 

viscosity is higher at those corners than other flow domain.  These higher values 

prevented the secondary vortex structure thereby giving rise to a stagnant region in the 

lower region of the cavity.  The vortex eye location was also different for the power-law 

fluid (n = 0.5) and the Carreau fluid.  The vortex eye was located at (0.63, 0.48) for n = 

0.50 and (0.59, 0.47) for Carreau fluid.  In addition, only one corner bottom vortex (not 

shown here) was observed for n = 0.50 whereas Carreau fluid has two of the same 

strength corner vortices.  These indicate that the power-law fluid (n = 0.50) may have 

overestimated the apparent viscosity in those regions where the velocity becomes 

singular due to its unbound nature of the model. 
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Figure 3.20: Flow visualisation of a 3D lid driven flow: a) Newtonian fluid, n = 1.0 and 

b) power-law shear-thinning fluid, n = 0.4. 
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3.4.3 Mesh Generation for the Circular Geometry  

In the computations of the present work, a structure mesh was employed for the flow 

geometry including a circular section.  While for the rectangular geometries this type of 

mesh will pose no problem, the converse may be true for the circular geometry.  Figure 

3.21a shows a typical „stepwise‟ mesh used to approximate the circular pipe.  This 

section will assess this approximation.  

            

Figure 3.21: Sample mesh for the circular section: a) present code and b) Gambit 

(Fluent). 

The present code was first used to compute a circular pipe flow of power-law fluid and 

the results compared with analytical solution.  The power-law fluid is n = 0.5 of which 

rheological data have been given in the Section 3.4.2.  Figure 3.22a shows that, there is 

no distinction between the present numerical and analytical results.  The analytical result 

was obtained from u(r) / Ub = (3n + 1) [1 – (2r/d)
 (n + 1)/n

] / (n + 1), where n = 0.5.  The 

previous work by Pinho (2001) was also computed using the present code.  Pinho (2001) 
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computed non-Newtonian fluid with n = 0.6, θ =1.0 s, and μ0=1 Pa•s for a circular pipe.  

As shown in Fig. 3.22b an excellent agreement was observed between present result and 

Pinho (2001) with the exception of -1.14% difference in the peak values.   
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Figure 3.22: Comparison of a circular pipe flow between the present and: a) analytical at 

Re = 310, b) previous at Re = 5.261 results.  

Both the present code and commercial CFD code (Fluent) were used to compute 3D 

laminar wall jet flows of Newtonian fluid at Rej = 310 and 800.  The Fluent unstructured 

mesh at the inlet is shown in Fig. 3.21b.  The flow geometry was scale down to that 

reported by Adane and Tachie (2008a) due to computer memory for the Fluent code.  

This small geometry is denoted as SD in the subsequent discussion.  It should be 
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mentioned that the same number of nodes were used for both codes.  In addition, the 

present code recomputed the flow using geometry similar to the experimental geometry.  

Two grids (37 and 100) for the circular mesh were computed.  Other grid distributions 

analyses were also performed but would not be shown here since no significant 

difference was observed.  

Figure 3.23 shows variation of normalised streamwise maximum velocity, Um (= um/uj) 

with downstream distance, X.  There is no significant difference between the numerical 

results.  For instance in Fig. 3.23b, at X = 50 for the small domain (SD), Um = 0.32 and 

0.31, respectively for the present code and Fluent.  Figure 3.23b shows that the numerical 

results underestimated the decay of Um.  A typical velocity profile in the similarity region 

from Fluent and present codes is also shown in Fig. 3.24.  There is a reasonable 

agreement between the results. 
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Figure 3.23: Comparison of the maximum velocity decay: a) Rej = 310 and b) Rej = 800.  
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Figure 3.24: Comparison of the similarity profile at Rej = 800.  
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Chapter 4 

RESULTS AND DISCUSSION 

This chapter presents discussion of the results from the present study.  The first two 

sections (Section 4.1 and 4.2), respectively, focus on the experimental results for the 

Newtonian fluid and the non-Newtonian fluids.  In the subsequent sections, numerical 

results are validated using the experimental data.  Then additional quantities such as 

spread rates, momentum flux, skin friction coefficient, and streamwise vorticity that 

could not be evaluated from the measurements were obtained and presented in Section 

4.3 to provide additional insight into the 3D laminar wall jet flows at various Reynolds 

numbers.  The effects of the specific fluid on the wall jet characteristics are discussed in 

Section 4.4 by comparing the results from the non-Newtonian fluids with those from the 

Newtonian fluid.  

4.1 Experimental Results of Wall Jet flow of the Newtonian Fluid 

The flow development in the streamwise direction is often characterised by parameters 

such as the local maximum streamwise velocity (um), the location of um from the wall 

(zm), and the jet half-width in the transverse (z0.5) and spanwise (y0.5) directions.  In the 

discussion of the experimental results, the maximum streamwise velocity (um) is used to 

document the decay of the velocity in the streamwise direction.  The jet half-widths (z0.5 

and y0.5) are used to characterise the spread of the jet in the transverse and spanwise 

directions.  As noted in Chapter 3, it was challenging to produce a high quality 3D wall 

jet flow at relatively low inlet or initial Reynolds numbers into a large amount of stagnant 

fluid.   
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4.1.1 Decay of Maximum Streamwise Velocity and Jet Half-widths 

Figure 4.1a shows variation of the maximum local velocity (Um = um/uj) with streamwise 

distance (X = x/d) for two Reynolds numbers, Rej = 310 and 800.  As the jet evolves 

downstream, it entrains the stagnant ambient fluid and the jet velocity is slowed 

considerably.  There is a modest difference between the decay of um at Rej = 310 and 800 

in the region X ≥ 15.  In this region of the flow, the values of Um at Rej =310 are 

marginally lower than the corresponding values at Rej = 800.  This observation is 

consistent with the notion that the jet with a lower exit momentum (Rej = 310) should 

decay faster.  As will be shown in subsequent figures, the momentum of the jet 

diminished with streamwise distance until the jet was no longer able to penetrate the 

relatively larger amount of stagnant Newtonian fluid in the tank.  The approximate axial 

location where no meaningful penetration was possible and the jet began to disintegrate is 

demarcated by a solid line (Rej = 310) and a dash line (Rej = 800) in Fig. 4.1.  It should be 

noted that the location for the jet with the lower Reynolds number is closer to the inlet 

plane of the jet.   

The decay of um is accompanied by a spread in both the transverse and spanwise 

directions.  As remarked earlier, the spread is often characterised by the jet half-widths in 

the transverse (Z0.5 = z0.5 / d) and spanwise (Y0.5 = y0.5 / d) directions.  Figure 4.1(b, c) 

shows the variation of Z0.5 and Y0.5 with X.  These figures demonstrate that the jet half-

widths for Rej = 310 are significantly larger than the corresponding values for Rej = 800.  

4.1.2  Velocity Vectors and Similarity Consideration  

Figure 4.2 shows the vector plots of the velocity field in the symmetry plane in the 
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Figure 4.1: PIV results on variation: a) maximum velocity decay, Um, b) and c) jet half-

widths (Z0.5 and Y0.5) in downstream direction for Rej = 310 and 800.
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regions 2 ≤ X ≤ 6 and 14 ≤ X ≤ 20 for Rej = 310 and 2 ≤ X ≤ 6 and 34 ≤ X ≤ 40 for Rej = 

800.  The plots in the regions 2 ≤ X ≤ 6 for Rej = 310 and 800 are indicative of a classical 

wall jet.  In these cases, the secondary (transverse) velocities are relatively low and the 

vectors in the inner region are parallel to the wall as should be expected (Fig. 4.2(a, b)).  

The velocity gradient (dU/dZ) also increases sharply.  Further downstream (14 ≤ X ≤ 20) 

and (34 ≤ X ≤ 40) for Rej = 310 and 800, respectively, the velocity vectors in the wall 

region are no longer parallel to the wall.  Here, the streamwise component of velocity 

vectors close to the wall is small and the sharp increase in dU/dZ observed upstream is no 

longer evident.  The jet appears to lift off from the wall and the location of the maximum 

velocity, Zm, increases more dramatically with X than observed in Fig. 4.2(a, b).  

In order to explore if the jet for the two Reynolds numbers achieves a self-similar 

condition, profiles of the streamwise velocity (U = u / um) in the symmetry plane (Fig. 

4.3) were plotted at selected streamwise locations.  For Rej = 310 (Fig. 4.3a), it is clear 

that in the region Z ' (= z/z0.5) ≤ 1.2 there is no significant difference between the profiles 

at X = 5 and 10.  In this region, the normalised velocities at X = 2 are marginally lower.  

Based on this observation, it is reasonable to conclude that the jet for Rej = 310 becomes 

self-similar at X = 5.  Consistent with the observations made in Fig. 4.2c, the profiles at X 

= 15 and further downstream deviate significantly from the upstream profiles.  The 

collapse among the profiles in the region Z ' ≥ 1.2 is not as good as in the inner region, 

even for X = 5 and 10.  Such observations have been reported in previous 2D laminar 

wall jets (Bajura and Szewczyk, 1970; Cohen et al, 1992) and even 2D and 3D turbulent 

wall jets.  Since the values of U are ordinarily small in this region, it is likely that the PIV
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Figure 4.3: Normalised streamwise velocity profiles on transverse direction at various 

downstream locations. 
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is not able to resolve them accurately.  Figure 4.3b shows profiles at Rej = 800.  Similar to 

what was observed for Rej = 310, in the region Z ' ≤ 1.2, there are no significant 

differences among the various profiles except at X = 35.  The deviation at 35 for Rej = 

800 should also be expected based on the velocity vectors shown in Fig. 4.2d.  For Rej = 

800, it appears that similarity condition is achieved at X = 2.  The locations of onset of 

similarity condition in the present study are in agreement with prior numerical results for 

3D wall jets.  For example, Adane and Tachie (2008a) reported that the velocity profiles 

for Rej = 77 – 310 become self-similar at X = 5.  For 2D wall jet flows, on the other hand, 

it has been shown that the onset of self-similarity is delayed until X = 18 (Bajura and 

Szewczyk, 1970) for Rej = 377 and X = 18 (Cohen et al, 1992) for Rej = 466-725.  

Figure 4.3c shows a comparison among representative self-similar velocity profiles for 

Rej = 310 and 800 from the present experiments and the analytical profile for a 2D 

laminar wall jet (Glauert, 1956).  There is a modest difference between the location of the 

maximum velocity (Z ' = 0.56) for the 2D wall jet and the present data for Rej = 800 and 

Z ' = 0.50 for the present data for Rej = 310.  Otherwise, the profiles for the 2D and 3D 

wall jets are similar, and are also independent of Reynolds number.  

Consideration is now turned to the velocity profile in the spanwise plane located at zm.  It 

was observed the velocity profiles were symmetric with respect to the symmetry plane (y 

= 0).  Therefore, only the velocity profiles for y ≥ 0 will be reported in this work.  The 

velocity distributions in the spanwise plane at selected streamwise locations are shown in 

Fig. 4.4.  Although the quality of data in this plane (particularly in the region Y ' > 1) is 

not as good as those in the symmetry plane, it can be concluded that these profiles also 
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Figure 4.4: Normalised streamwise velocity profiles on spanwise direction at various 

downstream locations. 
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become self-similar at the axial locations where self-similarity was observed in the 

symmetry plane.  Furthermore, the profiles in the region Y ' < 1 do not exhibit any 

Reynolds number effects.  In summary, the profiles at the two Reynolds numbers studied 

in the present experimental study of a Newtonian fluid exhibit a self-similarity condition 

(albeit over a limited range of streamwise distance).  Since the streamwise extent (X < 

35) over which the velocity field for the higher Reynolds number (Rej = 800) resemble a 

classical 3D laminar wall jet is relatively larger than that observed at the lower Reynolds 

number, the data sets at Rej = 800 will be used for comparison with the numerical results 

in later sections.  

4.2 Experimental Results of Wall Jet flow of non-Newtonian Fluids 

As in Section 4.1, the jet half-width in the transverse direction (z0.5) and spanwise 

direction (y0.5) are used to document the spread of the jet in the respective directions 

whereas um is used to examine the velocity decay.  Reference experimental results for 3D 

laminar wall jet of the Newtonian fluid at Rej = 800 (Section 4.1) will be shown for 

comparison.    

4.2.1 Decay of Maximum Streamwise Velocity and Jet Half-widths 

Figure 4.5a shows the variation of the normalised maximum local velocity Um with 

streamwise distance, for XG005 fluid at the three Reynolds numbers.  The jet starts 

interacting with the ambient fluid immediately downstream of the efflux section.  The 

entrainment of the stagnant ambient fluid by the jet in turn slowed the jet velocity.  This 

is true for all the Reynolds numbers.  This trend is similar to that reported by Filip et al 

(1991) and Adane and Tachie (2008a) for non-Newtonian fluids, and also in Section 4.1 
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and by Glauert (1956) for Newtonian fluids.  There is no marked distinction of the decay 

of Um among the various Rej in the region X  6.  Similarly, in the region X  18 for Rej = 

420 and 800, the figure shows no significant difference between the decay of Um.  

However, at larger downstream locations, as expected, Um decays most rapidly at the 

smallest inlet Reynolds number (Rej = 250).  For instance at X = 30, Um is 0.30, 0.47 and 

0.56, respectively, for Rej = 250, 420 and 800.   
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Figure 4.5: Variation of maximum velocity decay, Um in the streamwise direction at 

various Rej for (a) XG005 and (b) XG010. 
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In the region X < 8, the velocity decay for XG010 is also independent of Reynolds 

number (Fig. 4.5b).  In fact, even in the region X < 52, the decay of Um for Rej = 250 and 

420 showed no noticeable difference.  Figure 4.5b shows that in the region X > 52, the 

decay of Um for Rej = 250 is slightly slower than at Rej = 420.  For example, at X = 60, 

Um = 0.34 and 0.26 for Rej = 250 and 420, respectively.  It is clear from Fig. 4.5b that the 

flow development can be divided into two regions as demarcated by the dash vertical 

line.  In the first region (X ≤ 30), Um values for Rej = 800 are relatively higher than those 

for Rej = 250 and 420.  Meanwhile, in the second region (X > 30) Um values for Rej = 250 

and 420 are significantly higher than those for Rej = 800.  Further downstream (in the 

region X > 52), the Um decreases consistently with increasing Rej.  This observation is 

contrary to those made for XG005 in the region X > 18 where the higher Rej value has 

the slowest decay and also for measurements in 3D laminar wall jets of the Newtonian 

fluid (Section 4.1). 

The spread of the jet in both transverse and spanwise directions are presented in Fig. 4.6.  

It is observed that the Z0.5 values are independent of Reynolds number in the region X  

25.  Downstream of this region, the slower velocity decay observed for the higher Rej 

produced a lower spread (Fig. 4.6a).  Similarly, Fig. 4.6b demonstrates that the jet 

spreads fastest at Rej = 800 and slower at Rej = 250 and 420.  Also, as observed earlier for 

Um, there is a modest difference between the Z0.5 values for Rej = 250 and 420 in the 

region X ≥ 30.  

The maximum percentage difference between the Y0.5 values for XG005 fluid at Rej = 

420 and 800 is 13% whereas that between Rej = 420 and 250 is approximately 61% in the 
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compared region (Fig. 4.6c).  On the other hand, the values of Y0.5 for both Rej = 250 and 

420 for XG010 fluid are similar and are significantly lower than those at Rej = 800 in the 

region X > 20 (Fig. 4.6d).  In the region X < 30, the ratio of Y0.5 / Z0.5 ranges from 0.38 to 

1.0, whereas in the region X ≥ 30, it increases to 1.67.  These ratios indicate that in the 

region X > 30 the jet spreads more in the spanwise direction than it does in the transverse 

direction.  The corresponding values for Rej = 420 ranges from 0.36 to 1.07.  
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Figure 4.6: Variation of jet half-widths, Z0.5 (a, b) and Y0.5 (c, d) in the streamwise 

direction at various Rej for XG005 (a, c) and XG010 (b, d). 
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On the contrary, it is obvious from Fig. 4.6 that irrespective of the Reynolds number for 

XG005 fluid as well as for the XG010 fluid at Rej = 250, the jet rather spreads more in 

the transverse direction than it does in the spanwise direction.  In fact, for these test cases, 

it was found that the ratio of Y0.5 / Z0.5 is 0.45±0.11.  This observation for the XG005 

fluids and Rej = 250 for XG010 fluid is consistent with that made in previous numerical 

study of 3D wall jet flows of power-law non-Newtonian fluids (Adane and Tachie, 

2008a) as well as experimental (Section 4.1) and previous numerical (Craft and Launder, 

2001) studies of 3D wall jet flow of a Newtonian fluid.  

A comparison of the variation of decay of Um and the jet half-widths with streamwise 

distance at various Reynolds number for the Newtonian and non-Newtonian fluids is 

shown in Fig. 4.7.  In Fig. 4.7(a, b) irrespective of Rej, the decay of Um is consistently 

slower for XG010 than XG005.  This is consistent with the observation made by Adane 

and Tachie (2008a) for power-law fluids where in the early region of the flow 

development, the lower power-law index has a slower decay.   

Figure 4.7c shows that in the early region (X ≤ 30), the XG010 fluid which has higher 

zero-shear apparent viscosity has the slowest decay rate.  This is consistent with 

observations made earlier for the lower Reynolds numbers.  On the contrary, the Um 

values for XG010 are consistently lower than the measured values for the other two fluids 

in the region X > 40.  

The comparison of the transverse jet half-width in Fig. 4.8a shows that the slower decay 

of Um resulted in a slower spread of the jet.  This is true for both Reynolds numbers (Fig. 
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4.8(a, c)).  For instance at X = 40, Z0.5 = 1.90 and 1.27 at Rej = 250, respectively, for 

XG005 and XG010.  At Rej = 420, the corresponding values are 1.5 and 1.0, respectively.   
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Figure 4.7: Comparison of maximum velocity decay, Um for various fluids at Rej = (a) 

250, (b) 420 and (c) 800.  
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It is worth mentioning that, irrespective of Rej, in the region X ≤ 25 there is no difference 

between the Z0.5 values for both XG005 and XG010 fluids.  Similarly, in the region X < 

20, the difference between the Newtonian fluid and non-Newtonian fluids is insignificant 

(Fig. 4.8e).  Further downstream (X > 30), however, the jet spreads more for the 

Newtonian fluid and less for XG005.  

Not surprisingly the growth of Y0.5 is more rapid for XG005 than XG010 for the two 

lower Reynolds numbers (Fig. 4.8(b, d)).  The fluid effect is only observed in the region 

X > 20 for the three fluids at Rej = 800 (Fig. 4.8f).  The spread is more rapid for XG010 

than for XG005.  Although this observation is different from those at the lower Reynolds 

numbers (Fig. 4.8(b, d)) and even that of Z0.5 (Fig. 4.8e), it should be recalled that the 

spread was observed to be faster in the spanwise direction for XG010 than in transverse 

direction.  Besides, the Y0.5 values for XG005 are lower than those for the Newtonian 

fluid.    

4.2.2  Velocity Profiles 

Figures 4.9 shows the normalised streamwise velocity (U = u / um) profiles in the 

symmetry plane (y = 0) at various streamwise locations (5 ≤ X ≤ 60).  The spanwise and 

transverse distances from their respective origin are normalized by the half-widths.  That 

is, Z ' = z / z0.5 and Y ' = y / y0.5.  For Rej = 250 and the axial locations shown in Fig. 4.9a 

for XG005, it is observed that the location of the maximum velocity (Z ' = 0.56) for 

profiles in the region 5 ≤ X ≤ 25 is higher than Z ' = 0.46 for X > 25.  Otherwise, the 

velocity profiles in the transverse direction collapsed remarkably well onto a single curve 

in the region Z ' < 1.2.  As mentioned earlier, discrepancies among velocity profiles close  
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Figure 4.9: Normalised streamwise velocity profiles in transverse direction at various 

downstream locations for XG005 (a, c, e) and XG010 (b, d, f). 

 



90 

 

to the outer edge of the jet (Z ' ≥ 1.2) have been reported in previous 2D and 3D laminar 

wall jets (Bajura and Szewczyk, 1970; Cohen et al, 1992), and even 2D and 3D turbulent 

wall jets.  Based on this observation, it is reasonable to assert that for the XG005 fluid at 

Rej = 250 the flow becomes self-similar at X = 5.  

Similar observations are made for the velocity profiles at Rej = 250 for XG010 (Fig. 

4.9b), Rej = 420 for both XG005 (Fig. 4.9c) and XG010 (Fig. 4.9d), and Rej = 800 for 

XG005 (Fig. 4.9e).  However, in these figures, the location of the maximum velocity is 

the same for all the X locations plotted.   

For XG010 at Rej = 800 (Fig. 4.9f), the velocity profiles in the region X < 25 collapse 

reasonably well.  The location of the maximum velocity for these profiles is at Z ' = 0.56.  

The profiles in the region 35 ≤ X ≤ 60 also collapsed onto each other; however, they are 

distinctly different from the profiles obtained upstream.  The location of the maximum 

velocity is Z ' = 0.34 which is closer to the bottom wall than Z ' = 0.56.  It is important to 

note that this region (35 ≤ X ≤ 60) corresponds to the region where Rej = 800 experience 

a very sharp decay of Um (Fig. 4.5b).  In their work on Newtonian fluid, Tsuji et al 

(1977) reported that the velocity profiles for Rej = 635 in the region X ≥ 60 deviate from 

a classical 2D laminar wall profile. In fact, those profiles were in a better agreement with 

typical profile for a turbulent wall jet.  Similarly, Bhattacharjee and Loth (2004) observed 

a transitional regime for Rej ≥ 700 for their studies on wall jet flows of Newtonian fluid. 

The corresponding profiles in the spanwise direction are shown in Fig. 4.10.  Although 

the quality of data in this plane (particularly in the region Y ' > 1.2) is not as good as 
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those in the symmetry plane, it appears that these profiles also become self-similar at the 

axial locations where self-similarity was observed in the symmetry plane.  This is true 

irrespective of the Reynolds number and fluid.  
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Figure 4.10: Normalised streamwise velocity profiles in spanwise direction at various 

downstream locations for XG005 (a, c, e) and XG010 (b, d, f). 
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Figure 4.11: Comparison of various fluids on the similarity velocity profiles 

Figure 4.11 above shows a comparison among the two non-Newtonian fluids and the 

Newtonian fluid at Rej = 800.  From Fig. 4.11a, it is clear that there are no marked 

differences among the normalised velocity profiles.  Similarly, the profiles in the 

spanwise direction (Fig. 4.11b) showed no noticeable fluid effects especially in the region 

Y ' ≤ 1.2.  This observation is at variance with previous numerical results for power-law 

fluids (Filip et al, 1991; Adane and Tachie, 2008a).  In those previous numerical works, it 
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was reported that with the exception of the very near-wall region, a shear thinning fluid 

has higher velocities than a Newtonian fluid.  It is important to note, however, that the 

Reynolds numbers considered in the study by Adane and Tachie (2008a) were relatively 

lower than those in the present experiments.  

4.3 Numerical Results of Newtonian Fluid 

4.3.1 Velocity Decay and Spread Rates 

The decay of um with streamwise distance for present and previous (Adane and Tachie, 

2008a) numerical results is plotted in Fig. 4.12a.  The experimental data (labelled as PIV) 

for Rej = 800 are also shown for comparison.  Similar to the observations made for the 

experimental results, the local maximum velocity decreases with an increase in the 

downstream direction.  The figure shows that agreement between experiment and 

computation at Rej = 800 is limited to the early region of flow development (X < 20).  

Further downstream, the numerical data decayed less slowly than observed from 

measurement.  The numerical results also show that the local maximum velocity decayed 

faster with decreasing inlet Reynolds number.  For example, at X = 20, Um = 0.11, 0.30, 

0.38 and 0.61 for Rej = 155, 310, 420 and 800, respectively.  It should be noted that, at X 

= 17, the Um is almost zero for Rej = 77.   

The Reynolds number dependence of the velocity decay can be explained by the variation 

of the local momentum flux (Mx) with streamwise distance.  In the present study, the 

local momentum flux was computed from the following expression: 

2
x

Ax
M u dzdy               (4.1)
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Figure 4.12: Comparison of results at various Rej on variation of: a) maximum velocity 

decay, Um and b) local momentum flux, Mx,o.  

where Ax is the jet cross-sectional area in the y-z plane at a specific X location.  Figure 

4.12b shows the variation of the ratio Mx,o = Mx / Mo (where Mo is the momentum flux at 

the inlet plane) with X.  The values of Mo are 7.80 x 10
-7

, 3.15 x 10
-6

, 1.48 x 10
-5

, 2.45 x 

10
-5

 and 1.00 x 10
-4

 kg•m/s
2
, respectively, for Rej = 77, 155, 310, 420, and 800.  The 

results show that, indeed, the momentum flux at a lower Reynolds number decayed faster 
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for a lower Reynolds number than a relatively higher Reynolds number.  At X = 20, for 

example, Mx,0 = 0.14, 0.33, 0.56, 0.62 and 0.76, respectively, for Rej = 77, 155, 310, 420 

and 800.  

The plots of jet half-widths obtained from both experiments and computations are shown 

in Fig. 4.13.  It can be seen from Fig. 4.13a that there exists a good agreement between 

the experimental and numerical results at Rej = 800 in the region X  22 for Z0.5.  

Downstream of this region, the slower decay of maximum velocity observed from the 

numerical results produced a lower spread than the measured values.  The figure also 

demonstrates clearly that the jet spreads fastest at Rej = 77 and slowest at Rej = 800.  The 

differences in the spread rates will be quantified in Fig. 4.14.  In the spanwise direction, 

the experiment and computation show similar values in the region X < 30 (Fig. 4.13b).  

As expected, the values of Y0.5 from computation are significantly lower than those from 

measurement in the region X > 30.  

The variation of the spread rates (Sz = dz0.5/dx, Sy = dy0.5/dx) with X for the various Rej is 

shown in Fig. 4.14.  In these plots, the present numerical results and the results from 

Adane and Tachie (2008a) and Craft and Launder (2001) (where available) are shown.  

The analytical results for 3D laminar wall jets presented by Krechetnikov and Lipatov 

(2002) indicate that the spread rates should increase linearly with downstream distance.  

The data presented in Fig. 4.14a show that, for Rej ≥ 155, the spread rate in the symmetry 

plane (Sz) increases sharply from the exit followed by a linear variation with X.  Clearly, 

the onset of the linear region for Sz depends strongly on Rej.  For example, the linear 

region begins at X = 54, 35, and 17, respectively, for Rej = 310, 420 and 800.  It should 
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Figure 4.13: Comparison of results at various Rej on variation of: a) transverse jet half-

width, Z0.5 and b) spanwise jet half-width, Y0.5 with downstream distance.  

be noted that the Sz data presented by Craft and Launder (2001) also indicate a linear 

region for X > 69 and these values are in closer agreement with those obtained at Rej = 

155 by Adane and Tachie (2008a).  Figure 4.14b demonstrates that results for Rej = 155, 

310 and those from Craft and Launder (2001) also increase linearly.  At higher Rej values 

(420 and 800), the spanwise spread rate Sy becomes nearly constant beyond X = 7.  
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Figure 4.14: Variation of the spread rates at various Rej: a) transverse, Sz, b) spanwise, 

Sy, c) spread rate ratio, Sr and d) local Reynolds number, Rem in 

downstream direction.  

Note: Adane & Tachie
*
 is Adane and Tachie (2008a), and C&L is Craft 

and Launder (2001). 

Unlike the 3D laminar wall jets, the spread in both the spanwise and transverse directions 

in 3D turbulent wall jets in the self-similar region varies linearly with X.  It has been 

reported that for 3D turbulent wall jets, the spread rate in the spanwise direction is 

approximately 4 to 6 times the corresponding rate in the transverse direction.  For 

example, the review article by Launder and Rodi (1981) showed that the ratio Sr (= Sy / 

Sz) is approximately 4.9 while the more recent measurements reported by Hall and Ewing 



98 

 

(2007) and Law and Herlina (2002) indicate Sr in the range 5.0 to 5.5.  Furthermore, Sr = 

1.07 – 6.29 were reported in the numerical study by Craft and Launder (2001).  Figure 

4.14c shows that, for the 3D laminar jet, the ratio Sr increases sharply to a peak during the 

early state of flow development, followed by a gradually decrease to values less than 

unity in the region X ≥ 6 for Rej = 155, X ≥ 11 for Rej = 310 and 420, and X ≥ 20 for 800.  

These results imply that the anisotropic of the spread rate reported in turbulent wall jets 

are also observed in 3D laminar wall jets.  As observed in turbulent wall jets, the Sr 

values are higher than unity in the early stage of flow development that is characterised 

by higher streamwise vortices but the degree of anisotropy is not as high as in the 

turbulent wall jet.  That is, in this region, the values of Sr for the laminar wall jet are 

lower than those reported in turbulent wall jet but they do increase with increasing 

Reynolds number.  These observations would indicate that the spreading mechanism for 

the 3D laminar jet may be different from the mechanism responsible for 3D turbulent 

wall jets. In fact, Craft and Launder (2001) concluded that for 3D laminar wall jet, there 

is no significant streamwise vorticity so that viscous effects may be principally 

responsible for the spreading mechanism.  

As observed in Figs. 4.12 and 4.13, the local maximum velocity um decays with X while 

z0.5 increases with increasing X.  The variation of the local Reynolds number based on um 

and z0.5, i.e., Rem (= um z0.5 / ν) with downstream distance, X is shown in Fig. 4.14d.  

Irrespective of the inlet Reynolds number, the local Reynolds number decreases with 

increasing X.  This would indicate that the maximum local velocity, Um decays faster 

with X than Z0.5 increases with X.   
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Following the analysis of Craft and Launder (2001), the dependence of the spread rates 

(Sz, Sy) with Rem is presented in Fig. 4.15.  Similar to the observation made by Craft and 

Launder (2001), both Sz and Sy increase nearly linearly with decreasing Rem.  It is 

important to note that the spread rates are not only a function of the local Reynolds 

number, Rem but they also vary with the jet inlet Reynolds number, Rej. 
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Figure 4.15: Variation of the spread rates at various Rej: a) transverse, Sz and b) 

spanwise, Sy with local Reynolds number, Rem. 

Note: Adane & Tachie
*
 is Adane and Tachie (2008a), and C&L is Craft 

and Launder (2001). 
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4.3.2 Skin Friction Coefficient 

The wall shear stress distribution is presented in Figs. 4.16-4.18 using the skin friction 

coefficient.  The skin friction can be defined based on the exit velocity (Eqn. 4.2a) as was 

done by Glauert (1956) and Isaa (2006) or by the local maximum velocity (Eqn. 4.2b).   

22 /f j w jC u          (4.2a) 

22 /f m w mC u         (4.2b) 

where 0/ |w zdu dz  

The skin friction coefficient, Cfj in the symmetry plane for various Rej is presented in Fig. 

4.16a.  Irrespective of Rej, Cfj decreases with increasing downstream distance.  The 

present data (Fig. 4.16a) show that, in the early region of flow development, Cfj decreases 

with increasing Rej.  However, Cfj values at a lower Rej decreases more rapidly than at a 

higher Rej so that in region X > 20, the Cfj values decreases consistently with deceasing 

Rej.  A similar trend was observed in previous 2D studies (Glauert, 1956; Isaa, 2006).  

The variation of Cfm with X is plotted in Fig. 4.16b.  Whilst Cfm is nearly independent of 

X at Rej = 800, it increases with X at lower Rej values.  

In contrast to the significant Rej effects observed in Fig. 4.16b, Fig. 4.17 shows that Cfm 

varies uniquely with the local Reynolds number Rem but independent of the jet inlet 

Reynolds number, Rej.  

In addition to the symmetry plane (Y = 0), the skin friction coefficient, Cfj was also 

evaluated at selected spanwise locations (Y = 0.5, 1, 2 and 3).  These values are plotted in 

Fig. 4.18a, 4.18b and 4.18c for Rej = 310, 420 and 800, respectively.  In general, the Cfj 
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Figure 4.16: Variation of skin friction coefficients with downstream distance at various 

Reynolds numbers using: a) Eqn. 4.2a and b) Eqn. 4.2b.  0 20 40 60 80
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Figure 4.17: Variation of skin friction coefficients (Eqn. 4.2b) with local Reynolds 

numbers at various Reynolds numbers, Rej.  
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Figure 4.18: Variation of skin friction coefficients with downstream distance in the 

spanwise direction.  
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values decrease with increasing distance from the symmetry plane.  The peak values of 

Cfj at Y = 0.5 and Y = 1 are approximately 27 and 9 percent, respectively of the 

maximum Cfj value at Y= 0, irrespective of Rej.  At larger Y values, the peak values for 

Cfj as a percent of the maximum value at Y = 0 for Rej = 310 and 420 are relatively 

higher than the corresponding value for Rej = 800.  It should be noted that the peak value 

of Cfj at Y = 3 is more than two orders of magnitude lower than the corresponding 

maximum value at Y = 0.  In addition, the streamwise location of the peak value 

increases with spanwise location and also depends on Rej.  For example, at Y = 1 and 2 

for Rej = 310, the locations of the peak values are X ~ 10 and 25.  Meanwhile the 

corresponding values for Rej = 800 are 26 and 57.  

4.3.3 Velocity Profiles 

Figure 4.19a shows a comparison between the present experimental and numerical results 

for the streamwise velocity profiles in the similarity region.  The specific profile shown 

was obtained at X = 10.  There are no noticeable differences between the numerical 

results and measured values in the symmetry plane (Fig. 4.19a).  Figure 4.19(b) compares 

the numerical results for the present and previous numerical results (Adane and Tachie, 

2008a; Craft and Launder, 2001) for streamwise velocity profile.  There is no distinction 

among the profiles at various Rej indicating that there is no Reynolds number 

dependence.  The data from Adane and Tachie (2008a) and Craft and Launder (2001) 

also compare very well with the present results. 

It is apparent from Fig. 4.20 that the numerical results showed a good agreement with 

measurements except in the region Y ' ≥ 1.0 where the measured values are 



104 

 

comparatively lower.  Similar to the observation made in Fig. 4.19b there is no difference 

among the profiles at various Rej as well as data from previous studies.  
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Figure 4.19: Comparison of present and previous results on the similarity velocity 

profiles in the transverse direction at symmetry plane, y = 0. 
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Figure 4.20: Comparison of present and previous results on the similarity velocity 

profiles in the spanwise direction at zm = 0. 
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Figure 4.21 shows contour of the streamwise velocity, U, together with the normalised 

secondary flow velocities (V, W) in the z-y plane at X = 5, 30, and 60.  The axes of each 

plot are normalised by d, i.e. Y = y/d and Z = z/d.  The rationale for Fig. 4.21 is to 

qualitatively visualise the ambient fluid entrainment as the jet evolved.  In each plot, 

contour values between 0.1 and 1 are shown with an increment of 0.1.  Here, only results 

for Rej = 310 and 800 results are presented.  The shape of the iso-contour levels are 

nearly elliptical with their centres shifted away from the wall as U decreases with 

increasing X for Rej = 310 (Fig. 4.21(a, c, e)).  This observation is consistent with those 

made by Craft and Launder (2001).  Similar observation is also made for Rej = 800 in 

Fig. 4.21(b, d, f), however, the decrease of Um with increasing X is less distinct.  The 

velocity vector plots indicate that there is an entrainment of ambient fluid into the jet.  

With the same scale used, the vectors at Rej = 310 show a higher entrainment, an 

observation that is consistent with the higher spread rate observed at a lower Reynolds 

number.  
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Figure 4.21: Streamwise velocity (U) contours and secondary flow vectors (W, V): Rej = 

310 (a, c, e) and 800 (b, d, f) for X = 5, 30 and 60. Note: first row is X = 5 

whereas last row is for X = 60. Each contour level is 0.1 with maximum and 

minimum value of 1.0 and 0.1, respectively.  
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4.4 Numerical Results of Non-Newtonian Fluids 

4.4.1 Velocity Decay, Spread Rates and Skin Friction Coefficient 

4.4.1.1 Effect of initial Reynolds number 

The decay of um with streamwise distance for the numerical results is shown in Fig. 4.22.  

For XG005 fluid, Fig. 4.22a shows that the agreement between experiment and 

computation at Rej = 800 is limited to the early region of flow development (X < 15).  

Further downstream, the numerical results decayed more rapidly than observed from 

measurement.  Similar observation is also made for XG010 fluid (Fig. 4.22b).  In this 

case, however, a reasonable agreement was observed in the regions: X < 6 and 30 ≤ X ≤ 

55.  It should be recalled from Section 4.3.1 that, the experimental and numerical results 

presented for the Newtonian fluid also revealed a limited region of agreement (X < 20).  

Further downstream it was observed that the experimental data decayed faster than the 

numerical values (Section 4.3), a trend that is opposite to the results for the non-

Newtonian fluids.  

The results presented in Fig. 4.22 show that, irrespective of the fluid, the local maximum 

velocity decayed faster with decreasing initial Reynolds number.  For example, for 

XG005 fluid at X = 20, Um = 0.01, 0.20 and 0.53 for Rej = 250, 420 and 800, 

respectively.  This trend is consistent with those reported in previous sections (Sections 

4.2 and 4.3) and previous numerical works for power-law fluids (Adane and Tachie, 

2008a).  

The plots of transverse jet half-width (Z0.5 = z0.5 / d) obtained from both experiments and 

computations are shown in Fig. 4.23.  It can be seen from Fig. 4.23a that there exists a 
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Figure 4.22: Comparison of results at various Rej on variation of maximum velocity 

decay, Um in downstream direction for: a) XG005 and b) XG010. 

good agreement between the experimental and numerical results at Rej = 800 in the 

region X  20 for XG005 fluid.  Downstream of this region, the faster decay of maximum 

velocity observed from the numerical results (Fig. 4.22a) produced a higher spread than 

the measured values.  Similarly, for XG010, the agreement between both results is 

excellent up to X = 45.  The figure also demonstrates clearly that the jet spreads fastest at 

Rej = 250 and slowest at Rej = 800, irrespective of the fluid.  The differences in the spread 
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rates will be quantified later in Fig. 4.25.  In the spanwise direction (not shown here), a 

similar observation was made. 0 20 40 60 80
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Figure 4.23: Comparison of results at various Rej on variation of transverse jet half-

width, Z0.5 in downstream direction for: a) XG005 and b) XG010. 

Following similar analysis in Section 4.3.1, the Reynolds number dependence of the 

velocity decay and its corresponding growth of transverse jet half-widths can be 

explained by the variation of the local momentum flux, Mx with streamwise distance.  

Figure 4.24 shows the variation of the ratio Mx,o = Mx/Mo (where Mo is the momentum 

flux at the inlet plane) with X.  It should be noted that the values of Mo are 8.91 x 10
-5

, 

1.59 x 10
-4

 and 3.44 x 10
-4

 kg•m/s
2
, respectively, for Rej = 250, 420, and 800 for XG005.  
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The corresponding values for XG010 are 3.97 x 10
-4

, 9.62 x 10
-4

 and 1.60 x 10
-3

 kg•m/s
2
, 

respectively.  The results show that, irrespective of the specific fluid, the momentum flux 

at a lower Reynolds number decayed faster than at a relatively higher Reynolds number.  

At X = 20, for example, Mx,0 = 0.01, 0.24 and 0.61 for Rej = 250, 420 and 800 , 

respectively, for XG005.  The subsequent discussion on the effects of initial Reynolds 

number on the spread rates, skin friction coefficient, and velocity profiles will only be 

presented for XG005 fluid since the trends are the same for both non-Newtonian fluids 

(XG005 and XG010).   
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Figure 4.24: Comparison of results at various Rej on variation of local momentum flux in 

downstream direction for XG005 (a) and XG010 (b). 
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The variation of the spread rates (Sz, Sy) with X for the various Rej is plotted in Fig. 

4.25(a, b).  For the Newtonian fluid, it was observed that the spread rates increase nearly 

linearly with downstream distance.  The data presented in Fig. 4.25a show that, for the 

non-Newtonian fluids, the spread rate in the symmetry plane (Sz) increases exponentially 

with X.  In addition, the spread rates (Sz) depend strongly on the initial Reynolds number.  

The Reynolds number dependence observed for the spread rate was also observed for the 

Newtonian fluid.  The spanwise spread rate, Sy (Fig. 4.25b) also varies exponentially with 

X except in the region X < 5, where the variation is nearly linear. 
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Figure 4.25: Variation of the spread rates at various Rej: a) transverse, Sz, b) spanwise, 

Sy, c) spread rate ratio and d) local Reynolds number, Rem in downstream 

direction.  
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The spread rate ratios, Sr (= Sy / Sz) are plotted in Fig. 4.25c to demonstrate the 

anisotropic behaviour of the spread rates.  In the regions (X ≤ 5 for Rej = 250, X ≤ 8 for 

Rej = 420, and X ≤ 12 for 800), Sr > 1 which implies that the jet spreads more in the 

spanwise direction than in the transverse direction.  Downstream of these regions, the 

spread is still anisotropic; however, Sr values are significantly less than unity.  As 

indicated in the Section 4.3.1, the higher values of Sr (Sr > 1) are due to the presence of 

an elevated streamwise vorticity.  As will be shown subsequently, the regions where Sr > 

1 for the present non-Newtonian fluid are indeed characterised by a high level of 

streamwise vorticity.  

As observed in Fig. 4.23, um decays with X while z0.5 increases with increasing X.  For a 

Newtonian fluid, it was observed that the local Reynolds number (Rem) also decreases 

with increasing downstream distance.  The variation of the local Reynolds number (Rem = 

ρum z0.5 / µ0.5, where µ0.5 is the apparent viscosity evaluated at z0.5) with X for the various 

test cases were also evaluated for the non-Newtonian fluids (Fig. 4.25d).  Unlike the 

Newtonian fluid for which the viscosity is constant, it was observed that the values of µ0.5 

increases consistently with X for each of the two non-Newtonian fluid and the various 

Reynolds numbers.  It is clear from Fig. 4.25d that the increase in z0.5 with X is not large 

enough to offset the decay of um and the increase of µ0.5 with X.  Although this trend is 

similar to the observation made for the Newtonian fluid, it was found that Rem decays 

more rapidly for the non-Newtonian fluids than that for the Newtonian fluid. 

The variation of the spread rates (Sz, Sy) with the local Reynolds number (Rem) is 

presented in Fig. 4.26.  Both Sz and Sy increase nearly linearly with decreasing Rem 
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except in the early region of the flow (which corresponds to higher value of Rem in Fig. 

4.26).  Similar to results for the Newtonian fluid, the spread rates are independent of Rem 

in the linear region.  It is important to note that the spread rates in the early region 

depends on the initial Reynolds number, and the extent of the linear region also increases 

with initial Reynolds number. 
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Figure 4.26: Variation of the spread rates at various Rej: a) transverse, Sz and b) 

spanwise, Sy with local Reynolds number, Rem.  

.   
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The wall shear stress distribution is presented in Figs. 4.27-4.29 using the skin friction 

coefficient.  The skin friction is defined based on the exit velocity (Eqn. 4.2a) or by the 

local maximum velocity (Eqn. 4.2b).  It should be remarked that viscosity in Eqn. (4.2) 

was the local value and is not constant.  The skin friction coefficient, Cfj evaluated in the 

symmetry plane (Y = 0) for the various Rej for XG005 is presented in Fig. 4.27a.  

Irrespective of Rej, Cfj decreases with increasing downstream distance.  The data show 

that, in the early region of flow development, Cfj decreases with increasing Rej.  

However, Cfj values at the lower Rej decrease more rapidly than at a higher Rej so that in  
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Figure 4.27: Variation of skin friction coefficients with downstream distance at various 

Reynolds number using: a) Eqn. 4.2a and b) Eqn. 4.2b.  
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Figure 4.28: Variation of skin friction coefficients (Eqn. 4.2b) with local Reynolds 

number at various initial Reynolds number, Rej. 

the region X > 12, the Cfj values decreased consistently with deceasing Rej.  This trend is 

similar to that observed for Newtonian fluids.  It can be observed from Fig. 4.27b that Cfm 

increases with X irrespective of Rej value.  The implication is that the decay of friction 

velocity is slower than the decay of um.  In contrast to the significant Rej effects observed 

in Fig. 4.27, Fig. 4.28 shows that Cfm varies uniquely with the local Reynolds number 

Rem but independent of the jet Reynolds number, Rej.  

The skin friction coefficient, Cfj was also evaluated at selected spanwise locations (Y = 

0.5, 1, 2 and 3) in addition to those at symmetry plane (Y = 0).  These values are plotted 

in Fig. 4.29a, 4.29b and 4.29c for Rej = 250, 420 and 800, respectively.  In each of these 

plots, the variation can be demarcated into two regions (denoted by dash lines): region I: 

X ≤ 20, X ≤ 26 and X ≤ 46, respectively, for Rej = 250, 420 and 800 and region II: X > 

20, X > 26 and X > 46, for Rej = 250, 420 and 800, respectively.  In region I, the Cfj 

values decrease with increasing distance from the symmetry plane.  Irrespective of the 

Rej, the shape of Cfj for the non-Newtonian fluids is more ‘plug-like’ instead of the 
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Figure 4.29: Variation of skin friction coefficients (Eqn. 4.2a) with downstream 

distance in the spanwise direction.  
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concave shape reported for Newtonian fluid.  In fact, as Rej increases the profile becomes 

more flat or ‘plug-like’.  In region II, however, the Cfj values consistently decrease with 

X but are independent of spanwise location.  It is noteworthy that at X = 20, X = 26 and 

X = 46, respectively, for Rej = 250, 420 and 800, the Um values are only 0.007, 0.019 and 

0.028, respectively.  Thus at downstream locations where the local maximum velocity is 

less than 3% of the exit velocity, the skin friction is independent of spanwise direction.   

4.4.1.2 Effect of concentration  

Figures 4.30 and 4.31 show the effect of concentration of the xanthan gum on the decay 

of Um and Mx,o.  In these plots, Newtonian fluid results from Section 4.3 are also shown 

for comparison.  In the regions: X < 5 and X < 10 for Rej = 420 (Fig. 4.30a) and 800 (Fig. 

4.30b), respectively, the velocity decay shows no dependence on the specific fluid.  

Further downstream, the velocity of the non-Newtonian fluids decays more rapidly than 

that of the Newtonian fluid, irrespective of Rej.  These results are similar to previous 

results for power-law fluids (Adane and Tachie, 2008a).  It should be noted that in the 

region 5 ≤ X ≤ 10 for Rej = 420 (Fig. 4.30a) there is no distinction between the results for 

XG005 and the Newtonian fluid.  A comparison of the two shear-thinning fluids clearly 

demonstrates that the dimensionless maximum velocity decays most slowly for XG010 

fluid.  This is true for both Rej = 420 and 800.    

Although the dimensionless momentum flux, Mx,0 (Fig. 4.31) also decays with X for all 

Rej and fluid types, the specific effects of the fluid on Mx,0 are different from those 

observed for Um.  For instance, the values of Mx,0 for the Newtonian fluid decayed 

slowest whereas XG005 decays faster.  This is true for both of the Reynolds numbers.  At 
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X = 20, for example, Mx,0 = 0.63, 0.21 and 0.53, for the Newtonian fluid, XG005 and 

XG010, respectively.  
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Figure 4.30: Comparison of results at various fluids on variation of maximum velocity 

decay, Um for Rej = 420 (a) and 800 (b). 
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Figure 4.31: Comparison of results at various fluids on variation of local momentum 

flux, Mx,o for Rej = 420 (a) and 800 (b). 

Figure 4.32 compares the spread rates (Sz, Sy) for all the three fluids at two Reynolds 

numbers.  For Rej = 420 in the region X < 5, there is no significant difference among the 

fluids for the transverse spread rate (Fig. 4.32a).  In the region 5 < X < 16, the XG005 

spread fastest whereas XG010 spread slowest.  Meanwhile, downstream of this region (X 

> 16), the non-Newtonian fluids spread faster than the Newtonian fluid.  In Fig. 4.32b, 

there is a noticeable difference among the plots for the higher Reynolds number in the 
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Figure 4.32: Comparison of results at various fluids on variation of spread rates 

transverse, Sz (a, b) and spanwise, Sy (a, b) in downstream direction for Rej 

= 420 (a, c) and 800 (b, d).  

region X < 21.  It is clear that in the region X ≥ 21, the Sz values for the Newtonian fluid 

are lower than those for the non-Newtonian fluids.  Whilst there is no difference between 

the spread rate in the spanwise direction (Sy) for XG005 and the Newtonian fluid in the 

region X < 5, their Sy values are higher than those of XG010.  On the contrary, the 

general observation from Fig. 4.32c is that the non- Newtonian fluids spread slower in the 

region 5 < X < 20 than the Newtonian fluid.  Further downstream, an opposite trend was 
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observed.  Similarly, in the region X > 30 (Fig. 4.32d), the non-Newtonian fluids spread 

faster than the Newtonian fluid whereas no fluid dependence was observed in the region 

X ≤ 30.  It should be pointed out that in the regions where the non-Newtonian fluids 

spread faster than Newtonian fluid the variation of both spread rates with X is almost 

linear for the Newtonian fluid but exponential for the non-Newtonian fluids.  

Furthermore, between the two non-Newtonian fluids, XG005 spreads more rapidly than 

XG010 irrespective of Rej.  This observation is consistent with the observation made for 

the decay of Um in Fig. 4.30, that is, one would expect a faster decay of Um to result in a 

more rapid spread of the jet. 

The spread rate ratios (Fig. 4.33) also depend strongly on the specific fluid in the early 

stage of the flow developments (X ≤ 8 and X ≤ 12, respectively for Rej = 420 and 800).  

The peak value for XG010 for Rej = 420, for example, is about 10 times the 

corresponding value for the Newtonian fluid.  Beyond these regions, however, the spread 

rate ratios for both non-Newtonian fluids are lower than the corresponding values for the 

Newtonian fluid.  The relatively lower values for the non-Newtonian fluids indicate that 

the streamwise vortices which are responsible for the higher spread of the jet in spanwise 

direction (Sr > 1) were significantly diffused by viscosity in the downstream region.  The 

vorticity distribution which will be discussed later will be used to support this assertion.  

Figure 4.34 clearly demonstrates that, the variation of the spread rates with the local 

Reynolds number is only fluid dependent in the region Rem > 380 and 270, respectively 

for Sz and Sy.  Outside this region, the variation of the spread rates with Rem shows no 

difference between XG005 and XG010 although these values are distinctively lower than 
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those of the Newtonian fluid.  The variation of the local skin friction coefficient, Cfm with 

the local Reynolds number is also independent of the fluid (Fig. 4.35). 
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Figure 4.33: Comparison of results at various fluids on variation of spread rate ratio in 

downstream direction for Rej = 420 (a) and 800 (b).  
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Figure 4.34: Comparison of results at various fluids on variation of spread rates: a) 
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Figure 4.35: Comparison of variation of local skin friction coefficient with local 

Reynolds number, Rem for various fluids at Rej = 420 (a) and 800 (b).  
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4.4.2 Velocity Profiles 

4.4.2.1 Similarity consideration 

As mentioned in the previous section, the discussion will only focus on XG005 since 

these results are qualitatively similar to those obtained for XG010.  Figure 4.36 shows 

profiles of the streamwise velocity, U, in the symmetry plane at various normalised 

streamwise locations (5 ≤ X ≤ 60).  For Rej = 250 and the axial locations shown in Fig. 

4.36a, it is observed that the location of the maximum velocity (Z ' = 0.52) for profiles at 

5 ≤ X ≤ 10 is somewhat higher than Z ' = 0.42 for X > 15.  The measurements reported in 

Section 4.2 also showed that the maximum velocity occurred at Z ' = 0.56 for profiles in 

the range 5 ≤ X ≤ 25 and Z ' = 0.46 for X > 25.  The velocity profiles can be divided into 

the following three regions: Region I (Z ' ≤ 0.5) which corresponds to the distance from 

the wall to the location of um.  This region is usually referred to as the inner region.  In 

this region, all the velocity profiles collapsed remarkably well onto a single curve.  

Region II (0.5 < Z ' ≤ 1.0) corresponds to distance between the location of um to the 

location of z0.5.  In this region, the profiles obtained at X > 15 are below those at 5 ≤ X ≤ 

10 and the normalised velocities generally decrease with X.  In the outermost region 

(Region III) which corresponds to Z ' > 1.0, there is a noticeable difference among the 

profiles and with the exception of X = 20, the normalised velocities increase with X.  It 

should be noted that at this particular Reynolds number, the local maximum velocity at X 

= 20 is only 0.71% of the exit velocity. 

Similar observations are also made in Fig. 4.36(b, c) for Rej = 420 and 800.  For these 

Reynolds numbers, the location of the maximum velocity was approximately the same 
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Figure 4.36: Normalised streamwise velocity profiles at various downstream locations 

for XG005 in the transverse direction.  
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(Z ' = 0.53) for all the X locations plotted.  A comparison of Fig. 4.36a and Fig. 4.36(b, c) 

suggests that the discrepancies among the profiles in region II diminishes with Rej.  For 

region III, unlike Rej = 250 where the profile at X = 20 deviates from those at X < 20, it 

is apparent from Fig. 4.36(b, c) that the profile at X = 40 for Rej = 420 and X = 60 for Rej 

= 800 are different from those closer to the jet exit.  

The corresponding profiles in the spanwise direction and along zm are shown in Fig. 4.37.  

These profiles can also be subdivided into two regions:  region I (Y ' ≤ 1.0) and region II 

(Y ' > 1.0) which correspond to region II and region III, respectively.  The trends 

observed in Figs. 4.36 and 4.37 are quite different from those made in the experiments 

(Section 4.2).  For the measured data, the discrepancy among the velocity profiles only 

occurs in the region Z ' > 1.2 for the transverse direction and Y ' > 1.2 for the spanwise 

direction.  
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Figure 4.37: Normalised streamwise velocity profiles at various downstream locations 

for XG005 spanwise direction. 
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The normalised secondary velocity profiles at various X locations are shown in Figs. 4.38 

and 4.39.  Figure 4.38 shows the transverse velocity profiles (Wu = w/um) in the 

symmetry plane whereas Fig. 4.39 presents plots of the spanwise velocity profiles (Vu = 

v/um) along a line parallel to the wall passing through zm.  As expected, Wu profiles 

increase from zero to a maximum value and decrease in the outer region irrespective of 

the Reynolds number.  For Rej = 250, irrespective of the X location, the peak values (Wu) 

occur at the same location, Z ' = 0.75 which is higher than Z ' = 0.52 and 0.42, 

respectively, for U profiles in 5 ≤ X ≤ 10 and X > 15 (Fig. 4.36a).  The location of the 

peak value is comparable to Z ' ≈ 0.75 – 0.82 reported for power-law non-Newtonian 

fluids (Adane and Tachie, 2008a).  Figure 4.38a also shows that the transverse velocity 

increases significantly with downstream distance, X.  For example, the peak value of Wu 

at X = 10 is 0.09 compare with 0.64 at X = 20.  The trends for Rej = 420 and 800 are 

similar to those observed for Rej = 250.  Although the location for the peak value of Wu is 

independent of Reynolds number, Wu values are strongly influenced by Reynolds 

number.  For instance, at X = 20 the peak values of Wu are 0.64, 0.13 and 0.01, 

respectively for Rej = 250, 420 and 800.  

In general, similar observations are also made for the spanwise velocity (Vu) profiles 

shown in Fig. 4.39.  Unlike w profiles where the maximum value occurs at Z ' = 0.75, 

here, for all the three Reynolds numbers vm occur at the same location of Y ' ~ 0.9.   

It is noteworthy that for each Rej value, v values are lower than w for each X location.  

This implies that the entrainment of the ambient fluid in the transverse direction is higher 

than that in the spanwise direction which is consistent with the larger spread of the jet in 
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Figure 4.38: Normalised traverse velocity (Wu) profiles at various downstream locations 

for XG005. 
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Figure 4.39: Normalised spanwise velocity (Vu) profiles at various downstream locations 

for XG005. 
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the transverse direction observed in Fig. 4.25.  It is also noticed from Figs. 4.38 and 4.39 

that, the scaling employed fails to collapse the secondary velocities into a single curve.  

Figures 4.40 and 4.41 show the profiles of v and w normalised by their respective local 

maximum values (vm and wm).  Figure 4.40 shows that although this normalisation does 

not completely collapse all the profiles in the symmetry plane, the agreement among the 

various profiles at X ≥ 5 (for Rej = 250), X ≥ 10 (for Rej = 420) and X ≥ 20 (for Rej = 

800) in the region Z ' < 1 is very good.  Similarly, the V profiles (Fig. 4.41) in the region 

Y ' < 1 at all axial locations shown collapsed reasonably well.  

4.4.2.2 Effect of initial Reynolds number 

Based on the results presented in Figs. 4.36 and 4.37, it was decided to use the profiles at 

X = 10 for the three Reynolds numbers to study any effects of Reynolds number (Fig. 

4.42).  The measured profiles at X = 10 at Rej = 800 are also shown in Fig. 4.42 for 

comparison.  The experimental data collapsed remarkably well onto the corresponding 

numerical results (Rej = 800) except in the outermost part of the spanwise profile (Fig. 

4.42b).  The inner region of the profiles in the symmetry plane for the three Reynolds 

numbers (Fig. 4.42a) are in excellent agreement.  In fact, with the exception of some 

minor discrepancies in the outer edge of the symmetry plane, the profiles in both the 

transverse and spanwise directions are nearly independent of Reynolds number. 

4.4.2.3 Effect of concentration  

The velocity profiles for the two non-Newtonian fluids (XG005 and XG010) and those 

for the reference Newtonian fluid are compared in Figs. 4.43 and 4.44.  The profiles for 
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Figure 4.40: Normalised transverse velocity (W) profiles at various downstream 

locations for XG005. 
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Figure 4.41: Normalised spanwise velocity (V) profiles at various downstream locations 

for XG005. 
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Figure 4.42: Comparison at various Rej and previous experimental results on the 
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Figure 4.43: Comparison at various fluids on the similarity velocity profiles in transverse 

direction at y = 0. 



138 

 

0.0 0.5 1.0
0.0

1.0

2.0

Re
j
 = 250             XG005

            XG010 

 

 

Z '

U

a)

0.0 1.0 2.0
0.0

0.5

1.0

X = 10

a)

 

 

U

Y '

Re
j
 = 250

            XG005

            XG010 

0.0 0.5 1.0
0.0

1.0

2.0
Re

j
 = 420b)          Newtonian

            XG005

            XG010

 

 

Z '

U

0.0 1.0 2.0
0.0

0.5

1.0

X = 10

b)

 

 

U

Y '

Re
j
 = 420

         Newtonian

            XG005

            XG010

0.0 0.5 1.0
0.0

1.0

2.0

            Newtonian 

            XG005

            XG010

Re
j
 = 800c)

 

 

Z '

U
0.0 1.0 2.0

0.0

0.5

1.0

X = 10

Re
j
 = 800

            Newtonian 

            XG005

            XG010

c)

 

 

U

Y '  

Figure 4.44: Comparison at various fluids on the similarity velocity profiles in spanwise 

direction at zm. 
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the non-Newtonian fluid are in good agreement in both the transverse and spanwise 

directions.  There is, however, a significant difference between the profiles for the 

Newtonian fluid and those for the non-Newtonian fluids.  In the symmetry plane, for 

example, the normalised velocity for the Newtonian fluid in the inner region (Z ' < 0.5) is 

relatively lower than the corresponding values for the non-Newtonian fluids.  Previous 

results for 2-D laminar wall jet on a curve surface (Filip et al, 1991) and 3D-laminar wall 

jets (Adane and Tachie, 2008a) also showed that the velocity for a shear-thinning fluid is 

relatively higher than that for a Newtonian fluid.  Significant differences are also 

observed between the Newtonian and non-Newtonian fluids in the spanwise direction 

(Fig. 4.44).  In this case, the values of U for the Newtonian fluid are lower than the 

corresponding values for the non-Newtonian fluids in the region Y ' ≤ 1.0 and vice-versa 

in the outermost region (Y ' > 1.0).  

4.5 Vorticity Distributions 

In this section, the distributions of the streamwise vorticity for both the Newtonian and 

non-Newtonian fluids are presented and discussed.  The vorticity is computed from the 

velocity field using a central-differencing scheme.   

4.5.1 Effect of Initial Reynolds Number 

Figure 4.45 shows contours of the normalised streamwise vorticity, Ωx (1000 x d / uj) in 

the z-y plane at X = 5, 30 and 60 for Rej = 310 and 800 for the Newtonian fluid.  The 

rational is to assess the level of the streamwise vortex as the flow evolves downstream.  

Irrespective of Rej, Ωx decreases with increasing X.  The decrease is more dramatic at Rej 

= 310 than at Rej = 800.  At X = 30, the maximum value of Ωx is only 5% of that at X = 5 
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Figure 4.45: Streamwise vorticity contours at Rej = 310 (a, c, e) and 800 (b, d, f) for X = 

5, 30 and 60, respectively for the Newtonian fluid. 

for Rej = 310.  Meanwhile, for Rej = 800, the maximum value of Ωx at X = 30 is 25% of 

the corresponding value at X = 5.  At X = 5, the contours at Rej = 800 (Fig. 4.45b) show a 

strong emergence of secondary vortex in the outer region.  As the flow evolves 

downstream, this secondary vortex decreases while the primary vortex increases.  At X = 

30, the secondary vortex has disappeared and the centre of primary vortex is now at Y ' = 
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0.9 (Fig. 4.45d).  The strong secondary vortex formation observed at X = 5 (Fig. 4.45b) 

indicates that the flow at Rej = 800 generated a significant amount of streamwise vortices 

at the early stages of its evolution after which the velocity does not change as rapidly (see 

Figs. 4.12 and 4.21) as it does at Rej = 310.   

Figure 4.46 shows contour of the normalised streamwise vorticity, Ωx in the z-y plane at 

X = 5 and 20 for Rej = 250, 420 and 800 for XG005.  Irrespective of Rej, Ωx decreases 

with increasing X.  The decrease is more dramatic at Rej = 250 than at Rej = 800.  At X = 

20, the peak positive value of Ωx is only 0.06% of the corresponding value at X = 5 for 

Rej = 250.  The corresponding percentage change of the peak negative value is 1.2%.  On 

the other hand, for Rej = 800, the peak positive and negative values of Ωx at X = 20 are 

15% and 40.4%, respectively of the corresponding values at X = 5.  Figure 4.46(a, c, e) 

shows strong secondary vortex formation at X = 5 especially for Rej = 420 and 800.  Due 

to the strong interaction of the jet and the ambient fluid, these vortices were diffused by 

viscosity such that at X = 20 for Rej = 250 and 420, the vortices no longer exist.  The 

trend observed in Figs. 4.45 and 4.46 is consistent with the earlier observations made for 

the rapid decay of the velocity and fast spread of the jet in both transverse and spanwise 

directions for the lower Rej.  In fact, Fig. 4.46 also supports the notion that the higher 

spread rate ratios (Sr > 1) in Fig. 4.14 is due to streamwise vorticity.   
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Figure 4.46: Streamwise vorticity contours at Rej = 250 (a, b), 420 (c, d) and 800 (e, f) 

for X = 5 and 20, respectively for XG005 fluid. 
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4.5.2 Effect of Concentration  

Figure 4.47 shows the Ωx contours for all the three fluids in the z-y plane at X = 5, 20 and 

40.  Irrespective of fluid, Ωx decreases with increasing X. At X = 5, there was no 

significant difference between the values of Ωx for the two non-Newtonian fluids.  The 

peak positive and negative values of Ωx for the non-Newtonian fluid are 1.6 and 1.26, 

respectively times the corresponding values of Newtonian fluid.  Meanwhile, at X = 40 

the peak positive value of Ωx for the Newtonian fluid is approximately ten times the 

corresponding peak positive Ωx values for XG005 and XG010.  These higher positive Ωx 

values for the Newtonian fluid are vividly shown on the contour (Fig. 4.47g).  

Furthermore, the diffusion of the streamwise vortex in the outer region for the two shear-

thinning fluids (XG005 and XG010) is clearly demonstrated by the contours of those 

fluids (Fig. 4.47(h, i)).  This trend is consistent with the earlier observations made for the 

spread rates in Figs. 4.33 and 4.34.   
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Figure 4.47: Streamwise vorticity contours at Rej = 800 for various fluids: Newtonian (a, 

d, g), XG005 (b, e, h) and XG010 (c, f, i) for X = 5, 20 and 40, 

respectively. 
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Chapter 5 

SUMMARY, CONCLUSIONS AND FUTURE WORK 

This chapter provides a summary and the major conclusions of this thesis.  Some 

important recommendations for future work are also presented. 

5.1 Summary and Conclusions 

5.1.1 Summary 

An experimental research program was undertaken to study the characteristics of three-

dimensional laminar wall jet flows of both Newtonian and shear-thinning non-Newtonian 

fluids.  Water was used as the Newtonian fluid whereas the non-Newtonian fluids were 

prepared from two concentrations of xanthan gum (0.005 wt% and 0.01 wt%).  A planar 

particle image velocimetry technique (PIV) was used to conduct the velocity 

measurements.  The measurements were performed in various streamwise-transverse and 

streamwise-spanwise planes at various initial Reynolds numbers (250 ≤ Rej ≤ 800).  From 

these measurements, the wall jet characteristics including the maximum velocity decay, 

jet half-widths and velocities profiles were obtained to study the effects of Reynolds 

number and fluid type on the characteristics of the wall jet flows.   

Numerical method was also employed to compute the three-dimensional laminar wall jet 

flows of both Newtonian and shear-thinning non-Newtonian fluids.  The experimental 

data obtained in this study were used to validate the numerical results.  Additional 

quantities such as spread rates, momentum flux, skin friction coefficient and streamwise 

vortex that could not be measured in the experiments were also evaluated from the 

computation.   
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5.1.2 Concluding Remarks 

The measurements for the Newtonian fluid showed that, irrespective of the initial 

Reynolds number, the maximum velocity decayed whereas the jet half-widths increase 

with downstream distance.  The decay of the maximum velocity was nearly independent 

of Reynolds number.  However, the jet half-widths in the spanwise and transverse 

direction decrease with increasing initial Reynolds number.  It was observed that the 

growth of the jet half-widths is anisotropic in nature.  The substantially larger growth in 

the transverse direction than in spanwise direction was attributed to the dominance of 

viscous diffusion.  The wall jet flow achieved a self-similar condition irrespective of the 

Reynolds number.  Whilst the velocity profiles in the self-similar region were 

independent of Reynolds number, the onset of the self-similar condition depends on 

Reynolds number.  For example, the streamwise locations of the onset of similarity 

condition were 5d and 2d, respectively, for the lower (Rej = 310) and higher (Rej = 800) 

Reynolds numbers. 

With exception of the highest Reynolds number (Rej = 800) for the higher concentration 

of xanthan gum (XG010) fluid, the measured results for the non-Newtonian fluids were 

qualitatively similar to those made for the Newtonian fluids.  The only difference is that, 

for these non-Newtonian fluids the decay of maximum velocity was faster at the lower 

Reynolds number (Rej = 250) and slower at the higher Reynolds number (Rej = 800).   

In contrast, the growth of the jet half-widths for the XG010 fluid at Rej = 800 was 

significantly higher in the spanwise direction than in the transverse direction.  An 

observation that is similar to previous results for three-dimensional turbulent wall jets.  
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Furthermore, the velocity profiles in the downstream locations (>30d) resembled those of 

a typical turbulent wall jet.   

The measured results showed that, the decay of the maximum velocity and the spread of 

the jets in both spanwise and transverse directions were faster for the Newtonian fluid 

than for the non-Newtonian fluids. Meanwhile, the normalised velocity profiles showed 

no dependence on the specific fluid.    

Although the experimental results are more limited in scope in comparison to the 

numerical results, they provide the basis for validating the numerical results.  For the 

Newtonian fluid, a good agreement between the experimental and numerical results was 

observed for velocity profiles, and for the maximum velocity and jet half-widths in the 

early region of jet development.  In the downstream region (x > 30d), values of the 

maximum velocity were higher and the jet half-widths were lower for the numerical 

results than the corresponding measured results.  The numerical results showed that the 

initial momentum is expended more quickly at a lower Reynolds number; and as a result, 

the velocity decay more rapidly at a lower Reynolds number than at a higher Reynolds 

number.    

The spread rates and skin friction coefficient from the numerical results showed a strong 

dependence on the initial Reynolds number.  The variation of the transverse spread rate 

with streamwise distance can be divided into two regions: (i) an initial region where the 

spread rate increases sharply from the exit and (ii) a final region where transverse spread 

rate increases nearly linearly with streamwise distance, irrespective of the initial 

Reynolds number.  The demarcation between these regions depends strongly on the 
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initial Reynolds number.  The variation of the spanwise spread rate with streamwise 

distance at higher Reynolds numbers (Rej = 420 and 800) becomes nearly constant 

beyond 7d.  Also, in the downstream region, both spread rates increase nearly linear with 

decreasing local Reynolds number and this variation is independent of the initial 

Reynolds number.  In the early region of flow development, the jet spreads more in the 

spanwise direction than in the transverse direction whereas in the downstream region the 

converse is true.  This observation was true for all the Reynolds numbers studied.  This 

anisotropic behaviour in the early stage of flow development was attributed to the 

presence of streamwise vorticity whereas that in the downstream region was due to 

viscous diffusion.  

For a given initial Reynolds number, the skin friction coefficient obtained with the jet 

maximum velocity decreases with downstream distance and also as one moves away 

from the symmetry plane.  On the contrary, the local skin friction coefficient is a unique 

function of the local Reynolds number but independent of the initial Reynolds number.   

The general conclusions from numerical results on non-Newtonian fluids are not different 

from those made for Newtonian fluid.  At the later stage of flow development, the 

numerical results for the non-Newtonian fluids are lower than the corresponding 

measured values.  Unlike the measured values where the observations for higher 

Reynolds number for higher concentration of xanthan gum are different from the other 

flow conditions, the numerical results showed no significant differences.  Numerical 

results for the non-Newtonian fluids showed that, irrespective of initial Reynolds number, 

the spread rates vary exponentially with streamwise distance.  The results also 
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demonstrate that the streamwise velocity profiles in the outermost region of the flow 

never collapsed into a single curve.  

The results from various concentrations of xanthan gum showed that the maximum 

velocity decay, the spread rates, and velocity profiles depend on the specific fluid.  In the 

downstream region, the variation of the spread rates with the local Reynolds number is 

independent of the fluid.  The spread rate ratios for the non-Newtonian fluids are 

significantly higher than that of Newtonian fluid in the early stages of the flow whereas 

in the downstream region the reverse is true.  Finally, the local skin friction coefficient is 

a unique function of the local Reynolds number but independent of the fluid. 

5.2 Recommendations for Future Work 

Based on the above concluding remarks and the current understanding of the three-

dimensional laminar wall jet flows, the following recommendations are suggested for 

future research.  An experimental study at higher Reynolds numbers than in the present 

study would provide a physical understanding of the transition process from 3D laminar 

wall jets to the 3D turbulent wall jets.  Such results will also be useful for validating 

future numerical results.  Moreover, the complex nature of the 3D laminar wall jet flows 

would require measurements of the three components of the velocity field in order to 

completely validate numerical results.   

The effect of higher concentrations of xanthan gum and a wide range of non-Newtonian 

fluids should be studied. Furthermore, extension of the viscosity definition by 

incorporating fluid behaviours such as relaxation time, elasticity, elongation and yield 

will provide additional insight into the fluid effect on wall jet characteristics.   
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APPENDIX A 

PARTICLE IMAGE VELOCIMETRY AND MEASUREMENT ERRORS 

In this appendix, a detail description of the particle image velocimetry (PIV) system used 

in the present study is provided.  In addition, a detailed analysis of measurement errors 

analysis and uncertainties is also provided.  

A.1 Principles of Particle Image Velocimetry 

Particle image velocimetry (PIV) is a non-intrusive optical measurement technique that 

provides simultaneous whole-field instantaneous velocity measurements.  The PIV is 

well suited for estimating velocity gradients and derived quantities such as vorticity.  Due 

to these attractive features, the PIV has been applied in many areas of fluid mechanics 

and aerodynamics research in the recent past.  There are two types of PIV: the standard 

PIV (planar) and the stereo PIV.  The standard PIV can measure only two velocity 

components whereas the stereo PIV can measure all the three velocity components.  In 

this section, the basic principle of the standard PIV is outlined and its various 

components are described. 

A.1.1 Planar PIV 

As shown in Fig. A.1, a typical PIV system consists of a pulsed light source (laser) to 

illuminate the flow area of interest, a film or CCD camera to record the illuminated 

particles, a synchronizer to control the camera and laser, and a computer with suitable 

software to record, store and post-process the recorded images.    
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Figure A.1: A typical experimental set-up of PIV system 

The principle of PIV involves a flow field seeded with small particles.  These seeding 

particles which are assumed to faithfully follow the fluid motion are then illuminated by 

two pulses of laser sheet separated by a time delay, t.  The light scattered by the seeding 

particles is recorded and two successive images are captured.  The images are divided 

into a grid of small so-called interrogation areas.  The principle of PIV also assumes that 

there is a uniform displacement within an interrogation area.  A correlation algorithm is 

applied to statistically determine the displacement vector ( s) of particles between the 

first and the second illuminations for each interrogation area.  The velocity, V, for a 

particular interrogation area is obtained from the expression V = s/ t.  The correlation 

for each interrogation area over the two image frames captured is repeated to obtain the 
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velocity vector map over the whole target area.  The description of the basic components 

of a PIV is presented in detail in the subsequent sections.   

A.1.2 Light Source 

For PIV measurements, a pulse laser is required to freeze the motion of the particles 

during image capturing.  The fact that the whole-field is illuminated and the camera 

captures the side-wards scattered light by the particles makes a high power laser 

necessary.  The commonly used lasers for PIV measurements are frequency doubled 

neodymium-yttrium-aluminum-garnet (Nd:YAG) lasers.  This is because these lasers 

provide monochromatic light with high intensity illumination.  Laser-emitted light is 

passed through a lens system to create a plane sheet of light.  

A.1.3 Seeding Particles 

As mentioned in prior sections, the main feature of the particles is to be able to follow the 

fluid faithfully without disturbing the flow.  The particles should also be large enough to 

scatter sufficient light for them to be detected by the camera.  The particles must also be 

good at scattering light to ensure that they are visible to the CCD sensor (Willert and 

Gharib, 1991).  In addition, the seeding particles should be distributed homogeneously 

(Westerweel et al, 1996).  Furthermore, the selection of the seeding particles should take 

into account the particle size and shape, the refractive index, and the wavelength of 

radiation.  These factors affect the particles light scattering.  A variety of seeding 

particles are commercially available ranging from few microns to hundreds of microns.  

Some of the widely used particles are polyamide seeding particles, silver-coated hollow 

glass spheres, hollow glass spheres, polystyrene latex and fluorescent polymer particles.   
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In PIV measurements, it is the velocity of the particle (but not the fluid velocity) that is 

measured.  Therefore, it is essential that the particles have certain hydrodynamic 

properties to ensure that they faithfully follow the flow.  It is always desirable that the 

particles have negligible settling velocity.  The settling velocity can be estimated from 

Stokes drag law for flow around a sphere under gravity and is given by (Mei et al, 1991),  

f

pfp
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gd
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,       (A.1) 

where, 
p
 is the particle density, 

f
 is the working fluid density, g is the acceleration due 

to gravity, dp is the diameter of the particle and f is the viscosity of the fluid.  Hence, the 

settling velocity can be minimized by using small particles and/or particles whose density 

is similar to that of the working fluid.   

Another key parameter of PIV measurements is the response time.  Response time is used 

to characterise the ability of a particle to follow the flow.  It is a measure of the tendency 

of the particles to attain velocity equilibrium with the fluid.  Assuming a Stokes’ flow, 

the particle response time, tr, is given by Raffel et al. (1998) as follows: 
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where all the variables have the same meaning as in Eqn. (A.1). 

A.1.4 Recording Medium 

The most commonly used recording device for PIV is the CCD camera.  This camera has 

several advantages over the photographic film cameras.  Some of these advantages are 

higher frame rates and possibility of on-line image analysis.  However, photographic film 
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cameras provide higher resolution.  An important component of a CCD camera is the 

CCD sensor.  The CCD sensor consists of an array of detectors called pixels.  The CCD 

camera employed in PIV studies generally uses high-performance progressive scan 

interline CCD chips.  The chip consists of an array of photosensitive cells and an equal 

number of storage cells.  The first image is acquired after triggering the first laser pulse 

which is immediately transferred from the photosensitive cells to the storage cells.  Later, 

when the second laser pulse is triggered, the photosensitive cells are available to store the 

second image.  In this case, the storage cells contain the first image and the 

photosensitive cells contain the second image.  Then both images are transferred 

sequentially from the camera to the computer for storage.  This allows the exposure 

interval t to be reduced to less than 1 microsecond.  

A.1.5 Methods of Correlation in PIV 

The two sequential digital images are sub-divided into smaller regions called 

interrogation areas.  The images at the first and second frames are correlated to obtain an 

average displacement vector for each of the interrogation areas which would then 

produce a vector map of average displacements for all the interrogation areas.  The most 

commonly used correlation methods are auto-correlation and cross-correlation. 

For an auto-correlation method, the particles in an interrogation area are correlated with 

themselves.  This produces correlation function with characteristic central peak (the self-

correlation peak) and other two displacement peaks.  The distance between the central 

peak and either of the displacement peaks corresponds to the average particle 

displacement in the interrogation area.  One of the setbacks of this method is the presence 
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of the self-correlation peak which can lead to the particle displacements less than 2-3 

pixels not being detected.  This setback can reduce the dynamic range of the auto-

correlation technique.  Another major drawback is 180-degree directional ambiguity of 

the correlation method. 

In cross-correlation, the particles in two different interrogation areas belonging to two 

different images at the first and second frames are correlated.  The advantage of this 

method is that the order of the image recording is known and therefore directional 

ambiguity is no more an issue.  With the cross-correlation method, two sequential images 

of the flow field with a specific time between them are considered as two spatial signals.  

The spatial shift may be represented by using a linear digital signal image process as 

shown in Fig. A.2.  In Fig. A.2, the function f (m, n) describes the light intensity within 

the interrogation area at time, t whereas the intensity recorded at time t later is described 

by the function g (m, n).  The function f (m, n) is considered as the input signal and g (m, 

n) is the output of the transfer function s (m, n) in the presence of noise function d (m, n). 

The capitalised functions, F (u, v) and G (u, v) shown in Fig. A.2 represent the Fourier 

transforms of the respective functions, and u, v are the coordinates of the spatial 

frequency domain.  The major challenge of this method is the estimation of the spatial 

shift function s (m, n) on the basis of known functional values of f (m, n) and g (m, n) in 

the presence of noise function d (m, n).  The spatial shift function s (m, n) is commonly 

determined by using the statistical technique of spatial cross-correlation.  A detailed 

description of this technique and the computational implementation are given in Willert 

and Gharib (1991) and Raffel et al (1998). 
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Figure A.2: Image displacement function 

The adaptive-correlation algorithm is an advanced version of the cross-correlation 

method.  This iterative method relies on knowledge of the actual velocity spatial 

distribution.  This velocity spatial distribution which is unknown a priori, is also the 

objective of the measurement procedure itself.  The adaptive-correlation involves an 

initial guessed offset value which is used to introduce an offset from the first window (the 

interrogation area in the image frame from the first laser pulse) to the second window.  

The result of each single interrogation is used as an input to evaluate the interrogation 

parameters for the subsequent iteration.  The iteration is stopped by a convergence 

criterion.  One of the attractive features of adaptive correlation is that the signal strength 

is raised due to the capture of in-plane dropout.  In-plane dropout occurs because during 

the time between the two light pulses some of the particles leave the interrogation area 

and are lost.  This loss of particles reduces signal strength and the number of successful 

vectors that can be obtained.  In adaptive-correlation algorithm, there is also a possibility 

of interrogation area refinement because an adaptive window offset may be applied, 

again producing a successful signal. 
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A.1.6 Optimisation of PIV Measurements 

It is imperative that a PIV system be optimised for high accuracy results.  This is because 

a PIV system involves a combination of laser energy, camera magnification, and light 

sheet dimension which might affect the accuracy of results from a PIV system.  Even 

under ideal experimental conditions, a PIV vector map may contain spurious vectors.  

These spurious vectors emanate from interrogation spots where signal-to-noise ratio is 

less than unity.  That is, a noise peak is higher than the signal peak.  Keane and Adrian 

(1990) investigated the detection probability (i.e., the percentage of valid vectors).  To 

improve the signal-to-noise ratio, it was recommended that the interrogation areas be 

large enough to accommodate a sufficient number of particles, but small enough so that 

one vector describes the flow.  Raffel et al (1998) point out that the selection of the 

particle size should be such that the particle image size is approximately two pixels when 

imaged by the digital camera.  The particle image diameter, dimage , is given by: 

dimage  [dp
2
M 

2
 + (2.44(1+M)f#) ] (A.3) 

where d
p
 is particle diameter, f# is the f-number of the lens, λ is the wavelength of the 

laser light, and M is the magnification factor of the camera.  Raffel et al (1998) suggested 

that when the image diameter becomes too small there is insufficient information to make 

effective use of sub pixel interpolation.  This is because there is likelihood of biasing data 

towards integer pixel values.  Sub pixel interpolation is used to increase the resolution or 

accuracy when detecting the position of the correlation peak which makes it possible to 

determine displacements with an accuracy of a fraction of a pixel.   
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The seeding density is dependent on the type of correlation method used.  For the two-

frame cross-correlation method, for example, Willert and Gharib (1991) showed that to 

obtain a high valid detection probability the number of particles should be at least 6 in an 

interrogation area.  Using very high particle image densities, large particle image 

diameters, and small interrogation cell sizes will reduce the error due to gradients.  The 

movement of the particles can only be tracked as long as they remain within the same 

interrogation area during both exposures.  In addition, the particles should not traverse 

more than one-fourth of the side length of the interrogation areas between exposures to 

keep the number of particles that leave the interrogation area low.   

The thickness of a laser sheet, z, is usually chosen to be smaller than the depth-of-field 

of the recording system, z.  Consequently, all particles illuminated by the light sheet 

produce in-focus images, reducing background noise in the image field (Adrian 1991).  

The depth-of-field of the lens is given by, 

z = 4(1+M 
-1

)
2
 f#

2
  (A.4) 

It should be noted that for a given magnification, a large depth-of-field can only be 

obtained at the cost of increasing the f# implying that a smaller fraction of the light 

scattered by the particles will reach the sensor.   

A.2 Error Analysis in PIV 

Measurement is the act of assigning a value to some physical variables.  The relative 

closeness of agreement between an experimentally determined value of a quantity and its 

true value indicates the accuracy of the measurement.  The difference between the 

experimentally determined value and the true value is the measurement error.  Generally, 
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the true values of measured quantities are not known and therefore, estimation of the 

error must be made.  This estimate is called an uncertainty.  Coleman and Steele (1995) 

presented a detailed uncertainty assessment methodology.  Stern et al (1999) provided 

comprehensive guidelines for the application of uncertainty assessment methodology into 

the test process and documentation of results.  In general, the total error is composed of 

two components: a precision component and a bias component.  Coleman and Steele 

(1995) defined the precision error as that due to the scatter of the data, whereas the bias 

error is the systematic error.  Gui et al (2001a) quantified both bias and precision 

uncertainties in PIV measurements and their contributions to the total measurement 

uncertainty for a turbulent flow.  Recently, Adeyinka and Naterer (2005) followed Gui et 

al (2001a) procedure to obtained similar analysis for laminar flows.  According to 

previous studies such as Forliti et al (2000) a Gaussian peak-fitting algorithm is found to 

have the lowest bias and precision errors.  They reported that the evaluation bias and 

gradient of the evaluation bias can both be minimised effectively by using Gaussian 

digital masks on the interrogation window, and this can in turn reduce measurement 

uncertainty.  Therefore in the subsequent sections, details analysis of the errors inherent 

in the present PIV is given.   

A.2.1 Measurement Error 

The sources of error in PIV measurements include: bad selection of time between image 

pairs, sub-pixel displacement bias, insufficient sample size, effect of velocity gradients, 

and spatial resolution.  Through careful selection of experimental conditions such as time 

between image pairs, certain errors can be minimised.  Peak locking, which is an artifact 
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of sub-pixel particle displacement being biased toward integer values, is a major 

contributor to the bias error.  A number of steps were taken during image acquisition and 

image processing to reduce peak locking in the present study.  The particle image 

diameter, dp was estimated to be 1.89-1.99 pixels, 1.91-2.01 pixels and 1.89-1.93 pixels 

for Newtonian fluid, XG005 and XG010 experiments, respectively.  These values are 

close to the value of 2.0 pixels recommended by Raffel et al (1998) to minimise peak 

locking.  The histograms (Fig. A.3) show no discernible peak locking effects which imply 

that the contribution to the bias error is minimal.  The large sample size (700 for water 

and 750 for XG instantaneous images) also reduces the precision error.   

The effect of velocity gradient on bias errors that occurs in flows with large velocity 

gradients is also a concern.  The velocity gradients tend to broaden the displacement peak 

and reduce the amplitude.  The error associated with the velocity gradient is typical of all 

boundary layer flows.  Keane and Adrian (1992) suggested that for the cross-correlation 

technique, to achieve an acceptable valid detection probability of 95%, the acceptable 

gradients should follow the expression: 

03.0tuM z             (A.5) 

where, M is the magnification factor, uz = 0.5 ( u/ z), and t is the time between the two 

laser pulses.  Sample values with corresponding inputs for various fluids are shown in 

Table A.1.  From Table A.1 and other test locations (not shown), the condition expressed 

in the Eqn. (A.5) is easily satisfied.   
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(a) 

 

(b) 

 

(c) 

Figure A.3: Sample histogram of some measurement planes: (a) Newtonian fluid, (b) 

XG005 and (c) XG010. 
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Table A.1: Sample values from Eqn. A.5 

 M uz (s
-1

) t (s) M uz t 

Newtonian fluid 1.620E-01 1.048 1.500E-03 2.550E-04 

XG005 1.620E-01 0.963 8.900E-04 1.390E-04 

XG010 1.620E-01 0.955 3.700E-04 5.730E-05 

 

It is necessary to keep the interrogation area size as small as possible in order to capture 

the flow dynamics in the inner region especially for the present studies where the jet 

thickness is around 0.5 times the pipe diameter.  This spatial resolution is critical in the 

calculation of the vorticity.  On the other hand, the dynamic range of the measured 

velocity values increases with larger interrogation area sizes which implies that larger 

interrogation area sizes are desirable to achieving a larger velocity dynamic range.  The 

above conflicting interests require a compromise between spatial resolution and velocity 

dynamic range.  The dynamic range in a PIV measurement based on a pixel displacement 

level is the displacement divided by the sub-pixel accuracy.  The sub-pixel accuracy is a 

function of many parameters, for which most are beyond the PIV system itself and 

therefore often unknown.  As a rule-of-thumb 0.1 pixel accuracy is a realistic value 

(Scarano and Riethmuller, 1999).  In the present measurements, it was ensured that 

particle displacement was less than one-quarter of the size of the interrogation area as 

recommended by many researchers (Willert and Gharib, 1991).  For a typical PIV 

recording in the symmetry plane (x-z plane), the maximum displacement was 4 pixels so 

that the velocity dynamic range is of the order of 4/0.1 = 40.  For the spanwise plane (x-y 
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plane), the corresponding maximum displacement was 8 pixels which gave the velocity 

dynamic range of the order of 8/0.1 = 80. 

A.2.2 Error Estimation  

The uncertainty analysis of the present measurement follows the American Institute of 

Aeronautics and Astronautics standard derived and explained by Coleman & Steele 

(1995).  These uncertainties include particle response to fluid motion, light sheet 

positioning, light pulse timing, and the error arising from the peak-finding algorithm to 

determine the average particle displacement (Forliti et al, 2000).  A complete uncertainty 

analysis of the PIV measurement involves identifying and quantifying both the bias and 

the precision errors in each part of the measurement chain.  The total error or 

measurement uncertainty,  in a measured quantity is a percentage of the sum of the 

bias component (B) and precision component (P).  In the following sections, details on 

how these errors were obtained for the present study are presented.   

A.2.2.1  Biased error 

The average fluid velocity, u for an interrogation area at any instant is reduced by Eqn. 

(A.6) (Gui et al, 2001a; Adeyinka and Naterer, 2005).  

o

i

sL
u

tL
             (A.6) 

where t (s) is the time interval between laser pulses, s (pixel) is the particle 

displacement from the correlation algorithm, Lo (mm) is the width of the camera view in 

the object plane, and Li (pixel) is the width of the digital image.  The bias limit (B) of the 
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measured velocity is determined with a root-sum-square (RSS) of the elementary bias 

limit (Bχ), and they are related through the sensitivity coefficients, θχ which is given as: 

22222222

00 ttssLLLL BBBBB
II

,         (A.7) 

where the sensitivity coefficients, θχ are defined as  

0, ( , , , )I

u
L L t s           (A.8) 

The classification of bias error, b  (= B / u) sources and contribution to the bias limits 

are provided in Tables A.2 and A.3, respectively for Newtonian fluid and xanthan gum 

based fluids.  Also shown in the tables are the manufacturer’s specifications of the 

elementary bias limits for t and s .  The bias limit for 0L  is obtained from a calibration 

procedure.  

Table A.2: Bias limits of the velocity for Newtonian fluid (water). 

χ Magnitude Bχ χ Bχ χ Bχ χ / Bχ χ)  (Bχ χ )
2

Lo (m) 9.000E-02 5.000E-04 1.302E+00 6.510E-04 6.145E-01 4.239E-07 

Li (m) 2.048E+03 5.000E-01 -5.722E-05 2.861E-05 2.700E-02 8.185E-10 

t (s) 1.500E-03 1.000E-07 -7.813E+01 7.813E-06 7.374E-03 6.104E-11 

s (pix) 4.000E+00 1.270E-02 2.930E-02 3.721E-04 3.512E-01 1.384E-07 

θ (m/s)       1.060E-03     

θ           5.632E-07 

Bu 7.505E-04 

     u (m/s) 1.025E-01 

     εb (%) 0.732 
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Table A.3: Bias limits of the velocity for non-Newtonian fluids (XG005 and XG010) 

χ Magnitude Bχ χ Bχ χ Bχ χ / Bχ χ)  (Bχ χ )
2

Lo (m) 9.000E-02 5.000E-04 5.279E+00 2.639E-03 6.009E-01 6.966E-06 

Li (m) 2.048E+03 5.000E-01 -2.320E-04 1.160E-04 2.641E-02 1.345E-08 

t (s) 3.700E-04 1.000E-07 -1.284E+03 1.284E-04 2.923E-02 1.649E-08 

s (pix) 4.000E+00 1.270E-02 1.188E-01 1.508E-03 3.434E-01 2.275E-06 

θ (m/s)       4.392E-03 

  θ       

  

9.271E-06 

Bu 3.045E-03 

     u (m/s) 4.095E-01 

     εb (%) 0.744 

     
 

A.2.2.2  Precision error 

The precision limit, P of a measured velocity, u is given as:  

2
P

M
          (A.9) 

where 2 was taken as the confidence coefficient for a 95% confidence level for M sample 

readings (Figliola and Beasley, 2000), and  is the standard deviation of the variable, u 

for sample of M readings.  In the present study, M = N (Gui et al, 2001b) which is the 

same as the number of the instantaneous images.  The standard deviation,  is therefore 

defined as:  

2

1
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u u
N

        (A.10) 
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where ū is the mean given by Eqn. (A.11). 

1

1 N

n
n

u u
N

 .         (A.11) 

The corresponding precision limits contributions to the total uncertainty are given in 

Table A.5. 

Table A.5: Precision errors  

 ū(m/s) N (m/s) P(m/s) εp (%) 

Water 1.025E-01 700 1.573E-02 1.189E-03 1.16 

XG 1.00E-01 750 3.50E-02 2.556E-03 2.56 

 

A.1.2.3  Total error 

The total error or measurement uncertainty,  is obtained as follows: 

p b           (A.12) 

The standard deviation of the measured dataset was estimated in the near-wall region and 

at zm.  Since the requirement of maximum seeding particle displacement was met, it can 

be assumed that the sample standard deviation is not too different from those presented in 

Table A.5.  On the basis of this assumption, the measurement uncertainties at 95% 

confidence level in velocities are estimated to be  1.9% and 3.2% of the local velocity, 

respectively for Newtonian (water) fluid and non-Newtonian (xanthan gum) fluids.  Close 

to the plane wall, uncertainties in velocities are estimated to be  2.7% and  3.5, 

respectively for Newtonian (water) fluid and non-Newtonian (xanthan gum) fluids.    
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APPENDIX B 

NUMERICAL TECHNIQUES 

This appendix provides detail descriptions of the numerical techniques employed to 

compute the 3D laminar wall jet flow of both Newtonian and shear-thinning inelastic 

non-Newtonian fluids.  More specifically, the mathematical models, boundary conditions, 

grid generation, discretisation methods, and numerical procedure are discussed.   

B.1 Description of the Governing Equations 

A schematic of the 3D wall jet flow domain used in the present computation is shown in 

Fig. 3.4.  Figure 1.1 defines the Cartesian coordinate system adopted.  The origin of the 

coordinate system coincides with the intersection of the pipe exit (x = 0), the bottom wall 

(z = 0) and channel mid-span or plane of symmetry (y = 0).  It is assumed that the fluid 

flow is incompressible with negligible buoyancy and body forces.  Both Newtonian and 

non-Newtonian are considered.  The standard governing equations and the constitutive 

relation for the non-Newtonian fluid may be written in Cartesian form as:  

Mass Conservation Equation: 

           (B.1) 

Momentum Conservation Equations: 

      

         (B.2) 

        

             (B.3) 
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             (B.4) 

Constitutive equation is given in Eqn. 2.2 (Carreau model):   

1
2 2

0( ) ( ) 1 ( )
n

    


 
                   (B.5) 

where U, V, and W are velocities in x, y, and z directions, respectively, P is pressure, Λ is 

shear rate which is calculated from the second invariant of the shear rate tensor (Π2D), 

and other variables have their usual meanings.  The shear rate and second invariant of the 

shear rate tensor are related through: 

  

   

   (B.6) 

Here, detail is only given for a Carreau constitutive relation since the shear rate 

expression is the same for all power-law based models.  The coupled nonlinear partial 

differential equations (Eqns. B.1-B.5) will be integrated over a volume using a finite 

volume method (FVM).  The colocated variable storage on an orthogonal grid is used.    

B.2 Grid Generation  

The governing differential equations are discretised by subdividing the computational 

domain into a set of control volumes called a grid.  These sub-domains should conform to 

the computational domain boundaries.  The grid can be structured or unstructured.  In this 

work, a structured orthogonal grid is used.  This consists of quadrilateral control volumes 

which can be expanded or contracted across the domain.  The specific locations of all the 

coordinate points of the grid are controlled by an expansion factor.   
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A single block structured computational mesh representing the entire domain shown in 

Fig. 3.4 was created by assigning nodal distributions, Nx, Ny, and Nz in the x, y, and z 

directions, respectively.  In general, the distribution of the nodes in respective directions 

is implemented geometrically with uniformly spaced control volumes being a special 

case.  Figure B.1 shows a typical distribution and the nomenclature employed.  The 

expression for a generic length, L Є (143d, 35.5d, 43d) is given by Ormiston (2006) as: 

               (B.7) 

where β ( 1) is the expansion ratio, and N is the number of spacings which is typically 

the same as number of nodes or control volumes.  Equation (B.7) is based on the premise 

that N and β are known.  In the present work, however, L, N, and l1 are known whereas 

β is unknown.  This is because the experimental domain was used for computations.    

 

Figure B.1: Typical region nomenclature: (a) single node (b) multiple node distributions.  

A uniform grid-points distribution was used near the wall up to the pipe boundary.  This 

enabled the inlet velocity profile to fall exactly on the pipe boundary.  In addition, l1 
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∆l1 

k k+1 N 
N+1 
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which is a percentage of l (Fig. B.1b) was used as a first nodal point from the pipe 

boundary.  This value allowed a smooth transition between the pipe boundary and the 

region after.  The value of β was therefore obtained iteratively using Newton-Raphson 

root search.  The update of β at iteration m+1 is given by Ormiston (2006) as: 

              (B.8) 

where 

  and    (B.9) 

The generated values from Eqn. (B.7) are the vertices of the control volumes (CVs).  The 

respective coordinate points are stored in one-dimensional array due to the simple shape 

of the flow geometry.  For a colocated FVM, the centroid of the CVs are required, and 

therefore needed to be computed.  Here, X, Y, and Z which corresponded to streamwise, 

spanwise, and transverse coordinates, respectively (Fig. 1.1), contained the values of the 

vertices whereas the centroid locations were stored in XC, YC, and ZC, respectively.  The 

centroid coordinates were obtained by averaging the neighbouring vertices.  A typical 

coordinate point and its centroid were given, for example, X and XC, in Eqn. (B.10).  The 

centroid points at the boundaries are assumed to be the same as the boundary vertices, 

that is, XC (N+1) is the same as X (N).  

 and    (B.10) 

B.3 Numerical Modelling  

B.3.1 Introduction  

The discretisation of the governing equations and the constitutive relation mentioned in 
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Section B.1 is discussed here.  The treatment of the various boundary conditions is also 

presented.   

 

Figure B.2: Schematic of a typical control with notations 

A typical control volume (CV) over which the governing equations are integrated is 

shown in Fig. B.2 above.  One of the attractive features of colocated grid arrangement is 

that the same CV is used for all the variables U, V, W, P, and μ.  The discretised values of 

the nodal velocities (U, V, W), pressure (P) and apparent viscosity (μ) are located in the 

centre of the CV.  Using seven stencils computational molecule, the central CV is 

represented by its node, P, where the fluid and flow quantities are stored.  The six 

neighbouring nodes are denoted by compass notation: W, E, S, N, D, and U for west, 
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east, south, north, down, and up cells, respectively.  The faces of the control volume, P 

adjacent to a given neighbour cell W, E, S, N, D, and U are denoted by w, e, s, n, d, and 

u, respectively (Fig. B.2).  The cell areas of the CV and indices in Fig. B.2 are: 

Ae = yz; An = xz; Au = yx 

ijk = i, j, k; I = Nx + 2; J = Ny + 2; K = Nz + 2; ije = I × J 

B.3.2 Algebraic Equation of the Governing Equations  

The practical impossibility of analytically solving the governing equations requires a 

numerical solution which needs to transform them into algebraic equations.  The 

algebraic equations require approximations to evaluate integrals and perform 

interpolations of the governing equations over the CV.  The mass conservation and 

general form of momentum equations for a dependent variable, Φ which is U, V, or W in 

the integral form reads:  

       (B.11) 

( ) ( ) ( ) ( )

I II VI VIII

VIII
VIIVI

d U d V d W d d
t x y z x x

d d S d
y y z z

    

 

    


  

      
          

      

     
      

     

    

             

   

(B.12) 

where SΦ is the source term which is pressure gradient in the present case.  

Integrating Eqn. (B.11) over the CV shown in Fig. B.2, the first term (I) in the x-direction 

mass flow becomes  

( ) e e w wU d A U A U
x
  




  

        
   (B.13) 
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Similarly, the mass flows in both y- and z- directions are given as:  

( ) n n s sV d A V A V
y
  




  


 
       

   (B.14) 

( ) u u d dW d A W A W
z
  




  


 
       

   (B.15) 

Combining Eqns. (B.13-15) gives the following algebraic equation: 

0e n u w s dm m m m m m       
       

   (B.16) 

where: 

e e em A U ; w w wm A U ;  n n nm A V  n n nm A V  u u um A W ; d d dm A W  

The generic momentum conservation equation (B.12) was grouped into unsteady (I), 

convective (II, III, IV), diffusion (V, VI, VII) and source or sink (VIII) terms.  The details 

will only be given in the CV face “e”.  

Convective flux (II, III, IV): 

( )e e e

e

F U d m
x





    


 
       

   (B.17) 

The value of Φe at the cell face centre, which represents the mean value over the whole 

face is expressed through the neighbouring nodal values ΦP and ΦE.  The deferred 

correction approach proposed by Khosla and Rubin (1974) which is described in detail in 

Ferziger and Peric (2002) is implemented by blending the central difference scheme 

(CDS) and upwind differencing scheme (UDS) to obtain the value of Fe.  The main 

advantages of deferred correction are stability, simplicity, and computer-memory saving.  

Deferred correction approach tends to promote numerical stability as it ensures that the 

coefficient matrix from CDS algebraic equation systems is diagonal dominant (Ferziger 

and Perić, 2002).  Therefore, Eqn. (B.17) becomes: 
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( )UDS CDS UDS old

e e e eF F F F              (B.18) 

where UDS UDS

e e eF m  , CDS CDS

e e eF m  , , 0 , 0UDS

e e e P e Em m m      , and blending 

factor, β Є (0, 1).  ║· ·║ denotes the maximum of the two values.  The “old” term is 

evaluated from the previous iteration.  At convergence the UDS contributions will cancel 

out leaving the CDS solution.  Another attractive feature of this procedure was that it 

usually converges at an approximate rate as a pure upwind approximation.  The use of the 

blending factor can also remove oscillations associated with CDS on the coarse grids.  To 

take advantage of this blending factor without a compromise of accuracy, it was used 

locally where the grids were considered coarse.  The general interpolation equation used 

in the present work is given in Eqn. (B.19) for “e”. 

(1 )e e E e Pr r      ; ( ) / ( )e e P E Pr x x x x           (B.19) 

Therefore, the CDS value at “e” is: 

(1 )CDS

e e E e Pr r      ; ( ) / ( )e e P E Pr x x x x  
 

Diffusive flux (V, VI, VII): 

e e e
A

ee e

D d dxdA A
x x x x x

  


       
      

       
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   (B.20) 
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 

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( )

e e
e E P
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A
D

x




               (B.21) 

Source term (VIII): 

P PS S d S

 


               (B.22) 

For momentum equation, Eqn. (B.22) which represents the pressure gradient becomes: 
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e

P e e

P
S dxdA P A

x


   

             (B.23) 

Similarly, the corresponding expressions for other five faces (w, n, s, u, and d) of the CV 

are:  

( )UDS CDS UDS old

w w w wF F F F      ( )
( )

w w
w P W

WP

A
D

x




    and w
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( )UDS CDS UDS old
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( )UDS CDS UDS old
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( )UDS CDS UDS old

u u u uF F F F      ( )
( )

u u
u U P

PU

A
D

z




    and u

P u uS P A       (B.27) 

( )UDS CDS UDS old
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Unsteady or inertia term (I):  

,3 3 4

2

t P P P
t pF d

t t
 







    
    
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  
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         (B.29b) 

where in Eqns. B.29(a, b) both three time level and implicit Euler methods are used 

respectively.  ΦP
º
 and ΦP

º º
 are Φ at cell P at the first and second previous time level, 

respectively, whereas δt is the time step and all other variables have their usual meaning.  

The present methods are fully implicit, that is, all variables without a time level 

superscript are assumed to pertain to the new time-level.  In addition, it is easily noticed 

that, the backward difference scheme, implicit Euler method (Eqn. B.29b) is a first order.  
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Meanwhile, the quadratic backward approximation in time (three time level, Eqn. B.29a) 

is second order accurate.  Using deferred correction approach for these two methods, the 

unsteady term becomes: 

,1 ,3 ,1( )t t t

t t t t tF F F F                 (B.30) 

Substituting Eqns. B.29 (a, b) in B.30 and after a little algebra becomes: 

 1 0.5 (1 ) 0.5
p p

t t P t P t PF
t t

 
  

 


 

                  (B.31) 

In Eqn. (B.31), a blending factor has been implemented with a value of “1” 

corresponding to three time level method and “0” means Euler implicit method.  The 

three time level was easier to implement than other second order schemes such as Crank-

Nicolson.  It is also less prone to producing oscillatory solutions on the premises that δt is 

small.  It can easily be inferred from Eqn. (B.31) that, the coefficient of first previous 

time level is always positive whereas the second previous level is always negative.  This 

means that with large time steps the scheme may produce oscillatory solutions.  Another 

problem with this scheme is its unconditional stability.  Ferziger and Peric (2002) 

recommended that blending a small amount of Euler implicit will help prevent the 

oscillatory nature of the solution despite its first order.  Since one is after a steady state 

solution, this Euler implicit scheme will ensure stability and allow the use of large time 

steps.  The contribution of the “old” time levels were added to the source term.    

Combining Eqns. (B.18, B.20, B.23-28, and B.31), the general algebraic equation is then 

given as: 

*

P P W W E E S S N N D D U U PC C C C C C C b                    (B.32) 

where 
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nkF
 
is the explicit part of the convective terms as a result of deferred-

correction approach.  It should be noted also that the CV centred around node P has wm  

equals to em  for CV centred around node W.  Similar relationship holds for sm  and nm , 

and dm  and um .  Usually, an under-relaxation parameter, κ is incorporated into Eqn. 

(B.32) to account for the nonlinear nature of the equation systems and stability of the 

solver (Patankar, 1980).  While this is a requirement for large time step or steady 

solution, for the unsteady or smaller time step, it is not necessary (Ferziger and Perić, 

2002).  The under-relaxation parameter can be different or the same for each momentum 

equation.  The algebraic equation for each momentum equation can therefore be written 

as: 

U U

P P W W E E S S N N D D U U PC U C U C U C U C U C U C U b             (B.33) 

V V

P P W W E E S S N N D D U U PC V C V C V C V C V C V C V b             (B.34) 

W W

P P W W E E S S N N D D U U PC W C W C W C W C W C W C W b             (B.35) 

where 

* /U

P P UC C 
  

* /V

P P VC C 
  

* /W

P P WC C 
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The central difference scheme is used to evaluate the terms in constitutive relation (Eqn. 

B.6) at the centroid of the neighbouring nodes of node P in respective direction and they 

are given as:  
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   (B.36) 

The variables used to evaluate the viscosity are “old”, i.e. the values from the last 

iteration.  This means that the apparent viscosity is evaluated explicitly.  This procedure 

has also been implemented in previous studies such as Spelt et al (2005).  The face value 

of the viscosity was obtained using CDS similar to that used for the convective terms in 

Eqn. (B.19).  Both power-law (Eqn. 2.1) and Carreau (Eqn. 2.3) models were 

implemented.  The unbounded nature of the power-law model was accounted for by 

setting both “small” and “large” limits of the apparent viscosity to avoid any singularity 

in the solver.  The Newtonian fluid is a special case of the power-law based fluid.  The 

viscosity is the same over the domain and specific CV.  

4.3.3   Boundary Conditions  

In general, boundary conditions are prescribed for velocity, pressure, stresses (apparent 
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viscosity), or any dependent variables in the governing equations.  In this study, two 

types of boundary conditions were implemented.  The first was the Dirichlet condition, 

where the value of a variable is specified at the boundary; and the second was the 

Neumann condition, where the value of a variable gradient was specified at the boundary.  

The implementation of these boundary conditions to the discretised equations (Eqns. 

B.33– B.35) will be discussed in details in this section.  

 

(a) East: i = ie+1   (b) Down-Wall: k = 1 

Figure B.3: East and wall (Down) boundaries computational molecule  

Figure B.3 above shows a typical boundary of the computational domain which has the 

“east” plane as an illustration.  For the Dirichlet condition, discrete values of the variable, 

Φ were specified at the boundary.  Both the face and nodal values at the boundaries were 

considered to be the same since the half-width control volume is used.  For example, 

specifying the values of U at the east plane (UE), the coefficient CE was evaluated at the 

boundary (see Fig. B.3), and CEUE was added to the source term whereas CE is set to 

zero.  However, if the pressure value was specified, the velocity normal to the plane (see 

Fig. B.3), UE was obtained by mass balanced for each cell (Eqn. B.37) and they were 
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corrected.  It is important to note that at a boundary, either velocity or pressure is 

specified but not both variables.  In general, if the pressure is not prescribed, the 

boundary values of the pressure are obtained by extrapolation from the nearest two 

interior nodes.  The expression used, for example, for the east plane is given in Eqn. 

(B.38).   

1

1

f

f

ie

ie

m

U
A








 ; f = w, n, s, u, d           (B.37) 

2 1( ) (1 )ijk ijk J ijk J ijk J iep p p p r                  (B.38) 

The Neumann boundary condition usually requires the specification of the normal 

velocity gradient for a fluid flow problem.  In the east plane (Fig.B.3), for example, the 

Neumann boundary condition is given as: 

sp

b

dU

dx
                 (B.39) 

If 0sp

b   the above expression using first-order approximation becomes  

1ie

E PU U                 (B.40) 

Equation B.40 was implemented by adding the coefficient CE to CP and setting the CE 

values at the east plane to zero.  These expressions hold for the other five planes, 

however, the respective coefficient and direction were used.   

Normally, at the wall the no-slip boundary condition is applied.  However, this condition 

indicates that only the normal viscous stress is zero at the wall (but the shear stress is 

nonzero).  For FVM, Ferziger and Peric (2002) recommends the implementation of these 

shear stresses in addition to the no-slip condition.  From Fig. B.3, as an example, using 
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one-sided approximation for U/z, the nonzero viscous term becomes:  

( ) ( )
( )

d

U d d
P D P D

PDS

AU
D dA U U U U

z z







     

         (B.41) 

Similarly, the V component becomes: 

( )

d

V

P D

S

V
D dA V V

z



  
            (B.42) 

These viscous forces D
U
 and D

V
 are accounted for in the algebraic equation by adding  

to both CP and source terms as follows: 

U U

P PC C   U U

P Pb b           

V V

P PC C    V V

P Pb b            (B.43) 

Similar expressions were obtained for all the wall boundary conditions.  To account for 

entrainment, tangential velocity gradient (free slip) boundary condition is usually 

imposed on either of the north or top boundary plane (Fig. 3.4).  For a free slip boundary 

condition, the boundary tangential velocity components are calculated by extrapolation 

from interior cells.  This is equivalent to d(u, v)/dz = 0.  Here, the first-order extrapolation 

similar to that used for pressures is used (Eqn. B.38).   

Another boundary type that will be used in this work is symmetry plane.  Unlike the wall 

condition (Fig. B.3b) where the normal stress is zero, for symmetry condition the shear 

stress is zero (U/z and V/z).  The symmetry version of Eqns. (B.41-B.43) is given in 

Equation B.44. 

( ) ( )
( )

d

W d d
P D P D

PDS

AW
D dA W W W W

z z







     

        (B.44) 

W W

P PC C             
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The velocity components at symmetry boundary were taken as the immediate interior 

nodal value.  

For the non-Newtonian fluids, the apparent viscosity values at boundaries are not known.  

Following a similar procedure used by Oliveira et al (1998), basically three approaches 

were attempted.  The first attempt was to obtain the boundary value using linear 

extrapolation, similar to that for the pressure (Eqn. B.38).  This proved to be highly 

unstable.  The second approach was to implement velocity boundary values into the 

constitutive model (Eqns. B.5-B.6).  This allowed the boundary viscosity to change 

depending on the nonzero local velocity gradients.  The last attempt was to use first-order 

approximation (Eqns. B.40) for the apparent viscosity, / 0ix   , xi Є (x, y, z).  That is, 

the boundary value was set to the nearest cell centre value.  None of these last two 

attempts did have stability problem.  The insignificant difference between results did not 

warrant the considerable computational time used by the second approach.  Therefore, in 

the present work the apparent viscosity values at boundaries were obtained by the first-

order approximation ( / 0ix   ) using Eqn. (B.40).  

B.4  Numerical Solution Procedure  

This section describes the solution procedure for the linearised algebraic equations.  The 

coupling of the pressure and velocity fields is presented in detail.  The solver used to 

obtain the solution of the algebraic equation is also described.   

B.4.1 Pressure-Velocity Coupling 

The governing momentum equations (B.1-B.3) have contribution from the pressure 

gradient.  However, there is no independent equation for the pressure field.  Mostly, a 
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pressure field is constructed such that the continuity equation is satisfied.  The most 

commonly used methods for the pressure-velocity coupling algorithms are the semi-

implicit method for pressure-linked equation (SIMPLE) by Patankar and Spalding (1972) 

and semi-implicit method for pressure-linked equations consistent (SIMPLEC) by Van 

Doormal and Raithby (1984).  Unlike SIMPLE which is often used on a staggered grid, 

SIMPLEC is more robust and efficient.  The basic principle of these algorithms is that the 

momentum conservation is used to solve for guessed velocities and then in order to 

conserve mass, a pressure-correction equation which is based on continuity is used to 

correct the velocities.  In view of the advantages of SIMPLEC algorithm, it was adopted 

in the present work to solve pressure-velocity coupling equation.  

As indicated in the previous paragraph, the solutions to the momentum equations did not 

necessarily produce a mass-conserving velocity fields since the x-, y- and z-momentum 

equations do not enforce continuity.  There is therefore the need to correct the velocity 

solution by using continuity equation.  The “new” solution of U, V and W that conserved 

mass is given as: 

* cU U U 
   

* cV V V 
  

* cW W W 
    

   (B.45) 

where the “*” values are the guessed solution of the momentum equations and “c” values 

indicate the correction values added to obtained a mass-conserving field.  It is worth 

noting that these guessed values were obtained by initially guessed pressure field.  Now, 

focusing on U velocity field as an illustration, the correction value becomes: 

*cU U U              (B.46) 

Equation B.33 for control volume (CV) P which is the final solution field can be recast 

into the following form: 
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nk nk P

P P
P U U

PP P

C U b
P

U
C C x


 

 



          (B.47) 

The source term, bP in Eqn. (B.47) does not include the pressure gradient.  The analogy 

equation for the guessed solution field is given as: 

*

*
*

nk nk P

P P
P U U

P P P

C U b
P

U
C C x


 

 



          (B.48) 

Substituting Eqns. (B.47 and B.48) into Eqn. (B.46), the correction velocity becomes: 

c

cnk nk
c P P
P U U

P P P

C U
P

U
C C x

 
 




          (B.49) 

where P
c
 is the corrected pressure value.  Similarly, the corrected velocities at the CV 

faces are obtained using Eqn. (B.49), and for the east-face „e‟, it becomes: 

c

nk nk c
c e e
e U U

Pe Pe e

C U
P

U
C C x

 
 




          (B.50) 

Rearranging Eqn. (B.49) by multiplying through by U

PC  and subtracting 
c

nk P

P

C U  from 

both sides gives: 

( )
c

U c c c

P nk P nk nk P P

P P P

P
C C U C U U

x

 
    

 
         (B.51) 

The SIMPLEC is based on the premise that the first term on the right-hand side of Eqn. 

(B.51) is to be neglected so that 

c
c P
P U

P nk P
P

P
U

C C x

 
 

 
           (B.52) 

The corresponding east-face of CV is given as: 
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c
c e
e U

Pe nk e
e

P
U

C C x

 
 

 
           (B.53) 

The volume centred around a cell face is defined as: 

( ) ( )e E P e e ex x A x A              (B.54) 

Substituting Eqn. (B.53) into B.46 using the corresponding expressions for V and W, and 

central difference approximation for the gradient terms, Eqn. (B.1) becomes: 

       

    0                                                                 

P c c P c c P c c P c c

E E P N N P U U P W W P

P c c P c c P

S S P D D P m

C P P C P P C P P C P P

C P P C P P b

       

    
        (B.55) 

Rearranging the above equation gives: 

P c P c P c P c P c P c P c P

P P E E N N U U W W S S D D mC P C P C P C P C P C P C P b             (B.56) 

where 

* * * * * *P

m e n u w s db m m m m m m               (B.57) 

P

E e eC A  
;  

P

N n nC A  
; 

P

U u uC A  
 

P

W w wC A  
;             

P

S s sC A  
; 

P

D d dC A  
 

P P P P P P P P

P E N U W S D nk

nk

C C C C C C C C        
f

f

P nk

nk f

A

C C

 
 

 
 


 

f = e, w, n, s, u, and d
 

Here, all the cell face values are interpolated using Eqn. (B.19).  However, CV cell face 

mass fluxes in Eqn. (B.57) deserved special attention in order to avoid oscillatory 

solutions and slow convergence of the solution algorithm associated with the colocated 

finite volume approach.  This problem usually results from the so-called checkerboard 

pressure field.  To overcome this problem, a compact central-difference approximation 
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which was first developed by Rhie and Chow (1983) is employed for the cell-face 

velocities.  Using the “e” cell face as an example, U value is given as: 

     (B.58a) 

         (B.58b) 

In Eqn. (B.58a), the overbar denotes values obtained by a linear interpolation scheme.  

That is, the pressure gradient is temporary stored, and the corresponding face value is 

obtained from neighbouring nodal values using Eqn. (B.19).  Equation (B.19) is also used 

to obtain the face pressures in Eqn. (B.58b).  All the mass fluxes in Eqn. (B.57) were 

computed using respective velocity from Eqn. (B.58).  The pressure correction, P
c
 is 

therefore obtained from Eqn. (B.56), whereas the final pressure values are computed 

from the guessed or previous iteration pressure values, P
*
 and P

c
 through:  

*cP P P            (B.59) 

The boundary conditions of the pressure-correction equation are on the premise that the 

boundary velocities are prescribed except those boundaries where pressure values are 

specified.  This condition is equivalent to specifying a Neumann boundary condition 

(zero gradient) for the pressure correction.  The velocities on pressure prescribed 

boundaries are, however, corrected. 

B.4.2 Solutions of the Algebraic Equations 

Each of the four algebraic systems of equations, (B.30-B.32 and B.56) has a dominant 

variable.  However, this variable also occurs in some of the other equations.  These 

equations can be solved either by coupled or segregation approach.  For the coupled 

approach, all the algebraic equations are considered part of a single system and the 
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variables are solved simultaneously.  For the segregation approach, on the other hand, the 

solution of the dominant variable is obtained from its equation on the basis that the other 

variables are known.  Iterations are performed through the equations until the solution 

that satisfies all the equations is obtained.  Although there is no advantage in terms of 

accuracy, the coupled approach tends to be costly especially when the problem is three-

dimensional.  The segregation approach is therefore employed in the present work. 

The resulting algebraic Eqns. (B.30-B.32 and B.56) for nodal velocities and pressure 

correction, respectively, were solved using a 3D version of the strongly implicit 

procedure (SIP) solver (Stone, 1968).  The SIP solver is an iterative procedure which is 

based on incomplete lower-upper (LU) decomposition method.  This procedure has been 

described in detailed by Weinstein et al (1969), and Ferziger and Peric (2002).  A brief 

summary and notation will be given here.   

The general algebraic equation can be cast into the form: 

M Q              (B.60) 

where the matrix M consists of the coefficients, Φ is U, V, W, or P, and Q is the sum of 

known values.  The matrix M is sparse, and therefore it would be advantageous to store 

its elements in one-dimensional array.  The indexing shown in Fig. B.2 will be used.  The 

SIP method involves factorisation of the matrix M into К and Л, such that the modified 

matrix КЛ is a good approximation to M.  Obviously, this factorisation is not exact; 

however, КЛ can be used as a substitute of M for the iterative method.  The iterative 

equation is given as: 

1l lКЛ             (B.61) 
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where  
l
 (= Q – M Φ

l 
) is a non-zero residual,  

l+1
 (= Φ 

l+1
 – Φ

l 
) is the correction or 

update at (l + 1)
th
 step iteration, and the lower and upper triangular matrices are К and Л, 

respectively.  Equation (B.61) can be modified by multiplying both sides by К
-1

 which 

leads to: 

1 1l lЛ К                      (B.62a) 

1lЛ B     and  l К                   (B.62b) 

The computation of Eqn. (B.62a) is performed sequentially beginning at the southwest 

corner of the grid.  The procedure involves two “sweeps”: the first sweep computes the 

residual and B by incremental order of ijk, Eqns. (B.62b and B.63a), and the second 

sweep calculates corrections,  and Φ in decreasing order of ijk using Eqns. (B.63b and 

B.64).   

1( ) /ijk ijk ijk ijk ije ijk ijk J ijk ijk ijk

tD tW tS tPК B К B К B К                        (B.63a) 

1ijk ijk ijk ijk ije ijk ijk J ijk ijk

tU tE tNB Л Л Л                          (B.63b) 

1 1l l l                 (B.64) 

The triangulation matrices for Eqn. (B.63) are given as: 

 1

ijk
ijk D
tD ijk ije ijk ije

tN tE

C
К

Л Л  


  ;  1

ijk
ijk W
tW ijk J ijk J

tN tU

C
К

Л Л  


  ;

  1 11

ijk
ijk S
tS ijk ijk

tE tU

C
К

Л Л  


 
 

     1 1

                                                                                           

ijk ijk ijk ijk ije ijk ijk J ijk ijk ije ijk ijk ijk ijk J ijk ijk

P P tD tN tW tN tD tE tS tE tW tU tW tUC К Л К Л К Л К Л К U К Л               

1
      

ijk ijk ije ijk ijk J ijk ijk

tD tU tW tE tS tNК Л К Л К Л   

 1ijk ijk ijk J ijk ijk

U W tU W tUijk

tU ijk
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C К Л К Л
Л

   


  
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 1ijk ijk ijk ije ijk ijk

E D tE S tEijk

tE ijk

P

C К Л К Л
Л
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

  

 ijk ijk ijk ije ijk ijk J

N D tN W tNijk

tN ijk

P

C К Л К Л
Л

   



 

where α is SIP parameter and is usually less than unity for the purpose of stability.  This 

parameter can be varied from iteration to iteration, which requires updated values of Л 

and К matrices for respective values of α.  The SIP parameter will be fixed and elements 

of the matrices К and Л are calculated once prior to the first iteration in the present study.  

Ferziger and Peric (2002) found that it is usually more efficient in general to keep α 

constant.   

Below is a brief description of the solution procedure: 

1. Read in all input data 

2. Generate grid 

3. Initialise solution fields and set boundary conditions 

4. Calculate the viscosity if the fluid is non-Newtonian 

5. Calculate the coefficients of the three momentum equations 

6. Add all the source terms: the pressure gradient terms from P
*
 and deferred-

correction terms 

7. Absorb the boundary conditions, implement the wall and symmetry boundary 

conditions, and update the source terms 

8. Solve momentum equations for the guessed velocities, U
*
, V

*
, and W

*
 

9. Calculate the pressure correction source terms and coefficients 

10. Solve for the pressure correction field 
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11. Correct mass fluxes, nodal velocities, and pressure field using the new pressure 

field  

12. Repeat step 4 through 11 until the convergence criteria are satisfied 

13. Calculate post-process quantities such as vorticity 

In the subsequent sections, step 12 which is the iterative loop for the algebraic equations 

or SIMPLEC iteration will be denoted “outer” and the SIP iteration will be called 

“inner”.  In the procedure outlined above, for the first iteration the viscosity field may 

take the value at zero shear-rate since the velocity fields are nearly zero.  However, for a 

power-law fluid this will pose a problem due to its unbounded nature.  The remedy to this 

problem therefore is that, the apparent viscosity field is initialised by a constant value for 

the first iteration after which the calculations proceed with the true variation of the 

viscosity (Pinho, 2001).   

B.4.3 Convergence Criteria 

The convergence criterion which limits the number of solver iterations for individual 

algebraic equation is based on a residual reduction.  This residual reduction is 

implemented differently for both inner (SIP) and outer loops.  For the outer loop, similar 

to definition used by Perić et al (1988), residual reduction is the sum of absolute values 

of residuals (the L1 norm) over all control volumes normalised by inlet mass or 

momentum for pressure-correction or momentum equations, respectively.  It is given as: 

1

nk nk P P P

P

o

C b C



  



   





       (B.65) 

where Φ Є (U, V, W, or P), o is sum of mass or momentum flux for all CVs at the inlet, 
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║║1 is L1 norm, and all other variables have their usual meanings.  The solver is 

terminated or ceases iterating when this reduction residual is less than a specified value, 

ξsp.   

The inner iteration, however, has o being defined as L1 norm of its first iteration.  This 

is because the variables need to be updated in outer iterations, and therefore a solution to 

a tighter tolerance will yield no advantage.  The SIP iterations are typically stopped if the 

residual level drops by a factor of five for velocity components and ten for pressure-

correction equation.  This inner iteration is performed for each outer iteration.  A 

convergence criterion for each equation was set to a maximum value of 10
-4

.  Whilst this 

criterion required less computing time for Newtonian fluid, the converse is true when the 

degree of shear-thinning is intense, say for n < 0.4.  In fact, the required number of 

iterations or computing time can be as much as two to three times those for the equivalent 

Newtonian fluid simulation.  The code that implements the numerical model was checked 

thoroughly for internal consistency.  Section 3.4 (Chapter 3) documents all the test cases 

performed.  




