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ABSTRACT

The degradation of the Seine River Diversion in
the Province of Manitoba has resulted in numerous engineering
problems. The purpose of this thesis was to study the ero-

sion of the channel and to assess its present stability.

Data on longitudinal and transvers<al profiles of
the channel has heen presented to show the variations of the
original bed elevations and cross sectional shape over a nine
year pericd. The relation of width-depth ratio to the per-
cent silt-clay in the perimeter of .the channel and a part of
its hydraulic geometry at some cross sections are presented
and indicate that the original design was far from a stable
shape. The channel did not suit the characteristics of self-
formed alluvial channels and. it progressively adjusted its
slope and cross section toward a more stable state. A com~
parison of aliternative designs for the channel has been made
with the original design and indicated that the original de-~
sign slope was much coo steep. Stabilizing the present chan-

nel by means of gradient control structures has bheen discussed.

More field measurements have been recommended.
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CHAPTER I
INTRODUCTION

Over the yeérs, disastrous flooding occured along
rivers draining &% Southern Manitoba. Among others, the
Seine River flowing‘off the eastern escarpment of the former
glacial lake Agassiz and draining the lowland Area of Ste-
Anne and Ile des Chenes was a particularly troublesome stream.
It has a drainage basin of 660 square miles that extends for
" a distance of nearly sixty miles southeastwards from the junc-
tion of the Seine with the Red River in St-Boniface (FIGURE 1.1).
Initial reaches of the stream fall fairly rapidly to Ste-Anne,
but below Ste-Anne the slopes are milder and the Seine meanders
considerably. It was in the region from Ste-Anne to the Win-
nipeg area that frequent overflow took place over the agri-
cultural lands. Inll955, a review of several flood control
proposals for the Seine River was undertaken by the Canada
Department of Agriculture, Prairie Farm Rehabilitation Adminis-
tration (P.F.R.A.) to determine the most feasible sqheme that
could alleviate the flood situation in the Seine River basin.
Careful engineering and economic considerations were later
given to their recommended proposal and some alterations were
made to produce in 1960 the actual Seine River Diversion. It

consists of an excavated earth channel to convey water from
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the Seine River one mile upstream of Ste-Anne, due West, pas-—
sing through a reach of the Johnstone Drain and the Manning
Canal, discharging into the Red River two miles North of St-

Adolphe.

After the diversion waé used, diverted floods were
very harmful for the stability of the channel and appurtenant
structures. The flow caused intensive erosion of the channel
bed and gave rise to local sliding of banks. The bed scou-
ring and bank caving have resulted in numerous engineering
problems with concrete ford crossings, bridges and transported
sediments. The ford crossings have been undermined and con-
sequently failed. Considerable scour occured at bridge piers
and abutments resulting in thé failure of fwo bfidgés. About
90% of the sediments that have been picked up from the channel

bed and banks have been transported to the Red River downstream.

The principal objective of this thesis is to ex-
plain the regime of the diversion channel supported by des-
criptive data and photographs. The first part of the study
deals with the design procedures and original characteristics
of the diversion. Following this, a general discussion is
presented on the adjustment of the channel. Analysis is made
on the variations of the hydraulic characteristics - width,
depth and velocity- with increasing discharges at given cross
sections and on the influence of the sediment type on the

shape of the channel. In the last part, a comparison of
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alternative designs for the channel is made with the original
design and an investigation as to stabilizing the present

channel is presented.



CHAPTER II
ORIGINAL CHANNEL DESIGN

2.1 Désign Discharge

The Seine River Diversion was designed to bermit
the complete diversion of flows during flood stages, allowing
the low summer flows to pass down the river. For this pur-
pose, a control dam was constructed across the Seine River
a short distance downstream of the diversion entrance. The
control offered by this dam is such that during a flood the
conduit gates are closed and all the flow is divgrted, lea-
ving only local drainage in the river thfoughout St-vVital and
St-Boniface. During periods of low normal flow, the opened
gates pass the total flow through the conduits. The conduits
and the diversion inlet were designed so that the flow below
180 cfs remains in the river channel td serve the landowners
downstream. The layout of the diversion éntrance and control

structures are shown in PHOTOGRAPHS 2.1 and 2.2.

1
At the time of the investigation in 1955(3) , re-—
cords of peak flows for the Seine River were available for a

22 year periocd, 1915 to 1937, at Ste-Anne and for a 14 year

lumerals in parentheses, thus (3), refer to cor-

responding items in the list of references.




period, 1942 to 1955, at Prairie Grove gauge located about
four miles West of Lorette in the municipality of Tache. The
peak flows of the missing five years of record, 1937 to 1941,
were estimated by comparison with the Roseau River, a neigh-
rouring stream. The recorded discharges at Ste-Anne were
transposed to Prairie Grove and thus, the recorded peak dis-
charges at that station were continuous for a forty year
period. During that period, the maximum daily discharge ob-
served was of 2840 cfs. It was expected that the maximum
discharge that could have been recorded for the same period
of time—at the diversion entrance would be lower due to the
smaller drainage area. Using the Meyer-Davis formula:

= 100 b /A

where: peak discharge in cubic feet per second

= drainage area in square mile

o o » 0O 0
|

= coefficient characteristic of the watershed and
equal to 1.27

The discharge relative to the drainage area above Ste-Anne

was estimated to be 2240 cfs and of the same order of frequen-

cy. It was decided to use this discharge as the design flood
for the upper reach of the diversion and increase the dis-

charges throughout the length of the waterway due to changes

in drainage area and local inflow (FIGURE 2.1).

Excavation works of the channel started in 1958 at
the downstream end of the diversion and proceeded in the up-

stream direction. During the construction of the middle reach,



a severe storm generated a flood which reached a peak of

3300 cfs in the Seine River at Ste-Anne. It was therefore
decided to redesign the upper reach of the channel with this
maximumnm flow recorded to date with a frequency of exceedence
of 3.7% (FIGURE 2.2). Thg constructed sections downstream
were checked to make sure that the channel could safely handle

-the increased design flow.

2.2 Design Method

For the preliminary design, the waterway from Ste-
Anne to the Red River was divided into ten reaches, the length
0of each being dependent of the prairie slcpes. The dimensions
of the channel, width and depth were computed according to the
Manning's flow formula with a limiting velécity éfiteria of

4 feet per second for erosion protection:

1
1.49 aR%/357

n
where: Q = design discharge
A = cross sectional area of flow
R = hydraulic radius
S = hydraulic gradient
n = coefficient of roughness

It was decided that the channel would be of a trapezoidal
section witﬁ a 6:1 side slope. Design discharges used for
the computation.of the water surface profile increase re-
gularly from 3300 to 6700 cfs. The coefficient of roughness,

specifically known as Manning's n was estimated to 0.025.



The size of the channel in each reach was computed by using
the various prairie slopes as the proposed hydraulic gradient
throughout the diversion. On the basis of these foregoing data,

nine typical cross sections were designed (FIGURE 2.5). The

bed width and depth of the channel were rounded off and ad-
justed'to keep the velocities around 4 feet per second.
Ratiﬁg curves were computed at different intervals to obtain
the elevations of the design discharges. These points were
joined by a line to give the water surface profile of the

design flood throughout the diversion (FIGURE 2.5).

2.3 Designed Characteristics of the Channel

The diversion channel is approximately 22 miles in
length and the computed water surface elevétions éropped a
total of 60 feet from the inlet to the outlet, On the Seine
River the 3300 cfs flood flow corresponded to a gauge height
of 6.5 feet»(FIGURE 2.3) and approximately to a geodetic ele-

vation of 828 feet. For the Red River, these flood conditions

were those of the 1950 Spring flood which raised the water

surface level to the elevation 768 feet (FIGURE 2.4). G

The diversion bed width varied from 80 to 92 feet

in the upper stretch of the waterway, and between 50 and 70

feet in the lower reaches. The transition of sections in
reach No. 5 (FIGURE 2.5) is due to the change of design dis-
charges after the diversion was constructed up to that point.

Thé average dépth of flow varied between 5.8 and 12.2 feet.



Mean Velocities between 3.35 and 5.76 feet per second were
expected. Dykes were designed to increase the capacity of

the floodway and constructed with the excavated earth of the
channel. Allowance roads for servicing the canal and appurte-
nant structures were graded on the dyke top. All cross sec-
tions‘were provided with gently sloped berms layed out at

the average prairie level. Their width varies between 15

and 425 feet and serve as floodplain for unexpected high
floods. The sides of the channel and berms were grassed for

erosion protection.

Two drop structures at the downstream end of the
diversion were designed to lower the flow 14 feet into the
Red River. They were required to prevent erosion of the St-
Adolphe coulée and to prevent the flood waters of the Red
River from backing up the channel: The drop structures are
of the spillway chute type with an uncontrolled trapezoidal
weir. PHOTOGRAPH 2.3 shows these structures as they appeared

after construction in 1961.




CHAPTER III
REGIME OF THE CHANNEL

3.1 Field Investigations

In 1963, an erosion investigation was undertaken in
the Seine Diversion with a view to assessing the erosion dam-
age that have resulted from subsequent flows. More particu-
larly this was done with a view to assessing the means and
steps necessary for the repair of the ford crossings at
various iocations along the diversion (FIGURE 2.1). Data
were obtained for purposes other than a study of the regime
of the channel and were for this investigation incomplete,
particularly the data on channel roughness, sediment load
and water surface level. These incomplete data and, also
data obtained in a later investigation have been used to pro-
vide a picture of the variations of the longitudinal and
transversal profiles of the channel. Useful relationships
have also been made to show the interaction of the discharge’

and sediment type on the channel shape.

The investigation consisted of a level survey of
‘the longitudinal and transversal profiles of the diversion
channel and of a channel bed soil sampling and testing. The
soil Dbore holes were advanced with a 4" diameter SCOOp auger

on the channel bottom at elevations as near as possible to the

9
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design elevations. Those drilled at bridge sites were ad-
vanced with a 4" diameter flight auger before and during the
time of construction of the diversion. The description and
location of soil logs are shown in FIGURE 3.1. The samples
of soil were submitted to laboratory tests for identification
and classification purposes. These tests consisted of the
determination of physical promieties and Atterberg limits of
the soil and the mechanical analysis of grains. The results
of the soil tests are described in TABLESB-1 to B-33 in Ap-
pendix B. The cross sections were surveyed at approximativ-
ely every half mile along the diversion and their plotting
has been superimposed on the as-constructed sections so as
to show the cross sectional changes that have resulted by
erosion of the channel (FIGURES 3.2A to 3,2E). Their res-
pective positions have been marked on the loﬁgitudinal profile
and plan view of the channel in FIGURE 3.2. The surveyed and
as-constructed channel bed profiles have been plotted to a
common datum (FIGURE 3.2) so as to obtain an indication of the
variations of the channel bed slope and the degradation of the

channel.

In June 1963, a storm in the La Broquerie region
generated a flood which reached a recorded peak of 1455.5 cfs
at the diversion entrance. This was the first major flood to
which the Seine Diversion had been subjected and caused the
failure of the ford crossings. The Manitoba Department of

Agriculture had these structures repaired for the harvest
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season but in Spring 1964, they wefe again destroyed by washing
out of the foundation material. PHOTOGRAPH 3.1 shows the ford
crossing C6 at Youville Drain as it was after the 1964 flood.
The ford crossings were again re-reconstructed in 1965 and yet
in the same manner the 1966 Spring flood put thew out of use.
The rapid degradation of the channel and successive deterio-
ration of ford crOSsings necessitated the construction of sever-
al erosion control structures. In late Autumn 1963, a stone
sill as shown in PHOTOGRAPH 2.2 was constructed a short dis-
tance downstream of the diversion inlet to re-establish the
proper division of flows. After the 1964 Spring flood and in
»summersil965—66, various bridge piérs were rock'rip—rapped°

In Winter 1966-67, seven gabion gradient control structures

of the type shown in PHOTOGRAPH 3.2 weredconstructed in the
upper reach of the channel (FIGURE 2.1). They were designed
for the purpose of diminishing the velocities of flow by
progressive reduction of the hydraulic gradient. Three control
structures were placed a short distance downstream of ford
crossings with a view to providing protection. The various
field inspections showed that this reach of the channel became
more stable after the installation of these erosion control
structures. In lower reaches particularly in the Oak Island
Settiement and upstream, the erosion of the channel bed and
banks was not controlled and resulted in the failure of the
abutments of two bridges in Summer 1969. One of them: B7 is

located on the diversion (FIGURE 3.2) and the other one, on
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the Manning Canal at its confluence with the diversion.
PHOTOGRAPH 3.3 shows the situation after failure of the left
abutment of this bridge. In Autumn 1969, three other gabion

structures were constructed in this section of the channel.

In July and October 1969, another erosion inves-—
tigation, more particularly with a view to study the regime
of the channel, was undertaken. This investigation consisted
in a level survey of a total of 46 cross sections of the chan-
nel, and of a sediment sampling of the perimeter of 14 of
these cross sections. The plotting of the cross sections has
been also superimposed on the as-constructed sections to il-
lustrate the changes that have occured in the channel (FIGURES
3.2F to 3.2J). Their respective locations are also shown on
the plan view and longitudinal profile of the channel in FIG-
URE 3.2. Sediment samples were taken from the channel floor
and banks. A hand scoop was used to take three to four samples
of the surface top inch of sediments across the channel bottom
and were combined to give a composite sample of the channel
alluvium. In the same way, three samples of sediment deposits
were taken separately at different levels from the banks and
combined. In the laboratory, size analysis of each composite
sample was made and cumulative grain-size curves were plotted

(FIGUﬁES B.l1 to B.1l4, Appendix B).

3.2 Flow Metering

From 1962 to 1967, the characteristics of the shape
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of the channel at stages corresponaing to observed discharges
were recorded in five metering stations: M1 to M5 (FIGURE 3.2).
For each measuring station, the width of the water surface was
recorded and the depth and velocity of water were measured at
various distances from the bank by the current-meter method.
The dafa and computations made of tﬁese measurements are tabu-
lated in FIGURE 3.2. The mean depth has been computed by
dividing the cross sectional area of water by the correspond-
ing width of the water surface. The mean velocity is the
guotient of discharge divided by the area of water section.

The changes in width, depth and velocity in response to chan-
ges in discharges were observed to have certain characteristics
which apply to many natural rivers and artificial canals.

These similarities are described in Section A.4 of Appendix A
and, from the current-meter data recorded in the diversion
channel these hydraulic characteristics have been analysed at

three metering stations in Section 3.6

In Spring 1969, discharge measurements and corres-
ponding gauge heights were recorded at metering station M5 only
(TABLE III-1). These data have been also interpreted in Sec-

tion 3.6.

3.3 Soils
The soil along the diversion route is typical of
the Southern Manitoba soils. It consists of highly plastic

varved clays of the great Lake Agassiz origin. In sequence of
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increasing depth, these glacial clays occur as a layer of
brown clay locally known as "chocolate clay" and an inter-
mediate stratum of brown-grey clay known locally as "mixed

clay”. vUnderlaying these varved clays, a glacial till con-

'sisting of silt, sand and gravel is encountered. The upper

feet of this material are often mixed with the overlaying

layers of clay.

The concentration of silt and clay in sediments
deposited on banks was found extremely hich; in fact, it

ranged between 86.9 and 98.9% (TABLE III-2). In the upstream

. vicinity of gabion structures, due to the trapping effect of

these erosion controls (PHOTOGRAPHS 1B and ZB, PLATE 3.11),
greater quantities of sediment deposits were obsefved on

the channel floor. However, it did not seem that the par-
ticle sizes were much smaller (S3 to S9, TABLE III-2). In the
reach of cross sections S13 to S16, there was visual evidence
that erosion has carried on down to a stratum that was either
hardpan or gravelly clay (PHOTOGRAPH 3B, PLATE 3.11); coarse
grained particles covered the channel floor. It seemed that
vegetation has accelerated the depoéition of fine silt in
sections S18 and S28 (PLATES 3.11 and 3.12). 1In cross sec-
tionsg S22 and’826, there was a remarkable similarity in the
composition of bed and bank sediments. This was certainly due
to the effect of the constructed gabion structures in that
reach of the channel in Autumn 1969. These structures have

raised the water surface level and caused the washing out of
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fine particles of the bank material that deposited on the
channel floor later. Farther downstream, retardation of the
flow caused by backwater effects of drop structures D1 and
D2 allowed the deposition of fine particules in suspension
in a more or less uniform repartitioﬂ eithéf on banks and on

the channel floor (TABLE III-2).

3.4 Degradation of the Channel

The diversion works were completed in 1960 and the
first flow in the channel occurred in Spring 1961. The flows
intensively eroded the channel bed and banks. For descriptive
.purposes, the Seine Diversion has been divided into five
reaches; the length of each has been chosen upon marked simi-
larities of the adjusted cross sectional'pattern gf the chan-
nel. They are shown along the longitudinal profile of the
channel in FIGURE 3.2 and on individual plan view accompanying

the plates showing different sections of the channel.

Until 1963, the erosion has been more intensive in
the Oak Island Settlement and in the upper reach (FIGURE 3.2)
resulting in a progressive reduction of the channel bed slope.
The erosion of the inlet control at the confluence of the Seine
River and Seine Diversion (PHOTOGRAPH 3.4) has complicated the
situation sé that the division of flow at that point could not
be carried out as was originally conceived. However, it seemed
that the installation of gabion structures in Winter 1966-67

has controlled the channel bed degradation in that reach. Their
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efficiency is distinctly marked in FIGURE 3.2 by a relative
drop of 2 feet deep of the average channel bed level down-
stream of gabion structure G7. In that reach of the diversion,
theerosional forces have developed a U shaped channel as shown
in FIGURES 3.2A and 3.2F. There were however some islands
approximatively 100 yards long made of silt materials that
formed in the channel between bridges B2 and B3 as may Dbe seen
in PHOTOGRAPH 2A on PLATE 3.2 and in cross section S2 on FIG-
URE 3.2F. 1In that same section of the channel, the erosion
has carried on down to the glacial till stratum. The depth of
scour decreased in 1969 from 85 to 5 feet at the lower end of

the reach, reducing the original bed slope of 0.00012.

In reach No. 2, the bulk of erosion occured more
recently (FIGURE 3.2) and the erosive attacks were concentrated
on the left (south) side of the channel bed (FIGURE 3.2G). 4A
comparison of the 1963 and 1969 cross sections shows that the
U shape was not in 1969 as well determined as it was in 1963.
The shifting of the erosion to one side of the channel bed
may be due to the Northwestward orientation of the diversion
which was found to be perpendicular to the direction of the.
dominant winds. Perhaps, this orientation is more favorable
for the accumulation of snow on the north bank in Winter time.
The formation of snow pack can, to a certain extent, protect
the north side of the channel against erosion produced by
ea:ly Spring floods. During field inspections of the channel

in May and June 1969, non-excessive velocity of flow were
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observed in the section that extends up to the ford crossing C4.
The stage of flow shown in PHOTOGRAPHS 5 and 6 on PLATE 3.6
corresponded approximatively to the as-constructed channel bed

level.

The evidence of greater bed erosion in reach No. 3
(FIGURE 3.2H) appeared to be concomitant with the narrowing
and the reduction of the width-depth ratio of the constructed
sections of the channel. The initial U shape self-formed sec-
tion as shown in FIGURE 3.2C and in PHOTOGRAPHS 5A and 6A on
PLATE 3.2 has progressively developed toward a more elliptical
shape. Both sides of the channel have caved uniformly as shown
in FIGURE 3.2H and in PHOTOGRAPHS 8 and 9 on PLATES 3.6 and 3.7.
This progressive change of secﬁional formAbégan With the erosion
of a low flow channel as shown in cross sections 22 and 24.
The depth of degradation varied in 1969 between 7% and 10 feet
deep. Local slides along the left bank of thé channel were

Observed during the various field trips.

The section of the channel corresponding to reach
No. 4 includes that length of the diversion route which passes
through the Oak Island Settlement; a low land area of relativ-
ely high ground water table level. Until 1963, the érosion
was intensive over the entire bed width and gained a réduction
of the original bed slope by the removal of a nick in the origi-
nal profile (FIGURE 3.2). The resurveyed cross sections of the

channel in 1969 (FIGURE 3.2I) showed that during the last six




18

year period (1963-69) the south bank of the channel in the

Oak Island Settlement recessed of several feet when the north-

ern bank did not show any significant recession. The con-
centration of the erosive attacks on the south bank and the
slumping of bank material into the channel starited in 1964
and continued to date. The development of the channel and
the_progressive caving of the southern bank is visualized
ﬁhrough the PHOTOGRAPHS 7A, 8A and 11 (PLATES 3.2 and 3.7)

9A and 12 (PLATES 3.3 and 3.7) 1E and 2E (PLATE 3.10) which
show the same section of the channel at different time inter-
vals. PHOTOGRAPHS 3.5 and 3E show a close-up on a local in-
trusion of ground water through the south bank of the channel
in the Oak Island Settlement. These loca;'influx of ground
water saturate the bank material which is dried up during
summer months. The wetting and dfying process associated
with the frost action of the Winter and Spring thaw probably
changed the properties of the soil making up the channel be-
cause the top six ihches was completely dessicated and broken

up into small cubes with no cohesive propriety. Any flow in

the channel even at very low velocities can remove this friable

layer. 1In fact, it has been found in previous investigations
(14,23) of the factors influencing theerodibility of stream-
banks and in a study (1) of the effects of the frost action
on Winnipeg clay that changes in moisture content and cycles

of freezing and thawing considerably reduce the strength of

cohesive soils and their packing including a group of related
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proprieties such as: porosity, denéity, structure, and cement-
ing. PHOTOGRAPHS 3.6 and 4E show the effect of this action on
the south bank material. Farther downstream in the same num-
bered reach, at the confluence of the Manning Canal (cross
section S32, FIGURE 3.21) there was noticeable shifting of

the erdsion to the left (south) side of the channel bed only.
This cross section readjustment coincided with an increase of
the as-constructed channel width. The change of erosional
pattern was initiated before 1963 as shown in cross sections
33 and 34 on FIGURE 3.2D and proceeded since then with the
addition of sediments on the opposite side (cross sections

S34 and S35), This change in the adjustment of the channel
form may as well be observed in PHOTOGRAPHS 13, 14 and 15

on PLATE 3.8.

PHOTOGRAPH 3.7 shows an aerial view of the fifth
reach of the diversion that extends from halfway between
bridges Bll and B12 to the upstream drop-structure Dl1. In
general, along that reach, the degradation of the channel
occurred on the left side of the bed only, (FIGURE 3.2J) re-
sulting in the formation of a low flow channel paralleling
the toe of the scuthern bank as shown in PHOTOGRAPHS 17 to 20
on PLATE 3.9. Probably during the recession of floods, the
water shifted laterally across the channel and built up by
deposition that portion of the base on which it flowed. Sev-
eral rotational failures occurred along the southern bank

(PHOTOGRAPH 3.8). The chunks of soil were then submitted to
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the erosive action of waters and supplied sediments to the

bed and suspended load of the channel.

3.5 Shape of the Channel in Relation to Sediment Type

(16’17’18)investigated

In 1960-61, S.A. Schumm
the relationship that exists between the percentage of silt-
clay in the perimeter of some alluvial streams and the shape
of their channels. His investigation is briefly presented in
Section A.3 of Appendix A and, from the sediment data collec-
~ted in the perimeter of the fourteen cross sections along the
diversion in October 1969, a comparison is hereafter made with
the characteristics of stable channel sections put forward by
Schumm. The percentages of silt and clay in banks and channel,
Sb and SC in TABLE III-2, have been taken from tﬁe cumuilative
grain-size curves of each composite sedimentvsample and the
weighted mean values of silt-clay (M) in the perimeter of each
cross section have been computed with the formula derived at
this effect. The width and depth of the channel have been
determined from the 1969 plotted cross sections. The channel
depth has been estimated from observations of the depth of
scour on banks and measured from the lowest part of the chan-
nel to a level representative of the self-formation of the
shape of the channel. The short dashed lines in each sampled
cross section show the measured width at that section. Cal-
culations of width-depth ratio (F) are presented in TABLE III-2
with all other data on the cross sections and sediment. In

FIGURE 3.3 the width-depth ratioc (F) has been plotted against
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(M) for the fourteen cross sections and the regression line
characteristic of stable sections of alluvial stream channels
has also been drawn in that figure to show where the four-
teen points lie in relation to that line. The scatter and
location of points all above the regression line in the zone
of aggrading cross sections disagree with the criterion of
aggradation and degradation of channels advanced by Schumm.
The lack of correlation between (F) and (M) suggests that the
constructed sections of the channel with an imposed width to
depth ratio were not at all representative of the self-formed
section of stable channels in alluvial materials. An inves-
tigation in this matter has been made by plotting (FIGURE 3.3)
the fourteen values of the computed ratio of top width of the
constructed sections of the channel to the corresponding
depth (TABLE III-2A) versus the same weighted mean values of
percent silt-clay in the surﬁeyed cross sections. The cons-—
tructed top width is also indicated in each sampled cross
section. It may be.expected that the sediments carried through-
out the mass of flowing water would have been roughly of the
same type after construction. From this expectation, one may
observe in FIGURE 3.3 that the points representing the present
sections of the channel are getting closer to the line charac-
teristic of stable sections of Schumm. This figure shows

that any adjustment of the section of the channel toward a
stable section under the same character of sediments could be

done by decreasing the width to depth ratio; that is, by
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increasing the depth or decreasing the width or both. The
erosion that has occured in the channel so far seems to lead

toward such an adjustment.

3.6 .Hydréulic Géometry'of the Channel
With the current-meter data collected at metering

stations M2, M4 and M5 between 1962 and 1967, analysis of
variations of width, depth and velocity with increasing dis-
charges have been made separately for each of these measuring
sections. The recorded data on water surface width, mean
depth and mean velocity have been plotted against discharge
on log-log paper and straigth regression lines have been
drawn by eye through the various sets of pqints representing
individual year of measurements. Each variable is therefore
éxpressed as a function of dischaﬁge "at a section' in the
same manner as Leopold and Maddock (9) have done in 1963 for
many rivers in America. A brief summary of their investi-
gation is presented in Section A.4. FIGURE 3.4 shows the
relations of the variables -Wg, D, V-~ to discharge at meter-
ing station M2. The cross sectional shape of the channel
was at that time (1963-64) similar to the cross section No.l
in FIGURE 3.2A. The derived relationship of each variable to
discharge is given by the equations:

'Ws:25 QO'16
D=0.23 QO'39

v =0.17 Q0-44
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The values of exponents and coefficients of these equations
have been computed from the graphs. The sum of exponents b,

f and m and the product of coefficients a, ¢ and k are res-
pectively 0.99 and $.98. The rate of change of depth with
increasing discharges {£=0.39) was practically the same as

the mean value of 0.40 computed by Leopold and Maddock for
many river cross sections. However, the b value of 0.16 was
considerably greater than 0.04 value found on Brandywine Creek
(22) and the expected value for any other channel sections
with cohesive bank materials. This marked difference is due
in large part to the gentle sloping side of the constructed
trapezoidal channel. The constructed section has been eroded
and now it approaches the approximate shape encountered in
cohesive soils. This cross seétional change is likely to
reduce the value of the exponent b. The rate of increase of
mean velocity with discharges (m=0.44) was fairly high and a
straight extrapolation of the regression line gives mean velo-
cities as high as 6'feet per second for discharges of the same

order of magnitude as the design discharge. This is indeed an

extremely high velocity of water in alluvial channels.

FIGURE 3.5 presents the hydraulic geometry of the
channel at metering station M4 for the years 1965 and 1967.
It may be seen in this figﬁre that the points representing the
1965 T..ow characteristics, in the velocity and width to dis-
charge graphs fall in a fairly good alignment. However, the

depth to discharge relation is ill-defined and no further
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analysis of this graph will be pursued. The gabion gradient
control structure G2 constructed downstream of bridge B3
(FIGURE 3.2) in Winter 1966-67, created backwater effects
through that measuring section and upstream in the channel.
This explains why thc Spring 1967 current—méter data deviate
from the respective lines and are not representative of the
natural behaviour of the channel. These structures were de-
signed to reduce the velocities of flow and, by the position
of the point representing the 1967 measurement of the velocity
in the velocity-discharge graph; this goal is fairly well a-
chieved. For the purpose of studying the regime of the chan-
'nel under natural conditions, the values of the 1967 measure-
ments will be disregarded. The rate of variation of mean
velocities with increasing discharges (m=0.85) was fairly
high and the relationship gives water velocities of the order
of magnitude of 12 feet per second for discharges even smaller
than the design discharge. The eroding power was accordingly
extremely high. Thé water surface breadth increased very ra-
pidly with discharges; its rate of variation (b=0.51) was

not for the same reason stated previously characteristic at

all of the one encountered in self-formed alluvial channels°

The relation of width, depth and velocity to dis-
charge at metering station-MS is shown in FIGURE 3.6 for the
1962 to 1967 year period. Four regression lines have been
drawn through the various sets of points in each graph to show

the variation of these relationships from year to year. There
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is considerable scatter of points about the respective lines
and the shifting of their position and inclination indicates
that the relation of these variables was not stable throughout
the period cf record. Part of this instability probably re-
sulted from the scour and temporary £ill of the channel in
periods of high waters and to the section control made by the
rock riprapping of bridge piers in Summers 1964 to 1966. The
latter reason explains why the lines drawn through the 1963
plotted points are set off in the graphs. This local inter-
ference changed the original conditions of the flow and its
hydraulic characteristics so that the measuring section became
no longer really representative of the averége reach of the
channel. For the same discharges under the backwater effects
of the constriction, the depth and water surface breadth were
increased and mean velocities reduced. The rate of variation
of these variables was more particularly different in 1966 and
1967. This probably depends on the changes in configuration
of the cross sections due to subsequent riprapping in Summers
1965 and 1966. To same discharges, corresponded in Spring 1967
a higher rate of increase of mean depth and therefore of water
surface breadth and a lower rate of variation of velocity than
in Spring 1966. The Spring 1969 discharge measurements at
that same métering station resulted in a plot of the relation
of stage of flow versus discharge in FIGURE 3.7. The break in
the curve at 600 cfs.flow indicates that the stage-discharge

relationship was not yet stable.
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The recorded data was insufficient to analyze the
hydrauiic geometry of the channel in a downstream direction.
The discharges having the same frequency of exceedence were
not recorded at many metering stations. The condition of
constant frequency of discharges at all créss sections is
very important for the comparison of the hydraulic charac-

teristics along the length of any channel.




CHAPTER IV
ALTERNATIVE DESIGNS FOR THE ORIGINAL CHANNEL

4.1 Channel Design Methods and Application

The design of stable channels in alluvial materials
has been the object of intensive research during the past cent- -
ury and various procedures for designing them have been de-
veloped. These methods are categorized as belonging to one of
the following design criteria: maximum permissible velocity,
critical tractive force and regime theory. The concept of
the "stable channel" as defined in Appendix A is the basis of
these theories. FEach design fechnique is also summarized in
Appendix A. They have been applied to the design of the di-
version channel with the origiﬁal conditions of soil and
prairie level in the design route. A trapezoidal section
having a 4:1 side siope has been chosen and the same design
discharges have been used. It was expected that for the type
of soil making up the channel, and taking into account the
very low values of side slope encountered in self-formed stable
channels in cohesive soils and the investigation made of the
stability of river banks in the Winnipeg area(z), a designed
bank slope of 4:1 could be stable against sliding at the con-
dition of having a stable channel bed slope. The design pro-

cedures for the upper reach of the channel are hereafter
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explained.

Using the Simons and Albertson's charts (Section
A.2, Appendix A) for canals having cohesive bed and banks,

the characteristics of the channel are for a discharge of

3300 cfs:

From FIG. A.6, the hydraulic radius:R = 9.5 £t

" " A.7, the average depth tdp = 11.0 "

" " A.8, the wet. perimeter :P = 127.0 "

" u A.9, the average width tW = 115.0 i

" " A.10,the top width :Wp = 127.3 "

" " A.ll,the area of water :A =1200.0 ft2
from product Wxda " " tA =1265.0 "

" " PxR ", " :tA =1208.0 "
the average area of water section :Ap =1225.0 "
from continuity equ: V= Q/Apn Vo= 2.7 ft/s

from FIG. A.12, the value of RZ2S :R23=  0.004

For the designed average and top widths éné deptﬁ of the water
section, the side slope of a trapezoidal chahnel is 1.12:1.
¥Yor the selected trapezoidal section having a 4:1 side slope
and the same designed average width and depth, the correspcond-
ing wetted perimeter and hydraulic radius have geen recomputed

with the equations:'

P=bt2dy Y1+22 (9)
R=_A
S (10)
where: b = bed width

Z = parameter of the side slope equal to 4

From equation (9), P=161.5 feet and from equation (10),

R=7.6 feet. With this value of R and R%S = 0.004, the
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corresponding value of the channel slope was O.73x10‘4° In

brief, the redesigned channel characteristics are:

For the average width : W = 115.0 ft

for the average depth : d, = 11.0 ft

0.73x10~4

i

for the slope : S

According to the Blench's regime equations (Sec-

tion A.2), the calculated channel characteristics are:

For the average width : W = 121.8 ft

oo

I

for the average depth 9.3 ft

da
s

for the slope 0.105x10™4

In his equations, the side factor f5 has peen estimated to
0.20, the bed factor fb to 0.90 and the water temperature to
60°F.

Using the Manning's floﬁ formula: V:=l§é9 R2/3S%
with a predetermined maximum mean velocity és a criterion of
stability, the design procedures consisted of the following
steps:

a) The average prairie élope: S=9.76x10"% nas
been used in the formula as the proposed hy-
draulic gradient.

b) For the kind of soil involved, the Manning's n
has been estimated to 0.025.

c) From TABLE A-1 and FIGURE A.l for clays having

a veid ratio of 1.0, a limiting velocity of
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2.5 ft/s. has been selected and a correction
factor of 1.2 for an expected depth of flow of
8.0 feet has been chosen from FIGURE A.2. The
limiting velocity for the design was therefore

3.0 ft/s.

The values of the variables S n,and V have beeh substituted
into Manning's formula to give a hydraulic radius value of
2,09 feet. The parameter W and dp of the cross sectional area
of flow have been computed according to equation (9) and the

following ones:

0

=~ (11)
s _ A o .

- R N . . (12)
A= (b+ Zxd,) dp i (13)
From Bquation (11) ceevooconnens ee.. A =1100.0 ft2

n (12) e vennnnnan e P = 526.0 ft

" n (9) & (13)........... dp= 2.1 ft

n u T Pl s08ls £t

The channel was found too wide and shallow, the bed width was
therefore given a new dimension: b= 80.0 feet. From equation
(13) and for the same cross sectional area of flow, the recal-
culated depth was 9.38 feet. The corresponding values of the
‘wetted perimeter and hydraulic radius were from equations (9)
and (10) P =157.3 feet and R =7.0 feet. The required channel
slope was for the adjusted section equal to 1.9x10"%. To sum

up, the redesigned characteristics of the channel are:
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For the average width : W = 117.6 ft

for the average depth : dp 9.4 ft

for the slope 1.9x10-4

0
0]

The first step in designing channels by the method
of tractive force consists in selecting an approximate chan-
nel section. The estimation of the average width has been
made by using the Lacey's wetted perimeter formula (Section A.2)
which gives values nearly equal to the top width in wide chan-
nels. The average depth of flow has been estimated equal to
the hydraulic radius and selected from the Simons and Albért—
son's charts. The channel slope has been computed according-
to the Du Boys' tractive force equation (Section A.2) with a
limiting unit-tractive force of 0.1 lb/ftzAdbtainea from FIG-
URES A.3, A.4 and A.5. The computed channel éharacteristics.
are:

For the average width : W = 115.9 ft

9.5 ft

1

for the average depth

da

S 1.69x10-4

for the slope

The same design procedures have been applied to the
design of lower reaches and the characteristics of the redesigned
channel have been compared with the original ones. Results are
summarized in TABLES IV-1A and IV-1B. The alternative design
methods indicated that the original width of the channel wés in

generally close agreement with the values of the redesigned one.

However, the redesigned slopes were by far milder than the



32

original and present ones. This would therefore require drop
structures or low check structures to be placed at frequent
intervals along the channel in order to reduce the hydraulic
gradient. A preliminary investigation in stabilizing the
channel by means of low slope control structures has been

made in CHAPTER V.




CHAPTER V

POSSIBLE MEANS FOR STABILIZING

THE PRESENT CHANNEL

Because of the critical need for an effective con-
trol of the degradation of the channel, an attempt has been
made to stabilize the channel. In many cases of streambed

(10'11'15'20), bed sills have proven to be ef-

stabilization
fective in controlling channel bed degradation through reduced
“velocities created by the increase of water surface elevations

induced by the sills.

The actual experience with gabion gradient control
structures in the Seine River Diversion has shown that these
installations have controlled the channel slope since no ap-
preciable degradation has taken place during the two years
they have been in use. Their flexibility makes them particu-
larly adaptable to the local scour because the foundation
material is generally composed of érodiblé fine silt and clay.
Also, in order to prevent a further reduction in the original
ground water table level in the adjacent agricultural lands
it is suggested that the water surface slope be controlled by
means of a series of sills with small energy loss over each

structure rather than using high drop structures that could

perform the same intended function. To prevent further

33




34

degradation and to give the channei a stable slope requires
that the height of the crest of transverse bed sills above

the actual channel floor be so designed and, the successive
stabilization structures be so placed along the chanhel that
the design velocity in the stabilized reach would be equal

or smaller than the velocity values in the recommended "stable
section" of the charnel (TABLES IV-1A and IV-1B). Eventually,
sediments will deposit in the pool upstream of structures and
create a new gradient equal to the regime slope that terminates
at the toe of the next structure upstream. FIGURE 5.1 shows

a sketch of the final stage of this stabilized condition.

For a preliminary design of the various distances between
structures, the following formula has been used:

. " h

L= Sa —Sg

where: I, = distance between structures
h = height of structure

Sy=present channel slope

Ss:stable channel slope

According to thié formula, computation of spacing and number
of three feet high drop structures have been made in TABLE V-1l.
This preliminary investigation reveals that sixteen low drop
structures are required corresponding to an average of about
one structure a mile. They may consist of gabion structures,
rock siils or reinforced concrete weirs. The decision as to

which one to use or a combination of them should be based on
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the inherent adaptability of each, the accessibility of the

channel to equipment and the availability of materials.

The cost of this stabilization system should nor-
mally be compared to the cost of a high velocity lined canal.
The use of revetments as stabilization means have not been
considered here because at first glance, their cost would have

been prohibitive.




CHAPTER VI
CONCLUSTIONS

The regime study of the Seine Diversion Channel
and comparisons made at the same time between its character-
istics and those of stable channels in alluvial materials
indicates that the channel was far from stable. The channel
with its given width, depth and slope was not representative
of the "self-formed channel" in cohesive soils which under -
the same conditions of flow would have been deeper and have
had a much milder slope. Its designed average width was

reasonably close to the width of the stable channel with the

‘exception of the side slope that was about four times too mild.

In any event, the field investigations showed that
the diversion channel progressively adjusted its slope and
cross section so as to become more stable. An effective con-
trol of the channel bed degradation requires a series of low

check structures designed to reduce the hydraulic gradient.
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CHAPTER VIT
RECOMMENDATIONS

1). ' In order to properly locate and design the height
of the stabilization structures, it is recommended to make
field tests to determine the present tractive resistance of
the channel material. The test procedure would consist in
measuring with a vane borer the in-situs shear strength of
the top surface (0-4 in.) of the soil making up the channel.

(6)

The apparatus proposed by I.S. Dunn in 1959 is recommended

in this matter.

2) . In second instance, it is recommended to conduct

a gfound water investigation along the left bank of the chan-
nel in the Oak Island Settlement. The purpose of this inves-
tigation isvto find the relationship that may exist between
the amount of bank recession and some characteristics of the
bank material and of the ground water flow through the left
bank. Several lines of wells perpendicular to this bank would
be of particular interest to measuring the level and gradient
of the water table, the permeability of the soil and the a-
mount of ground water draining into the channel for different

stages of flow in the channel.

3). To know more about the regime of the channel, it

is recommended to install gauge recorders in the 1969 surveyed

37
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cross sections. Those water markers would serve to define
the water surface profile and the hydraulic roughness of the
channel at different stéges of flow. In about five cross sec-
tions well distributed along the channel, sediment load and
current-meter measurements should be made at the same time in
order fo make a complete and accurate analysis of the "“hydrau-
lic geometry'" of the c;'hannel° The present gauging sections
are not appropriately located so that the recorded data were

good for the purpose of computing discharges only.
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CHANNEL SHAPE CHARACTERISTICS AT STAGE CORRESPONDING TO OBSERVED DISCHARGE
METERING STA DATE OF DISCHARGE CROSS SECT |WATER SURFACE
NO. RECORD AREA Of _FLOW BREAOTH
Q) ofs (A) sq 11 Ws) 11, -
! APR. 19,1962 2947 1350 850 V55 T
20 3853 1416 82.0 k3]
. 2 APR 17,1963 1479 76.6 610 TS
MAY, 2 356 q5.7 460 0.99 1
JUN.10 373 39.7 44.0 G595 )
- B 27 1455.5 326.7 82.0 3.99
- 28 11081 286.2 80.0 377 .
APR 24,1964 7459 (122 580 KSR
3 APR.30,1968 319 359 440 [ AR
a APR 19,1965 5883 | 70.0 iy
20 770.7 870 [RECIRA
24 3522 62.0 (68
: APR.25,1967 1073.9 1140 535 -
5 APR.20,1962 25352 IS (R
T 23 698 1 820 ;
28 2308 76.0
™ TTMAY,29,1962 6623 80.0
3 TN 46.0
~ 56.8 420
!w‘blp 99.0 o 41.0 .
13386 §6.0
4314 Ll 8 e 820
3 29830 8306 1835
) T eses 1 sres T370
830 T 1570.9 531.6 97.0
14758 % 930 .
« [ o 387.0
S 6.0
. 96,0,
. S APR.10,19€7 N
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CS AT STAGE CORRESPONDING: TO: OBSERVED:DISCHARGE

|

CROSS SECT [WATER SURFACE MEAN MEAN,
AREA OF FLOW BREADTH DERTH VELOCLTY KEY -
(A) sq 1t (ws) ft: (Alwsh ty (Q/a) ft/sec e
1350 850 59 2.18 " -CHAINAGE
1416 620 73 27 . L
766 61,0 25 1.93
757 46.0 CED 578
397 450 G.9% 694 LOCATION
3267 82.0 339 aas SYU _LocaTion
2862 80.0 370 587
1122 58.0 193 219 LOCATION
ECK) 359 557 079
70.0 168 4.98 |\ron>.202
87.0 '35 §%8 — y\
650 T6a 338 E— LOCATION
- 7140 330 2.85
5578 510 G Q57 LOCATION
3563 820 EAY 5732
1698 76.0 136
255.0 BOG 260
814 6.0 2720
451 420 126
613 510 .62
3866 860 346
2108 630 257
8506 835
8789 i37.0
531.6 97.0
5393 930
551.8 $7.0
5179 96.0
5296 96.0.
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3999 T 895
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832 840
3833 83.0
7707 160.0

95.0

900

850

REACH “NO. 4

800

LOCATION AND RESPECTIVE

CHANNEL CENTRE LINE

AND RESPECTIVE
AND RESPECTIVE
AND RESPECTIVE
AND RESPECTIVE
AND RESPECTIVE
AND RESPECTIVE

REACH. No.3

NUMBER

NUMBER
NUMBER
NUMBER
NUMBER
NUMBER
NUMBER

OF

OF
OF
OF
OF
OF
OF

METERING STATIONS

SURVEYED CROSS SECTIONS IN 1969
SURVEYED CROSS SECTIONS IN 1963

FORD CROSSINGS
BRIDGES
GABION GRADIENT CONTROL STRUCTURES

CONCRETE DROP STRUCTURES

Wtel B R R

um REACH NO. 2

750

850

@ o

.@._/l S ——

o

|

—
HJ__,oo»joz AND

3

RESPECTIVE NUMBER OF CONCRETE DROP STRUCTURES

OF BRIDGES

OF FORD CROSSINGS

OF GABION GRADIENT CONTROL STRUCTURES
OF SURVEYED CROSS SECTIONS IN 1963

OF SURVEYED CROSS SECTIONS IN 1969

B APPROXIMATE CHANNEL BED IN 1969

600

550

500 450 400 350 300

i

REACH NO.

SEINE RIVER DIVERSION

LONGITUDINAL PROFILES

DISTANCE

TION- FEET

b

HUNOREDS FEET

8409,

830

820,

810

800,

790

780

270

160

740

730

T2Q

FIGURE 3.2




835 ' , — 835

825 —1825
8155 — g5
835 — —835
825 —825
gi15L 815
830 —830
820 1820
i
siob ~ 810
825 —825
815 | 815
805 - —g05
“525‘— — 825
816 1815

805 /\\ — 805




— 805

805 L
gas ; —825
815: —815
805: jeos
820 — —1820
eloi :eno
| _
800 L (7\ ~ 800
820 1820
L _
810+ —4810
eoo: :eoo

815 ‘ — 815

805 |- —805
795 - —795
815 — : -
5 LEFT DIKE RIGHT DIKE 815
CONSTRUCTED CROSS SECTION IN 1960
805 |- —1805

sl

o SURVEYED CROSS SECTION IN JULY 1963

79 R b | . -k

GEODETIC ELEVATION FEET
GEODETIC ELEVATION FEET




vZg'e JYNOId

GEODETIC ELEVATION FEET

805

795

LEFT DIKE

RIGHT DIKE

CONSTRUCTED CROSS SECTION IN 1960

SURVEYED CROSS SECTION IN JULY 1963

SEINE RIVER DIVERSION

CROSS SECTIONS
IN
REACH NO.|

FOR KEY SEE CROSS SECTION NO-

0 50 100 FEET

HORIZONTAL SCALE

795

— 805

GEODETIC ELEVATION FEET




805 - —{ 805
795: :?95
815 — — 815
805: :805
795: j795
810 ~ 810
aoo: jeoo

790L @ 790

810 — — 810

800 — — 800
790 - -~ 790
810 — 810
800 — —1800
790 — 790




g2'¢ 3YNoO1d

GEODETIC ELEVATION FEET

800 i~

790 —

805

795

It T s e
R G

785 - .@

805

795

785

805 .
LEFT DIKE RIGHT DIKE
B CONSTRUCTED CROSS SECTION IN 1960
795 -
SURVEYED CROSS SECTION IN JULY 1963
785

SEINE RIVER DIVERSION

CROSS SECTIONS
IN
REACH NO 2

FOR KEY SEE CROSS SECTION NO.((8)

0 50 100 FEET

HORIZONTAL SCALE

—1800

—790

— 805

1795

~ 785

7805

—1795

—785

- 805

—795

— 785

GEODETIC ELEVATION FEET




— 800
800 —
— 790
790 —
780 b
— 800
800
— 790
790
—- 780
780
h 800
800 =
— 790
790
o T AR B 780
780L
795
795 &
785
785
775
775 -
— 795
795~
- 785
785

e By 3 =g




22'¢ 3YNO1d

GEODETIC ELEVATION FEET

795 =

785

775

795’—*

785

775

795 —

785 -

775 &

795
[__

785

775

LEFT DIKE

RIGHT DIKE\‘

. CONSTRUCTED CROSS SECTION IN 1959 N

T~ SURVEYED CROSS SECTION IN JuLY

SEINE RIVER DIVERSION

CROSS SECTIONS
IN
REACH NO.3

FOR KEY SEE CROSS SECTION NO~@

I00 FEET

HORIZONTAL SCALE

1963

795

785

775

—. 795

— 785

— 775

- 795

4785

775

—~795

—1785

—775

GEODETIC ELEVATION FEET




795

785

775

790

780

770

790

7890

770

785

775

765

785

775

-1 795

—1785

— 775

=790

1780

4770

- 790

—780

770

— 785

—775

— 765

— 785

—~ 775




GEODETIC ELEVATION FEET

780

770

760

780

770

760

775

765

780

770

760

780 —

7700

760+

LEFT DIKE

CONSTRUCTED CROSS SECTION IN

Y,
T s T

SURVEYED CROSS SECTION

SEINE RIVER DIVERSION

CROSS SECTIONS

958,59 -

IN JULY

—~775

— 765

— 760

770

— 760

4780

RIGHT DIKE

1963

770

760

770

760

GEODETIC ELEVATION: FEET




gegg 3JYnolid

GEODETIC ELEVATION FEET

770

760

LEFT DIKE

CONSTRUCTED CROSS SECTION IN 1958,59 -

SURVEYED CROSS

SEINE RIVER DIVERSION

CROSS SECTIONS

IN
REACH NO.4

FOR KEY SEE CROSS SECTION NO-

100 FEET

HORIZONTAL SCALE

SECTION IN JULY

RIGHT DIKE «

1963

}
\}
®
o

-~ 770

—760

GEODETIC ELEVATION FEET




780

770

760

775

765

755

775

765

755

770

760

750

770

760

——1780

—770

~-1760

775

765

755

— 765

~ 755

770

760

750

770

760




3¢'¢ 3YN9OId

GEODETIC ELEVATION FEET

760

750 —

770

760

750

770

760

750

770

760

750

PRAIRIE LEVEL

SEINE RIVER DIVERSION

CROSS SECTIONS
IN
REACH NO.5

FOR KEY SEE CROSS SECTION NO.é{)

100 FEET

HORIZONTAL SCALE

RIGHT DIKE ~

70

—1 760

~ 750

770

— 760

=750

—~770

{760

- 770

760

— 750

GEODETIC ELEVATION FEET




830

820

810

830

820

830

820

810

820

810

800

820

810

800

830

820

~ 810

-4 830

—1820

~.810

- 830

— 820

-1 820

~-1810

- 800

-1 820

— 810

- 800

;
|
i
|
|
|
]
!
/



d42°'¢ 34Nn9id

GEODETIC ELEVATION FEET"

820

800

805

795

805

795

BI1'5

805

795

LEFT DIKE RIGHT DIKE B

L CONSTRUCTED CROSS SECTION IN (960\
—_— * e R e

SURVEYED CROSS SECTION IN JULY 1969

SEINE RIVER DIVERSION

CROSS SECTIONS
IN
REACH NO:I

FOR KEY SEE CROSS SECTION NO.

100 FEET

HORIZONTAL SCALE

~-1820

— 800

-1 805

- 795

— 815

— 805

-~ 795

—1 805

795

GEODETIC ELEVATION FEET




800 [~ —800
790: ~790
810~ —~ 810
eoo: :aoo
790——— —1790
810 —810
eoo: :soo
790: :790
805 — — 805
795: :795
785: :785
805 — — 805
795: :795




92'¢ 3Ynoid

GEODETIC ELEVATION FEET

795

785

805

795

785

805

EXPLAINED IN TEXT\

795 —

785 —

LEFT DIKE RIGHT DIKE }

800 —

CONSTRUCTED CROSS SECTION IN 1960

790 —

~ SURVEYED CROSS SECTION [N JULY 1969

780 -

4

SEINE RIVER DIVERSION

CROSS SECTIONS
IN
REACH NO.2

FOR KEY SEE CROSS SECTION NCL@Z%

00 FEET

HORIZONTAL SCALE

—{ 795

— 785

— 805

— 795

— 785

- 805

—~ 795

— 785

—1 800

— 790

- 780

GEODETIC ELEVATION FEET




800 —

790 —

780 L

800

790

7’80L

795

785 [

775 L‘

795

785

775

790

780

S.19

EXPLAINED IN TEXTE\

800
T

-1 790

-1 780

— 800

— 790

— 780

— 795

1785

—775

795

785

—J775

- 790

- 780




HSe' € 34Nn9old

GEODETIC ELEVATION FEET

785

775

790

780

770

790

780

770

790

780

770

LEFT DIKE

EXPLAINED IN TEXT

SURVEYED CROSS

SEINE RIVER DIVERSION

CROSS SECTIONS

IN
REACH NO.3

FOR KEY SEE CROSS SECTION NO-

00 FEET

HORIZONTAL SCALE

RIGHT DIKE ~

SECTION IN JULY

1969

o

785

775

790

780

770

790

780

770

790

780

-4 770

_GEODETIC ELEVATION FEET




* 4790
790

—{ 780
780 |-

- 770
770 L
790

— 780
780 -

—770
770

— 790
790 —

~1780
780

— 770
770 &~

— 785
7857

—~775
775 |-

- 765
765 —

- 785
785

~ 775
775




775

765

755

775

765

755

7851

775

765

780

770

760

7801

760

EXPLAINED IN TEXT

sS.28

"‘I785

— 775

—1 765

1780

— 770

— 760

780

770

760

775

—1765

i 755

775

1765

— 755




I2°g 34¥Nnoltd

775

765

755

775

765

755

775

765

755

775

765

GEODETIC ELEVATION  FEET

755

Bt T

EXPLAINED IN TEXT

775

765

755

775

765

‘755

775

765

LEFT DIKE
/

RIGHT DIKE Wy

CONSTRUCTED CROSS SECTION IN 1958,59

755

775

765

g SURVEYED CROSS SECTION IN JULY 1969

SEINE RIVER DIVERSION

CROSS SECTIONS
IN
REACH NO.4
FOR KEY SEE CROSS SECTION NO-<:>

100 FEET

HORIZONTAL SCALE

755

GEODETIC ELEVATION FEET




775
775 -
765
765 |
755 |
7565 L ‘
775
775
" - e _ |
B i j
4765 |
765 N i
| l
7] |
]
|
|
—755
7585
775
775
—1765
765
Jd755
755
—770
770
4760
760 F
e J750
750 &
—770
770
1760
760




770
770r

—760
760

=750
750

- 770
770~

4760
760 °

J7s50
7504

—~ 770
770~

{760
760

750
750

—770
770r

— 760
760

4750
750 -
5 EXPLAINED 1IN TEXT

—765
765 —

~{755
755 [

745
745 -




r2g'e 3Ynoid

GEODETIC ELEVATION FEET

760 —

750 —

765

755 -

745 *—

765

7551

745+

765

755

?45L

- 760

- 750

EXPLAINED IN TEXT w

- 765

— 755

d7as

-~ 765

—~ 755

~ 745

RIGHT DIKE

PRAIRIE LEVEL
— 765

CONSTRUCTED CROSS SECTION IN 1958

— 755

“-SURVEYED CROSS SECTION IN JUNE 969

— 745

SEINE RIVER DIVERSION

CROSS SECTIONS
(N
REACH NO-5

FOR KEY SEE CROSS SECTION NO.

100 FEET

HORIZONTAL SCALE

GEODETIC ELEVATION FEET




WIDTH~DEPTH RATIO (F)

30
o
e |
Q
| %
20 o) ©
G
<]
J
1958 —-60 CONSTRUCTED
CROSS SECTIONS o)
1969  SURVEYED
CROSS SECTIONS ] ] ®
&
g &
]
10
2]
< @
8 —&}{
7 D]
9
)
5
STABLE CHANNEL \
2l RELATIONSHIP \
3
20 _ 30 40 . 50 80 70 80 30 100

WEIGHTED MEAN PERCENT SILT- CLAY (M)

SEINE RIVER DIVERSION

" RELATION BETWEEN WIDTH DEPTH RATIO AND WEIGHTED
MEAN PERCENT SILT CLAY AT DIFFERENT CROSS SECTIONS

“ o E|GURE 3.3




200

100

[{e)
o
\

\

\

[}

o

o
>

\
\

H
(@]

WIDTH, FT
\*

we=25 Q%

20

o ~N ®© W

0.3¢9

DEPTH, FT.
\

1 D=0.23Q

j: 4

o N o © —

/

- v=0.17 Q%%

VELOCITY, F.PS.

o N ®» o -
b

10 20 30 40 50 60 70 100 - 200 300 500 700 1000 2000 4000
DISCHARGE IN CF.S.

LOCATION: METERING STA.NO.2 SEINE RIVER DIVERSION

1963 PLOTTING POSITION: _A&_ RELATION OF WIDTH,DEPTH,
1964 PLOTTING POSITION: _&_ AND VELOCITY TO DISCHARGE

'€ 3YNoIld




200

100

[{s)
o}

WIDTH, FT.
@
(@]

w=2.88 Q%%

60

50

40

30

DEPTH, FT.

v=0.02Q%8°

N

VELOCITY, ERS,

2
100

1914

200

300

400 500 600
DISCHARGE, C.F.S.

800

1000

2000




VELOCITY, EPS,

G'¢ IYNOIL

/ v=0.02Q°%®

]

N

100 200

300

400 500
DISCHARGE, C.F.S.

600 800 1000

2000

LOCATION: METERING STA.NO.4
1965 PLOTTING POSITION: O

1967 PLOTTING POSITION: O

SEINE RIVER DIVERSION

RELATION OF WIDTH,DEPTH,
AND VELOCITY TO DISCHARGE




200

-
a
(-]
e
160 _ o o___a———y"‘—-— —_—
30 3 % g i———— — n =
$oprreF O T T
80
70
60
-
50
= 1967 DATA
T
= s | w=2 09020
2 40 S — 5
=
30
20
5 ol
o
G ° - —
— 1:]
Z- -
1o /GO/ ° ° //’/
- ° = I -~
> L~ 7 -7
7 Pras q
//A
“ =
2
— 1967 DATA
o p=0.17 Q050
Tog
= o2
-
c
> 1967 DATA
> 7 v=0.22 @033
i !
N
20 30 40 30 80 1000 2000 3000 5000
o DISCHARGE ,C.F.S. :
-
By
m g . "
SEINE RIVER DIVERSION
fﬂ 1962 PLOTTING POSITION & 1966 PLOTTING POSITION: _o_
(o)} RELATION OF WIDTH,DEPTH,

1963 PLOTTING POSITION: _a_

AND VELOCITY TO DISCHARGE




0081

009t 00%i 00721

“§°'4°0 ‘IOHVHOSIC

000! cosg

008

oco%

00¢e

T _ 1
('SLNIW3YNSVYIN 6961 WOoH4)

SW  NOILVLS O9NI¥ILIW LV
3AYND ONILYY

NOISYIAIQ ¥3IAIY INI3S

01

IJonvo

"Ld *LHDI3H

FIGURE 3.7



JOHLIW NOILVZIT19vLs

NOQISHIAIO ¥IAIY INIZS

JUNLONYLS NOILVZITNIgVLS

(S34071S VWS HO4) v ="

FIGURE 5.1



PHOTOGRAPHS

76



PLATES

83



Y

‘ON OLOHd
(VLV3 ¥961 ONV £961) | SIYNLONYULS NOIBYO
. . !
SHIYYSOLOHd 40 NOILYO0T. - . SONISSO¥D Qwod ——
| s3o0Iue !lIW.T |
NOISYIAIO ¥IAIY INIZS 1aN3937
20N HOVZY ¢ S'ON HOVIY —




£96l 1d3s "V yd

€961

'1d8S 'v1'ud

PLate 2.l



2961°0¢ sunp -y 2iud

$961°0¢ 2unpP vOIud

P961°0¢ aunp Y6 ud

Puate 3.3



{(YlvQ #9681 ONY €961}
dVH8B50L0Hd S0 MOILY20T

NCISHIAIT

MIAIY  BNIES

‘OnN OLOWHd :@nﬂl
S3UNLONYLS JOHG ZL3HONOD

ONISSOY¥D CHO3, LT;!?
{

8390148 ...Slliw.ml

ON3937

C'ON HOV3Y : p ON HOV3Y G'ON HOVIY !
% . \
& . o)
¢ / . V\Nw. oY

.(I\I\l).\.r\ld,\/l »\rU C\«

W LN ,: o 3

2 7 )

] J 2 ow
E4 any _of\vio \.\v/ﬁ/ o
9 N @ AN @ el vl 76) (vsl

I _ﬂ \44/):4/#1.! SERY \L/V\QA ) —; ..
A f =\ ) NG e
90 a'g w 69 e 218




$961 0 dunp youd

PLATE 3 72



‘ON OLO I&AWII

N
{(viv¥a »961 OGNV €961} . SAHUNLINYLS J0HO ZLIYONOD ——mefomm

ONISSO¥D QO3 —
' SHJVYO0LOHd J0 NOILLVIOT . [ ——

mmoo_mm':'lw\ﬁl
NOISEIAAIO HIAIY INIIS : , :gN3937

¢'ON HOV3HY PON HIOV3Y S ON HOV3Y
I ELEREN
2 (v9)
1 - ONVISIIHNVO
e
. & O@
1 A [ . &N
i : i SO v I
93 ag’




(91ivC »961 ONV €961

CSHIVHO0LOHY S0 NOILVYSGT

NOISHIAANIT HIANY INIZS

Q

‘ON OLOHd AMMWW!S

STYUALONYLS J0HQ 3IL3IYONOD ———P—

~ a
ONISSOUD omou.lﬁztlz:
mmooém.itia%i

/

GON HOVIH

€'ON HOVIY S _ P'CN HOVIY
i
©
w INZWITLY
= AMm
2 GNVIS]
/2l
C
> :
] Y —
' A X
90 8’ 21'g

"GN3937

X

ULEE

€ £p
e




€961 '1des volud

#961°0¢ dunPyg'ud

PLATE .4



(viVd 6961)

SHIVHSOLOHd 40

"ON OLOHJ
SIUNLONYLS NOIBVD —pmmm
1
NOILLY DG ~ SONISSOND QuOX 4TIIJI
$350148 .
NOISHIAIQ YIAIY INIIS SNECER
1"ON HOV3Y b 20N HOVIY P €'ON HOVIYH —

§9'%'g 99

&

%

LRGN .

.

2

V

e
W ¥ ) — I 1
\_r/llll\ L it

;




6961°¢1 Ao "¢ ud

'3 . .
6961°9 aunp "z'ug 6961°9 aunp j'yd

FPLatTe. 3.8



(VLVQ 6961)

SHAVHO0L0Hd 40 NOILYOOT

NOISHIAIO ¥IARY INIF

I"ON HOV3Y

SAUNLOINYLS NOIBYS

‘ON 0LOHG )

SONISSOHD QU0d =t

S$3501y8 QLT

:gN3937
2°ON HOv3IY > C°ON HOVIY ~—
72
e
i —
€YD :
gﬁw
(o]
w
2
V
pon
\4%/ W
Y 1

=

N >=
mé
mn:
(&)
(o.):*
(5]



6961°98unp yd

IS . .
6961°¢1 Ao '9°yd 6961°9 aunp g yd

PLatTe 3.6



(VLYQ 69861)

' SHAVHEOOLOHAd 40 NOILYOOT

NOISHIAIO HIAIY INIES

—— ¢'ON HOV3¥ e P'ON HOVIY

'ON CLORd - .
SIYNLONYLS J08C 3FL3HONOD e

ONISSOHD GHO4 !T

$390148 l.ll......wml

A
‘ON39371

> G'ON HOV3d

v




6961°98unp 0l'yyg

69619 aunpp yd

Pl bt e 3.7



(VLVQ 6961)
SHAYHSCLOHE 40 NOILYO0T

NOISMIAIO HaAald INIES

i

— ¢°ON HOV2Y

A

INIWIILTTS

P\L@J\@ﬁw@qo
m ) .
e
99 8'g

Q
. N
LE oqk

yOouvit

6'ag

P ON HOVIY

‘OM OLOHd
SIHNLONYLS J0YC 3L3YIONOD

ONISSOND 04O Irrll.

SIA9CIYE o ;
iy

'GN30 371

G'ON HOVZY

~
[a4

PHE o
PO

el

_S
72N

Y N,
N

-~
vi'g gl'g




696121 Ao "91'Ud

6961°2L1ADN "1 Ud

PLa<te., 2.8



(VIVQ 69861)
SHIVHOO0L0OHd 40 NOILYI0T

Z@M@ JAAIG HIA

Riw] 8
e

R4

él?

— ¢°ON HOV3d

_ v'ON HOV3Y

‘On O1OHd
S3IYALINY LS d080 3L3¥ONCD

ONISSOND 0804 .Jm;lil

)
§39014d D'Lvml

S ECE

G'ON HOViHY

&

PrELoue

-

Y

Ny P
X .o\AMw
| A
'8

W -
g;y_E)




6961 ‘L1 AoN 02 ud

6961°L1 ADIN " 81'yd

6961°LI AP

PLAaTeE =.9



(NOISOHY3 MNVE)

‘ON OLOHd @.ﬁ
SIYNLONHLS JOHG ILIUONOD e——ipmm
: , ONISSOYD 0804 ...x...lal..
CSHAYHOOLI0OHY 40 NOILVY3I0T \(
90148
| sasons —f-
NOISHIAIC HIANN INIES T ERER
\,
mb.
2 2
@0 S
(73
u INIWINLTTS >
: 5\
> aNYIS ¥YO gy
T N NS S Y ®
U ;_ﬁ é.q},’ F lllllwm N WM o \\MWV
90 88’ @ 68 : 218 . : .lvo
. | _ C arg g si'g
Ju@ni




INIWITLLIS ANVTISI MVO 3IHL NI NOISOHI MNVE TvIidAl
69619 aunp "I "yd 6961°9 aunp "3¢ yd

8961°100 "32'yd

PurmTe. .10



(AZAYNS LNIWIGIS 6961)

‘ON OLOHd
SIUNLONYLS NOIGVO ——p—r
. . , » ) ‘a \
SHIVHOOLOHA 40 NOILYDOT SONISSO¥D Q¥0d —A——
: . s$3901¥8 lT
NOISYIAIG HIAIM INISS , :ON3937
o L,
TN |
go'va 99  [g9Y9 \ v\@
TS
SR 3
g8 <
SN
s 98 4/ "
-
<
¥ AT Iy
< i i
8 5§90 99
EINS .




S —
o

i

s

S

7
o

o

.

.

o

PLRATE =,



(A3IAYNS IN3IWIA3S

" SHITHOOLOH

40 NOILYODT

NOISYIAIQ HIAIY

8961)

%) \
% \
rVIct)C\FIA\/
o1 INIWITLTTS
-
3 GNYISI MYO
> @\
V\ . -,
i Y Y|
__ X ESS=t
> e 8 org
Be'S

4

A
g?

i
R

SIUNLONY LS

‘IL_ﬂ

"ON OLOHd
JOHA FLIYONQD smmmr—fpmme

ONISS0YD CHO3 LMT..!:.

$390148 iT

‘N353

98

%/

/

c1'g

\id

fas] 7
O\(§\
%

,, 7>
18 cr

o«
<
)



696l

696l

[4

4

S

9

100

120

g8

g9

ud

Ud

696!

6961

£

¢

9

9

100

120

g4

g¢

yd

Ud

PLaTeE. 3.2



Appendix A

STABLE CHANNEL CONCEPTS.
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A.l CONCEPT OF THE STABLE CHANNEL

The definition of a stable channel in alluvial
materials is associated with the concept of graded streams and
canals in regime. 1In 1948 J.H. Mackin(13) gave a definition
of the graded stream that was later revised and applied to the
regime canal by L.B. Leopold and T. Maddock Jr. In summary
it is:

"A river or a canal in regime is one in which, over a pericd
of years, the slope and channel characteristics: width, depth
and roughness are delicately adjusted to provide, with the
available discharge, just the velocity required for the trans-
portation of the load supplied to it" - ‘

The regime canal is a system in equilibrium and has a stable
channel; that is, over a period of years, its bed and banks

are not scoured by the moving water and cbjectionable deposits

of sediment do nct occur in it.

A2




A.2 STABLE CHANNEL DESIGN THEORIES

PERMISSIBLE VELOCITY THEORY

The permissible velocity design procedure consists
of designing the channel for the maximum velocity which the
alluvial material can withstand without movement of the gran-

ular particles. The limiting velocity will prevent severe

TABLE A-1

MAXTMUM PERMISSIBLE CANAL VELOCITIES

Water trans-

Clear water ' | porting col-
Material n loidal silts

.Vy 70, V: 7o, .

- fps | Ib/ft* | fps | lb/it?

Fine sand, colloidal. . ... ... .. ... ... 0.020 ! 1.50 { 0.027 | 2.50 | 0.075

Sandy loam, noncolloidal. .. ... ... .. ..., 0.020 1 1.75 1 0.037 | 2.50 | 0.075
Silt loam, noncolloidal. ................... 0.020 1 2.00 { 0.048 | 3.00 ] 0.11
Alluvial silts, noncolloidal........ .. ..., 0.020 1 2.00 | 0.048 | 3.50 | 0.15
Ordinary firmloam...................... 0.020 1 2.50 { 0.075 | 3.50 | 0.15
Voleanicash........ ... ... ............. 0.020 | 2.50 { 0.075 ] 3.50 | 0.15
Stiff clay, very eolloidal......... .. ... ... 0.025 1 3.7510.26 ;5.00| 0.46
Alluviad silts, colloidal. . ... .. ... . P 0.025 1 3.75 1 0.26 5.00 | 0.46
Shales and hardpans. .. .. e 0.025 | 6.00 | 0.67 6.00 | 0.67
Fincgravel............. ... . ...........10.020  2.50 | 0.075 | 5.00 | 0.32
Graded loam to cobbles when noncolloidal..| 0.030 | 3.75 | 0.38 5.00 1 0.66
Graded silts to cobbles when colloidal. . . ... 0.030 | 4.00°| 0.43 5.50 1 0.80
Coarse gravel, noncolloidal........... ... . 0.025 | 4.00 | 0.30 6.00 { 0.67
Cobbles and shingles. .. ... . ... ... ... 0.035 1 5.00 | 0.91 5.50 1 1.10

Source: Ven Te Chow(5)o

erosion of the channel; its values have been recorded in
straight channels constructed in different kinds of soil.
TABLE A-1 shows the permissible canal velocities recommended
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by S. Fortier and F.C. Scobey(7) and the corresponding unit-
tractive force values converted by the‘U,S° Bureau of Reclam-
ation. FIGURES A.l and A.2 show the curves based on the U.S.S.R.
data of permissible velocities for cohesive soils and the ap-
propriate corfection factor taking account of the effect of the

depth of flow.
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Source: V.T. Chow(s)
TRACTIVE FORCE THEORY

The tractive force désign theory is formulated on

the basis that stability of bank and bed material is a func-
tion of the ability of the banks and bed to resist erosion re-
sulting from the drag force exerted on them by the moving water.
In uniform flow, the tractive force is equal to the effective
component of the gravity force acting on the body of water pa-

rallel to the channel bottom. Its maximum value in wide channels



A5

is given by the Du Boys' tractive force equation:

T=YDS v (1)
where: y =specific weight of water
D = depth of flow in the channel

S = slope of the channel.

Curves plotted in FIGURE A.3 relating the permissible unit-
tractive force to the void ratio of cohesive materials are
those obtained from conversion of U.S.S.R. data on safe

limiting velocities. Many investigators have made studies
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involving field observations, flume tests and shear tests in

specially designed apparatus to measure the scour resistance
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of cohesive soils related to their phfsical proprieties. A-
mong others, E.T. Smerdon and R.P. Beasley(Zl) after a series
of flume tests correlated the critical tractive force causing
noticeable bed degradation to the soil proprieties such as:
plasticity index, dispersion ratio, mean particle size and
percent of clay. The relations of critical tractive force
versus plasticity index and percent clay are presented in

FIGURES A.4 and A.5.
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REGIME THEORY

The regime theory originated with the analysis of
stable irrigation canals in India and was introduced by R.G.
Kennedy in 1895 when he presented his empirical equation for
the "critical" mean velocity. In 1919, E.S. Lindley(12) ver-
bally expressed the regime theory:
"When an artificial canal is used to convey silty water, both
bed and banks scour or f£ill, changing depth, gradient and
width, until a stage of balance is attained at which the chan-
nel is said to be in regime'.
The development of the modern regime theory is, however, due
to G. Lacey(8) when in 1929 he published his regime equations
based on measurements of channel characteristics made on

reaches of Indian canals that had achieved a stable cross

section. These equations are:

V=1.15/f R (2)
P=2.67 Q% : (3)
, 5/3
S:._i_.__
1788 Ql/6 | (4)
where: V = mean velocity

R = hydraulic radius
P = wetted perimeter
Q = discharge

f = silt factor.

These equations were later modified and improved by several
individuals, namely C.C. Inglis and T. Blench. Blench (4)

separated the effect of the sides and bed of the channel by
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means of the side and bed factors. His regime equations are:

(5)

dp= 2 (6)

£,5/6£41/12

1
3,93 g Q /6
V4

(7)

where: W = average width

dp = Average depth
Ty, = bed factor depending of bed sediments
fg= side factor depending on bank material
v = kinematic viscosity

g = acceleration due to gravity.

More recently, D.B. Simons and M.L. Albertson(lg)
presented several relations based on field data obtained from
canal studies in India, Pakistan and the Western United-States.
Reproduction of several of these graphs are shown in FIGURES

A.6 through A.12.
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(Reproduction of these graphs have been made from Simons

and Albertson(lg).)



A.3 SCHUMM 'S CONCEPTS OF THE SHAPE OF ALLUVTIAT

CHANNELS IN RELATION TC SEDIMENT TYPE

In investigating rivers of the Great Plains in
United-States, S.A. Schumm found that the type of sediment
encountered on the bed and banks of alluvial channels exer-~
ted a control on the cross sectional form. In his study of
channel development in 1960-61(16'17'18), he selected a large
range of streams in different climatic regions and areas in
which difference in lithology within the drainage basin did
not affect the stream and collected data on sediment charac-
ter and channel shape at many cross secticﬁs thatjwere ul -
timately determined to be stable or actively.being aggraded
or eroded. He stressed the importance of the effect of sedi-
ment type on channel shape and demonstrated the relationship
that exists between the shape of stable cross sections ex-
pressed as a width-depth ratio (F) and the weighted mean per-
cent silt—clay composing the perimeter of the channel. The
weighted mean percent silt-clay is designated by (M) and cal-

culated as follows:

SaXWR+S1yx2
M - 2CXTBTOLX2Dg (8)
where: Sc = percentage of silt and clay in the channel
alluvium

Sp =percentage of silt and clay in bank alluvium

Al3




WIDTH-DEPTH RATIO (9

Al4

Dp = channel depth

WB==channel width

In his equation the channel depth is defined as the measured
depth to the lowest part of the channel from the edge of the
first terrace or bank above the channel floor or the upper

limit of deposition of erosion along the sides. The channel

100
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FIGURE A.13 -~ Relation of Width-depth ratio to Weighted Mean (18
Percent Silt-clay for Stable Cross sections, after S.A. Schumm
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width is the measured distance from one edge of a bank to the
corresponding elevation on the opposite side, at a disfance
above the channel floor determined by the channel depth. The
correlation between the values of width-depth ratio and the
weighted mean values for the percent silt-clay in the channel
and banks of stable alluvial stream channels is shown in FIG-
URE A.13. The regression line was determined graphically and
bears the following equation: F = 255 M~1:08, The correlation
shows that channels containing little silt-clay are relatively
wide and shallow; whereas, those composed predominantly of
silt-clay are relatively narrow and deep. Streams develop a
channel form that is consistent wiéh erodibility of the bed
and bank matérial and the velocity and shear distributions.
Soils containing a fair amount of silt and clay are cohesive
and tend to resist erosion: hencé, channels in this type of
alluvium are observed to be deep and narrow since they can
withstand high shear and the cohesiveness of the soil prevent

bank sliding. On the other hand, there is little or no cochesion

T e
FIGURE A.l4 -~ Typical Channel FIGURE A.1l5 - Typical
Cross section in Granular Soils Channel Cross Section

in Cohesive Soils.

in sandy and gravel materials; therefore, these soils are ea-

sily eroded and the loose grains are removed immediately.
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Channels in granular soils are relatively wide and shallow.
The angle of repose of grains is important in determining the
shape of these channels. FIGURES A.l4 and A.15 show the typic-

al shape of channels both in cohesive and non-cohesive soils.

Schumm also investigated the erosional and depos-
ition process of unstable streams in the study areas and com-
pared the channel and sediment characteristics with those of
stable sections. The mean values of F and M for the cross
" sections determined as aggrading plotted all above the regres-
sion line characteristic of stable sections and those values
for degrading cross sections plotted below the same line. It
has been suggested that the relation between the mean values
of width-depth ratio and percent silt~clay-may bé used as a
criterion of channel stability. Aggrading channels plot well
above the regression line; whereas, degrading channels plot

below the line.




A.4 LEOPOLD AND MADDOCK'S CONCEPTS OF THE

HYDRAULIC GEOMETRY OF STREAM CHANNELS

The velocity, width and depth of flowing water were
observed to change as the discharge increases at any cross sec-—-
tion of a river. The graph of these variables as function of
the discharge "at a section" constitutes a part of what L.B.
Leopold'and T. Maddock Jr,(g) called the "Hydraulic Geometry"
of stream channels. They plot as straight lines on logarith~
mic paper as shown in FIGURE A.l6 and generally increase with

increasing discharges as simple power functions expressed

1,000 . .

S N O N ) B B U R N R L i W0

: ‘/K/\OQe . ..—_
@ 500 -- (Ra
3 o "/' LB} I
.E\ | . '/Ob _—
£ '/’/w' <0
T 200 — vpdW
= N -y

v

100 v

%o © fa.?)e
v DO/

09

5 N °5
8 [ S .
: N ‘/ o
;' 2 ° n ="
= S
§ o C%n"/d: c Q
,u c-"b/‘ !
° S
ope M7 22
. 5‘)81—’
§ T et YT ]
- 2 et m *
&o I velody =77 ok Q —
S S x x ,—”,"’ ¥
=g 2 =
2 Lo b L L il L i

100 1,000 10,000 100,000
Dischorge, in cfs

FIGURE A.l6 - Relation of Width, Depth
and Velocity to Discharge, after Leopold
and Maddock. (9)
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mathematically by:

Wg=a @b
D = ¢ of
vV = K Qi
where: Wg = water surface width

D = mean depth equal to A/Wg

V = mean velocity equal to Q/A

a8, ¢, kK, b, £, m= numerical constants.
The relationships between these constants are:

ack = 1.0

b+fim=1.0

The constants a, ¢ and k represent the intercepts of the

lines describing the relationship of vafiations in discharge
to width, depth and velocity and are respectively the value

of Wy, D and V at discharge of unity. The constants b, £

and m are the slopes of the three lines on the graph and their
sum must equal unity. " They represent the relative rate of in-
crease of width, depth and velocity with increasing discharges:
they are therefore determined by the shape of the channel, the
slope of the water surface and the roughness of the wetted
perimeter. Their values essentially describe the geometry of
the channel and resistance to erosion associated with the
composition of the bed and banks material, and the transpor-
ted load. Many analysis of river cross sections have been

made for a large varieties of Rivers in the Great Plains and
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the Southwest of United States; they have provided a clear
indication of the average values of the exponents in these

equations. Each of these values at a section averages:

b = 0.26
f = 0.40
m = 0.34

These mean values are presented such that one may visualize
the relative order of magnitude of these exponents. It does
not imply that the values of b, f and m at a particular cross
section of a stream should be closely similar. The type of
soils encountered in the perimetef of the channel exerts a
marked inflﬁence on the cross sectional form. In fact, a
-wide "dish-shaped" channel as shown in FiGURE A.14 has a rapid
rate of increase in width with increasing discharges and
therefore, a high value of the exponent b. On the other hand,
a "box-like" channel with straight sides such as encountered
in cohesive soils (FIGURE A.15), has a low value for b and a
relatively high value for f. The values for b=0.04, £ =0.40
and m=0.52 at a station on Brandywine Creek(22) with cohesive
bank material are an example of this influence., Analysis of
variations in width, mean depth and mean velocity with mean
annual diéchargé as discharges increase in the downstream di-
rection have been made for various river systems through
United States and for irrigation canals in India in order to

determine how these variables change along the length of stream
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channels. These relationships were derived from measuring

stations within the river basin and are shown in FIGURE A.l7.
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From these curves it may be seen that there is considerable
similérity in the slope of the lines among the various river
channels and unlined irrigation canals. The average values
of the exponents of the power functions describing these

relations for river basins studied are:

b=0.50
£f=0.40
m=0.10

It may be concluded from the analysis made by
Leopold and Maddock of the hydraulic geometry of stream chan-
nels at a section and in a downstream direction that for dis-
charges of equal frequency, the mean width increases more
rapidly than the mean depth (b > f) in a downstream direction
and therefore, the width to depth ratio incréases° Con-
comitant to the increased rate of change of width downstream,
the rate at which the mean velocity increases is reduced

(m=0.10<m=0.34). This important conclusion drawn from

the analysis of hydraulic characteristics of various river
systems will be a useful tool in determining the character-

istics of the redesigned channel in CHAPTER IV.



Appendix B

SOIL AND SEDIMENT DATA
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