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Abstract
Snoring is a highly prevalent disorder affecting 20-40% of adult population. Snor-

ing is also a major indicative of obstructive sleep apnea (OSA). Despite the mag-

nitude of effort, the acoustical properties of snoring in relation to physiological

states are not yet known.

This thesis explores statistical properties of snoring sounds and their association

with OSA. First, an unsupervised technique was developed to automatically ex-

tract the snoring sound segments from the lengthy recordings of respiratory sounds.

This technique was tested over 5665 snoring sound segments of 30 participants and

the detection accuracy of 98.6% was obtained.

Second, the relationship between anthropometric parameters of snorers with dif-

ferent degrees of obstruction and their snoring sounds’ statistical characteristics

was investigated. Snoring sounds are non-Gaussian in nature; thus second order

statistical methods such as power spectral analysis would be inadequate to extract

information from snoring sounds. Therefore, higher order statistical features, in

addition to the second order ones, were extracted.

Third, the variability of snoring sound segments within and between 57 snorers

with and without OSA was investigated. It was found that the sound charac-

teristics of non-apneic (when there is no apneic event), hypopneic (when there is



ii

hypopnea), and post-apneic (after apnea) snoring events were significantly differ-

ent. Then, this variability of snoring sounds was used as a signature to discriminate

the non-OSA snorers from OSA snorers. The accuracy was found to be 96.4%.

Finally, it was observed that some snorers formed distinct clusters of snoring

sounds in a multidimensional feature space. Hence, using Polysomnography (PSG)

information, the dependency of snoring sounds on body position, sleep stage, and

blood oxygen level was investigated. It was found that all the three variables

affected snoring sounds. However, body position was found to have the highest

effect on the characteristics of snoring sounds.

In conclusion, snoring sounds analysis offers valuable information on the upper air-

way physiological state and pathology. Thus, snoring sound analysis may further

find its use in determining the exact state and location of obstruction.
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Chapter 1

Introduction

Snoring is a common disorder. There have been several studies on the prevalence

of snoring among men and women [1–3]. The commonly accepted prevalence rate

of snoring is approximately 40% in men and 20% in women, which also increases

by age [2–5]. Snoring can occur during natural or drug-induced sleep. It is

observed more often during inspiratory and less often during expiratory phase of

the respiratory cycle [6].

Snoring sound is caused either by oscillation of the structures such as soft palate,

epiglottis, pharyngeal walls, the collapsible parts of the upper airway, or by turbu-

lence of air near a partially obstructed upper airway [7–9]. The increased upper

airway collapsibility is considered to aggravate snoring and other sleep-related dis-

orders [10, 11]. Nasal obstruction [12], upper airway morphology, obesity, and

excess alcohol and cigarette consumption are thought to affect snoring [13, 14].

Men are considered more susceptible to snoring than women [15]. Theoretically,

1
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this difference can be due to bony configuration, fat deposition, or soft tissue

structure [15].

Parameters such as respiratory airflow, upper airway cross-sectional area and/or

diameter, and upper airway collapsibility and resistance contribute to the gener-

ation of snoring sounds; though the most important factor is airflow [16]. The

upper airway morphology has an impact on the airflow by creating areas of tran-

sition between turbulent and laminar airflow. These areas could limit the airflow

resulting in pressure changes and increased turbulence in the airway [17].

The snoring sounds’ characteristics may vary from night to night. There are several

factors accounting for variation in snore appearance from night to night or even

within the same night for the same person. In addition to anthropometric factors

(i.e. weight, height, smoking history, etc), as mentioned before, the breathing

pathway [18], sleep stage and body position [19], natural or induced sleep [20],

and the sites of narrowing in the upper airway [21] have been shown to affect the

snoring sounds’ characteristics.

From clinical view point, snoring is considered as a major indicative of obstructive

sleep apnea (OSA) [22]. A complete cessation of breathing for at least 10s is

defined as an apneic event, while a significant reduction (>50%) of airflow for

more than 10s is considered as hypopnea [23]. Resumption of breathing, after

apnea, is usually accompanied by a sequence of snoring segments [24]. OSA is a

major contributor to cardiovascular diseases [25, 26]; it causes daytime sleepiness

[27–29], leads to impaired job performance [30] , and increases the risk of accidents
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[31–33]. There are several differences between upper airway structures of people

with and without OSA. Imaging studies have shown that in general non-OSA

snorers have significant narrowing at the tongue base and the hyoid bone levels,

while people with OSA have narrower air space at the velopharyngeal level [34];

also, they have been shown to have a reduced muscle tone during sleep [16] and

more collapsible airway during wakefulness [35] and sleep [36]. In addition to

sleep apnea and other sleep disorders, snoring is considered as a risk factor for

hypertension and heart disease [37–39].

The treatments for snoring and/or sleep apnea range from simple medical de-

vices to surgical options. However, the success rate of these treatments has been

reported to be low [40–42]. A treatment is usually assessed using subjective

and objective assessment methods. Subjective assessments include a question-

naire filled by the snorer and his/her bed partner about the snoring frequency and

loudness usually before and after surgical treatment such as uvulopalatopharyn-

goplasty (UPPP) [43–45]. Objective assessments include recoding snoring sounds

of the person before and after the treatment (if there is any), and then comparing

the characteristics of the sounds.

In an early study [46], ten features of the recorded snoring sound were examined

to evaluate the level of snoring of 32 subjects before and after surgical treatment in

comparison with the subjective assessments of the patients and their bed partners.

The correlation between subjective and objective assessments was reported to

be weak. Though, the strongest correlation was found only in supine posture,
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where the bed partner was most disturbed by the loudest snoring sound [46].

More recently in another study, the subjective (Spouse Dissatisfaction Score: a

numerical grade between 0 and 3) and objective (snoring sound recordings at

home) evaluations of the tongue base snoring after the use of an oral appliance

were compared; no correlation was found between the two different assessments

[47]. This may be due to highly subjective nature of snoring perception and

annoyance level. Therefore, objective assessment of snoring sounds would be an

alternative method to accurately assess the snoring before and after a treatment

[48, 49].

Acoustical analysis of snoring sounds can be deployed for objective assessment of

snoring cause and treatment strategy. It also can help diagnose snorers with OSA,

help with identifying the site of obstruction, and model the generation mechanism

of snoring sounds. In this thesis, different aspects of the acoustical analysis of

snoring sounds are discussed. The organization of the thesis is detailed as the

followings.

1.1 Sleep Monitoring Techniques and Snoring Sounds’

Characteristics (Chapter 2)

Chapter 2 introduces sleep monitoring techniques including Polysomnography

(PSG), the current gold standard to diagnose sleep-disordered breathing (SDB).

This chapter also reviews some of the proposed algorithms that record snoring
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sounds for OSA screening purposes. To date, there is no standard on the data

recording setup in relation to the type of microphone, place of microphone, sam-

pling frequency, bit resolution, amplification, and preprocessing. In Chapter 2,

data acquisition system and its considerations are discussed. The time and fre-

quency domain properties of snoring sounds such as existing patterns in snoring

wave and their power spectrum are also discussed in Chapter 2.

The work presented in Chapter 2 has been published in:

• A.Azarbarzin and Z.Moussavi, "A Comparison between Recording Sites of

Snoring Sounds in Relation to Upper Airway Obstruction," IEEE EMBS,

San Diego, 2012.

• A.Azarbarzin and Z.Moussavi, "A comparison between recording sites of

snoring sounds," Proc. IJAS, Toronto, May 2012.

1.2 Snoring Sound Extraction from Respiratory Sound

Recording (Chapter 3)

Once the respiratory sounds are recorded and preprocessed, the snoring sound seg-

ments need to be identified (manually or automatically) for further analysis. The

accuracy of this stage is important because the error at this stage can substantially

change the results of consequent sound analysis. For instance, one is interested

to investigate the location of obstruction using only acoustical analysis of snoring
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episodes. If the snoring segments are not correctly identified, the results of local-

izing the apneic events will be unreliable. Therefore the snoring segments must be

accurately extracted and separated from other noises such as speech, swallowing,

breathing or environmental noises, i.e. opening/closing door, blanket movement,

and fan noise. On the other hand, manual detection of snoring segments is a very

time-consuming task as the length of an overnight respiratory sound recording is

approximately 8 hours. To overcome this issue, Chapter 3 introduces an auto-

matic and unsupervised algorithm to extract the snoring sound segments from the

respiratory sound recordings.

The work presented in Chapter 3 has been published in:

• A.Azarbarzin and Z.Moussavi, "Automatic and Unsupervised Snore Sound

Extraction from Respiratory Sound Signals," IEEE Trans Biomed Eng. Vol

58, pp. 1156-1162, 2011, DOI:10.1109/TBME.2010.2061846.

• A.Azarbarzin, Z.Moussavi, "Unsupervised Classification of Respiratory Sound

Signal into Snore/No-Snore classes," IEEE EMBS, Buenos Aires, pp. 3666-

69, 2010.
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1.3 Higher Order Statistics of Snoring Sound (Chap-

ter 4)

Second order statistical techniques such as power spectrum, and correlation-based

methods are based on the assumption that the signal generating process is Gaus-

sian and Linear. However, if this assumption does not hold, second order statistical

methods will not be able to fully extract the vital information of a signal. In most

of the previous studies [50–58], it was assumed that the snoring sounds were

generated by a Gaussian and linear process; hence, the conventional second order

measures were used for acoustical analysis of snoring sound. In this thesis, we

studied whether the snoring sound signals are generated by a Gaussian and/or

Linear process. In Chapter 4, the results of a detailed analysis show that most of

the snoring sound signals are generated by non-Gaussian and non-linear processes.

Therefore, extraction of higher order statistical (HOS) features helps obtain com-

plementary information of the signals. Another issue discussed in Chapter 4 is

the effect of anthropometric parameters (such as age, height, Body Mass Index

(BMI), gender, and Apnea Hypopnea Index (AHI)) on the snoring sounds’ fea-

tures. The result of this part of thesis shows that anthropometric parameters

affect the characteristics of the sounds to some extent.

The work presented in Chapter 4 has been published in:

• A.Azarbarzin and Z.Moussavi, "Snoring Sounds’ Statistical Characteristics

Depend on Anthropometric Parameters," Journal of Biomedical Science and
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Engineering, Vol 5, pp. 245-254, 2012, DOI: 10.4236/jbise.2012.55031.

• A.Azarbarzin and Z.Moussavi, "Relationship between the Higher Order Sta-

tistical Features of Snoring Sounds and Anthropometric Factors of Snorers,"

SLEEP, Volume 34, Abstract Supplement, pp. A326, 2011.

• A.Azarbarzin and Z.Moussavi, "Nonlinear properties of snoring sounds,"

Proc. ICASSP, Prague, pp. 4316-19, 2011.

• A.Azarbarzin and Z.Moussavi, "Do Anthropometric Parameters Change the

Characteristics of Snoring Sound?," IEEE EMBS, Boston, pp. 1749-52, 2011.

1.4 Variability of Snoring Sounds as a Signature

of OSA (Chapter 5)

One of the key factors affecting the characteristics of snoring sounds is the sever-

ity of flow reduction (or obstruction) in the upper airway. Chapter 5 reports

on the classification results of the snoring sound segments into different classes

based on the severity of flow reduction in the upper airway. The sound recording

was performed simultaneously with Polysomnography (PSG). Given the PSG in-

formation, the snoring sound segments were labeled as non-apneic (occurring in

the absence of any apneic event), hypopneic (occurring when there was 50%-90%

flow reduction), and post-apneic (occurring after completet obstruction). Next, a

non-parametric statistical analysis was run within each subject among the three
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aformentioned classes. The result showed that there were significant differences

among three classes in terms of sounds’ characteristics. Moreover, it was observed

that in non-apneic class, there was a subtle variation in the characteristics of

snoring sounds from breath to breath, while it was opposite in other two classes.

This observation provided the motivation to use the snoring sounds’ variation and

develop a technique for OSA screening.

The work presented in Chapter 5 has been published in:

• A.Azarbarzin and Z.Moussavi, "Snoring Sounds Variability as a Signature

of Obstructive Sleep Apnea," Journal of Medical Engineering & Physics, In

press, 2012, DOI:10.1016/j.medengphy.2012.06.013.

• Z.Moussavi and A.Azarbarzin, "Relationship Between Obstructive Sleep Ap-

nea And Snoring Type," American Thoracic Society International Confer-

ence, San Francisco, pp. A6433, 2012.

1.5 Effect of Body Position, Sleep Stage, and Blood

Oxygen Level on Snoring Sounds (Chapter 6)

Snoring sounds are observed to form distinct clusters within a snorer in a multidi-

mensional feature space. Chapter 6 investigates why this occurs. After extracting

several features (12 in total), categorical variables including body position, sleep

stage, and blood oxygen level were obtained from PSG score sheet. Then, the
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snoring sounds were divided into different classes based on each categorical vari-

able. For example, they were categorized based on body position to 3 classes

including prone, supine, and side. The probability density function of each class

of snoring sounds was estimated and finally, the separation between classes was

measured. Finally, the most prominent categorical variable as well as the most

affective class within each categorical variable were determined using Analysis of

Variance (ANOVA). The result showed that change from any posture to prone

affects the snoring sounds more than any other change. Moreover, it was found

that change from any sleep stage to Rapid Eye Movement (REM) had the highest

effect on the snoring sounds (within the same subject). Finally, it was observed

that change in body position resulted in significantly larger effect on the snoring

sounds than a change in sleep stage or blood oxygen level.

The work presented in Chapter 6 has been published in:

• A.Azarbarzin and Z.Moussavi, "Snoring Sounds Intra-Subject Variability,"

Submitted to Medical and Biological Engineering and Computing, 2012.

• A.Azarbarzin and Z.Moussavi, "A Comparison between Recording Sites of

Snoring Sounds in Relation to Upper Airway Obstruction," IEEE EMBS,

San Diego, 2012.



Chapter 2

Sleep Monitoring Techniques and

Snoring Sounds’ Characteristics

This chapter introduces the Polysomnography (PSG) -the current gold standard

for sleep-disordered breathing (SDB)- and some proposed algorithms that deploy

snoring sounds to diagnose OSA. It also reviews recording setup and preprocess-

ing stage of this project. Finally, it discusses the basic time-frequency domain

characteristics of snoring sounds.

11
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2.1 Polysomnography (PSG) and Sleep-Disordered

Breathing (SDB) Home Diagnosis

The current gold standard for SDB (sleep apnea, in particular) diagnosis is Polysomnog-

raphy (PSG) [59–61]. PSG study monitors brain waves, heart rhythm, eye move-

ments, muscle activity, respiratory airflow, and blood oxygen level. It requires

the patient to spend the entire night in the sleep lab. Moreover, there are other

difficulties associated with PSG such as long waiting list, connecting many wires

and electrodes to the patient, and additional cost. To overcome the drawbacks

of PSG, several alternative diagnosis methods have been proposed using airflow,

oxygen saturation, and/or snoring [59].

Anatomic abnormalities of the upper airway play an important role in the patho-

genesis of OSA [62]. These abnormalities are expected to change the acoustical

properties of the respiratory sounds, e.g. snoring sounds. Several researchers in-

vestigated the possibility of using snoring sounds as a biomarker of OSA. In an

early study [63], the snoring sounds of 27 PSG study patients (18 non-OSA and 9

OSA) were analyzed. They compared two measures of sound level and third-octave

frequency band between the two groups of non-OSA and OSA participants. The

results showed larger high frequency components for OSA group (both groups had

large low frequency peaks in linear sound level around 80 Hz). Hawke Index (HI),

the ratio between the overall A-weighted and linear sound levels, was positively

correlated with AHI [63].
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Pitch analysis was used in [64] and [65] to diagnose OSA. In [64], 10 segments of

snoring were extracted from each participant. They were able to achieve a sensi-

tivity of 92.3% and specificity of 90.7% for detecting snoring segments associated

with OSA [64]. In [65], the snoring sounds of 8 OSA (236 segments) and 8 non-

OSA (447 segments) participants were extracted. They quantified the pitch of

snoring with mean value, standard deviation, and density for both groups. They

used all three measures to separate non-OSA snoring sounds from OSA snoring

sounds. They found a sensitivity of 64.4% and specificity of 58.5% for detecting

OSA snoring segments [65].

The diagnostic ability of tracheal sounds was investigated in a large population

of 383 patients who were referred for PSG study [66]. They used an automatic

computer program to calculate tracheal sound respiratory disturbance index (TS-

RDI), the number of transient falls in the time series of moving average of the

logarithmic power of tracheal sound. The correlation between TS-RDI and AHI

was reported to be 0.93. They used TS-RDI to diagnose OSA patients whose

AHI>5 or AHI>15. They achieved a sensitivity and specificity of 93% and 67%

for AHI cutoff value of 5 and 79% and 95% for the AHI cutoff value of 15 [66].

Intra-Snore-Pitch-Jump (ISPJ) feature of snoring sounds was employed in another

study [67] to diagnose OSA. They used the snoring sounds of 45 participants who

were referred for PSG study. They divided their data set to training (16 subjects)

and testing (29 subjects) to evaluate the performance of ISPJ-based OSA detection

algorithm. Due to a lack of standard for separating OSA and non-OSA participants
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based on their PSG AHI, they evaluated the performance of their algorithm using

several thresholds i.e. 5, 10, 15, and 30. A sensitivity of 86-100% and specificity of

50-80% were achieved for ISPJ-based OSA detection algorithm [67]. This study

resulted in a highly variable sensitivity and specificity among different scenarios

of AHI threshold. Moreover the number of subjects in training and testing data

set was small.

LPC analysis and formant frequencies of snoring sounds were used in [68] to

diagnose OSA in a population of 30 OSA and 10 non-OSA participants. They

extracted first three formant frequencies from snoring sounds and attempted to

separate OSA from non-OSA group using these features. They achieved a sensi-

tivity of 88% and specificity of 82% using first formant frequency with a threshold

of 470 Hz [68]. One of the limitations of this study is the relatively small data

set with an unmatched anthropometric parameters.

More recently, in another study, tracheal sounds and pulse oximetery were used

to develop a technique for monitoring and detection of sleep apnea [69]. They

recorded the respiratory sound and pulse oximetery from 66 participants. After

detection of snoring and breathing episodes, they utilized five features extracted

from breathing, snoring, and pulse oximetery signals. The features included en-

ergy of breathing segments, duration of breathing segments, duration of snoring

segments, the amount of drop in pulse oximetery signal, and amplitude of pulse

oximetery signal. The diagnostic sensitivity and specificity of the method were

evaluated for different AHI cutoff values, i.e. 5, 10, 15, and 20. The sensitivity
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and specificity mean values were in the range of [74.3, 91.6] and [82.4-97.8] re-

spectively [69]. In contrast to other studies, in this study two channels of data

(tracheal sound and oximetery signal) were used for OSA diagnosis.

As seen, there is a large variation in accuracy, recording setup, number of par-

ticipants, AHI cutoff values, etc. This is mainly due to due a lack of standard

framework for different stages of algorithm. The recording setup and snoring

sound characteristics are discussed in the following sections.

2.2 Recording Setup

To extract the clinical information from the snoring sounds, it is very crucial

to have a reliable sound recording system. The type of microphone, place of

microphone, sampling frequency, bit resolution, amplification, and preprocessing

should be considered properly. Figure 2.1 shows a block diagram of a snoring

sound system from recording to some applications of the signals.

In this study, two miniature omni-directional lavalier microphones (Sony: ECM-

77B) were used: one was placed over the suprasternal notch of the patient’s trachea

(tracheal microphone), and the other was hung in the air about 20-30 cm away

from the patient’s head (ambient microphone). The microphones had a frequency

response of 40 Hz - 20 KHz. The tracheal microphone was embedded in a chamber

(diameter of 6mm) and attached to the skin using double-sided adhesive tape. A

soft neck-band was also used to support the chamber throughout the night.
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Figure 2.1: Snoring sound: Recording to clinical applications.

The respiratory sound signals were amplified with a gain of 200 and band-pass

filtered with the cutoff frequencies of [0.5-5000 Hz] using Biopac (DA100C) am-

plifiers. The amplified signals were digitized at a sampling rate of 10240 Hz using

NI9217 data acquisition module and a custom written LabView program. The

bit resolution was 24. All recordings were performed simultaneously with the

Polysomnography (PSG) at the Health Sciences Center Sleep Disorders Clinic

(Winnipeg, Canada). Each recording usually took 8 hours. The study was ap-

proved by the Biomedical Research Ethics Board of the University of Manitoba

and all participants gave written contest prior to data collection. Overall 68 people

participated in this study.
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2.3 Acoustical Characteristics of Snoring Sounds

2.3.1 Definition of Snoring Sound Segment

As known, the respiratory sounds of a snorer consist of breath, loud vibratory

sounds, and/or small segments of silence [70]. The part of inspiratory and/or

expiratory sound containing loud vibratory sounds (perceived as snore by human)

is called snoring sound segment. The length of each segment may vary within and

between subject.

2.3.2 Time and Frequency domain characteristics of Snoring

Sounds

Figures 2.2 and 2.3 show two different snoring sounds with their power spectrum

density (PSD) estimated using Welch [71] method. To estimate the PSD, windows

of 100 ms and 50% overlap were used. As can be seen the two snoring sounds are

quite different in both time and frequency domains. The snoring sound shown in

Figure 2.2 has a repetitive structure in time and a flat spectrum (comb-like) below

500 Hz, while the snoring sound shown in Figure 2.3 has a noisy structure in time

with 3-4 distinct peaks in its power spectrum. The dominant peaks are below 600

Hz.

There are several studies investigating the time and frequency characteristics of

snoring sounds. In an early study [72], snoring sounds recorded from 10 non-apneic

heavy snorers and 9 OSA patients were analyzed. They found that most of the
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Figure 2.2: Snoring sound recorded by tracheal microphone from a heavy
snorer (AHI=4.9)

power of snoring sounds was concentrated below 2000 Hz with a peak power below

500 Hz. The spectrum of nasal snoring sounds (when breathing through nose-only)

was characterized by a series of discrete and sharp peaks with a fundamental note

(similar to spectrum of a voiced sound). On the other hand the spectrum of the

oronasal snoring sounds (when breathing through nose and mouth) had a mixture

of sharp peaks and broad-band white noise [72].

The acoustical properties of snoring sounds in time-frequency domain were also

investigated in another study [73]. They collected three sets of snoring sounds:

100 snoring sounds from 6 dogs (partial obstruction was created by implanting a

balloon in the upper airway), 48 snoring sounds from 4 healthy participants while
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Figure 2.3: Snoring sound recorded by tracheal microphone from a heavy
snorer (AHI=5.9)

simulating snoring sounds (24 snoring sounds by ambient microphone and 24 snor-

ing sounds by tracheal microphones), and 400 snoring sounds from 9 non-apneic

heavy snorers (all snoring sounds were recorded by an ambient microphone). The

findings showed two dominant patterns of snoring sounds: simple and complex

waveforms. The simple-waveform snoring sounds were characterized by a quasi-

sinusoidal shape with a range of variants and only 1-3 peaks in their power spec-

trum (the first peak was the most prominent). On the other hand, the complex

waveform snoring sounds were identified by a train of repetitive and equally-spaced

sound structures with a comb-like power spectrum [73].

In another study, the snoring sounds of 17 male snorers were recorded and ana-

lyzed using power spectrum. Two different patterns in the sounds’ spectra were
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observed: first pattern the presence of a fundamental frequency with several har-

monics and the second pattern consisted of a low frequency peak with the sound

energy scattered on a narrower band of frequencies [74].

All the studies agreed on the presence of two type of snoring: one was characterized

by a fundamental frequency and its harmonics (mainly happening in non-OSA

snorers) and the other one was characterized by more complex frequency spectrum

whose fundamental frequency and harmonics are difficult to be observed by a

simple frequency analysis such as Fourier Transform [71].



Chapter 3

Snoring Sound Extraction From

Respiratory Sound Recordings

As mentioned in Chapter 2, the average length of respiratory recording is approx-

imately 8 hours with sampling frequency of 10 KHz. Hence, manual extraction of

snoring sound segments is very time-consuming, and there is a need for an auto-

matic snoring sound detection algorithm. In this chapter, an unsupervised snoring

sound detection algorithm is introduced.

3.1 Existing Algorithms

There has been a limited number of studies on automatic detection and classifica-

tion of snoring sounds. Energy and zero-crossing rate were used in [75] to identify

the snoring segments form the recorded sounds by a microphone hung in the air.

Energy and zero-crossing rate features are commonly used for silence and sound

21
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segments identification with a reasonable accuracy but they are not discrimina-

tive enough for classification of snoring and breathing sounds segments [76, 77].

An automatic segmentation method was proposed in [78], in which the recorded

sound by an ambient microphone was segmented into snoring segments, breath-

ing, duvet noise, and silence periods using Hidden Markov Models (HMMs) and

spectral-based features. The accuracy of detecting snoring segments was reported

to be 82%-89% at a high computational cost [78].

In another study, the 500Hz sub-band energy distribution of the recorded sound

signal was used for classification of the sound segments that were recorded by an

ambient microphone [76]. The proposed algorithm was tested on 30 individuals

(18 simple snorers and 12 patients with OSA). The accuracy of the method was

reported to be 97.3% for simple snorers (when using only simple snorer data for

training the classifier), 90.2% for simple snorers (when using both simple snorer

and OSA data for training), and 86.8% for OSA patients. However, the accuracy

of the method dropped significantly (from 97.3% to 86.8%) when the data set

used for training was changed from simple snorer data to a combination of simple

snorers and OSA patients data [76].

More recently, a classification method was proposed in [77] to classify snoring and

breathing sounds. The number of zero crossings, energy of the signal, normalized

autocorrelation coefficient at 1 ms delay and the first predictor coefficient of LPC

analysis were deployed to label the snoring-related sounds into three classes: snor-

ing (voiced non-silence), breathing (unvoiced non-silence), and silence segments.
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The accuracy was reported to be 90.7% (the microphone was hung in the air). The

accuracy increased when the conventional noise reduction methods were applied

before the classification. In another study [79], zero-crossing rate, logarithm of

the signal’s energy, and first formant frequency were used to classify the breathing

and snoring sound segments(recorded by tracheal and ambient microphones). The

accuracy of that method was reported to be 95.7% and 93.2% for tracheal and

ambient recordings, respectively.

3.2 Snoring Sound Detection Algorithm

We propose an unsupervised snoring classification algorithm, in which the learning

procedure is based on Fuzzy C-means clustering. The algorithm is divided into two

major parts: I) sound segmentation using Vertical-Box algorithm, and II) feature

extraction using Principal Component Analysis (PCA) and classification of snoring

and no snoring segments using Fuzzy C-means (FCM) clustering. The novelty of

this method is its online automatic snoring sound extraction, high accuracy and

low computational cost.

3.2.1 Data Recording

Data of 30 snorers (7 females) with an average age of 50.6 years (STD = 9.96) were

used in this study. The snorers’ anthropometric information for this part of study

is shown in Table 3.1; seven of the patients were simple snorers (AHI = 2.3± 1.5)
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Table 3.1: Anthropometric information of participating individuals (BMI :
Body Mass Index).

Group Number of Patients Age BMI AHI

OSA Patients 23(7 females) 49.9± 10.2 34.1± 7.2 26.1± 22.9

Simple Snorers 7 (no females) 53.1± 9.3 30.0± 3.8 2.3± 1.5

and the rest were diagnosed with OSA (AHI = 26.1 ± 22.9) based on the PSG

assessment.

As mentioned in Chapter 2, simultaneously with the PSG data recording, partici-

pants’ respiratory sounds (including snoring and breathing sounds) were recorded

by tracheal and ambient microphones. However in this chapter, only the results of

tracheal recording are discussed, and the comparison between ambient and tracheal

recording is discussed in Appendix A. A short period of the entire night recording

(around 15 minutes, mostly when the patient was snoring) was randomly selected

for the validation of the method; there were 5665 snoring sound segments in total.

The sound segments were manually annotated as snoring or no-snoring segment

by visual and auditory inspection of the spectrogram of each segment.

3.2.2 Signal Analysis

Signal analysis was performed in three steps: segmentation using a modified ver-

sion of the vertical box (V-Box) control chart [80], feature extraction using PCA

[81], and clustering using FCM [82, 83].
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3.2.3 Modified Vertical box (V-Box) control chart

The sound signals were first band-pass filtered in the frequency range of 150-5000

Hz as the fundamental frequencies of the snoring sound are mostly below 5000

Hz [57, 84]. The 150 Hz low cutoff frequency was used to remove heart sound

effect. The V-Box chart is a detection algorithm based on the concept of a moving

vertically trimmed box along the time axis of the data; in each box (time window)

it counts the number of past observations falling into a vertical box with the width

L and height 2H. In the original V-box algorithm [80], as long as the total count is

above a certain threshold, no indicator is given. Once it goes below the threshold,

a signal will be given indicating a change in the mean of a sequential process.

The V-Box control chart was adopted for the sound signal segmentation purpose.

The original algorithm was used for detecting change in the mean of a sequential

process in a nonparametric framework [80]. The modified algorithm for breathing

and snoring segmentation is summarized as the following steps:

1. At each time point n ≥ L, a vertical box of the form B(L,H, n, Yn) =

[n−L, n]× [−H,H] is defined where Yn is the last observation, n is the time

point, L > 1 denotes the width of the V-Box(number of past observations

to be taken into account), and 2H is the height of V-Box.

2. At any current time point, n ≥ L+1 , the number of past observation falling

into B(L,H, n, Yn), bLH(n), is counted.
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3. If bLH(n) ≤ L× θ, mark a change in the process. The parameter 0 < θ < 1

should be chosen such that the fraction of observations located in the box

B(L,H, n, Yn) equals L× θ.

The above algorithm used in this study is different from the original version from

two aspects: a) the current observation, Yn, determines the vertical position of

V-Box (i.e. B(L,H, n, Yn) = [n − L, n][Yn − H, Yn + H]), and b) in the original

V-Box algorithm box moves forward when a new observation is obtained as it was

designed for sequential real-time process. However, in this study, the data was

not sequential; hence, the overlap between the successive boxes was set to be 80%

(moving forward by 102 samples). Different events in the recorded sounds, such

as breathing, snoring or biological noise (i.e. cough, talking, swallowing), were

identified by the above algorithm. The sound segments separated by a time-lag

less than 200 ms were merged. Figure 3.1 shows a typical 20s of a recording by

the tracheal microphone and the resulted segments by the modified V-Box control

chart algorithm. In order to have an accurate segmentation, the V-Box parameters

needed to be tuned properly based on the sound signal amplitude and noise level.

The parameters L,θ were not sensitive to the level of sound signal segments; hence,

they were selected experimentally as: L = 50ms,θ = 0.95 for all data. However,

H was very sensitive to the level of breath and snoring sounds. Therefore, for

every subject, H was adaptively tuned based on the sound signal’s energy in each

epoch.
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Figure 3.1: A typical 20s of a tracheal sound recording including breath and
snoring segments and the segmentation result using V-Box algorithm. At this
stage, all potential snoring sound segments are identified. Ei denotes segment i,
where i is 1, 2, 3, · · · For example, in this 20s interval, there are 6 segments.

Because the snoring and breathing sounds’ levels are not constant over the entire

night, in order to identify all potential snoring sound segments, H needs to be

adjusted adaptively. Small H results in large detection error while large H affects

the overall accuracy as some of the shallow snoring segment may not be detected.

The initial value of H is set to zero for all data in order to identify all sound

activities including snoring and breathing at the beginning. After clustering, there

exist three clusters representing high, medium, and low amplitude sound segments.



Chapter 3. Snoring Sound Extraction From Respiratory Sound Recordings 28

The new value of H, Hnew, can be updated as:

Hnew =
M1 +M2

a
(3.1)

where M1 is the mean of absolute value of the medium amplitude sound segments

and M2 is the mean of absolute value of the high amplitude sound segments. a

was selected experimentally as a = 8. It should also be mentioned that snoring

clusters in the 2-D feature space are linearly concentrated around the horizontal

axis.

3.2.4 Feature extraction

In this part of study, the same feature vectors as in [76] were used. However

the novelty of our method compared to the method proposed in [76] is in its

unsupervised classification and high accuracy without the need for training set

and learning process. The 0-5000Hz frequency range was divided into 500Hz sub-

bands (The first sub-band is actually between 150-500 Hz as the signals were

previously band-pass filtered in the frequency range of 150-5000 Hz), and the

average normalized energy in each sub-band for each detected sound segment by

V-Box algorithm was calculated for further processing and feature extraction. To

explain the feature extraction procedure, a typical signal is shown in Figure 3.1, in

which 6 segments (E1 − E6) including both breathing and snoring segments have

been identified. Let’s assume we wanted to find the corresponding feature vector

for the kth segment (i.e. εk). First, the short-time Fourier transform (STFT)
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of each segment was calculated using 50ms windows with 50% overlap between

successive windows. Next step was to calculate the elements of feature vector εk,

in which element ith of the feature vector was computed as

εki =

∑Nk
j=1

∑500i
f=500(i−1) |Y k(j, f)|2∑Nk

j=1

∑5000
f=0 |Y k(j, f)|2

, i = 1, · · · , 10 (3.2)

where Nk is the total number of overlapping windows in the kth segment and

Y k(j, f) is the STFT of the jth frame of the kth segment. Then, PCA [81] was

deployed to reduce the dimension of the feature space. The two largest eigenvalues

were found to be much higher than the rest, resulting in a two-dimensional feature

vector, ε̂k, for snoring and no-snoring classification. Hence, new feature vectors

were computed in the following two steps:

1. The covariance matrix, COV, of feature vectors was calculated on the 60s

intervals of the original recorded signal.

COV =
1

N − 1

N∑
k=1

(εk − ε̄)(εk − ε̄)T (3.3)

where, ε̄ is the mean of snoring feature vector and N refers to the number

of sound segments in each interval.

2. The two largest eigenvalues and the corresponding eigenvectors (the columns

of matrix W ) of the covariance matrix (COV ) were calculated to form the

new feature vector as

ε̂k = W T εk (3.4)
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Figure 3.2 shows a projection of the 10-dimensional feature vector of a 200s seg-

mented sound signal into 2-dimensional feature vectors.

Figure 3.2: Clustered feature vector using FCM method. This 2-D feature
vector was obtained using a projection from 10-D feature space onto a 2-D fea-
ture space by PCA. The original 10-D feature vector was obtained by calculating
500Hz energy band distribution from a segmented sound signal. The big rect-
angle is a zoomed in version of the snoring cluster located around horizontal

axes.

3.2.5 Unsupervised Classification using Fuzzy C-means Clus-

tering(FCM)

Once the feature vectors were formed, the FCM algorithm [85] was deployed

to label each segment as snoring, breathing, or noise, in which the breath and
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noise clusters were considered as no-snoring class. FCM algorithm was developed

by Dunn [85], improved by Bezdek in [82, 83], and used extensively for different

applications such as pattern recognition, data analysis, and image processing [86].

To obtain the clusters, the following objective function needs to be minimized:

N∑
k=1

C∑
j=1

umkj||ε̂k − cj||2, 1 ≤ m <∞ (3.5)

where ukj is the degree of membership of ε̂k in the cluster j, cj is the two-

dimensional center of the cluster j, m is a real number greater than 1, and C

is the number of clusters (C = 3 in this study). Fuzzy clustering is an iterative

optimization problem, in which the aforementioned objective function is being

minimized and in each iteration the degree of membership, ukj, and cluster cen-

ters, cj, will be updated. The update values are calculated as

ukj =
1∑C

i=1[
||ε̂k−cj ||
||ε̂k−ci|| ]

2
m−1

(3.6)

cj =

∑N
k=1 u

m
kj.ε̂

k∑N
k=1 u

m
kj

(3.7)

The iteration will stop if

max
kj
|u(i+1)
kj − u(i)kj | < ε (3.8)

where 0 < ε < 1 is a termination criterion and i is the iteration step.
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3.3 Results and Evaluation of the snoring sound

detection algorithm

The proposed method was used to extract the snoring sound segments. Figure 3.2

shows the clustered sound segments (feature vector) using FCM method.

As shown in Figure 3.2, the snoring cluster is concentrated around the horizontal

axis in a linear shape. This property was seen in almost all subjects, implying

that the 500Hz sub-band energy of the snoring sounds is consistent for all snoring

events during a 60-second interval. Figure 3.3 shows the segmentation result of

the same sample sound, shown in Figure 3.1, after clustering and snoring sound

extraction; note that all undesired sound activities are removed from the originally

segmented signal. The performance of the detection algorithm was evaluated in

terms of accuracy and positive predictive value (PPV). The results are shown in

terms of True Positive (TP), False Negative (FN), False Positive (FP), and overall

accuracy and PPV. The accuracy and PPV were calculated as

Accuracy =
TP

TP + FN
× 100 (3.9)

PPV =
TP

TP + FP
× 100 (3.10)

Table 3.2 shows the classification result for a sample subject. The feature space

of this subject is shown in Figure 3.2. Table 3.3 shows the results of classification

using tracheal recording. The results of classification for the ambient recording
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Figure 3.3: Successful removal of noise and breathing segments after clustering.
Note that snoring segment E6 was not detected and therefore there is a false

alarm in this case.

Table 3.2: Classification Results and total number of breaths for a sample case
with 171 snoring segments.

Data Set TP FP FN Number of Breaths Number of Noises

Sample case 169 16 2 324 2

are presented in Appendix A. As can be seen, the overall accuracy and PPV of the

proposed snoring sound detection algorithm is 98.6% and 94.8%. The performance

of the algorithm remained more and less the same when it was applied only to

data of either OSA patients (98.8%) or simple snorers (98.4%).
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Table 3.3: Classification results using tracheal recordings.

Data Set TP FP FN Accuracy PPV

Simple Snorers and OSA 5588 304 77 98.6 94.8

OSA 3816 203 48 98.8 94.9

Simple Snorers 1772 101 29 98.4 94.6

Table 3.4: Classification Results for different values of overlap (L = 50ms,
θ = 0.95).

Overlap(%) Accuracy (%) PPV (%)

50 97.4 94.4

70 97.5 93.8

80 98.6 94.8

Table 3.5: Classification Results for different values of L (Overlap=80%, θ =
0.95).

L(ms) Accuracy (%) PPV (%)

25 98 93.3

50 98.6 94.8

100 97.5 94.5

3.4 The effect of segmentation parameters

To investigate the effect of the three L, θ, and overlap parameters on the accuracy

of the algorithm, data of both simple snorers and OSA patients recorded by the

tracheal microphone were used. As shown in Tables 3.4 and 3.5, the variation of the

accuracy and PPV was low with respect to changes of L and overlap parameters.

In addition, as shown in Table 3.6, the accuracy increased for higher values of θ

up to an optimal point at θ = 0.95. On the other hand, PPV decreased slightly

as θ increased (Table 3.6).
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Table 3.6: Classification Results for different values of θ (Overlap=80%, L =
50ms).

θ Accuracy (%) PPV (%)

0.7 88.3 96.9

0.75 92.3 96.6

0.8 94.7 95.8

0.85 95.8 95.7

0.9 96.6 95

0.98 97.6 92.5

3.5 Computational Complexity

The computational cost of our proposed algorithm is relatively low. This measure

was derived for a typical respiratory sound (Sr) with length N . The algorithm

consists of three parts: Segmentation, Feature extraction, and Clustering. For the

segmentation part, there exists a window with length L which moves along the

signal with a certain overlap. Therefore, the total number of overlapping windows

would be approximately N
L−Overlap . In each window the number of observation

falling into the VBox will be calculated. This takes 2L basic operations. The total

number of operations to calculate bLH(n) is:

2L× N

L− 0.8L
= 10N (3.11)

bLH(n) will be compared with a threshold for all time points (n). Therefore the

number of operations for segmentation would be:

10N + 2N = 12N (3.12)



Chapter 3. Snoring Sound Extraction From Respiratory Sound Recordings 36

Assume that the algorithm detects K sound segments each with length Ns. Note

that the lengths of segments are not necessarily equal but for simplicity, we assume

all segments have the same length (Ns). The first step in feature extraction is

to calculate the STFT (window length=Ls, overlap=0.5Ls, Ls = 50ms) of each

segment. The computational cost for STFT is as below:

2
Ns

Ls
× Ls log2 Ls = 18Ns (3.13)

To calculate εji , we need the following number of basic operations:

2
Ns

Ls
× 500× 18Ns + 2

Ns

Ls
× 5000× 18Ns =

1.98× 105

Ls
N2
s (3.14)

As mentioned before, εji should be calculated for all segments and 10 frequency

sub bands. Therefore, the total cost for feature extraction would be:

10K × 1.98× 105

Ls
N2
s (3.15)

We can assume that the length of each segment is between 0.2s and 3s (0.2Fs <

Ns < 3Fs). Therefore the computational cost of feature extraction has an order of

O(K). For the PCA calculation, we need to compute the covariance matrix and

eigenvalues of a 10D feature vector with the following number of basic operations:

(10 + 1 + 100)K + 100 = 111K + 100 (3.16)
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Finally, we have a 2D feature vector for clustering in which the computational cost

is negligible but has an order of O(K). Therefore the total cost would be:

12N + 10K × 1.98× 105

Ls
N2
s + 111K + 100 (3.17)

Consequently, the total computational cost has an order of O(N) assuming KαN .

3.6 Discussion and Concluding Remarks on Snor-

ing Sound Detection Algorithm

A new unsupervised algorithm for snoring sound detection from a record of breath

and snoring sounds was developed and tested on respiratory sound data of 30

patients. Given that, 5665 snoring segments were extracted from the data of all

subjects, and that the number of predictors was two (snoring vs. no-snoring), the

statistical tests have a sufficiently high power to hold the reliability of the results.

It is worth noting that total number of breathing segments is a bit higher than

that of snoring segments.

In most of the previous studies on automatic snoring sound detection [75–78], the

recordings were done by a microphone hung in the air in the vicinity of the patient

(the ambient microphone). When using an ambient microphone, breath sounds

are usually not recorded, and mostly loud snoring sounds are recorded. Hence,

identifying the snoring segments in data recorded by an ambient microphone would

be much easier than that in data recorded by a tracheal microphone. This is
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because classification of data recorded by an ambient microphone would reduce

to classify snoring vs. silence, while it is snoring versus breathing in case of data

recorded by a tracheal microphone.

In this part of study, snoring sound detection and extraction were investigated

when the recorded data was collected by a tracheal microphone and included

snoring sound, breathing sound and other noises. The proposed algorithm was also

applied to the data recorded by an ambient microphone for the sake of comparison

with previous studies (Appendix A).

In the method proposed in [76], the accuracy of the classification was reported

to be 97.3% when only simple snorer data was used for training and this value

dropped to 86.6% when only OSA data was used for training. In contrast, the

results of the proposed method in this chapter show a very small variation in

the accuracy of the classification (≤ 0.4% in tracheal microphone and ≤ 4.8% in

ambient microphone) in case of using data of either group of patients, indicating

robustness and insensitivity of the proposed method to the severity associated

with AHI.

The algorithms used in [75–78] were based on supervised classification with spe-

cific parameters, which needed to be tuned for each subject. In contrast, the

proposed method in this study is based on an unsupervised clustering algorithm,

and the parameters are adjusted adaptively. The effect of segmentation param-

eters including V-Box width (L) and overlap between successive windows for a

fixed θ was negligible (Table 3.5), which implies the algorithm is robust and not
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sensitive to the width and overlap of the windows. On the other hand, for a fixed

L and overlap parameter, the accuracy and PPV showed an opposite trend with

respect to variation of θ (Table 3.6). However the variation in the PPV for θ > 0.8

was very minute; hence, θ was selected such that accuracy was maximized.

The main advantages of the proposed algorithm are its high accuracy, robustness

and insensitivity to AHI, unsupervised operation, and low computational cost.

It should be emphasized that an accurate snoring sound extraction method is

essential for diagnosis and treatment of different snoring-related disorders such

as OSA. Such method can also be used as pre-processing tool in a variety of

studies such as those that investigate the relationship between sleep stages and

snoring sound characteristics, the relationship between body position and snoring

sound intensity, and identify the person’s best sleeping position, in which the least

number of snoring segments occur.



Chapter 4

Higher Order Statistical Properties

of Snoring Sounds

In Chapter 3, an automatic snoring sound detection algorithm was introduced.

The extracted snoring sound segments can be used to obtain important clinical

information about the upper airway state over night.

4.1 Why Higher Order Statistics of Snoring Sounds?

As mentioned in Chapter 1, different tasks such as investigation of obstruction

in the upper airway [87, 88], assessment of the outcome of surgical treatment

[44, 45, 89], and classification of snorers as simple snorer or OSA patients [67,

90, 91] utilize acoustical analysis of snoring sounds. Most of the signal processing

techniques used for the acoustical analysis, such as autocorrelation/autocovariance

function [70, 90], power spectrum density (PSD) [73, 92], and autoregressive

40



Chapter 4. Higher Order Statistical Properties of Snoring Sounds 41

(AR) modeling [90, 92] are based on the assumption that a linear model can

represent snoring sound and also that the signal-generating process is Gaussian.

Furthermore, these 2nd order statistical techniques do not analyze the information

contained in the signal’s phase. (Note that, henceforth, the terms linear, nonlinear,

Gaussian, and non-Gaussian signal/segment are being used interchangeably with

linear, non-linear, Gaussian, and non-Gaussian signal-generating process).

If the signal of interest, i.e. snoring sounds, violates the above assumptions, one

should take into account a complementary technique. Higher order statistical

(HOS) techniques reveal information on not only amplitude of a signal, but also

its phase. Furthermore, if a non-Gaussian signal is received along with additive

Gaussian noise, a transformation to higher order cumulants domain would be blind

to the noise; hence, achieving a cleaner estimate in noisy environments. Thus,

the bispectrum and bicoherence can efficiently reveal and quantify any nonlinear

relationship among the harmonic peaks (such as phase coupling) [93]. In fact,

the basic property used in higher order spectral analysis is that for a stationary

Gaussian process, all cumulants of order larger than two are zero. It is worth

noting that HOS analysis has been used as a tool for screening OSA among snorers

[91, 94].

Anthropometric parameters such as gender, height, BMI, and AHI are hypothe-

sized to change the properties of snoring sounds. If this hypothesis is true then

in order to use snoring sounds to develop a technique for classification anthropo-

metric parameters need to be matched. In this chapter, first, the Gaussianity and
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linearity assumptions of snoring sounds are investigated. Second, the relationship

between snorers’ anthropometric parameters and characteristics of snoring sounds

are reviewed. Third, the result of an acoustical task (OSA detection) with anthro-

pometrically matched and unmatched groups is given. Since many researchers

have used the snoring sound features for OSA screening, it is important to inves-

tigate whether the same features are also sensitive to anthropometric parameters,

i.e. weight, height, gender, etc., among different people. It is important because if

they are sensitive, then it implies the classification accuracy might be partly due

to unmatched groups in terms of anthropometric parameters.

Two features called Median Bifrequency (MBF) and Projected Median Bifrequency

(PMBF), and several conventional features such as skewness, kurtosis, 1st formant

frequency, and energy of the snoring sound segments were calculated. Then, the

statistical relationship between these features and anthropometric parameters was

investigated using Kendall’s Tau-b test [95] and Kruskal-Wallis Analysis of Vari-

ance (KWAV) [96, 97]. Lastly, a Naïve Bayes classifier [98] was run on the features

to examine the feasibility of OSA screening using both HOS and common spectral

features. For this part of the study, two subsets of the participants were selected:

one with matched anthropometric parameters between the OSA and simple snorer

groups and the other one with unmatched anthropometric parameter between the

two groups.
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4.2 Method

4.2.1 Data Recording

Data of 57 individuals (15 females, 51.5±11.8 y), who were snorers, were selected

for this study. The participants’ anthropometric information of this study is shown

in Table 4.1. The AHI value of each participant was determined by the PSG study

scored by the sleep lab technicians. As known, the respiratory sounds of a snorer

consist of breath, loud vibratory sounds (perceived as snore by humans), and/or

small segments of silence [70]. We call the part of respiratory sound containing

snore (or loud vibratory sounds) as snoring sound segment. The length of each

snoring sound segment varies within and between the subjects.

The algorithm proposed in Chapter 3 was used to extract the snoring sound seg-

ments in a semi-automated manner [99]. An example of the selection method is as

the following: the PSG data provided information about the time (e.g. 3:00-3:45

am) when the patient X was snoring (snoring interval). Given this information

the snore detection algorithm proposed in [99] was run on the interval. Although

the method’s accuracy was over 98%, to ensure 100% accuracy of snoring sound

segments, all of the detected snoring sound segments were validated by visual

(spectrogram) and auditory means, and the misclassified cases were removed.

Most (99%) of the extracted snoring sounds occurred during inspiration. The

extracted snoring sound segments for each patient were used to estimate the bis-

pectrum and derive the desired features. Figure 4.1 shows an extracted snoring
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Table 4.1: Anthropometric Information of Participating Individuals.

Group Number of subjects Age BMI AHI Height

OSA 42 (9 females) 52.2± 12.4 33.9± 6.7 35.5±33.1 173.9±10.5
Simple Snorers 15 (6 females) 49.5±10.4 30.1± 4.0 2.4±1.3 168.4±12.1

sound segment along with its spectrogram. It should be noted that the bispectral

analysis was only performed on the snoring sound segments.

Figure 4.1: An extracted snoring sound segment and its spectrogram.

4.2.2 Higher Order Statistics (HOS)

Assume that s(n) is an extracted snoring sound segment (in general a random

process). The key assumption underlying the HOS analysis is that the process

s(n) is stationary in some sense [93]. Snoring sounds are non-stationary in nature
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[92]. Hence, all the HOS measures such as bispectrum and bicoherence should be

calculated on a short time-windowed version of the signal to ensure stationarity

(wide-sense) of the snoring sound segments.

4.2.2.1 Definition of Bispectrum and Bicoherence

The 2nd and 3rd order cumulants of a zero-mean stationary process are defined as:

c2 (k) =E {s∗ (n) s (n+k)} (4.1)

c3 (k, l) =E {s∗ (n) s (n+k) s (n+l)} (4.2)

where s(n) is a zero mean stationary process, k, l, and m are different time

increments, * refers to complex conjugate operator, and c2, c3, c4 denote 2nd, 3rd,

and 4th order cumulants, respectively [100]. The 2nd and 3rd order polyspectrum

are defined as the Fourier Transform of c2 and c3, respectively [100]:

P (f) =
+∞∑

k=−∞

c2 (k) e−j2πfk (4.3)

B (f1, f2) =
+∞∑

k=−∞

+∞∑
l=−∞

c3 (k, l) e−j2πf1ke−j2πf2l (4.4)

where P (f) , B (f1, f2) represent the PSD and bispectrum, respectively. Note

that the PSD is real valued, nonnegative, and a function of one variable (discrete

frequency, f). On the other hand, the bispectrum is a function of two variables

(discrete bifrequencies, f1, f2) and has complex values. Bicoherence is another
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useful statistical measure, which is defined as [93]:

bic(f1, f2) =
B(f1, f2)√

P (f1 + f2)P (f1)P (f2)
(4.5)

A linear and stationary random process, s (n), can be represented as the output of

a linear system (impulse response: h (n)) excited by an independent and identically

distributed (iid) noise, e(n). The power spectrum and bispectrum of the output

(s (n)) can be simplified as:

P (f) = σ2
e |H(f)|2 (4.6)

B (f1, f2) =µ3H (f1)H (f2)H
∗ (f1+f2) (4.7)

and therefore bicoherence will be constant as:

bic2 (f1, f2) =
µ2
3

σ6
e

(4.8)

where e(n) is an iid noise with zero mean, variance σ2
e , and 3rd moment µ3 (µ3 =

E{e3 (n)}) and H(f) is the Fourier Transform of h(n) [101].

Equation (4.8) shows that for any linear signal, squared bicoherence is constant

and independent of the bifrequencies (f1, f2). If the squared bicoherence is zero,

signal s(n) is Gaussian or non-skewed with a symmetric distribution because µ3

or equivalently skewness is also zero [93, 101].

We used the Hinich’s method to test for non-skewness (loosely called Gaussianity)
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and linearity of the snoring sound segments [101]. First, we tested the Gaussianity

hypothesis (H: the bispectrum is zero). If H holds the process is Gaussian; hence,

signal generating process is linear. Otherwise, the process is non-Gaussian and

needs to be tested for its linearity. If the bicoherence is constant, the process

is linear, otherwise, it is nonlinear. This procedure was repeated for all snoring

sound segments and all body positions.

4.2.2.2 Bispectrum and bicoherence estimation

In practice, the number of sound samples is finite; hence, the HOS measures need

to be estimated from available data. The bispectrum of the signal s(n), can be

estimated using direct or indirect approaches. In this part of study, the direct

approach [93], which is an extension of the Welch technique for power spectrum

density estimation, was used to estimate the bispectrum in the following steps:

1. The signal s(n) , n = 0, . . . , N − 1, is divided into K overlapping segments,

each of length M . Let the k th segment of s(n) be sk(n), n = 0, . . . ,M − 1.

It is worth noting that for snoring sound analysis, we used 100 ms time

windows with 50% overlap to ensure the stationarity assumption.

2. Calculate the zero-mean signal of each segment as:

szk (n) =sk (n)− 1

M

M−1∑
n=0

sk (n) (4.9)
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3. Multiply the zero-mean signal by the Hanning window, w(n), to control the

effect of spectral leakage.

swk (n) =szk (n)w (n) (4.10)

4. Compute the discrete Fourier transform (DFT) of each segment:

Xk(l) =
1

M

M−1∑
n=0

swk (n) e−
j2πnl
M (4.11)

The raw bispectral estimate (B̂k(l,m)) can be calculated as:

B̂k (l,m) =Xk (l)Xk (m)X∗k (l+m) (4.12)

where l, m are the discrete frequencies.

5. The consistent estimate of bispectrum (B̂(l,m)) can be obtained by averag-

ing raw estimates over all segments.

B̂ (l,m) =
1

K

K−1∑
k=0

B̂k (l,m) (4.13)

Consequently, the squared bicoherence can be derived from bispectrum as

below [102]:

b̂ic
2

(l,m) =

∣∣∣B̂ (l,m)
∣∣∣2

P̂ (l) P̂ (m) P̂ (l+m)
(4.14)
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The discrete bispectrum has many symmetries in (l,m) plane. It is only needed to

calculate B̂ (l,m) in the non-redundant region or principal domain (D) which is

defined as: D = {0 < f1 ≤ fs
2
, 0 < f2 ≤ f1, 2f1 + f2 ≤ fs} [103]. Where (f1, f2)

are the bifrequencies (in Hertz) correspondent to the normalized bifrequencies

(l, m).

4.2.3 Feature Extraction

Suppose that we estimated the bispectrum (B̂ (f1, f2)) in D. This section details

on deriving two new features defined in Section 4.1: 1) The Median Bifrequency

(MBF) feature, which is a 2-D feature denoted as (fmp1 , fmp2 ) , and 2) PMBF,

which is a 1-D feature denoted as fp.

4.2.3.1 Median Bifrequency (MBF) computation

MBF is the bifrequency where the L1 norm [104] of B̂ (f1, f2) becomes half of the

L1 norm of B̂ (f1, f2) over all bifrequencies in D. The procedure is detailed in the

following steps:

1. Calculate the summation of |B̂ (f1, f2) | at all bifrequencies in D.

BT =
∑
f1

∑
f2

|B̂ (f1, f2) | , f1, f2 ∈ D (4.15)

2. Set f1 = 0.
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3. For all bifrequencies (f1, f2) satisfying the condition {0 < f2 ≤ f1, 2f1 +

f2 ≤ fs} calculate:

SB(f1, f2) =
∑
f1

∑
f2

|B̂ (f1, f2) | (4.16)

4. Check if SB (f1, f2) ≥ 1
2
BT

If YES, end the algorithm and (fmp1 , fmp2 ) = (f1, f2) If NO, increase f1

and go to step 3. (Note that:fmax1 = fs
2
.)

4.2.3.2 PMBF computation

Once the MBF is computed, the PMBF, fp, can be determined by the projection

of (fmp1 , fmp2 ) onto the line {f2 = f1, f 1, f2 ∈ D} corresponding to the diagonal

slice of the bispectrum. Equivalently we have:

fp =
fmp1 + fmp2

2
(4.17)

4.2.3.3 Skewness and Kurtosis

Let s(n) be a zero-mean random process. Skewness (γ1) and kurtosis (γ2) are

defined as:

γ1 =
c3 (0, 0)

σ3
s

(4.18)

γ2 =
c4 (0, 0, 0)

σ4
s

(4.19)
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where σs is the standard deviation of s(n) and c3(0, 0) and c4 (0, 0, 0) are its zero-

lag 3rd and 4th order cumulants respectively [105].

4.2.3.4 1st formant frequency and energy

Energy (E) and first formant frequency (F1) were obtained from each snoring

sound segment. Linear predictive coding (LPC) [71] was used to estimate F1. To

meet stationarity assumption, s(n) was divided into 100 ms overlapping frames

(50% overlap and Hanning window). In each frame, the autoregressive (AR) model

of the signal was estimated and the roots of AR model were calculated. To se-

lect the AR model order, we used the optimum order model (optimum order =

fs (KHz) + γ, γ = 4, 5 & fs ∈ [6− 18 ]KHz) suggested in [106]. Therefore, we

selected an AR model of 14 to estimate first formant frequency of each frame. F1

was estimated by taking median over all frames.

4.2.3.5 Calculation of features

As mentioned in Section 4.2.1, the number of snoring sound segments is differ-

ent for each patient. Let us denote ith snoring sound segment of patient X by

sXi , i = 1, . . . , IX . First, (fmp1 , fmp2 )Xi , (fp)Xi , (γ1)
X
i , (γ2)

X
i , (E)Xi , (F1)

X
i for all

segment were calculated resulting in a finite number of observations for each fea-

ture. Then, the sample median of each feature set was estimated. This procedure

was repeated for all 57 individuals yielding a 57× 2 matrix for MBF feature and

a 57 × 1 vector for PMBF, energy, 1st formant frequency, skewness, and kurtosis
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features. The reason we used median instead of mean is the insensitivity of me-

dian to outliers; it is known that when the data is not symmetrically distributed,

the median outperforms the mean in measuring the middle range of data [107].

Figure 4.2 shows the sample density of (fmp1 )Xi , (fmp2 )Xi , and (fp)Xi estimated by

kernel method [108]. As shown in Figure 4.2, the data is skewed; therefore, the

median is a better estimate of the middle range of the data than the mean value

in this case.

Figure 4.2: Kernel density estimate of fp (projected median bifrequency), fmp1

(bifrequency along horizontal axes), and fmp2 (bifrequency along vertical axes)
for a typical subject. Note the asymmetry of the distributions.
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4.2.4 Statistical Analysis

To investigate the effect of anthropometric parameters such as age, gender, height,

BMI, and AHI on the features, we ran statistical tests assuming the significance

level as p = 0.05. Since the distribution of the features deviated from normal

distribution, the Kendall’s Tau-b test (nonparametric counterpart of Pearson cor-

relation) [95] was used to measure the correlation among continuous anthropo-

metric parameters and HOS features. The one-way KWAV [96, 97] was also used

to compare the median of features between men and women.

4.2.5 Classification

Naïve Bayes classifier [98] was used to evaluate the ability of our feature set to

discriminate the subjects to snorers with OSA and snorers without OSA or the

so called "simple snorer" groups. Particularly, we were interested to compare the

ability of snoring sound features to be used as a signature of OSA when the groups

of OSA and non-OSA were matched (Experiment A) and unmatched (Experiment

B) in terms of anthropometric parameters.

Therefore, we performed two experiments: Experiment A: We selected a subset

of our database including 22 apneic and 6 simple snorers that were matched in

terms of gender, BMI, height and AHI. Experiment B: Another subset with the

same number of participants (28 including 21 apneic and 7 simple snorers) with

unmatched anthropometric parameters was used for classification. Table 4.2 shows

the anthropometric profile of both experiments.
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Table 4.2: Anthropometric information of two subsets selected for classifica-
tion. Experiment A: The OSA and apneic groups were matched for gender,
BMI, and height parameters. Experiment B: The OSA and apneic groups were

not matched for gender, BMI, and height parameters.

Group # of subjects Age BMI Height AHI

Experiment A
OSA 22(no female) 47.2± 11.4 33.5± 6 176.4±2.4 36.5±35

Simple Snorers 6(no female) 50.6± 5.8 33.8± 5 176.6±3.2 1.8±1.3
Experiment B

OSA 21(7 females) 49.4± 10.6 34.7±7.3 173.9±12.2 27.8±23.3
Simple Snorers 7(no female) 53.1± 9.3 30±3.8 178.3±7.6 2.3±1.5

We used the energy, 1st formant frequency, MBF, PMBF, skewness, and kurtosis as

our features for linear discriminant analysis. Several combinations of the features

were examined and the performance was evaluated using the Leave-One-Out Cross-

Validation (LOOCV) technique [109, 110]. The LOOCV is a common technique

when the number of observations (subjects in this case) is relatively small; it

helps to prevent over-fitting. In the LOOCV, one observation is used as testing

set and the rest (27) is used as training set. This procedure is repeated for all

observations (28) and the average performance is measured. It is worth noting

that the Euclidean metric was used to compute the distance.

4.3 Results and Discussion

All snoring sound segments were found to be non-Gausssian, while their linearity

varied during the night. In fact, for each snorer, there existed some linear snoring

sound segments as well as some non-linear ones. We also noticed that the linearity

of the snoring sound segments varied among different body positions within each
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Table 4.3: The results of Kendall’s Tau-b and Kruskal-Wallis tests for five
anthropometric parameters. ns:non-significant, *: significant at level 5%, **:

significant at level 1%.

Features H BMI Age AHI Gender

γ1 ns ns ns ns ns
γ2 ns ns ns ns ns
fp ** * ns * *
fmp1 * * ns * ns
fmp2 * ns ns ns *
E ns ns ns ** *
F1 ns * ns ns ns

subject. However, this result was not consistent among all subjects. Furthermore,

not everybody slept and/or snored in all positions. It was shown that the body

position during sleep changes both duration and intensity of snoring sounds [19].

However, we did not find a consistent relationship between the sleeping position

and the change in the linearity of snoring sound generating process.

It is known that if a signal is non-Gaussian, the 2nd order statistical techniques are

only able to extract partial information from the signal [93, 94]. Therefore, we

used HOS measures to develop new features such as MBF and PMBF from existing

data. We also extracted common HOS features such as skewness and kurtosis from

the snoring sound segments. It was found that there was a significant relationship

between frequency based features such as fmp1 , fmp2 , and fp and all anthropometric

parameters except age. As shown in Table 4.3, four out of five anthropometric

parameters (height, BMI, AHI, and gender) significantly affected the HOS features

of the snoring sound segments, while gender and BMI were significant parameters

affecting energy and first formant features.
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The height of individuals was observed to be a significant factor influencing the

value of fp (p < 0.01), fmp1 , and fmp2 (p < 0.05) . There was a negative relationship

between height and these frequency related features. The taller the individuals,

the lower frequency components were in their snoring bispectrum. The height

has been shown to affect the tracheal sound spectral features [111]. It was re-

ported that the tracheal sounds in children had higher frequency components than

in healthy adults. In another study [112], it is shown that the anatomy of the

trachea determines the characteristic features of tracheal sounds. However, there

was no study confirming the change in the features of snoring sound segments

due to the height. Based on our findings, the MBF and PMBF features of the

extracted snoring sound segments are negatively related to the height of individu-

als. Assuming that taller individuals have taller neck, this result implies that the

characteristics of snoring sound segments reflect resonances (existing in snoring

sound) that depend on the upper airway’s length.

The results of the Kendall’s Tau-b test on BMI groups shows that BMI is signifi-

cantly associated with the value of fp (p < 0.05), fmp1 (p < 0.01) as well as F1(p

< 0.05). As known, obesity is a factor strongly associated with the presence of

OSA [113]. Obese individuals with sleep apnea have been shown to have more

(about 42%) fat in their cervical region than normal subjects as well as non-obese

individuals with OSA [114]; thus, resulting in pharyngeal area narrowing. It is

also known that higher BMI is associated with increased level of leptin (a hormone
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produced by the adipose tissue and has also actions on the respiratory centre con-

trol) [115]. Therefore, our observed changes in the acoustical properties of the

snoring sound segments due to BMI can be explained by both anatomical and

hormonal changes of the upper airway.

It was also found that AHI and gender were significantly correlated with energy

and frequency-based HOS features of the snoring sound segments. As shown in

Table 4.3, the individuals with higher AHI had lower frequency-based features

(fpand fmp1 ) (p < 0.05) and higher energy (p < 0.01). The female snorers of

this study were observed to have higher frequency-based features (fp and fmp2 )

(p < 0.05) and lower energy feature (p < 0.05) than the male snorers. Although

there was no study investigating the gender effect on the snoring sounds, this

observation is congruent with findings reported in two studies focused on breath

and lung sounds [116, 117]. According to those studies, breath and lung sounds

in healthy women contain higher frequency components than in men. It has also

been shown that men have higher pharyngeal and supraglottic resistances than

women [118]. Therefore, given that the size and mechanical properties of pharynx

are significantly different between men and women [119], the snoring sounds of

women and men can be expected to be significantly different as the results of our

study indicate. Moreover, these might be also a reason for greater incidence of

OSA in men [118, 119].

Two of the frequency-based HOS features (fp and fmp1 ) were found to be sig-

nificantly different in snorers with different AHI. This result is congruent with
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previous studies. In people with OSA, the lateral pharyngeal muscular wall is

usually narrower [120]. Therefore, minimum area of the airway has been shown

to be significantly smaller in apneic individuals than non-OSA people. The size

of airway plays a major role in the frequency components of the sound produced

by the flow turbulence in the airway. This explains the change in the frequency

based HOS feature of the snoring sound segments between snorers with OSA and

simple snorers.

It was observed that for some of the anthropometric parameters (e.g. BMI and

gender) two of the frequency-based features (fmp1 , fmp2 , and fp) were significantly

correlated, while the third one was not significantly correlated. fp is linearly

related to the summation of fmp1 and fmp2 (projection of two). If both have a signif-

icant correlation with a parameter, then we expect that fp would be also significant

(as in the case with Height parameter) but having one of them significantly corre-

lated with a parameter, does not necessarily lead to a significant correlation of fp

and that parameter. The reason that only one of the coordinates of MBF is signif-

icant depends on the bispectrum of the snoring sound segment. As an example, let

us compare MBF for 4 snoring sound segments of participant 4 (P4) and partici-

pant 6 (P6). P4(BMI=24.4): fmp1 =[320, 320, 360, 320] andfmp2 =[240,40,160,160].

P6(BMI=47.1): fmp1 =[240, 240, 200, 250] and fmp2 =[180,160,180,120]. It is clear

that BMI significantly changed fmp1 but not fmp2 . In fact, the difference between

the bispectral information of the two sets of snoring sound segments is well ex-

tracted using the 2-D MBF feature which is an advantage of bispectral analysis.
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One important point is that these frequency changes due to small changes in

the airway size may not always be detectable by spectral analysis of the sounds.

However, as known, HOS techniques complement the information obtained from

2nd order statistical techniques, i.e. power spectral analysis. Hence, we propose

using a combination of HOS techniques and conventional acoustical techniques

increases the diagnosis accuracy of OSA. In this work, we tried to verify this point

by applying a simple classifier to our feature set. We partitioned our database

into two sets to compare two scenarios, one when the height, gender, and BMI are

matched between the two groups of snorers with OSA and simple snorers, and the

other one when those parameters are not matched. We observed an increase in

the accuracy of classification when the parameters were matched.

Table 4.4 illustrates the results of classification. Several combinations of features

were used as input to the naïve Bayes classifier. Results demonstrate that the

highest sensitivity and specificity occurred when a combination of both conven-

tional feature (Energy) and HOS feature set (fmp1 and skewness) was used. This

combination resulted in sensitivity of 93.2% (87.5%) and the specificity of 88.4%

(86.3%) for experiment A (B). As shown in Table 4.4, for experiment A, the sensi-

tivity and specificity values for only HOS features were 75.9-94.1% and 74.6-81.9%,

respectively. On the other hand, using only energy and formant frequency resulted

in a sensitivity and specificity of 78.2% and 72.1%, respectively.

As expected, overall, the sensitivity and specificity decreased when an unmatched

subset was used for classification.
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Table 4.4: Naïve Bayes classification results for different combination of con-
ventional and HOS features.

Feature set
Sensitivity (%) Specificity (%)

Experiment A Experiment B Experiment A Experiment B

fp, fmp1 , γ2 77.2 75.2 80.3 79.1
fp, fmp1 , γ1 84.2 81.3 74.6 78.6
fp, γ1, γ2 75.9 77 81.9 87.3
fmp1 , γ1, γ2 94.1 91.2 74.6 71.2
fp, γ1, E 85.9 82.1 88.1 84.4
fmp1 , γ1, E 93.2 87.5 88.4 86.3
E,F1 78.2 80.5 72.1 65.3

To compare our work with a recently published work [91], we matched the anthro-

pometric parameters of snorers with OSA and simple snorer groups. Moreover,

our recordings were performed using a microphone placed over trachea. There-

fore, our recorded sounds have a higher signal to noise ratio than those recorded

by an ambient microphone. We also improved the sensitivity and specificity of

OSA diagnosis among snorers by simultaneous usage of HOS and conventional

features. However a major difficulty in our study was to find a larger population

with matched anthropometric parameters to validate the results of our analysis.

4.4 Conclusion

In this chapter, the relationship between anthropometric parameters and the 3rd

and 4th order statistical features derived from the snoring sound segments were

investigated. In summary, we investigated statistical correlation of these features

along with the zero-lag HOS features with different anthropometric parameters.

An important contribution of the statistical investigation is on the application of
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snoring sound for OSA identification among snorers. Since the common features of

snoring sounds used in classification are sensitive to anthropometric parameters,

the results of classification may change when the two groups of apneic and controls

are matched for those parameters.



Chapter 5

Inter- and Intra-subject Variability

of Snoring Sounds

In Chapter 4, the result of classification between non-OSA and OSA (AHI>5)

groups was shown. We also investigated to what extent anthropometric parame-

ters may change the results if they were not matched between the groups. It was

shown that the classification accuracy slightly increased when the aforementioned

anthropometric parameters were matched. In a follow up study we became in-

terested to investigate how variable the snoring sounds are not only between the

groups but also within a snorer over a single night.

This chapter reports on sequential variability of snoring sounds during sleep, and

also on classification of OSA patients into 4 groups with a nearly-matched an-

thropometric parameters. Moreover, instead of using the sound features directly,

the variability of features (both inter- and intra-subject variabilities) was used to

62
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estimate the severity of OSA. The results were compared to those presented in

Chapter 4.

As known, mild reduction in airflow is usually associated with snoring, while more

marked reduction in airflow is associated with partially obstructed airways result-

ing in hypopneas and heavy snoring. Complete obstruction (zero flow) is called

apnea [6]; obviously, there is no snoring during apnea. We hypothesize that the

flow limitation (or airway obstruction) is reflected on the snoring sounds charac-

teristics differently during non-apneic, hypopneic, and post-apneic snoring.

Snoring sounds have been used in several studies for the diagnosis of OSA [65,

67, 70, 91, 94, 121, 122]. These studies used both linear and nonlinear acoustical

techniques to analyze the snoring sounds. Snoring sound intensity [49], power

spectral measures and formant frequency [121, 122], and pitch detection [65,

67] are based on classical linear techniques. On the other hand, phase coupling

extraction [70, 94], and nonlinear mode interaction [91] techniques are based on

a nonlinear model of snoring sounds. None of the above studies have considered

intra-subject variability of snoring sounds. The number of participants in these

studies was at most 40 snorers but more importantly, the number of snoring sound

segments was less than 40 segments per subject (as in [91, 121]) which does not

capture the intra-subject variability.

In this part of the study, we extracted the snoring sound segments of non-OSA and

OSA snorers, who went through full-night sleep assessment by PSG. Using the PSG

score sheet, we marked the snoring sound segments as non-apneic, hypopneic, and
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post-apneic classes. Then, we calculated the second order and non-linear features

of the segments, and ran a non-parametric statistical test (Kruskal-Wallis analysis

of variance) to characterize the difference among the three classes to investigate

the above hypothesis.

We hypothesized that the variation of snoring sounds over time is associated with

Apnea-Hypopnea Index (AHI), and can be used as a classification tool. Therefore,

we measured the variation of snoring sounds’ features using their total variation

norm [123]; then used the regression analysis to fit a linear function on the total

variation norm and the AHI values of participants. Finally, the linear discriminant

analysis and leave-one-out cross validation were used to classify the participants

into four classes: non-OSA (AHI<5), mild OSA (5<AHI<15), moderate OSA

(15<AHI<30), and severe OSA (AHI>30).

The contributions of this part of the thesis compared to previous studies are: com-

paring and characterizing the snoring sound segments among non-apneic, hypop-

neic, and post-apneic classes (using several features), investigating the variability

of snoring sound segments within each class (using total variation analysis), and

investigating how the variability of snoring sound segments within each individual

reflects on his/her OSA severity (using regression analysis).
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Table 5.1: Anthropometric Information of the study participants.

Group Number of subjects Age BMI AHI

Non-OSA 15 (6 females) 49.5±10.4 30.1± 4.0 2.3±1.3
Mild OSA 13 (4 females) 49.8±13.9 30.2± 3.1 8.6±2.2

Moderate OSA 15 (3 females) 52.8±14.2 34.8± 6.4 22.7±4.7
Severe OSA 14 (2 females) 53.8± 8.7 36.3± 8.2 74.2±30.1

5.1 Method

5.1.1 Data

The snoring sounds of 57 snorers (15 females, 51.5±11.8 y) were used for this

part of study. Out of the 57 participants, 13 were diagnosed with mild OSA, 15

with moderate OSA and 14 with severe OSA, and 15 were non-OSA snorers. The

PSG study was scored by the trained sleep lab technicians and approved by the

referring physician. AHI, Age and BMI variations of the participants are shown

in Table 5.1. It should be noted that only tracheal recordings were deployed in

this part of study.

5.1.2 Snoring sound extraction from respiratory sounds

Figure 5.2 shows a 60s record of respiratory sound with an example of snoring

sound segment. The length of each snoring sound segment varies within and

between the snorers. This variability can be observed between the snoring sound

segments shown in Figures 5.2 to 5.4,(the snoring sound segments were extracted

using the automatic snore detection algorithm proposed in [99]).
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To ensure that all snoring sound segments were identified correctly in terms of

the definition of snore and their start and end times, all the detected segments

were also validated by visual and auditory means in the time-frequency domain.

The occasional misclassified cases were removed from the database. It is worth

noting that the number of misclassified cases was 572 which form about 2.4% of the

total snoring sound segments. Using the PSG score sheet of each participant, all

snoring sound segments were marked as post-apneic, hypopneic and non-apneic.

Note that each of these classes may have included snoring sound segments of

a few consecutive breathing phases; however, the post-apneic class had snoring

sound segments of at most 3 consecutive breathing phases. It should also be noted

that labeling the snoring sound segments was solely done for the first part of

study (investigating variability within a snorer using non-parametric test). For

the second part, the regression and classification analysis were blind to the label

of the classes. Details of proposed algorithm are illustrated in Figure 5.1.

5.1.3 Feature Extraction

All the snoring sound segments were passed through a band-pass filter with the

frequency range of 150-2000 Hz (to remove the effect of heart sounds and high

frequency noises) as most of the power of snoring sounds is concentrated below 2000

Hz [72]. The power spectrum density (PSD) of the snoring sounds segments were

calculated using Welch method [71] in windows (Hanning) of 100 ms with 50%

overlap. The following features were extracted from each snoring sound segment:
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Figure 5.1: Detailed flow chart of proposed algorithm.

1) average power (Pavg), 2) Zero Crossing Rate (ZCR) which is usually used to

categorize the speech [124] and also snoring sound [67] into voiced and unvoiced

categories, 3) the frequency of the spectral peak with the lowest frequency (F0), 4)

the frequency of the peak with maximum power (Fp), and 5) the spectral entropy

(SE) [125] which is a measure of flatness of PSD and can be calculated as:

SE = −
∑
f

Pn (f) .ln(Pn(f)) (5.1)

where Pn (f) refers to normalized PSD at discrete frequency f .

5.1.4 Statistical Analysis

Our first hypothesis was that the snoring sounds characteristics of an OSA snorer

are different among three classes of non-apneic, hypopneic, and post-apneic. To
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investigate this hypothesis, the Kruskal-Wallis nonparametric test [96, 97] (a

nonparametric counterpart of one-way analysis of variance) was used to compare

the median of snoring sound features of each class of non-apneic, hypopneic and

post-apneic episodes for each participant’s snoring sound data. The variation of

snoring sound segments was also characterized segment by segment.

5.1.5 Regression and Classification Analysis

We also hypothesized that the variability of snoring sounds over time that occur

during hypopnea and/or after apnea is high, while for non-apneic class is low.

Assume two snorers: snorer 1 with only non-apneic class of snoring (low AHI),

and snorer 2 with non-apneic, hypopneic, and post-apneic classes of snoring sound

segments (high AHI). We expect the total variability of snoring sound features for

snorer 1 would be less than that of snorer 2. As mentioned in the previous section,

the analysis for this part of study is without the knowledge of snoring sounds’

class label. To investigate this hypothesis we calculated the total variation norm

(TVi) [123] of features for each individual as the following:

TVi =
1

N

N−1∑
k=1

|fi (k + 1)− fi (k)|, i = 1, . . . , F (5.2)

where fi is one of the extracted features and TVi is the total variation norm

corresponding to that feature. F denotes total number of features andN represents

the total number of snoring sound segments for each snorer. We treated the

variation of each feature as a new feature and used all TVis for our classification.
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We hypothesize that the total variation norm of some of the sound features to

increase as AHI increases and vice versa. In fact, the more variability leads to

higher amounts of total variation norm of some snoring sound characteristics.

To investigate this hypothesis, we calculated the strength of association between

total variation norm and AHI using nonparametric correlation analysis. We also

fitted a linear regression function to AHI-TV pairs (for the feature giving highest

correlation). Then, TV norms were used to classify the snorers into 4 classes of

non-OSA snorer, mild OSA, moderate OSA and severe OSA. Linear discriminant

analysis [126], and leave-one-out cross validation technique [109] were used for

classification.

5.2 Results

5.2.1 The difference between snoring sounds of three classes

within an individual

As shown in Table 5.2, only 1.8% of the snoring sounds were in the post-apneic

class, whereas 30.8% of the snoring sounds occurred during hypopnea and 67.4%

of snoring sound segments were during the time with no indication of apnea or

hypopnea. This is partially due to the fact that the majority of people reffered to

PSG are either non-OSA or with mild OSA, thus few apneic events

Figures 5.2 to 5.4 show three 1-minute epochs of snoring sounds for different

classes: a record of non-apneic snoring sounds (Figure 5.2), a record of hypopneic
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Table 5.2: Number of extracted snoring sound segments from tracheal record-
ings.

Type of Snoring Number of Snoring Segments

Non-Apneic 15504 (67.4%)
Hypopneic 7080 (30.8%)

Post Apneic
First Post-Apneic 208 (0.9%)
Second Post-Apneic 154 (0.7%)
Third Post-Apneic 47 (0.2%)

snoring sounds (Figure 5.3), and an epoch containing apneic events and post-

apneic snoring sound (Figure 5.4). We suggest the sequence of snoring sound

segments occurrence over time can predict the state of upper airway in terms of

obstruction (or severity of flow limitation in the upper airway).

Tables 5.3 and 5.4 demonstrate the result of Kruskal-Wallis nonparametric test

among the possible three classes of post-apneic, hypopneic, and non-apneic snoring

within each individual. Some snorers had only two classes of snoring sounds while

there were few of them with only one class of snoring sound (we exclude them for

this part of study). Table 5.3 shows the comparison among non-OSA individuals

whereas Table 5.4 demonstrates the results among patients with OSA (including

mild, moderate, and severe OSA).

As shown in Tables 5.3 and 5.4, there is a significant difference between some

of the characteristic features of snoring sound segments among the three classes.

For instance, consider subject 49 (AHI=81.9) in OSA group with 130 non-apneic,

85 hypopneic, and 22 post-apneic snoring sound segments. For this patient, the

median of Pavg, ZCR, Fp were significantly different among the three classes (p <

0.00001). This can be observed in both groups of OSA and non-OSA individuals
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Figure 5.2: A 1-minute snoring epoch when there is no hypoapnea event.
This type of snoring is called non-apneic snoring in which the characteristics
of snoring sounds do not change significantly from snore to snore. A typical
snoring sound segment is shown with dashed rectangle and a breathing phase is

illustrated with solid parallel lines.

(at least for some sound features).

5.2.2 The total variation norm and classification

In addition to the difference between median of snoring sounds’ features among the

snoring sound classes of a snorer, the results show that the variability of the snoring

sound features within each class is also different between the classes. For example,

as shown in Figure 5.5, for an OSA snorer, the variation of Fp in hypopneic and

post-apneic classes was high (even between two neighboring snoring segments),

while it was negligible for non-apneic class of snoring (of the same subject). As

a result, regardless of the label of each class (i.e. non-apneic, hypopneic, and
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Figure 5.3: A 1-minute snoring epoch when there are hypopneic events. This
type of snoring is called hypopneic snoring in which the characteristics of snoring
sounds change drastically from snore to snore. It can be clearly observed that
even the duration of snoring sounds are highly variable within one minute of
recording. The snoring sound segments are marked with dashed rectangles.

post-apneic), the total variation norm would be large for this participant. Now

let us consider a non-OSA snorer with one class of snoring sounds (i.e. non-

apneic): because the variation among consecutive snoring segments is low, the

total variation norm would be small. Hence, without knowing the label of each

class, this feature is able to estimate the severity of OSA.

Table 5.5 shows the correlation values between AHI and total variation for all

features. As shown in Table 5.5, TVFP and TVZCR had the strongest correlation

with AHI. We ran a regression analysis on (AHI, TVFp) and (AHI, TVZCR) pairs

for 57 participants. Table 5.6 shows the result of linear regression analysis.

The accuracy of 4-class (non-OSA, mild OSA, moderate OSA, and severe OSA)
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Figure 5.4: A 1-minute snoring epoch when there are apneic events. This type
of snoring is called post-apneic snoring in which the first sound usually appears
as a very loud snoring. Depending on the severity of OSA, an apneic event may
be accompanied by more snoring segments with different characteristics. In this

Figure, there are two apneic events each 13s long.

classification problem was 68.4% (64.9%) using only TVFp(only TVZCR). We com-

bined TVFp and TVZCR to classify the individuals to the aforementioned four

classes of snorers. Table 5.7 shows the result of leave-one-out cross validation

with linear discriminant classification. As can be calculated from Table 5.7, the

accuracy for 4-class classification is about 77.2%. However, if the goal is set to

classify only non-OSA (AHI<5) and OSA (AHI>5) snorers, the results are 92.9%

sensitivity, 100% specificity and 96.4% accuracy. Or if the goal is to detect people

with moderate and severe OSA and refer them for PSG or further sleep study, the

sensitivity and specificity would be 87% and 96%, respectively.
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Table 5.3: Result of Kruskal-Wallis test on non-OSA group within each in-
dividual. Only 6 out of 15 non-OSA participants had more than one class of
snoring sounds. NA#, HA#, PA# are the number of non-Apneic, hypopneic,
and post-apneic snoring sounds, respectively. ns: not significant, and *: signif-
icant (0.01<p< 0.05), **: very significant (0.0001 <p<0.01) and ***: highly

significant (p<0.0001).

No. AHI NA# HA# PA# Pavg ZCR SE F0 Fp

19 0.8 153 39 ns ** ns ** **
4 1.1 295 45 ** *** *** ns ***
45 2.8 220 102 ns *** ** ns ns
47 3 338 95 ns ns ns *** **
54 3.4 98 56 ** * ** ns *
25 3.5 193 80 13 ns *** *** *** ***

Several studies attempted to use snoring sounds to diagnose OSA but there has al-

ways been lack of a standard framework to compare different techniques. Table 5.8,

however, summarizes some of the techniques in terms of number of participants,

location of microphone, features, AHI threshold, and accuracy.

5.3 Discussion

The results show that the non-apneic, hypopneic, and post-apneic snoring sound

segments are significantly different; since the number of snoring segments in this

study was large, the statistical results are reliable as they have enough statistical

power. This shows that snoring sounds are associated with the level of upper

airway obstruction (or airflow). In fact, during non-apneic snoring, there is mi-

nor variation in airflow between consecutive respiratory cycles. However, during

hypopnea the airflow changes significantly and influences the snoring sounds’ char-

acteristics.
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Table 5.4: Result of Kruskal-Wallis test on OSA group within each individual.
9 patients had only one class of snoring and therefore they were excluded.

No. AHI OSA severity NA# HA# PA# Pavg ZCR SE F0 Fp

12 29 Moderate 202 123 ns ns * ns ns
53 20.8 Moderate 160 86 ns ** ns *** ***
3 6.3 Mild 385 89 7 ns ** *** *** **
22 27.6 Moderate 362 195 * *** *** *** **
34 121.4 Severe 152 36 ** ** ns ns *
50 22.6 Moderate 125 188 27 * *** ns ns ***
48 15.2 Moderate 321 138 ** ns *** *** ns
56 49.1 Severe 129 140 5 ** ns *** ** ***
8 77.5 Severe 139 241 46 ** * *** ns ns
52 55.7 Severe 111 112 11 *** ** ns *** ***
16 21.8 Moderate 223 250 *** ns *** *** ns
20 63.5 Severe 98 55 *** ns ns *** ns
2 29.5 Moderate 324 113 2 *** ns ns ns ns
39 125.7 Severe 98 150 29 *** ns ns ns ns
33 34 Severe 349 100 *** *** *** *** ns
13 29.2 Moderate 358 232 *** ns *** ** ***
17 22.1 Moderate 301 120 *** *** *** *** ***
40 89 Severe 153 98 70 *** *** *** ns ***
32 8.9 Mild 379 161 *** * *** *** ***
42 83.4 Severe 275 132 81 *** *** *** * ***
43 23.3 Moderate 334 101 *** *** *** * ***
11 33.1 Severe 278 127 5 *** ns *** *** ns
29 5.9 Mild 164 51 *** *** *** *** ns
10 9.4 Mild 128 75 *** ns *** ** **
9 7.1 Mild 274 150 *** ns ns ns ns
31 13.9 Mild 278 111 *** * *** ns ns
28 37.2 Severe 388 149 *** *** *** ** ***
6 21.8 Moderate 346 173 *** *** *** ** ***
30 9.7 Mild 336 57 *** *** *** * ***
51 7.8 Mild 139 74 *** *** *** *** ***
49 81.9 Severe 130 85 22 *** *** ns ns ***
26 18.4 Moderate 140 87 *** *** *** ns *
23 16.8 Moderate 326 106 *** *** *** * ns
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Figure 5.5: The intra-subject variability of snoring sound segments’ peak fre-
quency (Fp) for an individual. As seen, the variation of Fp is the lowest in
non-apneic snoring class, and highest in hypopneic snoring class. However, the
total variation for this snorer would be high. The horizontal axis is the number

of snoring sound segment.

Table 5.5: Result of correlation between AHI and TV for all features.

Feature r p

Pavg 0.53 <0.000001
ZCR 0.7 <<0.000001
SE 0.6 <0.000001
F0 0.66 <<0.000001
Fp 0.72 <<0.000001

One can assume the upper airway as a collapsible tube, through which the air flows

with different velocity. Once the airway collapses, it stays obstructed as in OSA

or dynamically reopens and closes as in non-OSA snorers [16]. The resumption
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Table 5.6: Regression analysis between TVFp and AHI.

Model Standard Error t p

AHI = 5.06 + 0.41 TVFp [1.86, 0.027] [2.7, 15] [0.009, 4.37×10−21]
AHI = 5.1 + 4.36× 103 TVZCR [2.48, 341.6] [2.05, 12.8] [0.045, 4.43×10−18]

Table 5.7: Result of Linear Discriminant analysis

Cross-validated1 Non-OSA Mild OSA Moderate OSA Severe OSA

Non-OSA 15 0 0 0
Mild OSA 2 10 1 0

Moderate OSA 1 2 10 2
Severe OSA 0 1 4 9

1 Each case is classified by the function derived from all cases other than that case.

of breathing after apnea is usually accompanied by an abrupt change in airflow

[127], pressure [128], and loud inspiratory sounds (post-apneic snoring) [24, 72].

Our results are congruent with those reported in a snoring sound modeling study;

using a mechanical model of upper airway, it was shown that in snore generation

mechanism, the effect of airflow was dominant [16]. This was observed from the

results of this study on a larger group of snorers with sufficient number of snoring

segments for each snorer. Another important observation was the change in the

snoring sounds characteristics especially during hypopnea between two consecutive

respiratory cycles. We speculate that this change might be due to a change in the

site of obstruction from the current breathing cycle to the next during hypopneic

events.

One of the main reasons that we chose total variation norm to represent the

variability was that this norm does not depend on the body position. Let’s consider
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Table 5.8: Comparison between OSA diagnosis method using snoring sounds.

Study Subjects Recording
Site

Method AHI threshold
(# of Classes)

Sen1 Spec2

[65] 16 Over the neck
beside the
crycothyroid
notch

Mean, standard
deviation, and
density of pitch

10 (two-class) 64.4 58.5

[66] 383
Anterior
neck over
the trachea

disturbance index
and oxygen
desaturation
index

5(two-class) 93 67

15(two-class) 79 95

[67] 16

40-70 cm
away from
the patient

Intra-Snore-Pitch-
Jump
probability

5(two-class) 100 50

10(two-class) 83-
91

67

15(two-class) 90-
95

70-
80

30(two-class) 86-
93

60-
73

[121] 40 30 cm above
the mouth

Formant Fre-
quency

10(two-class) 88 82

[91] 40 30 cm above
the mouth

Wavelet bicoher-
ence analysis

10(two-class) 85 90.7

Our
method 57

Over
suprasternal
notch of
trachea

TV norm of Fp
and ZCR

5 (two-class) 92.9 100

4-class 77.2 (accuracy)

1 Sensitivity
2 Specificity
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the snoring segments and classes for the participant shown in Figure 5.5: the non-

apneic class of snoring did not vary significantly over time; this would result in

the small total variation. Suppose that the body position of this subject changed

at some point during the night. As a result, the change in the upper airway status

might have shifted Fp for a few respiratory cycles, however, in the absence of apnea

or hypopnea, after those cycles in which the body’s position changed, the variation

of Fp becomes minimum once again. Consequently, the plausible shift in Fp due

to a change in the body position would not significantly affect the total variation

norm because it affects only a couple of respiratory cycles.

According to Table 5.4, the two features Fp and ZCR were highly significant among

three classes of snoring sounds only for 20 patients out of 33 patients. Therefore,

using these two features, we are able to label a snoring sound segment as non-

apneic, hypopneic, and post-apneic with a moderate accuracy. This did not affect

the accuracy of classification of snorers as mild OSA, moderate OSA, severe OSA,

and non-OSA (the second part of study). The first goal was to emphasize that the

characteristics of snoring sounds vary within a subject depending on the presence

of an apneic event. However the second goal was to determine the severity of OSA

without any knowledge of snoring segments’ labels. This was achieved by using

a measure quantifying the sequential variation of snoring sound segments. The

important point in the second stage is the amount of sequential variation in those

features which was shown to increase as the severity of OSA increases. Summation

of sequential variation of these features resulted in the total variation norm that
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could discriminate an OSA patient from a simple snorer with a high accuracy.

In a previous study [72], the snoring sounds of 10 non-apneic heavy snorers and

9 snorers with different severity of OSA were investigated. According to their

findings, all OSA snorers had loud inspiratory snores during first breath after

apnea [72]. However, according to the results of this study, only 0.9% of the

snoring segments in our database were labeled as first post-apneic snoring sounds;

in other words only 13 out of 42 OSA snorers had snored after apnea. If we

calculate this number among only severe snorers, around 5% of snoring sound

segments are labeled as first post-apneic snoring sound, which is still a small

percentage. Therefore, we suggest that this type of snoring sounds is not of clinical

value for screening OSA.

Variation of snoring sound segments’ duration (SED), separation (SES), and av-

erage power (SEP) were used in a previous study [129] to discriminate simple

snorers from OSA patients. The number of snorers in that study was relatively

low (30 snorers) and the snoring sounds was recorded by ambient microphone.

Ambient recordings are known to be noisier and less discriminative in terms of

snoring sound detection [99]. The authors employed a snoring episode identifica-

tion algorithm (proposed in [130]) to identify the snoring episodes, however, the

accuracy of detection was reported to be around 86.8%-97.3% resulted in many

misclassified cases in the database. The misclassified cases can vary significantly

the result of next stages (e.g. feature calculation, regularity measure, and etc.). In

general, it was found that the variation of SED, SES, and SEP was higher in OSA
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snorers than simple snorers. However, no information on intra-subject variation

of the features and classification scheme was provided. The coefficient variation

measure was used to quantify the regularity of SED, SES, and SEP. One major

limitation of the coefficient variation is its high sensitivity to sudden change in the

body position (as it happens repeatedly during sleep) and noise-like sound existing

in the ambient recordings.

We suggest that snoring sounds occurring during hypopnea are of useful and more

important clinical value. Due to high variation in airflow and plausible change in

the site of obstruction from one breath cycle to the next, the characteristics of

snoring sounds during hypopnea is highly variable. On the other hand, the airflow

in non-OSA snorers does not vary significantly from breath to breath; thus, the

characteristics of snoring sounds do not vary significantly. As a result, one can

measure the change of snoring sounds over the sleep time, and estimate the AHI

of the snorer based on the amount of variation from one snoring episode to the

next. Obviously, this method does not work for OSA patients, who do not snore

but the majority of people with OSA do snore at least for a period of time per

night. In fact, out of the 68 participants in this study only 11 did not have enough

snoring sounds.

In this part of study we used the AHI values as the gold standard for OSA severity.

However, the AHI value might be slightly different depending on the definition

of hypopnea [131] and from night to night. These limitation of AHI as the

gold standard would affect the AHI cut-off value. This, in turn, would affect the
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validation of any classification particularly for those people with marginal AHI.

For example one of the misclassified cases had an AHI of 15.3; this subject was

grouped as moderate, but obviously if AHI value was slightly less, this participant

would have been grouped as mild OSA.

In Chapter 4, we averaged the snoring sounds’ features within each snorer without

considering the intra-subject variability of them. In fact, by averaging, we may

smooth away some important information underlying the snoring sounds. We

achieved an accuracy around 90% on a population of 28 snorers. On the contrary,

in this chapter, we deployed total variation to capture the sequential variation

of snoring sounds and we obtained an accuracy of 96.4% discriminating non-OSA

snorers and people with OSA (AHI>5). This suggests that intra-subject variations

of snoring sounds can be used to extract complementary information about the

upper airway state over night.

In summary, we used the linear regression to estimate the AHI values from the

total variation features with the highest correlation. We also employed two total

variation norms (TVFp , TVZCR) to classify the snorers into four classes; the AHI

values were used to verify the result of the classification. The results confirm our

hypotheses and suggest that the characteristics of snoring sounds change signifi-

cantly in presence of flow limitation (or airway obstruction). Depending on the

severity of flow limitation, the change in snoring sounds from breath to breath is

different. This time-dependent intra-subject variation of snoring sounds can be

used for OSA screening.



Chapter 6

Why Do Snoring Sounds Form

Distinct Clusters?

In Chapter 5, the sequential intra-subject variability of snoring sounds were in-

vestigated and it was observed that sequential variation of sounds’ features can

be used to estimate the AHI. However, there are other parameters such as body

position, sleep stage, and blood oxygen level to affect the snoring sounds during

sleep. Figure 6.1 shows a scatter plot of snoring sound segments in a 2-D feature

space (features 1 and 2 were normalized to have zero mean and unit variance). As

clearly shown in this figure, the snoring sound segments form two distinct clus-

ters. Therefore, we questioned: What are the plausible causes of forming clusters

of snoring sounds for each individual?. This part of study aimed to seek answer

for the aforementioned question using the available information from PSG study

and snoring sound analysis. In particular, the relationship between the snoring

83
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sounds characteristic features and some physiological parameters such as sleep

stage, blood oxygen level, and body position are investigated in this chapter.

Figure 6.1: A scatter plot of snoring sound segments within a typical snorer in
a 2-D feature space. Feature 1 and feature 2 were standardized such that they

have zero mean and unit variance.
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Table 6.1: Anthropometric Parameters of the study participants.

Group Number of subjects Age BMI AHI

OSA 42 (9 females) 52.2± 12.4 33.9± 6.7 35.5±33.1
Non-OSA 15 (6 females) 49.5±10.4 30.1± 4.0 2.4±1.3

6.1 Method

6.1.1 Data Recording

In total, snoring sound segments of 57 snorers were used for this study. Table 6.1

shows the anthropometric parameters of the snorers.

The algorithm proposed in [99] was run on each individual’s respiratory sounds

to extract all snoring sound segments. It is worth noting that the same snoring

sound data set explained in Section 5.1.2 was used in this chapter.

6.1.2 Feature Extraction

All snoring sound segments were first band-pass filtered in the frequency range of

150-2000 Hz (to remove the effect of heart sounds and high frequency noises) re-

sulting zero-mean signals. Twelve features (conventional linear and HOS features)

were extracted from each snoring sound segment. The following features were then

calculated for each segment:

Power (P) The signal’s power was computed as:

P =
1

N

N∑
n=1

|s (n)|2 (6.1)
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where N is the lengthy of each snoring sound segment.

Zero Crossing Rate (ZCR) It was defined as

ZCR =
1

2N

N−1∑
n=1

|sgn [s (n+ 1)]− sgn[s(n)]| (6.2)

where sgn[.] represents the sign function. ZCR is a time domain feature repre-

senting the number of times that the amplitude of a signal changes sign. ZCR

has been mainly used for detecting voiced and unvoiced parts of the speech [124].

It has also been used for categorizing snoring sound into voiced and unvoiced

categories [67].

500Hz Sub-band normalized energy (E1 − E2) The 0-2000Hz frequency

range was divided into 500Hz sub-bands (4 sub-bands in total) and the average

normalized energy in each sub-band was calculated. The sub-band energy features

were originally proposed in [130] to detect the snoring sound segments from res-

piratory sounds. In this study, the first 2 sub-bands energy E1 − E2 were used

because the sounds’ major power lies below 1000Hz as discussed in Appendix A.

Skewness and kurtosis They were defined as:

γ1 =
c3 (0, 0)

σ3
s

(6.3)

γ2 =
c4 (0, 0, 0)

σ4
s

(6.4)
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respectively, where σs is the standard deviation of s(n) and c3(0, 0) and c4 (0, 0, 0)

are its zero-lag 3rd and 4th order cumulants respectively [105]. It should be noted

that skewness is a measure of asymmetry of the probability distribution function

(pdf) while kurtosis is a measure of peakedness of the pdf.

Formant Frequencies (F1 − F3) The first three formant frequencies [132]

were calculated from each snoring sound segment using linear predictive coding

(LPC). To meet stationarity assumption, s(n) was divided into 100 ms overlapping

frames (50% overlap and Hanning window). In each frame, the autoregressive

(AR) model with order 14 of the signal was estimated and the roots of AR model

were calculated. To select the AR model order, we used the optimum order model

(optimum order = fs (KHz)+γ, γ = 4, 5 & fs ∈ [6−18 ]KHz) suggested in [106].

Then, the first three formant frequencies were estimated by taking median over

all frames. Therefore, there were three formant frequencies namely F1, F2, and F3

for each snoring sound segment.

Crest factor (CF) The snoring sound signal, s (n) , was divided into 100 ms

windows (with 50% overlap between successive windows) and the crest factor were

calculated for each frame (as below):

CF =
V99
Vrms

(6.5)
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where V99 is the 99th centile as a measure of peak value and Vrms is the root mean

square value [88].The median of CF ’s over all frames was used as the equivalent

CF for each snoring sound segment.

Spectral entropy (SE) SE measures the flatness of the spectrum. Larger

values of SE correspond to the broader spectral contents [133]. It is computed

as:

SE = −
∑
f

Pn (f) .ln(Pn(f)) (6.6)

where Pn (f) refers to normalized power spectrum density (PSD) at discrete fre-

quency f . The PSD was estimated using Welch method [71] using Hanning

windows of size 100 ms and 50% overlap between the successive windows.

Central Tendency Measure (CTM) CTM is a variability measure from

second order difference plots [125]. CTM is calculated as below:

CTM =
1

N − 2

N−2∑
n=1

δ(n) (6.7)

where δ(n) is defined as:

δ(n) =


1,
√

(s (n+ 2)− s (n+ 1))2 + (s (n+ 1)− s (n))2 < ρ

0, otherwise

(6.8)

Parameter ρ defines the radius of a circular region around the origin in second

order difference plots. We used ρ = 1 for this part of study.
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6.1.3 Principal Component Analysis

As explained in Section 6.1.2, 12 sound features were extracted from each snoring

sound segment resulting in a 12-D feature vector. However, some of these features

may be redundant. Therefore, to reduce the dimensionality of the feature space,

the Principal Component Analysis (PCA) [81] was deployed. For each snorer,

there existed a data matrix with Mi rows (number of snoring sound segment for

snorer i) and 12 columns (total number of features). Transforming the data using

PCA resulted in a Mi× q matrix. It should be noted that q(q < 12) is the number

of principal components with highest eigenvalues. In fact, q is the number of first

principal components that explains 80% of the total variation in the data and can

be calculated as: ∑q
j=1 ej∑12
j=1 ej

≥ 0.8 (6.9)

where ej denotes the eigenvalues of the covariance matrix of dimension j of data

set. The first q principal components were the eigenvectors corresponding to the

highest eigenvalues explaining 80% of the total variation. The rest of eigenvectors

were, in fact, ignored.

6.1.4 Grouping intra-subject snoring sound segments based

on PSG information

For each snoring sound segment, physiological parameters including body position,

sleep stage, and blood oxygen level were extracted from PSG score sheet. All these
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parameters were categorical variables with 2-6 classes. Body position had 4 classes

namely supine, prone, left, and right. Sleep stage included 6 classes: stage 1-4,

Arousal, and REM. Lastly, blood oxygen level had two classes of normal and

desaturation (drop greater than 4% in blood oxygen level). Therefore, in addition

to q sound features, every snoring sound segment had three categorical features

for body position, sleep stage, and blood oxygen level. Without loss of generality,

we merged left and right position into a new class called side position. We also

merged stage 1-4 into a new class called NREM. Hence, this resulted in 3 classes

of supine, prone, and side for body position, 3 classes of NREM, Arousal, and

REM for sleep stage, and 2 classes of normal and desaturation for blood oxygen

level. It is worth noting that we investigated all sleep stages, i.e. stage 1-4, REM,

and arousal as well as all sleeping positions, i.e. left, right, prone, and supine.

However, due to similarity of some of these classes and to give a broader picture,

we merged some of the classes. The result of categorical variables without merging

is presented in Appendix B. It should also be noted that some snorers had only

one class of snoring sounds in each categorical variable and the number of classes

shown above is the maximum possible number of classes. Some snorers had only

snored in one position or one sleep stage.
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6.1.5 One-dimensional and two-dimensional probability den-

sity function

Depending on the categorical variable, there existed different number of classes of

snoring sound segment within every snorer. To examine if the categorical variable

in question is really affecting the snoring sound segments, we can measure the

overlap between one-dimensional (two-dimensional) pdf of the existing classes of

snoring sounds for a single feature (a bivariate feature vector). For example, one

can examine the effect of blood oxygen level on the snoring sounds by 1) estimating

the one-dimensional (1-D) pdf of a single feature (e.g. PC1, PC2,. . . ,or PCq) for

both classes and 2) measuring the overlap between estimated pdf of the classes.

As a result, if the class densities do not overlap that means blood oxygen level does

not affect the extracted feature. However, the amount of overlap quantifies how

much the categorical variable is affecting that sound feature. Two-dimensional

(2-D) case is similar to that of 1-D. First, we need to estimate the 2-D pdf of a

bivariate feature vector (e.g. (PC1, PC2),. . . (PCq−1, PCq), or etc.) for all classes

(e.g. normal and desaturation), then, we need to measure the overlap between

2-D pdfs of the classes and quantify how affective the categorical variable is.

Consider a general case when we have c classes (e.g. c = 2 for blood oxygen level

and c = 3 for sleep stage and body position variables). The detail of this part of

algorithm comes in the following:

1. For each class of snoring sound segment, the 1-D and 2-D pdf (f̂) were

estimated using Kernel Density Estimation method [108]. That is, there
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were q transformed sound features (PCs) that were selected based on the

criterion introduced in Section 6.1.3. The pdfs were estimated as:

f̂k(X;H) =
1

N i
k

∑
n ∈ Class(k)

KH(X −Xn), k = 1, . . . , c (6.10)

where N i
k is the number of snoring sound segments in class k for snorer i,

Class(k) denotes the all members of class k. In 1-D case, KH(x) = 1
H
K( x

H
)

where H is the bandwidth and in 2-D case KH(x) = |H|−
1
2 K(H−

1
2x) where

H is a 2 × 2 bandwidth matrix which was selected optimally using mean

integrated squared error [134], K(.) is the kernel function (we used Normal

kernel in this paper). X denotes the point where we want to estimate the pdf

and Xn refers to the sample points in class k. In 1-D case, X = {PCk
j , j =

1, . . . , q} while in 2-D case, X =
{(
PCk

u , PC
k
v

)T ∣∣∣ u < v, u = 1, . . . , q −

1 & v = 2, . . . , q} where PCk
j is the j-th principal component (transformed

feature) in the class k.

2. Now we need to measure the distance between class densities. If the pdfs

do not overlap, it means that the c classes of snoring sound segments form

c distinct clusters. On the other hand if they fully overlap, that means the

categorical variable does not have any effect on the snoring sound segments.

We used three measures to quantify the class discrimination capability of

principal components: L1 distance [104] between every two pdfs both in 1-

D(L1D
1 ) and 2-D cases (L2D

1 ) as well as the area under Receiver Operating
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Characteristics (ROC) curve [135] (AUROC) in 1-D case. The L1 distance

in general case is defined as:

L1 =

∫ +∞

−∞
|f(X)− g(X)|dX (6.11)

where X is a multivariate vector and f(.) and g(.) are multivariate pdf

functions. To obtain a number in the range of [0, 1], we divided the above

norm by 2. To approximate the above integration, we used trapezoid rule

[136].

The ROC curve was used to visualize the class discrimination capability of

a principal component. After constructing the ROC curve, the area under

the curve was calculated. Figure 6.2 shows how we constructed the ROC

curve. The top graph in Figure 6.2 shows an example of a two overlapping

pdfs describing the distribution of feature (PC1) in two classes. Consider

the threshold line shown in Figure 6.2 sweeping from leftmost of the graph

to the rightmost of the graph. Each time we measure the areas α and β.

Once we swept the threshold line over the entire PC axis and calculated the

aforementioned areas, we can plot 1− β with respect to α. The area under

the resulted curve will be our third measure of separability between class

densities. This was only performed for 1-D case.

Consequently, we obtained 3 distance measures: L1D
1 , L2D

1 , and AUROC. Fully

overlapping densities will result in L1D
1 = 0, L2D

1 = 0, and AUROC = 0.5, on
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Figure 6.2: Top: pdf of snoring sounds’ first principal component in two
different classes. Sweeping threshold line was used to calculate the areas α and

β. Bottom: ROC curve constructed by plotting 1− β with respect to α.

the other hand, fully separated densities will result in L1D
1 = 1, L2D

1 = 1, and

AUROC = 1.

6.1.6 Statistical Analysis

As for the body position variable, there are three possible comparisons between

the pdfs: Supine vs. Prone, Supine vs. Side, and Prone vs. Side. For sleep stage

variable, there are also three possible comparisons between the pdfs: NREM vs.

REM, NREM vs. Arousal, and REM vs. Arousal. Finally, for blood oxygen level,
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there is one possible comparison between the pdfs: Normal vs. Desaturation. For

every categorical variable, we measured the L1D
1 , L2D

1 , and AUROC for every pos-

sible comparison mentioned above. This was repeated for all study subjects’ data.

Once these measures were calculated for all snorers, we used Analysis of Variance

(ANOVA)[97] to investigate any statistically significant differences between the

groups of each categorical variable.

Lastly, to find the categorical variable with the highest effect on the snoring sounds,

we rearranged all the comparisons in one group, that is, Body Position={ Supine

vs. Prone, Supine vs. Side, Prone vs. Side}, Sleep Stage ={NREM vs. REM,

NREM vs. Arousal, REM vs. Arousal}, and Blood Oxygen={Normal vs. Desat-

uration } and visualized the L1D
1 , L2D

1 , and AUROC for the rearranged groups of

Body Position, Sleep Stage, and Blood Oxygen. In addition, we ran an ANOVA

test on these groups.

6.2 Results

6.2.1 Principal Component Analysis

It was observed that the first 4 principal components explain more than 80% of the

total variation in the original feature space. Therefore, we selected q = 4. Hence,

in the reduced feature space, every snoring sound segment could be identified by

a 4-D transformed sound feature (PC1, PC2, PC3, PC4) and a 3-D categorical
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Figure 6.3: Bi-plot of transformed snoring sounds’ features (the first two PCs
with highest eigenvalues) along with original feature vector. Each vector shows
the magnitude and sign of each feature’s contribution to the first two PCs.

feature (body position, sleep stage, blood oxygen). Figure 6.3 shows a 2-D bi-

plot of reduced feature space along with original features. The bi-plot shows

the magnitude and sign of each feature’s contribution to the first two principal

components (PC1, PC2), and how each snoring sound segment is represented in

terms of those components.

Figures 6.4 to 6.6 show the scatter matrix of snoring sound segments grouped

based on body position, sleep stage, and blood oxygen level, respectively. The

most distinct clusters were observed in Figure 6.4 where the snoring sounds were
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Figure 6.4: Scatter matrix of snoring sound segments’ PCs categorized based
on body position. The diagonal graphs show the histogram of each PC.

grouped based on the body position. However, this cannot be generalized by

observing only one snorer. The average separation (results of Section 6.1.6) can

be more conclusive in intra-subject separation of snoring sounds.

6.2.2 One-Dimensional and two-dimensional pdfs and ROC

curves

Figures 6.7 to 6.9 show the 1-D pdf of first PC with highest eigenvalue along with

ROC curves and contour plots of 2-D pdfs for different classes of snoring sounds
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Figure 6.5: Scatter matrix of snoring sound segments’ PCs categorized based
on sleep stage. The diagonal graphs show the histogram of each PC.

within a snorer. Figure 6.7a demonstrates the 1-D pdf of PC1 among three classes

of snoring sounds. Figure 6.7b shows the contour plots of the 2-D pdf of snoring

sounds grouped based on body position.

Figures 6.8 and 6.9 show the contour plots of the 2-D pdf of snoring sounds cat-

egorized based on sleep stage and blood oxygen level, respectively. As shown in

Figure 6.7, both 1-D and 2-D pdfs were consistently discriminated the prone po-

sition from side and supine positions. The AUROC (Figure 6.7a) was 1 for class

densities supine and prone and it was very close to 1 for class densities prone and

side. However, it was approximately 0.5 for class densities side and supine. This
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Figure 6.6: Scatter matrix of snoring sound segments’ PCs categorized based
on blood oxygen level. The diagonal graphs show the histogram of each PC.

is due to high overlap between supine and side class densities, and high separation

between side and prone as well as supine and prone. The same analogy applies to

Figures 6.8 and 6.9.

6.2.3 Statistical Analysis

6.2.3.1 Body Position

Figure 6.10 shows the mean and standard deviation of separations among density

classes based on body position. As shown in this figure, prone position has the
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(a)

(b)

Figure 6.7: (a)1-D pdf of snoring sound segments’ first PC categorized based
on body position. (b) Contour plot of snoring sound segment of the first two
PCs categorized based on body position. As shown in this figure, the 2-D pdf
of prone position is significantly different than that of side and supine positions.
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(a)

(b)

Figure 6.8: (a)1-D pdf of snoring sound segments’ first PC categorized based
on sleep stage. (b) Contour plot of snoring sound segment of the first two PCs
categorized based on sleep stage. As shown in this figure, the 2-D pdf of NREM,

REM, and Arousal are different.
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(a)

(b)

Figure 6.9: (a)1-D pdf of snoring sound segments’ first PC categorized based
on blood oxygen level. (b) Contour plot of snoring sound segment of the first
two PCs categorized based on blood oxygen level. As shown in this figure, the

2-D pdf of NREM, REM, and Arousal are different.
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lowest overlap with the other two positions. However, the most consistent compar-

ison is when a bivariate PC is used (Figure 6.10a). This suggests that the highest

change in snoring sounds occurs when the snorer changes the body position from

prone to any other position. However, there is still a high separation among all

positions. Even the positions with highest overlap (supine and side) still are well

separated as L2D
1 = 0.72 ± 0.19 when we compared class densities using first two

PCs. This value dropped to L2D
1 = 0.57 ± 0.13 when we used the last two PCs

(PC3, PC4). This supports that even the lowest significant features could moder-

ately discriminate snoring sound segments in different body positions. The other

two distance measures are not as consistent as the L2D
1 measure. Figure 6.10b

shows the L1D
1 norm with the highest value for PC1 and side and prone density

comparison (L1D
1 = 0.68± 0.14).

Lastly, in Figure 6.10c, the highest separation happened between prone and side

(AUROC = 0.87±0.12). Both L1D
1 and AUROC resulted in the lowest separation

between supine and side positions using PC4. We also ran an ANOVA test between

distance measures of each comparison (3 groups: supine vs. prone, supine vs. side,

and prone vs. side) to check the equality of mean of the comparison groups. As

shown in Table 6.2, there was no significant difference among means of three

groups.
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Table 6.2: Results of ANOVA on comparison groups of body position. ns:
not significant (p>0.05), and *: significant (0.01<p< 0.05), **: very significant

(0.001 <p<0.01) and ***: highly significant (p<0.001).

Distance Measure PC Significance Level

L2D
1

PC(1, 2) ns
PC(1, 3) ns
PC(1, 4) ns
PC(2, 3) ns
PC(2, 4) ns
PC(3, 4) ns

L1D
1

PC(1) ns
PC(2) ns
PC(3) ns
PC(4) ns

AUROC

PC(1) ns
PC(2) ns
PC(3) ns
PC(4) ns

6.2.3.2 Sleep Stage

Figure 6.11 shows the mean and standard deviation of class density distance among

sleep stages. As shown in Figure 6.11, REM stage has the lowest overlap with

NREM and Arousal classes. This is consistent among all three distance measures.

Figure 6.11a displays the L2D
1 mean and standard deviation using all combinations

of bivariate PCs in three classes.

The highest separation occurred between NREM and REM classes of sleep stage

using (PC1, PC4). This resulted in: L2D
1 = 0.64±0.2. The distance between REM

and Arousal classes is still high and comparable with that of NREM and REM.

The highest separation happened using (PC1, PC2) resulting in L2D
1 = 0.63±0.16.



Chapter 6. Why Do Snoring Sounds Form Distinct Clusters? 105

(a) (b)

(c)

Figure 6.10: The mean and standard deviation of distance measures between
body position classes’ pdfs among all snorers (a). The mean and standard devia-
tion of L2D

1 , the highest separation is between prone and supine positions, then,
between prone and side, and the lowest is between supine and side positions. (b)
The mean and standard deviation of L1D

1 . (c) The mean and standard deviation
of AUROC.

The NREM and Arousal comparison resulted in the significantly lower values of

L2D
1 than those of previous ones (the highest was L2D

1 = 0.41 ± 0.15 using (PC1,

PC2)). This was consistent among all distance measures as REM vs. Arousal

and NREM vs. REM distance measures (L1D
1 , AUROC) were comparable and

NREM vs. Arousal measure was significantly lower in both cases (L1D
1 , AUROC).
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Table 6.3: Results of ANOVA on comparison groups of sleep stage.

Distance Measure PC Significance Level

L2D
1

PC(1, 2) ***
PC(1, 3) **
PC(1, 4) ***
PC(2, 3) **
PC(2, 4) **
PC(3, 4) ***

L1D
1

PC(1) ***
PC(2) *
PC(3) *
PC(4) ***

AUROC

PC(1) **
PC(2) ns
PC(3) *
PC(4) **

This suggests that if sleep stage changes from REM to Arousal or NREM, there

would be a significant change in the characteristics of snoring sounds. The result

of ANOVA between distance measures of each comparison (3 groups: NREM vs.

REM, NREM vs. Arousal, and REM vs. Arousal) shows that REM sleep stage

caused the significantly highest change in the characteristics of snoring sounds.

This was shown in Table 6.3.

6.2.3.3 Blood Oxygen Saturation

Figure 6.12 shows the mean and standard deviation of class density distance be-

tween blood oxygen classes. As shown in Figure 6.12a, the highest separation

between Normal and Desaturation classes occurred when we used (PC1, PC2)

which resulted in L2D
1 = 0.49± 0.2. The L2D

1 measure showed a decreasing trend
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(a) (b)

(c)

Figure 6.11: The mean and standard deviation of distance measures between
sleep stage classes’ pdfs among all snorers (a). The mean and standard deviation
of L2D

1 , the highest separation is between NREM and REM sleep stages (L2D
1 =

0.64±0.2), then, between REM and Arousal (L2D
1 = 0.63±0.16), and the lowest

is between NREM and Arousal. (b) The mean and standard deviation of L1D
1 .

(c) The mean and standard deviation of AUROC.

as we used less significant PCs to estimate the density function of two classes.

The lowest was using (PC3, PC4) which resulted in L2D
1 = 0.40 ± 0.17. This

trend was consistent among all measures of distances. The highest L1D
1 was for

PC1 (L1D
1 = 0.33 ± 0.19) and the lowest was for PC4 (L1D

1 = 0.26 ± 0.14). The
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highest AUROC was for PC1 (AUROC = 0.66 ± 0.12) and the lowest was for

PC4 (L1D
1 = 0.60± 0.07).

(a) (b)

(c)

Figure 6.12: The mean and standard deviation of distance measures between
principal components’ class densities of normal and desaturation among all snor-
ers. (a). The mean and standard deviation of L2D

1 for all bivariate PCs. (b)
The mean and standard deviation of L1D

1 . (c) The mean and standard deviation
of AUROC.
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Table 6.4: Results of ANOVA on two by two categorical variables and on all
three groups of categorical variables. BP: Body Position, OL: blood Oxygen

Level, SS: Sleep Stage

Distance Measure PC
Significance Level

BP vs. SS BP vs. OL SS vs. OL All groups

L2D
1

PC(1, 2) *** *** ns ***
PC(1, 3) *** *** ns ***
PC(1, 4) *** *** ns ***
PC(2, 3) *** ** ns ***
PC(2, 4) ** * ns **
PC(3, 4) *** ** ns ***

L1D
1

PC(1) *** *** ns ***
PC(2) ** ns ns **
PC(3) * ns ns ns
PC(4) ns ns ns ns

AUROC

PC(1) *** *** ns ***
PC(2) ** ns ns **
PC(3) ** ns ns *
PC(4) ns ns ns ns

6.2.3.4 Finding the most effective factor changing the snoring sounds

characteristic

One can find the most affective factor (among body position, sleep stage, and

blood oxygen level) by averaging the between class density measures of each factor

(e.g. averaging supine vs. prone, supine vs. side, and prone vs. side distance

measures for body position). We performed this for all three categorical variables

and observed the results shown in Figure 6.13. Body position has the highest

effect on snoring sounds characteristics and causes the highest separation between

class densities.

The other two categorical variables discriminates the snoring sounds too but the
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(a) (b)

(c)

Figure 6.13: The mean and standard deviation of distance measures between
class densities among all snorers grouped based on all categorical variables. (a).
The mean and standard deviation of L2D

1 , the highest separation is for body
position regardless of which bivaraite has been used to estimate the 2-D pdf
(highest L2D

1 = 0.75 ± 0.18), then, for blood oxygen level (L2D
1 = 0.49 ± 0.2),

and finally, for sleep stage (L2D
1 = 0.47 ± 0.18). (b) The mean and standard

deviation of L1D
1 . (c) The mean and standard deviation of AUROC.

distance between class densities was not as high as that of body position. Using

L2D
1 , the highest separation for body position, blood oxygen level, and sleep stage

were 0.75± 0.18, 0.49± 0.2, and 0.47± 0.18 respectively. Using L1D
1 , the highest

separation for body position, blood oxygen level, and sleep stage were 0.58± 0.25,

0.33 ± 0.19, and 0.33 ± 0.20, respectively. Finally, using AUROC, the highest
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separation for body position, blood oxygen level, and sleep stage were 0.80± 0.15,

0.66 ± 0.12, and 0.64 ± 0.12, respectively. All three measures confirm that body

position put the snoring sound segments into almost distinct clusters.

Table 6.4 shows the result of ANOVA on the distance measure of categorical vari-

ables. Columns 3-5 show the two by two comparison when we ran ANOVA to test

if the mean of distance measures was significantly different between every possible

pair of categorical variable. We also ran the ANOVA to test the equality of mean

among all groups. The result shows that all distance measures are significantly

higher if the snoring sounds were grouped based on body position than grouping

snoring sounds based on sleep stage and blood oxygen level.

6.3 Discussion

In this part of the study, we investigated the effect of body position, sleep stage,

and blood oxygen level on the characteristics of snoring sounds. It was observed

all three parameters affected the snoring sounds to some extent, however, body

position was found to be the most affective parameter that can even form distinct

clusters of snoring sounds. In addition, we also looked at the effect of each specific

class within the categorical variable. We observed that REM sleep stage had the

higher effect on the snoring sounds compared to NREM and Arousal stages. We did

not find any significant difference among different body positions’ discrimination

capability even though prone position seemed to be more capable of changing
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snoring sounds compared to side and supine positions. Sleep stage and blood

oxygen level had a moderate effect on snoring sounds on average.

We extracted a wide variety of sound features commonly used in all acoustical

tasks of snoring sounds including snoring sound segmentation [99, 130, 137, 138],

OSA diagnosis [64, 91, 122, 139, 140], and detection of site of obstruction [88,

141–143]. However, there existed some redundancy among the features and more

importantly we faced a highly dimensional feature space. Therefore, to reduce

the dimensionality and extract as much information as possible from the snoring

sounds, we deployed the PCA technique to transform our feature vectors to a new

informative and low dimensional feature (4-D) space.

Probability density function was used to fully describe the behavior of snoring

sound segments in each category. In addition, we employed 2-D pdfs to charac-

terize the snoring sounds more accurately. The results confirmed that using 2-D

pdf, we achieved more accurate and consistent results than that of 1-D. Due to

large number of snoring sound segments in each category, we did not encounter

data insufficiency problem to estimate the pdfs. We used non-parametric kerned

density estimation technique to obtain smooth pdfs for each category. We also

used ROC curves to visualize the distance between class densities among snorers.

The number of studies on the effect of body position, sleep stage, and blood

oxygen level is very limited. In a previous study [19], the dependency between

snoring and body position and sleep stage was investigated, however, that study

was different from present study in method and purpose. They basically measured
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the occurrence of snoring in different postures and sleep stages. Hence, to our

best knowledge, there was no study investigating the effect of the aforementioned

parameters on snoring sound.

In another study [144], it was shown that change of body position from prone to

right or supine positions decreased (increased) the upper airway size in nonposition-

dependent (position-dependent) OSA patients. Hence, in both cases the upper

airway shape changed significantly. Our results are congruent with this previous

finding as we had the highest change in acoustical characteristics of snoring sounds

when turning body position from prone to other postures. To answer the question

raised in the beginning of this chapter, the plausible causes of forming distinct

clusters of snoring sounds within the same subject are body position, sleep stage,

and oxygen saturation, however, body position is likely to be the most prominent

factor.

The results of this study are important as they characterize the change of snoring

sounds based on plausible states and factors. The proposed method can be used

for other acoustical studies of snoring sounds as well as breathing sounds for clas-

sification and clustering purposes. In particular, a change in body position can be

analogized to the change in the site of upper airway’s obstruction. Hence, once

the sound segments are matched in terms of body position the proposed method

may be useful to detect the site of obstruction; his has been left for future studies.



Chapter 7

Summary and Concluding Remarks

7.1 Summary of Contributions

Acoustical analysis of snoring sounds is a non-invasive, inexpensive, and simple

way to study the upper airway. To extract the clinical information from the snoring

sounds, it is very crucial to have a reliable sound recording system and an auto-

mated algorithm to extract snoring segments from respiratory recordings. Snoring

sounds are variable within and between snorers. This variability, if quantified

appropriately, can reveal important information about the upper airway status.

Moreover, acoustical analysis of snoring sounds can be used for OSA screening,

detection of site of obstruction, snoring noise cancellation, and assessment of a

treatment.

In this thesis, an unsupervised algorithm was proposed to extract the snoring

sound segments from lengthy respiratory sound recording. The proposed algorithm

114
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provides high accuracy, robustness and insensitivity to the degree of obstruction

and low computational cost. It should be emphasized that an automatic, reliable,

fast and accurate snoring sound extraction method is essential for diagnosis of

SDB such as OSA. The proposed method can also be used as pre-processing tool

in a variety of studies such as those that investigate the relationship between sleep

stages and snoring sound characteristics, the relationship between body position

and snoring sound intensity, and identify the person’s best sleeping position, in

which the least number of snoring segments occur.

We investigated statistical properties of snoring sound segments using HOS fea-

tures. It was observed that snoring sounds were non-Gaussian and non-linear in

general. Hence, using HOS feature complements the information extracted using

conventional 2nd order methods. We also investigated the effect of anthropometric

parameters on the snoring sounds. The results showed that there is an association

between snoring sounds’ characteristics and anthropometric parameters. Since

the common features of snoring sounds used in classification are sensitive to an-

thropometric parameters, the results of classification may change when the two

groups of apneic and controls are matched for those parameters. When HOS fea-

tures were used in the classification of the apneic group, the results showed some

improvements.

As mentioned, snoring sounds are variable. We measured the total sequential

variability of the sounds and observed that the snoring sounds occurring during

an apneic event (flow reduction) has higher variability than those occurring in the
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absence of an apneic event. We compared and characterized the snoring sound

segments among non-apneic, hypopneic, and post-apneic classes (using several

features), and investigated the variability of snoring sound segments within each

class (using total variation analysis). The results showed that the variability of

snoring sound segments within each individual reflects on his/her OSA severity

(using regression analysis).

Lastly, we investigated the effect of body position, sleep stage, and blood oxygen

level on the characteristics of snoring sounds. It was observed all three parameters

affected the snoring sounds to some extent, however, body position was found to be

the most affective parameter that can even form distinct clusters of snoring sounds.

The effect of sleep stage and blood oxygen level on snoring sounds characteristics

were the same on average. We also observed that REM sleep stage had the higher

effect on the snoring sounds compared to NREM and Arousal sleeps. We did

not find any significant difference among different body positions’ discrimination

capability even though prone position seemed to be more capable of changing

snoring sounds characteristics compared to side and supine positions.

7.2 Future Work Recommendations

Although many studies have investigated acoustical analysis of snoring sounds

and its clinical application, it is still in its pioneering stage. The observation is

a consequence of huge variability in the different stages of snoring sound analysis

from data collection to a clinical diagnosis or assessment.
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• There is not a unique definition of snoring sound in the literature. More

importantly, lack of standardization for data collection setup (place of mi-

crophone), subjects under study (population size, matching their anthropo-

metric parameters), analysis requirements, and etc. cause huge discrepancy

among the published results and methods in the literature. Therefore there

is a need for a guideline to standardize all stages of acoustical analysis of

snoring sound.

• Apart from its clinical application, snoring sound can be used to improve the

quality of sleep of snorer’s bed partner. Developing a technique to adaptively

reduce the social noise of snoring will be very valuable. An example would

be to develop a device sensing the level of snoring sound and then based on

that can appropriately change the shape of pillow or bed aiming to reduce

the snoring noise.

• As known, the snoring sounds are variable within and between snorers. The

snoring sound variability within snorers even during one night might be

explained by the snoring generation mechanism and its variation as well

as the level of obstruction and place of obstruction in the upper airway.

However variability between snorers, in addition to previously-mentioned

causes, may be a result of differences between upper airway structures of

snorers. In fact, height, fat deposition, and other physiological factors may

change the snoring sounds drastically. These factors are somehow reflected in

the anthropometric parameters (such as height, BMI, and gender) of snorers.
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Therefore one has to consider the effect of these parameters on snoring sounds

before performing any acoustical tasks. In many published studies this effect

has been ignored.

• The loud snoring sounds of habitual snorers (non-OSA or snorers without

sleep disordered breathing) may convey crucial and important information

on the upper airway status and snorer’s respiratory system especially in

children and women who snore less frequently than men.

• There have been a few studies on subjective and objective assessment of

a snoring. Those studies reported a weak correlation between two types

of assessment. Further investigation would be of interest to describe the

difference between these two types of assessments. Moreover extracting in-

formation from snoring sounds that increases the correlation of two types of

assessments would be important and need more work in this field.

• Detection of sites of obstruction using acoustical analysis of snoring sounds

is still in its infancy. All the published studies have used induced sleep to

investigate the ability of acoustical analysis while it has also been shown that

the nocturnal snoring show a different properties than induced snoring. This

field deserves further investigation. More importantly all studies recorded

the snoring sounds from one location (e.g. over trachea) while multi-site

recording of snoring sounds (over nose or in the ear) have not been inves-

tigated. Multi-site recordings can help extract more information from the
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snoring sounds especially when there is more than one site of obstruction in

the upper airway (mixed snoring).
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Appendix A

Comparison between Site of

Recording

A.1 Comparison between Sites of Recording

Currently there is no standard recommending the place of microphone for differ-

ent acoustical applications of snoring sound. The place of microphone is highly

variable among published literature. Locations such as larynx (attached to the

skin), trachea (attached to the skin), inside nasal cannula, or in the air around

the snorer’s mouth have been proposed in the related literature [73, 99, 145–147].

In most studies, the snoring sounds were recorded from either over the trachea

(by tracheal microphone: a microphone attached to the skin) or a point near the

mouth of snorer (ambient microphone). Although the sounds picked up by two

143
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microphones have the same sources and nature, there are some differences be-

tween their acoustical characteristics such as intensity, frequency contents, and

classification accuracy.

In an early study [73], the authors compared the acoustical properties such as

shape of waveform and frequency contents of simulated snoring sounds recorded

from two sites: 1) 2 cm above and slightly to the right of the suprasternal notch by

a piezoelectric contact sensor and 2) 20 cm away from the mouth by an electoral-

type condenser microphone. In fact, they asked four healthy male non-snoring

participants to simulate snoring. The results of this study showed that although

the sound waves had different shape, both had similar repetitive complex struc-

tures with the identical frequency and no phase shift [73]. In another study

[145], snoring sounds were simultaneously recorded by two electret microphones:

an omnidirectional microphone placed 10 cm away from participant’s mouth, and

a unidirectional microphone placed over the trachea at the level of cricoid car-

tilage (1 cm lateral to the median line). The data set for this study included

several simulated snoring from three healthy participants and five minutes real

snoring from three snorers. The intensity of ambient and tracheal snoring sounds

were calculated and compared. The authors observed a high correlation between

intensity values of tracheal and ambient recordings for simulated snoring sounds.

They also found that the mean value of intensity of snoring sounds was higher for

tracheal recordings than ambient ones. This result was not consistent for all sub-

jects [145]. Influence of different microphone positions on the frequency features
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of snoring sounds was investigated in [148]. They recorded the sounds from six

positions: three points in vicinity of snorers’ head and three contact microphones

(body, neck, and parasternal) in five patients. The results of frequency analysis

revealed a wider range of frequency in air microphones compared to contact micro-

phones. They concluded that the contact microphones were good candidates for

screening devices while ambient microphones were preferable for a natural analysis

of snoring sounds [148].

The sensitivity of tracheal microphone does not depend on the body movement

during sleep while ambient microphone may be dramatically influenced by the

body movement and the worst case would be when the patient is in the prone

posture. On the other hand, tracheal microphone may record all the movement

artifacts. This increases the preprocessing time of the signal due to those artifacts.

Other issues related to location of recording is the ability of keeping information

underlying the recorded signal. In this appendix, the tracheal and ambient sites of

recording are compared in terms of sub-band energy and ability to extract snoring

sound segments from respiratory sounds.
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A.2 Sub-band Energy of Ambient and Tracheal

Recordings

We compared the sensitivity of two microphones in the first four 500Hz frequency

sub-bands (introduced in Section 3.2.4) by taking ratio of normalized energy be-

tween two simultaneous recordings. First, for every sound segment we calculated

the ratio of normalized energy for four sub-bands. Then, average of the ratios

were found within each participant resulting in four values per participant. Fig-

ure A.1 shows the mean and variations of the ratios among all participants with

both recordings. As shown in Figure A.1, for lower frequencies less than 1000 Hz,

tracheal microphone is more sensitive than ambient microphone; however, the sen-

sitivity of tracheal microphone significantly decreases for frequencies higher than

1000Hz.

A.3 Extraction of Snoring Sound Segment from

Respiratory Sounds

This section compares the result of tracheal and ambient recordings in terms of

discrimination between snoring and no-snoring sound segments as discussed in

Chapter 3. Tables A.1 and A.2 show the results snoring sound detection algo-

rithm on the tracheal and ambient recordings, respectively. As can be seen, the

overall accuracy and PPV of the proposed snore detection algorithm is 98.6% and
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Figure A.1: The ratio of normalized energy between ambient and tracheal
recordings

94.8% for the tracheal recordings, while they are 93.1% and 95.9% for the ambient

recordings. The performance of the algorithm for tracheal recordings remained

more and less the same when it was applied only to data of either OSA patients

(98.8%) or simple snorers (98.4%). On the other hand, for the ambient record-

ings, the variation in the accuracy and PPV was larger than those of the tracheal

recordings. In case of using the ambient microphone, the accuracy was 3.3% higher

when the method was applied to data of simple snorers, and it dropped by 1.5%

when data of the OSA patients was used.
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Table A.1: Classification results for tracheal recordings.

Data Set TP FP FN Accuracy PPV

Simple Snorers and OSA 5588 304 77 98.6 94.8

OSA 3816 203 48 98.8 94.9

Simple Snorers 1772 101 29 98.4 94.6

Table A.2: Classification results for ambient recordings.

Data Set TP FP FN Accuracy PPV

Simple Snorers and OSA 5275 223 390 93.1 95.9

OSA 3569 104 327 91.6 97.2

Simple Snorers 1706 119 63 96.4 93.5

A.4 Conclusion

It was found that the energy of tracheal recordings is concentrated below 1000 Hz.

On the other hand, although a high percentage of the sound energy of ambient

recording is concentrated below 1000 Hz, it still has some components above 1000

Hz which were not detectable by tracheal recordings probably due to the chamber

in which it is inserted to before being placed over the skin. On the other hand,

tracheal microphone is more sensitive to low frequency components. As a result,

the sound features extracted from the tracheal tracings were more discriminative

between three groups than those of ambient recordings while using low frequency

features. Overall, we suggest the tracheal microphone as a better choice due to

four reasons: 1) insensitivity of tracheal microphone with respect to body pos-

ture, 2) concentration of a high percentage of the snoring sounds energy below

1000 Hz in which the tracheal microphone is more sensitive than ambient micro-

phone, 3) the amount of environmental noise is higher in ambient microphone than

that of tracheal microphone, and 4)ability to detect snoring sound segments more
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accurately.



Appendix B

Effect of Body Position and Sleep

Stage with Original Classes

This appendix discusses the results of comparison between class pdf of snoring

sounds for body position and sleep stage without merging the right and left classes

for body position, and stage 1-4 classes for sleep stage. The analysis is presented

in Chapter 6.

B.1 The effect of body position with 4 classes

Based on PSG score sheet, every snorer had 4 possible Body positions namely

supine, prone, left, and right. Similar to Chapter 6, the snoring sound segments

of each snorer were categorized based on body position and then both 1-D and

2-D pdfs were estimated for each class and finally the overlap between classes were

quantified using L1D
1 , L2D

1 , and AUROC. Figure B.1 shows the mean and standard

150
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deviation of all distance measures among snorers. As shown in Figure B.1a, on

average, turning body from prone to supine or right causes the highest change

in snoring sounds’ characteristics, while turning from left to right or vice-versa

causes the lowest change in snoring sounds’ characteristics. This is congruent

with the result of Chapter 6 where the left and right positions were merged into

side position.

B.2 The effect of sleep stage with 6 classes

As mentioned in Chapter 6, sleep stage included 6 classes before merging: stage 1-

4, Arousal, and REM. The same procedure as in Chapter 6 was repeated here, and

the distance measures (L1D
1 , L2D

1 , and AUROC) between different class densities

were calculated. Figure B.2 shows the the mean and standard deviation of all

distance measures among snorers. On average, snoring in stage 3 has the highest

separation with snoring in REM. In fact, REM sleep seems to have highest effect

on the snoring sounds’ characteristics, while stage 2 and Arousal have the highest

similarity among other comparisons. This is also congruent with the result of

Chapter 6 where the stages 1 to 4 were merged into NREM sleep.

B.2.0.5 Finding the most effective factor changing the snoring sounds

characteristic

If the body position and sleep stage classes were not merged into new classes the

overlap between class densities would be different and as a result the comparison
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(a) (b)

(c)

Figure B.1: The mean and standard deviation of distance measures between
body position classes’ pdfs among all snorers (a). The mean and standard devia-
tion of L2D

1 , the highest separation is between prone and supine positions, then,
between prone and right, and the lowest is between left and right positions. (b)
The mean and standard deviation of L1D

1 . (c) The mean and standard deviation
of AUROC.

among three categorical variables would be different as well. Figure B.3 shows

the mean an standard deviation of distance measures for each categorical variable.

Although the results slightly changed compared to Section 6.2.3.4, Figure B.3

shows that body position has the highest effect on snoring sounds compared to



Appendix B. Effect of Body Position and Sleep Stage with Original Classes 153

(a) (b)

(c)

Figure B.2: The mean and standard deviation of distance measures between
sleep stage classes’ pdfs among all snorers (a). The mean and standard deviation
of L2D

1 , the highest separation is between REM and stage 3, then, between REM
and stage 1, and the lowest is between stage 2 and Arousal. (b) The mean and
standard deviation of L1D

1 . (c) The mean and standard deviation of AUROC.

sleep stage and blood oxygen level.
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(a) (b)

(c)

Figure B.3: The mean and standard deviation of distance measures between
class densities among all snorers grouped based on all categorical variables. (a).
The mean and standard deviation of L2D

1 , the highest separation is for body
position regardless of which bivaraite has been used to estimate the 2-D pdf,
then, for sleep stage, and finally, for blood oxygen level. (b) The mean and
standard deviation of L1D

1 . (c) The mean and standard deviation of AUROC.
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