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ABSTRACT 

Riparian areas are ecologically and economically critical habitats in the Canadian 

Prairies. An estimated 80% of riparian zones in North America are threatened by 

anthropogenic development. While riparian conservation is integrated into agricultural, 

watershed, and forestry best management practices across Canada, existing riparian 

health assessments are reliant on resource-intensive field surveys. The objective of this 

thesis was to develop a riparian health assessment using high-resolution remotely sensed 

imagery. Riparian health surveys were conducted along the La Salle River. High-

resolution imagery and LiDAR data were integrated into an object-based image analysis 

of vegetation. Topographic analysis was conducted using a high-resolution DEM. These 

data were input into a linear discriminant classifier to model riparian health. Riparian 

health models containing both vegetation and topographic variables, and only vegetation 

variables, produced good agreement with field assessments. LiDAR data and the object-

based image analysis method were successfully used to develop a remote riparian health 

assessment.  
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CHAPTER 1: INTRODUCTION 

1.1 Overview 

Riparian zones are fundamentally important, both economically and ecologically, but are 

also among the most sensitive and the most threatened habitats on a global scale (Nilsson 

and Svedmark, 2002; Naiman and Décamps, 1997). They are ecotonal habitats, 

representing an abrupt transition in biotic, geomorphologic, and hydrologic gradients. 

The components of riparian zones are inextricably interconnected; they represent habitat 

and food sources for terrestrial and aquatic wildlife, geomorphologic and fluvial 

interactions affecting bank stability, floodplain evolution and sediment transport, and the 

transfer of energy and nutrients between aquatic and terrestrial environments (Merritt et 

al., 2010; Nilsson and Svedmark, 2002; Gregory et al., 1991). However, they also readily 

transport non-point source pollution, excess nutrients and sediment, and agricultural 

chemicals from surface and subsurface runoff. Anthropogenic activities, such as river 

flow regulation, forestry, ditch construction, and pollution derived from agricultural and 

community sources, cause flooding and sedimentation, undermine bank stability, and 

compromise the integrity of the biotic community (Manitoba Water Stewardship, 2011; 

Nilsson and Svedmark, 2002).  

The health of riparian zones can have a substantial impact on surrounding natural and 

anthropogenic environments. Assessing, monitoring and managing riparian areas is 

essential (Makkeasorn et al., 2009; Mayer et al., 2005; Nilsson and Svedmark, 2002). 

However, characterizing riparian health can be difficult, as it pertains not only to the 

current physical and biotic characteristics of the ecosystem, but also to their relationship 
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to the historical condition of the same area. Riparian health has historically been assessed 

and monitored using ground inventories and manual aerial photo-interpretation (Gergel et 

al., 2007; Johansen et al., 2007a). Although this approach provides detailed information, 

it is costly, time-consuming, and often logistically infeasible in remote or inaccessible 

areas. Automated approaches based on high-resolution aerial and satellite imagery, Light 

Detection and Ranging (LiDAR), and digital elevation models (DEMs) have the potential 

to facilitate landscape-level monitoring by reducing the resources required and providing 

access to remote areas (Forzieri et al., 2010; Makkeasorn et al., 2009; Johansen et al., 

2008b; Johansen et al., 2007a).  

1.2 Physiographic and Biological Characteristics of the Riparian Zone 

The riparian zone is characterized by complex interactions between its hydrologic, 

geomorphologic, and biotic components (Camporeale et al., 2013; Merritt et al., 2010; 

Naiman and Décamps, 1997; Hughes, 1997; Gregory et al., 1991). The narrow, linear 

form of riparian habitat, combined with frequent natural disturbance resulting from 

seasonal and stochastic flooding, produces an extremely dynamic system, exhibiting 

abrupt topographic, soil type, nutrient, and moisture gradients (Steiger et al., 2005; 

Hughes, 1997). The stochastic nature of riparian areas and their linear form also create 

habitat connectivity and a wide variety of micro-habitats, resulting in disproportionately 

high biodiversity (Décamps et al., 2004; Nilsson and Svedmark, 2002). 

Riparian geomorphology can be reliably predicted as a function of channel width, depth 

and slope, and flow velocity (Nanson and Gibling, 2003). Consequently, hydrologic 

regime and stream geomorphology are primary forces determining riparian zone 
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topography. Terracing results from cyclical channel evolution (Ilhardt et al., 2000). The 

initial channel, formed by downcutting, is typically narrow and deep (Hicken, 2003). 

Over time, owing to variable shear stress and erodibility of bank materials, the channel 

widens and the thalweg (deepest portion of the channel) is offset in the direction of more 

rapid erosion. A hydrologic shift, such as an increase in precipitation, causes the stream 

to begin downcutting in the region of the thalweg. Subsequent lateral cutting erodes the 

stream banks, resulting in a meandering channel form and producing a wide, flat channel 

at a lower level than the initial channel and a river terrace at the initial bankfull elevation. 

The wide, shallow stream experiences increased shear stress, resulting in the formation of 

sand bars and channel braiding. When water inputs increase, downcutting recommences 

at the new, lower level, and the cycle of terrace formation continues. 

The hydrologic and geomorphologic regimes heavily influence riparian plant community 

composition (Merritt et al., 2010; Steiger et al., 2005; Naiman and Décamps, 1997; 

Gregory et al., 1991). Moisture gradients, minimum and maximum flow levels, the 

duration of the period of inundation, and the variability of the flow regime can all 

influence species presence and abundance (Auble et al., 2005; Nilsson and Svedmark, 

2002; Hughes, 1997; Auble et al., 1994). Plants inhabiting the riparian zone must be 

tolerant of changing water levels and mechanical disturbance resulting from current and 

wave action (Hughes, 1997; Roberts and Ludwig, 1991). The majority of plant species 

are extremely sensitive to changes in maximum and minimum flood levels, even if mean 

annual water levels remain unchanged (Merritt et al., 2010; Auble et al., 1994). Similarly, 

many species are unable to withstand mechanical disturbance. Thus, a stochastic flood 

regime supports plant communities that are distinctly different from those found in 
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adjacent terrestrial and aquatic habitats. In addition, the hydrologic regime controls the 

availability of substrates, nutrients and moisture required by plant communities 

(Camporeale et al., 2013). Riparian gallery forests are characterized by spatial 

topographic variation resulting from terracing (Red River Regional Council, 2006).  

There is a strong association between the geomorphologic environment and vegetation 

community composition (Lenhart et al., 2013; Osterkamp and Hupp, 2010; Richards et 

al., 2002; Tabacchi et al., 1998; Hughes, 1997; Hupp and Osterkamp, 1996; Harris, 

1988). Erosion and sedimentation are natural parts of the riparian habitat disturbance 

regime, allowing species to colonize and stabilize, and thereby increasing species 

diversity and acting as primary forces controlling vegetation composition in the riparian 

area (Camporeale et al., 2013; Steiger et al., 2005; Bendix, 1994; Hupp and Osterkamp, 

1996). The stratigraphic characteristics of deposited sediment influence many aspects of 

plant habitat, including soil water retention and balance, hydraulic conductivity, oxygen 

availability, nutrient retention, and physical disturbance (Hupp and Osterkamp, 1996). 

Vegetation community type is heavily influenced by moisture availability, soil type, and 

nutrient availability. Consequently, riparian vegetation exhibits spatially driven 

topographic succession associated with the elevation change between terraces, wherein 

the bank zone, terraces, and upper slopes are characterized by distinct vegetation 

communities (Figure 1.1) (Smith et al., 1998; Hughes, 1997). 

Riparian vegetation can also reciprocally influence channel morphology, flow velocity, 

and transport of sediment, nutrients and contaminants (Camporeale et al., 2013). 

Vegetation contributes to bank stability both through physical stabilization and through 
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increased soil cohesion caused by matric suction (water tension) resulting from soil water 

uptake by plants and evapotranspiration (Pollen-Bankhead and Simon, 2010; Wynn and 

Mostaghimi, 2006; Micheli et al., 2004; Tabacchi et al., 2000; Hicken, 2003). Established 

root systems and above ground biomass protect deposited sediment from fluvial erosion 

and overland flow, thereby increasing accretion rates (Lenhart et al., 2013; Osterkamp 

and Hupp, 2010; Corenbilt et al., 2009; Van Pelt et al., 2006; Tabacchi et al., 1998). 

Plants also provide a temperature buffer, thereby reducing the amount of bank weakening 

caused by freeze-thaw cycles (Wynn and Mostaghimi, 2006). Vegetation reduces flow 

rate by increasing channel roughness, resulting both from living vegetation and from 

deposited woody debris, thereby reducing erosion (Tabacchi et al., 1998). Vegetation 

deposits downed woody debris in the channel and regulates water temperature through 

the effects of shading, creating a range of microhabitats exploited by aquatic biota 

(Tabacchi et al., 1998; Naiman and Décamps, 1997). 

1.3 Spatial Extent of the Riparian Zone 

Defining the spatial extent of the riparian zone is difficult owing to the complexity of 

interactions among the biotic and physical components of the habitat, as well as with 

adjacent terrestrial and aquatic ecosystems (Ilhardt et al., 2000; Naiman and Décamps, 

1997). There is no consensus as to how the riparian zone should be defined; several 

instances in the literature can be found in which the terms “riparian zone” and 

“floodplain” are employed without any reference to a specific definition (Fischer et al., 

2001; Ilhardt et al., 2000; Harris, 1988). Some differences of opinion are inevitable, as 

the manner in which the riparian zone is defined necessarily reflects the aims of the 
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analysis in question (Ilhardt et al., 2000). A variety of methods for defining the riparian 

zone have been used for different applications; these can be broadly grouped as methods 

based on predefined measurements applied indiscriminately to all riparian areas, and 

methods based on functional characteristics of the particular riparian area in question. 

The latter category is modified for appropriate application to individual habitats.  

One of the oldest and most common methods of delineating the riparian zone using 

predefined measurements is the fixed-width buffer method (Mayer et al., 2005; Ilhardt et 

al., 2000). Watercourses are buffered to form a strip of a set width on either side of the 

watercourse. This approach is most often applied to conservation planning and water 

quality regulations (Qiu, 2009; Dixon et al., 2006). A single buffer width can be used 

along the entire watercourse, or a series of widths determined based on threshold values 

for measurable parameters may be laid out. The latter approach is employed by the 

USDA Forest Service, which assigns pre-defined buffer widths based on soil hydrologic 

group, source area, and soil capability class (Qiu, 2009; Narumalani et al., 1997). Qiu 

(2009) developed a topographic index, predicting base flow and runoff, to identify target 

areas requiring buffers and corresponding appropriate buffer widths. These methods, 

while often preferred for ease of use and applicability to water quality management, do 

not provide an ecologically meaningful delineation of riparian habitat. Several studies 

have shown that uniform buffers correspond poorly to the actual extent of the riparian 

zone (Abood et al., 2012; USDA, 2004; Skally and Sagor, 2001). Holmes (2011) found 

that fixed-width buffers can both underestimate riparian habitat, and include upland 

areas, and disagreed with a buffer based on an ecosystem function definition of the 

riparian zone 40% of the time. Defining the riparian zone in terms of the functional 
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interactions of its constituent parts represents a more holistic approach (Ilhardt et al., 

2000; Gregory et al., 1991). In this vein, Ilhardt (2000) proposed a definition 

incorporating stream geomorphology, flood levels, and the presence of riparian 

vegetation, which has been widely referenced since in ecologically-focused riparian 

studies. Using this method, the riparian zone includes the watercourse, all adjacent areas 

that may be flooded for all or part of the year, and the extent of associated riparian 

vegetation (Holmes and Goebel, 2011; Verry et al., 2004; Ilhardt et al., 2000; Swanson et 

al., 1982). While it presents an ecosystem perspective, defining the riparian zone based 

on functional relationships requires that professional judgement be incorporated into the 

process of delineation (Ilhardt et al., 2000). 

Delineating the riparian zone functionally using GIS technology presents further 

challenges, as it requires that both riparian topography and flood levels be obtainable. 

Several approaches have been developed within the last ten years. Holmes and Goebel 

(2011) used the stream geomorphology approach developed by Ilhardt et al. (2000) and 

Verry et al. (2004) to manually delineate the extent of the riparian zone from topographic 

maps, with an additional buffer of one average tree height extending outward. This 

approach requires significant ecological knowledge, and is more costly and time-

consuming to develop than a fixed-width buffer. Also in 2011, Clerici et al. built a 

riparian habitat detection model using the coincidence of modelled 50-year flood levels, 

based on a 100 m DEM, and path distance (lateral cost of movement) indices calculated 

from 10 m and 30 m DEMs along digitized river/stream networks, and a 25 m buffer 

around ephemeral streams to contain possible riparian area. Within this boundary, they 

used a fuzzy membership classifier to identify riparian habitat based on classified Landsat 
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ETM+ imagery and an existing forest cover map. Mason and Maclean (2007) and Abood 

et al. (2012) modelled riparian zone extent using a 10 m DEM and the 50-year flood 

level. While these approaches accurately delineated the riparian zone, they require that 

50-year flood levels be obtainable. This project used a method modified from Mason and 

Maclean (2007) and Abood et al. (2012), wherein a high-resolution DEM and maximum 

mean monthly flood level were used to approximate the riparian zone, owning to the lack 

of availability of 50-year flood level records.  

1.4 Riparian Health, Threats to Riparian Habitat and Health Assessment 

There is no universal definition for riparian health, and, when described, it is usually 

associated with applied practical assessments (Norris and Thoms, 1999). Consequently, it 

is often defined in accordance with the interests of the organization conducting the 

assessment, with a disproportionate focus placed on a single component (biological, 

ecological, hydrological, or geomorphological) of riparian habitat, without regard for the 

remaining components and their interconnectedness. To obtain a more holistic 

perspective, riparian health should be defined based on the degree of similarity between a 

given riparian habitat and its historical condition prior to anthropogenic or natural 

disturbance (Jansen, 2005). Riparian habitats are inherently dynamic ecosystems, subject 

to frequent disturbance in the form of changing water levels, erosion and channel 

migration; therefore, processes of degradation, such as bank instability due to 

undercutting, do not necessarily reflect poor riparian health (Nilsson and Svedmark, 

2002; Naiman and Décamps, 1997). Historical fluvial regimes, erosional processes and 

vegetation composition should be considered in assessing riparian health. As detailed 
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ecological information regarding the historical condition of riparian habitats is often not 

available, the condition of adjacent, relatively undisturbed riparian habitats can be used to 

assess the probable natural state of modified riparian area, as regards its capacity to 

support ecosystem functions and biotic communities (Jansen, 2005).  

Globally, riparian zones are among the most sensitive and vulnerable habitats (Millenium 

Ecosystem Assessment, 2005; Nilsson and Svedmark, 2002; Narumalani et al., 1997). 

The riparian zone is affected by the nutrient, chemical and sediment inputs, moisture 

retention capacity, and biotic species composition of adjacent uplands (Naiman and 

Décamps, 1997). Consequently, anthropogenic modification of surrounding habitats can 

have a detrimental effect on the health and function of riparian habitats. Anthropogenic 

factors influencing the riparian zone are primarily related to land use (Harris, 1988). The 

key influences include agricultural activities, water regulation, and urban development 

(Arroyo, 2010; Merritt et al., 2010). Agricultural production introduces chemicals, 

nutrients and sediment into the river system through surface and subsurface runoff 

(Leclaire, 2011). In addition, mechanical disturbance from land clearing for agricultural 

and urban development, and grazing pressure from livestock, disrupt riparian biota, 

undermine bank stability, and increase erosion and sediment load in streams and rivers 

(Arroyo et al., 2010). Municipal water systems can pollute riparian habitat through the 

discharge of wastewater and effluent. Water control structures such as dams interfere 

with natural water levels, causing flooding and sedimentation, and undermining bank 

stability.  
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While anthropogenic factors can negatively influence riparian health and functionality, 

the health of riparian habitat also has implications for human well-being (Steiger et al., 

2005). Functioning riparian habitat regulates water quality by trapping nutrients, 

chemicals and sediment, and controls flooding through water retention (Steiger et al., 

2005; Décamps et al., 2004; Tabacchi et al., 1998; Hughes, 1997). When this 

functionality is lost, human communities experience poor water quality as a result of 

chemical and wastewater transport, fisheries and recreation are disrupted by nutrient 

loading to lakes, and areas adjacent to the riparian zone are subject to increased flood 

levels.  

Riparian vegetation also plays an important role in preventing soil erosion (Zaimes et al., 

2008). While undisturbed riparian forest provides the best protection, any deep-rooted 

vegetation cover represents an improvement in bank stability as compared with 

unvegetated areas or those characterized by shallow-rooted vegetation. In North America, 

riparian zones adjacent to annual row crops are associated with a high rate of bank 

erosion. The worst bank erosion is seen in cattle pastures; however, pastures including 

riparian forest are less damaged than those without forest (Zaimes et al., 2008). Sediment 

trapping and rate of soil erosion are inversely proportional to root density through 

binding effects of roots, and through an increase in channel roughness, which increases 

flow resistance (Steiger et al., 2005; Hughes, 1997). 

Riparian zones are important refuges for biodiversity. They provide critical habitat for 

two thirds of Canada’s endangered species (Saunders, 2000). They are disproportionately 

plant species-rich, owning to the broad range of micro-habitats created by the sharp 
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hydrological, geological and soil gradients by which they are characterized (Décamps et 

al., 2004) (Décamps et al., 2004; Nilsson and Svedmark, 2002). These micro-habitats are 

also utilized by fish, birds, mammals, and terrestrial and aquatic invertebrates. In 

addition, riparian zones serve as corridors between habitats for wildlife, and for organic 

and inorganic material influencing plant communities (Levick et al., 2008; May, 2003; 

Nilsson and Svedmark, 2002).  

Riparian health is assessed for purposes of management using health indicators. 

Indicators are observable characteristics of the ecosystem, from which less the visible 

components of healthy ecosystem function can be reliably inferred (Young and Collier, 

2009). While individual structural and functional characteristics do not necessarily 

exhibit linear relationships, the goal of riparian habitat inventories is to identify several 

easily observable characteristics, which, in combination, provide a reasonable indication 

of total ecosystem health. As riparian inventories have traditionally been conducted in the 

form of detailed field surveys, the majority of riparian health indicators comprise 

characteristics which can be easily observed from the ground, such as: vegetation species 

composition; canopy cover and age class; vegetation removal by herbivore browsing or 

anthropogenic means; channel form and substrate composition; fluvial landforms, 

undercutting and human alterations affecting bank stability; and proportion of exposed 

soil (Dixon et al., 2006; Dixon et al., 2005; Fitch and Ambrose, 2003).  

While ground monitoring provides detailed information pertaining to riparian habitat 

function, survey methods are costly and time-consuming (Forzieri et al., 2011; Johansen 

et al., 2010a; Makkeasorn et al., 2009; Johansen et al., 2008b; Johansen et al., 2007b). 
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Consequently, resource availability often limits the riparian monitoring efforts to small or 

particularly sensitive areas. In addition, conducting surveys in remote and inaccessible 

regions can be difficult or infeasible. As watersheds can occupy hundreds of square 

kilometres, there is a need to develop automated assessment methods, which can be used 

to monitor riparian condition over large areas and to identify problem areas requiring the 

application of management prescriptions. Recent research has begun to assess a variety of 

approaches for delineating and assessing riparian zones using remotely sensed data, 

including aerial and satellite imagery, DEMs, and LiDAR (Aguirre-Gutiérrez et al., 2012; 

Johansen et al., 2011; Abood et al., 2012; Johansen et al., 2010a; Johansen et al., 2010b; 

Johansen et al., 2008a; Johansen et al., 2008b; Platt and Rapoza, 2008; Gergel et al., 

2007; Johansen et al., 2007a; Johansen and Phinn, 2006a; Johansen and Phinn, 2006b; 

Jansen, 2005). 

1.5 Remote Sensing Overview and Data Types  

Remote sensing is the term used to describe the observation and collection of information 

across the Earth’s surface, using a device situated at a distance from the target surface 

being observed (Campbell, 2002; Barrett and Curtis, 1999). Objects on the Earth’s 

surface emit electromagnetic energy at wavelengths as a function of their internal 

temperature. Information is collected by measuring the electromagnetic energy reflected 

by, or emitted from, the land or water surface of interest. Remote sensing is widely used 

tool in environmental studies and conservation, which allows information to be captured 

across large areas at a frequency not possible using in-field assessments, and has great 

utility in riparian applications (Campbell, 2002; Muller, 1997). The combination of high-
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resolution aerial imagery, high-resolution multispectral and panchromatic satellite 

imagery, a digital elevation model (DEM), and light detection and ranging (LiDAR) data, 

has the potential to greatly improve riparian health detection and automation. 

Aerial imagery typically consists of visible-spectrum panchromatic light captured using a 

camera mounted on an aircraft, though sensors able to detect infrared bands may also be 

carried (Campbell, 2002). Panchromatic imagery comprises a single band, usually 

displayed as a greyscale image, which covers a wide range of wavelengths. Aerial 

imagery can be converted to digital format and orthorectified using a DEM, stereo pairs, 

or topographic data, to correct for error introduced by the tilt of the camera, as well as 

relief displacement resulting from topographic variation. The corrected imagery can then 

be used in spatial analyses (Campbell, 2002). Aerial imagery capture can be scheduled to 

optimize the collection of features of interest such as vegetation data, and to 

accommodate adverse weather conditions (Gruen, 2012). Aerial imagery is typically 

high-resolution (<1m), and is usually available at a lower cost than high-resolution 

satellite imagery. The fine-scale spatial resolution offered by aerial data is beneficial for 

ecological studies, including riparian health assessment (Campbell, 2002).  

Satellite imagery is captured from space using either an active sensor, which emits 

artificially generated electromagnetic radiation and measures the reflected returns from 

terrestrial features, or a passive sensor, which records emitted and reflected 

electromagnetic imagery originating from natural sources (Campbell, 2002). 

Multispectral imagery comprises several spectral bands, each of which covers a relatively 

small increment of the electromagnetic spectrum (e.g. blue, green, red, and infrared 
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wavelengths), resulting in a high spectral resolution (Dhore and Veena 2014). As 

different objects and surfaces such as soil, water, and vegetation are each associated with 

a particular spectral signature, multispectral imagery is useful for deriving indices and for 

environmental analyses. Despite the greater spectral resolution, multispectral imagery is 

usually captured at a coarser resolution than panchromatic data (Campbell, 2002). 

Consequently, multispectral and panchromatic imagery can be used in combination to 

utilize the benefits of both spectral differentiation and high spatial resolution.  

The use of aerial and satellite imagery to map and classify the riparian zone is applied 

mainly to the vegetation component, and to physical characteristics, such as channel 

width, that can be easily observed using optical data (Jansen, 2005; Johansen et al., 

2006a; Johansen et al., 2006b; Gergel et al., 2007; Johansen et al., 2007a; Johansen et al., 

2008a; Johansen et al., 2008b). The use of DEMs to delineate riparian areas has value in 

that DEMs detect fluvial landforms that can be incorporated with recorded water levels to 

identify areas affected by mean and maximum flood levels (Abood et al., 2012). A DEM 

depicts a continuous three-dimensional elevation surface, commonly the elevation of a 

topographic surface (Podobnikar et al., 2000). DEMs are constructed using measured 

values, either in a grid format or at a series of survey point locations; the latter is known 

as a Digital Terrain Model (DTM) point dataset. These data can be collected in the field, 

or derived from aerial or satellite imagery, or LiDAR data. Slopes connecting known 

point values are interpolated using one of a variety of methods, such as kriging, inverse 

distance weighting, or nearest neighbour (ESRI, 2010). Several studies suggest that 

recorded flood levels provide the most reliable method to delineate the riparian zone 

(Abood et al., 2012; Ilhardt et al., 2000). DEMs enable the delineation of areas 
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submerged at a given flood level, and also facilitate the identification of landforms, such 

as terraces.  

While aerial and satellite imagery can be classified to identify features visible from the 

air, and DEMs are useful for delineating geomorphologic structures, neither can 

accurately detect the vertical structure of vegetation communities. As the structure of 

both the understorey and the canopy change rapidly between the water’s edge and the 

forested upper slopes marking the edge of the riparian zone, the ability to detect these 

characteristics has the potential to dramatically improve automated riparian assessments 

(Naiman and Décamps, 1997). Light Detection and Ranging (LiDAR) systems have the 

capacity to provide the necessary data. LiDAR, also known as laser altimetry, is an active 

sensor remote sensing technology, which derives elevation data by emitting short 

duration laser pulses light and measuring the return time of backscattered light to the 

sensor (Wandinger, 2005; Lefsky et al., 2002). Recent developments in LiDAR research 

have demonstrated that this technology has the capacity to improve the accuracy of 

classifications derived from optical imagery through the addition of structural 

information, and to augment spatial analysis by the provision of three-dimensional data 

(Hudak et al., 2009; Wulder et al., 2008; Wandinger, 2005; Lefsky et al., 2002). 

Vegetation height can be determined by subtracting the ground-level return time from the 

return time for the top of various understorey and canopy levels (Johansen et al., 2011; 

Johansen et al., 2010a; Johansen et al., 2010c; Goetz, 2006; Dowling and Accad, 2003). 

From these data, canopy and stand vertical structure can be described. Vegetation height 

and stand structure can be incorporated with classified imagery to more accurately 

characterize the riparian zone (Chen et al., 2012). In addition, the enhanced vegetation 
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community information can be used to estimate channel flow based on vegetation 

characteristics that affect channel flow resistance (Forzieri et al., 2010).  

1.6 Application of Remote Sensing to Riparian Studies 

Vegetation mapping and classification of the narrow riparian zone has historically been 

conducted using aerial photo-interpretation from high-resolution stereo imagery 

(Johansen et al., 2007a; Johansen et al., 2007b; Muller, 1997). While manual photo-

interpretation is time-consuming and, consequently, is limited to small areas, riparian 

studies have continued to rely heavily on field surveys and photo-interpreted aerial 

imagery, owing to the coarse resolution (20-30 m) of satellite imagery available for 

broader coverages (Dilts et al., 2010; Johansen et al., 2007a). Automated classification of 

imagery prior to 2000 used a pixel-based classification system, in which individual pixels 

were classified according to spectral reflectance values. Pixel class values are defined 

based on training datasets. A pixel of a given resolution represents a fixed unit of area on 

the ground, regardless of the scale of the objects of interest in the image to be classified 

(Hay et al., 2003). This is particularly problematic in riparian habitat classification, as the 

riparian zone is often too narrow to be detected at a coarse resolution (Johansen et al., 

2007a; Muller, 1997). Riparian classification studies conducted using pixel-based 

classification techniques have had limited success in differentiating vegetation 

characteristics (Nagler et al., 2001; Lonard et al., 2000).  

While riparian areas are too narrow to be mapped using medium resolution imagery, such 

as Landsat, the advent of high-resolution satellite imagery (<5 m) provided the raw 

material necessary to detect riparian features (Alencar-Silva and Maillard, 2010). 
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However, the use of pixel-based methods to classify high-resolution imagery often results 

in a “salt and pepper” effect, as each pixel covers a very limited area and individual 

pixels are often characterized by outlier spectral values, interfering with the ability to 

detect features composed of multiple pixels (Blaschke, 2010; Yu et al., 2006; Bock et al., 

2005). This effect is more pronounced when pixel-based classification is applied to a 

heterogeneous surface, such as riparian area, which represents an abrupt gradient in 

physical and vegetation features. Object-based image analysis, an alternative 

classification method, minimizes this effect using image segmentation to group pixels 

into objects based on spatial, textural, and spectral characteristics prior to classification 

(Yu et al., 2006). The resultant reduction in image noise provides for a smoother 

visualization and more accurate classifications.  

Image segmentation is an iterative routine that first divides the image by detected 

underlying spatial and spectral patterns, then further segments the base objects, applying 

rules defined by expert knowledge (Blaschke et al., 2002). Segmentation is completed 

when all pixels have been assigned to objects according to a user-defined scale. A wide 

variety of segmentation algorithms have been developed, including region-, field- and 

edge-based segmentation, and multi-scale and multi-date segmentation, among others 

(Aguirre-Gutiérrez et al., 2012; Desclée et al., 2006; Blaschke et al., 2002; Pal and Pal, 

1993). These algorithms incorporate spatial and textural quantifiers, such as nearest 

neighbour distances, shape metrics, texture descriptors and hierarchy with spectral 

reflectance values such as mean brightness to provide context for image classification and 

emphasize different image elements associated with features inherent to the objects being 

analysed (Im et al., 2008; Hay et al., 2003). Thus, selecting appropriate algorithms is 
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essential to accurately discriminating between objects of interest. Because pixel values 

are grouped to form objects, statistics describing spectral information such as: median 

values; minimum and maximum values; and mean ratios and variance can be calculated 

for each object (Blaschke et al., 2002). The statistics available for individual pixels, such 

as mean bandwidth, are much more limited. More importantly, spatial statistics such as 

distances, neighbourhoods and topologies can be computed for each object. Because 

OBIA utilizes spatial, geometrical, and textural attributes, it can be used to extract 

valuable information from panchromatic imagery that would not accessible using a pixel-

based classification, which considers only spectral values (De Kok et al., 1999). As 

panchromatic imagery is available for larger areas and at higher resolutions than 

multispectral imagery, it is essential that methods able to access this valuable source of 

information be developed. OBIA is currently the only viable method for this task (De 

Kok et al., 1999). 

Object-based image analysis produces significantly higher classification accuracies than 

traditional pixel-based classification when applied to high-resolution imagery (Aguirre-

Gutiérrez et al., 2012; Platt and Rapoza, 2008). Several riparian classification studies 

based on object-based image analysis were conducted between 2000 and 2005. These 

produced relatively poor results, as only medium resolution (5-30 m) imagery was 

available (Yang, 2007; Congalton et al., 2002). Many researchers concluded that, while 

some characteristics, such as channel scour and deposition, and vegetation density could 

be identified, the riparian zone was too narrow for vegetation structure and composition 

to be accurately detected using medium resolution imagery (Brooks and Knight, 2008; 

Congalton et al., 2002). Post 2005, the increasing availability of high-resolution satellite 
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imagery has produced several advances in the use of object-based image analysis as an 

assessment tool. Studies have indicated that a wide variety of riparian health indicators, 

such as density of tree crowns, tree clearing, percent foliage cover, vegetation 

communities, organic litter, vegetation overhang, riparian zone width, channel width, 

width of exposed stream banks (an indicator of bank stability), distance between cleared 

areas and the stream channel, flood damage, and canopy continuity, can be detected using 

objected-based image analysis (Johansen et al., 2008a; Johansen et al., 2008b; Gergel et 

al., 2007; Johansen et al., 2007a; Johansen and Phinn, 2006a; Johansen and Phinn, 2006b; 

Johansen and Phinn, 2006b; Jansen, 2005). Recent research also indicates that riparian 

forest structure can be detected through the inclusion of both optical and LiDAR imagery 

in an object-based image analysis (Alencar-Silva and Maillard, 2010; Wang et al., 2008). 

Incorporating optical and LiDAR datasets, and object-based classification methods into 

existing riparian health assessments has the potential increase the efficiency and 

effectiveness of habitat management planning and implementation, by allowing 

problematic riparian areas to be targeted with comparatively minimal cost and time. This 

will allow the majority of resources to be reserved for the development and 

implementation of management prescriptions. 

1.7 Statement of Problems and Objectives 

Riparian areas are among the most biodiverse habitats in the Canadian prairies, and are 

critical to soil conservation. However, they are also among the most ecologically 

vulnerable habitats. Therefore, assessing, monitoring, and managing riparian areas is 

essential. Currently, riparian health assessments remain heavily reliant on ground-based 
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surveys. This approach to assessment is inherently prone to subjectivity, and, considering 

the length and number of river systems in the Canadian prairies, is impractical from a 

resource availability perspective. The primary goal of this research is to develop an 

objective, automated riparian health assessment to target problematic riparian areas for 

management planning without the need for intensive field surveys. Sub-objectives 

include: 

1. determining the potential of object-based image analysis and canopy structure 

data to remotely detect riparian health; 

2. developing an automated riparian health assessment using remotely sensed 

vegetation and topographic data; and, 

3. suggesting a management protocol for the automated assessment of riparian 

health.  



 24

 
Figure 1.1. Spatially-driven topographic succession in vegetation communities typical of a riparian corridor in the La Salle River 

region. 
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CHAPTER 2: STUDY AREA 

The study area comprised the majority of the La Salle River and adjacent riparian 

corridor in Manitoba, Canada (Figure 2.1). Riparian health field surveys were conducted 

along the La Salle in August, 2011 and June, 2012.  

2.1 Geographic Location 

The La Salle River is located in southern Manitoba, west of Winnipeg. It is the primary 

watercourse in the La Salle Watershed, and intersects the Winnipeg and Portage 

Ecordistricts in the Lake Manitoba Plains Ecoregion, contained in the Prairies Ecozone 

(Smith et al., 1998). The area surveyed extended 75 km along the river, from the 

headwaters (49°55'53"N, 98°11'18"W) to a point approximately 17 km (along the 

channel) west of its confluence with the Red River (49°53'11"N, 97°46'03"W).  

2.2 Climate 

The La Salle River is situated in the Grassland Transition Ecoclimatic Region, in the 

warmest and most humid portion of this climate zone (Smith et al., 1998). The Grassland 

Transition is characterized by long, severe winters and short, mild summers. The growing 

season is approximately 181-183 days, and the number growing-degree days ranges from 

1700 to 1720. The dominant soil climate is subhumid Boreal, ranging from cool to 

moderately cold, and transitioning to Cryoboreal in the Winnipeg Ecodistrict. Weather 

stations in Portage la Prairie and Marquette provide climate records representing the 

western edge and central regions of the study area, respectively (Environment Canada, 

2012a). The Portage weather station reports a mean annual temperature of 3.1°C, and a 
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total 514.6 mm of precipitation. Marquette records a mean annual temperature of 2.9°C, 

and 538.8 mm of precipitation. Up to 25% of the annual precipitation is deposited in the 

form of snow (Smith et al., 1998). The majority of precipitation in the area occurs 

between May and September (Figure 2.2). The annual moisture deficit ranges from 170 

mm to 200 mm. 

2.3 Soils and Geology 

The La Salle River is situated on the Red River Plain in the Lake Manitoba Lowlands. 

The area occupied by the river is primarily underlain by Palaeozoic bedrock including, 

from east to west: Ordovician dolomites and limestones; Silurian dolomites; and 

Devonian limestones (Welsted et al., 1996; Teller, 1984). The westernmost reach of the 

river, near the headwaters, is associated with Jurassic shales and carbonates. The surficial 

geology overlying this foundation is the result of the most recent glaciation, and consists 

mostly of glaciolacustrine and alluvial sediments (Smith et al., 1998). The dark clays and 

overlying lighter calcareous silty clays, which comprise the majority of the watershed’s 

surficial geology, were deposited following the formation of Glacial Lake Agassiz in 

approximately 13000 BP (Teller, 1984). Clay depth is variable, ranging from <5m to 50 

m on an east-west gradient. The most eastern portion of the watershed is characterized by 

a gently rolling ridge and swale topography with a southeast orientation (La Salle 

Redboine Conservation District, 2007). The ridges, 1-3 m in height and spaced 1-3 km 

apart, formed when glaciolacustrine clays were deposited on glacial till ridges laid down 

by the Red River glacial lobe. The western third of the La Salle watershed crosses the 

Assiniboine delta, an alluvial deposit formed by the glacial spillway then occupied by the 
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Assiniboine River as it drained into Lake Agassiz. This region is characterized by a layer 

of medium to fine sand, with an average depth of 3 m, overlying the clay deposits. 

Elevation varies from approximately 259 masl on the Assiniboine Delta to 236 masl in 

the east (Smith et al., 1998). Topography in the area ranges from gently sloping in the 

west to flat on the Red River Plain in the east. Slope gradients are low, ranging from 0.3-

1.0 m/km, though steeper gradients (3-10 m/km) are sometimes found immediately 

adjacent to the La Salle, Red and Assiniboine Rivers.  

Soils in the eastern portion of the watershed are dominantly Gleyed Humic Vertisols, 

Gleyed Vertic Black Chernozems, Gleysolic Humic Vertisols and Humic Gleysols, with 

imperfect to poor drainage (La Salle Redboine Conservation District, 2007; Smith et al., 

1998). Surface drainage has been enhanced in the majority of poorly drained soils in the 

area. These enhancements cause poorly drained soils to exhibit imperfect drainage 

characteristics. As a result of the higher sand content, Rego Black Chernozems with by 

imperfect drainage are the predominant soil type along the western portion of the La 

Salle. The high clay content of the majority of the soils along the La Salle is a concern 

with regard to water erosion, as poor infiltration results in increased ponding and surface 

runoff (La Salle Redboine Conservation District, 2007). The flat local topography largely 

mitigates this risk, resulting in a water erosion designations of negligible or low for most 

of the area. However, transport of soluble nutrients and chemicals from agricultural areas 

remains a concern. The risk of wind erosion is considered to be moderate in the clay-

dominated eastern two thirds of the area; however, the sandy soils to the west have been 

classified as being at a high to severe risk of wind erosion. 
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2.4 Hydrology 

The La Salle River watershed is part of the Red River drainage division, a component of 

the Nelson River Drainage Basin (Smith et al., 1998). The La Salle has a total drainage 

area of 2407 km2 and an approximate channel length of 108 km. It is a turbid, slow-

moving river, exhibiting defined meanders, meander cutoffs and oxbows, as well as 

significant bank undercutting associated with meander development (Graveline and 

Larter, 2006). It occupies a paleochannel of the Assiniboine River, which was carved by 

the Assiniboine approximately 2980 BP and abandoned by 1300 BP (Welsted et al., 

1996).  

Hydrometric data, including flow rates and water levels, have been collected at various 

times at 12 stations along the La Salle River operated by (Environment Canada, 2012b). 

Data summarized below were drawn from a station located in Sanford, Manitoba, as it 

reports both flow rates and levels, and has the longest record of 1915-2010. However, 

only data collected between 1967 and 2010 are included, as collected prior to this period 

is very incomplete. Peak flows occurred in April in all recorded years, with the exception 

of 1979, 2005 and 2010, in which the peaks took place in May, July, and June, 

respectively. The rate of flow is highly variable on both an annual (Figure 2.3) and a 

monthly (Figure 2.4) basis; April flow rates ranged from 0.345 m3/sec in 2000 to 55.3 

m3/sec in 2001, which also represents the peak flow rate for the entire recorded period. 

As seen in Figure 2.4, the La Salle has had a flow rate of 0 m3/sec in all months except 

April during the period of 1967-2010. Consequently, it is classified as an intermittent 

stream (Graveline and Larter, 2006). A direct comparison of flow rates pre- and post-dam 
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and pump construction (Graveline and Larter, 2006) is not possible, as sufficient data 

recorded prior to 1940 are not available. However, reports indicate that, with the 

implemented flow regulation measures, flow rates are significantly less during flood 

periods, owning to the presence of water retention structures, and flow conditions have 

become considerably more homogenous as a result of flow augmentation during low 

water periods (La Salle Redboine Conservation District, 2007; Graveline and Larter, 

2006). 

2.5 Vegetation, Land Use and Disturbance  

Historically, the La Salle watershed consisted predominantly of tall-grass prairie with 

occasional stands of trembling aspen (Populus tremuloides) (Smith et al., 1998). The 

majority of forest cover was situated along river and stream corridors. Currently intensive 

agriculture dominates the La Salle watershed and consequently, the majority of the 

natural vegetation has been replaced with cropped agricultural land. In addition, pasture 

is utilized for livestock operations, primarily pig and cattle production (La Salle 

Redboine Conservation District, 2007). Adjacent to the La Salle, narrow strips of natural 

riparian habitat remain along portions of the river. These riparian corridors are typically 

wider and less disturbed in the lower reaches of the La Salle. Emergent species colonize 

the shallow edge of the channel. Soils immediately adjacent to the channel are often 

saturated, owing to frequent inundation and imperfect drainage. These soils support 

willows (Salix spp.), Manitoba maple (Acer negundo), red osier dogwood (Cornus 

sericea), reed canary grass (Phalaris arundinacea) and sedges (Carex spp.). At the level 

of the first terrace, periodically inundated soils are colonized by Manitoba maple, green 
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ash (Fraxinus pennsylvanica), sedges and ferns. The second terrace is better drained, and 

is dominated by green and black ash (Fraxinus nigra) and American elm (Ulmus 

americana), with chokecherry (Prunus virginiana) and regenerating tree species 

representing the main understorey component. The herbaceous layer typically includes 

ostrich fern (Matteuccia sthruthiopteris), stinging nettle (Urtica dioica), wood nettle 

(Laportea canadensis), and moonseed (Menispermum canadense). Well-drained upland 

soils above the second terrace are characterized by an American elm and bur oak 

(Quercus macrocarpa) forest, with an understorey dominated by American and beaked 

hazel (Corylus americana, Corylus cornuta), and hawthorn (Crataegus chrysocarpa). 

Although the vegetation composition is primarily indigenous, exotic species, such as 

invasive reed canary grass (Phalaris arundinacea) smooth brome (Bromus inermis), 

quackgrass (Agropyron repens), Canada thistle (Cirsium arvense), sow thistle (Sonchus 

uliginosis), motherwort (Leonurus cardiaca), field bindweed (Convolvulus arvensis), 

lesser burdock (Arctium minus), and dandelion (Taraxacum officinale), invade from 

adjacent agricultural areas, often displacing native species. 

Historically, fire cycles allowed native tall-grass prairie to remain dominant, preventing 

the spread aspen stands (La Salle River Watershed Planning Authority, 2010). Because 

much of the land base is in agricultural production natural ecological processes, 

particularly fire, are largely supressed. However, owning to its physical setting in a large 

glacial floodplain, characterized by low relief and considerable runoff during the spring 

thaw, it is often subject to severe flooding in the spring. Agricultural lands comprise 

approximately 90% of the region, including 75% annual cropland, 10% grassland and 

pasture, and 4% forage (La Salle Redboine Conservation District, 2007). Agricultural 



 31

development consists primarily of cereals, with some forage crops and a trend of 

increasing canola production. In addition, large-scale livestock operations have recently 

shown considerable growth, with the greatest increase being seen in pig production, 

followed by cattle (La Salle River Watershed Planning Authority, 2010). Livestock 

operations are more prevalent in the upper portion of the watershed, owing to the higher 

wind erosion risk associated with the sandy soils of the Assiniboine Delta, which make 

this region less suitable for cropping.  

2.6 Anthropogenic Impacts 

Surface water quality in the La Salle Watershed currently ranges from marginal to fair 

(La Salle River Watershed Planning Authority, 2010). Stressors affecting water quality 

are primarily anthropogenic, and include both point and non-point sources associated 

with agricultural operations, municipal uses and recreation (Graveline and Larter, 2006). 

Since 1975, nutrient loading to the La Salle River has intensified, with increases of 

145.5% and 193.8% in total dissolved nitrogen and phosphorus, respectively, between 

1974 and 1999. The heavy agricultural usage that characterizes the watershed is the 

primary cause of these increases. Concentrations of broadleaf herbicides often exceed 

recommended guidelines (La Salle River Watershed Planning Authority, 2010). In 

addition, manure inputs from livestock operations contribute to nutrient enrichment. 

These inputs can result in algal blooms, leading to oxygen depletion along the La Salle, 

particularly during the winter months. Nutrient loading in the Red River downstream of 

its confluence with the La Salle has also been exacerbated, though to a far lesser degree 

(Graveline and Larter, 2006). Proportional increases in nitrogen and phosphorus observed 
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in the Assiniboine River over the same period have been significantly lower, indicating 

that factors contributing to poor water quality present a larger problem on the La Salle. 

The level of nutrient increase is also indicative of the deterioration of riparian habitat 

along the La Salle River, supporting the results of a riparian health assessment 

commissioned by the La Salle Redboine Conservation District in 2006 (La Salle 

Redboine Conservation District, 2007), which assessed qualitative classifications of 

channel morphology, bank stability and riparian zone function (Graveline and Larter, 

2006). The survey found that only 6% of the land area within 50 m of watercourses in the 

La Salle watershed had native cover, and identified 119 riparian sites requiring habitat 

restoration. Lack of vegetative cover on stream banks and excessive tillage in agricultural 

areas are the primary causes of riparian habitat deterioration, and exacerbate soil and 

bank erosion. 

The flow regime of the La Salle River has been considerably altered by dam construction 

and flow augmentation (Graveline and Larter, 2006). Beginning in the 1940s, eight dams 

were constructed by the Prairie Farm Rehabilitation Administration (PFRA, now a part of 

the integrated Agri-Environment Services Branch), a branch of Agriculture and Agri-

Food Canada. These dams have transformed the river into a series of reservoirs, 

interfering with fish movements, promoting sedimentation, and creating homogenous 

flow conditions along the length of the river. To ensure adequate water availability for 

agricultural applications (e.g. livestock watering and crop irrigation), as well as domestic 

consumption, flow augmentation has been implemented. Significant volumes of water 

from the La Salle’s three active pumping sites in the RM of MacDonald augment river 

flow rate by 0.70 m3/sec, using water drawn from the Assiniboine River. 
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2.7 Management 

Recognition of the water quality and management issues affecting the La Salle watershed 

led to the preparation of an Integrated Watershed Management Plan (IWMP), completed 

in October 2010 through the cooperative efforts of the La Salle Redboine Conservation 

District, Manitoba Conservation, and the RMs of Cartier, Grey, Macdonald, Portage la 

Prairie, Richot, and South Norfolk. The plan identifies riparian health as a concern and 

cites improving riparian and river health as one of its four goals, in addition to improving 

the state of water management (including flood reduction and ensuring adequate water 

supply), improving water quality, and increasing public participation in water 

stewardship. In addition, the La Salle Redboine Conservation District offers eight major 

programs that are directly or indirectly beneficial to riparian health, including: 1) a buffer 

strip program, which prescribes planting of a strip 10-200 feet wide of a forage crop 

along agricultural fields adjacent to designated drains to reduce soil erosion; 2) a grassed 

waterway program, under which vegetative cover is established and maintained along 

waterways to reduce erosion of the channel and of adjacent agricultural soils; 3) a gully 

erosion program, which subsidizes physical alterations along gullies to repair existing 

erosion and reduce future stream bank deterioration; 4) placement of sediment barriers to 

trap eroded sediment at its point of origin, thereby reducing sediment loading 

downstream and maintaining local soil health; 5) pasture pipeline and alternative 

watering system assistance; 6) riparian fencing and relocation of livestock facilities 

programs, which prevent livestock access to riparian areas and provide water for 

livestock pastured away from water sources, thereby preventing damage associated with 

pugging and hummocking in riparian areas, preserving wildlife habitat, and reducing 
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nutrient inputs to the stream from manure; 7) a farmyard runoff control program, which 

subsidizes the rerouting of farmyard runoff around pollution sources to reduce nutrient 

inputs to streams; and, 8) constructed wetland, water retention, and flood protection 

diking programs, all of which reduce pollution inputs to stream through leaching and 

overland flow (La Salle Redboine Conservation District, 2012). These programs are 

intended reduce erosion, improve water quality, and preserve wildlife habitat. 
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Figure 2.1. Map showing the extent of the La Salle River study area, survey sites, and its 
location in Manitoba (Data Sources: Manitoba Land Initiative (2014)). 
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Figure 2.2. Mean monthly precipitation (mm), denoted by a square symbol, and 
temperature (°C), denoted by a circle symbol recorded at the Marquette weather 
station (Environment Canada, 2012a). 
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Figure 2.3. Mean, denoted by a circle symbol, and maximum, denoted by a square 
symbol, annual flow rates (m3/sec) for the La Salle River at Sanford (Environment 
Canada, 2012a). Minimum values are near zero and not shown. 
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Figure 2.4. Mean, denoted by a circle symbol, and maximum denoted by a square 
symbol, monthly flow rates (m3/sec) for the La Salle River at Sanford between 
1967 and 2010 (Environment Canada, 2012b). Minimum values are near zero and 
not shown. 
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CHAPTER 3: EMERGING TECHNOLOGIES IN RIPARIAN HEALTH 

ASSESSMENT 

Abstract 

Riparian zones are narrow, heterogeneous habitats characterized by structurally diverse 

gallery forests. Traditional riparian health assessment methods rely on resource-intensive 

field surveys. Recent advances in remote sensing have potential in the development of 

remote riparian health assessment methods. The objective of this research was to explore 

the potential of emerging technologies, including object-based image analysis (OBIA) 

and light detection and ranging (LiDAR), in remote riparian health assessment. Riparian 

health surveys were conducted along the La Salle River in Manitoba, Canada. An OBIA 

was conducted on high-resolution imagery and canopy structure data derived from 

LiDAR data. A cluster analysis was preformed to identify natural groupings of objects in 

the image object dataset, and to assess their relationship to the riparian health scores 

determined in the field. Vegetation species composition was similar across all surveyed 

polygons. Healthy polygons were characterized by a dense understorey. The two-group 

level of the cluster analysis corresponded strongly to sites determined to be healthy or 

unhealthy during field reconnaissance, especially when LiDAR were used to generate 

canopy structure. The study shows that OBIA detects habitat elements relevant to riparian 

health, and canopy structure data derived from LiDAR contribute significantly to 

improving the accuracy of riparian health detection. 
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3.1 Introduction 

Riparian zones are narrow, heterogeneous habitats, and are often characterized by gallery 

forests in the Northern United States and Canada (Naiman and Décamps, 1997). Gallery 

forests exhibit spatially driven topographic succession, wherein vegetation species 

composition changes rapidly on a gradient from the river’s edge to the upland slopes, 

owing to the differential moisture and nutrient availability, and soil type associated with 

elevation above the river. These gradients result not only in vegetation species variability, 

but also in canopy structural diversity. Canopy structural diversity is a fundamental 

component of the riparian zone, contributing to many essential ecosystem functions, such 

as: provision of habitat and food sources for terrestrial and aquatic wildlife; nutrient and 

energy cycling; and sediment transport, deposition, and bank stability (Merritt et al., 

2010; Nilsson and Svedmark, 2002; Gregory et al., 1991).  

Healthy riparian areas are essential ecosystem components, both economically and 

ecologically. However, in a compromised state they can contribute to the transport of 

non-point source pollution, excess nutrients and sediment, and agricultural chemicals. 

Anthropogenic activities exacerbate damage to riparian areas, leading to flooding and 

sedimentation, bank erosion, and loss of wildlife habitat and biodiversity (Leclaire, 2011; 

Nilsson and Svedmark, 2002). Given the impact of riparian condition on surrounding 

environments, mitigating damage to riparian areas is essential (Makkeasorn et al., 2009; 

Mayer et al., 2005; Nilsson and Svedmark, 2002). In order to properly manage these 

habitats, it is necessary to assess their current degree of health and identify problem areas. 
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Riparian health has historically been assessed and monitored using ground inventories 

and manual aerial photo-interpretation (Gergel et al., 2007; Johansen et al., 2007a). This 

approach provides detailed information, but is costly, time-consuming, and often 

logistically infeasible in remote or inaccessible areas. Riparian areas are too narrow to be 

assessed using the medium- and low-resolution satellite imagery available prior to 2000 

(Dilts et al., 2010; Johansen et al., 2007a; Muller, 1997). In addition, current generations 

of satellite platforms lack sensors that provide simultaneously high spatial and spectral 

resolution, frequently limiting multispectral analyses to the visible and near-infrared 

portions of the electromagnetic spectrum. Furthermore, the pixel-based spectral 

classification methods widely used in landscape mapping often produce a scale-

dependent “salt and pepper” effect in riparian areas when high-resolution data are used. 

This occurs when spectral values in high-resolution data detect sub-elements of a single 

target feature (e.g. the sunny and shadowed portion of a single tree crown) that may have 

highly variable intensities but are not independent elements (Blaschke T. , 2010; Bock, 

Xofis, Mitchley, Rossner, & Wissen, 2005). This effect is problematic in the classification 

of narrow riparian zones, as the scale of many elements, as well as the zone itself, is 

spatially heterogeneous over small areas. However, following recent developments in 

image processing, semi-automated assessment approaches based on high-resolution aerial 

and satellite imagery, light detection and ranging (LiDAR), and digital elevation models 

(DEMs), have the potential to facilitate landscape-level monitoring (Forzieri 2011; 

Johansen et al., 2008; Makkeasorn et al. 2009; Johansen et al., 2007a). Object-based 

image analysis (OBIA), an alternative classification method, minimizes these problems 
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by using image segmentation to group pixels into objects based on spatial, textural, and 

spectral characteristics prior to classification (Yu et al., 2006). The resultant reduction in 

image noise provides for a smoother visualization and more accurate classifications. 

Although few studies have examined the application of OBIA to the assessment of 

riparian health, significant potential exists.  

A key issue associated with remote riparian health assessment is the condition of the 

understorey (Johansen, 2006a). The understorey contributes to several essential riparian 

functions, including: bank stability and erosion control; regulation of pollutants and 

nutrients; and structural complexity, which results in increased biodiversity and available 

wildlife habitat (Fortier, 2014; Eskelson et al., 2010; Munro et al., 2009; König, 2000; 

Richards and Chirman, 1994). Jansen (2005) found that the majority of information lost 

in remote sensing-based riparian health assessments pertains to the understorey. 

Consequently, a method to evaluate the state of the understorey needs to be a component 

of automated remote sensing approaches for riparian health assessment. Unfortunately, 

understorey attributes cannot be easily detected using above canopy imagery in the 

visible portion of the spectrum. LiDAR imagery, while unable to provide detailed 

spectral classifications of floristic composition, can be used to calculate the height of the 

canopy and understorey levels, and to derive understorey and canopy densities (structure) 

(Johansen et al., 2011; Johansen et al., 2010a; Johansen et al., 2010c; Goetz, 2006; 

Dowling and Accad, 2003). Integrating LiDAR data with optical imagery has strong 

potential for detecting riparian health indicators, but, to date, little research has explored 

this application. The objective of this study was to determine the potential of object-based 

image analysis and canopy structure data to remotely detect riparian health in the field.  
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3.2 Methods 

3.2.1 Riparian Health Field Survey Methods 

Field data collection was undertaken along the La Salle River to identify riparian health 

indicators detectable using remotely sensed imagery, and to obtain training and testing 

datasets for use in riparian health model development and validation. Data collection 

included detailed vegetation and physical feature surveys conducted in August of 2011 

and June and July of 2012 within the riparian zone, in cooperation with Agriculture and 

Agri-Food Canada (AAFC). The protocol employed was the Riparian Health Assessment 

developed by AAFC, modified from methods used by the Alberta Lotic Wetland 

Inventory, a comprehensive ground inventory developed by the Alberta Riparian Habitat 

Management Society (AAFC, 2004; Fitch and Ambrose, 2003). The Alberta Lotic 

Wetland Inventory characterizes the riparian zone based on the presence of wetland 

hydrology, hydric soils and hydrophytic vegetation.  

Prior to the field campaign, riparian survey units were delineated using a DEM to identify 

the boundary of the riparian zone. All areas adjacent to the river and sloping toward it 

were included. This riparian zone was then segmented into polygonal survey units, using 

eCognition Developer object-based image analysis software to identify topographically 

homogenous regions on the DEM. The segmented polygon boundaries were manually 

adjusted using topographic maps and aerial photography to produce polygons derived 

from observable vegetation or physical features. Because polygons were based initially 

on an automated DEM segmentation, they were irregular in shape and length. Polygons 

between 100 m and 300 m in length were surveyed. Hundreds of polygons along the 75 



 44

km study area fit these criteria; however, the majority were physically inaccessible or 

located on private land. A total of 100 polygons were selected for the survey, based on 

physical accessibility and landowner permission. A few sites were situated on Crown 

land. To ensure only one management regime was present in each polygon, polygons with 

boundaries crossing property or fence lines were excluded. As the delineated polygon 

boundaries frequently fell well beyond the actual limits of the riparian zone, polygon 

boundaries were validated in the field, and polygons with inappropriately located 

boundaries were recorded.  

The riparian health survey consisted of eleven metrics of riparian health, comprising 

vegetation, physical and anthropogenic attributes, including: 1. percent vegetation cover 

on the floodplain and stream banks; 2. percent cover, density and distribution of invasive 

species; 3. percent cover of undesirable disturbance-adapted herbaceous species; 4. 

establishment and regeneration of preferred tree and shrub species; 5. browsing of woody 

species; 6. percentage of standing decadent and dead woody material; 7. percentage of 

root mass for stream bank stabilization; 8. percent cover of bare ground of anthropogenic 

origin; 9. anthropogenic structural alteration of stream banks; 10. anthropogenic physical 

alteration to the rest of the polygon; and, 11. stream channel incisement or vertical 

stability (AAFC, 2004; Fitch and Ambrose, 2003). The riparian survey polygons were 

assigned a numerical score for each riparian health metric. All metrics were tallied to 

produce an overall riparian health score for each polygon, which was converted to a 

percentage value. The polygons were then assigned the ranked categories ‘Unhealthy’ 

(<60%), ‘Healthy with Problems’ (60%-80%), or ‘Healthy’ (>80%)(AAFC, 2004; Fitch 

and Ambrose, 2003). In addition to the riparian health survey, observations about the 
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state of the understorey were made at each site. For the purposes of this study, the 

understorey was considered well developed when shrubs and woody vegetation were the 

dominant ground cover, and poorly developed when bare ground or shallow-rooted 

herbaceous vegetation dominated.  

3.2.2 Riparian Flood Zone Delineation 

During the course of the field surveys, it was observed that the riparian survey polygons 

delineated using desktop methods did not correspond well to the actual boundaries of 

riparian habitat, frequently extending well into adjacent upland habitat. Consequently, 

following field work and prior to conducting analyses, additional criteria and rules were 

developed to identify the actual limits of riparian habitat. For the purposes of defining the 

riparian zone for this study, areas adjacent to the river, situated at a lower elevation than 

the maximum mean monthly flood level and including a buffer of adjacent riparian 

vegetation, were considered to be flooded with sufficient frequency to be classified as 

riparian (Abood et al., 2012; Mason and Maclean, 2007).  

Flood zone modelling was conducted using a 1 m-resolution LiDAR-based DEM, 

captured in May of 2009, to delineate areas adjacent to the river at a lower elevation than 

the maximum monthly flood level, i.e. those areas that would be submerged during the 

period of highest water level in a normal flood year and could therefore be assumed to 

constitute riparian habitat. To accomplish this, it was first necessary to determine the 

elevation of the river surface along the length of the channel at both normal and flood 

levels. A river centre-line was manually digitized in an ArcGIS environment at a scale of 

1:2500, using 50 cm orthorectified true colour aerial imagery captured in 2009 and 2011, 
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obtained from the Manitoba Land Initiative (MLI) via AAFC (2012). All segment 

vertices were situated on the actual river centre-line, preserving their exact location. As 

the small, straight-line segments comprising the digitized centre-line could potentially 

affect the results of geometric analyses, such as the calculation of sinuosity, the centre-

line was smoothed using a Bézier curve function (Artyszuk, 2002; Farin, 2002. The 

smoothed centre-line was subsequently split into 15-m segments. The vertices of the 

segmented line were converted to point feature classes and mean elevation values were 

extracted from the LiDAR-based DEM at each point location, producing a series of point 

elevations 15 m apart along the length of the channel centre-line. In 2009, flood levels 

peaked between mid- and late-April, and had returned to normal flow conditions by the 

time the DEM dataset was captured between May 6 and May 23 of 2009 (Environment 

Canada, 2012b). Therefore, these point elevations represent the level of the water in 

normal flow conditions. To create a continuous surface across the study area, a 1 km 

buffer was generated for the river centre-line. As per the centre-line, the left and right 

sides of the buffer were split into 15-m segment vertices and converted to point feature 

classes. Coordinates were calculated for each point location in the Universal Transverse 

Mercator (UTM) North American Datum (NAD) 1983 Zone 14 projection. Polylines 

connecting the paired point locations were generated and split into 15-m segments. The 

segment vertices were converted to a point feature class and clipped to the extent of the 

DEM, producing a 15-m grid of points across the study area. The centre-line point dataset 

was spatially joined to the 15-m grid points to assign river surface elevation values to the 

grid using a nearest neighbor rule. A radial basis function method was applied to 
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interpolate a river elevation surface across the grid extent (Sterling, 2003; Mitášová and 

Mitás, 1993; Mitás and Mitášová, 1988).  

To delineate areas at lower elevation than the maximum mean monthly flood level, the 

difference between the maximum mean monthly flood level and the water level under 

normal flow conditions was determined using flood records and a DEM. The mean 

elevation value extracted from the river surface elevation layer at the Sanford 

hydrometric station was subtracted from the highest mean monthly water level for the 

period of record (2002-2011). The interpolated river surface was then subtracted from the 

ground-surface DEM. The delineated riparian flood zone includes all areas situated below 

the threshold flood increment and connected to the river channel. This flood zone 

boundary was used in all subsequent analyses. The generated flood zone extent was 

visually compared to the observed riparian zone extents recorded in the field to ensure the 

modeled area corresponded to actual riparian zone boundaries.  

3.2.3 Vegetation and Canopy Structure Indices  

Several image datasets were utilized in the object-based image analysis. A 50 cm, 24-bit, 

orthorectified, multispectral aerial image dataset, including red, green, and blue bands, 

was the primary dataset. The imagery was captured in 2007 and 2008 by Manitoba 

Conservation at a scale of 1:40,000 using a digital camera module (DCM). Despite the 

high resolution of the aerial image dataset, however, portions of the image were found to 

be of insufficient quality for the analysis; portions of the image were flown during leaf-

off, and contrast was variable between image tiles. As vegetation-based studies require 

leaf-on data, and OBIA requires consistent contrast across the entire image, additional 
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datasets were acquired to mitigate these problems. A 2.5 m, 8-bit panchromatic image, 

captured by the satellite SPOT-5 in the summer of 2012, was included to detect the extent 

of leaf-on vegetation cover. In addition, a vegetation productivity map was produced 

using the Normalized Difference Vegetation Index (NDVI), a measure of photosynthetic 

wavelength reflectance used to infer plant productivity (Tucker, 1979). A 5 m, 12-bit, 

multispectral image, including red, green, blue, near infrared (NIR), and “red edge” (a 

narrow bandwidth between the red and NIR bands, normally applied to vegetation 

studies) bands, captured by the satellite RapidEye in September 2012, was used for the 

NDVI calculation. All image datasets were obtained from AAFC in an orthorectified and 

radiometrically corrected format. Before being input into the object-based software, all 

datasets were converted to 8-bit (0-255) format using ArcGIS software, to streamline 

OBIA processing.  

In addition to the spectral imagery, raw LiDAR data were obtained from AAFC to 

provide information about the riparian forest structure and understorey. The data were 

collected in May of 2009, with an average post spacing of 1.7 m and vertical accuracy 

(root mean square error) of 0.036. The raw LiDAR points were coded with land cover 

types, including ground, low, medium and high vegetation, buildings, and water, prior to 

being distributed by the producer. The raw data were input into FUSION, a LiDAR 

processing, analysis and visualization software (McGaughy, 2003). Outlier values were 

removed from the dataset and ground and canopy points were extracted, and used to 

generate a digital terrain model (DTM) and canopy surface model (CSM). A canopy 

height model with a resolution of 2 m was generated by subtracting the DTM from the 

CSM. A canopy cover model was generated from first vegetation returns, which reflect 
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off the top of the canopy, at a resolution of 15 m. This resolution approximates average 

crown area, ensuring an appropriate grid size for sampling canopy cover (McGaughy and 

Carson, 2003). Finally a vegetation density model was calculated using all vegetation 

returns, representing the different levels of canopy and understorey structure. The 

vegetation density model was generated at resolution four times greater than the input 

data (8 m), which is considered appropriate for vegetation structure modelling (ESRI, 

2011). 

Each of these datasets describe an element of the vegetation component: aerial and 

satellite imagery show the canopy surface; NDVI approximates vegetation productivity; 

and the canopy models describe vertical canopy structure. Consequently, in subsequent 

analyses, they will be referred to as vegetation variables.  

3.2.4 Object-based Image Analysis 

An object-based image analysis (OBIA) was carried out using eCognition Developer 

software to segment the study area into statistically meaningful riparian zone polygons. 

The high-resolution aerial imagery (red, green and blue bands), SPOT imagery, NDVI 

model, and canopy cover, height, and structure models were input into eCognition. Prior 

to conducting the image segmentation, a number of analysis variables must be set, 

including scale, colour, shape and compactness parameters. The scale parameter 

represents a unitless value, indirectly related to the size of the created objects, such that a 

larger scale parameter produces larger objects. Scale is variable among images, 

depending upon image resolution, contrast and data type, and must consequently be 

selected separately for different images and study areas. The scale parameter was selected 
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using a method developed by Drǎguţ et al. (2010), in which segmentation is conducted at 

a variety of scales, using a bottom up approach. The local variance for each spectral band 

at each scale, and rate of change between scales, are calculated. Local variance and rate 

of change are then plotted against scale to identify scales that are meaningful for objects 

at different levels of spatial complexity. This method operates on the principal that the 

variance among segmented image objects will be small if the spatial resolution being 

measured is finer than the scale of actual landscape elements, and increases with 

decreasing resolution until the scale of the segmentation is the same as the scale of the 

landscape elements of interest (Drǎguţ et al., 2010). Consequently, meaningful scale 

levels are denoted by a break in slope in the rate of change. There are several meaningful 

scale levels for a given image, associated with different scales of landscape complexity 

(e.g. individual tree scale, stand scale, forest scale). Using the local variance-rate of 

change method, several meaningful scales were identified, and an appropriate scale 

associated with riparian habitat was identified visually.  

Colour, shape, and smoothness/compactness parameters are weighted to control the 

relative importance of each in determining image object homogeneity (eCognition 

Developer, 2012). Colour (digital number of the spectral signature) and shape (textural 

homogeneity of image objects) are weighted relative to one another to produce a total 

weight of one. In addition, the shape criterion can be modified by changing the relative 

weighting between smoothness of the image object borders and the compactness of the 

image object. Finally, the relative importance of image layers in the segmentation can be 

modified. Colour, shape, smoothness/compactness, and layer weight parameters were 

selected through an iterative trial and error process to produce polygonal objects 
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(hereafter referred to as image objects, to avoid confusion with the riparian field survey 

polygons) that corresponded well with visually identified riparian habitat features. 

Once objects were delineated, a variety of spectral, geometrical, and textural metrics 

were calculated for each. Spectral metrics included: brightness, mean brightness, 

brightness standard deviation (SD), and maximum difference. Geometrical metrics 

comprised: area, length, border length, border index, asymmetry, roundness, 

compactness, length:width ratio, shape index, and density. Textural statistics were 

calculated based on a grey-level co-occurrence matrix. Texture metrics included mean, 

SD, contrast, homogeneity, entropy, correlation, angular second moment, and 

dissimilarity, calculated for the grey-level co-occurrence matrix. Spectral and texture 

metrics were calculated within each image object individually for each layer and spectral 

band, and globally for all layers and bands in combination, resulting in a total of 98 

metrics. Image objects associated with the riparian zone were selected, including objects 

contained within the generated riparian flood zone, and overlapping with its boundary to 

ensure that riparian vegetation on the upper slopes was captured. The selected image 

objects and associated metrics were exported for use in further analyses.  

3.2.5 Analysis of Riparian Vegetation and Canopy Structure 

A hierarchal cluster analysis using Wards method was conducted to assess the 

relationships between segmented image objects, LiDAR variables (canopy cover, canopy 

height, vegetation density), and riparian habitat condition. To reduce dataset size prior to 

carrying out the cluster analysis, a Spearman’s rank correlation matrix was used to 

identify redundant variables, and a total of 57 variables were selected for use in the 
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cluster analysis (Table 3.1). Cluster analysis is a data exploration method that identifies 

natural groupings in a dataset, and is used to describe datasets that are assumed to contain 

distinct populations (Legendre and Legendre, 2012; Ferreira and Hitchcock, 2009). The 

method is described in detail in Legendre and Legendre (2012). The cluster analysis was 

conducted for all segmented image objects that intersected the riparian field survey 

polygons, 1193 objects in total. Cluster solutions were calculated for two to 20 groups. 

The results were plotted against the riparian field survey health ranks (‘Healthy’, 

‘Healthy with Problems’, ‘Unhealthy’), to determine the optimal group solution 

corresponding to riparian habitat condition. This cluster analysis was performed two 

separate times: once for image objects with all OBIA variables; and once excluding 

LiDAR canopy layers, but retaining all other variables. This procedure was followed to 

assess the contribution of canopy and understorey structure metrics to detecting riparian 

health. The results of the cluster analyses were displayed in contingency tables, which 

plotted the frequency cluster groups against riparian health field survey categories to 

evaluate the association between the two (Legendre and Legendre, 2012). A chi-square 

test was performed to assess the significance of the group separations. Finally, to identify 

differences between cluster groups, mean and SD values were calculated for each 

variable within each cluster group and visually compared. Student’s t-test was used 

determine whether the differences between cluster group variable values were significant.  

Principal Coordinates Analysis (PCoA) was used to visualize separability of the cluster 

groups. PCoA is an ordination method used to project variables in reduced space, which 

facilitates the interpretation of relationships between image objects and environmental 

gradients, and reduces dataset noise (Legendre and Legendre, 2012). PCoA is a useful 
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method for ecological descriptors because, unlike many ordination methods, it can handle 

a mix of quantitative and qualitative variables, mixed levels of precision, and can be 

computed using any type of distance metric (Legendre and Legendre, 2012). These 

attributes made it an appropriate method for the image object dataset, which was derived 

using a variety of unrelated indices and imagery, collected at different scales. The results 

of both cluster analyses (including and excluding canopy structure variables, 

respectively), which included the 1193 image objects and each object’s group 

assignment, were analysed separately using PCoA. The first two axes of each PCoA were 

displayed as a biplot. Points on the biplot were colour-coded according to their cluster 

group assignment, and 95% confidence ellipses were drawn for each group to facilitate a 

visual assessment of both the degree of separability based on clustering, and the influence 

of canopy structure variables. Outliers on the biplots were examined to determine 

whether they matched their expected riparian health category based on group 

membership (‘Healthy’, ’Healthy with Problems’, ‘Unhealthy’). 

For the purpose of discussing and interpreting the contribution of canopy structure to 

delineating cluster groups, canopy structure profiles were developed using the following 

method. Four representative field survey polygons, two ranked as healthy and two as 

unhealthy, were chosen. In a GIS environment, a cross-sectional line was drawn across 

the riparian area from the channel to the adjacent upland. Elevation points were extracted 

from a 2 m DEM along this line and used to construct a topographic profile. Raw LiDAR 

vegetation point cloud data were also summarized along the cross-section and plotted on 

the elevation profile. In a separate panel, the LiDAR point cloud plot, and species data 
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recorded during the field survey, were used to construct a detailed illustration of canopy 

and understorey structure along the riparian profile.  
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3.3 Results 

3.3.1 Riparian Health Field Survey  

Forty-nine of the 100 riparian polygons surveyed were assigned to the ‘Healthy’ 

category. Of the remaining 51 polygons, 50 were categorized as ‘Healthy with Problems’, 

while only one polygon scored less than 60%, placing it in the ‘Unhealthy’ category. 

Community composition was relatively uniform throughout the study area, consisting of 

and overstorey dominated by Manitoba maple, American elm, green ash, and bur oak, an 

understorey of chokecherry, red osier dogwood, and willow species, and a mix of native 

and invasive herbaceous species. In general, it was observed that vegetation species 

composition was not notably different between polygons ranked as ‘Healthy’ and those 

with lower scores, although species abundances and density of the understorey differed 

(Leo, personal observation). The riparian health survey does not contain specific 

reference to the density of the understorey; however, in a second riparian ecosystem 

surveyed as part of this project (Turtle River, unpublished data) polygons categorized as 

‘Healthy’ were observed in the field to possess a dense understorey 

3.3.2 Riparian Zone Delineation 

In the majority of cases, the surveyed riparian polygon extents corresponded well with 

the delineated riparian area extent. However, the survey polygons were found to be either 

wider or narrower in a few cases. The delineated riparian flood zone corresponded well 

both with visual observations of the flood zone as seen on aerial imagery, and with 

documented field observations from surveyed polygons. In addition, extending the 

riparian area by including all image objects overlapping the outer boundary of the 
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delineated flood zone was representative of the true extent of riparian habitat as observed 

in the field. Consequently, the delineated riparian zone, including the generated flood 

zone and overlapping vegetation-based image objects provided a better representation of 

the extent of riparian habitat than the original survey boundaries. Figure 3.1 shows an 

example of riparian survey polygons that agreed well with the delineated riparian zone 

extent. Figure 3.2 shows survey polygons that are aligned with the delineated flood zone 

along the western bank, but are narrower than the actual extent of riparian habitat along 

the eastern bank. The survey polygons shown in Figure 3.3 extend beyond the actual 

riparian zone on the southwestern bank. 

3.3.3 Object-based Image Analysis 

A workflow detailing the steps the OBIA is shown in Figure 3.4. The following 

segmentation parameters were chosen iteratively through trial and error: colour and shape 

weights of 0.9 and 0.1, respectively; and smoothness and compactness weights of 0.9 and 

0.1. Because of pronounced the differences in contrast between several high-resolution 

aerial image tiles, different segmentation scales were required to produce equivalent 

riparian habitat sub-component objects across the study area (Figures 3.5-3.6). 

Segmentation scales of 75 and 175 were used for high and low contrast tiles, respectively. 

The segmentation was refined further by assigning weights to image layers to adjust the 

degree of influence each layer had on the segmentation. A weight of two was applied to 

green, red, and NDVI layers. Blue, panchromatic, and canopy height layers were given a 

weight of one. Finally, canopy cover and canopy structure layers were assigned a weight 

of 0.25. These parameters were visually confirmed to produce image objects at an 

appropriate scale for detecting sub-components of riparian habitat (Figures 3.5-3.6).  
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3.2.1 Analysis of Riparian Vegetation and Canopy Structure 

Cluster solutions ranging in size from two to twenty clusters were examined. The two-

group solution was found to best correspond to riparian health categories measured in the 

field. In addition, the cluster analysis that included canopy structure variables provided a 

better correspondence to riparian health survey results than the dataset that excluded 

these data (Tables 3.2 and 3.3). In the dataset including canopy structure variables, 90% 

of the image objects in Group 1 were found to belong to polygons classified as ‘Healthy’ 

in the field (Table 3.2). In addition, 90% of the image objects contained in polygons 

classified as ‘Healthy with Problems’ or ‘Unhealthy’ in the field were captured in the 

Group 2 cluster. Conversely, in the dataset excluding canopy structure, 50% of image 

objects in ‘Healthy with Problems’ polygons were placed in each cluster group (Table 

3.3). Eighty-seven percent of ‘Healthy’ image objects were clustered in Group 1; 

however, 100% of ‘Unhealthy’ image objects were also included in Group 1. The cluster 

group separations were found to be significant for both datasets including (χ2 < 0.001) 

and excluding (χ2= < 0.001) canopy structure variables. As can be seen in Figures 3.7 and 

3.8, the classification groups including canopy structure variables are more also more 

evenly distributed, with approximately half of the image objects falling in each cluster 

group. The cluster analysis was applied, not as a classifier, but rather, as a data 

exploration tool to assess the relationship between field-derived riparian health categories 

and OBIA-derived image objects, as well as evaluating the contribution of LiDAR 

variables to this relationship. Consequently, a full accuracy assessment was not 

conducted. However, it should be noted that 77% and 71% of image objects were placed 

in the correct cluster group (‘Healthy’ image objects in Group 1, ‘Unhealthy’/’Healthy 
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with Problems’ in Group 2) with canopy structure variables included and excluded, 

respectively.  

Examination of the mean and SD of variables in each group revealed that the canopy 

height model had no overlap between mean and SD for most texture metrics. In addition, 

the canopy structure model stood out strongly in the grey-level co-occurrence mean 

texture metric. Two texture metrics (grey-level co-occurrence matrix contrast and mean 

values) also showed a noticeable difference between mean and SD values for Groups 1 

and 2, while grey-level co-occurrence of SD and correlation showed smaller but still 

visible differences. Finally, mean image brightness also showed noticeable differences 

between groups. However, no variables were significantly different between groups 

according to Student’s t-test. 

The results of the PCoA are displayed in Figures 3.9 and 3.10. While both canopy 

structure-inclusive and canopy structure-exclusive plots show visible overlap between 

Groups 1 and 2, the overlap among points was greater for the canopy structure-exclusive 

dataset. In addition, a larger number of outliers were present. While group separation was 

significant both with and without canopy structure variables, the inclusion of canopy 

structure variables produces a much clearer visualization of the separation between 

Groups 1 and 2. Group 1 and Group 2 PCoA outliers for canopy structure-inclusive 

dataset had a moderately higher expected riparian health category misclassification rate 

(31%) than the total misclassification rate for the dataset (23%) (Section 3.3.3). Group 1 

and Group 2 outliers displayed on the canopy structure-exclusive dataset biplot were 
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usually (65%) misclassified, and had a far greater misclassification rate for than the full 

dataset (29%).  

3.4 Discussion 

3.4.1 Riparian Health Survey  

Field observations revealed that healthy polygons were generally associated with an 

understorey characterized by dense, well-established shrub species, suggesting that 

canopy and understorey structure influence riparian habitat health more heavily than 

vegetation species composition. Vegetation species composition was relatively 

uniform across all polygons and did not have a noticeable effect on health score. This 

is consistent with existing research, which indicates that, while functional and species 

diversity are often strongly correlated, habitats characterized by high species diversity 

often exhibit functional redundancy (Biswas and Mallik, 2011; Cadotte et al., 2011). 

Functional diversity is often more sensitive to environmental and disturbance 

gradients, making it a better measure of ecosystem health than species diversity. The 

riparian understorey contributes to several essential functions of healthy riparian areas. 

Dense root mass protects against erosion, and aids in nutrient cycling and pollutant 

filtration (Eskelson et al., 2010; Richards and Chirman, 1994). Understorey structural 

complexity is associated with higher species diversity, and increased habitat 

complexity (Fortier, 2014; Munro et al., 2009). Conversely, a poorly developed 

understorey is often indicative of colonization by herbaceous invasive species and 

relatively recent disturbance. Multiple canopy layers provide habitat for a larger 

number of wildlife species (König, 2000). The observed correlation between the state 
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of the understorey and riparian condition demonstrates the importance of a well-

developed understorey to riparian health.  

3.4.2 Riparian Zone Delineation  

The delineated riparian area, generated as function of the highest mean monthly flood 

level and vegetation objects overlapping the flood zone boundary, was agreed well with 

riparian zone boundaries identified in the field. Studies by Abood et al. (2012) and Mason 

and Maclean (2007) have produced accurate flood zone delineations using a 10 m DEM 

to map the extent of the 50-year flood level. Highest mean monthly flood level was used 

in place of the 50-year flood in this study, owing to the lack of available 50-year flood 

data for the La Salle River. Given its observed success, this method has potential for 

application in areas where 50-year flood data are not available. In addition, the Abood et 

al. (2012) and Mason and Maclean (2007) studies did not consider the extent of riparian 

vegetation beyond the flooded area. As discussed by Verry et al. (2004) and Ilhardt et al. 

(2000), riparian vegetation extends horizontally an average of one tree-height beyond the 

perimeter of the flooded area. The additional vegetation extent was successfully 

approximated in this study through the inclusion of the vegeation objects that overlapped 

the outer boundary of the flooded area.  

3.4.3 OBIA and Canopy Structure in Riparian Health Assessment 

This study found that canopy structural and vegetation characteristics derived from 

object-based segmentation correspond to riparian habitat condition observed in the field 

(Figures 3.5-3.6). These findings agree with numerous existing studies, which have 

successfully predicted a wide range of riparian habitat attributes using object-based 
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methods (Kollár et al., 2013; Arroyo et al., 2010; Johansen et al., 2008b; Johansen et al., 

2007a; Johansen et al., 2007b; Gergel et al., 2007; Johansen and Phinn, 2006a). However, 

existing research has focused on predicting specific attributes, such as: vegetation 

structure, successional stage and overhang; riparian zone and channel width; bank 

stability; flood damage; percentage canopy and organic litter cover; and canopy 

continuity and tree clearing, while this study sought to link image objects directly to the 

overall health of the riparian area, defined as the results of the ground-based health 

assessment. This objective was achieved using descriptive methods.  

The correspondence between understorey density and overall health score observed in the 

field reinforces the established importance of the understorey to riparian habitat health 

(Johansen and Phinn, 2006a; Jansen, 2005). The higher misclassification rate observed on 

the PCoA biplot for the cluster group outliers of both canopy structure-inclusive and 

canopy structure-exclusive datasets suggests that the object-based image segmentation 

detects variables that reflect habitat characteristics, which influence riparian health, but 

are not directly captured by the ground-based health assessment. Similarly, the lower 

cluster group-riparian health category misclassification rate observed for the canopy 

structure-inclusive dataset implies that at least some of this missing information, probably 

pertaining to the state of the understorey, can be captured when vegetation structural data 

are included in the assessment. While no individual variable included in the OBIA was 

significantly different between cluster Groups 1 and 2, the canopy height and structure 

models had no overlap between mean and SD values for the two groups, and showed 

more separation than any other image layers used in the analysis. This assessment 

reinforces the importance of structural attributes to overall riparian health. The fact that 
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two texture metrics (grey-level co-occurrence matrix contrast and mean) produced the 

better separation between Groups 1 and 2 for all data layers than either geometrical or 

spectral metrics also emphasizes the importance of including texture metrics in the 

assessment of fine-scale heterogeneous habitats.  

The value of LiDAR (in isolation and in combination with spectral data) for detecting 

specific structural attributes of riparian areas, such as: vertical stream erosion and bank 

stability; canopy height, structure and continuity; understorey establishment and 

structure; vegetation overhang; total plant biomass; and dead wood abundance, is well 

established (Fortier, 2014; Chen et al., 2012; Johansen et al., 2011; Johansen et al., 2011; 

Arroyo et al., 2010; Johansen et al., 2010a; Johansen et al., 2010c; Dowling and Accad, 

2003). This study found that the inclusion of structural information can also improve the 

correspondence between segmented vegetation-based image objects and overall riparian 

health.  

Figures 3.11-3.14 show cross-sections of four surveyed polygons. These cross-sections 

demonstrate that forest structural information relevant to riparian health, which is not 

obtainable from visible imagery, is easily derived from LiDAR data. Each figure includes 

an aerial overview, a profile of LiDAR returns, and a diagrammatic representation of 

vegetation composition and structure. The topographic profiles are derived from the 1 m 

DEM, and species composition is accurately portrayed according to field observations. 

Figure 3.11 shows a classic example of healthy riparian area, characterized by visible 

terracing and a well-developed gallery forest. The first terrace is dominated by mixed 

green ash and Manitoba maple, with a dense willow understorey and minimal herbaceous 
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vegetation. The second (upland) terrace is dominated by American elm and bur oak, and 

exhibits a more open understorey, with well-developed herbaceous vegetation 

interspersed with patches of hazel. The variable density of the understorey between the 

first and second terraces is easily distinguished in the LiDAR profile by examining the 

point density between the ground level and overstorey canopy. Figure 3.12 shows a 

healthy riparian area with less pronounced terracing and a uniformly dense understorey 

across its width. The overstorey is dominated by green ash and Manitoba maple near the 

channel, and by American elm, bur oak and green ash on the upland slope. The 

understorey consists primarily of chokecherry, saskatoon, and hazel. As in Figure 3.11, 

the understorey density is readily visible in the LiDAR profile. Figure 3.13 shows an 

unhealthy riparian zone with no terracing, characterized by a sparse overstorey consisting 

of Manitoba maple and green ash. There is no woody understorey, and the herbaceous 

vegetation consists almost exclusively of invasive smooth brome and quack grass. The 

LiDAR profile shows very few points at understorey-level, and a sparse canopy as 

compared with the healthy riparian areas in the previous figures. The riparian area shown 

in Figure 3.14 is confined to a steep bank, which lacks terracing and is dominated by 

invasive herbaceous species, with Manitoba maple at the top of the slope. The adjacent 

upland consists of a dense shrub understorey and bur oak-Manitoba maple-dominated 

overstorey, with large canopy gaps. As can be seen in all four figures, the aerial image 

shows only the overstorey canopy surface, and does not provide any information 

pertaining to the understorey. Given the importance of understorey structure to many 

elements of a healthy riparian ecosystem, the inclusion of canopy structure data derived 
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from LiDAR in riparian health modelling has potential to provide considerably more 

detailed and accurate results. 

3.5 Conclusion 

Based on field observations, canopy and understorey structure were found to be more 

important than vegetation species composition and species diversity in determining the 

condition of riparian areas. Modelling recorded mean flood levels using a DEM, extended 

to the outer edge of segmented vegetation objects overlapping the flooded area boundary, 

was found to provide an accurate estimate of the extent of riparian habitat. Vegetation 

spectral, and canopy and understorey structural information extracted from a combined 

dataset comprising high-resolution imagery, vegetation productivity and canopy structure 

indices using object-based methods can be descriptively linked to overall riparian health 

scores derived from an indicator-based field assessment. The inclusion of canopy 

structure indices derived from LiDAR significantly improves the correspondence with 

riparian habitat health. 
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Table 3.1. OBIA metrics selected for cluster analysis and riparian health modelling. Metrics are organized based on the type of 
vegetation information provided, and divided into groups based on the OBIA metric (spectral, textural, and geometrical) 
calculated. 

Vegetation Productivity 
Information

Canopy Surface 
Information

Canopy Structure Information Combined Information - All 
Image Datasets

Texture Metrics Texture Metrics Texture Metrics Geometry Metrics - Shape
Contrast Contrast Contrast Asymmetry

NDVI Panchromatic Canopy Height Model Density
Homogeneity Red Band Canopy Structure Model Compactness

NDVI Green Band Canopy Cover Model Roundess
Mean Homogeneity Homogeneity Shape Index

NDVI Panchromatic Canopy Height Model
Entropy Red Band Canopy Structure Model Geometry Metrics - Extent

NDVI Green Band Canopy Cover Model Area 
Standard Deviation Mean Mean Length:Width

NDVI Panchromatic Canopy Height Model
Correlation Red Band Canopy Structure Model Spectral Metrics - Mean

NDVI Green Band Canopy Cover Model Brightness
Entropy Entropy Max Difference

Panchromatic Canopy Height Model
Red Band Canopy Structure Model Texture Metrics
Green Band Canopy Cover Model Contrast

Standard Deviation Standard Deviation Homogeneity
Panchromatic Canopy Height Model Mean
Red Band Canopy Structure Model Entropy
Green Band Canopy Cover Model Standard Deviation

Correlation Correlation Correlation
Panchromatic Canopy Height Model
Red Band Canopy Structure Model
Green Band Canopy Cover Model
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Table 3.2. Contingency table and significance statistics showing the relationship between 
riparian health scores and image object groups, including both spectral and LiDAR 
variables (χ2 < 0.001). 

 

 
 
 
 
 
  

Group/Health Score Healthy Healthy with Problems Unhealthy
Group 1 477 50 1
Group 2 222 434 9
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Table 3.3. Contingency table and significance statistics showing the relationship between 
riparian health scores and image object groups, including only spectral variables (χ2 
< 0.001). 

 
 
  

Group/Health Score Healthy Healthy with Problems Unhealthy
Group 1 607 241 10
Group 2 92 243 0
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Figure 3.1. Example of survey polygons that are relatively well aligned with the delineated riparian zone extent. The dashed red line 

shows the extent of riparian survey polygons 58, 59, 62, 63, and 64. The solid black line shows the generated flood zone. The 
solid yellow line shows the extent of the riparian zone, including the generated flood zone and overlapping vegetation-based 
image objects. 
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Figure 3.2. Example of survey polygons that are narrower than the delineated riparian zone extent on the eastern slope of the river. 

The dashed red line shows the extent of riparian survey polygons 36, 37, 38, 40, and 41. The solid black line shows the generated 
flood zone. The solid yellow line shows the extent of the riparian zone, including the generated flood zone and overlapping 
vegetation-based image objects.  
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Figure 3.3. Example of survey polygons that are wider than the delineated riparian zone extent on the south western slope of the river. 

The dashed red line shows the extent of riparian survey polygons 73, 74, 75, 76, and 78. The solid black line shows the 
generated flood zone. The solid yellow line shows the extent of the riparian zone, including the generated flood zone and 
overlapping vegetation-based image objects. 
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Figure 3.4. Workflow chart showing the steps followed for the object-based image analysis.  
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Figure 3.5. Riparian image objects overlaid on an ortho-image with good contrast, 

captured during leaf-on. 
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Figure 3.6. Riparian image objects overlaid on an ortho-image with poor contrast, 

captured during leaf-off.  
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Figure 3.7. Cluster dendrogram showing the natural grouping of image objects 

segmented using all spectral variables and LiDAR variables within riparian survey 
polygons.  
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Figure 3.8. Cluster dendrogram showing the natural grouping of image objects 

segmented using only spectral variables, with LiDAR variables excluded, within 
riparian survey polygons.  
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Figure 3.9. Biplot displaying the first two axes of a principal coordinates analysis with 

95% confidence ellipses, conducted for image object groups derived from both 
LiDAR and spectral variables. Colour-coding indicates cluster-group membership 
(black = Group 1; red = Group 2), not riparian health category membership.  
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Figure 3.10. Biplot displaying the first two axes of a principal coordinates analysis with 

95% confidence ellipses, conducted for image object groups derived from only 
spectral variables, excluding LiDAR variables. Colour-coding indicates cluster-
group membership (black = Group 1; red = Group 2), not riparian health category 
membership.  
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Figure 3.11. A LiDAR profile through a section adjacent to riparian health survey 

polygon #69. This polygon was scored as healthy. 
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Figure 3.12. LiDAR profile through a section of riparian health survey polygon #77. This 
polygon was scored as healthy.  
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Figure 3.13. LiDAR profile through a section of riparian health survey polygon #73. This 
polygon was scored as unhealthy. 
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Figure 3.14. LiDAR profile through a section of riparian health survey polygon #57. This 
polygon was scored as unhealthy. 
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CHAPTER 4: RIPARIAN HEALTH MODEL 

Abstract 

Riparian areas are ecologically and economically critical habitats. However, they are also 

very susceptible to anthropogenic disturbance. Riparian health assessments have 

historically been conducted through resource-intensive field surveys. Recent advances in 

remote sensing have potential in the development of remote riparian health assessment 

methods. The objective of the study was to develop an automated riparian health 

assessment using remotely sensed data. Riparian health surveys were conducted along the 

La Salle River in Manitoba, Canada. Vegetation variables were derived from an object-

based image analysis (OBIA). Topographic variables derived from a high-resolution 

DEM. Linear discriminant models were developed using topographic and vegetation, 

only vegetation and only topographic variables. The vegetation/topographic and 

vegetation models produced good results, with accuracies of 87% and 88% (kappa 74% 

and 75%). The topographic model produced poor results, with an accuracy of 61% 

(kappa 21%). The study demonstrated that riparian health can be assessed remotely, 

eliminating the need for field surveys and preserving resources for riparian management 

and conservation programming. 
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4.1 Introduction 

Riparian areas are ecologically and economically critical habitats, providing numerous 

ecological services, including: wildlife habitat; bank stability and erosion control; 

sediment transport and deposition; energy, nutrient and pollutant regulation (Merritt et 

al., 2010; Nilsson and Svedmark, 2002; Naiman and Décamps, 1997; Gregory et al., 

1991). However, they are also vulnerable to anthropogenic disturbance, such as urban 

and agricultural development. In a compromised state, riparian areas contribute to 

sedimentation, transport of pollutants, flooding, and a loss of wildlife habitat and 

biodiversity (Leclaire, 2011; Nilsson and Svedmark, 2002). Riparian health assessments 

are required to evaluate the degree of damage to riparian areas and aid in developing 

management prescriptions. 

Riparian health assessments have historically been conducted through resource-intensive 

field surveys and manual aerial photointerpretation (Gergel et al., 2007; Johansen et al., 

2007a). The narrow, linear dimensions and steep vegetation and physiographic gradients 

that characterize riparian areas made them unsuitable for the medium- and low-resolution 

satellite imagery available for landscape-level research prior to 2000 (Dilts et al., 2010; 

Johansen et al., 2007a; Muller, 1997). However, recent advances in remote sensing 

technology, including high-resolution imagery (<5m) and object-based image analysis 

(OBIA) have facilitated the detection of riparian attributes using remote methods. Object-

based image analysis represents an advance in classification methodology for remotely 

sensed imagery. Traditional pixel-based methods classify individual pixels based on 

spectral value or digital number. Conversely, OBIA groups pixels to form objects based 
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on spectral, geometrical, spatial-contextual, and textural attributes, until a predefined 

degree of homogeneity is achieved in each object (Blaschke, 2010; Bock et al., 2005). 

Subsequent to this process, which is known as segmentation, the image objects are 

classified using algorithms that incorporate nearest neighbour distances, shape metrics, 

texture descriptors and hierarchy to quantify spectral, geometrical, contextual and textural 

attributes (Im et al., 2008; Hay et al., 2003). This methodology overcomes the speckle 

effect that results when a pixel-based classification is applied to a heterogeneous surface 

comprising a wide range of spectral values. In addition, it considers the inherent spatial 

structure of the natural system. Existing research overwhelmingly demonstrates that 

object-oriented image analysis produces significantly higher classification accuracies 

than traditional pixel-based classification when applied to high-resolution imagery 

(Aguirre-Gutiérrez et al., 2012; Platt and Rapoza, 2008). 

Remotely sensed imagery has been used to detect riparian attributes in many studies since 

the advent of high-resolution satellite imagery in the early 2000s. Pixel-based 

classifications have been used to delineate the riparian zone width and extent, canopy 

cover and continuity, and vegetation species with varying degrees of success (Akasheh et 

al., 2008; Makkeasorn et al., 2009; Yang, 2007; Johansen and Phinn, 2006b; Jansen, 

2005). Studies using object-based methods were able to detect a far wider range of 

riparian attributes, including: riparian zone and stream width; canopy cover and 

continuity; organic litter cover; vegetation overhang; bank stability; tree clearing; and 

flood damage (Arroyo et al., 2010; Johansen et al., 2010a; Johansen et al., 2010c; 

Johansen et al., 2008b; Johansen et al., 2007b; Johansen and Phinn, 2006a). These studies 

demonstrated that riparian attributes could be accurately mapped using object-based 
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methods to classify high-resolution spectral, LiDAR, and DEM datasets. However, no 

study has drawn a direct link between remotely sensed data and overall riparian health, 

defined as the cumulative impact of all relevant riparian health indicators. The objective 

of this study was to develop an automated riparian health assessment using remotely 

sensed imagery and topographic data. 

4.2 Methods 

The field methods, riparian flood zone delineation, and OBIA methods described in 

Section 3.2.4 were utilized in the following study. Additional data processing and 

analytical methods are described below. All topographic metric derivation, analysis, and 

modelling were conducted within the generated riparian flood zone described in Section 

3.2.2.  

4.2.1 Analysis of Riparian Topography 

Channel sinuosity is a function of length along the channel between two points, divided 

by the shortest straight-line distance between the same two points. This calculation 

produces an index ranging from zero to one, which indicates the degree to which the 

channel meanders, and is indicative of the erosional regime in the riparian area. A 

sinuosity index value of one indicates a straight channel, while a deeply meandering 

stream will have a sinuosity index near zero. To calculate channel sinuosity along the La 

Salle, the smoothed river centerline was split into 1 km segments. A sinuosity index was 

calculated for each 1 km segment in ArcGIS. The derived sinuosity index was then 

assigned to the riparian survey polygons using a spatial join rule, which applied the index 

value of the intersecting or nearest centre-line segment to each survey polygon. In the 



 86

case of polygons intersected by more than one segment, the sinuosity indices were 

averaged and the mean value was assigned to the polygon. 

While habitat condition is not necessarily correlated with riparian zone width, wider 

riparian areas provide more effective sediment and nutrient trapping, higher-quality fish 

and wildlife habitat, and a better buffer against adjacent disturbance (Wenger, 1999). The 

width of the riparian zone was calculated for the riparian survey polygons. Because the 

survey polygons were irregularly shaped and, consequently, not of uniform width, it was 

necessary to derive an average measure of polygon width. Straight lines 100m in length 

were manually digitized at 15-m intervals along each polygon, perpendicular to the river 

centre-line. The perpendicular lines were clipped to the riparian survey polygon extents. 

The clipped perpendicular line lengths were calculated and averaged for each riparian 

survey polygon. 

Given the importance of topographically controlled moisture gradients to the vegetation 

component and, by extension, to riparian health, riparian zone topography was considered 

to be a potential indicator of habitat condition (Arroyo et al., 2010; Auble et al., 2005; 

Nilsson and Svedmark, 2002; Hughes, 1997; Auble et al., 1994). Instantaneous slope 

metrics provide a measure of topography (Blaga, 2012; Wood, 1996). Eleven slope 

metrics, including first and second derivatives of the elevation surface, were computed 

from the LiDAR-based DEM. First derivatives provide a measure of the tangent slope of 

a surface, while second derivatives characterize the surface curvature. First derivative 

slope metrics included slope and aspect. Nine measures of surface curvature, including 

profile and longitudinal curvatures (slope variation in the vertical plane), cross-sectional 
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and plan curvatures (slope variation in the horizontal plane), and minimum, maximum 

and mean curvatures (local minimum, maximum and mean surface curvature values in 

Euclidean space), as well as concavity (decreasing second derivative function) and 

convexity (increasing second derivative function), comprised the second derivative 

metrics (Blaga, 2012). Mean, maximum and minimum slope metric values were 

summarized for each image object contained within the riparian survey polygons. Prior to 

conducting further analyses, the slope variables were plotted using quantile-quantile (Q-

Q) plot to assess normality (Legendre and Legendre, 2012). Non-normally distributed 

variables were removed, leaving a total of 12 slope variables.  

Principal Components Analysis (PCA) was used to characterize spatial trends in first 

(slope and aspect) and second (measures of curvature) topographic derivatives and to 

isolate slope metrics explaining the majority of variation in the dataset. A detailed review 

of the PCA method can be found in Pielou (1984), Legendre and Legendre (2012) and 

Jolliffe (2002). Although not strictly a dimension reduction method, PCA can be used to 

determine main trends, variables that are important on those axes, and whether colinearity 

exists amongst those variables. In this study PCA was used to identify and eliminate 

redundant variables prior to full model development. Because the variables in the dataset 

comprised several units (e.g., slope (%), aspect (degrees), plan curvature (radians)), a 

correlation matrix was used in computing the PCA. The results of the PCA were 

displayed as a biplot. Topographic variables retained for the linear discriminant analysis 

were those that had low mutual correlation (less collinearity in multivariate space) and 

simultaneously the largest weights on the first and second axes. 
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4.2.2 Riparian Health Model Development 

Linear Discriminant Analysis (LDA) was performed to assess and model the relationship 

between the topographic variables and the riparian health scores of the surveyed sites. 

LDA, also called Canonical Variates Analysis, is a linear modelling method (Legendre 

and Legendre, 2012). It is used to detect and quantify statistical separation between two 

or more predefined classes, which are described by a linear combination of several 

explanatory variables. In addition to determining the separability of classes and 

identifying the degree to which the various explanatory variables contribute to 

distinguishing between them, the derived linear equation can be applied as a maximum 

likelihood classifier, assigning objects to the class to which they maximally belong.  

The image objects were randomly split into training and tests datasets for model 

development and validation. The training set contained 879 samples (75%), while the test 

set contained 249 (25%). Three separate LDAs were performed, using the training set, to 

assess the relationship between topographic and vegetation variables, and riparian health 

categories. Owing to the insufficient sample size of ‘Unhealthy’ polygons observed in the 

field (Section 3.2.1), and the tendency of ‘Unhealthy’ and ‘Healthy with Problems’ 

polygons to cluster together, these two categories were combined into a single riparian 

category, referred to in the remainder of the document as ‘Unhealthy’. The first analysis 

included both vegetation and topographic variables. Vegetation variables included the 57 

variables selected for the cluster analysis in Section 3.2.5 (Table X). Topographic 

variables included the 9 variables selected using the PCA and are listed in Section 4.3.1. 

All variables were standardized prior to conducting the LDA. Between-class separability 

for each LDA was tested by plotting the discriminant values for each class (‘Healthy’ and 
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‘Unhealthy’) on a boxplot, then examining the plot for overlap between the class mean, 

maximum and minimum discriminant values, upper and lower quartiles, and standard 

deviation. Classifier accuracy was assessed using resubstitution, which employs the same 

data to develop and test the classifier, to the training data. Resubstitution was considered 

an appropriate accuracy assessment method owing to the relatively small size of the 

image object dataset. While resubstitution can provide an optimistic estimate of 

classification accuracy, other methods of accuracy assessment, such as leave-one-out 

cross-validation, are prone to a high degree of variability when applied to small datasets 

(Braga-Neto et al., 2004). To provide a more realistic estimate of model accuracy, 

classification accuracy was also assessed for the test sets, which were not used in the 

development of discriminant functions. For both training and testing data, accuracy 

results were displayed using a confusion matrix, and producer, user and total accuracies 

were computed. Producer accuracy represents the probability that feature on the ground 

has been correctly classified, while user accuracy indicates the probability of a classified 

feature actually being found to be of the same class on the ground (Congalton and Green, 

2009). Producer and user accuracies are calculated separately for each class. Total 

accuracy is calculated for the classifier as a whole. In addition, a kappa statistic was 

calculated for the training and testing sets for each discriminant function. Kappa provides 

a measure of agreement between two raters (the modeled class and actual class) that 

considers agreement occurring by random chance, thereby providing a very conservative 

estimate of model accuracy (Congalton and Green, 2009; Cohen, 1960). The significance 

of the derived discriminant functions for both training and testing sets was assessed using 

a Multivariate Analysis of Variance (MANOVA). The test statistic applied was Wilks’ 
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Lambda, the ratio of the within-class sums of squares to the total sum of squares, which 

represents a measure of the proportion of unexplained class variance (Legendre and 

Legendre, 2012). Based on the results of the LDA and accuracy statistics, the best model 

was selected and applied to the entire La Salle study area.  

4.3 Results 

4.3.1 Analysis of Topographic Variables 

Channel sinuosity for 1 km segments along the La Salle ranged from 0.45 to 0.96, with a 

mean and median values of 0.80 and 0.84, respectively. These values are indicative of a 

relatively straight flow path. The width of riparian polygons clipped to the generated 

flood zone ranged from 2.3 m to 60.7 m, with respective mean and median widths of 11.5 

m and 10.3 m. After eliminating non-normally distributed variables, the slope metrics 

input into the PCA included: minimum mean curvature, profile curvature, longitudinal 

curvature, cross-sectional curvature, and concavity; maximum mean curvature, profile 

curvature, longitudinal curvature, cross-sectional curvature, slope, and convexity; and 

mean aspect. 

The results of the PCA are presented in Figure 4.1. The PCA explained 81% of the total 

variation in the slope metrics dataset, with 67% summarized on the first axis and 14% on 

the second. There was almost complete overlap between objects belonging to riparian 

survey polygons classified as ‘Healthy’ and ‘Unhealthy’. The dataset displayed strong 

collinearity among minimum variables in the upper right quadrant. With the exception of 

maximum slope, the maximum variables showed only slightly weaker collinearity in the 

upper left quadrant. Aspect, the only mean variable, trended weakly in the upper left 
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quadrant. The relative weights of each variable on the first two axes were also compared 

to help identify redundancy. Based on these results, longitudinal curvature (with weights 

of -0.316 and -0.228 on the first and second axes, respectively), minimum profile 

curvature (-0.316, -0.206), and mean curvature (-0.319, -0.231) were removed from the 

dataset to reduce redundancy, as these metrics explained essentially same portion of 

dataset variability as minimum concavity (-0.323, -0.217), which was retained.  

4.3.2 Riparian Health Model Development 

The results of the vegetation/topographic LDA are presented in Figure 4.2. The plot 

clearly shows separation between the two classes; the third quartile of the ‘Healthy’ and 

first quartile of the ‘Unhealthy’ categories are well separated. However, there is also 

noticeable overlap between both mean and median standard deviation bars, and the 

‘Unhealthy’ category mean and median. Both mean and median SDs are greater for the 

‘Healthy’ class than for the ‘Unhealthy’. ‘Healthy’ category LD values are weighted 

toward the lower end of the discriminant axis, while ‘Unhealthy’ category LD values are 

weighted toward the upper end. All outliers for both classes lie opposite to the direction 

in which the plots are weighted. The vegetation/topographic model achieved a training 

accuracy of 87% (Kappa () = 74±4%) and a testing accuracy of 85% ( = 69±8%) 

(Tables 3 and 4). Both training (Wilks’ Lambda () = 0.41, p value (p) < 0.001) and 

testing ( = 0.34, p < 0.001) results were significant.  

The results of the LDA using only vegetation variables are shown in Figure 4.3. The 

distribution of LD values are very similar to the vegetation/topography model; the third 

quartile of the ‘Healthy’ and first quartile of the ‘Unhealthy’ categories are well 
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separated, mean and median SD bars of the two categories overlap, and the ‘Healthy’ SD 

bars overlap with the ‘Unhealthy’ mean and median. ‘Healthy’ category LD values are 

weighted toward the lower end of the discriminant axis, while ‘Unhealthy’ category LD 

values are weighted toward the upper end and, like the previous model, all outliers for 

both classes are opposite to direction in which the plots are weighted. The vegetation 

model had a slightly higher training accuracy of 88% ( = 75±4%), and an equal testing 

accuracy of 85% ( = 69±8 %). Both training ( = 0.42, p < 0.001) and testing results 

were significant ( = 0.38 p < 0.001) and comparable to the vegetation/topographic 

model.  

The LDA using only topographic variables produced drastically different results to the 

above models. The results of the topographic LDA are presented in Figure 4.4. The 

median SD bars overlap almost completely. Both the third quartile and first quartiles of 

the ‘Healthy’ and ‘Unhealthy’ classes, respectively, overlap with the opposite class 

medians. The medians of both classes are virtually equal. Unlike the 

vegetation/topographic and vegetation models, the class distributions are not weighted in 

either direction along the discriminant axis, and outliers are found at both ends of each 

class distribution. Training and testing accuracies of only 61% ( = 21±7%) and 62% ( 

= 21±11%) were achieved. Both training (Wilk’s  = 0.93, p < 0.001) and testing ( = 

0.90, p = 0.002) results were significant; however, the higher Wilks’ Lambda values 

indicate group differences show notably less separation than the previous models. 
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4.4 Discussion 

4.4.1 Analysis of Topography 

Strong collinearity was observed among minimum slope curvature metrics (upper right 

quadrant of the PCA plot), while slightly weaker, but still pronounced collinearity was 

observed among the maximum curvature metrics in the upper left quadrant (Figure 4.1). 

Collinearity among topographic metrics is a well-known phenomenon in topographic 

studies (Guo et al., 2010). Consequently, it was not an object of concern in this study, and 

was handled by retaining only one of each group of strongly collinear variables to 

minimize dataset redundancy.  

4.4.2 Riparian Health Model Development 

The results of this study demonstrate that riparian habitat health can be accurately 

predicted from OBIA on remotely sensed image datasets. Multiple existing studies have 

used OBIA of remotely sensed imagery to predict various riparian attributes, including: 

riparian zone and channel width; vegetation overhang; bank stability; flood damage; 

canopy cover and continuity; tree clearing; and organic litter cover (Arroyo et al., 2010; 

Johansen et al., 2008b; Johansen et al., 2007b; Johansen and Phinn, 2006a). These 

indicators can be assessed in combination to determine riparian health. However, no 

previous studies have linked segmented image objects directly to overall riparian health. 

In this study, the most accurate model used only spectral and structural vegetation 

variables. Riparian physical structural attributes are important contributors to riparian 

health indicators such as bank stability (Arroyo et al., 2010; Johansen et al., 2010a; 

Johansen et al., 2010c). Therefore, it follows that including topographic information in a 
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riparian health model should improve the accuracy. However, the inclusion of 

topographic variables was found to slightly reduce accuracy in combination with 

vegetation variables in this study. In addition, results for the topographic variables model 

were very poor, particularly as a predictor of unhealthy polygons. These results suggest 

that terrain variables do not contribute useful information to the model.  

There are several possible reasons for these unexpected results. First, the LiDAR data 

used to construct the DEM from which topographic metrics were derived was not 

sampled at a sufficiently high point density. Several studies indicate that DEMS can be 

accurately constructed using relatively low point densities (Guo et al., 2010; Liu, 2008; 

Anderson et al., 2006). Liu (2008) found that a post spacing of at least half the DEM grid 

resolution was adequate. However, detection of small topographic features can require 

much higher sampling densities (Chu et al., 2014). In addition, the presence of forest 

cover also requires denser sampling, as the canopy layers deflect some LiDAR waves 

before they reach the ground. These factors could apply to the detection of riparian 

erosional features, which are often small-scale and are also usually situated beneath 

overhanging vegetation. Second, the topographic variables were added in subsequent 

step, rather being included in the image segmentation. Had the terrain variables been 

included in the image segmentation, they would have influenced the statistical attributes 

of the image objects and might have contributed more to model accuracy. An important 

element of the previous studies’ success using topographic and vegetation data was the 

inclusion of a LiDAR-derived DTM and slope model in the OBIA (Arroyo et al., 2010; 

Johansen et al., 2010a; Johansen et al., 2010c). It is possible that a 1 m DEM is not 

sufficiently high-resolution to capture information required to detect riparian physical 
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structure-related health indicators. These indicators might be better detected indirectly 

through vegetation characteristics. Finally, it is possible that no relationship exists 

between topography and riparian health; cycles of erosion, deposition, bank collapse, and 

channel migration are natural elements of channel migration and habitat succession in the 

riparian zone (Naiman and Décamps, 1997). 

To demonstrate the practical utility of the remote riparian health assessment, Figures 4.5 

to 4.13 show examples of riparian zone extent and health, predicted using the vegetation 

and canopy structure model. Figure 4.5 shows a typical healthy riparian area, 

characterized by a wide band of forest on both banks. The riparian area extends 30-60 m 

from the channel, consistent with field observations for wider, well-forested polygons 

along the La Salle. Figure 4.6, also classified as healthy, shows narrower forested riparian 

area. Despite its lesser width, it has a well-established band of native forest on both 

banks, providing sufficient protection against erosion. Figure 4.7 shows an herbaceous 

riparian area, classified as healthy. While the majority of healthy riparian areas are treed, 

low-lying herbaceous communities dominated by marsh species or the invasive, but deep-

rooted, reed canary grass (Phalaris arundinacea) can also be functional habitats. In this 

example, there is a wide buffer between the adjacent agricultural field and the channel, 

and, while some erosion is present, there is no evidence of excessive erosion along the 

bank. Figure 4.8 shows a forested riparian area intersected by a road. While most of the 

riparian area shown was classified as healthy, the section adjacent to the road intersection 

was classified as unhealthy, owing to disturbance resulting reduced bank stability, and the 

lack of native species and tree cover, and a correlative increase in the cover of invasives. 

Figures 4.9 and 4.10 show forested riparian areas with adjacent yard sites. These sites are 
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typical of much of the La Salle study, with patches of disturbed and compromised 

riparian habitat interspersed among predominantly healthy, well-treed habitat. Because of 

their small footprints, damaged habitat associated with yard sites is usually relatively 

localized as compared with cultivated fields. However, construction of erosion control 

structures (e.g. riprap) on these sites also frequently results in increased erosion 

downstream. Figure 4.11 exhibits a less clear classification; while both sides of the 

channel are well-forested, the north bank is classified as unhealthy. The yard site on the 

north bank does not appear large enough to influence riparian habitat along the entire 

reach shown. However, as aerial imagery does not show the state of the riparian area 

below the canopy, the unhealthy classification reflects habitat damage in the understorey 

detected through structural information derived from canopy structure indices. Figure 

4.12 shows a narrow riparian area classified as unhealthy, with sparse tree growth and 

cultivated fields immediately adjacent on both sides. Sites of this type are affected by 

bank instability resulting from tree clearing, invasion by invasive species, and 

agricultural pollutants, which cannot be adequately filtered owing to the lack of tree 

growth. Figure 4.13 shows a similar riparian area bisecting a golf course. While not 

affected to the same degree by agricultural pollutants, this riparian area is similar to the 

previous one.  

4.5 Conclusion 

This study found that object-based methods applied to vegetation and canopy structure 

data could be used to develop a model that accurately predicts riparian habitat condition 

as observed in the field. The model using only vegetation spectral and canopy structural 
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variables was found to produce the best result, with an accuracy of 88% ( = 74±4%). 

The model based on topographic variables in isolation produced very poor results. This 

could be a function of: the sampling density of the LiDAR data used to construct the 

DEM; the lack of inclusion of topographic metrics in the object-based image 

segmentation; or, riparian physical structural attributes might be better represented in 

remotely sensed datasets by vegetation indicators. These results demonstrate that riparian 

health can be accurately modelled using object-based methods to assess spectral and 

structural vegetation data. Using this method, riparian health can be assessed remotely, 

eliminating the need for field surveys and preserving resources for riparian management 

and conservation programming. 
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Table 4.1. Accuracy statistics for the linear discriminant model training set using 
topographic and vegetation variables (= 0.41, p < 0.001). 

 

  

Actual Class/Predicted Class Healthy Unhealthy Total
Healthy 453 63 516
Unhealthy 47 316 363
Total 500 379 879

Producer Accuracy 91% 83%
User Accuracy 88% 87%
Total Accuracy 87%

Kappa 74%
Kappa Confidence Interval ±4%
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Table 4.2. Accuracy statistics for the linear discriminant model testing set using 
topographic and vegetation variables ( = 0.34, p < 0.001). 

 
  

Actual Class/Predicted Class Healthy Unhealthy Total
Healthy 150 22 172
Unhealthy 22 100 122
Total 172 122 294

Producer Accuracy 87% 82%
User Accuracy 87% 82%
Total Accuracy 85%

Kappa 69%
Kappa Confidence Interval ±8%
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Table 4.3. Accuracy statistics for the linear discriminant model training set using 
vegetation variables only (= 0.42, p < 0.001). 

 

  

Actual Class/Predicted Class Healthy Unhealthy Total
Healthy 453 63 516
Unhealthy 44 319 363
Total 497 382 879

Producer Accuracy 91% 84%
User Accuracy 88% 88%
Total Accuracy 88%

Kappa 75%
Kappa Confidence Interval ±4%
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Table 4.4. Accuracy statistics for the linear discriminant model testing set using 
vegetation variables only (= 0.38, p < 0.001). 

 
 
  

Actual Class/Predicted Class Healthy Unhealthy Total
Healthy 152 20 172
Unhealthy 24 98 122
Total 176 118 294

Producer Accuracy 86% 83%
User Accuracy 88% 80%
Total Accuracy 85%

Kappa 69%
Kappa Confidence Interval ±8%
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Table 4.5. Accuracy statistics for the linear discriminant model training set using 
topographic variables only (= 0.93, p < 0.001). 

 

  

Actual Class/Predicted Class Healthy Unhealthy Total
Healthy 423 93 516
Unhealthy 247 116 363
Total 670 209 879

Producer Accuracy 63% 56%
User Accuracy 82% 32%
Total Accuracy 61%

Kappa 21%
Kappa Confidence Interval ±7%
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Table 4.6. Accuracy statistics for the linear discriminant model testing set using 
topographic variables only (= 0.90, p < 0.002). 

 

  

Actual Class/Predicted Class Healthy Unhealthy Total
Healthy 146 26 172
Unhealthy 87 35 122
Total 233 61 294

Producer Accuracy 63% 57%
User Accuracy 85% 29%
Total Accuracy 62%

Kappa 21%
Kappa Confidence Interval ±11%
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Table 4.7. Significance statistics for linear discriminant models (training and testing sets). 

Model Variables Degrees of 
Freedom

Wilks' 
Lambda

Approximate 
F Statistic

Number of Degrees 
of Freedom

Density of Degrees 
of Freedom P-value Residuals

Vegetation and Topography - Training 1 0.40875 17.23 68 810 <0.001 877
Vegetation and Topography - Testing 1 0.34191 6.3686 68 225 <0.001 292
Vegetation Only - Training 1 0.42386 19.578 57 821 <0.001 877
Vegetation Only - Testing 1 0.37864 6.7944 57 236 <0.001 292
Topography Only - Training 1 0.92634 6.2674 11 867 <0.001 877
Topography Only  - Testing 1 0.90329 2.7446 11 1161 0.002 292
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Figure 4.1. Biplot showing the first two axes of the principal components analysis conducted for 
the instantaneous slope variables, with 95% confidence ellipses. Circles represent 
segmented image objects, colour coded according to riparian health survey score. Variables 
abbreviated: Long=longitudinal curvature; Profile=profile curvature; XS=cross-sectional 
curvature; Mean=mean curvature. “Aspect” is situated in the upper left quadrant near the 
plot centre, trending weakly on both axes. 

 

  



 106

 

Figure 4.2. Boxplot showing the distribution of healthy and unhealthy riparian classes according 
to a linear discriminant model developed using both vegetation and topographic variables. 
The horizontal solid line depicts the median. The box contains 50% of the data, between 
the first and third quartiles. Dashed whiskers represent the median 95% confidence interval 
(CI). Solid red whiskers show the mean 95% CI. Solid and hollow circles depict the mean 
and outliers, respectively. 
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Figure 4.3. Boxplot showing the distribution of healthy and unhealthy riparian classes according 
to a linear discriminant model developed using only vegetation variables. The horizontal 
solid line depicts the median. The box contains 50% of the data, between the first and third 
quartiles. Dashed whiskers represent the median 95% confidence interval (CI). Solid red 
whiskers show the mean 95% CI. Solid and hollow circles depict the mean and outliers, 
respectively.  
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Figure 4.4. Boxplot showing the distribution of healthy and unhealthy riparian classes according 
to a linear discriminant model developed using only topographic variables. The horizontal 
solid line depicts the median. The box contains 50% of the data, between the first and third 
quartiles. Dashed whiskers represent the median 95% confidence interval (CI). Solid red 
whiskers show the mean 95% CI. Solid and hollow circles depict the mean and outliers, 
respectively. 
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Figure 4.5. A wide, forested riparian area. Riparian health model classification: green = healthy, 
red = unhealthy. Image captured using a 175x210 m window at a scale of 1:2000. 
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Figure 4.6. A narrow, forested riparian area, surrounded by cultivated agricultural fields. 
Riparian health model classification: green = healthy, red = unhealthy. Image captured 
using a 175x210 m window at a scale of 1:2000. 
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Figure 4.7. A narrow riparian area, characterized by herbaceous cover on one side of the river. 
Riparian health model classification: green = healthy, red = unhealthy. Image captured 
using a 175x210 m window at a scale of 1:2000. 
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Figure 4.8. A forested riparian area intersected by a road. Riparian health model classification: 
green = healthy, red = unhealthy. Image captured using a 175x210 m window at a scale of 
1:2000. 

 

. 
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Figure 4.9. A forested riparian area adjacent to a yard. Riparian health model classification: 
green = healthy, red = unhealthy. Image captured using a 175x210 m window at a scale of 
1:2000. 
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Figure 4.10. A forested riparian area adjacent to urban development. Riparian health model 
classification: green = healthy, red = unhealthy. Image captured using a 175x210 m 
window at a scale of 1:2000. 
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Figure 4.11. Forested riparian areas opposite one another. Riparian health model classification: 
green = healthy, red = unhealthy. Image captured using a 175x210 m window at a scale of 
1:2000. 
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Figure 4.12. Narrow riparian area surrounded by cultivated fields and a road. Riparian health 
model classification: green = healthy, red = unhealthy. Image captured using a 175x210 m 
window at a scale of 1:2000. 
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Figure 4.13. Riparian area with a narrow buffer of trees, surrounded by a golf course. Riparian 
health model classification: green = healthy, red = unhealthy. Image captured using a 
175x210 m window at a scale of 1:2000.  
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CHAPTER 5: CONCLUSIONS AND MANAGEMENT IMPLICATIONS 

5.1 Summary and Conclusions 

1. Field observations revealed the vegetation structure, particularly the degree of 

establishment and density of shrubs in the understorey, was more important than 

community composition and species diversity in determining the health of riparian areas on 

the La Salle River.  

2. A method was developed to model the extent of riparian habitat. Recorded maximum mean 

flood levels were mapped using a DEM to delineate the flood zone. To account for riparian 

vegetation, the flood zone was then extended to the outer edge of segmented vegetation 

objects overlapping the flooded area boundary. This approach provided an accurate 

estimate of the extent of riparian habitat, based on field observations.  

3. Using hierarchical clustering, vegetation spectral and structural information extracted from 

a combined dataset comprising high-resolution imagery, vegetation productivity and 

vegetation structure indices using object-based methods were linked to overall riparian 

health scores derived from an indicator-based field assessment. The correlation was 

statistically significant. 

4. The inclusion of vegetation structure indices derived from LiDAR improved both the 

correlation between image objects and riparian habitat health, and the separation between 

health categories based on image object clustering.  

5. Object-based methods can be used in combination with linear discriminant modelling to 

accurately predict riparian habitat condition as observed in the field. Three models were 
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tested, using structural and spectral vegetation variables in isolation, topographic variables 

in isolation, and vegetation and topographic variables in combination. The model using 

only vegetation variables was found to produce the best result, with an accuracy of 88% ( 

= 74±4%).  

6. The model based on topographic variables produced very poor results. This could be a 

function of: the sampling density of the LiDAR data used to construct the DEM; the lack of 

inclusion of topographic metrics in the object-based image segmentation; or, riparian 

physical structural attributes might be better represented in remotely sensed datasets by 

vegetation indicators. These results demonstrate that riparian health can be accurately 

modelled using object-based methods to assess spectral and structural vegetation data. 

7. Using the modelling method developed in this project, riparian health can be assessed 

remotely, eliminating the need for resource-intensive field surveys and thereby preserving 

resources for riparian management and conservation programming. 

5.2 Management Implications and Further Research 

5.1.1 Riparian Health Model  

Figure 5.1 shows the workflow followed to produce the La Salle riparian health model. The 

model achieved an overall accuracy of 88%, a result comparable with other successful riparian 

habitat modelling endeavours (Arroyo et al., 2010; Johansen et al., 2008b; Johansen et al., 

2007b; Johansen and Phinn, 2006a). As discussed in Section 4.4.2, previous studies have focused 

on predicting individual riparian health indicators, rather than a cumulative measure of riparian 

health. This approach has the advantage of simplicity, in that it provides a single classification, 

which does not require further assessment. However, as individual indicators cannot be 
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separated, it is not appropriate for detailed analyses and management prescriptions at the site 

level. Rather, its utility is as a watershed-level screening tool, used to identify compromised 

riparian areas for more in-depth field-based investigation. 

The method used should be transferable to other riparian reaches in southern Manitoba, but this 

assumption has not yet been tested. The object-based image segmentation was carried out 

without training data, but it will be necessary to adjust parameters to account for image 

availability and quality, and physiographic variation in new areas. While field-derived training 

and testing data were not used for the OBIA, they were needed for model development. The 

discriminant functions used should be tested for applicability in another study area to assess the 

potential for full automation of the riparian health model in southern Manitoba. However, it is 

likely that the collection of training data will be necessary to modify model parameters for 

application in regions with significantly different physiographies. 

Given the high cost associated with field surveys, this methodology has potential as a cost saving 

measure, allowing resources to be conserved for the application of management prescriptions. 

However, this assumption is dependent upon access to OBIA software, which is expensive both 

to purchase and to license. LiDAR is also currently expensive, though it is becoming more 

readily available. This study has demonstrated that LiDAR is necessary to achieve acceptable 

accuracy levels.  

5.1.2 Ecological Challenges  

The Manitoba riparian health assessment focuses on physical/topographic, vegetation and 

anthropogenic attributes that influence bank stability, flood regulation, and nutrient/pollutant 

control (AAFC, 2004). While some elements of the ecological health of the riparian zone are 
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addressed through the inclusion of rankings for invasive and opportunistic species, other 

elements, such as the presence and abundance of native species (whether rare, vulnerable or 

generalist), are not included. Nor is any measure of biodiversity or species richness recorded. 

(Moffatt and McLachlan, 2004) found that including both opportunistic (colonizing) and 

vulnerable (usually native) species as indicators was effective for assessing the condition of 

riparian areas. In particular, they found the species composition of the herbaceous component to 

be a valuable indicator. However, the Manitoba riparian habitat assessment does not include a 

ranking for the presence of specific ecologically desirable species. In addition, invasive species 

are not adequately represented. An example is reed canary grass (Phalaris arundiacea), a 

rhizomatous perennial grass in the taxonomic family Poaceae. It is native to parts of both North 

America and Eurasia (Lavergne and Molofsky, 2007). The Eurasian type was introduced to 

North America for use as a forage crop, shoreline stabilizer, and for extraction of soil and water 

contaminants, and subsequently hybridized with the native type, producing an aggressive 

invasive variant. Reed canary grass is listed as invasive by the Invasive Species Council of 

Manitoba, and is described as an aggressive invasive species by Fortier (2014) in report released 

by AAFC. In addition, there is a large body of literature devoted to managing and controlling the 

spread of reed canary grass in wetlands and riparian areas in North America (Gebauer, 2013; 

Glaser and Glick, 2012; Officer, 2012; Miller et al., 2008; Seebacher, 2008). Despite this, reed 

canary grass is not listed as either an invasive or a disturbance species in either the Manitoba 

riparian health assessment, or the Alberta assessment a more detailed inventory on which the 

Manitoba assessment is based.  

A second ecological issue with the field assessment is the lack of emphasis on indicators that 

assess the state of the understorey. Understorey structural attributes of the riparian zone serve as 
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indicators of many facets of riparian health (Johansen and Phinn, 2006a; Jansen, 2005). 

However, this essential component of the riparian zone is assessed only indirectly in the field 

survey, through three indicators: preferred tree and shrub establishment and regeneration; 

browsing usage of preferred woody vegetation; and presence of deep binding root mass.  

5.1.3 Field Assessment Bias 

To assess the relative importance of each of the eleven riparian health indicators in determining 

the health score assigned to each polygon, a logistic regression was conducted. Logistic 

regression and its applications are described in detail in Legendre and Legendre (2012). Briefly, 

logistic regression is a form of generalized linear model, often used to predict the response of a 

binary or categorical dependent variable to one or several independent variables. It is a 

conditional probability classifier, predicting outcomes of a combination of independent variables 

or predictors based on probability. In addition to conditional probability modelling, logistic 

regression can be applied to assess the relative importance of predictors in determining the model 

outcome (Szumilas, 2010; Thompson, 2009). The results of the logistic regression indicated that 

percent vegetation cover had the greatest influence in predicting the overall riparian health score, 

followed by anthropogenic structural alteration of the river bank, and anthropogenic physical 

alteration to the rest of the polygon. The indicators having the least influence on the overall score 

included browsing and anthropogenic removal of preferred trees and shrubs, preferred tree and 

shrub establishment and regeneration, and presence of root mass for stream bank stabilization. 

These results indicate that the binary nature of the field assessment output is likely more a 

function of a bias inherent in the assessment protocol than it is evidence of a simple healthy-

unhealthy split in riparian habitat condition. The assessment metrics having the greatest relative 

importance in determining the total health score – overall vegetation cover and anthropogenic 
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habitat alteration – are primarily binary in nature and are easier to visually estimate with 

consistency than less influential metrics, such as the percentage of the bank protected by deep, 

binding root mass. The dominance of binary metrics in the assessment results in clean division of 

riparian habitat into two virtually discrete health categories. However, in reality riparian areas 

are natural ecosystems, which exist along a continuum between fully functional, healthy habitat, 

and heavily modified or disturbed, non-functional habitat.  
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Figure 5.1. Workflow chart showing steps followed in developing the riparian health model.
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