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ABSTRACT 

Polling systems have been the subject of m m y  studies and are of ioterest in the 

analysis of communication systems, operat ing systems scheduler, t r&c intersections. 

and manufact uring systerns. For communication and operat ing systems, the time- 

limited service discipline is very important since it allows one to limit the time the 

server is away from a particular queue. Nevertheless, it has received little attention, 

whereas, the exhaustive and gated service discipline have been studied extensi vely. 

In addition, most of the available results ignore correlation between arrivals. 

In this thesis, we have modeled the Fair Share Scheduler as a discrete time polling 

system. In this polling system, each queue is visited according to the exhaustive time- 

limited service discipline, customers arrive according to the Markovian arriva1 process 

and their service time has a phase type distribution. Both cyclic and table polling 

ase considered. In addition, we consider, separately, the case when dl the queues 

have infinite buffer capacity and when al1 the queues have finite buffer capacity. 

Our solution is based on the decomposition approach. Thus, for the i d n i t e  buffer 

capacity case, each queue in the polling system is treated as a MAP/PH/ l  with 

vacation periods and is andyzed using the matrix-analytic approach. On the other 

hand, for the finite buffer capacity case, each queue is considered as a MAP/PH/l /K 

with vacation periods, for which the queue length distribution is obtained using the 

block Gauss-Seidel iterative procedure. 

The results of the MAP/PH/1 or the MAP/PH/I /K are then incorporated into 

an iterative procedure to obtain the mean waiting time for each queue in a polling 

system. Because of the  time-limi ted service discipline, the vacation and visit period 

distributions are represented by discrete-time phase distribution in the case of cyclic 

polling. However, for table polling, since the type of vacation the server takes depends 

on its position in the polling table, the  vacation period looks like the convolution of 

discrete phase distributions and is represented by a MAP. In order to  incorporate the 



correlation between the vacation and visit period distributions, the vacation period 

is obtained as the sum of an independent and a dependent p u t .  The independent 

part is the convolut ion of the visit period of the queues visited while the server is on 

vacation. The dependent part is computed using an approach sirnilar to that of Lee 

and Sengupta. The convergence of the iterative procedure is proved for the cyclic 

polling case using stochastic dominance. We have also proved that if we start with 

a stable system, then the iterative procedure is stable (for cyclic polling). Compari- 

son between the iterative results and the simulation results shows that the iterative 

procedure provides reasonable results over a wide range of input parameters. 

However, the computational time increases as the dimension of the vacation period 

becomes large. In our case, the dimension of the vacation period distribution depends 

on 1) the number of queues in the polling system, 2) the time threshold for the 

queues visited while the server is on vacation, and 3) the number of visits in the 

case of table polling. In order to reduce the computational time, the dimension of 

each phase type vacation period distribution is reduced using the moments rnatching 

approach. Cornparison between the original and reduced MAP shows that the error 

in the probability mass function and the coefficient of correlation is very smail. 

héywords: Polling systems, mean waiting time, exhaustive time-lzmited service disci- 

pline, vacation rnodels, Markovian am'val process, phase type  distribution. 
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CHAPTER 1 

INTRODUCTION 

1.1 General 

Polling models are a natural representation of many problems in the field of en- 

gineering and science. A polling mode1 consists of a single server and many queues. 

Its use is motivated by reducing wasteful resources and improving efficiency. This is 

achieved by serving many queues, each possibly having different type of customers, 

which under normal operating conditions do not require a dedicated server. Further- 

more, polling reduces networks' complexity and improves their architecture. Histor- 

ically, polling systems have been used to mode1 rnanufacturing systems and tr&c 

intersections. In recent years, and due to technological advances in the areas of com- 

puter architecture and communication networks, polling models have been used to 

represent computer-communications and operating systems. Applications of polling 

models to engineering problems is discussed in Levy and Sidi [Il91 and for computer 

networks in Takagi [169]. Later in this Chapter we present several examples related 

to the modeling of engineering and cornputer systems. But for now, let us show the 

importance of poliing t hrough a simple computer communication problem. 

Consider a network of four workstations which we wish to inter-connect to share 

information (e-g. emails). It is feasible, albeit wasteful, to have a dedicated commu- 

nication iine between each pair of workstations as shown in Figure l.l(a). Clearly, 

when station 1 is communicating with station 2, the communication links (1 - 3) and 

(1 - 4) may be idle. Consequently, to reduce the complexity of the network and use 

the resources more efficiently the four workstations rnay be connected in a bus topol- 



C'hapter 1 

(b) 

Figure 1.1: 4 Workstations Network 
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Service tim Intervisi t time Service time 

t 1 t 2 

Cycle time 
0,. t,) 

Figure 1.2: Cycle Time, htervisit Time and Visit Period Relationship 

ogy as shown in Figure l.l(b). This topology raises the issue of contention among the 

workstations to use the shared communication link. For example, Contention occurs 

when station 1 wants to  communicate with station 2 and at the same time station 3 

wants to communicate with station 4. Thus a protocol that dictates who can use the 

communication link and for how long is needed. The new network can be modeled as 

a polling system with the communication link being the server and each workstation 

as a queue. The performance of this network is measured in terms of the following: 

The cycle time distribution which is the distribution of the time between suc- 

cessive polls of the same station (queue). 

The intervisit time distribution which is the distribution of the tirne between 

the end of a service penod and the beginning of the next poll. 

The visit period distribution which is the distribution of the time between 

polling a station and leaving that station. The relationship between cycle time, 

intervisit time and visit penod are shown in Figure 1.2. 

r The queue length distribution at each station. 

The joint queue length distribution at polling instant. 

0 The waiting time distribution. 

In order to obtain one or more of the above performance rneasures we mathemat- 

ically mode1 this systern as a multi-queue single server system which is also known as 
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a polling system and is shown in Figure 1.3. Note that the term polling originates in 

the data link control scheme according to Takagi [167]. Formally, a polling system is 

defined by: 

a The number of queues or stations (e-g. machines, cornputer terminals, etc.). 

Note that in this thesis the words station and queue are used interchangeable. 

a The input process to  each queue, usuaily represented by a stochastic process 

like the Poisson process in continuous time models or the Bernoulli process in 

discrete time models. 

The tirne it takes to serve a customer which is usually stochastic and known 

as the service time distribution, for example, the exponential distribution for 

cont inuous time models and the geometric distribution for discrete time models. 

The polling order of the queues (e.g. sequential, random, etc.). 

0 The duration of the visit penod for each queue which is determined by the 

service discipline (e-g. exhaustive, gated, limited, etc.). 

a The time span between the end of service at one queue and the beginning of 

service at the next queue which is known as the switch-over time. 

At this juncture, it is worthwhile to differentiate between polling systems and Syn- 

chronous Time Division Multiplexing (STDM). In STDM each queue is attended by 

the server for a fixed length of time whether there are customers to serve or not. In 

polling if the queue is empty the server does not bother to stay at that queue and 

moves on to the next queue. Consequentiy, congestion a t  each queue in STDM is not 

affected by congestion at other queues and each queue can be analyzed as a single 

server queue with deterministic vacation period. On the other hand, congestion at 

each queue in polling models is dec t ed  by other queues. Therefore the andysis must 

look at the system as a whole. Several analytical methods have been proposed in the 

literature and they can be exact or approximate. The exact methods are based on the 
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Figure 1.3: f olling System 

buffer occupancy, the station time, or the descendant set. The approximate methods 

are based on the conservation law of Kleinrock [96] or the results of the M/G/I  and 

GI/M/l type queues (see Neuts [133, 1341). Chapter 2 elaborates on these issues in 

more detail. When a mathematical formulation is not possible, a simulation approach 

is taken. The only problern with the latter approach is that it is time consuming at 

times and can not be relied upon for optimization. 

We are now in a position to discuss some applications of polling systems. However, 

before we do that, we talk briefly about the thrust of this thesis. The main reason 

behind this thesis is the rnodeling of an operating system scheduler. There are several 

alternatives for process scheduling and they are described in Tanenbaum 1175, Chap. 

21. In general, when more than one process is ready to run, the operating system uses 

the scheduler to decide which is the next process to run. In this thesis we are interested 

in grouping similar class of process in one queue. The grouping can be done based on 

the work requirements, priority, etc. A four-class system is shown as a multi-queue 

system in Figure 1.4(a). In order to make the system fair and equitable, each queue 
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Figure 1.4: A Scheduler with four Classes 

has a limited service period after which it relinquishes the central processing unit 

(CPü). In generd, a served process may leave the system, rejoin the same or another 

queue, or generate another request. This is represented by feedback in Figure 1 4 b )  

and causes correlation in the input process. Thus, the objective of this work is to  

analyze a polling system with correlated input process. Content ion to  use the CPU is 

resolved using a time limit threshold for each queue. The objectives and contributions 

of t his t hesis are presented in more details in Sections 1.6 and 1.7, respectively. 

For now, we further elaborate on the importance of polling systems, correlated 

arrival, and time-limited service discipline by considering examples from the fields 

of cornputer communication, operating systems, manufacturing systems, and t rans- 

portat ion. 

1.2 Communkat ion Syst ems 

The main purpose of communication systems is to facilitate the  exchange of in- 

formation between two entities. The information (e-g. files, email) is put into packets 

conforming to the network protocols and then sent over the transmission medium. 

Within a network, users compete to have access to the transmission medium or to the 

switches. Sections 1.2.1 and 1.2.2 outline, respectively, how a Locd Area Network 
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and an asynchronous transfer mode switch can be modeled as a polling system. 

1.2.1 Local Area Network 

A Local Area Network (LAN) consists of several terminals connected together via 

radio, twisted pairs, opticai fiber, or coaxial cable. Although each terminal could 

be a computer that can stand done, their connectivity is desirable since it increases 

productivity by: 1) easing communication between members of a group working on 

related projects, and 2) easing the transfer and sharing common resources. There- 

fore, the terminals are connected together to form a LAN which results in sharing 

some resources, for example, data bases, files, computer codes, etc. Typicd LANs 

topologies include the ring, star, and bus. They are shown in Figure 1.5. 

In a LAN each terminal generates messages at  random and store them in its out- 

put buffer . The stored messages wait unt il the station gains access to the transmission 

medium. The access to the server is determined according to a protocol known to 

d l  the terminals. In addition, in some networks, the right for transmission is passed 

between stations using a token or a central processor. The token is frequently used 

with bus and ring topologies. The central processor grants permission to access the 

transmission medium according to a table. Under this scheme. the central processor 

may grant the right of access to high priority stations more often. The most common 

tables are elevator polling which is used to model bus topology and star polling which 

cm model a half-duplex transmission medium. In the elevator polling case, the sta- 

tions are visited in the following order 1,2,. . . , N ,  N - 1, N - 2, . . . ,1, .  . ., where N is 

the number of stations. This polling scheme reduces wasted time when the connect 

time between stations is very large. 

It is shown in Altman et al. 161 that for the globally gated service discipline 

the mean waiting time is independent of the station index. In the case of two way 

trafic, we have one station, Say station N, that sends messages to stations 1 through 

N - 1 and in return may receive messages from al1 the stations. This is similar 
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to the star topology. Ln this case, the stations are visited in the following order. 

1. N ,  2. N ,  . . . , N ,  N - 1, N ,  1 , .  . .. This, for example, can represent a LAN with 4 

workstations and a printer. Every time a job is printed the job's owner has to  be 

notifiec!. In order to speed up the notification process, the printer is granted access 

to the transmission medium &ter every workstation. Table polling can be used to 

model networks with general topology. Schwartz [151, Chap. 121 showed how to 

model the communication protocol for an Airline reservation system as a polling 

system. Recently, Takagi [169] showed how some of the results of polling models can 

be used for communication networks (e.g. half-duplex transmission, Newhall loop, 

token passing protocols, etc.). 

1.2.2 Asynchronous Transfer Mode Switch 

Currently there is an increased interest in Asynchronous Transfer Mode (ATM) net- 

works. This lead to many ATM switch architectures. One of the many considered 

architectures is the shared-medium. In a shared medium switch d l  packets arriv- 

ing on the input links a e  forwarded to the output links over a common high-speed 

medium such as a parallel bus. Each output link is capable of receiving al1 packets 

addressed to  it. A shared-medium packet switch with N input links and M output 

links can be modeled as a polling system (e.g. Zaghloiil and Perros [18*5]). A generic 

shared medium switch is shown in Figure 1.6. 

The N input links are attached to the shaxed bus and contend for access when 

they have one or more messages (cells) to transmit. The order in which the input 

queues are served is detennined by the bus arbitration or polling scheme. In order 

to model such a system accurately it is imperative to take into consideration system 

characteristics such as the buffer capacity, the burstiness of the input traffic, and non- 

symmetric load conditions. Because the buffer capacity at the input links is finite, 

cells arriving to a full input queue will be lost. Furthermore, if one of the output 

queues is full, the flow of messages (cells) will be stopped, and consequently, the 
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Medium 

Figure 1.6: ATM Shared-medium Switch 

server becomes idle. Because the input buffer capacity is finite and because of the 

blocking at the output queues closed form solution are difficult if not impossible to 

obtain. As a result such queueing networks are usually analyzed approximately using 

the notion of decomposition. 

1.3 Operat ing Systems 

In this section we consider the Fair Share Scheduler (FSS) and the X11 

clientfserver model. We will show how both of t hese models can be viewed as multi- 

queue single server models. 

1.3.1 Fair Share Scheduler 

The (FSS) described in Henry [80] is a process scheduling scheme for distributed 

operating systems. Under the FSS processes having the same work requirements are 
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grouped together. For example, in a UNIX environment, professors are assigned to 

one group G1, graduate students to a second group G2: and undergraduate students 

to a third group G3. Each group is then allocated a percentage of the system resources 

proportional to its usage and priority. This will ensure that a heavy usage by one 

group does not clog the system and starve other processes. For example, during the 

end of a school term, undergraduate students are rushing to finish term projects. 

To ensure that professors and graduate students receive their share of the system 

resources, undergraduate students' systern resource utilization is limited to what t bey 

were initially assigned (see Figure 1.7). However, if one group is inactive then its 

share of system resources is divided between the active groups in accordance to t heir 

systern's usage. 

The FSS can be modeled as a polling system where each group of users is assigned 

to a queue. Within each group there is a "thinkn period after which a message 

or a request is generated by a user. Thus, messages to each group's queue arrive 

according to a random process. Since the pool of users is not identical, the service 

time of each message is, generally, represented by a random process. It is asserted 

in Tanenbaum (1 751 that in many time-sharing systerns the time is discretized into 

time slots (quantum) with transitions between States occurring at these time slots' 

boundaries. Thus, the FSS is better modeled in discrete time. In this model. the 

percentage of the CPU usage per group can be viewed as the maximum time the 

sever can spend at the corresponding group's queue. However, if a particulax queue 

is empty, instead of wasting resources, the CPU serves messages from the  next group. 

As r i t h  any real system the buffer capacity is finite. 

The performance of transaction driven computer system (TDCS) can be found in 

Groenendij k and Levy [7?] and that of a disk drive in Tanenbaum [174]. 
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Figure 1.7: Fair Share Scheduier 
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In a clientlserver environment, many clients share a single server. The server provides 

service to these clients in a random or sequential fashion. Each client has a "thinkn 

period after which a request is generated and sent to the server. The server, if free, 

will provide services to that request. Otherwise, the request is enqueued until the 

server becomes available. Most universities and research institutions have a computer 

environmeot which is distributed and has a clientlserver architecture which can be 

described similarly to Section 1.3.1. The focus of this section is the X11 clientlserver 

environment (see Figure 1.8) which is introduced by Scheifler and Gettys [149]. Notice 

t hat XI1 gives the impression that the role of the client and the server are reversed. 

The role of an X11 server is to multiplex requests from clients to the display. 

The clients are the applications which use the server to display information on the 

screen. With the help of a terminal, a user can have several windows open at the 

sarne time. For example, a user can have a window to read mail, the second to edit 

text and a third to compile programs. The X11 server, in a round-robin fashion, 

tends to tbese applications. The basic resources provided by the XI1 server are 

windows, fonts, mouse cursors, and off-screen images. Clients request creation of 

resources by providing appropriate parameters. For example, to display text in a 

window, the client has to provide the drawing color, the window identifiers, the font, 

and the string of characters. When applications have information to display on the 

screen, they contend to use the server. For example, consider the case where an 

email has arrived, the user is editing a file using emacs, and compilation of a program 

has finished. The XI1 server displays, in the appropriate window, in a round-robin 

fashion, the output of each application. 

This system can be modeled as a polling system in which XI1 is the server, 

and each application has a dedicated queue for its requests. Applications generate 

messages at random and the server displays the results of these requests in a round- 

robin fashion. According to  the X11 protocol a served request may generate a reply 
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Figure 1.8: X I I  Server 
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which in return rnay create another request. Thus, it is necessary to consider an 

arrival process that c m  capture this correlation in the inter-arriva1 time between 

requests. Note also thai each client, application, has a finite buffer capacity which 

may lead to blocking when the buffer is full. 

1.4 Manufact uring Systems 

This section discusses two classical problems in the area of manufacturing: 1 ) the  

machine repair person problem and 2) the material handling device problern. 

1.4.1 Machine Repair Person 

In a manufact uring environment, severai machines are pat rolled by a single repair 

person whose movernent between the machines is pre-specified. The machines may 

request one of two types of service: routine maintenance or repairs. Therefore, cus- 

tomers in this system are of two kinds: low priority (maintenance) and high priority 

(repairs). Because old machines are more prone to break down, the repair person 

may visit them more frequently in a given cycle. In addition, the arrival process, ma- 

chine break down or routine maintenance, h a .  to take i n t ~  consideration the inherent 

correlation between the age, the last time a station is served and the next time it will 

require service. Notice also that the buffer size is equal to one. This is because if a 

machine breaks down or requires a routine maintenance then it will stay idle until it 

is visited by the  repair person. 

The machine repair person can be viewed as a polling system in which each queue, 

machine, has a buffer size equal to one. The switch-over tirne is the time it takes the 

repair person to move from one machine to the  next. This problem was analyzed by 

Mack et al. [128] and Mack (1271. 
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1.4.2 Material Handling Device 

There are a large number of Flexible Manufacturing Systems (FMSs) configurations. 

In this section we consider a configuration that can be modeled as a polling system. 

Specifically, a material handling device moving parts from a set of machines is modeled 

as a polling system. 

Consider a manufacturing environment that consists of several work stations with 

each work station having many paralle1 machines ( s e  Figure 1.9). In addition to the 

central storage area, each work station has a local material handling device (MHD). 

The role of the local MHD is to move parts from each machine to the central storage 

area. If the centrd storage area is full then blocking occurs. Parts are generated 

by each machine according to a random pattern and then stored in its buffer. The 

machines have finite buffer capacity which could be equal to one if a machine can 

work only on a single job at  a time and has no self storage area. If that buffer is full 

then parts are blocked. Therefore, in this configuration blocking may occur at two 

stages: If the MHD is not available to move parts to the centrai storage and the buffer 

is full (input blocking), or if the central storage is full (output blocking). Notice the 

skiking similarity between this and the configuration for the ATM switch presented 

in Section 1.2.2. 

For analytical modeling purposes, we decompose the system and consider only one 

work station. A work station has several machines and each machine generates parts 

at random and store them in its buffer. Hence, a single machine can be viewed as a 

single queue with finite buffer capacity. Because in a manufacturing system the input 

to a machine is the output of another machine, the arrival process should be one that 

takes into account correlation. The MHD moves the parts from the machines to the 

central storage area. If the central storage area is finite t hen output blocking becomes 

significant. For this model, due to storage limitations, blocking is a very important 

performance measure to management (a  blocked machine is an idle machine). 
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Figure 1.9: Material Handling Device 
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1.5 T r a c  Signal Control 

A common sight in our daily life are traffic intersections. Looked at closely. 

a traffic intersection can be modeled as a multi-queue single server system where 

the road intersection and the road lanes represent, respectively, the server and the 

queues. There is a cornpetition between the lanes to use the intersection. A typical 

road intersection is shown in Figure 1.10. In order to permit an orderly usage of the 

intersection by the vehicles, we use traffic lights to control access to the intersection 

in a pre-determined fashion. Each lane has a finite capacity and cars arrive according 

to a random pattern. Since the input to a t r d c  intersection is a collection of outputs 

of upstream traffic lights, the arrival process has some correlation. This correlation 

is best captured using the Platoon arrival process present in Alfa and Neuts [4] or by 

using M A P  as in Alfa [3]. Notice that traffic intersections in which each lane has a 

fixed time period resemble STDM models, hence each lane can be analyzed separately. 

When the tr&c Iight is vehicle-actuated each lane can no longer be analyzed as a 

single queue and therefore oiie con model it as a poliing system. 

Sections 1.2-1.5 presented some applications of polling models. As will be pre- 

sented in Chapter 2, this diversity in applications has resulted in hundreds of research 

articles which give rise to  the question "Why another thesis on polling systems?". 

1.6 Objectives 

The motivation behind this work stemmed originally from the model presented 

in Section 1.3.1. Thus, we use a discrete time model. However, the suggested model 

can be used for many other applications. It is clear from the above applications that: 

The arrival process has to be one that can capture correlation between inter- 

arrival times. This can be achieved by adopting the Markovian Arriva1 process 

introduced by Neuts 11321 and described in Section 3.3. 



Figure 1.10: Road Intersection 



The service time distribution depends on the type of applications and can be 

deterministic as in the case of serving (transmitting) an ATM ce11 to general 

as in the case of LANs. However, because the phase distribution, presented 

in 3.2, is well suited for numerical computation [133, page 791 and can be used 

to represent most service tirne distributions we use it. 

In order to guamntee fairness and accessibility to the server, and at  the same 

time provide high priority customers with qudity service, we use the exhaustive 

time-limited service discipline. In this discipline, each queue is served for a 

maximum period T preemptively (the server intermpts an on-going service and 

will resume where it left off in a future visit). However, if the queue becomes 

empty before the threshold T, then the server moves on to the next queue. 

0 The switch-over t i ~ n e  is set equal to zero to  reduce delays. This c m  be achieved 

by using distnbuted control poUng. Thus, the last message to  be served in each 

queue is a signal to the next queue to receive service ( s e  Schwartz [151, page 

2651. 

Therefore, in this thesis we provide an approximate analytic solution for polling sys- 

tems with either cyclic or table polling order. Under each polling order, we consider 

two cases: 1) when al1 the queues have finite capacity and 2) when dl the queues 

have infinite capacity. Customers arrive according to MAP and their service time 

is of phase type. The switch-over time is equal to zero. Our solution is based on 

the decomposition approach. Each queue is considered as a single server queue with 

visit and vacation periods, where the vacation period for each queue is the service 

period of the other queues. Our focus is the mean waiting time which is considered to 

be the most important performance measures for cornputer networks [98, Chap. 31. 

Because of the inter-relationship between the visi t and vacation period distri butions 

an iterative procedure is used. 
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As a result of using the decornposition approach, the dimension of the vacation 

period distribution becomes quite large. Thus, we extend the three moments approach 

for fitting continuous time phase distributions of Altiok [5] to the discrete phase type 

distributions. 

1.7 Significance and Contribut ions 

Although several researchers have worked on polling systems, few have considered 

the idea of using vacation models. They mostly used the buffer occupancy, station 

time, or descendant set method. This may be due to the fact that most researchers 

considered an input process of the Poisson type. Thus, a mathematical formulation 

based on the lack-of-memory property can be easily done. Notice that the assumption 

of a Poisson process is not a bad assumption for homogeneous networks. However, 

as a result of the multimedia revolution, future networks will offer integrated services 

such as the superposition of video, voice, and data. Thus, there is a need to use a 

more versatile arriva1 process like MAP which is used in this thesis. 

Although the service time distribution is of the phase type (previous work used 

the general distributions), the results obtained here c m  be applied to a wide range 

of service time distributions. This is because the phase type distribution can be used 

to represent most service time distributions and is very well suited for numerical 

investigations [133, page 791. Therefore, the models presented in this thesis use the 

discrete time phase distribution to represent the service time distribution. 

In addition, it is known that for asymmetric polling systems heavily loaded queues 

tend to starve the rest of the queues. This results in very unbalanced mean waiting 

tirnes. This conflict is resolved in this thesis by using the exhaustive time-limited 

service discipline. Also, this work would be one of the few that combines table polling 

wi th exhaustive time-limited service discipline. 

Lastly, even though the mode1 considered in this thesis has zero switch-over time, 



i ts extension to the case of non-zero switch-over time can be easily done by modifying 

the vacation penod distribution as shown in Section 3.7. 

1.8 OutlineoftheThesis 

The remainder of this thesis coosists of six chapters. Chapter two is dedicated 

to background and literature review. The chapter starts with the definition of some 

polling terms, then over 150 articles were reviewed. Chapter three introduces the 

discrete arriva1 process MAP and the discrete phase type distribution. The analysis 

of the MAP/PH/l  and the MAP/PH/l/K queue is then followed by the iterative 

procedure for cyclic polling wi th the exhaustive time-limited service discipline. In 

Chapter four, w e  extend the results of Chapter 3 to  handle table polling. Chapter 

five presents the state space reduction of MAPs with special structures using the 

moments matching approach. Chapter six concludes this work and outlines future 

challenges. 
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BACKGROUND And LITERATURE REVIEW 

2.1 Introduction 

Polling is a scheduling mechanism for multiple queue and single server systems. 

The server attends the queues according to one of the polling order policies outlined 

in Section 2 - 2 2  Despite the complexity of the model arising from the multiplicity 

of the queues, the arriva1 process, the service time distribution, etc, there is a large 

body of literature on polling systems. The progress in the area of queueing analysis 

has made it possible to assess the performance of many engineering problems using 

polling system as a modeling tool. Polling has been used as early as 1950s in the 

British cotton industry. Mack et al. [128] and Mack [127] modeled the patrolling 

machine repair person problem as a polling system with single buffer at each queue. 

Later, polling systems were used to study the problem of vehicle-actuated traffic sig- 

nal by Newe11 (1561, Newell and Osuna (1371, and Stidham (1621. The introduction of 

computer communication protocols have created a wide array of problems. hitially, 

polling was used for data transfer from terminals on multi-drop lines to a central 

computer as in Konheim and Meister [105] and in time-shared systems as in Klein- 

rock [97]. Later, it was used by Bux [30] for token passing local a e a  networks (Le. 

token ring and token bus) aud by Levy and Kleinrock [IO01 for broadcasting systems 

like the ALOHA protocol. In the current studies of ATM networks. Zaghloul and 

Perros [184] used polling to model a shared medium switch in an ATM network. A 

major reason for the diversified use of polling is that resource sharing, single server 

and multi-queues system, is natural in many fields of engineering and sciences. 
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Due to the large body of literature on polling, first we refer to  many survey 

articles. Later this Chapter focuses on two aspects of polling. First, we review the 

different solution methods of polling systems and then present some of the most 

recent literature. The discussion of each article focuses on one aspect that makes the 

work stands out, for example, the service discipline. However, before discussing the 

literature let us define sorne terms associated with polling systems. 

2.2 Definit ions 

Each polling system has two import an; characterist ics, namely the service disci- 

pline and the polling order. The service discipline determines the distribution of the 

time the server spends at a queue and the polling order gives the sequence in which 

the queues are visited. There is a large vaxiety of service disciplines and polling orders. 

First , we address the different service disciplines then the different polling orders. 

2.2.1 Service Disciplines 

Exhaustive Discipline: The queue is served until al1 present and arriving customers 

in the current visit period are served. The server leaves the queue when it becomes 

empty. 

Semi-Exhaustive Discipline: The queue is served until the number of customers 

in the queue is 1 less than the number of customers present at the polling instant. 

Gated Discipline: Only customers present at  the polling instant are served. Cus- 

tomers arriving in the current visit period are served in the next visit. 

Exhaustive h'olimited Discipline: At most K customers are served in a visit. The 

server leaves the queue once the queue becomes empty or K customers are served. 

Gated K-limited Discipline: The minimum of A' or the number of customers 

present a t  the polling instant is served. 

Time-Lirnited Discipline: A polled queue is served for a maximum period T. Sim- 
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ilar to the h'-limited, this can be exhaustive or gated. 

Probabilistically-Limited Discipline: The maximum number of customers served 

at a queue during a server visit is determined by a probability function. 

Binomial Discipline: The number of customers to be served during a server visit 

is binomially distributed with parameters Xi, the number of customers present at 

queue i at the polling instant, and p,, O < pi 5 1. This is a special case of the 

probabilist ically-limited discipline. 

Reservation Discipline: At the end of a visit period the queue makes a reservation 

for its service requirements for the next visit. 

It is worth mentioning here that in a polling system it is not necessary for al1 the 

queues to have the same service discipline. However, as shown in (1231. the exhaustive 

service discipline minirnizes the unfinished work in the system with no regard to delay 

limits. 

2.2.2 Polling Orders 

CycIic Polling: The queues are visited cyclically. 

Table Polling: The queues are visited according to a pre-specified table (e.g. star 

polling , elevator polling ) . 

Random Polling The queues are visit randomly. At the end of a service pied each 

queue i has probability p; of being the next queue to seize the server. 

Markovian Polling: The next queue to be polled is determined according to an 

irreducible positive recurrent discrete parameters Markov chaio. 

Bernoulli Discipline: After service completion of a customer at queue i, the server 

will start service of the next customer at queue i with probability q; and will leave 

the queue with probability 1 - q;. However, if the queue becomes empty then the 

server polls the next queue. 

This wide range of service disciplines combined with the different polling orden 

resulted in many solution methods which are discussed next. 
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2.3 Analysis 

Several methods have been developed to determine various performance measures 

in polling systems. Initially, the buffer occupancy method was used to analyze polling 

systems with exhaustive or gated service discipline. Later, the station time method 

was used to compute the mean waiting time for polling systems with exhaustive 

or gated service discipline. The quest for an easier approach lead to the use of 

branching theory for the gated and exhaustive service disciplines. Nevertheless, the 

mean waiting times can be obtained only by solving a system wi t h N equations, where 

N is the number of queues. For the  limited (time or nurnber) service discipline, the 

computation of performance measures such as the queue length or the waiting time 

distributions are very difficult if not impossible. This is attributed mainly to the 

non-Markovian property of the limited service disciplines. 

Aside from the exact analytic methods, approximate methods were developed to 

obtain performance measures for polling systems due mainly to: 

O The requirement to solve O ( N )  equations to obtain only the mean waiting time 

for the gated and exhaustive service disciplines. 

0 The difficulty associated with obtaining performance measures for the limited 

service discipline. 

O The need for delay bounds for analytically intractable models. 

The approximate approaches are based on ei ther the extension of the conservation law 

introduced in [96] or on an iterative approach that uses the M/G/ l  type queue with 

vacations. These approximate approaches may lead to exact results under special 

cases (symmetric systems). When a mat hematically tract able formulation of the 

network is not possible, the practitioner or researcher is left with simulation which is 

always an alternative, albeit an expensive one. 
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In order to discuss the different solution methods for cyclic polling systems, con- 

sider a system in which customers arrive according to the Poisson process and their 

service time is given by a general distribution. The switch-over time, if there is any. 

is also generally distributed. 

2.3.1 Buffer Occupancy Approach 

The buffer occupancy method was used by many researchers [42,43,52, 78, 105, 1441. 

among many others, for the analysis of cyclic polling systems with or without switch- 

over time. Later, in a monograph, Takagi [165] presented results for both exhaustive 

and gated service disciplines for the continuous and discrete time polling models. This 

approach is based on defining randorn variable (rv) x!, 1 5 i, j 5 N ,  representing 

the number of customers a t  queue j when queue i is polled and relies heavily on 

the Laplace-Stieltjes transform (LST) . The relationship between queue i and queue 

i + 1 was utilized to obtain expressions for the mean queue length, E [x!]. The cross 

correlations, E[x,? x:] , are obt ained by solving nurnerically a set of N3 equat ions. 

It is known (see Takagi [165]) that for symmetric system this set c m  be reduced 

to N2 equations. The LST of the waiting time distribution can be obtained using 

the relationship between the busy period and the queue lengths distribution. The 

summary of the results for the queue Iength and the waiting time distribut ions are 

available in Takagi [165]. Later, Levy and Kleinrock [117] extended this method to 

polling systems with zero switch-over periods. Note that the buffer occupancy method 

was the most widely used method and provided many useful results for cyclic polling 

systems. However, its application is limited to systems in which the inter-arriva1 time 

is exponentially distributed. Also, if one is interested in the whole distribution, say 

of the queue lengths, then inverting LST is necessary since most of the analysis is 

performed behind a LapZacian curtain. Although, this is not terribly difficult due to 

the various techniques to invert LSTs (see Duffy [51]), it is an inconvenience. 

A variant of the buffer occupancy method was introduced in Swartz [164] for a 
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discrete-time polling system with the exhaustive service discipline. In this method, 

each queue at the polling instant is considered as a gambler ruin problem. The initial 

number of customers corresponds to the gambler7 s initial capital, the service time 

of a customer is the playing fee, and the number of arrivals per time slot is the pay 

off. Notice that here the time to ruin in the gambler' s ruin problem corresponds to 

the exhaustive service discipline. The advantage of this method is that it reduces the 

number of computations required to obtain the mean queue length. However, this 

approach is lirnited to polling systems wi t h exhaustive service discipline and slot ted 

service discipline (i.e., t he service t ime is discretized). 

2.3.2 Station Time Approach 

The station time, which corresponds to the visit and switch-over time, approach pre- 

sented in [32,6U, 841, was used for symmetric and asymmetric systems wit h exhaustive 

or gated service discipline. In this method, the waiting time distribution is obtained 

based on the analysis of the station-time distribution. As in the case of buffer occu- 

pmcy method, the station time method relies heavily on the LST. The key idea of 

this approach is to define the station time for each queue and then write a recursion 

formula for the joint queue station times. Once the station time is obtained, the cycle 

time and inter-visit tirne are derived. The LST of the waiting time dist,ribution is 

then obtained based on the distributions of the station time and the inter-visit time. 

Notice that, Like the buffer occupancy method, most of the analysis is done under 

a Laplacian curtain and that the mean waiting times are obtained by solving a set 

of N* equations. Although, these equations are less complicated to  solve, in terms 

of storage and intermediate results, than the buffer occupancy approach, the station 

time method, as the buffer occupancy method, is limited to polling systems with 

Poisson input and exhaustive or gated service discipline. 

A variant of the station time method was introduced by Sarkar and Zangwill (1481 

and relies on the solution of N equations to obtain the mean waiting tirnes. Unlike 
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the standard station time method where the variance of the cycle time is obtained by 

solving N2 equations, in [148] the variance of the cycle time is obtained by solving N 

equations. This can be achieved by relating the cycle times for station i and station 

i + 1. However, the resulting N equations are dense and the benefit of reducing the 

number of equations is off set by using a numerical approach that requires 0 (N3)  to 

obtain the mean waiting times. 

2.3.3 Descendant Set Approach 

The descendant set approach, based on branching theory, was used initially by Avi- 

Itzhak, Maxwell and Miller [Il] for the analysis of alternating queues. Later, it was 

used by Fuhrmann and Cooper [68] for the stochastic decornposition of the M / G / l  

queue and in [23, 41, 104, 1431 for the analysis of polling systems. This method is 

valid only for systems with exhaustive or gated service discipline in which customers 

arrive according to a Poisson process. Like the buffer occupancy approach, the de- 

scendant set method derives the moments of the queue length at  the polling instant. 

This is achieved by considering each customer in a polling system to be either an 

original (parent) or a non-original (children) customer. An original customer is a 

customer that arrives to the system during the switch-over time and a non-original 

customer is a customer that arrives to the system during the service time of another 

customer (be it original or non-original). Using the generating function, the queue 

length distribution at  polling instant is derived based on the relationship between the 

number of original and non-original customers. This relationship is obtained based 

on the service discipline and the Markovian property of the arriva1 process. While 

the descendant set method relies on the generating function technique, it is more 

efficient than the station time and the buffer occupancy methods since the number 

of computations to obtain the mean waiting time is of O ( N ) .  However, similar to 

the buffer occupancy m d  station time methods, only the first few moments of the 

queue lengt h distribution are cornputable. The full distri bution c m  be obtained only 
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t hrough invert ing the generating function of the queue lengt h distribution. 

2.3.4 Approximate Approaches 

Several approximate methods are used for the analysis of polling systems. They can 

be grouped into two methods. The first is based on extending the conservation law 

introduced by Kleinrock [96] to pseudo-conservation laws and the second is based on 

the decomposition approach. 

The pseudo-conservation law used in (23, 25, 35, 56, 571, and by many others, 

usually yields a weighted average or an upper bound for the mean waiting time. It 

is well known that polling systems with switch-over time are not work conserving 

systems since the server remains idle during switch-over time, although work might 

be present in the system. Neverthdess, pseudo-conservation Iaws were derived for 

polling systems based on the stochastic decomposi tion results of polling systems by 

Fuhrmann [67] and the stochastic decomposition results of the M/G/1 queue by 

Fuhrmann and Cooper (681, Doshi (49, 501, and Scholl and Kleinrock [HO] (further 

references related to the M/G/l queue and its analysis can be found in (134, 1701). 

The stochastic decomposition result proves that the total amount of work in a polling 

system is composed of two independent parts: one is the amount of work in the 

corresponding system with no switch-over tirnes; and the second is the amount of work 

at an arbitrary epoch during switch-over period. A survey of conservation law results 

with application to polling systems can be found in [22]. Similady, the stochastic 

decomposition of the M/G/l queue with vacation states that the total amount of 

work in the queueing system is composed of two parts: 1) the corresponding amount 

of work in the M/G/1 queue with no vacation, and 2) the amount of work added to  

the system by those customers that arrive to during the vacation penod. The proof 

of these results can be found in (49. 68, 150). 

The decomposition approach (Le. decompose the polling system into single server 

queues with vacation) was used by many researchers, arnong them [N,  47, 65, 109. 
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113. 115, 1841, to approximate the behavior of polling systems. In this method each 

queue is treated, separately, as a single server queue with vacation. The analysis is 

done in two stages. In the  first part, which is exact, the performance rneasures of the 

single server queue wit h vacation are derived. The second par t  of t he  analysis focuses 

on obtaining an approximation for the vacation period distribution. When possible, 

the vacation period distribution is taken as the convolution of the visit periods of the 

other N - 1 queues, where N is the number of queues in the system. However, when 

the vacation period does not lend itself to  a simple convolution of the visit periods, an 

approximation of the vacation period based on a dependent and an independent part 

is taken. In either case, using an iterative procedure, the decomposition approach 

converges fairly fast to within an acceptable error. The decomposition approach is 

being used more frequently for several reasons, arnong them: 

O The arrival process can no  longer be assumed to be Poisson. More realistic t r a c  

models have been proposed to characterize bursty t r a c ,  for example M A P  was 

used by Blondia [18, 19) and Blondia and Theimer [20] for B-ISDN. Sriram and 

Whitt [158] and Heffes and Lucantoni [79] modeled a packetized voice and data 

t r d c  using MMPP. The importance of the effect of correlated arrivals on the 

performance of queueing system is discussed in Patuwo e t  al. [MO]; and 

a The limited service discipline is emerging as the preferred service discipline. 

This is reflected by ANSI/IEEE [1] and ANSI [159] standards. 

2.3.5 Limited Service Analysis 

In general limited (time or number) service disciplines are inherently difficult to an- 

alyze and do not lend themselves to an exact analyses. Exact results are known only 

for few special cases (e.g. symmetric systems, dtemating queues). For the special 

case of fully symmetric system with Poisson input, general service time distribut ion 

and 1-limited service discipline one can use the buffer occupancy approach (see Tak- 

agi [165]). For the case of alternating queues, a solution is available for systems with 
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general input parameters via translating the problern into a boundary value prob- 

lem like a Riemann-Hilbert problem as in Eisenberg [53] or using matrix-analytical 

approach as in Alfa [3]. 

Alt hough the limited service discipline is the most important for appticat ions. 

there is no known method that leads to exact results. Thus, many researchers used 

approximate methods based on either the pseudo-conservation law or the decompo- 

sition approach to obtain some performance measures. The approximate solut ions 

available are mode1 dependent and require substantial computationd time. Partic- 

ularly, the time-limited service discipline is approximated by : 1) exponential timer 

in Coffman et al. (401 and Leung 11131, 2) the sum of exponential-phase timers in 

Leung and Lucantoni [115], 3) probabilistically-limited service in Leung [112], 4)  the 

k-limited service in Fuhrmann and Wang [69] and Frigui, Stone and Alfa [65], and 5) 

the Bernoulli service in Blanc and van der Mei [17] and Servi [153]. 

This concludes the review of the solution methods available for polling systems. 

In brief, with either the exhaustive or gated service discipline it is possible to use 

1) station time approach, 2) the buffer occupancy approach or 3) the descendant 

set method and obtain a set of equations that c m  be solved numerically for the 

meân queue lengths. Upper bounds and weighted average of the mean waiting times 

can be obtained by pseudo-conservat ion law . Unfortunately, t hese methods rely on 

the transform method whicb leads the analysis away frorn probabilistic arguments 

(Neuts [133, page 31). In addition, these methods require the arrival process to each 

queue to be Poisson which restricts the arrival processes which can be modeled. 

Eventhough the limited (tirne or number) service discipline is the most impor- 

tant service discipline from an application point of view, very few exact results are 

available. Most of the work done under this service discipline is done using the 

pseudo-conservation law or the decornposi t ion met hod. 
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2.4 Review Articles 

The use of polling models in the field of transportation, manufacturing, and com- 

puter communications resulted in a large body of literature. One of the first papers 

that addressed the use of queueing in computer communications is by Kobayshi and 

Konheim [102] in which they presented some aspects of applying queueing to computer 

communication (over 150 citations). Later, Penney and Baghdadi [l4 1, 1421 surveyed 

the application of polling to computer communications and Bux (301 surveyed the 

applications of polling to local area net works. More recently, Sachs [147] presented 

a review on the different access protocols for LANs. She presented a thorough re- 

view of random access, demand assignment , aad adapt ive assignment protocols. She 

included over 150 references. And Kleinrock [99] presented some applications of 

queueing theory to wide-area networks, packet radio networks and local area net- 

works (140 citation). On the theoretic side, Watson [Ml] summarized the results for 

cyclic polling systems with exhaustive, gated, or 1-limited service discipline. Later, 

Takagi [165, 1661 presented most of the analytical results available up to  to 1988 for 

polling systems. In a sequel article Takagi [167] presented an update on polling sys- 

tems (over 400 articles). The review papers by Tôkagi focus mainly on the analysis 

approaches. 

2.5 Cyclic Polling 

2.5.1 Finite-Buffer Systems 

Finite buffer capacity models are a natural representation of real life queueing sys- 

tems. However, their analysis is difficult . In t his section, unless otherwise ment ioned, 

customers arrive according to the Poisson process, service t ime and swi t ch-over time 

are generally dist ri buted. 
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TramGia (1 771 proposed an algorithmic solution for polling systems wit h 1-limi ted 

service discipline and general renewal input t r a c .  He developed an iterative pro- 

cedure to obtain the queue length distribution based on the fast Fourier transform 

algorit hms. In each i teration the condi tional cycle time, the queue length distribu- 

tion, and the group size arriva1 distribution are computed. The iterative algorithm 

is stopped once the difference between the mean of the queue lengths for two con- 

secutive iterations is less than a prescribed tolerance. The important aspect of this 

paper is the use of the generd renewal input process. However, the complexity of 

the computational scheme hinders the use of this analysis approach to other service 

disciplines like the time-lirnited and k-limited, k > 1, service disciplines. 

Eisenberg [54], using the sarne technique as in [52], derived the LSTs of the waiting 

time distribution for a poUing system in which the server cornes to a stop once the 

system is empty. He considered three stopping d e s  and two starting rules. This 

paper is unique since most papers do not address the issue of the server stopping 

when there are no customers in the system. 

Ibe and Trivedi [86] considered the finite-population mode1 in which the service 

time and the switch-over time are given by an exponential distribution. Their solution 

is based on the generalized stochastic Petn nets (GSPN). Based on the one-to-one 

correspondence between the reachability g a p h  of Petri nets and the continuous time 

Markov chains a set of linear equations for the steady state probabilities of the polling 

system were obtained. Using successive over-relaxation and the Gauss-Seidel method, 

Ibe and Trivedi (861 computed the steady state probabilities from which they obtained 

the mean waiting time using Little' s law. However, a major drawback of GSPN is its 

storage requirements. This is because GSPN requires generating al1 the states of the 

reachability graph which can be very large for a large number of queues. For example, 

for t hree-queue polling system wit h single buffer capacity and population size equal 

to 10, the number of states in the Markov chah is 7623 and the number of non-zeros 

in the transition matrix of the Markov chain is about 28000 (See Table IX in [86]). 
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Another drawback of using GSPN is the population size. Most polling systems have 

a large. if not infinite, population size, however, in order to generate the reachability 

graph the population size has to be finite. 

Using embedded Markov chains, Ganz and Chlamtac [?O] analyzed a polling sys- 

tem similar to that of Ibe and Trivedi [86]. However, in their system time is slotted 

and each station generates a message in each time slot with probability r. The state 

space is defined as the total nurnber of customers in the system at  each embedded 

point (beginning of each time slot). This state space allowed them to limit the num- 

ber of equations to N.L + 1, where N is the number of queues and L is the buffer size. 

Solving the N.L+ 1 equations yields the steady state probability vector of the number 

of customers in the system. The individual queue length distribution was obtained us- 

ing the notion of " n-indistinguishable balls" and "m-distinguishable urns" w here the 

capacity of each urn is equal to the buffer capacity. Although, the authors presented 

an accurate and simple way to  obtain the mean waiting time for slotted cornrnuni- 

cation systems, the mode1 is very limited in several aspects (e-g. finite population, 

messages arrival process). 

Although [70, 861 presented models for finite population polling systems, care 

must be exercised in using these models. This is because the number of customers 

already in the system at any point in time affects the number of potential new cus- 

tomers arriving to the system (i.e. the pool of potential customers gets smaller as the 

number of customen in the queueing system increases). 

Lee [110] andyzed the M/G/ 1/K queue with vacation periods using the embedded 

Markov chain approach. His results were used to study the performance of a cyclic 

polling system with an exhaustive service policy, where each queue has a finite ca- 

pacity. He also considered the M/G/l /K queue with vacation periods and exhaustive 

limited service discipline in [ I l l ] .  The LST of the busy period and cycle time were 

obtained using an embedded Markov chain. The waiting time distribution, blocking 

probability, and queue length were obtained by the method of supplementary vari- 
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ables and sample biasing techniques. Later, Iiofman [IO31 used the decomposi t ion 

results of the M/G/I /K  queue to obtain the blocking probability. throughput and the 

mean waiting time for a polling system with exhaustive, gated, and limited service 

disciplines for finite buffer capacity polling systems. Takagi [168] used the results of 

Lee [Il01 and Courtois [44] for the M/G/ l /K  queue to analyze finite buffer capacity 

polling systems. Jung and Un [go] used the huffer occupancy method to analyze the 

finite- buffer polling system wit h the exhaustive service discipline. 

A shared medium switch for an ATM network with input and output links was 

analyzed by Zaghloul and Perros (184, 1851 and Hong, Perros, and Yamashita [82]. 

Both the input and the output links have finite capacity waiting room. Note that 

in [184] t here are N input links and a single output link and in [185. 821 there are N 

input Links and M output links. The switch-over time is equal to  zero. Messages from 

the input links are generated according to  the interrupted Bernoulli process (IBP) and 

are routed over a high-speed medium (parallel bus) to the output links. The service 

time is deterministic and given by one unit time. However, because the output links 

have a finite capacity, the service time is adjusted to account for blocking. This is 

because a blocked customer is, in effect, depriving the next customer in the queue from 

receiving service. The service time is also adjusted to account for bus contention. The 

adjusted service time is called effective service time and each queue is then analyzed 

separately under three service disciplines: Time Division Mult iplexing (TDM), cyclic, 

and random polling. Note that for TDM, only the blocking probability affects the 

service time since the server visits the queues at specific time periods. Each queue is 

then analyzed as an embedded Markov chah and the steady state probability vector 

is obtained using the  Gauss-Seidel iterative procedure. Performance measures such as 

the queue lengt h distribution, system throughput, and the blocking probability were 

obtained. A similar mode1 with bursty arriva1 process was analyzed by Jou, Nillson 

and Lai (891. 

Notice that under the TDM service discipline the server may be idle while cus- 
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tomers are waiting at other queues. This observation is confirmed by the numerical 

results in [185] (e.g. blocking probability under the cyclic service discipline is better 

than under TDM). Although IBP is a good approximation for the cells arrival pro- 

cess, M A P  is a better representation for the arriva1 process in B-ISDN as suggested 

by Blondia (18, 191 and BLondia and Theimer [20]. 

Recently, Rubin and Wu Il451 used a variant of the M/G/1 queue with vacation to 

study the performance of fiber distri buted data interface (FDDI) timed-token rings. 

Each station in the network is approxirnsted by a single server queue with vacations. 

Each station is assumed to generate messages according to  a Poisson process with a 

random number of fixed size segments (batch Poisson input). The transmission time of 

one segment is deterministic and is equal to one time slot . The system is thus divided 

into time slots of equal size. The transmission time of a segment is given by Bn, 

where { B,. n 2 1 } forms a sequence of independent and ident ically distributed (i.i.d. ) 

r.v. The service time has a discrete generd distribution given by b(i) = P(B, = 

2 ,  t = 1 ,  . . , B a ;  B,, < oc. Similar to the service time distribution, Rubin 

and Wu have defined a vacation time distribution given by u ( i )  = P(Vn = i), i = 

1,. . . , V,.,; V,,= < oo, and a visit time distribution given by g ( i )  = P(Gn = i), i = 

1, . . . , G a  G < . Each station in the ring is analyzed based on an embedded 

Markov chain, where the embedded points are the instants of packet departure and 

token arrival. A set of balance equations is then denved and, based on the boundary 

probabilities of token arrivai and departure, an iterative procedure to compute the 

limiting state distri bution is obtained. The queue length distribution at an arbitrary 

time is then obtained using the supplernentary variables technique. In addition, 

the packet delay distribution is obtained based on decomposing the delay into two 

independent distributions: 1) the forward recurrence t ime distribut ion representing 

the instant of arrival and the next embedded instant and 2) the residual packet delay 

distribution given by the time from the embedded instant until the transmission of the 

tagged packet. This distribution, residual packet delay, represents the service time of 
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the packets enqueued ahead of the tagged message. The appioximate vacation time 

distribut ion of a queue is constructed by convolving the switch-over tirne distribution 

and the visit period distribution of the other queues. The vacation period distribution 

is computed in accordance with the traffic intensity of the other queues. The analysis 

presented in [145] was used to approximate the behavior of the FDDI timed-token 

ring. Although the results compare very well with simulation, this cyclic polling 

mode1 is restricted to networks in which the a n v a l  process can be approximated by 

a batch Poisson process. Note also that because there is no hard time limit, the 

visit period can exceed the maximum time allocated for a given queue. This can be 

a problem in an asymmetric system with long packets (service time skewed toward 

Bmar ) - 

2.5.2 Infinite-Buffer Systems 

Because of the difficulties in modeling finite buffer systems, several researchers as- 

sumed the buffer size to be infinite. This simplifies the analysis somewhat and makes 

the problem mathematically tractable. Similar to the previous section, unless other- 

wise mentioned, the input process is Markovian, the service time and the swi tch-over 

time. if any, are generâlly distributed. 

Carsten, Newhall and Posner [32] pioneered the  station time method and usrd 

it for the analysis of scan time in non-symrnetric polling systems with exhaustive 

service discipline. Later, Ferguson and Arninetzah [60] derived the mean waiting 

time for non-symmetric polling systems using the station time method for the gated 

service discipline. 

In a widely referenced monograph, Takagi [165] considered cyclic polling systems 

with infinite buRers and exhaustive or gated service disciplines. His solution is based 

on the buffer occupancy method. He defined the joint marginal generating func- 

tion Fi of the number of messages at queue i at polling instants. He then related 

Fi to F,+I and obtained analytical expressions for the first and second moments of 
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the queue length. For symmetric systems (arrival rate, switch-over time and service 

time are independent of the queue's number) a closed form solution was obtained for 

the first and second moments of the queue length. For asymmetric systems (arrival 

rate, switch-over time, and service time depend on the queue's number) the second 

moments of the queues' length are obtained by solving numerically a set of O( N3) 

equations. Takagi [165] obtained the LST of queue length distribution by defining re- 

generation points as the points when queue one is polled and al1 the queues are empty. 

The LST of the waiting tirne distribution was obtained from the relationship between 

the LST of the queue length and busy period distributions. For the limited service 

policy, Takagi (1651 considered a symrnetric cyclic polling system and obtained the 

mean queue length and the mean waiting time using the buffer occupancy approach. 

It is shown in Takagi [165] that for the discrete-time model, for the same total 

utilization, the mean waiting time at  queue one, in the case where al1 utilization is 

concentrated at queue one, is smaller than the mean waiting time in the symmetnc 

polling systern for the exhaustive and gated service disciplines. He showed also that 

for symmetric cyclic polling systems the exhaustive service discipline has the least 

mean waiting time and the limited service policy has the largest mean wait ing time 

1.e. 

E(W) l w h ~ s i i v e  5 E ( W )  ( p t e d  5 E ( W )  l l imiied* 

Because of the compiexity associated with obtaining the mean waiting time for 

asymmetric polling systems, B u  and Truong [31] considered each queue in the polling 

system as a M/G/ 1 queue with service and vacation periods. It is known tbat for the 

M/G/l queue with vacation periods, the mean waiting time depends on the mean 

and variance of the vacation period. The mean of the vacation period was obtained 

from the mean of the cycle time and service period. The variance of the vacation 

period was obtained by using a heuristic extrapolation from the case of N = 2. 

Another approximation is by Srinivasan (1571 and it is for the 1-limited service 

discipline. Srinivasan' s approximation is based on the analysis of the cycle time 



and the vacation period. Later, Takine and Hasegawa (1731 derived the LST of the 

waiting time distribution for a cyclic polling system with finite source model and 

1-limited service discipline. Sidi et al. [156] analyzed a polling system in which served 

customers may leave the system or be routed to another queue. Using the buffer 

occupancy metiiod, they obtained the queue lengths distribution, the mean waiting 

tirne in the queues, and the mean waiting time of customers that follow a specific pat h 

in the network. Their analysis is for the gated and exhaustive service disciplines. They 

have also extended the pseudo-conservation law of Boxma (221 to their polling model. 

An alternative solution approach, based on the pow-er-series algorithm ( PSA), for 

infinite buffer polling systems was proposed. This method is based on the power series 

expansions of the state probabilities and the moments of the queue length distribution 

as functions of the load in a systern with light traffic. It was used in [13, 14, 15, 161 

to analyze polling systems with and without switch-over time. Although PSA is an 

additional tool for the analysis of polling systems it is limited to systerns with Poisson 

input. For the K-limited service discipline, PSA is limited to systems with moderate 

value of K as shown in [15]. As K becomes large more terms of the power series are 

needed which results in more memory requirements and large computational time. 

Due to  the limitation of the Poisson process with single arrivals, several re- 

searchers attempted to  obtain performance measures for polling system with batch 

Poisson process and renewal input process. First, Kuehn [IO61 considered a cyclic 

polling system with batch Poisson arivals and non-exhaustive service discipline. He 

used the concept of conditional cycle times t o  derive the LST of the delay distribu- 

tion through the embedded Markov chah approach. Later, Levy and Sidi [120] an- 

dyzed a polling system with simultaneous arrivals. They used the buffer occupancy 

method to  obtain the  mean waiting time under the exhaustive and gated service dis- 

ciplines. More recently, for a polling system with gated, exhaustive, globdly gated or 

time-limited service discipline and renewd input processes, Altman and Kofman [y] 

obtained upper bounds for the cycle tirne, the  total amount of work in a station at 
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time t ,  and the arnount of work that leaves the system from the polled station. Their 

analysis is based on characterizing the inputs by bounds on the average arrival rate 

and burstiness and uses previous results obtained for polling systems with Poisson 

inputs. 

Notice that most papers considered until now use the exhaustive or gated service 

discipline. The remaining part of this section considers polling systems with a variant 

of the time-lirnited service discipline. 

Leung [Il31 obtained the queue length distribution for a polling system with 

exponentiaily time-limited service discipline. He used the results of Leung and Eisen- 

berg 1113, 1141. Using the discrete Fourier transform, Takagi and Leung [171] ana- 

lyzed the discrete t ime single server queueing system wit h time-lirnited service. In 

this model, the arrival process and the service time distribution are defined in terms 

of two generating functions. 

Recently, de Souza et al. [47] considered a polling system with exponential service 

time distribution with infinite (or finite) buffer capacity. The service discipline is of 

the time limited and can be either preemptive or non-preemptive. In the preemptive 

case, once the visit period reaches the time limit an on-going service is interrupted 

and the preempted customer is returned to the line of the waiting customers and its 

service time is re-sarnpled (Le. identical to a customer who received no service). In t h e  

non-preemptive case, the server does not interrupt an on-going service to switch to an 

other queue. de  Souza e t  al. [47] presented a solution approach tbat can be applied 

to a number of service disciplines (e.g exhaustive time-limited, gated time-limited, 

etc.). However, they presented only the exhaustive tirne-limited service discipline in 

detail. Their analysis is based on studying the embedded Markov chains defined at the 

sequence of the points of server arriva1 and depârture from each polling station. The 

joint queue length distributions of these two embedded Markov chains are obtained 

based on the uniformization or randomization technique. Based on the results of 

Markov chains with rewards some time average results are obtained. Note that, 
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although their solution approach can be used to a wide range of service disciplines, 

it is limited to systems in which service time and inter-arriva1 time are exponentially 

distributed. Notice also that their solution approach yields only the joint queue length 

distributions at server arrival and departure points from which, and based on Markov 

chains with rewards, they were able to obtain time average measures (e.g average 

delay ). Thus, the difficulty associated with the analysis of limited service discipline 

can be alleviated by the use of the M/G/1 queue with vacation periods as a basis for 

an iterat ive procedure. 

Two vacation models for an M/G/ 1 queue with constant time-limited service or 

vacation-dependent time-limited service were proposed by Leung and Lucantoni [ l l J ]  

for the performance analysis of stations in a timed-token network. For the time- 

limited service discipline, a queue is visited for a maximum time period. For the 

vacation-dependent tirne-limited service discipline, if the previous cycle time exceeded 

the queue pre-specified cycle time threshold then that queue receives no service in 

the current cycle, else the queue is served in the same rnanner as in the case of a 

time-lirnited service discipline. Under both service disciplines a customer service is 

not interrupted if the queue visit-time limit is reached (i.e. non-preemptive service 

discipline). In order to andyze these models, the time-limit is approximated by 

a number of time stages where each stage is exponentially distributed. Thus. the 

visit-time Limit can be characterized by an Erlangian distribution instead of being 

detenninistic. 

The time-limited service discipline was modeled as a Markov c h i n  defined at  

the points of customer departure frcirn which the steady state probability vector is 

obtained. The computation of the steady state probability vector requires the inver- 

sion of the probability generating functions (PGF) of the arrival process, the service 

time distribution and the vacation period distribution. In order to get around in- 

verting PGFs, one can represent the service time and the vacation period by phase 

distributions. This leads to a simple recursive approach to compute the steady state 
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probabilities. For the vacation-dependent time-limited service the Markov chain is de- 

fined at the point of customer departure. The target cycle time is also approximated 

by a number of time stages. 

Since both models in [115] are of the M/G/1 paradigm presented in [134], Leung 

and Lucantoni [115] used the matrix aoalytic approach to solve for the queue length 

distribution. Because the block matrices are of infinite dimension, an appropriate 

truncation point is necessary +c use the matrix analytic approach. Since the time- 

limit is approximated by time stages, the numerical results depend on the number of 

stages used. The numerical expenmentation by the authors suggests using a moderate 

number of stages (about 16 stages). However, it is not c1ea.r whether this number of 

stages will hold for other service time distributions since the examples presented are 

for exponentiai service time distributions. Also, the authon did not present how 

to obtain the vacation period distribution in the case of polling systems. Although 

the presented models are good tools for the performance andysis of timed-token 

networks, they can not be used, as stated by the authors, in a network where the 

characterist ic of t r a c  under consideration, the hame arrival process may be non- 

Poisson or even non-renewal. The Markovian arrival process has been shown to be 

effective in capturing the correlations arnong frame arrivals of voice and video t r a c .  

In a somewhat related model. Chiarawongse et al. [37] considered the M/G/1 

queue wi th vacations under the time-limiteci, cycle time-limi ted, and the cycle time- 

limited wit h accumulated lateness service disciplines. Their analysis is basecl on the 

rnatrix-analytic approach presented in [134] and yields the queue lengt h distribution. 

The rnanufacturing automation protocol is basecl on token bus and token ring 

network. In this protocol, each station in the network has two timers for controlling 

visit period length. The first timer controls the token holding time (THT) and the 

second controls the rotation time (cycle time) (TRT). Yue and Brooks [183] approxi- 

mated the behavior of this protocol for a symmetric and an asymmetric system. For 

the symmetric case, al1 the stations have a THT with no target rotation time, the 



mean waiting time was obtained based on k-limited service discipline approximation 

due to Fuhrmann (661. Because of the non-preemptive nature of the THT, the visit 

period is actually longer than the THT. In order to  obtain the mean visit period. 

Yue and Brooks [183] used an excess holding time variable which they derive using 

rencwal theory and the inversion of the LST of the service time distribution. For the 

asymmetric case, they analyzed a network with nine stations having only THT, and 

one station with TRT and THT. The mean of the visit penod for the TRT station is 

obtained empiricdly based on some simulation runs which is then used to computing 

the mean waiting t h e .  Thus, the models presented in this paper are for specific 

configurations. Although, the symmetric case can be used for a large number of 

queues, it is limited in the sense that only Poisson arriva1 is allowed. The asymmetric 

approximation is limited to the network given in [183]. 

Lee and Sengupta [IO91 considered a polling system with limited service and 

reservation. For this seMce policy, each queue makes a reservation for the number 

of services required for cycle j + 1 alter receiving service in cycle j. However, the 

minimum number of services must be a t  least one and at most M. Their solution 

is based on the concept of a single queue with visit and vacation periods. Their 

iterative procedure assumes that the vacation period of queue 1 in iteration (k + 1) is 

given by the mixture of the following two terms: CE, sik) with probability (1 - P). 

where sik) is the service penod for queue i in iteration k, s!') are independeatly 

identically random variables (sum of independent service periods), and (N  - 1)S(*) 

with probability P, where S(&) is a genenc service period (sum of dependent service 

periods) and N is the number of queues. The results obtained consist of the queue 

length and sojourn-time distributions. This poiling system was used to  model satellite 

communication. A similar model was considered by Tran-Gia and Dittmann (1781. 

They used the decomposition approach along with the results of the M/G/1 queue 

with vacation to obtain packet transfer time for a cyclic reservation multiple access 

protocol. 
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2.6 Priority Based Polling Systems 

When using the term priority polling it is important to distinguish between prior- 

ity at the station level and priority at the customer level. Priority at the station level 

means t hat the order in which the server visits the stations is based on the station's 

priority level. Its application is in the area of duplex transmission and central con- 

trollers. Priority a t  the customer level means that each station in the polling system 

can have more than one type of customer. Once a station is poilid then enqueued 

customers are served according to their priority level within the station. Priority 

based polling has applications in the area of integated services. 

Fournier and Rosberg [61] analyzed a polling system with multiple priorities at 

each queue. They considered several service disciplines and used the stochastic decorn- 

position law for single server queue with vacations t o  obtain the pseudo-conservation 

law for the mean waiting times. Similar results were obtained by Shimogawa and 

Takahashi [155]. 

Manfield (1291 considered a polling system with two way data trafic. In this 

polling system, priority is given to messages going from the central controller (server) 

to the queues. The system is analyzed by considering ( N  + 1) queues, where N 

queues are dedicated to the incoming messages (messages going from the queues to 

the server ) , and the (N + 1 )st queue is dedicated for the outgoing messages (messages 

going from the server to the queues). The mean delay for the outgoing messages is 

exact and for the incorning messages is an approximation. For a similar network, 

Giannakouros and Lalow [73] used the pseudo-conservation law to  obtain the mean 

waiting time under the exhaustive, gated and 1-limited. They also obtained conserva- 

tion laws for the case of mixtures of the three service disciplines. In a related rnodel, 

Stavrakakis [160] derived tight bounds for packet delay in an alternating queue where 

one queue hosts the high priority packets and the other hosts the low priority packets. 

Karvelas and Garcia [91] modeled an integrated packet voiceldata token-passing 
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ring as a polling system. In order to limit the cycle time, they considered the 1-limited 

service discipline. Each station in the network has a single buffer for voice messages 

and infinite buffer for data messages. For this polling system, voice and data packets 

are assumed to arrive according to two i.i.d. batch Poisson processes. The service 

time of a packet is given by a general distribution. Because of delay constraints voice 

packets have higher priority than data packets at the station levet which implies that 

data packets are transmitted only when the high priority buffer at the station level is 

empty. By extending the cycle time analysis presented in [106] for a polling system 

with single priority, Karvelas and Garcia were able to obtain the mean waiting time 

for the voice and data packets. It is important to notice here that although their 

results match very well with simulation, it was shown elsewhere (e.g [79, 1581) that 

voice and data t r a c  is best characterized by MMPP. 

The proposed service discipline of Karvelas and Garcia [91] can cause large delays 

for data packets when the arriva1 rate of the voice packets is very high (for a given 

station). This is because in every visit the server rnay have to serve the high priority 

message, in this case voice packet, and leave the low priority message behind which 

are the data packets for this integrated network. Thus, limiting the cycle time may 

not be the best alternative to reduce the waiting time in polling systerns where high 

priority messages have high arrival rates. 

Pang and Tobagi [139] obtained the throughput for a polling system with heavy 

t r a c  with a cycle-dependent mechanisrn which is employed in IEEE 802.4 token bus 

and the FDDI token ring standard. This service discipline enhances the performance 

measures of real-time applications. By deriving bounds on the cycle length, the 

authors were able to obtain approximate results for the throughput. Later, Hong [83] 

obtained the mean waiting time for cycle-dependent polling systems wi t h 1-limited 

service discipline. He used the results of Kuehn [106] and the notion of effective 

service t imes. 

Gianini and Manfield [72] considered a polling system where each queue in the 



system has two priority levels. They considered the case of exhaustive and gated (at 

the priority level) service disciplines. In these service disciplines. a queue is polled 

at its low priority level only if there are no high priority messages anywhere in the 

system. Their method of solution is based on defining a low priority poll busy period. 

a high prionty poll busy period, and the moment generating function of the queue 

length a t  polling instants. They derived the first and second moment of the queue 

length and the wai ting time for the high and low priority messages. For the same 

polling system, Frigui, Stone and Alfa [65] used Bux and Truong [31] approximation 

of the vacation period and the results of the M/G/I queue with priority [154, 921 

to obtain the mean waiting time for the high and low priority messages under the 

exhaustive service discipline. 

Tsai and Rubin [179] obtained exact results for a polling system wit h two priority 

levels wi t h exhaustive or limited service disciplines. Their system is di fferent from 

that of Gianini and Manfield [72] since they considered the case where each queue has 

a single buffer high priority queue and an infinite buffer low priority queue. A queue 

can seize the server at low prionty only if al1 high priority buffers are empty. During 

a low priority poll with exhaustive service policy, the server continues to transmit 

messages until both queues are empty. Thus, in a low priority poll, al1 messages 

found in the queue and those that arrive (high or low) during the service period are 

transmitted in the current cycle. If a queue seizes the server a t  a high priority level, 

then only the high priority message is transrnitted. For the limited service policy, 

during a high (low) priority poll the server transmits one high (low) priority message. 

Later, Tsai and Rubin (1801 extended their results to the case where each priority has 

an infinite buffer capacity. The service discipline they considered is such that high 

priority are served exhaustively and low priority are number limited. The analysis 

in (1801 takes advantage of the symmetry of the polling system and is based on the 

cycle t ime analysis. 

The mode1 in [72] was later generalized by Poko et al. [75]. They considered 



a polling system with multiple priorities at each station. However, they used the 

1-limited service discipline. By assuming that customers are served in the cycle in 

which they arrive (clearly, this assumption would be invalid in systems where low 

priority messages have low arrival rates and high priority messages have high arrival 

rates). Poko e t  al. were able to obtain the mean waiting time for each priority. 

2.7 N o n 4  yclic Polling 

Because the optimization problem of polling systems is not analytically tractable. 

many researchers suggested optimizing the performance measures of a queue using 

alternative polling orders. The next two Sections discuss table and random polling 

systems, respect ively. 

2.71 Table Polling 

Although table polling is periodic, a pre-specified table dictates the rotation of the 

server among the queues, we consider it to be non-cyclic in the sense that the vacation 

period of a given queue depends on the position from which the server leaves the 

queue in the table. In such a system, we have pseudo-cycle time and pseudo-station. 

.4 pseudo-cycle time is the time between polls of the same station in the table. Notice 

that each station may have more than one pseudecycle and, in most cases, the 

pseudo-cycles have different distributions. Furthermore, for each pseudo-cycle we can 

define a pseudo-station. A pseudo-station is a fictitious station that has the same 

parameters as a station that appears more than once in the table. 

Arnong the first attempts to  solve multi-queue systems with table polling is the 

work of Eisenberg [52]. He considered a table polling system with exhaustive service 

discipline. He obtained the (LST) of the inter-visit time and the LST of the waiting 

time at queue i. He considered four embedded Markov chains: 1) service beginning, 2) 

service completion, 3) beginning of queue visit, and 4) end of queue visit . His solut ion 
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relies on the relationship between the probabilities of the embedded Maxkov chains 

mentioned above (for instance, the beginning of a queue visit must coincide with 

a service beginning). The notion of pseudustation and pseudo-cycle were used by 

Baker [Hl  to obtain the mean waiting time for a table polling systems with exhaustive 

service discipline and by Choudhury [38] to obtain the rnean waiting t.ime for the  gated 

service discipline. Chang and Hwang [33] used the embedded Markov c h a h  and 

derived a new recursive method to cornpute the moments of the pseudo-cycle time. 

The moments of the pseudo-cycle time axe then used to obtain the mean waiting 

time for general polling systems with gated service discipline. Altman, Khamisy and 

Yechiali [6] derived the mean waiting time for elevator polling systems with a globally 

gated service discipline. They showed that the mean waiting time is identical for al1 

the queues even for the non-symmetric case. However, due to the difficulty associated 

with getting performance measures for table polling systems, many researchers used 

approximate methods to derive bounds for the mean waiting time. 

F e d e r p e n  and Katalan [59] used the decomposition results of Fuhrmann and 

Cooper [68] to approximate the queue length and waiting time distributions in gen- 

eral polling systems with exhaustive, gated, or a mix of exhaustive and gated service 

disciplines. And Boxma et  al. [25] extended the conservation laws to polling ta- 

bles with batch input process and deterministic service times. Recently, Frigui and 

Alfa [63] used the pseudo-station and pseudo-cycle and approximated the time-lirnited 

by the K-Limited service discipline to obtain the mean waiting time in table polling 

wit h time-limited service discipline. 

2.7.2 Random Polling 

Performance measures for the exhaustive, gated, and limited service disciplines were 

derived by Kleinrock and Levy [IO01 for the case of random polling systems using the 

same analysis as Takagi [165]. For symmetric random polling systems the exhaustive 

service discipline has the least mean waiting time and the limited service discipline 



bas the largest mean waiting time i.e. 

A cornparison between cyclic and randorn polling by Kleinrock and Levy [100] 

showed that for the same system parameters and service discipline cyclic polling 

yields a lower mean waiting tirne than random polling. 

In addition to random polling, four other probabilistic models were analyzed in 

the literature. Frist. Servi [153] derived the first two moments of the busy period 

for the M/G/1 queue with Bernoulli schedule. These moments are then used to 

estimate the mean wâiting time for each queue in a polling system. In a later paper. 

Tedijanto [176] analyzed a polling system with Bernoulli schedule. 

The second model, the probabilistic limited service discipline, was analyzed by 

Leung [112] by defining four embedded Markov chains as in Eisenberg [FI?]. The 

queue length distribution is obtained via the discrete Fourier transforrn. From the 

mean queue length, Leung (1 121 obtained the mean waiting time using Little' s law. 

However, since the solution is based on a numerical approach, the memory and CPG' 

time are exponential functions of the number of queues. Hence, under heavy loads 

only relatively small systems can be solved. 

Thirdly, Levy [Il61 introduced the so-called binomial-gated service discipline. 

This service discipline would allow the designer to prioritize the queues by choosing 

high p; for high priority queues. Using the buffer occupancy approach, he obtained 

closed form solution for the mean queue lengths for symmetric systems. However, for 

asymmetric polling systems the mean queue lengths are obtained by solving numer- 

ically a set of N3 equations. As presented by Levy [116], the binomial-gated service 

discipline is an effective way to prioritize the queues. This can be achieved by mini- 

mizing the waiting costs when the service times and cost per unit of waiting time are 

identical in al1 the queues. 

Lastly, Lye and Seah (1261 proposed a Markovian polling scheme to reduce access 

delay for a network with a large number of stations. Later, Chung, Un and Jung [39] 
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Among the first researchers to work on conservatia: laws for polling systems w s  

Everitt [56]. He extended the conservation law intra:uced in [96] to the exhaus- 

tive k-limited service discipline for symmetric poiling systems. In a sequel paper. 

Everitt [57J summarized the pseudo-conservation laws 'or cyclic service systems wi th  

exhaustive, gated. and limited service disciplines. He aIso denved a new result for 

the exhaustive limited service policy. Fuhrmann [66] r .  sed the decomposition results 

of the PrIJC / 1 queue to establish an upper bound for î.ne mean waiting time in sym- 

metric cyclic p o h g  systems. Later. Fuhrmann and V'ang [69] derived upper bounds 

for the exhaustive k-lirnited and gated k-limited serj..ice disciplines for asymmetric 

polling systems. 

The pseudo-conservation laws were used by Boxn ,a and Meister [28] to approxi- 

mate the mean waiting time of non-exhaustive servit.. disciphes (i.e. serve at  most 

one customer) for cyclic polling systems. Chang and S andhu 135,361 used the pseudo- 

conservation laws and the concept of conditional cyclt, time to approximate the mean 

waiting time for the k,-limited service discipline. Boxi:ia and Groenendijk [23] derived 

pseudo-conservation laws for polling systems. They ex r ended the work of Watson [181] 

for the case of exhaustive. gated, and 1-limited to p& ! h g  systems with rnixed service 

disciplines. Later, Levy and Sidi [Il81 extended thei results to polling systems with 

correlated arrivals. In [24) pseudo-conservation laws ;or the discrete-time model were 

obtained. And Boxma and Weststrate [29] obtaint-d pseudo-conservation laws for 

Markovian polling systerns. Lu and Lin [124) used ~seudo-conservation law to  ana- 

lyze a n  FDDI network. de Moraes and Fuhrmann 146 approximated the mean waiting 

time for a polling systern with batch Poisson input i-ia the pseudo-conservation law. 

For a more general model, Takahashi and Eiumar [ : 721 derived pseudo-conservation 

law for a polling systern with priority in which each ,~riority has i ts  own service strat- 

egy. 

Groenendijk [76] obtained approximate result!. for cyclic service systems with 

mixed service strategies (i-e. exhaustive, gated. a m  1-limited). His analysis is based 
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on the pseudo-conservation laws and the  exact results of alternating queue systems 

where one queue is served exhaustively and the  other is 1-limited. 

2.10 Stability Papers 

Stability. rnonotonicity. and invari ant qi uanti t ies are fundamental issues of polling 

systems. They were considered by several authors [8, 45, 71, 106, 121. 1861. In this 

section. we focus on the literature that formally establishes some of these important 

relationships. 

One of the most irnporhnt results concerns the cycle time. It is shown in the 

literatures ( s e ,  e.g. Luehn [loti]) that the distribution of the cycle time is different 

for difierent queues. However, the  mean cycle time, C. is identical for al1 the queues 

and depends only on the total switch-over time, R, and the polling system utilization 

p. The mean cyde time is given by: 

Levy et ai. [ lS l ]  used sample path analysis to  compare the efficiency of the ex- 

haustive and gated type service disciplines in polling systems based on the amount 

of unfinished work found in the system a t  any lime. They established that the ex- 

haustive service discipline is the most efficient one in the sense that the amount of 

unfinished work found in the  system by an arriving customer is the smallest. Their 

studies did not consider the case of asymmetric systems. 

Fuhrmann [67] provided decomposi t ion results for polling systems wi t h Poisson 

input, general service time distribution, constant switch-over time and gated or ex- 

haustive service discipline. He showed that the  number of customers in the system 

is given by two sets. The first is given by the number in a polling system with no 

switch-over time. The second set consists of those that arrive during the switch-over 

time and their descendant (i .e. customers that  arrive during the service time of those 
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who arrived during the swi tch-over t ime period ). 

Servi [152] established a relationship for 1) the maximum number of queues that 

can use a server without the system becoming saturated, 2)  the  relative number of 

customers served per cycle in two queues, and 3)  the relative lengt hs of the bus? 

period for two queues. He also studied the effect of initiating low priority jobs. such 

as maintenance. on t h e  performance of a polling system. 

Altman e t  al. [SI considered the stability of a cyclic polling system with general 

service discipline (e.g. exhaustive. gated etc). In this polling system. customers 

arrive according to the Poisson process. The service time and the  switch-over time 

are of the general distribution type. Using Foster' s criterion. Altman e t  al. obtained 

sufficient conditions for the ergodicit y and geomet ric ergodici ty of the queue lengt h 

distribution. They have also shown that the queue lengths, the cycle times. and the 

inter-visit times are stochastically increasing in: 1) arrival rates, 2)  service times, 

3)  walking times, and 4)  number of queues. Lastly. they showed that the rnean cycle 

time. the mean inter-visit time, and the mean station time in the  steady state  are 

invariant under general service disciplines and general stationary arrival and service 

processes. This is a very important result, since in many instances. especially in the 

case of token rings with target rotation time. the mean of the cycle time is used as a 

performance measure. Later, Fricker and Jaibi 1621 derived the stability condition for 

periodic (cyclic or table) polling models with a mixture of service disciplines. Eacli 

queue can be served according to  more than one service discipline in the  case of table 

polling. They showed that  

p + max (X,/li,)R < 1 
~ < J < N  

is a necessary and sufficient condition for stability (the ratio A,/& is equal to  infinit- 

if the queue is served exhaustively, h; = oc). 

Yaron and Sidi (1821 established two bounds for communication networks and 

showed that the bounds decay exponentially. These bounds are then used to  study 

the performance of a multiplexer with several input tr&c streams. Chang (341 es- 



tablished stability conditions for queueing networks. He introduced a new traffic 

characterization, minimum envelop rate. 

2.11 Remarks 

Although we presented over 150 articles. this literature review is by no means 

exhaustive. However, one can make two observations. First. we rernark that most 

addressed problems in the liteïature focus on polling systems with: 

1. Poisson input. 

2. General switch-over t ime. 

3. General service time distribution. 

4. Exhaustive and gated service discipline. Recently, the limited service discipline 

is gaining more attention. 

.i\lthough these models can be used to  c o m p t e  performance measures for homoge- 

neous network. they are of little use for integrated services networks. This is at- 

tributed to the limitation of the Poisson process. Therefore. future research should 

focus on using a more versatile arrivai process Iike the Markovian arrival process. 

Second, and somehow a more difficult problem to answer, is the issue of optirnization 

(i.e. given an arrival process, a service time distribution, and the number of queues 

how should the queues be visited and for how long in order to minimize, Say, the 

weighted sum of the mean waiting times). 

In this thesis, we attempt to answer the  first question. The polling system we 

consider is one with M A P  input. phase type service distribution. exhaustive time- 

limited service discipline and zero switch-over time. 
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TIME-LIMITED CYCLIC POLLING 

3.1 Introduction 

We are about to embark on a detailed study of a cyclic polling system. As outlined 

in Section 1.6, o u .  objective is to develop an iterative procedure to compute the  mean 

waiting time for a cyclic polling system. The cyclic polling system we consider in this 

Chapter consists of: 

a Q queues 1 < Q < oo ( d l  of the queues have either finite or infinite capacity ). 

a Arriva1 to queue i, i = 1,2, . . . Q, occurs according to the M A P  with represen- 

tation Devi and Dl,i. 

a Service time of customers of queue i, i = 1,2.. . . Q, is a phase type distribution 

with representation (Pi. Si). 

Service discipline to queue 2 ,  i = 1,2,. . . Q, is exhaustive time-limited with time 

limit T,. 

a The switch-over time is equal to zero. 

However, before we outline our solution approach, for completeness, in the  next 

two sections we introduce to the reader the arriva1 process and the service time 

distribution. In elaborating further about the arriva1 and service processes, we will 

not include the silffix for the queue to Save on use of notation. 
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3.2 Phase Distribution 

Consider an (rn + 1) state Markov chain with transition probability matrix given 

by 

where, the square matrix S is of order m and S0 = e - Se is an m x 1 column vector 

and e is a column vector of 1s. The absorption into state m + 1 from any state is 

guaranteed if the inverse ( I  - S)-' exists. Let be the initial probability 

vector of the Markov chain. The probability density, on the non-negative integers, of 

the time until absorption is given by: 

The mean of this distribution is given by: 

The probability density { p k }  is said to be of phase type. The pair (a, S) is the 

representation of this phase type distribution. In this thesis, each customer takes at 

least one unit of time for service, therefore, the variable o,+i = 0. 

The phase type distribution can be used to represent servers in series. For exam- 

ple, consider a service station with two serven in series. In addition, assume that we 

can serve only one customer at a time. Then, if the sojom time in the first server 

is given by a geometric distribution with parameter a and the sojourn time in the 

second server is given by P, then the service time c m  be represented by the following 

phase type distribut ion: 

s =  [; ;-a]. 
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The initial probability vector is given by [1 O]. 

The phase type distribution can also be used to represent servers in parallel. 

For example, in the above example instead of the servers being in series, they are 

in parallel now. In addition suppose that the probability that a customer receives 

service from the first server is 0.5 and from the second server is 0.5. This can be 

represented by the following phase type distribution: 

s = [ ,  ;]. 
The initial probability vector is given by [0.5 0.51. 

Details about the phase type distribution can be found in Neuts (133. Chap. 21 

for continuous tirne and in Neuts [131] for discrete time. 

3.3 Markovian Arriva1 Process 

In order to discuss the discrete Markovian arrivàl process, we first consider the 

Bernoulli arrival process. Let the rate of the Bernoulli process be a. N ( t )  is the 

riumber of arrivals between O and t. The process N ( t )  is then a Markov chain on the 

state space {i, i 2 0) with transition probability matrix P of the form 

where, do = 1 - a and dl = a. After a geometric sojourn time in state i, the process 

jumps to state i + 1 with probability cr where the transition corresponds to an arrival. 

The discrete Markovian arrival process is constructed to allow for non-geomet ric 

times between the arrivals. Consider a 2-dimensional Markov chain { N ( t ) ,  J ( t ) }  on 
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the state space {(i, j )  : i 2 0; 1 5 j 5 n)  with transition probability P of the form 

where D,; j = 0, 1 are sub-stochastic matrices, and ( I  - Do) is a non-singular matrix. 

We, also, denote by D, 

D =  Do + Dl, 
an irreducible stochastic matrix of order n. In this Markov chain, N ( t )  represents 

a counting variable and J ( t )  represents a state phase variable. This Markov chain 

represents a discrete arrival process. The transitioii from state ( 2 ,  j )  to state ( i  + 1,l) 

where 1 5 j, 1 5 n correspond to  an arrival. Since (1- Do) is non-singular, then the 

sojourn time in the set space ( ( 2 ,  j) : i 2 0; 1 5 j 5 n} is finite which implies that 

the arrival process does not terminate. The stationary vector T of the Markov chah  

descri bed by D sat isfies the equat ions 

where nDle is the probability that, in the stationary version of the  arrival process, 

there is an arrival a t  an arbitrary time point. Correspondingly, X = z D t e  is the 

expected oumber of arrivals per unit time and also is referred to  as the fundamental 

rate of the process. 

The Markovian arrivd process was introduced by Neuts [132] and was later gen- 

eralized by Lucantoni [125]. Several well known arrival processes can be represented 

by MAP. For example, 

Discrete Phase Distribution: The phase type renewal process with representa- 

tion (p, S), introduced in Section 3.2, is a MAP with Do = S and Di = SOP, where 

S0 = e - Se. 
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The Markov Modulated Bernoulli Process: MMBP is represented by two m x rn 

matrices D and A. The matrix D is irreducible, stochastic and governs the transition 

of the  underlying Markov Chain. The matrix A is a diagonal matrix with elements 

O < p i  < 1. for i = 1, ... m. MMBPcan berepresented by MAP with Do = D ( I - A )  

and Dl = DA. 

The Interrupted Bernoulli Process: IBP is an anival process with an active 

period with a geometric distribution having a parameter a and an idle period with a 

geometric distribution having a parameter P .  Thus the underlying Markov chain of 

the IBP is given by 

During the active period customers arrive according to the Bernoulli process with 

pararneter p i .  Thus A is given by: 

IBP can be represented by MAP with Do = D ( I  - A) and Dl = DA. 

This ends our high level description of the arriva1 process and the service time 

distribution used in this thesis. Later, in Chapter 5 we discuss how to use the moments 

matching approach to reduce the dimension of M AP with special structures (i.e. 

convolut ion of phase type distri butions). 

3.4 Cyclic Polling System 

This Section focuses on the analysis of discrete time cyclic polling systems. In 

order to make the description of the solution approach simple we consider a polling 
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1 Server 
5 Queues (A, B, C, D, E) 
Total cycle tirne 42 units 

Server h 
Figure 3.1: PoUing System 

system with five queues {A, B, C, LI, E}. Each queue has an arrivd rate A,, 

û = A, B, C, D, E. Fig. 3.1 represeots the design parameters of this polling 

system. Although, it is possible to define a Markov chain on an appropriate state 

space for the whole polling system, this is not recommended for obvious reasons 

(curse of dimensionality). Alfa [3] analyzed an alternating queueing system with a 

finite buffer. It is shown in [3], for the case of two queues, that the  transition matrix 

becomes quite large. In order to analyze the polling system at  hand, we consider each 

queue separately (decomposition approach) and treat it as a single server queue with 

vacation as  shown in Fig. 3.2. Arrivais to the queueing systern occur according to 

M A P  as described in Section 3.3. Service is of phase type distribution as described in 

Section 3.2 and the switch-over time is equd to zero. We consider both the infinite 

and finite buffer cases. 

Each queue in the polling system can be represented as a MAP/PH/I queue 
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(b* SI 

Figure 3.2: Single Server Queue with Vacation 

with vacation for the infinite buffer case and as a MAP/PH/l/K queue with vacation 

for the finite buffer case where K is the buffer size. Each queue is then analyzed 

as a single server queue with exhaustive time-lirnited service discipline and vacation 

periods. For a polling system with Q queues the vacation period is the visit period of 

the other (Q - 1) queues in the polling system. As will be shown later, the visit period 

for a given queue is a phase type distribution. Let (-yi, Bi) be the representation of 

the visit period distribution for queue i (i = A, B, C, D, E). Because the vacation 

period has a finite support it c m  be represented by a phase type distribution (see 

Neuts (1311). Thus, the independent part of the vacation period distribution for queue 

A of the polling system defined by stations {A, B, C, D, E )  is given by: 
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Notice that this phase type distribution has a natural justification. Once the server 

goes on vacation it starts serving queue B. This is denoted by the visit period to 

queue B, BB, which corresponds to the block matrix in position Za(l ,  1). When 

service at queue B is finished, absorption occurs according to  B i  and service starts 

in queue C according to  yc. Thus, BirC in position ZA( l ,  2). The remaining block 

matrices of ZA are obtained in the same way. The  vector 21 denotes the end of the 

vacation period. Since the end of the vacation period coincides with the end of the 

visit period a t  queue E, we have BE in the last position of the vector 21. The vector 

6A is the initial probability vector of the vacation period distribution. Since once the 

server goes on vacation it visits queue B, we have yB in the first position of the initial 

probability vector, bA, of the vacation period of queue A. 

The vacation period distribution as described above ignores the  fact that there is 

some correlation between the visit and vacation period distribution. In fact, the above 

equation assumes that the vacation period and the  visit period are independent. In 

order to bring in the inherent dependency between the vacation and visit period we 

use Lee and Sengupta's [log] approach. In their approach, for a reservation cyclic 

polling system, they assumed that the vacation period is a mixture of two random 

v i ab l e s .  The first one is the sum of the visit period of Q - 1 queues with probability 

Pi for queue i. The second one is (Q - 1)s with probability 1 - Pi, where S is a 

generic random variable. Since the vacation period has a finite support, similarly 

to the independent part, the dependent part can be represented by a phase type 

distribution. Let (qbi, I;) denote this phase type distribution. The vacation period 

distribution is given by Pi(6,, 2,) + (1 - Pi)(*;, x), where in this notation Pi(di, Zi) 

implies that each element of the initiai probability vector bi is multiplied by Pi and 

each element of the transition matrix Z, and the absorption vector 2; is also multiplied 

by Pi- The probability Pi is computed based on the system parameters. In general. 
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the vacation period of station 2 ,  i = 1,2, . . . , Q, is given by a phase type distribution 

wi th dimension r and representation (y,, v). The dimension of the vacation penod 

distribution is equal to the maximum time the server can be away serving the other 

Q - 1 queues, therefore, r = ~ y = ~ , ~ + ~  TJ. The rnean of the vacation period is given 

by ü, = bi(I - iQ-le. 

Notice that similar to  the vacation period, the visit penod distribution, (y,, Bi). 

depends on the vacation period distribution. However, in this thesis this dependency 

is not included. 

Because of the inter-relationship between the visit and the vacation period dis- 

tribution we use an iterative approach to solve the exhaustive time-limited polling 

system. In iteration k we use the results of iteration k - 1 to obtain the vacation 

period distribution and solve the single server queue with vacation. Before we go 

over the iterative procedure we present in the next two sections the analyses of the 

M A P / P H / l  and the MAP/PH/l /K queues. Note that for ease of notation the station 

index i is dropped. 

3.4.1 MAP/PH/l Queue with Exhaustive Tirne-Limited Service and Va- 

cations 

Consider a Markov chah  described by the state space A = {(i. (O, k, I ' )  U ( j ,  k, l ) ) ,  i 2 

0;j = 1,2;-0,T;k = 1 , 2 , - - , n ; l '  = 1,2, - , r ; l  = 1,2;-,m}, where i is the 

nurnber of customers in the queue during service (vacation); the three tuple (O, k, 1') 

refers to a vacation period with O representing vacation state, k representing the phase 

of arrival and 1' the phase of the vacation; the t hree tuple (j, k, 1 )  refers to the service 

state with j representing the time clock of service (Le. how long the service has b e n  

going on since the return from vacation), k referring to the phase of arrival and 1 the 

phase of service of the customer who is currently in service. The transition matrix of 
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this Markov chain P is given as 

P =  

where, 

Y v = 0,1,2 and 

A i  = Ai = 0, where, 

Ag= D&S, 4= D1@(Se)6, A$=  D 1 @ ( V O p ) ,  G = D l @ V  

Al = Do @ S + DI 8 (SOP), A: = Do @ (S46 + Dl 8 (S06), 

A; = Do @ (VOP*), A: = Do 8 v, 
A: = Do@(SOp) ,  Ai = Do@(S06),  VO = e - V e ,  SO = e - S e ,  

and = /3*(S+SQP),with p e = i  

The symbol @ is the Kronecker product sign. e: is the transpose of the column 

vector eV, which has 1 in the vth position and O elsewhere. The block matrices Ao, Ai 

and A2 are square matrices of dimensions n(r  + Tm), the block matrix Ba is a square 

matrix of dimension nr, the block matrix Bol is of dimension n r  x n(r + Tm) ,  and 

the block matrix Blo is of dimension n ( r  + T m )  x nt. Note that the vector el in Bo, 

is of dimension T. p* is used to denote resumption of service after an interruption. 

Its justification is based on the properties of the phase type distribution and can be 

found in Neuts [133, page 521. 
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The detailed analysis of this queueing system could be found in Alfa [2]. Here we 

quote the major results without their proof. The rate matrix R can be obtained by 

solving: 

The mean number of customers in the system at an arbitrary tirne, PL, and the mean 

waiting tirne, WL,  are given, respectively, as 

Let v, be the ~robability that the server is on vacation, then 

where ei is a column vector of zeros and 1 in the ith position. 

This queue is stable if ~b < T / ( T  + ü). This condition implies that the expected 

service time of the expected number of arrivals in a cycle consisting of a service 

period and a vacation period is less than the maximum tirne allowed per visit. In 

the remainder of this chapter we assume that this condition holds whenever we are 

dealing with the infinite buffer case. 

3.4.1.1 Duration of a queue visit 

In order to  obtain the queue visit distribution, we present a simple recursive formula 

for the computation of the busy period, then we show how to obtain the visit period 

distributioii. Let p ; ( j )  be the probability that a busy period initiated by j customers 

lasts i units of time. Note that because we axe dealing with discrete time systems the 

service time of j customers must be at least equal to j ,  thus p i ( j )  = O for i < j .  Let g;,; 

be the probability that the service time of j customers lasts i units of time. Let d i ,  be 

the probability that j customers m i v e  in i units of time. The following proposition, 

due originally to Klimko and Neuts [101], is known to be true for Bernoulli arriva1 
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processes and general discrete time service distri butions. 

Proposition 1: The probability that a busy period ini t iated b y  j customers lasts i 

units of t ime  is given b y: 

Proof: The arguments leading to this proposition are as follows. The first term 

on the right hand side (RHS) is due to the probability that  the service time of j 

customers lasts i units of time and during that period no new customers join the 

queue. The second term on the RHS is due to the probability that the service time 

of j customers last i - 1 units of time. During the first i - Z units of time k new 

customers join the queue. These k customers initiate a busy period that lasts 1 units 

of time. a 

Next, we extend this result to the more general case i.e. we consider arrival to 

be represented by MAP and service by phase type distribution. In the case of the 

discrete MAP/PH/l  queue let G(')(i) be a matrix of dimension m x rn with its entries 

G(J ) ( i )  U.V representing the probability that the service time of j customers last i units 

of time given that the service of the first customer starts in phase u and that of the 

j t h  customer ends in phase c. Letting Si = SOP, the matrix G(j ) ( i )  is given by: 

Also we define the matrix ~ ( j )  of dimension rnn x m n  such that its entries ~tL(i) 
represent the probability that a busy period initiated by j customers lasts i units of 

time given that the first customer's service and arrival are in phase u,  1 < u < mn, 

and that the service of the last customer and arrival are in phase v, 1 5 v 5 mn. 

In order to  extend the result of proposition 1 to the case of M A P  arrival and phase 
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service we let the scalar gi,  be the matrix G ( j ) ( i )  and d i ,  be 

Then we have 

However, since our prirnary interest is in the probability that the busy period lasts 

i units of time we define p i ( j )  = pB(j ) ( i )e ,  where p is the steady state probability 

that arrival is in phase i ,  i = 1,. . . ,n, and service is in phase j, j = 1,. . . ,m (Le. p 

is mn vector). 

Proposition 2: The probability that a busy penod initiated b y  j customers l ads  i  

units of t ime is given by: 

Proof: The proof of this proposition follows directly from Proposition 1 by replacing 

g i ,  with W ( i )  and d i j  with ~ i - j q ' .  O 

The mean duration of a busy period initiated by j customers, p j ,  is given by: 

= [ i - j  1 ( i : / )  
+ C i  C C  p (O ( i  - 1) @ D ; - ' - ~ D ~  :)pl (k) (3.1 1 )  

i=j kr k=l 



Note that because this is an infinite sum we choose a large number J such that 

1 - x t j  pi(j) < c, where c is a very small positive number. Now we are in a position 

to compute the visit period distribution. 

Let Bi ( O  5 i < T - l),  be the probability that the server returns from a vacation 

to find i custorners waiting and dT = xzT 8,. For our problern 

8; = ü x i , ~ ( e  @ I ) V O / v o ,  I 5 i < T - 1 ,  and (3 .12)  

60 = Üm(e @ I ) V 0 / v 0  (3 .13)  

Therefore, we have t O consider t hree cases: 

Zero Customers Waiting 

If when the server returns from a vacation it finds no customer waiting, then the 

duration of the visit to the queue is zero, because the server departs imrnediately for 

a vacation. The probability of this occurring is $ .  

At Least One (but less than T ) Customer Waiting 

If when the server returns from a vacation it finds k customers waiting ( 1  < k  5 T -  l ) ,  

theo the duration of a visit to the queue is a phase type distribution with parameters 

( a ( k ) ,  F ( k ) ) ,  where a ( k )  = [l  O O . -01, and 

where b i ( k )  = 1 - &,(k) ,  j 5 1, and 

b l ( k )  = b l ( k )  and 
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The probability of this occurring is Bk.  

At Least T Customers Waiting 

If when the server returns from a vacation it finds at least T customers waiting t hen 

the duration of its visit to the queue is exactly T units and c m  be represented by a 

phase type distribution with parameters ( a ( T ) ,  F ( T ) ) ,  where a(T) = [l O O - O]. 

and 

F ( T )  = 

The probability of this occurring is &. 
The duration of a visit is thus a phase type distribution with parameters 70 = Bo, 

y = [l - Bo O O . . . O]. Since the server visits a queue even though it is empty, the 

distribution of the visit period must have a probability mass equal to  zero at zero. 

hence y0 = O (i.e. the probability of not visiting a queue is zero). Therefore, the 

vector 7 must have a one in position 1 and zero every where else i .e. 70 = 0. and 

y = (1 O]. The transition matrix, B, and the absorption vector, Bo, of the  visit period 

distribution are given, respectively, by: 

where FO(i) = e - F ( i ) e .  



3.4.2 The MAP/PH/l/K Queue with Exhaustive Time-Limited Service 

and Vacations 

The state space of the Markov chain of this queueing system is the same as that of 

the MAP/PH/l queue except that the maximum number of customers in the buffer 

is K. The transition matrix P describing this Markov chah is given as: 

where the matrices &, Bol, Blo, Ao, Al, A2 are given in Section 3.4.1. The matrix 

A is given by 

The steady state probability vector [% x l  . . . x K 1 ]  c m  be obtained by solving 

the system of equation xP = x and xe = 1, where Ki is the number of customers 

in the systern Le. K I  = K + 1. Because this system of equations is finite and 

sparse we use the block Gauss-Seidel iterative method. A discussion on the use of 

iterative algorithms for the solution of Markov chains is available in Stewart [161] or 

Grassmann [74]. The mean number of customers in the system at arbitrary times 

and the mean waiting time are given, respectively, by: 

where PKl = XK, e and is the blocking probability. The probability that the server is 

on vacation is given by 

h'l 

vo = %e + x i ( e l  @ e). 
i= 1 
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Similar to the infinite buffer case, we need to obtain the visit period distribution. 

This is achieved easier by first obtaining the number served during a visit from which 

we can compute the busy period distri but ion. 

3.4.2.1 The number served during a busy period 

In this section, we discuss the number of customers served during a busy penod for the 

MAP/PH/  1/K queue. Again KI is the number of customers in the queueing system, 

KI = K + 1. The number of customers served during a busy period has a phase type 

distribution with representation ( t$(k) ,  L )  where 4 ( k )  is the initial probability vector. 

The vector &k) h a  1 in position k and zero everywhere else. The matrix L is given 

where di is the probability of having i > O arrivais during the service time of one 

customer. Let Pj be the probability that the service time of one customer lasts j 

time units, and let Qj be the probability of having i arrivals in j time units. P,, Qj 

and di are given, respectively, by: 

From a computational aspect, because the sum for di goes to infinity one would 

stop when the increment in the total probability is less than an acceptable tolerance, 



Say c < IO-'. Hence, the probability that v ;  v = k, k + 1, ...; custorners are served 

during a busy period initiated by k customers is given by N J k )  = q5(k)Lv- 'LO.  

The mean number of customers, hi@), served during a busy period initiated by k 

customers is given by the mean of the phase type distribution (t$(k), L )  i.e. h i ( k )  = 

& t ) ( I  - L)-IL0 where L0 = e - L e .  

3.4.2.2 Duration ofaqueuevisit 

From the nurnber of customers, j ,  served during a busy period we can compute. b ; ( k ) ,  

the probability that a busy period initiated by k customers lasts i time units. b ; ( k )  

is given by: 

where G(j ) ( i )  is as defined in Section 3.4.2.2. 

Let Bi, ( O  5 i 5 rnin(T - 1, K)),  be the  probability that the server returns from 

a vacation to find i customers waiting. We have to make a distinction between two 

cases i.e. T 5 K and T > K. 

Case I :  T 5 K 

Let Br = O j .  For our problern 

Consider each of the fol1owings:- 

Zero Customers Waiting 

If when the server returns from a vacation it finds no customer waiting, then the 

duration of the visit to the queue is zero, because the server departs immediately for 

a vacation. The probability of this occurring is do. 

At Least One (but less than T) Customer Waiting 

If when the server returns from a vacation it finds k customers waiting, 1 < k < 



type distribution wi t h (T - l ) ,  then the duration of a visit to the queue is a phase 

parameters (a(k), F ( k ) ) ,  where a ( k )  = [1 O O . - O], and 

The probability of this occurring is OÇ. 

F(k) = 

At Least T Customers Waiting 

If when the server returns from a vacation it finds at least T customers waiting then 

- - 
O b ; ( k )  O . - .  O 

O O b;(k)  O . - .  

i 

* *  b ; - , ( t )  

O O . * .  ... O 
M - 

the duratioa of its visit to the queue is exactly T  units and can be represented by a 

phase type distribution with parameters (cr(T), F ( T ) ) .  where a ( T )  = [l O O O]. 

and 

F ( T )  = 

The probability of this occurring is B T .  

The duration of a visit is thus a phase type distribution with parameters 70 = Bo, 

7 = (1 - Bo O O - . O]. For the same reasoning as in Section 3.4.1. we set y0 = O 
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and y = [l Oj. The transition matrix, B1 and the absorption vector, Bo. of the visit 

period distribution are given, respectively, by : 

T-1 

/ ( 1  - B o ) ,  and 
k= 1 

/ ( 1 - B o )  
k= 1 

where F O ( i )  = e - F ( i ) e .  

Case 2: h' < T 

This case is not realistic from a design point of view and hence will not be presented 

here. It would not make sense to assign less memory than slotted time. 

3.5 Iterative Procedure 

Before we present the iterative procedure, let us briefly explain how we adopt 

Lee and Sengupta's [log] idea to deal with the correlation between the visit period 

and the vacation period. The vacation period is taken to  be a mixture of an inde- 

pendent and a dependent random variable. This mixture is assumed to depend on 

the system parameters. The first part of the vacation period is obtained using the 

visit period distribution presented in Section 3.4.1.1 for the infinite buffer case and in 

Section 3.4.2.2 for the finite buffer case. The second part of the vacation period, in 

our case, depends on the polling system utilization. This is because under medium 

to beavy load conditions the server, once it l aves  a queue, has a higher probability 

of staying on vacation for the maximum vacation period thao under light load con- 

di tions. Our experimentat ion wit h the algori thm, using different input parameters, 

showed that it is more efficient to use different vacation periods (dependent parts) 

for p < 0.65 and p 2 0.65, where p is the system utilization. 

For the case of p < 0.65 the dependent part of the vacation period is computed 

using Algorithm 2 of Lee and Sengupta [log]. This can be achieved by defining a 
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phase type distribution (qb,. x). In our case, this phase type distribution is given by: 

qll = [l O . .  . O] and 

where pf(Q - 1) = 1 - p(Q - l), 

p'(j) = 1 - p(j)(1 - x{=q-l P(~))-', and J = c:=\>~~ Tj .  The probability p ( j )  

is computed using Lee and Sengupta [log] (Algorithm 2). For our model, p ( j )  is 

computed as follow. Let r i ( k )  be the probability that a visit period lasts i l  2 5 i 5 Tk, 

units of time for queue k. Then, 

Next, we sort in descending order al1 of r i (k ) ,  2 5 i < Tk and k E (Q - l ) ,  to get 

p ( j ) .  Note that the distribution (11, Y) implies that: 

O Once the server goes on vacation it visits d l  Q - 1 queues, and 

0 the remaining p x t  of the vacation penod represents a visit period where al1 

Q - 1 queues are treated as a single queue. 

For the case of p 2 0.65 the dependent part of the vacation period is assumed 

to be deterministic. Thus for queue i the length of the vacation period is given by 

r:j+i T, which c m  be represented by a phase type distribution with 1's in the super- 

diagonal positions and 0's every where else. This is because for moderate to high 
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systern utilization, once the server goes on vacation £rom queue i it is more likely to 

stay away serving each of the other queues for its whole time period. 

The iterative procedure to solve the cyclic polling system with infinite buffer is 

outlined below: 

1. For i = 1 to Q let the distribution of the visit period, (y,, Bi), be given by a 

phase type distribution of dimension Ti. 

where pi is queue i utilization. 

2. For i = 1 to Q 

if 0.8 2 p set P, = pQ-' + pi 

if 0.65 < p 5 0.8 set Pi = (1 - + pi 
if p 5 0.65 set Pi = (1 - p i ) ~ Q - '  + pi ,  where LI = E,,,#, Tl.. 

T, 

For infinite buffer queues: 

a- Compute the vacation period V = (1 - A)  x Z + Pi x Y 

b- Compute the rate matrix R (Eq. 3.2) 

c- Compute [* xi] 

d- Compute the average queue length p i  (Eq. 3.3) 

e- Compute the probability that the server is on vacation (Eq. 3.4) 

f- Update the visit period distribution 

end 
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For finite buffer queues: 

if Pi 2 1 set Pi = 1 

a- Compute the vacation period V = (1 - Pi) x Z + Pi x Y 

b- Compute 1% x i  . . . x&] using Gauss-Seidel 

c- Compute the average queue length (Eq. 3.18) 

d- Cornpute the probability that the server is on vacation (Eq. 3.19) 

e- Update the visit period distribution 

end 

3. If the average queue length and the mean vacation period did not converge go 

back to 2, else stop. 

Note that we chose to initialize the visit period using Equation 3.30 because it makes 

convergence faster. This is because when the utilization is low the average visit 

penod will be smalf and when pi is high the average visit period will be high. This is 

confirmed by the results of most of our cornputer runs. Notice that in the case p, is 

one (queue is unstable) then the average visit period will be equal to Ti. 

During the computation of the performance rneasures of the polling system at  each 

iteration we store only the information pertinent to the current queue i.e. the arrays 

used to compute the performance measures for queue i - 1 Xe reused to compute 

the performance measures for queue i. This, of course, could be done by creating a 

subroutine to solve for the vacation mode1 and a main that calls this subroutine for 

each queue. 

3.5.1 Convergence of the Iterative Algorithm 

In order to prove that the algorithm adopted for this cyclic polling system a i th  

exhaustive time-limited service discipline, MAP input, phase type service distri bu- 

tion, and zero switch over time converges we follow the sarne steps as Lee and Sen- 

gupta [log]. The proof is presented for the infinite buffer case. Similar arguments 



could be made for the finite buffer queue case. First, consider two single server sys- 

tems of the type analyzed in Subsections 3.4.1 and 3.4.2 in which the vacation periods 

are denoted by vrl) and ~ ( ~ 1 .  Let the corresponding j t h  service period be denoted 

by B:') and let the j t h  queue length wheo the server leaves for vacation be denoted 

by ili(') i = 1,2 and j = 1,2 ..... 
Lernrna If V( ' )  Zst V2) then B:" 2,t k3j2' and N:') lsr N : ~ ' .  

The Zst is defined in Stoyan [163] as  stochastically dominant. The proof of 

this Lemma for Our cyclic polling system is done into two steps. First, we prove 

monotonicity and then we prove comparability. Let the kernel of the Markov chain 

{N;'), i = 1,2} be denoted by Qi(x1 y )  = ~ r o b { ~ j : ~  5 y l ~ , ( ' )  = z). 

Monotonicity: For i = 1,2 the following relationship is true. Let A(') represent 

the number of arrivals in a vacation period V(' ) ,  C(') the nurnber of arrivals in 

a service period, and D(') the number served in a visit period. 

where (r,O)+ = r if z 2 0 and (z,O)+ = O otherwise. 

This relationship is true for any XI, x2, y positive integer for the following reason. 

The number of arrivds during the vacation period is the snme for both cases. 

The number of &vals during t h e  visit penod depends on its length. Since 

we are dealing with discrete time single arriva1 queues, in the worst case the 

number of arrivals during the visit period given N,!') = z? is equal to the number 

of arrivals during the visit period given that N:') = I I .  This irnplies that bath 

visit periods are equal. Hence, the number served in the visit period a v e n  

NI') = 2 2  is the sarne as that served in the visit period given N:') = zl. Thus 

the monotonicity proof. 



Chapter 3 T I M E - L I M I T E D  CYC'LIC' POLLI,'C; 

O Comparability: The comparability condition is based on the following argu- 

ments. Since V(2) <.< V( ' ) ,  then the number of arrivals in V(2) is less than 

the number of arrivals in ~ ( ' 1 .  Hence, the visit period associated with c . ' ( ~ )  is 

shorter wbich results in a smaller number of arrivals during the visit period. 

Thus, the number of customers served during a visit period under vacation L ' ( ~ )  

is at  best e q ~ a l  to the number served under vacation period V( ' ) .  

3.5.2 Stability of the Iterative Algorithm 

In order to show that  the proposed algorithm is stable and converges to  the solution 

we first show that the vacation period in iteration k, V('),  k = 1,2, ... represents 

a stochastically non-decreasing sequence of random variables and second that if the 

original cyclic server queue is stable then the vacation mode1 remains stable through- 

out the iterative procedure. The first part of the proof is identical to  Lee and Sen- 

gupta [log] and therefore, we avoid its repetition here. For the second part, consider 

a system in which a t  every visit the server spends T, time units a t  the queue and in 

which one unit of walk t ime is incurred at every queue. Cd1 this system system H. 

If system H is stable then our system is stable. A sufficient condition for stability for 

system H is Qven in Georgiadis [71] as 

where pi is the queue utilization and p is the system utilization. From Eq. 3.31 we 

have 

which after algebraic manipulation leads to 

If we set p, = O ,  V n, except for pi and pj in Eq. 3.33 we get 
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If we set pj = O in Eq. 3.34. then 

Ti 
pi < - Q + Ti 

Note that the average visit period is bounded 

Hence. 

TIME- LIMITED C'l'CLIC1 POL LI,KG 

(3.35) 

by that of the exhaustive discipline. 

where Si is the average visit period. For the aigorithm to converge we must have 

h- ûi = Cn=,,n+i i,. From Eq. 3.36 we can write 

The fint inequdity (Eq. 3.37) is due to Eq. 3.36 and the second inequality (Eq. 3.38) 

is due to Eq. 3.34 (take the inverse of Eq. 3.34 and then take the sum over n). For the 

vacation mode1 to be stable we must show that pi < Tt for i = 1,2, ..., Q (stability 

condition for the MAPIPHI1 queue). 

From Eq. 3.38 we c m  write 

The second term in this inequality (Eq. 3.41) is due to Eq. 3.35. The next step in the 

proof is to show that the right hand side of the inequality (Eq. 3.41) is bounded by 
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Ti. This can be done by routine dgebraic manipulations. 

Hence we have pi(** + Ti) < T, which proves our claim. This proves that the average 

vacation penod keeps increasing from one iteration to  the  next but never exceeds the 

limiting value. Note that this proves only that the algorithm converges. Although 

we have proven that  the algorithm converges and is stable, we did not prove that it 

converges to the exact distribution. The stability of the algorithm is confirmed by 

starting with unstable conditions. The results obtained for the mean queue length 

and the mean waiting time were equal to infinity. This confirms our proof. 

3.6 Numerical Examples 

In comparing the  approximate approach results with those of the simulation we 

define the percent error as W ~ l ~ ~ ~ ,  where Wsim is the simulation mean waiting 

time and Ttap, is t he  approximate approach mean waiting time. A negative percent 

error indicates that  the approximate method over-estimates the simulation results. 

For the simulation we used 5 replications each of which is of 105 time units long for 

Q 5 6 and 106 for Q 2 7, where Q is the nurnber of queues, and a warm u p  period 

of 105 time units, we show the half-width of the 95% confidence interval using Law 
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and Kelton [IO$, Chap. 91 Since, there are many system parameters we chose to 

show some of the results to give a general idea on the performance of the iterative 

procedure. 

3.6.1 Infinite Capacity Mode1 

The first set of examples shows the performance of the iterative met hod for different 

system utilization. Tables 3.1-3.4 show the cornparison between the simulation and 

the approximate approach of the mean waiting time for a 4 queues polling system. 

The service tirne distribution is identical for al1 queues md is of the geometric type. 

Customers arrive accordiog to the geometric distribution and the probability of arrival 

is given by A. The maximum time allocated for each queue is given by Tm,,. This 

Table 3.1: 4 Queues Poiling System, b = 1.25, p = 0.75 

polling system is asymmetric in terms of the  load and the time allocated to each 

queue. We Vary the system utilization between 0.5 and 0.75 while keeping the mean 

service tirne constant. Ln al1 four examples queue 2 and 4 have the same arrival rate, 

yet consistently queue 2 has a lower mean waiting time than queue 4. This is due to 

queue 2 having a higher time lirnit (4 time units for queue 2 compared to 3 tirne units 

for queue 4). In Table 3.4, queue 3 and 4 have the same arrival rate with queue 3 

having a much higher time limit (i.e. queue 3 have twice the time allocated to queue 

4). The mean waiting time for queue 3 is much lower than that of queue 4. This 

% Error 

12.5% 

9.8% 

8.8% 

Queue 

1 

2 

3 

1 4 II 0.1 1 3 1 14.270 1 li.119 f 0.895 1 16.6% 11 

X 

0.2 

0.1 

0.2 

Tm, 

5 

4 

6 

W ~ P P  

13.120 

8.922 

9.123 

1 

Wsim 

14.987 & 0.694 

9.892 k 0.247 

10.006ir0.390 
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Table 3.2: 4 Queues Polüng System, b = 1.25, p = 0.6875 

W / % Error 

Table 3.3: 4 Queues Polling System, b = 1.25, p = 0.625 

is rnainly due to the frequent timeouts for queue 4 while queue 3 is served almost 

exhaust ively. 

The maximum absolute error, 20.6%, for these examples is encountered with a 

low system utilization, p = 0.5, for queue 3 in Table 3.4. Al1 other exâmpies have a 

maximum absolute percentage error of 15%. 

The second set of examples, Tables 3.5-3.7, shows the performance of the iterat ive 

procedure when the number of queues is 5,6 and 8 while keeping the system utilization 

constant. Again, arrival and service t ime are represented by geometric distribution. 

Although, queues (1, 5} in Table 3.5 and 3.6, queues (2, 6 )  in Table 3.6, and queues 

11, 4, 7) and {2, 6, 8) in Table 3.7 have the same parameters (arrival rate, aod 

Tm.,) their simulation mean waiting time is not identical. This is due mainly to 

L 

W ~ P P  

4.524 

4.944 

5.457 

7.258 
P 

X 

0.1 

0.1 

0.2 

0.1 

Queue 

1 

2 

3 

4 

W 

3.918 & 0.0668 

5.149 k 0.0637 

4.743 It 0.0831 

7.407 4~ 0.234 

Tmaz 

5 

4 

6 

3 

% Error 

-15.5% 

4.0% 

-15.1% 

2.0% 
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Table 3.4: 1 Queues Polling System. 6 = 1.25. p = 0.50 

Waim ( % Error 

Table 3.5: 5 Queues Poiiing System, b = 1.25, p = 0.75 

sampling errors. The performance of the algorithm is comparable in terrns of the 

percentage error with the case of 4 queues. Note that in most cases the iterative 

approach over-estimates the mean waiting time on the average by about f 10%. 

In al1 the examples studied, the iterative algorithm converges in less than 30 

iterations, with a m n  time under 15 minutes on an IBM RS6000/590. Most of the 

CPU time for each run is taken to  solve for the rate matrix R, and the queue length 

distribution. The rate matrix R is obtained using the algorithm given in Alfa [2]. 

The stopping criterion for convergence was chosen to be e = i.e. the program 

stops when the difference in the mean queue length and the difference in the rnean 

vacation period for al1 the queues is less than  IO-^. In the examples ran, the number 

- 

J 

0.15 

0.1 

0.15 

0.05 

0.15 

Queue 

I 

2 

3 

4 

5 

Tm,, 

5 

4 

6 

3 

5 

Wapp 

12.610 

11.533 

9.623 

11.550 

12.610 

W 

12.522 * 0.703 

11.832 A 0.318 

8.727 k 0.418 

10.808 & 0.179 

12.345 f 0.749 

% Error 

-0.7% 

2.5% 

-10.3% 

-6.9% 

-2.2% 



Table 3.6: 6 Queues Polling System. b = 1.25, p = 0.75 

1 Queue 

1 

2 

3 

4 

5 

6 

of iterations required for convergence depends on the number of queues, Q, and the 

ailocated time, T ,  for each queue. This is because when T is large, the dimension of 

the phase type distribution of the vacation penod becornes large, thus, a large rate 

matrix to solve for. Similady, when Q is large we have to solve for Q rate matrices 

and queue lengths (assuming that the polling system is not symmetric). 

3.6.2 Finite Capacity Mode1 

Tables 3.8-3.11 show the cornparison between the simulation and the approximate 

approach of the mean waiting time for a 4 queue polling system. The service time 

distribution is identical for al1 queues and is of the geometric type. Customers arrive 

according to  the geometric distribution and the probability of arriva1 is given by A. 

The maximum time allocated for each queue is given by Tm,, and the buffer size by 

K. 

Table 3.12 shows the performance of the iterative procedure when the system 

utilization is larger than 1. Notice that queues 1 and 3 have the sarne buffer sizes, 

but queue 3 has a larger allocated time, thus it has a lower mean waiting time. This 

is because the blocking probability for queue 3 is smaller. Similar arguments can be 
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Table 3.7: 8 Queues Polling System, 6 = 1.25. p = 0.75 

% Error 

6.2% 

-14.2% 

- 13.1% 

6.8% 

- 13.6% 

- 13.7% 

6.6% 

- 14.2% 

made for queues 2 and 4. 

In dl the exarnples studied, the iterative algorithm converges in less than 30 

iterations, with a run time less than 15 minutes. Most of the CPU time during each 

run is used up in solving for the queue length distribution. The queue length is 

obtained using block Gauss-Seidel iterative procedure wit h a stopping cri terion for 

convergence of 1 0 - ' O .  The block dimension is of s i x  mn, where m is the dimension 

Table 3.8: 4 Queues Poiiing System, 6 = 1.25, p = 0.75 

% Error 

- 15.9% 

-8.9% 

9.6% 

11.2% 
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Table 3.9: 1 Queues Polling System, b = 1.25, p = 0.6875 

Error II 

Table 3.10: 4 Queues PoUing System, b = 1.25, p = 0.625 

of the service time distribution and n is the dimension of the arriva1 process. The 

stopping criterion for convergence for the iterative polling algorithm was chosen to 

be É = 10-8 i.e. the program stops when the difference in the mean queue length 

and the difference in the mean vacation period for ail the queues is less than 1od8. 

In the examples run, the number of iterations required for convergence depends on 

the nurnber of queues, Q, the buffer size of each queue, K, and the dlocated time 

for each queue, T. This is because when T andfor K is large, the dimension of the  

probability vector becomes large. Similarly, when Q is large we have to solve for Q 

queue lengths (assuming that the polling system is not symmetric). 

Similarly to the infinite buffer capacity case, the maximum percentage error for 

the finite buffer capacity case is f 15%. Both rnodels yielded reasonable results for 

Queue 

1 

2 

3 

4 

A 

0.1 

0.1 

0.2 

0.1 

Tm,, 

5 

4 

6 

3 

K 

8 

5 

8 

5 

\Ki, 

3.784 & 0.082 

4.463 & 0.038 

4.074 k 0.021 

5.989 & 0.061 

W., 

3.820 

3.020 

4.338 

5.70'7 

% Error 

-1.0% 

9.9% 

-7.7% 

4.7% 
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3.7 Variant of the Mode1 

In this section, we describe how to take the mode1 for the polling system without 

switch-over time and modify it to account for a switch-over time between the queues. 

The only change necessary is for the vacation period distribution. Let the switch- 

over tirne between queue i and queue i + 1 be of phase type distribution with the 

following representation (ni, Li,). Let U0 be the absorption vector for the phase type 

distribution. The initial probability vector n has 1 in the first position and zero every 

where else. With this information we construct the independent part of the vacation 

period given in Section 3.4. For the example given there the vacation period becomes 

Block Za(l,  1) denotes the beginning of the switch-over time from queue A to 

queue B. Block Za(1,2) denotes the end of the switch-over time and the beginning 



of service in queue B. The remaining of the blocks of the transition matrix Z.4 can 

be explained in the same way. Xote that the dependent part of the vacation period 

would be computed using an approximate approach similar to that of Section 3.5. 



CHAPTER 4 

TIME-LIMITED TABLE POLLING 

4.1 Introduction 

In Chapter 3 an iterative procedure for the exhaustive time-lirnited service disci- 

pline for cyclic polling systems was presented. In this Chapter we extend those results 

to the case of table polling. Consider a multi-queue system with Q queues visited 

periodicdly according to a table of size N, N 2 Q. This type of polling includes star 

polling, elevator polling, cyclic polling and custom-made tables. For each queue i; 

i = 1 ,  . . . Q; of this polling system: 

a Customers arrive according to an m-dimensional Markovian arriva1 process with 

representation ( Do,i, Dl , i )  and fundamentai rate A,. 

a The service time distribution is an n-dimensional phase type wi t h representat ion 

( P i ,  8). 

O The service discipline for queue i is exhaustive time-limited with time limit 

T i  Notice that the time limit is hard preemptive i.e. an on-going service is 

interrupted a t  the time limit and in the next visit the server resumes serving 

the customer where it left off. Notice that the time threshold, TI ,  is fixed for a 

station for al1 visits in a table. 

O Each queue is visited Mi times, Mi 3 1 ,  in a table. 

O The switch-over time between queue i and queue i + 1 is equd to zero. 
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Sirnilar to the cyclic polling case, the andysis is based on the decomposition 

method. Each queue is considered separately as MAP/PH/ l  queue with vacation 

in the case of infinite buffer capacity model and as a M A P / P H / l / K  queue with 

vacaiion in the case of finite buffer capacity model. The analysis of M A P I P H /  1 and 

of M A P / P H / l / K  with phase type vacation distribution is presented in Chapter 3. In 

the following we discuss how to extend those results to the case of multiple vacations. 

The visit period has a phase type distribution with dimension Ti and representa- 

tion (y i ,  B,), i = 1, . . . Q. The visit period distribution is obtained in the same way as 

in Section 3.4 for the case of infinite bufkr capacity and as in Section 3.5 for the finite 

buffer case. The necessary changes to account for multiple vacations are presented in 

Section 4.3. Similarly to the vacation period in Section 3.4, each sub-cycle vacation 

period (i.e. the time between successive visits to the same queue in the table) can 

be represented by a phase type distribution with dimension Cjesc T,, where SC is 

the set of queues visited dunng the sub-cycle vacation period. Therefore, if queue i, 

i = 1. . . . Q, is visited Mi,  Mi 2 1, times in a table, then queue i has Mi phase type 

vacations which we denote by (&, Lk); k = 1, . . . Mi. 
From the distribution of each of the sub-cycle vacation period we can construct 

the vacation period distribution for each queue by noting that the type of sub-cycle 

vacation the server takes depends on its current position in the table. This correlat ion 

between the position in the table and the type of vacation the server takes c m  be 

captured using MAP. Thus, we denote by (Vo,, , l/iVi) the vacation period distribution 

of queue i. In this notation element (u, v )  of matrix hvi denotes transition from state 

u to state u with the vacation period stiil going-on and the element (1,  k) of the matrix 

denotes transition from state 1 to state k with the vacation period ending from 

state 1 and the next vacation period beginning from state k. For clarity and ease of 

notation from here on the queue index is used only when it is absolutely necessary. 

As an example consider a polling system with five queues {A, B, C, D. E } .  

Furthermore, suppose that we have to: 



Visit queue A 2 times per cycle with TA = 4. 

0 Visit queue B 1 times per cycle with Tg = 5. 

0 Visit queue C 2 times per cycle with Tc = 3. 

Visit queue D 1 times per cycle with TD = 6. 

0 Visit queue E 1 times per cycle with TE = 4. 

A possible polling table is given as A, B, C, A, D, E, C. Ln this polling table. 

queues A, and C are served two times ;n this table with each visit having a maximum 

length equal to 4 units of tirne, and 3 units of time, respectively. Queues B, D, and 

E are visited once for a maximum of 5, 6 -  and 4, respectively. Let us consider the 

vacation period of queue A. Since queue A is served two times it has two sub-cycles. 

The first consists of queues {A, B, C }  and the second {A, D, E, C}. Therefore, 

during the first sub-cycle vacation period the server visits queues {B, C} and thus 

has a dimension equal to TB + Tc = 8. Let this vacation be denoted by (61, Li), 

which is given by: 

& =  [y, O ] ,  

where, Bo = e - Be. e is a colurnn vector of 1's. The probabilistic interpretation 

of the above distribution is as follows. Once the server leaves queue A it goes on 

vacation. The initial probability vector of the vacation period is given by 61. Since 

after leaving queue A, the server goes to queue B we have the initial probability 

vector of the visit penod of queue B, yB, in the first position of bl .  Once the server 

is in queue B, it stays there according to the visit period distribution of queue B. 

This is given by BB in position L1(l, 1). At the end of the visit period in queue B, 

the server moves to queue C. Therefore, we have absorption according to BE, and 
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beginning of service in queue C according to which is given in position LI  ( 1,2). 

Then, service go on a t  queue C according to its visit period distribution Bc at t h e  

end of which the sub-cycle vacation period is over. Thus, the absorption vector L;) 

has BE in position L:(2,1). 

In the second sub-cycle vacation, the server visits queues {D, E, C}, thus its 

dimension equals to  TD +TE +Tc = 13. Let this vacation be denoted by (&, L2) and 

is given by: 

Lz = 

62= [TD O ] .  

The arguments leading to (62< Lz) are the same as those for (b l ,  Li). A schematic 

diagram for queue A with two types of vacation is shown in Fig. 4.1. Using (a1, Li) 

and (&, L2) the vacation penod of queue A is given by: 

The distribution (h, l/;) indicates that the server stays on vacation according to Vo 

and that & indicates the end of the vacation period and which type of vacation the 

server will take next. &(l, 1) indicates that the server is taking a vacation according 

to (6i,  LI)  with its end denoted by (1,2). Furthermore, &(1,2) indicates that 

the next t i m e  the server goes on vacation from queue A its vacation period will be 

given by (62, L2)< thus, we have L?b2 in &(1,2). Similar arguments lead to positions 

b(2 ,2 )  and K(2 , l ) .  

In general, the vacation period of a queue visited M times in a cycle is given by: 
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Vacation Period (5 , L,) 

Vacation Period (6 , b) 
m 

Figure 4.1: Vacation Model 



In addition to the vacation period distribution, we int roduce four additional ma- 

trices &, %, i& &. The rnatrix % is defined for transition from the end of vacation 

to the beginning of service at  queue i. It is defined for the case when the server. 

upon return from vacation, resumes service for a customer whose service has been 

interrupted in the previous queue visit. It is given by: 

where the probability vector /T is the initial probability vector of resuming an inter- 

rupted service. 

The matrix & represents transitions from the end of vacation to the beginning 

of service at  queue i. It is for the case when the  server, upon return from vacation, 

starts service of a new custorner and is given by: 

where the probability vector /3 is the initial probability vector of the service time 

distribution. 

The matrix I/q represents the transition from a visit period to a vacation period. 

It is for the case when the server finishes serving a customer and goes on vacation 
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because the queue is empty, it is given by: 

where the probability vector S0 denotes the absorption vector of the service time 

distribution. 

Lastly, the matrix Vs represents transition from a visit period to a vacation period. 

I t  denotes the case when the server interrupts an on-going service because of the time- 

limit and goes on vacation, it is given by: 

where the probabili ty vector Se denotes service interruption. 

The matrices Vo, &, V2, V3, V4, and Vs are used to modify the vacation models 

in Sections 3.4.1 and 3.4.2 as follow: 

The matrix V is replaced with the matrix b. 

The absorption vector V0 is replaced with the matrix VI. In addition, the inner 

product of V0 with a vector is changed to a Kronecker product between the 

matrix & and the vector (e.g. VOp becomes & @ p). 

0 The matrix VOP' is replaced with the matrix K. 
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a The matrix V0/3 is replaced with &. 

O The matrix Son is replaced with the matrix Vq. 

O The matrix (Seln is replaced with the matrix I/s. 

This ends our description of the construction of the vacation period distribu- 

tion for a given queue. In the next section we show how to obtain the visit period 

distribution. 

4.2 Duration of a Queue Visit 

The visit penod distributions for both the infinite and finite buffer capacity case 

axe computed in the same way as in Subsections 3.4.1.1 and 3.4.2.1, respectively, with 

the following change: 

where the vector % is the probability that the queue is empty and xi-0 is the proba- 

bility that there are i custorners in the queue at the end of the vacation period. v is 

the mean of the vacation period. 

4.3 Iterative procedure 

The dependence of the visit period distribution on the vacation period distribution 

and vice versa is clear from the previous two sections. Therefore, we use an iterative 

procedure to obtain the performance measures of a queue in the polling system. In this 

procedure, the vacation and visit penod distributions in iteration I are used to update 

the vacation and visit period distributions in iteration 1+ 1. Our experimentation with 
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the algorithm showed that the results are, under certain load combination, very far 

from the simulation results. This is attributed to the inherent dependency between 

the vacation and the visit period distributions. In order to improve the accuracy of 

the iterative procedure we have adopted the method by Lee and Sengupta [109]. In 

their method the vacation period is considered to be a combination of an independent 

part and a dependent part. We adopt their algorithm as follows. For each queue and 

for each sub-cycle vacation period we construct a phase type distribution (+, Y). This 

distribution is computed differently when p < 0.65 and p 2 0.65. ' 

For the case of p < 0.65 the dependent part of the vacation period is computed 

using Algorithm 2 of Lee and Sengupta [log]. In our case, the phase type distribution 

( * , Y ) * ,  i 5 M, is given by: rl> = [1 O . . .  O] and 

where 

where L is the number of queues visited in the sub-cycle. The probability p ( j )  is 

computed using Lee and Sengupta [log] (Algorithm 2). The p(j)'s are computed in 

the same way as in the case of cyclic polling. 
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For the case of p 2 0.65 the dependent part of the vacation period is assumed 

to be deterministic. Thus for queue i the length of the vacation penod is given by 

1,. Tj ,  where SC is the set of queues in the vacation period of the sub-cycle. 

This distribution can be represented by a phase type distribution with 1's in the 

super-diagonal positions and O's every where else. This is because for moderate to 

high system utilization, once the server goes on vacation from queue i it is more likely 

to stay way serving each of the other queues for its whole time period. 

The iterative procedure for table polling systems with infinite buffer capacity 

queues is outlined below: 

1. For i = 1 to Q initialize the distribution of the visit period, (ri, Bi) ,  to 

and ri = [1 O]. 

2. For i = 1 to Q 

- For j = 1 to  Mi 

a) Cornpute (y j ,  Li) 

b) Compute (qbj, Y,) 

c)  Compute Pi according to  Algorithm 1. 

'1 Let ( y j ,  Lj) = (1 - Pi) x ( y j 7  Lj) + Pi(+,. Y,) 

- Compute G'., y ,  G ,  Vj:, V;:, V; 

- Compute the block matrices Ai, Ai ,  Ai 
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- Cornpute the rate matrix R 

- Compute the probability vector [xo xi]' 

- Cornpute and Wi .  

- Update the visit period distribution. 

3. If t he  average queue length and the mean waiting 

verge go back to 2, else stop. 

vacation period did not CO 

Algorithm 1 

If p 5 0.50 set Pi = (1 - p)pQ,  

If 0.5 < p 5 0.75 set Pi = (1 - p)pQ + pi, 

If 0.75 < p set Pi = pQ +pi. 

The iterative procedure for table polling systems with finite buffer queues is outlined 

below : 

1. For i = 1 to Q initialize the distribution of the visit period, (y,, Bi) according 

to (Eq. 4.3). 

2. For i = 1 to Q 

- For j = 1 to Mi 

a) Compute (yj, Lj ) 

b) Compute (%, q )  
c) Compute Pi according to Algorithm 2. 

d)  Let ( y j ,  L, )  = (1 - Pi) x ( ~ ~ 9  L j )  + Pi($>, q )  

- Cornpute V,', V;, Vi ,  Vj, , V; 

- Compute the block matrices 4, A;, Ai 

- Compute the probability vector [% XI XK,]' 



- Compute pi and Wi.  

- Update the visit period distribution. 

3. If the average queue length did not converge go back to 2. else stop. 

Notice t hat for the finite buffer case, we used the block Gauss-Seidel iterat ive approach 

to obtain the queue length distribution. 

Algorit hm 2 

If p < 0.50 set P, = (1 - p)pQ,  

a If 0.5 < p < 0.75 set Pi = (1 - p)pQ + p i ,  

If 0.75 < p < 1.0 set Pi = p Q  +pi. 

If 1.0 < p set 

I ot herwise 

where ai is the mean vacation period for queue i. Notice that for the finite buffer case 

it is not necessary to have p < 1. Therefore, if a queue is unstable, its visit period 

distribution is deterministic and equals to Tm.,. 

4.4 Numerical Examples 

In comparing the approximate approach results vith those of the simulation we 

define the percent error as W 8 t ~ ~ ~ p p ,  where W,, is the simulation rnean waiting 

time and W., is the iterative approach mean waiting time. A negative percent error 

indicates that the approximate method over-estimates the simulation results. For the 

simulation we used 5 replications each of which is of IO6 time units long and a warm 

up period of 10' time units, we show the half-width of the 95% confidence interval. 



Since. there are many system parameters we chose to show some of the results to give 

a general idea on the performance of the iterative procedure. 

4.4.1 Infinite Capacity Mode1 

The first set of examples shows the performance of the iterative method for different 

system ut ilization. Tables 4.1-4.7 shows the cornparison between the simulation and 

the approxirnate approach of the mean waiting time for table polling systems with 

infinite queue buffer capacity. In al1 the exarnples, customers arrive according to the 

Bernoulli process with an arrivd rate given by X and their service times is geomet- 

rically distributed with mean 8. The maximum time period for each queue visit and 

the system utilization are given by Tm., and p, respectively. The polling order is 

given in the tables by Pol-Order. 

The maximum absolute error, 17%, for these examples is encountered with a high 

system utilization, p = 0.861, for queue 2 in Table 4.7. Al1 other examples have a 

maximum percentage error of f 15%. 

Table 4.1 shows the mean woiting time for a table polling system wit h 4 queues 

and a utilization of p = 0.625. This table represent a star polling system with 

queue 2 being visited after every other queue. This can represent the special case 



of queue 2 being a high priority queue which is polled after every low priority poll. 

queues { l ,  3, 4}. It can also represent a h d f  duplex transmission medium between 

queues { 1,3,4}  and a central server represented by queue 2 where after every poll the 

central server transmits its outbound traffic. Al1 four queues have the same maximum 

time threshold, however, queue 2 has twice the arrival rate of queues {l ,  3, 4} .  

Nevertheless, queue 2 has a lower mean waiting time. This is because queue 2 is 

visited more frequently. The maximum error in this example is encountered for queue 

2 and is about 7%. 

Table 4.2 shows the mean waiting time for a polling system with 4 queues and a 

utilization of p = 0.5. The polling order is the same as that in Table 4.1. Al1 four 

queues have the same arrival rate. Although, Queue 2 has a smaller maximum visit 

period, 3 time units, compared with queues { 1, 3, 41, its mean waiting time is lower 

than that of queues 11, 3, 4). Again, this is due to the higher number of visits to 

queue 2 compared to those of queues {1,  3, 4}. The maximum error in this example 

is encountered for queue 2 and is about -16%. Notice the difference in the % decrease 

of the mean waiting time between queues {l, 3, 4 }  and queue 2. This is because the 

decrease in load happens at queue 2, Le. a lighter load at queue 2 results in a greater 

decrease in the mean waiting times for queues { 1, 3, 4 }  than for queue 2. 

Table 4.2: 4 Queues Polling System, 6 = 1.25, p = 0.5 

Poll- Order 

Queue W'im % Error 
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The next two exarnples exhibit the  behavior of a polling system with 4 queues. 

First we consider the case when each queue is visited twice, given in Table 4.3. Then, 

we consider the case of increasing the  number of visits to queue 3 to  3 times and 

reduce the  number of visits to queue 4 to 1. This is because queue 3 has the largest 

arrival rate and queue 4 has the smallest arrival rate. In order to counter balance the 

decrease in the number of visits of queue 4 we increase its maximum visit period to 5 

time units which is given in Table 4.4. Although the number of visits to queues { l ,  2} 

did not change their mean waiting times are higher in Table 4.4. This is due to the 

asymmetry introduced into the system. For instance, for queue 1 in Table 4.3 every 

time the  server leaves the queue it visits queues {2, 3, 4).  However, in Table 4.4 

when the server leaves queue 1 it may visit queues {2, 3} or queues 13, 4, 2. 3).  

The same argument can be made for queue 2. On the other hand, queue 3 is visited 

more frequently in Table 4.4 which explains the lower mean waiting time. Lastly, 

although the maximum visit period of queue 4 has been increased t o  5 time units, 

because queue 4 is visited only once in Table 4.4 its mean waiting time has increased 

compared to Table 4.3. 

Table 4.3: 4 Queues Poliing System, 6 = 1.25, p = 0.65625 

Table 4.5 is for a polling system with 5 queues. Even though queue 1 has a 

higher arrival rate, because it has a larger Tm., and it is visited twice during a cycle 

107 

* 

Poll- Order 

Queue 

1 

2 

3 

4 

1 3 2 4 1 3 4 2  

0.15 

O. 1 

0.2 

0.075 

Wsim 

5.796 * 0.061 

6.017 k 0.040 

5.614 k 0.038 

7.412 k 0.049 

TWL~ZZ 

5 

4 

6 

3 

% Error 

11.2% 

10.2% 

12.5% 

-13.3% 

W ~ p p  

5.145 

5.402 

4.907 

8.397 
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Table 4.4: 4 Queues Pobng System, 6 = 1.25, p = 0.65625 

its mean waiting time is almost half that of queues {2, 3: 4, 5}. Although queues 

{2, 3, 4, 5} have the same arriva1 rate and maximum time period their approximated 

mean waiting time is not the same. This is due to the way the vacation period is 

built. Notice that queues {2, 4}, and {3, 5}, have the same vacation period pattern, 

1 Poll-Order: 

thus, they have the same mean waiting times. 

Table 4.5: 5 Queues Polling System, b = 1.25. p = 0.75 

i 

- 

Queue 

1 

3 

3 

4 

% Error 

II Poll-Order 

The next two examples, Table 4.6 and 4.7, show the performance of the iterative 

1 O8 

F 

Queue 

1 

2 

3 

4 

5 



procedure as we increase the number of queues. Notice here that the approximate 

solution does not give the exact same result for identical queues. This is due to the 

way the vacation period are built. Notice, again, that queues with similar vacation 

pattern have similar mean waiting times (e-g. queues {3,7)  in Table 4.7). 

Table 4.6: 6 Queues Polling System, 6 = 1.111, p = 0.778 

% Error 

r 

In a11 the examples studied, the iterative dgorithm converges in less than 30 

iterations, with a run time under 30 minutes on an IBM RS6000/590. The simulation 

run on a Sun station lightly loaded were over an hour long. Most of the CPU time 

for each run for the iterative procedure is taken to solve for the rate matrix R. 

and the queue length distribution. The  rate matnx R of dimension n(r + mT,,,), 

where n is the dimension of the service time distribution; rn is the dimension of the 

arriva1 process; r is the dimension of the vacation period distribution, is obtained 

using the dgorithm given in Alfa [2] . The stopping criterion for convergence was 

chosen to be c = 1 0 - ~  Le. the program stops when the difFerence in the mean queue 

length and the difference in the mean vacation period for al1 the queues between two 

consecutive iterations is less than 1 In the exarnples run, the number of iterations 

Poll- Order 
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inter-arriva1 time between customers is given by a geometric distribution and the 

probability of arrival is by A. The maximum time allocated for each queue and the 

buffer size are given by Tm,, and A', respectively. 

The system parameters for Table 4.8 are the system as those in Table 4.1 with 

the exception that the buffer capacity is finite and is equal to 8 for al1 queues. Notice 

Table 1.8: 4 Queues Polling System, b = 1.25, p = 0.625 

% Error 

that because of the  blocking probabilities the mean waiting times in Table 4.8 are 

consistently lower than those in Table 4.1. However, in Table 4.9 even though the 

buffer capacity is smaller, 7 for each queue, the mean waiting times are comparable 

to those in Table 4.2. This is mainly due to the lower system utilization, p = 0.5 

in Table 4.9 and p = 0.625 in Table 4.8. The same observation c m  be made about 

Tables 4.10 and 4.11. 

Table 4.10 and 4.1 1 show, similarly to the case of infinite capacity case, that 

changing the polling order by increasing the frequency of visits have a significant 

impact on the mean waiting time for al1 the queues in the system, even those which 

kept the same number of visits. 

Table 4.13-4.15 show the mean waiting times for a polling system as we move 

from a high utilization case (Table 4.13) to overload cases, p > 1.0, by first increasing 

the arrival rate for each queue (Table 4.14) and increasing the mean service tirne 
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Table 4.9: 4 Queues Polling System. b = 1.25. p = 0.5 

Poll-Order 

Queue 

(Table 4.15). In both cases the iterative method gives reasonable results. 

In ô11 the examples studied, the iterative algorit hm converges in less than 30 

iterations, with a run time less than 4.5 minutes. Most of the CPU time during each 

run is used up in solving for the queue length distribution. The queue length is 

obtained using block Gauss-Seidel iterative procedure with a stopping criterion for 

convergence of 10-'O. The block dimension is of size mn, where n is the dimension 

of the service time distribution and m is the dimension of the arriva1 process. The 

stopping criterion for convergence for the iterative polling algorithm was chosen to 

be e = IO-* i.e. the program stops when the difference in the mean queue length and 

the difference in the mean vacation period for al1 the queues is less t han IO-'. In 

the examples run, the number of iterations required for convergence depends on the 

nurnber of queues, Q,  the table size, N ,  the buffer size, K, and the dlocated time, T, 

and the number of visits, M, for each queue. This is because when T, M, and/or K 

is large, the dimension of the probability vector becomes large. Similady, when Q is 

large we have to solve for Q queue lengths (assuming that the polling system is not 

symmet ric). 
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Table 4.10: 4 Queues Poiling System, 6 = 1.25. p = 0.65625 

4.5 Conclusions 

We have presented an iterative procedure for the analysis of discrete time table 

polling systems with Markovian arriva1 process, phase type service time distribution 

and exhaustive t irne-limited service discipline ( preemptive) . The numerical examples 

run show that the algorithm converges relatively fast and gives reasonable results. 

However, we did not prove that the algorithm converges. This remains to be done. 

It is also worth mentioning that as the number of queues. threshold time, or the ta- 

ble s i x  increases, the time required to compute the performance measures increases. 

Nonetheless, the iterative procedure still remains a better option compared to simu- 

lation since it takes l e s ~  time. 

Although, the mode1 presented in this Chapter assumes that the time threshold 

for every queue is the same for every visit in the table, it possible to extend the mode1 

to the case where a queue may have different threshold for each visit. This can be 

done by first changing the Markov chain describing the MAP/PH/l queue for the 

infinite buffer case and MAP/PH/ l /K queue for the finite buffer case. The necessary 

modifications are given in Appendix A. 



Chapter 4 

Table 4.11: 4 Queues Polling System, b = 1.25, p = 0.65625 

Queue 

Table 4.12: 6 Queues Polling System, b = 1.11 1. p = 0.778 

% Error 
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Table 4.13: i Queues Polling System, b = 1.111, p = 0.861 

% Error 

Table 4.14: 7 Queues PoUng System, b = 1.1 1 1, p = 1.028 

Poll-Order 

Queue 
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Table 4.15: 7 Queues Poiling System, 6 = 1.25, p = 1.0625 

II Poll-Order 

Queue 

1 

2 

3 

4 

5 

6 

7 



CHAPTER 5 

STATE SPACE REDUCTION OF MAP WITH 

SPECIAL STRUCTURE 

5.1 Introduction 

In Chapters 3 and 4 we developed the vacation period for a discrete-time polling 

system wit h exhaustive time-limited service discipline. The vacation period is a MAP 

with special structure and looks like a convolution of discrete phase type distribu- 

tions. Through the numerical examples, we found that the execution time of the code 

increases as a function of the dimension of the vacation period. In this Chapter, we 

focus on reducing the  dimension of each phase type distribution which will result in 

a M A P  of smaller dimension. This is achieved by using the moment matching ap- 

proach. Specifically, the first three moments of an n-dimensional discrete phase type 

distribution are matched to  the corresponding moments of a 2-dimensional discrete 

phase type distribution. Therefore, if the initial MAP (vacation period distribution 

in Chapter 4) looks like the convolution of 1 discrete phase type distribution each of 

dimension ni; i = 1,. . . , 1 ;  then its dirneusion is c:,, ni However, once we reduce 

the dimension of each phase type distribution, using the moment matching approach, 

the resulting vacation period distribution has a dimension of 21 which is significantly 

smaller. For exarnple, in Section 4.1 queue A has two phase type vacations with 

dimension 8 and 13. The corresponding MAP has a dimension equal to 21. Once 

the phase vacations are reduced to  2 x 2, the corresponding MAP will have a dirnen- 

sion equal to 4. This is significantly smaller. Note here that the  significance of this 
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reduction manifests itself in solving for the rate matrix, R, (Eq. 3.2). Without this 

reduction, the R of queue A in Section 4.1, is a 25 x 25 matrix. Whereas after this 

reduction R is an 8 x 8 matrix. This reduction will bring rbout a significant reduct ion 

in the computational effort required to obtain performance measures for each queue 

in a polling system. This Chapter is organized as follows. First, we briefly review 

some literature related to fitting distribution. Second, we show how to adapt Altiok's 

method [5] to discrete-time phase type distributions. In the last Section, we discuss 

some numerical exarnples. 

5.2 Brief Literature Review 

In this Section, we review some of the work done in the ârea of fitting distributions. 

Four methods for fitting distributions are available: 1) maximum likelihood estimators 

(MLEs), 2) moment matching (MM), 3) least square estimator, and 4) unbiased 

estimator. In this review, we focus on the MLEs and MM methods. Particularly, we 

focus on MM method for two reasons: 1) finding MLEs is not dways easy [108, page 

3701. and 2) in queueing theory, especially with applications in the engineering field, 

usually the first few moments are sufficient since they provide a good insight into the  

behavior of the system (Neuts (133, page 421). In either case the goodness of fit is 

measured in terms of the error between the actual and the fitted distribution. 

Johnson and Taaffe (871 showed that it is possible to match the first k (k  < m) 

moments of a non-degenerate distribution with support on [O, oo) with the moments 

of a mixture of Erlang distributions of common order. Later, in [88], they used 

the non-linear programrning approach to approximate the moments of phase type 

distribution. Earlier, Altiok [5] approximated a general distribution with known 

coefficient of variation by a 2-dimensional phase type distribution using the first 

three moments. On the other hand, Asrnussen and Nerman [IO] used the maximum 

likelihood approach to fit phase type distribution. However, their approach may run 



Chapter 5 ST.4TE SPd4CE REDUCTION OF M.4P WITH SPECIA L STRI'CTI-RE 

into some problems when the number of phases becomes very large. In a recent paper. 

Asmussen [9] and, independently, Lang and Arthur [IO71 provided comprehensive 

reviews of the state of fitting phase type distributions and a comparison between the 

moment mat ching approach and the maximum likeli hood est imators approaches. 

With regard t o  MAP fitting, only special classes are addressed in the Iiterature. 

In particular, the Markov modulated Poisson process (MMPP) with 2 states was 

used to mode1 traffic in integrated services network. Hellstern [130] used a numerical 

approach based on the maximum likelihood to fit an  MMPP with'two arriva1 rates. 

And Heffes and Lucantoni [79] approximated the superposition of data and voice 

packets using an MMPP. In other applications, Keogh presented an approach to fit 

the output of video coders using a birth-death process in [94] and [93] and using a 

discrete-space continuous-time Markov process in [95]. More recent ly, Ni et al. [138] 

used a discrete-time Markov modulated deterministic process (MMDP ) to mode1 the 

tr&c for an MPEG-2 movie video traffic. The different methods for fitting MMPP 

are summarized in a survey by Ryden [146]. Elsayed and Perros [55] presented an 

approach to approximately characterize the superposition of N, N 2 2, arbitrary 

discrete- t ime Markov renewal process. 

Recently, Diamond and Alfa 1481 showed that the autocorrelation sequence of 

inter-arriva1 times for M A P  of order two is geometric. Based on the value of the  

autocorrelation and the value of the coefficient of variation, they discussed different 

fitting approach for 2 x 2 MAPs. It is also shown in their paper that it is quite difficult 

to fit general MAPs. This is the only paper we are aware off that deds  with MAP 

fitting. 

Due to this difficulty, we limit ourselves here to a special class of MAPs. We focus 

on MAPs that look like the convolution of discrete-time phase type distributions. 

Notice that because of the lack of a better term, in the  rest of this Chapter. ive use 

the word convolution to  imply looks Like convolution or MAP obtained by assembling 

discrete- t ime phase type distri butions. 
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5.3 Reduct ion Technique 

As stated earlier, our concern here is the state space reduction for MAPs with 

special structure. Since the M A P  we are interested in is obtained by assernbling i dis- 

crete time phase type distributions, and there are well known results for fit ting phase 

type distribution, our task is quite simple. First, we reduce the dimension of each 

discrete phase type distribution to a %dimensional discrete phase type distribution. 

Then, we assemble these distributions. One of the straight forward fitting approach is 

by Altiok [5] using the moments matching approach. Since he dealt with continuous 

tirne phase type distribution, in Section 5.3.1, we adopt his method for the discrete 

time phase type distributions. Section 5.3.2 shows the original and resulting MAP. It 

d s o  gives the measures which we adopt for testing the performance of the reduction 

technique. 

5.3.1 Phase Distribution Reduction 

Let ( p ,  S) be the representation of a discrete t ime phase type distribution of dimension 

n. Given the first three factorial moments of (B, S); ml ,  mz, and m3; we seek a 

discrete phase type distribution of dimension 2 and representation (a, T) such that  

the first three factorial moments of (P,  S) and (a, 7') are identical. The factorial 

moments for a discrete phase type distribution with representation (P,  S) are given 

in Neuts [133, Chap. 21 as r n k  = P ( k ) ( l )  = k!PSk-'(1 - S)-ke. Thus, given ml, r n z ,  

and rns we need to obtain a Zdimensionid distribution with representation (a, T) 

such that  

Notice that,  in generd, a Zdimensional discrete phase type distribution is defined 
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in terms of six variables and is given by: 

and an attempt to include higher moments will lead to a set of equations that is 

very difficult if not impossible to solve. Therefore. we limit the set of feasible phase 

type distributions to those that look like the generalized negative binomial. This is 

achieved by setting p3 = p4 = b = O. The numerical examples will show that this is a 
r 7 

good simplification. Thus, (a, T) is given hy : a = [a 1 - a ] ,  T = 
I l i p 1  l:p2J- 

Therefore, we have to solve the following 3 nonlinear equations for the unknowns a, 

Let D be the root of the polynomial: 

Then a, p l .  and pz are given, respectively, by: 
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w here 

It is worth mentioning here that there are two roots for equation 5.1. Using 

either root results in matching the first three moments. Since the computational 

time is very small, one can compute both probability mass functions and use the one 

wit h the smaller error. Now that we have the reduced phase type distribution, next 

we address how to study its effect on the assembled MAP. 

5.3.2 MAP Reduction 

Suppose we have a MAP witb representation (h, VI) which is the convolution of 

1 phase type distribution with representation (Bi,  S i )  each with dimension ni. i = 

1.. . . , 1. For each (Pi, Si) there exists a 2-dimensional phase type distribution with 

representation (ai, Ti) .  Therefore, if the original MAP, (b, &) is given by: 
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then the reduced MAP, (CO, V:), is given by: 

The effect of reducing the dimension of MAP is considered for two t ime origins: 

1) at an arbitrary point and 2)  at an event starting point.. This is achieved by letting 

ir be the steady state probability vector and ~r,, be the probability vector at an 

event (see Neuts [135]) of (b, K),  and d be the steady state probability vector and 

Ir',, be the probability vector a t  an event of (K, V;). n, ne,, ir', and de, are given, 

respectively, by 

where A and A' axe the  fundamentai rates of (b, K)  and (Vd, V;) and given, respec- 

tively, by: 

Notice that, although equations 5.2 (5.3) and 5.4 (5 .5)  are identical, the vector 

n' (<,) has a significantly smaller dimension cornpared to n (z,), 21 versus xi=, ni. 
Therefore, the probability distribution (steady state) for the original and reduced 

MAP are given, respectively, by: 
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And the probability distribution (given that an event occurred) for the original and 

reduced hl AP are given, respectively, by : 

Equations 5.8-5.11 allow us to compare the probability m a s  functions. Another 

important characteristic of MAP is that it can capture correlation. The correlat ion 

of a M A P  is given in [19], for our case, the coefficient of correlation for the original 

and the reduced MAP are given, respectively, by: 

In the next Section, some exampies are presented. 

in terms of the following errors: 

(5.22) 

(5.13) 

The goodness of fit is measured 

Errorl ( Error2 ) measures the difference between the probability mass function 

of the original and the reduced MAP under steady state (given an event occurred). 

Error3 rneasures the difference between the coefficient of correlation between the 

original and the reduced MAP. 

5.4 Numerical Examples 

In this Section, we discuss three examples. In each example, we give the original 

phase type distribution followed by its reduced form. The original and the reduced 
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M A P  have the same form as given in Section 5.3.2. The results presented here 

compare the performance of the fitting algonthm if one consistently chooses one 

root, for example, the smdler of the two roots. 

5.4.1 Example 1 

In this example we use two phase type distributions to obtain a MAP. The first phase 

type distributions is given by: 

and its reduced form is given by: 

The second phase type distribution is given by: 

and its reduced form is given by: 

r 7 

Therefore, the original MAP has a dimension of 8. The reduced MAP has a dimension 

of 4. The probability mass function of the original and reduced MAP are shown in 
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Figure 5.1. The coefficient of correlation of the original M A P  is -0.1377 and tbat of 

the  reduced MAP is -0.1484. The summary of the three errors is given in Table 5.1. 

Table 5.1: Example 1-Errors 

In the second example, we use three phase type distributions. The first and second 

phase type distribution are the sarne as those given in Example 1. The third phase 

type distribution is given by: 

and its reduced form is given by: 

0.4503 0.5497 0.0000 
T3 = [ ] T: = [ ] 7 a3 = [ 0.6160 0.3640 ] 

0.0000 0.6333 0.3667 

Thus, the original MAP has a dimension of 12 and the reduced M A P  has a dimension 

of 6. The probability mass function of the original and reduced MAP are given in 

Figure 5.2. The coefficient of correlation of the original MAP is -0.1442 and that of 

the reduced MAP is -0.1543. The summary of the three errors is given in Table 5.2. 



Event Original-At Event + 
Reduced-At Event -t . 
Origuial-Steady + 
Reduced-S teady * 

Figure 5.1: MAP with 2 Phase Distributions, Original Dim.=8, Reduced Dim.=4 
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Original- At Event + 
Reduced-At Event -4- 

Original-Steady 4 * 
Reduced-S teady * 

Figure 5.2: MAP with 3 Phase Distributions, Original Dim.=12, Reduced Dim.=6 
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Table 5.2: Example 2-Errors 

5.4.3 Exarnple 3 

In this example we use three phase type distributions. The first is the same as the 

one given in Exarnple 1 .  The second is given by: 

and its reduced form is given by: 
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The third phase type distribution is given by: 

and its reduced form is given by: 

Thus, the original MAP h a .  a dimension of 18 and the reduced MAP has a dimension 

of 6. The probability mass function of the original and reduced M A P  are given in 

Figure 5.3. The coefficient of correlation of the  original MAP is -0.1434 and that of 

the reduced MAP is -0.1629. The surnmary of the three errors is given in Table 5.3. 

Table 5.3: Example 3-Errors 
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Onginal- At Event ~c- 

Reduced-At Event -+ 
On ginal-S teady * 
Reduced-Stcady -' 

Figure 5.3: MAP with 3 Phase Distributions, Original Dim.=18, Reduced Dim.=6 
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5.4.4 Discussion 

For al1 three examples, we notice that in the steady state the probability mass function 

of the reduced and original MAP are almost identical. However, the probability 

mass function given that an event happens exhibit a large difference especially for 

x = 1, 2, 3. However. for x 2 4 the original and reduced MAP are almost identical. 

Notice also that for ai1 three examples, the reduced MAP has a higher coefficient of 

correlation than the original MAP. The difference is about 10%. 

Lastly, we should mention that since this procedure is quite simple and fast, 

instead of using the smaller of the two roots of equation Eq. 5.1, it is better to 

compute two distributions (one corresponding to  the smaller mot and the second to 

the larger root ). Then, choose the distribution that yields the least error. 

In conclusion, in this Chapter we showed how to adopt Altiok [5] method for 

discrete-time phase type distributions. The results are then used to reduce the di- 

mension of MAPs that look like a convolution of phase type distributions. The method 

is quite simple and easy to implement. 



CHAPTER 6 

SUMMARY, CONCLUSIONS, & FUTURE 

WORK 

6.1 Summary 

The objectives of this thesis were two. First, to develop an iterative procedure to 

compute the mean waiting time for a discrete time cyclic/table polling system where 

al1 the queues have either infinite or finite buffer capacity. In this polling system, 

customers arrive according to the Markovian arrival process and their service time 

c m  be represented by a phase type distribution. In addition, each queue is visited ac- 

cording to the exhaustive time-lirnited service discipline. The iterative procedure was 

then tested using different network configurations. This objective was accomplished 

by the iollowing steps: 

1) For cyclic polling systems, each queue in the polling system was modeled as a 

single server queue with exhaustive time-lirnited service discipline and vacation 

periods. For the infinite buffer capacity case, we used the matrix analytic ap- 

proach to compute performance measures for each queue. The rate matrix R 

is obtained using the aigonthm Qven in Alfa [2]. For the finite buffer capacity 

case, we used the block Gauss-Seidel iterative method procedure to obtain the 

queue length distribution. Each block has dimension mn, where m is the di- 

mension of the service time distribution and n is the dimension of the arrival 

process. 
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The single server queue with vacation period models were then incorporated ioto 

an iterative procedure to obtain the queue length distribution and the mean 

waiting time for each queue in the  polling system. Due to the time-limited 

service discipline, we were able to represent the visit and vacation periods, for 

each queue, by phase type distributions. Notice that in this iterative procedure, 

the vacation period distribution of a queue is given by the visit period of al1 the 

queues visi ted while the server is away. In addition, the correlation between the 

visit period and the vacation period was captured using an approach similar to 

that of Lee and Sengupta [log]. 

For table polling systems, we extended the results of the single server queue 

with exhaustive time-limited service discipline and phase type vacation periods 

to include M A P  type vacation periods. The use of M A P  is justified by the 

correlation between the position of the server visit to a queue in the table and 

the type of vacation the server will take. 

The stopping criteria for the iterative procedure in the case of cyclic or table 

polling is the smaller of the difference between the mean waiting time and the 

mean vacation period in two subsequent iterations, for instance, in the examples 

ran in Chapter 3 and 4 the tolerance was set to c = IO-'. 

The results obtained by the iterative procedure were then compared to those 

obtained by simulation. The effect of the system utilization, the number of 

queues, the time dot threshold for each queue, and in the case of table polling 

the sequence of queue visits on the performance of the iterative procedure were 

studied. For the finite buffer capacity rnodel, the effect of over load, and the 

buffer capacity were also studied. 

The second objective was to reduce the dimension of MAPs with special struc- 

tures. The MAP we were concerned with is obtained by assembling discrete phase 

type distributions and it represented the vacation penod distribution for a queue visit 
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depends on the number of queues, Q, and the allocated tirne, T ,  for each queue. 

This is because when the time thresholds, T, of the queues visited while the 

server is away are large, the dimension of the phase distribution of the vacation 

period becomes large, thus, a large rate matnx to solve for. Similarly. when Q is 

large we have to solve for Q rate matrices and queue lengths (assuming that the 

polling system is not symmetric). In addition when M, the number of visi ts for 

a queue in the table, is large the dimension of the vacation period becomes large 

which increases the dimension of the rate matrix and the probability vector. 

For the finite capacity model, the iterative algorithm converges in less than 

30 iterations with a run time less than 30 minutes on an IBM RS6000/590. 

Most of the CPU time during each run is used up in solving for the queue 

length distribution. In the examples ran, the number of iterations required for 

convergence depends on the number of queues, Q, the buffer size of each queue, 

K ,  and the allocated time for each queue, T. This is because when T andlor 

K is large, the dimension of the probability vector becomes large. Similarly, 

when Q is large we have to solve for Q queue lengths (assuming that the polling 

system is not symmetric). In addition, when M, the number of visits for a 

queue in the table, is large the dimension of the vacation period becomes large 

iv hich increases the dimension the probabili ty vec tor . 

Bot h iterative models (infinite and finite) yielded an error in the mean waiting 

time of about 20%. ln addition, the results were reasonable for the mean waiting 

time under different load and time dlocation. The proposed iterative procedure 

can be used to solve both symmetric and asymmetric systems in t e m s  of load 

and time allocation. 

6.2.2 MAP Reduction 

The study of the effect of reducing the dimension of MAP yielded the following 

conclusions: 
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The difference between the original probability mass function and the reduced 

probability mass function is not noticeable for the steady state. 

The difFerence between the original probability mass function and the reduced 

probability mass function given that an event has occured is worst when z < 4. 

For x > 4 the two probability mass functions are almost identical. Thus. the 

fitting cornparison should be based on the probability mass function given an 

that event has occured rather than the probability mass function at steady 

state. 

a The reduced M AP has a slightly higher coefficient of correlation for the examples 

shown in Chapter 5. 

6.2.3 Limitations of this study 

For the discrete time polling system with time-limited service discipline, this study is 

based on an iterative approach and it has the following limitations: 

The mode1 is for discrete time, and its extension to continuous time is not easy 

since we loose the advantage of representing the visit and vacation period by 

phase type distributions. 

The convergence criteria for the iterative procedure is set to be the smaller of 

the difference between the mean waiting times and the difference between the 

mean vacation periods for two consecut ive i terations. 

Each queue has only one time threshold. 

Only a single arriva1 process is considered. 

The service discipline is the same for al1 the queues. However, each queue may 

have its own time threshold. 

0 The results are intended for the steady state region. 
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For the state space reduction, we considered only MAPs with special structures. 

The results are good only for MAPs that look like a "convolution" of discrete phase 

distributions. Their extension to generai MAPs seems to be quite difficult as discussed 

in Diamond and Alfa (481. 

6.3 Recommendat ions for Furt her Research 

Because of the limitations stated in Section 6.2.3, future work should attempt to: 

a Extend the analysis to include multiple time thresholds for queue's visited more 

than once in the case of table polling. Although, the single server queue with 

vacation period model used in Chapter 4 assumes that the time threshold for 

every queue visit is the same in the case of table polling, it is possible to extend 

the model to the case where a queue may have different time thresholds for each 

server visit . 

O Extend the analysis to allow batch arriva1 process B-MAP. This would give us 

the flexibility to model a system where customers arrive in batches (packets), 

however, the server (swi tch) can serve (transmit) only one customer (cell) at a 

time. The task of obtaining the waiting tirne distribution is a challenging one. 

For a related mode1 see Frigui, Alfa and Xu [64]. 

O Allow each queue to have its own service discipline. However, the flexibility to 

set a tirne threshold for every queue may offset any need for this task. 

O Extend this analysis to consider convergence based on the whole waiting time 

distribution. 

For cyclic polling systems, we proved that the iterative procedure converges. 

However, for table polling we did not prove that the algorithm converges. 



0 The extension of the independent part of the vacation period to include switch- 

over time was presented in Section 3.7. However, the extension of the dependent 

part of the vacation period was not presented. That remains to  be done. 

In addition to the above directions for future research, the general question of 

interest is the optimization of the system. As stated in Section 2.11, given a set of 

queues, a single server, an arriva1 process. and a set of service disciplines. What is 

the best polling order policy to optimize a performance measure, Say, the weighted 

sum of the mean waiting times. 
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APPENDIX A 

EXTENSION T O  VARIABLE TIME LIMIT 

A.l  Introduction 

Consider a single server queue with Markovian arriva1 process ( M A P )  of dimension 

m and representation (Do, DI ), phase type (PH ) service distribution of dimension n 

and representation (pl S), and N phase type vacation distribution of dimension ru and 

representation (du, Lu), u = 1,. . . N .  The service penod is exhaustive time-limited 

(preemptive). In addition, prior to the vacation period of type u the visit period has 

a time limit Tu, v = 1,. . . , i\.l and M < N. Let Q and Q be two irreducible Markov 

chains of dimension q = max(N,  M) where Q i V j  denotes the probability that a t  the  

end of visit period of type i the server takes a vacation of type j. And Q i ,  denotes 

the probability that a t  the end of vacation period i the visit period will be of type 

j. For example, let N = M = 3 then the transition matrices Q and Q are given, 

respectively, by : 

A typical cycle is given in Table A.1. Notice tha t  we consider the case when t h e  

server cornes from vacation and finds the  queue empty (the server goes on another 

vacation) to be an end of a visit period. Therefore, the transition from the end of a 

vacation of type i and beginning of a vacation of type j because the queue is empty 

will be denoted by q,. 



Table A.1: Visit and Vacation Cycle for .V = M = 3 

The state space of the Markov chain of this queueing system is given by: 

i 2 O; 

= {(i, (O, k. [l, u )  u (j,, k, 1, v)) where jy  = 1,2 , .  . . , T,; k = l , ~ , .  . . , n; where i 

- 

- 

( 1; = 1 , 2 , - - - . r u ; / =  l ,? , . - . ,m,  

is the number of customers in the queue during service (vacation); the four tuple 

Visit 

qllT1 

I j, t ime dock of service 1 5 j, 5 Tu; 

(0, k, l:, u )  refers to < 

k represent ing the phase of arrival; 
(j,, k, 1, V )  refers to the  service state with The 

1 representing the phase of service; 

Vacation 

qil(61, Li ) 

f 

vacation period represented by O; 

k representing the phase of arrival; 
The four tuple 

1; representing the phase of vacation type u; 

u vacation type u = 1,. . . N .  

( v visit period type v = 1,. . . M. 
transition matrix of this Markov chain P is given as 

Visit 

412T2 

where, 

Vacation 

422(629 L2) 

Visit 

g23T3 

Vacation 

433(63, '53) 



For example. let N = M = 3. The block matrices are then given by: 

'A2 = Do 8 (SOP),  
LP = e - Lie, SO = e - Se, i = 1,2,3. 

'A: = Do 8 (SObi), 

and = T ( S  + SOP),  with p'e = 1, 

where SO = e - Se, and LO = e - Le. 




