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ABSTRACT

Polling systems have been the subject of many studies and are of interest in the
analysis of communication systems, operating systems scheduler, traffic intersections.
and manufacturing systems. For communication and operating systems, the time-
limited service discipline is very important since it allows one to limit the time the
server is away from a particular queue. Nevertheless, it has recetved little attention,
whereas, the exhaustive and gated service discipline have been studied extensively.
In addition, most of the available results ignore correlation between arrivals.

In this thesis, we have modeled the Fair Share Scheduler as a discrete time polling
system. In this polling system, each queue is visited according to the exhaustive time-
limited service discipline, customers arrive according to the Markovian arrival process
and their service time has a phase type distribution. Both cyclic and table polling
are considered. In addition, we consider, separately, the case when all the queues
have infinite buffer capacity and when all the queues have finite buffer capacity.
Our solution is based on the decomposition approach. Thus, for the infinite buffer
capacity case, each queue in the polling system is treated as a MAP/PH/1 with
vacation periods and is analyzed using the matrix-analytic approach. On the other
hand, for the finite buffer capacity case, each queue is considered as a MAP/PH/1/K
with vacation periods, for which the queue length distribution is obtained using the
block Gauss-Seidel iterative procedure.

The results of the MAP/PH/1 or the MAP/PH/1/K are then incorporated into
an iterative procedure to obtain the mean waiting time for each queue in a polling
system. Because of the time-limited service discipline, the vacation and visit period
distributions are represented by discrete-time phase distribution in the case of cyclic
polling. However, for table polling, since the type of vacation the server takes depends
on its position in the polling table, the vacation period looks like the convolution of

discrete phase distributions and is represented by a MAP. In order to incorporate the

vi



correlation between the vacation and visit period distributions, the vacation period
is obtained as the sum of an independent and a dependent part. The independent
part is the convolution of the visit period of the queues visited while the server is on
vacation. The dependent part is computed using an approach similar to that of Lee
and Sengupta. The convergence of the iterative procedure is proved for the cyclic
polling case using stochastic dominance. We have also proved that if we start with
a stable system, then the iterative procedure is stable {for cyclic polling). Compari-
son between the iterative results and the simulation results shows that the iterative
procedure provides reasonable results over a wide range of input péxameters.
However, the computational time increases as the dimension of the vacation period
becomes large. In our case, the dimension of the vacation period distribution depends
on 1) the number of queues in the polling system, 2) the time threshold for the
queues visited while the server is on vacation, and 3) the number of visits in the
case of table polling. In order to reduce the computational time, the dimension of
each phase type vacation period distribution is reduced using the moments matching
approach. Comparison between the original and reduced MAP shows that the error

in the probability mass function and the coefficient of correlation is very small.

Keywords: Polling systems, mean waiting time, ezhaustive time-limited service disci-

pline, vacation models, Markovian arrival process, phase type distribution.
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CHAPTER 1

INTRODUCTION

1.1 General

Polling models are a natural representation of many problems in the field of en-
gineering and science. A polling model consists of a single server and many queues.
[ts use is motivated by reducing wasteful resources and improving efficiency. This is
achieved by serving many queues, each possibly having different type of customers,
which under normal operating conditions do not require a dedicated server. Further-
more, polling reduces networks’ complexity and improves their architecture. Histor-
ically, polling systems have been used to model manufacturing systems and traffic
intersections. In recent years, and due to technological advances in the areas of com-
puter architecture and communication networks, polling models have been used to
represent computer-communications and operating systems. Applications of polling
models to engineering problems is discussed in Levy and Sidi [119] and for computer
networks in Takagi [169]. Later in this Chapter we present several examples related
to the modeling of engineering and computer systems. But for now, let us show the
importance of polling through a simple computer communication problem.

Consider a network of four workstations which we wish to inter-connect to share
information (e.g. emails). It is feasible, albeit wasteful, to have a dedicated commu-
nication line between each pair of workstations as shown in Figure 1.1(a). Clearly,
when station 1 is communicating with station 2, the communication links (1 — 3) and
(1 — 4) may be idle. Consequently, to reduce the complexity of the network and use

the resources more efficiently the four workstations may be connected in a bus topol-
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Figure 1.2: Cycle Time, Intervisit Time and Visit Period Relationship

ogy as shown in Figure 1.1(b). This topology raises the issue of contention among the
workstations to use the shared communication link. For example, ’éontention occurs
when station 1 wants to communicate with station 2 and at the same time station 3
wants to communicate with station 4. Thus a protocol that dictates who can use the
communication link and for how long is needed. The new network can be modeled as
a polling system with the communication link being the server and each workstation

as a queue. The performance of this network is measured in terms of the following:

® The cycle time distribution which is the distribution of the time between suc-

cessive polls of the same station (queue).

® The intervisit time distribution which is the distribution of the time between

the end of a service period and the beginning of the next poll.

® The visit period distribution which is the distribution of the time between
polling a station and leaving that station. The relationship between cycle time,

intervisit time and visit period are shown in Figure 1.2.
e The queue length distribution at each station.
o The joint queue length distribution at polling instant.
e The waiting time distribution.

In order to obtain one or more of the above performance measures we mathemat-

ically model this system as a multi-queue single server system which is also known as
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a polling system and is shown in Figure 1.3. Note that the term polling originates in
the data link control scheme according to Takagi [167]. Formally, a polling system is
defined by:

¢ The number of queues or stations (e.g. machines, computer terminals, etc.).

Note that in this thesis the words station and queue are used interchangeable.

e The input process to each queue, usually represented by a stochastic process
like the Poisson process in continuous time models or the Bernoulli process in

discrete time models.

e The time it takes to serve a customer which is usually stochastic and known
as the service time distribution, for example, the exponential distribution for

continuous time models and the geometric distribution for discrete time models.
e The polling order of the queues (e.g. sequential, random, etc.).

e The duration of the visit period for each queue which is determined by the

service discipline (e.g. exhaustive, gated, limited, etc.).

e The time span between the end of service at one queue and the beginning of

service at the next queue which is known as the switch-over time.

At this juncture, it is worthwhile to differentiate between polling systems and Syn-
chronous Time Division Multiplexing (STDM). In STDM each queue is attended by
the server for a fixed length of time whether there are customers to serve or not. In
polling if the queue is empty the server does not bother to stay at that queue and
moves on to the next queue. Consequently, congestion at each queue in STDM is not
affected by congestion at other queues and each queue can be analyzed as a single
server queue with deterministic vacation period. On the other hand, congestion at
each queue in polling models is affected by other queues. Therefore the analysis must
look at the system as a whole. Several analytical methods have been proposed in the

literature and they can be exact or approximate. The exact methods are based on the

4
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buffer occupancy, the station time, or the descendant set. The approximate methods
are based on the conservation law of Kleinrock [96] or the results of the M/G/1 and
GI/M/1 type queues (see Neuts [133, 134]). Chapter 2 elaborates on these issues in
more detail. When a mathematical formulation is not possible, a simulation approach
is taken. The only problem with the latter approach is that it is time consuming at
times and can not be relied upon for optimization.

We are now in a position to discuss some applications of polling systems. However,
before we do that, we talk briefly about the thrust of this thesis. The main reason
behind this thesis is the modeling of an operating system scheduler. There are several
alternatives for process scheduling and they are described in Tanenbaum [175, Chap.
2]. In general, when more than one process is ready to run, the operating system uses
the scheduler to decide which is the next process to run. In this thesis we are interested
in grouping similar class of process in one queue. The grouping can be done based on
the work requirements, priority, etc. A four-class system is shown as a multi-queue

system in Figure 1.4(a). In order to make the system fair and equitable, each queue

5
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has a limited service period after which it relinquishes the central processing unit
(CPU). In general, a served process may leave the system, rejoin the same or another
queue, or generate another request. This is represented by feedback in Figure 1.4(b)
and causes correlation in the input process. Thus, the objective of this work is to
analyze a polling system with correlated input process. Contention to use the CPU is
resolved using a time limit threshold for each queue. The objectives and contributions
of this thesis are presented in more details in Sections 1.6 and 1.7, respectively.

For now, we further elaborate on the importance of polling systems, correlated
arrival, and time-limited service discipline by considering examples from the fields
of computer communication, operating systems, manufacturing systems, and trans-

portation.

1.2 Communication Systems

The main purpose of communication systems is to facilitate the exchange of in-
formation between two entities. The information (e.g. files, email) is put into packets
conforming to the network protocols and then sent over the transmission medium.
Within a network, users compete to have access to the transmission medium or to the

switches. Sections 1.2.1 and 1.2.2 outline, respectively, how a Local Area Network



Chapter 1 INTRODUCTION

and an asynchronous transfer mode switch can be modeled as a polling system.

1.2.1 Local Area Network

A Local Area Network (LAN) consists of several terminals connected together via
radio, twisted pairs, optical fiber, or coaxial cable. Although each terminal could
be a computer that can stand alone, their connectivity is desirable since it increases
productivity by: 1) easing communication between members of a group working on
related projects, and 2) easing the transfer and sharing common resources. There-
fore, the terminals are connected together to form a LAN which results in sharing
some resources, for example, data bases, files, computer codes, etc. Typical LANs
topologies include the ring, star, and bus. They are shown in Figure 1.5.

In a LAN each terminal generates messages at random and store them in its out-
put buffer. The stored messages wait until the station gains access to the transmission
medium. The access to the server is determined according to a protocol known to
all the terminals. In addition, in some networks, the right for transmission is passed
between stations using a token or a central processor. The token is frequently used
with bus and ring topologies. The central processor grants permission to access the
transmission medium according to a table. Under this scheme, the central processor
may grant the right of access to high priority stations more often. The most common
tables are elevator polling which is used to model bus topology and star polling which
can model a half-duplex transmission medium. In the elevator polling case, the sta-
tions are visited in the following order 1,2,... , N, N—-1,N-2,...,1,..., where N is
the number of stations. This polling scheme reduces wasted time when the connect
time between stations is very large.

It is shown in Altman ef al. [6] that for the globally gated service discipline
the mean waiting time is independent of the station index. In the case of two way
traffic, we have one station, say station N, that sends messages to stations 1 through

N —1 and in return may receive messages from all the stations. This is similar
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to the star topology. In this case, the stations are visited in the following order.
LN2N,...,N,N —1,N,1,.... This, for example, can represent a LAN with 4
workstations and a printer. Every time a job is printed the job’s owner has to be
notified. In order to speed up the notification process, the printer is granted access
to the transmission medium after every workstation. Table polling can be used to
model networks with general topology. Schwartz [151, Chap. 12| showed how to
model the communication protocol for an Airline reservation system as a polling
system. Recently, Takagi [169] showed how some of the results of p'blling models can
be used for communication networks (e.g. half-duplex transmission, Newhall loop,

token passing protocols, etc.).

1.2.2 Asynchronous Transfer Mode Switch

Currently there is an increased interest in Asynchronous Transfer Mode (ATM) net-
works. This lead to many ATM switch architectures. One of the many considered
architectures is the shared-medium. In a shared medium switch all packets arriv-
ing on the input links are forwarded to the output links over a common high-speed
medium such as a parallel bus. Each output link is capable of receiving all packets
addressed to it. A shared-medium packet switch with N input links and M output
links can be modeled as a polling system (e.g. Zaghloul and Perros [185]). A generic
shared medium switch is shown in Figure 1.6.

The N input links are attached to the shared bus and contend for access when
they have one or more messages (cells) to transmit. The order in which the input
queues are served is determined by the bus arbitration or polling scheme. In order
to model such a system accurately it is imperative to take into consideration system
characteristics such as the buffer capacity, the burstiness of the input traffic, and non-
symmetric load conditions. Because the buffer capacity at the input links is finite,
cells arriving to a full input queue will be lost. Furthermore, if one of the output

queues is full, the flow of messages (cells) will be stopped, and consequently, the
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Figure 1.6: ATM Shared-medium Switch

server becomes idle. Because the input buffer capacity is finite and because of the
blocking at the output queues closed form solution are difficult if not impossible to
obtain. As a result such queueing networks are usually analyzed approximately using

the notion of decomposition.

1.3 Operating Systems

In this section we consider the Fair Share Scheduler (FSS) and the Xl1
client /server model. We will show how both of these models can be viewed as multi-

queue single server models.

1.3.1 Fair Share Scheduler

The (FSS) described in Henry [80] is a process scheduling scheme for distributed

operating systems. Under the FSS processes having the same work requirements are

10
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grouped together. For example, in a UNIX environment, professors are assigned to
one group G1, graduate students to a second group G2, and undergraduate students
to a third group G3. Each group is then allocated a percentage of the system resources
proportional to its usage and priority. This will ensure that a heavy usage by one
group does not clog the system and starve other processes. For example, during the
end of a school term, undergraduate students are rushing to finish term projects.
To ensure that professors and graduate students receive their share of the system
resources, undergraduate students’ system resource utilization is limited to what they
were initially assigned (see Figure 1.7). However, if one group is inactive then its
share of system resources is divided between the active groups in accordance to their
system’s usage.

The FSS can be modeled as a polling system where each group of users is assigned
to a queue. Within each group there is a "think” period after which a message
or a request is generated by a user. Thus, messages to each group’s queue arrive
according to a random process. Since the pool of users is not identical, the service
time of each message is, generally, represented by a random process. It is asserted
in Tanenbaum [175] that in many time-sharing systems the time is discretized into
time slots (quantum) with transitions between states occurring at these time slots’
boundaries. Thus, the FSS is better modeled in discrete time. In this model. the
percentage of the CPU usage per group can be viewed as the maximum time the
sever can spend at the corresponding group’s queue. However, if a particular queue
is empty, instead of wasting resources, the CPU serves messages from the next group.
As with any real system the buffer capacity is finite.

The performance of transaction driven computer system (TDCS) can be found in

Groenendijk and Levy [77] and that of a disk drive in Tanenbaum [174].

11
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1.3.2 Client/Server Model

In a client /server environment, many clients share a single server. The server provides
service to these clients in a random or sequential fashion. Each client has a “think”
period after which a request is generated and sent to the server. The server, if free,
will provide services to that request. Otherwise, the request is enqueued until the
server becomes available. Most universities and research institutions have a computer
environment which is distributed and has a client /server architecture which can be
described similarly to Section 1.3.1. The focus of this section is the X11 client/server
environment (see Figure 1.8) which is introduced by Scheifler and Gettys [149]. Notice
that X11 gives the impression that the role of the client and the server are reversed.

The role of an XI11 server is to multiplex requests from clients to the display.
The clients are the applications which use the server to display information on the
screen. With the help of a terminal, a user can have several windows open at the
same time. For example, a user can have a window to read mail, the second to edit
text and a third to compile programs. The X11 server, in a round-robin fashion,
tends to these applications. The basic resources provided by the X11 server are
windows, fonts, mouse cursors, and off-screen images. Clients request creation of
resources by providing appropriate parameters. For example, to display text in a
window, the client has to provide the drawing color, the window identifiers, the font,
and the string of characters. When applications have information to display on the
screen, they contend to use the server. For example, consider the case where an
email has arrived, the user is editing a file using emacs, and compilation of a program
has finished. The X11 server displays, in the appropriate window, in a round-robin
fashion, the output of each application.

This system can be modeled as a polling system in which X11 is the server,
and each application has a dedicated queue for its requests. Applications generate
messages at random and the server displays the results of these requests in a round-

robin fashion. According to the X11 protocol a served request may generate a reply
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which in return may create another request. Thus, it is necessary to consider an
arrival process that can capture this correlation in the inter-arrival time between
requests. Note also that each client, application, has a finite buffer capacity which

may lead to blocking when the buffer is full.

1.4 Manufacturing Systems

This section discusses two classical problems in the area of manufacturing: 1) the

machine repair person problem and 2) the material handling device problem.

1.4.1 Machine Repair Person

In a manufacturing environment, several machines are patrolled by a single repair
person whose movement between the machines is pre-specified. The machines may
request one of two types of service: routine maintenance or repairs. Therefore, cus-
tomers in this system are of two kinds: low priority (maintenance) and high priority
(repairs). Because old machines are more prone to break down, the repair person
may visit them more frequently in a given cycle. In addition, the arrival process, ma-
chine break down or routine maintenance, has to take into consideration the inherent
correlation between the age, the last time a station is served and the next time it will
require service. Notice also that the buffer size is equal to one. This is because if a
machine breaks down or requires a routine maintenance then it will stay idle until it
is visited by the repair person.

The machine repair person can be viewed as a polling system in which each queue,
machine, has a buffer size equal to one. The switch-over time is the time it takes the
repair person to move from one machine to the next. This problem was analyzed by

Mack et al. [128] and Mack [127].
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1.4.2 Material Handling Device

There are a large number of Flexible Manufacturing Systems (FMSs) configurations.
In this section we consider a configuration that can be modeled as a polling system.
Specifically, a material handling device moving parts from a set of machines is modeled
as a polling system.

Consider a manufacturing environment that consists of several work stations with
each work station having many parallel machines (see Figure 1.9). In addition to the
central storage area, each work station has a local material handling device (MHD).
The role of the local MHD is to move parts from each machine to the central storage
area. If the central storage area is full then blocking occurs. Parts are generated
by each machine according to a random pattern and then stored in its buffer. The
machines have finite buffer capacity which could be equal to one if a machine can
work only on a single job at a time and has no self storage area. If that buffer is full
then parts are blocked. Therefore, in this configuration blocking may occur at two
stages: If the MHD is not available to move parts to the central storage and the buffer
is full (input blocking), or if the central storage is full (output blocking). Notice the
striking similarity between this and the configuration for the ATM switch presented
in Section 1.2.2.

For analytical modeling purposes, we decompose the system and consider only one
work station. A work station has several machines and each machine generates parts
at random and store them in its buffer. Hence, a single machine can be viewed as a
single queue with finite buffer capacity. Because in a manufacturing system the input
to a machine is the output of another machine, the arrival process should be one that
takes into account correlation. The MHD moves the parts from the machines to the
central storage area. If the central storage area is finite then output blocking becomes
significant. For this model, due to storage limitations, blocking is a very important

performance measure to management (a blocked machine is an idle machine).
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1.5 Traffic Signal Control

A common sight in our daily life are traffic intersections. Looked at closely.
a traffic intersection can be modeled as a multi-queue single server system where
the road intersection and the road lanes represent, respectively, the server and the
queues. There is a competition between the lanes to use the intersection. A typical
road intersection is shown in Figure 1.10. In order to permit an orderly usage of the
intersection by the vehicles, we use traffic lights to control access to the intersection
in a pre-determined fashion. Each lane has a finite capacity and cars arrive according
to a random pattern. Since the input to a traffic intersection is a collection of outputs
of upstream traffic lights, the arrival process has some correlation. This correlation
is best captured using the Platoon arrival process present in Alfa and Neuts [4] or by
using MAP as in Alfa [3]. Notice that traffic intersections in which each lane has a
fixed time period resemble STDM models, hence each lane can be analyzed separately.
When the traffic light is vehicle-actuated each lane can no longer be analyzed as a
single queue and therefore one can model it as a polling system.

Sections 1.2-1.5 presented some applications of polling models. As will be pre-
sented in Chapter 2, this diversity in applications has resulted in hundreds of research

articles which give rise to the question "Why another thesis on polling systems?”.

1.6 Objectives

The motivation behind this work stemmed originally from the model presented
in Section 1.3.1. Thus, we use a discrete time model. However, the suggested model

can be used for many other applications. It is clear from the above applications that:

e The arrival process has to be one that can capture correlation between inter-
arrival times. This can be achieved by adopting the Markovian Arrival process

introduced by Neuts [132] and described in Section 3.3.
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e The service time distribution depends on the type of applications and can be
deterministic as in the case of serving (transmitting) an ATM cell to general
as in the case of LANs. However, because the phase distribution, presented
in 3.2, is well suited for numerical computation [133, page 79] and can be used

to represent most service time distributions we use it.

e In order to guarantee fairness and accessibility to the server, and at the same
time provide high priority customers with quality service, we use the exhaustive
time-limited service discipline. In this discipline, each queue is served for a
maximum period T preemptively (the server interrupts an on-going service and
will resume where it left off in a future visit). However, if the queue becomes

empty before the threshold T', then the server moves on to the next queue.

e The switch-over time is set equal to zero to reduce delays. This can be achieved
by using distributed control polling. Thus, the last message to be served in each
queue is a signal to the next queue to receive service (see Schwartz [151, page

265).

Therefore, in this thesis we provide an approximate analytic solution for polling sys-
tems with either cyclic or table polling order. Under each polling order, we consider
two cases: 1) when all the queues have finite capacity and 2) when all the queues
have infinite capacity. Customers arrive according to MAP and their service time
is of phase type. The switch-over time is equal to zero. OQOur solution is based on
the decomposition approach. Each queue is considered as a single server queue with
visit and vacation periods, where the vacation period for each queue is the service
period of the other queues. Our focus is the mean waiting time which is considered to
be the most important performance measures for computer networks [98, Chap. 3|.
Because of the inter-relationship between the visit and vacation period distributions

an iterative procedure is used.
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As a result of using the decomposition approach, the dimension of the vacation
period distribution becomes quite large. Thus, we extend the three moments approach
for fitting continuous time phase distributions of Altiok [5] to the discrete phase type

distributions.

1.7 Significance and Contributions

Although several researchers have worked on polling systems, few have considered
the idea of using vacation models. They mostly used the buffer occupancy, station
time, or descendant set method. This may be due to the fact that most researchers
considered an input process of the Poisson type. Thus, a mathematical formulation
based on the lack-of-memory property can be easily done. Notice that the assumption
of a Poisson process is not a bad assumption for homogeneous networks. However,
as a result of the multimedia revolution, future networks will offer integrated services
such as the superposition of video, voice, and data. Thus, there is a need to use a
more versatile arrival process like MAP which is used in this thesis.

Although the service time distribution is of the phase type (previous work used
the general distributions), the results obtained here can be applied to a wide range
of service time distributions. This is because the phase type distribution can be used
to represent most service time distributions and is very well suited for numerical
investigations [133, page 79]. Therefore, the models presented in this thesis use the
discrete time phase distribution to represent the service time distribution.

In addition, it is known that for asymmetric polling systems heavily loaded queues
tend to starve the rest of the queues. This results in very unbalanced mean waiting
times. This conflict is resolved in this thesis by using the exhaustive time-limited
service discipline. Also, this work would be one of the few that combines table polling
with exhaustive time-limited service discipline.

Lastly, even though the model considered in this thesis has zero switch-over time,
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its extension to the case of non-zero switch-over time can be easily done by modifying

the vacation period distribution as shown in Section 3.7.

1.8 OQOutline of the Thesis

The remainder of this thesis consists of six chapters. Chapter two is dedicated
to background and literature review. The chapter starts with the definition of some
polling terms, then over 150 articles were reviewed. Chapter three introduces the
discrete arrival process MAP and the discrete phase type distribution. The analysis
of the MAP/PH/1 and the MAP/PH/1/K queue is then followed by the iterative
procedure for cyclic polling with the exhaustive time-limited service discipline. In
Chapter four, we extend the results of Chapter 3 to handle table polling. Chapter
five presents the state space reduction of MAPs with special structures using the
moments matching approach. Chapter six concludes this work and outlines future

challenges.

(8]
o



CHAPTER 2

BACKGROUND And LITERATURE REVIEW

2.1 Introduction

Polling is a scheduling mechanism for multiple queue and single server systems.
The server attends the queues according to one of the polling order policies outlined
in Section 2.2.2. Despite the complexity of the model arising from the multiplicity
of the queues, the arrival process, the service time distribution, etc, there is a large
body of literature on polling systems. The progress in the area of queueing analysis
has made it possible to assess the performance of many engineering problems using
polling system as a modeling tool. Polling has been used as early as 1950s in the
British cotton industry. Mack et al. [128] and Mack [127] modeled the patrolling
machine repair person problem as a polling system with single buffer at each queue.
Later, polling systems were used to study the problem of vehicle-actuated traffic sig-
nal by Newell [136], Newell and Osuna {137], and Stidham [162]. The introduction of
computer communication protocols have created a wide array of problems. Initially,
polling was used for data transfer from terminals on multi-drop lines to a central
computer as in Konheim and Meister [105] and in time-shared systems as in Klein-
rock [97]. Later, it was used by Bux [30] for token passing local area networks (i.e.
token ring and token bus) and by Levy and Kleinrock [100] for broadcasting systems
like the ALOHA protocol. In the current studies of ATM networks, Zaghloul and
Perros [184] used polling to model a shared medium switch in an ATM network. A
major reason for the diversified use of polling is that resource sharing, single server

and multi-queues system, is natural in many fields of engineering and sciences.
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Due to the large body of literature on polling, first we refer to many survey
articles. Later this Chapter focuses on two aspects of polling. First, we review the
different solution methods of polling systems and then present some of the most
recent literature. The discussion of each article focuses on one aspect that makes the
work stands out, for example, the service discipline. However, before discussing the

literature let us define some terms associated with polling systems.

2.2 Definitions

Each polling system has two important characteristics, namely the service disci-
pline and the polling order. The service discipline determines the distribution of the
time the server spends at a queue and the polling order gives the sequence in which
the queues are visited. There is a large variety of service disciplines and polling orders.

First, we address the different service disciplines then the different polling orders.

2.2.1 Service Disciplines

Exhaustive Discipline: The queue is served until all present and arriving customers
in the current visit period are served. The server leaves the queue when it becomes
empty.

Semi-Exhaustive Discipline: The queue is served until the number of customers
in the queue is 1 less than the number of customers present at the polling instant.
Gated Discipline: Only customers present at the polling instant are served. Cus-
tomers arriving in the current visit period are served in the next visit.

Exhaustive K-limited Discipline: At most K customers are served in a visit. The
server leaves the queue once the queue becomes empty or K customers are served.
Gated K-limited Discipline: The minimum of A or the number of customers
present at the polling instant is served.

Time-Limited Discipline: A polled queue is served for a maximum period T'. Sim-
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ilar to the A-limited, this can be exhaustive or gated.
Probabilistically-Limited Discipline: The maximum number of customers served
at a queue during a server visit is determined by a probability function.
Binomial Discipline: The number of customers to be served during a server visit
is binomially distributed with parameters X;, the number of customers present at
queue ¢ at the polling instant, and p;, 0 < p; < 1. This is a special case of the
probabilistically-limited discipline.
Reservation Discipline: At the end of a visit period the queue makes a reservation
for its service requirements for the next visit.

It is worth mentioning here that in a polling system it is not necessary for all the
queues to have the same service discipline. However, as shown in [123], the exhaustive
service discipline minimizes the unfinished work in the system with no regard to delay

limits.

2.2.2 Polling Orders

Cyclic Polling: The queues are visited cyclically.
Table Polling: The queues are visited according to a pre-specified table (e.g. star
polling, elevator polling).
Random Polling The queues are visit randomly. At the end of a service period each
queue ¢ has probability p; of being the next queue to seize the server.
Markovian Polling: The next queue to be polled is determined according to an
irreducible positive recurrent discrete parameters Markov chain.
Bernoulli Discipline: After service completion of a customer at queue ¢, the server
will start service of the next customer at queue : with probability ¢; and will leave
the queue with probability 1 — ¢;. However, if the queue becomes empty then the
server polls the next queue.

This wide range of service disciplines combined with the different polling orders

resulted in many solution methods which are discussed next.
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2.3 Analysis

Several methods have been developed to determine various performance measures
in polling systems. Initially, the buffer occupancy method was used to analyze polling
systems with exhaustive or gated service discipline. Later, the station time method
was used to compute the mean waiting time for polling systems with exhaustive
or gated service discipline. The quest for an easier approach lead to the use of
branching theory for the gated and exhaustive service disciplines. Nevertheless, the
mean waiting times can be obtained only by solving a system with N equations, where
N is the number of queues. For the limited (time or number) service discipline, the
computation of performance measures such as the queue length or the waiting time
distributions are very difficult if not impossible. This is attributed mainly to the
non-Markovian property of the limited service disciplines.

Aside from the exact analytic methods, approximate methods were developed to

obtain performance measures for polling systems due mainly to:

o The requirement to solve O(N) equations to obtain only the mean waiting time

for the gated and exhaustive service disciplines.

e The difficulty associated with obtaining performance measures for the limited

service discipline.
e The need for delay bounds for analytically intractable models.

The approximate approaches are based on either the extension of the conservation law
introduced in [96] or on an iterative approach that uses the M/G/1 type queue with
vacations. These approximate approaches may lead to exact results under special
cases (symmetric systems). When a mathematically tractable formulation of the
network is not possible, the practitioner or researcher is left with simulation which is

always an alternative, albeit an expensive one.
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In order to discuss the different solution methods for cyclic polling systems, con-
sider a system in which customers arrive according to the Poisson process and their
service time is given by a general distribution. The switch-over time, if there is any,

is also generally distributed.

2.3.1 Buffer Occupancy Approach

The buffer occupancy method was used by many researchers [42, 43, 52, 78, 105, 144].
among many others, for the analysis of cyclic polling systems with 61' without switch-
over time. Later, in a monograph, Takagi [165] presented results for both exhaustive
and gated service disciplines for the continuous and discrete time polling models. This
approach is based on defining random variable (rv) X7, 1 < i, j < N, representing
the number of customers at queue j when queue i is polled and relies heavily on
the Laplace-Stieltjes transform (LST). The relationship between queue 7 and queue
i + 1 was utilized to obtain expressions for the mean queue length, E[X}]. The cross
correlations, E[X? XF¥], are obtained by solving numerically a set of N3 equations.
It is known (see Takagi [165]) that for symmetric system this set can be reduced
to N? equations. The LST of the waiting time distribution can be obtained using
the relationship between the busy period and the queue lengths distribution. The
summary of the results for the queue length and the waiting time distributions are
available in Takagi [165]. Later, Levy and Kleinrock [117] extended this method to
polling systems with zero switch-over periods. Note that the buffer occupancy method
was the most widely used method and provided many useful results for cyclic polling
systems. However, its application is limited to systems in which the inter-arrival time
is exponentially distributed. Also, if one is interested in the whole distribution, say
of the queue lengths, then inverting LST is necessary since most of the analysis is
performed behind a Laplacian curtain. Although, this is not terribly difficult due to
the various techniques to invert LSTs (see Duffy [51]), it is an inconvenience.

A variant of the buffer occupancy method was introduced in Swartz [164] for a

o
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discrete-time polling system with the exhaustive service discipline. In this method,
each queue at the polling instant is considered as a gambler ruin problem. The initial
number of customers corresponds to the gambler’ s initial capital, the service time
of a customer is the playing fee, and the number of arrivals per time slot is the pay
off. Notice that here the time to ruin in the gambler’ s ruin problem corresponds to
the exhaustive service discipline. The advantage of this method is that it reduces the
number of computations required to obtain the mean queue length. However, this
approach is limited to polling systems with exhaustive service discipline and slotted

service discipline {i.e.,the service time is discretized).

2.3.2 Station Time Approach

The station time, which corresponds to the visit and switch-over time, approach pre-
sented in (32, 60, 84], was used for symmetric and asymmetric systems with exhaustive
or gated service discipline. In this method, the waiting time distribution is obtained
based on the analysis of the station-time distribution. As in the case of buffer occu-
pancy method, the station time method relies heavily on the LST. The key idea of
this approach is to define the station time for each queue and then write a recursion
formula for the joint queue station times. Once the station time is obtained, the cycle
time and inter-visit time are derived. The LST of the waiting time distribution is
then obtained based on the distributions of the station time and the inter-visit time.
Notice that, like the buffer occupancy method, most of the analysis is done under
a Laplacian curtain and that the mean waiting times are obtained by solving a set
of N? equations. Although, these equations are less complicated to solve, in terms
of storage and intermediate results, than the buffer occupancy approach, the station
time method, as the buffer occupancy method, is limited to polling systems with
Poisson input and exhaustive or gated service discipline.

A variant of the station time method was introduced by Sarkar and Zangwill [148]

and relies on the solution of N equations to obtain the mean waiting times. Unlike
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the standard station time method where the variance of the cycle time is obtained by
solving N? equations, in [148] the variance of the cycle time is obtained by solving N
equations. This can be achieved by relating the cycle times for station : and station
¢+ 1. However, the resulting N equations are dense and the benefit of reducing the
number of equations is off set by using a numerical approach that requires O(N?3) to

obtain the mean waiting times.

2.3.3 Descendant Set Approach

The descendant set approach, based on branching theory, was used initially by Avi-
Itzhak, Maxwell and Miller [11] for the analysis of alternating queues. Later, it was
used by Fuhrmann and Cooper [68] for the stochastic decomposition of the M/G/1
queue and in [23, 41, 104, 143] for the analysis of polling systems. This method is
valid only for systems with exhaustive or gated service discipline in which customers
arrive according to a Poisson process. Like the buffer occupancy approach, the de-
scendant set method derives the moments of the queue length at the polling instant.
This is achieved by considering each customer in a polling system to be either an
original (parent) or a non-original (children) customer. An original customer is a
customer that arrives to the system during the switch-over time and a non-original
customer is a customer that arrives to the system during the service time of another
customer (be it original or non-original). Using the generating function, the queue
length distribution at polling instant is derived based on the relationship between the
number of original and non-original customers. This relationship is obtained based
on the service discipline and the Markovian property of the arrival process. While
the descendant set method relies on the generating function technique, it is more
efficient than the station time and the buffer occupancy methods since the number
of computations to obtain the mean waiting time is of O(N). However, similar to
the buffer occupancy and station time methods, only the first few moments of the

queue length distribution are computable. The full distribution can be obtained only
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through inverting the generating function of the queue length distribution.

2.3.4 Approximate Approaches

Several approximate methods are used for the analysis of polling systems. They can
be grouped into two methods. The first is based on extending the conservation law
introduced by Kleinrock [96] to pseudo-conservation laws and the second is based on
the decomposition approach.

The pseudo-conservation law used in [23, 25, 35, 56, 57|, and by many others,
usually yields a weighted average or an upper bound for the mean waiting time. It
is well known that polling systems with switch-over time are not work conserving
systems since the server remains idle during switch-over time, although work might
be present in the system. Nevertheless, pseudo-conservation laws were derived for
polling systems based on the stochastic decomposition results of polling systems by
Fubhrmann [67] and the stochastic decomposition results of the M/G/1 queue by
Fuhrmann and Cooper [68], Doshi [49, 50], and Scholl and Kleinrock [150] (further
references related to the M/G/1 queue and its analysis can be found in [134, 170]).
The stochastic decomposition result proves that the total amount of work in a polling
system is composed of two independent parts: one is the amount of work in the
corresponding system with no switch-over times; and the second is the amount of work
at an arbitrary epoch during switch-over period. A survey of conservation law results
with application to polling systems can be found in [22]. Similarly, the stochastic
decomposition of the M/G/1 queue with vacation states that the total amount of
work in the queueing system is composed of two parts: 1) the corresponding amount
of work in the M/G/1 queue with no vacation, and 2) the amount of work added to
the system by those customers that arrive to during the vacation period. The proof
of these results can be found in [49, 68, 150)].

The decomposition approach (i.e. decompose the polling system into single server

queues with vacation) was used by many researchers, among them [31, 47, 65, 109,
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113, 115, 184], to approximate the behavior of polling systems. In this method each
queue is treated, separately, as a single server queue with vacation. The analysis is
done in two stages. In the first part, which is exact, the performance measures of the
single server queue with vacation are derived. The second part of the analysis focuses
on obtaining an approximation for the vacation period distribution. When possible,
the vacation period distribution is taken as the convolution of the visit periods of the
other N — 1 queues, where N is the number of queues in the system. However, when
the vacation period does not lend itself to a simple convolution of the visit periods, an
approximation of the vacation period based on a dependent and an independent part
is taken. In either case, using an iterative procedure, the decomposition approach
converges fairly fast to within an acceptable error. The decomposition approach is

being used more frequently for several reasons, among them:

¢ The arrival process can no longer be assumed to be Poisson. More realistic traffic
models have been proposed to characterize bursty traffic, for example MAP was
used by Blondia [18, 19] and Blondia and Theimer [20] for B-ISDN. Sriram and
Whitt [158] and Heffes and Lucantoni {79] modeled a packetized voice and data
traffic using MMPP. The importance of the effect of correlated arrivals on the

performance of queueing system is discussed in Patuwo et al. [140]; and

e The limited service discipline is emerging as the preferred service discipline.

This is reflected by ANSI/IEEE [1] and ANSI [159] standards.

2.3.5 Limited Service Analysis

In general limited (time or number) service disciplines are inherently difficult to an-
alyze and do not lend themselves to an exact analyses. Exact results are known only
for few special cases (e.g. symmetric systems, alternating queues). For the special
case of fully symmetric system with Poisson input, general service time distribution
and 1-limited service discipline one can use the buffer occupancy approach (see Tak-

agi [165]). For the case of alternating queues, a solution is available for systems with
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general input parameters via translating the problem into a boundary value prob-
lem like a Riemann-Hilbert problem as in Eisenberg [53] or using matrix-analytical
approach as in Alfa [3].

Although the limited service discipline is the most important for applications.
there is no known method that leads to exact results. Thus, many researchers used
approximate methods based on either the pseudo-conservation law or the decompo-
sition approach to obtain some performance measures. The approximate solutions
available are model dependent and require substantial computational time. Partic-
ularly, the time-limited service discipline is approximated by: 1) exponential timer
in Coffman et al. [40] and Leung {113], 2) the sum of exponential-phase timers in
Leung and Lucantoni [115], 3) probabilistically-limited service in Leung [112], 4) the
k-limited service in Fuhrmann and Wang [69] and Frigui, Stone and Alfa [65], and 5)
the Bernoulli service in Blanc and van der Mei [17] and Servi [153].

This concludes the review of the solution methods available for polling systems.
In brief, with either the exhaustive or gated service discipline it is possible to use
1) station time approach, 2) the buffer occupancy approach or 3) the descendant
set method and obtain a set of equations that can be solved numerically for the
mean queue lengths. Upper bounds and weighted average of the mean waiting times
can be obtained by pseudo-conservation law. Unfortunately, these methods rely on
the transform method which leads the analysis away from probabilistic arguments
(Neuts [133, page 3]). In addition, these methods require the arrival process to each
queue to be Poisson which restricts the arrival processes which can be modeled.

Eventhough the limited (time or number) service discipline is the most impor-
tant service discipline from an application point of view, very few exact results are
available. Most of the work done under this service discipline is done using the

pseudo-conservation law or the decomposition method.
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2.4 Review Articles

The use of polling models in the field of transportation, manufacturing, and com-
puter communications resulted in a large body of literature. One of the first papers
that addressed the use of queueing in computer communications is by Kobayshi and
Konheim [102] in which they presented some aspects of applying queueing to computer
communication (over 150 citations). Later, Penney and Baghdadi [141, 142] surveyed
the application of polling to computer communications and Bux '[30] surveyed the
applications of polling to local area networks. More recently, Sachs [147] presented
a review on the different access protocols for LANs. She presented a thorough re-
view of random access, demand assignment, and adaptive assignment protocols. She
included over 150 references. And Kleinrock [99] presented some applications of
queueing theory to wide-area networks, packet radio networks and local area net-
works (140 citation). On the theoretic side, Watson [181] summarized the results for
cyclic polling systems with exhaustive, gated, or 1-limited service discipline. Later,
Takagi [165, 166] presented most of the analytical results available up to to 1988 for
polling systems. In a sequel article Takagi [167] presented an update on polling sys-
tems (over 400 articles). The review papers by Takagi focus mainly on the analysis

approaches.

2.5 Cyeclic Polling

2.5.1 Finite-Buffer Systems

Finite buffer capacity models are a natural representation of real life queueing sys-
tems. However, their analysis is difficult. In this section, unless otherwise mentioned,
customers arrive according to the Poisson process, service time and switch-over time

are generally distributed.
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Tran-Gia {177) proposed an algorithmic solution for polling systems with 1-limited
service discipline and general renewal input traffic. He developed an iterative pro-
cedure to obtain the queue length distribution based on the fast Fourier transform
algorithms. In each iteration the conditional cycle time, the queue length distribu-
tion, and the group size arrival distribution are computed. The iterative algorithm
is stopped once the difference between the mean of the queue lengths for two con-
secutive iterations is less than a prescribed tolerance. The important aspect of this
paper is the use of the general renewal input process. However, the complexity of
the computational scheme hinders the use of this analysis approach to other service
disciplines like the time-limited and k-limited, £ > 1, service disciplines.

Eisenberg [54], using the same technique as in [52], derived the LSTs of the waiting
time distribution for a polling system in which the server comes to a stop once the
system is empty. He considered three stopping rules and two starting rules. This
paper is unique since most papers do not address the issue of the server stopping
when there are no customers in the system.

Ibe and Trivedi [86] considered the finite-population model in which the service
time and the switch-over time are given by an exponential distribution. Their solution
is based on the generalized stochastic Petri nets (GSPN). Based on the one-to-one
correspondence between the reachability graph of Petri nets and the continuous time
Markov chains a set of linear equations for the steady state probabilities of the polling
system were obtained. Using successive over-relaxation and the Gauss-Seidel method,
Ibe and Trivedi [86] computed the steady state probabilities from which they obtained
the mean waiting time using Little’ s law. However, a major drawback of GSPN is its
storage requirements. This is because GSPN requires generating all the states of the
reachability graph which can be very large for a large number of queues. For example,
for three-queue polling system with single buffer capacity and population size equal
to 10, the number of states in the Markov chain is 7623 and the number of non-zeros

in the transition matrix of the Markov chain is about 28000 (See Table IX in [86]).
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Another drawback of using GSPN is the population size. Most polling systems have
a large, if not infinite, population size, however, in order to generate the reachability
graph the population size has to be finite.

Using embedded Markov chains, Ganz and Chlamtac [70] analyzed a polling sys-
tem similar to that of Ibe and Trivedi [86]. However, in their system time is slotted
and each station generates a message in each time slot with probability r. The state
space is defined as the total number of customers in the system at each embedded
point (beginning of each time slot). This state space allowed them to limit the num-
ber of equations to N.L + 1, where N is the number of queues and L is the buffer size.
Solving the N.L+1 equations yields the steady state probability vector of the number
of customers in the system. The individual queue length distribution was obtained us-
ing the notion of "n-indistinguishable balls” and "m-distinguishable urns” where the
capacity of each urn is equal to the buffer capacity. Although, the authors presented
an accurate and simple way to obtain the mean waiting time for slotted communi-
cation systems, the model is very limited in several aspects (e.g. finite population,
messages arrival process).

Although [70, 86] presented models for finite population polling systems, care
must be exercised in using these models. This is because the number of customers
already in the system at any point in time affects the number of potential new cus-
tomers arriving to the system (i.e. the pool of potential customers gets smaller as the
number of customers in the queueing system increases).

Lee [110] analyzed the M/G/1/K queue with vacation periods using the embedded
Markov chain approach. His results were used to study the performance of a cyclic
polling system with an exhaustive service policy, where each queue has a finite ca-
pacity. He also considered the M/G/1/K queue with vacation periods and exhaustive
limited service discipline in [111]. The LST of the busy period and cycle time were
obtained using an embedded Markov chain. The waiting time distribution, blocking

probability, and queue length were obtained by the method of supplementary vari-
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ables and sample biasing techniques. Later, Kofman [103] used the decomposition
results of the M/G/1/K queue to obtain the blocking probability, throughput and the
mean waiting time for a polling system with exhaustive, gated, and limited service
disciplines for finite buffer capacity polling systems. Takagi [168] used the results of
Lee [110] and Courtois [44] for the M/G/1/K queue to analyze finite buffer capacity
polling systems. Jung and Un [90] used the buffer occupancy method to analyze the
finite-buffer polling system with the exhaustive service discipline.

A shared medium switch for an ATM network with input and output links was
analyzed by Zaghloul and Perros [184, 185] and Hong, Perros, and Yamashita [82)].
Both the input and the output links have finite capacity waiting room. Note that
in [184] there are N input links and a single output link and in [185, 82| there are N
input links and M output links. The switch-over time is equal to zero. Messages from
the input links are generated according to the interrupted Bernoulli process (IBP) and
are routed over a high-speed medium (parallel bus) to the output links. The service
time is deterministic and given by one unit time. However, because the output links
have a finite capacity, the service time is adjusted to account for blocking. This is
because a blocked customer is, in effect, depriving the next customer in the queue from
receiving service. The service time is also adjusted to account for bus contention. The
adjusted service time is called effective service time and each queue is then analyzed
separately under three service disciplines: Time Division Multiplexing (TDM), cyclic,
and random polling. Note that for TDM, only the blocking probability affects the
service time since the server visits the queues at specific time periods. Each queue is
then analyzed as an embedded Markov chain and the steady state probability vector
is obtained using the Gauss-Seidel iterative procedure. Performance measures such as
the queue length distribution, system throughput, and the blocking probability were
obtained. A similar model with bursty arrival process was analyzed by Jou, Nillson
and Lai [89].

Notice that under the TDM service discipline the server may be idle while cus-
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tomers are waiting at other queues. This observation is confirmed by the numerical
results in [185] (e.g. blocking probability under the cyclic service discipline is better
than under TDM). Although IBP is a good approximation for the cells arrival pro-
cess, MAP is a better representation for the arrival process in B-ISDN as suggested
by Blondia [18, 19] and Blondia and Theimer [20].

Recently, Rubin and Wu [145] used a variant of the M/G/1 queue with vacation to
study the performance of fiber distributed data interface (FDDI) timed-token rings.
Each station in the network is approximated by a single server queue with vacations.
Each station is assumed to generate messages according to a Poisson process with a
random number of fixed size segments (batch Poisson input). The transmission time of
one segment is deterministic and is equal to one time slot. The system is thus divided
into time slots of equal size. The transmission time of a segment is given by B,
where {B,.n > 1} forms a sequence of independent and identically distributed (i.i.d.)
r.v. The service time has a discrete general distribution given by b(z) = P(B. =
t), t = 1,..., Bnaz; Bmar < 00. Similar to the service time distribution, Rubin
and Wu have defined a vacation time distribution given by v(:) = P(V, =1), 1 =
1,..., Vinaz; Viner < 00, and a visit time distribution given by g(z) = P(G, =), t =
1,...,Gmaz; Gmar < 0o. Each station in the ring is analyzed based on an embedded
Markov chain, where the embedded points are the instants of packet departure and
token arrival. A set of balance equations is then derived and, based on the boundary
probabilities of token arrival and departure, an iterative procedure to compute the
limiting state distribution is obtained. The queue length distribution at an arbitrary
time is then obtained using the supplementary variables technique. In addition,
the packet delay distribution is obtained based on decomposing the delay into two
independent distributions: 1) the forward recurrence time distribution representing
the instant of arrival and the next embedded instant and 2) the residual packet delay
distribution given by the time from the embedded instant until the transmission of the

tagged packet. This distribution, residual packet delay, represents the service time of
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the packets enqueued ahead of the tagged message. The approximate vacation time
distribution of a queue is constructed by convolving the switch-over time distribution
and the visit period distribution of the other queues. The vacation period distribution
is computed in accordance with the traffic intensity of the other queues. The analysis
presented in [145] was used to approximate the behavior of the FDDI timed-token
ring. Although the results compare very well with simulation, this cyclic polling
model is restricted to networks in which the arrival process can be approximated by
a batch Poisson process. Note also that because there is no hard time limit, the
visit period can exceed the maximum time allocated for a given queue. This can be

a problem in an asymmetric system with long packets (service time skewed toward

Braz).

2.5.2 Infinite-Buffer Systems

Because of the difficulties in modeling finite buffer systems, several researchers as-
sumed the buffer size to be infinite. This simplifies the analysis somewhat and makes
the problem mathematically tractable. Similar to the previous section, unless other-
wise mentioned, the input process is Markovian, the service time and the switch-over
time, if any, are generally distributed.

Carsten, Newhall and Posner [32] pioneered the station time method and used
it for the analysis of scan time in non-symmetric polling systems with exhaustive
service discipline. Later, Ferguson and Aminetzah [60] derived the mean waiting
time for non-symmetric polling systems using the station time method for the gated
service discipline.

In a widely referenced monograph, Takagi [165] considered cyclic polling systems
with infinite buffers and exhaustive or gated service disciplines. His solution is based
on the buffer occupancy method. He defined the joint marginal generating func-
tion F; of the number of messages at queue : at polling instants. He then related

F; to F;;, and obtained analytical expressions for the first and second moments of

38



Chapter 2 BACKGROUND And LITERATURE REVIEW

the queue length. For symmetric systems (arrival rate, switch-over time and service
time are independent of the queue’s number) a closed form solution was obtained for
the first and second moments of the queue length. For asymmetric systems (arrival
rate, switch-over time, and service time depend on the queue’s number) the second
moments of the queues’ length are obtained by solving numerically a set of O(N?3)
equations. Takagi [165] obtained the LST of queue length distribution by defining re-
generation points as the points when queue one is polled and all the queues are empty.
The LST of the waiting time distribution was obtained from the rel&tionship between
the LST of the queue length and busy period distributions. For the limited service
policy, Takagi [165] considered a symmetric cyclic polling system and obtained the
mean queue length and the mean waiting time using the buffer occupancy approach.

It is shown in Takagi [165] that for the discrete-time model, for the same total
utilization, the mean waiting time at queue one, in the case where all utilization is
concentrated at queue one, is smaller than the mean waiting time in the symmetric
polling system for the exhaustive and gated service disciplines. He showed also that
for symmetric cyclic polling systems the exhaustive service discipline has the least
mean waiting time and the limited service policy has the largest mean waiting time
ie.

E(W)chhauative < E(W)lgated S E(W)llimited-

Because of the complexity associated with obtaining the mean waiting time for
asymmetric polling systems, Bux and Truong [31] considered each queue in the polling
system as a M/G/1 queue with service and vacation periods. It is known that for the
M/G/1 queue with vacation periods, the mean waiting time depends on the mean
and variance of the vacation period. The mean of the vacation period was obtained
from the mean of the cycle time and service period. The variance of the vacation
period was obtained by using a heuristic extrapolation from the case of N = 2.

Another approximation is by Srinivasan [157] and it is for the 1-limited service

discipline. Srinivasan’ s approximation is based on the analysis of the cycle time
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and the vacation period. Later, Takine and Hasegawa [173] derived the LST of the
waiting time distribution for a cyclic polling system with finite source model and
1-limited service discipline. Sidi et al. [156] analyzed a polling system in which served
customers may leave the system or be routed to another queue. Using the buffer
occupancy method, they obtained the queue lengths distribution, the mean waiting
time in the queues, and the mean waiting time of customers that follow a specific path
in the network. Their analysis is for the gated and exhaustive service disciplines. They
have also extended the pseudo-conservation law of Boxma [22] to their polling model.
An alternative solution approach, based on the power-series algorithm (PSA), for
infinite buffer polling systems was proposed. This method is based on the power series
expansions of the state probabilities and the moments of the queue length distribution
as functions of the load in a system with light traffic. It was used in {13, 14, 15, 16]
to analyze polling systems with and without switch-over time. Although PSA is an
additional tool for the analysis of polling systems it is limited to systems with Poisson
input. For the K-limited service discipline, PSA is limited to systems with moderate
value of K as shown in [15]. As K becomes large more terms of the power series are
needed which results in more memory requirements and large computational time.
Due to the limitation of the Poisson process with single arrivals, several re-
searchers attempted to obtain performance measures for polling system with batch
Poisson process and renewal input process. First, Kuehn [106] considered a cyclic
polling system with batch Poisson arrivals and non-exhaustive service discipline. He
used the concept of conditional cycle times to derive the LST of the delay distribu-
tion through the embedded Markov chain approach. Later, Levy and Sidi [120] an-
alyzed a polling system with simultaneous arrivals. They used the buffer occupancy
method to obtain the mean waiting time under the exhaustive and gated service dis-
ciplines. More recently, for a polling system with gated, exhaustive, globally gated or
time-limited service discipline and renewal input processes, Altman and Kofman (7]

obtained upper bounds for the cycle time, the total amount of work in a station at
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time ¢, and the amount of work that leaves the system from the polled station. Their
analysis is based on characterizing the inputs by bounds on the average arrival rate
and burstiness and uses previous results obtained for polling systems with Poisson
inputs.

Notice that most papers considered until now use the exhaustive or gated service
discipline. The remaining part of this section considers polling systems with a variant
of the time-limited service discipline.

Leung [113] obtained the queue length distribution for a polling system with
exponentially time-limited service discipline. He used the results of Leung and Eisen-
berg (112, 114]. Using the discrete Fourier transform, Takagi and Leung [171] ana-
lyzed the discrete time single server queueing system with time-limited service. In
this model, the arrival process and the service time distribution are defined in terms
of two generating functions.

Recently, de Souza et al. [47] considered a polling system with exponential service
time distribution with infinite (or finite) buffer capacity. The service discipline is of
the time limited and can be either preemptive or non-preemptive. In the preemptive
case, once the visit period reaches the time limit an on-going service is interrupted
and the preempted customer is returned to the line of the waiting customers and its
service time is re-sampled (i.e. identical to a customer who received no service). In the
non-preemptive case, the server does not interrupt an on-going service to switch to an
other queue. de Souza et al. [47] presented a solution approach that can be applied
to a number of service disciplines (e.g exhaustive time-limited, gated time-limited,
etc.). However, they presented only the exhaustive time-limited service discipline in
detail. Their analysis is based on studying the embedded Markov chains defined at the
sequence of the points of server arrival and departure from each polling station. The
joint queue length distributions of these two embedded Markov chains are obtained
based on the uniformization or randomization technique. Based on the results of

Markov chains with rewards some time average results are obtained. Note that,
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although their solution approach can be used to a wide range of service disciplines,
it is limited to systems in which service time and inter-arrival time are exponentially
distributed. Notice also that their solution approach yields only the joint queue length
distributions at server arrival and departure points from which, and based on Markov
chains with rewards, they were able to obtain time average measures (e.g average
delay). Thus, the difficulty associated with the analysis of limited service discipline
can be alleviated by the use of the M/G/1 queue with vacation periods as a basis for
an iterative procedure.

Two vacation models for an M/G/1 queue with constant time-limited service or
vacation-dependent time-limited service were proposed by Leung and Lucantoni [115]
for the performance analysis of stations in a timed-token network. For the time-
limited service discipline, a queue is visited for a maximum time period. For the
vacation-dependent time-limited service discipline, if the previous cycle time exceeded
the queue pre-specified cycle time threshold then that queue receives no service in
the current cycle, else the queue is served in the same manner as in the case of a
time-limited service discipline. Under both service disciplines a customer service is
not interrupted if the queue visit-time limit is reached (i.e. non-preemptive service
discipline). In order to analyze these models, the time-limit is approximated by
a number of time stages where each stage is exponentially distributed. Thus. the
visit-time limit can be characterized by an Erlangian distribution instead of being
deterministic.

The time-limited service discipline was modeled as a Markov chain defined at
the points of customer departure from which the steady state probability vector is
obtained. The computation of the steady state probability vector requires the inver-
sion of the probability generating functions (PGF) of the arrival process, the service
time distribution and the vacation period distribution. In order to get around in-
verting PGF's, one can represent the service time and the vacation period by phase

distributions. This leads to a simple recursive approach to compute the steady state
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probabilities. For the vacation-dependent time-limited service the Markov chain is de-
fined at the point of customer departure. The target cycle time is also approximated
by a number of time stages.

Since both models in [115] are of the M/G/1 paradigm presented in {134], Leung
and Lucantoni {115] used the matrix analytic approach to solve for the queue length
distribution. Because the block matrices are of infinite dimension, an appropriate
truncation point is necessary ‘¢ use the matrix analytic approach. Since the time-
limit is approximated by time stages, the numerical results depend on the number of
stages used. The numerical experimentation by the authors suggests using a moderate
number of stages (about 16 stages). However, it is not clear whether this number of
stages will hold for other service time distributions since the examples presented are
for exponential service time distributions. Also, the authors did not present how
to obtain the vacation period distribution in the case of polling systems. Although
the presented models are good tools for the performance analysis of timed-token
networks, they can not be used, as stated by the authors, in a network where the
characteristic of traffic under consideration, the frame arrival process may be non-
Poisson or even non-renewal. The Markovian arrival process has been shown to be
effective in capturing the correlations among frame arrivals of voice and video traffic.

In a somewhat related model, Chiarawongse et al. {37] considered the M/G/1
queue with vacations under the time-limited, cycle time-limited, and the cycle time-
limited with accumulated lateness service disciplines. Their analysis is based on the
matrix-analytic approach presented in [134] and yields the queue length distribution.

The manufacturing automation protocol is based on token bus and token ring
network. In this protocol, each station in the network has two timers for controlling
visit period length. The first timer controls the token holding time (THT) and the
second controls the rotation time (cycle time) (TRT). Yue and Brooks [183] approxi-
mated the behavior of this protocol for a symmetric and an asymmetric system. For

the symmetric case, all the stations have a THT with no target rotation time, the
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mean waiting time was obtained based on k-limited service discipline approximation
due to Fuhrmann [66]. Because of the non-preemptive nature of the THT, the visit
period is actually longer than the THT. In order to obtain the mean visit period,
Yue and Brooks [183] used an excess holding time variable which they derive using
renewal theory and the inversion of the LST of the service time distribution. For the
asymmetric case, they analyzed a network with nine stations having only THT, and
one station with TRT and THT. The mean of the visit period for the TRT station is
obtained empirically based on some simulation runs which is then used to computing
the mean waiting time. Thus, the models presented in this paper are for specific
configurations. Although, the symmetric case can be used for a large number of
queues, it is limited in the sense that only Poisson arrival is allowed. The asymmetric
approximation is limited to the network given in [183].

Lee and Sengupta [109] considered a polling system with limited service and
reservation. For this service policy, each queue makes a reservation for the number
of services required for cycle j + 1 after receiving service in cycle ;. However, the
minimum number of services must be at least one and at most M. Their solution
is based on the concept of a single queue with visit and vacation periods. Their
iterative procedure assumes that the vacation period of queue 1 in iteration (k+ 1) is
given by the mixture of the following two terms: S, S,(k) with probability (1 — P).
where 5,-“') is the service period for queue 7 in iteration k, S,(k) are independently
identically random variables (sum of independent service periods), and (N — 1)S*!
with probability P, where S*) is a generic service period (sum of dependent service
periods) and N is the number of queues. The results obtained consist of the queue
length and sojourn-time distributions. This polling system was used to model satellite
communication. A similar model was considered by Tran-Gia and Dittmann [178].
They used the decomposition approach along with the results of the M/G/1 queue
with vacation to obtain packet transfer time for a cyclic reservation multiple access

protocol.
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2.6 Priority Based Polling Systems

When using the term priority polling it is important to distinguish between prior-
ity at the station level and priority at the customer level. Priority at the station level
means that the order in which the server visits the stations is based on the station’s
priority level. Its application is in the area of duplex transmission and central con-
trollers. Priority at the customer level means that each station in the polling system
can have more than one type of customer. Once a station is polléd then enqueued
customers are served according to their priority level within the station. Priority
based polling has applications in the area of integrated services.

Fournier and Rosberg [61] analyzed a polling system with multiple priorities at
each queue. They considered several service disciplines and used the stochastic decom-
position law for single server queue with vacations to obtain the pseudo-conservation
law for the mean waiting times. Similar results were obtained by Shimogawa and
Takahashi [155].

Manfield {129] considered a polling system with two way data traffic. In this
polling system, priority is given to messages going from the central controller (server)
to the queues. The system is analyzed by considering (N + 1) queues, where N
queues are dedicated to the incoming messages (messages going from the queues to
the server), and the (N + 1)st queue is dedicated for the outgoing messages (messages
going from the server to the queues). The mean delay for the outgoing messages is
exact and for the incoming messages is an approximation. For a similar network,
Giannakouros and Laloux [73] used the pseudo-conservation law to obtain the mean
waiting time under the exhaustive, gated and 1-limited. They also obtained couserva-
tion laws for the case of mixtures of the three service disciplines. In a related model,
Stavrakakis [160] derived tight bounds for packet delay in an alternating queue where
one queue hosts the high priority packets and the other hosts the low priority packets.

Karvelas and Garcia [91] modeled an integrated packet voice/data token-passing
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ring as a polling system. In order to limit the cycle time, they considered the 1-limited
service discipline. Each station in the network has a single buffer for voice messages
and infinite buffer for data messages. For this polling system, voice and data packets
are assumed to arrive according to two i.i.d. batch Poisson processes. The service
time of a packet is given by a general distribution. Because of delay constraints voice
packets have higher priority than data packets at the station level which implies that
data packets are transmitted only when the high priority buffer at the station level is
empty. By extending the cycle time analysis presented in [106] for a polling system
with single priority, Karvelas and Garcia were able to obtain the mean waiting time
for the voice and data packets. It is important to notice here that although their
results match very well with simulation, it was shown elsewhere (e.g [79, 158]) that
voice and data traffic is best characterized by MMPP.

The proposed service discipline of Karvelas and Garcia [91] can cause large delays
for data packets when the arrival rate of the voice packets is very high (for a given
station). This is because in every visit the server may have to serve the high priority
message, in this case voice packet, and leave the low priority message behind which
are the data packets for this integrated network. Thus, limiting the cycle time may
not be the best alternative to reduce the waiting time in polling systems where high
priority messages have high arrival rates.

Pang and Tobagi [139] obtained the throughput for a polling system with heavy
traffic with a cycle-dependent mechanism which is employed in IEEE 802.4 token bus
and the FDDI token ring standard. This service discipline enhances the performance
measures of real-time applications. By deriving bounds on the cycle length, the
authors were able to obtain approximate results for the throughput. Later, Hong [83]
obtained the mean waiting time for cycle-dependent polling systems with 1-limited
service discipline. He used the results of Kuehn [106] and the notion of effective
service times.

Gianini and Manfield [72] considered a polling system where each queue in the
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systemn has two priority levels. They considered the case of exhaustive and gated {at
the priority level) service disciplines. In these service disciplines. a queue is polled
at its low priority level only if there are no high priority messages anywhere in the
system. Their method of solution is based on defining a low priority poll busy period.
a high priority poll busy period, and the moment generating function of the queue
length at polling instants. They derived the first and second moment of the queue
length and the waiting time for the high and low priority messages. For the same
polling system, Frigui, Stone and Alfa [63] used Bux and Truong [31] approximation
of the vacation period and the results of the M/G/1 queue with priority [154, 92]
to obtain the mean waiting time for the high and low priority messages under the
exhaustive service discipline.

Tsai and Rubin [179] obtained exact results for a polling system with two priority
levels with exhaustive or limited service disciplines. Their system is different from
that of Gianini and Manfield [72] since they considered the case where each queue has
a single buffer high priority queue and an infinite buffer low priority queue. A queue
can seize the server at low priority only if all high priority buffers are empty. During
a low priority poll with exhaustive service policy, the server continues to transmit
messages until both queues are empty. Thus, in a low priority poll, all messages
found in the queue and those that arrive (high or low) during the service period are
transmitted in the current cycle. If a queue seizes the server at a high priority level,
then only the high priority message is transmitted. For the limited service policy,
during a high (low) priority poll the server transmits one high (low) priority message.
Later, Tsai and Rubin [180] extended their results to the case where each priority has
an infinite buffer capacity. The service discipline they considered is such that high
priority are served exhaustively and low priority are number limited. The analysis
in [180] takes advantage of the symmetry of the polling system and is based on the
cycle time analysis.

The model in [72] was later generalized by Poko et al. [75]. They considered
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a polling system with multiple priorities at each station. However, they used the
I-limited service discipline. By assuming that customers are served in the cycle in
which they arrive (clearly, this assumption would be invalid in systems where low
priority messages have low arrival rates and high priority messages have high arrival

rates). Poko et al. were able to obtain the mean waiting time for each priority.

2.7 Non-Cyclic Polling

Because the optimization problem of polling systems is not analytically tractable,
many researchers suggested optimizing the performance measures of a queue using
alternative polling orders. The next two Sections discuss table and random polling

systems, respectively.

2.7.1 Table Polling

Although table polling is periodic, a pre-specified table dictates the rotation of the
server among the queues, we consider it to be non-cyclic in the sense that the vacation
period of a given queue depends on the position from which the server leaves the
queue in the table. In such a system, we have pseudo-cycle time and pseudo-station.
A pseudo-cycle time is the time between polls of the same station in the table. Notice
that each station may have more than one pseudo-cycle and, in most cases, the
pseudo-cycles have different distributions. Furthermore, for each pseudo-cycle we can
define a pseudo-station. A pseudo-station is a fictitious station that has the same
parameters as a station that appears more than once in the table.

Among the first attempts to solve multi-queue systems with table polling is the
work of Eisenberg [52]. He considered a table polling system with exhaustive service
discipline. He obtained the (LST) of the inter-visit time and the LST of the waiting
time at queue :. He considered four embedded Markov chains: 1) service beginning, 2)

service completion, 3) beginning of queue visit, and 4} end of queue visit. His solution

48



Chapter 2 BACKGROUND And LITERATURE REVIEW

relies on the relationship between the probabilities of the embedded Markov chains
mentioned above (for instance, the beginning of a queue visit must coincide with
a service beginning). The notion of pseudo-station and pseudo-cycle were used by
Baker [12] to obtain the mean waiting time for a table polling systems with exhaustive
service discipline and by Choudhury [38] to obtain the mean waiting time for the gated
service discipline. Chang and Hwang [33] used the embedded Markov chain and
derived a new recursive method to compute the moments of the pseudo-cycle time.
The moments of the pseudo-cycle time are then used to obtain the mean waiting
time for general polling systems with gated service discipline. Altman, Khamisy and
Yechiali [6] derived the mean waiting time for elevator polling systems with a globally
gated service discipline. They showed that the mean waiting time is identical for all
the queues even for the non-symmetric case. However, due to the difficulty associated
with getting performance measures for table polling systems, many researchers used
approximate methods to derive bounds for the mean waiting time.

Federgruen and Katalan [59] used the decomposition results of Fuhrmann and
Cooper [68] to approximate the queue length and waiting time distributions in gen-
eral polling systems with exhaustive, gated, or a mix of exhaustive and gated service
disciplines. And Boxma et al. [25] extended the conservation laws to polling ta-
bles with batch input process and deterministic service times. Recently, Frigui and
Alfa [63] used the pseudo-station and pseudo-cycle and approximated the time-limited
by the K-limited service discipline to obtain the mean waiting time in table polling

with time-limited service discipline.

2.7.2 Random Polling

Performance measures for the exhaustive, gated, and limited service disciplines were
derived by Kleinrock and Levy [100] for the case of random polling systems using the
same analysis as Takagi [165]. For symmetric random polling systems the exhaustive

service discipline has the least mean waiting time and the limited service discipline
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has the largest mean waiting time i.e.

E(W)Ierhaus!iuc < E(W)|gated S E( vv)l!:'mlted-

A comparison between cyclic and random polling by Kleinrock and Levy [100]
showed that for the same system parameters and service discipline cyclic polling
yields a lower mean waiting time than random polling.

In addition to random polling, four other probabilistic models were analyzed in
the literature. Frist, Servi [153] derived the first two moments of the busy period
for the M/G/1 queue with Bernoulli schedule. These moments are then used to
estimate the mean waiting time for each queue in a polling system. In a later paper,
Tedijanto [176] analyzed a polling system with Bernoulli schedule.

The second model, the probabilistic limited service discipline, was analyzed by
Leung [112] by defining four embedded Markov chains as in Eisenberg [52]. The
queue length distribution is obtained via the discrete Fourier transform. From the
mean queue length, Leung [112] obtained the mean waiting time using Little’ s law.
However, since the solution is based on a numerical approach, the memory and CPU
time are exponential functions of the number of queues. Hence, under heavy loads
only relatively small systems can be solved.

Thirdly, Levy [116] introduced the so-called binomial-gated service discipline.
This service discipline would allow the designer to prioritize the queues by choosing
high p; for high priority queues. Using the buffer occupancy approach, he obtained
closed form solution for the mean queue lengths for symmetric systems. However, for
asymmetric polling systems the mean queue lengths are obtained by solving numer-
ically a set of N equations. As presented by Levy [116], the binomial-gated service
discipline is an effective way to prioritize the queues. This can be achieved by mini-
mizing the waiting costs when the service times and cost per unit of waiting time are
identical in all the queues.

Lastly, Lye and Seah [126] proposed a Markovian polling scheme to reduce access

delay for a network with a large number of stations. Later, Chung, Un and Jung [39]
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Among the first researchers to work on conservatioi: laws for polling systems was
Everitt [56]. He extended the conservation law introtiuced in [96] to the exhaus-
tive k-limited service discipline for symmetric polling systems. In a sequel paper.
Everitt [57] summarized the pseudo-conservation laws ‘or cyclic service systems with
exhaustive, gated, and limited service disciplines. He also derived a new result for
the exhaustive limited service policy. Fuhrmann [66)] v.sed the decomposition results
of the M/G/1 queue to establish an upper bound for t.he mean waiting time in sym-
metric cyclic polling systems. Later. Fuhrmann and Wang [69] derived upper bounds
for the exhaustive k-limited and gated k-limited service disciplines for asymmetric
polling systems.

The pseudo-conservation laws were used by Boxn.a and Meister [28] to approxi-
mate the mean waiting time of non-exhaustive servic-- disciplines (i.e. serve at most
one customer) for cyclic polling systems. Chang and S andhu {35, 36] used the pseudo-
conservation laws and the concept of conditional cyclt- time to approximate the mean
waiting time for the £,-limited service discipline. Box1i:1a and Groenendijk [23] derived
pseudo-conservation laws for polling syvstems. They ex tended the work of Watson [181]
for the case of exhaustive, gated, and 1-limited to po iing systems with mixed service
disciplines. Later, Levy and Sidi [118] extended thei results to polling systems with
correlated arrivals. In [24] pseudo-conservation laws ‘or the discrete-time model were
obtained. And Boxma and Weststrate [29] obtaini-d pseudo-conservation laws for
Markovian polling systems. Lu and Lin [124] used iseudo-conservation law to ana-
lvze an FDDI network. de Moraes and Fuhrmann [46 approximated the mean waiting
time for a polling system with batch Poisson input +ia the pseudo-conservation law.
For a more general model, Takahashi and Kumar [:72] derived pseudo-conservation
law for a polling system with priority in which each uriority has its own service strat-
egy.

Groenendijk [76] obtained approximate result: for cyclic service systems with

mixed service strategies (i.e. exhaustive, gated, anc¢ 1-limited). His analysis is based
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on the pseudo-conservation laws and the exact results of alternating queue systems

where one queue is served exhaustively and the other is 1-limited.

2.10 Stability Papers

Stability. monotonicity. and invariant quantities are fundamental issues of polling
systems. They were considered by several authors [8, 45, 71, 106, 121, 186). In this
section. we focus on the literature that formally establishes some of these important
relationships.

Orne of the most imporiant results concerns the cycle time. It is shown in the
literatures (see, e.g. Kuehn [106]) that the distribution of the cycle time is different
for different queues. However, the mean cycle time, C. is identical for all the queues
and depends only on the total switch-over time, R, and the polling system utilization

p. The mean cycle time is given by:

Levy et al. [121] used sample path analysis to compare the efficiency of the ex-
haustive and gated type service disciplines in polling systems based on the amount
of unfinished work found in the system at any time. They established that the ex-
haustive service discipline is the most efficient one in the sense that the amount of
unfinished work found in the system by an arriving customer is the smallest. Their
studies did not consider the case of asymmetric systems.

Fuhrmann [67] provided decomposition results for polling systems with Poisson
input, general service time distribution, constant switch-over time and gated or ex-
haustive service discipline. He showed that the number of customers in the system
is given by two sets. The first is given by the number in a polling system with no
switch-over time. The second set consists of those that arrive during the switch-over

time and their descendant (i.e. customers that arrive during the service time of those
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who arrived during the switch-over time period).

Servi {152] established a relationship for 1) the maximum number of queues that
can use a server without the system becoming saturated, 2) the relative number of
customers served per cycle in two queues, and 3) the relative lengths of the busy
period for two queues. He also studied the effect of initiating low priority jobs. such
as maintenance. on the performance of a polling system.

Altman et al. [8] considered the stability of a cyclic polling system with general
service discipline (e.g. exhaustive. gated etc). In this polling system. customers
arrive according to the Poisson process. The service time and the switch-over time
are of the general distribution type. Using Foster’ s criterion, Altman et al. obtained
sufficient conditions for the ergodicity and geometric ergodicity of the queue length
distribution. They have also shown that the queue lengths, the cycle times, and the
inter-visit times are stochastically increasing in: 1) arrival rates, 2) service times,
3) walking times, and 4) number of queues. Lastly, they showed that the mean cycle
time. the mean inter-visit time, and the mean station time in the steady state are
invariant under general service disciplines and general stationary arrival and service
processes. This is a very important result, since in many instances. especially in the
case of token rings with target rotation time, the mean of the cycle time is used as a
performance measure. Later, Fricker and Jaibi [62] derived the stability condition for
periodic (cyclic or table) polling models with a mixture of service disciplines. Each
queue can be served according to more than one service discipline in the case of table

polling. They showed that
p+ max (N, /KR <1

is a necessary and sufficient condition for stability (the ratio A,/A, is equal to infinity
if the queue is served exhaustively, A, = oo).

Yaron and Sidi [182] established two bounds for communication networks and
showed that the bounds decay exponentially. These bounds are then used to study

the performance of a multiplexer with several input traffic streams. Chang [34] es-

35



Chapter 2 BACKGROUND And LITERATURE REVIEW

tablished stability conditions for queueing networks. He introduced a new traffic

characterization, minimum envelop rate.

2.11 Remarks

Although we presented over 150 articles. this literature review is by no means
exhaustive. However, one can make two observations. First. we remark that most

addressed problems in the literature focus on polling systems with:

1. Poisson input.

o

. General switch-over time.
3. General service time distribution.

4. Exhaustive and gated service discipline. Recently, the limited service discipline

is gaining more attention.

Although these models can be used to compute performance measures for homoge-
neous network. they are of little use for integrated services networks. This is at-
tributed to the limitation of the Poisson process. Therefore. future research should
focus on using a more versatile arrival process like the Markovian arrival process.
Second, and somehow a more difficult problem to answer, is the issue of optimization
(1.e. given an arrival process, a service time distribution, and the number of queues
how should the queues be visited and for how long in order to minimize, say, the
weighted sum of the mean waiting times).

In this thesis, we attempt to answer the first question. The polling system we
consider is one with MAP input, phase type service distribution. exhaustive time-

limited service discipline and zero switch-over time.
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CHAPTER 3

TIME-LIMITED CYCLIC POLLING

3.1 Introduction

We are about to embark on a detailed study of a cyclic polling system. As outlined
in Section 1.6, our objective is to develop an iterative procedure to compute the mean
waiting time for a cyclic polling system. The cyclic polling system we consider in this

Chapter consists of:
e @ queues 1 < @) < oo (all of the queues have either finite or infinite capacity).

e Arrival to queue 7,7 = 1,2,...Q, occurs according to the MAP with represen-

tation Do, and D, ;.

e Service time of customers of queue 7,7 = 1,2,...Q, is a phase type distribution

with representation (8. S;).
® Service discipline to queue 7, ¢ = 1,2, ...Q, is exhaustive time-limited with time
limit T;.
o The switch-over time is equal to zero.
However, before we outline our solution approach, for completeness, in the next
two sections we introduce to the reader the arrival process and the service time

distribution. In elaborating further about the arrival and service processes, we will

not include the suffix for the queue to save on use of notation.
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3.2 Phase Distribution

Consider an (m + 1) state Markov chain with transition probability matrix given

by

where, the square matrix S is of order m and S° = e — Se is an m x 1 column vector
and e is a column vector of 1s. The absorption into state m + 1 from any state is
guaranteed if the inverse (I — S)~! exists. Let (a.am4;) be the initial probability
vector of the Markov chain. The probability density, on the non-negative integers, of

the time until absorption is given by:
Po=0msy1 pr=aS*'S°, k>1
The mean of this distribution is given by:
p=a(l—S) e

The probability density {p;} is said to be of phase type. The pair («,S) is the
representation of this phase type distribution. In this thesis, each customer takes at
least one unit of time for service, therefore, the variable an+1 = 0.

The phase type distribution can be used to represent servers in series. For exam-
ple, consider a service station with two servers in series. In addition, assume that we
can serve only one customer at a time. Then, if the sojourn time in the first server
is given by a geometric distribution with parameter a and the sojourn time in the
second server is given by 3, then the service time can be represented by the following
phase type distribution:

a l—-a

0 8
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The initial probability vector is given by [1 0].

The phase type distribution can also be used to represent servers in parallel.
For example, in the above example instead of the servers being in series, they are
in parallel now. In addition suppose that the probability that a customer receives
service from the first server is 0.5 and from the second server is 0.5. This can be

represented by the following phase type distribution:

a 0
0 8

The initial probability vector is given by [0.5 0.5].
Details about the phase type distribution can be found in Neuts {133, Chap. 2]

for continuous time and in Neuts [131] for discrete time.

3.3 Markovian Arrival Process

In order to discuss the discrete Markovian arrival process, we first consider the
Bernoulli arrival process. Let the rate of the Bernoulli process be a. N(t) is the
number of arrivals between 0 and ¢. The process N(t) is then a Markov chain on the

state space {¢,¢ > 0} with transition probability matrix P of the form
do d

do d,
dy d,

where, dg = 1 — a and d; = a. After a geometric sojourn time in state z, the process
jumps to state z + 1 with probability o where the transition corresponds to an arrival.
The discrete Markovian arrival process is constructed to allow for non-geometric

times between the arrivals. Consider a 2-dimensional Markov chain {N(t),J(t)} on
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the state space {(¢,7): ¢t 2 0; 1 <j < n} with transition probability P of the form

Do D1
Do D,

Dy D,

where D,; j =0, 1 are sub-stochastic matrices, and (I — D) is a non-singular matrix.
We, also, denote by D,
D= -DO + Dly

an irreducible stochastic matrix of order n. In this Markov chain, N(t) represents
a counting variable and J(t) represents a state phase variable. This Markov chain
represents a discrete arrival process. The transition from state (z,7) to state (2 + 1,1)
where 1 < j,1 < n correspond to an arrival. Since (I — Dyp) is non-singular, then the
sojourn time in the set space {(¢,5) : 7 2 0;1 < j < n} is finite which implies that
the arrival process does not terminate. The stationary vector & of the Markov chain

described by D satisfies the equations
D = m and we =1 (3.1)

where D, e is the probability that, in the stationary version of the arrival process,
there is an arrival at an arbitrary time point. Correspondingly, A = wD;e is the
expected number of arrivals per unit time and also is referred to as the fundamental
rate of the process.

The Markovian arrival process was introduced by Neuts [132] and was later gen-
eralized by Lucantoni {125]. Several well known arrival processes can be represented
by MAP. For example,

Discrete Phase Distribution: The phase type renewal process with representa-
tion (B8, S), introduced in Section 3.2, is a MAP with Dy = S and D, = S°8, where
S° = e — Se.
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The Markov Modulated Bernoulli Process: MMBP is represented by two m xm
matrices D and A. The matrix D is irreducible, stochastic and governs the transition
of the underlying Markov Chain. The matrix A is a diagonal matrix with elements
0<pi<l, fori=1,...m. MMBP can be represented by MAP with Dy = D(I - A)
and D, = DA.

The Interrupted Bernoulli Process: IBP is an arrival process with an active
period with a geometric distribution having a parameter a and an idle period with a
geometric distribution having a parameter 8. Thus the underlying Markov chain of

the IBP is given by
a l—a
1-8 B

During the active period customers arrive according to the Bernoulli process with

D=

parameter p;. Thus A is given by:

A= p O

0 0

IBP can be represented by MAP with Do = D(I — A) and D; = DA.

This ends our high level description of the arrival process and the service time
distribution used in this thesis. Later, in Chapter 5 we discuss how to use the moments
matching approach to reduce the dimension of MAP with special structures (i.e.

convolution of phase type distributions).

3.4 Cyclic Polling System

This Section focuses on the analysis of discrete time cyclic polling systems. In

order to make the description of the solution approach simple we consider a polling
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A A Ac Ap A

Queue C Queue D Queue E
Time =10 Time = 7 Time =7

Queue A

Time =9

Queue B

Time =9

——

1 Server
S Queues {A,B,C,D,E}

@ Total cycle time 42 units

Figure 3.1: Polling System

system with five queues {A, B, C, D, E}. Each queue has an arrival rate A,,
a = A B, C, D, E. Fig. 3.1 represents the design parameters of this polling
system. Although, it is possible to define a Markov chain on an appropriate state
space for the whole polling system, this is not recommended for obvious reasons
(curse of dimensionality). Alfa [3] analyzed an alternating queueing system with a
finite buffer. It is shown in [3], for the case of two queues, that the transition matrix
becomes quite large. In order to analyze the polling system at hand, we consider each
queue separately (decomposition approach) and treat it as a single server queue with
vacation as shown in Fig. 3.2. Arrivals to the queueing system occur according to
MAP as described in Section 3.3. Service is of phase type distribution as described in
Section 3.2 and the switch-over time is equal to zero. We consider both the infinite
and finite buffer cases.

Each queue in the polling system can be represented as a MAP/PH/1 queue
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>

MAP (D,.D))

TIME-LIMITED CYCLIC POLLING

Vacation Period (d. L)

Figure 3.2: Single Server Queue with Vacation

with vacation for the infinite buffer case and as a MAP/PH/1/K queue with vacation

for the finite buffer case where K is the buffer size. Each queue is then analyzed

as a single server queue with exhaustive time-limited service discipline and vacation

periods. For a polling system with Q) queues the vacation period is the visit period of

the other (Q —1) queues in the polling system. As will be shown later, the visit period

for a given queue is a phase type distribution. Let (+;, B;) be the representation of

the visit period distribution for queue i ( = A, B, C, D, E). Because the vacation

period has a finite support it can be represented by a phase type distribution (see

Neuts [131]). Thus, the independent part of the vacation period distribution for queue

A of the polling system defined by stations {A, B, C, D, E} is given by:
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t4=[ 3 0]

Notice that this phase type distribution has a natural justification. Once the server
goes on vacation it starts serving queue B. This is denoted by the visit period to
queue B, Bg, which corresponds to the block matrix in position Z4(1,1). When
service at queue B is finished, absorption occurs according to B and service starts
in queue (' according to 4. Thus, B~ in position Z,(1,2). The remaining block
matrices of Z4 are obtained in the same way. The vector Z% denotes the end of the
vacation pertod. Since the end of the vacation period coincides with the end of the
visit period at queue E, we have B in the last position of the vector Z%. The vector
6 4 is the initial probability vector of the vacation period distribution. Since once the
server goes on vacation it visits queue B, we have 4 in the first position of the initial
probability vector, § 4, of the vacation period of queue A.

The vacation period distribution as described above ignores the fact that there is
some correlation between the visit and vacation period distribution. In fact, the above
equation assumes that the vacation period and the visit period are independent. In
order to bring in the inherent dependency between the vacation and visit period we
use Lee and Sengupta’s [109] approach. In their approach, for a reservation cyclic
polling system, they assumed that the vacation period is a mixture of two random
variables. The first one is the sum of the visit period of @ — 1 queues with probability
P; for queue . The second one is (Q — 1)S with probability 1 — P,, where S is a
generic random variable. Since the vacation period has a finite support, similarly
to the independent part, the dependent part can be represented by a phase type
distribution. Let (%, Y:) denote this phase type distribution. The vacation period
distribution is given by P;(6;,Z;) + (1 — P;)(#;, Y:), where in this notation P,(§;, Z;)
implies that each element of the initial probability vector 8; is multiplied by P; and
each element of the transition matrix Z; and the absorption vector Z¢ is also multiplied

by P;. The probability P; is computed based on the system parameters. In general,
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the vacation period of station 7,z =1,2,...,@Q, is given by a phase type distribution
with dimension r and representation (+;, Vi). The dimension of the vacation period
distribution is equal to the maximurn time the server can be away serving the other
@ — 1 queues, therefore, r = ZJ-Q=1' i#i I;- The mean of the vacation period is given
by v, = 8;(1 - Vi) te.

Notice that similar to the vacation period, the visit period distribution, (+;, B;).
depends on the vacation period distribution. However, in this thesis this dependency
is not included. |

Because of the inter-relationship between the visit and the vacation period dis-
tribution we use an iterative approach to solve the exhaustive time-limited polling
system. In iteration k£ we use the results of iteration £ — 1 to obtain the vacation
period distribution and solve the single server queue with vacation. Before we go
over the iterative procedure we present in the next two sections the analyses of the
MAP/PH/1 and the MAP/PH/1/K queues. Note that for ease of notation the station

index ¢ is dropped.

3.4.1 MAP/PH/1 Queue with Exhaustive Time-Limited Service and Va-

cations

Consider a Markov chain described by the state space A = {(z,(0, k, YU, k,0)),i >
0;j = 1,2,---, Tk = 1,2,---,n;0 = 1,2,---,r;0 = 1,2,---,m}, where i is the
number of customers in the queue during service (vacation); the three tuple (0, k,{')
refers to a vacation period with 0 representing vacation state, k representing the phase
of arrival and [ the phase of the vacation; the three tuple (j, k, !) refers to the service
state with j representing the time clock of service (i.e. how long the service has been
going on since the return from vacation), k referring to the phase of arrival and [ the

phase of service of the customer who is currently in service. The transition matrix of
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this Markov chain P is given as

[ Boo By O 0 0 e e W
By Ay Ao 0 O

P=1y A, A A 0 - - |,

0 0 A, A A

where,

Boo=Dy @V +Do®(V°6) Boi=[D:1®V e @D ®(V°B)

[ N
2 A2 0
0
BIO = [ Au = 0 0 I®A3 ] v = 01112 a'nd
e® Dy ® (S°6)
4 0

A3 = A2 =0, where,
AA=D,®S, Ai=D,®(Se)s, Ai=D,Q(V°B), A3=D, RV
Al =Do®S+ D, ®(8°B), Al =Do®(Se)s+ D, ®(S°6),

Al =D ®(V°B), A}=Do®V,

A)=Do®(S°B), A} =Dg®(S°6), V° =e—Ve, S°=e— Se,
and § = B°(S +8°3), with B"e=1.

The symbol ® is the Kronecker product sign. e, is the transpose of the column
vector e,, which has 1 in the v** position and 0 elsewhere. The block matrices Ag, 4;
and A, are square matrices of dimensions n(r +71m), the block matrix By is a square
matrix of dimension nr, the block matrix By, is of dimension nr x n(r + Tm), and
the block matrix By is of dimension n(r + T'm) x nr. Note that the vector e'1 in B,
is of dimension T. B~ is used to denote resumption of service after an interruption.
Its justification is based on the properties of the phase type distribution and can be

found in Neuts [133, page 52].

66



Chapter 3 TIME-LIMITED CYCLIC POLLING

The detailed analysis of this queueing system could be found in Alfa [2]. Here we

quote the major results without their proof. The rate matrix R can be obtained by

solving:
R = Ao + RA, + R*A,. (3.2)

The mean number of customers in the system at an arbitrary time, g, and the mean

waiting time, Wi, are given, respectively, as

pr=x(I — R) %, W= ﬁ;. (3.3)

Let v, be the probability that the server is on vacation, then
v, =Xpe + X:[I — R]™'(e; ®e), (3.4)

where e; is a column vector of zeros and 1 in the t? position.

This queue is stable if A\b < T/(T + ©). This condition implies that the expected
service time of the expected number of arrivals in a cycle consisting of a service
period and a vacation period is less than the maximum time allowed per visit. In
the remainder of this chapter we assume that this condition holds whenever we are

dealing with the infinite buffer case.

3.4.1.1 Duration of a queue visit

In order to obtain the queue visit distribution, we present a simple recursive formula
for the computation of the busy period, then we show how to obtain the visit period
distribution. Let p;(7) be the probability that a busy period initiated by j customers
lasts ¢ units of time. Note that because we are dealing with discrete time systems the
service time of j customers must be at least equal to j, thus p;(j) = 0forz < j. Let g;,
be the probability that the service time of j customers lasts ¢ units of time. Let d;; be
the probability that j customers arrive in ¢ units of time. The following proposition,

due originally to Klimko and Neuts [101], is known to be true for Bernoulli arrival
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processes and general discrete time service distributions.
Proposition 1: The probability that a busy period tnitiated by j customers lasts 1

units of time is gtven by:

-j !
pi(j) = gisdio + Y gity 3 dicrkpi(k) (3.5)
= k=1

Proof: The arguments leading to this proposition are as follows. The first term
on the right hand side (RHS) is due to the probability that the service time of j;
customers lasts ¢ units of time and during that period no new customers join the
queue. The second term on the RHS is due to the probability that the service time
of j customers last : — [ units of time. During the first z — ! units of time £ new
customers join the queue. These k customers initiate a busy period that lasts [ units
of time. O

Next, we extend this result to the more general case i.e. we consider arrival to
be represented by MAP and service by phase type distribution. In the case of the
discrete MAP/PH/1 queue let GU)(7) be a matrix of dimension m x m with its entries
Gﬂ(i) representing the probability that the service time of j customers last z units
of time given that the service of the first customer starts in phase u and that of the

jth customer ends in phase v. Letting §; = S°3, the matrix GU)(:) is given by:

GM(E) = S§7S; fori> 1 (3.6)
Gy = SF fori>1 (3.7
GU() = S§GUVE-1)+SGYE—1) fori>j+1,j5>2 (3.8)

Also we define the matrix BY) of dimension mn x mn such that its entries BY) (1)
represent the probability that a busy period initiated by j customers lasts z units of
time given that the first customer’s service and arrival are in phase u, 1 < u < mn,
and that the service of the last customer and arrival are in phase v, 1 < v < mn.

In order to extend the result of proposition 1 to the case of MAP arrival and phase
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service we let the scalar g;; be the matrix GU)(z) and d; ; be

?

dij = Dy’ Dj.
J
Then we have
: : A B : :
BY(i) = (G(J)(l‘) Q DB) +3 3 (G(J)(l' ~e D{)""‘Df) BW(1)
I=1 k=1 k

However, since our primary interest is in the probability that the busy period lasts
i units of time we define p;(j) = uBY)(i)e, where u is the steady state probability
that arrival is in phase ¢,z = 1,...,n, and service is in phase j,j = 1,...,m (ie. p
is mn vector).

Proposition 2: The probability that a busy period initiated by j customers lasts i

units of time is given by:

p(j) = n(GYG) @ D;)e

-5 1 [ i—1 .
+ 23| |s(@i-ne DD entt)  (39)

=1 k=1 k

Proof: The proof of this proposition follows directly from Proposition 1 by replacing

: ] .
gi, with GU)(i) and d;; with Dy ?’Di. O
J
The mean duration of a busy period initiated by j customers, y;, is given by:

[>*]

pi = Z:ipe(j) (3.10)
= Yi{e(6V6) ® Dj) e}
I=J
oo i—3 ! 1 —1 ‘ i
+ S p (G’(i — 1) ® Di™'=* D}) epi(k) (3.11)
i=j =1 k=1 k
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Note that because this is an infinite sum we choose a large number J such that
1- Zt-J:j pi(7) < €, where € is a very small positive number. Now we are in a position
to compute the visit period distribution.

Let 8;, (0 <2 < T —1), be the probability that the server returns from a vacation

to find ¢ customers waiting and br = 3521 9;. For our problem

6, = oxiole®)V°/vg, 1<i<T—1, and (3.12)
8o = oxo(e ®)V°/vo (3.13)

Therefore, we have to consider three cases:

Zero Customers Waiting

If when the server returns from a vacation it finds no customer waiting, then the
duration of the visit to the queue is zero, because the server departs immediately for
a vacation. The probability of this occurring is 8o.

At Least One (but less than T ) Customer Waiting

If when the server returns from a vacation it finds & customers waiting (1 < k < T—-1),
then the duration of a visit to the queue is a phase type distribution with parameters

(ae(k), F(k)), where ae(k)=[100 ---0], and

F(k) = :
br_1(k)
0 0 0
where bj(k) =1 — b;(k), j>1, and
bi(k) = by(k) and (3.14)
bi(k) = bj(k)(l—ibf(k))“ 2<j<T-1 (3.15)
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The probability of this occurring is 6.

At Least T Customers Waiting

TIME-LIMITED CYCLIC POLLING

If when the server returns from a vacation it finds at least T customers waiting then

the duration of its visit to the queue is exactly T units and can be represented by a

phase type distribution with parameters (a(T), F(T)), where «(T) = [1 0 0 ---0],

and

0

0

The probability of this occurring is or.

The duration of a visit is thus a phase type distribution with parameters vy = 8o,

¥=[1—600 --- 0]. Since the server visits a queue even though it is empty, the

distribution of the visit period must have a probability mass equal to zero at zero,

hence 70 = 0 (i.e. the probability of not visiting a queue is zero). Therefore, the

vector 4 must have a one in position 1 and zero every where else i.e. 7o = 0, and

~ = [1 0]. The transition matrix, B, and the absorption vector, B°, of the visit period
p

distribution are given, respectively, by:

B =

B° =

where F°(1) = e — F(i)e.

(éTF(T) + S 0. F(k)

T-1

k=1

T-1

(éTF°(T) + 3 okF°(k)) /(1 —8)

k=1

)/(1 —8), and (3.16)

(3.17)
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3.4.2 The MAP/PH/1/K Queue with Exhaustive Time-Limited Service

and Vacations

The state space of the Markov chain of this queueing system is the same as that of
the MAP/PH/1 queue except that the maximum number of customers in the buffer

is K. The transition matrix P describing this Markov chain is given as:

- -

Bow Bo
B A Ao
o A2 A, Ao
A2 A1 Ao
A, A_

L

where the matrices Boo, Bo1, B, Ao, A1, A are given in Section 3.4.1. The matrix
A is given by

-~

A:A0+A1.

The steady state probability vector [xo X; ... Xg,] can be obtained by solving
the system of equation xP = x and xe = 1, where K, is the number of customers
in the system i.e. K; = K + 1. Because this system of equations is finite and
sparse we use the block Gauss-Seidel iterative method. A discussion on the use of
iterative algorithms for the solution of Markov chains is available in Stewart [161] or
Grassmann (74]. The mean number of customers in the system at arbitrary times

and the mean waiting time are given, respectively, by:

K,

. KL
= e, Wp=——7"-—, .
rL ';zxe L i - P ) (3.18)

where Py, = Xk, e and is the blocking probability. The probability that the server is

on vacation is given by

R
vo = Xee + Y_ Xi(e; @ e). (3.19)

=1
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Similar to the infinite buffer case, we need to obtain the visit period distribution.
This is achieved easier by first obtaining the number served during a visit from which

we can compute the busy period distribution.

3.4.2.1 The number served during a busy period

In this section, we discuss the number of customers served during a busy period for the
MAP/PH/1/K queue. Again K is the number of customers in the queueing system,
A, = K + 1. The number of customers served during a busy period has a phase type
distribution with representation (@(k), L) where ¢(k) is the initial probability vector.
The vector ¢(k) has 1 in position k and zero everywhere else. The matrix L is given

by:

r K)-1
dy dy ds --- dyg,o, 1-3F51d
do dy dp - dg,_o 1-3YK24

L={0 do d - dg,_s 1-3K34,
o 0 0 --- do 1 —dy ]

where d; is the probability of having : > 0 arrivals during the service time of one
customer. Let P; be the probability that the service time of one customer lasts ;
time units, and let Q} be the probability of having ¢ arrivals in j time units. FP;, Q;

and d; are given, respectively, by:

P, = BST's° (3.20)
| j .
Q = xD}{ "' Die (3.21)
l
d = Y PQl (3.22)
=1

From a computational aspect, because the sum for d; goes to infinity one would

stop when the increment in the total probability is less than an acceptable tolerance,
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say € < 107%. Hence, the probability that v; v = k,k + 1, ...; customers are served
during a busy period initiated by k customers is given by N,(k) = ¢(k)L'"'L°.
The mean number of customers, h;(k), served during a busy period initiated by &
customers is given by the mean of the phase type distribution (@(k),L) i.e. hy(k) =
@(k)(I — L) 'L° where L° = e — Le.

3.4.2.2 Duration of a queue visit

From the number of customers, j, served during a busy period we can compute, b;(k),
the probability that a busy period initiated by k& customers lasts i time units. b;(k)
is given by:
bi(k) =Y N;(k)BGY(i)e (3.23)
i=k

where GU)(i) is as defined in Section 3.4.2.2.

Let 6;, (0 <: < min(T - 1, K)), be the probability that the server returns from
a vacation to find ¢ customers waiting. We have to make a distinction between two
casesie. T< K and T > K.
Case 1: T< K

Let 7 = ZJK:T ;. For our problem

6 = oxioe® )V /ve, 1 <i<K, and (3.24)
b = vxo(e®1)V®/ve. (3.25)

Consider each of the followings:-

Zero Customers Waiting

If when the server returns from a vacation it finds no customer waiting, then the
duration of the visit to the queue is zero, because the server departs immediately for
a vacation. The probability of this occurring is 6,.

At Least One (but less than T) Customer Waiting

If when the server returns from a vacation it finds k£ customers waiting, 1 < k£ <

4
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(T — 1), then the duration of a visit to the queue is a phase type distribution with

parameters (a(k), F(k)), where a(k) =[1 00 ---0], and

F(k) = :
- br(k)
0 0 0 |
where b)(k) =1 — b;(k), j>1
bi(k) = bi(k), and (3.26)
bk = bk — S b 2<i<T -1 (3.27)

=1
The probability of this occurring is 8.
At Least T Customers Waiting

If when the server returns from a vacation it finds at least T customers waiting then
the duration of its visit to the queue is exactly T units and can be represented by a

phase type distribution with parameters (a(T), F(T)), where a(T) = [1 6 0 ---0].

and
(01 0 0
00 1 O
F(T)= o0
1
_0 0o --- -~ 0 i

The probability of this occurring is f7.
The duration of a visit is thus a phase type distribution with parameters yo = 6o,

4 =[l=6,00 --- 0]. For the same reasoning as in Section 3.4.1. we set o = 0
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and 4 = [l 0]. The transition matrix, B, and the absorption vector, B°, of the visit

period distribution are given, respectively, by:

T-1

B = (éTF(T)+ Zakp(k)) /(1 =6), and (3.28)
k=1
T-1

B° = (o'TF°(T) +3 GkF°(k)) /(1 — 6o) (3.29)
k=1

where F°(1) = e — F(1)e.
Case 2: K < T
This case is not realistic from a design point of view and hence will not be presented

here. It would not make sense to assign less memory than slotted time.

3.5 Iterative Procedure

Before we present the iterative procedure, let us briefly explain how we adopt
Lee and Sengupta’s [109] idea to deal with the correlation between the visit period
and the vacation period. The vacation period is taken to be a mixture of an inde-
pendent and a dependent random variable. This mixture is assumed to depend on
the system parameters. The first part of the vacation period is obtained using the
visit period distribution presented in Section 3.4.1.1 for the infinite buffer case and in
Section 3.4.2.2 for the finite buffer case. The second part of the vacation period, in
our case, depends on the polling system utilization. This is because under medium
to heavy load conditions the server, once it leaves a queue, has a higher probability
of staying on vacation for the maximum vacation period than under light load con-
ditions. Our experimentation with the algorithm, using different input parameters,
showed that it is more efficient to use different vacation periods (dependent parts)
for p < 0.65 and p > 0.65, where p is the system utilization.

For the case of p < 0.65 the dependent part of the vacation period is computed

using Algorithm 2 of Lee and Sengupta [109]. This can be achieved by defining a
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phase type distribution (%,.Y;). In our case, this phase type distribution is given by:
¢¥={10... 0] and

—01 0 0 .
0 0 1 0
0
Y= 0 : 0 p(@-1) 0
0 : 0 0 (@) 0
0
P'(Z,’Q;xl.;;ei T;)
00 --- 0 J

where p'(Q — 1) = 1 - p(Q@ — 1),

PU) =1 -p()(1 — Tloop(i))™?, and J = £75' T, The probability p(;)
is computed using Lee and Sengupta [109] (Algorithm 2). For our model, p(j) is
computed as follow. Let r;(k) be the probability that a visit period lasts ¢, 2 <1 < T,

units of time for queue k. Then,
ri(k) = v(k) B~ (k)B° (k).
Next, we sort in descending order all of ri(k), 2 < ¢ < T, and k € (Q — 1), to get
p(7)- Note that the distribution (9, Y) implies that:
e Once the server goes on vacation it visits all Q — 1 queues, and
e the remaining part of the vacation period represents a visit period where all
@ — 1 queues are treated as a single queue.

For the case of p > 0.65 the dependent part of the vacation period is assumed
to be deterministic. Thus for queue : the length of the vacation period is given by
Zg#‘- T; which can be represented by a phase type distribution with 1’s in the super-

diagonal positions and 0’s every where else. This is because for moderate to high
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system utilization, once the server goes on vacation from queue 1 it is more likely to
stay away serving each of the other queues for its whole time period.
The iterative procedure to solve the cyclic polling system with infinite buffer is

outlined below:

1. For : = 1 to @ let the distribution of the visit period, (4, B;), be given by a

phase type distribution of dimension T;.

- ;
0 p. O
0 0 p

Bi=|og : . :|. (3.30)
0 0 --- p
00 0 ]

where p; is queue ¢ utilization.

X

Forz=1to @

if 0.8 > pset P, = p? ! + p;

if0.65<p<08set P,=(1—pi)p? ' +p;

if p <0.65 set P, = (1 — p;)w9 ! + p;, where w = ;L%‘—Ep—'

For infinite buffer queues:

a- Compute the vacation period V =(1 - P)x Z+ P, xY

b- Compute the rate matrix R* (Eq. 3.2)

c- Compute [xg X1]
d- Compute the average queue length u% (Eq. 3.3)

e- Compute the probability that the server is on vacation (Eq. 3.4)

el

Update the visit period distribution

end
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For finite buffer queues:

if P.>1set P, =1

Compute the vacation period V =(1- F)x Z+ P, xY

ar
|

o
]

Compute [Xg X1 ...Xg,] using Gauss-Seidel

Compute the average queue length u} (Eq. 3.18)

(g]
‘

(=9
'

Compute the probability that the server is on vacation (Eq. 3.19)

e

Update the visit period distribution

end

3. If the average queue length and the mean vacation period did not converge go

back to 2, else stop.

Note that we chose to initialize the visit period using Equation 3.30 because it makes
convergence faster. This is because when the utilization is low the average visit
period will be small and when p; is high the average visit period will be high. This is
confirmed by the results of most of our computer runs. Notice that in the case p; is
one (queue is unstable) then the average visit period will be equal to T;.

During the computation of the performance measures of the polling system at each
iteration we store only the information pertinent to the current queue i.e. the arrays
used to compute the performance measures for queue 1 — 1 are reused to compute
the performance measures for queue z. This, of course, could be done by creating a
subroutine to solve for the vacation model and a main that calls this subroutine for

each queue.

3.5.1 Convergence of the Iterative Algorithm

In order to prove that the algorithm adopted for this cyclic polling system with
exhaustive time-limited service discipline, MAP input, phase type service distribu-
tion, and zero switch over time converges we follow the same steps as Lee and Sen-

gupta [109]. The proof is presented for the infinite buffer case. Similar arguments

79



Chapter 3 TIME-LIMITED CYCLIC POLLING

could be made for the finite buffer queue case. First, consider two single server sys-
tems of the type analyzed in Subsections 3.4.1 and 3.4.2 in which the vacation periods
are denoted by V" and V(). Let the corresponding jth service period be denoted
by BJ(E) and let the jth queue length when the server leaves for vacation be denoted
by N i=12and j=1,2....

Lemma If V) >,, V® then B! >,, B* and N >,, N{*.

The >,, is defined in Stoyan [163] as stochastically dominant. The proof of
this Lemma for our cyclic polling system is done into two steps. First, we prove
monotonicity and then we prove comparability. Let the kernel of the Markov chain

{N;”,i = 1,2} be denoted by Q:(z,y) = Prob{]\"}i_)1 < leJ(i) =r}.

e Monotonicity: For z = 1,2 the following relationship is true. Let A" represent
the number of arrivals in a vacation period V®, C*) the number of arrivals in

a service period, and D) the number served in a visit period.

Qi(zi,y) = Prob{(z, + AY +CY - DV 0)* < y|N; = z(}
< Prob{(z,+ A® + CO) — DU 0)* < y|N; = z,}

= Qi(‘r% y)

where (z,0)* = z if z > 0 and (z,0)* = 0 otherwise.

This relationship is true for any z,, z, y positive integer for the following reason.
The number of arrivals during the vacation period is the same for both cases.
The number of arrivals during the visit period depends on its length. Since
we are dealing with discrete time single arrival queues, in the worst case the
number of arrivals during the visit period given N}i) = z, is equal to the number
of arrivals during the visit period given that N](i) = z;. This implies that both
visit periods are equal. Hence, the number served in the visit period given
N}” = z, is the same as that served in the visit period given N}‘) = z,. Thus

the monotonicity proof.
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o Comparability: The comparability condition is based on the following argu-
ments. Since V(? <,, V(1) then the number of arrivals in V(2 is less than
the number of arrivals in V). Hence, the visit period associated with V{2 is
shorter which results in a smaller number of arrivals during the visit period.
Thus, the number of customers served during a visit period under vacation V'(?)

is at best equal to the number served under vacation period V(1)

3.5.2 Stability of the Iterative Algorithm

In order to show that the proposed algorithm is stable and converges to the solution
we first show that the vacation period in iteration &k, V*) &k = 1,2, ... represents
a stochastically non-decreasing sequence of random variables and second that if the
original cyclic server queue is stable then the vacation model remains stable through-
out the iterative procedure. The first part of the proof is identical to Lee and Sen-
gupta [109] and therefore, we avoid its repetition here. For the second part, consider
a system in which at every visit the server spends T; time units at the queue and in
which one unit of walk time is incurred at every queue. Call this system system H.
[f system H is stable then our system is stable. A sufficient condition for stability for

system H is given in Georgiadis [71] as

T;
pi<gll=r) (3.31)

where p; is the queue utilization and p is the system utilization. From Eq. 3.31 we

have
Qpi < Ti(1 - p) (3.32)
which after algebraic manipulation leads to

Q
pi(Q+T)+T: Y pu<T, (3.33)

n=1,n#1
If we set p, = 0, V n, except for p; and p, in Eq. 3.33 we get

Q+T;
pl T—v‘

<1-p; (3.34)
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If we set p; = 0in Eq. 3.34, then

T;

<giT (3.35)

Note that the average visit period is bounded by that of the exhaustive discipline.

Hence.

b:
§; < .

<= (3.36)

where 3, is the average visit period. For the algorithm to converge we must have

o =K, ngi Sn. From Eq. 3.36 we can write
Q e
Y o< Y — (3.37)
n=1,n#: n=1,n#i l- Pn
T,
; < —_— 3.38)
2 @+ (

n=1nz#i
The first inequality (Eq. 3.37) is due to Eq. 3.36 and the second inequality (Eq. 3.38)
is due to Eq. 3.34 (take the inverse of Eq. 3.34 and then take the sum over n). For the
vacation model to be stable we must show that p; < + - for:=1,2,. .., @ (stability
condition for the MAP/PH/1 queue).

From Eq. 3.38 we can write

v; < 3.39
,,E#, p.(T 0 (3:39)
T,
piti + Tipi < Tipi + (3.40)

n-_g#l T" Q
T;
(0 + T, 341

n=1,n#:
The second term in this inequality (Eq. 3.41) is due to Eq. 3.35. The next step in the
proof is to show that the right hand side of the inequality (Eq. 3.41) is bounded by
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T;. This can be done by routine algebraic manipulations.

T, T? T;
+0 T+0 T.+0
T;(T; - 1)
<etTrig
KT+ Q)+ T(T: - 1)

T, +Q
K*+QT. +T?+ KT, - KT, - T,

T.+ @

(Q+T.)*-QT:-T.

T.+ @
< Q+Ti-Q-1

< T

Q
pi(vi +Ty) < ZT
n=1 "%

Hence we have p;(%; + T;) < T; which proves our claim. This proves that the average
vacation period keeps increasing from one iteration to the next but never exceeds the
limiting value. Note that this proves only that the algorithm converges. Although
we have proven that the algorithm converges and is stable, we did not prove that it
converges to the exact distribution. The stability of the algorithm is confirmed by
starting with unstable conditions. The results obtained for the mean queue length

and the mean waiting time were equal to infinity. This confirms our proof.

3.6 Numerical Examples

In comparing the approximate approach results with those of the simulation we
define the percent error as Y—'%“i‘&, where W,;,, is the simulation mean waiting
time and W,,, is the approximate approach mean waiting time. A negative percent
error indicates that the approximate method over-estimates the simulation results.
For the simulation we used 5 replications each of which is of 10° time units long for
Q < 6 and 10° for @ > 7, where Q is the number of queues, and a warm up period

of 10° time units, we show the half-width of the 95% confidence interval using Law
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and Kelton [108, Chap. 9] Since, there are many system parameters we chose to

show some of the results to give a general idea on the performance of the iterative

procedure.

3.6.1 Infinite Capacity Model

The first set of examples shows the performance of the iterative method for different
system utilization. Tables 3.1-3.4 show the comparison between the simulation and
the approximate approach of the mean waiting time for a 4 queues polling system.
The service time distribution is identical for all queues and is of the geometric type.
Customers arrive according to the geometric distribution and the probability of arrival

is given by A. The maximum time allocated for each queue is given by T,n.z.  This

Table 3.1: 4 Queues Polling System, b = 1.25, p = 0.75

Queue | A l Tazr | Wapp Weim | % Error
‘r__ ——

1 0.2{ 5 |13.120 | 14.987 + 0.694 12.5%

2 0.1] 4 8.922 | 9.892 + 0.247 9.8%

3 02| 6 9.123 | 10.006 <+ 0.390 8.8%

4 0.1 3 |14.270 {17.119 +0.895 16.6%

polling system is asymmetric in terms of the load and the time allocated to each
queue. We vary the system utilization between 0.5 and 0.75 while keeping the mean
service time constant. In all four examples queue 2 and 4 have the same arrival rate,
yet consistently queue 2 has a lower mean waiting time than queue 4. This is due to
queue 2 having a higher time limit (4 time units for queue 2 compared to 3 time units
for queue 4). In Table 3.4, queue 3 and 4 have the same arrival rate with queue 3
having a much higher time limit (i.e. queue 3 have twice the time allocated to queue

4). The mean waiting time for queue 3 is much lower than that of queue 4. This
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Table 3.2: 4 Queues Polling System, b = 1.25, p = 0.6875

Queue A | Thar | Wapp Wym | % Error
1 0.15 ) 7.201 | 7.052 £ 0.185 ---‘.Z.l-%Tr
2 0.1 4 7.967 | 7.074 +0.812 | —12.6%
3 0.2 6 7.449 | 6.844+0.196 | -8.8%
4 0.1 3 11.398 | 10.854 £ 0.291 -5.0%

Table 3.3: 4 Queues Polling System, b = 1.25, p = 0.625

Queuve | A | Tz | Wopp Wyim | % Error
1 0.1 ) 4.524 | 3.918 +£0.0668 | —15.5%
2 0.1 4 4.944 | 5.149 £ 0.0637 4.0%
3 0.2 6 5.457 | 4.743 £0.0831 | —-15.1%
4 0.1 3 |[7.258 | 7.407+0.234 2.0%

is mainly due to the frequent timeouts for queue 4 while queue 3 is served almost
exhaustively.

The maximum absolute error, 20.6%, for these examples is encountered with a
low system utilization, p = 0.5, for queue 3 in Table 3.4. All other examples have a
maximum absolute percentage error of 15%.

The second set of examples, Tables 3.5-3.7, shows the performance of the iterative
procedure when the number of queues is 5, 6 and 8 while keeping the system utilization
constant. Again, arrival and service time are represented by geometric distribution.
Although, queues {1, 5} in Table 3.5 and 3.6, queues {2, 6} in Table 3.6, and queues
{1, 4, 7} and {2, 6, 8} in Table 3.7 have the same parameters (arrival rate, and

Tnaz) their simulation mean waiting time is not identical. This is due mainly to
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Table 3.4: 4 Queues Polling System, & = 1.25, p = 0.50

Queue || A | Thaz | Wapp Wiim | % Error "

I 021 5 2530 { 2.430 £0.0354 | —4.1%

0.1 ] 4 |2.765 | 3.055+0.0550 9.5%

8]

3 02| 6 2.445 | 2.028 +0.0486 | —20.6%

4 0.1! 3 |3.714 | 4.003 £ 0.0598 7.2%

Table 3.5: 5 Queues Polling System, b = 1.25, p = 0.75

Queue | A | Tomaz | Wapp Wiim | % Error
1 0.15 ;) 12.610 | 12.522 £ 0.703 | —-0.7%
2 0.1 4 11.533 | 11.832 £ 0.318 2.5%
3 0.15 6 9.622 | 8.727 £0.418 | —10.3%
4 0.05 3 11.550 | 10.808 £0.179 | —6.9%
b) 0.15 ) 12.610 | 12.345 +£0.749 | —2.2%

sampling errors. The performance of the algorithm is comparable in terms of the
percentage error with the case of 4 queues. Note that in most cases the iterative
approach over-estimates the mean waiting time on the average by about £10%.

In all the examples studied, the iterative algorithm converges in less than 30
iterations, with a run time under 15 minutes on an IBM RS6000/590. Most of the
CPU time for each run is taken to solve for the rate matrix R, and the queue length
distribution. The rate matrix R is obtained using the algorithm given in Alfa [2].
The stopping criterion for convergence was chosen to be ¢ = 1078 i.e. the program
stops when the difference in the mean queue length and the difference in the mean

vacation period for all the queues is less than 1078, In the examples ran, the number
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Table 3.6: 6 Queues Polling System. b = 1.25, p = 0.75

Queuve || A | Ther | Wapp Wiim | % Error

l 0.15 3 10.235 | 8.971 £0.374 | —14.1%

0.1 4 14.534 | 13.494 £0.741 | -7.7%

(8]

3 0.15( 6 11.554 | 9.963 £0.268 | —16.0%
4 0.05( 3 12.496 | 12.008 £ 0.466 | —4.1%
5 015 5 10.235 | 9.098 £0.480 | —12.5%
6 0.1 4 14.534 | 13.778 £ 0.648 | —5.5%

of iterations required for convergence depends on the number of queues, @), and the
allocated time, T, for each queue. This is because when T is large, the dimension of
the phase type distribution of the vacation period becomes large, thus, a large rate
matrix to solve for. Similarly, when @ is large we have to solve for Q rate matrices

and queue lengths (assuming that the polling system is not symmetric).

3.6.2 Finite Capacity Model

Tables 3.8-3.11 show the comparison between the simulation and the approximate
approach of the mean waiting time for a 4 queue polling system. The service time
distribution is identical for all queues and is of the geometric type. Customers arrive
according to the geometric distribution and the probability of arrival is given by A.
The maximum time allocated for each queue is given by T4z, and the buffer size by
K.

Table 3.12 shows the performance of the iterative procedure when the system
utilization is larger than 1. Notice that queues ! and 3 have the same buffer sizes,
but queue 3 has a larger allocated time, thus it has a lower mean waiting time. This

is because the blocking probability for queue 3 is smaller. Similar arguments can be
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Table 3.7: 8 Queues Polling System, b = 1.25, p = 0.75

Queue | A | Thar | Wepp Weim | % Error
1 0.06 3 14.093 | 15.031 + 0.307 6.2%
2 0.06 4 10.737 | 9.400 +£0.130 | —14.2%
3 0.12] 5 13.700 { 12.109 £0.151 { -13.1%
4 006 | 3 14.093 | 15.114 £0.191 6.8%
) 0.12 5 13.700 | 12.061 £0.132 | —13.6%
6 0.06 4 10.737 | 9.441 £0.136 | —13.7%
7 0.06 3 14.093 | 15.091 + 0.236 6.6%
8 0.06 4 10.737 | 9.406 +0.060 | —14.2%

made for queues 2 and 4.

In all the examples studied, the iterative algorithm converges in less than 30

iterations, with a run time less than 15 minutes. Most of the CPU time during each

run is used up in solving for the queue length distribution. The queue length is

obtained using block Gauss-Seidel iterative procedure with a stopping criterion for

convergence of 107!°. The block dimension is of size mn, where m is the dimension

Table 3.8: 4 Queues Polling System, b = 1.25, p = 0.75

LQueue A | Tnaz | K | Wapp Wiim | % Error |
rl 02 5 8 19.069 | 7.828 + 0.072 —15.9%7
2 0.1 4 5 [7.371 | 6.767 £0.116 | —8.9%
3 02| 6 8 |3.673 | 6.273 £ 0.100 9.6%
4 0.1 3 5 | 8220 | 9.259 £0.130 11.2%
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Table 3.9: 4 Queues Polling System, b = 1.25, p = 0.6875

Queue | A | Thaz | K| Wy, Weim | % Error
1 Il 0.15 ) 8 | 5.541 | 5.619 £ 0.063 1.4%
2 0.1 4 5 |5.095 | 5.602 £ 0.099 9.0%
3 0.2 6 8 | 5.894 | 5.120 +0.040 | —15.1%
4 0.1 3 3 | 7.903 | 7.526 £0.124 —-5.0%

Table 3.10: 4 Queues Polling System, b = 1.25, p = 0.625

Queuve | A | Thar | K| Wopp Weim | % Error
| 0.1 ) 8 | 3.820 | 3.784 £ 0.082 —1.0%
2 0.1 4 S5 | 4.020 | 4.463 + 0.038 9.9%
3 0.2 6 8 14338 | 4.074 £0.021 | ~-7.7%
4 0.1 3 5 | 5.707 | 5.989 £+ 0.061 4.7%

of the service time distribution and n is the dimension of the arrival process. The
stopping criterion for convergence for the iterative polling algorithm was chosen to
be € = 1078 i.e. the program stops when the difference in the mean queue length
and the difference in the mean vacation period for all the queues is less than 108,
In the examples run, the number of iterations required for convergence depends on
the number of queues, @, the buffer size of each queue, K, and the allocated time
for each queue, T'. This is because when T and/or K is large, the dimension of the
probability vector becomes large. Similarly, when @ is large we have to solve for Q
queue lengths (assuming that the polling system is not symmetric).

Similarly to the infinite buffer capacity case, the maximum percentage error for

the finite buffer capacity case is £15%. Both models yielded reasonable results for
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3.7 Variant of the Model

[n this section, we describe how to take the model for the polling system without
switch-over time and modify it to account for a switch-over time between the queues.
The only change necessary is for the vacation period distribution. Let the switch-
over time between queue i and queue i + 1 be of phase type distribution with the
following representation (&;,U;). Let U° be the absorption vector for the phase type
distribution. The initial probability vector & has | in the first position and zero every
where else. With this information we construct the independent part of the vacation

period given in Section 3.4. For the example given there the vacation period becomes

- Usg Ujvg 0 0 0 0 0 0 0 -
0 Bg gec 0 0 0 0 0 0
0 0 Uc Ug~e 0 0 0 0 0
0 0 0 Bc Bikp O 0 0 0
Zsi=| 0 0 0 0 Up Upvyp O 0 0
0 o0 0 0 0 Bp B%kz 0 0
0 0 0 0 0 0 Us Ulvg O
0 0 0 0 0 0 0 Bg EKA
] 0 0 0 0 0 0 0 0 Ua |
z5 = 0
Us

5A=[n3 0 ]

Block Z4(1,1) denotes the beginning of the switch-over time from queue A to

queue B. Block Z4(1,2) denotes the end of the switch-over time and the beginning
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of service in queue B. The remaining of the blocks of the transition matrix Z4 can
be explained in the same way. Note that the dependent part of the vacation period

would be computed using an approximate approach similar to that of Section 3.5.



CHAPTER 4

TIME-LIMITED TABLE POLLING

4.1 Introduction

In Chapter 3 an iterative procedure for the exhaustive time-limited service disci-
pline for cyclic polling systems was presented. In this Chapter we extend those results
to the case of table polling. Consider a multi-queue system with @ queues visited
periodically according to a table of size N, N > @. This type of polling includes star
polling, elevator polling, cyclic polling and custom-made tables. For each queue i;

t=1,...Q; of this polling system:

e Customers arrive according to an m-dimensional Markovian arrival process with

representation (Do, Dy ;) and fundamental rate A,.

e The service time distribution is an n-dimensional phase type with representation
(3(7 Sx)

o The service discipline for queue ¢ is exhaustive time-limited with time limit
T;. Notice that the time limit is hard preemptive i.e. an on-going service is
interrupted at the time limit and in the next visit the server resumes serving
the customer where it left off. Notice that the time threshold, T7, is fixed for a

station for all visits in a table.
e Each queue is visited M; times, M; > 1, in a table.

o The switch-over time between queue ¢ and queue ¢ + 1 is equal to zero.
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Similar to the cyclic polling case, the analysis is based on the decomposition
method. Each queue is considered separately as MAP/PH/1 queue with vacation
in the case of infinite buffer capacity model and as a MAP/PH/1/K queue with
vacaiion in the case of finite buffer capacity model. The analysis of MAP/PH/1 and
of MAP/PH/1/K with phase type vacation distribution is presented in Chapter 3. In
the following we discuss how to extend those results to the case of multiple vacations.

The visit period has a phase type distribution with dimension 7; and representa-
tion (7;, Bi), 2 = 1,...Q. The visit period distribution is obtained in the same way as
in Section 3.4 for the case of infinite buffer capacity and as in Section 3.5 for the finite
buffer case. The necessary changes to account for multiple vacations are presented in
Section 4.3. Similarly to the vacation period in Section 3.4, each sub-cycle vacation
period (1.e. the time between successive visits to the same queue in the table) can
be represented by a phase type distribution with dimension }_;egc T, where SC is
the set of queues visited during the sub-cycle vacation period. Therefore, if queue i,
t=1,...Q, is visited M;, M; > 1, times in a table, then queue : has M; phase type
vacations which we denote by (8, Li); k = 1,... M,.

From the distribution of each of the sub-cycle vacation period we can construct
the vacation period distribution for each queue by noting that the type of sub-cycle
vacation the server takes depends on its current position in the table. This correlation
between the position in the table and the type of vacation the server takes can be
captured using MAP. Thus, we denote by (V4;, V1) the vacation period distribution
of queue :. In this notation element (u, v) of matrix Vp; denotes transition from state
u to state v with the vacation period still going-on and the element (I, k) of the matrix
V.. denotes transition from state ! to state & with the vacation period ending from
state [ and the next vacation period beginning from state k. For clarity and ease of
notation from here on the queue index is used only when it is absolutely necessary.

As an example consider a polling system with five queues {A, B, C, D, E}.

Furthermore, suppose that we have to:
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o Visit queue A 2 times per cycle with T, = 4.
e Visit queue B 1 times per cycle with Tg = 5.

o Visit queue C 2 times per cycle with Te = 3.

Visit queue D 1 times per cycle with Tp = 6.
¢ Visit queue F 1 times per cycle with Tg = 4.

A possible polling table is given as A, B, C, A, D, E, C. In this polling table,
queues A, and C are served two times .n this table with each visit having a maximum
length equal to 4 units of time, and 3 units of time, respectively. Queues B, D, and
E are visited once for a maximum of 5, 6, and 4, respectively. Let us consider the
vacation period of queue A. Since queue A is served two times it has two sub-cycles.
The first consists of queues {A, B, C} and the second {A, D, E, C}. Therefore,
during the first sub-cycle vacation period the server visits queues {B, C} and thus
has a dimension equal to Tg + T = 8. Let this vacation be denoted by (8,, L;),

which is given by:

61':[‘73 0]7

where, B° = e — Be. e is a column vector of 1’s. The probabilistic interpretation
of the above distribution is as follows. Once the server leaves queue A it goes on
vacation. The initial probability vector of the vacation period is given by 6,. Since
after leaving queue A, the server goes to queue B we have the initial probability
vector of the visit period of queue B, 4, in the first position of &;. Once the server
is in queue B, it stays there according to the visit period distribution of queue B.
This is given by Bg in position L;(1,1). At the end of the visit period in queue B,

the server moves to queue C. Therefore, we have absorption according to By and
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beginning of service in queue C according to 4, which is given in position L;(1,2).
Then, service go on at queue C according to its visit period distribution B¢ at the
end of which the sub-cycle vacation period is over. Thus, the absorption vector L}
has B¢ in position L{(2,1).

In the second sub-cycle vacation, the server visits queues {D, E, C}, thus its

dimension equals to Tp + Tg + Tc = 13. Let this vacation be denoted by (62, L,) and

is given by:
- . - ;
Bp Bpye O 0
L=| 0 Bg g |+ Le=| 0 {.
0 0 Be L ¢ ]
62 = [ o 0 ] .

The arguments leading to (82, L) are the same as those for (8,,L,). A schematic
diagram for queue A with two types of vacation is shown in Fig. 4.1. Using (6,, L)
and (&2, L;) the vacation period of queue A is given by:

Ly 0 0 L3S,
Vo= , W=

0 L. L6, O

The distribution (Vg, V1) indicates that the server stays on vacation according to Vg
and that V; indicates the end of the vacation period and which type of vacation the
server will take next. V5(1,1) indicates that the server is taking a vacation according
to (81,L,) with its end denoted by V{(1,2). Furthermore, V;(1,2) indicates that
the next time the server goes on vacation from queue A its vacation period will be
given by (82, L2), thus, we have L{§; in V(1,2). Similar arguments lead to positions
V0(2,2) and V1(2,1).

In general, the vacation period of a queue visited M times in a cycle is given by:

96



Chapter 4 TIME-LIMITED TABLE POLLING

>

MAP (D, D)

@ Vacation Period 8 ,L)

B S)
Vacation Period (§, ,L.)
Figure 4.1: Vacation Model
Ly 0 O 0 0
0 L, O 0 0
Ww=10 0 . 0 0 |-
0 0 0 Ly, O
0 0 ¢ 0 Ly
0 L6, 0O 0 0
0 0 L3 0 0
Wi = 0 0 0 0
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In addition to the vacation period distribution. we introduce four additional ma-
trices V5, V3, V4, Vs. The matrix V; is defined for transition from the end of vacation
to the beginning of service at queue :. It is defined for the case when the server.
upon return from vacation, resumes service for a customer whose service has been

interrupted in the previous queue visit. It is given by:

[ 0 L o 0

o

0 0 LB 0 0
Va=| o 6 0 . 0
Mm-18

@ 0 0 0 0

0 0 0

(o=

-

where the probability vector 3° is the initial probability vector of resuming an inter-
rupted service.

The matrix V3 represents transitions from the end of vacation to the beginning
of service at queue 7. It is for the case when the server, upon return from vacation,

starts service of a new customer and is given by:

0 LB 0 o 0
0 0 B8 0 0
Va= 0 0 0 - 0 ,

0o 0 0 0 LB

d

B 0 0 0 0

where the probability vector @ is the initial probability vector of the service time

distribution.
The matrix V; represents the transition from a visit period to a vacation period.

It is for the case when the server finishes serving a customer and goes on vacation
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because the queue is empty, it is given by:

- -

0 S°6 0 0 0
0 0 S%; 0 0
Vai=1| o 0 0 . 0 ,

0 0 0 0 S°Mm

S°6, O 0 0 0

where the probability vector S° denotes the absorption vector of the service time
distribution.

Lastly, the matrix V; represents transition from a visit period to a vacation period.
It denotes the case when the server interrupts an on-going service because of the time-

limit and goes on vacation, it is given by:

- -

0 Ses, 0 O 0
0 0 Seb; O 0
Vs = 0 0 0 . 0 1

0 0 0 0 Sebym

Seé, O 0 0 0

where the probability vector Se denotes service interruption.
The matrices Vg, V3, V2, Va, Vi, and Vs are used to modify the vacation models

in Sections 3.4.1 and 3.4.2 as follow:
e The matrix V is replaced with the matrix V5.

e The absorption vector V° is replaced with the matrix ¥]. In addition, the inner
product of V° with a vector is changed to a Kronecker product between the

matrix V| and the vector (e.g. V°8 becomes V; ® 3).

e The matrix V°8" is replaced with the matrix V5.
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e The matrix V°8 is replaced with Vj.
e The matrix S°k is replaced with the matrix V.
e The matrix (Se)k is replaced with the matrix Vs.

This ends our description of the construction of the vacation period distribu-
tion for a given queue. In the next section we show how to obtain the visit period

distribution.

4.2 Duration of a Queue Visit

The visit period distributions for both the infinite and finite buffer capacity case
are computed in the same way as in Subsections 3.4.1.1 and 3.4.2.1, respectively, with

the following change:

6o = txo(e® I)Vie/vo, (4.1)
6; = xple®@)Viefvg, 1 <1 <T -1, (4.2)

where the vector Xg is the probability that the queuve is empty and X, is the proba-
bility that there are i customers in the queue at the end of the vacation period. v is

the mean of the vacation period.

4.3 Iterative procedure

The dependence of the visit period distribution on the vacation period distribution
and vice versa is clear from the previous two sections. Therefore, we use an iterative
procedure to obtain the performance measures of a queue in the polling system. In this
procedure, the vacation and visit period distributions in iteration ! are used to update

the vacation and visit period distributions in iteration {+1. Our experimentation with

100



Chapter 4 TIME-LIMITED TABLE POLLING

the algorithm showed that the results are, under certain load combination, very far
from the simulation results. This is attributed to the inherent dependency between
the vacation and the visit period distributions. In order to improve the accuracy of
the iterative procedure we have adopted the method by Lee and Sengupta [109]. In
their method the vacation period is considered to be a combination of an independent
part and a dependent part. We adopt their algorithm as follows. For each queue and
for each sub-cycle vacation period we construct a phase type distribution (¢,Y). This
distribution is computed differently when p < 0.65 and p > 0.65.

For the case of p < 0.65 the dependent part of the vacation period is computed
using Algorithm 2 of Lee and Sengupta [109]. In our case, the phase type distribution
(¥.Y),, 1 < M,isgivenby: ¥ =[10... 0] and

01 0 0
00 1 0
0
v 0 : 0 p(L-1) O |
0 : 0 0 P(L) 0
0
P T))
00 - 0

where

pP(L-1) = 1-p(L-1),
Pj) = 1-p()(1 - ZJ: p(i))™", and J = ) T,
i=L-1 i€sSC
where L is the number of queues visited in the sub-cycle. The probability p(j) is
computed using Lee and Sengupta [109] (Algorithm 2). The p(j)’s are computed in

the same way as in the case of cyclic polling.
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For the case of p > 0.65 the dependent part of the vacation period is assumed
to be deterministic. Thus for queue ¢ the length of the vacation period is given by
3, sesc T;, where SC is the set of queues in the vacation period of the sub-cycle.
This distribution can be represented by a phase type distribution with 1’s in the
super-diagonal positions and 0's every where else. This is because for moderate to
high svstem utilization, once the server goes on vacation from queue 7 it is more likely
to stay way serving each of the other queues for its whole time period.

The iterative procedure for table polling systems with infinite buffer capacity

queues is outlined below:

1. For: =1 to @ initialize the distribution of the visit period, (4;, B;), to

0 p;, 0 --- 0
00 o
0
B; = 1 (4.3)
0 0 0 p
00 0

and v; = [1 0].
2. Fori=1to Q

- For j =1 to M;

a) Compute (4;, L;)

b) Compute (¢,,Y;)

c¢) Compute P, according to Algorithm 1.

d) Let (v;,L;) = (1 - B) x (v}, L;) + Pi(9;, 1))
- Compute V5, Vi, V4, V3, V;, V¢

- Compute the block matrices A§, A%, A%
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- Compute the rate matrix R'

Compute the probability vector [xg X1

Compute g% and Wj.

Update the visit period distribution.

3. If the average queue length and the mean waiting vacation period did not con-
verge go back to 2, else stop.
Algorithm 1

o If p <0.50 set P, = (1 —p)p9,
o If 0.5 < p <0.75 set P, = (1 — p)p? + p;,
o If 0.75 < p set P = p? + p;.

The iterative procedure for table polling systems with finite buffer queues is outlined

below:

1. For i = 1 to @ initialize the distribution of the visit period, (+;, B;) according
to (Eq. 4.3).

2. Fori=1to Q

-Forj=1to M;
a) Compute (v;, L;)
b) Compute (¢;,Y;)
c) Compute P; according to Algorithm 2.
d) Let (7;,L;) = (1 = P.) x (75, L;) + Pi(#,. )

- ComPUte ‘/Oiv ‘/[is l/zia ‘/.'_iii ‘/&ii’ ‘/Si
- Compute the block matrices A), Ai, A}

- Compute the probability vector [xo X; --- Xk, |’
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- Compute p% and Wj.

- Update the visit period distribution.
3. If the average queue length did not converge go back to 2, else stop.

Notice that for the finite buffer case, we used the block Gauss-Seidel iterative approach
to obtain the queue length distribution.

Algorithm 2
o If p <0.50set P, =(1—p)p°,
0 [f0.5<p<0.75set P = (1 —p)p® + pi,
o If0.75 < p < 1.0 set P; = p? + p;.

o If 1.0 < p set
P = l—p; fp—pi<l
1 otherwise
where #; is the mean vacation period for queue . Notice that for the finite buffer case

it is not necessary to have p < 1. Therefore, if a queue is unstable, its visit period

distribution is deterministic and equals to T ..

4.4 Numerical Examples

In comparing the approximate approach results with those of the simulation we
define the percent error as W'—'p";,f:’—“m, where W,;,, is the simulation mean waiting
time and W,,, is the iterative approach mean waiting time. A negative percent error
indicates that the approximate method over-estimates the simulation results. For the
simulation we used 5 replications each of which is of 10® time units long and a warm

up period of 10° time units, we show the half-width of the 95% confidence interval.
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Since, there are many system parameters we chose to show some of the results to give

a general idea on the performance of the iterative procedure.

4.4.1 Infinite Capacity Model

The first set of examples shows the performance of the iterative method for different
system utilization. Tables 4.1-4.7 shows the comparison between the simulation and
the approximate approach of the mean waiting time for table polling systems with
infinite queue buffer capacity. In all the examples, customers arrive according to the
Bernoulli process with an arrival rate given by A and their service times is geomet-
rically distributed with mean 4. The maximum time period for each queue visit and
the system utilization are given by T,... and p, respectively. The polling order is
given in the tables by Pol-Order.

The maximum absolute error, 17%, for these examples is encountered with a high
system utilization, p = 0.861, for queue 2 in Table 4.7. All other examples have a

maximum percentage error of +15%.

Table 4.1: 4 Queues Polling System, b = 1.25, p = 0.625

Poll-Order 123242 “
Queue A | Trar | Wapp Wsim % Error

1 0.1 ) 5.842 | 5.791 £ 0.067 | —0.9%

2 0.2 ) 3.049 | 3.288 £ 0.018 7.3%

3 0.1 5 |[5842]5.799£0.056 | -0.7%

4 0.1 9 5.842 { 5.751 £0.072 | —-1.6% "

Table 4.1 shows the mean waiting time for a table polling system with 4 queues
and a utilization of p = 0.625. This table represent a star polling system with

queue 2 being visited after every other queue. This can represent the special case
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of queue 2 being a high priority queue which is polled after every low priority poll.
queues {1, 3, 4}. It can also represent a half duplex transmission medium between
queues {1,3,4} and a central server represented by queue 2 where after every poll the
central server transmits its outbound traffic. All four queues have the same maximum
time threshold, however, queue 2 has twice the arrival rate of queues {1, 3, 4}.
Nevertheless, queue 2 has a lower mean waiting time. This is because queue 2 is
visited more frequently. The maximum error in this example is encountered for queue
2 and is about 7%.

Table 4.2 shows the mean waiting time for a polling system with 4 queues and a
utilization of p = 0.5. The polling order is the same as that in Table 4.1. All four
queues have the same arrival rate. Although, Queue 2 has a smaller maximum visit
period, 3 time units, compared with queues {1, 3, 4}, its mean waiting time is lower
than that of queues {1, 3, 4}. Again, this is due to the higher number of visits to
queue 2 compared to those of queues {1, 3, 4}. The maximum error in this example
is encountered for queue 2 and is about —16%. Notice the difference in the % decrease
of the mean waiting time between queues {1, 3, 4} and queue 2. This is because the
decrease in load happens at queue 2, i.e. a lighter load at queue 2 results in a greater

decrease in the mean waiting times for queues {1, 3, 4} than for queue 2.

Table 4.2: 4 Queues Polling System, b = 1.25, p = 0.5

Poll-Order 123242

Queue A | Tnaz | Wagp Wsim % Error
1 0.1 5 |[3.476]2.996+0.019 | —16.0%
2 0.1 3 |2.189|2591+0.016 | 15.5%
3 0.1 5 |[3.476|3.013£0.005 | —15.4%
4 0.1 ) 3.476 | 3.006 4+ 0.007 | —15.6%
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The next two examples exhibit the behavior of a polling system with 4 queues.
First we consider the case when each queue is visited twice, given in Table 4.3. Then,
we consider the case of increasing the number of visits to queue 3 to 3 times and
reduce the number of visits to queue 4 to 1. This is because queue 3 has the largest
arrival rate and queue 4 has the smallest arrival rate. In order to counter balance the
decrease in the number of visits of queue 4 we increase its maximum visit period to 5
time units which is given in Table 4.4. Although the number of visits to queues {1, 2
did not change their mean waiting times are higher in Table 4.4. This is due to the
asymmetry introduced into the system. For instance, for queue 1 in Table 4.3 every
time the server leaves the queue it visits queues {2, 3, 4}. However, in Table 4.4
when the server leaves queue 1 it may visit queues {2, 3} or queues {3, 4, 2, 3}.
The same argument can be made for queue 2. On the other hand, queue 3 is visited
more frequently in Table 4.4 which explains the lower mean waiting time. Lastly,
although the maximum visit period of queue 4 has been increased to 5 time units,
because queue 4 is visited only once in Table 4.4 its mean waiting time has increased

compared to Table 4.3.

Table 4.3: 4 Queues Polling System, b = 1.25, p = 0.65625

Poll-Order 13241342

Queue A | Traz | Wapp Wsim % Error
1 0.15 5 5.145 | 5.796 £ 0.061 | 11.2%
2 0.1 4 5.402 { 6.017 £0.040 | 10.2%
3 0.2 6 4.907 | 5.614 £0.038 | 12.5%
4 0.075 3 8.397 | 7.412 £0.049 | —-13.3%

Table 4.5 is for a polling system with 5 queues. Even though queue 1 has a

higher arrival rate, because it has a larger Th,, and it is visited twice during a cycle
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Table 4.4: 4 Queues Polling System, b = 1.25, p = 0.65625

Poll-Order: 12313423

Queue A Thor | Wapp Wsim % Error
1 0.15 5 |6.449 | 6.209 £ 0.059 | —3.9%
2 0.1 4 5.871 | 6.370 £ 0.055 | 7.83%
3 0.2 6 3.313 [ 3.928 £ 0.017 | 15.7%
4 0.075! 5 |8.907|8.094 +0.046 | —10.0%

its mean waiting time is almost half that of queues {2, 3. 4, 5}. Although queues
{2, 3, 4, 5} have the same arrival rate and maximum time period their approximated
mean waiting time is not the same. This is due to the way the vacation period is
built. Notice that queues {2, 4}, and {3, 5}, have the same vacation period pattern,

thus, they have the same mean waiting times.

Table 4.5: 5 Queues Polling System, b = 1.25, p = 0.75

Poll-Order 123145

Queue A | Tmazr | Wapp Wsim % Error
1 0.2 5 6.563 | 7.284 £+ 0.055 9.9%
2 0.1 4 13.346 | 15.557 £ 0.333 | 14.2%
3 0.1 4 13.376 | 15.536 +0.173 | 13.9%
4 0.1 4 13.346 | 15.388 £ 0.154 | 13.3%
) 0.1 4 13.376 | 15.586 + 0.220 | 14.2%

The next two examples, Table 4.6 and 4.7, show the performance of the iterative
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procedure as we increase the number of queues. Notice here that the approximate
solution does not give the exact same result for identical queues. This is due to the
way the vacation period are built. Notice, again, that queues with similar vacation

pattern have similar mean waiting times (e.g. queues {3,7} in Table 4.7).

Table 1.6: 6 Queues Polling System, b = 1.111, p = 0.778

Poll-Order 12314516
Queue A Tmar WApp WSim % Error
| 0.2 9 9.157 | 5.512 +£0.060 6.5%

[§

0.1} 6 10.289 | 10.357 £ 0.188 | 0.7%

3 0.1} 6 10.300 | 10.386 £ 0.143 | 0.8%
4 01| 6 10.288 | 10.346 £ 0.125 | 0.6%
5 01| 6 10.300 | 10.483 £0.174 | 1.8%
6 01| 6 10.299 | 10.444 £ 0.110 | 1.4%

In all the examples studied, the iterative algorithm converges in less than 30
iterations, with a run time under 30 minutes on an IBM RS6000/590. The simulation
run on a Sun station lightly loaded were over an hour long. Most of the CPU time
for each run for the iterative procedure is taken to solve for the rate matrix R,
and the queue length distribution. The rate matrix R of dimension n(r + mTi,.z),
where n is the dimension of the service time distribution; m is the dimension of the
arrival process; r is the dimension of the vacation period distribution, is obtained
using the algorithm given in Alfa {2] . The stopping criterion for convergence was
chosen to be € = 1078 i.e. the program stops when the difference in the mean queue
length and the difference in the mean vacation period for all the queues between two

consecutive iterations is less than 10~2. In the examples run, the number of iterations
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inter-arrival time between customers is given by a geometric distribution and the
probability of arrival is by A. The maximum time allocated for each queue and the
buffer size are given by Tp.. and K, respectively.

The system parameters for Table 4.8 are the system as those in Table 4.1 with

the exception that the buffer capacity is finite and is equal to 8 for all queues. Notice

Table 4.8: 4 Queues Polling System, b = 1.25, p = 0.625

Poll-Order 123242

Queue A | Tmar | K | Wapp Wsim % Error
1 0.1 5] 8 | 5.623 | 5.426 +£0.030 | —3.6%
2 0.2 ) 8 | 3.023 | 3.064 £0.013 1.4%
3 0.1 5 8 | 5.632 | 5.342 £ 0.039 | —5.4%
4 0.1 5 8 | 5.637 | 5.412 £0.021 | —4.2%

that because of the blocking probabilities the mean waiting times in Table 4.8 are
consistently lower than those in Table 4.1. However, in Table 4.9 even though the
buffer capacity is smaller, 7 for each queue, the mean waiting times are comparable
to those in Table 4.2. This is mainly due to the lower system utilization, p = 0.5
in Table 4.9 and p = 0.625 in Table 4.8. The same observation can be made about
Tables 4.10 and 4.11.

Table 4.10 and 4.11 show, similarly to the case of infinite capacity case, that
changing the polling order by increasing the frequency of visits have a significant
impact on the mean waiting time for all the queues in the system, even those which
kept the same number of visits.

Table 4.13-4.15 show the mean waiting times for a polling system as we move
from a high utilization case (Table 4.13) to overload cases, p > 1.0, by first increasing

the arrival rate for each queue (Table 4.14) and increasing the mean service time

111



Chapter 4 TIME-LIMITED TABLE POLLING

Table 4.9: 4 Queues Polling System, b = 1.25, p = 0.5

Poll-Order 123242

Queue A | Taz | K | Wapp Wsim % Error

1 0.1 5 7 13.403 | 2.939 £0.010 | —15.8%
2 0.1 3 712172 [ 2.567 £0.008 | 15.4%

3 0.1 5 7 13.403 | 2.939 £0.010 | —15.8%
4 0.1 ) 7 13.403 | 2.948 £0.008 | —15.8%

(Table 4.15). In both cases the iterative method gives reasonable results.

In all the examples studied, the iterative algorithm converges in less than 30
iterations, with a run time less than 45 minutes. Most of the CPU time during each
run is used up in solving for the queue length distribution. The queue length is
obtained using block Gauss-Seidel iterative procedure with a stopping criterion for
convergence of 1071°, The block dimension is of size mn, where n is the dimension
of the service time distribution and m is the dimension of the arrival process. The
stopping criterion for convergence for the iterative polling algorithm was chosen to
be e = 1078 i.e. the program stops when the difference in the mean queue length and
the difference in the mean vacation period for all the queues is less than 107%. In
the examples run, the number of iterations required for convergence depends on the
number of queues, @, the table size, N, the buffer size, K, and the allocated time, T,
and the number of visits, M, for each queue. This is because when T, M, andfor K
is large, the dimension of the probability vector becomes large. Similarly, when @ is
large we have to solve for @ queue lengths (assuming that the polling system is not

symmetric).
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Table 4.10: 4 Queues Polling System, b = 1.25. p = 0.65625

Poll-Order 13241342
:.T—
Queue A Traz | K | Wapp Wsim % Error
1 0.15 5 8 | 4.340 | 5.045 £ 0.023 | 14.0%
2 0.1 4 8 | 4.886 | 5.533 +0.032 12.0%
3 0.2 6 8 | 3.961 | 4.631 +0.015 14.5%
4 0.075 3 8 [ 6.653 | 6.799 £0.032 | 2.1%

4.5 Conclusions

We have presented an iterative procedure for the analysis of discrete time table
polling systems with Markovian arrival process, phase type service time distribution
and exhaustive time-limited service discipline (preemptive). The numerical examples
run show that the algorithm converges relatively fast and gives reasonable results.
However, we did not prove that the algorithm converges. This remains to be done.
[t is also worth mentioning that as the number of queues, threshold time, or the ta-
ble size increases, the time required to compute the performance measures increases.
Nonetheless, the iterative procedure still remains a better option compared to simu-
lation since it takes less time.

Although, the model presented in this Chapter assumes that the time threshold
for every queue is the same for every visit in the table, it possible to extend the model
to the case where a queue may have different threshold for each visit. This can be
done by first changing the Markov chain describing the MAP/PH/1 queue for the
infinite buffer case and MAP/PH/1/K queue for the finite buffer case. The necessary

modifications are given in Appendix A.
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Table 4.11: 4 Queues Polling System, b = 1.25, p = 0.65625

Poli-Order: 12313423
Queue A Traz | K | Wapp Wsim % Error
1 0.15 5 8 | 6.311 | 5.393 £ 0.025 | —17.0%

0.1 4 8 | 5.338 | 5.851 +£0.030 | 8.8%

[S%]

3 0.2 6 8 | 3.824 1 3.536 £ 0.015 | —8.1%

4 0.075 8.248 | 7.343 £ 0.034 | —12.3%

[51]
o0

Table 4.12: 6 Queues Polling System, b = 1.111, p = 0.778

Poll-Order 12314516

Queue A | Toaz | K | Wapp Wsim % Error
1 02| 5 8 | 3.842 | 4.473 £0.019 | 14.1%
2 0.1 6 |8 ]8.780 |8.404+0.030 | —4.5%
3 01 6 | 8)8783)8411+0.036 | —4.4%
4 01| 6 | 8|8.787(8435+0.032 | —4.2%
5 0.1 6 8 | 8.794 | 8.471 £0.029 | -3.8%
6 0.1 6 8 | 8.804 | 8.429 £0.031 | —4.4%
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Table 4.13: 7 Queues Polling System, b = 1.111, p = 0.861

Poll-Order 123145216T

Queue A Traz | K | Wy, Wsim % Error
1 0.15 5 8 | 5.693 | 6.610 + 0.086 13.9%
2 0.125 6 8 [ 7.073 | 7.769 £ 0.023 9.0%
3 0.1 7 8 | 14.660 | 13.466 +0.059 | —8.9%
1 0.1 7 8 | 14.665 | 13.446 £0.052 | —9.1%
3 0.1 7 8 | 14.682 | 13.515+0.072 | —8.6%
6 0.1 7 8 | 14.708 | 13.507 £0.043 | -8.9%
7 0.1 7 8 | 14.758 | 13.558 £ 0.091 | —8.9%

Table 4.14: 7 Queues Polling System, b = 1.111, p = 1.028

Poll-Order 1231452167

Queue A Thar | K| Wy, Wsim % Error
| 0.175 ) 8 | 11.684 | 12.809 £ 0.036 8.8%
2 0.125| 6 |8 |16.627 | 14.627 £0.049 | —13.7%
3 0.125 7 8 | 32.104 | 29.979 £0.123 | -7.1%
4 0.125 7 8 | 32.482 | 29.940 £ 0.134 | —8.5%
5 0.125 7 8 | 32.994 | 30.005 +£0.148 | —10.0%
6 0.125 7 8 | 33.718 | 29.938 £ 0.095 | —-12.6%
7 0.125 7 8 | 33.336 | 30.016 £0.122 | —11.1%

TIME-LIMITED TABLE POLLING
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Chapter 4
Table 4.15: 7 Queues Polling System, b = 1.25, p = 1.0625

Poll-Order 1231452167

Queue A | Traz | K| Wapp Wsim % Error
1 0.2 3 8 | 18.263 | 20.760 +£0.080 | 12.0%
2 0.15( 6 | 8 |21.610 | 24.011 £0.076 | 10.0%
3 0.1 7 | 8 {46.568 | 42.055 £0.145 | —10.7%
4 0.1 7 8 | 46.633 | 42.092 £ 0.158 | —10.8%
5 0.1 7 8 | 46.722 | 42.048 £ 0.114 | —11.1%
6 0.1 7 8 { 46.851 | 42.151 £0.060 | —11.2%
7 0.1 7 | 8]46.731 | 42.175+£0.118 | —10.8%
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CHAPTER 5

STATE SPACE REDUCTION OF MAP WITH

SPECIAL STRUCTURE

5.1 Introduction

In Chapters 3 and 4 we developed the vacation period for a discrete-time polling
system with exhaustive time-limited service discipline. The vacation period is a MAP
with special structure and looks like a convolution of discrete phase type distribu-
tions. Through the numerical examples, we found that the execution time of the code
increases as a function of the dimension of the vacation period. In this Chapter, we
focus on reducing the dimension of each phase type distribution which will result in
a MAP of smaller dimension. This is achieved by using the moment matching ap-
proach. Specifically, the first three moments of an n-dimensional discrete phase type
distribution are matched to the corresponding moments of a 2-dimensional discrete
phase type distribution. Therefore, if the initial MAP (vacation period distribution
in Chapter 4) looks like the convolution of [ discrete phase type distribution each of
dimension n;; ¢ = 1,...,!; then its dimension is Zf-=l n;. However, once we reduce
the dimension of each phase type distribution, using the moment matching approach,
the resulting vacation period distribution has a dimension of 2! which is significantly
smaller. For example, in Section 4.1 queue A has two phase type vacations with
dimension 8 and 13. The corresponding MAP has a dimension equal to 21. Once
the phase vacations are reduced to 2 x 2, the corresponding MAP will have a dimen-

sion equal to 4. This is significantly smaller. Note here that the significance of this
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reduction manifests itself in solving for the rate matrix, R, (Eq. 3.2). Without this
reduction, the R of queue A in Section 4.1, is a 25 x 25 matrix. Whereas after this
reduction R is an 8 x 8 matrix. This reduction will bring about a significant reduction
in the computational effort required to obtain performance measures for each queue
in a polling system. This Chapter is organized as follows. First, we briefly review
some literature related to fitting distribution. Second, we show how to adapt Altiok’s
method [5] to discrete-time phase type distributions. In the last Section, we discuss

some numerical examples.

5.2 Brief Literature Review

[n this Section, we review some of the work done in the area of fitting distributions.
Four methods for fitting distributions are available: 1) maximum likelihood estimators
(MLEs), 2) moment matching (MM), 3) least square estimator, and 4) unbiased
estimator. In this review, we focus on the MLEs and MM methods. Particularly, we
focus on MM method for two reasons: 1) finding MLEs is not always easy [108, page
370], and 2) in queueing theory, especially with applications in the engineering field,
usually the first few moments are sufficient since they provide a good insight into the
behavior of the system (Neuts (133, page 42]). In either case the goodness of fit is
measured in terms of the error between the actual and the fitted distribution.

Johnson and Taaffe [87] showed that it is possible to match the first k£ (k < oo)
moments of a non-degenerate distribution with support on [0, 00) with the moments
of a mixture of Erlang distributions of common order. Later, in [88], they used
the pon-linear programming approach to approximate the moments of phase type
distribution. Earlier, Altiok [5] approximated a general distribution with known
coefficient of variation by a 2-dimensional phase type distribution using the first
three moments. On the other hand, Asmussen and Nerman [10] used the maximum

likelihood approach to fit phase type distribution. However, their approach may run
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into some problems when the number of phases becomes very large. In a recent paper.
Asmussen [9] and, independently, Lang and Arthur [107] provided comprehensive
reviews of the state of fitting phase type distributions and a comparison between the
moment matching approach and the maximum likelihood estimators approaches.

With regard to MAP fitting, only special classes are addressed in the literature.
In particular, the Markov modulated Poisson process (MMPP) with 2 states was
used to model traffic in integrated services network. Hellstern [130] used a numerical
approach based on the maximum likelihood to fit an MMPP with‘two arrival rates.
And Heffes and Lucantoni [79] approximated the superposition of data and voice
packets using an MMPP. In other applications, Keogh presented an approach to fit
the output of video coders using a birth-death process in [94] and [93] and using a
discrete-space continuous-time Markov process in [95]. More recently, Ni et al. [138]
used a discrete-time Markov modulated deterministic process (MMDP) to model the
traffic for an MPEG-2 movie video traffic. The different methods for fitting MMPP
are summarized in a survey by Ryden [146]. Elsayed and Perros [55] presented an
approach to approximately characterize the superposition of N, N > 2, arbitrary
discrete-time Markov renewal process.

Recently, Diamond and Alfa [48] showed that the autocorrelation sequence of
inter-arrival times for MAP of order two is geometric. Based on the value of the
autocorrelation and the value of the coeflicient of variation, they discussed different
fitting approach for 2 x2 MAPs. It is also shown in their paper that it is quite difficult
to fit general MAPs. This is the only paper we are aware off that deals with MAP
fitting.

Due to this difficulty, we limit ourselves here to a special class of MAPs. We focus
on MAPs that look like the convolution of discrete-time phase type distributions.
Notice that because of the lack of a better term, in the rest of this Chapter, we use
the word convolution to imply looks like convolution or MAP obtained by assembling

discrete-time phase type distributions.
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5.3 Reduction Technique

As stated earlier, our concern here is the state space reduction for MAPs with
special structure. Since the MAP we are interested in is obtained by assembling { dis-
crete time phase type distributions, and there are well known results for fitting phase
type distribution, our task is quite simple. First, we reduce the dimension of each
discrete phase type distribution to a 2-dimensional discrete phase type distribution.
Then, we assemble these distributions. One of the straight forward fitting approach is
by Altiok [5] using the moments matching approach. Since he dealt with continuous
time phase type distribution, in Section 5.3.1, we adopt his method for the discrete
time phase type distributions. Section 5.3.2 shows the original and resulting MAP. It
also gives the measures which we adopt for testing the performance of the reduction

technique.

5.3.1 Phase Distribution Reduction

Let (B, S) be the representation of a discrete time phase type distribution of dimension
n. Given the first three factorial moments of (3,S); m;, m,, and m3; we seek a
discrete phase type distribution of dimension 2 and representation (a,T) such that
the first three factorial moments of (3,S5) and (a,T) are identical. The factorial
moments for a discrete phase type distribution with representation (3, S) are given
in Neuts [133, Chap. 2] as my = P¥)(1) = k!8S*~!(I — S)~*e. Thus, given m,, m;,
and m3 we need to obtain a 2-dimensional distribution with representation (o, T)
such that

m = a(I—T)'le

§ my = 2aT(I -T) %

ms = 6aT*[I —T) .

Notice that, in general, a 2-dimensional discrete phase type distribution is defined
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in terms of six variables and is given by:

L=y —p 7
a=la+bl—a-b, T= o ' CTo=| .

H4 1 — pp — pg H2
where0 K a+b< 1,0 < uy+p3 <1, 0 < pat+pg <1,and 0 < uy, pa, U3, pg, a, 6 <
1. However, the relationship between the variables (u,, g, g3, p4, a, b) is nonlinear
and an attempt to include higher moments will lead to a set of equations that is
very difficult if not impossible to solve. Therefore, we limit the set of feasible phase
type distributions to those that look like the generalized negative binomial. This is

achieved by setting 3 = 4 = b = 0. The numerical examples will show that this is a

l—p p
good simplification. Thus, (a,T)isgivenby: a=[al—aqa],T = ' l

0 1 —p2

and the absorption vector T°® = ,where0<a<1,0<py; <land0<yp; <1.

H2
Therefore, we have to solve the following 3 nonlinear equations for the unknowns a,

g1, and po.

m, = Sgatm
1 H1p2

Hr a2

Tmr o= 21— ) (F+ phs + ) + 2l

| me = 6e(l—mP (F+7+ A+ h)

+ 622 —p2)+(1-a)(1-p2)?
Bip2 | H1pg 2 )

HBa

Let D be the root of the polynomial:
K]ZZ+K22+K3=0, (51)

where
1\’1 = 2m1m3 - 3m§
4 K, = 12m? +6mim; — 12m; — 12m3 — 2ma3

Kz = —12m? + 12m, + 6m,.

Then a, p1, and p» are given, respectively, by:
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)
a = D(z;i‘ffii’lgm
| mo= =
| H2 = D,

where

' = mqoD —=2my +2m D

{ B = D(2mim;—6m2m, + 12m! + 6m¥m, — 12m? — 12mim,)
\ C = =2myms+ 3m3 - 12m} + 12m3 + 6mm,).

It is worth mentioning here that there are two roots for equation 5.1. Using
either root results in matching the first three moments. Since the computational
time is very small, one can compute both probability mass functions and use the one
with the smaller error. Now that we have the reduced phase type distribution, next

we address how to study its effect on the assembled MAP.

5.3.2 MAP Reduction

Suppose we have a MAP with representation (V5,V;) which is the convolution of
| phase type distribution with representation (83;,S;) each with dimension n;. : =
1,...,{. For each (83;,S;) there exists a 2-dimensional phase type distribution with

representation (a;,T;). Therefore, if the original MAP, (Vp, V1) is given by:

FSI 0 0 0 O . [ 0 S8, 0 0 0

0 S, 0 0 O 0 0 S8, 0 0
o=10 0 . 0o o}]-%=] o0 0 0o . 0 ;

0 0 0 S 0 0 0 0 0 S8

00 0 0 S| 8, 0 0 0 0
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then the reduced MAP, (Vg, V), is given by:

FT, 0 0 0 0 ) Ta, 0 0 O W
0T, 0 0 O 0 0 Tas 0 0
=0 0 o o|-W=| o 0 0 0
0 0 0 T, O 0 0 0 0 T ,a
(00 0 0 T | Tiay 0 0 0 0

The effect of reducing the dimension of MAP is considered for two time origins:
1) at an arbitrary point and 2) at an event starting point. This is achieved by letting
7 be the steady state probability vector and x., be the probability vector at an
event (see Neuts [135]) of (Vo, V1), and o’ be the steady state probability vector and
n’, be the probability vector at an event of (V, V). «, %, #®’, and ., are given,

respectively, by

= w(W+V)and re=1 (5.2)
Wey = ;«Vl (5.3)
n = #(Vj+V/)andwe=1 (5.4)
w, = TV (5.5)

where A and )\’ are the fundamental rates of (Vp, V1) and (Vg, V') and given, respec-
tively, by:

A = wWe (5.6)

XN = w'Vle (5.7)

Notice that, although equations 5.2 (5.3) and 5.4 (5.3) are identical, the vector

7 (x’,) has a significantly smaller dimension compared to m (=, ), 2! versus ¥"'_; n,.

Therefore, the probability distribution (steady state) for the original and reduced
MAP are given, respectively, by:

P(k) = =mVF Ve (5.8)
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P'(k) = @V, 'We, k> 1. (5.9)
And the probability distribution (given that an event occurred) for the original and
reduced MAP are given, respectively, by:

Qk) = m, V' Vie (5.10)

Qk) = = V,*"We, k>1. (5.11)
Equations 5.8-5.11 allow us to compare the probability mass functions. Another
important characteristic of MAP is that it can capture correlation. The correlation

of a MAP is given in [19], for our case, the coefficient of correlation for the original

and the reduced MAP are given, respectively, by:

nVze — A?

Ceoor = “‘l/l )2 (512)
'V, %e — A?

c::OOT = ﬁ"v{ - A,z (5-13)

In the next Section, some examples are presented. The goodness of fit is measured

in terms of the following errors:

o Errory =/ (P(k) — P(k)")%.

e Error, = \/Z‘.k (Q(k) — Q(k)')2-
o Errory = Iccoo - Cioo"

Error, (Error;) measures the difference between the probability mass function
of the original and the reduced MAP under steady state (given an event occurred).
Errors; measures the difference between the coefficient of correlation between the

original and the reduced MAP.

5.4 Numerical Examples

In this Section, we discuss three examples. In each example, we give the original

phase type distribution followed by its reduced form. The original and the reduced
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MAP have the same form as given in Section 5.3.2. The results presented here
compare the performance of the fitting algorithm if one consistently chooses one

root, for example, the smaller of the two roots.

5.4.1 Example 1

In this example we use two phase type distributions to obtain a MAP. The first phase

type distributions is given by:

03 03 04 0.0 0.0

00 0.3 06 0.1 0.0
S1

I

72}
QO

I

ﬁ1=[0.4 02 0.2 02 |-
0.0 0.0 06 0.1 0.3

0.0 0.0 0.0 0.6 0.4

and its reduced form is given by:

Il

0.5700 0.4300 . 0.0000
T a1=[0.6593 0.3407]-
0.0000 0.6056 0.3944

The second phase type distribution is given by:

E r -

02 04 04 00 0.0

0.0 0.2 0.7 0.1 | _ 0.0
S, = S; = ﬁ2=[0.4 0.2 0.2 0.2],

0.0 0.0 06 0.1 0.3

0.0 00 04 02 0.4 |

and its reduced form is given by:

0.4065 0.5935 0.0000
T, = T = a; = [0.5961 0.4039 ]
0.0000 0.6796 0.3204

Therefore, the original MAP has a dimension of 8. The reduced MAP has a dimension

of 4. The probability mass function of the original and reduced MAP are shown in
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Figure 5.1. The coefficient of correlation of the original MAP is —0.1377 and tkat of
the reduced MAP is —0.1484. The summary of the three errors is given in Table 5.1.

Table 3.1: Example 1-Errors

Error, | Errory, | Error;

0.0028 | 0.0170 | 0.0107

5.4.2 Example 2

In the second example, we use three phase type distributions. The first and second
phase type distribution are the same as those given in Example 1. The third phase

type distribution is given by:

0.1 0.5 0.4 0.0 0.0
0.0 0.1 0.8 0.1 , 0.0
S3 = » §3= ,ﬂa=[0.4 0.2 0.2 0.2],
0.0 00 06 0.1 0.3
0.0 0.0 0.0 O.6J 0.4 |
and its reduced form is given by:
0.4503 0.5497 . 0.0000
I3 = , Tg= , Q3 = [ 0.6360 0.3640 ]

0.0000 0.6333 0.3667

Thus, the original MAP has a dimension of 12 and the reduced MAP has a dimension
of 6. The probability mass function of the original and reduced MAP are given in
Figure 5.2. The coefficient of correlation of the original MAP is —0.1442 and that of
the reduced MAP is —0.1543. The summary of the three errors is given in Table 5.2.
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Figure 5.2: MAP with 3 Phase Distributions, Original Dim.=12, Reduced Dim.=6
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Table 5.2: Example 2-Errors

Error, || Errory | Errors

0.0028 | 0.0177 | 0.0101

5.4.3 Example 3

In this example we use three phase type distributions. The first is the same as the

one given in Example 1. The second is given by:

0.2 0.4 04 0.0 0.0 0.0 ( 0.0
0.0 0.2 0.7 0.1 0.0 0.0 0.0
00 00 06 0.1 0.0 0.0 0.3

52 = y Sg = )
00 00 04 0.2 0.0 0.0 0.4
00 00 00 03 04 0.1 0.2
00 00 00 00 0.2 04 0.4

B, = [0.4 0.2 0.2 0.2 0.0 o.o],

and its reduced form is given by:

0.4065 0.5935 \ 0.0000
T, , Tog= , a2=[0.5961 0.4039 | -
0.0000 0.6796 0.3204
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The third phase type distribution is given by:

’ 0.1 0.5 0.4 0.0 0.0 0.0 0.0 0.0 - - 0.0 -
0.0 0.1 0.8 0.1 0.0 0.0 0.0 0.0 0.0
0.0 0.0 0.6 0.1 0.0 0.0 0.0 0.0 0.3
S = 00 0.0 00 05 01 0.0 0.0 0.0 st 0.4
0.0 0.0 00 0.0 02 0.3 0.0 0.0 0.5
00 0.0 0.0 0.0 0.0 04 0.4 0.0 0.2
0.0 0.0 0.0 0.0 0.0 0.0 0.5 0.2 0.3
] 00 0.0 0.0 0.0 0.0 0.0 04 0.4 ] i 0.2 J

B; = [0.4 0.2 0.2 0.2 0.0 0.0 0.0 o.o],

and its reduced form is given by:

0.2221 0.7779 0.0000
T3 = » Ty= , O3 = [ 0.6557 0.3443 ] :
0.0000 0.6738 0.3262
Thus, the original MAP has a dimension of 18 and the reduced MAP has a dimension
of 6. The probability mass function of the original and reduced MAP are given in
Figure 5.3. The coeflicient of correlation of the original MAP is —0.1434 and that of

the reduced MAP is —0.1629. The summary of the three errors is given in Table 5.3.

Table 5.3: Example 3-Errors

Error, || Errors | Errora

0.0049 || 0.0290 | 0.0195
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Figure 5.3: MAP with 3 Phase Distributions, Original Dim.=18, Reduced Dim.=6
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5.4.4 Discussion

For all three examples, we notice that in the steady state the probability mass function
of the reduced and original MAP are almost identical. However, the probability
mass function given that an event happens exhibit a large difference especially for
r =1, 2, 3. However, for z > 4 the original and reduced MAP are almost identical.
Notice also that for all three examples, the reduced MAP has a higher coefficient of
correlation than the original MAP. The difference is about 10%.

Lastly, we should mention that since this procedure is quite simple and fast,
instead of using the smaller of the two roots of equation Eq. 5.1, it is better to
compute two distributions (one corresponding to the smaller root and the second to
the larger root). Then, choose the distribution that yields the least error.

In conclusion, in this Chapter we showed how to adopt Altiok [5] method for
discrete-time phase type distributions. The results are then used to reduce the di-
mension of MAPs that look like a convolution of phase type distributions. The method

is quite simple and easy to implement.



CHAPTER 6

SUMMARY, CONCLUSIONS, & FUTURE

WORK

6.1 Summary

The objectives of this thesis were two. First, to develop an iterative procedure to
compute the mean waiting time for a discrete time cyclic/table polling system where
all the queues have either infinite or finite buffer capacity. In this polling system,
customers arrive according to the Markovian arrival process and their service time
can be represented by a phase type distribution. In addition, each queue is visited ac-
cording to the exhaustive time-limited service discipline. The iterative procedure was
then tested using different network configurations. This objective was accomplished

by the following steps:

1) For cyclic polling systems, each queue in the polling system was modeled as a
single server queue with exhaustive time-limited service discipline and vacation
periods. For the infinite buffer capacity case, we used the matrix analytic ap-
proach to compute performance measures for each queue. The rate matrix R
is obtained using the algorithm given in Alfa [2]. For the finite buffer capacity
case, we used the block Gauss-Seidel iterative method procedure to obtain the
queue length distribution. Each block has dimension mn, where m is the di-
mension of the service time distribution and n is the dimension of the arrival

process.
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The single server queue with vacation period models were then incorporated into
an iterative procedure to obtain the queue length distribution and the mean
waiting time for each queue in the polling system. Due to the time-limited
service discipline, we were able to represent the visit and vacation periods, for
each queue, by phase type distributions. Notice that in this iterative procedure,
the vacation period distribution of a queue is given by the visit period of all the
queues visited while the server is away. In addition, the correlation between the
visit period and the vacation period was captured using an approach similar to

that of Lee and Sengupta [109].

2) For table polling systems, we extended the results of the single server queue
with exhaustive time-limited service discipline and phase type vacation periods
to include MAP type vacation periods. The use of MAP is justified by the
correlation between the position of the server visit to a queue in the table and

the type of vacation the server will take.

The stopping criteria for the iterative procedure in the case of cyclic or table
polling is the smaller of the difference between the mean waiting time and the
mean vacation period in two subsequent iterations, for instance, in the examples

ran in Chapter 3 and 4 the tolerance was set to ¢ = 1078,

3) The results obtained by the iterative procedure were then compared to those
obtained by simulation. The effect of the system utilization, the number of
queues, the time slot threshold for each queue, and in the case of table polling
the sequence of queue visits on the performance of the iterative procedure were
studied. For the finite buffer capacity model, the effect of over load, and the

buffer capacity were also studied.

The second objective was to reduce the dimension of MAPs with special struc-
tures. The MAP we were concerned with is obtained by assembling discrete phase

type distributions and it represented the vacation period distribution for a queue visit
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depends on the number of queues, @, and the allocated time, T', for each queue.
This is because when the time thresholds, T', of the queues visited while the
server is away are large, the dimension of the phase distribution of the vacation
period becomes large, thus, a large rate matrix to solve for. Similarly. when Q is
large we have to solve for @) rate matrices and queue lengths (assuming that the
polling system is not symmetric). In addition when M, the number of visits for
a queue in the table, is large the dimension of the vacation period becomes large

which increases the dimension of the rate matrix and the probability vector.

For the finite capacity model, the iterative algorithm converges in less than
30 iterations with a run time less than 30 minutes on an IBM RS6000/590.
Most of the CPU time during each run is used up in solving for the queue
length distribution. In the examples ran, the number of iterations required for
convergence depends on the number of queues, @, the buffer size of each queue,
K, and the allocated time for each queue, T. This is because when T and/or
K is large, the dimension of the probability vector becomes large. Similarly,
when @ is large we have to solve for Q) queue lengths (assuming that the polling
system is not symmetric). In addition, when M, the number of visits for a
queue in the table, is large the dimension of the vacation period becomes large

which increases the dimension the probability vector.

Both iterative models (infinite and finite) yielded an error in the mean waiting
time of about 20%. In addition, the results were reasonable for the mean waiting
time under different load and time allocation. The proposed iterative procedure
can be used to solve both symmetric and asymmetric systems in terms of load

and time allocation.

6.2.2 MAP Reduction

The study of the effect of reducing the dimension of MAP yielded the following

conclusions:
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e The difference between the original probability mass function and the reduced

probability mass function is not noticeable for the steady state.

e The difference between the original probability mass function and the reduced
probability mass function given that an event has occured is worst when r < 4.
For z > 4 the two probability mass functions are almost identical. Thus, the
fitting comparison should be based on the probability mass function given an
that event has occured rather than the probability mass function at steady

state.
o The reduced MAP has a slightly higher coefficient of correlation for the examples

shown in Chapter 5.

6.2.3 Limitations of this study

For the discrete time polling system with time-limited service discipline, this study is

based on an iterative approach and it has the following limitations:

e The model is for discrete time, and its extension to continuous time is not easy
since we loose the advantage of representing the visit and vacation period by

phase type distributions.

e The convergence criteria for the iterative procedure is set to be the smaller of
the difference between the mean waiting times and the difference between the

mean vacation periods for two consecutive iterations.
e Each queue has only one time threshold.
e Only a single arrival process is considered.

o The service discipline is the same for all the queues. However, each queue may

have its own time threshold.

o The results are intended for the steady state region.
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For the state space reduction, we considered only MAPs with special structures.
The results are good only for MAPs that look like a "convolution™ of discrete phase
distributions. Their extension to general MAPs seems to be quite difficult as discussed

in Diamond and Alfa [48].

6.3 Recommendations for Further Research

Because of the limitations stated in Section 6.2.3, future work should attempt to:

o Extend the analysis to include multiple time thresholds for queue’s visited more
than once in the case of table polling. Although, the single server queue with
vacation period model used in Chapter 4 assumes that the time threshold for
every queue visit is the same in the case of table polling, it is possible to extend
the model to the case where a queue may have different time thresholds for each

server visit.

e Extend the analysis to allow batch arrival process B-MAP. This would give us
the flexibility to model a system where customers arrive in batches (packets),
however, the server (switch) can serve (transmit) only one customer (cell) at a
time. The task of obtaining the waiting time distribution is a challenging one.

For a related model see Frigui, Alfa and Xu [64].

e Allow each queue to have its own service discipline. However, the flexibility to

set a time threshold for every queue may offset any need for this task.

e Extend this analysis to consider convergence based on the whole waiting time

distribution.

e For cyclic polling systems, we proved that the iterative procedure converges.

However, for table polling we did not prove that the algorithm converges.
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o The extension of the independent part of the vacation period to include switch-
over time was presented in Section 3.7. However, the extension of the dependent

part of the vacation period was not presented. That remains to be done.

In addition to the above directions for future research, the general question of
interest is the optimization of the system. As stated in Section 2.11, given a set of
queues, a single server, an arrival process, and a set of service disciplines. What is
the best polling order policy to optimize a performance measure, say, the weighted

sum of the mean waiting times.
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APPENDIX A

EXTENSION TO VARIABLE TIME LIMIT

A.1 Introduction

Consider a single server queue with Markovian arrival process (MAP) of dimension
m and representation (Dg, D), phase type (PH) service distribution of dimension n
and representation (3, S), and N phase type vacation distribution of dimension r, and
representation (8,,L,), u = 1,...N. The service period is exhaustive time-limited
(preemptive). In addition, prior to the vacation period of type u the visit period has
a time limit T,, v=1,...,M and M < N. Let Q and Q be two irreducible Markov
chains of dimension ¢ = maz(N, M) where Q;; denotes the probability that at the
end of visit period of type i the server takes a vacation of type j. And Q,, denotes
the probability that at the end of vacation period ¢ the visit period will be of type
j. For example, let N = M = 3 then the transition matrices Q and Q are given,

respectively, by:

a1 Q12 Q13 qu Q12 Gi3

Q= g g2 @3 |0 @= | @n g22 a3

| In 932 g @1 32 qn
J J

A typical cycle is given in Table A.1. Notice that we consider the case when the
server comes from vacation and finds the queue empty (the server goes on another
vacation) to be an end of a visit period. Therefore, the transition from the end of a
vacation of type : and beginning of a vacation of type j because the queue is empty

will be denoted by ¢;;.



Table A.1: Visit and Vacation Cyclefor N = M = 3

Visit | Vacation | Visit | Vacation | Visit | Vacation

quly | q11(61, Ly) | 12Tz | q22(82, L2) | G23T5 | gaa(63, L3)

The state space of the Markov chain of this queueing system is given by:
12> 0;

A= {(z,(0,k, I, u) U (Ju, k,{,v)) where J jo=1,2,--- . Tyk=1,2,---,n; where:

(3 s o —
lu= 1723“'17‘14\1_1721“'9"11

is the number of customers in the queue during service (vacation); the four tuple

( vacation period represented by 0;

k representing the phase of arrival;
(0,k,1,u) refers to The four tuple

[} representing the phase of vacation type u;

| u vacation typeu =1,... V.
( Jv time clock of servicel < j, < Ty;
k representing the phase of arrival;

(Ju. k., v) refers to the service state with The
[ representing the phase of service;

| v visit period typev =1,... M.

transition matrix of this Markov chain P is given as

Boo Bm 0 0 0
Bio A7 A0 0 O
P=10 A, A A 0 - ...,

0 0 A, A Ao

where,
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For example, let N = M = 3. The block matrices are then given by:

Do ® 12 L‘féz Do ® tnstés
Do ®(Ly + 22 i88;) Do & 23 L2865
Do & 13236,

Do @(L; + q“L:EH
0089211436:
Do ® a3 136,

Boo
Do ®(L3 + 933L§63

e; e D, 81013Lfﬁ)

D@Ly €]@D ®(¢11L1°ﬂ1 0 €ien e(mL?ﬂ) 0
By = 0 e ep el poL, € sn 8 (22 L) 0 CHEY-NEYP BY6
0 €, ¢ 0, 8 (e LB 0 e on eunliB) Do € 8D 9L
l’ 0 0 0
€90,8mS°8,) esn 811258, ee o, 8 (03583
€3 Dy Q(nls°6ll e@Doe(an°67) € ® Dy @(q,;,S"ch]
€ g Dg G(Q:sls"&x) € gDy @(qszs°6z) €8 Dy 3(9335°63)
[ 8wt 24l us '3 ]
0 0 relad)
ay LAl q12 24} a3 34l
a1 242 2a3 422 242 @3 242
Ay = 0 0 1@ 248
a2 Al a2 24} @3 3Al
@ 342 243 a2 34 a3 342
) 0 1e 349
| @1 tay ' _ w2 24} w3 24y ]
v=0,1,2 and 'A3 =* A2 = 0, where,
( (
1 i A0
‘A = Di®S, ‘AY = Dy® S+ D, ®(S°B),
) ‘Al = D, ®(Se)s;, ‘A] = Dy ® (Se)s; + Dy @ (S°6;),
i A2 _ - A2 -
] i 43
|43 = DL A4} = Dy®L,
4
t A0 __ °
‘g = Do (SA), : |
S L!=e—-Lie,S°=¢—Se,1=1,2,3.
A} = Dy ® (8°6;),

and B = B°(S + S°B), with fe = 1,

where S° = e — Se, and L° = e — Le.
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