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A.bstract

Recently, robust quantization has leceived conside¡able attention, particularly as a

potential approach to joint source-channel coding. This dissertation investigates the

practical design of channel optimized vector quantizers (COVQ). Specific problems

considered here include COVQs with memory and COVQs operating over channels

uith memorg. In this work, the emphasis is placed on soft-d,ecod,i,ng at the receiver.

Vector quantizers with memoty ale an effective means of quantizing correlated

signals. However, when designed without regard to channel errors, these quantizers

sufier from degradation of performance due to the propagation of channel e¡rors

at the receiver. We consider two important examples of such quantizers, namely,

predi.cti.ae uector quantizers (PVQ) and f,nite-state uector quantizers (FSVQ). In the

case of PVQ, an iterative algoriihm is developed for jointly optimizing the quantizer

and the associated linear predictor to a given channel. According to the simulation

results presented here, the proposed PVQ designs based on hard-decoding perform

comparably to those obtained by a previously studied gradient-search optimization

algorithm. F\rthermore, it is demonstrated that PVQs with soft-decoding can provide

a significant implovement over hald-decoding systems. In the case of FSVQ, a time-

recursive decoding algorithm, rvhich exhibits graceful degladation of perfor.mance

with increasing channel noise, is int¡oduced, Design of channel optimized FSVe is

also considered. Simulation results are presented, which demonstrate that proposed

channel optimized FSVQs outperforur the memoryless COVes operating at the same

râte.
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Finally, in the context of channels with memor¡ joint equalization and soft-

decoding using a sliding-block decoder is investigated. This decoder is a non-linea.r

time-invariant filter based on minimurn mean square error criterion. As a practi-

cai implementation, multi-layet perceptron (MLP) is considered. Simulation results

indicate that MLP-based soft-decoder outperforms a previously studied recursive soft-

decoder, particularly under high channel noise. However, the complexity of the opti-

mal sliding-block decode¡ function is found to increase with the encoder resolution,

rnaking the estimation task halder. In an encouraging development, it is shown that

the optimal sliding-block decoder for the Gaussian channel approximates a linear

function as the channel becomes noisier. Experimental results seem to support this

theoretical result.
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Chapter L

Introduction

Explosive growth of rvireless netrvorks, the Internet, and other multi-media based ser-

vices over public networks in r.ecent years has made the efficient use of narrow-band

digital channels a very important issue. A large portion of traffic in these commu-

nication systems involves data, derived from analog signals such as speech, audio,

and video. It is not only required that these analog signals be coded inio digital

data, but also that the bit-rate of the coded representation be low enough to meet

the bandwidth requirements of the channel. The process of obtaining a coded rep-

resentation for an information bealing signal is referred to as s,ignal compress'ion or

source codáng. F\rndamentally, source coding requires the elimination of any red,un-

d,øncy ptesent in the signal to be coded. When the signal is analog, source coding is

necessarily lossg in that, some d,istort'ion is introduced into the signai by the coding

process. Thus, the goal of source coding is either to minimize the bit rate for a given

level of average distortion or to minimize the average distortion for a given bit rate.

There are two essential steps in coding an analog signal into a digiial data stream.

First is sarnpftíng, which converts the continuous-time signal into discrete samples.
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Second is quanti,zation, by rvhich the analog samplesl are mapped onto a frnite set

of values, which can be represented by a digital code. In scalar quanti,zafzon (SQ), a

continuous-valued variable (i.e., a signal sample) is approximated by a value from a

predetermined finite set of values. Vector quantizati,on (YQ) is the generalization of

scalar quantization to vectols in that, a vector-valued va.riable is mapped onto a finite

set of vectors. Theoretically, VQ of a set of variables is always better than individual

SQ of the same variables, and in practice VQ can result in a considerable gain over

SQ. In recent years, VQ has received a gleat deal of attention as a signal compression

method [i], [2], [3], and has been considered for many applications, including speech

and image coding [4], [5].

Another issue that lias to be addressed in digital transmission is channel cod,i,ng,

the objective of which is to rnitigate the effects of channel distortion on the data

received at the channel output. In order to reliably send data over a noisy channel,

they musi be coded using a redundant code prior to the t¡ansmission, so that not

¿ll channel outputs are valid codewords. The widely used approach to designing a

digital transmission system is to treat source coding and channel coding problems

separately. That is, the soulce code is designed by considering the properties of the

source alone, while the channel code is designed by considering the properties of

the channel alone. According to the well known source-channel separation theorem

due to Shannon [6], there is no loss of performance in designing source code and

channel code sepa.rately, if infinitely long sequence of source vectors a¡e used in Ve

and infinitely long codewords a¡e used in channel coding (i.e., optimal source code

and optimal channel code can be combined to obtain the optirnal source-channel

code). However, these conditions cannot be met in practical designs due to obvious

restrictions on computational complexity and allowable delays. F\rrthermore, the

@mpIesintootherIepIesentationspriortoquantization.
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separation theorem is not necessarily valid for scenarios encountered in widely used

multi-user systems, packet-networks, and wireless systems. Hence, the optimality of

separately designed source codes and channel codes remains questionable in many

practical situations. fn joi,nt source-channel coding (JSC), the design of source and

channel codes are combined in some manner. JSC can take many different forms

a,rrd many such methods tend to be application specific, see [7] and ¡eferences cited

therein. While in practice, neither separate designs nor a joint design may yield the

optimal solution to the given problem, for a given implementational complexity (and

coding delay) the joint design may yield better perforrnance in some applications.

The main focus of this dissertation is a JSC method in ¡vhich a vector quantizer

is designed to minimize an end-to-end distortion measure that includes the distortion

due to channel. As the resulting code acts as a source code which is robust against

channel distortion, the need for an explicit channel code is eliminated and the ¿vail-

able channel bandwidth is better utilized for transmitting source information. This

approach is known as channel optimi,zed uector quantizaúion (COVQ). We propose

and investigate several new algorithms for designing of COVQ.

1.1 Background

The concepts of lossy coding and vector quantization were introduced by Shannon in

his classic papers [6] and [8]. In par.ticular, in [8] he proved that there exists a lower

bound to the rate j?(D), at which an independently and identically distributed (iid)

source can be coded to achieve a given value D of an additive distortion measure.

Achieving the lower bound requires block sour.ce coding (vector quantization). .R(D),

called the shannon rate-d,istortion function, is a function of the source probability

density and the distortion measure, and represents an asymptotical upper bound to
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the performance of any VQ, which may be achieved only in the limit of infinite block

length (vector dimension). Shannon's results have also been generalized to sources

with mernory, see [9] for a historical account and ¿ review of ¡ate-distortion the-

ory. Sha.nnon's theory however does not show how optirnal VQ can be designed in

practice, and in general the difficuli problem of finding the optimal vector quantizer

remains unsolved. In terms of practical design, pelhaps the most significant contr.i-

bution came from the work of Lloyd [10] 
2. He der.ived the necessary conditions for

a fixed-rate scalar quantizer to be optimal under the squaÌe etror distortion mea-

sure. These conditions are now widely known as Lloyd optimali.ty conditionss. Based

on these results, Lloyd introduced trvo iterative algorithms, called "Method I,' and

"Method II" for designing locally optirnal quantizer.s (i..e., only correspond to a local

minimum of error function) fol a given source, characterized by its density functiona.

Subsequentl¡ Linde eú ol. [12] generalized Method I to the empirical design of vector

quantizers. This algorithm, now widely knorvn as generalized, Llogd algori.thm (GLA)

or Li,nde-Buzo-Grag (LBG) algor.ithm, uses a set of sarnple vectors obtained from a

source to iteratively design a locally optimal VQ.

The design of optimal quantizers fol noisy channels was first studied by Kurten-

bach and Wintz [13]. The basic difference between their work and that described

above is the inclusion of channel errors in the distortion measuÌe. They derived the

quantization points and the transition levels of the scaìal quantizer which minimizes

the mean-square error for a given source density function and a channel transition

matrix. As the resulting set of equations wele not explicitly solvable, they used

@ternalreportoftheBelILabo¡atoriesandwaspresentedin
parts at the Institute of Mathematical statistics meeting in 1g52, and rvas subsequently published
in 1982.

3lnterestingl¡ Lukaszewicz and Steinhaus also have previously derived similar conditions in a
difierent context, see [2].4Max 

[11] also independently discovered Method II in 1960.
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an iterative procedure based on the Max's algorithm [11] to obtain a locally opti-

mal solution. Subsequently, the problem was further investigated by Farvardin and

Vaishampayan in [14]. They identified that, in ordel to ensure the convergence of

the iterative algorithrn, it is necessaly to impose the constraint T¡¡ < T¿, where fr-i
and fi are transition levels that define the riúÀ quantization interval. This situation

does not arise in the case of noise-f¡ee channel 5. Ayanoglu and Gray [1b] considered

the design of trellis waveform coders for noisy channels and provided an iterative

codebook irnprovement algorithm. T\'ellis waveform coding is a block coding method

in which the decodel is a finite-state machine and the encoder is a search algorithm

matched to the decoder.

The problem of optirnizing a vector quantizer to both source and channel was

first addressed by Kumazawa et al., lL6]. They derived the necessary conditions for

the optimality of encoder and decoder in the presence of a noisy channel and em-

ployed those conditions in GLA to design locally optimal vector quantizers. A more

complete treatment of channel-optim,ized uector quanti,zati.on (COVQ) was later pro-

vided by Farvardin and Vaishampayan [17]. In pa.rticular, they showed that encoding

regions in a COVQ are convex polytopes and that the complexity of encoding was

not wo¡se than in ordinary VQ. Several authors have reported extensions of COVe

to specific VQ structures. In [18], similar ideas were used to design shape-gain Ve

(SGVQ) for noisy channels and the technique was applied to robust image coding.

In experimental comparisons with ordinary SGVQ, the channel optimized SGVe

showed improved performance in the presence of channel noise, while computational

complexities were leported to be comparable. Phamdo et al llgl applied the idea of

COVQ to design tree-structured VQ (TSVQ) and multi-srage Ve (MSVQ) for noisy

channels and reported substantial performance improvements over ordinary TSVe

ffitexplicitlyrequiredindesignbasedontrainingsequences.
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and MSVQ in coding Gauss-Markov sources under high channel noise. Hussain eú

al., [20], [2t] developed algorithms for designing finite-state VQ (FSVQ) for noisy

channels and considered applications in speech coding. Lindén 1221, 123] investigated

predictive VQ (PVQ) for noisy channels and proposed gradient descent algorithms for

optimizing the predictor and decoder codebook to a noisy channel. Both FSVQ and

PVQ are adversely affected by channel noise, since they have a feedback st¡ucture in

the decoder. A more detailed review of previous work on PVQ and FSVQ for noisy

channels is presented in Section 1.2.

In the work mentioned so far, a discrete memoryless channel (DMC) was assumed

and the channel was characterized by its transition probability matrix. Even though

many practical channels can be accurately nodeled as a DMC, the actual signals

used for conveying discrete symbols across a channel are analog. In order to obtain

a disc¡ete output ât the receiver, a d,etector is used on the analog channel outputs.

However, when the objective is to minimize the mean squate erroÌ in reconstructing

a continuous signal, decoding based on discretized channel outputs can be viewed

as a sub-optima.l solution to the underlying MMSE estimation problem. The opii-

mal solution is to perform estimation based on continuous channel outputs. This

approach is referred to as sofi d,ecod,i,ng as opposed to hard, d,ecod,inq used with the

discrete channel model. Essentially, soft VQ decoding leads to an improvement in

performance over hard VQ decoding, as there is a loss of information due to detec-

tion process in the latter. Experimental results reported in this thesis, as rvell as in

the literature, demonstrate that a significant per.formance gain can be achieved by

using soft-decoding in COVQ.

In [24], Vaisharnpayan and Fa¡vardin considered the problem ofjointly optimizing

the vector quantizer and the modulation signal set for waveform channels in which
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the average transmitter power was limited. In their formulation, the decoder was con-

strained to be a linear mapping from continuous channel output space to the source

signal space. Performance comparisons were made against a system with ordinary

VQ (designed by GLA) and a maximum likelihood detector. Even though the linear

decoder makes analysis tractable, it is clear.ly suboptimal for reconstructing a signal

subjected to the non-lineaÌ process of quantization. Lfu et al., [25] considered opti-

mum soft-decoding without the linearity constraint for the additive Gaussian noise

channel (AWGN). While the conditions for optimality of the encoder and decoder.

were generalizations of those in [16] and [17] for the discrete channel mode1, the opti-

mization of signal constellation rvas perforrned using a gradient search. Subsequently

in [26], the same authors investigated a sequential decoding algorithm for Rayleigh

fading channel using a non-linear. soft-decoder. Skoglund and Hedelin [22] proposed

an interesting implementation of the optimal soft-decoder based on Hadamard ma-

trix and considered the application to binary channels. The Hadama¡d matrix can

be used to express the decoder output vector in terms of the individual bits in the

received codewords. ln a related work, skoglund and ottosson [28] studied multi-user

soft-decoding in the context of CDMA6. Phamdo and Alajaji [29], [30] investigated

soft-decoding for vQ based on soft-decision demodulators for binary Gaussian and

Rayleigh fading channels. A soft-decision demodulator discletized the channel out-

put to a higher lesolution than the hard-decision demodulator. It was demonstrated

experimentally that the performance of the resulting COVQ approached that of a

soft-decoder based on continuous channel outputs, when the demodulator resolution

is increased. This however comes at the cost of increased storage requirements at the

decoder. Recentl¡ soft-decoding has sho¡vn to be palticularly useful on channels with
6In code-division multiPle-access (CDMA) several sources (users) are sinultaneorxly tra¡rsmitted

over a sha¡ed chan¡el.
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intersymbol interference, where the soft-decoder can be used as a combined equalizer

and a VQ decoder [31], [32], [33], [34]. This will be further discussed in Section 1.2.

Most work on COVQ assumes a known, stationary channel. This assumption

ho¡vever may not be valid in a number of situations. Wang [35] studied COVQ for

time varying finite-state Markov channels. The basic idea is to design a separate

COVQ for each channel state having a known signal-to-noise ratio (channel state).

Models are derived for meteor burst channels and Rayleigh fading channels, and

iterative algorithms are proposed fol the design of COVQs fo¡ these channels. In

a related work, Durnan and Salehi [36] considered the design of scalar quantizers

when only noisy information about the channel state is available to the encoder and

decoder. Jafarkhani and Farvardin [37] also investigated the design of COVQ under

channel variations. In particular, they considered the design of COVQ, when the pdf

of channel bit-error rate is known.

A problem closely related to COVQ is the optimal channel codeword assignment

or inder assignment (IA) for a VQ operating over a noisy channel. The problem

here is to assign channel codewords to the output of a given VQ encoder. (typically

designed for a noise fi'ee channel) so as to minimize the average disio¡tion over a noisy

channel. Intuitively, it is clear that one can reduce the average distortion by assigning

binary channel codewords that are close in Hamming distance to code vectors in the

VQ codebook that are close in distortion measure of the quantizer (e.9., Euclidean

distance). This problem can also be vierved as a special case of COVQ in which the

encoder partition is fixed. As the mapping to be optimized in this case is one from a

set of integers (encoder output) to the set of channel codewolds, best IA selection is

a combinatorial optimization problern. clea.rly, the exhaustive sea¡ch for the globally

optimal solution is intractable in most but simplest cases. on the other hand heuristic
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search algorithms have been studied and found to be effective [38], [39], [40]. In [39],

Zeger and Gersho considered an algorithm which iteratively switches positions of

two vectors in the codebook to assure a monotone decrease in average distortion.

Farvardin [40] investigated the use of simulated annealing. The general conclusion

here is that substantial improvements in pelformance can be achieved when IA is

chosen to match the channel noise level, rather than arbitr.alily.

Theoretical studies of COVQ appear sparsely in the literature. In [41], a study

of asymptotically optimal noisy channel VQ is presented. In 1421, the convergence

of empirical error of noisy channel VQ is studied. It is shown that, in terms of the

convergence rate (as a function of training set size), the design of noisy channel vector

quantizers is not harder than the design of quantizers for noise free channels.

Finally, it is worth mentioning that methods othel than GLA have also been

investigated for both VQ and COVQ design, see for example [43].

L,2 Related Work

Feed,back VQ

A VQ in which the output depends solely on the current input is said to be memor7-

less. According to shannon's theory on rate-distortion coding of continuous sources,

memoryless VQ is sufficient to achieve near optimal performance, if one is prepaled

to use arbitrary lo'g vectors, d.e., dimension d -+ oo. However, practical limits to

vector dimension exist, particularly due to the fact that the complexity of a rate R

encoder grows as O(2nd). \.Vhen the source is correlated, a Ve having tnernorg carr

be used to obtain better performance with small vector. dimensions. In a Ve with

memory, the encoder output depends not only on the current input, but also on the
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previous inputs. This is usually achieved by ernploying feedback in the encoder and

decoder. Subsequently, such a quantizer has a time varying encoder partition and a

decoder codebook. While many quantization methods exist which utilize feedback or

memory, predictive VQ (PVQ) and finite-state VQ (FSVQ) have received consider-

able attention in both speech and image coding [3j, [44]. PVQ in particular has been

considered for linear-predictive coding (LPC) of speech. In LPC, typically a vector

of coefficients representing the short-telm spectrum of the speech signal is extracted

and encoded. These vectors usually exhibit a high inter-vector co¡relation which can

be exploited with predictive coding. The basic principle behind feedback VQ is to

quantize a given vectol based on the previously observed vectors, i.e., history of the

input signal. Since both encoder (on tr.ansmitter. side) and decoder (on receiver side)

must be able to observe the same histor¡ this information is derived from the re-

constructed signal rather than the original signal, thus introducing feedback in both

encoder and decoder. A major drawback of feedback VQ is the propagation of errors

iu the decoder in the presence of channel noise; an error in a single channel output

leads to a sequence of erroneous outputs fi.om the decoder. In order to avoid perfor-

mance degradations in such situations, encoder and decoder design must take channel

er¡ors into account. Recent studies on noisy channel PVQ and FSVe have shown

that significant improvements in performance can be obtained by redesigning these

systems to minimize error propagation fa(l, 122]1, [45], [20].

PVQ [3], [46] is the vector extension of scalar differential pulse code modulation

(DPCM), in which the error resulting from predicting the input vector is quantized.

'When the prediction is good, the erlor va.riance is much lower than the signal vari-

ance' resulting in an ovelall coding gai'relative to direct coding of input vector [3].

As mentio.ed above, the prediction at both encoder and decoder is based on the re-
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constructed signal, and hence we have feedback paths thr.ough the predictors at both

ends. In [47], the joint optimization of quantizer, predictor (linear), and sampling rate

of a DPCM system was studied. Among other things, they suggested the optimiza-

tion of quantizer and predictor in an iterative approach resembling Lloyd algorithm.

They derived analytical equations describing the optimal values for the coefficients

of linear predictor and the levels and intervals of the quantizer for prediction error.

The solution of these equations r.equires numerical methods. It was shown that, by

decreasing the prediction gain fi.om that of optimal linear predictor, it is possible to

improve the noisy channel performance of a DPCM system. More importantly, it was

shown that, contrary to popular belief, the effect of channel erÌors on overall MSE is

no more serious in DPCM than in PCM. However, rve note that the efiect of channel

erro¡s relative to quantization errols is much more serious in DPCM. A discussion on

noisy channel performance of DPCM can also be found in [48]. More recent work on

approaches to robust PVQ can be found in [44]. hr [22], Lindén investigated gradient

descent algorithms fol optimizing linear. prediction-based PVQ to a DMC. In these

algorithms, an initially chosen codebook (for prediction elror) and a predictor a.re

updated in a direction which will decrease the average distortion, while optimal en-

coder partition is defined in terms of the decode¡ and channel. simulation results are

reported fol blocked Gauss-Malkov p'ocesses as well as for line spectral frequency

(LSF) vectors of speech signals, which indicate ihat the predictive codes designed

using proposed channel optimized, PyO (COPVQ) algorithms are much superior to

memoryless COVQ. Typically 1-2 dB increase in SNR over memoryless COVe has

been achieved for Gauss-Malkov source at 5% channel bit e¡ro¡ rate, with gain being

higher for smaller vectol dimensions.

In FSVQ l3l, [49], both encoder and decode¡ are finite-state machines ¡vith a dif-
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ferent quantizer associated with each state and st¿te transitions determined by the

history of the observed signal. Horvever, in order that both encoder and decoder be

able to trace the same sequence of states, state transitions are actually effected by

feeding back the quantizer output. The effect of channel noise is much more dis-

astrous on FSVQ than on PVQ. A channel err.or usually 'derails' the decoder from

following the same state sequence as the encoder, which in effect causes the decoder

output to virtually become random. Hence, FSVQ shows a dramatic degradation in

performance as the channel becomes noisy (see Fig. a.2). Hussain et. aI, 120), l2ll
has studied the design of FSVQ for noisy channels and considered two approaches. In

the first, the encoder state is protected by channel coding and explicitly transmitted,

so that the decoder need not be a state machine. In order to reduce the additional

overhead due to this, the encoder state is t¡ansmitted only periodically. The missing

states are then estimated using a maximum a posterior sequence detection procedure

which requires a delay equal to the intervals at which the encoder state is transmitted.

According to the simulation r.esults reported in [20], this method appears to be effec-

tive only when the channel is quite noisy. Fulthermore it requires a decoding delay

which can be objectionable in applications such as speech coding for which FSVe is

a strong candidate. In the second appi.oach, an FSVQ with a restricted next-state

function is designed so that the next-state is solely determined by the previous output

of the encoder. with this next-state function, an eüor in a received channel code-

word afiects only the following state and, upon receiving a corlect channel codeword,

the decoder returns to the correct state. This restricted next-state rule, though sub-

optimal at very low channel noise levels, results in superior performance compared

to the first approach as rvell as to memoryless coVQ, when the channel error rate is

increased.
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Soft-d,ecod'ing VQ Íor Channels w,ith Memorg

In digital communication systems, limited bandwidth and non-linear characteristics of

various circuit components cause signals transmitted dur.ing adjacent symbol intervals

to interfere with each other. This is commonly known as intersgrnbol 'interference

(ISI). The traditional approaches to dealing with iSI include interleaving, maximum

likelihood sequence detection (Viterbi decoding) and linear or non-linea¡ equalization

filtering. Wrile the use of such techniques allows one to trea,t the channel as being

memoryless in the design ofVQ decoders, recent research has shown that considerable

performance gains carÌ be achieved by using soft-decoders that operate on the output

of ISI channels directly. In [3i], Kafedziski and Morell investigated the use of the

recursive a posteriori probability estimation algorithra of [50] for soft VQ decoding

over linear Gaussian channels. In the ter.minology of estimation theory, soft-decoding

of this type can be considered as fired,-lag smoothi,ng l1t]. Subsequently, Skoglund [32],

further investigated the same approach. In his formulation, encoder statistics were

also considered in the decoder expression to utilize the resid,ual redund,ancy l52l of

transmitted data for erlor protection. According to the experimental results reported

in [32], the proposed soft-decoding algorithrn yields a considerable improvement over

a hard decoding scheme involving Viterbi equalization, in the presence of severe ISI.

However, a major problem with the said algorithm is that it involves the evaluation of

a sum with a number of terms that gr.orvs exponentially with the encoder resolution.

In [32], Skoglund also investigated approximate computation of the desired sum via

the generalized Viierbi algor.ithrn. With this approach the computational complexity

of the algorithm can be traded-off for performance. Another sub-optimal approach

was also considered in [33].
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1.3 Dissertation Outline

This dissertation is concerned with algorithms for practical design of noisy channel

VQ. Two main problems have been addlessed. The first one considers VQs with

memory and focuses specifically on PVQ and FSVQ. The second is concerned with

VQs operating over a class of channels exhibiting memory. Design algorithms de-

veloped in this dissertation follow the philosophy of GLA, in which the encoder and

decoder functions are iteratively improved to each other. Thus, the fundamental

problem studied here is the optimal structures for encoder and decoder under a given

set of constraints. We have used the meân square erÌor as the distortion measure due

to its mathematical tractability and its effectiveness in many ¡elevant applications.

The source density function and a statistical description of the channel are assumed

known. One of the main objectives of this work has been to use soft-decoding based

on continuous-valued channel outputs, which can be viewed as a natural approach

to solving the underlying estimation ploblem. The algorithms proposed in this dis-

sertation do not necessalily yield theoretically optimal codes. However, comparisons

with known results are provided to demonstrâte that these algorithms do provide

good codes. These comparisons are mostly based on the quantization of first-order

Gauss-Markov source, described in Appendix C. This source is commonly used as

a benchmark for comparing different source coding techniques, as its rate-distortion

function can be either computed or bounded [53]. It also provides a good model for

real world data in many cases.

Chapter 2 of this dissertation presents basic results in both Ve and COVe, which

will be extended in the follorvi'g chapters. some properties of quantizers optimized

to noisy channels are also discussed there.

In chapter 3, the design of PVQ systems based on linear predictors for noisy

74
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channels is studied. In palticular', an algorithm for designing a PVQ system for noisy

channels is derived. This algorithm iteratively adapts a given (usually optimized to

noise-free channel) PVQ systern, including the predictor, to a given channel. Sim-

ulation results presented here show that the proposed algorithm yields codes with

performance neally identical to that of predictive codes obtained by gradient-search

optimization techniques in [22]. Furthermore, the proposed algorithm can also be

used to design PVQ systems with soft-decoders which provide a further improvement

in the overall disto¡tion.

In Chapter 4, the design of FSVQ for noisy channels is studied. The main con-

tribution of the chapter is a robust decoder for a general FSVQ, operating over a

noisy channel. In deriving this decoder, we view the operation of an FSVQ as one of

choosing a codevector for a given input vector from the set of vectors formed by the

union of all state codebooks (super cod,eboolc). The optimal decoder thus computes

the conditional expectation of the super codebook, given the sequence of observed

channel outputs. Note that this decoder does not attempt to track the encode¡ state

seqüence. We derive a time-recursive algorithm of fixed complexity for computing

the output of the optimal decoder. We also develop an iterative algorithm for opti-

mizing an encoder-decoder pair to a given source and a channel. Both ha¡d and soft

decoding is considered. simulation results are obtained for Gauss-Markov process,

which show that the proposed FSVQ design methodology yields codes which exhibit

graceful degradation of performance with channel noise. F\rrthermore, robust FSVes

designed hele are shown to outper.form rnemoryless COVe operating at the same

rate.

In Chapter 5, the design of COVQ for a class of channels with intersymbol in-

te¡ference is investigated. we focus on soft-decoding, which can be viewed as a
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generalizâtion of minimum meân square errÕl (MMSE) channel equalization. In par-

ticular, we investigate a soft-decoder based on slid,i,ng-block smooth'ing, which can be

implemented by multi-dimensional function estimation (regression) techniques. The

resulting decoder is a non-lineal tine-invariant MMSE filter, whose parameters may

be estimated off-line. In simulation experiments, multi-layel perceptron (MLP) is

used to implement the sliding-block decoder. In these simulations quantization of

Gauss-Markov souÌ'ce oveÌ lineat Gaussian channels is considered. According to the

results obtained, sliding-block decoder outperforms a probabilistic recursive soft de-

coder (resembling Kalman filter) studied in [32] at moderate to high channel noise

leveìs. However, a significant computational effort may be required to estimate the

sliding block decoder from training data. In particular, the complexity of the opti-

mal mapping appeaÌs to inc¡ease witli the encoder tesolution, In this context, we

show that, as the channel signal-to-noise ratio is decreased, the optimal sliding-block

decoder fo¡ a Gaussian channel approximates a linear mapping. This implies that

the estimation task becomes sirnpler as the channel becomes noisier, an observation

supported by the experimental results.

In Chapter 6, some directions for futur.e research are outlined,



Chapter 2

Quantizers for Noisy Channels

2.t Vector Quantization

The basic process of vector quantization (VQ) 1 is illustrated in Fig. 2.1. Let X e IRd

be a stationary random vector source, rvhere lR. denotes the set of real numbers.

The encoder e(.) is a mapping from d-dimensional real space onto the finite set of

integers IIN : {1, r,. .. ,ti, i.e., e : IRd -+ ll¡. Thus, the encoder partitions IRd

into a set of ly' non-overlapping cells, denoted by {O1,02, . . . , O¡v}, and all vectors

X e O; are labeled with integer i. We assume that U[lQi : IRd. The rate R" of

the vector quantizer is defined as (lld)log2N bits per vector component. In this

dissertation, ¡'e consider only fixed-rate quantization in which the encoder output is

to be represented by fixed-length codewords. The output of the encoder is transmitted

through a channel to the decoder. In the pr.esence of channel coding, we assume that

the channel is noiseless. The decoder ô(.) is a one-to-one mapping from set I,y onto

the set C¡: {cr,c2,...,""} C IRd, referred to as the cod,eboole, i.e., ó': I,y -+ C¡.

The vectors c¿, i, : 7,. . . ,Iú are called cod,e aectors ot reconstruction oecúors. Note
lWe will use the acronym VQ to refer to both vector quantizer and vector quantization

t7
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T

Encoder Decoder

Figule 2.1: Vector quant'izati,on.

ihat the decoder is merely a lookup table operation using the encoder output I as

an index into the codebook. It is clear that the quantizer approximates all source

vectors X € Q; by c¡.

The ovelall opelation of an .ly'level vector quantizer Q¡ is the mapping of IRd

onto the finite set Ctv, i,.e.

Ç,y : lRd -+ C¡. (2.r)

The distortion of this mapping is measured by an appropriately chosen non-negative

cost function D(X, X), which describes the error in approximating the vector X by

X e Cr. Then, the globally opti,mal VQ for a given source can be defined as

(e-, ð-) : argin{ EiD(X, x)}, (2.2)

where the infimum is taken over all /{-level encoder-decoder pairs. A perceptually

motivated distortion measuÌe appropriate for many applications, including speech

and image coding, is the input-weighted square error [3]

D(x,Î) : (x - Î)Tw(x)(x - î), (2.3)

where w(x) is a positive def ite weighting matrix. The choice of weighting matrix

allows one to put more emphasis on certain vector components. When W(X) is the

identity matrix, we have the courmonly used square error (Euclidean distance) given

18
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by

D(x,x): llx-Îll,

i9

(2.4)

We will generally use this distoltion measure in most of our wo¡k. Horvever, as indi-

cated in Section 2.4, many results derived here readily extend to the more generalized

case given by (2.3).

Opti,mal Vector Quant'izer

Let X be an absolutely continuous vector with probability density function (pdf)

p(x). Then, the average distortion of Q,y is given bv

(2.5)

In order to find the globally optimal vector quantizer for a given ly' and p(x), one

has to solve (2.2), a problem one cannot hope to solve analytically in any general

sense. In practice, the most widely used approach to designing VQ's is the generali,zed,

Lloyd, algorithm (GLA) [12]. This algorithm is based on solutions to two simpler

problems: (i) opiimization of the encoder for a fixed decoder, and (ii) optimization

of the decoder for a fixed encoder. Solution of these two problems leads to the well

known necessarg cond,i,tions for optámality olYQ [3] . In GLA, these two conditions are

applied iteratively to the encoder and decoder (starting from some initial choice), until

the changes between consecutive iterations are small enough. since the distortion

function in general ca¡ have many local minima, this descent algorithm can only

locate a local minirnum. However, in practice it is known to yield very effective

designs. Mo¡e details on GLA can be found in [12] and Chapter 11 of [B].

E{D(x, gN(x))} : f, llx - Q¡(x)ll,p(x)dx
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Optimal encoder- Given a decoder 6 (i.e., a codebook), the optimal encoder e* is

given by the nearest nei,ghbor cond,iti,on

e.(x) : ¿ if llx - ó(¿)ll' < llx- õ(ùll' vj + i,, (2.6)

(ties broken arbitrarily) and the optimaì encoder cells are the Voronoi, regions [B] of

the code vectors ô(tí) : c¿. These cells are convex polytopes in IRd [3]. (2.6) can be

written in the form

e-(x) : ¿ if b¿ - 2xr a¿ < b¡ - 2xr a¡ Vi I i,, (2.7)

where a¿ : ð(i) and br : lló(i)ll'. Thus, we can represent the encoder using a set of

paÌameters {(+, äu), i : 1,... , N}, which can be computed directly from the given

codebook. An important property of the optimal quantizer is that the code vecto¡s

are the centroids of the Volonoi par.tition generated by the code vectors themselves.

Optimal decoder- Given an encoder e (.i.e., a partition of Rd), the optimal code

vectors are given by

Á*/;l : /n, xP(x)dx
" \'/ 

-lo, P(x)¿x
: E{xlr : i}, (2.8)

where 1: ¿ <+ X € O¿. Thus, the optimal code vectors ô-(i) : st are the centroids

of encoder cells O;, i : 1,. . .,,¡/. This condition is known as !,he centroid, conditi,on.

The necessa.ry conditions for optimality, given by (2.2) and (2.8), provide the

basis for the iterations of GLA. The evaluation of (2.8) requires the knowledge of the

input pdf' which in general may not be available. Even if it is known, the analytical
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evaluation of multi-dimensional integrals over polytopal encoder regions is usually

very difficult. Hence, the coütmon plactice is to replace the expectations by sample

averages based on a set of empirical observations of the input vectot i.e., a trai,ni,ng-

seú, This obviously lequires assumptions on er.godic properties of the source.

In order to start the iterations, an initial encoder 6(0), or equivalently an initial

pa.rtition of the training set is required. Tliere exists a number of methods for gen-

erating the initial partition, a survey of which can be found in [3]. Given the values

computed in the (m - 1)¿À iteration, the mth ite¡ation of GLA proceeds as shown

in Table 2.1. It is clear that each iteration must either.¡educe or leave unchanged

the average distortion, and hence D,. is a non-increasing sequence. In fact, it can be

shown that, under certain mild restrictions, the sequence of quantizers Q(ft{*\,6{^)1¡

based on a finite size training set converges to a fixed-point, i.e., one corresponding

to a local minimum of the distortion function (locallg optimal quantizer), see page

356 of [3].

1. Compute optirnal decoder 6(-), given .{--1) ((2.8)).
2. Compute optimal encoder.(-), given 5{^l ( (2.7)).
3. Compute average distortion D* : Dþ@\,6@)¡.
4. If (D^4 - D*) I D^-t is small enough stop.
5. m<- rn f 1; Go to 1,

Table 2.1: An i,terati,on of generali,zed, Lloyd, algorithm,

2.2 Vector Quantization for Noisy Channels

.we 
now consider the problern of using vector quantization as a means of source

coding (signal compression) fol transmitting continuous signals over noisy channels.

This situation can be modeled by inserting the channel between the encoder and the
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VQ encoder VQ decoder

Figure 2.2: Vector quantization problem for no,isy channels.

decoder as shown in Fig. 2.2. We obtain the VQ shown in Fig. 2.1 if the channel

is distortionless ot i.d,eal. Hence, we refer to the VQ in Fig. 2.1 as the id,eal channel

vector quantizer. Note thât there is no explicit channel coding in the system shown

in Fig. 2.2. The channel á in Fig. 2.2 can be modeled in two difierent ways, leading

to two distinct types of decoding strategies. First, if we assume that the channel is

discrete and memoryless, I , J e I[¡, ând we have I : ìl,y -+ I[¡. In this case, the

encoder output 1is transmitted over the channel, which is received by the decoder as

J. Due to random distortion caused by the channel, ./ may not always be identical to

1, and the conditional probability of J, given I is the channel transition probability

Pt(J : jlI : ¡.) : P,¡, á, j :1,... ,N. (2.e)

The decoder is a one-to-one mapping between the channel output and the reconstruc-

tion codebook, i.e., 6¡7 : ìl¡y -+ C¡y. Such a decoder is referred to as a hard,-d,ecod,er.

Alternatively, one can also co'sider a continuous channel whose input is an .L

dimensional vector S frorn a given (fixed) set S¡y : {a1, .., ,o"} c IR¿ and the

output Y is any vector in IR¿, i.e., I : S¡y -+ R¿. The set S¡¡ is called the signal

constellati,on2. In this case, the encoder output 1: i is mapped to the channel signal

@,1ln-arychannelisobtainedbyr?usesofthechannelper
source vector.

22
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a¿ which is received as a randorn vector y by the decoder. The conditional density

function of Y given the channel input vector S is

p(vls : o.¿) : p¿(y), i : 1,.,.,1{. (2.10)

As the mapping frorn ll¡ to S,y is one-to-one, we cân now view VQ encoder outputs

as being vector valued indices a¿, i, : 1,... , N. Hence the only difference between

the disc¡ete case and the continuous case is in the received ,,indices', J and Y; ./ is
obtained through a decision on Y. In a communication system, this is achieved by

tsing a d,etector which makes the decision as to which channel input was responsi-

ble for the observed output Y. However, when the quantizer minimizes end-to-end

distortion (with no channel coding being used), it will be shown below that decod-

ing is an MMSE esti,mation problem. Hence, it is more natural in this case to use

the continuous channel output rather than a discretized version of it, as the decoder

(estimator) input. A soft-decod,er is thus a mapping ds : IR¿ -+ IRd, where y e IR¿

is the cha'nel output vector. clearly, there is a loss of information when the estima-

tion of the source vector in the receiver is based on discretized channel output. The

performance improvement due to soft-decoding can be very significant under noisy

conditions.

We now turn our attention to the problem of finding the optimal Ve for a given

source and a channel. In the remainder of this chapter, lve assume that both the

quantizer and the channel are memoryless. These restrictions will be lelaxed in the

following chapters. we further assume that the channel is fixed and its characteristics

are completely known. In the case of a discrete channel, we have the discrete mem-

oryless channel (DMC), cha.racterized by its transition probabilities. In the case of

soft-decoding, the equivalent charactelization is a set of conditional density functions.
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A channel of considerable interest is the additive-noise channel described by

Y: S *W, (2.11)

where W € IR¿ is the channel noise vector with pdf pry(w). If the channel noise is

independent of signal S, we have

p¿(v):pw(y-ai) (2.12)

Let an /y'-level encoding function e(x) be defined by a partition of IRd into IV

non-overlapping ceìls 0¿, i, : l,... ,l/. Also let ôs(y) be a soft decoding function.

The disto¡tion caused by the resulting "noisy channel" quantizer Qffc is

D(x,Qflc(x)) : llx _ ôs(Y)11,.

Mean distortion per vector component is then given by

(2.13)

E{llx - 6(y|, ld} : : I_f,,,* - 6s(y)ll2p(x,y)dxd.y,

:1{îî- oIJr,/o" ll*- 65(v)ll2p¡(v)p(x)d'vdx (214)

where p(x, y) is the joint density function of (X, Y). In the case of hard decoding,

the channel output Y has to be simply replaced by the discrete variable J € llrv and

the average distortion is thus given by

'tNNt,
E{llx - 6(Ð|, /d}: i I t e, /^ tt* - ô(j)ll,p(x)dx.

i=l r= J {t'
(2.15)
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The quantizer which minimizes the distortion measures in (2.la) or (2.15) is called

a channel opti,mized. uector quanti,zer (COVQ) [a0]. Such a quantizer is a function

of both source and channel statistics. We next derive the necessary conditions for

optimality of the encoder and the decoder for a noisy channel, which can be used to

iteratively design COVQs [16], [40], [25].

Opti,mal Encoder

'!Ve can re-write (2.14) as

(2.16)

Since p(x) is non-negative, for a fixed channel and a decoder, the encoder which mini-

mizes the above function is obtained by choosing a partition such that the conditional

expectation ø{ll* - ô(Y)ll'ls : a¿} is r¡inimized for every x. Hence, the optimal

encoder partition is given by

(-ì
nl : {*: E{ll x-ds(Y) ll' lS : a,} ! E{ll x-d5(Y) ll, ls : c.j}v j + il, (2.17)()

which can be written in the form

(2.18)

where a¿: E{ô(Y)lo¿i and ô¿: E{llô(Y)ll'lar} are the encoder parameters, i
1,. . . , N. Then, the optimal encoder can be described by

E{D} :1rä 
L,E{ll* - ds(y)ll,ls : a;}p(x)dx.

n, : 
{* 

: b¡ - 2{x < b¡ - z$xv j + n},

e*(x) :¿ ir 2@¡-.,)t*S(bj-b)Vj+i. (2.1s)
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It can be seen that 0¿ and {Q¡, j:1,.. N, j+ i} are separated by aset of hyper

planes 2(a3 - tu)t* - (b¡ - ¿u) : 0 and the encoder pa.rtition consists of convex

polytopes, as in the case of a quantizer optimized for the ideal channel. F\rthermore,

by comparing (2.7) and (2.19), it can be seen that the computational complexity of

the encoder in the case of noisy channel is identical to that in the case of ideal channel.

The computation of encoder parâmeters in (2.19) requires the evaluation of tr-

dimensional integraìs. In plactice, these expectations ar.e replaced by sample avet âges

based on training sequences. In the case of hard-decoding however, the encoder

parameters can be computed directly using the equations

^, 
: Ðc¡Pu¡,

¿n : D llc¡ll'p,¡, i,: r,... ,N, (2.20)

where C¡, i :1,...,lf is the decodel codebook.

Optimal Decod,er

(2.14) can be re-written as

E{D} : : l* l*flx-ðs(y)¡,p(xly)dxd.y,
: 

: I-"8{llx - ôs(v)ll'lv}P(v)dv' (2.21)

The optimal decoder which minimizes E{D} is given by the conditional expectation

estimator (Appendix A)

ôË(v): ø{xlY: y}. (2.22)
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In compalison with (2.8) for ideal channel VQ, we note that optimal decoder in the

present case requires the computation of conditional expectation of the encoder input,

conditioned on the encodel output observed through the channel. This is called the

regression functi,on of X on Y, an interpretation which becomes useful latet on. It

can be shown that the optimal decoder 1n (2.22) is the conditional expectation of the

encoder centroids, given the channel output, i.e.

E{xlY: y} : 
fo"*n!lÐa*

: S f xp(ylx)p(x)r*
u_rJn, p(y)

XI'Po(v)"l"o, xP(x)dx: 
-I'PrYl¿¡-la-

: Eic¡ly: y], (2.23)

where G¡ is the set of encodel centr.oids. Note that, in the case of hard-decoding,

the optimal decoder is simply

õ.(j) : c¡ : Ð{G,vlJ : j}, j : 1,...,¡tr. (2.24)

Here, C¡ : {C¡,j: 1,...,¡/} is the finite decoder codebook ¿nd the decoder is

simply a table look-up operation, as in the case of ideal channel VQ. In other words

Ç#c(X) € C¡. In contrast, the optimal soft-decoder given by (2.23) implies an

infinite codebook, as in that case Qfic(X) e Rd.

Iterat'iue Design of Noi,sy Channel VQ

The algorithm given in Table 2.1 can be used to design a cove for the given source

and channel by replacing (2.7), (2.8), and (2.b) wirh (2.19), (2.22), and (2.i4) (or
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equivalent results for hard-decoding case) respectively. The alternative application

of the optimality conditions in (2.19) and (2.22) cannot increase the average dis-

tortion in (2.14), and hence the sequence {D-} (Table 2.1) in this case is clearly

non-increasing. As mentioned earlier, the expectations (multi-dimensional integrals)

involved in (2.19), (2.22), and (2.14) have to be appr.oxirnated in practice by sample

averages based on training sequences. Although any proof of even local optimality of

the resulting quantizels does not exist, the algorithm has shown to yield very effective

designs.

Example: COVQ of Gauss-Markov Source over AWGN Channel

The performance of COVQs, designed by GLA for the first-order Gauss-Markov (G-

M) source (described in Appendix C) with correlation coefficient 0.9 and additive

white Gaussian noise (AWGN) channel is shown in Fig. 2.3. In this example, two-

dimensional VQ (d : 2) at the r¿te of 3 bits per vector is considered. That is,

if the channel is ideal, the encoder resolution N : 23 : 8 o¡ the rzlte Rs : 2fB

bits per sample . In order to transmit encoder outputs over the AWGN channel,

binary phase shift keying (BPSK) modulation is used. The channel usage rate is

fixed at 3 times (bits) per source vector so that, at best, ZIB bits per sample of

source information can be transmitted. In Fig. 2.3, the quality of the channel is

indicated by the channel signal-to-noise rofio (CSNR). The performance of the Ves

are measured by the signal-to-noise ratio (SNR), i.e., Ellxll, lEllX - X¡¡2. It can

be seen that the system rvith soft-decoding achieves a performance improvement of

around 1 dB in sNR as the channel becomes noisier. Note also that soft-decoding

achieves about 2 dB gain in csNR at sNR of 4 dB. The numbers shown in brackets

are the number of cells .l{ in the encoder of the corresponding cove, which decrease
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Figure 2.3: Performance of COVQ for Gauss-Markou source and AWGN channel.
Both COVQs uere d,esigned, using a set o/100,000 training uectors. Distortion curues
were obtaáned using a separate set of 100,000 uectors.

as the channel noise level increases. This is due to the fact that COVe trades-off

quantization error for channel error by reducing lù belorv the maximum possible value

of I in this example. In effect, r'educing ly' increases the average distance between

channel signals chosen for transmission. w'e discuss this further in the next section.

2.3 COVQ and Source/Channel Coding TÞadeoff

The overall MSE of a covQ (with soft-decoding) can be written as (derivation in

Appendix B)

29

l2
,t
-2

:å¿E{D}
N?

llx - g¿ll'?p(x)dx +Ð I llx - ds(v)ll,p(yla;)p(a¡)d,y, (2.2b)
¡=t JR"
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q (4)

csNR (dB)

Figure 2.4: Vari,ation of D, Dq, and D. wi,th channel noise leuel.Vari,ati,on of D, Dq,
and, D" uith channel noi,se leael. The numbers in brackets ind,icate the number of
non-empty encoder cells.

where g¿ : E{Xla¿} i : 7,. .. , N are the encoder centroids, The first sum in the

above expression is independent of the channel and is the average distortion when the

centroid of each encoding cell is used as the code vector. Hence, it can be viewed as

the quantization error Dç. The second sum in the above expression is the additional

distortion due to reproducing a given vector x by d(y) instead of the corresponding

encoder centroid gi, and hence can be considered as the channel error Dg. The

variation of D, Dq, and D¿ with channel noise level in the previous example (soft-

decoding) is shorvn in Fig. 2.4. We note that when channel noise level is low, the

total error is domiuated by the quantization elror, while the situation reverses as the

channel becomes noisier.

Consider fixed-rate, d-dimensional VQ of a sampled analog source at the rate of .R,

30

0L
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bits per sample, The output of the quantizer is t¡ansmitted across a binary channel

through n uses of the channel (n-bit channel codewords). Note that no explicit

channel coding is used. Define the transmi,ssion rate R as the number of channel

uses per sample, ri.e., R: n/d. Also define the channel code rate R.: dR"ln as

the number of source bits pel channel use so th¿t R": R"IR. For a given source

sampìing rate, r? determines the channel üses per second, which is restricted by the

available channel bandrvidth. Hence an irnportant question is: which quantizer rate

.R, minimizes the average distoltion fol a given r? ? Clea.rly, if the channel is ideal,

one can use -R, : n/d, bits per sample, or equivalently an encoder with ly' : 2"

cells. However, if the channel is nois¡ some redundancy must be available in channel

codewords to pt'otect the transmitted information against channel noise. As we have

observed earìier, COVQ trades-off the encoder resolution for increased redundancy in

the encoder output.

The redund,ancg in the encodeÌ output of a VQ refers to the amount of extra bits

(over the minimum required) used to represent a source sample by the encoder. Let

{1"} be the encodel output (index) plocess. Entropy of the encoder index process

If1 is the lowest rate of scalar coding of {1"}. Then, the redundancy in 1,, due to

non-uniform probabilities is given by

rnu : dR- Ht. (2.26)

Further redundancy may be present when {1"} has memory, under such conditions,

the lowest rate at which {1"} can be coded is given by the entropy raúe of the process

ä-:¡- ä(1t': 
'4) (2.27)
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csNR (d8)

Figure 2.5: Entropy uariation of COVQ uith channel noise leuel.

where ff ([, . . . ,4) is the joint entropy of a sequence of indices and fI." ( .F11. The

redundancy due to memory is thus defined as

r,- : Ht - H*' (2.28)

If the index process is memoryless, H*: Ht and r- : 0. The total redundancy in

the encoder output is given by

Tt:fnu+Tn. (2.2e)

Note that r¿ depends on both source statistics and the encoder. Figure 2.b shows the

va¡iation of H1, R,.R,, and r",, for the soft-decoding COVQ in the previous example.

Here, -R and .R, are shown in terms of bits per vector to facilitate comparison with

other two quantities. Recall that, in this example, Ã: 1.b bits per sample. At

CSNR :12 dB, the channel is nearly noiseless, and the encoder operates at the

¿)¿

ì1
i!

xÂA
oo

o
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rate of Æs : 1.5 bits peÌ sample (2.e., N:8). As the channel noise level increases,

the entropy of the encode¡ output 111 does not âppear to change significantly until

CSNR drops to about 8 dB. In this range, almost entire transmission ¡ate is used

to ca.rry source information and little of it seems to be utilized as protection against

channel noise. Horvevel, as the channel gets noisier., the source rate decreases, leaving

more channel bits for error protection. At -1.5 dB for example, the source rate is

only about 2 bits per vector (l{ : 4), leaving almost 1 bit out of 3 channel bits

per vector for protection against channel errors. When the channel is noisy, COVe

with fixed R achieves the increase in r"" by reducing the encoder entropy II1 (see

(2.26)), which eventually requires the reduction of the numbe¡ of encoder cells I{ and

hence the quantizer late Ã". In essence, a COVQ acts both as a source coder and a

channel codeÌ by having the optimal amount of redundancy in the encoder output.

At one extreme, when there is no channel noise COVQ is simply a pure source coder.

At the other extreme, when the noise variance is infinite, it is the trivial encoder

which approximates the input signal by its mean value (e.e., mean distortion is the

signal variance). Note that, as the encoder and decoder are memoryless, r,,' is not

manipulated fol any advantage in this example. In Chapters 3, 4, and b, we study

COVQ which employ memory in the encoder and the decoder.

2.4 Generalized Distortion Measure

In this section, we indicate how the optimality conditions given by (2.22) and (2.1g)

can be extended to the case of input-rveighted square error given by (2.8). In this

case, the optimal soft-decoder is

ure*uln/d.(v) : (x - ô(y))"W(x)(x - d(y))dx
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(2.30)

(2.32)

encodel is

(2.33)

(2.34)

(2.35)

ø{t/(x)xly}

and

ø{w(x)ly}

It is straightforrvald to show

given by

- DL p(vl"'),1"n, w(*)p(*)¿*

DX,p(v1",) Ia,pÎ)d.x

that (proof omitted for brevity) optimal

\lB o),,,.¡w (*)l ¡,^ - 2xr w (x) a¿

<l[BÀmlw(*)h,- - 2xrw(x)ajVj +¿,
t,m

: 
Io"*'*'*(xlY)dx

_ Ðl=, p$la ¿) !n,w (x)xp(x) d,x
(2.31)

D'" rp(ylo') In,p(x)d*

e 
-(x) : Oo e'

where

a; : E{ô(Y)loi}, .i : 1,.

and B¿ is the d, x d conditional covariance matrix

B¿ : E{6(Y)6?(Y)l"n}, i, : t,..., N.



Chapter 3

Design of Predictive VQ

3,1- Motivation and Goals

In many practical applications of VQ, the input vector.s consist of a set of param-

eters extracted from a block of consecutive signal samples. For example, in speech

coding, it is common to use a set of coefficients representing the short term spectral

information of the speech signal [54], [55]. In image coding, blocks of adjacent pixels

or their transform coefrcients ar.e used as input vectors [56], [57]. As a result, the

vector plocess in many applications often exhibits memoÌy; that is, successive vectors

are statistically dependent. The rnernoryless VQ, in which each vector is quantized

independently of others in a sequence, ignores the inter-vector correlation. Theo-

retically the performance of memoryless vQ can be made arbitrarily close to the

rate-distortion function of the signal source, if the dimension of vectors is allowed to

grow (i.e., d -+ oo) [8], In practice, one mây achieve near optimal performance by

using a sufficiently large dirnension. However, doing so ¡ray often be impractical as,

for a given coding rate .R, (bits per sample), the number of code vectors N : 2an,,

which implies that the computational complexity and storage requirements for fuli
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search VQ glor,vs exponentially with d. When the vector dimension is restricted, the

quantizers w\th memory can provide increased performance at a given rate and a

complexity by exploiting the inter-vectol correlation. Such quantizers usually per-

form encoding and decoding functions recursively, and hence is refer¡ed to as feedbacle

quant¿zers. The most common examples are pred,ictiae uector quanti,zers (PVQ) [3],

[46] and f,nite-state uector quantizers (FSVQ) [49]. A key problem with feedback

quantizers is the degradation of performance due to propagation of channel errors in

the decoder' (receiver). That is, an etrol in a received codeword can affect a number

of succeeding outputs of the decoder. In this chapter', we consider the design of PVQ

for noisy channels and propose a new iterative design algorithm. In the next chapter,

we focus on the design of FSVQ for noisy channels.

3.2 Predictive Vector Quantization

In this section, a brief intloduction to PVQ is provided. A more extensive treatment

of the topic may be found in [a0], [3]. A biock diagram of a PVQ system is shown in

Fig. 3.1. Lei {X"} denote a stationaly random vector sequence, where X,, € IRd. The

basic idea of predictive coding is to quantize the error between the actual signal vector

at tirne n, X,", and its prediction *" as shown in Fig 3.1 (a). Note that the prediction

is carried-out based on the previous outputs of the quantizer rather than the previous

source vectols. This ensures that the predictions made at the encoder and decoder

a"re identical, i.e., k;: i,,. Ho*ever, this can only be achieved if the channel (not

shown) is noiseless. In Fig. 3.1, U," and Û," represent the prediction error and its

quantized value respectively, and X" is the reconstructed signal. The encoder e¡
and the decoder Q;i used on the prediction error constitute a memoryless, lû-level

VQ. The prime in the corresponding variables in the decoder indicates the possible
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difference due to channel noise. Assume that the channel is noiseless, so that the

input codeword 1,, is identical to the output codeword J,,, and the variables in the

encoder and the decoder are identical. The mean square error (MSE) distortion of

the PVQ is given by EllX" - *"¡¡,. Si,'"u

X"-Î," : Í"+U,,-*,,+Ûn
Tr +

- \Jn - un, (3.1)

the overall distortion in PVQ is equal to the distortion in the prediction e¡ror signal U,
due the nemoryless quantization by 8¡v. If the prediction is good, the err.or U,, wilt

be smaller compared to X,", and for the same quantizer rate, the overall quantization

error in PVQ will be much smaller than in ordinary VQ. Alternatively, the same

distortion as in oldinary VQ can be achieved in PVQ, using a lower quantizer rate.

Note that the predictive encoder is a time varying partition of IRd and the decode¡ is

a time va.rying codebook. However, the memoryless encoder/decoder pair (e,,y, e/)
and the predictor a.re time-invariant. If the encoder Ç¡ uses the nearest neighbor

rule, the predictive encoder is a voronoi partition with respect to the set of vectors

{*n * ci,i': 1, . . . ,1{}, where c¿ are fixed code vectors.

The most common for.m of prediction used in PVQ is linear prediction. Non-

linear: predictors ale difficult to design and ad hoc designs ar.e often not effective [3].

An exception would be when data is Gaussian, in which case the optimal non-linear

predictor is linear. In this thesis, rve rvill exclusively focus on PVQ systems based on

linear prediction. In this case, the predictor in Fig. 8.1 is a linear filter which ca¡ be
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In
(to channel)

J-
(from channel)

(b) decoder

Figure 3.1: Pred,i,cti,ue uector quantizer (Qn and, Q| are encod,er and, d,ecod,er respec-
tiuelg of a, zero-rnernory quz,ntizer).

of either auto-regressiue (AR) type, given by

P
- \--'1 , ^xn : 

2--¿ Akxn-k
*=r
co: IBnû"_*,

or mouing auerage (MA) type given by

38

(3.2)

(3.3)

*": t,4lû"-À, (3.4)

where .A¡ and ,4!, are matrices of plediction coefficients [3]. B¡ are matrices which
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depend on predictor matrices,4¡. For example, for first-order prediction P: 1 and

B*: Al. In practice, it has been observed that systems using AR predictors (AR-

PVQ) perform better than those using MA predictors (MA-PVQ) [58]. However, in

the presence of channel noise, the performance of AR-PVQ degrades more severely

than MA-PVQ, as a channel error pÌopagates over the entire sequence of decoder

outputs following the elror. In order to see this, let c, be the channel error in the

decoded value of tlie prediction error ûl at the receiver. Then, from (3.3) the output

of an AR-PVQ system at tirne r¿ ) n is

9.!,":9:*l B*-nc',,

where the second term on right-hand side is the pr.opagated channel error. On the

other hand, the error propagation pr.oblem in a MA-PVQ systems is limited to only

P/ vectors following the euor, see (3.4). A comparison of noisy channel performance

between AR-PVQ and MA-PVQ for speech coding can be found in [4b]. In this

chapter, we will focus on AR-PVQ systems. However, the derivations presented in

the following sections are also applicable io MA-PVQ.

A block diagram of an AR-PVQ system is shown in Fig. 3.2. In the absence of

channel noise, the er¡or decoder d1 and the predictoÌ B1 on encoder side are identical

to their counterpaÌts 62 and B2 respectively on the decoder side. Due to feedback

structure of the encoder and decoder, the analysis of PVQ is more difficult than

the analysis of memoryless VQ and there exists no known design algorithm.which

guarantees even a locally optimal quantizer. However, several heuristic based design

algorithms which result in "good" PVQs do exist, and the designs obtained with

these algorithms convincingly outper.form simple memoryless VQ, when the source

has memory. An overvierv of difierent approaches may be found in Chapter 13 of
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Encoder á. Decoder 2,

Figule 3.2: PVQ ui,th an AR pred,ictor.

[3]. The nost effective design algorithm is the Lloyd-style algorithm introduced in

[46]. In this algorithrn, an openloop pÌedictor is first designed for the unquantized

input vector source, using optimal lineal prediction theory. This predictor is then

used in the closed-loop PVQ system and is not changed further. The encoder e1

and the decoder ô1 in the feedback loop are then improved using Lloyd iterations for

memoryless VQ. In ordel to avoid difficulties due to feedback, each Lloyd iteration

is carried out for a fixed prediction ertor sequence which is then updated for the

next iteration. Clearly, this procedure does not result in a locally optimal codebook.

Nonetheless, experimental results show that very effective designs can be obtained

using this procedure. An alternative PVQ design method is the gradient search

optimization procedure investigated in [59]. In this approach, both codebook and the

predictor coefrcients are updated simultaneously, using gradient descent methods.

Despite being a theoretically better approach, it has been found that designs obtained

with this algorithrn perfo'm almost identically to those obtained with the simpler

Lloyd-style algorithm in [46]. In this chapter, we will confirm that this observation

holds true even in the case of noisy channel designs.
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3.3 Noisy Channel PVQ Problem

Consider the AR-PVQ system shorvn in Fig. 3.2. In the presence of channel noise,

the ch¿nnel input 1,, and the channel output J,, are not always identical. Assume

for the time being that the channel d is a disclete memoryless channel (DMC) with

transition probabilities Pr(J" : jll" : i) : p;¡, where In, Jn € [N : {1,2,...,N}.
Assume also that the channel is fixed and known. Let the predictive encoder and

decoder be denoted by t"(et, õt, þt) and, D.(õ2, þ2) respectively. We wish to find the

system components {e1,ô1,ô2,B1,B2} which minimize the average distortion

E{D"} : Ellx"-411,

: 
I* I*il*^ - e,!*ll'po'*,*',)dxd*| (3.5)

It should be noted that, even though {X"} is stationar.y, the system in general is not.

A recursive system, rvhich is initialized ât some point in time may not be stationary.

However, if the encodel and decoder are stable, the system is asymptotically sta-

tionary in that, the effects due to initial conditions die-out as n -+ oo. Under these

conditions the predictor output can be given by (3.3). F\rrthermore, the expectations

can be approximated by long term sample averages.

Our goal in this chapter is to derive an iterative algorithm for designing noisy

channel PVQ. As stated earlier, the task of finding the exact necessaxy conditions for

optimality of the encoder and decoder in the case of recursive quantizers is a difficult

problem, to which no knorvn solution exits. Hence, we rather focus on finding a

solution based on simplifying assurnptions, which hopefully leads to a locally optimal

system. It should be emphasized that the ,,optimaìity conditions', derived here are

only approximate and do not necessa.rily hold true for a closed-loop system. However,
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the experimental results show that these conditions lead to good codes for noisy

channels. Even though the predictors in the encoder and decoder need not necessarily

be identical in the presence of channel noise, in order to make the problem tractable,

rve use the same predictor B in both encoder and decoder. Furthermore, the predictor

is assumed to be a linear filter, rvhich includes both AR and MA cases. The derivations

presented in the following sections consider the AR predictor given by (3.3). However,

the modifications required for the MA predictor are trivial. In the following, we

fo¡mulate and attempt to solve the following three problems: (1) for a fixed predictor

B and a encoder á,", find optimal decode¡ D", (2) for a fixed predictor B and a decoder

D" find the optimal encoder á", and (3) for a fixed system find the optimal predictor

É. We will then present an iterative design algorithm based on these conditions. The

algorithm is first derived for the case of discrete memoryless channel (DMC) and

hard-decoding. The extension to soft-decoding is straight forward and is considered

in Sec. 3.8.

3.4 Optimal Decoder

According to the above formulation, the problem of finding the optimal decoder D", for

a given encoder á,, is equivalent to finding the decoder d2 which minimizes distortion

measure in (3.5), given e1, ô1, and B. The output of the decoder 2, is given by

îi:ûl+ii,

where ûl : 6zU) From (3.3), the AR predictor output can be w¡itten as

(3.6)

1;--DBkn'^_t". (3.7)
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Note also that

xr, : urr * in
co

: ltn * LBni" -0. (3.8)
fr=1

Hence, the average distortion in (3.5) can be wÌitten as

D : E{llx*-u;-iaoo;-,¡¡,}

: E{llu, -o;+ir,tû"-o -û;-o)ll,}

: E{llu'' - û;llr} + z i ø11u, - u,,)r Bk(u 
^-o - û1,-o)}

À=1

+E{llt B*(Û*-o - Ûl,_u)ll,} (3.e)
h=l

In ordel to proceed fulther, we now assume that prediction error {U,"} is an

uncorrelated process, which is reasonable if the linear predictor is a good predictor.

Note that the prediction error of an optimal linear predictor is uncorrelated, see

Theorem 4.91 (pp. 119) in [3]. The assumption implies that the second term in the

last equation is zero. We fulther.assume that the quantization errot'un - û,,, is small

(æ 0). This assumption is a good one for high-rate quantization, but can be poor at

low-rates. Based on these assumptions, we obtain an approximate distortion measure,

which is a function of only the decoder d2.

E{D} æ E{llu, - Û;ll,} + ir11¡"01,r"-n - û;-n)llr}

: rølla¡,(u,_o-u,^_ù¡1", (3.10)
,t=0
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where B¡ is the identity matrix. Since the channel is assumed memoryless, {Û;} i.
also uncorrelated and the above expression is minimized by minimizing EllBk(V"-k-

û1,-n)llt with respect to û'"-, for every å > 0 . Hence, the optimal decoder ût'; : 6ä(j")

can be found by solving

6iOò : arg min EljB¡(U 
" - õr(jò)ll' .

Ilom (4.5), the solution to this memoryless COVQ problem is

cz(i,):Ë#Ët

6;(j") : E{u"lr": j"}. (3.12)

That is, we have to find the channel optimized decoder for a given error encoder e1.

This means that, under our assumptions, the optimal PVQ decoder 2, (with a fixed

predictor B) for a given encoder á," is obtained by optimally decoding the prediction

error. The decodel in (3.12) is given by the codebook Aß) : {"r(t),.. . c2(N)} (see

(2.24)).

(3.11)

(3.13)

where g¡ is the centroids of the i¿à encoding cells in e1, 4 is the prior probability

of !,he'ith channel input, and ?;¡ is the channel transition probability defined earlier,

i,i --t,...,N.

3.5 Optimal Encoder

In this case, the problem is equivalent to finding optimal €1 and d1, given D", and

B. Due to the feedback structure in the encoder, there is no obvious way of finding

exactly the desired optimality conditions. However, in an iterative algorithm, the
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optimization of Ç may be split into two steps: (i) given {1"} and the decoder 2,,

find optimal ô1, (ii) given {U"} and the decoder Dn, frnd optimal e1.

Step (i): Feedback Path

Note that the purpose of the feedback path is to rnimic the given combination of

channel d and the decoder (receiver) D"(õr, þ). Ideally, we must place an exact copy

of the channel in the feedback path in the encoder á,". This is clearly impractical and

it is desired that the signal reconstlucted by ô1 in the feedback path i,' be as 'close'

as possible to the signal *! reconstlucted at the receiver. Since

*": iaoa,-^,
,t=0

(3.14)

*, is a function of in 4 (In,I.-t,. . . ,1--), and in the present problem ii will be

determined by the choice of ô1. Therefore, the local decoder d1 is designed to minimize

the distortion measure

E{llX" - *,,lrll,}. (3.15)

Cìea.rly, if the channel is noiseless, this criterion gives ô1:f2. Using (8.2), the above

disto¡tion measure can be expanded as

E{llî, - *',lrli^-,} : Eillû, + | aoq-o - û; - Ë r*u,^_ollrlt,}

E{ll t BÈ(û"-o - Ûi"-*) ll'1,"}
&=0

E{ll t Be(ô1(i *_o) -Û,,_o)llrli^}, (3.16)
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where û,,-¡ : ôr(e"-*) If the channel is memoryless, the last equation becomes

E{llx" - x!"llrl1"}: f ø1¡¡au1at(i,_n) - Û;_o)llrl¿"_*}. (3.17)

The optimal decoder ôi(i") is therefore given by (see (4.5))

6î(i,) : 
;:J;;" : ï 

*) - u'.¡21r^ : ¿*¡ 
(3 i8)

This is a codebook C$) : {cr(r),... c,(¡/)} rvith code vectors (see (2.24))

c1þ):lcr(j)p¿¡, ¿:1,...,N, (3.19)

where c2(i), i : 1,. .. , N is the codebook of given decoder d2. The above result gives

the optimal local decode¡ for a given channel input sequence. The predicted sequence

generated by this choice of ô1 is given by

*, : IB¡û,_*

: ir*ø1u,,-xri'.-xj
È=1

å: E{LBkvl--rli"-'r}
i¡=1

: E{*,,|i*_}. (3.20)
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Step (ii): Feedforward Path

We now consider the feedforrvard path in the encoder for a fixed feedback path,

assuming that the predicted value i" is given by (3.20). Given the knowledge ofpast

outputs i,-1 (via the prediction x"), the optimal á,, at time n is a partition of IRd

such that

iå : aremjnE{llx" - x;ll'?l1" -_ 
.i,ln.tt.

Define the distortio¡r measuÌe

D (x^li,î,-) : E{ llx" - *:,ll'V 
" -- 

i,in-t}.

Then, the optimal á," is described by

(3.21)

(3.22)

ii: i, if D(x"li,i"_) < D(x"ll,i*_) V I I i. (3.23)

Consider

D(x,1.i,1,,-) E{lli" + .t, - ii' - ÎJ'^l'V,: i.,i,-rt

Eill"" - iJ'*l"lr^: iÌ + E{lli" - *,*llrli,-_r}

+28{$" - Û,')'(*, - Íl)l¡" : ¿,î._}

E{11"" - u;l"lt": i} + E{llt:, - x;llrl;"_,}

+28{(u" - tJ',),V. : i.}(*^ - E{*'^li,_J), G.24)

where we use the fact that i" and i', are conditionally independent of Ir,. According

to (3.20), the last term in the above expression is zero. Hence the inequality in (3,28)
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simplifies to

ii:i ¡t ¿{11""- u'.l'l¿,-:i} I E{llu" -il',lrli.,:t} v r I i, (3.25)

which is a function of onìy e1. That is, the optimal partition associated with á",

is obtained by optimally encoding the prediction error using ej, i,e., the channel

optimized encoder for the prediction eÌrot U,,. Given a prediction ertor sequence,

ei can be found as in Sec. 2.2, a¡d the encoder ei can be described by the set of

parâmeters

It is worth noting that, if the channel is noiseless (J": I,), the conditions for

both ei and di reduces to those used in [59] for noiseless channel PVQ design.

3.6 Optimization of Predictor

In this section, we develop a procedure for updating the linear coefrcient matrices

A¡, k:7,...,P in a given PVQ system, so that the distortion measure E{D} in

(3.5) is decreased. The output of the PVQ decoder. can be expressed as

^o 
: D.tØ)pn¡

ao : I llc,(ùll"pü

P

*!^: .¡', +\Ax*!^-,.
ß=r

(3.26\

(3.27)
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Substituting this expression in (3.5) we get

P

E{D} : Ellx, -u; -i,aux;-*¡¡,
À=1

P

: 4|ilÍ:-Dtu*'._nl', (3.28)
À=1

where

xx: x" - Û;. G.2s)

In this equation, the sequence {Xi} can be considered as the input to a prediction

filte¡ whose desiled output sequence ir {Xi}. If adataset of sample input and output

sequences is available, the optimal filter coefficients Á; *hi"h minimize E{D} can be

estimated. \Me proceed in this direction.

Let

*;_,: éi:L,*::_,,...,îl_Ð, (3.80)

be the dP-dimensional vector formed by concatenating P d-dimensional vectors and

A: (At, Az ..., Ap) (3.31)

be a d x dP matrix formed by P d x d-dimensional predictor matrices. With this

notation, (3.28) becomes

E{D} : Ellx,: - A{"*rllr. (3.32)

In order to find.4 which minimizes E{D}, we let V¡E{D}:0 so that

49

E'{xi411} - AE {/-_r{_} : o (3.33)
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This may be written as

P _ AR:0,

where P : E{iii8#-r} and E : e{t^-r{-r} are respectively d,x d,P and dP x d,P

dimensional matrices, which depend on both source and channel statistics. Since .Ë

is the covariance matrix of the random vector *1, it is positive semi-deûnite and

positive definite if {X1,} is nondeterministic, see Chapter 13 of [3]. In that case, a

unique solution to the above matrix form Wi,ener-Hopf equation exists, which can be

obtained by

A- : PR_l (3.35)

In practice, Hermitian positive definite nature of covariance matrices can be exploited

for numerically stable and computationally efficient solution of this equation [60],

[61]. In this chapter', simulation studies wer.e confined to frrst-order predictors and

hence (3.35) was solved directly. Givel a training set of source vectors {x,,}i., ,

realizations of { t:}^)}iyra"¿ {*í(-)}iyr, ¡n : I, .. . } r¿M are obtained by transmitting

(by simulating the channel) the tlaining set nM times using the given PVQ system.

Then, the required estinates can be obtained as

50

(3.34)

NT NM

Þ : | \a çz(rn)ç(m)r' L /---t "" ên-I )

n=P+lm=l
NT flM

E : tD{*)z':^\r,
n:P m=I

(3.36)

(3,37)

After the solution to (3.35) is obtained, the predictor matrices Ax, lr -- 1,. . . , 
p can

be updated in the recursive algorithm presented belorv.
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3.7 Design Algorithm

In this section, we present an algorithm for designing noisy channel PVQ using a

training set of input vectors. The basic approach used here is inspired by the Lloyd

algorithm, and in particular the PVQ design algorithm of [46]. Briefly stated, e1, ô1,

62, and B are iteratively updated using the conditions derived above, until the average

distortion decreases below a specifled threshold. it is not necessaxy that the repeated

application of these conditions result in a monotone decrease of distortion. Hence, the

convergence of the proposed algolithm remains an open question. However, as in the

case of other PVQ design algorithms [46], [59], [22], in pr.aciice the present algorithm

has shown to yield good codes which were considerably superior to memoryless VQ.

We also found that PVQ systems obtained with this algorithm performed comparably

with those obtained by the gladient search algorithm of [22].

Given a training set of source vectors {x"}}1r, a good PVQ system can be designed

for a noise free channel using, for example, the method of [59]. This system can be

used as the initial system rvhich is to be iteratively improved for the given channel.

The average distortion is computed using the sample average

(3.38)

where *i(j) is the decoder output when x,, is encoded and transmitted for the jrâ

time and n¡a is the number of times the sequence is transmitted (to average over

channel noise). The complete design algorithm is given in Table 3.1,

An important issue in the implernentation of this algorithrn is the stopping cri-

teria. As mentioned earlier, the algorithm, when applied to a closed-loop system, is

not guaranteed to converge. It was noted in all our simulations ihat the distortion

D(À) : I Ëaîllx" -:*irrr1¡¡¡¡2,n1, z----r n^r Z-¿ tt "
' n=r "' i=I
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Step 0: Given: e(o), dfo), 5{o), and B(o).

È<-0.

Step 1: Cornpute prediction error sequence {uf)} a"a channel input

sequence {if;)}.

Step 2: Compute avelage distortion D(e) using (3.38).

Step 3: If D('b) is small enough (convergence-criteria met) stop;

Elseft<-å+1.

Step l: Find djr)using (3.13).

Step 5: Find ôfå) using (3.19).

Step 6: Find e[À) using (3.26).

Step 7: Update {uS)} ana {zS)}.

Step 8: Find B(*) using (3.35).

Repeat fi'om Step 1.

Table 3.1: Proposed, noisy channel PVQ d,esign algorithm.

decreased at every iteration in the beginning, but tend to oscillate in a small range

afterwards. A typical example is shown in Fig. 3.3. Various strategies may be used

to stop the iterations and rve adopted the following. The algorithm is run for a speci-

fied maximum number of ite'ations and the best design (resulted in lowest distortion

D^rn¡ is saved. However, if the distortion does not drop below D^ro for a specified

number of iterations, the algorithm is terminated and the best design is retained.

Note that this approach requires additional memory space for storing the best design

52
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lleralion number

û
ã
E9
o

t.f

o 2 4 6 810 12 14 16

".,o---o--
6 7 I 9 

'o n"r"uo.ltnr,n*r " 
13 14 15 16

Figure 3.3: A typi,cal d,istortion-us-iteration curle for noi,sg channel PVe d,esign at-
gorithrn. Left: i,niti,ally the d,istorti,on d,ecreases rapid,ly, Right: the last 10 iterati,on
at a d'ifferent scale.
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during a run. In our simulations, the algorithm ahvays resulted in a design which was

better than the initial system, and no instabilities of the aigorithm were observed.

Another issue is the computational complexity of the algorithm. Out of all the

steps in Table 3.1, it is the predictor update step that requires most of the effort.

Here, one has to estimate the cova¡iance matrices P and .R and solve a linear system

with Pd2 equations. However', as we have pointed out, this system can usually be

solved using efficient solution methods stch as Leuinson-Durbi,n algori,thm [60], [61].

3.8 Soft Decoding

As soft decoding has shown significant improvements in performance when applied

to memoryless VQ, it is worth investigating the performance of predictive quantizers

with soft-decoding, particularly in the hope that the efiect due to error propagation

may reduce. The above described algorithm can be extended to handle soft decoding

in a straightforward rnanner. In a noisy channel PVQ system with soft-decoding,

the analog channel output Y, is directly mapped to the prediction error vectors

Ûi. Clearly rnost of the results derived for ha.rd decoding hold true for this case as

well, except that we have to replace the disclete channel output J," € II,y with the

continuous vector Y,, € IR¿ , where .L is the channel dimension. In pa.rticular the

optimal decoder in (3.12) for prediction error at the receive¡ now becomes

õi"",,: E{U"ly"} (3.3e)

Consequentl¡ the update equations (3.19) and (3.26) have to be modified acco¡d-

ingly. This is straightfolwa.rd as both e1 and ô1 are mernoryless (see Ch. 2). Also,

the predictor update equations remain valid if the cova¡iance matrices P and -R are
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estimated based on the outputs of the soft-decoder ôj".r,.

3.9 ExperimentalResults

In this section, the performance of quantizers obtained by the design algorithm pre-

sented in Sec. 3.7 is experimentally investigated. In these experiments, predictive

VQs ale designed for both discrete aud waveform channels using the new algorithm,

and their performance is compared with that of quantizers designed using several

alternative methods.

S'ignal source- As the signal source, the Gauss-Markov (G-M) process described in

Appendix C has been used. This source is commonly used as a benchmark

for comparing different soulce coding techniques as the theoretic¿l bound on

performance for this sou¡ce (rate-distortion function) can be evaluated in many

cases, see Appendix C for details. We consider a G-M source with correlation

coefficient p : 0.9 which is typical for real signals such as image and speech

data.

ChanneL Mernoryless additive white Gaussian noise (AWGN) channel model given

by the following equation has been used.

An: sn+ un,

where s,,: A1 (antipodal signaìing) is the binary input, gr,, € IR is the channel

output, and tr," is an iid Gaussian process rvith mean zero and variance øfl. A

soft-decoder directly uses the channel output g,,, while a hard-decode¡ requires a

detector to produce an estimate j, for the transmitted encoder index i,". In this

case, a maximum a posteriori pr.obability (MAP) detector is designed for the
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(3.40)
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AWGN channel [62]. Then, tlie resulting channel can be modeled as a binary

symmetric channel (BSC) with errol probability p giver by [62]

1_
n: ,eúc(t/E"lNo),

sNR:1oro8,ol#ryu] .t

(3.4i)

where erfc(.) is the complementary error function, E, is the signal energy, and

No : 2o2. is the power spectral density of channel noise. The channel transition

probabilities can be computed as p¿¡: rau(;,i)(I - p)b-dH(i'i),.i,j :7,...,N,
wherc d,¡¡ (i,, j) is the Hamming distance between å-bit binary representations

of integers i and j. The quality of the BSC is measured by the bit-error rate

(BER). In results presented here, both the transition probabilities and BER

of the resulting DMC were obtained experimentally from the AWGN channel.
'When 

soft-decoding is used, the quality of the channel may be measured by the

channel signal-to-noise rafzo (CSNR)

CSNR : 10 log,.(28,/Nb). (3.42)

Performance mez,sure- signal to noise ratio (SNR) defined below has been used

measure the perforrnance of the quantizers.

(3.43)

The algorithm introduced in Sec. 3.7 was used to design predictive vector.quan-

tizers for various channel noise levels, the performance of which is presented in Figs.

3.4 - 3.7. These designs rvere carried out and tested using two separate sets of 100,000

source vectors. we have considered PVQs with a transmission ¡ate of 1 bit/sample
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and vectol dimensions of2,3,4, and 5. In these designs, the predictor was conûned to

be of first-order as in many previous work on PVQ [46], [59], [22]. This is reasonable

as the source is a first-order Gauss-Markov plocess. Note also that the computational

complexity and memory requirements grow linearly with the predictor order. In or-

der to apply the given iterative algorithm, initial values for various patameters âre

requiled. These we¡e obtained by designing PVQs at the given rate for a noise-free

channel, using the closedloop algorithrn in Fig. 4 of [46]. An initial index assignment

(IA) for the encoder output (optimized for the channel noise level) was then obtained

using the simulated annealing based algorithm described in [40]. This issue will be

further discussed later. Finall¡ the design algorithm Sec. 3.7 was applied to improve

the initial PVQ system at the given channel noise level.

A. Main Results

The curves in Figs. 3.4 - 3.7 clearly indicate the advantage of properly designed PVQs

over memoryless VQ at the same rate, even in the presence of channel noise. PVQs

with hald-decoding achieves about 1-2 dB gain over memoryless COVQ designed for

the same channel. The gain is highest at vector dimension of 2 and tends to decrease

as the vector dimension is increased. This is due to the fact that, with a blocked

scalar process, the correlation between successive vectors diminishes as the block size

is increased. Also apparent from these results is the improvement in performance

of PVQ with soft-decoding. As expected, this gain increases with the channel noise

level, Typicall¡ the systems with soft-decoding achieve about 1 dB gain in SNR

compared to the systems with hard-decoding, at high channel noise levels.

Figs. 3.4-3.7 also include the performance of channel optimized PVQ reported in

[23] for comparisons. These results have been obtained with a gladient search design
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Figure 3.4: Performance comparison of uo,rious noi,sy channel PVQ schemes for
Gauss-Markou source (p: 0.9) ¿t 1 bi.t/sample and, d. : 2: (a) proposed algori,thm
(soft-d,ecod,i,ng), (b) proposed, algorithm (hard,- decoding), (c) proposed øIgorithm (hard,-
decod,ing) without predi,ctor upd,o,te, (d) COPVQ of [23], (e) memoryless COVQ þoft-
decod,ing), and, (f) metnorgless COVQ (hard-decod,ing).

algorithm, similar to the algorithm of Chang and Gray [59] for noiseless channel PVQ.

We note that the performance achievable with oul algorithm (with hard-decoding) is

nearly identical to those reported in [23] (the gr.adient sea,r.ch algorithms of [23] are

based on hard-decoding and it is not apparent if they can be extended to designing

soft-decoding PVQ). A similar observation was also made in [59] rega,rding the design

of PVQs for noise-free channels. That is, the codes obtained with the Lloyd-style

aìgorithm of cuperman and Gersho [46] yielded a performance almost identical to

-+
--x
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Gauss-Marl¡oa source (p: 0.9) ¿¿ 1 bit/sample and, d,: 3: (a) proposed, algorithm
(soft-d,ecod,i,ng), (b) proposed algori,thm (hard,-decod,ing), (c) proposed, atgori,thm (hard,-
decoding) wi.thout pred,i,ctor upd,ate, (d) COPVQ oÍ [ZS] , (e) memoryless COVe þoft-
d,ecoding ), and, ( f ) memoryle s s C O VQ (hard.- d,ecod,i,ng ).

those obtained with the gradient search algorithm of Chang and Gray [59]. The latter

algorithm also updates the predictor, while the former uses a predictor designed for

the unquantized signal. Hence, it was also concluded that the overall performance

of PVQ is less sensitive to predictor coefrcients when the quantizer is matched to

the predictor. We observe below that this does not hold true in the case of noisy

channels.
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Figure 3.6: PerJormance comparison of uarious noisg channel PVQ schemes for
Gauss-Markou source (p: 0.9) ¿¿ 1 bit/sample and, d, : 4: (a) proposed, algorithm
(soft-decod,ing), (b) proposed, algorithm (hard,-d,ecod,ing), (c) proposeil algorithm (hard,-
d,ecod,ing) without pred,ictor update, (d) COPVQ of [23], and, (e) memorgtess COVQ.

B. Effect of Predictor Optimization

In Figs. 3.4- 3.7, the culves labeled (c) we¡e obtained by the algorithm in Table 8.1

by omitting the predictor optimization step (,9úep 8), i.e., predictor is not optimized

to the channel. The importance of predictor update in our algorithm is evident

from these curves. As the channel error rate is increased, the gain in performance

achieved by updating the predictor appears very significant. Table 8.2 shows values

of predictor coefficients obtained by the proposed algorithm at various channel error
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Figule 3.7: Performance compar,¿son of uarzous noisg channel PVQ schemes for
Gauss-Mørlcoa source (p: 0.9) aú 1 bit/sample and, d,:5: (a) proposed, algorithm
(soft-decodi,ng), (b) proposed, algorithm (hard,-d,ecod,i,ng), (c) proposed, atgorithm (hard,-
d,ecod,i,ng) without predi,ctor upd,ate, (d) COPV] of [23], and, (e) mernorgtess COVe.

rates, in the case of 2-dimensional PVQ. It can be seen that, in the absence of channel

noise, rnost of the prediction is provided by the second component of the predictor

input vector (an : 0.92 and a22 :0.825), which in our. case is the signal sample

closest to the two signal samples in the vector being predicted. However, as the

channel error late is increased, the two coefficients a12 and a22 in the optimized

predictor decrease while the remaining two coefrcients ø11 and o21 increase. At l0%

channel error rate, both components in the predictor input vector seem to contribute
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BER (%) dtt dO azt 422

0 0.021 0.920 -0.0i44 0.825
0.1 -0.038 0.927 -U.Uóf¡ r 0.834

L 0.005 0.806 0.0353 0.656
2 0.103 0.677 0. i48 0.503

o.222 0.530 0.301 0.3I8
10 cì.2l8 0.545 o.287 0.354

Table 3.2: Vari.ation of pred,ictor cofficients with channel noi,se leuel for 2-
dimensional PVQ. The pred,ictor coeffi,cients and signal sl,rnples are related, as Jol-
Ious: ñn : attã¡r-s * apãn-2 and, ãn-1 : aztãn-z I a22ãn-2, where ñn is is the
predictor output o,nd ãn is the quo,nti,zed, si,gnal sarnples at, time n. In matrir form
(ã,_t i,)r -- A(ãn4 áin-2)r.

similarly to the pledicted value. A simila¡ observation was also reported in [23]. An

ânalytical study of the relationsliip between predictor coefficients and overall mean

square error seems difrcult in the case of PVQ. However, such a study for differential

pulse code modulation (DPCM) was presented in [47] (DPCM is the scalar equivalent

of PVQ). There, it was slìo\ryn that, in the presence of channel errors, the overali MSE

of ÐPCM can be reduced by reducing the prediction gain, that is, by scaling down

the predictor coefficient of the first-order linear ptedictor. Our results show that

equivalent conditions hold true in the case of rnore general PVQ.

C. Effect of Initial IA

We next consider the effect of choosing a good index assignment (IA) for the encoder

to initialize the algorithrn. In general, the importance of initial conditions used in the

Lloyd algorithm depends on the nature of the e¡ror surface. In order to investigate the

effect ofthe initial IA on the designs obtained by the proposed algorithm, we compared

the performance of PVQs designed by initializing the algorithm with randomly chosen

IA against those designed by initializing the algorithm with IA optimized to the

channel (using IA algorithm of [40]), and the results are shown in Fig. 8.8 (the

62
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Figure 3.8: Effect of ini,tial i,nd,ex assi,gnment (N:8, d,:3); (a) rand,om IA and, (b)
optimi,zed IA.

results have been obtained with hard-decoding). It can be seen that, at some channel

error rates the improvement due to good initial IA is significant (about 1 dB at 2 %

error rate).

D. Performance Under Channel Mismatch

An explicit assumption in COVQ is that the channel is stationary. However, in real

situations this is hardly the case. F\rthermore, even if the channel is stationary, one

has to estimate the channel patametets through measurements which contain errors,

Hence, it is of interest to investigate the robustness of the designs obtained by the

proposed algorithm against channel variations. PVQs with rate 1 bits/sample and d :
4 were designed using oul algorithm, for discr.ete channels with elror probabilities of

l% and 2%. Fig. 3.9 shows the performance of these two PVQs when the channel error
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Figure 3.9: Performance oJ PVQs d,esi,gned, using the proposed, algorithm und,er chan-
nel rn'ismatch. The curue Jor optimal d,esi,gn correspond, to the case when d,esign BER
is equal to the actual BER

is varied in the range of 0.5% - 3%. These results indicate that PVQs designed using

the proposed algorithm are robust against moder.ate variations in the channel error

rate. Simulation results in several other experiments also confirmed this observation.

In the example shown, both PVQs perform close to the optimal design at channel

error lates less than 2%. At 3% channel errol rate, the SNR of the PVQ designed for

1% e¡ror rate is within 0.5 dB of that achieved s'ith the optimal design.

3.10 Summary

In this chapter, a Lloyd-style iterative algorithm for designing linear prediction-based

PVQs for noisy channels rvas deveÌoped. Based on reasonable assumptions, a set of

conditions for the optimality of the predictive encoder and the decoder, including
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the linear predictor were derived. The algorithrn can be used to design both hard-

decoding and soft-decoding PVQ systems. Experimental results based on Gauss-

Markov source and AWGN channel were presented. These results indicate that the

PVQs with hard-decoding, produced by the proposed algorithm, perform nearly iden-

tical to those obtaiued in [22], using gladient-search optimization algorithms. Also,

it was found that PVQ systems rvith soft-decoding achieved a gain of about 1.0 dB

in overall SNR over hald-decoding systems, when the channel is very noisy.



Chapter 4

Design of Finite-State VQ

4.t Introduction

A corlelated signal soulce can be quantized more efficiently if the encoder and decode¡

a¡e chosen based on the signal values observed in the past. A finite-state vector

quantizer (FSVQ) is a finite-state machine in rvhich a separate encoder-decoder pair

is used in each state for quantizing an input vector, with the state transitions being

determined by tlie observed past of the input signal. Like PVQ discussed in Chapter

3, this approach also gives good performance with relatively small vector dimensions,

compared to memoryless VQ operating at the same rate. However, FSVQ is extremely

sensitive to channel errors and its performance degrades dramatically under noisy

channel conditions. In this chapter, we investigate the problem of designing FSVQ

for noisy channels. The main contribution is a robust decoding algorithm for FSVQ

operating over noisy channels. An iterative design algorithm for optimizing an FSVQ

system to a given channel is also developed.
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h

b¡/

Encode¡ Decoder

Figure 4.1: FSVQ encod,er and, d,ecod,er.

4.2 Finite-State VQ

The idea of FSVQ was first intloduced in [49]. In this section, we provide a brief

overview of FSVQ. An extensive tleâtment of the topic can be found in [3]. A con-

ceptual block diagram of an FSVQ system is shown in Fig. 4.1. Let X," € IRd be

a stationary stochastic plocess. In response to the input sequence, the encoder pro-

duces both a sequence of outputs (channel symbols) 1," € l[¡ : {1,,2,...,lr'} and

a sequence of states ,S,, € 56 : {1,2,. .. , K}, where n : 0,I,2,. . ., and S¡¡ is the

state space. As can be seen from Fig. 4.1, state ,9,, is a process with memory and

summarizes the dependence of the past inputs on the selection of the current output.

In particular, ,9,,, determines which codebook out of 1l codebooks {C, , C¿, . . . , C* }
is used to encode X,". In effect, an FSVQ is a set of memoryless quantizers with a

selection rule o'- a nert-state functionhaving memory. It is clear that, for an FSVQ to

be effective for a certain signal, it's next-state function rnust predict the best (in the

sense of minimizing average distortion) sub-set of ly' code vectors (state codebook)

from a larger collection of code vectors (all K state codebooks), based on the past

*E
I

'I

.-E
*E
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behavior of the signal. Note the similarity to a predictive quantizer, which can be

considered as an FSVQ with an infinite state-spâce. Also, an FSVQ may be viewed

as a PVQ with a nonJineal predictor.

An FSVQ is a special case of a more general fnite state code considered by Gaader

and Slepian [63]. A d-dimensional /(-state code is specified by three mappings: en-

coder á, decoder Ç, and next-state function / as follows;

¡vhere C : u[rC; is the collection of all state codebooks, ca]led the super cod,eboolc.

Given an initial state s6 and an input sequence {x"}, the encoder produces a channel

input sequence {2"} and a state sequence {s,,} according to

t : RdxS¡¡ìll¡,

I : n¡^¡ x S¡ç -+ C,

"f , ï¡ x S¡¡ --) S¡¡,

in : €(xn, sn),

6n*r : f (i", t"),

(4.1)

(4.2)

(4.3)

(4.4)

(4,5)

while the decoder produces the output vectot sequence {*",} according to

*." : Ç(i,., s"), (4.6)

where n : 7,2,.... Clearly, given the same initial state, the decode¡ can track the

encoder state sequence, provided that the channel is noiseless (Gaarder and Slepian

[63] refer to such a system as "tracking finite-state system',). An FSVQ is a finite-state
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code with a minimum distortion encoding rule, that is

(4.7)

where D(x, *) : ll* - .ill' is the square error. The optimal FSVQ is given by [49],

[63]

69

(4.8)
t=l

if the limit exists. The conditions under which this limit exists are mentioned in [49].

In particula.r, if ihe input process {X,"} is asymptotically mean stationary (ams),

then the joint input-output process of an FSVQ driven by such a source is also ams

and the given limit exists.

In general, any FSVQ has two equivalent representations: labeled,-states (LS-

FSVQ) and labeled. transition (LT-FSVQ) [49] [a]. In the former, every state in the

state space has a fixed and distinct code vector associated with it (its label), which

becomes the output vector when a transition occurs to that state. In the latter', the

code vectors ale associated with state transitions so that the same state can pro-

duce difierent outputs, when arrived at from different previous states. Even though

these two representations are conceptually equivalent, the codes obtained by iterative

code improvement procedures can be very different iu each case. The experimental

results seern to suggest that the designs based on I,IT-FSVQ representation perform

better than those based on LS-FSVQ representation, though the difierence may be

considered small [49]. In either case, the critical steps in practical FSVQ design is

the selection of the best next-state rule and the state-codebooks. In general, there

is no known method for finding even a locally optimal solution to these problems.

However, in practice, efiective FSVQs (which outperform memoryless VQ) can be de-

1"
{sr, ç-, Í- } : ars 

"inf -lim- 
-: ! øn1x', x'¡

¿,9,J n+æ n
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signed by using heuristic based procedures. Such a design procedure can be divided

into three main steps: (1) designing a "classifier" explicitly for source vectors, (2) ob-

taining a next-state function and a set of (iniiial) state codebooks, and (3) iteratively

improving the stâte codebooks. The final step is more or less similar to codebook im-

pr-ovement in memoryless VQ. Several approaches have been investigated for selecting

a next-state function, rvhich include conditional histogram design, nearest-neighbor

design, and omniscient design [49], [3]. In practice, the omniscient design method has

shown to yield best codes in many applications. A brief description of this method is

given in Appendix E.

4.3 Noisy channel FSVQ Problem

The successful operation of an FSVQ requires that, given an initial state, the decoder

be able to track the sequence of states produced by the encoder. This can be achieved

only if the the encoder output codewords can be conveyed to the decoder without

any elror. In the presence of channel noise, there is a non-zero probability that the

decoder receives inco¡¡ect codewords. An error in a received codeword will lead to a

decodel state sequence that is difierent to the encoder state sequence, a phenomenon

referred to as the "derailing" of the decoder. Since there is only a finite number of

states, the decodel will eventually return to the correct state sequence after der.ailing,

provided that no more errots occul' in-between. Note however that, during an incor-

rect state sequence, the decoder essentially picks the output vectors from randomly

chosen codebooks. This suggests that the FSVQ will be highly sensitive to channel

errors. A comparison of MSE pelformance of ordinary VQ, PVQ, and FSVQ under

noisy channel conditions is shown in Fig. 4.2. Not surprisingly, the performance

degradation in FSVQ is much rvorse than that of PVQ (which in fact performs better
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Figure 4.2: Compari,son of performance of (a) FSVQ, (b) ord,inary VQ, and. (c) PVQ
und,er noisy channel cond,itions. These results haae been obtai.ned, wi,th /¡-d,i,mensi,onal
VQ of Gauss-Markou source (see Appentlix C) at I bit/sample rate, ouer an AWGN
chønnel. PVQ used, I"t ord,er li,near-pred,i,ction whàte FSVQ had, I states. In aII three
sgsterns, 'inde:t ass,ignment (in the case of FSVQ the algorithm presented in Secti,on
1.8 was used) has been optimized to the channel noise leuel

than memoryless VQ even under noisy channel conditions). In PVQ, a channel error

directly afiects only the prediction error.

Previousl¡ Hussain and Farvardin 120]1, [21) studied the design of FSVQ for noisy

channels and considered two approaches. In the first (referred to as NC-FSVe1),

the encoder state is explicitly channel coded and transmitted. In order to reduce

the addiiional overhead due to this, the encoder state is transmitted only periodi-

cally. The missing states are then estimated using a maximum a posterior sequence

detection procedure rvhich requires a delay equal to the intervals at which the en-

coder state is transmitted. According to the simulation results (for a Gauss-Markov

7t
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source) reported in [20], this method perforrned comparably with COVQ when the

bit-error rate wâs less than 5% and outperformed COVQ by 0.4-0.9 dB at the bit

error rate of L0%. h appeârs that this method is effective only when the channel is

highly noisy. F\rthermore it requires a decoding delay, which can be objectionable in

applications such as speech coding, whele FSVQ is a strong candidate. In the second

approach (referred to as NC-FSVQ2), an FSVQ with a restricted next-state function

is designed such that the next-state is solely determined by the previous output of

the encoder. In other words, next-state s,.a1 is contained in the first log2K bits of the

channel codeword i,,. In order to obtain a rate of ,? bits per sample, an additional

rate rB-logrK bit per sample memoryless VQ is associated with each codeword of the

FSVQ. With the chosen next-state function, an error in a r.eceived channel codeword

affects only the following state, and upon receiving a correct channel codeword the

decoder returns to the couect state. The experimental results reported in [20], [21]

indicate that the this approach performs better than the former approach as well as

memoryless COVQ, at channel elror rates in the range of 0.5% - 10%. The restricted

next-state rule however has the disadvantage that the number of states 1l must be

less than or equal to JV, the nurnber of code vectors per state, so that, for a given

vector dimension, reducing the quantizer rate also requires reducing the number of

states.

In this dissertation, we propose a new decode¡ which is robust against channel

noise, for an FSVQ with an arbitrary next-state function. The basis of the approach

is to view the FSVQ decoding problem as one of selecting the minimum distortion

vector *" from the collection of all state codebooks (i.e., thesuper codebook), given

the sequence of observed channel outputs. In particular, it is shown that the mini-

mum distortion vector can be recursively computed. An important propertv of this
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decoder is that it is not a finite-state machine and hence it does not suffer from the

delailment problem. It also has the property that, when the channel is noiseless it's

performance is identical to that of the FSVQ decoder matched to the encoder. We also

present a complete FSVQ design algorithm for noisy channels, based on the proposed

decoder. The new decoder can be used with both LS-FSVQ and LT-FSVQ, and the

proposed algorithm can be used to itelatively improve (or "channel optimize") any

given FSVQ encoder. In our simulations, we used LT-FSVQ encoders and omniscient

design procedure to obtain the next-state rule.

4.4 Problem Formulation

A block diagram of a general FSVQ is shown in Fig. 4.3, First, assume that the

channel d is a discrete memoryless channel (DMC), and let i," and j," be channel

input and output at time n respectively. Then, the channel is described by the

mapping á : II,y -+ Il,y with transition probabilities Pr{J": j"ll": in} : p¿^¡^. Let

(e,, d") be the encoder and decoder pair associated rvith the s¿â state of the FSVQ,

where s : 1,2, . .. ,1(. Equations 4.4 and 4.6 can now be re-written as

ir, : e"" (x"),

*": d¡"(i"),

(4.e)

(4.10)

where ,î," is the state of the decoder. In the absence of channel noise, j," : i,,, ¡vith

probability 1 and hence ên : sn. Assume that the initial state of the encoder is

s0, and consider a finite-state decoder which also starts from the state 3o : so, Let

J, denote the channel output sequence (J0,4, J2,...,J,). Then, according to the

recursive function in (4.5), the decoder state at time n is a deterministic function of



5¡¿Ì 1 Sn -l- 1

CHAPTER 4, DESIGN OF FINITEiSTATE VQ

cFSçn

T------l

L_____J L_____J
Figure 4.3: Block d,iagram of a f,ni.te-state uector quant'¿zer (T is a unit d,elay).

,6¡ and the channel outputs j"-, : (jo, j¡ jz, . . . , 
j^-), which we explicitly v/rite as

3,(j,-t,.4¡). As n -+ co the decoder state machine becomes stationary and hence

,ô"(:"-r,.ôo) -r 3"(ã-r) for large n. (4.11)

It is apparent th¿t a finite-state decoder is a special case of a more general class of

infrnite-memory decoders of the form

t:"(i") :'þ"(i",i".l) -- ,þ"(i") (4.12)

In case of a finite-state decoder, ry'," has the recursive structure ry'fsshown in Fig. 4.3.

In general, the MSE of an FSVQ at time n ) 0 is given by

E{D"} :Ellx" - x"ll' = Ellx^- 1þ"(j)ll'z
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: \il / ttx-_ ú-(j*)ll2p(x^,j,¡dx,, (4.13)

I loo"--" Yn

where p(x,,, j,,) isthe joint density of Xn andJ,. As in (4.8), the overall performance

of the quantizer is rneasured by the time averaged MSE

.tn
D: tim if ¿{¿,},

n-+ao n, ¿
i=1

(4.14)

assuming that the limit exists.

The problem at hand is to find the encoder-decoder pair (8:s-,tþ;), which mini-

mizes the performance measure given by (a.14), We will assume that the next-state

function / is fixed; a good next-state function for the given source can be found

by one of the methods described in [3]. In order to arrive at a Lloyd-style iterative

algorithm, we attempt to solve the follorving two problems:

¡ Given a decoder ry',,, determine the optimal finite-state encoder áfs*. Since the

next-state function is fixed, this is equivalent to finding the optimal encoder ej

for each state s : I,..., K.

¡ Given a finite-state encoder tfs, determine the optimal decoder tþi. lf tþ, is a

finite st¿te decoder, this is equivalent to finding an optimal decoder ôj for every

state .î : 1,. . . , K. In the case of a general decoder ry',,, an optimal decoding

function has to be found for every n.
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4.5 Optimal Decoding for FSVQ

We first consider the optimal finite-state decoder for a given FSVQ encoder

case, the MSE as given by (4.13) becomes

76

E{D,} : Ellx, - x"ll, : II I / ll*, - 6¡^(j^)llrprx,lê,, j,)dx,]pG^, j^),
- 

.-:- L JtN I

(4. i5)

where ,î,,, : Í(j"-y 3,,-1). For given FSVQ encoder, E{D"} is minimized if the term

in the square-bracket is minimized for every j," and 3,,. The optimal decoder for state

3¿ : s is thus given by

In this

(4.16)

I
ó:(å) : argniin / ll*,. - d,"(j")ll'p(x"ls": s, jn)d.x^

0s JRd

: -E{x,13" : s,i,},

where the last step directly follows from (4.4). Note that when the channel is noise

free, 3,, : sn and jn:'j," and the optimal decoder in (a.16) simply gives the centroid

of the if; cell in the encoder partition of state s,". The major shortcoming of this

decoding scheme in the preseuce of channel noise is that j^ I i,, (due to channel

errors) leads to ,ô,,*t : Í(j",3") f sna1, which causes the decoder state machine to

lose synchronism with the encoder state machine. We next propose a more robust

decoder for a given finite-state encoder.

Given a finite-state encoder Eds and a decoder ry',, the MSÐ at time n is given by

E{D"} ll* ̂ - rþ, (-j,) ll' p (x^lj 
^) 

dx,f r (j 
^),

(4.17):rtf,
Jn
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and it follows that the optimal decodel in this case is given by

,þi(i.) : 
;iJ";$, 

ux, -,þ,(i,)u'zp(x.ti")dx"

! ! ø1x,¡s ^,i,,|P(s,,i,lj^), (4.18)

In this expression, E{Xnlsn,in} : S"" (¿") is the centroid of i,t! cell of the encoder par-

tition of the state s,,, which is independent of the channel, where i," -- 1,2, . .. ,1ü and

sn: 1,2,. . . , K. Posteriol probabilities P(s",i"lj") on the other hand are functions

of both encoder and channel. Note that if the channel is noiseless, P(s,,i,lj,) : g

fo¡ all but the correct (s", i") pair and the decoder output is the centroid of the ;f
cell of the encoder partition of state s,". We now show that the posterior probabilities

P(s",i,"1j") can be recursively computed.

Defrne the set of all (s,-r,i"-r) pairs which lead to the state s," : s as p(s) :

{(s,-r,i"-r) : f(sn-1,i,n-1): s}. Then

P(s^,i.*lj,) : I D "tr 
n,in,sn-1,i,n-1ljn)

9n- 1 in-l

: fr1;",s,-t,i,_rlj^)
P("")

: =:- | p(2,,s"-,,i *-,,,j,). (4.19)p(i) 
f_G.;

Now consider

D, þ *, s n1, i.4,j n) : I p 
1¡ *11,, t 

^_r, 
i,1, j 

^_r) 
p (i n, s n_t, i n¡,j n_ t)

p(,) pG")
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P (j,li,) \ r ç ; s 
"- r, 

t. -,., j * - r) P (t,- t, i n - t, 
j n- )

t"þ")

P (j^1i,,) L P U^ls^i, i^-r) P (sn-1, in-rlj *-r) P (j,-r)
pG")

I *(s^,i^) P(j,-1), (4,20)

where rve lrave used the fact that, for memoryless channel P(j.1i.., s^-1,.i^_r, 3,"_r) =

P(j"li"): p¿"j" and

l" (s, i) : P (i 
"li " 

: ù | e ç " 
: i'ls n- t, i,-t) P (s 

^- 
t, i ^-li n-).

¡(")

Now, noting that

P(j") : tt t P(i.n,sn-',i.1, jn)
s" i" p(¡")

: IÐr"f',,i,)p(j,_,),
s. i.

we obtain the desired recursive equatiou

Â" (s, z) : P(sn : s, ¿" : ilj") : l"(s, z)

tEJE,r,("i4'

(4.21)

(4.22)

(4.23)

l,(s, i) : P(j^li^ :,ùÐ P(i": ¿ls,-r, i,_r)À"_r(s,i) (4.24)
p(")

ln (4.24), the probabilities P(i,nls._1, i,n_1) depend only on source statistics and

the encoder, and hence can be computed for a given source and an encoder. The

optimal decoder given by (4.18) can now be computed recursively, as shown in Table

4.1. A block diagram of the decoder is given in Fig. 4.4.

A noteworthy feature of the proposed decoder is ihat it is not a finite-state ma-
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Ini,tiali,zati,on: Assign initial values to Â¡(s, e),

s : 1,2,...,K and'i : I,2,...,Iy' and n <- 1.

Step 1: Given the observed channel output j," compute 1,,,(s, i),

s : 1,2,...,K and i : 7,2,...,N using (4.24).

Step 2: Compute Â"(s,i) s:t,2,...,K andi:1,2,...,N.

using (4.23).

Step 3: Compute decoded output as fu : D:, ![, g,(d)Â"(s, d).

Step l: n <- n + 1 and goto Step 1.

Table 4.1: Recursi,ue computation of FSVQ decoder in (1.16).

chine. It may be viewed as an infinite-state rnachine, with P(s", i"lj"), sn: 1,. . . , K
and in : 1,. . . , N being the state (see Fig. a. ). In the absence of channel noise,

the optirnal reproduction vector for zf; cell in the encoder partition of the sf state is

given by E{X"1s",i,"} (centroid condition). Note that decode¡ in that case observes

ti,, and is able to derive the exact value of s," from the sequence in_t,á,,-2,.... When

the channel is noisy, the decodel observes only a noisy version j," of ã, and the exact

value of s,. cannot be determined. Hence, the optimal decoding rule, in the sense of

minimizing the MMSE, is to compute the most likely value of E{X"ls", i,}, given

the channel output sequence jn, j^t,..., as given by (a.18). Instead of recursively

computing the encoder state s¿) the decoder recursively computes the posterior prob-

abilities P(s^,inljn,, jn-1,...). It is also worth noting that this decoding algorithm

assumes a general FSVQ encoder and hence is applicable to both labeled-state and

labeled-transition tvpes.
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Figure 4.4: A block-d,iagram representati,on of the recursiue decod,er in (1.16). It mag
be ui,ewed as an i,nf,nite-state machi,ne with the state P(s,,i^lj,), s,, : 1, . . . , K and,
ir:7r..',N.

We next consider the computational complexity and storage requirements of the

decoding algorithm shown in Table 4.1. Step 1 requires ¡r¡ D[, l¡r(sr)l computâ-

tions, where lp(s¿)l is the cardinality of the set p(s¡) . Since there are N possible

transitions from each of the K states, ![, l¡r(rr)l : .If.l{. Hence, the algorithm re-

quires (ignoring the normalization in Step 2) 111{2 t K.ll = 1f1{2 computations

for .ff >> 1. The algorithm requires the storage of the set of ali encoder cen-

troids g,(i), s:1,2,...,K, ¿ : 1,2,...,Iy' and the probabilities P(i,nlsn_1, i,n_1)

in-t,in : 'J,,2, , . . , N and s,"-1 :1,...,1{. Hence, the total storage requirement in

terms of floating-point variables is .I(-l{2 -l K N x K N2 fu ¡rr >> 1.

4.6 Optimal Encoder

The optimal encoder partition for each state, given a next-state rule and the decoder

derived above is considered next. Let e"(x) be the encoder associated with the state

s. That is

e"(x) :i<+x€Q,(i), (4.25)
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r¡/here U¿_ry-lQs(¿) : IRd and n[lO,(¿) : Ø. Such a napping of course has to be chosen

so that the average distortion of the resulting system is minimized. To this end,

consider the MSÐ of the system rvith a finite-state encoder and the decoder derived

in the previous section. F\'om (4.13), MSE for n )) 0 can be expressed as

Eillx" - x,"ll'Ì * f, Ð,,*" - tþ,(j,)ll, p(x^,j.)d,x,
J¡

: 
P Á Ð ll*' - Ú'(i )ll' P (x',i,ls', i,) P (s 

^, 
i 
^) 

dx^

: r f, I | | 
*" - 4 

^ 
(j 

^)ll2 
P (j 

^ls ^, 
i,)p(x^l s 

^, 
i 
^) 

P (s., i',) dx^
1¡

: I p(r") [ Dilx, -,þ,(j.)ll2p(j,1s,,i,,)p(xnls^)dx*
¡''i' '1n""1;"¡Ç

: Ip("") [ u*^{l*^-*.,ll2ls*,i*}p(x,"1s,,)dx",,
3''i' '/n""(ii)

(4.26)

where we have used the fact that

(4.27)

ei(x") : argmìnE{llx", - x"¡¡'¡",t1. (4.28)

However, as the decoder ry', is time-varying, the optimal encoder for state s obtained

in this manner is also time-va¡ying. In order to obtain a time-invariant encoder

partition for every state,s, Ive define the distortion measure to be minimized as the

f (x"ls, z) :

Given *n : ,þ"(i"), the optim

p(x"ls)lpQls) x" € O,(i)

0 elsewhere.

al partition for state s at time n is given bv
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time average

82

assuming that the limit exists. This limit exists if s," is an ergodic Markov chain.

Then, the optimal encoder partition for state s is described by

1l
D*,"1t¡: iim +tE{llx, -i,ll'1", : s,,i,: i,x,,: ¡},

l-)æ14
n=1

1l
ei(x,.) : i. ++ ,tj* i I ¡tll*, - x,ll,l'" : s,i.,: ij

= ¡*'1i 
"r,,*" 

- x,ll'¡," : s,i.n: rej
- l-r(t L t-¿

for every x,, e lRd. Define

1l
a;(s) : lim ]lø{X'ls': s, l': i},

I+c. t, 
-

' n=1

1l
å¿(s) : lim+f E{llx"ll'|",: s,,i,,:i}, i.:r,...,N, s:1,.I)oo ¿ 

-n=1

The optimal encoder for state s can be given in the form

(4.2e)

v k+¿

(4.30)

. rK.

(4.31)

el(x") :z <+ å¿(s) -za!(s)x, <b*(s) -Zafl(s)x,', V k+i, (4.32)

Since the encodel output sequence depends on the past inputs, the pâ,rameters

{a¿(s),å¡(s)}, i,: l,...,ly' and s:1,...,K cannot in general be computed without

considering an entire sequence. In the iterative design procedure to be presented

shortly, these parameters may be computed using training sequences as follows. Let
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{zÍJ-l)} ana 1sÍj-t)1 U" the encoder output and state sequence respectively, generated

in the (ú - 1)¿à iteration. Then, the values of encoder parameters (given the decoder)

in útå iteration is computed as

aj')(')

û{¿) (s)

, Ðä*)r("f-'r 
: s,ill-Ð:i),

,h"+nll*f) ll'zl(s('-r) : s, i'9-') : i), (4.33)

where 1(.) is the indicator function, .L¡" is the number of times the state s and the

index i occurred at the sarne time in the sequences {;Íj-t)} u"d {"f-t)}, and n7 is

the size of the training sequence representing the source.

4.7 Design Algorithm

The encoder and decoder derived above can be used to iteratively design a complete

channel optimized FSVQ fi'om a training set of source vectors. The basic algorithm

follows the same philosophy as the GLA. In this thesis, we have not considered the

optimization of the next state-rule to the noisy channel conditions. Instead, a given

finite state encoder (with a fixed next state rule) is optimized to the channel. At

this point we note that the optimality conditions used here do not gua.rantee a lo-

cally optimal solution as in GLA, i.e., we do not necessarily obtain a monotonica.lly

decreasing sequence of distortion. However, the experimental results presented here

indicate that, in terms of convet'gence properties, the algorithm exhibits a behavior

similar to that of the noisy channel PVQ design algorithm described in Chapter 3.

More importantly, we demonstrate that the finite state codes designed by this algo-

rithm are robust against channel noise and give a performance superior to that can

be achieved with memoryless COVQ operating over the same channel, at the same
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rate.

Let {x"}ii1 be a training set drawn f¡om the source. The quantizer is designed

to minimize the ernpirical MSE given by

84

(4.34)

where j,"- : (jm, jz^, . . . , j^ ) and {j* }i!1is the channel output sequence obtained

by transmitting (over a simulated channel) the encoder output sequence for the rntå

time, m : 1,... ,n¡¿ and À6 is the initial state of the decoder. In order to start

the algorithm, we require an initial encoder, i.e., a next-state rule, a set of encoder

partitions for each state, and an index assignment (IA). 'rvhile one could use an

arbitrary IA, a method of obtaining a better choice is presented in the next section.

In each iteration of the algorithm, the encoder partitions and the decoder are changed

such that the average distoltion is reduced. A next state-rule (which will not be

changed by the algorithm) and a set of initial state-encoders can be obtained by

any of the approaches described in [49], However, the performance of the final code

resulting from difierent methods may differ considerably. In our experiments, we

used the omniscient labeled transition (OLT-FSVQ) rnethod as it has shown to yield

best codes for noiseless channels [49]. For the sake of completeness, a brief synopsis of

OLT-FSVQ design procedure as we used it here, is given in Appendix n. rct {ajo)(s),

AÍo)(")Ì, i:I,...,N, s: 1,...,K be the par.ameters of initial state encoders. Also

let the superscript (,t) denote the values of the various parameters in the ,t¿à iteration.

The complete design algorithm is presented in Table 4.2.

A key issue related to the given algorithrn is its convergence. We have not at-

tempted to prove the couvergence of the algorithm and we note that the guments

used in the context of ordina.ry GLA cannot be used with ite¡ative design algorithms

. nM n7'

b : --j ,)ì )- tt*" - *,(j"_, Äo)ll2
n 

^,InT'd' 
Ll z-¿. " '
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Step 0: Given: {a!0)(s), ajo)(")}[r, and training set {x,}[!r.

Compute encoder output sequenc" {¿[o)]î1r,

decoder parameters P@\ (inlsn-1, i,-, ¡, and g!0)11),

'inr'in-1r'i : 1,...,N, s""rs : 1-r..., K.

å<-0.

Step 1: Compute disto¡tion Ó(À) using (4.34).

If convelgence criteria are satisfied stop; Else let fr +- & * 1.

Step 2: Compute encoder parameters {rj*)("), ¿Ín)(r)},

i.:1,...,/f, s : 1,... ,K using (4.33).

Step 3: Compute decoder parâmeters p6l (¿*ls^-1, i.-.) ana g!À)1e),

in,i,-1,i : -|,,...,N, sn,s : 1,..., K.

Step .1¡: Update encoder output sequence {i*, }i!r.

Repeat flom Step 1.

Table 4.2: Proposed, noisg channel FSVQ d,esign algorithm.

for FSVQ [49]. Horvever, to our satisfaction, the algorithm always appeared to con-

verge, at least in mean, to a local minimum in all our simulations. The variation of

distortion in a typical run of the aìgorithm is shown in Fig. 4.5. This behavior is

similar to that of the noisy channel PVQ algorithm described in Section 3.2 (see Fig.

3,3). We can use sirnilar crite¡ia to stop oul FSVQ aìgorithm as well, which proved

to be quite successful in our simulations.
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8 10 
uJå'"" 

","1å, 
16 18 20 22

Figure 4.5: A tgpical d,i,stortion-us-i,terat'ion curue for the noisy channel FSVe itesign
algori,thm giuen in Table 1.2. Top: i,nitiaIy the d,i,storüon d,ecreases rapid,lg, Bottom:
the latter part of the curue at a d,i,fferent scale.
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4.8 Index Assignment

In this section, we consider the problem of good IA in the context of FSVQ. Such

an IA can be used to initialize the FSVQ design algorithm presented in Table 4.2.

The main result obtained in this section is a distortion measure which can be used

with the IA algorithm preseuted in [40]. The basic idea is to separate channel dis-

tortion from quantization error, and to solve the combinatorial optimization problem

of determining the mapping from the set of encoder indices to the set of channel

codewords, which results in minimum average channel distortion. Deriving an ap-

propriate channel distortion lneasure fol the recursive decoder introduced above is

difficult. Hence, we find instead the optimal IA for an ordinary FSVQ decoder, which

is a much simpler problem. It can be expected that such an IA will also be effective

with the decoder proposed above.

Consider the FSVQ system shown in Fig. 4.3. It can be shown that (see Appendix

D), the overall MSE of the the system can be w¡itten as

.E'llx" - *;j1, : De-t Dc, (4.35)

where

nq : Ð pþ,) [ ll*, - s,"(r,)ll, p(x,ls,)d,x*, (4.86)
s',¡' J n"', (i")

n" : Ð t P(i,ls,)p(j,'lz,)p(s,)lls," (i^) - *.*(s,, j,)llrp,"(i"),
8",i" â",i"

(4.37)

and g"(z) is the centroid of the i¿À encoding cell O,(r;) of the s¿å state, s : I,. . . , K
and i:1,...,ff. DC represeuts the average MSE in approximating xr, € O,"(i?,) by
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8,"(e") and hence can be considered as the quantization error, ¡vhich is independent

of the channel. Ds on the other hand is the MSE due to using *"(3", j") instead of

g,.(i") for the Ìeconstruction of x,, e O,"(i"), and is therefore can be considered as

the contribution from channel noise to the overall MSE. Clearly, only the latter is

affected by the assignment of channel coclewords, that is both P(3"1s") and P(j"li,")

depend on iA.

In order to formulate the IA problem here, we view the FSVQ encoder as a

mappingofthestate-indexpair(s,i),s:1,...,Kandz:1,...,.1{,toachannelcode

consisting of I{ binary codewords, i.e., S¡¡ x I[¡ -+ IE¡y, where IB¡ : {bubz,..., år}

is the channel code. In other words, we have to find an index assignment zr(s,ri) such

that, if n(s, i) : ?¿, then b- e IE is the channel codeword transmitted fo¡ index i
of state s. Given sorne ø(s,ri), the conditional probability P(j"l¿ò in (4.37) can be

written a"s

P (i 
"li ") 

: P¡(s.,in)n (c 
^,i.) t (4.38)

where p¡¡, lc,I : 1,...,.Ày', are the channel transition probabilities. We note that

there are Iy'l different ways of mapping the index set of each state encoder to the

channel code and therefore 1l(1ü!) different possibilities for zr(s,z). The problem

here is to choose, out of these K(l/l) possibilities, the one which minimizes D¿ in

(4.37). It is practically impossible in most cases to find the optimal mapping through

an exhaustive search. A popular method for solving the IA problem is by using

simulated-annealing. The idea rvas first proposed by Farvardin [40] for memoryless

VQ. We adapt the same algorithm for FSVQ with two rninor modifications; (i) the

objective function is replaced by Ds in (4.37), (ii) the ,,state,, of the system being

annealed (completely different to the encoder state!) is defined as the choice of

the mapping n and a perturbation of this state is defined as an interchange of two
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randomly chosen indices in a randomly chosen encoder state s. Other details of the

algorithm can be found in [40].

4,9 Soft-decoding

The recursive decoder and the FSVQ design algolithm presented in the previous

sections can be extended to soft-decoding with simple modifications. It is of interest

to investigate the performance improvements that could be obtained by using analog

channel outputs in the proposed recursive decoder. In particular, the soft-decoding

can further reduce the efiect of error propagation in the receiver.

Let Y," € IR¿ denote the channel output vectoÌ at time n (see Section 2.2) and,

let Y,,-1 : (Yt,. . . , Y"-r). Then, based on the result in (4.18), we can w¡ite the

optimal soft decoder as

The derivation of the iterative decoding algorithm follows the sa.me steps as in the

hard decoding case, with the exception of the channel tr.ansition probabilities being

replaced by the conditional densities p¿(y), defined in (2.I2), i : l,. .. , N. Hence,

the algorithm in Table 4.1 is still applicable with the re-definition of 1,, and Â," as

follows:

E{X"13',y"} : E{X"ly"}

: I D rtX 
^ls^, 

i.^| p (s^, i^l!^).
s. i.

Â"(s, z) : P(s.: s,¿n: ili"),

l,(s,i) : n;0ò\eç^ : ils.-1,d,_)tt _,(",i).
p(")

(4.3e)

(4.40)

(4.41)
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The MSE of the system at time n is given by

90

(4.44)

where *,,: X"D,C"(i)À,(s,i) and

E*"{ll*, - içll2ls,,.¿^}: /* ,,l<" - *,ll2p(*.,1s^,i,^)d,*... (4.43)

The decoder parameters are still given by (a.33) and the empirical distortion is given

by

ñ -- -+î I tt*, - *"(y"., Äo)ll,
n¡¡nra 

_=_=1fi

4.L0 Experimental Results

In this section, we investigate experimentally the performance of FSVQ designed

using the algorithm introduced in Section 4.7. The source, channel, and performance

measure used in these expeliments a¡e identical to those described under Section 8.9.

To summarize, we use the Gauss-Markov (G-M) source with correlation coefficient

of 0.9, the AWGN channel (DMC equivalent used for hard decoding), and the SNR

performance measure. Our experimental results a.re based on L,T-FSVQ, whose next-

state rule was obtained by omniscient design approach described in [ g]. As mentioned

earlier, the next-state rule is purely based on source statistics and is not optimized

for the channel.

We first investigate the efiectiveness of the IA, obtained by the optimization pro-

cedure suggested in Section 4.8. In order to do so, we compare in Fig. 4.6, the

performance of a given oldinary FSVQ (designed fo¡ a noise-free channel) on a noisy

channel with random IA (curve a) and optimized IA (curve b). Theses results were
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Figure 4.6: Performance irnproaements d,ue to proposed, FSVQ desi,gn approaches com-
pared to an ordinarg FSVQ on Causs-Markou source and, AWGN channel. (a) FSVQ
designed usi,ng OLT-FSVQ algorithm for noise-Íree chz,nnel, (b) FSVQ i.n (a) uith IA
optimized, to channel noise-leuel, (c) FSVQ i,n (a) with proposed d,ecod,ing algorithm
(hard,-d,ecod,i,ng), and (d) channel opt¿mized, FSVQ fuith hard,-d,ecod,i,ng) obta'ined uith
proposed i.terati,ue algori,thm, us,ing sAstenx i,n (a) as the'initial systern. In thi,s erample
ly' : 16, d,: 4, and, K :8.

obtained with a 4-dimensional, 8-state FSVQ. We note that in this example, proper

IA improves the performance on tlte average by about 0.8 dB in SNR at higher channel

bit error lates (BER). In Fig. 4.6 curve c indicates the performance of the proposed

decoding algorithm (with hard-decoding) with the same FSVQ encoder. Finally curve

d shows the performance of coFSVQ (with hard-decoding) obtained by iterativelv

:\
\:
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improving the given FSVQ to channel noise level using the algorithm in Table 4.2.

In our main experiments, 4-dimensional FSVQs with 8 states (d : 4, K : 8)

were designed for G-M source and AWGN channels with varying levels of noise. In

the case of hard decoding, a binary DMC was obtained after MAP detection, as

described in Section 3.9. The designs were ca¡ried out using a training set of 50,000

vectors, while the testing was based on a sepatate set of 50,000 vectors from the same

source. In order to average over channel noise density, 50 realizations of the channel

noise sequence was used in soft-decoding experiments. The dramatic improvement in

performance achieved by the proposed FSVQ designs over ordinary FSVQs on noisy

channels is demonstrated by the example shown in Fig. 4.6.

Comparisons of performance of proposed channel optimized FSVQ (COFSVQ)

designs with that of memoryless COVQ are shown in Figs. 4.7, 4.8, and 4.9. Some

of these plots also include pelformance of memoryless COVQ at the same rate and

dimension for comparison. Also included in some plots are the performance of NC-

FSVQ2 designs (with 8 states) reported in [20] 
1. ln these plots, the channel noise 1evel

is indicated in terms of CSNR defined in (3.42) andBERdefinedin (3.41). In general,

COFSVQ appears to outperforrn memolyless COVQ in ali cases considered. It is

interesting to note that at low channel noise levels COFSVQ degrades much rapidly

than COVQ. However, as the noise level is increased COFSVQ degrades slower than

COVQ, and at vely high noise levels COFSVQ maintains a gain of about 0.8-1.0 dB in

SNR over COVQ. Comparisons with NC-FSVQ2 of [20] in Figs. 4.8 and 4.9 show that

NC-FSVQ2 method performs better than COFSVQ with hard-decoding (NC-FSVQ2

is a ha.rd-decoding based method) at high CSNRs, even though the situation appears

to reverse as the noise level increases. Note also that COFSVQ with soft-decoding

@d-ofithegraphsshownin[20];actualnrrmericaIvalueshave
not been reported.
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Figure 4.7: Performance conùpa'r,ison oÍ uar¿ous noisg channel FSVQ schemes for
Gauss-Marlcou source (p: 0.9) ¿, 2 bits/uector, d, : 4 and, K : I (8-states): (a)
proposed, algorithm (hard,-d,ecod,ing), (b) proposed, algorithm (soft-decodáng), (c) mem-
oryIess COVQ ui,th hard-d,ecod,i,ng, (d,) and, memoryless COVQ with soft-ilecod,i,ng,

outperforms NC-FSVQ2, palticularly at high noise levels.

4.'LL Summary

In this chapter, the problem of designing FSVQs for noisy channels was studied.

We have proposed a robust, time-recursive decoder for optimally reconstructing the

output of an FSVQ encoder', observed through a noisy channel. Experimental re-
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Figure 4.8: Performance comparison of uari,ous noi.sy channel FSVQ schemes for
Gauss-Markou source (p: 0.9) a¿ 3 bi.ts/uector, d, : 4 and, K : 8 (8-states): (a)
proposed algori,thm (hard,-d,ecod,ing), (b) proposed, algorithm (soft-decoding), (c) mem-
oryless COVQ wi,th hard,-d,ecod,i,ng, (d,)memorgless COVQ uith soft-d,ecod,ing, and, (e)
NC-FSVQZ results from [20].

sults were used to demonstrate the effectiveness of the proposed decoder. In contrast

to a finite-state decoder, the pr.oposed decoder exhibits graceful degradation of per-

formance with increasing channel noise. The algorithm was also extended to soft-

decoding. We also considered the iterative optimization of encoder and decoder for

designing channel optimized FSVQ. Additionall¡ we derived a simulated-annealing

based procedure for obtaûring a good index assignment for state codebooks, which can

E'
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Figure 4.9: Performance conxparison of uarious noi.sy channel FSVQ schemes for
Gauss-Markou source (p: 0.9) ot /¡ bits/uector d, : 4 and, K : 8 (!-states): (a)
proposed, algori,thm (hard,-d,ecod,i,ng), (b) proposed, algorithm (soft-d,ecod,i,ng), (c) mem-
oryless COVQ with hard,- d,ecod,ing, (d) memoryless COVQ with soft-d,ecod,ing, o,nd, (e)
NC-FSVQ? results from [20].

be useful in initializing the itelative design algorithm. Simulation Ìesults based on a

Gauss-Markov source and the AWGN channel wer.e presented and it was shown that

robust FSVQ designed by metliodology intr.oduced in this chapter can outperform

memoryless COVQ operating at the same Ì'ate.

BER (%)



Chapter 5

Soft-decoding VQ for Channels

with Memory

5.1 Problem Statement And Motivation

In the VQ design problem introduced in the Chapter 2, a simple additive noise model

was assumed for the channel. In this chapter, we consider the design of VQ for a

general class of channels characterized by the model

(5.1)

where M ) 0 is called the channel memor\, / is a deterministic mapping such

that / : nR(M+l)¿ -+ IR¿ and w,, € IR¿ is additive channel noise. According to this

model, the channel output at a given symbol interval is "interfered" by M previous

inputs to the channel, a phenomenon commonly referredto as intersymbol interference

(ISI). A main cause of such inte¡ference is the limited bandwidth of the physical

channel rvhich causes the signal transmitted during one symbol interval to spread
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in time over several symbol intervals. In addition, ISI can also be caused by non-

linearities in a comrnunication system. For example, digital satellite systems often

utilize amplifiers operating at or near saturation for better efficiency [64]. A general

model for bandpass, non-linear channels is the Volterca series representati,on givenby

[65], [64].

y' : Is"-",¡¡Íl) + tDt'"-",s.-^"sl-n"Hf)."."
n7 n2 n3

*tt' Ðt,,-",,","-,,rs,,-,'.sl-,'osl-n"HÍ1)n"'..nu+' +w", (5 2)
nt n2 n5

*¡"r" UL1\".11^"0-, are the complex Volterra cofficients. We note that the first term

represents the linear distortion, the second terrn the third order distortion and so forth

for highel order distortion (even order terms aÌe ignoled as they generate spectral

harr¡onics outside the channel bandwidth). A special case of this channel is the linea¡

channel in which all coefficients e*cept äÍ]) are zero.

In digital communications, a variety of methods exist for dealing with ISI. These

methods are commonly knorvn as channel equal,izati,on, the objective of ¡uhich is to ob-

tain an equivalent memoryless channel by appropriately processing a sequence of out-

puts from an ISI channel. If the equalizer plovides discr.ete outputs, a hard-decoding

COVQ can be designed for the equalized channel, using the procedure described in

Chapter 2. However, it is well known that a considerable performance improvement

may be achieved by using soft VQ decoders [25], [32]. The soft-decoding problem for

channels with memory can be considered as a generalization of the MMSE channel

equalization problem. A linear channel equalizer is a linear filter whose coefficients

are found by MMSE estimation techniques [62]. Other work on MMSE equalization

using non-linear filteling may be found in [65], [66], [67]. As we shall see, a soft Ve

n1
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decoder may be considered as a non-linea.r time-invariant filter.

5.2 Optimal Soft-decoding

Referring to Fig. 2.2, the sequence of source vectors {X,"} is mapped to the channel

vector sequence {S"}, which is then observed through a noisy channel. The overall

Figure 5.1: Soft-d,ecod,ing ui.eued as an esti,mat'ion problem.

mapping from the encoder input to the channel output is a non-linea¡ mapping with

memory, rvhich can be written as (see Fig. 5.1)

y, : O(x",...,xn-¡a) * w,,. (5.3)

Let ? : {y,} denote the observed channel output sequence, whose length can in

theory be infinite. Also, let p(x",7) be the joint density function between source

vector X,, and 7. If the decode¡ produces its output *,, after observing 7, the mean

squa¡e elror of the system is given by

(5.4)

The optirnal soft-decoder is a function *i(7) which minimizes this error. The de-

termination of the optimal decoder is a¡ MMSE estimation problem, the solution to

Io" In" 
U*^- *" (7) ll'zp(x", ? ) dx^dÎ<^.
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which is the conditional mean estimator (See Appendix A)

*;: E{x"17}. (5.5)

Clearly, if such a decoder is to be of practical interest, Y must be a truncated se-

quence. Apart frorr restrictions imposed by obvious computational difficulties, in

most applications (e.9., speech or image coding fo¡ online communication), there are

restrictions on the allowable delay. Hence we focus on optimal decoding subject to a

constraint on decoding delay.

A typical approach to dealing with the estimation problem in (5.5) is to use a

sequence of the form ?":0t,...,y,,...,y"+¡), where å is the decoding delay. In

the terminology of estirnation theor¡ this problem in is referred to as f,Iteri,ng if k : 0

and smoothing if /r > 0 [51]. In general smoothing results in more accurate estimates

than filtering as more observations closer to the time point n are used in the former

than the latteÌ to estimate X,". Horvever, this gain can only be obtained at the cost

of increased decoding delay and complexity. When a constant delay k is used for all

n, the resulting smoother is ¡eferr.ed to as a fted,-lag smoother [51]. In general the

formulation of the problem in this manner leads to a recursive solution. For example

if the mapping ftorn X," to Y," is linear and if the two process are jointly Gaussian, the

problem can be solved recursively using the Kalman filter [b1]. This approach is not

applicable to the systern that we consider, due to the nonlinear mapping involved in

the VQ encoder. However, the fixedJag smoother can be implemented in a recursive

manner in the context of soft VQ decoding as well. The approach has previously

been investigated in [31], [32], [33] and we consider this approach in the next section.

In the ¡est of the chapter, we investigate a. slid,ing-btock smoothing solution to the

soft-decoding problem [68], [69]. A useful property of the resulting decoder is that

99
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it is a time-invariant filter, which allows us to estimate the optimal decoder using

training data, much the same rvay MMSE channel equalizers are estimated. Also we

will show that the optimal sliding-block decode¡ can be well approximated by a linear

filter when the CSNR is small.

5.3 Recursive Soft-decoding

Consider the soft-decoder of the form

where S,,..,.¡ : (S,-r+ø,..., S,,+*)". In the above expression, the terms E{X,lS"+È}

depend only on source statistics and the encoder, while the posterior probabilities

P(S"+*17") depend on the observed channel outputs. As the number of te¡ms in the

sum is a function of time, the evaluation of this expression is clearly impractical.

However, if we make some assumptions about the encoder output {S"}, it is possi-

bie to obtain an expression that lends itself to recu¡sive computation. Consider for

example that, if {S"} is assumed to be an iid process, (5.6) simplifies to

E{x"lyt,yr, . ,y"+¡}

| ø1x" ¡s,*¡, 7"j P (s"* ul:r")
5nf ¡r

! ø 1x" ¡s"*o 1 P (s,+ nlY.).
5n-È¡

.¡v

E {x"lY"} : ! ø1X"¡"u1 p @,lrr"),
i=l

(5.6)

(5.7)

where -E{X"la¿} i, : l, .. . , N are sirnply the encoder centr.oids. A more useful model

for the encoder output ptocess is the first-order Markov model. Specifically, if we

assume that both {X"} and {S"} are Markov the following assumption is reasonable
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132):

E{X'ls-¡aa1,. ..,s"+¡} æ

Then, the expression in (5.6) reduces to

(5.8)

Nk+2

E tx"lY"j : ! ø1x"¡"t) \ 
p ftt) ln),

i=l
(5.e)

where V," : (S,-r, . . . , S",+*)r and vÍj) denote the i¿å permutation of (,t + 2)-tuple of

.|y'-ary vectors S e {a1,...,o"},, i:7,...,Iy'¡+2. The resid,ual redund,ancg l52l in the

channel input due to correlation in the encoder output can be utilized as protection

against channel distortion at the receiver by an appropriate design of the decoder. The

iid assurnption made in (5.7) clearly ignores the residual redundancy in the encoder

output. In (5.9) vectors ø1X,lvf)), i:1,...,N*+2 define a set of centroids based

on the index sequences v[1), which we will refer lo as eúended centroid,sÍ. Clearly

(5.7) is a special case of (5.9); the latier reduces to former if the encoder output is

iid. If the encoder output is correlated, a block of output indices V,o defines a higher

resolution partition of lRd than a single output index S,,, and the decoder in (b.9)

provides improved MSE performance compared to that of (5.7). However, as shown

below, this improvement comes ât the cost of increased computational complexity.

In (5.9), the only quantities which need be evaluated for every channel output are

the posterior probabilities Pþl:\lY"). Ir can be shown rhat p&l:)lk), i: t,2,...
can be updated recursively tlorn P(vl1rl7, -),, i :1,2,... [50], [32]. This leads to

a recursive algorithm for soft decoding, which may be viewed as an extension of the

symbol-by-symbol MAP channel equalization algorithm of Abend and fyitchman [50].

we note here that this algorithm requires the knowledge of the conditional density of
LSkoglund 

[32] refers to these as multi-cent¡oids.
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the channel output, given the channel inputs. Simulation results reported in [32] based

on this approach show that for channels with severe ISI, soft-decoding can provide

a significant performance improvement over hard decoding. A major d¡awback of

the recursive soft-decoding algorithm is that, it's computational complexity grows a¡l

O(¡/o*t) fot k ) M (O(Uv+z¡ for k < M). Note that the decoding delay fr has to

be increased with channel rnernory M. Hence, this decoder becomes impractical for

channels with larger memoly or quantizers with higher rates.

5.4 Sliding-block Decoding

When the input process and the channel have finite memoly, it can be assumed that

the dependence of X,, on Y- decreases as ln - ml is increased. More specifically, we

will assume that

P(xn,Yt, ' . ' tVntVnrtt . ' .) x p(xn,yn-Kt, ' ' ' ,Yn, ' .'tYn+Kz)t (5.10)

for rz ) 1, where I{1and K2 are some positive integers. This leads to the sliding-block

smoother (or sliding-window smoother) given by

(5.11)

Given that source and channel are stâtionary, the sliding-block smoother is a time-

inva.riant (fixed), non-linear function Õ(.) of the observed vector
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where Yn € lR¿. That is

6 . p(I{r +Irz+1)r - pd. (5.1.2)

We will refer to the soft-decoder based on (5.11) as the slidi,ng-bloclc d,ecod,er. It is

illustrated in Fig 5.2. Note that Kz is the decoding delay. The "block-size" in channel

vectors is Ko : Kt * Kz -l 7, rvhich is also the total memory of the decoder.

Figure 5.2: Sliding block d,ecod,er (T 'is a uni,t d.elay element).

Let V,, : (Sn-xr-u,. . . , S",+r, )". Then, noting that the sub-sequence of channel

outputs U,, conditionally depends only on the sub-sequence of channel inputs V,,,, we

can expÌess the sliding-block decoder as,

d("") : E{X"lu"}

: ! ø1x"¡"jj), u"]r(vfrlu,)
í

_ t, E{X,,lvf)}p(u"lvf))P(vÍj))

DuP(""1"f))P(.'f))

_ D¿eíp(u,lvf))p("fr)- .;Gm)PCPt
(5.13)

where g! : alX"lvf)] and ri :1, .. ., NK'*M .In (5.i3), the only term that depends

on the channel is the conditional density p(u,lvf;)), rvhich can be computed from the

channel noise density, if channel input and noise are assumed independent. On the
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other hand, the set G : {el} i" this case defines a set of extended centroids of the

encoder, whose size depends on K¡. That is, they are centroids of the partition of IRd

based on Ko * M consecutive outputs from the encoder. When the encoder output

is correlated (there is residual redundancy), the cardinality of G is larger than lr'. It

is apparent that the optimal sliding-block decoder given by (5.13) simply computes

the conditional expectation of a set of extended centroids, given the augmented out-

put vector u,,. Hence the advantages of the sliding block-decoder are two-fold: (i) it

uses residual redundancy (if any) by using the knowledge of an extended set of cen-

troids, and (ii) it compensates for channel spread by using an augmented obse¡vation

vector. The performance of the sliding-block decoder depends on its memory span,

determined by the block-size K¿. On oue hand, increasing K¡ can be expected to

improve the MSE performance of the decoder, albeit increasing the complexity of the

decoder mapping /. On the other hand, the finite memory properties of the source

and channel suggest that a finite, and possibly a small value of Ke may be practically

sufficient to obtain all the improvements achievable with having memory in the de-

coder. Hence, we wish to investigate the dependence of overall MSE performance on

the block-size K6. At this point, it may be conjectured that the optimal value of K¡

should depend on channel characteristics and the amount of correlation in channel

input process.

Example

'We present here numerical results obtained by applying sliding-block decoding to the

output of a VQ encoder transmitted over a linear Gaussian channel. We consider

two sources; Gauss-Markov (G-M) source with a correlation coefrcient of 0.g (see

Appendix C) and iid Gaussian source. The former is a highly correlated source and
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results in a considerable encoder residual redundancy, while the latter leaves very

little residual redundancy. Here, we restrict our attention to two-dimensional vector

quantization (d, : 2) at the channel rate of 1 bit per source vector (.lf : 2) and

binary channel signaling. That is, rve have a binary quantizer operating at the rate

of 1 channel use per sou-r-ce vector. This situation allows us to analytically compute

the decoder output and hence measure the performance of the sliding-block decoder,

without resorting to function approximation. The binary channel has the impulse

response ho : 0.407,ht: 0.815, hz : 0.407 and a memory of M :2 (See (5.22)).

The performance of sliding-block decoding was evaluated by simulating the source

and the channel. The SNR of the quaniizer with decoding block-size K6 bits2 for

different channel noise levels and for diflerent values of K6 is shown in Figs 5.3 and

5.4. The channel noise level is measured here by the channel signal-to-noise ratio

(CSNR) defined as

(5.14)

Clearly, the largest improvement in performance is achieved by increasing the

K¡ from 1 to 3 bits in both figures. It is also noticeable that the relative gain in

performance achieved beyond K¡ : 5 bits is small. Interestingly, this value of 116

corresponds to K, : Kz : 2 bits, which is also the memoÌy of the channel. In the

case of iid source) none of the decoders ¿re able to achieve a performance close to ideal

channei performance on the given channel, except at very high CSNRs. In contrast,

in the case of G-S source, all decoders with non-zero memory achieve a performance

superior to that of an ideal channel quantizer at CSNR > 5 dB. This is due to the

high residual redundancy in the encoder output in the latter case. Fig. 5.5 shows the

extended sets of encoder centroids used by a sliding-block decoder of block-size 116,

totos,o(üÌ4lE) aø.

2For simplicity, symmetric blocks have been used, so lhat K1 = K2.
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Figure 5.3: Depend,ence of performance on d,ecod,er block-size K¡ (bits) for i,id, Gaus-
s'ian source, N : 2, and, d,:2. Channel memory M :2 bi,ts. Distorti,on oJ quantizer
ouerid,eal channel is 1.77 d,B (horizontal ltíne). In each case a training set oJ 75000
source uectors uas used.

Figure 5.4: Depend,ence of performance on decoder bloclc-size K¡ (bi,ts) for G-M
source, N : 2, and, d, : 2. Channel memory M : 2 bits. Distortion oJ quan-
t'izer ouer id,eal channel is 4.04 d,B (horizontal line). In each case a training set of
75000 source uectors uas used,.
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with iid and G-S sources Ìespectively. With the iid source, extended centroids almost

coincide with the 2 centroids of the encodel pa.rtition and no residual redundancy is

thus present. In contrast, high residual redundancy is evident in the case of correlated

G-S source, where extended centloids are spread across the support-region of input

vectors.

5.5 Approximations for Low CSNR and Gaussian Noise

The optimal sliding-block decoder given by (5.13) is a non-linear function. However,

a result shown in [70] for the case of the mernoryless A\ /GN channel motivates us to

consider linear approximations for sliding-block decoder at low CSNRs. It is shown

in [70] ihat as CSNR -+ 0, the optimal non-linear decoder for a memoryless Gaussian

channel tends to a linear rnapping. As the optimal decoder for memoryless channel is

a simple case of sliding-block decoding (in which the block size is 1 channel vector),

the result in [70] can also be shown to be valid for a sliding-block decoder considered

here. More precisely we can show that (derivation in Appendix F)

d(u") : Gr, + o(J Eo,u,") as .Ð¡ -+ o, (5.15)

whe¡e G is a d x KsL matrix that is fixed for a given source, encoder, and a channel

(see F.8), and .Ð6 is the average signal power at the channel output. According to

this result it appears that the optimal sliding block decoder approximates a linear

function at lorv CSNRs. F\'om a practical view point, this implies that the optimal

decoder rnapping can be well approximated by a sirnpler function, when CSNR is low.

Our experimental results seem to suppott this conjecture.
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5.6 Estimation of Sliding-block Decoder

Consider the optimal decoder in (5.13), rvhen the channel noise is iid Gaussian with

cova.riance matrix diag(ofu). It directly follows that

I{tlKz
p(""|"f)) : I Fw(Y,+r"-i

j=0
- ,li)n*,-¡), (5.16)

where rf'|",-, : Íþli\o"-¡,...,"f;)*o,-¡-*), with / being defined in (5.1). After

some work, it can be shown that

E{X"lu"}: DNi".'siP(vi,1 ÐfI *' lly.+ x" - ¡ - "l'l*, -, I l')
(5.17)

tli'*^' P(.'rf;))"*p - ùDf:¡* llv,+o"-¡ -rlil*"-¡ll'

The number of terms NKo+M in each sum above can be quite high even fo¡ small

values of N, M, and 116. However, some simplifications may be possible in the case

of highly correlated sources, as not all permutations of V, are likely to ocatr, ,i.e.,

.P(vÍJ)) lv 0 for some i. Even so, for very large values of NK|+M ,enumerating through

all the possibilities can be impossible. We suggest below an alternative approach

based on approximation of the expression in (5.13) by a nonJinear function, which

can be estirnated from training data. It is then a problem of regress,i,on esti,mation.

This approach can also be viewed as an extension of MMSE channel equalization

using linear or non-linear filters. The rest of this chapter is devoted to investigating

the feasibility of this approach. Before we proceed, it is worth mentioning that the

estimation of sliding-block decoder can be used with a much la.r.ger class of channels

than the one described by (5.1). We only lequire that the input vector X," and the

vector sequence U,, observed at the channel output have a stationary joint density

p(x", u").
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nt {xj¿)}i3, be a sequence of training vectors representing the source dist¡ibution.

Given the encoder and channel, one can cotrpute nî realizations 1u!')¡i3, of tne

channel output sequence. Our objective is to estimate a function ô by minimizing

the empilical error

(5.18)

There exists a large number of methods for function estimation. However, many

of these methods suffer from "the curse of dimensionality" in the multldimensional

(sparse data) case, see for exa.mple [71]. Note that we have to estimate a d-dimensional

function of K6,L variables, An empirical comparison of several function estimation

methods can be found in [72]. In general, the accurate estimation of high-dimensional

functions requires methods based on projection of high-dimensional data onto low-

dimensional sub-spaces. In this thesis, ¡ve consider one such approach- multi-lager

perceptron (MLP) . We indicate other possibilities in Section 6.2.

Mult'i- lag er P erceptron

Multi-layer perceptron [72] is a neural-network approach that has been extensively

studied for multidimensional function estimation and the related problem of clas-

siûcation. Applications of MLP related to our problem include adaptive channel

equalization [66] and multi-user detection [73]. The universal approximation theorem

[74] implies that a multi-layel perceptron possesses the universal function approxi-

mation capability in that, a multi-layer. perceptron with a single hidden layer can

approximate any coutinuously differentiable function to an arbitrary accuracy, pro-

vided that the hidden layer has a sufficient number of computing nodes. A single

hidden layer MLP is a non-linear, continuous function in the unit hypercube [0, 1]e

#Ër,-fu-ô(,,Í'))r'
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given by
qp

Í (q,uz,. . .,up) : I n9(\r4u¡ - où - po (5.1e)
t=1 j=r

where p¿, 0¡, and w;¡ a.te some real constants, and o(.), usually referred to as the

actiuation function, is a sigmoid,al functi,on -a real nondecreasing function such that

o (t) -+ -1 as ú -+ -oo and o(t) -+ 1as ú -+ oo. An example is the logistic

sigmoid o (t) : (t - "-')10 * e-¿), which was used in our simulations. The function

/ corresponds to an MLP rvith pdimensional inputs and q computing nodes in the

hidden layer. Ðach computing node or a neuron in the hidden layer maps an input

vector onto a real scalar and the output of each hidden node is then linearly combined

in the output layer. This suggests that approximation in an MLP is performed after

projecting input vectors onto a lowel dimensional sub-space, While a single-hidden

layer MLP is sufficient for approximating any continuous function to an arbitrary

accuracy) the number of computing nodes required in the hidden layer may be very

high. It has been found in practice that MLPs with two hidden layers result in simpler

implementations and leduced lealning times, for the same estimation error.

It is evident from (5.19) that MLP is a means of parameterizing a mult!dimensional

mapping. In particular, the function /(u; w) in (5.19) is determined by the parameter

vectorw: (p¿,u¡¡,?¡) wherei:1,...,qand j:1,...,p (these parameters are also

called wei,ghts in neural-netrvork terminology). Given a training set {(xj'),u!t)¡1¡5,
fitting of an MLP to a data set (network traintng ot learni,ng) involves choosing the

parameter vector v¡ which minimizes the error

;(*) : I ll*Í') - /("j');*)llr.
í

(5.20)

cìearly, this is not a quadlatic function in w and the¡efore the minimization is com-
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monly achieved through iterative descent algorithms. The basic estimation algorithm

for MLP is the baclc-propagation 1751, [76], to which many variants exist. In the sim-

plest case, the weights are updated to reduce J(w) in the direction of steepest descent

w<-w-4V*J, (5.21)

where 4 is the learni,ng rate. In order to speed-up the convergence, various modi-

fications to the basic algorithm can be used. While some of these are heuristic in

nature (e.g., momentum, variable rate, resilient back-propagation) others a¡e based

on standard numerical optimization methods (e.g., conjugate-gradient, quasi-Newton,

Levenberg-Marquardt), see [75], [76]. We do not discuss the relative merits of various

training algorithms here, but refer to [77] for a detailed case study. For practical

reasons, we used the resilient back-propagation algorithm RPROP [77] in all our

simulations.

The computational cornplexity of an MLP decoder depends on the number of

hidden nodes. Each hidden node requires the evaluation of an inner product and the

value ofa scalar function (sigmoid). Additionally, each output node requires an inner

product. Thus, for an MLP with p inputs, d outputs, and 2 hidden layers with q

nodes each, p(C + 1) + (q + 1)' + (q + 1)d multiplications and additions are required

to compute all the inner products. MLP decoders used in our simulations have

much less computational complexity than (comparable (in performance) recursive

soft-decoders. It is also worth pointing out that MLPs are considered very efficient

computing architectures as they can be implemented in parallel. In any case, most

of the computing effort in an MLP is required in the tlaining phase. As we consider

only offJine (not adaptive) estimation, the complexity of training does not affect the

speed of the MlP-decoder.
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5.7 Experimental Results

In this section, the perfonnance of the sliding-block decoder is experimentally ob-

tained for Gauss-Markov (G-M) source (described in Appendix C) and the linear

Gaussian channel given by

yn:0.407sn -| 0.815s"-1 10.407sn-2 ¡ v¡n, (5.22)

where s,, : {+1.0, -1.0} (anti-podal signaling) and w,. is iid Gaussian noise . This

channel has a spectral-null and hence exhibits severe ISI (linear channel equalization

is ineffective) [62]. Previously, the pelformance of several other soft-decoding schemes

on the same channel was leported in [32] and [30]. While the memory of this binary

channel Mt:2, the amount of channel memory induced by the equivalent .L dimen-

sional channel is M: 1 for'.L > 1. This is the case in all our simulations. We have

considered two cases of G-M source: highly correlated (p : 0.9) and uncorrelated

(p : O). In the highly correlated case, a considerabie encoder residual redundancy

can be expected (especially for small vecto¡ dimensions) while in the uncor¡elated case

the residual redundancy is negligible 3. The estimation of encoder and decoder pa-

ramete¡s was carried out using a training set of source vectors while the performance

of the resulting systems was evaluated using a sepa.rate set of source vectors.

In this section, the performance of the sliding-block decoder is also compared with

the performance of both a hard-decoder and a recursive soft-decoder. A hard-decoding

scheme for a channel with memory requires an equivalent discrete memoryless channel

(DMC) model. In the scherne used in our. simulations, a DMC was obtained by using

a maximumlikelihood sequence detector, implemented by the Viterbi algorithm (VA)
3Here, by ¡esidual redundancy, rve mean the redundancy due to memory in the process.
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[62]. The transition matrix of the resulting DMC was estimated through simulations.

Performance of VA depends on the decoding delay used; a larger delay gives better

performance but also increases the storage requirements. A rule of thumb is to use a

delay ) 5M¿ (see page 561 of [62]). In the following we adopt the following notation

for simplicity: a sliding-block soft-decoder with a memory (block-size) of K6 bits and

delay of K2 bits is referred to as ,9.B - SD(K2, Ks); a ¡ecursive soft-decoder using a

delay of 1{z bits is referred to as .R - SD(I{r); a hard decoder based on VA with a

K2 -bit delay is sirnply referred to as V A - H D(K2).

In our simulations, the estimation of the MLP decoder is carried out using a

training set of given size n7 (fixed). Due to practical reasons mentioned earlier,

here we use networks wiih 2 hiddenlayers. Hence, there are two parameters which

determine the pelformance of the resulting decoder: decoder block-size K6 and the

numbe¡ of hidden-nodes nä per hidden layer (we simply use equal number of nodes

in each hidden layer). As described before, the K¡ has to be selected to match the

channel impulse response and the encoder statistics. In the context of estimation,

selection of both of these parameters has other implications as well. In function

estimation problems there exists two soulces of error. First is the approximation

er¡or due to incapacity of the chosen rnodel (MLP) to represent the true function

implied by the observed data. Second is the estimation error due to randomness in the

pa¡ametels estimated from a finite-size training set. A reduction in the approximation

error requires an increase in the number of free pa.r'ameters of the model (number of

MLP weights detelmined by nu), rvhile ¿ reduction in the estimation error requires

a decrease in nH (i.e., increase in nTfn¡¡). Note also that, increasing K6 increases

the number of free parameters in the model. Hence, there exists optimal values for

K¡ and n¡¡ fol a fixed n7'. Tables 5.7, 5.2, and 5.3 show the dependence of empirical
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MSE of the quantizer on 1(¡ (in terms of channel output vectors) and ny, for fixed

n7. All MLP decoders have been estimated using the same channel input sequence

(i,.e., the same encoder).

Ks delay
(bits)

sNR (dts)
rln : lU nw:75 nH:zu nH:zÐ

5

7
o

z
4

o

8

7.4
7.8

8.0
8.2

7.6
8.0
8.1
8.3

7.6
8.2

8.3
8.3

7.6
8.2

8.3
8.4

Table 5.1: SNR of quo,ntizers with slid,ing-block d,ecod,ing ouer the channel gi,uen by
(5.22)- CSNR:IS dB, d:2, N :4, and, nr : 35000. SNR oJ the'ideal channel
quantizer is 7.9 dB.

K¡ delay
lbits)

sNR (dB)
nH 1U nH 15 nH:zu nH:zõ

5

7

o
o

a .4

9.5
9.6

9.6
9.6
9.7

9.8
9.8
9.9

9.8
oa
9.9

Table 5.2: SNR of quantizers
(5.22)- CSNR:IS d,B, d, : 3,
quantizer ás Ll d,B.

with slid.i.ng-block d,ecotling oaer the channel gi,uen bA

N : 8, and, nr : 40000. SNR of the ideal channel

I{o delay
lbits)

sNR (dB)
nH: lu nu:75 nH : zl) ns:26

7

4

8

1.2

9.9
10.0
10.0

10.2
10.3
10.3

10.4

10.4

10.4

10.4

10.4

10.4

Table 5.3: SNR of quantizers with sliding-blocle d,ecod,ing ouer the channel giuen bg
(5,22)- CSNR:1?, dB d: 4, N : 16, and, nr : 50000. SNR of the ideal channel
quantizer i,s 10.1 d,B.

We next present a compa.rison of sliding-block decoder with recursive soft-decoder

and Viterbibased hard-decoder. As mentioned earlier, the practical implementation

of the recursive decoder requires a statistical model for the encoder output. For
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6

d)Þ
Í5z
U)

o

go

V.

k' :

.M

14t0
csNR (dB)

Figure 5.6: Performance comparison of soft and, hard. d,ecod,i,ng lor d : 2, N : 4:
(a) SB-SD(10,22) usins MLP, (b) SB-SD(4,10) usins MLP, (c) SB-SD(2,6) usins
MLP, (d) SB-SD(2,6) usins the analgtical equation (5.t7), (e) R-SD(2), and, (f ) VA-
HD(20). All MLP-based, stid,ing-block decod,ers were Z-hidd,en løyer MLPs with 15
nodes per lager. In each case, a training set of 35,000 aectors and a separate test set
of 35,000 uectors uere used,.

simplicity we used the iid rnodel, while some gain in performance may be achieved if
the fi¡st-order Markov model is used [32]. In the case of Viterbi algorithm, a decoding

delay of I}Mb:20 bits were used. The performance of the three types of decoders

a^re compared in Figs 5.6, 5.7, and 5.8. hr all the cases, the same encode¡ (and the

same index assignment, optimized to VA hard-decoder at each CSNR) and channel

have been used. Note that the recursive decoder in each case uses a delay equal to
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Figure 5.7: Performance con-Lparison of soft and, hard decod,ing Íor d :3, If : 8r
(a) SB-SD(3,9) usi.ng MLP, (b) SB-SD(3,9) usins the analgt¿cal equd,ti,on (5.17), (c)
R-SD(S), and, (d,) VA-HD(\1). In each cd,se 0, trai,ning set of 10,000 uectors and a
separate test set oJ 10,000 uectors uere used,. MLP-based, slid,i,ng-block decoder is a
2-hidrl,en layer MLP with 20 nod,es per laAer.

the channel memory. This colresponds to 2 bits in the case of d:2, N:4, 3 bits in

the case of d:3, N:8 and 4 bits in the case of d:4, N:16. Skoglund [32] observed

that a delay longer than channel memoly resulted in almost no improvement in the

performance of the recursive soft-decoder. In the results shown here, the sliding-block

decoders also use the same delay, except in Fig. 5.6, where the results for delays

of 10 bits (curve a) and 4 bits (curve d) ale also shown. In all three frgures, the

sliding-block soft decoder appears to outperform the recursive soft-decoder, with the

1210
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Figure 5.8: Perforn ance comparison of soJt and, hard, d,ecod,i.ng for d,: 4, w : 16: (a)
SB-SD(4,12) usins MLP, (b) R-SD(Ð, and (c) VA-HD(\7). In el,ch case atrainins
set oJ 50,000 uectors and, a separate test set oJ 50,000 uectors were used,. The slid,i,ng-
block decoder is a 2-hidd,en lager MLP ui,th 20 nod,es per layer.

largest improvement appearing in the case of two-dimensional VQ where the ¡esidual

redundancy is high. Also shown in Fig. 5.6 (curve d) and Fig. 5.7 (curve b) is the

performance of the optimal sliding-block decoder in each case, with block sizes of

6-bits (delay of 2 bits) and 9-bits (delay of 3-bits) respectively, evaluated using the

exact expression in (5.17).

It striking ihat the relative performance of the stiding-block decoder (based on

MLP apploximation) increases at low CSNRs. We believe that this improvement is

100
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csNR (dB)

Figure 5.9: Performance cornpl,rison of linear o,nd, non-linear slád,i,ng-block decoders

Íor d,:4, N : 16 : (a) non-linear d,ecod,er (same as (a) in Fi,g. 5.8) uith Ko:12
bits and, (b) optimal linear decod,er uith Ks : 1,2 bits . In each case a traini,ng set of
50,000 uectors and a separate test set oJ 50,000 uectors were used.

due to the reduction of complexity ofthe optirnal decoder mapping with the decreasing

CSNR. In Section 5.5, we showed that as CSNR -+ 0, the optimal decoder tends

to a linear mapping. This is also supported by the experimental results shown in

Fig. 5.9, which indicate that the relative performance of the optimal linear decoder

approaches that of the nonJinear MLP decoder with identical block-size, as the CSNR

is decreased. The conjecture is further strengthened by the results presented below.

It is possible to design COVQs for ISI channels by iteratively optimizing the
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encoder and decoder to each other as done in GLA. Fig. 5.10 shows the performance

of COVQs based on different decoders, for the case of d, : 4 and lf : 16. Note that,

as the recursive soft-decoder is time-variant, a fixed encoder is obtained in this case

by using the tirne-averaged distortion measure [32]

(5.23)

This is not necessary in the case of the sliding-block decoder.

Vy'e next investigate the performance of sliding-block decoder when the channel

input is uncorrelated. In order to do so, we consider VQ with d, : 4 and ¡r¡ : 16

of an iid Gaussian process with variance 1.0. Note that, in this case, the residual

redundancy is insignificant and the decoder memory solely serves to compensate for

ISL Fig. 5.11 shows the performance of various decoding strategies for iid source over

the channel given by (5.22) (same encoder used in all cases). It is noticeable that the

relative performance of the sliding block-decoder is poor at high CSNR. This error can

be reduced by increasing the nurrber of hidden nodes in ihe MLP. The improvement

at low CSNR may be due to the fact that optimal decoder, which tends to a linear

function as CSNR -+ 0, is better approxirnated by the estimated MLP.

The complexity of the optimal sliding block decoder increases with .fy', making the

estimation task difficult. This fact is apparent from the result shown in Table 5.4.

In this case, the quantization of G-M source rvith d: 3 and ¡/ : 128 is considered,

and as many as 60 nodes have been used in hidden layers. Still, the performance

of the estimated decoder on a neaÌ noise free channel is much poorer compared to

the performance of the Viterbi hard-decoder (nea.rly 5.5 dB below in SNR at 13 dB

CSNR) . We have not atternpted to increase the number of hidden nodes further, but

it is clear that the number required for obtaining performance comparable with hard-

I i-"'
D : lim 

= 
I Ellx,. -x"(y,,...,y"*¡)112.nñar-)d) Ilmûî 
-.
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Figure 5.10: Performance comparison of COVQ based on soft and, hard decod,i,ng
(d: 4, N : t6): (a) SB-SD(4,12) (c) R-SD(t¡), and, (d) VA-HD(A7). In each case
a training set of 50,000 uectors was used, for design and, a separate set oJ 50,000
uectors uere used for testing. Slid,ing-bloclç decoder uas a Z-hi,dden lager MLP wi,th
20 hidd,en-nod,es per layer.

decoding at high CSNRs can be very high. Encouragingl¡ the relative performance

of the estimated sliding block decoder. improves significantly as the CSNR is lowered

(over 2 dB better in SNR than hard-decoding at 1 dB CSNR).
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Figure 5.11: Performance ol uz,rious d,ecoders (d : 4, N : 16) Íor ü.d source and
Iinear Gaussi.an channel. (a) SB-SDQ,L?), (b) R-SD(Ð, and (c) VA-HD(Z}). In
each case a trz,ining set of 50,000 uectors uo,s used for designing and, ø separate set oJ
50,000 uectors uere used. for testi,ng. Slid,ing-block d,ecod,er uzs 0, z-hidd,en layer MLP
with 20 hi.d,den-nod,es per layer.

nH(nr)
SNR

13 dB ldB
20 (50000)
30 (50000)
60 1800001

7.67
9.36
11.30 6.59

vA-HD(20) 16.79 4.23

Table 5.4: SNR performance of MLP slid,i,ng-block d,ecod,er SB-SD(7,21) and, Viterbi
hard-decod,er, ouer cha,nnel gi,uen by (5.22) for G-M source, d,: 3, N : 128. nn -
number oJ hidd,en nod,es, n7- trai,ni,ng/test set si,ze.



CHAPTER 5. SOFT-DECODING VQ FOR CHANNELS WITH MEMORY r23

5.8 Summary

In this chapter, we investigated soft-decoding based VQ for ISI channels. In partic-

ular, we studied a sliding-block decoder, which is a non-lineal time-invariant filter

estimated with the MMSE criterion. We used the MLP as the fiIter, which can be

leadily estimated via back-propagation algorithm. Simulation results were presented,

which compared the sliding block decoder with both recursive soft decoding and hard

decoding based on Viterbi channel equalization. In the cases we considered (N S 16),

the estimated sliding-block decoder convincingly outperformed both the hard-decoder

and the recursive soft decoder, particularly when the CSNR is low. On the negative

side, the number of hidden nodes required in the MLP decoder for good approxima-

tion likely becomes unmanageably large, when the encoder resolution N is increased.

In this context, we showed thai ihe optimal sliding-block decoder for the Gaussian

channel approaches a linea:r' function as CSNR -+ 0. This is encouraging as, even for

large lú, it is not hard to estimate a near optimal sliding-block decoder for highly

noisy channels.



Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we have investigated the problem of designing channel optimized vector

quantizers when memory is present in either the quantizer or the channel. Main

contributions of this work can be summa¡:ized as follows.

o An algorithm for designing PVQ based on linear prediction for noisy channels

was introduced. This algorithm iteratively improves an initial system to a given

channel, by updating the predictor, the residual encoder, the local decoder, and

the decoder at the receiver. Performance of the systems designed using this

algorithm was investigated thr.ough simulation experiments, and both hard and

soft decoding were considered. It was demonstrated that predictive VQ obtained

by the new algorithm significantly outperforms rnemoryless VQ operating at the

same rate (gains in SNR of about 2 dB with hard-decoding and about 3 dB with

soft-decoding). We also found that the designs obtained by the new algorithm

perforrn nearly identically to those obtained by gradient-search optimization

algorithms in [22]. This observation is consistent with the previous observations
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made in the case of designing PVQs for noise free channels,

o The problem of designing FSVQ for noisy channels was investigated. The start-

ing point of our work was the obsetvation that a finite-state decoder is inap-

propriate for noisy channels, as it cannot track the encoder state-machine on

the basis of noisy channel outputs. We demonstrated that the mean square

error of an FSVQ increased catastrophically as the channel noise level was in-

creased. To this end, we proposed a robust decoder for a given FSVQ encodel

and de¡ived a time-r'ecursive algolithm for its implementation. The basic idea

behind this decoder is to express the optimal reconstruction vector at a given

time as a function of all the channel outputs observed up to that time. In ef-

fect, the decoder does not atternpt to deter.mine the state of the encoder, but

considers that all states ale possible with some probability. This decoder may

be viewed as an infinite state decoder. Simulation results demonstrate that in

contrast to a finite-state decoder, the new decoder exhibits graceful degrada-

tion of performance with increasing channel noise. We also incorporated this

decode¡ in itelatively designed channel optimized FSVQ. These FSVQs always

outperformed the memoryless COVQ. The gain in SNR was typically close 1

dB at very low CSNR, while much higher.gains were obtained when the CSNR

is high.

¡ Soft decoding in vector quantizers operating over channels with inter-symbol

interference was studied. TIte problem rvas identifred as one of estimating a

¡andom vector based on correlated observations (channel outputs). In this con-

text, we studied a sliding-block soft-decoder, which is essentially a non-linear

time-inva¡iant frlter estimated by MMSE criterion. As a practical implementa-

tion, we investigated the estimation of the decoder using multi-layer perceptrons

t2ú
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(MLP). Among othel things, we demonstrated that sliding-block decoder signif-

icantly outperformed hard-decoding systems based on MLSE (Viterbi) channel

equalization as the channel gets noisier. We also found the sliding-block decoder

to outperform recursive soft decoding, previously investigated by Skoglund [32].

A potential problern rvith the sliding-block approach appeared to be the diffi-

culty of estimating the decoder, when the encoder resolution N was high. With

MLP implementations, the nunber of hidden nodes required for good approx-

imation increases rapidly as N is increased. However, the problem seemed to

be much less severe rvhen the channel was very noisy. In this connection, we

showed that, as the CSNR is reduced, the optimal sliding-block decoder for

Gaussian channel approached a linear mapping. Consequently, the estimation

of the decoder becomes easier for highly noisy channels.

6.2 Future Work

We mainly confined our attention to quantizing Gauss-Markov data since it is com-

monly used as a bench mark in judging the performance of coding algorithms. A

natural extension of this work could be the application of the algorithms developed

here to designing quantizers for real world signals. This would allow the evaluation

of the performance of various designs based on subjective criteria. For example, both

PVQ and FSVQ are strong candidates for 1ow bit rate speech codiug over wireless

channels. In this context, coding of LSP parameters [54], [5b] is an interesting appli-

cation.

Another important avenue of exploration is to investigate the possibility of us-

ing function estimation techniques other than the MLP for sliding-block decoding.

Simpler regression models, such as add,itiae mod,els, may reduce the computational
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burden associated with parâmeter estimation. In particular, pro jecti,on-pursui,t net-

tu.,or,bs (PPR) have shorvn to yield sparser representations than MLPs in some cases.

Another technique wo¡th considering is support aector machi,nes. We note he¡e that a

study in this direction would not only benefit soft VQ decoding, but may also benefit

similar problems such as channel equalization.

In tìris dissertation, we have considered vector quantizers rvhich act âs joint-source

channel coders. The benefit of these coders over comparable traditional tandem

coding schemes (that is, schemes with separate source coding and channel coding)

remains to be investigated. In certain situations, it has been found that COVQ is

better only when the allowable delay is below a certain threshold [78].



Appendix A

MMSE Estimator

In this Appendix, the solution to the MMSE estimation problem is derived. Let

X e IRd and Y e IR¿ be two random vectors with joint pdf p(x, y). Given the

observed vector Y, we rvish to find an estimate X: O1V¡ for the unobserved vector

X, such that MSE EllX - ô(Y)ll'? is minimized. Consider

Ellx - d(rz)ll'z : l* I_,llx - ô(y)ll,p(x ,y)dxdy

: 
I*" l*"llx - d(y)ll'zp(x ly)dxp(y)dy

: 
lo,urr*- ô(v)ll,lvlp(v)dv (4.1)

Since E{llX - d(V)ll'lV} and p(y) are non-negative, the MSE is minimized by min-

imizing the conditional expectation p[d(V)] : E{llx - ô(V)ll,lV} for every y. That

is

ô-(v) : a.rg moin p[ô(y)]. (4.2)
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The desired solution is obtained by

v6p[ô(y)] : ¡, (A.3)

which gives

(,{.4)

Also, V!p[6(y)] : 2 shows that the obtained solution is indeed a minimum.

The above result implies that the optimal estimâtor ô, minimizing EllA(X -
ô(Y))ll', where .4 is a d x d constant matrix, is also given by (4.4), since

Aõr(y) : argminE{ll.4X -.aô(v)ll'lvi
: E{, xlY: y}

: AE{xlY: y}. (A'.5)
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-2 I 6-ô.(v))p(xlv)dx:0
JRd

ô.(y): E{xlY: y}.



Appendix B

Derivation of (2.25)

When square error distortion measure is used, the average distortion of a noisy channel

VQ can be readily expressed as the sum of quantization and channel error. To show

this, we expand the average distortion in (2.14) as follows:

E{D} : Ë /,,*,,,o,*)dx I pg@¿)dÚ

-;=t 
J n, JRL

Nrî
-',Ð- J r,*r P($ dx 

J o"ô5 
(Y)P(Y 

I 
o¿)dY

N^
+I / pg)dx I |lds(v)ll'p(ylo,)dv. (8.1)

îa Jnt 
"f R¿

Now, defining the centroid of the i¿ä encoder cell /n xp(x)dx I In,p6)d,x: g¿ and

P@¿) : Pr(x e o¿), we get

NÎN
E{D} : | /' ll*ll,ot*)dx- 2| p*..,)eT [ . 6s(y)p(yla¿)dv

-¡=t 
J Q, r- I JRL

N.
+tP(a,) | .lltr{Ðll'ntvlûav. @.2)

JRL

i30
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Using the fact that

I n"-g¿ll2p(x)dx: / ttt*tt'- llg¿ll')p(x)dx (8.3)
Jn,

and afte¡ some manipulations, we end up with the desired result

NfNr
E{D}: I / ll*-g¡ll2p(x)dx+I / ll*-ô'(v)ll'p(vla¿)P(a¡)dy. (8.4)

ialn' |alp"



Appendix C

Gauss-Markov Source

In this appendix, the fir'st-order Gauss-Markov (G-M) source used for simulation

studies in this dissertation is described. G-M source is widely used as a benchma.rk

for comparing different soulce coding techniques and is a good model for real world

data in many cases. For example, the correlation coefficient of 0.9 is typical of speech

and image data.

A first-order G-M process is described by the auto-regressive relation

Xn: pXnl * U^, (c.1)

where p : EX*X,¡|EX3 is the correlation coefficient and U, is a stationary iid

Gaussian process with mean zero and variance ofr. Hence EXn:0 and EX2^:

"'ulG- p') (: oT), ln our experiments, we have used ø1, : 1.0 and hence o2*:5.26.

The best achievable performance by any quantizer on this source, often referred to

as optimal performance theoretically attainable (OPTA), can be found by computing

t32
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its rate-distortion function [53]

D(R) : (t - p2)z-2Ro2" for r? ) logr(1 + p) (c.2)

For .R < togr(l + p), this gives a lower bound for rR(D).1 When p : 0.9, (C.2) can

be used to obtain D(,R) for Ã > 0.9260.

In order to compute the OPTA of the source over a noisy channel, we can use

the Shannon's joint source-channel coding theorem [6]. That is, given a channel with

channel capacity C , one may transmit up to .RC bits by -B uses of the channel. Hence,

it follows that OPTA of the source over such a channel is D(.RC). Table C.1 shows

OPTA (expressed in terms of SNR) for G-S source with p: 0.9 at Ã : 1 bit per

sample, over a memoryless Gaussian channel with binary antipodal signaling.

CSNR IdB) BER, OPTA (dB)

oo
T2

10

8

o

4

2

0 0000
3.43 x 10-5

0.0008
0.0060

0.0230
0.0560
0.1040

3.2297
3.1766
2.9t45
2.2820
1.3585

0.3339

Table C.1: OPTA of Gauss-Marlcou source wi,th p:0.9 and, oT -- 5.26 at R: I bít
per sample ouer the memorgless Gaussian channel.
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rActual v¿lues have to be obtained by parametric expressions [53].



Appendix D

Index Assignment for FSVQ

In this appendix, a distortion measute is delived, which can be used to optimize the

index assignment (IA) of an FSVQ system to a given channel. The system considered

here is an ordinary FSVQ and we use the notation defined in Fig. 4.3. Let the encoder

partitionofstatesbegivenbyO,(ti),wherei:1,2,...,Nands:1,2,...,K,such

that UfA,(r;) : IRd and nflQ,(?) : Ø. Then, the MSE given by (4.13) may be written

as

.Ðllx, - x,ll' : D I pt""l I W^ - *^ll2p(s*,j*ls,,i,)p(x^ls^)d.x^
¡",i" i",i" '/a""(i")

: ttp(s,,)p(,6"|s")p(j^!i.,) [ llx,-i"ll2p(x,ls")dx,.
s",t",t",j" '/n,"(t")

(D.1)

After expanding the squale term inside the integral, the above expression becomes

t34



Ellx"-x,ll' : I / llx"ll'?p(x,ls")dx"
s;Jn""(t")

Now, using the fact that

and

(D.4)

and after rearranging the telms within the expression, it is straightforward to show

that

EllX, - X,ll' : Dq* Ds, (D.5)

oo : 
nr!^) ln",,u^rLl*" - e,"(i,)ll' p(x^ls*)d,x,, (D.6)

n" : E I r1e"¡',¡r17,1e")P(s")llg"" (i^) -*.*(s*, j^)llrp"^(i*).
s",i" 6",i"

(D.7)

All but the conditional probabilities P(.ô"1s") in the above expression solely depend

on the encoder and hence can be computed (using training data) if the encoder is

given. We next show how steady-state values of P(.4rls") can be computed, To this
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, t t P(s,)P(,6,1s,)P (j,li,,)îr| l- . .*^n6.^lr^)d,*,
s",i".6",j" "/n," (i")

! ! r1r,¡r(,6"1s")p(j,li,,)llîr^lf [ . . 
p(x,ls")dx,.

s",i,,3n,j. ''/l¿sn(rn)

(D.2)

P""(i^) :Pr'(x" € f-1,"(2,)ls,) : /
Jo,-(i")

p(x,ls*)dx^ (D.3)

g,, (i" ) : E{x" Ii,, s, ) -'In"" r'"I l'p-(-*i lt")d*",
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end we wlite

P(.ô,1s,): t P(3nl3n-1,jna,sn-1,i.n-1)P(3n-1,j"-11s,). (D.8)
3"-r,i"-r

Define the set of all (s"-r, i,-r) pairs which lead the stâte s,, : s ¿g

¡.t(s) : {(s"-1,i.n-) : f (sn-1,in-r) : s} (D.e)

Since the decoder uses the same next-state rule as the encoder, it is also implied that

p(,6) : i(.ô"-1,i*-): l(3;,-t,i,-t) : 3Ì. Using this notation, we can write the above

equation as

P(,a"ls,) : I atu,, r, j,,-rls,,)
p(¡")

: t t P(,3,,-1, j,,-11s,,- 1,i,n-1,sn)P(sn-r,i^-ls*)
P(6.) s"-r 'i"-r

t t P(.4,-11s"-1)P( j^-li*-r) P(i^-11s,-1)p(s"-1)/p(s,),
p(¡")p(,")

(D.10)

where we use the fact that the channel is memoryless. Since at steady-state P(.î,_11s"_1)

: P(,4"1s") the above expression gives us a redundant system of K2 linear equations

with K2 unknowns P(3" : sils, : s¡), i, j : L,2,. .. , K. However this system can

be easily solved considering K - 1 of these equations together wiih the equâtion

f !r1s"¡s")P(s"):1. (D.11)



Appendix E

OLT-FSVQ Design Algorithm

This appendix describes the omniscient labeled-t¡ansition FSVQ (OLI-FSVQ) design

algorithm [49] used to obtain the next-state rule and the initial state encoders for

designs described in Section 4.10. Let K be the number of states and N be the

number of code vectors (encoders cells) per state.

Giuen: A training set T : {x¡}i!, of n7 vectors from the source.

Step 1: Design a memoryless VQ with a size I( codebook (e.g., use GLA [12]), using

7. This VQ defines the initial super codebook ç(sua) : 1cj'"o)1[,. At this

point next-state rule is

¡{o)(x") : sn+r : arg min llx," - c!'"rl¡¡z

Step 2: Classify each vector x¿ in 7 into K sub-groups (sub-sequences) according to

the state transition caused by of x;-1. That is

T" : {x; ¡ e : /(x¡-1)and x¿-1,4 € ?r}.
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For each s : 1,2,..., K use GLA to design a codebook C, : {cj')}[l with

training set 71. These 1( codebooks are taken as the súøle codebooks.

.9úep 3: Next-state rule ¡{o)(x") cannot be used by the decoder since x,, is not

available at the decoder. Hence, replace x,, with *, : 
"Í:"),that 

is, modify the

next state-lule as

Í(s,,i^): sn+1 : aLgm.inllcjl")- c!'"e)11'z.



Appendix F

Derivation of (5.1-5)

We consider the flnite memory channel characterized by (5.i), when the additive

channel noise is iid Gaussian. The delivation given below is an extension of a similar

result derived in [70] for the memoryless AWGN channel. Referring to (5.1), let

(F.1)

where r," € IR¿. Next, consider the sliding-block decoder described by (5.13). If the

channel noise w," is independent of the chanlel input and is iid Gaussian,

KttKz
p(u,lvf)¡ : I n*(v^*,r"_¡-,lilo"_¡)

j=o

: @#* "", l- +"F: ilv'+x"-¡ -,lll*,-,t'..
(F.2)

For notational simplicity, define

r. : (rf,_*,,...,rT*x)',
139
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where r¿ € IR¿(Kr+Kz+r) ând note thât

Kt*Kz

\ llv,*o,-i -'li**,-¡ll': llu" - FÍ;)¡¡'z.
j=0

Hence, (F.2) can be written as

140

pfu*lvg)) ffi"ol-fi11""-rf)¡,]
¡¡,\\

Pw \tt" - lil'),

(F.4)

(F.5)

wherc p'q, is a I(K1 t Kz * 1) dimensional density function with the cova¡iance

matrix diag(øfn,. .. ,o?u). Using the first-older Taylor series expansion, (F.5) may be

expressed as

¡w@" - rj;)¡ : pþ1u,,¡ - y..pÇ(r*þf) + olrf), u"¡, (F.6)

where o(rÍi),u")/ll¡f)ll -+ 0 as ¡¡rfi)¡¡ -+ 0 and V,"p'.(u*): (-11o,Ðp'*(",)"î.

By substituting these results in (5.13) and assuming (without loss of generality) that

E{rf)} : o, we obtain

ótu-) : D,P&{i\e!,¡ll'"^lo'w +D,pftli\)e',oE,',"òlpw$ò /F z\v/\un,, - , tf ,r,l

Let the average signal powel at the output of the channel E{r[r"]: Eo. Then

it foÌlows that when the channel output is stationary, E {f"f|} -- KoEo, where K¡:
L(h + I{z + 1)' Also let

c : f rlvfr¡e'jt)'/o"w,
í

(F.8)
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which is a d x K6L matrix that depends on the source, encoder, and channel. Our

goai is to establish that

,,,n lld("') =G"'ll _ o. (F.9)Eq-'0 tl E¡

In order to do this, consider

lld(u") - cu"ll _
JKÃ

ll !u r(vf))gio(¡Íi), rr,) - cu^(Due1vjr¡o1rf), 
","¡)¡¡

e*$òt/KlF4,l1 + !u P(vf ))o (i\;.') ,u,) lpÇ$*)l
tr p(vf))llsÍlllo(rÍj), u")l - llc",ll(Du r{"f;))lo{ut'r, 

"")l) .

p!* (u 
") t/ 

Ih Eol 1 + D r P (vli / 
) o (¡ä t, w) I p'* (u 

")l
(F.10)

The desired result is obtained by shorving that

1in.,^14þ:0, (F.11)
.Eo-+o J IhEn

which follows from

lo(¡fl, u")l _ lo(rf), u")l llrÍi)llJ@ - lr"-i-@
, lo(rf), "')l i
= ï;lÉ@ (F12)

Here, we use the fact that

r{oÙo : !r1vfr¡¡¡rfr¡¡,,
i
t----------

,/Kono > /r1"f,¡¡¡ifrll.

(F.13)

(F.14)
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