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Abstract

Recently, robust quantization has received considerable attention, particularly as a
potential approach to joint source-channel coding. This dissertation investigates the
practical design of channel optimized vector quantizers (COVQ). Specific problems
considered here include COVQs with memory and COVQs operating over channels
with memory. In this work, the emphasis is placed on soft-decoding at the receiver.
Vector quantizers with memory are an effective means of quantizing correlated
signals. However, when designed without regard to channel errors, these quantizers
suffer from degradation of performance due to the propagation of channel errors
at the receiver. We consider two important examples of such quantizers, namely,
predictive vector quantizers (PVQ) and finite-state vector quantizers (FSVQ). In the
case of PVQ, an iterative algorithm is developed for jointly optimizing the quantizer
and the associated linear predictor to a given channel. According to the simulation
results presented here, the proposed PVQ designs based on hard-decoding perform
comparably to those obtained by a previously studied gradient-search optimization
algorithm. Furthermore, it is demonstrated that PVQs with soft-decoding can provide
a significant improvement over hard-decoding systems. In the case of FSVQ, a time-
recursive decoding algorithm, which exhibits graceful degradation of performance
with increasing channel noise, is introduced. Design of channel optimized FSVQ is
also considered. Simulation results are presented, which demonstrate that proposed
channel optimized FSVQs outperform the memoryless COVQs operating at the same

rate.
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Finally, in the context of channels with memory, joint equalization and soft-
decoding using a sliding-block decoder is investigated. This decoder is a non-linear
time-invariant filter based on minimum mean square error criterion. As a practi-
cal implementation, multi-layer perceptron (MLP) is considered. Simulation results
indicate that MLP-based soft-decoder outperforms a previously studied recursive soft-
decoder, particularly under high channel noise. However, the complexity of the opti-
mal sliding-block decoder function is found to increase with the encoder resolution,
making the estimation task harder. In an encouraging development, it is shown that
the optimal sliding-block decoder for the Gaussian channel approximates a linear
function as the channel becomes noisier. Experimental results seem to support this

theoretical result.
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Chapter 1

Introduction

Explosive growth of wireless networks, the Internet, and other multi-media based ser-
vices over public networks in recent years has made the efficient use of narrow-band
digital channels a very important issue. A large portion of traffic in these commu-
nication systems involves data, derived from analog signals such as speech, audio,
and video. It is not only required that these analog signals be coded into digital
data, but also that the bit-rate of the coded representation be low enough to meet
the bandwidth requirements of the channel. The process of obtaining a coded rep-
resentation for an information bearing signal is referred to as signal compression or
source coding. Fundamentally, source coding requires the elimination of any redun-
dancy present in the signal to be coded. When the signal is analog, source coding is
necessarily lossy in that, some distortion is introduced into the signal by the coding
process. Thus, the goal of source coding is either to minimize the bit rate for a given
level of average distortion or to minimize the average distortion for a given bit rate.
There are two essential steps in coding an analog signal into a digital data stream.

First is sampling, which converts the continuous-time signal into discrete samples.
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Second is quantization, by which the analog samples' are mapped onto a finite set
of values, which can be represented by a digital code. In scalar quantization (SQ), a
continuous-valued variable (i.e., a signal sample) is approximated by a value from a
predetermined finite set of values. Vector quantization (VQ) is the generalization of
scalar quantization to vectors in that, a vector-valued variable is mapped onto a finite
set of vectors. Theoretically, VQ of a set of variables is always better than individual
SQ of the same variables, and in practice VQ can result in a considerable gain over
S5Q. In recent years, VQ has received a great deal of attention as a signal compression
methed [1], [2], [3], and has been considered for many applications, including speech
and image coding [4], [5].

Another issue that has to be addressed in digital transmission is channel coding,
the objective of which is to mitigate the effects of channel distortion on the data
received at the channel output. In order to reliably send data over a noisy channel,
they must be coded using a redundant code prior to the transmission, so that not
all channel outputs are valid codewords. The widely used approach to designing a
digital transmission system is to treat source coding and channel coding problems
separately. That is, the source code is designed by considering the properties of the
source alone, while the channel code is designed by considering the properties of
the channel alone. According to the well known source-channel separation theorem
due to Shannon [6], there is no loss of performance in designing source code and
channel code separately, if infinitely long sequence of source vectors are used in vQ
and infinitely long codewords are used in channel coding (i.e., optimal source code
and optimal channel code can be combined to obtain the optimal source-channel
code). However, these conditions cannot be met in practical designs due to obvious

restrictions on computational complexity and allowable delays. Furthermore, the

1Tt is common to transform signal samples into other representations prior to quantization.
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separation theorem is not necessarily valid for scenarios encountered in widely used
multi-user systems, packet-networks, and wireless systems. Hence, the optimality of
separately designed source codes and channel codes remains questionable in many
practical situations. In joint source-channel coding (JSC), the design of source and
channel codes are combined in some manner. JSC can take many different forms
and many such methods tend to be application specific, see (7] and references cited
therein. While in practice, neither separate designs nor a joint design may yield the
optimal solution to the given problem, for a given implementational complexity (and
coding delay) the joint design may yield better performance in some applications.
The main focus of this dissertation is a JSC method in which a vector quantizer
is designed to minimize an end-to-end distortion measure that includes the distortion
due to channel. As the resulting code acts as a source code which is robust against
channel distortion, the need for an explicit channel code is eliminated and the avail-
able channel bandwidth is better utilized for transmitting source information. This
approach is known as channel optimized vector quantization (COVQ). We propose

and investigate several new algorithms for designing of COVQ.

1.1 Background

The concepts of lossy coding and vector quantization were introduced by Shannon in
his classic papers [6] and [8]. In particular, in [8] he proved that there exists a lower
bound to the rate R(D), at which an independently and identically distributed (iid)
source can be coded to achieve a given value D of an additive distortion measure.
Achieving the lower bound requires block source coding (vector quantization). R(D),
called the Shannon rate-distortion function, is a function of the source probability

density and the distortion measure, and represents an asymptotical upper bound to
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the performance of any VQ), which may be achieved only in the limit of infinite block
length (vector dimension). Shannon’s results have also been generalized to sources
with memory, see [9] for a historical account and a review of rate-distortion the-
ory. Shannon’s theory however does not show how optimal V@ can be designed in
practice, and in general the difficult problem of finding the optimal vector quantizer
remains unsolved. In terms of practical design, perhaps the most significant contri-
bution came from the work of Lloyd [10] 2. He derived the necessary conditions for
a fixed-rate scalar quantizer to be optimal under the square error distortion mea-
sure. These conditions are now widely known as Lloyd optimality conditions®. Based
on these results, Lloyd introduced two iterative algorithms, called “Method I and
“Method II” for designing locally optimal quantizers (i.e., only correspond to a local
minimum of error function) for a given source, characterized by its density function®.
Subsequently, Linde et al. [12] generalized Method I to the empirical design of vector
quantizers. This algorithm, now widely known as generalized Lloyd algorithm (GLA)
or Linde-Buzo-Gray (LBG) algorithm, uses a set of sample vectors obtained from a
source to iteratively design a locally optimal VQ.

The design of optimal quantizers for noisy channels was first studied by Kurten-
bach and Wintz [13]. The basic difference between their work and that described
above is the inclusion of channel errors in the distortion measure. They derived the
quantization points and the transition levels of the scalar quantizer which minimizes
the mean-square error for a given source density function and a channel transition

matrix. As the resulting set of equations were not explicitly solvable, they used

2The work initially appeared in an internal report of the Bell Laboratories and was presented in
parts at the Institute of Mathematical Statistics meeting in 1957, and was subsequently published
in 1982.

3Interestingly, Lukaszewicz and Steinhaus also have previously derived similar conditions in a
different context, see [2].

4Max [11j also independently discovered Method I in 1960.
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an iterative procedure based on the Max’s algorithm [11] to obtain a locally opti-
mal solution. Subsequently, the problem was further investigated by Farvardin and
Vaishampayan in [14]. They identified that, in order to ensure the convergence of
the iterative algorithm, it is necessary to impose the constraint T;_; < T}, where T;_4
and T; are transition levels that define the i** quantization interval. This situation
does not arise in the case of noise-free channel ®. Ayanoglu and Gray [15] considered
the design of trellis waveform coders for noisy channels and provided an iterative
codebook improvement algorithm. Trellis waveform coding is a block coding method
in which the decoder is a finite-state machine and the encoder is a search algorithm
matched to the decoder.

The problem of optimizing a vector quantizer to both source and channel was
first addressed by Kumazawa et al., [16]. They derived the necessary conditions for
the optimality of encoder and decoder in the presence of a noisy channel and em-
ployed those conditions in GLA to design locally optimal vector quantizers. A more
complete treatment of channel-optimized vector quantization (COVQ) was later pro-
vided by Farvardin and Vaishampayan [17]. In particular, they showed that encoding
regions in a COVQ are convex polytopes and that the complexity of encoding was
not worse than in ordinary VQ. Several authors have reported extensions of COVQ
to specific VQ structures. In [18], similar ideas were used to design shape-gain VQ
(SGVQ) for noisy channels and the technique was applied to robust image coding.
In experimental comparisons with ordinary SGVQ, the channel optimized SGVQ
showed improved performance in the presence of channel noise, while computational
complexities were reported to be comparable. Phamdo et al [19] applied the idea of
COVQ to design tree-structured VQ (TSVQ) and multi-stage VQ (MSVQ) for noisy

channels and reported substantial performance improvements over ordinary TSVQ

®Note also that such constraint is not explicitly required in design based on training sequences.
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and MSVQ in coding Gauss-Markov sources under high channel noise. Hussain et
al., [20], [21] developed algorithms for designing finite-state VQ (FSVQ) for noisy
channels and considered applications in speech coding. Lindén [22], [23] investigated
predictive VQ (PVQ) for noisy channels and proposed gradient descent algorithms for
optimizing the predictor and decoder codebook to a noisy channel. Both FSVQ and
PVQ are adversely affected by channel noise, since they have a feedback structure in
the decoder. A more detailed review of previous work on PVQ and FSVQ for noisy
channels is presented in Section 1.2.

In the work mentioned so far, a discrete memoryless channel (DMC) was assumed
and the channel was characterized by its transition probability matrix. Even though
many practical channels can be accurately modeled as a DMC, the actual signals
used for conveying discrete symbols across a channel are analog. In order to obtain
a discrete output at the receiver, a detector is used on the analog channel outputs.
However, when the objective is to minimize the mean square error in reconstructing
a continuous signal, decoding based on discretized channel outputs can be viewed
as a sub-optimal solution to the underlying MMSE estimation problem. The opti-
mal solution is to perform estimation based on continuous channel outputs. This
approach is referred to as soft decoding as opposed to hard decoding used with the
discrete channel model. Essentially, soft VQ decoding leads to an improvement in
performance over hard VQ decoding, as there is a loss of information due to detec-
tion process in the latter. Experimental results reported in this thesis, as well as in
the literature, demonstrate that a significant performance gain can be achieved by
using soft-decoding in COVQ.

In [24], Vaishampayan and Farvardin considered the problem of jointly optimizing

the vector quantizer and the modulation signal set for waveform channels in which
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the average transmitter power was limited. In their formulation, the decoder was con-
strained to be a linear mapping from continuous channel output space to the source
signal space. Performance comparisons were made against a system with ordinary
VQ (designed by GLA) and a maximum likelihood detector. Even though the linear
decoder makes analysis tractable, it is clearly suboptimal for reconstructing a signal
subjected to the non-linear process of quantization. Liu et al., [25] considered opti-
mum soft-decoding without the linearity constraint for the additive Gaussian noise
channel (AWGN). While the conditions for optimality of the encoder and decoder
were generalizations of those in [16] and {17] for the discrete channel model, the opti-
mization of signal constellation was performed using a gradient search. Subsequently
in [26], the same authors investigated a sequential decoding algorithm for Rayleigh
fading channel using a non-linear soft-decoder. Skoglund and Hedelin [27] proposed
an interesting implementation of the optimal soft-decoder based on Hadamard ma-
trix and considered the application to binary channels. The Hadamard matrix can
be used to express the decoder output vector in terms of the individual bits in the
received codewords. In a related work, Skoglund and Ottosson [28] studied multi-user
soft-decoding in the context of CDMAS®. Phamdo and Alajaji [29], [30] investigated
soft-decoding for VQ based on soft-decision demodulators for binary Gaussian and
Rayleigh fading channels. A soft-decision demodulator discretized the channel out-
put to a higher resolution than the hard-decision demodulator. It was demonstrated
experimentally that the performance of the resulting COVQ approached that of a
soft-decoder based on continuous channel outputs, when the demodulator resolution
is increased. This however comes at the cost of increased storage requirements at the

decoder. Recently, soft-decoding has shown to be particularly useful on channels with

®In code-division multiple-access (CDMA) several sources (users) are simultaneously transmitted
over a shared channel.
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mtersymbol interference, where the soft-decoder can be used as a combined equalizer
and a VQ decoder [31], [32], [33], [34]. This will be further discussed in Section 1.2.

Most work on COVQ assumes a known, stationary channel. This assumption
however may not be valid in a number of situations. Wang [35] studied COVQ for
time varying finite-state Markov channels. The basic idea is to design a separate
COVQ for each channel state having a known signal-to-noise ratio (channel state).
Models are derived for meteor burst channels and Rayleigh fading channels, and
iterative algorithms are proposed for the design of COVQs for these channels. In
a related work, Duman and Salehi [36] considered the design of scalar quantizers
when only noisy information about the channel state is available to the encoder and
decoder. Jafarkhani and Farvardin [37] also investigated the design of COV(Q under
channel variations. In particular, they considered the design of COVQ, when the pdf
of channel bit-error rate is known.

A problem closely related to COVQ is the optimal channel codeword assignment
or index assignment (IA) for a VQ operating over a noisy channel. The problem
here is to assign channel codewords to the output of a given VQ encoder (typically
designed for a noise free channel) so as to minimize the average distortion over a noisy
channel. Intuitively, it is clear that one can reduce the average distortion by assigning
binary channel codewords that are close in Hamming distance to code vectors in the
VQ codebook that are close in distortion measure of the quantizer (e.g., Euclidean
distance). This problem can also be viewed as a special case of COVQ in which the
encoder partition is fixed. As the mapping to be optimized in this case is one from a
set of integers (encoder output) to the set of channel codewords, best IA selection is
a combinatorial optimization problem. Clearly, the exhaustive search for the globally

optimal solution is intractable in most but simplest cases. On the other hand heuristic
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search algorithms have been studied and found to be effective [38], [39], [40]. In [39],
Zeger and Gersho considered an algorithm which iteratively switches positions of
two vectors in the codebook to assure a monotone decrease in average distortion.
Farvardin [40] investigated the use of simulated annealing. The general conclusion
here is that substantial improvements in performance can be achieved when TA is
chosen to match the channel noise level, rather than arbitrarily. |
Theoretical studies of COVQ appear sparsely in the literature. In [41], a study
of asymptotically optimal noisy channel VQ is presented. In [42], the convergence
of empirical error of noisy channel VQ is studied. It is shown that, in terms of the
convergence rate (as a function of training set size), the design of noisy channel vector
quantizers is not harder than the design of quantizers for noise free channels.
Finally, it is worth mentioning that methods other than GLA have also been

investigated for both VQ and COVQ design, see for example [43].

1.2 Related Work

Feedback V()

A VQ in which the output depends solely on the current input is said to be memory-
less. According to Shannon’s theory on rate-distortion coding of continuous sources,
memoryless VQ is sufficient to achieve near optimal performance, if one is prepared
to use arbitrary long vectors, i.c., dimension d — co. However, practical limits to
vector dimension exist, particularly due to the fact that the complexity of a rate R
encoder grows as O(27¢). When the source is correlated, a VQ having memory can
be used to obtain better performance with small vector dimensions. In a VQ with

memory, the encoder output depends not only on the current input, but also on the
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previous inputs. This is usually achieved by employing feedback in the encoder and
decoder. Subsequently, such a quantizer has a time varying encoder partition and a
decoder codebook. While many quantization methods exist which utilize feedback or
memory, predictive VQ (PVQ) and finite-state VQ (FSVQ) have received consider-
able attention in both speech and image coding [3], [44]. PVQ in particular has been
considered for linear-predictive coding (LPC) of speech. In LPC, typically a vector
of coefficients representing the short-term spectrum of the speech signal is extracted
and encoded. These vectors usually exhibit a high inter-vector correlation which can
be exploited with predictive coding. The basic principle behind feedback VQ is to
quantize a given vector based on the previously observed vectors, i.e., history of the
input signal. Since both encoder (on transmitter side) and decoder (on receiver side)
must be able to observe the same history, this information is derived from the re-
constructed signal rather than the original signal, thus introducing feedback in both
encoder and decoder. A major drawback of feedback VQ is the propagation of errors
in the decoder in the presence of channel noise; an error in a single channel output
leads to a sequence of erroneous outputs from the decoder. In order to avoid perfor-
mance degradations in such situations, encoder and decoder design must take channel
errors into account. Recent studies on noisy channel PVQ and FSVQ have shown
that significant improvements in performance can be obtained by redesigning these
systems to minimize error propagation [44], [22], [45], [20].

PVQ [3], [46] is the vector extension of scalar differential pulse code modulation
(DPCM), in which the error resulting from predicting the input vector is quantized.
When the prediction is good, the error variance is much lower than the signal vari-
ance, resulting in an overall coding gain relative to direct coding of input vector [3].

As mentioned above, the prediction at both encoder and decoder is based on the re-
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constructed signal, and hence we have feedback paths through the predictors at both
ends. In [47], the joint optimization of quantizer, predictor (linear), and sampling rate
of a DPCM system was studied. Among other things, they suggested the optimiza-
tion of quantizer and predictor in an iterative approach resembling Lloyd algorithm.
They derived analytical equations describing the optimal values for the coefficients
of linear predictor and the levels and intervals of the quantizer for prediction error.
The solution of these equations requires numerical methods. It was shown that, by
decreasing the prediction gain from that of optimal linear predictor, it is possible to
improve the noisy channel performance of a DPCM system. More importantly, it was
shown that, contrary to popular belief, the effect of channel errors on overall MSE is
no more serious in DPCM than in PCM. However, we note that the effect of channel
errors relative to quantization errors is much more serious in DPCM. A discussion on
noisy channel performance of DPCM can also be found in [48]. More recent work on
approaches to robust PVQ can be found in [44]. In [22], Lindén investigated gradient
descent algorithms for optimizing linear prediction-based PVQ to a DMC. In these
algorithms, an initially chosen codebook (for prediction error) and a predictor are
updated in a direction which will decrease the average distortion, while optimal en-
coder partition is defined in terms of the decoder and channel. Simulation results are
reported for blocked Gauss-Markov processes as well as for line spectral frequency
(LSF) vectors of speech signals, which indicate that the predictive codes designed
using proposed channel optimized PVQ (COPVQ) algorithms are much superior to
memoryless COVQ. Typically 1-2 dB increase in SNR over memoryless COVQ has
been achieved for Gauss-Markov source at 5% channel bit error rate, with gain being
higher for smaller vector dimensions.

In FSVQ [3], [49], both encoder and decoder are finite-state machines with a dif-
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ferent quantizer associated with each state and state transitions determined by the
history of the observed signal. However, in order that both encoder and decoder be
able to trace the same sequence of states, state transitions are actually effected by
feeding back the quantizer output. The effect of channel noise is much more dis-
astrous on FSVQ than on PVQ. A channel error usually ‘derails’ the decoder from
following the same state sequence as the encoder, which in effect causes the decoder
output to virtually become random. Hence, FSVQ shows a dramatic degradation in
performance as the channel becomes noisy (see Fig. 4.2). Hussain et. al, [20], [21]
has studied the design of FSVQ for noisy channels and considered two approaches. In
the first, the encoder state is protected by channel coding and explicitly transmitted,
so that the decoder need not be a state machine. In order to reduce the additional
overhead due to this, the encoder state is transmitted only periodically. The missing
states are then estimated using a maximum a posterior sequence detection procedure
which requires a delay equal to the intervals at which the encoder state is transmitted.
According to the simulation results reported in [20], this method appears to be effec-
tive only when the channel is quite noisy. Furthermore it requires a decoding delay,
which can be objectionable in applications such as speech coding for which FSVQ is
a strong candidate. In the second approach, an FSVQ with a restricted next-state
function is designed so that the next-state is solely determined by the previous output
of the encoder. With this next-state function, an error in a received channel code-
word affects only the following state and, upon receiving a correct channel codeword,
the decoder returns to the correct state. This restricted next-state rule, though sub-
optimal at very low channel noise levels, results in superior performance compared
to the first approach as well as to memoryless COVQ, when the channel error rate is

increased.
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Soft-decoding VQ for Channels with Memory

In digital communication systems, limited bandwidth and non-linear characteristics of
various circuit components cause signals transmitted during adjacent symbol intervals
to interfere with each other. This is commonly known as intersymbol interference
(ISI). The traditional approaches to dealing with ISI include interleaving, maximum
likelihood sequence detection (Viterbi decoding) and linear or non-linear equalization
filtering. While the use of such techniques allows one to treat the channel as being
memoryless in the design of VQ decoders, recent research has shown that considerable
performance gains can be achieved by using soft-decoders that operate on the output
of ISI channels directly. In [31], Kafedziski and Morell investigated the use of the
recursive a posteriori probability estimation algorithm of [50] for soft VQ decoding
over linear Gaussian channels. In the terminology of estimation theory, soft-decoding
of this type can be considered as fized-lag smoothing [51]. Subsequently, Skoglund [32],
further investigated the same approach. In his formulation, encoder statistics were
also considered in the decoder expression to utilize the residual redundancy [52] of
transmitted data for error protection. According to the experimental results reported
in [32], the proposed soft-decoding algorithm yields a considerable improvement over
a hard decoding scheme involving Viterbi equalization, in the presence of severe ISI.
However, a major problem with the said algorithm is that it involves the evaluation of
a sum with a number of terms that grows exponentially with the encoder resolution.
In [32], Skoglund also investigated approximate computation of the desired sum via
the generalized Viterbi algorithm. With this approach the computational complexity
of the algorithm can be traded-off for performance. Another sub-optimal approach

was also considered in [33].
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1.3 Dissertation Outline

This dissertation is concerned with algorithms for practical design of noisy channel
VQ. Two main problems have been addressed. The first one considers VQs with
memory and focuses specifically on PVQ and FSVQ. The second is concerned with
VQs operating over a class of channels exhibiting memory. Design algorithms de-
veloped in this dissertation follow the philosophy of GLA, in which the encoder and
decoder functions are iteratively improved to each other. Thus, the fundamental
problem studied here is the optimal structures for encoder and decoder under a given
set of constraints. We have used the mean square error as the distortion measure due
to its mathematical tractability and its effectiveness in many relevant applications.
The source density function and a statistical description of the channel are assumed
known. One of the main objectives of this work has been to use soft-decoding based
on continuous-valued channel outputs, which can be viewed as a natural approach
to solving the underlying estimation problem. The algorithms proposed in this ciis—
sertation do not necessarily yield theoretically optimal codes. However, comparisons
with known results are provided to demonstrate that these algorithms do provide
good codes. These comparisons are mostly based on the quantization of first-order
Gauss-Markov source, described in Appendix C. This source is commonly used as
a benchmark for comparing different source coding techniques, as its rate-distortion
function can be either computed or bounded [53]. It also provides a good model for
real world data in many cases.

Chapter 2 of this dissertation presents basic results in both VQ and COVQ, which
will be extended in the following chapters. Some properties of quantizers optimized
to noisy channels are also discussed there.

In Chapter 3, the design of PVQ systems based on linear predictors for noisy
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channels is studied. In particular, an algorithm for designing a PVQ system for noisy
channels is derived. This algorithm iteratively adapts a given (usually optimized to
noise-free channel) PVQ system, including the predictor, to a given channel. Sim-
ulation results presented here show that the proposed algorithm yields codes with
performance nearly identical to that of predictive codes obtained by gradient-search
optimization techniques in [22]. Furthermore, the proposed algorithm can also be
used to design PVQ systems with soft-decoders which provide a further improvement
in the overall distortion.

In Chapter 4, the design of FSVQ for noisy channels is studied. The main con-
tribution of the chapter is a robust decoder for a general FSVQ, operating over a
noisy channel. In deriving this decoder, we view the operation of an FSVQ as one of
choosing a codevector for a given input vector from the set of vectors formed by the
union of all state codebooks (super codebook). The optimal decoder thus computes
the conditional expectation of the super codebook, given the sequence of observed
channel outputs. Note that this decoder does not attempt to track the encoder state
sequence. We derive a time-recursive algorithm of fixed complexity for computing
the output of the optimal decoder. We also develop an iterative algorithm for opti-
mizing an encoder-decoder pair to a given source and a channel. Both hard and soft
decoding is considered. Simulation results are obtained for Gauss-Markov process,
which show that the proposed FSVQ design methodology yields codes which exhibit
graceful degradation of performance with channel noise. Furthermore, robust FSVQs
designed here are shown to outperform memoryless COVQ operating at the same
rate.

In Chapter 5, the design of COVQ for a class of channels with intersymbol in-

terference is investigated. We focus on soft-decoding, which can be viewed as a
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generalization of minimum mean square error (MMSE) channel equalization. In par-
ticular, we investigate a soft-decoder based on sliding-block smoothing, which can be
implemented by multi-dimensional function estimation (regression) techniques. The
resulting decoder is a non-linear time-invariant MMSE filter, whose parameters may
be estimated off-line. In simulation experiments, multi-layer perceptron (MLP) is
used to implement the sliding-block decoder. In these simulations quantization of
Gauss-Markov source over linear Gaussian channels is considered. According to the
results obtained, sliding-block decoder outperforms a probabilistic recursive soft de-
coder (resembling Kalman filter) studied in [32] at moderate to high channel noise
levels. However, a significant computational effort may be required to estimate the
sliding block decoder from training data. In particular, the complexity of the opti-
mal mapping appears to increase with the encoder resolution. In this context, we
show that, as the channel signal-to-noise ratio is decreased, the optimal sliding-block
decoder for a Gaussian channel approximates a linear mapping. This implies that
the estimation task becomes simpler as the channel becomes noisier, an observation
supported by the experimental results.

In Chapter 6, some directions for future research are outlined.



Chapter 2
Quantizers for Noisy Channels

2.1 Vector Quantization

The basic process of vector quantization (VQ) ! is illustrated in Fig. 2.1. Let X € R¢
be a stationary random vector source, where R denotes the set of real numbers.
The encoder €(.) is a mapping from d-dimensional real space onto the finite set of
integers Iy = {1,2,...,N}, ie, € : RY = Iy. Thus, the encoder partitions R?
into a set of N non-overlapping cells, denoted by {Q2;,9Qs,...,0x}, and all vectors
X € §); are labeled with integer ;. We assume that UY ,Q; = R?. The rate R, of
the vector quantizer is defined as (1/d)log, N bits per vector component. In this
dissertation, we consider only fixed-rate quantization in which the encoder output is
to be represented by fixed-length codewords. The output of the encoder is transmitted
through a channel to the decoder. In the presence of channel coding, we assume that
the channel is noiseless. The decoder §(.) is a one-to-one mapping from set Iy onto
the set Cy = {c1,¢z,...,cx} C RY, referred to as the codebook, i.e., § : Iy — Cy.

The vectors ¢;, i = 1,..., N are called code vectors or reconstruction vectors. Note

We will use the acronym VQ to refer to both vector quantizer and vector quantization.

17
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—> e(.) > a(-) —

Encoder Decoder

Figure 2.1: Vector quantization.

that the decoder is merely a lookup table operation using the encoder output I as
an index into the codebook. It is clear that the quantizer approximates all source
vectors X € (; by c,.

The overall operation of an N-level vector quantizer @y is the mapping of R?

onto the finite set Cy, i.e.

Qn : R — Cy. (2.1)

The distortion of this mapping is measured by an appropriately chosen non-negative
cost function D(X,X), which describes the error in approximating the vector X by

X e Cy. Then, the globally optimal VQ for a given source can be defined as
(€7,6%) = arginf B{D(X, X)}, (2.2)

where the infimum is taken over all N-level encoder-decoder pairs. A perceptually
motivated distortion measure appropriate for many applications, including speech

and image coding, is the input-weighted square error [3]

-~ ~

DX, X) = (X - X)"W(X)(X — X), (2.3)

where W(X) is a positive definite weighting matrix. The choice of weighting matrix
allows one to put more emphasis on certain vector components. When W(X) is the

identity matrix, we have the commonly used square error (Euclidean distance) given
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by
D(X,X) = |X - X|*. (2.4)

We will generally use this distortion measure in most of our work. However, as indi-
cated in Section 2.4, many results derived here readily extend to the more generalized

case given by (2.3).

Optimal Vector Quantizer

Let X be an absolutely continuous vector with probability density function (pdf)

p(x). Then, the average distortion of Qy is given by

B{D(X, QX)) = [ Ik~ Q) Pp(x)ix. (25)

In order to find the globally optimal vector quantizer for a given N and p(x), one
has to solve (2.2), a problem one cannot hope to solve analytically in any general
sense. In practice, the most widely used approach to designing VQ’s is the generalized
Lloyd algorithm (GLA) [12]. This algorithm is based on solutions to two simpler
problems: (i) optimization of the encoder for a fixed decoder, and (ii} optimization
of the decoder for a fixed encoder. Solution of these two problems leads to the well
known necessary conditions for optimality of VQ [3]. In GLA, these two conditions are
applied iteratively to the encoder and decoder (starting from some initial choice), until
the changes between consecutive iterations are small enough. Since the distortion
function in general can have many local minima, this descent algorithm can only
locate a local minimum. However, in practice it is known to yield very effective

designs. More details on GLA can be found in [12] and Chapter 11 of [3].
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Optimal encoder- Given a decoder § (i.e., a codebook), the optimal encoder €* is

given by the nearest neighbor condition
e(x) =i if [lx—s@)* < llx~3NDI* Vi#i, (2.6)

(ties broken arbitrarily) and the optimal encoder cells are the Voronoi regions [3] of
the code vectors 6(i) = c;. These cells are convex polytopes in R? [3]. (2.6) can be

written in the form
e(x) =1 if b;—2xTa; <b;—2xTa; Vj #1i, (2.7)

where a; = (i) and b; = ||6(¢)||*. Thus, we can represent the encoder using a set of
parameters {(a;, b;), ¢ = 1,..., N}, which can be computed directly from the given
codebook. An important property of the optimal quantizer is that the code vectors
are the centroids of the Voronoi partition generated by the code vectors themselves.
Optimal decoder- Given an encoder € {i.e., a partition of R?), the optimal code

vectors are given by

_ fﬂ.- xp(x)dx
fﬂi p(x)dx
= F{X|I =1}, (2.8)

6" (%)

where I = < X € ;. Thus, the optimal code vectors §*(i) = c¥ are the centroids
of encoder cells §;, 4 = 1,..., N. This condition is known as the centroid condition.

The necessary conditions for optimality, given by (2.7) and (2.8), provide the
basis for the iterations of GLA. The evaluation of (2.8) requires the knowledge of the

input pdf, which in general may not be available. Even if it is known, the analytical
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evaluation of multi-dimensional integrals over polytopal encoder regions is usually
very difficult. Hence, the common practice is to replace the expectations by sample
averages based on a set of empirical observations of the input vector i.e., a trasning-
set. This obviously requires assumptions on ergodic properties of the source.

In order to start the iterations, an initial encoder €®, or equivalently an initial
partition of the training set is required. There exists a number of methods for gen-
erating the initial partition, a survey of which can be found in [3]. Given the values

th iteration of GLA proceeds as shown

computed in the (m — 1)¥ iteration, the m
in Table 2.1. It is clear that each iteration must either reduce or leave unchanged
the average distortion, and hence D,, is a non-increasing sequence. In fact, it can be
shown that, under certain mild restrictions, the sequence of quantizers Q{(e'™, (™))
based on a finite size training set converges to a fixed-point, i.e., one corresponding

to a local minimum of the distortion function (locally optimal quantizer), see page

356 of [3).

Compute optimal decoder 6™, given (™~1) ((2.8)).
Compute optimal encoder €™, given 5™ ( (2.7)).
Compute average distortion D,, = D(el™ §0m)),

If (Dpp—1 — D)/ Dynq is small enough stop.
m++m+1; Gotol.

G 2 b =

Table 2.1: An iteration of generalized Lloyd algorithm.

2.2 Vector Quantization for Noisy Channels

We now consider the problem of using vector quantization as a means of source
coding (signal compression) for transmitting continuous signals over noisy channels.

This situation can be modeled by inserting the channel between the encoder and the
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Figure 2.2: Vector quantization problem for noisy channels.

decoder as shown in Fig. 2.2. We obtain the VQ shown in Fig. 2.1 if the channel
is distortionless or ideal. Hence, we refer to the VQ in Fig. 2.1 as the ideal channel
vector quantizer. Note that there is no explicit channel coding in the system shown
in Fig. 2.2. The channel # in Fig. 2.2 can be modeled in two different ways, leading
to two distinct types of decoding strategies. First, if we assume that the channel is
discrete and memoryless, I,J € Iy, and we have 8 : Iy — In. In this case, the
encoder output / is transmitted over the channel, which is received by the decoder as
J. Due to random distortion caused by the channel, J may not always be identical to

I, and the conditional probability of J, given I is the channel transition probability

Pr(J=jlI=4)=Py;, i,j=1,...,N. (2.9)

The decoder is a one-to-one mapping between the channel output and the reconstruc-
tion codebook, i.e., 0y : Iy — Cp. Such a decoder is referred to as a hard-decoder.
Alternatively, one can also consider a continuous channel whose input is an L
dimensional vector S from a given (fixed) set Sy = {a, ... ,an} C RE and the
output Y is any vector in R”, ie., 8 : Sy — RL. The set Sy is called the signal

constellation®. In this case, the encoder output I = i is mapped to the channel signal

?If the channel is K-ary, where K < N, K R-ary channel is obtained by R uses of the channel per
source vector.
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a; which is received as a random vector y by the decoder. The conditional density

function of Y given the channel input vector S is

p(y|s:ai):pi(Y): i:L---:N- (210)

As the mapping from Iy to Sy is one-to-one, we can now view VQ encoder outputs
as being vector valued indices ;, ¢ = 1,..., N. Hence the only difference between
the discrete case and the continuous case is in the received “indices” J and Y; J is
obtained through a decision on Y. In a communication system, this is achieved by
using a detector which makes the decision as to which channel input was responsi-
ble for the observed output Y. However, when the quantizer minimizes end-to-end
distortion (with no channel coding being used), it will be shown below that decod-
ing is an MMSE estimation problem. Hence, it is more natural in this case to use
the continuous channel output rather than a discretized version of it, as the decoder
(estimator) input. A soft-decoder is thus a mapping dg : RX — RY, where Y € R
is the channel output vector. Clearly, there is a loss of information when the estima-
tion of the source vector in the receiver is based on discretized channel output. The
performance improvement due to soft-decoding can be very significant under noisy
conditions.

We now turn our attention to the problem of finding the optimal VQ for a given
source and a channel. In the remainder of this chapter, we assume that both the
quantizer and the channel are memoryless. These restrictions will be relaxed in the
following chapters. We further assume that the channel is fixed and its characteristics
are completely known. In the case of a discrete channel, we have the discrete mem-
oryless channel (DMC), characterized by its transition probabilities. In the case of

soft-decoding, the equivalent characterization is a set of conditional density functions.
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A channel of considerable interest is the additive-noise channel described by
Y=S+W, (2.11)

where W € R’ is the channel noise vector with pdf py (w). If the channel noise is

independent of signal S, we have

pi(y) = pw(y — a). (2.12)

Let an N-level encoding function e{x) be defined by a partition of B¢ into N

non-overlapping cells Q;, ¢ = 1,..., N. Also let ds(y) be a soft decoding function.

The distortion caused by the resulting “noisy channel” quantizer Q¥¢ is

D(X, Q3°(X)) = X = 6s(Y)||*. (2.13)

Mean distortion per vector component is then given by

BOX a0 /dy = 5 [ [ x ds(o)Patx, )y,
= 32| [ k= s nwpedvax. (214)

where p(x,y) is the joint density function of (X,Y). In the case of hard decoding,
the channel output Y has to be simply replaced by the discrete variable J € Iy and

the average distortion is thus given by

E{IIX - 6(I)I[*/d} =

D3 [ k- oeods (219

s:..l'—‘
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The quantizer which minimizes the distortion measures in (2.14) or (2.15) is called
a channel optimized vector quantizer (COVQ) [40]. Such a quantizer is a function
of both source and channel statistics. We next derive the necessary conditions for
optimality of the encoder and the decoder for a noisy channel, which can be used to

iteratively design COVQs [16], {40], [25].

Optimal Encoder

We can re-write (2.14) as

By =33 | Blllx - a8 = asdp(xdax. (2.16)

Since p(x) is non-negative, for a fixed channel and a decoder, the encoder which mini-
mizes the above function is obtained by choosing a partition such that the conditional
expectation E{|lx — 6(Y)[|*|S = «;} is minimized for every x. Hence, the optimal

encoder partition is given by
0 = {x L E{ll x~65(Y) | [S = a;} < B{[| x~85(Y) |2 |8 = 0} V j # } (2.17)
which can be written in the form

Qi:{x:bi~2a?x§bj—2a?ij#i}, (2.18)

where a; = E{0(Y)|o;} and b; = E{||6(Y)|?|es} are the encoder parameters, i =

1,..., N. Then, the optimal encoder can be described by

e(x) =1 if 2(a; —a;)Tx < (b; —b;) Vj #1i. (2.19)
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It can be seen that Q; and {;, j=1,... N, j # ¢} are separated by a set of hyper
planes 2(a; — a;)"x — (b; — b;) = 0 and the encoder partition consists of convex
polytopes, as in the case of a quantizer optimized for the ideal channel. Furthermore,
by comparing (2.7) and (2.19), it can be seen that the computational complexity of
the encoder in the case of noisy channel is identical to that in the case of ideal channel.

The computation of encoder parameters in (2.19) requires the evaluation of L-
dimensional integrals. In practice, these expectations are replaced by sample averages
based on training sequences. In the case of hard-decoding however, the encoder

parameters can be computed directly using the equations

N
a; = E CjPij;
j=1

N
b = Y _|ICIPPy, i=1,...,N, (2.20)
j=1
where C;, 7 =1,..., N is the decoder codebook.

Optimal Decoder

(2.14) can be re-written as

B0y = [ [ - sslptaly)axdy,

1

= 3 [ BOX = ss)Piy)aty)dy (221)

'The optimal decoder which minimizes E{D} is given by the conditional expectation
estimator (Appendix A)
55(y) = BAXIY = y}. (2.22)
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In comparison with (2.8) for ideal channel VQ, we note that optimal decoder in the
present case requires the computation of conditional expectation of the encoder input,
conditioned on the encoder output observed through the channel. This is called the
regression function of X on Y, an interpretation which becomes useful later on. It
can be shown that the optimal decoder in (2.22) is the conditional expectation of the

encoder centroids, given the channel output, i.e.

BXIY =y} = [ so(xly)ix

o [ xplyPp(x)
;[g p(y) ‘

> i pily) Jo, xp(x)dx

S pily) fQ‘. p{x)dx
= E{Gy[Y =y}, (2.23)

where Gy is the set of encoder centroids. Note that, in the case of hard-decoding,

the optimal decoder is simply

§(5) = C; = E{Gy|J =35}, j=1,...,N. (2.24)

Here, Cy = {C;,j = 1,..., N} is the finite decoder codebook and the decoder is
simply a table look-up operation, as in the case of ideal channel VQ. In other words
NC(X) € Cy. In contrast, the optimal soft-decoder given by (2.23) implies an

infinite codebook, as in that case QN¢(X) € R?.

Iterative Design of Noisy Channel VQ

The algorithm given in Table 2.1 can be used to design a COVQ for the given source
and channel by replacing (2.7), (2.8), and (2.5) with (2.19), (2.22), and (2.14) (or
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equivalent results for hard-decoding case) respectively. The alternative application
of the optimality conditions in (2.19) and (2.22) cannot increase the average dis-
tortion in (2.14), and hence the sequence {D,,} (Table 2.1) in this case is clearly
non-increasing. As mentioned earlier, the expectations (multi-dimensional integrals)
involved in (2.19}), (2.22), and (2.14) have to be approximated in practice by sample
averages based on training sequences. Although any proof of even local optimality of
the resulting quantizers does not exist, the algorithm has shown to yield very effective

designs.

Example: COVQ of Gauss-Markov Source over AWGN Channel

The performance of COVQs, designed by GLA for the first-order Gauss-Markov (G-
M) source (described in Appendix C) with correlation coefficient 0.9 and additive
white Gaussian noise (AWGN) channel is shown in Fig. 2.3. In this example, two-
dimensional VQ (d = 2) at the rate of 3 bits per vector is considered. That is,
if the channel is ideal, the encoder resolution N = 2% = 8§ or the rate R, = 2/3
bits per sample . In order to transmit encoder outputs over the AWGN channel,
binary phase shift keying (BPSK) modulation is used. The channel usage rate is
fixed at 3 times (bits) per source vector so that, at best, 2/3 bits per sample of
source information can be transmitted. In Fig. 2.3, the quality of the channel is
indicated by the channel signal-to-noise ratio (CSNR). The performance of the VQs
are measured by the signal-to-noise ratio (SNR), i.e., E[|X|*/E||X — X||2. It can
be seen that the system with soft-decoding achieves a performance improvement of
around 1 dB in SNR as the channel becomes noisier. Note also that soft-decoding
achieves about 2 dB gain in CSNR at SNR of 4 dB. The numbers shown in brackets

are the number of cells N in the encoder of the corresponding COVQ, which decrease
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Figure 2.3: Performance of COVQ for Gauss-Markov source and AWGN channel.
Both COVQs were designed using a set of 100,000 training vectors. Distortion curves
were obtained using a separate set of 100,000 vectors.

as the channel noise level increases. This is due to the fact that COVQ trades-off
quantization error for channel error by reducing NV below the maximum possible value

of 8 in this example. In effect, reducing N increases the average distance between

channel signals chosen for transmission. We discuss this further in the next section.

2.3 COVQ and Source/Channel Coding Tradeoff

The overall MSE of a COVQ (with soft-decoding) can be written as (derivation in
Appendix B)

N N
B0} =3 [ - alfpbix+ Y [ Ik ss)PpvladPlagdy, (225
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Figure 2.4: Variation of D, Dg, and D, with channel noise level. Variation of D, Dg,
and D, with channel noise level. The numbers in brackets indicate the number of
non-empty encoder cells.

where ¢; = E{X|o;} 7 = 1,..., N are the encoder centroids. The first sum in the
above expression is independent of the channel and is the average distortion when the
centroid of each encoding cell is used as the code vector. Hence, it can be viewed as
the quantization error Dg. The second sum in the above expression is the additional
distortion due to reproducing a given vector x by 8(y) instead of the corresponding
encoder centroid g;, and hence can be considered as the channel error Do. The
variation of D, Dq, and D¢ with channel noise level in the previous example (soft-
decoding) is shown in Fig. 2.4. We note that when channel noise level is low, the
total error is dominated by the quantization error, while the situation reverses as the
channel becomes noisier.

Consider fixed-rate, d-dimensional VQ of a sampled analog source at the rate of R,
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bits per sample. The output of the quantizer is transmitted across a binary channel
through n uses of the channel (n-bit channel codewords). Note that no explicit
channel coding is used. Define the transmission rate R as the number of channel
uses per sample, i.c., R = n/d. Also define the channel code rate R, = dR,/n as
the number of source bits per channel use so that R, = R,/R. For a given source
sampling rate, R determines the channel uses per second, which is restricted by the
available channel bandwidth. Hence an important question is: which quantizer rate
R, minimizes the average distortion for a given R 7 Clearly, if the channel is ideal,
one can use R, = n/d bits per sample, or equivalently an encoder with N = 2»
cells. However, if the channel is noisy, some redundancy must be available in channel
codewords to protect the transmitted information against channel noise. As we have
observed earlier, COVQ trades-off the encoder resolution for increased redundancy in
the encoder output.

The redundancy in the encoder output of a VQ refers to the amount of extra bits
(over the minimum required) used to represent a source sample by the encoder. Let
{I} be the encoder output (index) process. Entropy of the encoder index process
H, is the lowest rate of scalar coding of {I,}. Then, the redundancy in I, due to

non-uniform probabilities is given by
Taw = dR — H;. (2.26)

Further redundancy may be present when {I,} has memory. Under such conditions,
the lowest rate at which {I,} can be coded is given by the entropy rate of the process

H — tn AT 1)

I—co l

, (2.27)
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Figure 2.5: Entropy variation of COVQ with channel noise level.

where H(Iy,...,1;) is the joint entropy of a sequence of indices and H,, < H;. The

redundancy due to memory is thus defined as

Pim = Hy — Heo. (2.28)

If the index process is memoryless, Hy, = H; and r,, = 0. The total redundancy in
the encoder output is given by

T = Ty + Pm- (2.29)

Note that r; depends on both source statistics and the encoder. Figure 2.5 shows the
variation of Hy, R, R, and 1y, for the soft-decoding COVQ in the previous example.
Here, R and R, are shown in terms of bits per vector to facilitate comparison with
other two quantities. Recall that, in this example, B = 1.5 bits per sample. At

CSNR =12 dB, the channel is nearly noiseless, and the encoder operates at the
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rate of R, = 1.5 bits per sample (i.e., N=8). As the channel noise level increases,
the entropy of the encoder output H; does not appear to change significantly until
CSNR drops to about 8 dB. In this range, almost entire transmission rate is used
to carry source information and little of it seems to be utilized as protection against
channel noise. However, as the channel gets noisier, the source rate decreases, leaving
more channel bits for error protection. At -1.5 dB for example, the source rate is
only about 2 bits per vector (N = 4), leaving almost 1 bit out of 3 channel bits
per vector for protection against channel errors. When the channel is noisy, COVQ
with fixed R achieves the increase in r,, by reducing the encoder entropy H, (see
(2.26)), which eventually requires the reduction of the number of encoder cells N and
hence the quantizer rate R,. In essence, a COVQ acts both as a source coder and a
channel coder by having the optimal amount of redundancy in the encoder output.
At one extreme, when there is no channel noise COVQ is simply a pure source coder.
At the other extreme, when the noise variance is infinite, it is the trivial encoder
which approximates the input signal by its mean value (4.e., mean distortion is the
signal variance). Note that, as the encoder and decoder are memoryless, r,, is not
manipulated for any advantage in this example. In Chapters 3, 4, and 5, we study

COVQ which employ memory in the encoder and the decoder.

2.4 Generalized Distortion Measure

In this section, we indicate how the optimality conditions given by (2.22) and (2.19)
can be extended to the case of input-weighted square error given by (2.3). In this

case, the optimal soft-decoder is

(y) = argmin f (3= 3() W (x)ox — 3(y))dx
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= [Bveom] [Bwexxiy)], (2.30
where
E{WX)Xly} = /[‘W(X xp{x|y)dx
_ 2= PY]es) Jo, W(x)xp(x)dx -
Zizlp Y|az fg‘. p(x dx
and
i) Ja, dx
E{W(X)|y} = Yoim1 P5105) fo, WG0P09) . (2.32)

Yty p(yles) fn x)dx

It is straightforward to show that (proof omitted for brevity) optimal encoder is

given by
EX) =% D [BlimW (0))m — 2xTW (x)a;
I,m
< Bl W ())im — 2xTW (x)a; Vi £4,  (2.33)
where

a; = B{6(Y)|es}, i=1,...,N, (2.34)

and B; is the d x d conditional covariance matrix

B; = E{6(Y)6"(Y)|a;}, i =1,...,N. (2.35)



Chapter 3

Design of Predictive VQ

3.1 Motivation and Goals

In many practical applications of VQ, the input vectors consist of a set of param-
eters extracted from a block of consecutive signal samples. For example, in speech
coding, it is common to use a set of coeflicients representing the short term spectral
information of the speech signal [54], [55]. In image coding, blocks of adjacent pixels
or their transform coefficients are used as input vectors [56], [57). As a result, the
vector process in many applications often exhibits memory; that is, successive vectors
are statistically dependent. The memoryless VQ, in which each vector is quantized
independently of others in a sequence, ignores the inter-vector correlation. Theo-
retically, the performance of memoryless VQ can be made arbitrarily close to the
rate-distortion function of the signal source, if the dimension of vectors is allowed to
grow (i.e., d — oo) [8]. In practice, one may achieve near optimal performance by
using a sufficiently large dimension. However, doing so may often be impractical as,
for a given coding rate R, (bits per sample), the number of code vectors N = 2dRe

which implies that the computational complexity and storage requirements for full

35
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search VQ grows exponentially with d. When the vector dimension is restricted, the
quantizers with memory can provide increased performance at a given rate and a
complexity by exploiting the inter-vector correlation. Such quantizers usually per-
form encoding and decoding functions recursively, and hence is referred to as feedback
quantizers. The most common examples are predictive vector quantizers (PVQ) (3],
[46] and finite-state vector quantizers (FSVQ) [49]. A key problem with feedback
quantizers is the degradation of performance due to propagation of channel errors in
the decoder (receiver). That is, an error in a received codeword can affect a number
of succeeding outputs of the decoder. In this chapter, we consider the design of PVQ
for noisy channels and propose a new iterative design algorithm. In the next chapter,

we focus on the design of FSVQ for noisy channels.

3.2 Predictive Vector Quantization

In this section, a brief introduction to PVQ is provided. A more extensive treatment
of the topic may be found in [46], [3]. A block diagram of a PVQ system is shown in
Fig. 3.1. Let {X,} denote a stationary random vector sequence, where X,, € R?. The
basic idea of predictive coding is to quantize the error between the actual signal vector
at time n, X,,, and its prediction X,, as shown in Fig 3.1 (a). Note that the prediction
is carried-out based on the previous outputs of the quantizer rather than the previous
source vectors. This ensures that the predictions made at the encoder and decoder
are identical, i.e., X; = X,,. However, this can only be achieved if the channel (not
shown) is noiseless. In Fig. 3.1, U, and U, represent the prediction error and its
quantized value respectively, and X, is the reconstructed signal. The encoder Qx
and the decoder Q' used on the prediction error constitute a memoryless, N-level

VQ. The prime in the corresponding variables in the decoder indicates the possible
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difference due to channel noise. Assume that the channel is noiseless, so that the
input codeword I, is identical to the output codeword J,, and the variables in the
encoder and the decoder are identical. The mean square error (MSE) distortion of

the PVQ is given by E[|X, — X,./|2. Since

-

U, (3.1)

Xo-X. = X,+U,-X,+0,

- U, -

the overall distortion in PVQ is equal to the distortion in the prediction error signal U,
due the memoryless quantization by Q. If the prediction is good, the error U,, will
be smaller compared to X,,, and for the same quantizer rate, the overall quantization
error in PVQ will be much smaller than in ordinary VQ. Alternatively, the same
distortion as in ordinary VQ can be achieved in PVQ, using a lower quantizer rate.
Note that the predictive encoder is a time varying partition of R? and the decoder is
a time varying codebook. However, the memoryless encoder/decoder pair (Qy, Qv
and the predictor are time-invariant. If the encoder Qu uses the nearest neighbor
rule, the predictive encoder is a Voronoi partition with respect to the set of vectors
{%Xn +¢;,i=1,..., N}, where c; are fixed code vectors.

The most common form of prediction used in PVQ is linear prediction. Non-
linear predictors are difficult to design and ad hoc designs are often not effective [3].
An exception would be when data is Gaussian, in which case the optimal non-linear
predictor is linear. In this thesis, we will exclusively focus on PV(Q systems based on

linear prediction. In this case, the predictor in Fig. 3.1 is a linear filter which can be
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Figure 3.1: Predictive vector quantizer (Qn and Q' are encoder and decoder respec-
tively of a zero-memory quantizer).

of either auto-regressive (AR) type, given by

or moving average (MA) type given by

PI

~ FIPS

Xn = E Akﬁn—kv
k=1

(3.4)

where Ay and A} are matrices of prediction coefficients [3]. By are matrices which
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depend on predictor matrices A;. For example, for first-order prediction P = 1 and
B, = A%}, In practice, it has been observed that systems using AR predictors (AR-
PVQ) perform better than those using MA predictors (MA-PVQ) [58]. However, in
the presence of channel noise, the performance of AR-PVQ degrades more severely
than MA-PVQ), as a channel error propagates over the entire sequence of decoder
outputs following the error. In order to see this, let c,, be the channel error in the
decoded value of the prediction error @], at the receiver. Then, from (3.3) the output

of an AR-PVQ system at time m > n is

~F ~
Xy =Xm + Bm~ncm

where the second term on right-hand side is the propagated channel error. On the
other hand, the error propagation problem in a MA-PVQ systems is limited to only
P’ vectors following the error, see (3.4). A comparison of noisy channel performance
between AR-PVQ and MA-PVQ for speech coding can be found in [45]). In this
chapter, we will focus on AR-PVQ systems. However, the derivations presented in
the following sections are also applicable to MA-PVQ.

A block diagram of an AR-PVQ system is shown in Fig. 3.2. In the absence of
channel noise, the error decoder §; and the predictor 3; on encoder side are identical
to their counterparts §; and 3, respectively on the decoder side. Due to feedback
structure of the encoder and decoder, the analysis of PVQ is more difficult than
the analysis of memoryless VQ and there exists no known design algorithm which
guarantees even a locally optimal quantizer. However, several heuristic based design
algorithms which result in “good” PVQs do exist, and the designs obtained with
these algorithms convincingly outperform simple memoryless VQ, when the source

has memory. An overview of different approaches may be found in Chapter 13 of
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Figure 3.2: PVQ) with an AR predictor.

[3]. The most effective design algorithm is the Lloyd-style algorithm introduced in
[46]. In this algorithm, an open-loop predictor is first designed for the unquantized
input vector source, using optimal linear prediction theory. This predictor is then
used in the closed-loop PVQ system and is not changed further. The encoder ¢
and the decoder §; in the feedback loop are then improved using Lloyd iterations for
memoryless VQ. In order to avoid difficulties due to feedback, each Lloyd iteration
is carried out for a fixed prediction error sequence which is then updated for the
next iteration. Clearly, this procedure does not result in a locally optimal codebook.
Nonetheless, experimental results show that very effective designs can be obtained
using this procedure. An alternative PVQ design method is the gradient search
optimization procedure investigated in [59]. In this approach, both codebook and the
predictor coefficients are updated simultaneously, using gradient descent methods.
Despite being a theoretically better approach, it has been found that designs obtained
with this algorithm perform almost identically to those obtained with the simpler
Lloyd-style algorithm in [46]. In this chapter, we will confirm that this observation

holds true even in the case of noisy channel designs.



CHAPTER 3. DESIGN OF PREDICTIVE VQ 41
3.3 Noisy Channel PVQ Problem

Consider the AR-PVQ system shown in Fig. 3.2. In the presence of channel noise,
the channel input I,, and the channel output J, are not always identical. Assume
for the time being that the channel 6 is a discrete memoryless channel (DMC) with
transition probabilities Pr(J, = j|I, = i) = p;;, where I, J,, € Iy = {1,2,...,N}.
Assume also that the channel is fixed and known. Let the predictive encoder and
decoder be denoted by &,(eq, 81, 61) and D,(d;, B2) respectively. We wish to find the

system components {1, 0y, d2, 81, G2} which minimize the average distortion

E{D.} = E|X.—X|

_ /R [p i = R Pocn, %, )R, (3.5)

It should be noted that, even though {X,} is stationary, the system in general is not.
A recursive system, which is initialized at some point in time may not be stationary.
However, if the encoder and decoder are stable, the system is asymptotically sta-
tionary in that, the effects due to initial conditions die-out as n — co. Under these
conditions the predictor output can be given by (3.3). Furthermore, the expectations
can be approximated by long term sample averages.

Our goal in this chapter is to derive an iterative algorithm for designing noisy
channel PVQ. As stated earlier, the task of finding the exact necessary conditions for
optimality of the encoder and decoder in the case of recursive quantizers is a difficult
problem, to which no known solution exits. Hence, we rather focus on finding a
solution based on simplifying assumptions, which hopefully leads to a locally optimal
system. It should be emphasized that the “optimality conditions” derived here are

only approximate and do not necessarily hold true for a closed-loop system. However,
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the experimental results show that these conditions lead to good codes for noisy
channels. Even though the predictors in the encoder and decoder need not necessarily
be identical in the presence of channel noise, in order to make the problem tractable,
we use the same predictor 3 in both encoder and decoder. Furthermore, the predictor
is assuimed to be a linear filter, which includes both AR and MA cases. The derivations
presented in the following sections consider the AR predictor given by (3.3). However,
the modifications required for the MA predictor are trivial. In the following, we
formulate and attempt to solve the following three problems: (1) for a fixed predictor
B and a encoder &,, find optimal decoder D, (2) for a fixed predictor # and a decoder
D, find the optimal encoder &, and (3) for a fixed system find the optimal predictor
B. We will then present an iterative design algorithm based on these conditions. The
algorithm is first derived for the case of discrete memoryless channel (DMC) and
hard-decoding. The extension to soft-decoding is straight forward and is considered

in Sec. 3.8.

3.4 Optimal Decoder

According to the above formulation, the problem of finding the optimal decoder D, for
a given encoder &, is equivalent to finding the decoder §; which minimizes distortion

measure in (3.5), given €, 6;, and 8. The output of the decoder D, is given by

X, = 1, + X, (3.6)

X, =Y B, (3.7)
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Note also that

Xp = un+in

= u,+ Y Bl (3.8)
k=1

Hence, the average distortion in (3.5) can be written as
D = B{IX.-U,-> B0, "
k=1

= E{|U, - U+ Bu(Us - U, _ )17

k=1

= B{|U, = UL} +2)  E{(Un - U) Bu(Uns — T}, ,)}
k=1

+E{[1 ) B(Unr - U017} (3.9)
k=1

In order to proceed further, we now assume that prediction error {U,} is an
uncorrelated process, which is reasonable if the linear predictor is a good predictor.
Note that the prediction error of an optimal linear predictor is uncorrelated, see
Theorem 4.91 (pp. 119) in [3]. The assumption implies that the second term in the
last equation is zero. We further assume that the quantization error u, — 1, is small
(7 0). This assumption is a good one for high-rate quantization, but can be poor at
low-rates. Based on these assumptions, we obtain an approximate distortion measure,

which is a function of only the decoder ds.

E{D} =~ E{|U.-T,IP}+ >  B{|B(Uns - T,_)II%}

= Y E||By(Upi — U,_)I, (3.10)
k=0
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where By is the identity matrix. Since the channel is assumed memoryless, {U"} is
also uncorrelated and the above expression is minimized by minimizing E||Bx(U,_; —
),_)||?> with respect to @], for every k > 0. Hence, the optimal decoder * = 65(4,.)

can be found by solving
03 (jn) = arg min E||Bi(U, — &(5:))11%. (3.11)
From (A.5), the solution to this memoryless COVQ problem is
05(dn) = E{U,|Jn = jn}- (3.12)

That is, we have to find the channel optimized decoder for a given error encoder ¢;.
This means that, under our assumptions, the optimal PVQ decoder D, (with a fixed
predictor §) for a given encoder &, is obtained by optimally decoding the prediction
error. The decoder in (3.12) is given by the codebook Cf,) = {ca(1),...ca(N)} (see
(2.24)).

_ Sl epi b (3.13)

co(fn) = 520 0
ZiNzl Pij b

where g; is the centroids of the i** encoding cells in ¢, P; is the prior probability

of the 7** channel input, and pi; is the channel transition probability defined earlier,

ij=1,...,N.

3.5 Optimal Encoder

In this case, the problem is equivalent to finding optimal ¢; and §;, given D, and
B. Due to the feedback structure in the encoder, there is no obvious way of finding

exactly the desired optimality conditions. However, in an iterative algorithm, the
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optimization of £, may be split into two steps: (i) given {I,} and the decoder D,,

find optimal d;, (ii) given {U,} and the decoder D,, find optimal ;.

Step (i): Feedback Path

Note that the purpose of the feedback path is to mimic the given combination of
channel # and the decoder (receiver) D, (s, ). Ideally, we must place an exact copy
of the channel in the feedback path in the encoder &,. This is clearly impractical and
it is desired that the signal reconstructed by §; in the feedback path X,, be as ‘close’

as possible to the signal X!, reconstructed at the receiver. Since

%y = Bylin g, (3.14)
k=0
X, is a function of I, 2 (I, 1,4, ... ,I_), and in the present problem it will be

determined by the choice of ;. Therefore, the local decoder 6, is designed to minimize

the distortion measure

E{|IX, — X} |72} (3.15)

Clearly, if the channel is noiseless, this criterion gives §,=68,. Using (3.2}, the above

distortion measure can be expanded as
. R o0 [eo]
E{“Xn - X;z”2|in~1} = E{”ﬁn + Z Bty — U:z - Z BkU;z~k”21in}
k=1 k=1
= B{I>_ Bultn i — T, )|}
k=0

= B{lY_ Be(d1(in—s) = U IPfin}, (3.16)
k=0
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where #i,,_y = 61(i, ). If the channel is memoryless, the last equation becomes

E{|IX0 = X070} = D E{IBe(b1(in-r) = T ) Plin-s}. (3.17)

k=0

The optimal decoder 6;(%,) is therefore given by (see {A.5))

Gi(in) = argmin B{{l6x(in) — UL, = i)

= EB{U|I, =i.). (3.18)
This is a codebook (CE\I,} = {ci(1),...c;(V)} with code vectors (see (2.24))

N
(i) = e(i)py, i=1,...,N, (3.19)
i=1

where c3(7), j = 1,..., N is the codebook of given decoder ;. The above result gives
the optimal local decoder for a given channel input sequence. The predicted sequence

generated by this choice of §; is given by

Xn = ) Biltay
k=1
= D BeB{0, i)
k=1

= B{Y B, lin)
k=1

= B{X,fin1). (3.20)
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Step (ii): Feedforward Path

We now consider the feedforward path in the encoder for a fixed feedback path,
assuming that the predicted value X,, is given by (3.20). Given the knowledge of past
outputs 7,_; (via the prediction X,), the optimal &, at time 7 is a partition of R?
such that

it = argmin B{[|x, — X, |2/Zn = &,70-1}. (3.21)

Define the distortion measure
D(Xnlt,tn-1) = E{||I%n — XL In = 4,701} (3.22)
Then, the optimal &, is described by
iy =1 if D(Xpli,in-1) < DXull,tney) VIH#1L (3.23)
Consider

D(Xuli,in-1) = E{[|%n+u, — X, = U 2L, = 4,701}
= B{llun — T, = i} + B{l1%n — XL |Plin-1}
+2B{(u, — U (% — X)L = 6,701}
= E{llu, — Oy % = i} + B{|I%n — X} [in-1}

+2E{(un — UL)7|L = } (% — B{Kfin1}),  (3.24)

where we use the fact that X,, and 5{; are conditionally independent of I,,. According

to (3.20), the last term in the above expression is zero. Hence the inequality in (3.23)
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simplifies to
i =i it B{lw,— O,Plin =i} < B{llua — OlPlin =1} VI#i,  (3.25)

which is a function of only €. That is, the optimal partition associated with &,
is obtained by optimally encoding the prediction error using €!, i.e., the channel
optimized encoder for the prediction error U,. Given a prediction error sequence,
€1 can be found as in Sec. 2.2, and the encoder €} can be described by the set of

parameters
N
a = Y ci)py
i=1
N
b = Z|102(j)ilgpzj (3.26)
j=1

1t is worth noting that, if the channel is noiseless (J, = I,,), the conditions for
both €;, and 4} reduces to those used in [59] for noiseless channel PVQ design.
3.6 Optimization of Predictor

In this section, we develop a procedure for updating the linear coefficient matrices
Ag, k= 1,...,P in a given PVQ system, so that the distortion measure E{D} in

(3.5) is decreased. The output of the PVQ decoder can be expressed as

P
R, =0, + ) A, (3.27)
k=1
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Substituting this expression in (3.5) we get

P
E{D} = EIX.-TU,-) AX, I
k=1

P
= E|IX; - AKX, % (3.28)
k=1
where
X'=X,-0. (3.29)

In this equation, the sequence {X!} can be considered as the input to a prediction
filter whose desired output sequence is {Xg} If a data set of sample input and output
sequences is available, the optimal filter coefficients A} which minimize E{D} can be
estimated. We proceed in this direction.
Let
Koy = XL, X, X )T (3.30)

n—1»

be the dP-dimensional vector formed by concatenating P d-dimensional vectors and
A= (A Ay ..., Ap) (3.31)

be a d x dP matrix formed by P d x d-dimensional predictor matrices. With this

notation, {3.28) becomes
B{D} = BIX; - AX,, " (3.32)
In order to find A which minimizes E{D}, we let V4E{D} = 0 so that

B{XIX, )} - AB{X, X7 } =0 (3.33)
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This may be written as

P - AR =0, (3.34)

where P = E{X:{Xf_l} and R = E{X;~1Xf~1} are respectively d X dP and dP x dP
dimensional matrices, which depend on both source and channel statistics. Since R

is the covariance matrix of the random vector X it is positive semi-definite and

positive definite if {X’} is nondeterministic, see Chapter 13 of [3]. In that case, a
unique solution to the above matrix form Wiener-Hopf equation exists, which can be
obtained by

A* = PR (3.35)

In practice, Hermitian positive definite nature of covariance matrices can be exploited
for numerically stable and computationally efficient solution of this equation [60],
[61]. In this chapter, simulation studies were confined to first-order predictors and
hence (3.35) was solved directly. Given a training set of source vectors {x,}7, ,
realizations of {£/™}"* and {‘"(m)}n_l, = 1,...,na are obtained by transmitting
(by simulating the channel) the training set nys times using the given PVQ system.

Then, the required estimates can be obtained as

ny i

™ ~t{m mT

P o= 3 3 gumglm (3.36)
n=P+Im=1

ny A

E — Zan(m) I(m)T (337)

n=Pm=1

After the solution to (3.35) is obtained, the predictor matrices Ag, k= 1,..., P can

be updated in the recursive algorithm presented below.
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3.7 Design Algorithm

In this section, we present an algorithm for designing noisy channel PVQ using a
training set of input vectors. The basic approach used here is inspired by the Lloyd
algorithm, and in particular the PVQ design algorithm of [46]. Briefly stated, ¢, 4y,
d9, and J are iteratively updated using the conditions derived above, until the average
distortion decreases below a specified threshold. It is not necessary that the repeated
application of these conditions result in a monotone decrease of distortion. Hence, the
convergence of the proposed algorithm remains an open question. However, as in the
case of other PVQ design algorithms [46], [59], [22], in practice the present algorithm
has shown to yield good codes which were considerably superior to memoryless VQ.
We also found that PVQ systems obtained with this algorithm performed comparably
with those obtained by the gradient search algorithm of [22].

Given a training set of source vectors {x,}%,, a good PV(Q) system can be designed
for a noise free channel using, for example, the method of [59]. This system can be
used as the initial system which is to be iteratively improved for the given channel.

The average distortion is computed using the sample average

nr AL

p0=3 %Z Ibew = KPP, (3.39)
where %,(j) is the decoder output when x, is encoded and transmitted for the j%
time and nps is the number of times the sequence is transmitted (to average over
channel noise). The complete design algorithm is given in Table 3.1.

An important issue in the implementation of this algorithm is the stopping cri-
teria. As mentioned earlier, the algorithm, when applied to a closed-loop system, is

not guaranteed to converge. It was noted in all our simulations that the distortion



CHAPTER 3. DESIGN OF PREDICTIVE VQ 52

Step 0:  Given: €@, 5%0), 5;(20), and 5O,

k <+ 0.

Step 1: Compute prediction error sequence {ugf)} and channel input
sequence {z,(f")}

Step 2 Compute average distortion D} using (3.38).

Step & 1f D) is small enough (convergence-criteria met) stop;

Else k « k + 1.

Step 41 Find (53”') using (3.13).
Step 5 Find (5§k) using (3.19).
Step 6: Find egk) using (3.26).
Step 7. Update {qu’} and {i¥}.
Step 8 Find B® using (3.35).

Repeat from Step 1.

Table 3.1: Proposed noisy channel PVQ design algorithm.

decreased at every iteration in the beginning, but tend to oscillate in a small range
afterwards. A typical example is shown in Fig. 3.3. Various strategies may be used
to stop the iterations and we adopted the following. The algorithm is run for a speci-
fied maximum number of iterations and the best design (resulted in lowest distortion
Dmm) is saved. However, if the distortion does not drop below D,,;, for a specified

number of iterations, the algorithm is terminated and the best design is retained.

Note that this approach requires additional memory space for storing the best design
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during a run. In our simulations, the algorithm always resulted in a design which was
better than the initial system, and no instabilities of the algorithm were observed.
Another issue is the computational complexity of the algorithm. Out of all the
steps in Table 3.1, it is the predictor update step that requires most of the effort.
Here, one has to estimate the covariance matrices P and R and solve a linear system
with Pd? equations. However, as we have pointed out, this system can usually be

solved using efficient solution methods such as Levinson-Durbin algorithm [60], [61].

3.8 Soft Decoding

As soft decoding has shown significant improvements in performance when applied
to memoryless VQ, it is worth investigating the performance of predictive quantizers
with soft-decoding, particularly in the hope that the effect due to error propagation
may reduce. The above described algorithm can be extended to handle soft decoding
in a straightforward manner. In a noisy channel PVQ system with soft-decoding,
the analog channel output Y, is directly mapped to the prediction error vectors
ﬁ; Clearly most of the results derived for hard decoding hold true for this case as
well, except that we have to replace the discrete channel output J, € Iy with the
continuous vector Y,, € R, where L is the channel dimension. In particular the

optimal decoder in (3.12) for prediction error at the receiver now becomes
5530}'1& = E{Unly'n} (339)

Consequently, the update equations (3.19) and (3.26) have to be modified accord-
ingly. This is straightforward as both €; and §; are memoryless (see Ch. 2). Also,

the predictor update equations remain valid if the covariance matrices P and R are
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estimated based on the outputs of the soft-decoder 45 .

3.9 Experimental Results

In this section, the performance of quantizers obtained by the design algorithm pre-
sented in Sec. 3.7 is experimentally investigated. In these experiments, predictive
VQs are designed for both discrete and waveform channels using the new algorithm,
and their performance is compared with that of quantizers designed using several

alternative methods.

Signal source- As the signal source, the Gauss-Markov (G-M) process described in
Appendix C has been used. This source is commonly used as a benchmark
for comparing different source coding techniques as the theoretical bound on
performance for this source (rate-distortion function) can be evaluated in many
cases, see Appendix C for details. We consider a G-M source with correlation
coefficient p = 0.9 which is typical for real signals such as image and speech

data.

Channel- Memoryless additive white Gaussian noise (AWGN) channel model given

by the following equation has been used.

Yn = Sp + Wy, (340)

where s,, = £1 (antipodal signaling) is the binary input , 3, € R is the channel
output, and w, is an iid Gaussian process with mean zero and variance 2. A
soft-decoder directly uses the channel output y,, while a hard-decoder requires a
detector to produce an estimate j, for the transmitted encoder index ¢,,. In this

case, a maximum a posteriori probability (MAP) detector is designed for the



CHAPTER 3. DESIGN OF PREDICTIVE VQ 56

AWGN channel [62]. Then, the resulting channel can be modeled as a binary

symmetric channel (BSC) with error probability p given by [62]

p= %erfc(\/Es/Ng), (3.41)

where erfe(.) is the complementary error function, E, is the signal energy, and
Np = 202 is the power spectral density of channel noise. The channel transition
probabilities can be computed as p;; = p™ (1 — p)b-dulin) ; 5 =1 . N,
where dy(i,7) is the Hamming distance between b-bit binary representations
of integers ¢ and j. The quality of the BSC is measured by the bit-error rate
(BER). In results presented here, both the transition probabilities and BER
of the resulting DMC were obtained experimentally from the AWGN channel.
When soft-decoding is used, the quality of the channel may be measured by the

channel signal-to-noise ratio (CSNR)

CSNR = 10log,(2E,/Np). (3.42)

Performance measure- signal to noise ratio (SNR) defined below has been used to

measure the performance of the quantizers.

B X ]

SNR =10 10@10 [m

(3.43)

The algorithm introduced in Sec. 3.7 was used to design predictive vector quan-
tizers for various channel noise levels, the performance of which is presented in Figs.
3.4 - 3.7. These designs were carried out and tested using two separate sets of 100,000

source vectors. We have considered PVQs with a transmission rate of 1 bit/sample
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and vector dimensions of 2, 3, 4, and 5. In these designs, the predictor was confined to
be of first-order as in many previous work on PVQ [46], [59], [22]. This is reasonable
as the source is a first-order Gauss-Markov process. Note also that the computational
complexity and memory requirements grow linearly with the predictor order. In or-
der to apply the given iterative algorithm, initial values for various parameters are
required. These were obtained by designing PVQs at the given rate for a noise-free
channel, using the closed-loop algorithm in Fig. 4 of [46]. An initial index assignment
(IA) for the encoder output (optimized for the channel noise level) was then obtained
using the simulated annealing based algorithm described in [40]. This issue will be
further discussed later. Finally, the design algorithm Sec. 3.7 was applied to improve

the initial PVQ system at the given channel noise level.

A. Main Results

The curves in Figs. 3.4 - 3.7 clearly indicate the advantage of properly designed PVQs
over memoryless VQ at the same rate, even in the presence of channel noise. PVQs
with hard-decoding achieves about 1-2 dB gain over memoryless COVQ designed for
the same channel. The gain is highest at vector dimension of 2 and tends to decrease
as the vector dimension is increased. This is due to the fact that, with a blocked
scalar process, the correlation between successive vectors diminishes as the block size
is increased. Also apparent from these results is the improvement in performance
of PVQ with soft-decoding. As expected, this gain increases with the channel noise
level. Typically, the systems with soft-decoding achieve about 1 dB gain in SNR
compared to the systems with hard-decoding, at high channel noise levels.

Figs. 3.4-3.7 also include the performance of channel optimized PVQ reported in

[23] for comparisons. These results have been obtained with a gradient search design
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Figure 3.4: Performance comparison of wvarious noisy channel PVQ schemes for
Gauss-Markov source (p = 0.9) at 1 bit/sample and d = 2: (a) proposed algorithm
(soft-decoding), (b) proposed algorithm (hard-decoding), (c) proposed algorithm (hard-
decoding) without predictor update, (d) COPVQ of [23], (e) memoryless COVQ (soft-
decoding), and (f) memoryless COVQ (hard-decoding).

algorithm, similar to the algorithm of Chang and Gray [59] for noiseless channel PVQ.
We note that the performance achievable with our algorithm (with hard-decoding) is
nearly identical to those reported in (23] (the gradient search algorithms of [23] are
based on hard-decoding and it is not apparent if they can be extended to designing
soft-decoding PVQ). A similar observation was also made in [59] regarding the design

of PVQs for noise-free channels. That is, the codes obtained with the Lloyd-style

algorithm of Cuperman and Gersho [46] yielded a performance almost identical to
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Figure 3.5: Performance comparison of various noisy channel PVQ schemes for
Gauss-Markov source (p = 0.9) at 1 bit/sample and d = 3: (a) proposed algorithm
(soft-decoding), (b) proposed algorithm (hard-decoding), (c) proposed algorithm (hard-
decoding) without predictor update, (d) COPVQ of [23], (e) memoryless COVQ (soft-
decoding), and (f) memoryless COVQ (hard-decoding).

those obtained with the gradient search algorithm of Chang and Gray [69]. The latter

algorithm also updates the predictor, while the former uses a predictor designed for

the unquantized signal. Hence, it was also concluded that the overall performance

of PVQ is less sensitive to predictor coefficients when the quantizer is matched to

the predictor. We observe below that this does not hold true in the case of noisy

channels.
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Figure 3.6: Performance comparison of various noisy channel PVQ schemes for
Gauss-Markov source (p = 0.9) at 1 bit/sample and d = 4: (a) proposed algorithm
(soft-decoding), (b) proposed algorithm (hard-decoding), (c) proposed algorithm (hard-
decoding) without predictor update, (d) COPVQ of [28], and (e) memoryless COVQ.

B. Effect of Predictor Optimization

In Figs. 3.4- 3.7, the curves labeled (c) were obtained by the algorithm in Table 3.1
by omitting the predictor optimization step (Step 8), i.e., predictor is not optimized
to the channel. The importance of predictor update in our algorithm is evident
from these curves. As the channel error rate is increased, the gain in performance
achieved by updating the predictor appears very significant. Table 3.2 shows values

of predictor coefficients obtained by the proposed algorithm at various channel error



CHAPTER 3. DESIGN OF PREDICTIVE VQ 61

1 .................. e S LRI LRI S e e e
26?— : : : : : U aj:
i) : : : : : O bl:
\\\\ : : : : : A ¢l
N : : : : : . :
1N e P S, kT TR R e dl:
W : : . : x el
b \ . . . . . .
i VB : : : : : :
X WIS : : : : :
ok Yo NS~ i S
AN Tl E £ 5
N\ . . \\: . ‘ .
NN N T~ : : :
N ST~ : : :
NG N ~ : : :
oL - Xooonn NS T e e e e e i
: A RN ~ : : :
N . NS 5] o : .
~ N T~ : : :
— ~N ~ N \\ . - .
m : - NN - : : :
=) ~ ~ N~ - ~ . . -
g | oo ~ . N e N e
r 4\\ ~ ~ . N -~ - . .
4 : ~ > N - : : T~ : :
0 : T~ ~_ 0 TSI~ ; : ~ < :
: ~ o S A ~ T~ : : DT~
: T~ . ~ > . . ~nQ
: ~ DT~ ~ . : : )
I e SN e T e e DU
7 : S B T I, : :
: = : S IR :
N \\ N \\ N \:\'
: ~ . ~ ~ 3.
R . -~ . ~ - ~ o~
Bf e S [ \..,\ ....... SRR T 3.@
. ~— . ~—
; ~o ~A
: ~— B .
=~ .
N -~
: T~ o
5_ .................. R T T T T ~ "%
4 1 ! | ! 1 1 1 1 1 }
0 1 2 3 4 ) 6 7 8 g 10
BER (%}

Figure 3.7: Performance comparison of various noisy channel PVQ schemes for
Gauss-Markov source (p = 0.9) at 1 bit/sample and d = 5: (a) proposed algorithm
(soft-decoding), (b) proposed algorithm (hard-decoding), (c) proposed algorithm (hard-
decoding) without predictor update, (d) COPVQ of [23], and (e) memoryless COVQ.
rates, in the case of 2-dimensional PVQ. It can be seen that, in the absence of channel
noise, most of the prediction is provided by the second component of the predictor
input vector (a;p = 0.92 and ay; = 0.825), which in our case is the signal sample
closest to the two signal samples in the vector being predicted. However, as the
channel error rate is increased, the two coefficients a;3 and ags in the optimized

predictor decrease while the remaining two coefficients ay; and a9 increase. At 10%

channel error rate, both components in the predictor input vector seem to contribute
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IBER (%) | au1n | a2 | au [ @y |

0 0.021 | 0.920 | -0.0144 | 0.825
0.1 -0.038 | 0.927 | -0.0367 | 0.834
1 0.005 | 0.806 | 0.0353 | 0.656
2 0.103 | 0.677 | 0.148 | 0.503
3t 0.222 |1 0.530 | 0.301 | 0.318
10 0.218 | 0.545 | 0.287 | 0.354

Table 3.2: Variation of predictor coefficients with channel noise level for 2-
dimensional PVQ. The predictor coefficients and signal samples are related as fol-
lows: &, = a118p—3 + @198p—2 and Ty 1 = a9 &n_3 + Aod,—o, where T, is is the
predictor output and Z, is the quantized signal samples at time n. In matriz form
(in—l fén)T - A(j\;n—S :&11——2)T-

similarly to the predicted value. A similar observation was also reported in [23]. An
analytical study of the relationship between predictor coefficients and overall mean
square error seems difficult in the case of PVQ. However, such a study for differential
pulse code modulation (DPCM) was presented in [47] (DPCM is the scalar equivalent
of PVQ). There, it was shown that, in the presence of channel errors, the overall MSE
of DPCM can be reduced by reducing the prediction gain, that is, by scaling down

the predictor coefficient of the first-order linear predictor. Our results show that

equivalent conditions hold true in the case of more general PVQ.

C. Effect of Initial TA

We next consider the effect of choosing a good index assignment (IA) for the encoder
to initialize the algorithm. In general, the importance of initial conditions used in the
Lloyd algorithm depends on the nature of the error surface. In order to investigate the
effect of the initial IA on the designs obtained by the proposed algorithm, we compared
the performance of PVQs designed by initializing the algorithm with randomly chosen
IA against those designed by initializing the algorithm with IA optimized to the

channel (using IA algorithm of [40]), and the results are shown in Fig. 3.8 (the
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Figure 3.8: Effect of initial index assignment (N=8, d=3); (a) random IA and (b)
optimized IA.
results have been obtained with hard-decoding). It can be seen that, at some channel
error rates the improvement due to good initial [A is significant (about 1 dB at 2 %

error rate).

D. Performance Under Channel Mismatch

An explicit assumption in COVQ is that the channel is stationary. However, in real
situations this is hardly the case. Furthermore, even if the channel is stationary, one
has to estimate the channel parameters through measurements which contain errors.
Hence, it is of interest to investigate the robustness of the designs obtained by the
proposed algorithm against channel variations. PVQs with rate 1 bits/sample and d =
4 were designed using our algorithm, for discrete channels with error probabilities of

1% and 2%. Fig. 3.9 shows the performance of these two PVQs when the channel error
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Figure 3.9: Performance of PVQs designed using the proposed algorithm under chan-
nel mismatch. The curve for optimal design correspond to the case when design BER
is equal to the actual BER

is varied in the range of 0.5% - 3%. These results indicate that PVQs designed using
the proposed algorithm are robust against moderate variations in the channel error
rate. Simulation results in several other experiments also confirmed this observation.
In the example shown, both PVQs perform close to the optimal design at channel
error rates less than 2%. At 3% channel error rate, the SNR of the PVQ designed for

1% error rate is within 0.5 dB of that achieved with the optimal design.

3.10 Summary

In this chapter, a Lloyd-style iterative algorithm for designing linear prediction-based
PVQs for noisy channels was developed. Based on reasonable assumptions, a set of

conditions for the optimality of the predictive encoder and the decoder, including
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the linear predictor were derived. The algorithm can be used to design both hard-
decoding and soft-decoding PV(Q) systems. Experimental results based on Gauss-
Markov source and AWGN channel were presented. These results indicate that the
PVQs with hard-decoding, produced by the proposed algorithm, perform nearly iden-
tical to those obtained in [22], using gradient-search optimization algorithms. Also,
it was found that PVQ systems with soft-decoding achieved a gain of about 1.0 dB

in overall SNR over hard-decoding systems, when the channel is very noisy.



Chapter 4

Design of Finite-State VQ

4.1 Introduction

A correlated signal source can be quantized more efficiently if the encoder and decoder
are chosen based on the signal values observed in the past. A finite-state vector
quantizer (FSVQ) is a finite-state machine in which a separate encoder-decoder pair
is used in each state for quantizing an input vector, with the state transitions being
determined by the observed past of the input signal. Like PVQ discussed in Chapter
3, this approach also gives good performance with relatively small vector dimensions,
compared to memoryless VQ operating at the same rate. However, FSVQ is extremely
sensitive to channel errors and its performance degrades dramatically under noisy
channel conditions. In this chapter, we investigate the problem of designing FSVQ
for noisy channels. The main contribution is a robust decoding algorithm for FSVQ
operating over noisy channels. An iterative design algorithm for optimizing an FSVQ

system to a given channel is also developed.

66
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Figure 4.1: FSVQ encoder and decoder.

4.2 Finite-State VQ

The idea of FSVQ was first introduced in [49]. In this section, we provide a brief
overview of FSVQ. An extensive treatment of the topic can be found in [3]. A con-
ceptual block diagram of an FSVQ system is shown in Fig. 4.1. Let X,, € R? be
a stationary stochastic process. In response to the input sequence, the encoder pro-
duces both a sequence of outputs (channel symbols) I, € Iy = {1,2,...,N} and
a sequence of states S, € Sx = {1,2,...,K}, where n = 0,1,2,..., and Sk is the
state space. As can be seen from Fig. 4.1, state S, is a process with memory and
summarizes the dependence of the past inputs on the selection of the current output.
In particular, S, determines which codebook out of K codebooks {C;,Cs,. .., Ck}
is used to encode X,,. In effect, an FSVQ is a set of memoryless quantizers with a
selection rule or a next-state function having memory. It is clear that, for an FSVQ to
be effective for a certain signal, it’s next-state function must predict the best (in the
sense of minimizing average distortion) sub-set of N code vectors (state codebook)

from a larger collection of code vectors (all K state codebooks), based on the past
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behavior of the signal. Note the similarity to a predictive quantizer, which can be
considered as an FSVQ with an infinite state-space. Also, an FSVQ may be viewed
as a PVQ with a non-linear predictor.

An FSVQ is a special case of a more general finite state code considered by Gaader
and Slepian [63]. A d-dimensional K-state code is specified by three mappings: en-

coder £, decoder G, and next-state function f as follows;

£ Rd X SK — KN, (41)
G : Iy x SK — C, (42)
[+ In XSk — Sk, (4.3)

where C = UX,C; is the collection of all state codebooks, called the super codebook.
Given an initial state sp and an input sequence {x,}, the encoder produces a channel

input sequence {i,} and a state sequence {s,} according to

in = E(Xn 8n), (4.4)

Snp1 = f(imsn)) (45)

while the decoder produces the output vector sequence {%,} according to

X = G(in, Sn), (4.6)

where n = 1,2,.... Clearly, given the same initial state, the decoder can track the
encoder state sequence, provided that the channel is noiseless (Gaarder and Slepian

[63] refer to such a system as “tracking finite-state system”). An FSVQ is a finite-state
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code with a minimum distortion encoding rule, that is
E(Xn, 8n) = argmin D(x,,, G(i,, sn)), (4.7)

where D(x,%) = [|x — X is the square error. The optimal FSVQ is given by [49)],
[63) i

(€7,0°, £} = arg juf_ Tim > BD(X, ) (4.8)
if the limit exists. The conditions under which this limit exists are mentioned in [49].
In particular, if the input process {X,} is asymptotically mean stationary (ams),
then the joint input-output process of an FSV(Q driven by such a source is also ams
and the given limit exists.

In general, any FSVQ has two equivalent representations: labeled-siates (LS-
FSVQ) and labeled transition (LT-FSVQ) [49] [3]. In the former, every state in the
state space has a fixed and distinct code vector associated with it (its label), which
becomes the output vector when a transition occurs to that state. In the latter, the
code vectors are associated with state transitions so that the same state can pro-
duce different outputs, when arrived at from different previous states. Even though
these two representations are conceptually equivalent, the codes obtained by iterative
code improvement procedures can be very different in each case. The experimental
results seem to suggest that the designs based on LT-FSVQ representation perform
better than those based on LS-FSVQ representation, though the difference may be
considered small [49]. In either case, the critical steps in practical FSVQ design is
the selection of the best next-state rule and the state-codebooks. In general, there
is no known method for finding even a locally optimal solution to these problems.

However, in practice, effective FSVQs (which outperform memoryless VQ) can be de-
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signed by using heuristic based procedures. Such a design procedure can be divided
into three main steps: (1) designing a“classifier” explicitly for source vectors, (2) ob-
taining a next-state function and a set of (initial) state codebooks, and (3) iteratively
improving the state codebooks. The final step is more or less similar to codebook im-
provement in memoryless VQ. Several approaches have been investigated for selecting
a next-state function, which include conditional histogram design, nearest-neighbor
design, and omniscient design {49], [3]. In practice, the omniscient design method has
shown to yield best codes in many applications. A brief description of this method is

given in Appendix E.

4.3 Noisy channel FSV(Q Problem

The successful operation of an FSVQ requires that, given an initial state, the decoder
be able to track the sequence of states produced by the encoder. This can be achieved
only if the the encoder output codewords can be conveyed to the decoder without
any error. In the presence of channel noise, there is a non-zero probability that the
decoder receives incorrect codewords. An error in a received codeword will lead to a
decoder state sequence that is different to the encoder state sequence, a phenomenon
referred to as the “derailing” of the decoder. Since there is only a finite number of
states, the decoder will eventually return to the correct state sequence after derailing,
provided that no more errors occur in-between. Note however that, during an incor-
rect state sequence, the decoder essentially picks the output vectors from randomly
chosen codebooks. This suggests that the FSVQ will be highly sensitive to channel
errors. A comparison of MSE performance of ordinary VQ, PVQ, and FSVQ under
noisy channel conditions is shown in Fig. 4.2. Not surprisingly, the performance

degradation in FSVQ is much worse than that of PVQ (which in fact performs better
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Figure 4.2: Comparison of performance of (a) FSVQ, (b) ordinary VQ, and (c) PVQ
under noisy channel conditions. These results have been obtained with 4-dimensional
V@ of Gauss-Markov source (see Appendiz C) at 1 bit/sample rate, over an AWGN
channel. PVQ used 1° order linear-prediction while FSVQ had 8 states. In all three
systems, index assignment (in the case of FSVQ the algorithm presented in Section
4.8 was used) has been optimized to the channel noise level.

than memoryless VQ even under noisy channel conditions). In PVQ, a channel error
directly affects only the prediction error.

Previously, Hussain and Farvardin [20], [21] studied the design of FSVQ for noisy
channels and considered two approaches. In the first (referred to as NC-FSVQ1),
the encoder state is explicitly channel coded and transmitted. In order to reduce
the additional overhead due to this, the encoder state is transmitted only periodi-
cally. The missing states are then estimated using a maximum a posterior sequence
detection procedure which requires a delay equal to the intervals at which the en-

coder state is transmitted. According to the simulation results (for a Gauss-Markov
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source) reported in [20], this method performed comparably with COVQ when the
bit-error rate was less than 5% and outperformed COVQ by 0.4-0.9 dB at the bit
error rate of 10%. It appears that this method is effective only when the channel is
highly noisy. Furthermore it requires a decoding delay, which can be objectionable in
applications such as speech coding, where FSVQ is a strong candidate. In the second
approach (referred to as NC-FSVQ2), an FSVQ with a restricted next-state function
is designed such that the next-state is solely determined by the previous output of
the encoder. In other words, next-state s, is contained in the first log, K bits of the
channel codeword i,. In order to obtain a rate of R bits per sample, an additional
rate i —log, K bit per sample memoryless VQ is associated with each codeword of the
FSVQ. With the chosen next-state function, an error in a received channel codeword
affects only the following state, and upon receiving a correct channel codeword the
decoder returns to the correct state. The experimental results reported in [20], [21]
indicate that the this approach performs better than the former approach as well as
memoryless COVQ, at channel error rates in the range of 0.5% — 10%. The restricted
next-state rule however has the disadvantage that the number of states K must be
less than or equal to N, the number of code vectors per state, so that, for a given
vector dimension, reducing the quantizer rate also requires reducing the number of
states.

In this dissertation, we propose a new decoder which is robust against channel
noise, for an FSVQ with an arbitrary next-state function. The basis of the approach
is to view the FSVQ decoding problem as one of selecting the minimum distortion
vector X,, from the collection of all state codebooks (i.e., the super codebook), given
the sequence of observed channel outputs. In particular, it is shown that the mini-

mum distortion vector can be recursively computed. An important property of this
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decoder is that it is not a finite-state machine and hence it does not suffer from the
derailment problem. It also has the property that, when the channel is noiseless it’s
performance is identical to that of the FSVQ decoder matched to the encoder. We also
present a complete FSVQ} design algorithm for noisy channels, based on the proposed
decoder. The new decoder can be used with both LS-FSVQ and LT-FSVQ, and the
proposed algorithm can be used to iteratively improve {or “channel optimize”) any
given FSVQ encoder. In our simulations, we used LT-FSVQ encoders and omniscient

design procedure to obtain the next-state rule.

4.4 Problem Formulation

A block diagram of a general FSVQ is shown in Fig. 4.3. First, assume that the
channel # is a discrete memoryless channel (DMC), and let %, and j, be channel
input and output at time n respectively. Then, the channel is described by the
mapping ¢ : Iy — Iy with transition probabilities Pr{J, = jn|I, = .} = pi, ;.. Let

(€s,05) be the encoder and decoder pair associated with the s** state of the FSVQ,

where s = 1,2,..., K. Equations 4.4 and 4.6 can now be re-written as
in = 6sn (xn)’ (4'9)
in = 5§,3 (]n); (410)

where 8, is the state of the decoder. In the absence of channel noise, j, = %, with
probability 1 and hence 3, = s,. Assume that the initial state of the encoder is
S0, and consider a finite-state decoder which also starts from the state 5y = so. Let
Jn denote the channel output sequence (Jo, J1, J2,...,J,). Then, according to the

recursive function in (4.5), the decoder state at time n is a deterministic function of
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Figure 4.3: Block diagram of a finite-state vector quantizer (T is a unit delay).

8o and the channel outputs j,_; = (Jo, j1, 42, - - -, Jn-1), which we explicitly write as

3,(Jn_1, 80). As n — 0o the decoder state machine becomes stationary and hence
82{Jn-1, 80) = 82(Gn_1) for large n. (4.11)

It is apparent that a finite-state decoder is a special case of a more general class of

infinite-memory decoders of the form

ﬁn(jn) = @bn(jna.}n~l) = Tpn(.;n) (412)

In case of a finite-state decoder, %, has the recursive structure 1"Sshown in Fig. 4.3.

In general, the MSE of an FSVQ at time n >> 0 is given by

E{Dﬂ} - E“Xn - Xn”2 ~ E”Xn - 'an(jn)”z
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= o n_.n 2 na—:ndn; 4.13
3 [ G, (419

where p(Xy, jn) is the joint density of X,, and J,. As in (4.8), the overall performance
of the quantizer is measured by the time averaged MSE

D= tim = > E{D;}, (4.14)
i=1

n—co 11 £

assuming that the limit exists.

The problem at hand is to find the encoder-decoder pair (£F5* 4)*), which mini-
mizes the performance measure given by (4.14). We will assume that the next-state
function f is fixed; a good next-state function for the given source can be found
by one of the methods described in [3]. In order to arrive at a Lloyd-style iterative

algorithm, we attempt to solve the following two problems:

e Given a decoder v, determine the optimal finite-state encoder £5*. Since the
next-state function is fixed, this is equivalent to finding the optimal encoder €*

for each state s =1,..., K.

e Given a finite-state encoder £, determine the optimal decoder 9*. If 4, is a
finite state decoder, this is equivalent to finding an optimal decoder o3 for every
state § = 1,..., K. In the case of a general decoder %,,, an optimal decoding

function has to be found for every n.
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4.5 Optimal Decoding for FSVQ

We first consider the optimal finite-state decoder for a given FSVQ encoder. In this

case, the MSE as given by (4.13) becomes

EAD.} = BIXy = Kol = 3050 [ 100 = G Pl o) P, 1),
"o (4.15)
where 8, = f(jn-1, 8n—1). For given FSVQ encoder, E{D,} is minimized if the term
in the square-bracket is minimized for every j, and §,. The optimal decoder for state

5, = s is thus given by

) = argmin [ [, = 8., () PpCkalin = 5, )
s IR
= E{X,|3 = 5,4u}, (4.16)

where the last step directly follows from (A.4). Note that when the channel is noise
free, 3, = s, and j, = i, and the optimal decoder in (4.16) simply gives the centroid
of the ¢§* cell in the encoder partition of state s,. The major shortcoming of this
decoding scheme in the presence of channel noise is that 7, # i, (due to channel
errors) leads to $u41 = f(Ju, 8n) # Snt1, which causes the decoder state machine to
lose synchronism with the encoder state machine. We next propose a more robust
decoder for a given finite-state encoder.

Given a finite-state encoder £ and a decoder 1, the MSE at time n is given by

B = 30 [ [ Itn = bullPptosalfedeen| PG, (417)
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and it follows that the optimal decoder in this case is given by

Vi) = avgmin [l = GO0l i
¥n R

= D B{Xulsn, i} P(sn, inla), (4.18)
In this expression, E{X,|sn, i} = 8s.(i») is the centroid of i** cell of the encoder par-
tition of the state s,,, which is independent of the channel, where4,, = 1,2,..., N and
s, =1,2,..., K. Posterior probabilities P(s,,%,]7,) on the other hand are functions
of both encoder and channel. Note that if the channel is noiseless, P(sp,%x|7n) = 0
for all but the correct (s,,1,) pair and the decoder output is the centroid of the it*
cell of the encoder partition of state s,,. We now show that the posterior probabilities
P(8p,%n|7n) can be recursively computed.
Define the set of all (s,_1,%,_1) pairs which lead to the state s, = s as u(s) =

{(Sn—lain—l) : f(Sn-lain—I) = 3}- Then

P(Sn:inljn) - ZZP(Smin)Sn—hin—ign)

Sp—11tn—1

= Z P(in,sn—-l;z‘n—lljn)

#(sn)

1 . . -
= G5 Z P(stn—laln—la]n)- (419)
Pln) i

Now consider

ZP(im Sn—lain—l;in) - Z P(jnhn:sn—lsin—la.}n—l)P(imSn—hin—lajn—l)
#(s) #(sn)
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= P(julin) Y Plin|Sn-1,in1,In-1)P(Sn-1, in1, jn1)
#(sn}

- P(.?nl'ln) Z P(inlsn—-lain—l)P(Sn—lain—ll}n—-l)P(;n—i)
#(sn)
- Fn(smin)P(jn—l)a (42{))

where we have used the fact that, for memoryless channel P(j,|in, $5-1,%n-1, Jn-1) =
P(Jnlzn) = Pinin and

Fn(sai) = P(jn"zn - Z) Zp(zn = i':lsn—la"‘:1't~—1)13(5n—13in—lljn—l)- (421)

(s}
Now, noting that

P(.}n) = ZZ Z P(in)sn—hin—la.}n)

sn in pisn)

- ZZFn(Sn,’L‘n)P(}n_I), (4.22)

Sn  in

we obtain the desired recursive equation

) .= (s, 1)
Au(s,2) = P(s, = 8,1, = i|j,) = , 4.23
(s,4) = P( |7n) SE S p (4.23)
where
Tn(8,8) = P(fnlin =) Y Plin = i|8n-1,in-1)An-1(s, ). (4.24)

#{s)

In (4.24), the probabilities P(i,|8,_1,%n_1) depend only on source statistics and
the encoder, and hence can be computed for a given source and an encoder. The
optimal decoder given by (4.18) can now be computed recursively, as shown in Table
4.1. A block diagram of the decoder is given in Fig. 4.4.

A noteworthy feature of the proposed decoder is that it is not a finite-state ma-
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Inttialization: Assign initial values to Ag(s, 1),
s=1,2,...,Kandi=1,2,...,N and n « 1.
Step 1 Given the observed channel output j, compute I',,(s,1),

s=1,2,....,Kandi=1,2,..., N using (4.24).

Step 2: Compute A,(s,i1) s=1,2,...,Kandi=1,2,...,N.

using (4.23).
Step & Compute decoded output as %, = S~ SN g8 An(s,1).

Step 4 n 4 n+ 1 and goto Step 1.

Table 4.1: Recursive computation of FSVQ decoder in (4.16).

chine. It may be viewed as an infinite-state machine, with P(s,,i,|7,), s, = 1,..., K
and i, = 1,..., N being the state (see Fig. 4.4). In the absence of channel noise,
the optimal reproduction vector for i* cell in the encoder partition of the st state is
given by E{X,|s,,4,} (centroid condition). Note that decoder in that case observes
i, and is able to derive the exact value of s, from the sequence 4,_1,%p_o,.... When
the channel is noisy, the decoder observes only a noisy version 7, of i, and the exact
value of s, cannot be determined. Hence, the optimal decoding rule, in the sense of
minimizing the MMSE, is to compute the most likely value of E{X,]|s,,i,}, given
the channel output sequence j,,jn—1,..., as given by (4.18). Instead of recursively
computing the encoder state s,, the decoder recursively computes the posterior prob-
abilities P(8q,%n|jn, jn-1,...). It is also worth noting that this decoding algorithm
assumes a general FSVQ encoder and hence is applicable to both labeled-state and

labeled-transition types.
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Step 1 Step 2 Step 3
j’n P(Saiﬁn) _ Kn
—— Fn(Ssi) 1 An(s;i) ‘ » E{anjn} >
P(s, il.}n—l)

Delay K———— | E{Xp|s,i}

Figure 4.4: A block-diagram representation of the recursive degoder in (4.16). It may
be viewed as an infinite-state machine with the state P(s,,1i,]7,), 5n = 1,..., K and
in=1,...,N.

We next consider the computational complexity and storage requirements of the
decoding algorithm shown in Table 4.1. Step 1 requires N Z{il |ee(s1)| computa-
tions, where |u(s;)| is the cardinality of the set u(s;) . Since there are N possible
transitions from each of the K states, Zfil li(s1)| = KN. Hence, the algorithm re-
quires (ignoring the normalization in Step 2) KN? + KN ~ KN? computations
for N >> 1. The algorithm requires the storage of the set of all encoder cen-
troids g,(i), s = 1,2,...,K, ¢ = 1,2,..., N and the probabilities P(in]sn—1,%0-1)
in-1,tn = 1,2,...,N and s,y = 1,..., K. Hence, the total storage requirement in

terms of floating-point variables is KN? + KN ~ KN? for N >> 1.

4.6 Optimal Encoder

The optimal encoder partition for each state, given a next-state rule and the decoder
derived above is considered next. Let €,(x) be the encoder associated with the state
s. That is

a(x) =i & x € Q,(i), (4.25)
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where UY ,Q, (i) = R?

and NY,Q.(i7) = @. Such a mapping of course has to be chosen

so that the average distortion of the resulting system is minimized. To this end,

consider the MSE of the system with a finite-state encoder and the decoder derived

in the previous section. From (4.13), MSE for n > 0 can be expressed as

E{|IX, ~ Xal*}

~ [ d Z % — YaGa) 2P (%0, Go )

Z/ Z lxn 1/)71 jﬂ)“2p(xna.7n|5naZn)P(Sn,Zn)dxn

Sniyin

> [ Z 15 — G (G) 2P Gl 1) (X Sms i) P (5 )5

Snyin

ZP(sn/ ann A AR CAPRY

Snyin Qap (in)

S P(sa) / B (1% — KoalPlm in}p(0] 50)d,

where we have used the fact that

Snytn an (in)
(4.26)
p(x,|s)/plils) x, € (7
oo = 4 PRIV ) wam
0 elsewhere.
Given %X, = 1,(j,), the optimal partition for state s at time n is given by
ei(x,) = arg min E{||x, — X, |*|s, ¢} (4.28)

However, as the decoder %, is time-varying, the optimal encoder for state s obtained

in this manner is also time-varying. In order to obtain a time-invariant encoder

partition for every state s, we define the distortion measure to be minimized as the
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time average

!
1 n
D, s(3) = 1{1}1& 7 E E{lx, — Xu?sn = 8,8 = 1, %, = X}, (4.29)
=1

assuming that the limit exists. This limit exists if s, is an ergodic Markov chain.

Then, the optimal encoder partition for state s is described by

I
* iy .1 e
&(x,) =1 <= 11_1)123 7 ,?:1 E{|lx, — X,||*|sn = 5,1n, = 1}
!
. 1 o 2 _ - .
< ziiglof ,?:1 E{llx, — X,||*lsn = 8, =k} VE#i
(4.30)

for every x,, € R?. Define

!
1 ~
a;(s) = lim = E E{X,|sn = 8,1y = i},
n=1

=0

!
1 ~
bi(s) = [1_1)1};?5 E{|X,Plsn = 8,40 =14}, i=1,...,N, s=1,...,K.
n=1

The optimal encoder for state s can be given in the form
e5(%,) =1 <= bi(s) — 2a] (s)x, < b(s) — 2a (s)x, V k #1. (4.32)

Since the encoder output sequence depends on the past inputs, the parameters
{ai(s),bi(s)},i=1,...,N and s = 1,..., K cannot in general be computed without
considering an entire sequence. In the iterative design procedure to be presented

shortly, these parameters may be computed using training sequences as follows. Let
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{z(t 1)} and {s(t 1)} be the encoder output and state sequence respectively, generated
in the (¢ — 1)* iteration. Then, the values of encoder parameters (given the decoder)

in #** iteration is computed as

48 — (t) (t-1) _ ¢ ;0-1) —
a,'(s) = nTLwZZ 1(s,, " = 5,4, 7 = 1),

8§, n=1

Bgt)(s) = 0218V = s, i = ), (4.33)

Sl n=1

where 1(.} is the indicator function, L;, is the number of times the state s and the
index ¢ occurred at the same time in the sequences {i' "} and {s¢ ™}, and ny is

the size of the training sequence representing the source.

4.7 Design Algorithm

The encoder and decoder derived above can be used to iteratively design a complete
channel optimized FSVQ from a training set of source vectors. The basic algorithm
follows the same philosophy as the GLA. In this thesis, we have not considered the
optimization of the next state-rule to the noisy channel conditions. Instead, a given
finite state encoder (with a fixed next state rule) is optimized to the channel. At
this point we note that the optimality conditions used here do not guarantee a lo-
cally optimal solution as in GLA, i.e., we do not necessarily obtain a monotonically
decreasing sequence of distortion. However, the experimental results presented here
indicate that, in terms of convergence properties, the algorithm exhibits a behavior
similar to that of the noisy channel PVQ design algorithm described in Chapter 3.
More importantly, we demonstrate that the finite state codes designed by this algo-
rithm are robust against channel noise and give a performance superior to that can

be achieved with memoryless COVQ operating over the same channel, at the same
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rate.
Let {x,},Z, be a training set drawn from the source. The quantizer is designed

to minimize the empirical MSE given by

~ 1 RpL N o \
D = 2 2 = s A0 (4.3
where Jum = (Fims Joms - - - » Jum) a0A {Fum }oZ | is the channel output sequence obtained

by transmitting (over a simulated channel) the encoder output sequence for the m**
time, m = 1,...,n3 and Ag is the initial state of the decoder. In order to start
the algorithm, we require an initial encoder, i.e., a next-state rule, a set of encoder
partitions for each state, and an index assignment (IA). While one could use an
arbitrary IA, a method of obtaining a better choice is presented in the next section.
In each iteration of the algorithm, the encoder partitions and the decoder are changed
such that the average distortion is reduced. A next state-rule (which will not be
changed by the algorithm) and a set of initial state-encoders can be obtained by
any of the approaches described in [49]. However, the performance of the final code
resulting from different methods may differ considerably. In our experiments, we
used the omniscient labeled transition (OLT-FSVQ) method as it has shown to yield
best codes for noiseless channels [49]. For the sake of completeness, a brief synopsis of
OLT-FSVQ design procedure as we used it here, is given in Appendix E. Let {al(o)(s),
bgo)(s)}, t=1,...,N, s=1,..., K be the parameters of initial state encoders. Also
let the superscript (k) denote the values of the various parameters in the k** iteration.
The complete design algorithm is presented in Table 4.2.

A key issue related to the given algorithm is its convergence. We have not at-
tempted to prove the convergence of the algorithm and we note that the arguments

used in the context of ordinary GLA cannot be used with iterative design algorithms
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Step 0. Given: {agﬂ)(s), bgo)(s) N ., and training set {x,}"T,.

Compute encoder output sequence {islo) I

decoder parameters PO (iy)s,_1,%,_1), and g (i),

Inyin_1,2=1,...,N, s,,8s=1,..., K.

k0.
Step 1:  Compute distortion D® using (4.34).
If convergence criteria are satisfied stop; Else let & « &k + 1.
Step 2 Compute encoder parameters {agk)(s), bf.k)(s)},
i=1,...,N,s=1,..., K using (4.33).
Step 8 Compute decoder parameters P*)(i,|s,_1,4,_1) and ggk)(i),
imyinayi=1,....N, sp,6=1,... K.
Step 4: Update encoder output sequence {islk)},’;’il.

Repeat from Step 1.

Table 4.2: Proposed noisy channel FSVQ design algorithm.

for FSVQ [49]. However, to our satisfaction, the algorithm always appeared to con-
verge, at least in mean, to a local minimum in all our simulations. The variation of
distortion in a typical run of the algorithm is shown in Fig. 4.5. This behavior is
similar to that of the noisy channel PVQ algorithm described in Section 3.7 (see Fig.
3.3). We can use similar criteria to stop our FSVQ algorithm as well, which proved

to be quite successful in our simulations.
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4.8 Index Assignment

In this section, we consider the problem of good 1A in the context of FSVQ. Such
an JA can be used to initialize the FSVQ design algorithm presented in Table 4.2.
The main result obtained in this section is a distortion measure which can be used
with the TA algorithm presented in [40]. The basic idea is to separate channel dis-
tortion from quantization error, and to solve the combinatorial optimization problem
of determining the mapping from the set of encoder indices to the set of channel
codewords, which results in minimum average channel distortion. Deriving an ap-
propriate channel distortion measure for the recursive decoder introduced above is
difficult. Hence, we find instead the optimal A for an ordinary FSVQ decoder, which
is a much simpler problem. It can be expected that such an IA will also be effective
with the decoder proposed above.

Consider the FSVQ system shown in Fig. 4.3. It can be shown that (see Appendix

D), the overall MSE of the the system can be written as
E||X, — X,|I* = Dy + D¢, (4.35)
where

Do = PG [ e gl plxidsix, (4.30)

enlin

Do = Z Z P(gnlS”)P(jnlin)P(Sn)”gSn(in) - 5‘(n(émjn)lPPSn("':n)a

Smytn $nyjn

(4.37)

and g,(4) is the centroid of the i* encoding cell Q,(i) of the s state, s = 1,..., K

and ¢ =1,...,N. Dg represents the average MSE in approximating x, € Q,,(i,) by
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8, (i»} and hence can be considered as the quantization error, which is independent
of the channel. D¢ on the other hand is the MSE due to using %,(8,, 7,) instead of
8, (in) for the reconstruction of x,, € Q; _(i,), and is therefore can be considered as
the contribution from channel noise to the overall MSE. Clearly, only the latter is
affected by the assignment of channel codewords, that is both P(3,]s,) and P(j,|i,)
depend on TA.

In order to formulate the IA problem here, we view the FSVQ encoder as a
mapping of the state-index pair (s,4),s =1,...,Kandi=1,..., N, toa channel code
consisting of N binary codewords, i.e., Sg x Iy — By, where By = {b1,bs,...,bx5}
is the channel code. In other words, we have to find an index assignment (s, ) such
that, if w(s,7) = m, then b,, € B is the channel codeword transmitted for index %
of state s. Given some 7(s,), the conditional probability P(j,|i,) in (4.37) can be
written as

P(]nhn) = Pr(sn,in)m{én,n) (438)

where py, k,0 = 1,..., N, are the channel transition probabilities. We note that
there are N! different ways of mapping the index set of each state encoder to the
channel code and therefore K(N!) different possibilities for m(s,i). The problem
here is to choose, out of these K{N!) possibilities, the one which minimizes D¢ in
(4.37). It is practically impossible in most cases to find the optimal mapping through
an exhaustive search. A popular method for solving the IA problem is by using
simulated-annealing. The idea was first proposed by Farvardin [40] for memoryless
VQ. We adapt the same algorithm for FSVQ with two minor modifications; (i) the
objective function is replaced by D¢ in (4.37), (ii) the “state” of the system being
annealed (completely different to the encoder state!) is defined as the choice of

the mapping 7 and a perturbation of this state is defined as an interchange of two
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randomly chosen indices in a randomly chosen encoder state s. Other details of the

algorithm can be found in [40].

4.9 Soft-decoding

The recursive decoder and the FSVQ design algorithm presented in the previous
sections can be extended to soft-decoding with simple modifications. It is of interest
to investigate the performance improvements that could be obtained by using analog
channel outputs in the proposed recursive decoder. In particular, the soft-decoding
can further reduce the effect of error propagation in the receiver.

Let Y, € RY denote the channel output vector at time n (see Section 2.2) and
let Yoo1 = (Y1,...,Yn1). Then, based on the result in (4.18), we can write the

optimal soft decoder as

E{Xn|§na yn} = E{Xn|yn}

= DD E{Xalsu,in} P(sn inlF0). (4.39)

Sn in

The derivation of the iterative decoding algorithm follows the same steps as in the
hard decoding case, with the exception of the channel transition probabilities being
replaced by the conditional densities p;(y), defined in (2.12), ¢ = 1,..., N. Hence,
the algorithm in Table 4.1 is still applicable with the re-definition of I',, and A,, as

follows:

Aa(8,8) = Plsn = 8,in = i|yn), (4.40)

Lo(s,8) = pilyn) Y Plin = i|su1,in-1)An_1(5,%). (4.41)
p(s)
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The MSE of the system at time n is given by

B{IX, - X.|*} = Z P(sn)/ Ex {l1%n — Xall*[5n, tn }p(Xn|80)dXn,  (4.42)

Snyin ﬂ'-"n("n)
where %, = >~ > . g:(1)A.(s,7) and
Eﬁfl{llxn - }A(nnzlsmin} = -[{d l|xn — }A(n”zp(knlsmin)din- (4.43)

The decoder parameters are still given by (4.33) and the empirical distortion is given

by
. 1 tar N .
D= n— Xn(Vam, A ; 4,44
a2 2 = T )| (444)

4.10 Experimental Results

In this section, we investigate experimentally the performance of FSVQ designed
using the algorithm introduced in Section 4.7. The source, channel, and performance
measure used in these experiments are identical to those described under Section 3.9.
To summarize, we use the Gauss-Markov (G-M) source with correlation coefficient
of 0.9, the AWGN channel (DMC equivalent used for hard decoding), and the SNR
performance measure. Our experimental results are based on LT-FSVQ, whose next-
state rule was obtained by omniscient design approach described in [49]. As mentioned
earlier, the next-state rule is purely based on source statistics and is not optimized
for the channel.

We first investigate the effectiveness of the IA, obtained by the optimization pro-
cedure suggested in Section 4.8. In order to do so, we compare in Fig. 4.6, the
performance of a given ordinary FSVQ (designed for a noise-free channel) on a noisy

channel with random IA (curve a) and optimized IA (curve b). Theses results were
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Figure 4.6: Performance improvements due to proposed FSVQ design approaches com-
pared to an ordinary FSVQ on Gauss-Markov source and AWGN channel. (a) FSVQ
designed using OLT-FSVQ algorithm for noise-free channel, (b) FSVQ in (o) with IA
optimized to channel noise-level, (c) FSVQ in (a) with proposed decoding algorithm
(hard-decoding), and (d) channel optimized FSVQ (with hard-decoding) obtained with
proposed iterative algorithm, using system in (a) as the initial system. In this ezample
N=16,d=4, and K = 8.

obtained with a 4-dimensional, 8-state FSVQ. We note that in this example, proper
IA improves the performance on the average by about 0.8 dB in SNR at higher channel
bit error rates (BER). In Fig. 4.6 curve ¢ indicates the performance of the proposed

decoding algorithm (with hard-decoding) with the same FSVQ encoder. Finally curve
d shows the performance of COFSVQ (with hard-decoding) obtained by iteratively
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improving the given FSVQ to channel noise level using the algorithm in Table 4.2.

In our main experiments, 4-dimensional FSVQs with 8 states (d = 4,K = 8)
were designed for G-M source and AWGN channels with varying levels of noise. In
the case of hard decoding, a binary DMC was obtained after MAP detection, as
described in Section 3.9. The designs were carried out using a training set of 50,000
vectors, while the testing was based on a separate set of 50,000 vectors from the same
source. In order to average over channel noise density, 50 realizations of the channel
noise sequence was used in soft-decoding experiments. The dramatic improvement in
performance achieved by the proposed FSVQ designs over ordinary FSVQs on noisy
channels is demonstrated by the example shown in Fig. 4.6.

Comparisons of performance of proposed channel optimized FSVQ (COFSVQ)
designs with that of memoryless COVQ are shown in Figs. 4.7, 4.8, and 4.9. Some
of these plots also include performance of memoryless COVQ at the same rate and
dimension for comparison. Also included in some plots are the performance of NC-
FSVQ2 designs (with 8 states) reported in [20] L. In these plots, the channel noise level
is indicated in terms of CSNR defined in (3.42) and BER defined in (3.41). In general,
COFSVQ appears to outperform memoryless COVQ in all cases considered. It is
interesting to note that at low channel noise levels COFSVQ degrades much rapidly
than COVQ. However, as the noise level is increased COFSVQ degrades slower than
COVQ, and at very high noise levels COFSV(Q maintains a gain of about 0.8-1.0 dB in
SNR over COVQ. Comparisons with NC-FSVQ2 of [20] in Figs. 4.8 and 4.9 show that
NC-FS5VQ2 method performs better than COFSVQ with hard-decoding (NC-FSVQ2
is a hard-decoding based method) at high CSNRs, even though the situation appears

to reverse as the noise level increases. Note also that COFSVQ with soft-decoding

1These values were approximately read-off the graphs shown in [20]; actual numerical values have
not been reported.
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Figure 4.7: Performance comparison of various noisy channel FSVQ schemes for
Gauss-Markov source (p = 0.9) at 2 bits/vector, d = 4 and K = 8 (8-states): (a)
proposed algorithm (hard-decoding), (b) proposed algorithm (soft-decoding), (c) mem-
oryless COVQ with hard-decoding, (d) and memoryless COVQ with soft-decoding.

outperforms NC-FSVQ2, particularly at high noise levels.

4.11 Summary

In this chapter, the problem of designing FSVQs for noisy channels was studied.
We have proposed a robust, time-recursive decoder for optimally reconstructing the

output of an FSVQ encoder, observed through a noisy channel. Experimental re-
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Figure 4.8: Performance comparison of various noisy channel FSVQ schemes for
Gauss-Markov source (p = 0.9) at 8 bits/vector, d = 4 and K = 8 (8-states): (a)
proposed algorithm (hard-decoding), (b) proposed algorithm (soft-decoding), (c) mem-
oryless COVQ with hard-decoding, (d)memoryless COVQ with soft-decoding, and (e)
NC-FSVQ2 results from [20].

sults were used to demonstrate the effectiveness of the proposed decoder. In contrast
to a finite-state decoder, the proposed decoder exhibits graceful degradation of per-
formance with increasing channel noise. The algorithm was also extended to soft-
decoding. We also considered the iterative optimization of encoder and decoder for

designing channel optimized FSVQ. Additionally, we derived a simulated-annealing

based procedure for obtaining a good index assignment for state codebooks, which can
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Figure 4.9: Performance comparison of various noisy channel FSVQ schemes for
Gauss-Markov source (p = 0.9) at 4 bits/vector d = 4 and K = 8 (8-states): (a)
proposed algorithm (hard-decoding), (b) proposed algorithm (soft-decoding), (c) mem-
oryless COVQ with hard-decoding, (d) memoryless COVQ with soft-decoding, and (e)
NC-FSVQ2 results from [20].

be useful in initializing the iterative design algorithm. Simulation results based on a
Gauss-Markov source and the AWGN channel were presented and it was shown that

robust FSVQ designed by methodology introduced in this chapter can outperform

memoryless COVQ operating at the same rate.



Chapter 5

Soft-decoding VQ for Channels

with Memory

5.1 Problem Statement And Motivation

In the VQ design problem introduced in the Chapter 2, a simple additive noise model
was assumed for the channel. In this chapter, we consider the design of VQ for a

general class of channels characterized by the model

Yo = f(smsn—la tey SnﬁM) + Wa, (51)

where M > 0 is called the channel memory, f is a deterministic mapping such
that f : RM+DL — R and w,, € R is additive channel noise. According to this
model, the channel output at a given symbol interval is “interfered” by M previous
inputs to the channel, a phenomenon commonly referred to as intersymbol interference
(ISI). A main cause of such interference is the limited bandwidth of the physical

channel which causes the signal transmitted during one symbol interval to spread

96
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in time over several symbol intervals. In addition, ISI can also be caused by non-
linearities in a communication system. For example, digital satellite systems often
utilize amplifiers operating at or near saturation for better efficiency [64]. A general
model for bandpass, non-linear channels is the Volterra series representation given by

[65], [64].

an an(l)'i‘ZZZSn n18n—nyS;,_ nquglzgna

nz n3

+ZZ an n1Sn-n3Sn—naSmon;Snons Hiohs e + oo+ W, (5.2)

where H (?ﬁz 1)11% . are the complex Volterra coefficients. We note that the first term
represents the linear distortion, the second term the third order distortion and so forth
for higher order distortion {(even order terms are ignored as they generate spectral
harmonics outside the channel bandwidth). A special case of this channel is the linear
channel in which all coefficients except H,(fl) are zero.

In digital communications, a variety of methods exist for dealing with ISI. These
methods are commonly known as channel equalization, the objective of which is to ob-
tain an equivalent memoryless channel by appropriately processing a sequence of out-
puts from an ISI channel. If the equalizer provides discrete outputs, a hard-decoding
COVQ can be designed for the equalized channel, using the procedure described in
Chapter 2. However, it is well known that a considerable performance improvement
may be achieved by using soft VQ decoders [25], [32]. The soft-decoding problem for
channels with memory can be considered as a generalization of the MMSE channel
equalization problem. A linear channel equalizer is a linear filter whose coefficients
are found by MMSE estimation techniques [62]. Other work on MMSE equalization

using non-linear filtering may be found in [65], [66], [67]. As we shall see, a soft VQ
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decoder may be considered as a non-linear time-invariant filter.

5.2 Optimal Soft-decoding

Referring to Fig. 2.2, the sequence of source vectors {X,} is mapped to the channel

vector sequence {S,}, which is then observed through a noisy channel. The overall

W,
Xn Yn XTI.

_— e —> Decoder

Figure 5.1: Soft-decoding viewed as an estimation problem.

mapping from the encoder input to the channel output is a non-linear mapping with

memory, which can be written as (see Fig. 5.1)
Yo = @(xn:---sxn—M)+wn- (53)

Let ¥ = {y,} denote the observed channel output sequence, whose length can in
theory be infinite. Also, let p(x,,Y) be the joint density function between source
vector X, and Y. If the decoder produces its output %, after observing Y, the mean

square error of the system is given by

/Rd ./Rd %0 — X (V)Pp(%n, Y )dx, d%,. (5.4)

The optimal soft-decoder is a function %%(Y) which minimizes this error. The de-

termination of the optimal decoder is an MMSE estimation problem, the solution to
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which is the conditional mean estimator (See Appendix A)

%0 = B{X,|7). (5.5)

Clearly, if such a decoder is to be of practical interest, ¥ must be a truncated se-
quence. Apart from restrictions imposed by obvious computational difficulties, in
most applications (e.g., speech or image coding for on-line communication), there are
restrictions on the allowable delay. Hence we focus on optimal decoding subject to a
constraint on decoding delay.

A typical approach to dealing with the estimation problem in (5.5) is to use a
sequence of the form Y, = (yi,..., ¥, ... ,¥atk), where k is the decoding delay. In
the terminology of estimation theory, this problem in is referred to as filteringif £ = 0
and smoothing if £ > 0 [51]. In general smoothing results in more accurate estimates
than filtering as more observations closer to the time point n are used in the former
than the latter to estimate X,,. However, this gain can only be obtained at the cost
of increased decoding delay and complexity. When a constant delay & is used for all
n, the resulting smoother is referred to as a fized-lag smoother [51]. In general the
formulation of the problem in this manner leads to a recursive solution. For example
if the mapping from X, to Y, is linear and if the two process are jointly Gaussian, the
problem can be solved recursively using the Kalman filter [51]. This approach is not
applicable to the system that we consider, due to the non-linear mapping involved in
the VQ encoder. However, the fixed-lag smoother can be implemented in a recursive
manner in the context of soft VQ decoding as well. The approach has previously
been investigated in [31], [32], [33] and we consider this approach in the next section.
In the rest of the chapter, we investigate a sliding-block smoothing solution to the

soft-decoding problem [68], [69]. A useful property of the resulting decoder is that
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it is a time-invariant filter, which allows us to estimate the optimal decoder using
training data, much the same way MMSE channel equalizers are estimated. Also we
will show that the optimal sliding-block decoder can be well approximated by a linear

filter when the CSNR is small.

5.3 Recursive Soft-decoding

Consider the soft-decoder of the form

}Ac:z = E{X?1]y11y2a v ayn+k}

= ZE{XH'§n+ka?n}P(§n+k|?n)

Sptk
= ) B{Xu[Snsk } P(Snsil V). (5.6)
Sntk
where S,1t = (Sn_114ss---,Snsx)T. In the above expression, the terms E{X.|8n4r}

depend only on source statistics and the encoder, while the posterior probabilities
P(8,4%|Y,) depend on the observed channel outputs. As the number of terms in the
sum is a function of time, the evaluation of this expression is clearly impractical.
However, if we make some assumptions about the encoder output {S,}, it is possi-
ble to obtain an expression that lends itself to recursive computation. Consider for

example that, if {S,} is assumed to be an iid process, (5.6) simplifies to

N
E{an?n} = ZE{Xn|ai}P(ai!Yn)a (5.7)
i=1
where E{X,|a;} i =1,..., N are simply the encoder centroids. A more useful model
for the encoder output process is the first-order Markov model. Specifically, if we

assume that both {X,} and {S,} are Markov the following assumption is reasonable
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[32):
E{ans—M+1: e )Sn-i-k} = E{Xn|sn—1: s 7Sn+k}- (58)

Then, the expression in (5.6) reduces to

Nk+2
E{Xa|V2} = ) B{X. VP P(vOIT,), (5.9)
i=1

where V,, = (Sn1, ..., Snys)T and v denote the it* permutation of (k + 2)-tuple of
N-ary vectors S € {ay,...,an},, i = 1,..., N**2 The residual redundancy [52] in the
channel input due to correlation in the encoder output can be utilized as protection
against channel distortion at the receiver by an appropriate design of the decoder. The
iid assumption made in (5.7) clearly ignores the residual redundancy in the encoder
output. In (5.9) vectors E{anvg)}, i=1,...,N*?2 define a set of centroids based
on the index sequences v,(f), which we will refer to as extended centroids'. Clearly
(5.7) is a special case of (5.9); the latter reduces to former if the encoder output is
iid. If the encoder output is correlated, a block of output indices V,, defines a higher
resolution partition of R? than a single output index S,,, and the decoder in (5.9)
provides improved MSE performance compared to that of (5.7). However, as shown
below, this improvement comes at the cost of increased computational complexity.
In (5.9), the only quantities which need be evaluated for every channel output are
the posterior probabilities P(v{?|¥,). It can be shown that PVRIT), i =1,2,...
can be updated recursively from P(v,(:llfffn_l), i =1,2,... [50], [32]. This leads to
a recursive algorithm for soft decoding, which may be viewed as an extension of the

symbol-by-symbol MAP channel equalization algorithm of Abend and Fritchman [50].

We note here that this algorithm requires the knowledge of the conditional density of

1Skoglund {32] refers to these as multi-centroids.

raratyiaranar B
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the channel output, given the channel inputs. Simulation results reported in {32] based
on this approach show that for channels with severe ISI, soft-decoding can provide
a significant performance improvement over hard decoding. A major drawback of
the recursive soft-decoding algorithm is that, it’s computational complexity grows as
O(N*+3) for k > M (O(NM*2) for k < M). Note that the decoding delay & has to
be increased with channel memory M. Hence, this decoder becomes impractical for

channels with larger memory or quantizers with higher rates.

5.4 Sliding-block Decoding

When the input process and the channel have finite memory, it can be assumed that
the dependence of X,, on Y, decreases as |n — m| is increased. More specifically, we

will assume that

P(Xth NS £ £725 P ) =~ p(xmyu—Ku TR L TR :yu+K2)a (5'10)

for n > 1, where K; and K are some positive integers. This leads to the sliding-block

smoother (or sliding-window smoother) given by

Xn = E{Xu|Yn-kis s ¥ s Ynika }- (5.11)

Given that source and channel are stationary, the sliding-block smoother is a time-

invariant (fixed), non-linear function ®(.) of the observed vector

Un = (Yn~K1) v :Yns sy Yn+K2)T)
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where Y,, € RY. That is
$ ; R HKADL _y pd, (5.12)

We will refer to the soft-decoder based on (5.11) as the sliding-block decoder. 1t is
illustrated in Fig 5.2. Note that K is the decoding delay. The “block-size” in channel

vectors is Ky = K1 + Ky + 1, which is also the total memory of the decoder.

Yotke T _ T Yn - T You—-K,
4 u, Y ‘l
&
. X,

Figure 5.2: Sliding block decoder (T is a unit delay element).

Let Vi, = (Sn—ky—a)- - Snik,)? . Then, noting that the sub-sequence of channel
outputs U, conditionally depends only on the sub-sequence of channel inputs V,,, we

can express the sliding-block decoder as,

qﬁ(un) = E{Xn|un}
= Y E{X,v¥,u ) P(v|u,)

> E{X, v p(u vy P(viD)
3 p(ua v P(v )
Y gp(u v P(v)
Y p(u vy P (513)

where g} = E{X_|v{?} and i = 1,..., N¥o+M_Ip (5.13), the only term that depends
on the channel is the conditional density p(unlv,(f )), which can be computed from the

channel noise density, if channel input and noise are assumed independent. On the
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other hand, the set G = {g}} in this case defines a set of extended centroids of the
encoder, whose size depends on Kjy. That is, they are centroids of the partition of R?
based on Ky + M consecutive outputs from the encoder. When the encoder output
is correlated (there is residual redundancy), the cardinality of G is larger than N. It
is apparent that the optimal sliding-block decoder given by (5.13) simply computes
the conditional expectation of a set of extended centroids, given the augmented out-
put vector u,. Hence the advantages of the sliding block-decoder are two-fold: (i) it
uses residual redundancy (if any) by using the knowledge of an extended set of cen-
troids, and (ii) it compensates for channel spread by using an augmented observation
vector. The performance of the sliding-block decoder depends on its memory span,
determined by the block-size K. On one hand, increasing Ky can be expected to
improve the MSE performance of the decoder, albeit increasing the complexity of the
decoder mapping ¢. On the other hand, the finite memory properties of the source
and channel suggest that a finite, and possibly a small value of K, may be practically
sufficient to obtain all the improvements achievable with having memory in the de-
coder. Hence, we wish to investigate the dependence of overall MSE performance on
the block-size K. At this point, it may be conjectured that the optimal value of K
should depend on channel characteristics and the amount of correlation in channel

input process.

Example

We present here numerical results obtained by applying sliding-block decoding to the
output of a VQ encoder transmitted over a linear Gaussian channel. We consider
two sources; Gauss-Markov (G-M) source with a correlation coefficient of 0.9 (see

Appendix C) and iid Gaussian source. The former is a highly correlated source and
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results in a considerable encoder residual redundancy, while the latter leaves very
little residual redundancy. Here, we restrict our attention to two-dimensional vector
quantization (d = 2) at the channel rate of 1 bit per source vector (N = 2) and
binary channel signaling. That is, we have a binary quantizer operating at the rate
of 1 channel use per source vector. This situation allows us to analytically compute
the decoder output and hence measure the performance of the sliding-block decoder,
without resorting to function approximation. The binary channel has the impulse
response hy = 0.407,h; = 0.815,hy = 0.407 and a memory of M = 2 (See (5.22)).
The performance of sliding-block decoding was evaluated by simulating the source
and the channel. The SNR of the quantizer with decoding block-size K| bits® for
different channel noise levels and for different values of Kj is shown in Figs 5.3 and
5.4. The channel noise level is measured here by the channel signal-to-noise ratio

(CSNR) defined as

h2 + b2 + B2
10logy, (ﬂ’i&%il) dB. (5.14)
W

Clearly, the largest improvement in performance is achieved by increasing the
Kp from 1 to 3 bits in both figures. It is also noticeable that the relative gain in
performance achieved beyond Ky = 5 bits is small. Interestingly, this value of K
corresponds to Ky = K, = 2 bits, which is also the memory of the channel. In the
case of iid source, none of the decoders are able to achieve a performance close to ideal
channel performance on the given channel, except at very high CSNRs. In contrast,
in the case of G-S source, all decoders with non-zero memory achieve a performance
superior to that of an ideal channel quantizer at CSNR > 5 dB. This is due to the
high residual redundancy in the encoder output in the latter case. Fig. 5.5 shows the

extended sets of encoder centroids used by a sliding-block decoder of block-size Kj,

2For simplicity, symmetric blocks have been used, so that K, = K.
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with iid and G-S sources respectively. With the iid source, extended centroids almost
coincide with the 2 centroids of the encoder partition and no residual redundancy is
thus present. In contrast, high residual redundancy is evident in the case of correlated
G-5 source, where extended centroids are spread across the support-region of input

vectors.

5.5 Approximations for Low CSNR and Gaussian Noise

The optimal sliding-block decoder given by (5.13) is a non-linear function. However,
a result shown in [70] for the case of the memoryless AWGN channel motivates us to
consider linear approximations for sliding-block decoder at low CSNRs. It is shown
in [70] that as CSNR — 0, the optimal non-linear decoder for a memoryless Gaussian
channel tends to a linear mapping. As the optimal decoder for memoryless channel is
a simple case of sliding-block decoding (in which the block size is 1 channel vector),
the result in [70] can also be shown to be valid for a sliding-block decoder considered

here. More precisely we can show that (derivation in Appendix F)
$(u,) = Gu,, + o{\/ Fy,u,,) as Eyg — 0, (5.15)

where G is a d x KoL matrix that is fixed for a given source, encoder, and a channel
(see F.8), and Ej is the average signal power at the channel output. According to
this result it appears that the optimal sliding block decoder approximates a linear
function at low CSNRs. From a practical view point, this implies that the optimal
decoder mapping can be well approximated by a simpler function, when CSNR is low.

Our experimental results seem to support this conjecture.
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5.6 Estimation of Sliding-block Decoder

Consider the optimal decoder in (5.13), when the channel noise is iid Gaussian with

covariance matrix diag(o?,). It directly follows that

Ky +Ko .
(un|v(l) H pW(Yn—Ier -3 S‘:—)FKz—j)’ (5.16)
F=0
where qu)an—J = f(s n%m_],...,SSJ)er_j_M), with f being defined in (5.1). After

some work, it can be shown that

NKo+M K+ K i
S g Pviexn( — b S neas - riiKQ_jnZ)

NEKpt+af

K1+ K.
S PeosNex( - g I M atrans — 117

E{X,u,} = (5.17)
The number of terms N¥0+# in each sum above can be quite high even for small
values of N, M, and K. However, some simplifications may be possible in the case
of highly correlated sources, as not all permutations of V,, are likely to occur, i.e.,
P(v(‘)) ~2 0 for some 7. Even so, for very large values of N¥0+M enumerating through
all the possibilities can be impossible. We suggest below an alternative approach
based on approximation of the expression in (5.13) by a non-linear function, which
can be estimated from training data. It is then a problem of regression estimation.
This approach can also be viewed as an extension of MMSE channel equalization
using linear or non-linear filters. The rest of this chapter is devoted to investigating
the feasibility of this approach. Before we proceed, it is worth mentioning that the
estimation of sliding-block decoder can be used with a much larger class of channels
than the one described by (5.1). We only require that the input vector X,, and the

vector sequence U, observed at the channel output have a stationary joint density

(X, u,).
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Let {xf-t) }2, be a sequence of training vectors representing the source distribution.
Given the encoder and channel, one can compute ny realizations {u?)}?jl of the
channel output sequence. Our objective is to estimate a function d by minimizing

the empirical error

1 & .
— > I = ()P (5.18)
T =1

There exists a large number of methods for function estimation. However, many
of these methods suffer from “the curse of dimensionality” in the multi-dimensional
(sparse data) case, see for example [71]. Note that we have to estimate a d-dimensional
function of KyL variables. An empirical comparison of several function estimation
methods can be found in [72]. In general, the accurate estimation of high-dimensional
functions requires methods based on projection of high-dimensional data onto low-
dimensional sub-spaces. In this thesis, we consider one such approach- multi-layer

perceptron (MLP) . We indicate other possibilities in Section 6.2.

Multi-layer Perceptron

Multi-layer perceptron [72] is a neural-network approach that has been extensively
studied for multi-dimensional function estimation and the related problem of clas-
sification. Applications of MLP related to our problem include adaptive channel
equalization [66] and multi-user detection [73]. The universal approximation theorem
[74] implies that a multi-layer perceptron possesses the universal function approxi-
mation capability in that, a multi-layer perceptron with a single hidden layer can
approximate any continuously differentiable function to an arbitrary accuracy, pro-
vided that the hidden layer has a sufficient number of computing nodes. A single

hidden layer MLP is a non-linear, continuous function in the unit hypercube [0, 1}
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given by
q P
f(ul,u2, e ,’U,p) - Zp,ﬂ'(z Wiy — 91) — Po (519)
1 =1

where p;, 0;, and w;; are some real constants, and ¢(.), usually referred to as the
activation function, is a sigmoidal function -a real nondecreasing function such that
o(t) - —last - —oo and o(f) - 1 ast — co. An example is the logistic
sigmoid o(t) = (1 — e *)/(1 + e~?), which was used in our simulations. The function
f corresponds to an MLP with p-dimensional inputs and ¢ computing nodes in the
hidden layer. Fach computing node or a neuron in the hidden layer maps an input
vector onto a real scalar and the output of each hidden node is then linearly combined
in the output layer. This suggests that approximation in an MLP is performed after
projecting input vectors onto a lower dimensional sub-space. While a single-hidden
layer MLP is sufficient for approximating any continuous function to an arbitrary
accuracy, the number of computing nodes required in the hidden layer may be very
high. It has been found in practice that MLPs with two hidden layers result in simpler
implementations and reduced learning times, for the same estimation error.

It is evident from (5.19) that MLP is a means of parameterizing a multi-dimensional
mapping. In particular, the function f(u; w) in (5.19) is determined by the parameter
vector w = (p;, w;;,0;) where i =1,... gand j = 1,...,p (these parameters are also
called weights in neural-network terminology). Given a training set {(xf-t), uf-t)) I
fitting of an MLP to a data set (network training or learning) involves choosing the

parameter vector w which minimizes the error

Jw) =3l = F(u?; w” (5.20)

Clearly, this is not a quadratic function in w and therefore the minimization is com-
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monly achieved through iterative descent algorithms. The basic estimation algorithm
for MLP is the back-propagation [75], [76], to which many variants exist. In the sim-
plest case, the weights are updated to reduce J(w) in the direction of steepest descent

as

W w—1VyJ, (5.21)

where 7 is the learning rate. In order to speed-up the convergence, various modi-
fications to the basic algorithm can be used. While some of these are heuristic in
nature (e.g., momentum, variable rate, resilient back-propagation) others are based
on standard numerical optimization methods (e.g., conjugate-gradient, quasi-Newton,
Levenberg-Marquardt), see [75], [76]. We do not discuss the relative merits of various
training algorithms here, but refer to [77] for a detailed case study. For practical
reasons, we used the resilient back-propagation algorithm RPROP [77] in all our
simulations.

The computational complexity of an MLP decoder depends on the number of
hidden nodes. Each hidden node requires the evaluation of an inner product and the
value of a scalar function (sigmoid). Additionally, each output node requires an inner
product. Thus, for an MLP with p inputs, d outputs, and 2 hidden layers with ¢
nodes each, p(¢ + 1) + (¢ + 1)® + (¢ + 1)d multiplications and additions are required
to compute all the inner products. MLP decoders used in our simulations have
much less computational complexity than (comparable (in performance) recursive
soft-decoders. It is also worth pointing out that MLPs are considered very efficient
computing architectures as they can be implemented in parallel. In any case, most
of the computing effort in an MLP is required in the training phase. As we consider
only off-line (not adaptive) estimation, the complexity of training does not affect the

speed of the MLP-decoder.
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5.7 Experimental Results

In this section, the performance of the sliding-block decoder is experimentally ob-
tained for Gauss-Markov (G-M) source (described in Appendix C) and the linear

Gaussian channel given by

¥n = 0.407s,, + 0.81bs,_; + 0.407s,_o + W, (5.22)

where s, = {4+1.0,—1.0} (anti-podal signaling} and w,, is iid Gaussian noise . This
channel has a spectral-null and hence exhibits severe ISI {linear channel equalization
is ineffective) [62]. Previously, the performance of several other soft-decoding schemes
on the same channel was reported in [32] and {30]. While the memory of this binary
channel M; = 2, the amount of channel memory induced by the equivalent L dimen-
sional channel is M = 1 for L > 1. This is the case in all cur simulations. We have
considered two cases of G-M source: highly correlated (p = 0.9) and uncorrelated
(p = 0). In the highly correlated case, a considerable encoder residual redundancy
can be expected (especially for small vector dimensions) while in the uncorrelated case
the residual redundancy is negligible 3. The estimation of encoder and decoder pa-
rameters was carried out using a training set of source vectors while the performance
of the resulting systems was evaluated using a separate set of source vectors.

In this section, the performance of the sliding-block decoder is also compared with
the performance of both a hard-decoder and a recursive soft-decoder. A hard-decoding
scheme for a channel with memory requires an equivalent discrete memoryless channel
(DMC) model. In the scheme used in our simulations, a DMC was obtained by using

a maximum-likelihood sequence detector, implemented by the Viterbi algorithm (VA)

3Here, by residual redundancy, we mean the redundancy due to memory in the process.
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[62]. The transition matrix of the resulting DMC was estimated through simulations.
Performance of VA depends on the decoding delay used; a larger delay gives better
performance but also increases the storage requirements. A rule of thumb is to use a
delay > 5M, (see page 561 of [62]). In the following we adopt the following notation
for simplicity: a sliding-block soft-decoder with a memory (block-size) of K bits and
delay of K bits is referred to as SB — SD(K,, Kj); a recursive soft-decoder using a
delay of K, bits is referred to as R — SD(K,); a hard decoder based on VA with a
K, -bit delay is simply referred to as VA — HD(K3).

In our simulations, the estimation of the MLP decoder is carried out using a
training set of given size np (fixed). Due to practical reasons mentioned earlier,
here we use networks with 2 hidden-layers. Hence, there are two parameters which
determine the performance of the resulting decoder: decoder block-size K and the
number of hidden-nodes ny per hidden layer (we simply use equal number of nodes
in each hidden layer). As described before, the K has to be selected to match the
channel impulse response and the encoder statistics. In the context of estimation,
selection of both of these parameters has other implications as well. In function
estimation problems there exists two sources of error. First is the approximation
error due to incapacity of the chosen model (MLP) to represent the true function
implied by the observed data. Second is the estimation error due to randomness in the
parameters estimated from a finite-size training set. A reduction in the approximation
error requires an increase in the number of free parameters of the model (number of
MLP weights determined by ny), while a reduction in the estimation error requires
a decrease in ny (i.e., increase in ny/ng). Note also that, increasing K, increases
the number of free parameters in the model. Hence, there exists optimal values for

Ko and ny for a fixed ny. Tables 5.1, 5.2, and 5.3 show the dependence of empirical
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MSE of the quantizer on Ky (in terms of channel output vectors) and ny, for fixed
ny. All MLP decoders have been estimated using the same channel input sequence

(i.e., the same encoder).

Ky | delay SNR (dB})
(bits) [ng =10 | ny =15 | nyg =20 | ny = 25
3 2 7.4 7.6 7.6 7.6
5 4 7.8 8.0 3.2 8.2
7 6 8.0 81 8.3 8.3
9 8 8.2 8.3 8.3 8.4

Table 5.1: SNR of quantizers with sliding-block decoding over the channel given by
(5.22)- CSNR=18 dB, d = 2, N = 4, and ny = 35000. SNR of the ideal channel
guantizer is 7.9 dB.

Ky | delay SNR (dB)
(bits} | ng =10 | nyp =15 | ng =20 | ng = 25
3 3 9.4 9.6 9.8 9.8
] 6 9.5 9.6 9.8 9.8
7 9 9.6 9.7 9.9 9.9

Table 5.2: SNR of quantizers with sliding-block decoding over the channel given by
(5.22)- CSNR=13 dB, d = 3, N = 8, and ny = 40000. SNR of the ideal channel
gquantizer is 9.4 dB.

Ky | delay SNR (dB)
(bits) [ng =10 | ng =15 | ng =20 [ ng = 25
3 4 9.9 10.2 10.4 10.4
5 8 16.0 10.3 104 10.4
7 12 10.0 10.3 10.4 10.4

Table 5.3: SNE of quantizers with sliding-block decoding over the channel given by
(5.22)- CSNR=13, dB d = 4, N = 16, and ny = 50000. SNR of the ideal channel
guantizer is 10.1 dB.

We next present a comparison of sliding-block decoder with recursive soft-decoder
and Viterbi-based hard-decoder. As mentioned earlier, the practical implementation

of the recursive decoder requires a statistical model for the encoder output. For
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Figure 5.6: Performance comparison of soft and hard decoding for d = 2, N = 4:
(a) SB-5D(10,22) using MLP, (b) SB-SD(4,10) using MLP, (c) SB-SD(2,6) using
MLP, (d) SB-SD(2,6) using the analytical equation (5.17), (e) R-SD(2), and (f) VA-
HD(20). All MLP-based sliding-block decoders were 2-hidden layer MLPs with 15
nodes per layer. In each case, a training set of 85,000 vectors and a separate test set
of 85,000 vectors were used.

simplicity we used the iid model, while some gain in performance may be achieved if
the first-order Markov model is used [32]. In the case of Viterbi algorithm, a decoding
delay of 10M, = 20 bits were used. The performance of the three types of decoders
are compared in Figs 5.6, 5.7, and 5.8. In all the cases, the same encoder (and the

same index assignment, optimized to VA hard-decoder at each CSNR) and channel

have been used. Note that the recursive decoder in each case uses a delay equal to
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Figure 5.7: Performance comparison of soft and hard decoding for d = 3, N = 8:
(a) SB-SD(8,9) using MLP, (b} SB-SD(3,9) using the analytical equation (5.17), (c)
R-8D(8), and (d) VA-HD(20). In each case a training set of 40,000 vectors and a
separate test set of 40,000 vectors were used. MLP-based sliding-block decoder is a
2-hidden layer MLP with 20 nodes per layer.

the channel memory. This corresponds to 2 bits in the case of d=2, N=4, 3 bits in

the case of d=3, N=8 and 4 bits in the case of d=4, N=16. Skoglund [32] observed

that a delay longer than channel memory resulted in almost no improvement in the

performance of the recursive soft-decoder. In the results shown here, the sliding-block

decoders also use the same delay, except in Fig. 5.6, where the results for delays

of 10 bits (curve a) and 4 bits (curve d) are also shown. In all three figures, the

sliding-block soft decoder appears to outperform the recursive soft-decoder, with the
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Figure 5.8: Performance comparison of soft and hard decoding ford =4, N = 16: (a)
SB-8D(4,12) using MLP, (b} R-SD(}), and (¢) VA-HD(20). In each case a training
set of 50,000 vectors and a separate test set of 50,000 vectors were used. The sliding-

block decoder is a 2-hidden layer MLP with 20 nodes per layer.

largest improvement appearing in the case of two-dimensional VQ where the residual

redundancy is high. Also shown in Fig. 5.6 (curve d) and Fig. 5.7 (curve b) is the

performance of the optimal sliding-block decoder in each case, with block sizes of

6-bits (delay of 2 bits) and 9-bits (delay of 3-bits) respectively, evaluated using the

exact expression in (5.17).

It striking that the relative performance of the sliding-block decoder (based on

MLP approximation) increases at low CSNRs. We believe that this improvement is
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Figure 5.9: Performance comparison of linear and non-linear sliding-block decoders

ford=4, N =16 : (a) non-linear decoder (same as (a) in Fig. 5.8) with Ky = 12

bits and (b) optimal linear decoder with Ko = 12 bits . In each case a training set of
50,000 vectors and a separate test set of 50,000 vectors were used.

due to the reduction of complexity of the optimal decoder mapping with the decreasing

CSNR. In Section 5.5, we showed that as CSNR — 0, the optimal decoder tends

to a linear mapping. This is also supported by the experimental results shown in

Fig. 5.9, which indicate that the relative performance of the optimal linear decoder

approaches that of the non-linear MLP decoder with identical block-size, as the CSNR

is decreased. The conjecture is further strengthened by the results presented below.

It is possible to design COVQs for ISI channels by iteratively optimizing the
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encoder and decoder to each other as done in GLA. Fig. 5.10 shows the performance
of COVQs based on different decoders, for the case of d = 4 and N = 16. Note that,
as the recursive soft-decoder is time-variant, a fixed encoder is obtained in this case

by using the time-averaged distortion measure [32]

> ElIXn — Xu(Y1, .., Yo% (5.23)

n=1

D= lim
oz 0 Mmag
This is not necessary in the case of the sliding-block decoder.

We next investigate the performance of sliding-block decoder when the channel
input is uncorrelated. In order to do so, we consider VQQ with d = 4 and N = 16
of an iid Gaussian process with variance 1.0. Note that, in this case, the residual
redundancy is insignificant and the decoder memory solely serves to compensate for
ISI. Fig. 5.11 shows the performance of various decoding strategies for iid source over
the channel given by (5.22) (same encoder used in all cases). It is noticeable that the
relative performance of the sliding block-decoder is poor at high CSNR. This error can
be reduced by increasing the number of hidden nodes in the MLP. The improvement
at low CSNR may be due to the fact that optimal decoder, which tends to a linear
function as CSNR — 0, is better approximated by the estimated MLP.

‘The complexity of the optimal sliding block decoder increases with N, making the
estimation task difficult. This fact is apparent from the result shown in Table 5.4.
In this case, the quantization of G-M source with d = 3 and N = 128 is considered,
and as many as 60 nodes have been used in hidden layers. Still, the performance
of the estimated decoder on a near noise free channel is much poorer compared to
the performance of the Viterbi hard-decoder (nearly 5.5 dB below in SNR at 13 dB
CSNR) . We have not attempted to increase the number of hidden nodes further, but

it is clear that the number required for obtaining performance comparable with hard-
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Figure 5.10: Performance comparison of COVQ based on soft and hard decoding
(d=4, N =16): (a) SB-SD(4,12) (¢} R-SD(4), and (d) VA-HD(20). In each case
a training set of 50,000 vectors was used for design and a separate set of 50,000
vectors were used for testing. Sliding-block decoder was a 2-hidden layer MLP with

20 hidden-nodes per layer.

decoding at high CSNRs can be very high. Encouragingly, the relative performance

of the estimated sliding block decoder improves significantly as the CSNR is lowered

(over 2 dB better in SNR than hard-decoding at 1 dB CSNR).
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Figure 5.11: Performance of various decoders (d = 4, N = 16) for iid source and
linear Gaussian channel. (o) SB-SD(4,12), (b) R-8D(4), and (c) VA-HD(20). In
each case a training set of 50,000 vectors was used for designing and a separate set of
50,000 vectors were used for testing. Sliding-block decoder was a 2-hidden layer MLP
with 20 hidden-nodes per layer.

SNR

ng{nr) |[13dB|1dB
20 (50000) | 7.67
30 (50000) | 9.36
60 (80000) | 11.30 | 6.59
VA-HD(20) | 16.79 | 4.23

Table 5.4: SNR performance of MLP sliding-block decoder SB-SD(7,21) and Viterbi
hard-decoder, over channel given by (5.22) for G-M source, d = 3, N = 128. ny -
number of hidden nodes, ny- training/test set size.
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5.8 Summary

In this chapter, we investigated soft-decoding based VQ for ISI channels. In partic-
ular, we studied a sliding-block decoder, which is a non-linear time-invariant filter
estimated with the MMSE criterion. We used the MLP as the filter, which can be
readily estimated via back-propagation algorithm. Simulation results were presented,
which compared the sliding block decoder with both recursive soft decoding and hard
decoding based on Viterbi channel equalization. In the cases we considered (N < 16),
the estimated sliding-block decoder convincingly outperformed both the hard-decoder
and the recursive soft decoder, particularly when the CSNR is low. On the negative
side, the number of hidden nodes required in the MLP decoder for good approxima-
tion likely becomes unmanageably large, when the encoder resolution N is increased.
In this context, we showed that the optimal sliding-block decoder for the Gaussian
channel approaches a linear function as CSNR — 0. This is encouraging as, even for
large N, it is not hard to estimate a near optimal sliding-block decoder for highly

noisy channels.



Chapter 6

Conclusions and Future Work

6.1 Summary and Conclusions

In this thesis, we have investigated the problem of designing channel optimized vector
quantizers when memory is present in either the quantizer or the channel. Main

contributions of this work can be summarized as follows.

¢ An algorithm for designing PVQ based on linear prediction for noisy channels
was introduced. This algorithm iteratively improves an initial system to a given
channel, by updating the predictor, the residual encoder, the local decoder, and
the decoder at the receiver. Performance of the systems designed using this
algorithm was investigated through simulation experiments, and both hard and
soft decoding were considered. It was demonstrated that predictive VQ obtained
by the new algorithm significantly outperforms memoryless VQ operating at the
same rate (gains in SNR of about 2 dB with hard-decoding and about 3 dB with
soft-decoding). We also found that the designs obtained by the new algorithm
perform nearly identically to those obtained by gradient-search optimization

algorithms in [22]. This observation is consistent with the previous observations
124
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made in the case of designing PVQs for noise free channels.

e The problem of designing FSVQ for noisy channels was investigated. The start-
ing point of our work was the observation that a finite-state decoder is inap-
propriate for noisy channels, as it cannot track the encoder state-machine on
the basis of noisy channel outputs. We demonstrated that the mean square
error of an FSVQ increased catastrophically as the channel noise level was in-
creased. To this end, we proposed a robust decoder for a given FSVQ encoder
and derived a time-recursive algorithm for its implementation. The basic idea
behind this decoder is to express the optimal reconstruction vector at a given
time as a function of all the channel outputs observed up to that time. In ef-
fect, the decoder does not attempt to determine the state of the encoder, but
considers that all states are possible with some probability. This decoder may
be viewed as an infinite state decoder. Simulation results demonstrate that in
contrast to a finite-state decoder, the new decoder exhibits graceful degrada-
tion of performance with increasing channel noise. We also incorporated this
decoder in iteratively designed channel optimized FSVQ. These FSVQs always
outperformed the memoryless COVQ. The gain in SNR was typically close 1
dB at very low CSNR, while much higher gains were obtained when the CSNR
is high.

¢ Soft decoding in vector quantizers operating over channels with inter-symbol
interference was studied. The problem was identified as one of estimating a
random vector based on correlated observations (channel outputs). In this con-
text, we studied a sliding-block soft-decoder, which is essentially a non-linear
time-invariant filter estimated by MMSE criterion. As a practical implementa-

tion, we investigated the estimation of the decoder using multi-layer perceptrons
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(MLP). Among other things, we demonstrated that sliding-block decoder signif-
icantly outperformed hard-decoding systems based on MLSE (Viterbi) channel
equalization as the channel gets noisier. We also found the sliding-block decoder
to outperform recursive soft decoding, previously investigated by Skoglund [32].
A potential problem with the sliding-block approach appeared to be the diffi-
culty of estimating the decoder, when the encoder resolution N was high. With
MLP implementations, the number of hidden nodes required for good approx-
imation increases rapidly as N is increased. However, the problem seemed to
be much less severe when the channel was very noisy. In this connection, we
showed that, as the CSNR is reduced, the optimal sliding-block decoder for
Gaussian channel approached a linear mapping. Consequently, the estimation

of the decoder becomes easier for highly noisy channels.

6.2 Future Work

We mainly confined our attention to quantizing Gauss-Markov data since it is com-
monly used as a bench mark in judging the performance of coding algorithms. A
natural extension of this work could be the application of the algorithms developed
here to designing quantizers for real world signals. This would allow the evaluation
of the performance of various designs based on subjective criteria. For example, both
PVQ and FSVQ are strong candidates for low bit rate speech coding over wireless
channels. In this context, coding of LSP parameters [54], [55] is an interesting appli-
cation.

Another important avenue of exploration is to investigate the possibility of us-
ing function estimation techniques other than the MLP for sliding-block decoding,.

Simpler regression models, such as additive models, may reduce the computational
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burden associated with parameter estimation. In particular, projection-pursuit net-
works (PPR) have shown to yield sparser representations than MLPs in some cases.
Another technique worth considering is support vector machines. We note here that a
study in this direction would not only benefit soft VQ decoding, but may also benefit
similar problems such as channel equalization.

In this dissertation, we have considered vector quantizers which act as joint-source
channel coders. The benefit of these coders over comparable traditional tandem
coding schemes (that is, schemes with separate source coding and channel coding)
remains to be investigated. In certain situations, it has been found that COVQ is

better only when the allowable delay is below a certain threshold {78].



Appendix A

MMSE Estimator

In this Appendix, the solution to the MMSE estimation problem is derived. Let
X € R* and Y € R? be two random vectors with joint pdf p(x,y). Given the
observed vector Y, we wish to find an estimate X = §(Y) for the unobserved vector

X, such that MSE E||X — 6(Y)||? is minimized. Consider

EIX =60 = [ [l 60)IPoGx y)dxdy
= [ [ Ix= s Potaty)anat)ay

- / B{IX ~ 5l aly)dy (A1)

Since E{||X — §(y)||*ly} and p(y) are non-negative, the MSE is minimized by min-
imizing the conditional expectation p[d(y)] = E{}|X — §(y)||*|y} for every y. That
is

§"(y) = argmin p[é(y)]. (A.2)
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The desired solution is obtained by
Vsplé(y)] =0, (A.3)
which gives

) / (x — 8 (v))p(xly)dx = 0
R
6*(y) = E{X]Y =y}. (A.4)

Also, Vp[8(y)] = 2 shows that the obtained solution is indeed a minimum.
The above result implies that the optimal estimator §, minimizing E||A(X —

5(Y))||?, where A is a d x d constant matrix, is also given by (A.4), since

AS(y) = argmin B{IAX — A5(y)|ly}
= FE{AX]Y =y}

= AE{X|Y =y}. (A.5)



Appendix B

Derivation of (2.25)

When square error distortion measure is used, the average distortion of a noisy channel
VQ can be readily expressed as the sum of quantization and channel error. To show

this, we expand the average distortion in (2.14) as follows:

E{D} = Z / el p(x)dx / plylos)dy
”QfoP dX/ Is(y)p(y|as)dy
+Z [ so0ix [ 18sts)lFotstaias. ®1)

Now, defining the centroid of the i encoder cell Jo, Xp(x)dx/ fQi p(x)dx = g; and

P(oy) = Pr(x € ), we get

B0} = Y [ Iio0oix =230 Pleel [ ssty)pivlalay

N
+ 3Pl [ s vla)dy. (B.2)
i—1 RF
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Using the fact that

f Ix — & 2p(x)dx = / (Ix? = llg:lP)p(x)dx (B.3)
¢ Q;

and after some manipulations, we end up with the desired result

B0y =Y [ - glfptix+ Y [ lx—ds@lpvladPlady.  (.4)



Appendix C

Gauss-Markov Source

In this appendix, the first-order Gauss-Markov (G-M) source used for simulation
studies in this dissertation is described. G-M source is widely used as a benchmark
for comparing different source coding techniques and is a good model for real world
data in many cases. For example, the correlation coeflicient of 0.9 is typical of speech
and image data.

A first-order G-M process is described by the auto-regressive relation
Xn = pXoa +Un, (C.1)

where p = EX, X, 1/EX2 is the correlation coefficient and U, is a stationary iid
Gaussian process with mean zero and variance of. Hence EX, = 0 and EX? =
of;/(1—p*) (= 0%). In our experiments, we have used 0% = 1.0 and hence 0% = 5.26.

The best achievable performance by any quantizer on this source, often referred to

as optimal performance theoretically attainable (OPTA), can be found by computing
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its rate-distortion function [53]

D(R) = (1 — p*)27 252 for R > log,(1 + p). (C.2)

For R < log,(1 + p), this gives a lower bound for R(D).! When p = 0.9, (C.2) can
be used to obtain D(R) for B > 0.9260.

In order to compute the OPTA of the source over a noisy channel, we can use
the Shannon’s joint source-channel coding theorem [6]. That is, given a channel with
channel capacity C, one may transmit up to RC bits by R uses of the channel. Hence,
it follows that OPTA of the source over such a channel is D(RC). Table C.1 shows
OPTA (expressed in terms of SNR) for G-S source with p = 0.9 at B = 1 bit per

sample, over a memoryless Gaussian channel with binary antipodal signaling.

[CSNR(dB)] BER | OPTA (dBJ |

00 0.0000 13.2331
12 3.43 x 107° 13.2297
10 0.0008 13.1766
8 0.0060 12.9145
6 0.0230 12.2820
4 0.0560 11.3585
2 0.1040 10.3339

Table C.1: OPTA of Gauss-Markov source with p = 0.9 and 0% = 5.26 at R = 1 bit
per sample over the memoryless Gaussian channel.

! Actual values have to be obtained by parametric expressions [53].



Appendix D

Index Assignment for FSVQ

In this appendix, a distortion measure is derived, which can be used to optimize the
index assignment (IA) of an FSVQ system to a given channel. The system considered
here is an ordinary FSVQ and we use the notation defined in Fig. 4.3. Let the encoder
partition of state s be given by Q,(¢), where i = 1,2,...,N and s = 1,2,..., K, such
that UNQ,(¢) = R? and N¥ (2, (i) = @. Then, the MSE given by (4.13) may be written

as

B X, —Xn“2 = Z Z P(Sn)_/ (e _ﬁnnzp(gmjnlsmin)p(xn|3n)dxn

- i
Snyin Snydn Snatn

= 30 3 PPl Plalia) [ = EallPPalse

n-’31'1 {in)

Sn,in §n;jn

(D.1)

After expanding the square term inside the integral, the above expression becomes
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E”Xn'_xnuz = Z o (‘)”anlzp(xnhn)dxn
= 23S P(sa)P(5alsn) Pnlin) 5 f bl
an in

Snsin 8n,dn

+ 30 3 P(sa)P(ala) P(nlin) 1502 [ P(a| 50 )%

sn,im gn,jn an (in)
(D.2)
Now, using the fact that
P, (in) = Pr(x, € Qs (in)|sn) = f p{x,]8,)dx, (D.3)
Qsr, (i)
and |
. _ iy XnD(Xn| 80 )dX,
8on(in) = E{xyin, 5,) = ~2nln) (D.4)

Psn (in) ,

and after rearranging the terms within the expression, it is straightforward to show

that
E||X, - X,||* = Dg + Do, (D.5)
where
Do = Y Plan) [ el Ppldsn)ie 05)

Do = 35" P(3al52) P(alin) P(su)l18on (in) — Knl3ns Gu)l[2Pon (in).

Sysin gn;jn

(D.7)

All but the conditional probabilities P(3,|s,) in the above expression solely depend
on the encoder and hence can be computed (using training data) if the encoder is

given. We next show how steady-state values of P(5,|s,) can be computed. To this
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end we write

P(§n|5n) - Z P(énién—hjn—laSn—lain—l)P(gn—lajn—IISn)- (DS)

§n—11jn——l

Define the set of all (s,_1,%,_1)} pairs which lead the state s, = s as

() = {(8n-1,tn-1) : fSn—1,8n-1) = s} (D.9)

Since the decoder uses the same next-state rule as the encoder, it is also implied that
1(8) = {(8n-1,Jn-1) * f(8n—1,Jn-1) = §}. Using this notation, we can write the above

equation as

P(énisn) = Z P(§11—11j11—1|3n)

#(gn)

= Z Z P(gn—lajnmllsn—hin—l’sn)P(sn-—lain—llsn)

,[t(gﬂ) Sn—1,in—1

= Z Z P(§n~113n—1)P(jn~1|in—1)P(in—1[Sn—l)P(Sn—l)/P(sn),

wlén) plsn)

(D.10)

where we use the fact that the channel is memoryless. Since at steady-state P(8,_1]sn_1)
= P(8,|s,) the above expression gives us a redundant system of K? linear equations
with K? unknowns P(3, = s;|s, = s;), 4,5 = 1,2,..., K. However this system can

be easily solved considering K — 1 of these equations together with the equation

3N " P(3alsa)P(sa) = 1. (D.11)

Sn  &n



Appendix E

OLT-FSVQ Design Algorithm

This appendix describes the omniscient labeled-transition FSVQ (OLT-FSVQ) design
algorithm [49] used to obtain the next-state rule and the initial state encoders for
designs described in Section 4.10. Let K be the number of states and N be the

number of code vectors (encoders cells) per state.

Given: A training set 7 = {x;}.%; of ny vectors from the source.

Step 1: Design a memoryless VQ with a size K codebook (e.g., use GLA [12]), using
7. This VQ defines the initial super codebook C*?) = {c*P}E At this

point nezi-state rule is

FO(x,) = 8,41 = arg min %, — clewP)))?
8

Step 2. Classify each vector x; in 7 into K sub-groups (sub-sequences) according to

the state transition caused by of x;_;. That is

Ts = {xi s = f(x;—1)and x;_1,x; € T }.
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For each s = 1,2,..., K use GLA to design a codebook C, = {c?) MY, with

training set 7;. These K codebooks are taken as the state codebooks.

Step 3 Next-state rule f(¥(x,) cannot be used by the decoder since x, is not
available at the decoder. Hence, replace x, with %,, = cgz"), that is, modify the

next state-rule as

f(Sn,1n) = Spy1 = arg msin ]]cgi") — clew?)|2,



Appendix F

Derivation of (5.15)

We consider the finite memory channel characterized by (5.1}, when the additive
channel noise is iid Gaussian. The derivation given below is an extension of a similar

result derived in [70] for the memoryless AWGN channel. Referring to (5.1), let

r, = f(Sn: Sp—1y- - :Sn—M)s (Fl)

where r, € RL. Next, consider the sliding-block decoder described by (5.13). If the

channel noise w,, is independent of the channel input and is iid Gaussian,

. Ky +-K> G
p(unv() = H Pw(Yntro—j — rnzzulfz—j)
=0
1 1 Ki1+-K2
— (%) 2
(F.2)
For notational simplicity, define

r, = (rf:_KI, e stJer)T, (F.3)
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where ¥, € REK1+K2+1) 414 note that

Ky Ko )
Z Yot kams — Topgepsl® = Il1p — EDI2. (F.4)

Hence, (F.2) can be written as

. 1 .
@y = - [_ ol — £ 2]
p(unlvn ) (Zﬂaw)L/2 exp 20[24r||un rn “
= piy(u, — ), (F.5)

where py, is a L{K; + K3 + 1) dimensional density function with the covariance
matrix diag(o%,...,0% ). Using the first-order Taylor series expansion, (F.5) may be

expressed as
Py, — fg)) = py (1) — Vunp;v(un)fg) + O(Tg)a u,), (F.6)

where o7, ua)/[[F2]] = 0 as 7] = 0 and YV, piy(wa) = (~1/0%)phy (un)ul.
By substituting these results in (5.13) and assuming (without loss of generality) that
E{t¥} = 0, we obtain

5 Pt /oty + 55, P(vi)gio(Fs, wn) /piy (un) (F.7)

P(un) =
(11 ) 1+ZEP( n) (rg);un)/pW( n)

Let the average signal power at the output of the channel E{rlr,} = E;. Then
it follows that when the channel output is stationary, E{F,f: } = KoFy, where K, =
L(Kl + I{Q + 1) Also let

G =Y Pvihgr "/l (F.8)
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which is a d x KyL matrix that depends on the source, encoder, and channel. Our

goal is to establish that

- Nld(un) — Guaf|
é;l_r)lﬂ B = 0. (F.9)

In order to do this, consider

l(w) — Gu,| N Pvi)gie(E u) — Gun(zp(v‘”) (9, w))|
VEoEy Piv(un)\/—KOEou + 3 PvENo®D, u,) /piy (1)
_ S PO gl wa)| = [IGuall (2 PN, w)])
- P (W )VEoEol1 + 30, P(vi)o® w,) /iy (u)]
(F.10)
The desired result is obtained by showing that
- JoE, uy)|
1%011339 N =0, (F.11)
which follows from
oE, )l o, w)| [IEY)
VKoEy ||r( )|| vEKoEy
{#)
n i HUn 1
[o(® )“ ) - (F.12)
I /P @)
Here, we use the fact that
KoEy = ZP(VS))”fg)”z; (F.13)

PO ED|. (F.14)

VKo Eo

v
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