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ABSTRACT

An understanding of network traffic behavior is essential in the evolution of today’s

wireless networks, and thus leads to a more efficient planning and management of

the network’s scarce bandwidth resources. Prior reservation of radio resources at

the future locations of a user’s mobile travel path can assist with optimizing the

allocation of the network’s limited resources. Such actions are intended to support

the network with sustaining a desirable Quality-of-Service (QoS) level. To help

ensure the availability of the network services to its users at anywhere and anytime,

there is the need to predict when and where a user will demand any network usage.

In this thesis, the mobility behavior of the wireless users are modeled as a Markov

renewal process for predicting the likelihoods of the next-cell transition. The model

also includes anticipating the duration between the transitions for an arbitrary user

in a wireless network. The proposed prediction technique is further extended to

compute the likelihoods of a user being in a particular state after N transitions.

This technique can also be applied for estimating the future spatial-temporal traffic

load and activity at each location in a network’s coverage area. The proposed

prediction method is evaluated using some real traffic data to illustrate how it can
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lead to a significant improvement over some of the conventional methods. The work

considers both the cases of mobile users with homogeneous applications (e.g. voice

calls) and data connectivity with varying data loads being transferred between the

different locations.
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1. INTRODUCTION

1.1 Background and Motivation

The rapid growth of mobile networking and the diversity in network applications

have prompted the need for future generation wireless networks to support a range of

Quality-of-Service (QoS) levels. Wireless network activity, as well as the number of

users, are expected to continually increase with the gradual development of diverse

wireless applications that demand high bandwidth. One of the studies, the “COIN”

project (Dynamics of COmpetition and INnovation in the converging Internet and

mobile networks) [1,2] conducted in Helsinki-Finland included an extensive analysis

of some data received from local mobile managers, specifically during the period

of 2005 and 2007. Amongst their many results, they were able to show how the

number of users with mobile connectivity have increased over the years. Their

results have also shown a parallel growth in users desiring mobile terminals with

data transmission capabilities. This had led to the conclusion that more users are

favoring wireless connectivity and preferring the usage of mobile devices due to the

freedom it provides in terms of supporting various services while roaming between

multiple locations. While such services may have been a luxury in the past, the need
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for mobile connectivity continues to readily blend in with many of today’s cultures

and generations.

With the rising trend of enjoying wireless access anywhere and anytime, mobile

users are becoming more concerned with the QoS levels that can be supported by

the network. Hence, future wireless networks are expected to both improve and

safeguard these QoS agreements despite the users’ movements and the network’s

traffic. One method for ensuring the availability of the network services anywhere

and anytime to a user is to predict at anytime, and within reason, where a user

will likely demand the network usage. In wireless and/or mobile networks, the

available bandwidth within the coverage area is the main resource under contention

and is of primary concern to the network managers due to how scarce it is. The

availability of such resources will somehow need to be guaranteed to avoid any

abrupt disruptions in a user’s ongoing and active connection while being mobile.

However, such assurances do come at a cost to the network and/or user with the

aim being at trying to minimize such costs without placing any burden on the overall

performance.

Wireless networks are generally divided into distinct geographical units known

as cells. Each cell provides a wireless coverage that is administered by a single

access point or base station. The wireless bandwidth that is available at each of

the coverage locations can be shared and administered under various schemes such

as Time-Division Multiple Access (TDMA), Frequency-Division Multiple Access
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CELL A CELL B

Fig. 1.1: A mobile unit generating a handoff request into Cell B.

(FDMA), Code-Division Multiple Access (CDMA), and many others [3, 4], as well

as a hybrid of these schemes. However, each of these schemes is limited in how

much of the available resources they can allocate to users within a coverage area,

thus restricting the number of users that can simultaneously connect with an access

point to some finite capacity.

Occasionally, mobile users may need to have their ongoing connections trans-

ferred between different base stations (or cells) in order to maintain their active

sessions; a process known as handoff [5]. For example, Figure 1.1 shows a mobile

user that is engaged in an active session with the network and utilizing the wireless

resources of Cell A. If the same user wishes to maintain its connectivity with the

network when moving to Cell B, then the network should seamlessly transfer the

user’s ongoing active session to the new cell. Successful handoffs are only possible if

sufficient resources can be granted to the ongoing session by the new network access

point. Otherwise, the session will be prematurely terminated, or dropped, as a result

of insufficient resources available at the new cell [6]. A new call/connection that
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attempts a resource request at a coverage location that has reached its capacity in

terms of the resources that it has allocated to others will be blocked from service

and the user can retry its request at a later time. While both blocked and dropped

connections have the same effect of denying a user from connecting with a particular

access point, it is generally perceived that the latter is less desirable from a user’s

perspective.

Other than increasing the amount of bandwidth available at each of the coverage

areas, which is not commonly feasible, the overall capacity of the network can be

increased by reducing the actual coverage area size of some/all access points while

the bandwidth remains the same. This has the effect of increasing the capacity per

unit area since the coverage area has fewer users to consider. Even though this

may seem as a reasonable approach for stretching the amount of network resources

available to the users, it does however lead to more chances of a mobile user initiating

a handoff request. Increasing the frequency of such requests could lead to the

undesirable possibility of having the connection dropped [3, 4]. Regardless of the

approach taken to improve the capacity, there still remains the need for the network

to efficiently administer its resources at various locations. The ultimate purpose of

efficient resource management scheme is to maintain an upper level of quality and

performance for both the users and the network.

The network’s access points are responsible for efficiently managing their limited

wireless resources while adhering to the following requirements: 1) maximum uti-
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lization of their resources which in turn maximizes the network manager’s revenue,

and 2) optimum resource allocation in order to minimize both the new call blocking

and dropping of handoff requests. The latter facilitates with both improving the

user’s experience with the network and minimizing the lost revenue of the network

managers. This is based on the assumption that blocked and dropped calls tend

to discourage users from associating with the network and thus having a negative

impact on revenue. The best tradeoff can be achieved if the user’s mobility behav-

ior was known to the network, thus allowing for sufficient resources to be reserved

at the right places and times. In other words, if the time and place of a mobile

user’s next cell transition is known, then the network can proceed with examining

the possibility of reserving the necessary resources at the new cell location. This

is accomplished in an attempt to prevent the user’s active connection from being

dropped at the new location. Such actions can assist with maintaining a certain

level of QoS for the mobile user throughout the lifetime of its connection with the

network.

Network managers are usually concerned with the connection dropping rates and

the new connection blocking rates, with the aim of minimizing both. However, there

tends to be a much higher interest in maintaining a dropping rate below some certain

level. Various call admission control schemes such as “Guard Channels” assignment

(fraction of total channels reserved for a certain class of connections) and prioritizing

of handoff requests [6,7] have been shown to reduce the connection dropping rates at
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the cost of new connection blocking rates. In such schemes, the resources set aside

for higher priority connections (i.e., handoff requests) are typically assigned for long

periods of time and not reserved for any specific user. Some of these reservations can

be unused for significant amounts of time when it could have been better utilized

by other lower priority connections. Therefore, a better approach would be to only

reserve these resources when potentially needed by a specific user, which would tend

to lessen the excessive reservation of resources.

For user-specific resource reservations, one way of minimizing the dropping of

handoff requests is to reserve enough resources at all neighboring cells for the hand-

off request. However, such an approach leads to a wastage of resources along with

potentially increasing the blocking rate for new connection requests. A better al-

ternative would be to limit the reservation of these resources to the regions of the

network where a user is likely to visit. Therefore, an efficient and accurate prediction

of a mobile user’s transitions is vital since misplaced reservation of network resources

will not only fail to uphold the desired QoS, but also likely degrade the performance

of the overall network. In fact, it has long been accepted that call admission con-

trol which is aided by mobility prediction techniques can significantly enhance the

network’s performance [8]. For example, it has been shown in [9] and [10] how the

QoS in wireless networks can be considerably improved when applying mobility pre-

diction algorithms on the network’s call admission control. The further ahead the

prediction scheme tries to pre-allocate the resources, the more likely a network can
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honor its QoS agreement for the lifetime of a user’s session.

However, the task of predicting how far a network should proceed with reserving

the resources can be quite challenging, especially when the connection lifetime is

unknown. Moreover, the efficiency of any prediction scheme greatly depends on

how likely the resource reservations are made at the right place and time. The type

of information to be used for making a prediction is also very crucial on determining

the appropriateness of the prediction scheme.

Other usages for mobility prediction have been explored by a few researchers such

as Gossa et al. [11] who looked at applying it to data replication management in

distributed mobile computing scenarios. In this thesis, while the proposed mobility

predictor could be applied for other contexts, it will mainly be presented for the

purpose of enhancing the allocation of resources for mobile users with handover

requests [12].
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1.2 Previous Work

Over the recent years, there has been a considerable amount of work done on de-

veloping mobility prediction and network traffic estimation techniques. This is due

to the increasing need in efficiently managing the network’s resources for a contin-

ually growing number of users. Prediction schemes have been proposed for both

infrastructure-based and infrastructure-less wireless networks. Examples of predic-

tion schemes for infrastructure-less wireless networks, such as Ad Hoc networks, have

been proposed by Pathirana et al. [13], Su et al. [14], and Chellappa et al. [15, 16].

They are quite complex to model due to the dynamic topology that may change

rapidly and unpredictably. In this thesis, it was chosen to focus mainly on develop-

ing mobility models for wireless networks with static infrastructures.

Various mobility prediction schemes have been proposed with many of them re-

lying on the availability of prior information on the user’s mobility behavior. The

models presented in [17] and [18] are examples of prediction schemes that require no

knowledge of the user’s mobility history. In [17], the constant tracking of the relative

distances between the mobile user and the neighboring access points is proposed,

with the potential access point predicted as the one where the distance to the user

falls below a certain threshold. This avoids having to keep a record of the mobil-

ity pattern of the users. In [18], it was proposed to additionally monitor a user’s

preferred movement direction for making any predictions. Jayasuriya and Asenstor-

fer [19] also looked at tracking a user’s geographical location, speed and direction
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of movement relative to the neighboring access points and developed a model for

predicting a mobile user’s transitions into the neighboring locations. However, the

authors also mentioned the difficulty with practically obtaining an accurate measure

of a user’s location and speed using the received signal strengths from the access

points. While the continuous tracking of mobile users may lead to better predic-

tions in terms of movement, such schemes will likely suffer from the large overhead

accrued due to the constant monitoring. Moreover, erratic user movements could

also downgrade the performance of such schemes.

Many of the prediction techniques rely heavily on historical data that include

information on aggregate mobility and handoff history at each location. Examples

of such models include those given in [20–24]. Chan et al. in [20] and [21] have

proposed various prediction schemes based on some mobility history that contain

records of a user’s next move, direction of travel, as well as other information. These

proposed schemes have proven to be the basis of the many prediction techniques that

followed, but are only limited to predicting where (without when) a user is likely to

move. To combat the instances where their prediction schemes may perform quite

poorly due to abrupt variations and randomness in user behavior, the authors further

proposed to consider a fraction of all the neighboring cells as part of the prediction

result as opposed to a single cell and based on a pre-defined “Prediction Confidence

Ratio (PCR)”. A similar approach was taken by Erbas et al. [25] and they proposed

that it was sufficient to only consider up to the most likely 3 of the 6 neighboring
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cells as the prediction result. In [26], Capka and Boutaba proposed a mobility

predictor using neural networks which is capable of both learning and predicting

future transition patterns of mobile users. In their results, the authors have noted

that better neural network predictors would ultimately require a substantially large

neural net for capturing the complex nature of user mobility.

Prasad Agrawal in [27] proposed a second order Markov chain predictor while

Song et al. [28] discussed the advantages of an order-k Markov mobility predictor

and have tested it with actual mobility data. Such predictors were shown to perform

quite well for lower orders of k, but did not perform as well with predicting when

a movement would occur. Furthermore, an immense amount of mobility history

is needed for generating higher order-k Markov mobility predictors. An order-k

Markov mobility predictor with fallback was proposed by Sun and Blough [29],

where the predictor falls back to a lower order of k if a certain order-k predictor

was unsuccessful. Their work was limited to making location predictions alone.

In [30], Yu and Leung (and similarly with the work done by Bhattacharya et al.

in [31]) proposed applying data compression methods (namely Ziv-Lempel) on the

available mobility history data and developed their prediction scheme accordingly.

They based their proposal on the rationale that “good data compressors should also

be good predictors” [30], as well as on the basis that “the repetitive nature of mobility

patterns suggests the stationarity of a sequence of events generated by an mth order

Markov source and based on the previous m events” [30]. However, the generation
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of the Ziv-Lempel tree from the mobility history can be quite complex. This idea

was also considered by Song et al. in [32] and further examined the efficiency and

accuracy of such methods with actual mobility data.

A few models considered utilizing both the mobility historical data as well as the

current conditions in the network. One example is the two-stage mobility prediction

developed by Park et al. in [33] which considered both the location transitions mod-

eled as a Markov process and the user’s geographical movement. Another example is

the model proposed in [34] by Akyildiz and Wang which considered both the velocity

and direction of mobile users as well as historical data for predicting the future lo-

cations. This work was preceded by the proposed “Shadow Cluster Concept” given

in [35] which estimates the fading likelihood levels of moving to the neighboring cells

and further, much like a shadow. Their scheme could predict both future locations

and service requirements, but does not give any indication on when these changes

in location are likely to occur. In [36], a hierarchical location prediction model

was proposed which employs mobility history for predicting inter-cell movements

while considering the mobile user’s speed and movement direction within the cell.

Their model is limited to location predictions alone. Another hierarchical model

developed by Wang et al. in [37] proposes to model both the macro-location and

micro-location mobility behavior of a user along with incorporating the movement

velocity and direction into the model. The difficulty with such hierarchical models is

with distinguishing between what constitutes as macro-mobility and micro-mobility.
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Incorporating road topology information into the mobility prediction schemes,

as proposed by Soh and Kim in [6, 38] and Lee and Hsueh [39], can improve on

the prediction results by affirming or even eliminating certain paths. This approach

can be of particular benefit for modeling vehicular mobility. Samaan and Kar-

mouch [40] considered further utilizing a geographic map with identifiable landmark

objects (e.g., restaurants and malls) into the user-mobility predictions and for bet-

ter characterizing the user’s mobility behavior. This was based on the assumption

that the majority of movement patterns are related to user-activity and purpose-

of-mobility [41] (i.e., users move with a particular destination in mind). However

accurate their prediction results may be, such schemes require a vast amount of

information to be collected and processed and may not perform very well with tem-

porary changes of the surrounding infrastructure. In [42], each user’s daily itinerary

patterns (including both location and time) were proposed to be incorporated into

their location area predictions. Such information could be quite challenging to ac-

quire, especially when dealing with user privacy issues, and may not be suitable for

public wireless networks. Another example is the model proposed by Ghosh et al.

in [43] which considers the “mobility profile” of the users in terms of the regular

places visited (e.g., office, home, shopping centers) and exploiting this information

for better predicting the future location of the user in the network. While this ap-

proach may be beneficial for estimating the mobility patterns on a per user basis,

the proposal given in this thesis is mainly focused on developing mobility models
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for an aggregate number of users.

Other works include those that proposed elaborate user mobility models that

depict near realistic behaviors. With such models, network providers can gain some

understanding on how to manage their resources for optimum performance. An

example of such a model is given by Stepanov et al. in [44], where the authors

model the mobility of users in outdoor scenarios which takes into account various

factors such as environmental constraints, user travel decisions, and the associated

activities at the many locations. For indoor scenarios, Lessmann and Lutters in [45]

developed a user behavior model that considers environmental constraints, activity

variations and movement patterns that can either be based on some schedule or

according to some stochastic process. Most of these models specifically address

the issue of user mobility in ad hoc networks where it is crucial to have a good

understanding of the exact movement behaviors. However, the focus of this thesis is

on networks with centralized control, such as cellular networks. In such cases, it is

sufficient to examine user mobility from the network’s perspective which is not the

same as looking at the exact user mobility behavior for reasons given in the next

section.

An ample amount of research has been devoted to thoroughly analyzing vast

volumes of real wireless network measurements for extracting and attempting to

characterize the behavior of users in such networks and for the purpose of mod-

eling their mobility patterns. They include the works done by Ghosh et al. [43],
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Papadopouli et al. [46], Chinchilla et al. [47], Kim et al. [48], Boc et al. [49], Yoon

et al. [50], and the list is certainly not limited to them. In addition to analyzing the

behavior of the web-traffic requests, Chinchilla et al. [47] used the WLAN traffic

data available to them and modeled the user location transitions as a simple Markov

chain for predicting the next location transitions alone. In [46], Papadopouli et al.

employed graph theory to model the roaming behavior of the users using data col-

lected from real Wireless Local-Area-Network (WLAN) traffic. Their data were used

to analyze the degree of connectivity of the node pairs on the graph, where each node

represents the access points in the network. The degree of connectivity corresponds

to the likelihood of making a transition from one access point to another. Their

interest was mainly in studying the impact of the changes in the graph topology

(i.e. wireless infrastructure) on the degree of connectivity. Their results could also

be used to estimate the spatial transitions of the users but not temporal. Kim et

al. [48] proposed analyzing the WLAN traffic traces for extracting a user’s mobility

tracks which describes the pathways taken by a user that is roaming between various

access points. These tracks can then be used to further extract certain characteris-

tics of the user’s mobility behavior which can be used to generate future mobility

tracks that closely resemble the estimated behavior of the user. The authors were

mainly focused on generating a mobility model for simulation purposes and could

further be applied for estimating a user’s future transitions. However, their model

does not consider any temporal influences.
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Network managers have also shown an interest in analyzing spatial traffic be-

haviors of their mobile users for the purpose of efficiently managing the limited

resources. However, the research on traffic estimation is usually independent from

those on mobility prediction. In [51], Adas reviewed many of the traditional traffic

estimation techniques and mainly focused on autoregressive models which typically

require substantial amount of computations. The work done by Suzuki in [52] is one

simple example where autoregressive models were used to study the average daily

vehicle traffic. Another example includes the work done by Bermudez et al. in [53]

that proposed to model the periodically-varying population distributions at distinct

locations based on the competition principles of biological species. However, these

works ignore the temporal influences on the spatial traffic and focus mainly on long-

term behaviors. Borrel et al. [54] and Zhou et al. [55] had further looked at modeling

the changes in the spatial behavior for groups of mobile users that tend to gather

towards some attracting point. In addition, Chen et al. in [56] proposed a technique

for generating a traffic volume forecasting model that considers estimating various

details from a series of trends deduced from a temporal traffic volume data using the

wavelet transform. Their results were subsequently used to train a neural network

for predicting such trends. While their approach has been validated with real traffic

data, their technique strongly relies on the suitable choice of numerous parameters

that are required for optimal trend estimation.

Several researchers considered analyzing real traffic records for extrapolating



1. Introduction 16

some trends and characteristics to be used for modeling the spatial behaviors of the

users in the network. The analysis of billing records of a CDPD wireless network

done by Andriantiatsaholiniaina and Trajkovic in [57] revealed some interesting

trends on the spatial traffic behavior of the network’s mobile users and offered some

guidance on how to model such behaviors. Similar achievements have been made

by Hutchins and Zegura [58], Tang and Baker [59], and Balachandran et al. [60]

and focused on analyzing the traffic in WLANs. Almeida et al. [61] considered the

analysis of GSM traffic and proposed a model for describing both the spatial and

temporal network traffic distributions. Based on the results reported in [61], the

authors concluded that the spatial traffic can be modeled using exponential/linear

and piecewise/linear functions, while the temporal traffic was based on either the

double-gaussian or trapezoidal functions. Most of the conclusions that have been

derived by those researching the trends of some real traffic data have generally

yielded a better understanding of specific behaviors. However, their conclusions are

highly dependent on the type of network that they are investigating and may not

be valid for others.

Ning et al. [62] proposed employing bilinear interpolation for deriving a continu-

ous model of only the spatial traffic behavior in the network. They further proposed

the construction of a visualized representation of their spatial analysis using pseudo

color and contour maps. Tutschku and Tran-Gia [63] considered taking a map of the

network’s coverage area and characterizing the entire area using discrete demand
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nodes. These nodes were then used to model the spatial network traffic demands

at these discrete points for the purpose of optimizing the network coverage areas.

Ashtiani and Salehi [64] proposed a stochastic model for capturing the steady-state

spatial traffic distribution of mobile users with multiple classes of services. Much

of the work found were focused on estimating only the spatial traffic fluctuations

for analyzing long term behaviors, but tends to ignore the influence of temporal

fluctuations which are needed for short term analysis. The benefits of having such

information on the spatial-temporal traffic fluctuations have been explored by Ham-

pel et al. in [65].



1. Introduction 18

1.3 Objectives

The focus of this thesis is to show how to better model the mobility behavior of users

in a wireless network as a semi-Markov process. The model is primarily applied for

predicting the next-cell transitions, along with anticipating the duration between

the transitions for an arbitrary user in a wireless network. We ensure that the

parameters to be used in the model can be derived from the wireless data that can be

readily obtained from traffic logs. In essence, simplicity together with effectiveness

is one of the major goals of this thesis. To the best of my knowledge, the only work

found applying semi-Markov processes for mobility prediction was in [66] (with a

similar idea proposed by Song et al. which they denoted as MarkovCDF in [28]) for

next-location predictions alone. The model proposed in this thesis goes further and

can deal with the case of both single and multi-transitions.

Single transition prediction considers estimating the next event (e.g. movement

into the neighboring cell) whereas the Nth transition prediction considers estimating

the future event after N transitions. The results of N transition predictions can be

employed for estimating the travel path of a mobile user during its session lifetime.

This information can potentially be applied for ensuring some level of end-to-end

QoS guarantees, which is similar to what the model proposed in [35] tries to achieve.

This is based on the rationale that the further ahead the network can predict when

and where the user will likely transition towards (after multiple transitions), the

better the chances it has at avoiding any disruptions in the continuation of a user’s
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ongoing active session. Only those disruptions that are due to the lack of availability

of the necessary resources while transitioning between numerous access points is

considered in this thesis. The models proposed by Le Grand and Horlait in [67]

and Benmammar and Krief in [68] are good examples which illustrate the need for

N -transition prediction for the purpose of managing the network resources and to

support end-to-end QoS. Another example is the model proposed by François and

Leduc in [69] which also looks at N transition predictions but without any temporal

considerations. Note that the different types of resources to be efficiently managed

by the network include the wireless and/or wired bandwidth, as well as others that

are specific to the type of network that is addressed in the model.

In addition to predicting the location transition behaviors of the wireless users,

it will further be shown how to employ the proposed mobility model for predicting

other network-related characteristics that would be of significant benefit to both the

user’s and network’s performance. For example, the model can also be used to esti-

mate the expected traffic load and activity at each location in a network’s coverage

area, both spatially and temporally. Throughout this thesis, some numerical exam-

ples are provided to show how the proposed mobility model can be applied and how

to interpret the predictions that can be computed from the model. Moreover, and

wherever possible, the proposed prediction scheme is examined and validated using

real wireless traffic traces. It will also be shown how the model could be utilized by

the network managers for improving on their resource management.
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Much of the work covered in this thesis, as well as the related work by other

researchers, focus mainly on the next-location prediction of its network users that

run some form of homogeneous application such as voice-calls. However, with the

increasing traffic volumes generated from data connectivity in networks such as 3G

and beyond, there is also the growing need to understand how these traffic loads

are distributed across the network both spatially and temporally. Hence, there is

the need to predict the transfer of these loads from one location to another. In

this thesis, the mobility behavior of users with data connectivity and varying traffic

loads is also proposed and modeled as a Markov renewal process. Some examples

are given to show how the results from the model can be applied for spatially and

temporally predicting the transfer of such loads between the different locations in

the network.
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1.4 Outline

Chapter 2 discusses the details of how to formulate the mobility behavior of users

in a wireless network and how to model it as a Markov renewal process. This

chapter also discusses how to generate the prediction results from the proposed

mobility model along with analyzing the accuracy of these predictions returned by

our proposed model.

In Chapter 3, the model discussed in Chapter 2 is tested using actual mobility

traffic traces that were collected from another independent project. The traffic

traces were used to derive the required parameters for constructing our proposed

model which was then used to assess the accuracy of our predictions. The results

of the predictions using the proposed model were compared with those obtained

from a number of conventional prediction schemes developed by other researchers.

A brief description is also included on how the prediction results can be interpreted

and utilized for network resource management purposes.

Chapter 4 focuses on how to apply the proposed mobility model and extend

the predictions for making spatial and temporal forecasts after N transitions in the

future, which could aid with end-to-end QoS assurances. It will further be shown in

this chapter how these multi-transition predictions can be applied for network re-

source reservation purposes and for estimating the network’s spatial-temporal traffic

characteristics. The traffic traces analyzed in Chapter 3 were again used to illustrate

how to interpret the results returned from these multi-transition predictions. The
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result can further be used to compute end-location predictions. Network managers

can utilize the knowledge of the end-location predictions for extrapolating the set

of possible locations that are likely to be visited by a user during the lifetime of its

active session. Hence, this information can be used to reserve the needed resources

at the set of multiple locations to assist with end-to-end QoS assurances.

Before concluding and summarizing the work in Chapter 6, Chapter 5 presents

the details of how to apply the idea of our proposed mobility model and extend it

for the case of modeling the mobility behavior of users that are running data-driven

applications. In such cases, the concern is more on the amount of data traffic that a

user carries from one location to the next. Some numerical examples are also given

to illustrate a few of the inferences that can be deduced from the results of this

model.



2. MOBILITY PREDICTION MODEL

2.1 User Mobility Patterns

One common misconception is the idea that user mobility patterns are close to

being random [91]. Some researchers have found that mobile nodes exhibit some

degree of regularity in their mobility patterns [31], which can be exploited for the

purpose of predicting the future travel path of mobile users. In fact, mobile users

are believed to travel on some defined paths with a pre-determined destination in

mind, in accordance with their lifestyle and common trips. This does not imply

that it is impossible for mobility patterns to exhibit random excursions, but instead

suggests that such random patterns are rare. Moreover, mobility patterns tend to be

significantly influenced by some geographic limitations, e.g. pathways and corridors.

In this thesis, an entire network space is assumed to be divided into zones and

zone-IDs are used to specify the user’s locations, e.g. the cell-ID in a cellular network

that is currently serving the user. An example of such a representation is given in

Figure 2.1 which shows a typical cell structure in mobile cellular networks, while

other structures do also exist. Alternatively, a user’s location can be identified

by his/her geographic n-dimensional coordinates. Note that there exists a direct
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Fig. 2.1: 7-Cell network, with cell-IDs used to describe the terminal’s mobility path.

mapping from the user’s geographic coordinates to the zone-ID in which the user is

located, while the reverse is not true. Since we are dealing with mobility predictions

for assisting with the management of the network’s resources, it is assumed that the

tracking of the user’s location via cell-IDs is sufficient from the network’s perspective.

Furthermore, the movement of a mobile user through the network can be described

by the successive list of cell-IDs. This list represents the sequence of access points

that were associated with the user’s terminal throughout the lifetime of the active

connection. For example, Figure 2.1 shows the user’s mobility path to be 6 → 7 →

2 → 3. Each cell can be further divided into a number of sectors with distinct

sector-IDs which are used to additionally describe the intra-cell movement patterns,

as proposed by Kwon et al. in [23] with an example given in Figure 2.2.

The previous method of characterizing a mobile user’s path and location is most

suitable for networks with fixed infrastructures where the coverage areas that are

supported by the various access points are static. However, other network types

(such as Ad Hoc) have dynamically changing topologies which makes the process
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Fig. 2.2: A Zone-based sectoring of a hexagonal cell.

of tracking the user’s mobility behavior quite challenging. For such networks, the

network region can be segmented into smaller discrete (and possibly uniform) re-

gions. The result is a grid of locations that could be used to characterize the zone at

which the mobile user is located, with each zone having its own distinct identification

number. An example is given in Figure 2.3. Furthermore, in such infrastructure-less

networks, the coverage areas may vary quite considerably which could influence the

mobility and traffic behavior of its users. The model proposed in this thesis mainly

considers networks with fixed infrastructures in order to avoid such complexities.

However, the methods discussed in this work may still be of some use for predicting

the mobility patterns of users in infrastructure-less networks.

A user’s mobility pattern from the network’s perspective is determined by the

user’s terminal (e.g. mobile phone) mobility pattern. The regularities found in the

movement patterns of users are not necessarily similar to those in the connection

trace of a mobile terminal. The transfer of a user’s connection to a neighboring

access point could be for reasons other than the user moving out of the current cell

such as signal fluctuations, congested cells, or constraints in the surroundings.
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Fig. 2.3: The partitioning of a geographical region into smaller zones.

The users’ mobility history patterns can be periodically recorded using the cell-

ID representations. Let Pi,j be defined as the probability of making a transition

from cell i to cell j, and τi,j as the time spent in cell i before making a transition to

the neighboring cell j. For each cell that is accumulating a mobility pattern profile,

the number of handoffs made to a neighboring cell, as well as the time spent in

the current cell before the transition occurs, can be recorded. This allows for the

computation of the cell-transition probabilities Pi,j, as well as τi,j. In addition, the

distribution of the cell sojourn times at each location can be extrapolated from the

set of recorded sojourn times. We assume that the network at each of its locations

keeps a record of each session’s sojourn time in the cell and the cell-ID of the next

cell transition.

The mobility history can either be recorded for each user, or collectively for all

users, into a single history profile per location. The latter method is more suitable

for situations where all users will generally exhibit similar behavior at a given access
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point, and are also not significantly influenced by erratic behaviors from a single

user. Even though different groups of users have different mobility patterns, it can

be difficult to address every type of group behavior in a single mobility model.

However, it is assumed that an aggregated mobility history of users account for the

many different types of behaviors, as argued by Capka and Boutaba in [26]. A large

enough history of traffic traces could help with ensuring the capturing of the many

different group mobility behaviors. Alternatively, each group of users with a shared

mobility behavior can be modeled as a separate class of users with its own mobility

model. In this thesis, and for simplicity, it was chosen to base our proposed mobility

model on the aggregated behavior of the mobile users.

It has been shown in [21] that the accuracy of the prediction for the next-cell

transition can be improved by additionally considering the prior location of the user

immediately before making the transition into the current location. Define Ph,i,j as

the probability of making a transition from the current cell i to cell j, given that the

user was in cell h prior to being in cell i. Let τh,i,j be the time spent in cell i prior

to making a transition that is given by the probability Ph,i,j. Hence, both Ph,i,j and

τh,i,j can be computed from a user’s mobility history to help improve the accuracy

of the next-cell predictions.

Traffic patterns typically exhibit some form of seasonality whereby user mobility

behaviors are likely related to a certain epoch in time and repeats periodically. A

good example would be the mobility pattern of students within a university campus



2. Mobility Prediction Model 28

which tends to be consistent within a single term and varies from one academic term

to another. Another example is a commuter’s daily travel patterns during the week.

A more accurate prediction would need to address these season-based changes in

mobility patterns and compute the necessary parameters for each of those distinct

periods to be applied exclusively for these periods. Notice that some instances

could be the result of temporary occurrences such as road repairs which can have a

significant impact on the mobility behavior of the users. Such occurrences should not

be treated as being due to season changes since they are assumed to be infrequent

situations. Other infrequent occurrences include severe traffic jams, weather, and

geographic disasters that can be assumed to be temporary and rare. The model

covered in this thesis does not consider the reaction to such uncommon occurrences.
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2.2 Markov Renewal Processes

A Markov Renewal Process (MRP) is a semi-Markov process where the successive

state occupancies are governed by the transition probabilities Pi,j of a Markov pro-

cess, and the sojourn time in any state depends on both the current state and the

next state transition. The behavior of this process is defined by the pair of random

variables {X, T}. A more detailed description of such processes can be found in [70].

The semi-Markov kernel for a time-homogeneous process is given by Qi,j(t),

Qi,j(t) = Pr{Xn+1 = j , Tn+1 − Tn ≤ t | Xn = i}, (2.1)

where Xn and Xn+1 represent the state of the system after the n-th and (n + 1)-th

transition, respectively, with Tn and Tn+1 being the times at which the n-th and

(n + 1)-th transitions occur, respectively. Qi,j(t) denotes the probability that upon

entering state i, the process makes a transition into state j within t units of time of

being in state i. The time t in such a process can either be discrete or continuous.

We can further re-write the kernel Qi,j(t) as follows,

Qi,j(t) = Pi,j Gi,j(t), (2.2)

where

Gi,j(t) = Pr{Tn+1 − Tn ≤ t | Xn+1 = j , Xn = i}. (2.3)
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Gi,j(t) represents the conditional probability that a transition will take place within

an amount of time t, given that the process has just entered state i and will next

transition to state j. The sojourn times in such a process are assumed to follow any

arbitrary distribution and allows for a convenient departure from the common as-

sumption of exponentially distributed sojourn times [7,71], thus permitting a more

accurate representation of the temporal behaviors. Many of the mobility models

developed by various researchers had tended to assume an exponentially distributed

sojourn time due to it’s favored “memoryless” property [72], which yielded a more

tractable model. The geometric distribution possesses the same “memoryless” prop-

erty in discrete-time models. However, the exponential distribution may not be

representative of all types of sojourn time behaviors. An MRP with exponentially

distributed sojourn times reduces to the well-known continuous-time Markov pro-

cess.

Since it is known that the limits of the cumulative distribution of the sojourn

times are Gi,j(t) → 1 as t → ∞, the following limits are true for the semi-Markov

kernels,

Pi,j = lim
t→∞

Qi,j(t). (2.4)

Define the random variable ωi as the time spent in the current state i before

making a transition, then the cumulative waiting time probability is given as follows.

Wi(t) = Pr{ωi ≤ t} =
∑

j

Pi,jGi,j(t) ∀i (2.5)
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Other performance metrics from an MRP can be found in [76].

We can also define the kernel qi,j(t), such that

qi,j(t) = Pr{Xn+1 = j, Tn+1 − Tn = t | Xn = i}

= Pi,j gi,j(t), (2.6)

where gi,j(t) is the probability that the process will sojourn in state i for exactly t

units of time before making a transition into state j, with

gi,j(t) = Pr{Tn+1 − Tn = t | Xn+1 = j, Xn = i}. (2.7)

Phase-type distributions are a class of probability distributions that are used to

approximate any positive valued distributions. Such distributions can be represented

by a single random variable which describes the time until absorption of a finite

Markov process with a transition probability/rate matrix S and one absorbing state,

with α being the probability vector governing the starting state of the process. Neuts

in [73] provides a detailed description of phase-type distributions that are typically

characterized as (α,S). A phase-type distribution of (α,S) could be used to model

the state sojourn times Gi,j(t). If we assume that the sojourn times in state i

for each i → j transition of the MRP have a phase-type distribution (αi,j,Si,j) in
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continuous-time, then the elements Gi,j(t) will have the following form,

Gi,j(t) = 1 − αi,j exp (Si,jt)1 for t ≥ 0, (2.8)

where 1 is a column vector of ones. The mean of such distributions is given as

−αi,jS
−1
i,j 1. The probability density function of such distributions in continuous-

time is given by gi,j(t) = αi,j exp (Si,jt)S0
i,j, where S0

i,j = −Si,j1.

If Gi,j(t) assumes a discrete-time phase-type distribution, then it will be of the

following form,

Gi,j(t) = 1 − αi,jS
t
i,j1 for t = 0, 1, 2, · · · , (2.9)

which has a mean of αi,j (I − Si,j)
−1 1, where I is an identity matrix with the same

dimensions as Si,j. The probability density function of such distributions in discrete-

time is given by gi,j(t) = αi,jS
t−1
i,j S0

i,j , where S0
i,j = 1 − Si,j1. The fitting of data to

phase-type distributions have been covered by various researchers, such as Horváth

and Telek in [74], and Panchenko and Thümmler in [75].
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2.3 Model Description

The mobility behavior can be modeled as a Markov renewal process and can be

used to predict the transition that an arbitrary user makes from its current location,

within a time t (and not at time t, for a better prediction as argued by Song et al.

in [28]). The model assumes the availability of the information regarding the location

transition probabilities and the conditional distributions of the cell-sojourn times,

using the aggregate mobility history that is collected in each cell of the network.

The probability Qi,j(t) defined in Equation (2.1) can be computed to evaluate the

predictions of an arbitrary user making a transition to a neighboring location, which

depends on the length of time spent in the current location.

The majority of the mobility models proposed in the literature focused only

on those users in a network with an active session. However, a more elaborate

model could consider distinguishing the users that are mobile with active and idle

sessions [77], as well as the changes in the session conditions (i.e. from active to

idle and vice versa). A mobile user is said to have an idle session when his/her

wireless terminal is not engaged in any transmission/reception and is on standby.

In [78], Sricharan and Vaidehi argued that the lack of consideration of the idle

mode behavior of the mobile users can have a significant impact on several network

management tasks. Halepovic and Williamson in [79] had examined some traffic

traces and discovered that there exists some correlation between the call activity

and mobility patterns for the users.
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The proposed mobility prediction scheme is based on the assumption that a

user’s session-activity patterns are correlated with the location and movement pat-

terns in a network. In addition, the presence of users with idle sessions may exert

some influence on the density and behavior of users with active sessions, and vice

versa. In fact, mobile users with idle sessions can potentially initiate a network

access, especially when receiving a transmission from the network, e.g. a mobile

user receiving a request to answer an incoming call in cellular networks. Various

networking technologies do also keep track of their registered users that have no

ongoing sessions (i.e. idle sessions) for “paging” purposes [80]. For example, mobile

users with idle sessions in cellular networks generate location updates while roam-

ing, since the network needs to be able to determine where to direct an incoming

call for a particular user. In WLANs, a user with an idle session remains associated

with the network and re-associates its connection with the network when moving

from the coverage area of one access point to another.

For our prediction scheme, we propose to define the transition probabilities as

follows.

• Pi,j denotes the probability that a user’s ongoing and active session is trans-

ferred from cell i to cell j.

• Pi,−i denotes the probability that a user’s ongoing and active session is termi-

nated in the current cell i.

• P−i,i denotes the probability that a user’s idle connection becomes active in
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the current cell i.

• P−i,−j denotes the probability that a user’s idle connection is transferred from

cell i to cell j.

The subscripts i and −i denote a user in location i with an active and idle session,

respectively. It is further assumed that Pi,i = 0 and P−i,−i = 0 since this model

describes a “renewal” process for predicting the future transitions. Furthermore, in

many cases it can be assumed that a change in location and session-activity cannot

occur simultaneously in a single transition if we were only to consider the cases when

a “renewal” in either of the states occur. This is true for the case where the mobility

model is constructed in continuous-time. However, the specification of the model

can be readily adjusted to account for the simultaneous transitions in both location

and session-activity. The former assumption was chosen to be adopted throughout

this thesis.

For each of the probabilities given above, we can define a cumulative distribution

function in the form given by Equation (2.3), and subsequently compute the semi-

Markov kernel Qi,j(t). In general, the empirical distribution can be directly used, or

these distributions can assume any closed-form distribution function. These closed-

form functions can be obtained by passing the sojourn times collected from the traffic

traces through some distribution fitting tools such as [81] and [82] that attempt to

best fit the data to some known distribution function. Another approach would be

to try and fit the data to a phase-type distribution using the various methods given
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in the literature such as the one proposed in [74] and [75]. Other distribution fitting

methods can also be used provided that a distribution function can be formulated

in the form given by Equation (2.3). Note that the proposed mobility model is not

limited to any particular types of sojourn time distributions, but the accuracy of

the model (and ultimately the predictions) will be greatly influenced by how well

the sojourn times data can be fitted to an appropriate distribution.

Let X be a random variable that defines the state of a mobile user in terms of its

location and session activity, such that X ∈ X . Let LI and LA be the total number

of cells/locations with users having idle and active network sessions, respectively.

Thus, X has the following state space X = {(−1,−2, · · · ,−LI) , (1, 2, · · · , LA)},

where typically LA = LI , but generally LA ≥ LI . Note that the states X = −i

and X = i defines the presence of a user in location i with idle and active sessions,

respectively. For illustrative purposes, let us assume a simple example of the 7-

cell structure in Figure 2.1 as being the entire network coverage area. An MRP

model that considers the explicit cell transitions while a user is engaged in both

an active or idle network session can be formulated with the state space given by

X = {(−1,−2,−3,−4,−5,−6,−7) , (1, 2, 3, 4, 5, 6, 7)}, where LI = LA = 7. In

this case, the probability of having a session terminated in cell 7 within time t is

given by the element Q7,−7(t) and the remaining set of possible transitions can be

explained in the same manner.

Not all networks track their users’ exact cell changes while their sessions are
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idle. For example, cellular networks only monitor changes in a user’s “location

area”, which is equivalent to a certain cluster of cells, while the session is idle. Our

model can be applied to such circumstances by appropriately re-defining the subset

of states assigned for those users at the various locations that have idle sessions.

Hence, LA can also be defined as the total number of cells and LI is the total

number of “location areas” with LA 6= LI . For cellular networks, LA ≥ LI whereas

it is common to find that LA = LI in WLAN. Using the same 7-cell example given

in Figure 2.1, the network may impose a limited tracking of their users with idle

sessions based on their “location areas” where, as an example, these areas are defined

such that cells (1, 4, 7) are labeled as X = −1, cells (2, 3) are labeled as X = −2,

and cells (5, 6) are labeled as X = −3. Thus, the state space for this MRP model

reduces to X = {(−1,−2,−3) , (1, 2, 3, 4, 5, 6, 7)}, whereby a transition that reflects

the termination of a session in cell 7 is now given by the element Q7,−1(t). Note that

in such cases, a transition from cell 7 to cell 1 with an idle session is not considered

in this reduced MRP model since the user in actuality remains in the same location

area without any change in state. However, a transition of the same idle session

from cell 7 to cell 6 does involve a change in state from −1 to −3.

The other extreme circumstance is if the network does not monitor nor consider

the state of a mobile user with an idle session in its predictions. In such cases, the

network would commence its predictions using the MRP model with state space

X = {1, 2, 3, 4, 5, 6, 7} once a user’s session is initiated and continue to assume that
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the connection will remain active until terminated by the user. Hence, our proposed

MRP-based prediction scheme can be tailored to the needs and requirements of

different networks.

The kernels Qi,j(t) could further be used to construct a semi-Markov kernel

matrix Q(t) = {Qi,j(t)}. Assume the simple example of a 7-cell network given in

Figure 2.1 whereby users in cell 1 can transition directly into the six other surround-

ing cells, while users in cells 2 to 7 can only make a direct transition into three other

neighboring cells. For this 7-cell example, the matrix Q(t) can be constructed as

follows, with the order of the state space give as {−1,−2, · · · ,−7, 1, 2, · · · , 7}.

Q(t) =

(
M−(t) S+(t)
S−(t) M+(t)

)
, where (2.10)

M+(t) =




0 Q1,2(t) Q1,3(t) Q1,4(t) Q1,5(t) Q1,6(t) Q1,7(t)
Q2,1(t) 0 Q2,3(t) 0 0 0 Q2,7(t))
Q3,1(t) Q3,2(t) 0 Q3,4(t) 0 0 0
Q4,1(t) 0 Q4,3(t) 0 Q4,5(t) 0 0
Q5,1(t) 0 0 Q5,4(t) 0 Q5,6(t) 0
Q6,1(t) 0 0 0 Q6,5(t) 0 Q6,7(t)
Q7,1(t) Q7,2(t) 0 0 0 Q7,6(t) 0




,

(2.11)

M−(t) =




0 Q
−1,−2(t) Q

−1,−3(t) Q
−1,−4(t) Q

−1,−5(t) Q
−1,−6(t) Q

−1,−7(t)
Q

−2,−1(t) 0 Q
−2,−3(t) 0 0 0 Q

−2,−7(t))
Q

−3,−1(t) Q
−3,−2(t) 0 Q

−3,−4(t) 0 0 0
Q

−4,−1(t) 0 Q
−4,−3(t) 0 Q

−4,−5(t) 0 0
Q

−5,−1(t) 0 0 Q
−5,−4(t) 0 Q

−5,−6(t) 0
Q

−6,−1(t) 0 0 0 Q
−6,−5(t) 0 Q

−6,−7(t)
Q

−7,−1(t) Q
−7,−2(t) 0 0 0 Q

−7,−6(t) 0




,

(2.12)

S+(t) = diag [Q−1,1(t), Q−2,2(t), Q−3,3(t), Q−4,4(t), Q−5,5(t), Q−6,6(t), Q−7,7(t)] ,
(2.13)
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S−(t) = diag [Q1,−1(t), Q2,−2(t), Q3,−3(t), Q4,−4(t), Q5,−5(t), Q6,−6(t), Q7,−7(t)] ,
(2.14)

with diag [· · · ] being a square matrix of zeros with the elements [· · · ] along its

diagonal. The elements in M+(t) represent the transitions that correspond to a

change in location from one cell to another due to mobility and while running an

active session, while the elements in M−(t) are for the case where the location

transitions involve users with idle network sessions. These transitions only include

those made to the cells that directly neighbor those from which the transitions are

made, e.g. Q6,3(t) = 0 since cell 6 is not a direct neighbor of cell 3. The elements in

S+(t) represent the transitions involving a user’s session activity changing from idle

to active (i.e., network session initiation) while residing in the same cell, whereas

S−(t) are for the case of session activities changing from active to idle (i.e., network

session completion). Note how all these transitions do not include those that involve

changes in both location and session activity simultaneously. This example models

for mobile users with both active and idle network sessions. If the focus need only

be on those users with active sessions alone, then the semi-Markov kernel matrix

simply reduces to the one given by M+(t), i.e. Q(t) = M+(t) for the case of active

users alone in the 7-cell network example.

The Markov renewal process for mobility prediction can also be extended to the

case where the user’s previous location is considered in the mobility pattern, i.e.

extending the kernels Qi,j(t) to Qh,i,j(t) which has the following form.

Qh,i,j(t) = Pr{Xn+1 = j Tn+1 − Tn ≤ t | Xn = i , Xn−1 = h}

= Ph,i,j Gh,i,j(t). (2.15)
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It has been suggested by Choi and Shin [22], as well as several other researchers,

that estimating the likelihood of future transitions within a certain time window

can yield better predictions as opposed to predicting the time at which a transition

could occur. Given our definition for Qi,j(t), we can further compute

Qi,j(tb, tf) = Qi,j(tf) − Qi,j(tb), (2.16)

where Qi,j(tb, tf) is the probability of observing a transition into state j from state

i within a time period t, such that tb < t ≤ tf . The size of the time window (tb, tf )

can have an influence on the prediction accuracy and thus could be dynamically

“fine-tuned” according to some criteria.
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2.4 Prediction and Confidence

The results returned by the elements Qi,j(t) can generally be applied for numerous

purposes including the prediction of an arbitrary user’s mobility behavior. They can

further be used for other benefits such as estimating the future resource allocations

and understanding the spatial-temporal traffic demands. Various uses will be pre-

sented in this thesis for the purpose of demonstrating the benefits of the proposed

model. This section describes the approach used to evaluate the predictions from

the mobility model specified in the previous section.

Given the probabilities Qi,k(t), one form of prediction is to estimate the propor-

tion of users from the current population Vi that are expected to transition into state

k within time t after a single transition from state i. Hence, from our prediction

results, we would expect that ViQi,k(t) from the current population Vi would end

up in state k within t units. This can be construed as having made an aggregate

prediction on all the Vi users that are currently in state i and how they are expected

to spread amongst the various locations within time t. However, in this approach

the predictions are not specific to any user in particular since the result only decides

on the number of users that are expected to transition from one state to another.

In the case of a per-user prediction, the future outcome could be randomly pre-

dicted and based on the distribution defined by the transition probabilities. How-

ever, it is common to make an outcome prediction based on the maximum proba-

bility from the distribution of the set of possible events (see [20]). For example, if

Pi,j = maxk∈Ωi
{Pi,k}, where Pi,k is the transition probability from state i to k and

Ωi are the set of possible states that can be transitioned into from state i, then state

j is said to be the most likely outcome to follow state i. Therefore, state j is said

to be the predicted outcome for users that are expected to make a transition from
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(Traffic Log Updates)

Pi,j 
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Gi,j (t) 
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Qi,j (t)
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PREDICTOR
{Qi,k (τo + τ)}(i, τ0 , τ) {k 1, k2, …, km}

Fig. 2.4: The MRP-based prediction procedure.

state i. Some researchers had further explored the benefits of selecting the top m

most likely events as the result of their predictions, such as Chan and Seneviratne

in [21], with m = 1 being the most common choice.

The methods outlined earlier can also be applied for computing the next state

predictions from the proposed semi-Markov mobility model. Hence, the time-

dependent prediction results will be such that

Qi,j(t) = max
k∈Ωi

{Qi,k(t)} ,

or qi,j(t) = max
k∈Ωi

{qi,k(t)} . (2.17)

The block diagram in Figure 2.4 illustrates the basic sequence of procedures

that are needed to implement the proposed MRP-based predictor. The traffic log

database holds a record of the aggregate traffic logs of the users in the network.

These logs contain the relevant information needed to compute the state transition

probabilities Pi,j and the state sojourn time distributions Gi,j(t), for all valid (i, j)

pairs of transitions. These components can be updated periodically, based on new

logs that are received by the network and updated in the database as a result of

some completed event by a mobile user. The “Log Validator” component could be
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added to filter out those logs that do not accurately reflect the mobility behavior of

the user, especially at the instances where a session was denied a natural completion

by the network, e.g. the dropping of a session due to insufficient resources at the

newly visited access point. The Qi,j(t) database keeps a record of the computed

elements which are directly queried by the predictor for evaluating the probabilities.

The predictor takes as its inputs the current state/location i, the current sojourn

time τ0 in state i, and the time length τ from the current time τ0 during which a

transition is expected to be made. Given those inputs, the predictor queries the

Qi,j(t) database to compute the values Qi,k(τ0 + τ) for all k ∈ Ωi and outputs k1 as

the next most likely outcome to occur τ time units from the current time (which

conforms with Equation (2.17)). The results of the second and up to the m-th most

likely outcomes at the next transition are also returned, if needed.

In some instances, selecting the next likely outcome as the one with the maximum

probability may not necessarily yield a confident prediction. For example, consider

the simple case where the probabilities of going from state 1 to 2 and 1 to 3 are P1,2 =

0.51 and P1,3 = 0.49, respectively. We would expect most prediction algorithms to

select state 2 as being the next likely outcome, but the probability P1,3 is very

close to P1,2. However, if these transition probabilities were instead P1,2 = 0.8 and

P1,3 = 0.2, then we would be a lot more confident in making the prediction of

state 2 being the next state as opposed to the previous case. Hence, it is assumed

that the higher the maximum probability is in comparison with the other transition

probabilities, the more confident one can be with making a prediction using this set

of probabilities.

A simple measure of confidence would be to find the entropy of the prediction
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made from state i, which can be calculated as follows,

H (Qi(t)) = −
∑

k∈Ωi

Qi,k(t)

Si(t)
log

(
Qi,k(t)

Si(t)

)
, (2.18)

where Si(t) =
∑

k∈Ωi

Qi,k(t),

such that 0 ≤ H (Qi(t)) ≤ log (|Ωi|) ,

with |Ωi| being the number of possible outcomes from state i and Si(t) is needed to

normalize our semi-Markov transitional probabilities, since Si(t) ≤ 1 and Si(t) → 1

as t → ∞. A similar definition can be obtained for the case of using qi,j(t). Note

that the measure of prediction confidence is time-dependent and the higher the

H (Qi(t)), the less confident one may be of the prediction. Therefore, one way of

increasing the confidence of the prediction is to vary the time t within which the

transition is expected to be made. Increasing t will not necessarily decrease H (Qi(t))

since it is strongly dependent on the shape of the state sojourn time distribution.

Another approach for decreasing H (Qi(t)) would be to lump together the top m

outcomes with the highest probabilities into a single probability and recompute the

new confidence measure, for predicting a cluster of m states as the next outcome.
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To illustrate the behavior and benefits of the proposed mobility prediction, a set

of actual wireless traffic traces were used for computing the parameters needed to

make a prediction, i.e. the transition probabilities and the cell sojourn times. The

data set was acquired from the CRAWDAD (Community Resource for Archiving

Wireless Data at Dartmouth) online repository [83] which included the recording

of WLAN traffic logs produced by 623 wireless access points at Dartmouth College

(New Hampshire-USA) from the period of April 2001 until June 2004. The set

contained 13888 logs, one for each unique wireless terminal that acquired access to

the network during the monitored period. Within the logs, details of the access point

ID as well as the time at which the user associated its terminal with the access point

were included. This allowed for computing the location transition probabilities as

well as the times spent at each location before a transition to the next location. A

snapshot of one of those logs is given in Figure 3.1 for the user with MAC Address

000423de1f86. Each entry in the logs contained the time (first column) at which

1076098966 AcadBldg1AP3
1076099208 ResBldg97AP5
1076099464 ResBldg97AP2
1076100005 OFF
1076100005 ResBldg97AP5
1076100697 ResBldg97AP2
1076100940 OFF
1076100940 ResBldg97AP5
1076101322 AcadBldg1AP3

Fig. 3.1: Part of a movement log from the CRAWDAD data.
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the user first associated its connection with the access point and the second column

gives the unique ID of that particular access point. The “OFF” refers to the case

where the user terminated its session at the same access point that was previously

logged. The event time in the first column corresponds to the number of seconds

elapsed since January 1st 1970 00 : 00 GMT. These logs for each mobile terminal

with a unique MAC address were actually extracted from a much larger trace set

that contained continuous recordings of the syslog records generated by the access

points. There were a few events that showed some discontinuity in the records

due to some minor technical issues that had been identified by the researchers who

collected the traffic traces. Such occurrences were not included in the analysis.

Each syslog event contained the information needed to generate the movement logs

for each user such as timestamp, access point ID, MAC address, and syslog message

indicating the changes in the association between the network and the user. Figure

3.2 is an example of some syslog entries that were taken from the trace set.

986996241 Apr 11 09:37:21 AcadBldg33AP6 (Info): Station 004096daa8fe Authenticated
986996241 Apr 11 09:37:21 AcadBldg33AP6 (Info): Station 004096daa8fe Associated
986996363 Apr 11 09:39:23 AcadBldg33AP5 (Info): Station 00409630cdc9 roamed
986996363 Apr 11 09:39:23 AcadBldg33AP5 (Info): Station 00409630cdc9 roamed
986996363 Apr 11 09:39:23 AcadBldg33AP6 (Info): Station 00409630cdc9 Authenticated
986996363 Apr 11 09:39:23 AcadBldg33AP6 (Info): Station 00409630cdc9 Reassociated
986996680 Apr 11 09:44:40 AdmBldg19AP3 (Info): Station 0040961e58be Reassociated

Fig. 3.2: Part of a syslog trace collected on April 11th 2001.

The traces in the data set do not show the details of the traffic flow between the

user’s wireless terminal and the network and instead focuses on the details of the

time and place at which the user’s terminal associates, transfers, and terminates its

session with the network. In other words, the user’s terminal may not always be

engaged in any traffic flow with the network during the entire period of time that

it is associated with a particular access point.

When computing the parameters for Qi,j(t), an approach that is similar to the
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one suggested by Lee and Hou in [66] was used for filtering out any events that

display frequent re-associations between a group of access points within a short

period of time. Such behaviors are known as ping-pong transitions. These type of

transitions have been shown to have a significant impact on the computation of the

parameters needed for the mobility predictions. Most events that had lasted less

than 30 seconds had also been involved in instances with frequent re-associations

and were further filtered out from the analysis.

Both Matlab c© and Flanagan’s Java scientific library [81] were further employed

for extracting the best possible fit for the sojourn time distributions. Any event that

had lasted less than 30 seconds or more than 5 hours were ignored in the analysis. A

considerable number of events in the data set had lasted for very long periods of time,

some of which showed a continuous connection with the WLAN for more than a day.

There was no information to suggest whether such terminals are static, e.g. desktop

computers, in which case they would unlikely be involved in any mobile activities.

However, such behaviors may be expected in WLAN type infrastructures and the

sojourn times could be appropriately fitted to some heavy-tailed distribution. The

data set did not have enough logs with such events to generate a good fit and thus

it was chosen to omit these events from the model parameter computations, as well

as the prediction results. These omissions were chosen to be done in the attempt

to limit the influence of the errors encountered in the distribution fitting process on

the accuracy of the predictions returned by the proposed model.
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3.1 Analysis of Mobility Behaviors

Before proceeding with analyzing the effectiveness of the proposed prediction scheme,

the ability to take a standard data set of traffic logs and use it to compute the re-

quired parameters of the model will first be demonstrated. We then illustrate how

these results can be used to model the mobility behavior of an arbitrary user in the

network as well as give examples on how to interpret some of those results. We are

aware that there are various mobility models that are better at capturing the true

roaming behavior of its users. However, most of them rely on the availability of ex-

tra information that may or may not be readily available in the standard traffic logs.

The aim here is to only use the data that is available in many of the standard logs

and investigate how much information can be inferred from it without resorting to

other types of information found elsewhere. The examples given in this section will

help show how the proposed model could also be used to understand the behavior

of the mobile users, along with the prediction of future mobility transitions.

In the numerical evaluations, we focused only on a subset of the entire data set,

namely those events that exhibit transitions between the 21 different access points,

each served by their own wireless access point, within the Library Building 2 of the

Dartmouth College campus. The traffic traces provided by [83] also supplied the

details of where the wireless access points are deployed across the Dartmouth College

campus. The information included both the coordinates and the floor number of

where these access points are located in the Library Building 2 which was collected

from the AutoCAD drawings of the premises. An outline of where these 21 access

points are located in the building is shown in Figure 3.3, as viewed from the front

side of the Library Building 2. The figure also shows how these access points are

distributed across the various floors of the building. It was assumed that their
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Fig. 3.3: A front view of the spatial locations of the 21 wireless access points in Library
Building 2 at Dartmouth College.

positions remained to be the same throughout the data traffic collection process.

The selection of the Library Building 2 was driven by the fact there were a large

number of events across the period of 3 years in that particular subset which provided

enough data for computing the required parameters.

When examining the sojourn times, the two-parameter Log-normal distribution

was found to give the best fit amongst the list of various distributions that are include

in Matlab’s Distribution Fitting Toolbox. The best fit was determined by the Log

likelihood metric that was computed in the toolbox during the fitting process. The

two-parameter Log-normal distribution was chosen to be used for evaluating the

elements in the semi-Markov model.

Figure 3.4 and Figure 3.5 are plots of the probabilities Q14,j(t) and Q17,j(t),

respectively, where the next state j is from the set of possible locations that a user
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Fig. 3.4: A plot of the time-varying probabilities of an arbitrary user making a transition
from AP14.

can transition into and from the current location, with j = OFF being the state

where the user disassociates its connection with the network at the current location.

Both graphs only show the top 4 next state transitions with the highest probabilities

and how they vary at different periods of time. For example, Figure 3.4 shows that

a user is most likely to make his/her next transition into AP17 from AP14. It is

also shows that an arbitrary user is next more likely to make a transition into AP10

when compared with terminating his/her network session, within the first 2 minutes

of initially being connected to AP14. However, if the same user remains connected

to AP14 for more than 2 minutes, then he/she will instead be next more likely to

terminate their network session in the current location rather than transitioning to

AP10.

One way a network provider might make use of such information is in deciding

when, where, and for how long a certain amount of resource would need to be



3. Practical Evaluations: WLAN Scenario 51

0 1 2 3 4 5 6 7 8 9 10
0

0.05

0.1

0.15

0.2

0.25

Time (minutes)

Q
17

,j(t
)

 

 

j = AP7
j = OFF
j = AP4
j = AP6

Fig. 3.5: A plot of the time-varying probabilities of an arbitrary user making a transition
from AP17.
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Fig. 3.6: A plot of the sojourn times in state i.
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reserved for each user in order to ensure the successful transfer of an active session

between the access points. If we consider again the case of a user that has a session

associated with AP14, the necessary amount of resources could be initially reserved

at AP17 and AP10 during the first 2 minutes of the session time or until the session

is terminated in the current location, whichever is less. This assumes that the

network considers only the first two most likely transitions in their prediction, as

an example. If the session remains active after 2 minutes without any transitions,

then this could prompt the network to limit its resource reservation thereafter to

AP17 since the second most likely transition is the user terminating its session in

the current location.

The network manager could come across a situation that includes multiple tran-

sitions having equal probabilities, as identified by Song et al. in [32]. An example

of such an occurrence is where the two plots for j = AP10 and j = OFF cross

with each other in Figure 3.4. Such instances are more likely to be encountered

when using transition probabilities alone to compute the predictions. To deal with

such incidents, a tie-breaking method would need to be implemented. A simple

approach would be to either consider all transitions with equal probabilities as the

result of the prediction computation, or select a certain subset of these transitions

at random. An alternative method would be to monitor the rising rate of the Qi,j(t)

function and select the one with the highest rate as the prediction result, since the

higher rate is assumed to be leading towards a higher probability. For example, at

the time instant of just under 2 minutes in Figure 3.4 where Q14,10(t) = Q14,OFF (t),

the transition AP14 → OFF will be the chosen prediction under the third proposed

tie-breaker policy, due to a higher rate of increase for Q14,10(t).

Figure 3.6 shows the probabilities of an arbitrary user’s session sojourn time in

the current location before making any transition out of the current location for
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AP14 and AP17, including the session termination in the current location. These

results show that an arbitrary user is more likely to associate its session with AP14

for less time when compared with those associated with AP17. This could imply

that users within the vicinity of AP14 tend to be more mobile (from the network’s

perspective) or tend to complete their sessions much sooner than those being served

by AP17. The network could utilize this type of information to determine when it

should start computing the mobility predictions of its users. One possible course

of action would be to assign a threshold to decide how long the network should

wait before initiating any prediction computations. They may help with reducing

the amount of computations and predictions generated by the network manager.

For example, using the results in Figure 3.6, the network could consider assigning a

probability threshold of p = 0.3 which would suggest that the mobility predictions

for users associated with AP17 need only commence after 4 minutes.

Using Equation (2.18), the time-varying levels of prediction confidence for both

cases of transitioning out of AP14 and AP17 were computed and the results are

shown in Figures 3.7 and 3.8, respectively. The flat-line graph (i.e. Hi(Q(∞)) ) in-

cluded in both plots corresponds to the case of making predictions using the transi-

tion probabilities alone, which are independent of time. Moreover, the maximum en-

tropy in both cases are maxt>0 {H (Q14(t))} = 2.31 and maxt>0 {H (Q17(t))} = 2.29,

which occur at t ≈ 11 minutes and t ≈ 0.1 minute, respectively. A closer look at the

results from the example given in Figure 3.8 reveals that predictions made within

time t = 0.2 and t = 10 minutes may be relatively higher in confidence when com-

pared with those obtained by using the transition probabilities alone. Hence, is it

assumed that the lower the entropy, the better the level of confidence in the predic-

tions, as defined in Section 2.4. Notice that the confidence levels of our MRP model

will eventually tend to the result given by H (Qi(∞)) since Qi,j(t) → Pi,j as t → ∞.
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Fig. 3.7: A plot of the time-varying prediction confidence for Q14,j(t).
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These levels of confidence correspond to how wide the difference is between the

results Qi,j(t) for a given state i and within a time period of t. The variations in

the levels shown in both Figures 3.7 and 3.8 can be understood by re-examining the

results of the kernel behaviors shown in Figures 3.4 and 3.5, respectively. In Figure

3.5, there is a significantly wider margin of difference between the result for Q17,7(t)

and the rest of the elements. The difference between the probabilities shown in

Figure 3.5 becomes smaller as t increases. This might explain the increase in the

entropy shown in Figure 3.8. A smaller margin of difference is observed between

the result for Q14,17(t) and the rest of the elements in Figure 3.4. It was further

observed that as t increases the levels of confidence for both results decrease (level of

uncertainty increases) beyond the edge of H (Qi(∞)) before settling towards it. For

the plot shown in Figure 3.8, this reduction in confidence level occurs after t = 12

minutes.

Figure 3.8 shows that the confidence levels in the predictions are relatively higher

when applying the proposed MRP model in comparison to using the transition prob-

abilities alone, as reflected by the lower entropy. This is true for predictions that

involve transitions to be expected within 10 minutes of being associated with the

current access point. However, the result does not imply that the predictions gen-

erated by the MRP model will necessarily be more accurate. On the other hand,

Figure 3.7 seems to suggest the opposite and that the confidence levels are consid-

erably less when choosing to apply the MRP model. The proposed model has the

advantage of incorporating temporal influences and could still yield a more accurate

prediction than those employing the transition probabilities alone. These confidence

levels may also suggest that selecting a single state/location as the prediction result

at the current time period could be insufficient due to the closeness of the computed

probabilities Qi,j(t). This information could guide the predictor to instead consider
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returning the next m (with m ≥ 2) most likely states/locations in its prediction

results, where the magnitude of m could be based on some assigned threshold on

the confidence levels.
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3.2 Prediction Results and Accuracy

In this section, we examine the accuracy of the proposed mobility prediction and

compare it with those prediction schemes that are limited to using the mobility

history alone and the current state of the user. As an example, we continued to

focus the attention on those transitions that are made within Library Building 2 and

between 21 access points. A subset of the same traffic trace [83], namely those logs

recorded from September 2001 until September 2003, were processed for computing

the required MRP parameters. This subset contained roughly 211, 000 events that

were used to compute the required parameters. The remaining subset of logs for

the period of September 2003 until April 2004 were used to check how accurate the

MRP mobility predictor had performed for each user. The prediction results include

both the next location transition and the time within which the transition occurred.

It would have been more appropriate to construct separate MRP parameters for

different periods in the academic term and the time-of-day. However, the limited

size of the data set would not allow for a reasonably accurate fitting of the required

parameters.

To assess the accuracy of the predictions, we simply chose to measure the number

of times a correct prediction was made from the total number of prediction attempts

per user. In other words, every one of the users’ logs were processed for the events

that led to a transition from either of the 21 access points to the set of possible

neighboring locations, including the state where the session is terminated in the

current location. Each of the events (per user) were then checked to see if the MRP

mobility prediction and the one employing the conventional methods would have

predicted the event correctly.

For checking the accuracy of the MRP mobility predictor, Equation (2.16) was
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used to compute Qi,k(T ±∆) = Qi,k (max{0, T − ∆}, T + ∆) for all possible future

states k ∈ Ωi from i, where Ωi is the set of future states to which a user can transition

from state i, T is the actual length of time a user spent in state i before making a

transition, and ∆ was chosen to be equal to 1 minute. The choice of the step-size

∆ depends on how frequent the network needs to periodically predict the transition

behavior of the user. In other words, ∆ determines the time window size of when

the computed prediction results are valid, after which a new prediction would need

to be evaluated for the next time window if the user has not made any transition.

Following a similar idea to the one proposed by Petzold et al. in [84], the accuracy of

the proposed scheme was evaluated by simply checking to see if the model returned

the correct prediction during the time window in which a transition occurred. Note

that this accuracy is dependent on the time window ∆ and the traffic data used to

compute the model parameters.

For an event with an actual state transition of i → j and sojourn time of T units

in state i, a correct prediction corresponds to having the result where Qi,k(T ±∆) is

a maximum for k = j. A similar approach was taken for the case of using transition

probabilities alone. Hence, the average prediction accuracy metric Φ for each user

can be computed as follows,

Φ =

∑M

m=1 ϕm,i,j(T, ∆)

M
, (3.1)

where ϕm,i,j(T, ∆) =






1 if max(k∈Ωi) {Qi,k(T ± ∆)} = Qi,j(T ± ∆)

0 otherwise
,

and M is the number of relevant events in the user’s log that were processed for

computing Φ. This metric measures the prediction accuracy for spatial transitions
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within a given time window. Notice that this result could also be described as a

measure of strict accuracy since the predictions were checked to see if they were

strictly correct or not. One could simply instead look at the percentage of accurate

predictions across all the events tested and irrespective of the user. However, in this

work it was chosen to measure the prediction accuracy from the perspective of each

of the users in the data set rather than what is perceived by the network on the

overall.

The performance of the proposed prediction scheme was compared with the con-

ventional schemes that employ the location transition probabilities Pi,j alone. Any

of the predictors that relied on the usage of extra information that are not usually

available from the traffic traces, e.g. geographical constraints, channel conditions,

and user preferences, have been avoided in the comparison. Another common predic-

tion scheme that has been considered by various researchers (e.g. [66]) is one that

weights each of the transition probabilities with the corresponding mean sojourn

times τ̃i,j such that,

P̃i,j =
Pi,j τ̃i,j∑
k Pi,k τ̃i,k

. (3.2)

As mentioned earlier, some of the mobility models that had been previously

developed by other researchers had assumed a sojourn time distribution that exhibit

the “memoryless” property. In the previous analysis, the Log-normal distribution

(LogN(µ, σ)) was found to be the best fitting distribution, based on the fitting

results achieved using Matlab, for the sojourn time distribution Gi,j(t) from the

data set. The performance of the proposed predictor was also compared with Gi,j(t)

assuming an exponential distribution (Exp(λ)) to test how well the distribution

with the memoryless property can approximate the sojourn time behaviors in the

predictions. The empirical distribution (EmpD) of the sojourn times in the data



3. Practical Evaluations: WLAN Scenario 60

set was also computed for Gi,j(t) in the proposed predictor and its performance was

compared with the others.

Table 3.1 shows a summary of the average prediction accuracy that the user

would experience and for the transitions that are made from each of the 21 access

points within the Library Building 2. The transitions include the event of a user

terminating of the network session at the given access point. The accuracy of the

proposed predictor was measured for each of the users in the data set using Equation

3.1 and the average across all the users are shown in the table. In general, the results

do show that the proposed predictor has in some instances improved on the accuracy

of the predictions that are returned using the transition probabilities alone. The

“P̃i,j Predictor” appears to show a stronger performance on the overall but such

predictions do not include the time window at which the next transition might

occur.

Amongst the proposed “Qi,j Predictor” with different Gi,j(t) distributions, the

results generally show that in most cases a better accuracy is achieved when the

empirical distribution is used for Gi,j(t). Furthermore, the Log-normal distribution

appears to be a reasonable approximation of the empirical distribution, given by

the accuracy results of the proposed predictor with Gi,j(t) ∼ LogN(µ, σ) relative

to Gi,j(t) ∼ EmpD. Another important observation from the results is that the

proposed predictor with Gi,j(t) ∼ Exp(λ) has in a lot of cases shown a lower perfor-

mance relative to the others. This illustrates one of the advantages of the proposed

mobility model not having its sojourn time behavior restricted to any particular dis-

tribution. The bar graph in Figure 3.9 illustrates the difference in the performance

of the proposed “Qi,j Predictor” with the three different distributions Gi,j(t).

The results in Table 3.1 are for the case where the Qi,j Predictor was applied with

∆ = 1. The time window at which these predictions were also varied by increasing
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Tab. 3.1: Summary of the overall prediction accuracy results for single transitions from the access points in Library Building 2,
with ∆ = 1.

Conventional Predictors Proposed Predictor Using MRP

Transitions Pi,j Predictor P̃i,j Predictor Qi,j(t) Predictor Total # Total #
From AP Gi,j(t) ∼ LogN(µ, σ) Gi,j(t) ∼ Exp(λ) Gi,j(t) ∼ EmpD of Transitions of Users

AP1 0.68271 0.68271 0.54818 0.45476 0.54996 9654 2335
AP2 0.65925 0.65925 0.45632 0.41325 0.55478 1583 373
AP3 0.21646 0.58399 0.46598 0.4313 0.47495 17663 2709
AP4 0.61665 0.61665 0.48976 0.37077 0.48891 10467 1551
AP5 0.74455 0.74455 0.74455 0.59785 0.74872 6180 1240
AP6 0.68193 0.68193 0.59172 0.51833 0.61324 9861 1790
AP7 0.74285 0.74285 0.62492 0.54076 0.64831 17654 902
AP8 0.63339 0.63339 0.53101 0.498 0.56918 1950 551
AP9 0.8422 0.8422 0.80873 0.8422 0.8422 18065 1959
AP10 0.10901 0.47234 0.28694 0.29196 0.34441 13425 2424
AP11 0.84718 0.84718 0.84718 0.84718 0.84718 21025 2396
AP12 0.59599 0.59599 0.59599 0.59599 0.59601 3405 329
AP13 0.6673 0.6673 0.6673 0.56802 0.6673 9332 1612
AP14 0.19765 0.5822 0.50558 0.46924 0.52539 42481 3075
AP15 0.61539 0.61539 0.61539 0.61539 0.61542 13720 208
AP16 0.076945 0.64095 0.26693 0.25402 0.25206 11694 1409
AP17 0.20611 0.56278 0.40093 0.40455 0.40407 34996 3043
AP18 0.093849 0.43435 0.22364 0.20206 0.37364 1153 137
AP19 0.6665 0.6665 0.57832 0.46232 0.57832 22672 3106
AP20 0.45281 0.45281 0.54859 0.5705 0.54668 3355 880
AP21 0.69175 0.69175 0.57861 0.4857 0.60016 26732 3487

Overall 0.525736857 0.638907619 0.541741429 0.496864286 0.563851905
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Fig. 3.9: The performance of the proposed “Qi,j Predictor” with the three different distributions Gi,j(t).
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Fig. 3.10: The performance of the proposed “Qi,j Predictor” with Gi,j(t) ∼ EmpD and under various choices of ∆.
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the value of ∆. As an example, ∆ was varied from 0.5 to 2 minutes. This change

in ∆ had an insignificant effect on the accuracy results for Gi,j(t) ∼ LogN(µ, σ)

and Gi,j(t) ∼ Exp(λ). However, the changes in ∆ did have an influence on the

prediction accuracy results when applying the Qi,j predictor with Gi,j(t) ∼ EmpD

and the difference in performance is shown in Figure 3.10. The results show that an

optimum value of ∆ for generating the predictions from each of the 21 access points

are not the same. The assignment of ∆ = 1 appears to be the better choice in most

cases.

To help better understand the results, a more thorough examination of the pre-

diction accuracy results will be given and focusing on the cases of transitions made

from AP14 and AP17. Figures 3.11 and 3.12 show the results of the average predic-

tion accuracies after evaluating the data using both the proposed Qi,j(t)predictor

with Gi,j(t) ∼ LogN(µ, σ) and the transition probabilities Pi,j alone, respectively.

These results were for the case of users transitioning away from the location served

by AP14. Part (a) in each figure shows a histogram of the number of users in the

data set that exhibited a certain range of average prediction accuracies Φ. Part

(b) provides a cumulative plot of the same results for the proportion of users with

average prediction accuracies Φ above a particular level. Each of the logs in the

data set were scanned for the relevant events and the occurrences were checked to

see if the Qi,j(t) predictor would have predicted them accurately based on Equation

(3.1). In the case of the results given in Figures 3.11 and 3.12, these relevant events

are those that involve a transition from AP14 to a neighboring access point within

the same building.

The results in Figure 3.11 suggest that the predictions made using the proposed

Qi,j(t) predictor are an improvement on those returned using the transition proba-

bilities alone, based on the results shown in Figure 3.12. A better overall accuracy
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Fig. 3.11: Average prediction accuracies Φ for transitions made from AP14 using the
proposed MRP model.
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Fig. 3.12: Average prediction accuracies Φ for transitions made from AP14 using transi-
tion probabilities Pi,j only.
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Fig. 3.13: Average prediction accuracies Φ for transitions made from AP17 using the
proposed MRP model.
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Fig. 3.14: Average prediction accuracies Φ for transitions made from AP17 using transi-
tion probabilities Pi,j only.
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is reflected by the heavier tail in the plot shown in Figure 3.11(b). The same conclu-

sion can be given for users that are transitioning out of AP17 when comparing the

results in Figures 3.13 and 3.14. These second set of results also show that higher

accuracies have been achieved when predicting the next transition from AP17 using

the proposed mobility model, when compared with using the transition probabilities

alone, as given by the results in Figures 3.13 and 3.14, respectively. In general, the

positive outcome of the results collected from applying the Qi,j(t) predictor also

indicate a possible existence of a relationship between the user’s mobility and the

location sojourn times (or the times the session is associated with an access point).

The results in Figures 3.11 to 3.14 also reveal that there had been many instances

where the prediction accuracy is close to 0%. Each of the scanned user logs did not

contain the same number of events to be processed which may have had an adverse

effect on the overall results. For instance, out of the nearly 1000 logs that had

close to 0% prediction accuracies from AP14, most of these logs contained a very

small number of relevant events for processing. Figure 3.15 show the number of

users that had between 1 and 50 transitions from AP14 in the subset of the data

that was processed for the predictions. The figure shows how many of those users

had a very low number of events and in most of these cases the predictions were

unsuccessful. There were a few users which had a much higher number of events

with the maximum being 2118. Figure 3.16 show the number of users that had

between 1 and 50 transitions from AP17 and also shows a larger number of users

with a very low number of events. These results seem to suggest that users in

WLAN environments tend to be less mobile which could have had some influence

on the prediction results. Nevertheless, the proposed Qi,j(t) predictor displayed an

improvement on the overall with a higher prediction accuracy than what can be

achieved using the transition probabilities alone.
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Fig. 3.15: The number of users that had between 1 and 50 transitions from AP14.
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Fig. 3.16: The number of users that had between 1 and 50 transitions from AP17.
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In the case of transitions from AP14, around 50.6% of the next transitions were

accurately predicted using the proposed Qi,j(t) predictor, compared to the 19.8%

accuracy using the transition probabilities Pi,j alone. This would be the average

accuracy perceived by each user. Thus, the proposed model was able to improve

on the predictions by roughly 156% in this example. For the second case of transi-

tions from AP17, an overall prediction accuracy of 40.1% with the proposed Qi,j(t)

predictor was observed and improved on the predictions using Pi,j alone by around

95%.

Order-n Markov predictors have also been shown to improve on the accuracy of

the predictions [27–29]. The analysis was extended to examine the performance of

the proposed predictor using the order-2 semi Markov kernel Qh,i,j(t) (see Equation

(2.15)). The data set was processed again for computing the elements Ph,i,j and

Gh,i,j,(t) that were needed to construct the proposed predictor. The performance of

the Qh,i,j(t) predictor was compared with the conventional predictors that employ

the transition probabilities Ph,i,j alone. Such predictors consider both the current

state and the previous state of the user. The performance of the “P̃h,i,j Predictor”

was also included in the analysis and can be computed in a manner that is similar

to the one given in Equation (3.2).

Table 3.2 summarizes the prediction accuracy results gained by apply the order-

2 semi-Markov Qh,i,j(t) predictor in contrast with the conventional predictors that

employ the location transition probabilities Ph,i,j alone. Note that the total number

of transitions are not the same as those in Table 3.1 since each user’s log must con-

tain at least 2 transitions in order to apply the order-2 Markov and semi-Markov

predictors. The results are for the case of single transitions from AP14 and AP17.

In both cases, the accuracy of the Qh,i,j(t) predictor was found to be higher than

what was achieved when using both the Ph,i,j and the P̃h,i,j predictor. However, the
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Tab. 3.2: Summary of the overall prediction accuracy results for single transitions from
AP14 and AP17 in Library Building 2, using order-2 Markov predictors and
with ∆ = 1.

Transitions From
AP14 AP17

Ph,i,j Predictor 0.36689 0.36205

P̃h,i,j Predictor 0.36694 0.42715

Qh,i,j(t) Predictor with Gh,i,j(t) ∼ LogN(µ, σ) 0.45481 0.45041
Qh,i,j(t) Predictor with Gh,i,j(t) ∼ Exp(λ) 0.5005 0.72949
Qh,i,j(t) Predictor with Gh,i,j(t) ∼ EmpD 0.45774 0.4593

Total Number of Transitions 21072 19789
Total Number of Users 1913 1996

more interesting result is the accuracy gained by using the Qh,i,j(t) predictor with

Gh,i,j(t) being approximated by the exponential distribution with the memoryless

property. Even though the Log-normal distribution was found to be a better fit

for describing the behavior of the sojourn times, the results suggest that the expo-

nential distribution might be a better approximation in describing the sojourn time

behaviors for the case of order-2 semi-Markov predictors.

Figure 3.17 compares the prediction accuracies achieved using both the order-1

and order-2 Markov and semi-Markov predictors and for single transitions made

from AP14 and AP17. In the case of transitions from AP14, the order-2 semi-

Markov Qh,i,j(t) predictor had not generally improved on the order-1 semi-Markov

Qi,j(t) predictor. A slight improvement was observed if the behavior of the sojourn

times was assumed to follow an exponential distribution. The case of transitions

from AP17 shows a different performance whereby the order-2 semi-Markov Qh,i,j(t)

predictor had exhibited some improvement over the order-1 semi-Markov Qi,j(t)

predictor, especially when Gh,i,j(t) ∼ Exp(λ). Furthermore, Qi,j(t) predictor in this
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Fig. 3.17: The difference in performance between the order-1 and order-2 Markov and
semi-Markov predictors, for transitions from AP14 and AP17.

example was successful at gaining a higher accuracy without the added knowledge

of the previous state of the user that was needed for the Ph,i,j predictor.

The assignment of ∆ was also varied to examine the influence it might have on

the performance of the Qh,i,j predictor. Similar to the previous example, varying

∆ from 0.5 to 2 minutes had changed the accuracy by less than 1% for the cases

where Gh,i,j(t) ∼ LogN(µ, σ) and Gh,i,j(t) ∼ Exp(λ). With Gh,i,j(t) ∼ EmpD, the

changes in the prediction accuracy results were quite noticeable and are shown in

Figure 3.18. In the case of making predictions from AP14 and AP17, the results

show that the choice of ∆ = 1 has yielded the better performance in terms of the

prediction accuracy.

To improve on the prediction accuracies, one way would be to consider the

temporal period/season at which the predictions are to be made. For example,
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Fig. 3.18: The performance of the proposed “Qh,i,j Predictor” with Gh,i,j(t) ∼ EmpD

and under various choices of ∆.

the behavior of users during the day time may differ from those during the night

time. Hence, one possible approach would be to have two different semi-Markov

mobility models for making predictions during those different times of the day. This

approach can be taken further to consider the different days of the week as well as

the different months of the year. While this proposition will likely lead to a more

accurate model for the mobility behavior of the users, it does require an extensive

amount of mobility history to be processed.
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3.3 Location Approximation

With the prediction scheme that has been proposed so far, a crucial matter yet re-

mains to be addressed which may be the cause of some concern to network managers

and operators. The amount of data needed to construct the kernels in the MRP

model can be quite large, especially when a vast number of elements are required

to be defined for a given network. If we take the example of the 7-cell structure

shown in Figure 2.1 as being the entire network coverage area under consideration,

then the number of elements that need to be defined at most is 62, as given by

the number of non-zero elements in Equation (2.10). These elements capture the

time-varying probabilities of a user being mobile between certain neighboring cells

amongst the 7 distinct locations while undergoing either an active or idle session

with the network, as well as the transitions involving the changes in the session

activity. An MRP-based mobility model for such a network involves transitions be-

tween any of the 14 possible states of the system defined by the following state space

X = {(−1,−2, · · · ,−7) ; (1, 2, · · · , 7)}. The details for such a model are shown in

the block matrices given by Equations (2.10) to (2.14).

The amount of processing needed to evaluate the necessary predictions may be

altogether laborious, depending on the number of different elements involved in the

computation. The size of the MRP-based mobility model’s state space could have

a direct influence on the amount of processing involved with generating the predic-

tions, since it would involve querying a central database that contain the details of

the set of semi-Markov elements. In Section 2.3, it was mentioned that one possible

approach for reducing the size of the state space would be to restrict the model’s

focus to the mobility behavior of users with active sessions alone, thereby ignoring

the state of the users when they are idle. This is similar to what was accomplished
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by the numerical analysis examined throughout this chapter. However, this sort of

reduction in state space might not be sufficient, especially when dealing with net-

works with many locations. Another approach to further scale down the state space

of the mobility model would be to appropriately cluster the entire set of locations

into certain groups. Each cluster would include a group of neighboring locations

that are individually served by their own wireless access point. The clustering as-

sists with reducing the model’s state space and subsequently relieving some of the

processing power needed for computing the predictions.

The paucity of traffic data may also be a good reason to apply the location

clustering. The grouping of the location transition behaviors has the effect of com-

bining together the traffic data recorded at each of the locations in the cluster into

a bigger set. This new set of data could improve on the precision in computing the

semi-Markov elements Qi,j(t), especially the fitting of the sojourn time distributions

Gi,j(t).

The clustering approach tends to approximate the mobility pattern details of a

user in the network. Consequently, a user in such a case is said to be within the

service coverage of a group of access points that belong to the same cluster, without

identifying the exact access point that is serving the mobile user. However, as with

most approximations, this location clustering approach could reduce the accuracy

and/or precision of the prediction computations. From the network manager’s per-

spective, the approximation may come at the cost of having the predictions being

less explicit. This could also create the need for future resource reservations at

multiple locations within the single cluster, rather than confining the resource reser-

vation decision to a sole location. Moreover, while it may matter less in some cases,

the choice of how these various locations are assigned to a certain cluster could have

a significant impact on the performance of the semi-Markov predictor.
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Fig. 3.19: A front view of the spatial locations of the 21 wireless access points in Library
Building 2 at Dartmouth College, with clustering.

The traffic traces provided by [83] also supplied the details of where the wireless

access points are deployed across the Dartmouth College campus. The information

included both the coordinates and the floor number of where these access points are

located in the Library Building 2 which was collected from the AutoCAD drawings of

the premises. An outline of where these 21 access points are located in the building

is shown in Figure 3.19, as viewed from the front side of the Library Building 2. The

figure also shows how these access points are distributed across the various floors of

the building.

To demonstrate the usage and performance of including the AP location cluster-

ing into the semi-Markov prediction scheme, the same set of traffic traces from [83]

were used again which included the mobility behavior of users between the access
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points in Library Building 2. The clustering of those locations were chosen to be

intuitively assigned as given in Figure 3.19. The decision behind the assignment of

these clusters relate to the traffic loads that were observed in the traces. For in-

stance, it was noticed that the majority of the mobility traffic was concentrated on

the lower 3 floors of the building while the remaining upper floors exhibit relatively

less traffic. Hence, it was elected to have the access points in each of the upper

floors clustered together as a single location while two clusters were assigned for the

set of access points in the lower floors, as shown in Figure 3.19. The decision on

how to optimally assign these location clusters would rely on the knowledge of other

relevant factors which will be investigated in future works. In essence, the aim here

is to allocate these clusters for the purpose of reducing the number of states that

are needed to define the MRP-based predictor and examine how well it performs.

The elements for the Qi,j(t) predictor utilizing the cluster location approximation

were constructed in a manner that is similar to the one adopted earlier in this

chapter. The set of traffic traces that had their logs time-stamped prior to the year

2003 were processed to compute the cluster location transition probabilities Pi,j, as

well as the conditional sojourn time distribution Gi,j(t), for evaluating the Qi,j(t)

elements defined by Equation (2.1). In this approximation, a transition due to

mobility is caused by a change in clusters rather than access points. Thus, a user is

said to remain in the same cluster location even if a transition is made between two

access points that are located within the same cluster. The state-dependent sojourn

time is the duration at which a user’s network session remains active within the

same cluster. In this particular case, the set of possible states for this MRP-based

predictor includes the 9 states that signify the set of all possible cluster locations

that a user can transition between. In following the same idea of the original semi-

Markov predictor, two additional states were also defined. The first additional state
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being the OFF state at which a user terminates its session in the same cluster

location, along with an OTHER state that describes the location of an access point

outside the Library Building 2 (which can also be thought of as another cluster of

access points). Hence, in total this approximation has reduced the original 23 state

semi-Markov predictor to one with 11 states. This scale of state space reduction is

dependent on how one chooses to assign the clusters.

After processing the traffic traces for the Qi,j(t) elements, the predictor was then

applied on the remaining set of traffic traces that were logged from the year 2003

onwards to examine the accuracy of the predictions with the applied approximation.

Each user’s sequence of transition logs were scanned to verify if the next transition

state, as well as the time window, would have been correctly predicted according

to Equation (2.17). The time window chosen was ∆ = 1. Each user’s average

prediction accuracy was examined using Equation (3.1) for single transitions from

the 9 clusters. The overall average accuracy results from the Qi,j(t) predictor with

location approximation was compared with predictors that only utilizes the transi-

tion probabilities Pi,j and P̃i,j from Equation (3.2). The distribution for the sojourn

times were fitted as a Log-normal distribution, i.e. Gi,j(t) ∼ LogN(µ, σ). Table 3.3

shows a summary of the prediction accuracy results for users transitioning from the

9 cluster locations. The results an overall lower prediction accuracy when applying

the proposed Qi,j(t) predictor as compared with accuracy achieved by using the Pi,j

and P̃i,j predictor.

One of the clusters was chosen for a more detailed analysis of its prediction accu-

racy results, namely cluster C5. Note that C5 groups together the locations served

by AP14 and AP17. Table 3.4 summarizes the prediction accuracies averaged over

all the users in the entire set of traffic traces from [83], for transitions from cluster

C5. The results in the first two columns were those found in the previous section
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Tab. 3.3: Summary of prediction accuracy results for transitions from all 9 cluster loca-
tions.

Pi,j Predictor P̃i,j Predictor Qi,j(t) Predictor No. of Transitions

From C1 0.694599 0.694599 0.548300 24295
From C2 0.601741 0.601741 0.499325 24401
From C3 0.645761 0.645761 0.604273 37516
From C4 0.504790 0.504790 0.451918 32950
From C5 0.600378 0.600378 0.575074 69953
From C6 0.646438 0.646438 0.646438 34012
From C7 0.652621 0.652621 0.586074 14188
From C8 0.782934 0.782934 0.782934 32955
From C9 0.815634 0.815634 0.815634 18995

Overall 0.661 0.661 0.6122

without applying the location approximation (see Table 3.1) and are included in this

table for comparison. The third column summarizes the overall average prediction

accuracies using the conventional methods (i.e. the Pi,j and P̃i,j predictors) and the

Qi,j(t) predictor with location approximation. For each of the three types of predic-

tors, the use of the location clustering approximation has improved on the prediction

accuracies reported in the previous section. For example, the Qi,j(t) predictor was

successful at accurately determining 57.5% of the transitions from cluster C5 which

includes all users associated with both AP14 and AP17. These predictions did not

distinguish the access point in C5 that was involved in the transition, which would

have otherwise been achieved with an accuracy of 50.6% and 40.1% when applying

the Qi,j(t) predictor without the location approximation for transitions from AP14

and AP17, respectively.

The results in the third column of Table 3.4 also reveal that in applying the
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Tab. 3.4: Comparison of prediction accuracy results for transitions from AP14, AP17 and
C5.

From AP14 From AP17 From C5

Pi,j Predictor 0.19765 0.20611 0.600378

P̃i,j Predictor 0.5822 0.56278 0.600378
Qi,j(t) Predictor 0.50558 0.40093 0.575074
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Fig. 3.20: Average prediction accuracies for transitions made from C5 using the transition
probabilities Pi,j alone.
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Fig. 3.21: Average prediction accuracies for transitions made from C5 using the MRP-
based model.
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approximation, the Qi,j(t) predictor performed not as well as the location approxi-

mated Pi,j and P̃i,j predictors. However, the accuracy results were fairly close and

the Qi,j(t) included temporal estimates whereas the other two schemes were limited

to predicting the next location transitions alone. Figures 3.20 and 3.21 illustrate

the distribution details of the average prediction accuracy results Φ across all the

users that were examined in the traffic data, after applying the location approxi-

mated Pi,j and Qi,j(t) predictor, respectively. The results altogether show how these

two predictors with the applied location approximation had a similar performance

in terms of accurately predicting the next transitions. Despite the marginally low

difference in performance, the Qi,j(t) predictor has the added capability of including

temporal information in its future state estimations. This may render it a more fa-

vorable technique amongst the network managers and for yielding more informative

predictions.

For transitions from all the 9 clusters, the Qi,j(t) predictor with location ap-

proximation had a consistently lower performance when compared with the other

two predictors. This consistency necessitated a closer look at the results to identify

factors that may have had an influence on the performance. A thorough scan of the

results unveiled that the majority of the predictions were unsuccessful with deter-

mining the termination of a user’s session in the current cluster, i.e. transitions to

the OFF state. This might only be true for the data that was used in the analysis

and it was difficult to confirm this conclusion without investigating other indepen-

dent sets of traffic data in parallel. Another conceivable reason could be due to the

method chosen for the assignment of the clusters.

To explore whether predicting the transitions to the OFF state had a negative

impact on the performance of the location approximated Qi,j(t) predictor, the same

numerical analysis was repeated while ignoring the transitions to the “OFF” state,



3. Practical Evaluations: WLAN Scenario 81

in both in the model and the prediction evaluations. In other words, this analy-

sis only covered the cluster location transitions of the users with active sessions,

thus reducing the size of the state space in the MRP predictor to 10. The results

in Table 3.5 provide the overall prediction accuracies reported using the location

approximated Qi,j(t) predictor and comparing them with those returned from em-

ploying the Pi,j and P̃i,j predictors. In general, even though the values may seem

lower than what was achieved earlier, the results now show that the location approx-

imated Qi,j(t) predictor has in most cases displayed a better performance than the

other two predictors. For example, the location approximated Qi,j(t) predictor was

found to have accurately predicted 63.7% of the transitions from cluster C9, which

was better than the 55.9% accuracy achieved by using the Pi,j and P̃i,j predictors.

In summary, including the cluster location approximation into the proposed

MRP-based mobility prediction can assist in reducing the size of the state space

and the amount of computations needed to construct the model. The numerical

Tab. 3.5: Summary of prediction accuracy results for location transitions alone from all
9 cluster locations, without predicting the “OFF” state.

Pi,j Predictor P̃i,j Predictor Qi,j(t) Predictor No. of Transitions

From C1 0.403056 0.403056 0.433599 11134
From C2 0.385997 0.385997 0.385997 10847
From C3 0.413190 0.362497 0.499675 14627
From C4 0.413150 0.207022 0.417124 19352
From C5 0.382102 0.382102 0.382102 32830
From C6 0.381496 0.246572 0.405470 12970
From C7 0.389580 0.264418 0.441683 5888
From C8 0.592096 0.592096 0.592096 5454
From C9 0.559315 0.559315 0.637209 2360

Overall 0.436 0.378 0.466
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examples have shown that the location approximation was successful at achieving

an adequate level of performance when compared with the conventional Pi,j and

P̃i,j predictors. However, this comes at the cost of reducing the spatial details

needed for future resource reservation purposes. Nevertheless, the results reported

in this section do illustrate the promising potential in applying the cluster location

approximation in conjunction with the proposed MRP-based predictor, especially

when a reduction in the size of the state space in the proposed model is favorable.



4. FURTHER APPLICATIONS OF THE SEMI-MARKOV

MOBILITY PREDICTION

4.1 Multi-Transition Mobility Prediction

This section will show how to extend the kernel definitions given in Equations (2.1)

and (2.6) to predict the next Nth transition, as well as estimating the time-varying

probability of finding a user at a particular state after N transitions. For simplicity,

a discrete-time semi-Markov model will be assumed throughout this chapter and the

continuous-time case can be developed in a similar manner. This assumption allowed

for an easier presentation of the results. The state sojourn times are considered in

discrete-time. The discrete-time distributions Gi,j(t) (and subsequently gi,j(t)) will

be chosen such that qi,j(0) = Qi,j(0) = 0. This implies that the sojourn time in

each state must be at least 1 unit of time. Furthermore, it is assumed that each

transition requires at least 1 time unit and that no more than a single transition in

each state is permitted during any unit of time. Hence, the property t ≥ N is always

true, which implies that the minimum time for making N transitions is t = N .

In general, the kernel of the Nth transition prediction can be defined as follows,

qN
i,j(t) = Pr {Xn+N = j Tn+N − Tn = t | Xn = i} , (4.1)

with QN
i,j(t) =

t∑

τ=N

qN
i,j(τ), (4.2)
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for t ≥ N . The elements QN
i,j(t) denote the probability that immediately after

making the transition into state i, the user is in state j by the Nth transition and

in an amount of time less than or equal to t. For example, if the states are the cell

IDs, then Q2
1,4(7) is the probability that the user makes a transition from location

1 to another location and then followed by a transition into location 4, all within 7

units of time from entering location 1.

The semi-Markov transition matrices Q(t) = {Qi,j(t)} and q(t) = {qi,j(t)} can

be constructed using the semi-Markov kernels defined in Equations (2.1) and (2.6),

respectively. Hence, the matrix qN(t) =
{
qN
i,j(t)

}
can be computed recursively as

follows,

qN (t) =

t−1∑

τ=N−1

qN−1(τ)q(t − τ), for t ≥ N ≥ 1, (4.3)

where q0(t) =






0 , t > 0

1 , t = 0
,

with QN(t) =
t∑

τ=N

qN(τ). (4.4)

The elements defined in Equations (4.1) and (4.2) can be derived from the matrices

qN(t) and QN (t), respectively.

Using the expression for QN (t), we can further define the following,

ΛN(t) =

N∑

n=1

Qn(t) for t ≥ N, (4.5)

where the element ΛN
i,j(t) is the probability that a transition from state i to state j

occurs after N or fewer transitions and within time t from entering state i.

With the same traffic traces that were used in the previous chapter, namely

from [83], we next show how one can apply and interpret the results gained from
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employing the proposed multi-transition mobility predictions. The matrix q(t) was

evaluated using the same transition probabilities and the sojourn time distributions

that covered the transitions amongst the 21 access points in the Library Building

2. This had allowed for computing both qN(t) and QN(t) using Equations (4.3)

and (4.4), respectively. In the following numerical example, the transitions made

from AP17 to AP1 were considered. According to the information supplied with

the traffic data, this particular transition involved a user having to move from the

second floor to the first.

The plots in Figures 4.1 and 4.2 show the probabilities of an arbitrary user with

an active session at AP17 eventually having its session associated with AP1, after

completing N transitions at and within t minutes of the session remaining active

from AP17, respectively. Out of the 4 possibilities shown in Figures 4.1 and 4.2, the

higher probability Q17,1(5) suggests that a user will most likely complete a direct

and single transition from AP17 to AP1 if the transition occurred within about 5

minutes of the session being associated with AP17. In other words, if a transition

were to occur from AP17 to AP1 and within 5 minutes of initially being in AP17,

then it would most likely involve a single transition. This direct transition becomes

the least likely event if the session remains active beyond 20 minutes, as shown by

the plot for q17,1(t) in Figure 4.1. For sessions that remain active beyond 5 minutes

of being initially associated with AP17, a user is more likely to end up having

associated its session with AP1 after making a transition to another access point

from AP17 before reaching AP1, i.e. after 2 transitions from AP17. This behavior

is illustrated by the plot for q2
17,1(t) in Figure 4.1. Hence, for transitions that are

destined to AP1, a user that initially has its active session associated with AP17

will likely remain in the same location for a relatively short period of time before

making a transition to either AP1 directly, or to other locations before ending up
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Fig. 4.1: A plot of the multi-transition prediction results qN
17,1(t), from AP17 to AP1.

in AP1.

A user making a transition from AP17 to AP1 after N transitions may also

include the instances where the user re-visits AP1 after completing multiple transi-

tions. For example, the probabilities q3
17,1(t) and Q3

17,1(t) also include the possibility

of making the following sequence of transitions AP17 → AP1 → AP17 → AP1.

This type of behavior is due to the user moving back and forth between the two lo-

cations. Thus, q3
17,1(t) should not be interpreted as the probability of having visited

AP1 only for the first time and after 3 transitions from AP17. The probabilities

qi,j(t) can assist with identifying the mobility behavior of a user between two partic-

ular locations. They can also help with understanding the route a user might take

between the two locations as well as the number of transitions needed between them.

For example, the overall higher probability q2
17,1(t) in Figures 4.1 and 4.2 seems to

imply that the route from AP17 to AP1 is most likely via another single access

point. These results could also be used with determining the number of transitions

that are likely needed before a user ends up having its connection associated with
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Fig. 4.2: A plot of the cumulative multi-transition prediction results QN
17,1(t), from AP17

to AP1.

a particular access point. The process could ultimately be utilized for the purpose

of making end-to-end connection predictions, along with assisting in the estimation

of the future resources needed to sustain a user’s ongoing active session during its

multi-transition mobility.

Another example is reported in Figures 4.3 and 4.4. It looks at the likelihood

of a mobile user making a transition from AP3 to its neighboring locations AP1,

AP10, and AP21 on the same floor of the library building. The results show how

the chances of ending up in a particular location can change with the number of

transitions. For instance, Figure 4.3 shows how a user initially associated with

AP3 is least likely to end up being associated with AP1 after 2 transitions. The

conclusion changes if we were to estimate the same likelihoods after 3 transitions,

as shown in Figure 4.4. This information can be crucial for the purpose of making

end-to-end mobility predictions, in addition to understanding the likely number of

transitions needed before ending up being associated with a particular access point.
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4.2 N-Transition Prediction Accuracy

For testing how well the proposed multi-transition prediction performs in compar-

ison with some of the conventional methods, the same data set from [83] that was

analyzed in Chapter 3 will be used again in this section. In order to directly ap-

ply Equation (4.3) for evaluating the accuracy of the multi-transition predictions,

some of the parameters for the semi-Markov model were re-calculated, specifically

the state sojourn time distributions. The element of the mobility model in Chap-

ter 3 assumed a continuous-time distribution for the sojourn times, whereas the

proposed computation for qN (t) in Equation 4.3 assumes the state sojourn times

gi,j(t) are discrete-time distributions. To facilitate this computation, it was cho-

sen to fit these state sojourn times to a discrete-time phase-type distribution, i.e.

Gi,j(t) ∼ (αi,j,Si,j). The tool developed by Horváth and Telek in [74] was employed

for this task. The distribution fitting process involved having to select the number

of phases for estimating the parameters of the distribution. For simplicity, it was

chosen to have each of the relevant state sojourn times fitted to a phase-type distri-

bution with 4 phases. The sojourn times were also fitted to a geometric distribution,

i.e. Gi,j(t) ∼ Geom(p), in order to examine whether the distribution of the sojourn

times has a memoryless behavior and its impact on the prediction performance.

Similar to the approach taken in Chapter 3, the parameters for the proposed

mobility model were processed using the first part of the data set that contained

the events that had occurred prior to the year 2003. The mobility model was then

used to process the remaining events and examine whether the predictions based on

the results from QN(t) correspond to the actual events reported in the traffic data.

For each event that has just entered state/location j after T minutes from entering

its previous Nth state i, QN(t) was computed for t ∈ [T − ∆, T + ∆]. If the maxi-
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mum probability returned by QN(t) corresponds with the event that was processed,

i.e. maxk{Q
N
i,k(t)} = Qi,j(t), then the prediction was said to be accurate. In this

example, ∆ = 1 was chosen meaning that the events were checked against the com-

puted likelihoods QN (t) within ±1 of the actual temporal occurrence. The accuracy

of the prediction results computed using Equation (4.4) were also compared with

those conventional schemes that only employ the transition probabilities P̃i,j and

Pi,j alone. The details for P̃i,j have been previously covered in Equation (3.2). The

Nth transition predictions using these transition probabilities alone were evaluated

by simply computing P̃N and PN , respectively, where the matrices P̃ =
{
P̃i,j

}
and

P = {Pi,j}.

Tables 4.1 to 4.3 lists a summary of the average fraction of transitions that QN (t)

was successful at predicting for each user and up to N = 3. These prediction accu-

racies were compared with those returned using PN and P̃N . The results for N = 1

were also included for comparison purposes and have been previously discussed in

Section 3.2. They show a slight difference from those reported in Table 3.1 due to

the different type of distributions used for the analysis in this section. The set of

events that were parsed in the data set were limited to cover only those sessions

that exhibited at least 2 location transitions before termination. This limitation

had allowed for a more fair comparison between the results for different N .

For the case of N = 1, the results in the table agree with the conclusions made

in Section 3.2. For N = 2, the Q2(t) predictor has shown a better performance than

the ones using the P2 and P̃2 predictors in quite a few cases, e.g. transitions from

AP14 and AP17. This is likely due to the static nature of the results returned by P2

and P̃2 while the Q2(t) predictor is influenced by the temporal behaviors. However,

for the case of N = 3, all three predictors appear to have the same accuracy on

the overall. This may be seen as the Q3(t) predictor having the same performance
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Tab. 4.1: Summary of N-transition prediction accuracy results, with N = 1, and for transitions from the access points in Library
Building 2.

Conventional Predictors Proposed Predictor Using MRP

Transitions Pi,j Predictor P̃i,j Predictor Qi,j(t) Predictor Total # Total #
From AP Gi,j(t) ∼ (αi,j ,Si,j) Gi,j(t) ∼ Geom(p) of Transitions of Users

AP1 0.69918 0.69918 0.63587 0.47447 8541 2227
AP2 0.70159 0.70159 0.70159 0.47638 1342 321
AP3 0.21397 0.60156 0.34379 0.44917 14274 2550
AP4 0.63804 0.63804 0.63804 0.44993 8525 1469
AP5 0.75749 0.75749 0.75749 0.75749 5070 1140
AP6 0.69701 0.69701 0.66874 0.5401 8458 1713
AP7 0.7453 0.7453 0.7453 0.57036 16256 813
AP8 0.66841 0.66841 0.66841 0.53307 1500 485
AP9 0.84934 0.84934 0.84934 0.84934 16312 1915
AP10 0.10326 0.51308 0.17094 0.31562 9751 2158
AP11 0.85182 0.85182 0.85182 0.85182 18905 2363
AP12 0.61723 0.61723 0.61723 0.61723 2669 298
AP13 0.70512 0.70512 0.70512 0.62715 7271 1450
AP14 0.18531 0.61395 0.46797 0.47909 33936 2917
AP15 0.6069 0.6069 0.6069 0.6069 13003 185
AP16 0.084491 0.64882 0.13955 0.28496 9958 1260
AP17 0.20401 0.58419 0.31533 0.42923 26083 2818
AP18 0.078299 0.46463 0.12258 0.21103 981 118
AP19 0.67171 0.67171 0.67171 0.49827 19502 3066
AP20 0.45703 0.45703 0.51938 0.59495 2553 754
AP21 0.70726 0.70726 0.70726 0.51736 22708 3367

Overall 0.5354 0.6571 0.5669 0.5302
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Tab. 4.2: Summary of N-transition prediction accuracy results, with N = 2, and for transitions from the access points in Library
Building 2.

Conventional Predictors Proposed Predictor Using MRP

Transitions P2 Predictor P̃2 Predictor Q2(t) Predictor Total # Total #
From AP Gi,j(t) ∼ (αi,j ,Si,j) Gi,j(t) ∼ Geom(p) of Transitions of Users

AP1 0.42935 0.42935 0.42935 0.37619 2406 944
AP2 0.65792 0.65792 0.65792 0.5041 263 118
AP3 0.45079 0.45079 0.45079 0.40697 6115 1345
AP4 0.27395 0.27395 0.27395 0.18239 2907 709
AP5 0.35514 0.35514 0.35514 0.35514 1492 368
AP6 0.34759 0.34759 0.34759 0.26574 2592 744
AP7 0.30289 0.30289 0.34828 0.37249 6939 307
AP8 0.36925 0.36925 0.36925 0.36925 595 184
AP9 0.28409 0.28409 0.41698 0.4373 2866 607
AP10 0.34462 0.34462 0.34462 0.28934 4978 1282
AP11 0.34976 0.34976 0.34976 0.37577 2584 790
AP12 0.46576 0.46576 0.46576 0.46576 478 142
AP13 0.47131 0.47131 0.47131 0.47131 1849 598
AP14 0.35662 0.35662 0.50308 0.50596 14575 1705
AP15 0.41902 0.41902 0.41902 0.28355 4969 120
AP16 0.36143 0.36143 0.36143 0.36517 5026 512
AP17 0.35833 0.35833 0.49338 0.5145 13117 1718
AP18 0.52128 0.52128 0.26633 0.33952 337 69
AP19 0.47995 0.47995 0.46012 0.24486 6429 1578
AP20 0.59603 0.59603 0.59603 0.6048 1508 462
AP21 0.42011 0.42011 0.44179 0.42186 6707 1623

Overall 0.4102 0.4102 0.42009 0.3882
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Tab. 4.3: Summary of N-transition prediction accuracy results, with N = 3, and for transitions from the access points in Library
Building 2.

Conventional Predictors Proposed Predictor Using MRP

Transitions P3 Predictor P̃3 Predictor Q3(t) Predictor Total # Total #
From AP Gi,j(t) ∼ (αi,j ,Si,j) Gi,j(t) ∼ Geom(p) of Transitions of Users

AP1 0.32787 0.32787 0.32787 0.30844 1415 538
AP2 0.39943 0.39943 0.39943 0.25874 125 48
AP3 0.29373 0.29373 0.29373 0.28736 4032 835
AP4 0.28952 0.28952 0.28952 0.20919 2206 525
AP5 0.31739 0.31739 0.31739 0.31739 929 222
AP6 0.32515 0.32515 0.32515 0.37725 1788 516
AP7 0.36594 0.36594 0.36594 0.38054 4847 216
AP8 0.30318 0.30318 0.30318 0.21672 284 110
AP9 0.32287 0.32287 0.32287 0.41365 2237 417
AP10 0.26288 0.26288 0.26288 0.25489 3714 874
AP11 0.32378 0.32378 0.32378 0.32378 1704 519
AP12 0.27784 0.27784 0.27784 0.27784 256 89
AP13 0.30194 0.30194 0.30194 0.30475 1148 356
AP14 0.29984 0.29984 0.29984 0.37974 11079 1252
AP15 0.32321 0.32321 0.32321 0.33297 3203 87
AP16 0.26556 0.26556 0.26556 0.20769 3259 291
AP17 0.3213 0.3213 0.3213 0.39546 10058 1224
AP18 0.18163 0.18163 0.18163 0.17032 160 38
AP19 0.36752 0.36752 0.36752 0.31091 4137 956
AP20 0.20576 0.20576 0.5571 0.54625 789 212
AP21 0.28672 0.28672 0.28672 0.24998 4394 1064

Overall 0.303 0.303 0.3197 0.3107
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as those of the P3 and P̃3 predictors which is not entirely accurate. The Q3(t)

predictor also included the time window at which the event occurred and this extra

information was not returned by the other two predictors. These results could lead

to the conclusion that the performance of the semi-Markov predictor diminishes with

increasing N and this appears to be true for the data set [83] that was analyzed in

this section. The results could also suggest that the temporal information may not

have any significant influence in the case of generating predictions with higher N .

Figures 4.5 and 4.6 highlights the difference in the accuracies achieved by using

the QN(t) predictor, with Gi,j(t) ∼ (αi,j,Si,j) and Gi,j(t) ∼ Geom(p), and the

PN predictor, for N = 2 and N = 3, respectively. In Figure 4.5, the accuracy of

the Q2(t) predictor with Gi,j(t) ∼ (αi,j ,Si,j) were in many cases higher than those

achieved with Gi,j(t) ∼ Geom(p). This shows that the use of the distribution with

the non-memoryless behavior had helped with achieving a higher prediction accuracy

for a lot of the transitions and for the case of N = 2. The same can be said for the

case of N = 3, as shown by Figure 4.6. Since there were a few instances where the use

of the geometric distribution offered a much higher prediction accuracy, the network

managers do not have to constrict themselves to using a single type of distribution

for all their predictions. For example, they could select the QN(t) predictor with

Gi,j(t) ∼ Geom(p) for transitions from AP9 due to the higher accuracy shown in the

results, while the QN(t) predictor with Gi,j(t) ∼ (αi,j ,Si,j) may be more suitable

for transitions from AP10. This illustrates one of the further advantages of applying

the proposed prediction scheme.
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Fig. 4.5: The performance of the Q2(t) predictor with Gi,j(t) ∼ (αi,j ,Si,j) and Gi,j(t) ∼
Geom(p), and compared with the P2 predictor.
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4.3 Spatial-Temporal Traffic Estimation

An understanding of how the number of users in a network varies with time can

further provide network managers with an insight of the traffic demands at each

location in the network. Such information can assist with optimizing the allocation

of the network’s resources. In this section, we will only focus on the case where an

equal amount of resources are required for each of the users in the network, with the

difference being in the amount of time spent utilizing the resources. An example

of such a network are those that support voice calls only, whereby each connection

is given a distinct channel that is equal in bandwidth with all the other available

channels. Hence, the network traffic load can be studied by estimating the number

of users that have active sessions at each location. The traffic of users with idle

sessions can also be investigated since they may potentially acquire access to the

network.

The proposed mobility model can be employed to further predict the number

of users at each of the locations by estimating the average number of users that

are expected to transition from one location to another and within a time period

t. Let V−i and Vi denote the current (i.e. at t = 0) number of users with idle

and active sessions in location i of the network, respectively. Let us further define

Yi(t) as the expected number of active users transferring into location i within time

t. This consists of the proportion of users, with either active or idle sessions, that

are expected to transfer from all locations j into i within time t and can end up

in state i after N transitions. This also includes the proportion of users that are

expected to remain in the same state i within time t. Note that these N transitions

could include switching between being idle and active while remaining in the same

location, as well as entering and returning to state i more than once. Hence, the
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result for Yi(t) can be evaluated as follows

Yi(t) =
∑

j

Vj

t∑

n=1

Qn
j,i(t), (4.6)

with states j being all those locations that lead to state i after 1 or more transitions,

and for users with both idle and active sessions. They include those that transition

from state i and return to the same state after N ≥ 2 transitions. A similar definition

can be given for Y−i(t) for the case of idle users. Similarly, we can also compute

yi(t) =
∑

j

Vj

t∑

n=1

qn
j,i(t), (4.7)

which describes the number of users that are expected to transfer into state i at

time t.

If we define the vector V such that V = {(V−1, V−2, · · · , V−LI
) , (V1, V2, · · · , VLA

)},

then we can write the following,

Y(t) = V

t∑

n=1

Qn(t) = VΛt(t) (4.8)

where Y(t) is a vector of the expected number of both idle and active users that

are predicted to be transferred into the various locations within time t. A similar

definition could also be given for the case of estimating the expected number of idle

and active users that are expected to be transferring into the various locations at

time t, i.e. computing y(t) from qN(t). Computing Y(t) can be quite cumbersome,

especially when the dimensions of Q(t) are large. Nevertheless, the results from

Y(t) can be altogether beneficial, as demonstrated in the examples given next.

To illustrate the benefits of such computations, we will again continue to utilize

the same subset of the traffic traces used in the previous sections. However, the data



4. Further Applications of the Semi-Markov Mobility Prediction 98

0 10 20 30 40 50 60
0

1

2

3

4

5

6

7

8

9

Time t (minutes)

Y
i (

t)

 

 

Y
6
(t)

Y
13

(t)

Y
16

(t)

Y
21

(t)

Fig. 4.7: The expected number of users transferred into locations served by AP6, AP13,
AP16, and AP21, within t minutes.

had not kept track of the users in the various locations with idle sessions. Hence, and

for simplicity, we will assume the example where the users in the network are always

active and the transitions between the access points only involve those users with

active sessions. Moreover, in this example the initial number of users V associated

with each of the 21 different access points were chosen randomly and for illustrative

purposes.

Figure 4.7 shows on average the number of users that are expected to transition

and associate themselves with the access points AP6, AP13, AP16, and AP21, within

t minutes from the current population distribution V. Each of these access points

are known to be on separate floors of the library building. The results show that

within the first 30 minutes from the current time at which the population of users is

V, more users on average are expected to transition and associate their connections

with AP13 when compared with the remaining 3 access points. Note that this can

be due to a single or multiple transitions by each user before finally associating their
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Fig. 4.8: The expected number of users transferred into locations served by AP10, AP11,
AP14, and AP17, within t minutes.

connections with AP13. Furthermore, Y13(t) is the expected number of users that

have transferred into state 13 within t minutes. This is not to be interpreted as the

expected number of users that are to be found in state 13 within t minutes since some

of them may have transitioned out of state 13 by t minutes. The higher Y13(30) when

compared with the other results suggest that the location served by AP13 attracts

more users than the others during that particular time period. However, for larger

time periods, AP16 seems to be the one with the higher number of expected users

transitioning to it. Hence, AP13 attracts more users on the short-term whereas

AP16 attracts more users on the long-term. This kind of information can be quite

valuable to network managers for the purpose of provisioning sufficient network

resources for its users.

Another example is given in Figure 4.8 which shows a similar behavior among

a different set of access points. In this example, AP14 and AP17 are located on

the same floor and are expected to have more users transitioning towards them
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when compared with the other two access points that are each located on adjacent

floors. The results for Y11(t) indicate that AP11 is expected to have more users

transitioning towards it within the first 10 minutes when compared with the other

access points. However, AP11 is seen to have much fewer users transitioning to it

when making predictions further ahead in time. A network manager could assume

from these predictions that less resources are needed for AP11 after the first 10

minutes and could instead direct the excess resources from AP11 to AP14 and/or

AP17.

The computations from Equation 4.8 assume that the network can serve an un-

specified number of users with active sessions at each location. In reality, this is

not true since the number of active connections at any given time period is limited

by the capacity of the network at each of the locations. This is due to the net-

work’s limited resources. Hence, the model can be further modified to consider a

given maximum number of active connections that can be served by the network

at each location. The maximum number of active connections is limited, whereas

the capacity of users with idle sessions can be assumed to be as large as the total

population of users in the network. Certain applications may also require having to

impose a limit on the number of users with idle sessions at a given location. Such

cases will not be considered in this thesis.

Let Ci be the maximum number of active sessions that can be allowed by the

network to be transferred at each location i. Therefore, active sessions that are

transferred into a location i which is serving at full capacity are prematurely ter-

minated by the network and included in the number of users with idle connections

in the same location. This is equivalent to having a user’s active session being

dropped after attempting a handoff to the new location. Define Ŷi(t) and Ŷ−i(t)

as the expected number of users that are expected to have their active and idle
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sessions transferred within time t into location i with a limited serving capacity of

Ci, respectively. Using Equation (4.8), Ŷ(t) can be computed from Y(t) as follows,

Ŷ(t) =
[
Ŷi(t) , Ŷ−i(t) : ∀i

]
, (4.9)

where Ŷi(t) = min {Yi(t), Ci} ,

and Ŷ−i(t) = max {Y−i(t) , Y−i(t) + Yi(t) − Ci} .

Not only can such results predict the spatial and temporal traffic load at each

location, but they could also be used to estimate how far ahead in time the network

is likely to drop any further incoming sessions. Such information could be used by

the network manager to administer some alternative call admission control.
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4.4 Network Resource Reservation

One of the major applications of mobility prediction is to estimate the amount

of resources that need to be reserved at the neighboring locations in the network.

This allows for a user’s ongoing and active session to be uninterrupted while being

mobile between the various locations. In this section, we show how the proposed

mobility prediction can generally be applied for the purpose of advanced resource

reservation in wireless networks. The time window in which these reservations need

to be maintained are also considered. Examples of how such prediction results can

be applied for resource reservation purposes can be seen in the works done by Choi

and Shin in [22] and Kim in [86].

Define σ as the amount of network resources that are required for each mobile

connection/user, e.g. σ = 1 channel for each connection in a voice cellular network.

It is assumed that σ is the same for all users. Thus, the expected amount of network

resources that need to be reserved for future demands at location i and within time

t is given as Ri(t), such that

Ri(t) = σ
∑

j

Vj

t∑

n=1

Qn
j,i(t) = σYi(t), (4.10)

where Vj is the number of active sessions in location j at time t = 0. Equation

(4.10) considers both the active and idle users in all locations that are predicted to

transition into location i in N or fewer transitions (with N ≤ t). Hence, the network

should, on average, be expected to reserve up to Ri(t) resources at location i within

time t. Alternatively, we can define the following,

ri(t) = σ
∑

j

Vj

t∑

n=1

qn
j,i(t) = σyi(t), (4.11)
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where ri(t) is the expected amount of network resources that are needed for users

arriving into location i and at time t. Note that the results for Ri(t) and ri(t) simply

rely on the computations of Yi(t) and yi(t) from the previous section. This form of

resource reservation can be applicable in situations where the network manager may

choose to reserve the aggregate expected amount of resources needed for a group

of users that may arrive at a particular location within a certain time period. The

allocation of the resources may instead be done for each individual user on a per-

transition basis and the reservation can be based simply on the predictions returned

by the Qi,j(t) predictor.

The results for Ri(t) (and ri(t)) account for users that have both idle as well

as active and ongoing sessions transferred from one location to another. Note how

these results include those users that are initially idle in terms of network usage.

The reason is that such users can potentially be active in the given location and

influence the resources that need to be reserved. Alternatively, if one wished to

only consider the active users, then the Qi,j(t) elements in the model need only be

defined for the case of transitions with active sessions alone.

The choice of reserving Ri(t) amount of resources is an example of a fractional-

based resource reservation scheme. In other words, the result of Ri(t) can assume any

real number. For example, the network manager could be recommended to reserve

3.37 units of resources by the predictor. In such a case, the network manager may

choose to round up/down to the nearest integer number of resources to be reserved.

This is done especially when reserving a fraction of a resource unit is not possible.
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4.5 Simulation of Network Resource Reservation

Many of the proposed resource allocation methods rely on steady/invariant user-

behavioral statistics for determining both the location and the amount of network

resources to be reserved. This type of reservation is specifically for those users that

may potentially handover their ongoing active sessions at the neighboring access

points. Such reservations tend to reduce the chances of a mobile user’s ongoing

session being prematurely terminated by the network due to insufficient resources

at the newly associated access point. A wireless network which incorporates a re-

source reservation scheme into its operations has a strong interest at minimizing

the connection dropping rates and thereby improving the overall customer satisfac-

tion. However, reserving a pool of resources for future handover connections usually

comes at the risk of having less resources available for new connections. This would

potentially increase the new connection blocking rates. Hence, a suitable resource

reservation scheme would tend to reach a compromise between the blocking and

dropping rates.

A virtual wireless networking environment was developed to simulate the mo-

bility and activity of a number of independent users within a certain coverage area.

This was done to assess whether the proposed mobility prediction can perform bet-

ter than the conventional schemes (using the transition probabilities alone), in terms

of reserving the necessary resources for handover connections. The simulation was

initially run to first collect the necessary data to acquire the statistics needed to

construct the model for the mobility prediction. The data include the location

transition probabilities and the location sojourn times. The next step involved ap-

plying the mobility prediction for resource reservation purposes and monitoring the

network’s performance in terms of the connection blocking and dropping rates.
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The majority of researchers constructed their mobile network simulations based

on the various common methods and techniques summarized by Camp et al. in [90].

However, many of these models suffer from quite unrealistic assumptions such as

sudden and drastic changes in speed and/or direction of mobility per wireless node.

Some of these problems have been identified by Yoon et al. in [91] and Theoleyre et

al. in [92]. Bettstetter [93] proposed a stochastic and “smooth” mobility model to

improve on the previously unrealistic assumptions. His mobility model introduces

a gradual change in the speed and direction of a wireless node which depends on

the node’s acceleration, deceleration and turning speeds. This type of stochastic

mobility model was further extended by Zhao and Wang in [94] to one that is based

on a semi-Markov process for a more general mobility behavior. Other mobility

models that follow a similar idea to the one given by Bettstetter in [93] are those

proposed by Yoon et al. in [95], Boudec and Vojnovic in [96], and Hsu et al. in [97].

To simplify matters, we developed a discrete-event simulation in Matlab [82] and

adopted the “Smooth Mobility Model” proposed by Bettstetter in [93] for charac-

terizing the mobility behavior of each user in the network. The main idea behind

this mobility model is that both the changes in speed and direction are controlled

by random processes which are dependent on each other. Each node’s mobility path

is governed by a series of assigned target speeds and directions. At any time t, a

node with a given target speed of vt and target direction dt (in radians) acceler-

ates/decelerates towards the chosen target. The node remains on the same course

until either a new target vt+τv
or dt+τd

is selected at times t + τv and t + τd, respec-

tively. The times between the re-assignment of the new target speed and direction,

i.e. τv and τd, are assumed to be random and follow a Poisson process. The new

target speeds and directions are uniformly selected and the mobile nodes in the net-

work are assumed to be homogeneous. The random times for each node’s active and
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Fig. 4.9: Simulation environment for network resource reservation.

idle session times are assumed to be geometrically distributed. A 16−cell network

was constructed with each cell being administered by a single access point that can

only handle a limited number of active sessions at any given time. A wrap-around

structure [98] for the 16−cell network was implemented to avoid using a bounded

simulation area that tends to bias the output statistics and renders them inaccurate.

Figure 4.9 shows a snapshot of the 16−cell network that was implemented in

the simulation, with the points on the grid representing the positions of the wireless

nodes at the current time. A node that exits to the right of cell 4 will transition

towards the left side of cell 1 and those leaving from the bottom of cell 4 will

transition into cell 16 from the top side. This is how the boundary effect is eliminated

and the same is true for the nodes departing from the other boundary cells. The

parameters that were used in the simulation are given in Table 4.4. Some were

chosen based on the numerical examples given by Bettstetter in [93].
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Tab. 4.4: Summary of parameters for the simulation of network resource reservation.

Parameter Value(s)

Mean Time for Speed Change 50s
Mean Time for Direction Change 85s

Choice of Speeds {0, 4, 8, 10, 14} m/s
Acceleration 2.5 m/s2

Deceleration 4 m/s2

Choice of Direction [−π, π]
Mean Session Idle Time 500s

Mean Session Active Time 100s
Maximum Number of Active Sessions per Cell 4

Maximum Number of Reserved Channels per Cell 2

The simulation was initiated by first assigning 100 nodes randomly and uniformly

across the 16 cells and allowing them to roam across the different locations for 5

million seconds of simulated run-time. During this time, the users’ sessions are

switching between being idle and active. In the first stage of the simulation, the

necessary statistics were collected to compute the required parameters for Qi,j(t),

for all (i, j) pairs. These parameters were only accumulated for those transitions

that involved nodes with active sessions. The next stage of the simulation involved

running it while executing resource reservation for handover connections using only

Pi,j at the first instance, and then repeating the same run but using Qi,j(t) instead.

The former case is the conventional method while the latter considers the proposed

MRP-based mobility model. This stage was run for another 5 million seconds of

simulated run-time while computing the blocking and dropping rates at each cell.

For creating the resource reservations, each node was assumed to require a sin-

gle unit of resource to continue its ongoing active session at the neighboring cell.

The overall number of resources allowed to be reserved at each cell is restricted to

a certain limit, which in this example is 2 channels (see Table 4.4). For the case
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where only Pi,j is used, a prediction is executed the moment a node either initiates

a new session or transfers its active session into a given cell. A resource is reserved

for that node at the next most likely location based on the generated prediction. If

the node happens to cross into the cell with the reserved resource, the handover is

completed and the resource prediction process is repeated. Otherwise, the reserva-

tion is freed at the moment the node has made a transition into a new location and

the node with the handoff request will only be completed if a non-reserved resource

is available for it. A similar approach was taken for the other case which applied

the model with Qi,j(t) except that the probabilities are evaluated every ∆ seconds

from the moment a node enters a given location, and the resource reservation is

executed accordingly. In the simulation, ∆ = 10 seconds was assumed such that if

no handover was executed at the nth instant then a new prediction was evaluated,

i.e. [Qi,j((n + 1)∆) − Qi,j(n∆)], and the resource reservation was modified. The

re-evaluation of the prediction continues every ∆ seconds until the node departs

the current cell or completes its session. Other methods such as fractional-based

resource reservation schemes discussed earlier in this section could also have been

applied in the simulation. However, this basic approach was chosen to be applied

for its simplicity.

Figures 4.10 and 4.11 compare the blocking and dropping probabilities using

both types of predictions for reserving resources at each of the cells. On the whole,

the results show the proposed predictor using Q(t) performed much better than

the conventional predictor using P, as summarized in Table 4.5. The predictor

using the proposed MRP with Q(t) reduced both the overall blocking and dropping

probabilities by 36.7% and 35.3%, respectively. In a few locations, the P-based

predictor performed better than the other method, e.g. cell 10. A closer look at

the results revealed that these cells are almost always heavily loaded with traffic
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which can be an undesirable situation for adaptive resource reservation schemes, as

observed by Kim in [86]. Nevertheless, the results favor the Q(t)-based resource

reservation prediction overall in terms of both the blocking and dropping rates. The

improvement could be attributed to the fact that the predictions using Q(t) advised

the reservation of resources in the neighboring cells for shorter periods of time. This

tended to free up more of the resources for other uses at any given time.

Tab. 4.5: Summary of results from simulation of network resource reservation.

Using P Using Q(t) % Change

Overall Blocking Probability 0.141 0.0892 −36.7%
Overall Dropping Probability 0.0949 0.0613 −35.5%
Overall Prediction Accuracy 0.2754 0.5234 +90.1%
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Fig. 4.10: Blocking probabilities per location, from the simulation for network resource
reservation.
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Fig. 4.11: Dropping probabilities per location, from the simulation for network resource
reservation.
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4.6 End-Location Predictions

Many researchers have identified the difficulty associated with predicting when and

where a mobile user will end its network session. A user’s session may undergo a

random number of location transitions, including the possibility of the session ter-

minating in the same location where it was initiated. It is certainly much easier to

predict a user’s subsequent transition than the state at which the session is termi-

nated. In knowing when and where a session will complete, given the initial session-

initiation state, the network manager could interpolate the surrounding locations

that a mobile user may visit while undergoing an active session from start-to-end. In

this case, end-location predictions apply for mobile users with sessions that remain

active until they terminate. These predictions are particularly useful for scheduling

the necessary resources that are required to be reserved at the various access points.

Such reservations can assist with sustaining a mobile user’s ongoing active session

from start-to-finish and without any inconvenient disruptions. Note that this type

of prediction is not the same as end-to-end predictions (see [87] and [68]). The

latter is generally involved with determining the path details from one end to the

other, whereas the end-location predictions are concerned with estimating when and

where a session is likely to terminate. Both types of predictions depend on where

the session was initiated.

For generating the end-location predictions, we apply the idea of absorbing

Markov chains (see [88]) to our MRP-based mobility model. Consider the matrix

q̂(t) with the following structure,

q̂(t) =




qa(t) q0(t)

0 I


 . (4.12)
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qa(t) is an LA × LA square matrix with elements 0 ≤ qi,j(t) ≤ 1 ∀t and i 6= j, and

represents the transitions from location i to j with an active session. q0(t) is also

an LA × LA square matrix with the elements qi,−i(t) on the diagonal that represent

the transitions involving the termination of a session in location i at time t. I is an

identity matrix.

Define qe(t) as a row vector with the elements being the joint probabilities in

which a mobile user terminates its ongoing active session in a particular location t

units of time after entering the current location. These probabilities are conditioned

on the current location of the mobile user. Using the definition for q̂(t), and assum-

ing that the state sojourn time distributions are of discrete form, we can compute

qe(t) as follows,

qe(t) = αq0(t) + α

t−1∑

τ=1

t−τ∑

n=1

qa
n(t − τ)q0(τ). (4.13)

The vector α = e′i is a row of all zeros with a single entry of a 1 in location i and

represents the state of the current location of a user with an active session. The

matrix qa
n(t− τ) can be computed from qa(t) and using Equation (4.3). A mobile

user may terminate its current session with the network without moving out of the

initial location, as given by probabilities in αq0(t). Otherwise, the user could move

away from the initial location and terminate its session elsewhere, which occurs

with a probability given by the second part of the expression for qe(t). The formula

given in Equation (4.13) is valid for the case where the state sojourn times assume

a discrete distribution. A similar approach can be taken for developing this same

metric for the case where the state sojourn times assume a continuous distribution.

Using the same data [83] for the network examined in Chapter 3, the results

of qe(t) for those users that have initiated their sessions at AP14 and AP17 in
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Fig. 4.12: A plot of the End-Location qe(t) probabilities for mobile users having initiated
their sessions at AP14.

Library Building 2 will be given next. The state sojourn times will again be fitted

to a discrete-time phase-type distribution using the tool developed by Horváth and

Telek in [74]. This in turn allowed for computing qe(t) using Equation (4.13).

Figures 4.12 and 4.13 show the probabilities of a mobile user terminating its

ongoing active session at the various locations within the same building, given that

the session was initiated at AP14 and AP17, respectively. From the data set in [83],

there are 21 distinct access points that cover the various locations in the building.

Hence, there are 21 different locations in which a user can terminate its session within

the same building. There were also many situations where a user may transition

outside the building while continuing its active session. For simplicity, it was again

chosen to limit the numerical analysis for transitions that occurred within the same

building. Even though there should be 21 distinct plots in each of Figures 4.12 and

4.13, only the top 4 possibilities were shown in each for clarity.
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Fig. 4.13: A plot of the End-Location qe(t) probabilities for mobile users having initiated
their sessions at AP17.

Figure 4.12 shows how the probability of ending up in either of the 4 access points

varies with the session time t and for the case where the session was initiated at

AP14. During the duration t, the mobile user may transition into various locations

along the way before terminating its session at a particular location. The results

show that out of the 4 possibilities, a mobile user is more likely to terminate its

session at AP10 if its session time doesn’t exceed 10 minutes. Users with session

times exceeding 10 minutes are instead more likely to terminate their sessions at

AP21. Incidentally, AP3, AP10, and AP21 are all located on the same floor of

the building and are one floor below where AP14 is situated. AP6 is located one

floor above AP14. In this example, a user is more likely to end its session at the

lower floor as opposed to the upper floor and the network manager could use this

information to infer the travel path details of the mobile user. However, a user that

ends at one of the access points in the lower floor may have reached that level after
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visiting some of the upper floors before going down. Hence, some caution is needed

when inferring the results of qe(t).

Figure 4.13 shows the probabilities for those users that have initiated their ses-

sions at AP17 which is on the same floor and within the neighborhood of AP14.

For this example, sessions with smaller durations are more likely to terminate their

sessions on the upper floor at AP6. However, sessions with durations longer than

70 minutes are likely to end on the same floor at AP19 or at AP21 on the lower

floor. Notice how these behaviors are quite different from those shown in Figure

4.12 primarily due to the location at which the session was initiated. The results do

show some considerable fluctuations in the likelihoods as the duration of the session

increases.

To assess the validity of the proposed computation for qe(t), the data set ob-

tained from [83] will again be used to examine the accuracy of the end-location

predictions. A similar approach to the one taken in Chapter 3 was followed in this

section. The traces recorded prior to the year 2003 were processed for comput-

ing the parameters needed to construct the expression in Equation (4.12). Only

those instances that involved a transition within the same Library Building 2 were

considered. The parameters were then used to generate the results for qe(t) and

subsequently checking each of the events in the data set that occurred on or beyond

the year 2003 to see if the end-location events were accurately predicted.

A simple method was chosen to test the accuracy of the end-location predictions

for a session that was initiated at access point i and lasting for t minutes, before

terminating at access point j. With α = e′i, if the jth element in qe(t) returned a

higher probability than the remaining elements in the same vector, i.e. qe(j)(t) =

max{qe(t)}, then the result is said to have correctly predicted the outcome. Most

existing techniques would attempt to compute these end-location predictions using
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the transition probabilities alone, without considering the temporal influences on

the results.

Let Pa be an LA × LA transition probability matrix with elements Pi,j that de-

scribe the probability of an arbitrary user with an active session making a transition

from location i to j. Further define P0 as an LA ×LA transition probability matrix

with elements Pi,i on the diagonal that describe the probability of an arbitrary user

terminating its session in location i. The matrices Pa and P0 can be used to con-

struct a simple example of computing end-location predictions using the transition

probabilities alone for comparing with the proposed predictor using qe(t). Both ma-

trices were used to compute Pe(j)(n), which is the probability of an arbitrary user in

location i ending up and terminating its session in location j by the nth transition.

Hence, the vector Pe(n) =
{
Pe(j)(n)

}
can be computed as follows,

Pe(n) = αPa
n−1P0, for n ≥ 1, (4.14)

where n in this case is the number of location transitions that a user has completed

from the initial to the end location. Note that in the result for Pe(n) the user must

have made n − 1 location transitions, with a final transition involving the session

termination. Furthermore, the results from Pe(n) do not provide any information

on when a session could terminate.

Another more common method used to predict such occurrences would be to

compute the origin-destination transition probability matrix, which will be denoted

as Pod. In this matrix the elements Pod(i,j)
are the probabilities of a user’s session

terminating in location j given that it was initiated at location i. These probabilities

do not consider the transitions that occur between the origin location i and the

termination location j, if any.
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Using Equations (4.13) and (4.14), as well as Pod, out of the 147, 193 relevant

events that were available in the data set, the overall accuracies returned by the three

prediction methods were compared for the case of users having initiated their ses-

sions at one of the 21 access points. The performance of the qe(t) predictor was also

examined for the case where the sojourn time behavior follows a phase-type distribu-

tion and a geometric distribution, i.e. Gi,j(t) ∼ (αi,j,Si,j) and Gi,j(t) ∼ Geom(p),

respectively. The elements for the Pod predictor were needed to be computed from

the part of the data set that contained events logged prior to May 2003.The same

values for Pi,j and Gi,j(t) that were computed in Section 4.2 were again used for

setting up both the Pe(n) predictor and the qe(t) predictor.

The summary of the prediction accuracy results are shown in Table 4.6 and

Figure 4.14. The results show that the overall performance of the qe(t) predictor

achieved an accuracy of around 65% with Gi,j(t) ∼ (αi,j,Si,j) and an accuracy of

around 72% with Gi,j(t) ∼ Geom(p). However, they were not as high as what was

computed using the conventional predictors. In a few instances, the difference in

the accuracies were relatively small and the proposed end-location predictor has the

added ability of determine the likelihoods of when (with a certain time window) a

session will terminate, along with where the session termination will occur.

When comparing the performance of the proposed predictor between having

Gi,j(t) ∼ (αi,j,Si,j) and Gi,j(t) ∼ Geom(p), some cases (e.g., session initiations from

AP13 and AP15) have shown the predictor with the phase-type distributed sojourn

times to achieve a higher accuracy than those gained by assuming the sojourn times

to be geometrically distributed. Other cases (e.g., session initiations from AP1 and

AP3) have shown the total opposite in terms of the prediction accuracies. These

findings suggest that the behavior of the sojourn times may be memoryless, but is

certainly not true for all the cases shown in the results. The network manager may
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again apply the proposed prediction scheme with different sojourn time distribution

types depending on which one returns a higher average accuracy from the access

point at which the session is initiated.
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Tab. 4.6: Summary of End-Location prediction accuracy results for transitions from the access points in Library Building 2.

Conventional Predictors Proposed Predictor Using MRP
Session Initiations Pe(n) Predictor Pod Predictor qe(t) Predictor Total # Total #
From AP Gi,j(t) ∼ (αi,j ,Si,j) Gi,j(t) ∼ Geom(p) of Transitions of Users

AP1 0.83867 0.8035 0.56224 0.8035 5266 1722
AP2 0.63204 0.5989 0.59792 0.59542 1122 315
AP3 0.79931 0.71646 0.5036 0.65132 7648 1977
AP4 0.76997 0.76351 0.65875 0.71387 5624 1177
AP5 0.87629 0.88096 0.88039 0.86259 2895 877
AP6 0.8154 0.81784 0.50171 0.81784 5486 1381
AP7 0.84418 0.84336 0.84336 0.84336 8670 612
AP8 0.69273 0.70527 0.42193 0.64579 1252 390
AP9 0.9437 0.93951 0.93951 0.93951 11429 1680
AP10 0.5848 0.56965 0.33028 0.47156 5080 1654
AP11 0.94214 0.93959 0.93959 0.93959 14473 2104
AP12 0.69757 0.57598 0.57598 0.60401 2420 273
AP13 0.85916 0.80998 0.80998 0.74721 5081 1199
AP14 0.79745 0.75609 0.75609 0.75609 18457 2400
AP15 0.77262 0.76732 0.71285 0.6988 7833 166
AP16 0.82039 0.79222 0.50577 0.69586 4473 862
AP17 0.77039 0.73901 0.50807 0.65152 11037 2140
AP18 0.66837 0.54625 0.59012 0.64775 818 103
AP19 0.75582 0.76608 0.75331 0.74358 12968 2593
AP20 0.67172 0.41653 0.51254 0.5305 2067 674
AP21 0.83392 0.82237 0.82237 0.82237 13094 2742

Overall 0.7803 0.7414 0.6536 0.7189
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Fig. 4.14: The performance of the End-Location qe(t) predictor as compared with the Pe(n) and Pod predictor.



5. MOBILITY & DATA TRAFFIC PREDICTION

Wireless data applications in mobile units are increasing in popularity amongst

the mobile users and will likely influence the wireless traffic in future networks.

E-mailing, Web-browsing, and streaming multimedia are some examples of applica-

tions that are currently in use today [1, 2]. The increasing trend in wireless data

transmission will require the network providers to consider the management of the

network resources that are available to the wireless data applications. Hence, the

network providers will be required to safeguard the contracted QoS with the mobile

user’s data transmission requirements. This can be made possible by ensuring that

sufficient resources are available to the users at the various locations in the network.

To help with efficiently managing the network’s resources for wireless data trans-

mission, an understanding of the user’s mobility relative to the data session usage

patterns is needed.

Following a similar approach to the one presented in the previous chapters, this

chapter will present the proposed semi-Markov model for mobility and data traffic

prediction. In the previous chapters, a pair of random variables {X, T} were defined

to model both the mobility and session-activity behaviors of network users. In

this chapter, an additional random variable is defined and included in the mobility

model for describing the data usage by an arbitrary user. The model can ultimately

be applied to predict the volume of a user’s data traffic demands that are being

transferred from one location to another due to mobility.
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5.1 Mobility & Data Rate Prediction

In addition to assigning one random variable X to represent the location ID, a

second random variable Z is defined to denote the effective transmission rate of a

session between the mobile user and the network. Hence, the mobility behavior

can be described by the trivariate state {X, Z, T}. The range of achievable data

transmission rates can be quite large which may also depend on the type of network

analyzed. Thus, it was assumed that the range can be discretized in such a way

that the variable Z is an integer and represents a multiple of the data rate unit

U . The parameter U is assumed to be the size (in data units per time division) of

each discrete epoch and is equivalent to the minimum effective transmission rate. If

Rmax is the maximum data rate at which an arbitrary user can transmit/receive in

a given network, then Z =
{
0, 1, 2, · · · , ⌈Rmax

U
⌉
}
, where Z ∈ Z. The manager ⌈·⌉

is defined as rounding up the numerical entry to the nearest integer.

The semi-Markov kernel for this bivariate model can be defined as follows,

Q(i,v)(j,w)(t) = Pr {Xn+1 = j, Zn+1 = w, Tn+1 − Tn ≤ t|Xn = i, Zn = v} , (5.1)

which is the product of the transition probability P(i,v)(j,w) and the sojourn time

distribution G(i,v)(j,w)(t). Note that the elements G(i,v)(j,w)(t) can also depend on

the size of the quantized data rate unit U . These sojourn time distributions could

also be related to the number of users connecting through a particular access point,

along with their transmission rates and throughput. This is especially true if we

are dealing with a network that offers a shared medium to its users such as the

IEEE 802.11 wireless network. Channel conditions and congestion levels can also

be significant factors in determining the sojourn time distributions. Hence, one

would need to take into account various conditions when computing the sojourn
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time distributions for a user to change its transmission rate from vU to wU data

units per time interval.

An arbitrary mobile user with a data session in location i and with a transmission

rate state v can transition into location j with a change in transmission rate to state

w. The probability of this transition occurring within t units of time from being in

the current state is given by the element Q(i,v)(j,w)(t). In such a system, 3 types of

transitions can occur.

• A change in location from i → j (where i 6= j), with or without any change in

the transmission rate state (i.e. v → w with w = v ).

• A change in the transmission rate state from v → w (where v 6= w) without a

change in location.

• A change in session activity from being idle to active and vice versa, with an

idle session having a transmission rate state of zero.

Note the above set of possible transitions assumes that a simultaneous change in

both location and transmission rate state (with v > 0) is permitted. This is particu-

larly true when dealing with networks that offer a shared medium to its users, such

as IEEE 802.11 WLANs. In such networks, the effective data-rate that is experi-

enced by a user depends on the number of other users that are utilizing the same

shared medium that is managed by a particular access point.

Consider a network with L different locations that are each served by a single

access point, where L < ∞. Hence, the random variable X ∈ X defines the user’s

location in the network where the set X = {1, 2, · · · , L}. Furthermore, let S =

⌈Rmax

U
⌉, such that Z = {0, 1, 2, · · · , S}, where Z ∈ Z. Therefore, the semi-Markov

kernel matrix Q(t) for this model will have the following form.
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Q(t) =




Q1,1(t) Q1,2(t) · · · Q1,L(t)

Q2,1(t) Q2,2(t) · · · Q2,L(t)

...
...

. . .
. . .

QL,1(t) QL,2(t) · · · QL,L(t)




, where (5.2)

Qi,j(t) =




Q(i,0)(j,0)(t) 0 · · · 0

0 Q(i,1)(j,1)(t) · · · Q(i,1)(j,S)(t)

...
. . .

0 Q(i,S)(j,1)(t) · · · Q(i,S)(j,S)(t)




for i 6= j, (5.3)

Qi,i(t) =




0 Q(i,0)(i,1)(t) Q(i,0)(i,2)(t) · · · Q(i,0)(i,S)(t)

Q(i,1)(i,0)(t) 0 Q(i,1)(i,2)(t) · · · Q(i,1)(i,S)(t)

...
...

...
. . .

...

Q(i,S)(i,0)(t) Q(i,S)(i,1)(t) · · · Q(i,S)(i,S−1)(t) 0




.

(5.4)

The transitions in Qi,j(t), for i 6= j include those that involve a change in lo-

cation due to mobility, which may also include a change in the transmission rate

state. The elements in Qi,i(t) comprise the transitions from one transmission rate

state to another without a change in location, including the transitions in switching

from idle to active. A similar definition can be given for computing the elements

q(i,v)(j,w)(t) which describe the transitions occurring at time t rather than within

time t. Notice that the idle ↔ active transitions of a user’s session are assumed

to occur without a simultaneous change in location, which is the reason for the ze-

ros across the first row and the first column of the matrix given in Equation (5.3).
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The case of S = 1 reverts this model back to the original model described in the

previous chapters, thus depicting those users with a single service-type, e.g. voice

calls. Moreover, the accuracy of any prediction computed using this model can be

significantly influenced by the chosen size of the quantized transmission rate levels

U . The extended applications proposed in Chapter 4 can be similarly adapted to

the semi-Markov mobility model given in this section.

There may be instances where the maximum achievable data rate (Rmax)i de-

pends on the access point that is serving the location i. This is true for cases

where different access points are provisioned with dissimilar bandwidth alloca-

tions. Hence, the state Z in the same model can be re-defined such that the set

Zi = {0, 1, 2, · · · , Si}, where Si = ⌈
(Rmax)i

U
⌉, for Z ∈ Zi, and is dependent on

the state X = i. This heterogeneous set of transmission rate states allow for a

more general model. For simplicity, the remainder of this chapter will assume the

homogenous case.

The model proposed in this section assumes the availability of information related

to the changes in the data-rate and locations of a mobile user. May of the traffic

traces that were found available online had only recorded either of the two types

of information alone but never together. Some do not explicitly keep track of the

changes in the effective transmission rates for each wireless terminal and that such

information would need to be derived from the traffic data, if possible. Other traces

were instead found to keep a temporal record of a user’s data traffic in terms of

the volume of bytes/packets exchanged between the mobile terminal and the access

point. This other form of information may also be useful with modeling the mobility

and data traffic behavior of an arbitrary user, as shown in the next section.
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5.2 Mobility & Data Volume Prediction

In a few of the traces that were available online to the research community, the

user’s data traffic logs included information on the number of bytes transmitted

and received per session. An example of such traces is given in [89]. The contents

from such logs are insufficient to compute the changes in the effective transmission

rates that are needed to form the mobility model defined in the previous section. In

this section, another mobility model is proposed for the case where the information

on the size of the data traffic (rather than the changes in the transmission rates) is

available in the user’s logs. This mobility model could also be used for predicting the

changes in the wireless traffic in terms of volumes of data units transferred between

the network and the mobile user.

A similar approach to the one adopted in the previous section will be used to

define the mobility model given in this section. This mobility model will again

assume a trivariate state
{
X̌, Ž, T

}
, with the random variable X̌ having the same

definition as X given in the previous section. The random variable Ž is assumed

to denote the amount of data that has completed its transfer between the user

and the network. A data session between the network and the mobile user can

involve the transfer of a large number of bytes/packets per session. Let Dmax be

the maximum number of bytes that can be transferred between a user and the

network, per session. We further assume that the amount of data transferred can

be discretized into batches of size B bytes. Therefore, the maximum number of

batches that can be transferred is Š = ⌈Dmax

B
⌉.

For predicting the increasing changes in the amount of data units transmitted

per user, as well as changes in the user’s location due to mobility, we define the
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semi-Markov kernel Q̌(i,v)(j,w)(t) as follows.

Q̌(i,v)(j,w)(t) = Pr
{
X̌n+1 = j, Žn+1 = w, Tn+1 − Tn ≤ t|X̌n = i, Žn = v

}
, (5.5)

where X̌ ∈ X̌ such that X̌ = {1, 2, · · · , L}, with L < ∞, and Ž ∈ Ž such

that Ž =
{
0, 1, 2, · · · , Š

}
. Note that Ž = 0 describes the state of a user that

is not engaged in an active session with the network, i.e. the user’s session is idle.

Q̌(i,v)(j,w)(t) is defined as the probability of an arbitrary user making a transition

from location i to location j, while having completed the transmission of (w − v)

batches of data within a time t, where w ≥ v. A prediction scheme that utilizes the

transition probabilities given by this model looks at determining the likelihood of

finding an arbitrary user in location j, having also transmitted w batches of data

(i.e., wB bytes) within a time interval t relative to the current time. This prediction

is made given that the arbitrary user at the current time is being served in location

i and has already completed the transmission of v batches of data (i.e., vB bytes).

In this particular mobility model, the following are the set of possible transitions.

• A change in location while the user’s network session is idle without transmit-

ting any data, i.e. v = w = 0 and i 6= j.

• A change in location without the transmission of any data from a user’s on-

going active session (no transmission in the interval t), i.e. v = w and i 6= j.

• A change in location with the transmission of (w − v) batches of data by a

user’s ongoing active session in the current location i, i.e. w > v and i 6= j.

• The transmission of (w − v) batches of data with the user terminating its

current session in the same location, i.e. w > v with i = j. Note that a total

of wB bytes have been transmitted in the user’s session.
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The semi-Markov kernel matrix Q̌(t) for this mobility model can be written as

follows.

Q̌(t) =




Q̌1,1(t) Q̌1,2(t) · · · Q̌1,L(t)

Q̌2,1(t) Q̌2,2(t) · · · Q̌2,L(t)

...
...

. . .
. . .

Q̌L,1(t) Q̌L,2(t) · · · Q̌L,L(t)




, (5.6)

where, for i 6= j,

Q̌i,j(t) =




Q̌(i,0)(j,0)(t) Q̌(i,0)(j,1)(t) Q̌(i,0)(j,2)(t) · · · Q̌(i,0)(j,Š)(t)

0 Q̌(i,1)(j,1)(t) Q̌(i,1)(j,2)(t) · · · Q̌(i,1)(j,Š)(t)

...
...

...
. . .

...

0 0 · · · Q̌(i,Š−1)(j,Š−1)(t) Q̌(i,Š−1)(j,Š)(t)

0 0 0 · · · Q̌(i,Š)(j,Š)(t)




,

(5.7)

and,

Q̌i,i(t) =




0 Q̌(i,0)(i,1)(t) Q̌(i,0)(i,2)(t) · · · Q̌(i,0)(i,Š)(t)

0 0 Q̌(i,1)(i,2)(t) · · · Q̌(i,1)(i,Š)(t)

...
...

...
. . .

...

0 0 · · · 0 Q̌(i,Š−1)(i,Š)(t)

0 0 0 · · · 0




. (5.8)

The probabilities given by the elements in Q̌i,j(t) evaluate the likelihood of a

user changing its association from the access point serving location i to the one

serving location j due to mobility, for i 6= j. These transitions may also involve

the successful transfer of w − v batches of data (with w > 0) before completing

the location change. This includes the case of w = v where no data is transmitted

by the user during the time interval t. Idle users in terms of network sessions are



5. Mobility & Data Traffic Prediction 129

also accounted for in the Q̌i,j(t) elements with v = 0. Such users may also continue

to remain idle after making a location transition, as given by the elements with

w = 0. The probabilities given by the elements in Q̌i,i(t) evaluate the likelihood of a

user completing its network session without making a location transition, while also

having successfully transmitted (w − v) batches of data. Note that Q̌(i,0)(i,0)(t) = 0

(as given by the upper left-most element in matrix Q̌i,i(t)) since that transition does

not represent a “renewal” in the process.

In addition to making future location predictions, the probabilities Q̌(i,v)(j,w)(t)

may also be applied for predicting how long the network is expected to sustain a

user’s ongoing active session through a particular access point These predictions

could also assist with evaluating the expected volume of data that is to be trans-

ferred between an arbitrary user and an access point during a particular time in-

terval. Therefore, such information could yield a spatial-temporal prediction of the

data traffic behavior within a network. The prediction results may also help with

identifying the expected amount of workload (in terms of data bytes to be trans-

ferred) that an arbitrary user brings into each location. Note again that the strength

of the predictions may also depend on the choice of the data batch size B used to

discretize the range of transferred data bytes [0, Dmax].
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5.3 Numerical Example

During the course of this research, it was not possible to obtain a set of traffic

that would contain the information needed to apply the proposed mobility model

presented in this chapter for validation and assessment purposes. Much of the traces

found had not included both the location transitions and the changes in the data

usage information in their traffic logs. There were some traces (e.g., [89]) that

provided partial details on the amount of traffic that had flowed between the mobile

users and the network but they did not include the changes in the traffic flow as

the user moves from one access point to the next. Combining such traces with

other independent data sets that include the user movement patterns is one option

that could be explored. However, combining two or more independent traffic traces

may result in an unrealistic analysis since the behaviors of the disparate traces are

unrelated to each other.

It would have been preferable to examine the use of this model in a manner that

is similar to what was done in the previous chapters. Due to the lack of real data,

a numerical example will instead be given. The purpose of the example is to show

how the results from the mobility model proposed in this chapter can be interpreted

for the benefit of making predictions. Even though the example given in this section

is restricted to applying the model proposed in this chapter, the prediction methods

and further applications described in the previous chapters can also be employed

for this data network mobility model.

To supply the synthetic data needed to construct this mobility model, a net-

working environment was simulated with users roaming between numerous access

points within some coverage areas, while randomly engaging in a data session at

various locations. The node mobility simulator utilized in Section 4.4, which was
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developed and based on the Smooth Mobility model proposed by Bettstetter in [93],

was re-used again in this section. The same parameters given in Table 4.4 were also

assigned in the simulator for the nodal mobility behavior in the network. An IEEE

802.11 type of wireless network was chosen as the setting for the simulator, with

each access point supervising its wireless channel that is shared amongst the users

that are associated with it.

The simulator was extended to involve the initiation of a data session between a

mobile user and the network. Several researchers, such as Crovella and Bestavros in

[99] and Fraleigh et al. [100], have identified the self-similar nature of the data traffic

behavior. They have found it best to model these types of traffic using heavy-tailed

distributions such as Pareto and Weibull. The parameters that define these traffic

behaviors can be influenced by numerous factors including the network protocol,

application, and network terminal type that it engaged by the users. Incorporating

such behaviors into the simulation can yield a more realistic response. However,

they could also introduce further complexities which may require the extra tuning

of their parameters to achieve some level of rational behavior. To make matters

simple, it was elected to model the transmission time and the session idle time of

a user as a random process that follows a geometric distribution. This is similar

to what was assumed in the very early works on traffic modeling. In this section,

the interest is not in simulating a lifelike mobility model and is instead primarily

focused on providing an adequate example and demonstrate the applicability of its

results for prediction purposes.

In the simulation, each location is assumed to manage the same quota of shared

medium/resources. An active session receives a portion of these resources depending

on how many users with active sessions are associated with the same access point.

For example, a session would be granted the entire bandwidth and running at the
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maximum permissible transmission rate if no other sessions are running within the

same coverage area of the access point. This session’s transmission rate would

reduce as the number of other active sessions requiring the usage of the same shared

medium increases. The time taken to complete a user’s active session at some

maximum permitted transmission rate is assumed to be geometrically distributed

with p = 0.01. The remaining session times are adjusted throughout the simulation

depending on the number of users with active sessions that are associated with the

same access point. These session times will have a mean of 1/p = 100 seconds.

This value for the mean session time was chosen to ensure that an ample number

of sessions will likely remain active while being involved in a location transition.

This made it possible to collect enough data to compile the information needed to

construct the mobility model. The time a user’s session remains idle is also assumed

to be geometrically distributed with p = 0.002.

For this example, the model proposed in Section 5.1.1 was used which considers

the transitions involving both the changes in location and transmission rates. The

elements Q(i,v)(j,w)(t) for this model were evaluated from the mobility and traffic data

logs accumulated by the simulation. The logs incorporated the details of each mobile

user’s location progressions, as well as the times at which the user was running its

session at one of the 5 discrete transmission rate levels, with level 5 being the

maximum transmission rate. The session idle times were also recorded in the data

and was denoted in the model as having a transmission rate level of 0. Hence, in

this example a mobile user can be in any of the 16 locations operating at any of the

6 different transmission rate levels. Consequently, this leads to a total number of 96

different states for this mobility model. This example also illustrates the possibility

of ending up having a model with a relatively large state space when dealing with

mobility and data traffic predictions in practical situations. In practice, the location
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approximation given in Section 3.3 could also be applied in such circumstances for

reducing the state space.

For the elements Q(i,v)(j,w)(t) in this example, the transition probabilities were

computed in the usual manner. The conditional state sojourn time distributions

G(i,v)(j,w)(t) were evaluated by selecting a distribution that closely fits the associ-

ated sojourn time data. This was accomplished by the distribution fitting tool in

Matlab. The log likelihood results that were returned by the fitting tool was used to

judge the choice of the best distribution to be assigned for each of the the model’s

elements. The results in this example yielded the log-normal distribution as being

the best-fitting distribution for the sojourn times involving location transitions with

active sessions at various transmission rate levels. The Weibull distribution was

more appropriate at modeling the sojourn times for transitions with idle sessions

(i.e., data-rate level of 0), based on the higher log-likelihood result returned using

Matlab’s distribution fitting toolbox. This feature of designating more than one

type of distribution for modeling the state sojourn time behaviors demonstrates one

of the key strengths in adopting the proposed method.

After running the simulation to generate the traffic data needed to compute

the MRP elements in the example, the behavior of some of these elements were

examined. A subset of them have been selected for analyzing the several inferences

that can be made from such results. These discussions will also include how the

results could be used for prediction purposes. The numerical results given next

review how an arbitrary mobile user situated in location 5 is expected to behave in

this simulated network. Hence, the focus is on understanding the future progressions

of a user in location 5. A similar analysis can be performed on those users that are

situated at the other locations.

For users that have just entered location 5 with idle sessions (i.e., data-rate level
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Fig. 5.1: A plot of the probabilities Q(i,v)(j,w)(t) for a user initiating a session in location
5.

of 0), the likelihoods of them initiating a session with the network within a certain

time period is given by the plots shown in Figure 5.1. These plots also illustrate how

the possibilities of having these sessions initiated at one of the 5 different transmis-

sion rate levels vary with time, with level 5 amounting to the highest transmission

rate that can be offered by the access point at the given location. Out of the 5

possible levels, the model seems to indicate that if a user in location 5 is expected

to launch a session with the network then it will most likely do so with a level 4

transmission rate, as indicated by results for Q(5,0)(5,4)(t). This suggests that users

in the given location have a good chance at having their sessions initiated with a

transmission rate that is close to the maximum. However, this does not imply that

their sessions will continue to remain active at the same transmission rate level. It

may even change for the better or worse and the chances of such transitions being

governed by the other elements in the model. This information could further be
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used to predict the traffic load at the given location. Since the simulated network

example assumes that the access point’s bandwidth is shared amongst its users, a

lower transmission rate would be due to a higher number of users that are simulta-

neously accessing the network. If on the other hand the probabilities in Figure 5.1

were higher for the lower transmission rate levels, then the network load at the given

location is expected to be quite high. This information could prompt the network

managers to consider taking certain measures and actions at the given access point,

e.g. increase the bandwidth. Such actions could also include communicating the op-

tion of accepting a downgraded performance to the user’s running application (e.g.

running a streaming video at a lower resolution), or even exploring the possibility

of having to “borrow” some bandwidth from neighboring sources for sustaining the

high traffic loads.

The next top-most probabilities shown in Figure 5.1 predict the possibility of

having a user in location 5 initiating a session with transmission rate levels of 3

or 5. The odds of being granted either of the two data-rate levels are quite close

together where one surpasses the other depending on how long the user has waited

before initiating its session. The results suggest that the longer the user’s terminal

remains idle in that location, the better the chances it has at accessing the network

with the highest possible transmission rate, as shown by the results for Q(5,0)(5,5)(t).

Depending on how significant the difference is in the transmission rate levels and the

user’s application demands, the network could opt in such circumstances to delay

the user’s access to the network if immediately required. The decision would be

taken if it would improve the chance of granting the user a higher transmission rate

level, after delaying the initial access by some tolerable amount of time. Making

these decisions could become more plausible if the difference in the data-rate levels

are much wider at such circumstances with close and temporally inter-changing
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Fig. 5.2: A plot of the probabilities Q(i,v)(j,w)(t) for a user transitioning into location 1.

likelihoods. Such decisions could assist the network with being more proactive with

managing its resources to maximize the gross performance perceived by its users.

Figures 5.2 and 5.3 illustrate the possibilities of a user transitioning from location

5 into the neighboring locations 1 and 6, while running a session at transmission

rate level 3, respectively. These transitions include the possibility of having a user’s

transmission rate changing to some other level due to how busy the access point is at

the new location. Note that the time scales in both figures are in seconds whereas

in Figure 5.1 it was in minutes. The difference was attributed to the simulation

assuming that the time a mobile user spends accessing the network is much less

when compared with the time its session is idle. On the whole, if the network was

to predict that a user in such a state will end up in one of these two locations

within a certain time period, then there is a higher chance that its transmission

rate can either remain the same or even be upgraded at the new locations. A user
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Fig. 5.3: A plot of the probabilities Q(i,v)(j,w)(t) for a user transitioning into location 6.

will unlikely achieve the highest transmission rate level after making a transition

into location 6, based on the low probabilities depicted by Q(5,3)(6,5)(t) in Figure

5.3. However, let us assume the circumstance where the reverse was true such that

likelihoods of having to reduce the transmission rate levels at the new locations were

much higher than the rest. In this instance, the network could attempt to negotiate

a downgrade in performance with the user’s running application in anticipation

of the expected drop in transmission rate. Other prevention schemes for avoiding

sudden-disruptions could also be invoked depending on how the network managers

choose to manage their own resources.

Out of all the possible outcomes for a user running a session with a transmission

rate level of 3 in location 5, the five topmost likely transitions are given in Figure

5.4. The results indicate that it is highly probable for a user in such a state to

make a transition into the neighboring location 9, but a reduction in the transmis-
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Fig. 5.4: A plot of the topmost likely outcomes for a user in location 5 running a session
at a transmission rate level of 3.

sion rate level from 3 to 1 in the new location is also to be expected. This most

likely outcome suggests a drop in the network performance perceived by the user.

However, the probabilities of the remaining outcomes in Figure 5.4 display a more

promising performance in terms of the transmission rate levels to be achieved by

the user. This might encourage the network to be more focused in its concern with

the transition of users into location 9 (from location 5) and initiate some course of

action that might help with moderating and/or preventing the drop in performance.

The example analyzed in this section has demonstrated the benefits of exploiting

the likelihoods returned by the proposed MRP-based mobility and data rate model.

The model can be applied for predicting the changes in both a user’s location and

session transmission rate. Not only can such information be used to anticipate the

usage of the network’s resources at various location sites, but it can also provide
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some insight on the traffic volume loads experienced by the access points. The

network could take advantage of these predictions and proactively administer some

performance disruption prevention scheme when needed. This could assist with bet-

ter managing the overall resources as well as attempting to maintain a certain level

of performance for both the users and the network.



6. CONCLUSIONS AND FUTURE WORK

6.1 Contribution and Comments

In this thesis, a wireless user mobility model was proposed and was set up as a

Markov Renewal process. The mobility model was mainly developed for the purpose

of predicting the subsequent transitions in mobility and activity of network users

within a time period t. The proposed model can be applied for making the necessary

predictions for both single and multiple transitions. A method for applying the

model to generate end-location predictions was also shown. The model can be used

by network managers for the purpose of efficient network resource management as

well as ensuring a certain level of QoS perceived by the mobile users. Huang et al.

in [9] and François Leduc in [10] have shown how a network’s admission control that

is combined with a mobility prediction scheme can improve the improve the overall

performance perceived by both the mobile users and the network.

The mobility model was also extended to deal with predicting the mobility of

users with data traffic. The proposed model is suitable for predicting user mobility

and the length of time at which they are active and considers network architectures

that support both voice and data connectivity. The latter type of network service

is likely to dominate the network usage in the upcoming years. Hence, future wire-

less networks will likely require an understanding of how the amount of traffic is

transferred between the different locations.

The data set that was obtained from the CRAWDAD repository [83] was in-
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strumental with validating and showing the benefits of utilizing the proposed semi-

Markov mobility model. The results given in this thesis have shown the improve-

ments in the prediction accuracy that can be achieved by applying the proposed

semi-Markov prediction scheme. The performance of the proposed scheme was com-

pared with some of the conventional Markov predictors and was shown to yield a

higher accuracy on the overall. These improvements were due to the inclusion of

the temporal influences in the predictions. Furthermore, the results demonstrated

one of the key strengths of the proposed model in assuming any general distribution

for the user sojourn times.

Other common schemes apply machine learning techniques and neural networks

[26,84] for developing the mobility predictors and rely heavily on the availability of

data. Modeling the mobility behavior using neural networks have shown to offer an

improvement on the prediction accuracy when compared with other methods [84].

However, such schemes can be rather complex to build and the training process

is generally slower than other schemes. Markov predictors are favored by many

researchers due to their fast and simple training process as well as their general-

ity and domain independence [85]. The proposed semi-Markov model expands on

the Markov predictors and having the same advantages, along with including the

temporal influences in the predictions.

The work presented in this thesis had been published in part in [101] and [102].



6. Conclusions and Future Work 142

6.2 Model Limitations

One general disadvantage of employing Markov (and the same for semi-Markov)

predictors is their slow re-learning capability [84]. In other words, it might require

a large amount of data to update the set of probabilities in the model in order

to reflect certain significant changes in the user behavior. In such situations, the

Markov predictor may generate quite a large number of inaccurate predictions during

the length of time it takes to re-learn and update the new behavior.

The proposed mobility model assumes the availability of the traffic data needed

to compute its parameters for generating the needed predictions. This makes the

model applicable for networks that have been active for a considerable length of

time and would have enough data collected for constructing the semi-Markov model.

Applying such a model for and during an initial network setup may still be possible

if some data from a similar network can be used to construct and utilize the model

during the initial phase of the network commissioning. The model further assumes

that the behavior found in the data is stationary, which is a common assumption

amongst all Markov predictors.

The semi-Markov mobility model is limited to describing the changes in the

behavior of the user in terms of his/her location from the network’s perspective,

the current activity with the network (e.g., active, idle, transmission rate), and the

time window during which the changes in the events occur. The proposed model

assumes the behavior of each user to be independent and have no influence on the

the other users within the surrounding population.
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6.3 Future Extensions

To improve on the validity of our mobility prediction, other sets of traffic traces

would need to be investigated and preferably ones that cover other types of network

architectures, such as cellular and vehicular wireless networks. A considerably large

repository would also be helpful at examining whether segregating the traffic traces

based on seasonality can improve the prediction results. The filtering-out of infre-

quent and uncommon events from the traffic traces to better construct the mobility

model would also need to be reviewed.

The proposed scheme is limited to modeling the behavior of individual and in-

dependent users. The work can be extended to include group behavior modeling

(similar to what was proposed by Zhou et al. in [55]) as well as the influence these

users may have on the others within their group. Other relevant information, such as

road topology [38] and geographical constraints and/or landmarks [40], can also be

incorporated into the model. The improvements gained by including such additional

information in the proposed prediction scheme would also need to be examined.

Decision-making under uncertainty plays a crucial role in our proposed mobility

prediction scheme and an efficient way of making such decisions is yet to be investi-

gated. The errors in the prediction results could also be exploited for the possibility

of improving future predictions. Hence, the inclusion of a feedback mechanism into

the prediction scheme could also be examined. Though it was briefly mentioned in

some of the sections, another area that is worth pursuing further in this work is to

extend the proposed prediction scheme to handle multiple classes of users and/or

applications, as well as looking into the decision-making that is involved in such

cases.
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LIST OF ACRONYMS

3G 3rd Generation of mobile networking technology

AP Access Point

CDMA Code-Division Multiple Access

CDPD Cellular Digital Packet Data

FDMA Frequency-Division Multiple Access

GSM Global System for Mobile communication

MRP Markov Renewal Process

QoS Quality-of-Service

TDMA Time-Division Multiple Access

WLAN Wireless Local Area Network


