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Abstract

This dissertation describes research conducted on the development and improvement
of microwave tomography algorithms for imaging the bulk-electrical parameters of
unknown objects.

The full derivation of a new inversion algorithm based on the state-of-the-art con-
trast source inversion (CSI) algorithm coupled to a finite-element method (FEM)
discretization of the Helmholtz differential operator formulation for the scattered
electromagnetic field is presented. The algorithm is applied to two-dimensional (2D)
scalar and vectorial configurations, as well as three-dimensional (3D) full-vectorial
problems. The unknown electrical properties of the object are distributed on the el-
ements of arbitrary meshes with varying densities. The use of FEM to represent the
Helmholtz operator allows for the flexibility of having an inhomogeneous background
medium, as well as the ability to accurately model any boundary shape or type: both
conducting and absorbing.

The CSI algorithm is used in conjunction with multiplicative regularization (MR), as
it is typical in most implementations of CSI. Due to the use of arbitrary meshes in
the present implementation, new techniques are introduced to perform the necessary
spatial gradient and divergence operators of MR. The approach is different from other
MR-CSI implementations where the unknown variables are located on a uniform grid
of rectangular cells and represented using pulse basis functions; with rectangular
cells finite-difference operators can be used, but this becomes unwieldy in FEM-CSI.
Furthermore, an improvement for MR is proposed that accounts for the imbalance
between the real and imaginary parts of the electrical properties of the unknown
objects. The proposed method is not restricted to any particular formulation of the
contrast source inversion.

The functionality of the new inversion algorithm with the different enhancements is
tested using a wide range of synthetic datasets, as well as experimental data collected
by the University of Manitoba electromagnetic imaging group and research centers in
Spain and France.
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Contributions

This dissertation focuses on the development of the finite-element contrast source
inversion (FEM-CSI) method for solving inverse scattering problems for microwave
imaging applications. While the CSI algorithm is not new, the specific contributions
to the field presented in this work are:

• The full derivation of a new inversion algorithm based on the contrast source
inversion (CSI) algorithm and a finite-element (FEM) discretization of the
Helmholtz differential operator formulation for the scattered electromagnetic
field.

• The development of a finite-element solver for microwave imaging applications
capable of handling two-dimensional scalar and vectorial problems for different
chamber types, as well as three-dimensional full-vectorial configurations for un-
bounded problems. The solver is integrated as part of the inversion algorithm,
as well as used to calculate the fields scattered from known objects.

• The enhancement of the inversion algorithm by incorporating the weighted
L2−norm total variation multiplicative regularization to FEM-CSI. The nov-
elty herein is the introduction of new techniques to perform necessary spatial
gradient and divergence operators on arbitrary meshes.

• The derivation and implementation of an improved multiplicative regularization
technique for CSI that accounts for the imbalance between the constituents of an
unknown target’s electrical properties (this work was performed in conjunction
with Dr. Colin Gilmore).

• The inversion of a vast array of synthetic and experimental datasets to test the
functionality of the algorithms as well as outline their advantages.

A list of publications directly related to these contributions can be found in Ap-
pendix J. All the utilized solvers and algorithms, except for MR-CSI formulated
using integral-equations (IE) ∗, were implemented solely by the author.

∗The results using IE-CSI were obtained by Dr. Colin Gilmore.
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xviii

Notations, Symbols and Acronyms

It is of interest to note that while some dolphins are reported to have
learned English–up to fifty words used in correct context–no human being
has been reported to have learned dolphinese.

–Carl Sagan [1]

Herein some general remarks about the notations used throughout the thesis as

well as a list of commonly used symbols and acronyms are provided.

• Spatial-vectors: continuous functions or data-vectors and matrices with en-

tries that have more than one component in the Cartesian coordinates are de-

noted with an overhead arrow such as ~υ, ~p, ~M.

• Data column-vectors: data column-vectors are denoted by underlined letters.

For example, χ represents the discrete form of χ(~r) and ~E
sct

t denotes the discrete

form of the spatial vector ~Esct
t .

• Matrices: matrices are denoted by uppercase bold calligraphic letters such as

T D and ~L.

• Dyads: dyads are denoted with uppercase letters with two overhead lines such

as ¯̄I and ¯̄GS .

• Spatial derivative operators: Spatial gradient and divergence matrix oper-

ators are given as (∇) and (∇·).

• Integration Differentials: The differential boundary element is denoted by

ds; for two-dimensional (2D) problems the boundary elements are lines, while

for three-dimensional (3D) problems the elements are surface patches. The

differential volumetric (domain) element, in 2D and 3D, is denoted by dv.
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Table 0.1: Common Symbols and Notations

Symbol Description

x̂, ŷ, ẑ Unit vectors in the x, y and z directions.

n̂ Normal unit vector to the boundary.

~r, ~r ′ Position vectors in the Cartesian coordinates.

R Set of real numbers.

C Set of complex numbers.

Ω Problem Domain.

D Imaging Domain.

S Measurement Surface.

Γ , Γ1 and Γ2 Problem boundary, Dirichlet boundary and Robin boundary.

ε0 Permittivity of free-space.

εr Relative complex permittivity of the OI.

εb Relative complex permittivity of the background medium.

ε′r Real relative permittivity of the OI.

σ Conductivity of the OI.

χ Contrast variable.

µ0 Permeability of free-space.

µr Relative permeability of the OI.

k0 Wavenumber of free-space.

k Wavenumber.

kb Wavenumber of the background medium.

ω Radial frequency.

f Frequency of operation.

t Active transmitter index.

~wt Contrast source variable for an active transmitter t.

~Einc
t Incident vector-field for an active transmitter t.

~Esct
t Scattered vector-field for an active transmitter t.

~Et Total vector-field for an active transmitter t.
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¯̄Gb Dyadic Green’s function.

GS , GD Data and domain operators.

~Hb Helmholtz operator.

~MS , ~MD Data and domain transformation operators.

Re Real part operator.

Im Imaginary part operator.

∇ Gradient operator.

∇· Divergence operator.

∇× Curl operator.

∇2 The Laplacian.

(·)−1 Inverse Operator.

(·)T Transpose Operator.

(·)∗ Complex-conjugate Operator.

(·)H Hermitian (transpose complex-conjugate) Operator.

‖·‖ L2− norm or Euclidean norm.

〈· , ·〉S Inner product defined on S.

〈· , ·〉D Inner product defined on D.

Table 0.2: Common Acronyms

Acronym Description

1D One-dimensional.

2D Two-dimensional.

3D Three-dimensional.

ABC Absorbing boundary condition.

BC Boundary condition.

BMR Balanced multiplicative regularization.

BVP Boundary value problem.

CG Conjugate gradient.

CSI Contrast source inversion.

DBIM Distorted Born iteration method.
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DG Discontinuous Galerkin.

EM Electromagnetic.

FD Finite-difference.

FDTD Finite-difference time domain.

FEM Finite-element method.

FFT Fast Fourier transform.

FMM Fast multipole method.

FVTD Finite-volume time domain.

GNI Gauss-Newton inversion.

IE Integral equation.

MGM Modified-gradient method.

MoM Method-of-Moments.

MoWR Method of weighted residuals.

MR Multiplicative regularization.

MRI Magnetic resonance imaging.

MWI Microwave imaging.

MWT Microwave tomography.

OI Object-of-interest.

PDE Partial differential equation.

PEC Perfect electric conductor.

PMR Pre-scaled multiplicative regularization.

TE Transverse electric.

TM Transverse magnetic.
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Introduction

Everyone wants something without having any idea how to obtain it and
the really intriguing aspect of the situation is that nobody quite knows how
to achieve what he desires. But because I know what I want and what the
others are capable of I am completely prepared.

–Prince Klemens von Metternich

1.1 Scope

This thesis presents research work in the area of microwave imaging (MWI) algo-

rithms in the framework of the electromagnetic inverse scattering problem. Microwave

imaging is of interest for various applications such as medical imaging [2–4], geophys-

ical surveying [5, 6], through-wall imaging [7], industrial non-destructive testing [8]

and security scanners [9]. In the form of MWI considered herein, one attempts to

quantitatively reconstruct the unknown electrical properties (i.e. permittivity and/or

conductivity) of an object-of-interest (OI) which is immersed in a background medium

of known electrical properties within a chamber. The OI is successively illuminated

by various sources of electromagnetic radiation at either a single-frequency or consec-

utive discrete frequencies. The introduction of the OI into the chamber results in a

different field from that in the empty chamber. The difference between the two fields
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is referred to as the scattered field. In the absence of the OI, the field produced by the

same sources located in the background medium is referred to as the incident field.

Both fields are measured at several locations within accessible regions surrounding

the OI.

The inverse scattering problem associated with MWI can be cast as an optimiza-

tion problem over variables representing the unknown electrical properties which are

to be reconstructed. This inverse problem is nonlinear and ill-posed. The nonlinearity

arises due the existence of two unknowns: the field within the OI and the object-of-

interest electrical properties. Furthermore, the problem is ill-posed in the sense of

Hadamard [10] hence: (i) the solution for the inverse problem is not guaranteed to

be unique; (ii) the solution is unstable, i.e. small changes in the measured fields can

cause large changes in the reconstructed unknowns; and (iii) a solution might not

exist. The nonlinearity and ill-posedness are treated by utilizing various specialized

optimization and regularization techniques [11–13].

Another approach to solving inverse problems is linearizing them by making as-

sumptions regarding the electromagnetic wave propagation within the scatterer [14–

19]. While the linearization techniques provide some useful qualitative images, they

cannot quantitatively reconstruct the bulk-electric parameters (permittivity and/or

conductivity). As methods to solve the inverse problem linearly are beyond the scope

of the thesis they will not be discussed further.

1.2 Motivation

For the past several years, the electromagnetic imaging laboratory (EMIL) at

the University of Manitoba (UofM) has embarked on research related to the field of

microwave imaging for biomedical applications. The research involves the implemen-
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tation of microwave imaging systems [20–26] along with the development of inversion

algorithms to solve the inverse scattering problem associated with MWI [27–29]. The

importance of accurate modeling of the MWI systems necessitates the realization of

innovative methods to bring the mathematical model representing the MWI system

closer to the actual physical model. Contributing to this group effort is the driving

force behind the work in this thesis.

1.3 Purpose

When the inverse scattering problem formulation makes use of an integral equation

(IE) for the electromagnetic field a Green’s function corresponding to the background

medium and the problem’s boundaries is required [19]. If the background medium is

inhomogeneous or if the problem’s boundary is complicated (e.g. arbitrary and/or

conducting) deriving and calculating the Green’s function can be a complex, com-

putationally expensive process. With knowledge of the Green’s function, the IE is

typically solved using the Method-of-Moments (MoM), which produces a dense sys-

tem of equations that can be a computational burden [20,28,30].

Partial differential equation (PDE) formulations of the scattering problem can

be discretized directly using numerical techniques such as finite-difference (FD) or

finite-element (FE) methods [31–33]. Using PDE operators, there is no need to de-

termine the problem’s Green function and, thus, the presence of an inhomogeneous

background or a complicated boundary can be easily taken into account without af-

fecting the computational complexity of the numerical solution. In addition, unlike

IE formulations, PDE formulations readily produce sparse systems of equations which

can be solved efficiently.

The objective of the thesis is to develop inversion algorithms that will be efficient,
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as well as offer flexibility in terms of:

1. Solving two-dimensional (2D) and three-dimensional (3D) electromagnetic (EM)

problems whether they are scalar or vectorial.

2. Modeling chamber boundaries of different shapes and types.

3. Having the inversion unknowns distributed on a arbitrary mesh of varying den-

sities.

A computational technique that can offer these capabilities for the forward EM prob-

lem is the finite-element method (FEM). A state-of-the-art efficient inversion algo-

rithm that has had success in solving the inverse scattering problem is the contrast-

source inversion method.

Prior to the research undertaken for this thesis, the electromagnetic imaging lab-

oratory had expertise with the IE formulation of CSI for 2D scalar problems with

the transverse magnetic (TM) assumption of the fields [20, 27, 34]. The work herein

formulates the CSI algorithm using FEM to satisfy the objectives above. The algo-

rithm will be referred to often in the text as the FEM-CSI method. Further, the

work includes enhancing the outcome of the algorithm via two forms of multiplicative

regularization (MR). The inclusion of MR into FEM-CSI is complicated because the

unknowns are located on an arbitrary mesh. This requires the development of novel

techniques to perform spatial differentiation operations on arbitrary meshes.

Due to an abundant availability of datasets assuming the 2D TM polarization of

the fields, the algorithms studied in this research were formulated initially for scalar

two-dimensional problems. Next, the FEM-CSI algorithm was developed for vectorial

2D transverse electric problems. Based on numerical investigation, it has been shown

that using the transverse electric (TE) polarization in the near-field can result in more
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accurate reconstructions than interrogating the OI with the TM polarization [35].

There are two standard approaches to solve the TE electromagnetic problem. The

first is to formulate the TE problem as a scalar problem using a single magnetic field

component. As concluded in [36], such a formulation results in a less stable algorithm

with degraded performance as compared to the second approach which formulates

the problem in terms of the two electric field components in the transverse plane.

Further, as discussed in [37], the numerical modeling of dielectric discontinuities is

more difficult for TE problems formulated in terms of the longitudinal magnetic field

component due to the difficulty of modeling polarization charges. Thus, the second

standard approach which uses the vector electric field in the transverse plane has been

chosen and is described in this work. Further, the next natural extension beyond

2D TE is the 3D full-vectorial, which is also presented in this thesis. The algorithm

expansion to handle vectorial problems was encouraged by the availability of vectorial

experimental datasets from the Institut Fresnel of Marseilles, France [38,39].

Inversion algorithms based on the finite element method (FEM) have been in-

troduced in the past. In [31], Rekanos et al. uses FEM for the field solution but

the unknown electrical properties for the problem are located on a uniform grid of

square cells. Each cell in the grid is discretized into several triangles for the field

solution. Such a dual-grid technique does not take advantage of the full flexibility

of using an FEM discretization: the inversion is not actually performed on an ar-

bitrary mesh. Furthermore, the method in [31] is only applied to 2D TM synthetic

datasets for unbounded-region problems. In [33, 40], a hybrid method that combines

FEM and a boundary-element method (BEM) is utilized. A dual mesh scheme is

also used in their work, where the contrast variables are located on nodes of a coarse

triangular mesh and the electric fields are calculated on a finer triangular mesh. For
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3D problems, an accelerated finite-difference time-domain vectorial code is used to

calculate the fields [40]. At each iteration, the contrast variables are updated using

a Gauss-Newton method and then the updates are utilized to calculate the scattered

fields. This method has been applied successfully to experimental data [2, 40]. A

disadvantage of both of these FEM-based inversion algorithms is that the system of

FEM equations have to be re-assembled at every iteration in order to solve for the

scattered field. This disadvantage is not applicable to the present method wherein

FEM is coupled with CSI.

1.4 Outline

In Chapter 2, the mathematical formulation associated with the inverse scatter-

ing problem for microwave imaging applications is presented. The formulation is

presented for two- and three- dimensional problems. For 2D problems, the scalar and

vectorial cases are considered, whereas for 3D the full-vectorial problem is examined.

The partial-differential equation as well as the integral-equation form of the problem

are shown. A brief explanation of the inversion algorithms is provided.

In Chapter 3, the PDEs associated with the electromagnetic model of the mi-

crowave imaging problem are solved using the finite-element method. The details

for solving the 2D and 3D MWI problems, whether scalar or vectorial, using FEM

are outlined. Further, the matrix operators required to describe and implement the

inversion algorithms effectively in following chapters are explained. The operators

result from the FEM discretization of the MWI problem. Appendices A and B serve

as companions for this chapter to provide further explanation.

In Chapter 4, the contrast source inversion (CSI) technique is formulated using

FEM. First a general overview of the CSI algorithm is outlined. Next, a full descrip-
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tion for the FEM-CSI algorithm is given for the three MWI problem configurations:

2D TM, 2D TE and 3D full-vectorial. The detailed derivation of the algorithm update

procedures are given in Appendices C, D and E.

In Chapter 5, a weighted L2−norm total variation multiplicative regularization

term is incorporated to the FEM-CSI algorithm. As the algorithm unknowns are

located at either mesh nodes or element centroids, novel techniques to perform the

spatial gradient and divergence operators are introduced. Additionally, in this chap-

ter an enhancement for the multiplicative regularization term is proposed. The im-

provement accounts for the imbalance between the real and imaginary components

of the OI’s electrical properties. The full details of the algorithm are contained in

Appendices F, G and H.

Chapter 6 focuses on the development and evaluation of the FEM-CSI algorithm

and its variants. The implemented algorithms are tested using a vast number of

synthetic as well as experimental datasets. The purpose of the synthetic datasets

is to provide an understanding of the advantages offered by the FEM-CSI algorithm

and its multiplicatively regularized forms. Furthermore, the experimental datasets are

intended to test the functionality of the code using data collected by the University

of Manitoba imaging group, as well as other electromagnetic research groups in Spain

and France.

The thesis is concluded in Chapter 7, followed by prospects for future work.
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2

Mathematical Formulation

From a long view of the history of mankind seen from, say, ten thousand
years from now there can be little doubt that the most significant event
of the 19th century will be judged as Maxwell’s discovery of the laws of
electrodynamics. The American Civil War will pale into provincial in-
significance in comparison with this important scientific event of the same
decade.

–Richard Feynman [41]

In this chapter, the mathematical formulation associated with microwave imaging

(MWI) is presented in the frequency-domain. The formulation is shown for two-

dimensional (2D) as well as three-dimensional (3D) configurations. For 2D field

problems two polarizations are considered, transverse magnetic (TM) and transverse

electric (TE); whereas in the 3D case the full-vectorial formulation is studied. The

wave equation associated with each case is derived from Maxwell’s equations, outlin-

ing any necessary assumptions as required.

In the second part of the chapter, the integral equation (IE) based formulation of

the electromagnetic field is presented pointing out any required new terms. The IE

form is utilized to more easily define several operators along with a set of equations

required to describe the inverse scattering problem. Further, the inverse problem is

briefly explained, as well as the two types of optimization algorithms commonly used

to treat problem nonlinearities.
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2.1 Maxwell’s Equations

In 1873 James Clerk Maxwell completed the formulation of his renowned equa-

tions which are considered as one of the greatest contributions in the 19th century.

The importance of “Maxwell’s Equations” is due to their predictive power of the elec-

tromagnetic phenomena at a macroscopic scale, which aided in the development of a

vast number of modern technologies. In differential form, Maxwell’s equations are

∇× ~E(~r, t) = −∂
~B(~r, t)

∂t
, (2.1)

∇× ~H(~r, t) =
∂ ~D(~r, t)

∂t
+ ~J (~r, t), (2.2)

∇ · ~D(~r, t) = ρv(~r, t), (2.3)

∇ · ~B(~r, t) = 0, (2.4)

where the spatial vector quantities ~E , ~D, ~H, ~B, and ~J are, respectively, the electric

field intensity in [volts/meter], the electric flux density in [coulombs/meter2], the mag-

netic field intensity in [amperes/meter], the magnetic flux density in [webers/meter2]

and the electric current density in [amperes/meter2], while the scalar quantity ρv

is the electric charge density in [coulombs/meter3]. Each quantity is a function of

time t and the three-dimensional position vector ~r = (x, y, z) . Each spatial vector

quantity has three components, in the x̂-direction, ŷ-direction and ẑ-direction. The

mathematical operators, ∇× and ∇·, implement the curl and divergence operations

respectively.

The electric current density ~J in (2.2) can be expressed as the sum of two com-

ponents: the conduction current density, ~Jc, and the impressed current density, ~Ji,

thus

~J (~r, t) = ~Jc(~r, t) + ~Ji(~r, t). (2.5)
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The distinction between the two components is useful as ~Jc is related to the medium’s

ability to conduct electric current, while ~Ji is due to given impressed current sources,

e.g. at antenna ports.

In addition to (2.1)-(2.5), three more equations are needed to specify the relation-

ships between the field quantities. These constitutive relationships are dependent on

the medium where the fields exist, and they are

~D(~r, t) = ε0ε
′
r(~r)~E(~r, t), (2.6)

~B(~r, t) = µ0µr(~r) ~H(~r, t), (2.7)

~Jc(~r, t) = σ(~r)~E(~r, t). (2.8)

Here ε0 is the permittivity of free space in [Farads/meter]. ε′r is the real relative

permittivity (unit-less), µ0 is the permeability of free space in [Henrys/meter], µr is

the relative permeability (unit-less), and σ is the conductivity in [Siemens/meter].

The medium considered here is isotropic and linear, thus ε′r, µr and σ are scalar

quantities that are independent of the field intensity strength.

In this work, Maxwell’s equations are assumed to have a time-harmonic depen-

dency of exp(jωt) where j2 = −1 and ω = 2πf is the angular frequency in [radi-

ans/second] for a frequency f in [hertz]. Under this assumption, Maxwell’s equations
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become

∇× ~E(~r) = −jω ~B(~r) (2.9)

∇× ~H(~r) = jω ~D(~r) + ~J(~r) (2.10)

∇ · ~D(~r) = ρv(~r) (2.11)

∇ · ~B(~r) = 0 (2.12)

~J(~r) = ~Jc(~r) + ~Ji(~r) (2.13)

where the vector fields are time-harmonic forms of their time-domain counterparts

and are related to them, e.g., by [42]

~E(~r, t) =
√

2Re
{
~E(~r) exp(jωt)

}
. (2.14)

Here, the real component is multiplied by the
√

2 factor because the magnitude of

the complex quantity is assumed to be the effective (root-mean-square) value of the

instantaneous quantity. If the magnitude is the peak of the complex variable, the
√

2

can be omitted [42].

The time-harmonic assumption also applies to the constitutive relationships (2.6)-

(2.8) by substituting the time-domain field quantities by their time-harmonic repre-

sentations. Furthermore, the constitutive parameters can now be complex variables

dependent on the operating frequency f .

In this work, we consider an electromagnetic problem where the electric field has

an exp(jωt) time dependency∗.

∗Note that with this assumption a time variable is no longer needed and that the index ‘t’ will
be used later to indicate the number corresponding to the active transmitter.
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2.2 Helmholtz Equation

For the MWI problem being solved, the interest is to derive a governing partial

differential equation (PDE) that involves only the electric field vector ~E. In this

derivation, the assumptions are: (i) the problem domain is free of charge, i.e. ρv = 0,

and (ii) the materials in the problem are non-magnetic, i.e. µr = 1. Under these

assumptions, ~H is eliminated from (2.9) and (2.10) with the aid of the constitutive

relationships (2.6)-(2.8) and (2.13), which results in

∇×∇× ~E(~r)− ω2µ0ε0εr(~r) ~E(~r) = −jωµ0
~Ji(~r). (2.15)

This equation is called the inhomogeneous vector Helmholtz equation or simply the

inhomogeneous vector wave equation. Here εr is the complex relative permittivity

and is given by

εr(~r) = ε′r(~r)− jε′′r(~r)

= ε′r(~r)− j
σ(~r)

ωε0
.

(2.16)

Note here that since the problem is now formulated in terms of the electric field, the

later will be referred to as just field when there is no ambiguity.

Applying the vector relationship ∇ ×∇ × ~U = ∇(∇ · ~U) − ∇2~U , the expression

(2.15) can be simplified to [43]

∇2 ~E(~r) + k2(~r) ~E(~r) +∇( ~E(~r) · ∇ ln ε(~r)) = jωµ0
~Ji(~r) (2.17)

where k2(~r) = ω2µ0ε0εr(~r) is the wavenumber squared, ∇2 is the Laplacian and

∇ ln ε(~r) is the gradient of the natural logarithm of the complex permittivity ε(~r) =
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: Transmitter

: Receiver
: Transmitted Field

: Measured Field
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(a) 2D Model

: Transmitter
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: Transmitted Field

: Measured Field

OI

(b) 3D Model

Figure 2.1: (a) Two-dimensional (2D) and (b) three-dimensional (3D) geometrical
models for the imaging problem: Ω is the problem domain, D is the imaging domain
where the object-of-interest is located, Γ is the boundary enclosing the problem, and
S is the measurement surface where the transmitters and receivers are positioned.

ε0εr(~r). The simplified wave equation obtained in (2.17) will be used to derive the

Helmholtz wave equation that governs scalar problems.

2.3 Microwave Imaging System

In a microwave imaging (MWI) system, an object-of-interest (OI) is located within

a bounded chamber, as depicted in Figure 2.1. The OI and the imaging domain, D,

are contained within a problem domain, Ω, and are immersed in a background medium

whose electrical properties are known but can be inhomogeneous. The domain Ω is

surrounded by a boundary Γ that can be of any shape, size or type depending on the

imaging setup being modeled. The complex relative permittivity of the OI is εr(~r).

The corresponding electric contrast is defined as

χ(~r) ,
εr(~r)− εb(~r)

εb(~r)
(2.18)
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where εb(~r) is the relative complex permittivity of the background medium (outside

D, the contrast χ(~r) = 0). Note that the terms contrast and electrical properties will

be used interchangeably to refer to the variable χ unless otherwise mentioned.

The chamber is successively illuminated by one of T transmitters, while the re-

sultant field from the OI is measured at R receiver locations per transmitter. The

transmitters and receivers are positioned on a measurement surface S. In the absence

of the OI, a transmitter t produces an incident field ~Einc
t , which is governed by the

vector wave equation

∇×∇× ~Einc
t (~r)− k2

b (~r) ~E
inc
t (~r) = −jωµ0

~Jt(~r), (2.19)

where k2
b (~r) = ω2µ0ε0εb(~r) is the square of the background medium wavenumber which

is allowed to be inhomogeneous, and ~Jt is used to model the transmitter.

With the presence of the OI in the imaging domain, the total field, ~Et, satisfies

the wave equation

∇×∇× ~Et(~r)− k2(~r) ~Et(~r) = −jωµ0
~Jt(~r). (2.20)

The scattered field due to the presence of the OI is defined as

~Esct
t (~r) , ~Et(~r)− ~Einc

t (~r). (2.21)

By substituting (2.21) in the total field wave equation (2.20) and using the relationship

in (2.19), the vector wave equation that governs the scattered field can be written as

∇×∇× ~Esct
t (~r)− k2(~r) ~Esct

t (~r) =
(
k2(~r)− k2

b (~r)
)
~Einc
t (~r). (2.22)
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This can be written in terms of the contrast, χ(~r), as

∇×∇× ~Esct
t (~r)− k2

b (~r) (χ(~r) + 1) ~Esct
t (~r) = k2

b (~r)χ(~r) ~Einc
t (~r). (2.23)

Rearranging (2.23) so that the contrast variable is on the right-hand side of the

equation yields

∇×∇× ~Esct
t (~r)− k2

b (~r) ~E
sct
t (~r) = k2

b (~r)~wt(~r) (2.24)

where ~wt is the contrast source variable defined as

~wt(~r) , χ(~r) ~Et(~r). (2.25)

The right-hand side term of (2.24) effectively represents a source located within the

scatterer that produces the scattered field ~Esct
t in a background medium kb; hence the

namesake contrast source.

For further analysis, the vector wave equation can be written in operator notation

as

~Hb

{
~Esct
t

}
= k2

b (~r)~wt(~r). (2.26)

The inverse of this operator evaluates the scattered field values in the problem do-

main Ω given the contrast source variables ~wt, along with the background medium

wavenumber kb. As will be described later, for inverse scattering problems the field

values are required on the measurement surface S and inside the imaging domain D,

thus two more operators are introduced. The surface operator ~MS takes the field ~Esct
t

in Ω to the receiver locations on the measurement surface S. The imaging domain

operator ~MD returns the field values in D given the field ~Esct
t .

Solving for the incident field ~Einc
t and the scattered field ~Esct

t requires that the
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boundary conditions (BCs) on Γ be defined. For a conductive-enclosure system,

perfect electrical conductor (PEC) boundary conditions are used (as explained in

Appendix I) resulting in homogeneous Dirichlet BCs:

n̂× ~Einc
t (~r ∈ Γ) = 0 and n̂× ~Esct

t (~r ∈ Γ) = 0. (2.27)

For some MWI systems, the background medium can be assumed to extend to infinity

in two cases: (i) the reflections from the boundaries of the enclosure are negligible and

can be ignored, and/or (ii) sufficient loss is incorporated in the matching medium such

that little energy is reflected back from the enclosure’s boundaries. In such cases all

fields in the model will be required to satisfy the Sommerfeld radiation condition [44]:

lim
r→∞

r
(
∇× ~Esct

t (~r) + jkbr̂ × ~Esct
t (~r)

)
= 0. (2.28)

In this work three different configurations are studied: (i) two-dimensional trans-

verse magnetic (2D TM), (ii) two-dimensional transverse electric (2D TE), and (iii)

three-dimensional (3D) full-vectorial. In the next section the assumptions with each

case, along with the field components are described. When necessary, any modifica-

tions for the wave equations are outlined.

2.3.1 Case 1: 2D Transverse Magnetic

For 2D transverse magnetic (TM) problems, the electrical properties as well as the

fields are not varying in the ẑ−direction. In addition, the electric field is assumed to

be z−polarized with no transverse components in the x− y plane. Thus the incident

field, scattered field and contrast source in wave equations (2.23) and (2.24) can be
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represented as

~Einc
t (~r) = Einc

t,z (~r)ẑ

~Esct
t (~r) = Esct

t,z (~r)ẑ

~wt(~r) = wt,z(~r)ẑ. (2.29)

Here the position vector ~r = (x, y). With the electric field having only one longitudinal

component in the ẑ−direction, the magnetic field will have two transverse components

in the x − y plane to satisfy Maxwell’s equation; thus the configuration is known as

transverse magnetic (TM).

Applying the above assumptions and conditions along with using the simplified

wave equation (2.17), the wave equations can be written as

∇2Esct
t,z (~r) + k2

b (~r) (χ(~r) + 1)Esct
t,z (~r) = −k2

b (~r)χ(~r)Einc
t,z (~r) (2.30)

and

∇2Esct
t,z (~r) + k2

b (~r)E
sct
t,z (~r) = −k2

b (~r)wt,z(~r). (2.31)

These equations are known as the scalar Helmholtz equations.

For conductive enclosures, the homogeneous Dirichlet BC given in (2.27) are sim-

plified to

Einc
t,z (~r ∈ Γ) = 0 and Esct

t,z (~r ∈ Γ) = 0. (2.32)

Similarly, the 2D Sommerfeld boundary conditions are given as

lim
r→∞

√
r

(
∂

∂r
Esct
t,z (~r) + jkbE

sct
t,z (~r)

)
= 0. (2.33)
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2.3.2 Case 2: 2D Transverse Electric

The electric field is polarized in the x − y plane for 2D transverse electric (TE)

problems, with no longitudinal component in the z−direction; thus the incident field,

scattered field and contrast source have two components each and are given as

~Einc
t (~r) = Einc

t,x (~r)x̂+ Einc
t,y (~r)ŷ

~Esct
t (~r) = Esct

t,x (~r)x̂+ Esct
t,y (~r)ŷ

~wt(~r) = wt,x(~r)x̂+ wt,y(~r)ŷ. (2.34)

Further, the fields and electric properties of the OI and the background medium do

not vary along the z−direction in 2D TE problems similar to 2D TM configurations.

The scattered electric field is governed by the vector wave equations (2.23) and

(2.24), with any required boundary conditions defined in (2.27) and (2.28).

2.3.3 Case 3: 3D Full-Vectorial

In 3D full-vectorial problems, the field and the electric properties vary with respect

to all space coordinates. Therefore, each field vector has three components, thus

~Einc
t (~r) = Einc

t,x (~r)x̂+ Einc
t,y (~r)ŷ + Einc

t,z (~r)ẑ

~Esct
t (~r) = Esct

t,x (~r)x̂+ Esct
t,y (~r)ŷ + Esct

t,z (~r)ẑ

~wt(~r) = wt,x(~r)x̂+ wt,y(~r)ŷ + wt,z(~r)ẑ. (2.35)

Similar to 2D TE, the vector wave equations (2.23) and (2.24) and the boundary

conditions (2.27) and (2.28) are utilized to solve for the scattered electric field in the

problem domain for 3D full-vectorial problems.



2.4. Integral Equation Formulation 19

2.4 Integral Equation Formulation

The Helmholtz wave equations introduced earlier can be solved by the direct

discretization of the PDE using techniques like the finite-difference (FD) method or

the finite-element method (FEM). The discretization produces matrices representing

the Helmholtz operator ~Hb and the transformation operators ~MS , ~MD. In this thesis,

the wave equations are solved using FEM, which is explained in detail in Chapter 3.

The alternative approach to formulating the wave equations is to represent the

solution in integral equation form (IE) using the appropriate Green’s function. The

IE form of the electromagnetic problem is outlined herein to conveniently present the

inverse scattering problem as will be explained later.

The integral solution of the the vector wave equation (2.24) can be written as [19]

~Esct
t (~r) =

∫
D

¯̄Gb(~r, ~r
′) ·
(
−k2

b (~r
′) ~wt(~r

′)
)
dv′ for ~r ∈ Ω (2.36)

where the integration is performed over the domain D, the support of the contrast

source ~wt(~r
′) (for ~r ′ /∈ D, ~wt(~r

′) = 0); and ¯̄Gb(~r, ~r
′) is the dyadic Green’s function

of the electric type that relates the field ~Esct
t and the contrast source variable ~wt.

The dyadic Green’s function ¯̄Gb(~r, ~r
′) has to satisfy the following inhomogeneous

PDE [44]:

∇×∇ ¯̄Gb(~r, ~r
′)− k2

b (~r)
¯̄Gb(~r, ~r

′) = ¯̄Iδ(~r − ~r ′) for ~r ′ ∈ D (2.37)

where kb is a background medium wavenumber that can be inhomogeneous, δ(~r−~r ′)
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denotes the Dirac delta function and ¯̄I is the identity dyad given as

¯̄I =


ẑẑ 2D TM

x̂x̂+ ŷŷ 2D TE

x̂x̂+ ŷŷ + ẑẑ 3D Full-Vectorial.

(2.38)

The inhomogeneous PDE satisfied by ¯̄Gb(~r, ~r
′) is associated with the same bound-

ary conditions defined for the vector wave equation (2.24). In the TM illumination

the Green’s function has one component Gb,zz ẑẑ, in the TE polarization it has four

components

¯̄Gb = Gb,xxx̂x̂+Gb,xyx̂ŷ +Gb,yxŷx̂+Gb,yyŷŷ (2.39)

and for 3D full-vectorial problems it has nine components

¯̄Gb =Gb,xxx̂x̂+Gb,yxŷx̂+Gb,zxẑx̂+

Gb,xyx̂ŷ +Gb,yyŷŷ +Gb,zyẑŷ+

Gb,xzx̂ẑ +Gb,yzŷẑ +Gb,zz ẑẑ.

(2.40)

The dyadic components are independent from each other.

It is straight-forward to derive the analytical Green’s function, ¯̄Gb(~r, ~r
′), cor-

responding to an unbounded problem with a homogeneous background medium.

Whereas if the problem’s boundary is complicated (e.g. arbitrary and/or conducting)

or if the background medium is inhomogeneous (e.g. multi-layered media), the deriva-

tion and the calculation of the Green’s function can be a complex, computationally

expensive process .

With the knowledge of the Green’s function, the integral equation (2.36) is typ-

ically solved using the method-of-moments (MoM), which produces a dense system
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of equations that can be a computational burden. The complexity of utilizing MoM

depends on different factors that include the Green’s function expression, the contrast

of the OI relative to the background medium and the geometrical complexity of both

the OI and the imaging domain D. The acceleration of the MoM can be achieved,

under certain assumptions, using various techniques like the conjugate-gradient fast

Fourier transform (CG-FFT) [45,46] and the fast multipole method (FMM) [47–49].

However, such techniques are not generally available for inhomogeneous background

or problems with complicated boundaries.

2.4.1 Data and Domain Operators

The inverse scattering problem requires the scattered field values to be calculated

on a measurement surface S and within an imaging domain D. Therefore two linear

operators are introduced: the data operator and the domain operator [19, 34, 50].

Assuming ~υ(~r) exists for ~r ∈ D, the data operator is defined as

GS {~υ} =

∫
D

¯̄Gb(~r, ~r
′) ·
(
−k2

b (~r
′) ~υ(~r ′)

)
dv′ for ~r ∈ S (2.41)

and the domain operator as

GD {~υ} =

∫
D

¯̄Gb(~r, ~r
′) ·
(
−k2

b (~r
′) ~υ(~r ′)

)
dv′ for ~r ∈ D. (2.42)

Both integrals, (2.41) and (2.42), are taken over D. A third linear operator GϕD {~υ} is

defined as

GϕD {~υ} =

∫
D

¯̄Gb(~r, ~r
′) ·
(
−k2

b (~r
′) ~υ(~r ′) ϕ(~r ′)

)
dv′ for ~r ∈ D (2.43)
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where ϕ(~r ′) is a scalar function. Note that the data operator GS returns the field

values on a measurement surface S, whereas the domain operator GD as well as the

operator GϕD return the field values within the imaging domain D.

The operators presented herein return the same results as multiplying the outcome

of the inverse Helmholtz operator ~Hb (2.26) by the transformation operators ~MS and

~MD. That is

GS {~υ} ≡ ~MS ~H−1
b {~υ}

GD {~υ} ≡ ~MD ~H−1
b {~υ} .

(2.44)

2.4.2 Data and Domain Equations

The scattered field on the measurement surface S due to a contrast source function

~wt can be written as

~Esct
t (~r) = GS {~wt} . (2.45)

This equation is usually referred as the data equation. The total electric field, ~Et,

within the imaging domain D, can be calculated via

~Et(~r) = ~Einc
t (~r) + GD {~wt} . (2.46)

This equation is usually called the domain equation.

Using the contrast source definition (2.25) and the operator given in (2.43), the

domain equation can be rewritten as

(I − GχD) ~Et(~r) = ~Einc
t (~r) (2.47)

where I is an identity operator. Thus, the total field inside the imaging domain D
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can be expressed as

~Et(~r) = (I − GχD)−1 ~Einc
t (~r) (2.48)

where the superscript −1 denotes the inverse operator. Using (2.48) and the contrast

source definition (2.25), the data equation can be rewritten as

~Esct
t (~r) = GS

{
χ (I − GχD)−1

(
~Einc
t

)}
. (2.49)

Although the data and domain operators themselves are linear, the inverse operation

within (2.49) is non-linear.

The equations outlined in this section will be used next to briefly explain the

inverse scattering problem and the techniques utilized to solve it.

2.5 Inverse Scattering Problem

The objective of the inverse scattering problem is to estimate the contrast χ(~r)

inside the imaging domain D from the scattered field measurements on the measure-

ment surface S. Let ~Esct
meas(~r) denote the measured scattered field on S, then using

(2.49), the contrast χ(~r) is to be found from

~Esct
meas(~r) = GS

{
χ (I − GχD)−1

(
~Einc
)}

. (2.50)

Here the incident field ~Einc is assumed to be known, whereas the operator GχD is

unknown as the contrast χ is unknown.

The inverse operator in (2.50) is a mathematical representation of the nonlinearity

associated with the inverse scattering problem. This is handled by casting the inverse

problem as an optimization algorithm over variables representing the unknown elec-
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trical properties of the OI which are to be reconstructed. The inversion algorithm

objective is to utilize ~Esct
meas(~r) at several locations surrounding the OI to update esti-

mates of the unknown contrast such as to minimize a given functional. The functional

relates the measured data and the unknown attributes of the OI.

Most inversion algorithms are iterative techniques where estimates of the OI’s

electrical properties are updated starting from some initial guess. Broadly speak-

ing, inversion algorithms can be divided into two types: conventional and modified-

gradient [27]. The two approaches are distinguished by their use (or lack of use) of a

forward solver, and the selection of the objective function.

2.5.1 Conventional Type Algorithms

The conventional type algorithm attempts to minimize a cost functional solely in

terms of the scattered field outside the OI by updating the electrical properties of

the OI at every iteration. Such inversion algorithms require that a forward solver

be called several times at each iteration to calculate the scattered fields associated

with each source for the current estimate of the OI’s electrical properties; this can

be a computational burden because the system of equations used to compute these

scattered fields must be assembled at each iteration. Examples of such algorithms are

the distorted Born iteration method (DBIM) [30], the Gauss-Newton inversion (GNI)

[28], conjugate gradient [31] and global optimization techniques [13, 51]. Using the

data equation expression in (2.49), the general conventional type inversion algorithm

can be written as

Cconv(χ) =

∑
t

∥∥∥ ~Esct
t,meas − GS

{
χ (I − GχD)−1

(
~Einc
t

)}∥∥∥2

S∑
t

∥∥∥ ~Esct
t,meas

∥∥∥2

S

(2.51)
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where ‖·‖ notation represents the L2−norm (or the Euclidean norm) of the argument.

Since the contrast χ is updated at every iteration, the operator GχD has to be recalcu-

lated. The computation of the operator (I − GχD)−1 is equivalent to a forward solver

call.

2.5.2 Modified-Gradient Type Algorithms

The modified-gradient type algorithm minimizes a cost functional in terms of both

the scattered field outside of the OI, which is compared to the measured values, and

the total field inside the imaging domain, which is expected to be consistent with

the physics of the problem. Noting that the total field inside the imaging domain

changes with respect to each transmitter, the number of unknown quantities can

become extremely large. However, using modified-gradient algorithms forward solver

calls are avoided.

Two different updating schemes within this approach have been suggested. The

first scheme updates the contrast and the total field values corresponding to each

transmitter simultaneously [52]. On the other hand, the second scheme treats the

contrast and the total field (or the contrast sources) separately; when optimizing

over the contrast, the total field (or the contrast sources) is assumed constant, and

when updating the total field (or the contrast sources), the contrast is assumed to

be known. The modified-gradient method (MGM) [53, 54] and the contrast source

inversion (CSI) [55, 56] are the two well-known methods within the second updating

scheme. As the CSI method is the most-known modified-gradient type, it is briefly

explained for this class of inversion algorithms.

The CSI method formulates the MWI problem in terms of the contrast χ and the

contrast source ~wt variables. Multiplying both sides of the domain equation (2.46)
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by χ, results in

~wt(~r) = χ(~r) ~Einc
t (~r) + χ(~r)GD {~wt} (2.52)

which along with the data equation (2.45) is used to express the CSI functional as

CCSI(χ, ~wt) =

∑
t

∥∥∥ ~Esct
t,meas(~r)− GS{~wt}

∥∥∥2

S∑
t

∥∥∥ ~Esct
t,meas(~r)

∥∥∥2

S

+

∑
t

∥∥∥χ(~r) ~Einc
t (~r)− ~wt(~r) + χ(~r)GD{~wt}

∥∥∥2

D∑
t

∥∥∥χ(~r) ~Einc
t (~r)

∥∥∥2

D

.

(2.53)

The contrast and the contrast source variables are updated successively by a conjugate

gradient method.

In this thesis, the CSI method is selected as the algorithm to solve the MWI

inverse problem and it is formulated using the finite-element method.
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3

Solving the Forward Problem

The limitations of the human mind are such that it cannot grasp the be-
havior of its complex surroundings and creations in one operation. Thus
the process of subdividing all systems into their individual components or
‘elements’, whose behavior is readily understood, and then rebuilding the
original system for such components to study its behavior is a natural way
in which the engineer, the scientist, or even the economist proceeds.

–Olgierd C. Zienkiewicz and Robert L. Taylor [57]

The microwave imaging problem can be divided into two parts: the forward prob-

lem and the inverse problem. The objective of the the forward problem, sometimes

referred to as the direct poblem, is to predict the behavior of the field in the problem

domain (Ω) for a given OI immersed in a known background medium. Historically,

several numerical techniques have been developed to solve the forward problem asso-

ciated with electromagnetics. These techniques generally fall under the title compu-

tational electromagnetics.

Practically speaking, computational electromagnetics can be categorized into ei-

ther time-domain or frequency-domain techniques. Examples of time domain meth-

ods are the finite-difference time-domain (FDTD) [58], the finite-volume time-domain

(FVTD) [59, 60] and the transmission-line matrix (TLM) [61] techniques. As time-

domain methods are beyond the scope of the thesis they will not be discussed further.
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Frequency-domain methods generally involve either the direct discretization of

the PDEs associated with the electromagnetic problem or the discretization of some

integral-form. As detailed in Section (2.4), the later technique will require either de-

riving or computing a Green’s function that may be a complex and a computationally

expensive process. The alternative is the direct discretization of the PDE and this

can be easily performed using a finite-difference or a finite-element method.

In this chapter, the finite-element method (FEM) is reviewed and used to solve the

forward problem for microwave imaging. The details of using FEM are outlined along

with any necessary operators required for extracting information from the solution.

The finite-element method is formulated for scalar two-dimensional problems, as well

as for 2D and 3D vector problems.

3.1 The Finite Element Method

The finite-element method (FEM) is a numerical technique that was first proposed

in the 1940s for solving boundary-value problems (BVPs) of mathematical physics.

In this technique, the continuous space of the BVP is divided into a ‘finite’ number of

parts (‘elements’) and solved; this is how the name of the technique originated, and

the term was coined by Clough in 1960 [62]. The first practical use for FEM began

in the 1950s for aircraft design; however it’s first use in electrical engineering was

not until 1965 when Winslow used it to solve for the magnetic field on an irregular

mesh [63]. Currently, the applications of the finite element method extend to various

engineering areas such as structural analysis, heat transfer, fluid mechanics, acoustics

and electromagnetics.

The finite element method offers several advantages in comparison to other nu-

merical techniques:
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• Complex geometries with curvatures are easily modeled using triangular ele-

ments in 2D or tetrahedra in 3D.

• Material inhomogeneities are dealt with efficiently.

• Boundaries of different types, shapes and sizes are easily integrated within the

FEM formulation.

• The discretization using FEM yields matrix equations that can be solved effi-

ciently as the resultant matrices are sparse.

There are two approaches for formulating a problem using FEM: the Rayleigh-

Ritz variational method and the method of weighted residuals (MoWR); herein the

former one is used. The basic steps in solving a problem using FEM can be described

as [44,64]:

1. A boundary-value problem (BVP) is defined.

2. A variational expression (in the form of a functional) for solving the BVP is

formulated. The variational expression is a function of the unknown variable

being solved for in the BVP.

3. The first variation of the functional with respect to the unknown variable is set

to zero. The stationary point of the functional is the solution of the BVP.

4. The problem domain is discretized into a finite number of elements and the

elemental basis functions are selected.

5. The system of equations is built and solved.



3.2. Scalar Problems 30

3.2 Scalar Problems

3.2.1 The Boundary-Value Problem

For scalar wave problems, the goal is to calculate the scattered field (Esct
t,z ) by

either solving (2.30) or (2.31) given the appropriate boundary conditions. Solving

these scalar Helmholtz equations can be generalized to solving a BVP defined by the

second-order partial differential equation (PDE)

∇2u(~r) + α(~r)u(~r) = β(~r)f(~r) (3.1)

where u is the unknown variable, α and β are known parameters associated with

the physical properties of the problem domain (Ω), and f is the excitation function.

Comparing to (2.30) and (2.31), u = Esct
t,z while the other parameters α, β and f

vary depending on which Helmholtz equation is solved. The boundary conditions

associated with the PDE are the Dirichlet BC

u(~r) = p(~r) on Γ1 (3.2)

and the Robin BC [65]

(∇u(~r)) · n̂− γ(~r)u(~r) = −q(~r) on Γ2 (3.3)

where Γ1 + Γ2 = Γ is the boundary enclosing Ω, n̂ is an outward normal unit vector

to Γ, and p, γ and q are parameters associated with the physical properties of the

boundaries. When γ = 0, the Robin BC becomes the Neumann BC [44].

For calculating the scattered field (Esct
t,z ) inside a conductive enclosure, the ho-
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mogeneous Dirichlet BC, 2.32, is applied on Γ = Γ1, therefore we set p = 0. For

unbounded MWI systems, the Robin BC can be used to approximate the Sommer-

feld radiation condition on Γ = Γ2.

3.2.2 The Variational Problem

In the Rayleigh-Ritz variational method, the BVP is replaced by a variational

expression called the functional. The functional corresponds to a weak-form of the

governing PDE under the given boundary conditions [64]. The approximate solution

for the PDE is then obtained by finding the stationary point of the functional with

respect to the unknown variables used to represent the solution.

Specifically, the BVP, (3.1)-(3.3), is converted to the variational problem [44]

δF (u) = 0 with u = p on Γ1 (3.4)

where the functional F (u) is given by

F (u) = −1

2

∫
Ω

(
∇u · ∇u− αu2

)
dv +

∫
Γ2

(γ
2
u2 − qu

)
ds−

∫
Ω

βfu dv. (3.5)

Here the Robin boundary condition (3.3) is incorporated in the second term of the

functional F (u), while the Dirichlet boundary condition (3.2) must be enforced ex-

plicitly [44]. The functional represents the core of the finite-element method; the next

step is to discretize it.
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Figure 3.1: Example mesh created using GMSH [66]

3.2.3 Domain Discretization

The third step in solving a problem using FEM is to divide the problem domain

(Ω) into a mesh of triangular elements defined by N nodes. Although other element

shapes can be selected (e.g. rectangular), triangular elements have an advantage as

they can model curved boundaries easily. Within the domain, the elements must not

overlap and must have no gaps between them. The triangles are interconnected, and

sharing nodes and edges.

For the final solution to be as accurate as possible, the triangles in the mesh should

satisfy two conditions: (i) they should be as close to equilateral triangles as possible,

(ii) they should be small in size with respect to the local wavelength and the gradient

of the solution. While the former condition is easily realizable with most available

mesh generators, the later condition will increase the computational complexity of

the problem. A solution here is to create an adapted mesh, where the density of the

elements is increased in regions where the solution gradient is expected to be high,

for example where the material variation is anticipated to be high. An example mesh

is shown in Figure 3.1.
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3.2.4 Elemental Basis Functions

After the mesh is created, the unknown variable u is approximated within each

triangular element. Here first-order linear basis functions are selected. Each triangle

is defined by three nodes as depicted Figure 3.2 (a). Each node in the mesh is

associated with two labels: a local number to indicate its location in a given triangle

(as shown in Figure 3.2 (a)) and a global number to indicate its location relative to

the entire mesh. Within a triangular element e, the unknown variable is given by

ue(~r) =
3∑
l=1

uelλ
e
l (~r) (3.6)

where l is a local index for each node on triangle e, uel is the unknown function value

at node l of triangle e, and the first-order linear basis function for node l is

λel (~r) =
1

2Ae
(ael + belx+ cel y). (3.7)

Here Ae is the area of triangle, ael , b
e
l and cel are coefficients dependent on the triangle

geometry [44]. The area of a triangle e is calculated as

Ae =
1

2

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
(3.8)
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Figure 3.2: (a) First-order triangular element and (b) first-order line element

where xe1,2,3 and ye1,2,3 are the x− and y− coordinates of nodes {1, 2, 3}. For l = 1,

the basis function coefficients are calculated as follows:

ae1 = xe2y
e
3 − ye2xe3, (3.9)

be1 = ye2 − ye3, (3.10)

ce1 = xe3 − xe2. (3.11)

The coefficients for l = 2, 3 are calculated by cyclic interchange of the subscripts in

(3.9)-(3.11).

If variables α, β and f in (3.5) are defined on nodes, they can be approximated

within a triangular element using the same basis function as u:

αe(~r) =
3∑
l=1

αelλ
e
l (~r), (3.12)

βe(~r) =
3∑
l=1

βel λ
e
l (~r), (3.13)

f e(~r) =
3∑
l=1

f el λ
e
l (~r). (3.14)
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3.2.5 Boundary Basis Functions

The line integration in the second term of the functional F (u) is performed along

boundary Γ2; thus, this boundary is discretized into 1D line elements. Each line

element is defined by two nodes as shown in Figure 3.2 (b). Within a line segment s,

the unknown variable is approximated by

us(~r) =
2∑
l=1

uslλ
s
l (~r) (3.15)

where l is the local index for each node on the line segment, usl is the unknown func-

tion value at node l of s and λsl (~r) is the first-order linear boundary basis function. To

ease the integration over the boundary, the line segment s is mapped to an isopara-

metric element that extends from zero to one, as depicted in Figure 3.3. Within the

isoparametric element ζs, the unknown function is approximated by

us(ζ) =
2∑
l=1

uslλ
ζs

l (ζ) (3.16)

where ζ is the normalized distance from node 1 to node 2 on the line segment,

λζ
s

1 (ζ) = 1− ζ and λζ
s

2 (ζ) = ζ. (3.17)

The transformation to an isoparametric element ζs results in multiplying the integra-

tion performed over the element by ls, the length of the line segment s

ls =
√

(x2 − x1)2 + (y2 − y1)2. (3.18)
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0 1 

Figure 3.3: Transformation of line segment to an isoparametric element.

3.2.6 Functional Discretization

With the domain divided into Ne triangular elements and Ns line segments, the

functional F (u) can be written as

F (u) =
Ne∑
e=1

F e(ue) +
Ns∑
s=1

F s(us) (3.19)

where

F e(ue) = −1

2

∫
Ωe

(
∇ue · ∇ue − αe(ue)2

)
dv −

∫
Ωe
βef eue dv (3.20)

F s(us) =

∫
Γs2

(
γs

2
(us)2 − qsus

)
ds. (3.21)

As outlined in Appendix A, the approximations in (3.6), (3.12)-(3.14) and (3.16)

are used in the above equations to evaluate the local matrices associated with each

element in the mesh. Next, as described in Appendix B, the transformation from

the local node indices to global indices is used to assemble the global FEM matrices.
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This results in the formation of the following matrix equation

F (u) = −1

2
uT [S − T α]u− uTT βf − uTg (3.22)

where superscript T denotes the transpose; u ∈ CN is a vector of the values of the

unknown function at the nodes; f ∈ CN is a vector of the excitation function f nodal

values; g ∈ CN is a vector, which depends on the value of q; S ∈ RN×N is the stiffness

matrix, which depends on the BCs; T α ∈ CN×N is a mass matrix, which depends on

the nodal values of α; and T β ∈ CN×N is a mass matrix, which depends on the nodal

values of β on the nodes.

Entries for the ith row and jth column of the stiffness matrix (not arising from the

boundary-integral term) and the mass matrices are given by

Si,j =

∫
Ω

∇λi · ∇λj dv (3.23)

Tα i,j =
Ne∑
p=1

∫
Ω

αpλiλjλp dv (3.24)

Tβ i,j =
Ne∑
p=1

∫
Ω

βpλiλjλp dv (3.25)

where λi, λj and λp are the linear basis functions defined at the ith, jth and pth

node respectively, ∇ is the spatial gradient operator, and αp and βb are the physical

parameters at node p.

The stationary point of the discretized functional is found by setting the derivative

of (3.22) with respect to u to zero, yielding the matrix equation

[S − T α]u = −T βf − g. (3.26)
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The matrices in (3.26) are sparse and symmetric, therefore the solution vector u can

be found efficiently using decomposition methods or iterative solvers designed for

sparse matrices.

For BVPs with Dirichlet BCs, the values of u on the boundary are known; this

results in changes to the structure of the matrix equation (3.26). However, this is

not the case for BVPs with Robin BCs. With Robin BCs, changes occur only to

the stiffness matrix S. The effect of applying BCs to the FEM matrix equation are

discussed in the next section.

3.2.7 Dirichlet Boundary Condition

For BVPs with inhomogeneous Dirichlet boundary conditions, the boundary Γ =

Γ1, and the boundary-integral term in (3.5) disappears. As shown in Appendix B,

the matrix equation (3.26) can be written as

 IBB 0BF

SFB − T αFB SFF − T αFF


uB

uF

 = −

 IBB 0BF

T βFB T βFF


fB

f
F

 . (3.27)

Here subscripts B and F refer to the B boundary nodes and the F free (interior)

nodes in the mesh, thus N = B + F. The dimensions of the sub-matrices and vectors

in (3.27) are indicated by their subscripts; for example sub-matrix SFB ∈ CF×B and

uB ∈ CB. Further, sub-matrix IBB ∈ RB×B is an identity matrix, and sub-matrix

0BF ∈ RB×F is a zero matrix. The sub-matrices SFB, T αFB and T βFB describe the

interaction between boundary nodes and free nodes.

The Dirichlet BC (3.2) sets uB = p; therefore it can be seen from (3.27) that
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f
B

= −p. This simplifies the matrix equation (3.27) to

[SFF − T αFF]uF = −T βFFfFF
− [SFB − T αFB − T βFB]p. (3.28)

In conductive enclosures, we apply homogeneous Dirichlet boundary conditions ap-

plies, i.e.

p = 0, (3.29)

therefore (3.28) becomes

[SFF − T αFF]uF = −T βFFfFF
. (3.30)

Since the above matrix equation has only free (interior) nodes as unknowns, the

subscript F can be dropped. Thus, the matrix equation to be solved becomes

[S − T α]u = −T βf. (3.31)

3.2.8 Absorbing Boundary Condition

For unbounded problems, the domain (Ω) should be truncated by an artificial

boundary to limit the size of the computational space. This numerical boundary

should approximate the Sommerfeld radiation condition (2.33); in other words the

boundary condition should make the boundary transparent to the impinging field,

reducing nonphysical reflections to zero, if possible. Herein, the Robin BC is used

to model the boundary with the coefficients selected so as to model the second-order

absorbing boundary conditions (ABC) introduced by Bayliss-Gunzburger-Turkel [67].
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This second-order ABC sets the coefficient q = 0 in (3.3) and the coefficient

γ = γ1 + γ2
∂2

∂ξ2
(3.32)

where [44,64,67]

γ1 = −jkb −
κ

2
+

κ2

8(jκ− kb)
(3.33)

γ2 =
j

2(jκ− kb)
. (3.34)

Here ξ is the arc length measured along the boundary and κ(ξ) is the curvature of

the boundary at ξ [44, p. 128]. The curvature of ξ is measured from the center

of the problem domain Ω; for circular boundaries the curvature is the reciprocal of

the boundary radius, whereas for rectangular boundaries the curvature is zero. This

Robin BC can be written as

∇u(~r) · n̂ = γ1u(~r) + γ2
∂2u(~r)

∂ξ2
for ~r ∈ Γ (3.35)

where n̂ denotes the outward-normal unit vector. The FEM formulation of the BCs

leads to the boundary-integral term in (3.5) that contributes to the (i,j)th element of

S as [44]

SΓ
i,j =

∫
Γ

(
γ1λ

Γ
i λ

Γ
j − γ2

∂λΓ
i

∂ξ

∂λΓ
j

∂ξ

)
ds. (3.36)

Here λΓ
i , λΓ

j are linear boundary basis functions defined for nodes i and j on Γ. For

a boundary segment s the previous integral in terms of isoparametric coordinate ζ is

given as

Ssi,j =

∫ 1

0

(
γ1l

sλζ
s

i λ
ζs

j −
γ2

ls
∂λζ

s

i

∂ζ

∂λζ
s

j

∂ζ

)
dζ. (3.37)
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Finally, the FEM matrix equation in (3.26) simplifies to

[S − T α]u = −T βf (3.38)

where g in (3.26) is zero because q = 0, and the stiffness matrix is

S = SΩ − SΓ (3.39)

where SΩ and SΓ are, respectively, the global matrices holding contributions from

the domain nodes and the boundary nodes.

3.3 Vector Problems

3.3.1 The Boundary-Value Problem

Two-dimensional and three-dimensional EM vectorial problems can be formulated

as a vector BVP defined by the second-order PDE

∇×∇× ~u(~r)− α(~r)~u(~r) = β(~r)~f(~r) (3.40)

and the boundary conditions

n̂× ~u(~r) = ~p(~r) on Γ1 (3.41)

n̂× (∇× ~u(~r)) + γ(~r) n̂× (n̂× ~u(~r)) = ~q(~r) on Γ2. (3.42)

Here ~u is the unknown spatial vector variable, α and β are known scalar parameters

associated with the physical properties of the problem domain (Ω), and ~f is the
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excitation vector function. For the EM problem, comparing to (2.23) and (2.24),

~u = ~Esct
t while the other parameters α, β and ~f vary depending on which vector

Helmholtz equation is solved.

Considering the boundary conditions, Γ1 defines the Dirichlet boundary whereas

Γ2 is a Robin boundary; with Γ1+Γ2 = Γ, the boundary enclosing the problem domain

Ω. The vector functions ~p and ~q along with the scalar function γ are parameters

associated with the physical properties of the boundaries. When γ = 0, the Robin

BC becomes the Neumann BC.

For calculating the scattered field ( ~Esct
t ) inside a conductive enclosure, the ho-

mogeneous Dirichlet BC, 2.27, is applied on Γ = Γ1, therefore we set ~p = 0. For

unbounded MWI systems, the Robin BC is used to approximate the Sommerfeld

radiation condition on Γ = Γ2 [44].

3.3.2 Variational Problem

In accordance to the variational principle discussed in Section 3.2.2, the vector

BVP herein can be formulated as the following variational problem

δF (~u) = 0 with ~u = ~p on Γ1 (3.43)

with the functional F (~u) given by

F (~u) =
1

2

∫
Ω

[(∇× ~u) · (∇× ~u)− α~u · ~u] dv +

∫
Γ2

[γ
2

(n̂× ~u) · (n̂× ~u) + ~u · ~q
]
ds

−
∫

Ω

β ~u · ~f dv. (3.44)
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The Robin boundary condition (3.42) is included in the second term of the functional

F (~u), while the Dirichlet boundary condition (3.41) must be enforced explicitly.

3.3.3 Domain Discretization

In the work presented herein, the vectorial problem is solved for both 2D and

3D configurations. For the 2D case, the problem domain (Ω) is divided into a mesh

of triangular elements characterized by N nodes that are interconnected by a total

number of E edges. The domain discretization scheme is similar to the one used in

scalar 2D problems. An example mesh is shown in Figure 3.1.

In 3D problems, the domain Ω is divided into tetrahedral elements defined by N

nodes that are interconnected by a total number of E edges. Although other element

types can be selected (e.g. hexahedral or triangular prism), tetrahedra have an ad-

vantage as they can easily model curved boundaries. The tetrahedral elements within

the volumetric domain must not overlap, must have no gaps between them, are inter-

connected and can share nodes and edges. With respect to the domain discretization,

the solution accuracy in 3D FEM is improved when: (i) the tetrahedra are regular

(i.e. the tetrahedra facets are equilateral triangles) and (ii) the tetrahedra have small

volumes. The latter condition can cause the required computational sources of the

problem to increase dramatically. A cross-section of an example three-dimensional

mesh is shown in Figure 3.4 (a).

3.3.4 Elemental Basis Functions

For solving vectorial problems using FEM, the use of nodal-based elements exhibits

shortcomings that can be overcome with the use of edge-based elements [64, 68, 69].
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Figure 3.4: (a) A cross-section of a 3D mesh created using GMSH [66] (b) First-order
tetrahedral element.

Using this approach, the FEM problem’s degrees of freedom are assigned to the edges

rather than to the nodes of the elements. Edge-based elements were first introduced

by Whitney [70] and later discussed by Nédélec for their use in applications that

solve Maxwell’s equations [71]. Edge-based elements (associated with vector basis

functions) eliminate spurious modes that can introduce errors in field calculations for

near-field problems; these erroneous modes were observed by Csendes and Silvester

when a vectorial problem was solved using nodal-basis functions [72]. In addition,

with edge-based elements the tangential field continuity along the element boundaries

is guaranteed which is important at the interface between dielectric discontinuities.

Edge-based elements are thus standardly used for 2D, as well as for 3D, vectorial

electromagnetic problems [73–75].

The vector basis functions for 2D triangular elements as well as for 3D tetrahedra

are outlined in the next sections.
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Table 3.1: Edge Numbering for a Triangular Element

Edge No. i Node i1 Node i2
1 1 2
2 2 3
3 3 1

3.3.4.1 Triangular Edge-based Elements

We consider a triangular element e as depicted in Figure 3.2 (a). The nodes of

the triangular element are joined together by three edges. Each edge in the mesh is

paired with two labels: a local number to indicate its location in a given triangle and

a global number to indicate its location with respect to the entire mesh.

Within a triangle e, each edge is associated with a vector-basis function (also

known as a Whitney element [64]). The vector basis function for an edge i is given as

~N e
i (~r) = lei

(
λei1(~r)∇λ

e
i2

(~r)− λei2(~r)∇λ
e
i1

(~r)
)

(3.45)

where the edge number i is defined as lying between nodes i1 and i2 as specified in

Table 3.1, lei is the length of edge i, λei1 , λ
e
i2

are the first-order nodal basis functions

given in (3.7) and ∇ is the 2D spatial gradient operator.

Moreover, the vector field inside a triangular element e can be expanded as

~ue(~r) =
3∑
i=1

uei ~N
e
i (~r) (3.46)

where uei denotes the tangential field along the ith edge.
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Table 3.2: Edge Numbering for a Tetrahedral Element

Edge No. i Node i1 Node i2
1 1 2
2 1 3
3 1 4
4 2 3
5 4 2
6 3 4

3.3.4.2 Tetrahedral Edge-based Elements

As previously stated, the problem domain, Ω, in 3D problems is divided into

tetrahedral elements. Each element is defined by four nodes that are interconnected

by six edges, as depicted in Figure 3.4 (b). As for 2D edge-elements, each edge is

tagged with two numbers: a local number to denote its index in a given tetrahedron

and a global number to indicate its index with respect to the entire mesh. The local

edge numbering, as well as the associated nodes with each edge are defined in Table

3.2.

Similar to the two-dimensional case, the vector field inside a tetrahedron can be

written as

~ue(~r) =
6∑
i=1

uei
~N e
i (~r) (3.47)

where uei is the tangential field along edge i and ~N e
i (~r) is the vector basis function

given again as in (3.46). Now λei1 , λ
e
i2

are the three-dimensional linear nodal basis

functions and ∇ is the 3D spatial gradient operator.

For a local node l belonging to tetrahedron e the nodal linear basis function is

λel (~r) =
1

6V e
(ael + belx+ cel y + del z) (3.48)
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Table 3.3: Local Indices to calculate Nodal Basis Functions

Node No. l Node i Node j Node k
1 2 3 4
2 3 4 1
3 4 1 2
4 1 2 4

where V e the volume of tetrahedron, and ael , b
e
l , c

e
l and del are coefficients dependent

on the tetrahedron geometry [44]. The volume of a tetrahedron e is calculated as

V e =
1

6

∣∣∣∣∣∣∣∣∣∣∣∣∣

1 x1 y1 z1

1 x2 y2 z2

1 x3 y3 z3

1 x4 y4 z4

∣∣∣∣∣∣∣∣∣∣∣∣∣
(3.49)

where xe1,2,3,4, ye1,2,3,4 and ze1,2,3,4 are the x−, y− and z− coordinates of nodes {1, 2, 3, 4}.

For a node l, the basis function coefficients are calculated as follows:

ael = (−1)l−1 (xiyjzk − xiykzj − xjyizk + xjykzi + xkyizj − xkyjzi)

bel = (−1)l (yizj − yjzi − yizk + ykzi + yjzk − ykzj)

cel = (−1)l−1 (xizj − xjzi − xizk + xkzi + xjzk − xkzj)

del = (−1)l (xiyj − xjyi − xiyk + xkyi + xjyk − xkyj)

(3.50)

where the nodal local indices {i, j, k} associated with a node l are defined in a cyclic

manner as shown in Table 3.3. This cyclic scheme assumes specific ordering of the

local nodes around the tetrahedron, which is shown in Figure 3.4 (b).
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3.3.4.3 Vector-basis functions Properties

It can be easily shown that the vector basis function, (3.45), exhibits the following

two properties:

∇ · ~N e
i = 0

∇× ~N e
i = 2lei ∇λei1 ×∇λ

e
i2
.

The first property shows that this basis function is ideal for representing vector fields

in charge-free regions∗. The second property indicates that the curl of any vector

basis function evaluated at any given domain element is constant.

The third feature of the vector basis function is that its tangential component is

constant along the edge it is associated with, whereas its normal component changes

linearly along that edge. The tangential component is also continuous between ele-

ments. This property is important as it permits enforcing tangential continuity across

elements without affecting the normal components. This mimics the behavior of field

components along discontinuous material boundaries [44,64,76].

3.3.5 Boundary Basis Functions

3.3.5.1 1D Line Elements

The second term of the functional F (~u) (3.44) involves an integration performed

along boundary Γ2; thus this boundary is discretized into 1D line elements. Each line

element, s, is a triangle’s edge. If segment s is an edge i for triangle e, the vector

∗For the work presented herein, the assumption (see Section 2.2) is that the problem domain is

free of charge, hence ∇ · ~D = 0
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field at the segment can be approximated by

~us(~r) = ue(s) ~N
e(s)
i (~r). (3.51)

Here the superscript e(s) is used to indicate that segment s is an edge for triangle

e, ue(s) is the tangential field along segment s and ~N e
i (~r) is the vector-basis function

defined on that edge, as given in (3.45). Similar to 2D scalar problems, the line

segment s is mapped to an isoparametric element (depicted in Figure 3.3) to ease the

line integration.

3.3.5.2 2D Triangle Facets

For 3D problems, the boundary Γ2 is a surface on which an integration is required

as per the functional F (~u) given in (3.44). Analogous to 2D problems, this surface is

divided into triangular facets. The vector field on each facet s can be approximated

by

~us(~r) =
3∑
i=1

u
e(s)
i

~N
e(s)
i (~r) (3.52)

where, again, the superscript e(s) is utilized to associate facet s with tetrahedron e,

and u
e(s)
i is the tangential field along an edge i associated with a vector basis function

~N
e(s)
i (~r). Since a surface triangle s is a facet that belongs to a tetrahedron e, the

surface triangle and the tetrahedron will share three vector-basis functions. Hence, if

triangle edges {1, 2, 3} map to local tetrahedron edges {i, j, k}, then

u
e(s)
1 = uei , u

e(s)
2 = uej , u

e(s)
3 = uek

~N
e(s)
1 = ~N e

i , ~N
e(s)
2 = ~N e

j , ~N
e(s)
3 = ~N e

k . (3.53)
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The integration over the boundary can be simplified by mapping the surface trian-

gle to an isoparametric element as depicted in Figure 3.5. The selected isoparametric

element is an isosceles right-angled triangle with legs extending from zero to one in

the ξ−η plane. For the transformed element, the nodal linear basis functions at local

triangle nodes are given as

λζ
s

1 (ξ, η) = ξ , λζ
s

2 (ξ, η) = η , λζ
s

3 (ξ, η) = 1− ξ − η (3.54)

where {1, 2, 3} are the local indices of the triangle nodes that can be projected to local

tetrahedron nodes {n1, n2, n3}. Further, the vector basis functions of the triangle s

can be written in terms of the new isoparametric linear basis functions.

The transformation to an isoparametric element ζs results in multiplying an inte-

gration performed over the element by 2As, where As is the area of the facet s

As =
1

2

∣∣∣∣∣∣∣∣∣∣
1 x1 y1

1 x2 y2

1 x3 y3

∣∣∣∣∣∣∣∣∣∣
. (3.55)

3.3.6 Functional Discretization

After discretizing the problem into Ne domain elements with Ns boundary facets

(or boundary line segments in 2D), the functional F (~u) can be written as

F (~u) =
Ne∑
e=1

F e(~ue) +
Ns∑
s=1

F s(~us) (3.56)
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0 1 

1 

Figure 3.5: Transformation of a triangle element to an isoparametric element.

where

F e(~ue) =
1

2

∫
Ωe

[(∇× ~ue) · (∇× ~ue)− αe ~ue · ~ue] dv −
∫

Ωe
βe ~ue · ~f e dv

F s(~us) =

∫
Γs2

[
γs

2
(n̂× ~us) · (n̂× ~us) + ~us · ~qs

]
ds.

(3.57)

The approximations for the vector fields within the elements in (3.46), (3.51) for 2D

and (3.47), (3.52) for 3D are used in the above equations to evaluate the local matrices

associated with each element in the mesh. Next, the transformation from local edge

indices to global indices is used to assemble the global FEM matrices (see Appendix

A and B). This results in the formation of the following matrix equation

F (u) =
1

2
uT [U − Vα]u− uT ~Rβ · ~f + uTg. (3.58)
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where u ∈ CE is a vector of the unknown spatial-vector function ~u along the mesh

edges; ~f ∈ CNe is a column vector that holds the excitation function spatial-vector

fields located at the centroids of the domain elements; g ∈ CE is a vector, which

depends on the values of ~q in the BCs; U ∈ CE×E is a stiffness matrix which depends

on the BCs; Vα ∈ CE×E is a mass matrix, which depends on the centroidal values of

α; and ~Rβ ∈ CE×Ne is a mass matrix which depends on the centroidal values of β,

with each of its components being a spatial-vector with x− and y− components in

2D and an additional z−component in 3D.

Regardless of the BC type, the entries at the ith row and jth column of matrices

U and Vα are given by

Ui,j =

∫
Ω

(
∇× ~Ni

)
·
(
∇× ~Nj

)
dv

Vα i,j =

∫
Ω

α ~Ni · ~Nj dv

(3.59)

where ~Ni and ~Nj are the linear vector basis functions defined at the ith and jth edge

respectively and ∇× is the curl operator.

The entry at the ith row and kth column of matrix ~Rβ is calculated as

~Rβ i,k =

∫
Ωk

βk ~Ni(~r) dv (3.60)

where ~Ni is the vector basis function defined at edge i belonging to the kth domain

element while Ωk and βk are, respectively, the domain covered by and the value of β

assigned to the kth triangle.

The stationary point of the discretized functional is found by setting the derivative
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of (3.58) with respect to u to zero, resulting in the matrix equation

[U − Vα]u = ~Rβ · ~f − g (3.61)

3.3.7 Dirichlet Boundary Condition

The treatment of the Dirichlet boundary conditions in edge-based FEM problems

is very similar to node-based problems. Imposing inhomogeneous Dirichlet boundary

condition (3.41) in vectorial BVPs, with boundary Γ = Γ1, causes the boundary-

integral term in (3.44) to vanish. As outlined in Appendix B, the matrix equation

(3.61) can be segmented as

 IBB 0BF

UFB − VαFB UFF − VαFF


uB

uF

 =

 ~RβB

~RβF

 · ~f. (3.62)

Here subscripts B and F refer to the B boundary edges and the F free (interior) edges

in the mesh, with E = B+F. The dimensions of the sub-matrices and vectors in (3.62)

are indicated by their subscripts; for example sub-matrix UFB ∈ CF×B and uB ∈ CB.

The sub-matrices UFB and VαFB describe the interaction between boundary edges

and free edges. The number of rows in sub-matrices ~RβB and ~RβB is indicated by

the subscript B or F. The number of columns is Ne, the number of elements in the

domain, which is also the size of column vector ~f . The Dirichlet BC sets uB = p;

therefore, the matrix equation (3.62) can be simplified to

[UFF − VαFF]uF = ~RβF · ~f − [UFB − VαFB]p. (3.63)
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In conductive enclosures, the homogeneous Dirichlet boundary conditions applies, i.e.

p = 0, (3.64)

therefore (3.63) becomes

[UFF − VαFF]uF = ~RβF · ~f. (3.65)

Since the components of the above matrix equation depend only on free (interior)

edges, the subscript F can be dropped. Thus, the matrix equation (3.65) becomes

[U − Vα]u = ~Rβ · ~f. (3.66)

3.3.8 Absorbing Boundary Condition

For unbounded problems, the domain (Ω) is truncated with an artificial boundary

that approximates the Sommerfeld radiation condition (2.28). A Robin BC is used

to implement the artificial boundary (Γ = Γ2) with the coefficients selected so as

to model the first-order vectorial ABC [44]. The first-order ABC sets the coefficient

~q = 0 in (3.42) and the coefficient

γ = jkb (3.67)

and hence the Robin BC can be rewritten as

n̂× (∇× ~u(~r)) = −jkbn̂× (n̂× ~u(~r)) for ~r ∈ Γ. (3.68)
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The FEM formulation of the Robin BCs leads to the boundary-integral term that

contributes to the (i, j)th element in U as

UΓ
i,j =

∫
Γ

jkb

(
n̂× ~Ni

)
·
(
n̂× ~Nj

)
ds (3.69)

where ~Ni and ~Nj are the boundary vector basis functions defined for edges i and j on

Γ. For 2D problems the integral (3.69) can be written in terms of the isoparametric

coordinate ζ as

U si,i =

∫ 1

0

jlskb

(
n̂× ~Ni

)
·
(
n̂× ~Ni

)
dζ (3.70)

where s is a boundary edge and i is the global index of this edge. Similarly, for a

boundary triangular facet s on a 3D surface, with respect to isoparametric coordinates

(ξ, η) (3.69) is given as

U si,j =

∫ 1

0

∫ 1−ξ

0

j2Askb

(
n̂× ~Ni

)
·
(
n̂× ~Nj

)
dη dξ. (3.71)

where {i, j} are global edge indices. Eventually, the FEM matrix equation (3.61)

simplifies to

[U − Vα]u = ~Rβ · ~f (3.72)

where g is zero because ~q = 0, and the stiffness matrix is

U = UΩ + UΓ (3.73)

where UΩ and UΓ are the contributions of the domain edges and the boundary edges

respectively.
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3.4 Matrix Operators

Several matrix operators are introduced in this section which can be used to de-

scribe the inversion algorithms efficiently. They are also used in the forward problem

to generate synthetic data.

3.4.1 Measurement Surface Operators

The fields of an electromagnetic problem are usually measured at R receiver lo-

cations positioned on a measurement surface S. The first matrix operator, ~MS ,

introduced herein calculates the field at the receiver locations by operating on the

solution obtained from the FEM solver.

For 2D TM scalar problems, the operator ~MS ∈ CR×N transforms field values

from the N problem domain nodes to the R receiver locations on the measurement

surface S. The result of the transformation is z−polarized scalar field values, thus

~MS = MS,z ẑ. (3.74)

If the receiver locations are within the problem’s mesh, the operator interpolates to

these locations using the FEM nodal basis functions, while if the receivers are located

outside the mesh (for example, in unbounded-region problems the receivers may be

located in the far-field region), Huygens’ principle is used to find the field at the

receiver locations [44]. For 2D TM configurations, Huygens’ principle says that the

value of u at a receiver location ~r is evaluated as

u(~r) =

∮
Γ

[
u(~r ′)

∂G0(~r, ~r ′)

∂n′
−G0(~r, ~r ′)

∂u(~r ′)

∂n′

]
ds′ (3.75)
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where ~r ′ is the position vector for a location on boundary Γ, n′ is the normal vector

to Γ at ~r ′, and the 2D Green’s function is

G0(~r, ~r ′) =
1

j4
H

(2)
0 (kb|~r − ~r ′|). (3.76)

Here H
(2)
0 is the zeroth-order Hankel function of the second kind.

For vector problems, the operator ~MS ∈ CR×E transforms field values along the

E problem domain edges to the R receiver locations on the measurement surface S.

The result of the transformation in 2D TE problems is field vectors with x− and y−

components; hence

~MS = MS,xx̂+ MS,yŷ. (3.77)

For 3D vectorial problem, the transformation produces all three field components

along the x−, y−, and z−axis, thus we write

~MS = MS,xx̂+ MS,yŷ + MS,z ẑ. (3.78)

Analogous to scalar problems, if the receiver locations are within the problem’s mesh

the operator interpolates to these locations using the FEM vector basis functions,

while if the receivers are located outside the mesh, Huygens’ principle is employed.

For vector problems, Huygens’s principle says that the value of ~u at a receiver location

~r is calculated as

~u(~r) =

∮
Γ

{
[n̂′ ×∇′ × ~u(~r ′)]G0(~r, ~r ′) + [n̂′ · ~u(~r ′)]∇′G0(~r, ~r ′)

+ [n̂′ × ~u(~r ′)]×∇′G0(~r, ~r ′)
}
ds′. (3.79)
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For 3D problems the Green’s function is

G0(~r, ~r ′) =
e−jkb|~r−~r

′|

4π |~r − ~r ′|
. (3.80)

3.4.2 Imaging Domain Operators

Most inversion algorithms require the field values within the imaging domain D

where the OI is located. The second operator ~MD returns the field values inside

the imaging domain D by operating on the FEM solution defined everywhere in the

problem domain Ω.

With respect to 2D scalar problems, the operator ~MD ∈ RI×N selects the field

values at the I nodes within the imaging domain D from the N problem domain

nodes. Since the nodal values are z−polarized

~MD = MD,z ẑ. (3.81)

For vector problems, the operator ~MD ∈ RI×E is a matrix that transform field

values along the E mesh edges to the I element centroids in the imaging domain

D. The transformations are performed by interpolation using the FEM vector basis

functions. The results are field vectors with x− and y− components in 2D TE

problems and an additional z−component in 3D full-vectorial problems; hence for

2D TE

~MD = MD,xx̂+ MD,yŷ (3.82)

and for 3D full-vectorial

~MD = MD,xx̂+ MD,yŷ + +MD,z ẑ. (3.83)
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3.4.3 Inverse FEM Matrix Operators

3.4.3.1 Scalar Problems

The algorithm for solving 2D scalar inverse problems (details of which will be dis-

cussed in Chapter 4) evaluates the z−polarized scattered field Esct
t,z given the contrast

sources, wt,z, within the imaging domain D. Here, the scattered field is governed by

the scalar Helmholtz equation (2.31); this equation can be solved using FEM. Com-

paring the BVP second-order PDE (3.1) with equation (2.31), the different terms in

(3.1) become

u(~r) = Esct
t,z (~r), α(~r) = k2

b (~r), (3.84)

β(~r) = −k2
b (~r), f(~r) = wt,z(~r). (3.85)

Thus, using the Rayleigh-Ritz formulation of FEM, the vectors and matrices in the

matrix equation (3.26) map to

u = Esct
t,z,Ω, f = wt,z,Ω, (3.86)

T α = T b, T β = −T b. (3.87)

Here T b ∈ CN×N is the mass matrix that depends on the background medium

wavenumber kb, and the vectors Esct
t,z,Ω ∈ CN and wt,z,Ω ∈ CN contain the nodal

values of the scattered field and the contrast source for transmitter t. Moreover, as

outlined in Sections 3.2.7 and 3.2.8, g in (3.26) is equal to zero as a result of apply-

ing either the homogeneous Dirichlet BC or the second-order ABC over the whole

boundary.

Substituting (3.86), (3.87) and g = 0 in (3.26), the resulting FEM matrix equation
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is

[S − T b]E
sct
t,z,Ω = T bwt,z,Ω. (3.88)

The stiffness matrix S ∈ CN×N depends on the boundary conditions in case of BVPs

with Robin BC.

In the inversion algorithms to be considered, the contrast source variables wt,z ∈

CI are available at nodes within the imaging domain (D); however, the FEM matrix

equation (3.88) requires the contrast source variables at all mesh nodes. The contrast

source variables wt,z,Ω ∈ CN , for all nodes in Ω are given by

wt,z,Ω = MT
D,zwt,z. (3.89)

Substituting (3.89) in the FEM matrix equation (3.88), a new operator Lz ∈ CN×I

to calculate the scattered field (Esct
t,z,Ω) is defined as

Esct
t,z,Ω = Lz[wt,z] = K−1

b T bMT
D,z[wt,z] (3.90)

where the matrix Kb = S − T b.

Inversion algorithms are tested using experimental datasets and synthetic datasets.

The latter are generated by calculating the scattered field (Esct
t,z ) for an OI with known

contrast (χ). This scattered field is governed by the scalar Helmholtz equation (2.30),

which can also be solved using FEM. For this case, the terms of the second-order PDE

(3.1) are

u(~r) = Esct
t,z (~r), α(~r) = k2

b (~r)(χ(~r) + 1), (3.91)

β(~r) = −k2
b (~r)χ(~r), f(~r) = Einc

t,z (~r). (3.92)
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Using the Rayleigh-Ritz formulation of FEM, the vectors and matrices in the matrix

equation (3.26) become

u = Esct
t,z,Ω, f = Einc

t,z,Ω, (3.93)

T α = T χ + T b, T β = −T χ. (3.94)

where T χ ∈ CN×N is the mass matrix that depends on the OI contrast (χ) and the

background wavenumber (kb), and Einc
t,z,Ω ∈ CN is a vector that contains the nodal

values of the incident field. Substituting (3.93), (3.94) and g = 0 in (3.26), the

resultant FEM matrix equation is

[S − T b − T χ]Esct
t,z,Ω = T χE

inc
t,z,Ω. (3.95)

To calculate the scattered field (Esct
t,z,Ω), a new operator Lz,χ ∈ CN×N is defined as

Esct
t,z,Ω = Lz,χ[Einc

t,z ] = K−1
χ T χ[ ~E

inc

t,z ] (3.96)

where the matrix Kχ = S − T χ − T b.

3.4.3.2 Vector Problems

The inversion algorithm for vector problems (discussed in Chapter 4) calculates

the scattered field ~Esct
t given the contrast sources ~wt within the imaging domain D.

The scattered field ~Esct
t satisfies the vector wave equation (2.24), which can be solved

using edge-based FEM. By comparing the vector BVP (3.40) with equation (2.24),
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the terms in (3.40) are identified as

~u(~r) = ~Esct
t (~r), α(~r) = k2

b (~r), (3.97)

β(~r) = k2
b (~r),

~f(~r) = ~wt(~r). (3.98)

Thus, using the Rayleigh-Ritz formulation of FEM, the vectors and matrices in the

matrix equation (3.61) become

u = Esct
t,Ω,

~f = ~wt,Ω, (3.99)

Vα = Vb, ~Rβ = ~Rb. (3.100)

Here the data vector Esct
t,Ω ∈ CE contains the scattered vector field components along

the edges of the mesh due to transmitter t, and ~wt,Ω ∈ CNe is a column vector

that holds the contrast source spatial-vector fields at the centroids of elements in Ω.

Further, Vb ∈ CE×E is the mass matrix that depends on the background medium

wavenumber kb, and ~Rb ∈ CE×Ne is a matrix which also depends on the background

medium wavenumber but each of its entries is a spatial-vector. For 2D TE problems,

the entries of ~wt and ~Rb are spatial-vectors with x− and y− components; that is

~wt = wt,xx̂+ wt,yŷ

~Rb = Rb,xx̂+ Rb,yŷ.

(3.101)

With respect to 3D full-vectorial problems each entry has an additional z−component,

that is,

~wt = wt,xx̂+ wt,yŷ + wt,z ẑ

~Rb = Rb,xx̂+ Rb,yŷ + Rb,z ẑ.

(3.102)
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Next, g in (3.61) is equal to zero as a result of applying either the homogeneous

Dirichlet BC or the second-order ABC; this is outlined in Sections 3.3.7 and 3.3.8.

Substituting (3.99), (3.100) and g = 0 in (3.61), the resultant FEM matrix equa-

tion is

[U − Vb]E
sct
t,Ω = ~Rb · ~wt,Ω. (3.103)

where the matrices depend on the boundary conditions as detailed in previous sec-

tions. Similar to scalar problems, the contrast source variables ~wt ∈ CI are located

at the elements’ centroids within the imaging domain D; therefore a new operator

~L ∈ CE×I is given as

Esct
t,Ω = ~L[~wt] = K−1

b
~Rb ·MT

U [~wt] (3.104)

where Kb = U − Vb and MU ∈ RI×Ne is a selection matrix that returns centroid

values for only the elements located in the imaging domain D, given centroid values

for all the Ne elements in Ω. The inverse matrix operator can be written as

~L[~wt] = Lx[wt,x] + Ly[wt,y] (3.105)

for 2D TE problems, where wt,x and wt,y are the x− and y− components of the

contrast source spatial-vector ~wt. Similarly. for 3D full-vectorial problems

~L[~wt] = Lx[wt,x] + Ly[wt,y] + +Lz[wt,z] (3.106)

where wt,z is the z− component of ~wt.

The finite-element method is also used to solve the forward problem using the

vector wave equation (2.23) when the contrast χ of a target relative to the background

medium is provided. The field solution is used to generate synthetic data to test
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inversion algorithms. The electric field along the mesh edges in the problem domain

Ω is given as

Esct
t = ~Lχ[ ~Einc

t ] = K−1
χ

[
~Rχ · ~Einc

t

]
= (U − Vb − Vχ)−1

[
~Rχ · ~Einc

t

]
.

(3.107)

Here Vχ ∈ CE×E and ~Rχ ∈ CE×Ne are mass matrices that depends on the OI

contrast, χ, and the background wavenumber, kb, while ~Einc
t ∈ CNe is a column

vector that holds the incident spatial-vector field at the centroids of the elements in

Ω. The derivation of (3.107) is straight-forward by following the same steps outlined

for obtaining (3.104).
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4

The Inversion Algorithm

Really new ideas on inverse problems most times come from the collision
between the needs and the accomplishments of people working in different
areas.

–Pierre Sabatier [77]

A state-of-the-art modified-gradient algorithm that has had much success in solv-

ing inverse scattering problem is the contrast source inversion (CSI) technique [55].

In each iteration of CSI, two variables–the contrast and the contrast source–are up-

dated successively using a conjugate gradient method. The CSI method has been

formulated using integral-equations [20, 55], finite-differences [32, 78] and eigenfunc-

tion expansions [79].

The IE formulation of CSI is efficient if the Green’s function is available analyt-

ically and is such as to produce integral equation operators which can be efficiently

discretized and evaluated. This is indeed the case if the background medium is homo-

geneous and if the boundary is such as to allow a closed-form Green’s function with

the convolutional property (e.g. unbounded problem domains). To overcome these

deficiencies in IE formulations, a finite-difference (FD) CSI method has been intro-

duced in conjugation with a PDE formulation of the electromagnetic problem [32,78].

The FD-CSI algorithm uses an effective uniform structured grid discretization of the
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Helmholtz PDE. Using this technique one can incorporate an inhomogeneous back-

ground medium as well as various boundaries as long as these can be well approxi-

mated using the FD grid.

Despite its success, there are two major drawbacks inherent in FD-CSI. First, FD

discretizations make it difficult to accurately model arbitrarily shaped boundaries,

whether of the enclosure or of the unknown object, because of the use of structured

rectangular grids requiring stair-stepping at curved boundaries. Although resolving

the boundary is not an issue for unbounded-region configurations where absorbing

boundary conditions are applied, it does become an issue for imaging configurations

with conductive enclosures of arbitrary shape. Second, the use of structured rectan-

gular grids becomes problematic when including prior information about the target

because this usually requires the specification of electrical parameters on irregularly

shaped regions [32,78].

In this chapter, the CSI algorithm formulation using the finite-element method

(FEM) is presented [29]. Unlike other CSI implementations, FEM-CSI offers sev-

eral benefits that include: (i) performing the inversion on an arbitrary irregular grid

of triangles or tetrahedra, (ii) incorporating an inhomogeneous medium as a back-

ground reference, (iii) controlling the density of the mesh adaptively within the prob-

lem domain, and (iv) easily incorporating radiating or arbitrarily-shaped conductive

boundaries surrounding the MWI setup.

The first part of this chapter gives a general overview of the contrast source in-

version (CSI) method where a description of the algorithm, along with the update

procedure is outlined. In the second section of the chapter, a detailed formulation of

the CSI method using FEM is presented. Here, the FEM-CSI algorithm is described

for three problem configurations: 2D TM, 2D TE and 3D full-vectorial. Moreover,
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any necessary terminologies and definitions that arise from the FEM problem dis-

cretization are outlined.

4.1 The Contrast Source Inversion Method

The CSI method formulates the optimization problem in terms of two variables,

the contrast source, ~wt, and the contrast, χ. The CSI cost functional written with

respect of these variables is given as [55]

CCSI(χ, ~wt) = CS(~wt) + CD(χ, ~wt)

=

∑
t ‖~ut(~r)− GS{~wt}‖

2
S∑

t ‖~ut(~r)‖
2
S

+

∑
t

∥∥∥χ(~r) ~Einc
t (~r)− ~wt(~r) + χ(~r)GD{~wt}

∥∥∥2

D∑
t

∥∥∥χ(~r) ~Einc
t (~r)

∥∥∥2

D

.

(4.1)

Here CS(~wt) and CD(χ, ~wt) are, respectively, the normalized data-error and domain-

error functionals. The functionals are normalized to accommodate any imbalance

between them.

In the CSI functional, ~ut is the measured scattered field on surface S for each

transmitter, GS is the data operator and GD is the domain operator. The data operator

returns the scattered field on a measurement surface S given the contrast source

variable ~wt, while the domain operator returns the scattered field in the imaging

domain D from the contrast source variable ~wt. Both operators work on the contrast

source variable ~wt depend on the environment that has been defined for the problem
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domain. The L2-norms in (4.1) are defined as

‖~x‖2
S ,

∫
S
~x(~r)∗ · ~x(~r) dv, (4.2)

‖~y‖2
D ,

∫
D
~y(~r)∗ · ~y(~r) dv, (4.3)

where ~x and ~y are arbitrary functions, the superscript ∗ denotes the complex conjugate

operator and · represents the dot-product .

The CSI cost functional is minimized by updating two unknowns, the contrast, χn

and the contrast source, ~wt,n, iteratively in an interlaced fashion. At the nth iteration

of the optimization, each variable is updated to minimize the cost functional while

assuming the other unknown is constant. The contrast source sequence is updated

using a conjugate-gradient (CG) algorithm, whereas the contrast variable is updated

via a closed-form expression obtained analytically by minimizing the domain-error

equation. The optimization process is terminated when the cost functional reaches a

desired minimum.

4.2 The FEM-CSI Algorithm

Within the framework of the finite-element method, the discretization of the CSI

functional results in the following cost functional over discrete vector unknowns:

FCSI(χ, ~wt) = FS(~wt) + FD(χ, ~wt). (4.4)
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Here the normalized data-error term FS(~wt) and the normalized domain-error term

FD(χ, ~wt) are given by

FS(~wt) =

∑
t

∥∥∥~ut − ~MS ~L[~wt]
∥∥∥2

S∑
t ‖~ut‖

2
S

(4.5)

FD(χ, ~wt) =

∑
t

∥∥∥χ� ~E
inc

t − ~wt + χ� ~MD ~L[~wt]
∥∥∥2

D∑
t

∥∥∥χ� ~E
inc

t

∥∥∥2

D

. (4.6)

For a transmitter t, ~ut ∈ CR is a vector of the measured vector scattered field data

at the R receiver locations for each transmitter, χ ∈ CI corresponds to a vector

of contrast values located inside D, and ~E
inc

t = ~MD[ ~E
inc

t,Ω] holds the incident field

vector values inside D. The notation a� b denotes the Hadamard (i.e., element-wise)

product. The L2-norms calculated over the discretized domains S and D are defined

in the next section.

For 2D TM problems the contrast source and contrast variables are located at

the nodes of the imaging domain D, whereas for 2D TE and 3D full-vectorial prob-

lems these variables are defined at the centroids of the elements inside D, triangular

elements in 2D TE and tetrahedra in 3D full-vectorial.

4.2.1 Norms and Inner Products

4.2.1.1 Nodal Variables, Nodal Unknowns

With the unknown variables located at the nodes of a mesh, the L2-norm and

inner product in D are calculated as

‖x‖2
D = xHT Dx and

〈
x, y
〉
D = yHT Dx (4.7)
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where x and y are arbitrary vectors of size I with scalar entities, the superscript H

denotes the Hermitian (complex conjugate transpose) and T D ∈ RI×I is the mass

matrix restricted to nodes lying within the imaging domain D. The (i,j)th element

of T D is given by

TD i,j =

∫
D
λiλj dv. (4.8)

Assuming that the receiver locations on a surface S are distributed uniformly, the

L2-norm and the inner product on S are given as

‖x‖2
S = xHx and

〈
x, y
〉
S = yHx (4.9)

where x and y are vectors of size R and have scalar elements.

4.2.1.2 Vector Variables, Centroidal Unknowns

Similar to the case with the unknowns defined at the nodes of the mesh, if the

variables are located at the element centroids, the irregularity of the mesh should

be accounted for when calculating the norms or inner products within the imaging

domain. Let ~x and ~y be complex vectors of size I. The elements of each vector are

associated with the centroids of geometries inside the imaging domain D. Each of

these elements is a spatial-vector field with an x−component and y−component in

2D problems and an additional z−component in 3D cases. The L2-norm and inner

product in D are calculated as

‖~x‖2
D = ~xH · T D~x and

〈
~x,~y
〉
D = ~yH · T D~x. (4.10)

Here T D ∈ RI×I is a diagonal matrix whose entities are the areas of the triangles

inside D for 2D problems, or the volumes of tetrahedra in D for 3D configurations.
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Similarly, let vectors ~x and ~y consist of spatial-vector field elements measured at

equally distributed receiver locations R on S. Then, the L2-norm and inner product

on S are given as

‖~x‖2
S = ~xH · ~x and

〈
~x,~y
〉
S = ~yH · ~x. (4.11)

4.2.2 The Contrast Source Variables Update

In CSI [55], the first step is to update contrast source variables ~wt by a conjugate-

gradient (CG) method with Polak-Ribière search directions, while assuming the con-

trast variables χ constant. In the second step, ~wt is assumed constant, and a modified

form of the domain-error equation, FD(χ, ~wt), is minimized (this second step has a

closed form solution). The first update equation in the CSI method is

~wt,n = ~wt,n−1 + αt,n~dt,n (4.12)

where subscript n is the iteration number, αt,n is the update step-size and ~dt,n are

Polak-Ribière search directions. The step-size αt,n is determined as

αt,n = arg minα

{
FCSI

(
~wt,n−1 + α~dt,n , χn−1

)}
, (4.13)

for which a closed-form expression can be found by introducing ~wt,n−1 + α~dt,n , χn−1

in (4.4) and setting the derivative with respect to α equal to zero. The result is

αt,n =
ηS

〈
~ρ
t,n−1

, ~MS ~L[~dt,n]
〉
S

+ ηD,n−1

〈
~rt,n−1,

~dn,t − χn−1
� ~MD ~L[~dt,n]

〉
D

ηS

∥∥∥ ~MS ~L[~dt,n]
∥∥∥2

S
+ ηD,n−1

∥∥∥~dn,t − χn−1
� ~MD ~L[~dt,n]

∥∥∥2

D

.

(4.14)
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Here the normalization factors ηS and ηD,n−1 are

ηS =

(∑
t

‖~ut‖
2
S

)−1

,

ηD,n−1 =

(∑
t

∥∥∥χ
n−1
� ~E

inc

t

∥∥∥2

D

)−1

,

and the error terms ~ρ
t,n−1

and ~rt,n−1 are

~ρ
t,n−1

= ~ut − ~MS ~L[~wt,n−1],

~rt,n−1 = χ
n−1
� ~E

inc

t − ~wt,n−1 + χ
n−1
� ~MD ~L[~wt,n−1].

The Polak-Ribière search directions ~dt,n are calculated by the following formula:

~dt,n = −~g
t,n

+

〈
~g
t,n
,~g

t,n
− ~g

t,n−1

〉
D∥∥∥~g

t,n−1

∥∥∥2

D

~dt,n−1 (4.15)

where ~g
t,n

is the gradient of the cost function FCSI(χ, ~wt) with respect to the contrast

sources ~wt,n and is given by

~g
t,n

= ¯̄GS · ~ρt,n−1
+ ¯̄GD ·~rt,n−1. (4.16)

Here the adjoint operators ¯̄GS and ¯̄GD are dyadic tensors whose elements (dyads) are

dependent on the problem configuration being solved. The dyadic tensors expressions

for each considered configuration is outlined next, with the full derivation of these

expressions presented in Appendix C.
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4.2.2.1 Case 1: 2D TM

For a 2D TM inversion problem, the electric field is assumed to be z−polarized

with no transverse components in the x− y plane. Therefore, the measured scattered

field and the error terms have each only a z−component and are given as

~ut = ut,z ẑ, ~ρ
t

= ρ
t,z
ẑ and ~rt = rt,z ẑ. (4.17)

Further, the dyadic tensors, ¯̄GS and ¯̄GD, have only one component each and are

written as

¯̄GS = GS,zz ẑẑ and ¯̄GD = GD,zz ẑẑ (4.18)

where

GS,zz = −2ηST −1
D LH

z MH
S,z

GD,zz = −2ηD,n−1T −1
D
(
I −LH

z MH
D,zX n−1

)
T D.

(4.19)

Here I ∈ RI×I is an identity matrix and X n−1 = diag(χ
n−1

) is a diagonal matrix.

4.2.2.2 Case 2: 2D TE

In a 2D TE case the electric field is assumed to be polarized in the x − y plane

with no longitudinal component in the z−direction. Thus, the measured fields and
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error terms are spatial vectors with two components each and are given as

~ut = ut,xx̂+ ut,yŷ

~ρ
t

= ρ
t,x
x̂+ ρ

t,y
ŷ

~rt = rt,xx̂+ rt,yŷ.

(4.20)

The dyadic tensors used in calculating the gradient, ~g
t
, are evaluated as

¯̄GS = GS,xxx̂x̂+ GS,yxŷx̂+ GS,xyx̂ŷ + GS,yyŷŷ

¯̄GD = GD,xxx̂x̂+ GD,yxŷx̂+ GD,xyx̂ŷ + GD,yyŷŷ

where each term is given by

GS,xx = −2ηST −1
D LH

x MH
S,x GS,xy = −2ηST −1

D LH
x MH

S,y

GS,yx = −2ηST −1
D LH

y MH
S,x GS,yy = −2ηST −1

D LH
y MH

S,y, (4.21)

and

GD,xx = −2ηD,n−1T −1
D
(
I −LH

x MH
D,xXH

n−1

)
T D

GD,xy = 2ηD,n−1T −1
D LH

x MH
D,yXH

n−1T D

GD,yx = 2ηD,n−1T −1
D LH

y MH
D,xXH

n−1T D

GD,yy = −2ηD,n−1T −1
D
(
I −LH

y MH
D,yXH

n−1

)
T D. (4.22)

4.2.2.3 Case 3: 3D Full-Vectorial

For a 3D full-vectorial problem, there are three electric field components polarized

along the x−, y−, and z− directions. Moreover, the measured field and error terms
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are given as

~ut = ut,xx̂+ ut,yŷ + ut,z ẑ

~ρ
t

= ρ
t,x
x̂+ ρ

t,y
ŷ + ρ

t,z

~rt = rt,xx̂+ rt,yŷ + rt,z ẑ.

(4.23)

The dyadic tensors, ¯̄GS and ¯̄GD are written as

¯̄GS = GS,xxx̂x̂+ GS,yxŷx̂+ GS,zxẑx̂+

GS,xyx̂ŷ + GS,yyŷŷ + GS,zyẑŷ+

GS,xzx̂ẑ + GS,yzŷẑ + GS,zz ẑẑ

(4.24)

and

¯̄GD,n−1 = GD,n−1,xxx̂x̂+ GD,n−1,yxŷx̂+ GD,n−1,zxẑx̂+

GD,n−1,xyx̂ŷ + GD,n−1,yyŷŷ + GD,n−1,zyẑŷ+

GD,n−1,xzx̂ẑ + GD,n−1,yzŷẑ + GD,n−1,zz ẑẑ

(4.25)

where each term is given by

GS,uv = −2ηST −1
D
(
LH
u MH

S,v
)

(4.26)

and

GD,n−1,uv =

 −2ηD,n−1T −1
D
(
I −LH

u MH
D,vXH

n−1

)
T D for u = v

2ηD,n−1T −1
D LH

u MH
D,vXH

n−1T D for u 6= v.
(4.27)

Here subscripts u, v are selected to represent either x, y or z.
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4.2.3 The Contrast Variables Update

After updating the contrast source variables, χ is evaluated by minimizing the

modified domain equation FDm(χ) given by

FDm(χ) =
∑
t

∥∥∥χ� ~E
inc

t − ~wt + χ� ~MD ~L[~wt]
∥∥∥2

D

=
∑
t

∥∥∥χ� ~Et − ~wt
∥∥∥2

D
.

(4.28)

Here the total field vector ~Et = ~E
inc

t + ~MD ~L[~wt]. The contrast source variables ~wt

are assumed constant in this minimization.

The derivation of the minimizer can be simplified by introducing a diagonal matrix

~E t ∈ CI×I whose diagonal entities are the elements of vector ~Et; the diagonal matrix

replaces the Hadamard element-wise product, thus the modified domain equation can

be rewritten as

FDm(χ) =
∑
t

∥∥∥~E tχ− ~wt∥∥∥2

D
. (4.29)

As derived in Appendix D, at the nth iteration, the minimizer for FDm(χ) requires

then the solution of the following sparse matrix equation for χ
n
:

(∑
t

~E
H

t,n · T D~E t,n

)
χ
n

=
∑
t

~E
H

t,n · T D~wt,n. (4.30)

Since ~E t,n is a diagonal matrix and T D is sparse, the minimizer χ
n

can be calculated

efficiently.
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4.2.4 Initializing the Algorithm

The initial guess of the contrast source variables cannot be set to zero since the cost

functional is undefined for a zero contrast source. As in the standard CSI algorithm,

the initial guess for the FEM-CSI is evaluated by calculating the contrast source

variables that will minimize the data-error equation, FS(~wt). This minimizer is taken

to be the result of applying the method of steepest descent to FS(~wt). As shown in

Appendix E, this initial guess can be given in closed-form as

~wt,0 =
Re
〈

~MS ~L[ ¯̄GS · ~ut], ~f t
〉
S∥∥∥ ~MS ~L[ ¯̄GS · ~ut]

∥∥∥2

S

¯̄GS · ~ut. (4.31)

After evaluating ~wt,0, the initial guess for the contrast variables χ is calculated using

(4.30) and the initial Polak-Ribière search directions ~dt,0 are set to zero.
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5

Multiplicative Regularization

We come now to the question: what is a priori certain or necessary, re-
spectively in geometry (doctrine of space) or its foundations? Formerly
we thought everything; nowadays we think nothing. Already the distance-
concept is logically arbitrary; there need be no things that correspond to it,
even approximately.

–Albert Einstein

Microwave imaging inverse problems exhibit two properties: nonlinearity and ill-

posedness. The nonlinearity of the problem is tackled using various optimization

algorithms, while several regularization techniques are used to account for the ill-

posedness.

Different regularization methods have been reported in the literature and have

been successfully applied for various applications [12]. A successful regularization

technique which has been used is the weighted L2−norm total variation multiplicative

regularization (MR), which has been incorporated into both GNI and CSI [3, 12, 28,

32,56,78,80,81]. Not only has it been shown to enhance the outcome of the inversion

algorithm, i.e. regularize the optimization, but it also has other desirable features:

(i) its edge-preserving characteristic, and (ii) its capacity for suppressing noise in

measured data.
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Multiplicative regularization is formulated in the continuous domain and must be

discretized for application. In the first part of this chapter, a novel technique for

incorporating multiplicative regularization in the FEM-CSI algorithm is introduced.

In typical MR-CSI inversion algorithms that have been developed previously the un-

knowns are located on a uniform grid of either rectangular cells (in 2D configurations)

or cuboids (in 3D problems). In such methods, finite-difference approximations for

the gradient and divergence operators used in multiplicative regularization can be

easily applied. As we have seen, when FEM is used to discretize the electromagnetic

field problem, the unknown variables are located on either the nodes of an irregular

mesh or the centroids of elements (triangles in 2D, tetrahedra in 3D); thus apply-

ing MR using finite-differences becomes difficult. In this chapter new techniques are

introduced to perform the gradient and divergence operators on a triangular or a

tetrahedral mesh.

In the second part of this chapter, an improvement to the multiplicative regular-

ization applied to CSI is proposed. The enhancement accounts for the imbalance be-

tween the real and imaginary components of the OI’s contrast that can occur in some

MWI applications, e.g. biomedical imaging [82]. The proposed method retains the

advantages of MR-CSI, in addition to improving the reconstruction of the imaginary

part of the OI. The scaling factor defined in the balanced multiplicative regularization

(BMR) is dependent on the ratio of the real to the imaginary components’ magnitude

of the OI’s relative permittivity. The balanced multiplicative regularization can be

applied to either CSI formulations based on integral-equations [20,80] or other forms

that result from the direct discretization of the partial differential equations (PDE)

associated with MWI [29,32,78]. Herein, BMR is applied to FEM-CSI [83].
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5.1 Multiplicatively Regularized FEM-CSI

The CSI inversion results may be significantly enhanced through the use of a total-

variation based regularizer [3, 7, 56, 80, 84, 85]. In general, the total variation (TV)

regularization attempts to penalize contrasts which have a large total variation, i.e.

when there is significant variation from pixel to pixel in the inversion domain. For a

differentiable function h the total-variation is defined as,

TV(h(~r)) =

∫
D
|∇h(~r)| dv (5.1)

where ∇ is the spatial gradient operator and ~r ∈ D.

Total-variation based regularizers were first introduced to image processing to

correct for the presence of noise in the images [86]. Inspired by their success, TV reg-

ularizers were adapted to CSI in different forms [56, 80]. Initially, these regularizers

were tested as an additive regularizer [56], but this required the choice of a param-

eter used to balance the effect of the total-variation term and the regular CSI cost

functional (4.1). The parameter selection process may be avoided by applying the

total-variation based regularizer as a multiplicative term [80]. Different multiplicative

regularizers have been tested and evaluated for the CSI method [80]. The weighted

L2−norm total variation multiplicative regularizer (MR) had the best performance

amongst all the different implementations.

With the MR term, the cost functional at the nth iteration becomes

Cn(χ, ~wt) = CMR
n (χ)× CCSI(χ, ~wt) (5.2)
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where the regularization term CMR
n (χ) is given by

CMR
n (χ) =

∫
D
b2
n(~r)

(
|∇χ(~r)|2 + δ2

n

)
dv. (5.3)

Here

bn(~r) =
(
V
(
|∇χn−1(~r)|2 + δ2

n

))−1/2
(5.4)

where V =
∫
D dv, χCSI

n is the CSI update of the contrast variable at the nth iteration,

and δ2
n = CD(χCSI

n , wt,n) Ā−1 is the steering factor for the MR term in which Ā is the

mean area of inversion pixel facets in imaging domain D.

The discretized form of the continuous functional in MR-FEMCSI is

Fn(χ, ~wt) = FMR
n (χ)×FCSI(χ, ~wt) (5.5)

where the regularization term FMR
n (χ) is given by

FMR
n (χ) =

∥∥bn �∇χ
∥∥2

D + δ2
n ‖bn‖

2
D . (5.6)

Here

bn =
(
V
(
|∇χCSI

n
|2 + δ2

n

))−1/2

and δ2
n = FD(χCSI

n
, ~wt,n) Ā−1 (5.7)

where χCSI
n

is the CSI update of the contrast variable at the nth iteration. For 2D

problems, V is the total area of domain D and Ā is the mean area of mesh triangles;

for 3D configurations, V is the total volume of the domain D and Ā is the mean area

of the tetrahedral facets in D.

The spatial gradient operator, ∇, is a matrix operator that returns the compo-
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nents of the gradient calculated at either the nodes or the centroids of the elements

within D, depending on the location of the contrast vector, χ, entries. If the vector χ

elements are defined on the nodes of an irregular mesh, the gradient operator ∇ re-

turns the spatial gradient at the centroids of the elements within the imaging domain

D. On the other hand, if χ values are located on the centroids of the mesh elements,

the gradient matrix operator ∇ returns the components of the spatial gradient at

the nodes within the imaging domain. The calculations performed by the gradient

operator for either 2D or 3D problems will be detailed in the next section.

Next, let ~X be an arbitrary data vector where each of its elements is a spatial-

vector field with x and y components in 2D and an additional z−component in 3D.

The operation
∣∣∣ ~X ∣∣∣2 used in (5.7) (and later on) returns a vector of the same size as

~X but with scalar entries. The ith value of the resulting vector is

∣∣∣ ~Xi∣∣∣2 = |Xx,i|2 + |Xy,i|2 (5.8)

for 2D and ∣∣∣ ~Xi∣∣∣2 = |Xx,i|2 + |Xy,i|2 + |Xz,i|2 (5.9)

for 3D. Here the subscripts x, y and z indicate the spatial components of element i.

5.1.1 Updating the Contrast Variables

Since FMR
n (χCSI

n
) = 1, the update procedure for the contrast source variables ~wt

remains unchanged; however, this is not the case for the contrast variables χ. After

calculating the contrast variables using FEM-CSI, they are updated by a CG method

using Polak-Ribière search directions dχn as follows:
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χ
n

= χCSI

n
+ αχnd

χ
n. (5.10)

Here χCSI
n

is the update from the CSI algorithm (4.30) and αχn is an update step-size.

The search directions dχn are calculated as

dχn = −gχ
n

+

〈
gχ
n
, gχ

n
− gχ

n−1

〉
D∥∥∥gχ

n−1

∥∥∥2

D

dχn−1 (5.11)

where gχ
n

is the preconditioned gradient of Fn(χ, ~wt) with respect χ [32,80], as is now

explained.

For MR-FEMCSI, the gradient gχ
n

evaluated at χ = χCSI
n

is

gχ
n

=
(
gχ

MR,n
×FCSI(χCSI

n
, ~wt,n) + gχD,n ×F

MR(χCSI

n
)
)
� P n (5.12)

where gχ
MR,n

and gχD,n are, respectively, the gradients of the MR term and the CSI

cost functional with respect to the contrast χ at the nth iteration and are calculated

as (see Appendix F for derivation details),

gχ
MR,n

= −2∇ ·
(
b2
n �∇χCSI

n

)
gχD,n = 2ηD,n−1

∑
t

T −1
D

~E
H

t,n · T D~rt,n.
(5.13)

The divergence operator, ∇·, in gχ
MR,n

is a matrix operator that takes the result of(
b2
n �∇χn

)
and returns the spatial divergence calculated within the imaging domain

D. If χ elements are defined on the nodes, the vector
(
b2
n �∇χn

)
has its entries on

the elemental centroids in D and further the result of the divergence operator ∇· is

returned on the nodes within D. Similarly, if χ entries are located on the centroids,
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the vector
(
b2
n �∇χn

)
elements are evaluated on the nodes and eventually the result

of matrix operator ∇· is calculated at the centroids of elements in D. The evaluations

performed by the divergence operator will be discussed in the next section.

The preconditioner in (5.12) is calculated as P n =
(∑

t | ~Et,n|2
)−1

where ~Et,n ,

~E
inc

t + ~MD ~L[~wt,n] is the total field for transmitter t; the notation |·|2 is explained

towards the end of Section 5.1. In equation (5.13), ~E t,n and ~rt,n are the total field

diagonal matrix and the residual of the domain-error equation respectively given as,

~E t,n = diag( ~Et,n)

~rt,n = ~E t,nχCSI

n
− ~wt,n.

(5.14)

Due to the fact that the χCSI
n

is a minimizer of a modified form of the domain-error

equation FD (see Section 4.2.3), the gradient gχD,n evaluated at χ = χCSI
n

vanishes to

zero. Thus, the gradient expression (5.12) can be simplified to

gχ
n

=
(
−2∇ ·

(
b2
n �∇χCSI

n

)
×FCSI(χCSI

n
, ~wt,n)

)
� P n. (5.15)

The update step-size, αχn, is calculated analytically as

αχn = arg minαχ
{
Fn
(
~wt,n , χ

CSI

n
+ αχ dχn

)}
(5.16)

which involves finding the roots of a cubic polynomial. As outlined in Appendix G,

this yields one real root along with a complex-conjugate pair; the real root is taken

as the step-size [56,80].
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5.2 Spatial Derivatives on Arbitrary Meshes

Accurate evaluation of the spatial gradient and divergence of the contrast at the

unknown locations of an arbitrary mesh, required in (5.6) and (5.15), is not as straight-

forward as when using a uniform rectangular grid.

For 2D TM problems, the contrast variables are defined at nodal locations of an

arbitrary triangular FEM mesh. The unknown contrast is represented using linear ba-

sis functions with a gradient which is constant over each triangle and is discontinuous

between triangles. The divergence of the gradient at each node is not easily defined.

If quadratic elements are used, the gradient would be a linear function over each el-

ement but the divergence would still be discontinuous between elements. Therefore,

some form of averaging is required.

For 2D TE cases, the contrast variables are located at the centroids of the mesh

triangular elements. Similarly, for 3D full-vectorial problems the contrast variables

are positioned at the centroids of the mesh tetrahedra. In both cases the contrast is

discontinuous between elements, hence the gradient and divergence calculations are

indirect and specially tailored techniques have to be devised to calculate them.

For each problem configuration, methods that combine the use of first-order linear

basis functions within an FEM element and the creation of a dual-mesh to perform

some form of averaging over a defined stencil have been created to evaluate the spatial

gradient and divergence. These techniques are outlined next.

5.2.1 Case 1: 2D TM

For 2D TM cases the contrast variables are located at the nodes of the triangular

mesh and are represented using linear basis functions. Consequently, the spatial
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gradient of the contrast can be calculated numerically over each triangle in the mesh

using the first-order basis functions. In FEM, the contrast within a triangle e at the

nth iteration is given by

χen(~r) =
3∑
l=1

χel,nλ
e
l (~r) (5.17)

where l is a local index for each node on triangle e, χel,n is the contrast value at node

l of triangle e, and the first-order linear basis function for node l is

λel (~r) =
1

2Ae
(ael + belx+ cel y) . (5.18)

Here Ae is the area of triangle e and the coefficients ael , b
e
l and cel are dependent only

on the triangle geometry [44].

The spatial gradient of the contrast within triangle e is then calculated as

∇χen =
3∑
l=1

χel,n∇λel (~r)

=
1

2Ae

3∑
l=1

χel,n (bel x̂+ cel ŷ) (5.19)

where x̂ and ŷ are the Cartesian unit vectors.

The spatial gradient in (5.19) is also used to calculate the coefficients b2
n for each

triangle in D and then to evaluate the multiplicative regularization term FMR
n (χ).

To update the contrast variables χ, the gradient gχ
n

has to be evaluated at each

node in D. For each node i let us define ζi,n as follows:

ζi,n = ∇ · ~ξi,n

= ∇ ·
(
ξxi,nx̂+ ξyi,nŷ

)
= x̂ · ∇ξxi,n + ŷ · ∇ξyi,n (5.20)
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Figure 5.1: Region surrounding node i to approximate the spatial derivatives. The
“•” in the diagram represents the centroid of a triangle.

where ~ξi,n = b2
i,n∇χi,n. Since b2

n and ∇χn are calculated for each triangle rather than

each node, the spatial divergence for each node in (5.20) needs to be approximated.

Let us define a region Ωi around node i as depicted in figure 5.1. The vertices

of this region are the centroids of triangles sharing node i. Using the divergence

theorem, it can be shown that

x̂ · ∇ξxi,n ≈ 〈x̂ · ∇ξxn(~r)〉Ωi

=
1

Ai

∮
Γi

ξxn(~r)x̂ · n̂ ds (5.21)

where 〈·〉Ωi denotes the average value over region Ωi, Ai is the area of Ωi, Γi is the

boundary of Ωi and n̂ is outward normal vector to Γi.

Similarly the second term in (5.20) is approximated as

ŷ · ∇ξyi,n ≈
1

Ai

∮
Γi

ξyn(~r)ŷ · n̂ ds. (5.22)

Since the values of ξn(~r) are known at the vertices of region Ωi, the line integrals
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in (5.21) and (5.22) can be easily evaluated numerically. Here the trapezoidal rule is

used to calculate the integral over each segment in region Ωi.

5.2.2 Case 2: 2D TE

The contrast variables are located on the mesh triangle centroids for 2D TE prob-

lems and they are discontinuous across elements; hence an averaging scheme similar

to the one used to approximate the divergence for 2D TM problems is required to

calculate the spatial gradient. The required gradient is approximated at each node in

the mesh using the same dual-mesh scheme as for the 2D TM case depicted in Figure

5.1. Using (5.21) and (5.22) at a node i, the x−component of the gradient can be

approximated as

∂χi,n
∂x

= x̂ · ∇χi,n =
1

Ai

∮
Γi

χn(~r)x̂ · n̂ ds (5.23)

and the y−component as

∂χi,n
∂y

= ŷ · ∇χi,n =
1

Ai

∮
Γi

χn(~r)ŷ · n̂ ds. (5.24)

With the spatial gradient values approximated at the nodes, the coefficients b2
n

can be calculated for each node in imaging domain D and thus the MR term FMR(χ)

can be evaluated.

Next, the calculation of the divergence of b2
n∇χ at the centroid of each triangle in

D is done with the aid of the FEM first-order basis functions. For a triangle e let

ξen =
3∑
l=1

(
ξex,l,nx̂+ ξey,l,nŷ

)
λel (~r) (5.25)
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where for a node l in triangle e

ξex,l,n =
(
ben,l
)2 ∂χ

e
l,n

∂x
, ξey,l,n =

(
ben,l
)2 ∂χ

e
l,n

∂y
(5.26)

and λel is the basis function given in (5.18). The divergence of b2
n∇χ calculated at the

centroid of triangle e is

(
∇ · b2

n∇χ
)e
n

=
∂ξen
∂x
· x̂+

∂ξen
∂y
· ŷ

=
1

2Ae

3∑
l=1

(
ξex,l,nb

e
l + ξey,l,nc

e
l

)
. (5.27)

The values of ξex,l,n and ξey,l,n have been evaluated already using the dual-mesh scheme

at the nodes of the imaging domain, thus expression (5.27) is a straightforward cal-

culation. Thus, the gradient gχ
MR,n

needed in (5.12) to update the contrast variables

χ can be readily obtained.

5.2.3 Case 3: 3D Full-Vectorial

The techniques to calculate the spatial gradient and divergence for 3D problems

are very similar to those utilized for 2D TE configurations, as the contrast variables are

defined at the centroids of the mesh tetrahedra. First, the gradient is approximated

at the nodes of the imaging domain D using a 3D dual-mesh technique analogous to

the 2D scheme presented in figure 5.1. For 3D problems, the region Ωi is a volume

surrounding node i. The surface of volume Ωi is constructed of triangular patches

whose vertices are the centroids of tetrahedra sharing the node.

Let ζ represent a space-component in the Cartesian coordinates (either x, y or z).
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For a node i, the ζ−component of the spatial gradient can be approximated as

∂χi,n
∂ζ

= ζ̂ · ∇χi,n

≈
〈
ζ̂ · ∇χn(~r)

〉
Ωi

=
1

Vi

∮
Γi

χn(~r)ζ̂ · n̂ ds (5.28)

where ζ̂ is a constant unit vector, 〈·〉Ωi denotes the average value over the volumetric

region Ωi, Vi is the volume of Ωi, Γi is the contour (surface) of Ωi and n̂ is outward

normal vector to Γi. As the χn(~r) values are known at the vertices of surface Γi, the

integration in (5.28) can be performed numerically.

After approximating the spatial gradients at the nodes of D, the coefficients b2
n

are calculated and the value of the MR term FMR(χ) at the nth iteration is evaluated.

The next step is to calculate the divergence at the centroid of each tetrahedral so

as to evaluate the search directions gχ
n
. The 3D FEM scalar first-order linear basis

functions defined within a tetrahedron element are used. For a given tetrahedral e let

ξen =
4∑
l=1

(
ξex,l,nx̂+ ξey,l,nŷ + ξez,l,nẑ

)
λel (~r) (5.29)

where for a node l in tetrahedral e

ξeζ,l,n =
(
ben,l
)2 ∂χ

e
l,n

∂ζ
(5.30)

for any Cartesian component ζ, and λel is a 3D scalar linear basis function given as

λel (~r) =
1

6V e
(ael + belx+ cel y + del z) . (5.31)
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Here V e is the volume of element e and the coefficients ael , b
e
l , c

e
l and del are only

dependent on the tetrahedron geometry [44].

The spatial divergence within a tetrahedron e is then calculated as

(
∇ · b2

n∇χ
)e
n

=
∂ξen
∂x
· x̂+

∂ξen
∂y
· ŷ +

∂ξen
∂z
· ẑ

=
1

6V e

3∑
l=1

(
ξex,l,nb

e
l + ξey,l,nc

e
l + ξez,l,nd

e
l

)
. (5.32)

Utilizing the calculated values of ξex,l,n, ξey,l,n and ξez,l,n on the nodes using the dual-

mesh scheme (5.28), the divergence values at the centroids of the imaging domain are

found and used to calculate gχ
n

to update the contrast variables χ.

5.2.4 Spatial Derivatives Calculation Summary

In the preceding sections, the evaluations of the spatial gradients and divergence

were demonstrated for different configurations. To ease the calculation of the search

directions gχ
n

used to update the contrast χ, the techniques to perform the spatial

derivatives can be implemented as matrix operators ∇ for the gradient and ∇· for

the divergence.

For 2D TM, the matrix operator ∇ operates on a vector of nodal values of χ,

χ and returns the components of the spatial gradient calculated at the centroids of

the triangles within the imaging domain D. After calculating b2
n at each centroid, the

divergence operator ∇· takes the centroid values of b2
n∇χ and returns the approximate

value of ∇ · b2
n∇χ at the nodes.

For 2D TE and 3D, the matrix operator ∇ returns the components of the gradient

calculated at the nodes within D by operating on a vector of centroid values of χ, χ.

Then at each node b2
n is calculated. Next, the divergence matrix ∇· operates on the
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nodal values of b2
n∇χ to calculate the approximate value of ∇· b2

n∇χ at the centroids.

5.3 Balanced MR-FEMCSI

A major drawback of the standard MR implementation is that the real and imag-

inary parts of the contrast are weighted similarly. For applications where there is an

imbalance between the real and imaginary components of the contrast, the applica-

tion of MR to CSI can result in an erroneous reconstruction of the imaginary part, as

the inversion algorithm will favor the real part of the contrast. This can be improved

by scaling the real and imaginary updates of the contrast in the MR functional dif-

ferently, as proposed in [87]. Essentially, by modifying the MR term, the imbalance

in the contrast can be compensated to achieve a reconstruction that is more accurate

for both the real and imaginary parts of the contrast. The balanced multiplicative

regularization (BMR) term is given as

CBMR
n (χ) =

∫
D
bn(~r)2

(
|∇χR(~r)|2 +Q(~r)2|∇χI(~r)|2 + δ2

n

)
dv (5.33)

Here χR and χI are the real and imaginary components of the contrast, Q is a bal-

ancing factor, and

bn(~r) =
(
V
(
|∇χR,n−1(~r)|2 +Q(~r)2|∇χI,n−1(~r)|2 + δ2

n

))−1/2
. (5.34)

With the inclusion of the balanced multiplicative regularization term, the cost

functional at the nth iteration becomes

Cn(χ, ~wt) = CBMR
n (χ)× CCSI(χ, ~wt). (5.35)
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The discretized form of the functional in BMR-FEMCSI is written as

Fn(χ, ~wt) = FBMR
n (χ)×FCSI(χ, ~wt) (5.36)

where the balanced regularized term FBMR(χ) is given by

FBMR(χ) =
∥∥bn �∇χR

∥∥2

D +
∥∥bn �Q�∇χI(~r)

∥∥2

D + δ2
n ‖bn‖

2
D . (5.37)

Here

bn =
(
V
(
|∇χ

R,n−1
|2 +Q2 � |∇χ

I,n−1
|2 + δ2

n

))−1/2

. (5.38)

Since FBMR
n (χ

n−1
) = 1, the update procedure for the contrast source variable ~wt

remains unchanged; however, this is not the case for the contrast variable χ. The real

and imaginary components of the contrast, χR and χI, are updated independently in

BMR-CSI. The analytical CSI update (4.30) for the contrast variables is no longer

performed in BMR-CSI, rather the real and imaginary components of the contrast

are updated by a conjugate-gradient method as follows:

χ
R,n

= χ
R,n−1

+ αχR
n dχR

n

χ
I,n

= χ
I,n−1

+ αχI
n dχI

n .

(5.39)

The search directions dχR
n and dχI

n are calculated using the Polak-Ribière search di-
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rections, and are given by

dχR
n = −gχR

n
+

〈
gχR

n
, gχR

n
− gχR

n−1

〉
D∥∥∥gχR

n−1

∥∥∥2

D

dχR
n−1

dχI
n = −gχI

n
+

〈
gχI

n
, gχI

n
− gχI

n−1

〉
D∥∥∥gχI

n−1

∥∥∥2

D

dχI
n−1

(5.40)

where gχR

n
and gχI

n
are the preconditioned gradients of Fn(χ, ~wt) with respect to χR

and χI respectively and are given by

gχR

n
=
(
gχR

MR,n
×FCSI(χ

n−1
, ~wt,n) + gχR

D,n ×F
BMR(χ

n−1
)
)
� P n

gχI

n
=
(
gχI

MR,n
×FCSI(χ

n−1
, ~wt,n) + gχI

D,n ×F
BMR(χ

n−1
)
)
� P n

(5.41)

where

gχR

MR,n
= −2∇ ·

(
b2
n �∇χ

R,n−1

)
gχI

MR,n
= −2∇ ·

(
Q2 � b2

n �∇χ
I,n−1

) (5.42)

and

gχR

D,n = Re

(
2ηD,n−1

∑
t

T −1
D

~E
H

t,n · T D~rt,n

)

gχI

D,n = Im

(
2ηD,n−1

∑
t

T −1
D

~E
H

t,n · T D~rt,n

)
.

(5.43)

The update step-sizes αχR
n and αχI

n in (5.39) are calculated analytically based on the
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following minimization:

αχR
n = arg minαχR

{
Fn
(
~wt,n , χR,n−1

+ αχR dχR,n , χ
I,n−1

)}
αχI
n = arg minαχI

{
Fn
(
~wt,n , χR,n−1

, χ
I,n−1

+ αχI dχI,n

)}
,

(5.44)

which involves finding the roots of two cubic polynomials. As outlined in Appendix

G, this yields one real root along with a complex-conjugate pair for each polynomial;

the real roots are the step-sizes [56,80].

5.3.1 Balancing and the Domain-Error Equation

Although the domain-error equation, CD(χ, ~wt), in the CSI functional (4.1) is a

function of the contrast variables χ, the balancing factor is not applied to the imag-

inary component of the contrast. As outlined in [55, 88], the domain-error equation

(also known as the state equation) arises from the physics underlying the MWI prob-

lem, and it enforces Maxwell’s equations. Multiplying the imaginary part of the

contrast by the balancing factor would cause Maxwell’s equations to not be satisfied.

Thus, it is inappropriate to have a balancing factor in the domain-error equation.
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6

Implementation and Evaluation

Do all the good you can,
By all the means you can,
In all the ways you can,
In all the places you can,
At all the times you can,
To all the people you can,
As long as ever you can.

–John Wesley [89]

In this chapter the FEM-CSI algorithm is validated by inverting synthetic datasets

as well as experimental data. The chapter begins with a brief description of the

implementation along with a discussion of the methods used in solving the FEM

matrix equations.

The second part of the chapter is dedicated to the inversion of synthetic data.

The section begins by exploring the different advantages of the FEM-CSI algorithm

using 2D TM examples. Next, different examples are utilized to demonstrate the fea-

tures of the multiplicative regularization (MR) implemented with FEM-CSI. Imaging

resulting using the MR enhancement, balanced multiplicative regularization (BMR)

are presented next. This first set of imaging results, including MR and BMR, are for

the 2D TM cases so that they can be compared against an IE-CSI algorithm which

was solely available for 2D TM problems [27].
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For 2D TE, the examples are selected to again outline some of the FEM-CSI

advantages, also comparing the TM and the TE reconstructions for the same targets.

Due to the computational complexity associated with 3D FEM, the examples to

demonstrate FEM-CSI for full-vectorial problems are chosen to be relatively simple

with the OI located in an unbounded homogeneous background medium. The purpose

of these simple examples is solely to show the functionality of the algorithm.

The third part of the chapter employs the FEM-CSI algorithm to invert experi-

mental datasets. The experimental data are available from the electromagnetic imag-

ing laboratory at the University of Manitoba (UofM) [22, 26, 90, 91]; the Universi-

tat Politècnica de Catalunya (UPC) Barcelona, Spain [92]; and the Institut Fresnel,

France [38,39]. The UofM datasets consist of data collected in an air-filled microwave

tomography (MWT) imaging system [22] as well as a similar MWT setup where

different matching fluids of varying salt concentrations are used. Regardless of the

background medium, the collected data are assumed to be 2D with TM polarization.

The single UPC Barcelona dataset was collected using a microwave scanner system

filled with distilled water [92]. Again, the system model is assumed to be 2D with

TM polarization. The Institut Fresnel datasets were measured with the receiving

antennas in the far-field region; furthermore, the data collection was done inside an

anechoic chamber [38, 39]. The datasets consist of 2D TM and TE measurements

as well as 3D. Details on each experimental setup are provided in this chapter along

with the inversion results obtained.

6.1 Implementation

The FEM solver and the inversion algorithms presented in this work have been

implemented in MATLAB R©, running on a PC workstation with two Intel R© Xeon R©
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quad-core 2.8 GHz processors and 18 GB of physical memory. The codes have been

highly-optimized using the various data-vectorization techniques in MATLAB, along

with the various packages that can handle sparse matrices and data-structures effi-

ciently. The code has been designed to make use of the available multi-core processors.

Using MATLAB, the inverse operator ~L in FEM is calculated using an efficient LU

decomposition algorithm designed for sparse and symmetric matrices. The algorithm

is the Unsymmetric-Pattern Multifrontal Package (UMFPACK) with column pre-

ordering [93, 94]. For a given problem, the LU decomposition is performed once and

the resulting matrices are stored and recalled as necessary. Then, for solving the linear

matrix equation, efficient matrix factorization algorithms included with UMFPACK

are used.

Another direct solver package that can be used for sparse matrix LU decomposition

and factorization is PARDISO (Parallel Sparse Direct Linear Solver). Although it is

a direct solver, PARDISO supports a combination of direct and iterative methods to

accelerate the linear solution process [95]. PARDISO often uses less memory than

UMFPACK however it was not used or tested for the work presented in this thesis.

A disadvantage of using sparse LU decomposition algorithms is that they require

more memory, which make their use quite problematic for 3D problems that require

a large number of unknowns. An alternative would be using iterative solvers like

GMRES (Generalized Minimal RESidual method) [96] and CG (conjugate gradient).

Although they are more memory-efficient, iterative solvers are sometimes unstable

and can have slow convergence; therefore appropriate preconditioning techniques have

to be tested and used. A brief study that compares between the use of direct and

iterative methods for solving 3D FEM problems was undertaken and the results are

provided herein.
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For finite-element mesh generation the third party freeware GMSH [66] is used.

For all the results to ensure accurate calculations of the electric field, the characteristic

mesh length (CL) of the different meshes is selected to be less than λ/10 where λ is

the smallest expected wavelength for a given problem.

6.2 Synthetic Results

6.2.1 Inverse Crime

The term “Inverse Crime” has been coined to describe the cases where the syn-

thetic datasets are generated using the same solver and numerical grid that is used

by the inversion algorithm [97]. For the examples presented herein, the FEM for-

ward solvers used to create the datasets share the same theoretical formulation as

the solvers used in the inversion algorithm. Thus, to avert an inverse crime two

techniques are used. First, the meshes used to generate the synthetic datasets are

different from those used by the inversion algorithm. Next, noise is added to all the

synthetic scattered fields obtained from the forward solver as follows [98]:

unoisy
ζ = uζ +

∥∥uζ∥∥∞ η√
2

(τ1 + jτ2), (6.1)

where uζ is a data-vector holding the ζ−component of the synthetically generated

scattered field on the domain S due to all the transmitters T ,
∥∥uζ∥∥∞ is the maximum

magnitude of the data-vector complex entries, τ1 and τ2 are uniformly distributed

random numbers between −1 and 1, and η is the desired noise level. If 5% noise is

added to the synthetic datasets, for example, η = 0.05.
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6.2.2 Algorithm Evaluation

The implemented inversion algorithms can be evaluated, broadly speaking, in

terms of the quality of the algorithm reconstructions relative to the actual profile, and

the runtime of the algorithm. While the reconstruction quality can be measured using

various metrics (e.g. vector norms, mean, standard deviation, etc.), the measurement

of the computational time is dependent on different factors like the development

environment, the programming efficiency and the inversion problem size. Herein,

the average time per algorithm iteration (titer) is measured using MATLAB built-in

functions. Along with the iteration time, the following information for each inverted

dataset are tabulated as required: the frequencies of operation (f), the number of

transmitters (T ) per frequency, the number of elements (Ne) in the problem domain

Ω, the number of nodes (N) or edges (E) in Ω and the number of unknowns (I) in

the imaging domain D.

The quality of the synthetic data reconstructions are assessed by calculating the

L1, L2 and L∞ vector error-norms for each dataset based on the exact relative permit-

tivity profile, εexact
r (~r). Since the actual profile and the inversion results are located

on different arbitrary unstructured meshes, it is necessary to interpolate them to the

same uniform grid to calculate the vector error-norms. This uniform grid is discretized

to finer and finer cells until the calculated error-norms converge. The vector error-

norms are normalized by the norm of the exact relative permittivity interpolated to

a uniform grid (εexact
r ) and are calculated as

Lp =
‖εexact
r − εreconst

r ‖p
‖εexact
r ‖p

(6.2)

where εreconst
r is the reconstructed relative permittivity interpolated tp a uniform grid.
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The vector error-norms are presented in tabular form for each synthetic dataset, along

with the logarithm of the data-error equation FS after the last iteration.

6.2.3 FEM-CSI: 2D TM

In this section, synthetic datasets are generated and inverted for 2D problems

with TM polarization. For unbounded problems, the transmitters are assumed to

be 2D electric point sources (line sources in 3D) with the incident field produced by

transmitter t calculated as

~Einc
t (~r) =

1

j4
H

(2)
0 (kb |~r − ~rt|) ẑ. (6.3)

Here H
(2)
0 is the zeroth-order Hankel function of the second kind, kb is the wavenumber

of the background medium and ~rt is the position vector of the transmitter.

If the problem domain is enclosed by a PEC surface, the sources are still 2D electric

point sources, but the incident field within the chamber is calculated as explained in

Appendix I.

The data are generated using an FEM solver where 3% noise is added to the

scattered data collected on the measurement surface S using the method described in

(6.1). First, a comparison between the inversion results from FEM-CSI and IE-CSI

is performed using the same synthetic dataset. Next, several datasets are utilized to

show the FEM-CSI algorithm advantages. Unless otherwise specified, the algorithms

are allowed to run for 1024 iterations to ensure convergence. In addition, the predicted

contrast after each iteration is constrained to remain within physical bounds (i.e. the

real part of the relative permittivity is kept greater than 1, and the conductivity is

constrained to be a positive value).
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A summary of the inversions in this section is provided in Table 6.2, while the

vector error-norms are given in Table 6.3.

6.2.3.1 Comparison between FEM-CSI and IE-CSI

For comparing FEM-CSI and IE-CSI, we consider the U-umlaut (Ü) profile de-

picted in Figures 6.1 (a) and (b). In this profile, the OI consists of scatterers arranged

in the ‘Ü’ shape having the same relative permittivity of εr = 2 − j1. The OI is lo-

cated in an unbounded homogeneous background medium with relative permittivity

εb = 1. The OI is illuminated by 16 transmitters at a frequency of f = 2 GHz and the

data are collected using 16 receivers per transmitter. The transmitting and receiving

points are evenly spaced and co-located on a circle of radius 0.225 m. The synthetic

dataset was generated using an FEM solver.

In both FEM-CSI and IE-CSI, the inversion domain D is a square region centered

in the middle of the problem domain with side-length equal to 0.15 m. In FEM-CSI,

the inversion mesh consists of unstructured arbitrarily oriented triangles with 3, 139

nodes within D. The IE-CSI inversion grid consists of 100× 100 cells confined within

the boundaries of D.

The reconstruction results using FEM-CSI are shown in Figures 6.1(c) and (d) and

for IE-CSI in Figures 6.1 (e) and (f). The convergence of the cost functionals using

FEM-CSI and IE-CSI are shown in Figure 6.8 (a). Comparing the reconstructions,

the results of both FEM-CSI and IE-CSI are similar. The relative error for FEM-CSI

LFEM-CSI
2 = 18.22% while for IE-CSI LIE-CSI

2 = 17.78%. Both algorithms were able to

resolve the different features of the OI; however both reconstructions of the real and

imaginary relative permittivity values are higher than the true values.

Differences between FEM-CSI and IE-CSI reconstructions arise because FEM-CSI
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is performed on an irregular mesh of arbitrary triangular elements while in IE-CSI

the inversion domain is a regular uniform grid of square cells. These differences can

be reduced by using a uniform mesh of equilateral triangles in FEM-CSI, applying a

spatial filtering technique on FEM-CSI result at each iteration [99], or using multi-

plicative regularization. Furthermore, the cost functionals of FEM-CSI and IE-CSI

converge to different values because the synthetic dataset is generated using FEM,

the numerical noise floor of both algorithms is different (FEM-CSI implemented in

MATLAB while IE-CSI in C++), and again the inversion domain properties are not

the same.

6.2.3.2 Microwave Tomography in PEC Enclosures of Various Shapes

As previously mentioned, one advantage of FEM-CSI is the ability to perform

imaging in different PEC enclosure shapes without any modification to the algo-

rithm. The novelty of near-field microwave imaging in circular chambers with PEC

boundaries was introduced before using IE-CSI in [20]. The concept of imaging inside

enclosures of arbitrary shapes was further developed using a Gauss-Newton Inversion

(GNI) algorithm in [23, 100]. To illustrate this feature in FEM-CSI, we consider an

OI which consists of three circular regions with electrical properties that resemble

biological tissues. One of the circular regions has a radius of 0.06 m with a relative

permittivity of εr = 12. The other two circular regions are embedded in this re-

gion. The two regions have the same radius of 0.015 m with relative permittivities of

εr = 40− j10 and εr = 30− j15 at a frequency of f = 1 GHz. This OI has been used

in other publications such as [29, 79]. The target configuration is shown in Figures

6.2 (a) and (b).

The OI is centered within three different PEC enclosures of different shapes: a
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(a) Exact Re(εr) (b) Exact −Im(εr)

(c) FEM Reconst. Re(εr) (d) FEM Reconst. −Im(εr)

(e) IE Reconst. Re(εr) (f) IE Reconst. −Im(εr)

Figure 6.1: (a)-(b) Ü exact profile and reconstructions at f = 2 GHz using (c)-(d)
FEM-CSI and (e)-(f) IE-CSI.
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(a) Exact Re(εr) (b) Exact −Im(εr)

Figure 6.2: Exact profile of circular targets with lossy background at a frequency of
f = 1 GHz.

circle of radius 0.12 m, a square with side-length of 0.24 m, and an equilateral triangle

of side-length equal to 0.42 m. The dimensions of each enclosure are depicted in

Figures 6.3 (a), (d) and (g). In all enclosures, the OI is surrounded by a background

medium of relative permittivity εb = 23.4−j1.13 at a frequency of f = 1 GHz. The OI

is interrogated by 32 transmitters at a frequency of f = 1 GHz and the scattered field

data are collected at 32 receivers per transmitter. For all enclosures, the transmitting

and receiving points are evenly spaced and co-located on a circle of radius 0.1 m.

The inversion domain D is a square centered in the middle of the enclosures with

the square’s side-length equal to 0.15 m. The number of unknowns in D are ap-

proximately 6, 000 for all cases. For any enclosure, the unknowns are positioned on

the vertices of triangles in an unstructured arbitrary mesh. The reconstructions af-

ter 1024 iterations are shown in Figures 6.3 (b) and (c) for the circular, (e) and (f)

for the square, and (h) and (i) for the triangular enclosures, and the cost functional

convergence is given in Figure 6.8 (b). The L2−norm relative errors for the recon-

structions in the three different enclosures are quite similar with Lcircle
2 = 18.25%,
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Table 6.1: Relative Dielectric Permittivities of Brain Model at f = 1 GHz

Skin Skull CSF GM WM Stroke

46− j15 12.8− j2.4 69.3− j42.8 52.8− j16.9 38.6− j9.0 61.1− j28.5

Lsquare
2 = 19.22% and Ltriangle

2 = 19.28%. The OI features are well resolved using any

of the PEC enclosure shapes.

6.2.3.3 Biological Imaging with an Inhomogeneous Background

To demonstrate the capability of FEM-CSI to employ prior information as an

inhomogeneous background, the third OI is selected as a simplified model of a brain

exhibiting symptoms of a stroke. This brain model is based on that published in [4]

and similar such models have been used in [28,78]. It consists of an outer skin region

followed by the skull, the cerebral-spinal-fluid (CSF), the gray matter (GM) and the

white matter (WM). A stroke region representing a blood clot is located at the left

side of the white matter region. The relative permittivities of the different biological

regions in the model are summarized in Table 6.1 for a frequency of f = 1 GHz. The

permittivity values of the model are based on the results of a study reported in [101].

The brain model is located in a background medium of permittivity εb = 45 −

j13. The target is irradiated by 32 transmitters evenly spaced on a circle of radius

0.11 m at a frequency of f = 1 GHz. The data are collected at 32 receivers per

transmitter where the receiver locations are the same as the transmitter locations.

The inversion domain D is a square centered in the problem domain with its side-

length equal to 0.20 m. The number of unknowns (located at the mesh nodes) within

D is 12, 131 nodes. The inversion algorithm is run three successive times. In the first

run, blind inversion is performed with no prior information given to the algorithm.

For the second simulation, the prior data depicted in Figures 6.4(c) and (d) is given
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(a) Circular Enclosure (b) Reconst. Re(εr) (c) Reconst. −Im(εr)

(d) Square Enclosure (e) Reconst. Re(εr) (f) Reconst. −Im(εr)

(g) Triangular Enclosure (h) Reconst. Re(εr) (i) Reconst. −Im(εr)

Figure 6.3: PEC enclosure configurations and FEM-CSI reconstructions at f = 1
GHz for (a)-(c) a circular domain, (d)-(f) a square domain and (g)-(i) a triangular
domain.
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(a) Exact Re(εr) (b) Exact −Im(εr)

(c) prior Re(εr) (d) prior −Im(εr)

Figure 6.4: (a)-(b) Brain exact profile and (c)-(d) given prior information at f = 1
GHz.
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to the algorithm as an initial guess. The third simulation was executed using the

prior information as an inhomogeneous background by incorporating this information

within the L[·] operator.

The reconstruction results after 1024 iterations are shown in Figures 6.5 (a), (b)

for blind inversion, (c), (d) when the prior information is used as an initial guess, and

(e), (f) when the prior information is used as the inhomogeneous background. The

FEM-CSI cost functional convergence for each case is given in Figure 6.8 (c). The

features of the brain model with the stroke are resolved in all three cases; however, the

best reconstruction is obtained with the prior information used as an inhomogeneous

background (inhomog. bkg.). The L2−norm relative errors for the different runs are

Lblind
2 = 22.49%, Linitial

2 = 14.54% and Linhomog
2 = 13.91%. The relative errors verify

that using the prior information as an inhomogeneous background for the inversion

gives the best results.

6.2.3.4 Adaptive Meshing

The fourth synthetic dataset example demonstrates the benefit of using adaptive

meshing to improve the quality of the reconstruction while keeping the computational

complexity to a minimum. For this example three different inversion meshes are

utilized: a coarse mesh, an adapted mesh and a fine mesh (see Figure 6.7). For coarse

and fine meshes the triangular elements are of relatively uniform size. For the adapted

mesh, regions where OI inhomogeneities are detected are refined with more triangular

elements. The inhomogeneities are detected using the FEM-CSI reconstructions on

the coarse mesh, and this is the only purpose of using a coarse mesh.

The OI is composed of two targets embedded within a circular region as depicted in

Figure 6.6. The circular region has a relative permittivity of εr = 5. The left and right
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(a) Blind Re(εr) (b) Blind −Im(εr)

(c) Initial Guess Re(εr) (d) Initial Guess −Im(εr)

(e) Inhomog. Bkg. Re(εr) (f) Inhomog. Bkg. −Im(εr)

Figure 6.5: FEM-CSI reconstructions at f = 1 GHz (a)-(b) when no prior information
is given, (c)-(d) when prior information is utilized as initial guess, and (e)-(f) when
prior information is used as background.
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(a) Exact Re(εr) (b) Exact −Im(εr)

Figure 6.6: Exact relative permittivity of OI (a) Real and (b) Imaginary

inner targets relative permittivites at f = 2 GHz are εr = 30− j10 and εr = 57− j16

respectively. The OI is illuminated by 32 transmitters at a frequency of f = 2 GHz

and the data are collected using 32 receivers per transmitter. The transmitters and

the receivers are evenly spaced and co-located on a circle of radius 0.05 m. The MWT

setup along with the OI are surrounded by an unbounded homogeneous background

medium with relative permittivity εb = 2.6. The inversion domain D is a square

centered in the domain with side-length equal to 0.042 m. The number of nodes

N in Ω and unknowns I per inversion mesh, along with titer are given in Table 6.2.

The reconstruction results using different meshes are shown in Figure 6.7, while the

algorithm cost functional convergence for each case is given in Figure 6.8 (d). The

vector error-norms are given in Table 6.3.

From the tabulated results it is obvious that a considerable reduction in the com-

putational resources (time and memory) is obtained without compromising the image

quality when an adapted mesh is utilized compared to a uniform fine mesh. This is

well-demonstrated in the vector error-norms and the data-error given in the tables,

as well as the reconstructions shown in Figure 6.7.



6.2. Synthetic Results 112

−0.04 −0.02 0 0.02 0.04
−0.04

−0.02

0

0.02

0.04

x [m]

y
 [

m
]
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(g) Fine Mesh (h) Reconst. Re(εr)) (i) Reconst. −Im(εr)

Figure 6.7: The reconstructions at f = 2 GHz with (a)-(c) a coarse mesh, (d)-(f) an
adapted mesh and (g)-(i) a fine mesh.
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Table 6.2: Summary of 2D TM Inversion Examples

Example f (GHz) T Ne N I titer (s)

FEM-CSI vs. IE-CSI 2 16

FEM-CSI 26696 13539 3139 1.00

IE-CSI 10000 10000 10000 1.00

PEC Enclosures 1 32

Circular 24338 12352 6027 2.51

Square 30702 15584 5936 2.79

Triangular 40159 20382 5951 3.28

Brain Model 1 32 42892 21689 12131 5.96

Adaptive Meshing 2 32

Coarse 1778 940 394 0.11

Adapted 7580 3841 3050 0.80

Fine 38116 19258 8703 4.20

Low-Contrast Concentric Squares 1 30 24236 12213 7008 2.77

Breast Model 1.6 24 34882 17630 7804 1.33

Human Forearm Model 1 24 59434 29998 9950 3.45

Lossy E-phantom 2 24 36208 18324 8010 2.15

6.2.3.5 Section Conclusion

The results of applying the FEM-CSI algorithm to synthetic 2D TM datasets have

been demonstrated by applying it to MWI setups using PEC enclosures of various

shapes as well as using prior information in the form of an inhomogeneous background

for the inverse problem. The ability to use adaptive non-uniform meshes with finer

resolution in regions exhibiting large gradients in the dielectric contrast is also a

possibility using this algorithm and has been tested. The use of adaptive meshes

provides a reduction in the computational resources required while maintaining the

reconstruction quality.
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(b) MWT in PEC enclosures
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(c) BMI of brain model
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Figure 6.8: The FEM-CSI cost functional versus the iteration number for (a) Ü-profile,
(b) MWT in PEC enclosures, (c) BMI of brain model and (d) adaptive meshing
dataset reconstructions.
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6.2.4 MR-FEMCSI: 2D TM

The benefits of adding multiplicative regularization to FEM-CSI are studied in

this section. The incident field transmitters are again 2D electric point sources. For

the synthetically generated data, 5% noise is added. The first example in the study

outlines the edge-preserving characteristic of multiplicative regularization as well as

its ability to suppress noise in the data. In this example, the results from MR-

FEMCSI are compared against IE-MRCSI results. The second example shows not

only the advantages of MR, but also those acquired from using FEM-CSI. A summary

of the examples’ parameters are given in Table 6.1, with the error analysis presented

in Table 6.2. The cost functional convergence for each example is shown in Figure

6.14.

6.2.4.1 Low-Contrast Concentric Squares

For the first synthetic dataset, the OI consists of low-contrast concentric squares

positioned in the center of the problem domain Ω as depicted in Figure 6.9. The inner

and outer squares have side-lengths equal to λ and 2λ respectively where λ is the free-

space wavelength at the operating frequency f = 1 GHz. The relative permittivity

of the inner square is εr = 1.6 − j0.2 and εr = 1.3 − j0.4 for the outer square. The

OI is illuminated by 30 transmitters equidistant on a circle of radius 2.33λ. For

each transmitter, the measured synthetic data are collected by 30 receivers evenly

spaced on a circle of radius 2.17λ. The tomography setup and the OI are located in

an unbounded homogeneous background medium with relative permittivity εb = 1.

The inversion domain D is a square centered in the domain with side-length equal

to 3λ. The number of unknowns located in D is approximately 7, 000. The dataset

is inverted using FEM-CSI and MR-FEMCSI. The algorithms are allowed to run for
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Table 6.3: Errors for 2D TM Inversion Examples

Example L1 L2 L∞ log(FS(~wt))

FEM-CSI vs. IE-CSI

FEM-CSI 8.96% 18.22% 63.25% -10.95

IE-CSI 8.94% 17.78% 58.42% -7.63

PEC Enclosures

Circular 12.01% 18.25% 58.29% -7.63

Square 13.41% 19.22% 56.00% -6.89

Triangular 14.07% 19.28% 53.81% -6.18

Brain Model

Blind 13.51% 22.49% 47.72% -10.40

Initial Guess 8.84% 14.54% 36.99% -12.07

Inhomog Bkg 8.19% 13.91% 35.96% -9.70

Adaptive Meshing

Coarse 37.74% 46.60% 97.66% -6.24

Adapted 36.47% 42.42% 77.63% -6.24

Fine 35.47% 41.98% 80.00% -6.24

Low-Contrast Concentric Squares

FEM-CSI 4.95% 7.67% 31.00% -7.71

MR-FEMCSI 2.89% 6.74% 32.42% -7.71

Breast Model

FEM-CSI 28.13% 37.59% 110.12% -10.45

MR-FEMCSI 18.35% 32.82% 81.00% -10.24

Human Forearm Model

MR-FEMCSI 4.10% 7.20% 39.98% -8.82

BMR-FEMCSI Q = 5 3.68% 7.01% 45.14% -8.79

BMR-FEMCSI Q = 20 4.20% 7.64% 43.46% -8.65

E-phantom

MR-FEMCSI 3.59% 6.20% 33.93% -9.78

BMR-FEMCSI Q = 10 3.09% 6.19% 34.88% -9.54

BMR-FEMCSI Q = 30 3.41% 6.30% 33.20% -9.16

BMR-FEMCSI Q−map 3.15% 6.25% 33.72% -9.39
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1024 iterations to ensure convergence. The cost functional convergence is shown in

Figure 6.14 (a).

The reconstruction results using FEM-CSI are shown in Figure 6.9 (c) and (d)

while MR-FEMCSI results are given in Figure 6.9 (e) and (f). A one-dimensional

cross-section at y = 0 is plotted in Figure 6.10 to compare the reconstruction of both

algorithms relative to the actual profile. As is clear from the inversion results, the

quality of MR-FEMCSI reconstructions are better than those of FEM-CSI. With the

incorporation of the MR term, the edges of the squares are reconstructed well and

any unwanted oscillations are smoothed out.

The purpose of this example is to demonstrate the advantages of applying multi-

plicative regularization to FEM-CSI. Nevertheless, the same example is inverted using

IE-MRCSI [27]and the results are shown in Figure 6.11. The reconstructions from

the two algorithms are similar (unwanted reconstruction artifacts are visible in both).

In IE-MRCSI the edges of the squares are sharper because the inversion domain is

a uniform square grid whereas for MR-FEMCSI the inversion domain is a mesh of

arbitrarily oriented triangles.

6.2.4.2 Breast Model

In the second example two advantages of the MR-FEMCSI algorithm are shown:

the ease of incorporating a conductive enclosure to surround the problem domain,

and the algorithm’s capability of employing prior information as an inhomogeneous

background. The selected OI is a 2D slice of a mostly fatty breast model to which an

elliptically-shaped tumor is added. The length of the tumor’s major axis is 1.5 cm,

while its minor axis is 1.0 cm. The breast model along with the tumor are shown in

Figures 6.12 (a) and (b) for a frequency of f = 1.6 GHz. The 2D slice is taken from
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(a) Exact Re(εr) (b) Exact −Im(εr)

(c) FEM-CSI Re(εr) (d) FEM-CSI −Im(εr)

(e) MR-FEMCSI Re(εr) (f) MR-FEMCSI −Im(εr)

Figure 6.9: (a)-(b) Low-contrast concentric squares exact profile, (c)-(d) FEM-CSI
reconstruction and (e)-(f) MR-FEMCSI reconstruction at frequency f = 1 GHz.
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Figure 6.10: A cross-section at y = 0 for the exact profile (solid blue), FEM-CSI
reconstruction (dash-dot black) and MR-FEMCSI (dash red).

the University of Wisconsin-Madison three-dimensional (3D) breast model, which is

derived from anatomically realistic MRI data [102]. The complex permittivities of

different tissues in the model are based on the studies outlined in [103]. The complex

permittivity of the tumor region is taken from the 75th percentile group given in [103].

The mean relative permittivities of the different biological tissues in the model are

summarized in Table 6.4. The OI is immersed in a low-loss matching medium of

relative permittivity εb = 23.4− j1.13 surrounded by a circular conductive enclosure

of radius 0.12 m. The OI is interrogated by 24 transmitters evenly distributed on

a circle of radius 0.069 m at a frequency of f = 1.6 GHz. The scattered data are

collected at 24 receivers per transmitter where the receiver locations are the same as

the transmitter locations.

The inversion domain D is a 0.12 m × 0.094 m rectangular region centered in

the middle of the problem domain. Within D the number of unknowns is approx-

imately 7800. The prior information, depicted in Fig. 6.12 (c) and (d), is used as

an inhomogeneous background and is incorporated within the L[·] operator. The
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Figure 6.11: Low-contrast concentric squares reconstructions using IE-MRCSI.

prior information consists of the skin’s location and complex permittivity at f = 1.6

GHz [101], along with assigning the inside of the breast a complex permittivity of

εr = 6 − j1. The prior value for the inside of the breast is an approximation for

the relative permittivity of fatty tissues, the main breast constituent for the 75th

percentile group. For the algorithms to converge they were run for 2048 iterations.

The reconstruction results are shown in Figures 6.13 (a) and (b) for FEM-CSI and in

Figures 6.13 (c) and (d) for MR-FEMCSI. The cost functional convergence is shown

in Figure 6.14 (b). The results from both algorithms predict the presence of two main

scatterers within the interior of the breast, which are the elliptical tumor and the fi-

Table 6.4: Relative Dielectric Permittivities of Breast Model at f = 1.6 GHz

Biological Tissue Relative Permittivity

Skin 45.00− j11.75

Muscle 54.74− j12.66

Fat 5.50− j0.88

Fibroglandular 43.98− j11.05

Tumor 59.51− j15.85
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(a) Exact Re(εr) (b) Exact −Im(εr)

(c) Prior Re(εr) (d) Prior −Im(εr)

Figure 6.12: (a)-(b) Breast Model exact profile and (c)-(d) given prior information at
frequency f = 1.6 GHz.
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(a) FEM-CSI Re(εr) (b) FEM-CSI −Im(εr)

(c) MR-FEMCSI Re(εr) (d) MR-FEMCSI −Im(εr)

Figure 6.13: Reconstructions at f = 1.6 GHz using (a)-(b) FEM-CSI and (c)-(d)
MR-FEMCSI.

broglandular tissue. The MR-FEMCSI algorithm correctly reconstructs the location

and orientation of the tumor within the breast while preserving the skin; FEM-CSI

fails to maintain the skin correctly. The predicted complex permittivity of the tumor

is underestimated by both algorithms. Both algorithms fail to accurately estimate the

shape and permittivity of the fibroglandular tissue; however the algorithms estimate

the fibroglandular tissue’s location correctly and they both assign the tissue a lower

complex permittivity value compared to that of tumor, which is correct. Overall, the

inclusion of multiplicative regularization enhanced the quality of the reconstruction.
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Figure 6.14: The cost functional versus the iteration number for (a) low-contrast
concentric squares and (b) breast model synthetic datasets reconstruction.

6.2.4.3 Section Conclusion

A multiplicatively regularized finite-element method contrast source inversion

(MR-FEMCSI) algorithm has been validated for 2D microwave imaging under the

TM approximation of the fields. The algorithm retains the advantages of FEM-CSI,

such as the ability to invert data on an arbitrary triangular mesh, allowing a non-

uniform discretization of the imaging domain, as well as the ability to utilize prior

information to introduce an inhomogeneous background into the inversion process.

The addition of multiplicative regularization adds noise suppression to the inversion

and enhances the edges of the reconstructed images while flattening regions of con-

stant contrast.

6.2.5 Balanced MR-FEMCSI: 2D TM

In this section, the BMR-FEMCSI algorithm is tested using synthetic datasets for

2D TM problems. The datasets are selected to demonstrate how the new algorithm
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out-performs the conventional MR-FEMCSI, along with outlining a methodology in

selecting the balancing factor, Q. In the inversion for each dataset, the results are

constrained to remain within physical bounds (i.e. Re(εr) ≥ 1 and Im(εr) ≤ 0).

Unless otherwise specified, the algorithm is allowed to run for 1024 iterations to

ensure convergence. A summary of the examples is given in Table 6.1, while the error

vector-norms are presented in Table 6.2. The cost functional convergence for each

example is shown in Figure 6.21.

6.2.5.1 Human Forearm Model

For biological tissues, the ratio of the real to the imaginary component of the rel-

ative permittivity is large. This degrades the reconstruction quality of the imaginary

part of the contrast when using unbalanced MR-FEMCSI. In this example, synthetic

scattered data from an OI depicting a human forearm is inverted to demonstrate

BMR-FEMCSI’s potential in producing better reconstructions in MWI for biomedi-

cal applications.

The synthetic model is a human forearm, as depicted in Figures 6.15 (a) and (b),

with the relative complex permittivities given by εskin
r = 46.0−j15, εbone

r = 13.0−j2.3

and εmuscle
r = 55 − j16 [101]. The frequency of operation is f = 1 GHz. The OI is

surrounded by a salty water solution with relative permittivity εb = 76.56 − j15.04.

The human forearm is interrogated by 24 transmitters and the data are collected

by 24 receivers per transmitter. The transmitters and receivers are co-located and

equally spaced on a circle of radius 0.094 m. To prevent an inverse crime, the synthetic

dataset is generated using an MoM solver along with adding 10% noise to the scattered

data. The inversion domain D is a square centered in the problem domain Ω with

side-length equal to 0.10 m.
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Figure 6.15: Synthetic arm exact profile at a frequency f = 1 GHz.

The results of using MR-FEMCSI are shown in Figures 6.16 (a) and (b). The

reconstructions using BMR-FEMCSI are shown in Figures 6.16 (c) and (d) for Q = 5

and Figures 6.16 (e) and (f) for Q = 20. The cost functional convergence is shown in

Figure 6.21 (a).

The real part reconstructions using MR-FEMCSI and BMR-FEMCSI for Q = 5

are very similar, but degrades when using Q = 20 in BMR-FEMCSI. In all three

reconstructions, the real part of the bone’s relative permittivity is overshot to an

average of 22. The imaginary part reconstruction using MR-FEMCSI is oscillatory

with poor reconstruction of the arm’s contour. However, as shown in Figures 6.16

(d) and (f), using BMR-FEMCSI the shape of the human forearm is preserved and

distinguishable from the background medium. For BMR-FEMCSI, the imaginary

part reconstruction using Q = 5 is better than using Q = 20, with the imaginary

component of the bone more overshot in the later case. Further, for Q = 20 an

erroneous halo of −Im(εr) = 13 is formed around the forearm muscle, with its value

less than the expected imaginary part of the skin as well as thicker.

From the results presented herein, we speculate that the selection of the Q−factor
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is dependent on the expected ratio of the real to the imaginary components for the

different material parameters constituting the OI (i.e., R = |Re(εr)/Im(εr)|). Using

the actual values of the complex relative permittivity, for the different objects in

the imaging domain D the ratios are: Rskin ≈ 3.1, Rbone ≈ 5.7, Rmuscle ≈ 3.4 and

Rbackground ≈ 5.1. With the ratios’ average being Raverage ≈ 4.3, it is not a surprise

that the best reconstruction result is obtained using BMR-FEMCSI for Q = 5.

6.2.5.2 E-Phantom

The purpose of this numerical example is to demonstrate how the selection of

the balancing factor, Q, will alter the results significantly. The OI presented herein

consists of an “e-phantom” with a circular inclusion embedded within it [87, 104].

As depicted in Figures 6.17 (a) and (b), the relative complex permittivity of the

inclusion and the right-most feature of the OI is εr = 33 − j5 at a frequency f = 2

GHz, while the rest of the “e-phantom” has a permittivity of εr = 33− j1.2. The OI

is immersed in a low-loss background with relative permittivity of εb = 23− j1 and is

illuminated by 24 transmitters successively. The resultant scattered field is collected

at 24 receivers per transmitter. The transmitters and receivers are evenly distributed

on a circle of radius 0.1 m.

The collected synthetic field is inverted using MR-FEMCSI and BMR-FEMCSI.

The imaging domain D is a square centered in the problem domain Ω with side-length

equal to 0.14 m. The number of unknowns in D is 8010 and they are located at the

nodes of a triangular arbitrary mesh. The reconstruction results using MR-FEMCSI

are shown in Figures 6.18 (a) and (b). The BMR-FEMCSI results are shown in

Figures 6.18 (c) and (d) for Q = 10 and Figures 6.18 (e) and (f) for Q = 30. The

cost functional convergence for each algorithm run is shown in Figure 6.21 (b).
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

(e) Re(εr) (f) −Im(εr)

Figure 6.16: Human forarm model reconstructions using (a)-(b) MR-FEMCSI and
(c)-(d) BMR-FEMCSI for Q = 5 and (e)-(f) for Q = 20.
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(a) Re(εr) (b) −Im(εr)

Figure 6.17: The “e-phatom” with circular inclusion exact profile at a frequency f = 2
GHz.

For this example, statistical analysis is performed to compare the quality of the

reconstructions. This analysis includes calculating the mean and variance of the

real and imaginary components of the reconstructions for each region in the imaging

domain.

The reconstructions of the real component within the imaging domain are accu-

rate and are similar almost independently of the chosen Q. The real component of the

reconstructed permittivity has an approximate mean value of 32.5, while for the back-

ground medium this mean is 23.3, independent of Q. Further, the variances, σ2
Re(εr)

,

are 3.6 and 1.3 for the OI and the background medium respectively, independent of

the selected Q.

The quality of the imaginary part reconstructions is analyzed for each separate

region of the exact OI with the aid of the error-bar plots shown in Figure 6.19 and

the statistical results are summarized in Table 6.5. For a given Q, the imaginary

reconstruction, −Im(εr), of each region in D is represented by a line whose mid-point

is the mean of the reconstruction with a length of two times the variance, σ2
−Im(εr)

.
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

(e) Re(εr) (f) −Im(εr)

Figure 6.18: The “e-phatom” with circular inclusion reconstructions using (a)-(b)
MR-FEMCSI and (c)-(d) BMR-FEMCSI for Q = 10 and (e)-(f) for Q = 30.
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Considering MR-FEMCSI (Q = 1), the reconstruction is the most accurate of the

four inversions with respect to the mean value, but it has the largest variance. This is

visible in Figure 6.18 (b) as the oscillatory behavior of the reconstruction, particularly

for the “e-phantom” region. Except for the inclusion region and right-most feature

of the “e-phantom”, most of the imaginary part of the OI is indistinguishable from

the background.

The BMR-FEMCSI algorithm with Q = 10 was more successful in attaining the

different features of the OI with better reconstruction of the right-most OI feature.

This is clear from the error-bar plots as the different variances are lower for the

Q = 10 reconstruction in comparison the MR-FEMCSI estimates. For Q = 30 the

low-loss features of the OI are better reconstructed with an average predicted value of

−Im(εr) = 1.4; nevertheless from Table 6.5 the variance for the low-loss “e-phantom”

feature is larger for Q = 30 in comparison to Q = 10, which is due to the feature

estimates near the lossy arm being overshot for Q = 30. Moreover the value of the

imaginary component of the right-most feature is undershot to approximately 3, while

the circular inclusion is not detected at all; the later explains why the mean of the

circular inclusion estimates is far off from the actual expected value. Finally, artifacts

are visible around the right-most arm of the “e-phantom”, which will affect the mean

and the variance of the background medium estimates as observed in Figure 6.19 and

Table 6.5.

The different results obtained for various balancing factors, Q, are due to the

differences in the ratio R amongst the OI components. For the circular inclusion

and the right-most OI element R = 6.6, thus the imaginary part reconstruction

of these features are better using MR-FEMCSI (Q = 1) and BMR-FEMCSI with

Q = 10. For the low-loss features in the “e-phantom” the ratio R = 27.5; thus a
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Table 6.5: Statistical Analysis of results

Region
|Im(εreconstr.r )−Im(εactualr )|

|Im(εactualr )| σ2
−Im(εr)

Background Medium

MR-FEMCSI (Q = 1) 8.24% 0.196

Q = 10 6.67% 0.088

Q = 30 9.06% 0.073

Q−map 5.66% 0.028

Low-loss E-phantom

MR-FEMCSI (Q = 1) 5.93% 0.300

Q = 10 7.35% 0.080

Q = 30 18.47% 0.091

Q−map 14.28% 0.026

High-loss E-phantom Arm

MR-FEMCSI (Q = 1) 8.73% 1.146

Q = 10 9.25% 0.635

Q = 30 36.37% 0.189

Q−map 16.97% 0.953

High-loss Circular Inclusion

MR-FEMCSI (Q = 1) 25.42% 1.458

Q = 10 32.76% 0.024

Q = 30 70.50% 0.001

Q−map 44.93% 0.038
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Figure 6.19: Statistical analysis of the −Im(εr) reconstructions using different Q-
factors.

better reconstruction for these features is obtained using BMR-FEMCSI with Q = 30,

degrading the reconstruction of the high-loss parts of the OI. These observations

motivated us to have a location-dependent mapping of Q across the imaging domain

D. This mapping is built using prior information about the OI as well as results from

previous BMR-FEMCSI runs. A rectangular region is created inside the imaging

domain where the location of the OI is predicted. Within this rectangular region, two

regions are embedded: a circular region of 6 mm radius centered at the estimated

location of the inclusion, and a small rectangular region at the estimated location of

the right-most feature of the OI. The location and size of the different regions are

estimated using the BMR-FEMCSI runs. A Q−factor of 6 is assigned to the two

embedded regions. The Q−factor for the remainder of the rectangle in D is set to 28.

The rest of the imaging domain D has a Q = 23. The different values of Q are based

on the various ratios R calculated earlier. The final mapping of Q throughout D is

depicted in Figure 6.20 (a).

The use of the location-dependent Q−map results in better imaginary part re-
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(a) Q−map (b) −Im(εr)

Figure 6.20: (a) Map of balancing factor Q inside the imaging domain and (b) the
imaginary part reconstruction using BMR-FEMCSI at f = 2 GHz.

constructions for the background medium and the low-loss “e-phantom” feature in

comparison to those achieved using a fixed value of Q. This is clear in Figure 6.19 as

these features have mean values close to the expected actual values, with the variance

of the estimates being the smallest in comparison to the reconstructions with different

fixed Q−factors. For the circular inclusion, the variance of the estimate is low but

the mean value is smaller than expected; however, the accuracy is still better than

the case with Q = 30. The small variance suggests a smooth reconstruction as shown

in Figure 6.20 (b). The lossy arm reconstruction is again better than the Q = 30

estimate and is closer to the result obtained using Q = 10. The reconstruction of the

real component of the OI is not shown here as it is similar to the ones estimated by

MR-FEMCSI and BMR-FEMCSI with fixed Q.

In this example, the information used to create the Q−map was extracted from

the actual profile of the OI as well as the previous BMR-FEMCSI runs. Nevertheless,

for other problems the ratio of the real to the imaginary components of the OI can be

estimated using studies of the electrical properties for the materials being imaged, e.g.
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Figure 6.21: The cost functional versus the iteration number for (a) human forearm
model and (b) “e-phantom” synthetic datasets reconstruction.

biological tissues permittivity models [101, 102]. As for the location and the shape

of different inhomogeneities in the OI, they can be predicted using other imaging

modalities, e.g. magnetic resonance imaging (MRI) or ultrasound.

6.2.5.3 Section Conclusion

It has been shown in this section that BMR-FEMCSI can provide a better recon-

struction for the imaginary part of the relative complex permittivity when there is a

large imbalance between the real and imaginary parts of the OI’s relative permittiv-

ity. From the examples, it can be deduced that the selection of the balancing factor

will have an influence on the reconstruction, and the choice of Q is dependent on the

ratio of the real to the imaginary components of the OI’s relative complex permittiv-

ity. Using prior information about the OI along with the results from BMR-FEMCSI

for fixed Qs, a map of balancing factor can be formed across the imaging domain to

improve the quality of the reconstructions. A future improvement would be to create

the Q-map using no prior information.
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6.2.6 Inversion of 2D TE Datasets

In this section, the MR-FEMCSI algorithm for 2D TE problems is tested using

synthetically generated data. The incident electric field is produced by an imposed

2D magnetic point sources. For a transmitter t, the incident field of such a source is

given by

~Einc
t (~r) =

Zb
4
H

(2)
1 (kb |~r − ~rt|)

[(y − yt)x̂− (x− xt)ŷ]

|~r − ~rt|
(6.4)

where Zb =
√
µ0/(ε0εb) is the intrinsic impedance of the background, H

(2)
1 is the

second-kind Hankel function of order one and ~rt = xtx̂+ ytŷ is the position vector of

transmitter t.

An inverse crime is avoided by adding 3% additive white noise to the scattered

field data [98]. The noise is added to each spatial component of the field separately.

In addition, the synthetic data is generated using meshes that are different from the

ones used to perform the inversion. As for TM cases, during the inversion process

the estimates at each iteration are constrained to lie within physical bounds, that

is Re(εr) ≥ 1 and Im(εr) ≤ 0. For each example, the inversion algorithm is run

for 2048 iterations to ensure convergence. A summary is provided in Table 6.6 and

the calculated error vector-norms are provided in Table 6.7. The cost functional

convergence for each example is shown in Figures 6.26.

6.2.6.1 Imaging inside a Conductive Enclosure

As previously discussed, one advantage of using an FEM-based inversion algorithm

is the ability to perform imaging in different conductive enclosure shapes without any

modifications to the algorithm itself [29, 100]. In this section, microwave imaging for

the TE case is done in a triangular conductive enclosure.

The OI in this example is the same as the OI described in Section 6.2.3.2. The
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

Figure 6.22: The MR-FEMCSI reconstructions af a frequency f = 1 GHz for (a)-
(b) an unbounded domain problem and for (c)-(d) a domain enclosed by triangular
conductive boundary.
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target configuration is shown in Figure 6.2. The OI is centered within a conductive

enclosure shaped as an equilateral triangle of side-length equal to 0.42 m, and it is

surrounded by a background medium of relative permittivity εb = 23.4 − j1.13 at a

frequency f = 1 GHz. The OI is interrogated by 32 transmitters and the scattered

data are collected at 32 receivers per transmitter, co-located with the transmitters.

The transmitters are magnetic line sources. The x and y components of the TE

scattered field are collected. The transmitting and receiving points are evenly spaced

on a circle of radius 0.1 m. For comparison purposes, imaging is performed also with

the OI immersed in an unbounded homogeneous region.

The inversion domain is a square centered in the middle of the problem domain

with side-length equal to 15 cm. The inversion domain consists of approximately

12, 000 unstructured arbitrarily oriented triangles. The unknown contrast, χ, and

contrast source, ~wt, variables in the inversion algorithm are located at the centroids

of these triangles. Recall that the electric field is solved using edge elements for the

TE case.

The reconstructions after 2048 iterations are shown in Figure 6.22. For both

configurations, the unbounded and the triangular conductive enclosure, the features

Table 6.6: Summary of 2D and 3D Vectorial Inversion Examples

Example f (GHz) T Ne E I titer (s)

Circular Lossy Targets (2D) 1 32

Triangular Conductive Enclosure 40159 60540 12238 9

Unbounded 24338 36689 12375 6

Lossy E-phantom (2D) 0.9 16 20974 31626 7651

Transverse Electric 2.7

Transverse Magnetic 0.7

Heterogeneous Lossy Cube (3D) 1 72 36767 45176 18656 149
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Table 6.7: Errors for 2D and 3D Vectorial Inversion Examples

Example L1 L2 L∞ log(FS(~wt))

Circular Lossy Targets (2D)

Triangular Conductive Enclosure 8.70% 19.39% 77.10% -5.64

Unbounded 9.27% 19.25% 63.92% -5.63

Loss E-phantom (2D)

Transverse Electric

MR-FEMCSI 2.09% 2.74% 10.09% -6.91

BMR-FEMCSI Q = 20 1.70% 2.38% 9.95% -6.94

Transverse Magnetic

MR-FEMCSI 1.72% 2.41% 10.03% -11.87

BMR-FEMCSI Q = 20 1.54% 2.26% 9.67% -11.86

Heterogeneous Lossy Cube (3D)

FEMCSI 4.87% 15.33% 71.33% -8.65

MR-FEMCSI 4.73% 15.01% 70.87% -8.63

of the OI are reconstructed successfully. In both configurations, the estimated real

and imaginary relative permittivity values are close to the true values.

6.2.6.2 Lossy E-phantom: TM-TE comparison

The next OI, considered for purposes of comparing TM with TE reconstructions,

is the “e-phantom” which consists of multiple concave features as depicted in Figure

6.23. The complex relative permittivity of the OI is εr = 70−j17, and it is immersed in

an unbounded homogeneous background with complex relative permittivity of εb =

77.5 − j20.0. The OI is illuminated by 16 transmitters at a frequency of f = 0.9

GHz and the scattered data are collected using 16 receivers per transmitter. The

transmitters are electric line sources in TM case and magnetic line sources in the TE

case. The z component of the scattered field is collected in the TM case and the

x and y components are collected in the TE case. The transmitting and receiving
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(a) Re(εr) (b) −Im(εr)

Figure 6.23: The exact profile of “e-phantom” at a frequency f = 0.9 GHz.

points are evenly spaced on a circle of radius 0.1 m.

In both cases, the inversion domain is a square centered in the middle of the

problem domain with side-length equal to 13 cm. The inversion domain consists

of 7651 unstructured arbitrarily oriented triangles. The unknown contrast, χ, and

contrast source, ~wt, variables are located at the centroids of these triangles. The TM

and TE datasets are inverted using MR-FEM-CSI with inversion results for TE and

TM cases shown in Figure 6.24.

The reconstruction results for the TE case are shown in Figures 6.24 (a) and (b),

while Figures 6.24 (c) and (d) show results for the TM case. The cost functional

convergence is shown in Figure 6.26 (b). For both polarizations, the value of the

complex relative permittivity of the target is estimated accurately, but all of the

features show up only for the TE case. The smallest “finger” of the phantom does not

show up well in the TM reconstruction. This is consistent with the conclusion arrived

at by Mojabi and LoVetri [35] who speculated that more accurate reconstructions

may be obtained using TE data than using TM data, especially with only a few

transmitters and receivers being used. The imaginary component reconstructions
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

Figure 6.24: MR-FEMCSI reconstructions at f = 0.9 GHz for (a)-(b) the TE case
and (c)-(d) the TM case.

show oscillatory artifacts for both the TM and TE cases, and this is due to the

imbalance between the relative permittivity’s real and imaginary components for the

background medium and the OI. This problem can be ameliorated using the balanced

MR-FEMCSI algorithm, as the results shown in Figure 6.25 demonstrate.

As listed in Table 6.6, the time per iteration is 3.5 times more for the TE case than

the TM case. This is expected as more computations are required at each iteration

for the TE inversion.
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

Figure 6.25: BMR-FEMCSI reconstructions for Q = 20 at f = 0.9 GHz for (a)-(b)
the TE case and (c)-(d) the TM case.
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Figure 6.26: The cost functional versus the iteration number for (a) imaging inside a
conductive enclosure and (b) lossy E-phantom synthetic datasets reconstruction.

6.2.6.3 Section Conclusion

The FEM-CSI algorithm and its variants have been validated for 2D microwave

imaging under the TE approximation of the fields. The algorithm retains the advan-

tages of FEM-CSI, such as the ability to invert on an unstructured triangular mesh,

as well as the ease of modeling different boundary types and shapes. In addition

to testing the algorithm, the last example which was considered shows that better

reconstructions are obtained using TE data in comparison to TM data, confirming

the conclusions of previous publications.

6.2.7 Inversion of 3D Datasets

In this section, the FEM-CSI algorithm and its multiplicative regularized form

are tested using a 3D full-vectorial problem. Due to the computational complexity

associated with three-dimensional problems, a simple example is selected to demon-

strate the functionality of the algorithm. As well as testing the method, a brief study
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Figure 6.27: (a) The coordinates configuration and the OI depiction. (b) The cost
functional progress for the inversion of 3D synthetic dataset.

that outlines the use of different techniques to solve the FEM matrix equations is

presented in this section.

6.2.7.1 A Heterogeneous Lossy Dielectric Cube

The OI consists of two cubes: an outer cube with side-length equal to 0.6λb

centered at the origin of the problem domain Ω, and an inner cube with side-length

equal to 0.3λb with its center having coordinates (0.05λb, 0.05λb, 0.05λb). Here λb is

the background medium wavelength at the operating frequency f = 1 GHz. In this

example, the background medium is free-space, hence εb = 1. The outer cube is

lossless and it has a relative permittivity of εr = 1.5. The inner cube is lossy and

has a complex relative permittivity of εr = 2 − j2. The OI is depicted in Figure

6.27 (a), while two-dimensional cross-sections of the OI’s real and imaginary relative

permittivity at different planes are shown in Figures 6.28 (a)-(c) and Figures 6.29

(a)-(c). This same target and configuration was used to test a 3D GNI technique

in [105].
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The OI is illuminated with single plane waves incident at a multitude of direc-

tions. The plane waves’ incident polar angle θ varies from 25◦ to 155◦ in 26◦ steps.

For each polar angle, the azimuthal angle φ varies from −150◦ to 180◦ in 30◦ incre-

ments. Hence the total number of incident directions is 72. The orientation of the

spherical coordinate system is given in Figure 6.27 (a). The incident plane waves are

selected to have a magnitude of 1 and a phase angle of 0 at (0, 0, 0). The electric field

associated with each incident plane wave is polarized such that it has equal θ− and

φ− components:

~Einc
t (~r) = Einc

t,θ θ̂ + Einc
t,φ φ̂

= [θ̂ + φ̂]
ejkbk̂t·~r√

2

(6.5)

where ~r = xx̂ + yẑ + zẑ is the position vector of an observation point, kb is the

wavenumber of the background medium and

k̂t = sin(θt) cos(φt)x̂+ sin(θt) sin(φt)ŷ + cos(θt)ẑ. (6.6)

Here θt and φt denote the polar and azimuthal angles of an incident plane wave

produced by a transmitter t. We say that the plane-wave is incoming from the (θt,φt)

direction. In Cartesian coordinates, the incident electric field is written as

~Einc
t (~r) = Einc

t,x x̂+ Einc
t,y ŷ + Einc

t,z ẑ

= (x̂ [cos(θt) cos(φt)− sin(φt)] + ŷ [cos(θt) sin(φt) + cos(φt)]− ẑ sin(θt))

× ejkbk̂t·~r√
2
.

(6.7)
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For each transmitter, the scattered field data are collected at 72 receivers points

distributed on the surface of a sphere with radius 2λb centered around the target.

The receiver points are specified using θ and φ in the spherical coordinate system.

Thus for each dataset, the total number of measurements is 72 × 72 = 5, 184. For

each scattered field measurement, all three Cartesian components are collected.

The synthetic datasets are generated using an FEM solver where 3% noise is

added according to (6.1). The noise is added to each spatial component of the vector

field separately. The mesh used to generate the synthetic data is different from

the inversion mesh. The algorithms are allowed to run for 512 iterations to ensure

convergence. The contrast estimates after each iteration are constrained to lie within

physical bounds, i.e. Re(εr) > 1 and −Im(εr) > 0. The inversion domain is selected

as a sphere with radius 0.165 m and centered at the origin. The unknowns are located

at the centroids of 18, 656 tetrahedra. A summary of the inversion problem is given

in Table 6.6 and the cost functional convergence is shown in Figure 6.27 (b). A 1-D

cross-section of the reconstruction across the plane y = 0.015 m is shown in Figure

6.30.

The FEM-CSI and MR-FEMCSI imaging results at planes x = 0.015 m, y =

0.015 m and z = 0.015 m are shown in Figures 6.28 (d)-(i) for the real part of the

reconstructions and Figures 6.29 (d)-(i) for the imaginary part. The results are cross-

sections through the tetrahedral mesh; hence the triangular faceted nature of the

image. The expected borders of the two cubes are depicted with solid white lines in

each plot. The Lp error vector-norms for this example are given in Table 6.7.

The inversion algorithms are able to detect the location and the dimensions of the

cubes; nevertheless their shapes are deformed, especially the inner cube. The close

to spherical shape of the inner cube is due to the reconstruction being performed on
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(a) x = 0.015 m (b) y = 0.015 m (c) z = 0.015 m

(d) x = 0.015 m (e) y = 0.015 m (f) z = 0.015 m

(g) x = 0.015 m (h) y = 0.015 m (i) z = 0.015 m

Figure 6.28: The real component Re(εr) of the (a)-(c) the actual OI, the recon-
structions using (d)-(f) FEM-CSI and (g)-(i) MR-FEMCSI at planes x = 0.015m ,
y = 0.015m and z = 0.015m.
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(a) x = 0.015 m (b) y = 0.015 m (c) z = 0.015 m

(d) x = 0.015 m (e) y = 0.015 m (f) z = 0.015 m

(g) x = 0.015 m (h) y = 0.015 m (i) z = 0.015 m

Figure 6.29: The imaginary component −Im(εr) of the (a)-(c) the actual OI, the
reconstructions using (d)-(f) FEM-CSI and (g)-(i) MR-FEMCSI at planes x = 0.015m
, y = 0.015m and z = 0.015m.
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a mesh with arbitrarily oriented tetrahedra; thus the edges of the tetrahedra will,

most probably, not line up with the cube edges. This can be fixed by increasing

the number of tetrahedral elements in the mesh, but this will cause an increase in

the computational resources required to solve the problem. Such resources are not

currently available given the serial nature of the implementation.

The results using multiplicative regularization are smoother and less oscillatory

and one can easily distinguish the two objects. With respect to the permittivity

values, both algorithms tend to correctly predict that the outer cube is lossless. The

real component of the outer cube is smooth but underestimated to an average value

of 1.33 using MR. As for the FEM-CSI reconstruction, the outer cube’s real part

increases from 1 to 1.75 as can be seen from Figure 6.30 (a). The inner cube is

better predicted with the inclusion of the L2 weighted norm; the FEM-CSI algorithm

overestimates the imaginary part of the relative permittivity to values as high as 3.5.

This can be observed from the 1-D plot in Figure 6.30 (b). The real part of the inner

cube is overestimated by both algorithms, however the FEM-CSI prediction is larger

than 3 whereas the MR-FEMCSI has an average of approximately 2.3.

Due to the mesh’s unstructured nature, the 2D plots shown in Figures 6.28 and

6.29 do not appear aesthetically pleasing. This can be resolved by interpolating the

results to a 3D cubical grid and then smoothing them spatially using a convolutional

filter∗. A 2D slice at z = 0.015 m for the MR-FEMCSI reconstruction interpolated

to a 3D grid and then filtered is shown in Figure 6.31. The left column contains the

interpolated results, whereas the right column shows the interpolated results after

filtering. The procedure does not change the estimated values nor the dimensions of

the reconstruction as can be seen by comparing the filtered results at z = 0.015 m with

∗The MATLAB built-in function smooth3 was used to create the spatial convolutional filter.
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Figure 6.30: A 1-D cross-section across the plane y = 0.015 m for the exact profile
(solid blue), FEM-CSI reconstruction (dash red) and MR-FEMCSI (dash-dot black).

Figures 6.28 (i) and 6.29 (i). It simply makes the results more aesthetically appealing.

Reconstructions for all subsequent 3D datasets in this thesis will be presented after

post-processing them using the described method.

6.2.7.2 Comparison of Computational Resource using Different Solvers

The current implementation of the 3D algorithms utilizes sparse matrix LU-

decomposition with column pre-ordering to calculate the inverse FEM operator ~L.

This technique incurs large memory requirements, and so an alternative with lower

memory requirements would be to use iterative techniques like GMRES. Here a brief

description of the computational time and memory usage of LU-decomposition verses

GMRES is studied. The study is undertaken using MATLAB, thus the time and

memory usage are measured using built-in MATLAB functions. The objective of the

study is not to compare the accuracy of the results from the two methods nor to rec-

ommend a particular technique, but merely to justify why, within the scope and the

time-frame of the thesis, LU decomposition was selected over an iterative technique.
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(a) Re(εr) (b) Re(εr)

(c) −Im(εr) (d) −Im(εr)

Figure 6.31: The MR-FEMCSI reconstruction at plane z = 0.015 m interpolated to
a cubic grid (a), (c) without spatial filtering and (b), (d) with spatial filtering.

Let us consider a 3D mesh with Ne = 34, 505 tetrahedral elements interconnected

via E = 42, 552 edges. The FEM matrix equation can be written as

Kχ[Esct
t ] = ~Rχ · ~E

inc

t . (6.8)

where Kχ ∈ CE×E and ~Rχ ∈ CE×Ne are sparse symmetric matrices dependent on

the problem boundary as well as the background wavenumber and the contrast of

the OI. For this example, the OI is the system of cubes presented in Section 6.2.7.1

surrounded by free-space within a domain Ω truncated by absorbing boundaries. The

data vectors Esct
t ∈ CE and ~E

inc

t ∈ CNe are, respectively, the scattered field values

along the mesh edges and the incident field spatial-vectors at the centroids of the mesh

tetrahedra. The goal of the matrix equation is to solve for the tangential scattered
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field values Esct
t , hence the FEM equation can be rewritten as

Esct
t = ~L

[
~E

inc

t

]
= K−1

χ

[
~Rχ · ~E

inc

t

]
(6.9)

where ~L is the inverse FEM matrix. Thus, to calculate the scattered field vector Esct
t

the inverse of matrix Kχ is required. Practically, this is not feasible as the inverse

of a sparse matrix is not sparse, and will therefore require a very large amount of

memory and will take a long time to compute. The alternative is to resort to solving

equation (6.8) whenever required using direct or iterative methods.

The direct method used in this study involves computing the LU-decomposition of

the sparse, symmetric matrix Kχ using UMFPACK and then using back-substitution

techniques to calculate the scattered field as required. The iterative method selected

for this study is GMRES using no preconditioner at first, and then testing it with

diagonal and incomplete LU preconditioning. For GMRES, the algorithm inputs are

Kχ and the evaluation of ~Rχ · ~E
inc

t . The setup parameters for GMRES are the initial

guess, the maximum number of inner and outer iterations and an error tolerance. The

initial guess is selected to be zero, the error tolerance is set to 0.001 and the maximum

number of inner and outer iterations are 20 and 100, respectively. Furthermore, when

incomplete LU is used as a preconditioner additional parameters need to be set. The

GMRES parameters are selected ad-hoc by trial-and-error to ensure an acceptable

convergence. The results of the study are summarized in Table 6.8.

Whether LU or GMRES with preconditioning is utilized, the required matrices are

computed once, saved and recalled when necessary. Amongst the different techniques,

LU-decomposition required the largest amount of memory. Nevertheless, after calcu-

lating the decomposition matrices L and U along with the pre-ordering matrices P

and Q, this method calculated the solution in the least amount of time compared to
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Table 6.8: Computational Resources Required for Different Solvers

Solver Time and Iterations Memory[1] Error[2]

LU with back-substitution

Decomposition 35.17 s L : 455 MB

U : 455 MB

P : 1 MB

Q : 1 MB

Solving (6.8) 0.69 s

GMRES

No Preconditioner 107.4 s 0.11%

76 iterations

Diagonal Preconditioner

Constructing matrices 0.03 s Kχ,diag
[3]: 1.30 MB

Solving (6.8) 68.17 s 0.12%

48 iterations

Incomplete LU

Constructing matrices 111.52 s Linc
[3]: 148 MB

Uinc : 148 MB

Solving (6.8) 2.78 s 0.14%

14 iterations

[1] Here, the extra memory required to compute the problem using a certain
solver is only noted.

[2] The error is calculated as
(∥∥xGMRES − xLU

∥∥2
/
∥∥xLU

∥∥2
)

where xLU and

xGMRES are the LU and GMRES solutions respectively.
[3] The abbreviations diag and inc stand for diagonal and incomplete.
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GMRES with the different preconditioners. With GMRES, the best time was achieved

using incomplete LU preconditioning however it had to calculate the matrices Linc

and Uinc beforehand.

The calculation times shown in Table 6.8 are for a single transmitter. Given T

transmitters for a particular problem, at each inversion algorithm iteration a minimum

of 6 × T evaluations equivalent to (6.8) are required. In the work presented in the

thesis, the 3D mesh densities are kept to within feasible limits, such that it is more

time-efficient to use LU-decomposition techniques and get satisfactory results. The

memory requirement can be handled as the workstation used to develop the algorithm

has 18 GB of physical memory.

Nevertheless, if the number of elements within the mesh increases, the memory

requirement would surge to an amount which could not be handled by a typical

workstation. The solution would then be to use iterative methods, the parallelization

of which is beyond the scope of the thesis. Further details about iterative methods

for sparse systems can be found in [106].
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Table 6.9: Summary of 2D Experimental Datasets

Example f (GHz) T Ne N* I titer (s)

University of Manitoba

E-Phantom 5 24 38496 19390 13706 2.90

Wood-Nylon 3 24 15826 8060 4522 0.85

Human Forearm 0.8, 1, 1.2 24 64360 32387 11455 4.00

UPC 2.33 64 101520 55127 22582 39.81

Institut Fresnel 2D 40982 17887

TM 20726

FoamDielInt 2− 10 8 21

FoamDielExt 2− 10 8 21

FoamTwinDiel 2− 10 18 40

FoamMetExt 2− 18 18 80

TE 61707

FoamDielInt 2− 10 8 27

FoamDielExt 2− 10 8 27

FoamTwinDiel 2− 10 18 42

FoamMetExt 2− 18 18 90

* For the TE case, this is the number of edges E in the inversion mesh.

6.3 Experimental Results

6.3.1 UofM Microwave Tomography System

The research group at the University of Manitoba (UofM) has constructed a mi-

crowave imaging system with a Plexiglas casing [22], as well as a prototype with a

metallic enclosure [21]. A picture of the system with the Plexiglas casing is shown

in Figure 6.32 (a), and with the conductive enclosure in Figure 6.33 (a). Despite the

3D nature of the actual system, the inversion of the measurement datasets obtained

from the system is performed under the 2D TM assumption, i.e. ~Esct
t = Esct

t,z ẑ and
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(a) (b)

Figure 6.32: (a) The MWT system with the Plexiglas casing. (b) A Vivaldi antenna.

~Einc
t = Einc

t,z ẑ.

The microwave imaging system consists of a vector network analyzer (VNA), an

Agilent PNA E8363, used as a microwave source and receiver. The VNA is connected

to the antennas via a 24 matrix switch (Agilent 87050A-K24). The experimental

apparatus is controlled via a computer workstation which is connected through a local-

ethernet device. As transducers (transmitters/receivers), the system employs twenty-

four antennas arranged at even intervals of 15◦ in a circular array at the midpoint

height along the inside of the enclosures. At a single frequency, 23 data points are

collected per transmitter, thus the total number of measurements is 23 × 24 = 552

per dataset.

The background medium for the Plexiglas system is free-space (εb = 1). The

air-filled system uses Vivaldi antennas as transmitters and receivers [107]. A picture

of a Vivaldi antenna is shown in Figure 6.32 (b). The design bandwidth of the

antennas is from 3 GHz to 10 GHz. The optimum operational frequencies of this

system were chosen utilizing a frequency-selection procedure outlined in [22]. The

Vivaldi antennas are assumed to be evenly spaced on a circle of ≈ 13.0 cm radius for
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(a) (b)

Figure 6.33: (a) The metallic enclosure. (b) A dipole antenna with quarter wavelength
balun.

the inversion algorithms. The Plexiglas cylinder has a radius of ≈ 22 cm and is 50.8

cm in height.

For the metallic enclosure system, the main purpose is to image biological targets,

hence the system uses a fluid of deionized water and table salt as a background

medium. The matching fluid is selected to decrease the image contrast, as well as to

reduce the modeling error between the assumed computational model and the actual

system. The system utilizes 24 dipole antennas with a quarter-wavelength balun. A

picture of a single dipole is shown in Figure 6.33 (b). The antennas are located at a

radius of 9.4 cm from the center of the chamber. The metallic enclosure has a radius

of 22.4 cm and is filled, to a height of 44.4 cm, with a matching fluid. The system is

capable of imaging from approximately 0.8 GHz to 1.2 GHz in a salt/deionized water

background. A study of the matching fluid selection as well as a full description of

the system are detailed in [91].

For a transmitter t, the VNA system measures the S-parameter Sr,t which is the

ratio of the voltage measured at a receiver port r to the voltage transmitted via

port t. As the inversion algorithms require scattered field measurements, the raw
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S-parameter data must be calibrated. For each dataset three S-parameter measure-

ments are collected: the measurements without the presence of the OI and are labeled

as incident data; the measurements with the unknown target in the system and are

denoted as the OI total data; and the measurements with a reference object in the

system and are called the reference total data. The scattered data due to the OI

is calculated by subtracting the incident data from the OI total data; this is called

S sct,OI
r,t . Similarly, the scattered data due to the reference is evaluated by taking

the difference between the incident and the reference total data; this is denoted as

S sct,ref
r,t . Assuming a 2D line source model for the incident field, the scattered electric

field data from the known reference, E sct,ref
r,t , can be calculated analytically for the

model. The reference object typically used in the UofM system is a metallic cylinder.

Finally, the calibrated measured fields, Esct
r,t , for the unknown OI are calibrated using

Esct
r,t =

Esct, ref
r,t

S sct,ref
r,t

S sct,OI
r,t . (6.10)

This method of calibration eliminates any measurement errors which are constant

over the two scattered data measurements, S sct,ref
r,t and S sct,OI

r,t . Examples of the

removable errors include cable losses, phase shifts and mis-matches at the connectors.

This method is not capable of removing errors due to the coupling of the antennas in

the system, and it has limited capacity to remove modeling error: the error introduced

into the inversion process because the inversion model does not match the actual

system. Further details of calibrating the UofM system are discussed in [22,25,91].

6.3.1.1 Inversion of UofM Datasets

Three UofM datasets are inverted using the inversion algorithms presented in this

work. The inversion algorithms assume the incident field is produced by a 2D electric
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Figure 6.34: The cost functional versus the iteration number for (a) the E-Phantom,
(b) wood-nylon and (c) volunteer one forearm experimental datasets reconstruction.

line source given by (6.3). Unless otherwise specified, the algorithms are allowed to

run for 1024 iterations to ensure convergence. In the inversion for each dataset the

results are constrained to remain within the regions defined by 1 < Re(εr) < 83 and

0 < −Im(εr) < 30. The cost functional convergence for the each dataset are shown

in Figure 6.34. A summary of the examples is given in Table 6.9.

6.3.1.2 E-Phantom

As the first example, an “e-phantom” with multiple concave features is used as

the target in the UofM air-filled MWT system. A side-view of the actual target is

shown in Figure 6.35 (a), while the exact permittivity profile is depicted in Figure

6.35 (b). The “e-phantom” is constructed of ultrahigh-molecular-weight (UHMW)

polyethylene which is a lossless material of relative permittivity εr = 2.3 [108]. The

inversion domain D is selected to be a square centered in the problem domain Ω with

side-length equal to 0.13 m.

The computational complexity of the inversion algorithm is reduced by adapting

the inversion mesh such that the mesh is denser within the imaging domain D in

comparison to outside D. This results in the number of unknowns in D to be 13, 706
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(a) Side-view of Actual Target (b) Exact Profile

Figure 6.35: The “e-phantom” (a) inside the imaging setup, (b) its exact profile at
f = 5 GHz.

nodes, while the total number of nodes N in problem domain Ω is 19, 390. The ability

to control the mesh density demonstrates an advantage of FEM-CSI in comparison

to other CSI formulations.

The real parts of the relative permittivity using FEM-CSI and MR-FEMCSI are

shown in Figures 6.36 (a) and (b) (the imaginary parts are omitted because the back-

ground and the target are close to being lossless). Using multiplicative regularization

the shape and edges of the target is well reconstructed; however features of the “e-

phantom” smaller than 8 mm (approx. 2λ/15, where λ is the free-space wavelength)

are not resolved. This result is similar to that obtained using MR-GNI on a uni-

form grid as reported in [90]. The MR-FEMCSI reconstruction is more homogeneous

within the target contour in comparison to the FEM-CSI result; in addition the value

of the permittivity is not overshot by MR-FEMCSI.



6.3. Experimental Results 160

(a) FEM-CSI Reconstr. (b) MR-FEMCSI Reconstr.

Figure 6.36: The “e-phantom” reconstrucion results using (a) FEM-CSI and (b) MR-
FEMCSI.

(a) (b)

Figure 6.37: The OI consisting of a wooden block and a nylon cylinder.
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6.3.1.3 Wood-Nylon Target

The next lossy dielectric example consists of a wooden block and a nylon cylinder

as depicted in Figure 6.37. The relative complex permittivities are εwood
r = 2.0− j0.2

and εnylon
r = 3.0 − j0.03 at a frequency f = 3 GHz (as measured using the Agilent

85070E dielectric probe kit). The dataset for this target is collected in the UofM

air-filled system. The imaging domain D is selected to be a square centered in the

problem domain Ω with side-length equal to 0.24 m. The calibrated measurements

are inverted using MR-FEMCSI and BMR-FEMCSI [29]. The number of unknowns

in D is 4, 522 and they are located at the nodes of an unstructured triangular mesh.

The MR-FEMCSI reconstructions are shown in Figures 6.38 (a) and (b), along with

the BMR-FEMCSI results for Q = 20 in Figures 6.38 (c) and (d).

The reconstruction results for the real component of the OI are similar using either

MR or BMR; both regularizations predicted the real component of the OI accurately.

Using MR, the imaginary part reconstruction is not satisfactory; on the other hand,

with BMR for Q = 20 the algorithm reconstructs the imaginary component of the

dielectric constant for the wooden block properly with an average value of 0.11 for

−Im(εr); this is slightly less than the value measured by the dielectric probe. As for

the nylon cylinder, considering it is almost lossless and the MWI system used has

a limited signal-to-noise ratio as well as dynamic range, the reconstruction of the

cylinder’s imaginary part is difficult. The obtained reconstruction is very similar to

that obtained using the balanced version of GNI, PMR-GNI [87].

6.3.1.4 Human Forearm

Under a University of Manitoba Biomedical Research Ethics Board approved pro-

tocol, the UofM system with the metallic enclosure and dipole antennas was used
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

Figure 6.38: The reconstructions at a frequency f = 3 GHz using (a)-(b) MR-
FEMCSI and (c)-(d) BMR-FEMCSI for Q = 20.
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Figure 6.39: A volunteer’s forearm in the microwave imaging system.

to image the forearms of 5 adult volunteers. A picture of a volunteer’s forearm in

the MWI system is shown in Figure 6.39. To provide a base-line on each volun-

teer’s anatomy, each volunteer was also imaged with a 0.2 T Esaote E-scan XQ MRI

machine, using a forearm coil. The MRI scan occurred less than 1 hour after the

collection of the microwave data. Herein, the MWI inversion results for Volunteer

1 at three frequencies 0.8 GHz, 1.0 GHz, and 1.2 GHz are shown. The associated

MRI is also shown. A detailed discussion of the study and more results are provided

in [26].

The metallic enclosure was filled with approximately 70 litres of fluid with the

amount of salt added being approximately 3.1 grams/litre. A plot of the permittivity

of the matching fluid is shown in Figure 6.40. At 1 GHz, the relative permittivity of

the matching fluid is εb ≈ 77− j15. The data for each frequency were independently

inverted using the balanced MR-FEMCSI method. The balance factor was set to

Q = 5. This factor was selected based on our experience with obtaining the best

images with human forearm tissues. The inversion domain D was a square with side-

length of 9 cm and center (1.5, −1.5) cm. The unknowns were located on 11, 455 nodes

within D. The MRI scan along with the MWI reconstruction results for Volunteer 1
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Figure 6.40: The complex relative permittivity of the matching fluid used for mi-
crowave imaging.

are shown in Figure 6.41.

For this volunteer, both bones are visible at all three frequencies. The real part

of the permittivity of the muscle tissue varies between 56− 67 (approx.) for all three

frequencies, while the average imaginary part of the permittivity of the muscle drops

steadily as the frequency increases (approximately 28, 23, 21 for 0.8, 1 and 1.2 GHz).

This agrees with the trends seen in the permittivity values in the literature [101]: the

real part of the permittivity of muscle and blood is relatively constant across this

frequency range, whereas the imaginary part is expected to be inversely proportional

to the frequency. The exact agreement between the literature and the measured values

are not expected because of the differences between in-vivo and ex-vivo measurements

[109].
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(a) MRI

(b) Re(εr) (c) Re(εr) (d) Re(εr)

(e) −Im(εr) (f) −Im(εr) (g) −Im(εr)

Figure 6.41: (a) The MRI of a volunteer’s arm and the MWI reconstructions at
frequencies (b), (e) f = 0.8 GHz, (c), (f) f = 1.0 GHz and (d), (g) f = 1.2 GHz.
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6.3.2 UPC Barcelona Datasets

The UPC Barcelona datasets were collected in 1991 using a near-field 2.33 GHz

microwave scanner system [92]. This system consists of 64 horn antennas distributed

equally on a circular array of radius 0.125 m. Each antenna can operate as either a

transmitter or a receiver. When using one of the 64 antennas as a transmitter, the 33

antennas in front of it are active as receivers. Not all antennas are used as receivers

due to the isolation limitations of the system circuitry. The horn antennas produce

and measure electric field parallel to the z−axis; hence the fields as assumed to have

a TM polarization.

The measured scattered field due to a target was calibrated to that of a model

incident field taken to be a unit line source directed in the z−axis. The model incident

field was taken to be

Einc
t (~r) = −j2πfµ0

4
H

(2)
0 (kb |~r − ~rt|) (6.11)

where kb is the background medium wavenumber and ~rt is the location of transmitter

t. The data collection tank was filled with a background medium of water with

relative permittivity εb = 77.3− j8.66 at 2.33 GHz. Only calibrated data is available

in the dataset.

For the inversion of these experimental datasets, the imaging domain D is selected

to be circular with radius 4.7 cm. The number of unknowns in D is approximately

22, 000. For each dataset the inversion algorithms are run for 1024 iterations to ensure

convergence. In addition, at each iteration the inversion results are constrained to lie

within the region defined by 0 ≤ Re (εr) ≤ 80 and 0 ≤ −Im (εr) ≤ 20. Each dataset is

inverted using FEM-CSI, MR-FEMCSI, and BMR-FEMCSI with Q = 5 and Q = 10.



6.3. Experimental Results 167

(a) BRAGREG
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(c) PHANARM

Figure 6.42: The cost functional versus the iteration number for (a) BRAGREG, (b)
FANCENT and (c) PHANARM experimental datasets inversion.

A summary of the inversions is provided in Table 6.9, while the convergence of the

cost functional for each dataset is shown in Figure 6.42.

6.3.2.1 Human Forearm

The first experimental dataset collected by UPC is known as BRAGREG. The

scattering object is a human forearm, which is immersed in the tank and is surrounded

by the antennas. The forearm has expected permittivites of εr = 12 − j2.5 for bone

and εr = 54− j11 for muscle at a frequency f = 2.33 GHz [101]. The reconstruction

results are shown in Figure 6.44 and the cost functional progress is demonstrated

in Figure 6.42 (a). The worst reconstruction is obtained using FEM-CSI with no

multiplicative regularization. Although the arm contour is visible in Figure 6.44 (a),

the reconstruction is oscillatory with the overall features of the arm being blurred.

Using either the normal or the balanced form of MR, the contours of the the bones

and muscle tissue as well as that of the forearm are clear and distinguishable. The

imaginary component of the reconstruction is least oscillatory and smoothest using the

balanced MR-FEMCSI with Q = 5. The relative permittivity of the muscle is well

estimated, however the relative permittivity of the bones are above their expected
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(a) FANCENT (b) PHANARM

Figure 6.43: (a) FANCENT and (b) PHANARM target configurations.

values; it is speculated that this is due to the low dynamic range of the system

[3,28,110]. The results obtained using MR-FEMCSI are similar to the reconstructions

using MR-FDCSI [78] and MR-IECSI [27].

6.3.2.2 Cylindrical Phantom

The OI for the second UPC dataset consists of two Plexiglas cylinders filled with

different concentrations of ethyl alcohol as depicted in Figure 6.43. The smaller

cylinder was filled with 96% ethyl alcohol solution with a relative complex permittivity

of εr = 10− j8.3. The bigger cylinder contained a solution of 4% ethyl alcohol with

εr = 73 − j11. The Plexiglas had a relative permittivity of εr = 2.73 − j0.01. This

dataset is referred to as FANCENT. The reconstruction results are given in Figure

6.45, while the convergence of the cost functional is shown in Figure 6.42 (b). Similar

to the BRAGREG dataset, it can be observed that the smoothest reconstructions

with the least fluctuations are obtain using the balanced MR. The contour of the

Plexiglas is visible, nevertheless its relative permittivity value is overshot. For the

bigger cylinder, the complex relative permittivity is well-estimated using BMR with

Q = 10. As for the smaller cylinder, its circular contour is clear using either variants
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

(e) Re(εr) (f) −Im(εr)

(g) Re(εr) (h) −Im(εr)

Figure 6.44: Inversion of BRAGREG dataset using (a)-(b) FEM-CSI, (c)-(d) MR-
FEMCSI and BMR-FEMCSI for (e)-(f) Q = 5 and (g)-(h) Q = 10.
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of MR; however using BMR, the imaginary part reconstruction is better. The best

relative permittivity estimate for the liquid in the small cylinder is obtained using

BMR with Q = 5, although it is higher than expected; again it is expected that this

is due to the low dynamic range of the system.

6.3.2.3 Human Arm Phantom

The last dataset, known as PHANARM, is collected for a human arm phantom.

The phantom configuration is depicted in Figure 6.43. The skin and the bones of the

OI were made with PVC with complex permittivity εr = 2.73− j0.01 and the muscle

was made from a material with εr = 54.5−j17.2. The reconstruction results are shown

in Figure 6.46 and the convergence of the inversion algorithms’ functional is given in

Figure 6.42 (c). As observed with previous datasets, the results obtained using the

balanced MR-FEMCSI are notably better than those obtained using FEM-CSI and

its MR counterpart. The quality of the reconstructions using BMR are good as the

phantom arm features are clear. Nevertheless, quantitatively the relative permittivity

values are not as expected for the different arm constituents. As a matter of fact, the

imaginary part of the reconstructed permittivity for one of the bones is completely

wrong. Similar results were obtained using MR-IECSI for this OI [3].
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

(e) Re(εr) (f) −Im(εr)

(g) Re(εr) (h) −Im(εr)

Figure 6.45: Inversion of FANCENT dataset using (a)-(b) FEM-CSI, (c)-(d) MR-
FEMCSI and BMR-FEMCSI for (e)-(f) Q = 5 and (g)-(h) Q = 10.
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(a) Re(εr) (b) −Im(εr)

(c) Re(εr) (d) −Im(εr)

(e) Re(εr) (f) −Im(εr)

(g) Re(εr) (h) −Im(εr)

Figure 6.46: Inversion of PHANARM dataset using (a)-(b) FEM-CSI, (c)-(d) MR-
FEMCSI and BMR-FEMCSI for (e)-(f) Q = 5 and (g)-(h) Q = 10.
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(a) FoamDielInt target (b) FoamDielExt target

(c) FoamTwinDiel target (d) FoamMetExt target

Figure 6.47: The targets of the 2D Fresnel dataset (a) FoamDielInt (b) FoamDielExt
(c) FoamTwinDiel (d) FoamMetExt.

6.3.3 Institut Fresnel 2D Datasets

For the 2005 Institut Fresnel experimental dataset [38], TM and TE multifre-

quency experimental data were collected for different inhomogeneous targets depicted

in Figure 6.47: FoamDieInt, FoamDielExt, FoamTwinDiel and FoamMetExt.

In these datasets, the transmitting and receiving antennas are both wide-band

horn antennas positioned on a circle having a 1.67 m radius and located inside an ane-

choic chamber. The targets are all circular cylinders with no variation in the longitudi-

nal z−direction; hence a 2D model is appropriate. For all the targets, the background

medium is free-space with εb = 1. In the TM illumination the z−component of the
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Figure 6.48: The cost functional progress for (a) FoamDielInt, (b) FoamDielExt, (c)
FoamTwinDiel and (d) FoamMetExt TM and TE experimental datasets inversions.

scattered field is collected and calibrated. For the TE illumination, the φ−component

of the scattered field is measured and calibrated, then converted to the x− and y−

components to be used by the inversion algorithm. The measured data were cali-

brated assuming the model of the incident field to be a 2D electric point source for

the TM case and a 2D magnetic point source for the TE case. The data calibration

process is detailed in [111].

The FoamDielInt and FoamDielExt targets are interrogated by 8 transmitters and

the measured data are collected at 9 different frequencies from 2 GHz to 10 GHz with

a step of 1 GHz at 241 receiver points per transmitter. The FoamTwinDiel target

is illuminated by 18 transmitters and the number of frequencies and receivers is the

same as the previous two targets. For the FoamMetExt target, while the number of
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(a) TM Reconstr. Re(εr) (b) TM Reconstr. −Im(εr)

(c) TE Reconstr. Re(εr) (d) TE Reconstr. −Im(εr)

Figure 6.49: The reconstruction of the FoamDielInt target at f = 2 GHz using
simultaneous-frequency MR-FEMCSI for (a)-(b) the TM case and (c)-(d) the TE
case.

transmitters and receivers is the same as the FoamTwinDiel datasets, the object is

irradiated at 17 different frequencies in the range from 2 GHz to 18 GHz with 1 GHz

step.

For both TM and TE cases, the data for the different frequencies are inverted

simultaneously using the MR-FEMCSI algorithm. The extension of the algorithm

allowing it to deal simultaneously with multi-frequency datasets, for a lossless back-

ground, is relatively simple to incorporate. Some of the details of this extension can

be found in [111,112]. The inversion domain D is a square centered in the problem do-

main Ω with the side-length equal to 15 cm. For both TM and TE cases, the unknown

variables are located at the centroids of 17, 887 triangles. To ensure convergence, the
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(a) TM Reconstr. Re(εr) (b) TM Reconstr. −Im(εr)

(c) TE Reconstr. Re(εr) (d) TE Reconstr. −Im(εr)

Figure 6.50: The reconstruction of the FoamDielExt target at f = 2 GHz using
simultaneous-frequency MR-FEMCSI for (a)-(b) the TM case and (c)-(d) the TE
case.

algorithm was run for 1024 iterations. The real and imaginary components of the

relative permittivity were constrained to 1 < Re(εr) < 100 and 0 < −Im(εr) < 100.

A summary of the inversions is provided in Table 6.9, while the convergence of the

cost functional for each dataset is shown in Figure 6.48.

The reconstruction results for the different datasets at the lowest frequency (f = 2

GHz) are shown in Figures 6.49–6.52. The results achieved using simultaneous fre-

quency inversion using the MR-FEMCSI algorithm are quite similar to those obtained

using MR-IECSI [111]. The foam cylinder with diameter 8 cm is reconstructed well for

all the datasets with an average relative permittivity of εr = 1.4. For the FoamDielExt,

FoamDielInt and FoamTwinDiel datasets, the location and the shape of the plastic
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(a) TM Reconstr. Re(εr) (b) TM Reconstr. −Im(εr)

(c) TE Reconstr. Re(εr) (d) TE Reconstr. −Im(εr)

Figure 6.51: The reconstruction of the FoamTwinDiel target at f = 2 GHz using
simultaneous-frequency MR-FEMCSI for (a)-(b) the TM case and (c)-(d) the TE
case.

cylinders with diameter 3.1 cm are estimated correctly. For the TE case, the aver-

age relative permittivity for the plastic cylinder reconstructions is εr = 2.9 − j0.11,

although the object is close to lossless. For the TM case, the average relative per-

mittivity is εr = 3.1 − j0.4. An incorrect prediction of the imaginary part was also

obtained using the Gauss-Newton inversion algorithm [35]. Comparing the TM and

TE reconstructions, the contour of the plastic cylinders are better defined for the TE

case; additionally, the imaginary part errors are less for the TE case than for the TM

case.

The reconstructions for the FoamMetExt datasets are shown in Figure 6.52. The

inversion result of the TM dataset shows that the location of the metallic cylinder
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(a) TM Reconstr. Re(εr) (b) TM Reconstr. −Im(εr)

(c) TE Reconstr. Re(εr) (d) TE Reconstr. −Im(εr)

Figure 6.52: The reconstruction of the FoamMetExt target at f = 2 GHz using
simultaneous-frequency MR-FEMCSI for (a)-(b) the TM case and (c)-(d) the TE
case.

is accurately retrieved with the real and imaginary components of its relative per-

mittivity having the same order of magnitude (greater than 10). The reconstruction

of the metallic cylinder indicates the presence of an object with high conductivity;

however the result is ambiguous, in that it can’t differentiate between a high real

or high imaginary part [111]. Theoretically, the inversion of a perfectly conducting

cylinder should only obtain the boundary of the object. The contrast sources inside

the metallic cylinder are invisible, consequently the reconstructed real component of

the contrast inside the object is arbitrary and is merely an artifact of the inversion

algorithm. This can be fixed by enforcing smaller constraints on the components of

the reconstructed permittivity as will be outlined later.
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(a) TM Reconstr. Re(εr) (b) TM Reconstr. −Im(εr)

(c) TE Reconstr. Re(εr) (d) TE Reconstr. −Im(εr)

Figure 6.53: The reconstruction of the FoamMetExt target at f = 2 GHz with
max |Im(εr)| < 6 using simultaneous-frequency MR-FEMCSI for (a)-(b) the TM case
and (c)-(d) the TE case.

As for the TE case, the metallic cylinder with diameter 2.85 cm is constructed

with the real part of its relative permittivity close to 1, whereas its imaginary part

indicates an object with loss but with values less than those obtained using the TM

dataset.

The MR-FEMCSI algorithm was run again for the FoamMetExt dataset with

the components of the relative permittivity constrained to lie in the region defined

by 1 < Re(εr) < 6 and 0 < −Im(εr) < 6. The reconstruction results are shown

in Figure 6.53. For the TM dataset, the metallic cylinder was reconstructed as an

object with the real part of its permittivity equal to 1 and its imaginary part equal

to the maximum constraint, i.e. −Im(εr) = 6. As for the TE case, with the new
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constraints the metallic cylinder was estimated as a circle with a smaller diameter

as well as higher loss than obtained using the first set of constraints; furthermore

the contour of the metallic cylinder is visible in the real component reconstruction.

Finally, the reconstruction of the foam cylinder is better in the TE case than in the

TM case, regardless of the constraints applied. In the TM case the shape of the foam

is distorted in the proximity of the metallic cylinder.

6.3.4 Institut Fresnel 3D Datasets

Three-dimensional data were collected for several targets at the Institut Fresnel

of Marseille in 2009 [39]. In a special issue of Inverse Problems [113], the collected

datasets were inverted using different methods like MR-IECSI [114], DBIM [115] and

GNI [116]. The inversion algorithms were based on the integral-equation formulation

of the electromagnetic problem. Herein, the datasets are inverted using the 3D MR-

FEMCSI algorithm. The final reconstructions using the algorithm are similar to those

reported in literature using other methods.

The experimental setup consisted of a parabolic antenna as a transmitter and a

ridged-horn antenna as a receiver, both located inside an anechoic chamber. The

antennas moved around the targets on a spherical surface of radius 1.796 m. For the

transmitting antenna, the azimuthal angle, φ, varied from 20◦ to 340◦ with steps of

40◦ and the polar angle, θ, ranged from 30◦ to 150◦ with steps of 15◦. The definition

of the coordinate system is shown in Figure 6.54. According to the system design, the

receiving antenna positions were restricted to a single azimuthal plane at θ = 90◦. In

addition, for technical reasons the location of the receiving antenna could not be closer

than 50◦ from the azimuth angle position of the transmitter. Hence, the azimuthal

angle of the receiver varied from 0◦ to 350◦ with steps of 10◦, with the exclusion of
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Figure 6.54: The coordinates configuration of the Institut Fresnel 3D setup.

±50◦ of the transmitter’s azimuthal angle. Furthermore, for each dataset the receiver

positions opposite to the transmitter were unusable due to the saturation of network

analyzer receiver.

The measured data were collected at 21 frequencies ranging from 3 to 8 GHz with

a 0.25 GHz step. For each target, two polarization cases were measured: in the first

case, the transmitter and the receiver were polarized along the θ−direction; in the

second case, the transmitting antenna was polarized along the φ−direction whereas

the receiving antenna was again polarized along the θ−direction. The collected data

at each polarization were calibrated using the techniques described in [39].

In the work presented here, the two polarization measurements are merged by

applying the reciprocity theorem, where the roles of the transmitting and receiving

antennas are switched. Because the receiving antenna is always at θ = 90◦ plane,

using reciprocity, the incident field can be modeled as a z−polarized plane wave with
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magnitude −1 and phase 0 at the origin (0, 0, 0). The model incident field is given as

~Einc
t (~r) = −ejkb(x cos(φ′t)+y sin(φ′t))ẑ. (6.12)

where φ′t denotes the azimuthal angle of the reciprocal transmitter, which is equal to a

receiver’s azimuthal angle φr in the actual measurement setup. The plane wave model

of the incident field is valid as the transmitters and receivers in the experimental setup

is more than 10λ away from the targets (the far-field region), where λ is the free-space

wavelength at a frequency f = 3 GHz.

The receiver locations in the reciprocal system are taken to be at the source

positions in the actual measurement setup. The receiver position (φ′r, θ
′
r) corresponds

to the transmitter location (φt, θt) in the actual system. The receivers are located on

a sphere of radius 1.796 m.

Let Esct
θθ and Esct

φθ be the measured scattered fields at the actual receiver with the

transmitting antenna polarized along the θ− and the φ−directions respectively. The

spatial components of the scattered field vector at the reciprocal receiver location

(φ′r, θ
′
r) are

Esct
x = cos(θ′r) cos(φ′r)E

sct
θθ − sin(φ′r)E

sct
φθ

Esct
y = cos(θ′r) sin(φ′r)E

sct
θθ + cos(φ′r)E

sct
φθ

Esct
z = − sin(θ′r)E

sct
θθ .

(6.13)

The multi-frequency reciprocal datasets are inverted using a frequency-hopping

approach [117]. With the frequency-hopping technique, the data from each frequency

are inverted independently, and the solution from the lower frequency is used to calcu-

lated the initial guess for the next higher frequency. At each frequency the algorithm
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Table 6.10: Summary of 3D Experimental Datasets

Example f (GHz) T Ne N I titer (s)

Institute Fresnel 3D

Two Sphere 3− 5 36 69913 85112 41865 201

Two Cubes 3− 8 36 77675 93010 19044 210

Cube of Spheres 3− 8 36 80742 95905 38851 210

Myster 3− 8 36 70850 84344 35809 130

was run for 75 iterations to ensure its convergence, except at the last frequency where

it was allowed to run for 512 iterations. For the work presented herein, increasing

the maximum number of iterations per frequency to beyond 75 did not alter the final

result. The predicted contrast after each iteration is constrained to remain within

physical bounds (Re(εr) ≥ 1 and −Im(εr) ≥ 0). For comparison purposes the results

for each dataset are presented with and without the use of multiplicative regular-

ization. The imaginary part of the reconstructions are not shown as the targets are

lossless. A summary of the inversions is given in Table 6.10.

6.3.4.1 Two Spheres

The first target consists of two dielectric spheres 50 mm in diameter aligned along

the x−axis. The target is depicted in Figure 6.55 (a). The relative permittivity of

both spheres is εr = 2.6. The imaging domain D is defined as a sphere 120 mm in

diameter, centered around the origin (0, 0, 0). The unknown variables are located at

the centroids of approximately 42,000 tetrahedra within D. The frequency-hopping

approach is applied to the multi-frequency data at 3, 4 and 5 GHz. It was observed

that the use of data for frequencies greater than 5 GHz corrupted the reconstructions,

so they were omitted. The results at 5 GHz are shown in Figure 6.56 using FEM-CSI,

and in Figure 6.57 adding MR. For each inversion algorithm, a 3D isosurface plot,
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Figure 6.55: (a) The two spheres target configuration and (b) the cost functional
convergence.

a 3D slice plot and 2D cross-sectional plots at planes x = 0, y = 0 and z = 0 are

presented. The level of the isosurface plot is set to 2.0. White-solid lines outline the

expected locations of the spheres in the y = 0 and z = 0 2D cross-section plots. The

cost functional convergence is shown in Figure 6.55 (b).

The results obtained using the multiplicatively regularized FEM-CSI are smooth

and not overshot in comparison to the reconstructions when no MR is utilized. With-

out MR, the relative permittivity values overshoot to approximately 3.5 and there

are holes at the sphere centres. This can be observed in Figures 6.56 (e) and 6.57 (e).

Both algorithms predict the size and location of the spheres accurately. This can be

deduced from the isosurface plots as well as from the cross-sectional figures. It can be

observed from the cost functional convergence in Figure 6.55 (b) that the algorithms

converged; note that the sudden jumps in the progress is due to the transition from

one frequency to the next after 75 iterations. The cost functional convergence for the

inversion of the other experimental datasets is similar to that of the two spheres.
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(a)

(b) (c) x = 0

(d) y = 0 (e) z = 0

Figure 6.56: The reconstructions at f = 5 GHz for the two spheres target using
frequency-hopping FEM-CSI . (a) The isosurface plot (level = 2.0), (b) the 3D slice
plot, and the 2D cross-section plots at planes (c) x = 0, (d) y = 0 and (e) z = 0.
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(a)

(b) (c) x = 0

(d) y = 0 (e) z = 0

Figure 6.57: The reconstructions at f = 5 GHz for the two spheres target using
frequency-hopping MR-FEMCSI. (a) The isosurface plot (level = 2.0), (b) the 3D
slice plot, and the 2D cross-section plots at planes (c) x = 0, (d) y = 0 and (e) z = 0.
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Figure 6.58: (a) The two-cubes target configuration and (b) the cost functional
conversion.

6.3.4.2 Two Cubes

The second target has two dielectric cubes of side-length equal to 25 mm and

relative permittivity εr = 2.3. The cubes are located 25 mm and 50 mm above

the plane z = 0 as shown in Figure 6.58. The imaging domain D is selected as a

rectangular prism with length and width equal to 90 mm and a height of 95 mm. The

prism center is located at point (0, 0, 52.5) mm. The multi-frequency data from 3 GHz

to 8 GHz with a step of 1 GHz are used to reconstruct the OI using the frequency-

hopping approach. The number of unknowns in D is approximately 19, 000.

The inversion results at f = 8 GHz are given in Figure 6.59, while the cost

functional convergence is shown in Figure 6.58 (b). The reconstruction results for

each inversion algorithm include the isosurface plot with the level set to 1.5, and the

2D slice plots at planes x = [−14, 14] mm, y = [−14, 14] mm and z = [30, 64] mm.

The expected location of the cubes are indicated with solid-white lines on each slice.

The locations and relative sizes of the cubes are predicted correctly by the inversion
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(a) (b)

(c) x−planes (d) x−planes

(e) y−planes (f) y−planes

(g) z−planes (h) z−planes

Figure 6.59: (a)-(b) The isosurface plot (level = 1.5) at f = 8 GHz of the two cubes
target and the 2D slice plots of the reconstruction at planes (c)-(d) x = [−14, 14]
mm, (e)-(f) y = [−14, 14] mm and (f)-(g) z = [30, 64] mm. The figures on the left are
the FEM-CSI reconstructions while those on the right are the MR-FEMCSI results.
The results are obtained using a frequency-hopping approach.
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Figure 6.60: (a) The cube of spheres target configuration and (b) the cost functional
convergence.

algorithms as can be noticed from the slice plots. Using multiplicative regularization,

the reconstructions are smoother as well as more homogeneous, and the estimated

relative permittivity values are close to 2.3. From the isosurface plots, the inversion

algorithm did not produce cubic solids, rather it estimated the targets as irregularly

shaped objects. This is because the unknowns are located in an irregular tetrahedral

mesh. The shape reconstruction can be improved by increasing the number of ele-

ments in the imaging domain; however this will increase the required computational

resources for the algorithm.

6.3.4.3 Cube of Spheres

The third OI is an aggregate of 27 dielectric spheres arranged in a cube as depicted

in Figure 6.60 (a). Each sphere has a diameter of 15.9 mm and a relative permittivity

of εr = 2.6. The inversion domain D is a cube centered in the problem domain

Ω with side-length equal to 98 mm. The unknowns are located at the centroids



6.3. Experimental Results 190

of approximately 39, 000 tetrahedra within D. The frequency-hopping technique is

applied to the multi-frequency data from 3 GHz to 8 GHz in 1 GHz steps.

The convergence of the inversion algorithms’ cost functional is shown in Figure

6.60 (b) and the reconstruction results at 8 GHz are given in Figure 6.61. The results

in the left column of Figure 6.61 are the FEM-CSI reconstructions, and those in

the right column are the MR-FEMCSI estimates. For each inversion algorithm the

following figures are shown: a 3D isosurface plot with its level set to 1.9 and 2D

cross-sections of the reconstruction at planes x = 0 mm, y = 0 mm and z = 12.5

mm. The circles with the solid-white circumferences depict the expected location of

the spheres in the 2D slices.

The 3D isosurface plots at 8 GHz (Figures 6.61 (a) and (b)) show 9 strips parallel

to the z−axis. The vertical separation between the spheres is not visible; this is also

evident from the 2D cross-sections at x = 0 and y = 0. Nevertheless, with the 2D

cross-section at z = 12.5 mm, the presence of a 3−by−3 array of circles is clearly

visible. The location of the circles align with the white-solid contours. The estimated

permittivity values do not exceed 2.6. Without MR, the free-space in between the

spheres is clear; multiplicative regularization tends to smooth out the reconstruction

and fill-in the space as shown in Figure 6.61 (d).

6.3.4.4 Myster

The Myster target is a group of 12 spheres, 23.8 mm diameter each. They are

arranged together to compose the geometry shown in Figure 6.62 (a). The sphere

centers are situated along the vertices of an icosahedron, as depicted in Figure 6.62

(b). Each sphere has a relative permittivity of εr = 2.6. The inversion domain D is

a square box with its center point located at (0, 0, 10) mm. The length and width
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(a) (b)

(c) z = 12.5 mm (d) z = 12.5 mm

(e) y = 0 mm (f) y = 0 mm

(g) x = 0 mm (h) x = 0 mm

Figure 6.61: (a)-(b) The isosurface plot (level = 1.9) at f = 8 GHz of the cube of
spheres target and the 2D slice plots of the reconstruction at planes (c)-(d) z = 12.5
mm, (e)-(f) y = 0 mm and (f)-(g) x = 0 mm. The figures on the left are the FEM-CSI
reconstructions while those on the right are the MR-FEMCSI results. The results are
obtained using a frequency-hopping approach.
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(a) (b)

Figure 6.62: (a) Myster target configuration and (b) an icosahedron. The red circles
at the vertices of the icosahedron are the sphere centers of the Myster target.

of the box are equal to 100 mm. Its height is 80 mm. The number of unknowns is

approximately 36, 000 located at the tetrahedral centroids in D. Similar to the last

two datasets, a frequency-hopping approach is applied using data from 3 GHz to 8

GHz with a frequency increment of 1 GHz.

The reconstruction results are presented in Figures 6.64–6.66. The plots in Fig-

ure 6.64 are the isosurface plots (level = 1.5) and the 2D slice plots at planes

x = [−11.12,−6.87] mm and y = [−4.1, 19.25] mm. The left column of Figure 6.64

contains the FEM-CSI reconstructions and the right column has the MR-FEMCSI

results. The 2D slices in Figure 6.65 are the FEM-CSI results at six z−planes ranging

from z = 4.40 mm to z = 35.97 mm. The MR-FEMCSI z−plane cross-sections are

shown in Figure 6.66. All the shown results are the reconstructions at a frequency

f = 8 GHz. The convergence of the cost functional is given in Figure 6.63.

The algorithms predicted the overall shape and location of the Myster object

accurately. The L2-weighted regularizer tends to smooth and fuse the spheres together

as can be deduced from Figure 6.66; nevertheless it does not over-estimate the relative
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Figure 6.63: The cost functional convergence for the Myster dataset inversion.

permittivity value of the spheres. Without multiplicative regularization, the gaps in-

between the spheres are more visible as is the location of the individual spheres

within the Myster structure; however the estimated values of the permittivity exceed

the expectation.

6.3.4.5 Section Conclusion

The FEM-CSI algorithm along with its variant, which incorporates MR, were

tested using the 3D experimental datasets collected by the Institut Fresnel of France.

The inversion algorithms were successful in predicting the location and size of the

targets. The reconstructed relative permittivity values for the targets were overshot

by FEM-CSI; the inclusion of MR fixed that however it caused small spaces between

the constituents of some targets to smooth out and be filled.
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(a) (b)

(c) x−planes (d) x−planes

(e) y−planes (f) y−planes

Figure 6.64: (a)-(b) The isosurface plot (level = 1.5) at f = 8 GHz of the Myster tar-
get and the 2D slice plots of the reconstruction at planes (c)-(d) x = [−11.12,−6.87]
mm and (e)-(f) y = [−4.10, 19.25] mm. The figures on the left are the FEM-CSI
reconstructions while those on the right are the MR-FEMCSI results. The results are
obtained using a frequency-hopping approach.



6.3. Experimental Results 195

(a) z = 4.40 mm (b) z = 13.74 mm (c) z = 16.90 mm

(d) z = 23.10 mm (e) z = 29.40 mm (f) z = 35.97 mm

Figure 6.65: The Myster dataset frequency-hopping FEM-CSI reconstructions at
different z−planes for f = 8 GHz.

(a) z = 4.40 mm (b) z = 13.74 mm (c) z = 16.90 mm
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(d) z = 23.10 mm (e) z = 29.40 mm (f) z = 35.97 mm

Figure 6.66: The Myster dataset frequency-hopping MR-FEMCSI reconstructions at
different z−planes for f = 8 GHz.
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7

Conclusions and Future Work

Aut non tentaris, aut perfice. (Either don’t attempt it, or carry it through
the end.)

–Ovid

The formulation as well as the implementation of the state-of-the-art contrast

source inversion using the finite element method for microwave imaging applications

was completed:

• The full derivation of a new CSI algorithm incorporating the flexibility of the

finite-element method to discretize the appropriate EM forward operators of

the electromagnetic problem has been given. The formulation was presented

for scalar as well as vectorial, 2D and 3D problems.

• The weighted L2−norm total variation multiplicative regularization was incor-

porated to the algorithm, along with an enhancement to account for the im-

balance between the real and imaginary components of the OI’s relative per-

mittivity in some applications. A novel technique to calculate the gradient

and divergence operators required for multiplicative regularization on arbitrary

meshes was introduced.
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• For 2D problems, extensive testing using synthetic examples was undertaken

to emphasize the advantages offered by the algorithm. Due to computational

complexities, simple synthetic examples were used to test the functionality of

the FEM-CSI algorithm in 3D. Further, the matrix solver used was chosen by

comparing the computation time and the memory usage of different methods,

so as to make the 3D inverse problem feasible given the computational resources

available.

• The algorithm was successful in inverting experimental datasets from the UofM

microwave imaging systems, as well as datasets from other setups in France and

Spain. Due to the lack of various vectorial experimental datasets, the algorithm

was tested with vectorial data collected in free-space only.

7.1 Future Work

• The accuracy of the finite-element method can be improved by either refin-

ing the problem mesh or by resorting to higher-order basis functions. While

the first method increases the computational complexity of problem, the later

technique would provide better accuracy with a fewer number of elements [44].

The drawback of using higher-order elements is the mathematical complications

associated with it, especially for three-dimensional problems.

• Currently, the electric field and the electric properties of the OI are computed

on the same mesh. Although the electric field computation may require a finely

discretized mesh to ensure accurate calculations, the properties of the OI may

be uniformly distributed and can be reconstructed well on a coarse mesh. An

improvement to the inversion algorithm would be to detach the field compu-
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tation mesh from the reconstruction mesh resulting in a dual-mesh scheme as

implemented in [33]. This can be readily implemented within the framework of

the current inversion algorithm and would mostly only require changing some

of the matrix transformation operators.

• It has been shown that the use of adaptive meshing reduces the computational

resources required to obtain the same image quality as when a uniformly fine

mesh is used. The meshing technique was performed manually after a visual

inspection of the coarse-mesh reconstructions; future work could include the use

of a fully automatic adaptively refinement procedure [118].

• The use of inhomogeneous backgrounds as prior information for biomedical

experimental data can be further investigated. Such a study might require

integrating measurements from other modalities, e.g. ultrasound and MRI,

into the microwave imaging algorithm.

• The presented formulation of the CSI algorithm is not restricted to the use of

FEM as a computational tool. Other techniques like the finite-volume [60] and

the discontinuous Galerkin [119] frequency-domain methods can be integrated

into the inversion algorithm. The only required modifications to the inversion

algorithm would be the matrix operators that implement from the FEM dis-

cretization. The use of the finite-volume technique might be advantageous due

to the availability of accurate models for thin-wires and circuits [60]. In addi-

tion, the finite-volume method computes both the electric and magnetic fields

within the mesh.

• The image quality of the reconstructions may be improved by utilizing other

types of regularization techniques like shape and location methods [120,121].
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• The 3D full-vectorial form of the algorithm has to be tested with more com-

plicated configurations, for example with the OI inside a chamber having con-

ductive walls or with the OI immersed in a lossy background medium. Such

further testing of the algorithm would require a more efficient implementation

of the FEM-CSI algorithm in 3D.

• The algorithm implementation can be accelerated or parallelized via distributed

computing using graphics processing units (GPU) or computer clusters. Fur-

thermore, the algorithms can be ported to another computer language for more

efficient memory handling and for better speed of execution.
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Appendix

No other question has ever moved so profoundly the spirit of man; no
other idea has so fruitfully stimulated his intellect; yet no other concept
stands in greater need of clarification than that of the infinite.

–David Hilbert [122]
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A

Derivation of FEM Local Matrices

A.1 Scalar Problems: Two-Dimensional Case

With the domain divided into Ne triangular elements and Ns line segments, the

functional F (u) in (3.5) can be written as

F (u) =
Ne∑
e=1

F e(ue) +
Ns∑
s=1

F s(us) (A.1)

where

F e(ue) = −1

2

∫
Ωe

(
∇ue · ∇ue − αe(ue)2

)
dv −

∫
Ωe
βef eue dv (A.2)

F s(us) =

∫
Γs2

(γs
2

(us)2 − qsus
)
ds. (A.3)

Using the approximations in (3.6), (3.12)-(3.14) and (3.16), the above equations can

be written as

F e(ue) = −1

2
(ue)TSe(ue) +

1

2
(ue)TT e

α(ue)− (ue)TT e
β(f e) (A.4)

F e(us) =
1

2
(us)TSs(us)− qsls

2
(us)T (f s). (A.5)



A.1. Scalar Problems: Two-Dimensional Case 202

where ls is the length of line segment s, vectors ue, f e, us and f s are

ue =


ue1

ue2

ue3

 , f e =


f e1

f e2

f e3

 , us =

us1
us2

 , f s =

1

1

 (A.6)

and matrices Se, T e
α, T e

β and Ss are

Se =

∫
Ωe


∇λe1 · ∇λe1 ∇λe1 · ∇λe2 ∇λe1 · ∇λe3

∇λe2 · ∇λe1 ∇λe2 · ∇λe2 ∇λe2 · ∇λe3

∇λe3 · ∇λe1 ∇λe3 · ∇λe2 ∇λe3 · ∇λe3

 dv, (A.7)

T e
α =

∫
Ωe


λe1λ

e
1ν

e
α λe1λ

e
2ν

e
α λe1λ

e
3ν

e
α

λe2λ
e
1ν

e
α λe2λ

e
2ν

e
α λe2λ

e
3ν

e
α

λe3λ
e
1ν

e
α λe3λ

e
2ν

e
α λe3λ

e
3ν

e
α

 dv, (A.8)

T e
β =

∫
Ωe


λe1λ

e
1ν

e
β λe1λ

e
2ν

e
β λe1λ

e
3ν

e
β

λe2λ
e
1ν

e
β λe2λ

e
2ν

e
β λe2λ

e
3ν

e
β

λe3λ
e
1ν

e
β λe3λ

e
2ν

e
β λe3λ

e
3ν

e
β

 dv, (A.9)

Ss = γs
∫

Γs2

λs1λs1 λs1λ
s
2

λs2λ
s
1 λs2λ

s
2

 ds, (A.10)

where νeα , λe1α
e
1 + λe2α

e
2 + λe3α

e
3 and νeβ , λe1β

e
1 + λe2β

e
2 + λe3β

e
3.

The variables αei and βei are either equal to k2
b,i(χi + 1) and −k2

b,iχi respectively,

where kbi is the background wavenumber and χi is the contrast value at a node i, as

per the wave equation (2.30), or they are equal to k2
b,i and −k2

b,i according to (2.31).

The integrations above can be evaluated analytically with the aid of the following
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formula [123] ∫
Ωe

(λe1)l(λe2)m(λe3)n dv = 2Ae
l! m! n!

(l +m+ n+ 2)!
, (A.11)

thus (A.7)-(A.10) become

Se =
1

4Ae


be1b

e
1 + ce1c

e
1 be1b

e
2 + ce1c

e
2 be1b

e
3 + ce1c

e
3

be2b
e
1 + ce2c

e
1 be2b

e
2 + ce2c

e
2 be2b

e
3 + ce2c

e
3

be3b
e
1 + ce3c

e
1 be3b

e
2 + ce3c

e
2 be3b

e
3 + ce3c

e
3

 , (A.12)

T e
α =

Ae

60


6αe1 + 2(αe2 + αe3) 2(αe1 + αe2) + αe3 2(αe1 + αe3) + αe2

2(αe1 + αe2) + αe3 6αe2 + 2(αe1 + αe3) 2(αe2 + αe3) + αe1

2(αe1 + αe3) + αe2 2(αe2 + αe3) + αe1 6αe3 + 2(αe1 + αe2)

 , (A.13)

T e
β =

Ae

60


6βe1 + 2(βe2 + βe3) 2(βe1 + βe2) + βe3 2(βe1 + βe3) + βe2

2(βe1 + βe2) + βe3 6βe2 + 2(βe1 + βe3) 2(βe2 + βe3) + βe1

2(βe1 + βe3) + βe2 2(βe2 + βe3) + βe1 6βe3 + 2(βe1 + βe2)

 , (A.14)

Ss =
γsls

6

2 1

1 2

 . (A.15)

If αe and βe are defined for each triangle rather than on each node in the mesh, T e
α

and T e
β simplify to

T e
α =

αeAe

12


2 1 1

1 2 1

1 1 2

 , (A.16)

T e
β =

βeAe

12


2 1 1

1 2 1

1 1 2

 . (A.17)
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A.2 Vector Problems

After discretizing the problem into Ne domain elements and Ns boundary ele-

ments, the functional F (~u) can be written as

F (~u) =
Ne∑
e=1

F e(~ue) +
Ns∑
s=1

F s(~us) (A.18)

where

F e(~ue) =
1

2

∫
Ωe

[(∇× ~ue) · (∇× ~ue)− αe ~ue · ~ue] dv −
∫

Ωe
βe ~ue · ~f e dv

F s(~us) =

∫
Γs2

[
γs

2
(n̂× ~us) · (n̂× ~us) + ~us · ~qs

]
ds.

(A.19)

Using the vector fields approximations in (3.46), (3.51) for 2D and (3.47), (3.52) for

3D, the above equations can be written as

F e(~ue) =
1

2
(ue)T [U e − Ve

α] (ue)− (ue)T ~R
e

β · ~f e

F s(~us) =
1

2
(us)T U s (us) + (us)T ~R

s
· ~q s.

(A.20)

where the spatial-vectors ~f e and ~q s are defined at the centroids of elements e and s

respectively.
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A.2.1 Two-Dimensional Case

For 2D vectorial problems, the vectors ue, us in (A.20) are

ue =


ue1

ue2

ue3

 , us =

[
us1

]
. (A.21)

The entries of each matrix in (A.20) are evaluated using the expansions (3.46), (3.51)

and with the aid of the integral (A.11).

For a triangle e, the entry for the ith row and jth column of local matrices U e ∈

R3×3 and Ve
α ∈ C3×3 are

U ei,j =
lei l

e
j

4 (Ae)3

(
bei1c

e
i2
− bei2c

e
i1

) (
bej1c

e
j2
− bej2c

e
j1

)
Veα i,j =

αe lei l
e
j

48 Ae
(
Li1,j1f

e
i2,j2
− Li1,j2f ei2,j1 − Li2,j1f

e
i1,j2

+ Li2,j2f
e
i1,j1

) (A.22)

where Ae is the area of triangle e,
{
lei , l

e
j

}
are the length of local triangle edges {i, j},

{i1, i2} and {j1, j2} are nodes forming these local edges as defined in Table 3.1, bei and

cei are coefficients defined in Section 3.2.4, f ei,j is evaluated as

f ei,j = bei b
e
j + cei c

e
j (A.23)

and Li,j is the (i, j)th entry of matrix L ∈ R3×3, given as

L =


2 1 1

1 2 1

1 1 2

 . (A.24)
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Next, the ith entry of column vector ~R
e

β ∈ C3 is

~Re
β i =

βe lei
6

((
bei2 − b

e
i1

)
x̂+
(
cei2 − c

e
i1

)ŷ) (A.25)

where i is the local edge index for an triangular element e.

Let an edge s, which belongs to triangle e, be a line segment at the boundary

of the problem domain, then both U s and ~R
s

have single entries which they are

calculated as

U s =
γs (ls)3

12 (Ae)2

(
(n̂sx)

2
((
cei1
)2 − cei1c

e
i2

+
(
cei2
)2
)
−

n̂sxn̂
s
y

(
2bei1c

e
i1
− bei1c

e
i2
− bei2c

e
i1

+ 2bei2c
e
i2

)
+(

n̂sy
)2
((
bei1
)2 − bei1b

e
i2

+
(
bei2
)2
))

~Rs =
(ls)2

4 Ae
((
bei2 − b

e
i1

)
x̂+

(
cei2 − c

e
i1

)
ŷ
)

(A.26)

where {i1, i2} are the local node indices of an edge s as given in Table 3.1, ls is the

length of the edge, n̂sx and n̂sy are the x− and y−components of an outward-normal

unit vector n̂ to the segment s.

A.2.2 Three-Dimensional Case

For 3D vectorial problems, the vectors ue, us in (A.20) are

ue =



ue1

ue2
...

ue6


, us =


us1

us2

us3

 . (A.27)
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The entries of each matrix in (A.20) are evaluated using the expansions (3.47), (3.52)

and with the aid of the following formula [44]:

∫
Ωe

(λe1)k(λe2)l(λe3)m(λe4)n dv = 6V e k! l! m! n!

(k + l +m+ n+ 3)!
(A.28)

where λe1,2,3,4 are the three-dimensional nodal linear basis functions (3.48) and V e is

the volume of tetrahedron element e.

For a tetrahedron e, the entries for the ith row and jth column of the local matrices

U e ∈ R6×6 and Ve
α ∈ C6×6 are

U ei,j =
4 lei l

e
j

1296 (V e)3

( (
bei1c

e
i2
− bei2c

e
i1

) (
bej1c

e
j2
− bej2c

e
j1

)
+

(
cei1d

e
i2
− cei2d

e
i1

) (
cej1d

e
j2
− cej2d

e
j1

)
+(

dei1b
e
i2
− dei2b

e
i1

) (
dej1b

e
j2
− dej2b

e
j1

))
Veα i,j =

αe lei l
e
j

720 V e

(
Li1,j1f

e
i2,j2
− Li1,j2f ei2,j1 − Li2,j1f

e
i1,j2

+ Li2,j2f
e
i1,j1

)
(A.29)

where V e is the volume of tetrahedron e,
{
lei , l

e
j

}
are the length of edges {i, j}, {i1, i2}

and {j1, j2} are nodes forming these local edges as defined in Table 3.2, bei , c
e
i and dei

are coefficients defined in Section 3.3.4, f ei,j is evaluated as

f ei,j = bei b
e
j + cei c

e
j + deid

e
j (A.30)
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and Li,j is the (i, j)th entry of matrix L ∈ R4×4, given as

L =



2 1 1 1

1 2 1 1

1 1 2 1

1 1 1 2


. (A.31)

Next, the ith entry of column vector ~R
e

β ∈ C6 is

~Re
β i =

βe lei
24

((
bei2 − b

e
i1

)
x̂+
(
cei2 − c

e
i1

)ŷ+( dei2 − d
e
i1

)ẑ) (A.32)

where i is the local edge index for a tetrahedral element e.

Let a triangular boundary facet s, which belongs to tetrahedron e, be transformed

to an isoparametric element ζs (depicted in Figure 3.5), then the (i, j)th entry of local

matrix U s ∈ C3×3 is calculated by evaluating the following:

U si,j =

∫ 1

0

∫ 1−ξ

0

2 As γs
(
n̂s × ~Ni

)
·
(
n̂s × ~Nj

)
dη dξ (A.33)

where indices {i, j} denote local triangle edges {si, sj} that map to local tetrahedron

edges {ei, ej}, As is the area of surface triangle s, n̂s is the outward-normal unit vector

at the centroid of triangle s and the vector-basis functions
{
~Ni, ~Nj

}
are a function

of the isoparametric coordinates ξ and η. For a tetrahedron edge k defined by nodes

{k1, k2} and mapped to surface facet edge sk

n̂s × ~Nk =
lek

6 V e

∣∣∣∣∣∣∣∣∣∣
x̂ ŷ ẑ

n̂sx n̂sy n̂sz(
λζ

s

k1
bk2 − λ

ζs

k2
bk1

) (
λζ

s

k1
ck2 − λ

ζs

k2
ck1

) (
λζ

s

k1
dk2 − λ

ζs

k2
dk1

)
∣∣∣∣∣∣∣∣∣∣
. (A.34)
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If triangle s nodes {1, 2, 3} maps to local tetrahedron e nodes {n1, n2, n3}, the basis

functions in (A.34) are given in isoparametric coordinates as

λζ
s

n1
(ξ, η) = ξ , λζ

s

n2
(ξ, η) = η. (A.35)

The third isoparametric coordinate is defined as

λζ
s

n3
(ξ, η) = 1− ξ − η. (A.36)

Finally, the ith entry of the column vector ~R
s
∈ R3 is

~Rs
i =

As lsi
18 V e

((
bei2 − b

e
i1

)
x̂+

(
cei2 − c

e
i1

)
ŷ + +

(
dei2 − d

e
i1

)
ẑ
)

(A.37)

where index i corresponds to local triangle edge si that maps to local tetrahedron

edge ei, and {i1, i2} are the local node indices of the edge ei as given in Table 3.2.
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B

Assembly of FEM Global Matrices

We consider first the 2D scalar case. Each node in the triangular mesh is associated

with two indices: a local number to indicate its location in a given triangle and a

global number to indicate its location relative to the entire mesh. After the assembly

of the local matrices, the global numbering scheme is used to build the global FEM

matrices.

Consider a local matrix Ke

Ke =


Ke1,1 Ke1,2 Ke1,3

Ke2,1 Ke2,2 Ke2,3

Ke3,1 Ke3,2 Ke3,3

 . (B.1)

For any triangle, as depicted in figure 3.2 (a), the local nodes {1, 2, 3} are associated

with global indices {i, j, k}; therefore local matrix Ke can be rewritten as

Ke =


Kei,i Kei,j Kei,k

Kej,i Kej,j Kej,k

Kek,i Kek,j Kek,k

 . (B.2)

Here the global indices have replaced the local numbers in (B.1).
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Next, consider a global matrix K ∈ CN×N . In the FEM matrix equation (3.26),

this global matrix K can be either

K = S − T α or K = T β. (B.3)

The global matrix K is filled using the following scheme: the first local element

Kei,i in Ke is added to the ith row and the ith column of global matrix K, the second

local element Kei,j is added to the ith row and the jth column of global matrix K, and

so on. This is repeated for each triangular element.

For BVPs with Dirichlet boundary conditions, the values of u on the boundary

are known; this results in changes to the structure of the global matrix K. Given

that node i is a boundary node, the jth element of K in row i is enforced to

Ki,j =

1 for j = i

0 for j 6= i
. (B.4)

Assuming that the global indices are assigned to the boundary nodes first and then to

the free (interior) nodes, the global matrix K splits into four sub-matrices as follows:

K =

 IBB 0BF

KFB KFF

 , (B.5)

where subscripts B and F refer to the B boundary nodes and the F free (interior)

nodes in the mesh, thus N = B + F. The dimensions of the sub-matrices in (B.5)

are indicated by their subscripts; for example sub-matrix KFB ∈ CF×B. Further,

sub-matrix IBB ∈ RB×B is an identity matrix, and sub-matrix 0BF ∈ RB×F is a zero

matrix. The matrix KFB describes the interaction between boundary nodes and free
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nodes.

For vectorial problems solved using FEM, where the unknowns are along the

element edges, the assembly of the global matrices and the treatment of boundary

edges are very similar to the node-based FEM. In 2D problems, the unknowns for

any triangle are on the edges that are mapped from their local numbers {1, 2, 3}

to their global labels {i, j, k}. For 3D problems, the local edges of a tetrahedron

{1, 2, 3, 4, 5, 6} are associated with global indices {i, j, k, l,m, n}.
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C

Required Gradients for FEM-CSI

In the first step of the FEM-CSI algorithm, the gradient of the cost functional, ~g
t
,

with respect to the contrast source variables, ~wt, is required to calculate the updates.

At a given point ~wt, ~gt is the gradient pointing in the direction in which the Gâteaux

differential has the largest value [124]. The Gâteaux differential is evaluated first for

the data-error function FS(~wt) and then for the domain-error equation FD(χ, ~wt).

C.1 Data-Error Equation Gradient

For a small variation in ~wt taken along the search direction ~ht, the Gâteaux

differential of the data-error function FS(~wt) is given by

d~ht
FS(~wt) = lim

ε→0

FS(~wt + ε~ht)−FS(~wt)

ε

= lim
ε→0

ηS

∥∥∥~ut − ~MS ~L[~wt + ε~ht]
∥∥∥2

S
−
∥∥∥~ρ

t

∥∥∥2

S
ε

= lim
ε→0

ηS

∥∥∥~ρ
t
− ε ~MS ~L[~ht]

∥∥∥2

S
−
∥∥∥~ρ

t

∥∥∥2

S
ε

(C.1)

where ~ρ
t

is a function of ~wt, given as

~ρ
t

= ~ut − ~MS ~L[~wt]. (C.2)



C.1. Data-Error Equation Gradient 214

Expanding the norm, we get

d~ht
FS(~wt) = lim

ε→0
ηS

∥∥∥~ρ
t

∥∥∥2

S
− 2εRe

〈
~MS ~L[~ht],~ρt

〉
S

+ ε2
∥∥∥ ~MS ~L[~ht]

∥∥∥2

S
−
∥∥∥~ρ

t

∥∥∥2

S
ε

= lim
ε→0

ηS
−2εRe

〈
~MS ~L[~ht], ρt

〉
S

+ ε2
∥∥∥ ~MS ~L[~ht]

∥∥∥2

S
ε

= Re
〈
−2ηS ~MS ~L[~ht],~ρt

〉
S
.

(C.3)

Next, to obtain the direction ~ht that will maximize the differential, the direction

~ht can be isolated in the inner product using the adjoint operator ¯̄GS which satisfies

〈
−2ηS ~MS ~L[~ht],~ρt

〉
S

=
〈
~ht,

¯̄GS [~ρ
t
]
〉
D
. (C.4)

Thus ~ht = ¯̄GS [~ρ
t
] is the direction of maximum ascent which is what we are looking

for.

C.1.1 Case 1: 2D TM

Recall that, for 2D TM inversion problems, the electric field is assumed to be

z−polarized with no transverse components in the x− y plane, hence

~ρ
t

= ρ
t,z
ẑ ~ht,z = ht,z ẑ

~MS = MS,z ẑ ~L = Lz ẑ.

and the adjoint operator we are looking for is written as

¯̄GS = GS,zz ẑẑ.
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Using the inner product definitions given in (4.7) and (4.8), both sides of (C.4)

are expanded as follows:

− 2ηSρ
H

t,z
MS,zLz[ht,z] = ρH

t,z
(GS,zz)HT Dht,z. (C.5)

where the T D matrix comes from the fact that the right inner product is taken over

D. Thus, we can identify

GS,zz = −2ηST −1
D LH

z MH
S,z, (C.6)

and thus the Gâteaux differential can be written as

dht,zF
S(wt,z) = Re

〈
ht,z,−2ηST −1

D LH
z MH

S,zρt,z

〉
D
. (C.7)

To maximize the value of the differential, the search direction ht,z is chosen as

ht,z = −2ηST −1
D LH

z MH
S,zρt,z. (C.8)

This search direction ht,z is the gradient of the data-error equation FS(wt,z) with

respect to the contrast source variables wt,z for 2D TM problems.

C.1.2 Case 2: 2D TE

Recall that, for 2D TE configurations, the electric field is assumed to be polarized

in the x − y plane with no longitudinal component in the z−direction, therefore in
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(C.4)

~ρ
t

= ρ
t,x
x̂+ ρ

t,y
ŷ ~ht = ht,xx̂+ ht,yŷ

~MS = MS,xx̂+ MS,yŷ ~L = Lxx̂+ Lyŷ

and the adjoint operator we are looking for can be written as

¯̄GS = GS,xxx̂x̂+ GS,yxŷx̂+ GS,xyx̂ŷ + GS,yyŷŷ.

Using the inner product definitions (4.9) and (4.9), both sides in (C.4) are expanded

as follows:

− 2ηS

((
ρH
t,x
MS,xLx + ρH

t,y
MS,yLx

)
ht,x +

(
ρH
t,x
MS,xLy + ρH

t,y
MS,yLy

)
ht,y

)
=
(
ρH
t,x
GH
S,xxT D + ρH

t,y
GH
S,xyT D

)
ht,x +

(
ρH
t,x
GH
S,yxT D + ρH

t,y
GH
S,yyT D

)
ht,y. (C.9)

Comparing both sides of (C.9), it can be easily deduced that

GS,xx = −2ηST −1
D LH

x MH
S,x GS,xy = −2ηST −1

D LH
x MH

S,y

GS,yx = −2ηST −1
D LH

y MH
S,x GS,yy = −2ηST −1

D LH
y MH

S,y, (C.10)

and thus the Gâteaux differential for the 2D TE case can be written as

d~ht
FS(~wt) = Re

〈
~ht,

¯̄GS [~ρ
t
]
〉
D

(C.11)
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where the terms of the adjoint operator ¯̄GS are given in (C.10). Further, to maximize

the value of the differential the search direction ~ht is chosen to be

~ht =
(
GS,xxρt,x + GS,xyρt,y

)
x̂+

(
GS,yxρt,x + GS,yyρt,y

)
ŷ. (C.12)

This search direction ~ht is the gradient of the data-error equation FS(~wt) with respect

to the contrast source variables ~wt for 2D TE problems.

C.1.3 Case 3: 3D Full-Vectorial

For 3D full-vectorial problems, a similar procedure as outlined for 2D TE can be

done to calculate the gradient of the data-error equation. This results in the search

direction ~ht that will maximize the differential (C.1) to be evaluated as

~ht,n = ¯̄GS · ~ρt (C.13)

where

~ρ
t

= ρ
t,x
x̂+ ρ

t,y
ŷ + ρ

t,z
ẑ (C.14)

and

¯̄GS = GS,xxx̂x̂+ GS,yxŷx̂+ GS,zxẑx̂+

GS,xyx̂ŷ + GS,yyŷŷ + GS,zyẑŷ+

GS,xzx̂ẑ + GS,yzŷẑ + GS,zz ẑẑ.

(C.15)

Here each term is given by

GS,uv = −2ηST −1
D
(
LH
u MH

S,v
)

(C.16)
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where subscripts u, v are selected to represent either x, y or z. The search direction ~ht

is the gradient of the data-error equation FS(~wt) with respect to the contrast source

variables ~wt for 3D full-vectorial problems.

C.2 Domain-Error Equation Gradient

Next the Gâteaux differential of the domain-error equation FD(χ, ~wt) is evaluated,

with the contrast, χ, held constant. For a small variation in ~wt taken along the search

direction ~ht, the Gâteaux differential of FD(χ, ~wt) is given by

dhtFD(χ, ~wt) = lim
ε→0

FD(χ, ~wt + ε~ht)−FD(χ, ~wt)

ε

= lim
ε→0

ηD

∥∥∥~rt − ε(~ht − χ� ~MD ~L[~ht])
∥∥∥2

D
− ‖~rt‖

2
D

ε

= lim
ε→0

ηD
−2εRe

〈
~ht − χ� ~MD ~L[~ht],~rt

〉
D

+ ε2
∥∥∥~ht − χ�MDL[~ht]

∥∥∥2

D
ε

= Re
〈
−2ηD(~ht − χ� ~MDL[~ht]),~rt

〉
D
.

(C.17)

Here ~rt is taken to be the residual in the domain-error equation, which is a function

of ~wt and is given by

~rt = χ� ~E
inc

t − ~wt + χ� ~MD ~L[~wt]. (C.18)

To evaluate the direction ~ht that maximizes the differential, the differential is rewrit-

ten so as to isolate the direction ~ht using an adjoint operator ¯̄GD which satisfies

〈
−2ηD(~ht − χ� ~MD ~L[~ht]),~rt

〉
D

=
〈
~ht,

¯̄GD[~rt]
〉
D
. (C.19)
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C.2.1 Case 1: 2D TM

For 2D TM assumption, the different components of (C.19) are given as

~rt = rt,z ẑ
~ht,z = ht,z ẑ

~MD = MD,z ẑ ~L = Lz ẑ
¯̄GD = GD,zz ẑẑ.

Utilizing (4.7), the expansion of the inner products results in

− 2ηDr
H
t,zT D(I −XMD,zLz)ht,z = rHt,z(GD,zz)HT Dht,z (C.20)

where I is an identity matrix and X = diag(χ) is a diagonal matrix. Solving for

GD,zz we obtain

GD,zz = −2ηDT −1
D
(
I −LH

z MT
D,zXH

)
T D. (C.21)

The Gâteaux differential of the domain-error equation FD(χ,wt,z) becomes

dht,zF
D(χ,wt,z) = Re

〈
ht,z,−2ηDT −1

D
(
I −LH

z MT
D,zXH

)
T Drt,z

〉
D . (C.22)

Thus, to maximize the Gâteaux differential, the search direction ht,z is chosen as

ht,z = −2ηDT −1
D
(
I −LH

z MT
D,zXH

)
T Drt,z. (C.23)

This is the gradient of the domain-error equation FD(χ,wt,z) with respect to the

contrast source variables wt,z for 2D TM problems.
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C.2.2 Case 2: 2D TE

For 2D TE configurations, the different components in (C.19) are given as

~rt = rt,xx̂+ rt,yŷ
~ht = ht,xx̂+ ht,yŷ

~MD = MD,xx̂+ MD,yŷ ~L = Lxx̂+ Lyŷ

¯̄GD = GD,xxx̂x̂+ GD,yxŷx̂+ GD,xyx̂ŷ + GD,yyŷŷ.

The expansion of the inner products in (C.19) results in

− 2ηD

(
rHt,xT D

(
I −XMD,xLx

)
− rHt,yT DXMD,yLx

)
ht,x

− 2ηD

(
−rHt,xT DXMD,xLy + rHt,yT D

(
I −XMD,yLy

))
ht,y

=
(
rHt,xGH

D,xxT D + rHt,yGH
D,xyT D

)
ht,x +

(
rHt,xGH

D,yxT D + rHt,yGH
D,yyT D

)
ht,y. (C.24)

The comparison of both sides in (C.24) leads to

GD,xx = −2ηDT −1
D
(
I −LH

x MH
D,xXH

)
T D

GD,xy = 2ηDT −1
D LH

x MH
D,yXHT D

GD,yx = 2ηDT −1
D LH

y MH
D,xXHT D

GD,yy = −2ηDT −1
D
(
I −LH

y MH
D,yXH

)
T D. (C.25)

The Gâteaux differential for the 2D TE domain-error equation FD(χ, ~wt) can be

written as

d~ht
FD(χ, ~wt) = Re

〈
~ht,

¯̄GD[~rt]
〉
D
. (C.26)
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where the terms of the adjoint operator ¯̄GD are given in (C.25). Subsequently, to

maximize the Gâteaux differential the search direction ~ht is chosen as

~ht =
(
GD,xxrt,x + GD,xyrt,y

)
x̂+

(
GD,yxrt,x + GD,yyrt,y

)
ŷ. (C.27)

This search direction is the gradient of the domain-error equation FD(χ, ~wt,z) with

respect to the contrast source variables ~wt,z for 2D TE cases.

C.2.3 Case 3: 3D Full-Vectorial

For 3D full-vectorial problems, a similar procedure as outlined for 2D TE can be

performed to calculate the gradient of the domain-error equation. This results in the

search direction ~ht that will maximize the differential (C.17) be evaluated as

~ht,n = ¯̄GD ·~rt (C.28)

where

~rt = rt,xx̂+ rt,yŷ + rt,z ẑ (C.29)

and

¯̄GD = GD,xxx̂x̂+ GD,yxŷx̂+ GD,zxẑx̂+

GD,xyx̂ŷ + GD,yyŷŷ + GD,zyẑŷ+

GD,xzx̂ẑ + GD,yzŷẑ + GD,zz ẑẑ.

(C.30)
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Here each term is given by

GD,uv =


−2ηDT −1

D
(
I −LH

u MH
D,vXH

)
T D for u = v

2ηDT −1
D LH

u MH
D,vXHT D for u 6= v

(C.31)

where subscripts u, v are selected to represent either x, y or z. The search direction

~ht is the gradient of the domain-error equation FD(~wt) with respect to the contrast

source variables ~wt for 3D full-vectorial problems.

C.3 Summary

In conclusion, regardless of the configuration, the gradient of the cost functional

for contrast source variables ~wt,n−1 and contrast variables χ
n−1

at the nth iteration

can be written as

~g
t,n

= ¯̄GS · ~ρt,n−1
+ ¯̄GD ·~rt,n−1 (C.32)

where the adjoint operators ¯̄GS and ¯̄GD are defined in (C.6) and (C.21) for the 2D

TM case, in (C.10) and (C.25) for the 2D TE case, and in (C.15) and (C.30) for the

3D full-vectorial configuration.
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D

The Contrast Variables Update - Analytic

In the second step of the FEM-CSI method, a new contrast χ is chosen which

minimizes the modified domain-error equation

FDm(χ) = ηD
∑
t

∥∥∥~E tχ− ~wt∥∥∥2

D
(D.1)

where ~E t ∈ CI×I is the total field diagonal matrix with diagonal entries equal to the

elements of vector ~Et = ~E
inc

t + ~MD ~L[~wt]. In this step the contrast source ~wt is kept

constant, as well as the normalization factor ηD.

The minimizer of FDm(χ) is obtained by first evaluating the Gâteaux differential.

For a small variation with respect to χ along a search direction h, the differential is

calculated as

dhFDm(χ) = lim
ε→0

ηD
ε

[∑
t

∥∥∥~E t(χ+ εh)− ~wt
∥∥∥2

D
−
∑
t

∥∥∥~E tχ− ~wt∥∥∥2

D

]
= lim

ε→0

ηD
ε

[∑
t

∥∥∥~E tχ− ~wt + ε~E th
∥∥∥2

D
−
∑
t

∥∥∥~E tχ− ~wt∥∥∥2

D

]
= lim

ε→0

ηD
ε

[∑
t

∥∥∥~rt + ε~E th
∥∥∥2

D
−
∑
t

‖rt‖2
D

] (D.2)

where ~rt, a function of χ, is defined as

~rt = ~E tχ− ~wt, (D.3)
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Expanding the norms in (D.2)

dhFDm(χ) = lim
ε→0

ηD
ε

[∑
t

‖~rt‖
2
D + 2ε

∑
t

Re
〈
~rt, ~E th

〉
D

+ ε2
∑
t

∥∥∥~E th∥∥∥2

D
−
∑
t

‖~rt‖
2
D

]
= 2ηD

∑
t

Re
〈
~rt, ~E th

〉
D

= 2ηD
∑
t

Re(hH ~E
H

t · T D~rt).

(D.4)

Using the inner product definition (4.7), the differential can be written as

dhFDm(χ) = Re

〈
2ηD

∑
t

T −1
D

~E
H

t · T D~rt, h
〉
D

. (D.5)

The search direction that will maximize the Gâteaux differential is therefore

h = 2ηD
∑
t

T −1
D

~E
H

t · T D~rt.

Thus, at the nthth iteration the gradient of the modified domain equation evaluated

at χ = χ
n

is

gχD,n = 2ηD,n−1

∑
t

T −1
D

~E
H

t,n · T D~rt,n. (D.6)

The χ
n

that minimizes FDm(χ
n
) is found by setting (D.6) to zero, then requiring the

solution of (∑
t

~E
H

t,n · T D~E t,n
)
χ
n

=
∑
t

~E
H

t,n · T D~wt,n. (D.7)
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E

The Initial Guess for FEM-CSI

An initial guess to begin the FEM-CSI updating procedure is found by calculating

the contrast sources which minimize FS(~wt) in the steepest-descent direction, starting

with a zero initial guess. Note that this is the standard starting technique when ap-

plying most variations of the conjugate-gradient technique. For a single transmitter,

the data-error equation FSt (~wt) is

FSt (~wt) =
∥∥∥~ut − ~MSL[~wt]

∥∥∥2

S
(E.1)

As derived in Appendix C, at the nth iteration, the gradient of FSt (~wt) with respect

to the contrast source variable ~wt is given by

~gS,t,n = ¯̄GS · ~ρt,n−1
, (E.2)

where ~ρ
t,n−1

= ~ut − ~MS ~L[~wt,n−1].

The update equation for the first iteration of method of steepest descent is

~wt,0 = ~wt,−1 − β0
¯̄GS · ~ρt,−1

, (E.3)

where ~wt,−1 is the initial guess for the method of steepest descent which will be set to

zero, and β0 is a real update coefficient selected to minimize FSt (~wt,−1−β0
¯̄GS ·~ρt,−1

).
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Once β0 is found, ~wt,0 becomes the initial guess for the FEM-CSI updating pro-

cedure. Thus, we have

~wt,0 = −β0
¯̄GS · ~ut. (E.4)

To find β0, (E.4) is substituted into FSt (~wt) giving

FSt (~wt,0) =
∥∥∥~ut + β0

~MS ~L[ ¯̄GS · ~ut]
∥∥∥2

S

=
(
~ut + β0

~MS ~L[ ¯̄GS · ~ut]
)H(

~ut + β0
~MS ~L[ ¯̄GS · ~ut]

)
= ‖~ut‖

2
S + 2β0Re

〈
~MS ~L[ ¯̄GS · ~ut], ~ut

〉
S

+ β2
0

∥∥∥ ~MS ~L[ ¯̄GS · ~ut]
∥∥∥2

S
.

Differentiating with respect to the real scalar variable β0 gives

∂FSt
∂β0

= 2Re
〈

~MS ~L[ ¯̄GS · ~ut], ~ut
〉
S

+ 2β0

∥∥∥ ~MS ~L[ ¯̄GS · ~ut]
∥∥∥2

S
, (E.5)

which is set equal to zero to give the following formula for β0:

β0 = −
Re
〈

~MS ~L[ ¯̄GS · ~ut], ~ut
〉
S∥∥∥ ~MS ~L[ ¯̄GS · ~ut]

∥∥∥2

S

. (E.6)

Substituting (E.6) into (E.4), the initial guess for the FEM-CSI updating procedure

becomes

~wt,0 =
Re
〈

~MS ~L[ ¯̄GS · ~ut], ~ut
〉
S∥∥∥ ~MS ~L[ ¯̄GS · ~ut]

∥∥∥2

S

¯̄GS · ~ut. (E.7)
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F

Required Gradients for MR-FEMCSI

F.1 Domain-Error Gradient with respect to χ

In the second step of the MR-FEMCSI algorithm, the gradient gχD of the domain-

error equation FD(χ, ~wt) with respect to the contrast variable, χ, is required with the

contrast ~wt held constant.

As detailed in Appendix D, the gradient of the domain-error equation at the nth

iteration for χ
n−1

is

gχD,n = 2ηD,n−1

∑
t

T −1
D

~E
H

t,n · T D~rt,n. (F.1)

where

~E t,n = diag( ~E
inc

t + ~MD ~L[~wt,n])

~rt,n = ~E t,nχn−1
− ~wt,n.

(F.2)

In balanced MR-FEMCSI, the gradients of the domain-error equation, gχRD , and

gχID with respect to the real and imaginary components of the contrast variable are

evaluated separately. For two complex variables, φ and γ,

Re 〈φ , γ〉D = 〈φR , γR〉D + 〈φI , γI〉D , (F.3)
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where the subscripts R and I indicate the real and imaginary parts of the variables,

φ and γ. Thus, the result in (D.5) can be rewritten as

dhFD(χ, ~wt) =

〈
Re

(
2ηD

∑
t

T −1
D

~E
H

t · T D~rt

)
, hR

〉
D

+

〈
Im

(
2ηD

∑
t

T −1
D

~E
H

t · T D~rt

)
, hI

〉
D

. (F.4)

The first term in (F.4) is maximized by setting the search direction

hR = Re

(
2ηD

∑
t

T −1
D

~E
H

t · T D~rt

)
, (F.5)

which is the gradient, gχRD , of the domain-error equation FD(χ, ~wt) with respect to

χ
R

, the real component of χ. Similarly, the second term in (F.6) is then maximized

by setting

hI = Im

(
2ηD

∑
t

T −1
D

~E
H

t · T D~rt

)
(F.6)

which is the gradient, gχID , of FD(χ, ~wt) with respect to χ
I
, the imaginary component

of χ.

Thus, at the nth iteration of the balanced MR-CSI algorithm, the gradients of the

domain-error equation evaluated at χ = χ
n−1

are

gχR

D,n = Re

(
2ηD,n−1

∑
t

T −1
D

~E
H

t,n · T D~rt,n

)

gχI

D,n = Im

(
2ηD,n−1

∑
t

T −1
D

~E
H

t,n · T D~rt,n

)
.

(F.7)
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F.2 MR term Gradient with respect to Contrast

The second step of MR-FEMCSI requires the gradients of the multiplicative reg-

ularization term FMR
n (χ) with respect the contrast χ: gχ

MR,n
.

Let CMR
n (χ) be the MR term in the continuous domain. At a given point χ, gχMR

is the gradient pointing in the direction in which the Gâteaux differential of CMR
n (χ)

with respect to χ is maximized. For a small variation in χ taken along the search

direction h, the Gâteaux differential of the MR term is given by

dhCMR
n (χ) = lim

ε→0

CMR
n (χ+ ε h)− CMR

n (χ)

ε

= lim
ε→0

‖bn∇(χ+ ε h)‖2
D − ‖bn∇χ‖

2
D

ε

= lim
ε→0

‖bn∇χ‖2
D + 2εRe 〈bn∇χ, bn∇h〉D + ε2 ‖bn∇h‖2

D − ‖bn∇χ‖
2
D

ε

= Re 〈2 bn∇χ, bn∇h〉D .

(F.8)

Next, the direction h is isolated using the first Green’s theorem as follows:

〈bn∇χ, bn∇h〉D =

∫
D

(bn∇χ) · (bn∇h)∗ dv

=

∫
D

2 b2
n∇χ · (∇h)∗ dv

= −
∫
D

2h∗(∇ · b2
n∇χ) dv +

∮
ΓD

2 b2
nh
∗(∇χ · n̂) ds

= −
∫
D

2h∗(∇ · b2
n∇χ) dv

=
〈
−2∇ · b2

n∇χ, h
〉
D .

(F.9)

The surface integral vanishes because of assuming χ(~r ∈ ΓD) = 0, where ΓD is the

boundary of the imaging domain D. Therefore, to maximize the Gâteaux differential
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in (F.8) the search direction h is chosen as

h = −2∇ · b2
n∇χ. (F.10)

This direction is the gradient gχMR of the MR term, CMR
n (χ), with respect to χ. When

the problem is discretized in MR-FEMCSI, the gradient of FMR
n (χ) at the nth iteration

evaluated at χ = χ
n−1

is given as

gχ
MR,n

= −2∇ ·
(
b2
n �∇χ

n−1

)
(F.11)

where b2 = b� b. Here the gradient (∇) and the divergence (∇·) in (F.11) represent

matrix operators to perform spatial derivatives in the discretized imaging domain D.

Utilizing a similar procedure in BMR-FEMCSI, the gradients gχR

BMR
, gχI

BMR
of the

BMR term with respect to χ
R

and χ
I
, the real and the imaginary components of

the contrast variable, can be derived. Thus, at the nth iteration of the BMR-CSI

algorithm, the gradients of the BMR term for contrast variable χn−1 are

gχR

MR,n
= −2∇ ·

(
b2
n �∇χ

R,n−1

)
gχI

MR,n
= −2∇ ·

(
Q2 � b2

n �∇χ
I,n−1

)
.

(F.12)
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G

Multiplicative Regularization Step-size

The MR update step-size αχn can be calculated analytically by first introducing

~wt,n and χCSI
n

+ αχ dχn in the cost functional (5.5). This results in a fourth-degree

polynomial in αχ as follows

Fn = (A+B αχ + C αχ2)(D + E αχ + F αχ2), (G.1)

where

A = FMR
n (χCSI

n
), (G.2)

B = 2 Re
〈
bn �∇χCSI

n
, bn �∇dχn

〉
D
, (G.3)

C = ‖bn �∇dχn‖
2
D , (G.4)

and

D = FCSI(χCSI

n
, ~wt,n), (G.5)

E = 2ηD,n−1

∑
t

Re
〈
dχn � ~Et,n,~rt,n

〉
D
, (G.6)

F = ηD,n−1

∑
t

∥∥∥dχn � ~Et,n

∥∥∥2

D
. (G.7)
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Here ηD,n−1 is the normalization factor of the domain-error equation FD(χ, ~wt) at the

nth iteration [29].

Next the derivative of (G.1) with respect to αχ is set equal to zero to find the

minimizers of the polynomial. This yields three values for αχ, one real and one

complex-conjugate pair. The real αχ is the desired step-size αχn. This derivation of

the step-size follows the procedure discussed in [80].

The derivation of the step-sizes αχR and αχI for BMR-FEMCSI can be obtained

through a similar procedure.
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H

Approximating Spatial Derivatives

Let ŵ denote a constant unit vector and ψ(~r) be a scalar function. Over a region

Ω, the average of ŵ · ∇ψ(~r) is given by

〈ŵ · ∇ψ(~r)〉Ω =
1

V

∫
Ω

ŵ · ∇ψ(~r) dv (H.1)

where V is the area (in 2D) or the volume (in 3D) of region Ω. Using differentiation

vector identities, (H.1) is expanded to

〈ŵ · ∇ψ(~r)〉Ω =
1

V

∫
Ω

[
∇ ·
(
ψ(~r)ŵ

)
− ψ(~r)

(
∇ · ŵ

)]
dv. (H.2)

Since ŵ is a constant vector, ∇ · ŵ = 0. Therefore,

〈ŵ · ∇ψ(~r)〉Ω =
1

V

∫
Ω

∇ ·
(
ψ(~r)ŵ

)
dv. (H.3)

Next using divergence theorem, the volume integral is transformed to a closed contour

integration as follows:

〈ŵ · ∇ψ(~r)〉Ω =
1

V

∮
Γ

ψ(~r)ŵ · n̂ ds (H.4)

where Γ is the boundary of region Ω, and n̂ is an outward unit normal vector to Γ.
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I

Incident Field in Conductive Enclosures

For problems bounded by a conductive enclosure, the incident field inside the

chamber has to be evaluated in order to either generate synthetic data using a forward

solver or to utilize the CSI inversion algorithm .

For 2D TM scalar problems, the z−polarized scalar incident field Einc
t,z , bounded

by a conductive enclosure Γ (of any shape or size), is governed by the Helmholtz

equation

∇2Einc
t,z (~r) + k2

bE
inc
t,z (~r) = jωµ0Jt,z(~r) (I.1)

where kb is the background wavenumber and Jt,z is a z−polarized current source. The

incident field at the chamber boundary, Γ, should satisfy a homogeneous Dirichlet

boundary condition, hence

Einc
t,z (~r ∈ Γ) = 0. (I.2)

In the thesis, the electric source Jt,z considered is a point source and is given as

Jt,z(~r) =
−1

jωµ0

δ(~r − ~rt) (I.3)

where ~rt is the location of the point source within the problem domain Ω. Substituting

(I.3) in (I.1), the wave equation can be rewritten as

∇2Einc
t,z (~r) + k2

bE
inc
t,z (~r) = −δ(~r − ~rt). (I.4)
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As shown in [20], a solution for this equation that satisfies the homogeneous Dirichlet

boundary condition (I.2) is given as

Einc
t,z (~r) = Einc,fs

t,z + pt(~r). (I.5)

Here Einc,fs
t,z is the free-space field due to a point source and is calculated as

Einc,fs
t,z =

1

j4
H

(2)
0 (kb |~r − ~rt|) (I.6)

where H
(2)
0 is the zeroth-order Hankel function of the second kind. The function pt(~r)

in (I.5) can be evaluated by solving the following BVP:

∇2pt(~r) + k2
bpt(~r) = 0 ~r ∈ Ω

pt(~r) = −Einc,fs
t,z on Γ. (I.7)

The BVP can be solved using the finite-element method described for 2D TM prob-

lems in Section 3.2.

For 2D TE vectorial cases, a similar procedure can be used to solve for the incident

field within a PEC chamber due to a magnetic point source.
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J.1 Published Journal Papers

1. Amer Zakaria and Joe LoVetri, “Application of Multiplicative Regularization
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2. Amer Zakaria, Colin Gilmore and Joe LoVetri, “Finite-element Contrast
Source Inversion Method of Microwave Imaging,” Inverse Problems, 26 (2010)
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126-133, October 2011.
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anian, Lotfollah Shafai, Stephen Pistorius and Joe LoVetri, “A Wideband Mi-
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IEEE Transactions on Biomedical Engineering, vol. 57, no. 4, pp. 894-904,
April 2010.

J.2 Submitted Journal Papers

1. Amer Zakaria and Joe LoVetri, “The Finite-Element Method Contrast Source
Inversion Algorithm for 2D Transverse Electric Vectorial Problems,” IEEE
Transactions on Antennas and Propagation, revised and resubmitted in Jan-
uary 2012.
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Study of Human Forearm Imaging for a Microwave Tomography System,” IEEE
Transactions on Medical Imaging, to be resubmitted in 2012.
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Biomedical Microwave Imaging,” European Electromagnetics Conference 2012,
Toulouse, France, July 2-6, 2012.
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trast Source Inversion Method for Microwave Imaging Applications,” Advanced
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ce Inversion on TM and TE Experimental Data,” 2011 IEEE International
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CSI for Microwave Tomography,” The 14th International Symposium Antenna
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AMEREM 2010), Ottawa, Ontario, Canada, July 5-9, 2010.

6. Puyan Mojabi, Colin Gilmore, Amer Zakaria and Joe LoVetri, “Biomedi-
cal Microwave Inversion in Conducting Cylinders of Arbitrary Shapes,” 13th
International Symposium on Antenna Technology and Applied Electromagnet-
ics (ANTEM) and the Canadian Radio Sciences Meeting (URSI/CNC), 2009.
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