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Abstract

The laboratory setting provides an opportunity to elucidate various aspects of wave

related phenomena. However, the mechanical generation of waves by an impervious

waveboard results in a number of second-order problems not inherent with wind-

generated waves. Since second-order processes play a fundamental role in many wave-

related phenomena, the accurate reproduction of "natural" wave conditions is central to

meaningful laboratory experiments. Mathematical algorithms exist that eliminate the

spurious second-order waves caused by a first-order control signal. These mathematical

algorithms were encoded into an interactive software package using MATLAB to create a

first-order wave train and correct it for second-order effects based on user-defined inputs.

The efficiency of the algorithms was enhanced using a proposed method of thresholding

that limits the range of frequencies over which the various corrections are applied. The

software package (WAVGEN) was tested in the HRTF random wave flume. The

bispectrum was used to examine the ability of the second-order algorithms to eliminate

spurious waves. Bichromatic wave trains showed clearly that the algorithms reduced the

second-order wave effects. Random wave tests showed similar results albeit less clearly

given the broad-banded nature of the random wave spectra.

vl



Symbols and Notation

Symbols

a wave amplitude (cosine component) [m]

b wave amplitude (sine component) [m]

b(f,, Ír) bicoherence estimate

B first-order velocity potential parameter

B(f,, -ft) complex bispectral estimate [(units)3 llHrt']

C frrst-order velocity potential parameter

D first-order velocity potential parameter

Et] expected value or average operator

Í wave frequency [FIz]

Í, peak frequency [FIz]

fo Fourier frequency interval [Hz]

f lowest frequency in linear spectrum [Hz]

Fu second-order transfer function

F fetch length [m]

g constant of acceleration due to gravity [*/rt]

G evanescent mode transfer function parameter

G,o, second-order transfer function for bounded waves

h depth of still water [m]

I displacement wave transfer function parameter

k radian wave number [rnt]

vll



kf

k¿

K

I

Lo

¡r

p

wave number of free wave [m-1]

sum of radian wave numbers k,, and k, fm''f

displacement wave transfer function parameter

distance from bottom to hinged point of wave generator [m]

deep water wavelength [m]

number of frequency components in Fourier series

pressure [Pa]

a

A

P displacement wave transfer function parameter

P(f) "power" spectral or variance density estimate [(units)2 / FIz]

displacement wave transfer function parameter

displacement wave transfer function parameter

R(r) autocorrelation function

spectral variance density ¡m2 lttzl

time [s]

wave record length [s]

Ítt first-order transfer function according to Biesel

horizontal, orbital wave velocity [m/s]

bound wave transfer function parameter

Uto wind speed at 10 metres above water surface [m/s]

vertical, orbital wave velocity [n/s]

Donelan wave age parameter

horizontal coordinate [m]

T

U

vlll

W



X waveboard position [m]

Xo waveboard position at still water surface [m]

z vertical coordinate [m]

a wave spectrum parameter

P' bound wave transfer function parameter

6 second-order transfer function parameter

ó velocity potential [m/s]

ûûÁ" TMA spectral parameter

y displacement wave transfer function parameter or wave spectrum

parameter

îl water surface elevation [m]

I evanescent mode transfer function parameter

p dynamic viscosity [kglm.s] or wave spectrum parameter

v number ofdegrees offreedom

7î transcendental constant

p fluid density [kg/m']

c time lag [s]

ú) radian frequency [s-t]

@t sum of radian frequencies a¡n, and at,

€ long wave surface elevation [m]

ç(t) stationary random function of time

O second-order transfer function parameter

ix



Qs evanescent mode transfer function parameter

ordering parameter

Notation

CT¡

cIx

subscript t denotes partial differentiation

subscript x denotes partial differentiation

az subscript z denotes partial differentiation

aþ) an ntl'-order quantity

I "l modulus or amplitude

a vector

subscript denoting the mth wave component

subscript denoting the nth wave component

n{} real part

5{} imaginary part

grad operator

f(") function of a
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Ghapter 1 : lntroduction

1.1 Background.

The laboratory wave flume, a long, relatively narrow channel with a wavemaker at one

end and a wave energy absorption system at the other, is a common facility for the

experimental study of water waves and their interaction with fixed and floating coastal

structures, including the shoreline itself. Although the generated wavefield is often two-

dimensional, this limitation is unimportant in many practical applications (e.g., cross-shore

sediment transport, shore protection testing), and the use of a single planar wavemaker to

produce waves is adequate. The 2-D characteristics of a wave flume must, however, be

kept in mind when interpreting the results of model tests since not all the natural processes

have been accounted for (i.e., alongshore current). Three-dimensional wave fields can be

created in a wave basin using a long segmented waveboard. In order to accurately

simulate coastal phenomena, a "realistic" sea state is required.

The movement of the waveboard and the boundary condition at the waveboard give rise to

numerous spurious second-order effects that can seriously corrupt or interfere with natural

phenomena. In a natural wavetrain the non-linearity of the free-surface boundary

conditions introduces sub- and superharmonics which are phase locked to the primary

wave components. The subharmonics (or bound long waves) can generate the long period

harbour oscillations, slow-drift motions of moored vessels and tension leg platforms, and

sandbar formation due to sediment transport. The superharmonics introduce sharper-

peaked crests and flatter troughs that are important for sediment transport due to wave



asymmetry and can be of importance for forces on offshore platforms. An incorrect (first-

order) reproduction in the laboratory generates free waves at the same frequencies as the

bound long and short waves, but travelling at free wave speed rather than at the wave

group velocity. This difference in speed between the free and bound wave components

results in spatial variations in the water surface fluctuations. A proper understanding of

the complex nature of the sea state and its mechanical reproduction in the laboratory wave

basin or flume have been the subject of intensive research over the past twenty years.

1.2. Literature Review.

Several investigators have studied the non-linear wavefield produced by finite-amplitude

wavemakers using an approach based on the Stokes expansion procedure. The technique

involves expressing the generated waveforms, associated velocity potentials, and, most

recently, piston position as perturbation series, where the expansion parameter is related

to wave steepness (Stokes, 1847). The use of a Stokes expansion results in a series of

linear problems, one at each order of the perturbation approximating the non-linear

problem. Most of the work on this problem has focused on including the second-order

terms in the analysis.

Stokes' (1847) work included only the waveforms and the associated velocity potentials in

the perturbation technique for regular waves. Only the second-order sum frequencies

appear (difference frequencies vanish) and expressions for the second-order amplitude and

phase were given. Biésel (1951) developed the first-order transfer function relating

piston-type waveboard displacement and the resulting wave amplitude. He also



recognized and quantified the first-order local disturbances due to the horizontal velocity

profile mismatch that results in the production of a second-order evanescent mode wave.

In nature, the horizontal velocity profile is parabolic with zero velocity at the bottom

boundary. In a laboratory, the planar wavemaker creates a uniform velocity profile.

Fontanet (1961) presented the first complete approach to second-order wavemaker theory

for the waves forced by an oscillating plane wavemaker. Using a Lagrangian description

he found the spurious superharmonics generated by a purely sinusoidal oscillation of the

waveboard and described how to suppress these by adding a second-order superharmonic

component to the first-order wavemaker control signal. His choice of a Lagrangian

coordinate system makes the solution complicated to apply.

Longuet-Higgins and Stewart (1962,1964) were the first to point out that the variation of

the radiation stress, which is defined as the excess flux of momentum due to the presence

of waves, in grouped waves is the reason that long period waves are associated with wave

groups. Their theory for the group-induced generation of long waves is based on the

narrow-banded assumption. Ottesen Hansen (1978) and Ottesen Hansen et al. (1980)

derived similar results to Longuet-Higgins and Stewart (1964) without the narrow banded

restriction. The solution presented by Ottesen Hansen et al. (1980) uses a transfer

function that gives the second-order contribution in terms of the interacting first-order

wave components.



Madsen (1971) developed an approximate theory using a Stokes-like expansion for the

suppression of spurious superharmonics in regular waves generated in fairly shallow

water. His method suppressed spurious free waves by adding a second-order control

signal to the first-order control signal. His solution is limited to relatively long waves.

Buhr Hansen et ql. (1975) chose an empirical approach to pursue the second-order control

signal for regular waves. He was able to determine both the amplitude and phase of a

regular free second-order harmonic wave. For an irregular wavetrain expressed by a

Fourier series, the large number of cross products of second-order makes it impossible to

apply such an empirical approach.

Dean and Sharma (1981) developed a generalization including both subharmonics and

superharmonics for directional waves. Their work included a second-order transfer

function linking the second-order waves to the primary wave components.

Flick and Guza (1980) used a Stokes expansion to analyze the motion of a wavemaker

that is hinged either on or below the channel bottom. They evaluated the relationship

between the second-harmonic free waves forced by the wavemaker and the second-

harmonic Stokes waves using regular waves and wave groups.

Hudspeth and Sulisz (1991) derived the complete second-order solution to the wavemaker

problem using an eigenfunction expansion approach. The solution considered

monochromatic wave paddle motion with special emphasis on Stokes drift and return flow



in wave flumes. Their formulation included new terms previously neglected in the Stokes

type analyses. Sulisz and Hudspeth (1993) presented an eigenfunction expansion

complete to second-order for the two-dimensional wave motion forced by a sinusoid

wavemaker motion. They experimentally verifîed the work of Hudspeth and Sulisz (1991)

in a 2-D wave basin and calculated second-order amplitudes for the free wave and the

Stokes wave. Mobayed and Williams (199a) extended the theory of Hudspeth and Sulisz

(1991) to cover bichromatic paddle motion. Their derivation explicitly included the

difference frequency second-order effects unlike Hudspeth and Sulisz (1991) and Sulisz

and Hudspeth (1993). Their results were confirmed numerically.

For random waves, Sand (1982) calculated the second-order subharmonic control signal

for a piston type wavemaker needed to suppress three spurious long wave components

created using first-order wave generation techniques without requiring the narrow band

assumption. Barthel et al. (1983) gave a more detailed description of the theory of Sand

(1982) and extended it to include a rotating waveboard motion, restricting the center of

rotation to a point at or below the bottom of the flume. Sand and Donslund (1985) gave

the theoretical extension to Barthel et al. (1983), needed to include the case of a rotating

waveboard with the hinge located above the flume bottom.

Extending the basic principles outlined in Flick and Guza (19S0), Sand and Mansard

(1986a, 1986b) developed the theoretical transfer functions, similar to those used by Sand

(1982), necessary to reproduce correctly the higher harmonics in an irregular sea state. A

second-order control signal was calculated in order to ensure the correct reproduction of



the wave profile without any spurious, higher-harmonic free wave effects. Their technique

is valid for translatory as well as rotating waveboards.

In order to make the wave generation algorithm more efficient, Klopman and Van

Leeuwen (1990) used a technique based on the perturbation method of multiple scales to

derive the formulas for the second-order wavemaker control signal. The method of

multiple scales pursues the corrections in the time domain unlike the frequency domain

methods of Sand (1982), Barthel et al. (1993), Sand and Donslund (1985), and Sand and

Mansard (1986a, b). The amount of work to generate the second-order corrections with

their method is proportional to the amount of work to generate the frrst-order signal. In

previously used second-order frequency domain methods, this amount of work was

proportional to the square of the effort for generating the first-order signal. Their method

is of limited utility since it assumes a narrow spectral bandwidth for the first-order waves.

For a substantial simplification of the theory, the evanescent modes can be ignored when

the waveboard motion makes a good fit to the velocity profile of the desired progressive

waves. Situations where this approximation fails are often encountered. Schaffer (Igg4)

quantified the error introduced by ignoring the effects of evanescent modes in second-

order wave generation. Schaffer (1996) recently presented the complete second-order

wavemaker theory for irregular waves. A complex representation was chosen to facilitate

and simplify the theoretical calculations. A method known as the asymptotic summation

method (Schäffer, 1993) was included to quickly fïnd the sum of the infinite series that

appear in his second-order solution. The theory was verified for a piston-type wavemaker



using regular waves, wave groups, and irregular waves. This research appeared too late

(i.e., January, 1996) to be included in the present work.

1.3. Ohjectives of this Research.

The objectives ofthis research are:

i) to present a theoretical framework for the generation of a 2-D laboratory wavefield

correct to second-order using the long wave correction algorithms of Sand (1982),

Barthel et al. (1983), Sand and Donslund (1985), and the short wave correction

algorithms of Sand and Mansard (1986a, b),

ii) to create a user-interactive software package in MATLAB, based on the algorithms

presented in (i) to generate waves correct to second-order in the laboratory,

iii) to test and calibrate the software package developed in (ii),

iv) to study the effects of using a thresholding technique to improve algorithm efüciency

v) to use bispectral techniques to test the algorithms.

In the following chapter a theoretical basis for including second-order effects in the

mechanical generation of a wave field free of spurious effects is presented. An overview

of the MATLAB-based software package including an explanation of the thresholding

technique found is found in chapter 3. The experimental setup and the wave data

generated and recorded are described in chapter 4. Chapter 5 includes a brieftheoretical

discussion of the bispectrum and its application to the study of triad interactions. The

bispectral analysis of the recorded wave data are also included. A summary of the results,

conclusions and recommendations for future work are given in chapter 6.



Chapter 2: Wavemaker Theory

2.1. Governing Equations.

The Navier-Stokes equation

(2 r)

is the foundation of fluid mechanics. In the usual notation, p is the fluid density, p is the

pressure, p is the dynamic viscosity, u: (u, v, w) the x, y, and z components of velocity,

respectively, and g is the acceleration due to gravity. The x-y axes lie in a horizontal plane

and the z-axis points vertically upward. The motion of a Newtonian fluid is well described

by the Navier-Stokes equation, however, problems arise in trying to solve this equation.

For the case of surface gravity waves, finding a solution to this equation is further

complicated by the unknown position of the free surface and the relatively complicated

boundary conditions to be applied there.

To make the problem tractable, the following simplifying assumptions are applied.

i) the flow is irrotational,

ii) the flow is incompressible,

iii) the fluid is inviscid,

iv) surface tension is negligible,

v) p and g are temporally and spatially constant,

vi) the waves propogate in the positive x-axis direction, and

vii) the bottom is flat and impermeable.

lu
ur + u.Vu = --Yp +rV'u + gpp



The resulting equations describing waves propogatingin a flat bottom flume and equipped

with a rotating and/or translating waveboard are given in terms of the velocity potential

þ(x,z,t), defined try (Barthel et a|.,1983)

" =4'' =4&' a
Lþ = 0 everywhere in the fluid

1

a + -(ø3 *ü)* sr =o for z = rttt2

T,*ó,T,-þ,=0 forz=rl
þ,=o forz:-h

condition at the waveboard for x : X(z,t)

where þ: þ(x,z,t) velocity potential

ry 
: ry(x,t) water surface elevation

g: acceleration of gravity

h: mean water depth

x, z : horizontal and vertical coordinates

l: time

The position of the waveboard, X is given as

X(z,t) = f e)XoQ)
z

withf (z) = 1* 
-
n+t

(2.2a)

(2 2b)

(2.2c)

(2.2d)

(2.2e)
(2.2Ð

(2 3)

(2 4)

where å is the water depth and / is the distance to a fictitious waveboard pivot point The

definition sketch shown in Figure 2.1 covers the types of wavemakers considered by the

governing equations above. It appears that there are two limiting cases: a flap, hinged at



WAVÊ BOARD

Figure 2.1 Definition sketch for wave generators with translatory, rotational, or
combined modes of operation.

l,
+
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the bottom of the wave flume (/: 0) and a piston-type wavemaker (/: -). Values for / in

between these conditions relate to a combined rotating and translating motion of the

waveboard. Elevated piston and flap wavemakers require additional terms in the

governing equations.

Taylor series expansions are applied to the basic equations and the boundary conditions to

obtain boundary conditions at the waveboard, where x = 0 and z : O. Xo, ó, and r7 are

expanded in terms of an ordering p4rameter, e , which results in fìrst- and second-order

phenomena

rl=€ryQ)+ ez ,(zl

þ =eú0) + ez 6et

xo =€xo(t)+ e2 xo{z) .

This method of solution results in the following first- and second-order equations

First-order e qu ations :

for z:0
for z: -h

forx:0

(2.sa)

(2 sb)

(2 sc)

(2.6a)

(2 6b)

(2.6c)

(2.6d)

a,6<tt - o

ø,1" *gó,0) =o

Ó!') = o

,/r\ ^. dXá"
ú'" = Í(r)-i

ll



S e c ond-order e quati on s

LÓØ _O

øÍ', * sþ!') = -ryr, {só}), * þt l - ryy ú;D * ú!', {sryÍ,, * úlil + þtD 6t,rt ror z : 0

þ!Ð =o

øe) = ¡ ç¡4t_ _ r[,, 
þ @>ø:, _ fi ø:,]

for z: -h

forx:0

(2.7a)

(2 7b)

(2 7c)

(2.7d)

Equations (2.6a) - (2.7d) can be solved for the case where the first-order wave motion,

er1(t), which is far from the wavemaker, is given by

e r¡(') çx ,t)= Ë {o,, "o{, ,t - 
k ,,*) + b, sin(ø,t - k ,r)}

n=1
(2 8)

where .^/ is the total number of wave components. The first-order equations are solved for

{) andXoQt. Substituting the first-order solutions into the second-order equations, result

in sinusiodal terms with sum and difference frequencies. The second-order equations are

then solved with the additional condition that no free waves may exist to second-order,

i.e.,find X[7) .

2.2. First-Order Solution.

Since the first-order equations are linear in {',,

individually, and then summed to give ó(I) and X/tt.

solution of the form

the terms in (2.8) can be treated

Using this approach, we look for a

(2.e)xá" = sina¡t

T2



The corresponding potential /r1l (solution of the first-order equations) is (Flick and Guza,

1e80)

coshk(z + h\ cosl,(z + h)
úç)=B sin(Ír - ø;) +ZC,

't= I

-l,xe ' cosat (2.10a)
coshkh cosl,h

where

fr is the positive and real root of at = gktanhkh

0

! ¡ <'>coshk(z + h) dz

B =; coshkh\- 
[cosh' k(z + h) dz
-h

/, is the positive and real root of - a' = gl, tanl,h

with (j -Ðo <l,h < jn; j =1,2,3,...

(2. 10c)

(2 10d)

(2.10e)

(2.r0Ð

(2.10b)

(2.1r)

I l<rlcost,(z +h) dz

C,=-?cos(/rå)p' ti j.or' t,(z + h) dz
-h

For the waveboard motion, the general solution of the first-order equations is given by

e xár) =ä#{a, sina,,t - b, cosø,,t| .

2.3. Second-Order Solution : Long Waves.

Due to the linearity of the second-order equations (2.7a)-(2.7d) in ø,t,, it is possible to

write úØ as a superposition of three potentials (Barthel et al.,l9g3):

(2.12){, : {t,, + 6{zz1 * ltt, .

13



The potential functions composing þØ have to satisfy the equations below, which make

þ(2) satisfy the original second-order equations.

óQ') hut to satisfy the following equations (Barthel et a1.,1983):

L6<zt> - O (2.1,3a)

(2.r3b)ó(") +sþ(") - -q(t){só1, *ø:!l-ry',øÍD *úÍ'r|[srÍ,, *ø:i\¡þot(t)fs¡ 2:s
ú!r,) = o

no condition at the wave board

Physically, this means that 6{2t) corresponds to the second-order long waves that are

bound to the wave groups, see Ottesen Hansen (1973). The absence of a boundary

condition at the waveboard indicates that the solution is representative of progressive

waves in general, including those found in nature.

{tt' hut to satisfy the following equations (Barthel et a\.,1983):

Lø(22) - 0

ø,1"'*Eú!")=o
ó!rr) = o

ó:") = - *[" {l e)øs) - *rr} - ø:',

The waveboard boundary condition (2.14d) indicates that there are several types of free

second-order waves arising from the terms on the right-hand side. The frrst term,

- xå'{rc'ø:'-*,"}'

appears as the waveboard moves out of its mean position (i.e., X[t) + 0). Two free long

waves are represented: one is associated with first-order local disturbances and the other is

due to waveboard displacement. The second term, - þ!2t) , originates as a reflection on the

for z: -h (2.13c)

for x: 0 (2.13d)

Q.Taa)
for z:0 (2.14b)

for z: -h (z.lac)

for x: 0 (2.14d)

t4



waveboard of the group bounded long waves which are naturally generated. The

backward orbital velocities found under the long \ iave troughs reflect off the waveboard

with the same magnitude but opposite phase as the bound waves. This third type of free

long waves are known as "parasitic long waves". All three disturbances are spurious long

waves, which have to be suppressed by means of a second-order waveboard displacement

x[" .

þQt) hutto satisfy the following equations (Barthel et a1.,1983):

Lø(23) - O

ú,1"'*gó!")=o
þ!tt) = o

ø:")=fØw
dt

for z:0
for z : -lt

forx:0

(2.rsa)

(2.rsb)

(2.1sc)

(2 i5d)

which are

WAVES

WAVES

These equations determine the second-order waveboard motions, x[t, ,

necessary for the correct generation of grouped waves with only the bound

present. Equations (2.15a) - (2 15d) provide the compensation for the

described by ú"t'(Equations (Z.ta{ - Q.t4d)).

long

free

In order to solve these second-order equations, the first-order solutions ry(t), {) and yfrt

have to be substituted into the right-hand side of the respective equations. However,

because they are linearwith respectto þØ, it is sufficient to consider only two first-order

components. Afterwards, superposition can be applied to include the contributions of all

possible combinations of frequencies in a realistic wavetrain.

t5



The final solution is seen to be the result of the superposition of all the combinations of the

two first-order components. The complete second-order paddle motion is then given by

It should be noted that the total waveboard displacement (including the second-order long

wave correction) is given by

X(t¡ = "f Ø(. Xt', * e'z X[Ð).

¡r'-t N

e, Xe) =I Z.'X[:,Ì,,
n=l n=n+l

ö(r)= Ë Ë 6,,,,(t),with n*=#
n-nt=l nt=ntt J n

Tl,,o,(l) = îlu * Tn, = ãncos(ø,,/ - k,,*)+b,,sin(or,,t - k,,*)

*o ,, "or(r,,t - 
k ,,x) + b,, sin(ø,,t - k ,,x)

(2.16)

(2.17)

(2 18)

(2 re)

Calculation of the second-order long waves and the second-order piston position are

based on a Fourier decomposition of the primary wavetrain. The long wave elevations are

found from the sum

wherefo: llTis the frequency interval in the Fourier decomposition, Zis the length of the

record, andf is the lowest frequency in the short wave spectrum. Thus, ((t) is the sum of

contributions from all pairs of frequencies in the decomposition.

It is sufficient to consider a single long wave contribution generated by one frequency pair,

J, andf,,, with the elevations rl,ft) and rl.(t), respectively. Such a pair of \¡/aves forms a

wave group

16



in which a is the wave amplitude and ø is the radial frequency. The second-order long

wave generated by this group becomes

á,,, (t ) = o,,,,rl(!e#h) c o Jra, a,, n,t - ak,,, *)
(2 20)

*(a'b'-=ah\ ' 'l
'( h;-)sin(a'a,,,t - ak,,,x))

where G;,, is a transfer function, LcD,,, : (ùn - a., and L,kn. : kn - k^ are

quantities. The long wave frequency is LÍ,,: Í, -Jt : Lotno,l2n.

The dimensionless transfer function G;,,h is given for a piston type wave generator as

(Ottesen Hansen, 1978; Sand, 1982):

Gr,h =

(2 2r)
where Dn : (hlg)'"f, and D,, -- (hlg)'o-f^, with g being the gravitational acceleration

constant. The dimensionless transfer function G;,,h is plotted as a function of h I Lofor

several values of Lf lf. in Figure 2.2.

The correct second-order piston positions for the reproduction of group-induced long

waves in a natural wavetrain are

long wave

(2.22)x"'(t)= Ë ir:::c>
n-n¡=l n=n*

4x2 çD,, - Dn)' cotlt(Lkn,,h)- Lk,,,,h

L7
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The solution to the second-order equations can be written as (Sand, 1982):

x|11 <t> 
l( 
!¿";!A r,^ .( w$h) F,,hfcos a,ø..,t/, =L\. h' )t('t\ h' )'"'l

.le#9,,, . (ü#h) L,hfsin L a ..,t

For the second-order correction calculations, the dimensionless function Fú is

(2.23)

(2.24)

(2.2s)

where

Fth: F1ft + F12h

G,.,hakt (*,.,, - n*, n) si*(n* *,h + r,k, h) * (tk -,h * dk, n) ti*lru, * þ - M, h)

,(*'* lt' - N4 h')si nrr(lr,,¿) s i*(t*, n)

and

Frrh =

(2.26)

The free long wave number aÉ¡is derived from (Lø,.)' : g Lk¡tanh(Ahh) and 6lf ,: k,, !

Lk¡. The function Ftù is the contribution to the second-order piston position that

eliminates the free parasitic long wave resulting from a reflection offthe waveboard of the

natural rearward orbital velocities found underneath the bound group long wave trough.

This reflected wave is exactly out of phase with the bound long wave at the waveboard

but travels with a free wave velocity resulting in a location-dependent distortion of the

long wave eff[ects. The Ftzh function corrects for the free long wave appearing as a result

of the waveboard moving out of its mean position, .r : 0. It has thus been historically

Í,,Lk rhk ,,h(t * c ,,)fat;h sinh(6k j,h) + õk;h sinn(aq,n)

Lf B(k:,h'?-^kih')si"n(trrn)sinu(*,,rt)tu*r(rr,n)

.f , Lk r h k,,h(r * c,,)la, ; h sinh(6k j h) + 6 k ) h sinn(a 4 n)

LÍ B(k: h'? - Lki h')si nn(n*, ø) si nn(r,, ø) ta nn(r,,n)

t9



referred to as the displacement function. The dimensionless functions Ftù and Ftzh are

plotted versus h i L0 for several values of Af / f,, in Figure 2.3 and Figure 2.4, respectively.

The sum of these two functions, F1h, is shown in Figure 2.5. It is interesting to note that

in shallow water the F¡þ function dominates, while in deep water the F12h function is the

dominant one.

The function Fzsh used in the piston position equation above can be written in the form

Fzsh:Fzh(Fs,,,-Fs,,) (2 27)

(2.28)in which Frh =

and

trrn(r+c,,)(r *G,,)

uanh(tc,h) tanh(k,,h)'

F"

in which k¡h is found as the solution to

47r"hf :
= -t,ntun(k,h), with (¡ -I)" <k,h < jn

zk,hsin(k,h k,h sin(t,h) 
"otn(ur, 

n) + nn, h 
"o{t,n)

The Fzsh function is the contribution that eliminates the free second-order progressive

waves that originate from first-order local disturbances as described by Biésel (195i).

These waves occur as a direct result of the horizontal velocity profile mismatch between

natural waves and those generated by a planar wavemaker. Sand (1982) has shown that

the magnitude of the Fzs correction is sufficiently small when compared to the magnitude

ofFr to be considered insignificant for the purposes of laboratory testing.

_¿,+- Af *Lt (0,, r' + Lk'rh')[s,n(r,ø).o, (n,n) + t,n
(2.2ea)

(2.zeb)oò

sinn(zn,,n)

20



0

-10

-20

= -30
tl.

-4

-50

-60
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2.4. Second-Order Corrections : Short Waves.

The Laplace equation with a second-order surface condition is solved for a first-order

wavetrain, r7(t), described by a Fourier series. To simplifi the calculations, the solution is

found for pairs of frequencies and superposition is used to combine the results for all

possible frequency sums. The following wave group is considered

in which a is the wave amplitude, ø is the radial frequency, Ë is the radial wave number

(:ZnlL, with wavelength L), x is the horizontal coordinate and nt, n are the frequency

subscripts of the two components selected from the Fourier series. Taking the wave

group in Equation (2. 18) as a kernel of the Fourier series the solution for the second-order

control signal has the form:

,í',)(t) = a,t cos(ú),t - k,x) + b, sin(ø,,t - k,x)
+ a ,, cos(ø ,,t - k 

^x) 
+ b,, sin(a,,t - k ,,x)

x9@ = ((o,b,, +a,,b,)F, +(o,o,, -b,,b,,)Frr)ror(rrr)-

((n,o 
^ - b,b,,) F, - (o,b,, + a,,b,,) Frr)si n(ø, r)

F, = Fr, + F, and Fr, = Fr(Fr,,, * Fr,,,)

Cr)¿: ú)r* ú¡,

(2 30)

(2.3ra)

(2.3tb)

(2.3Lc)

in which

and

The function Fi, which converts the first-order Fourier amplitudes into a second-order

correction consists of two parts, Fy and Ftz. The first part, F11, is needed as a direct

result of the bounded harmonics in the wavetrain. It allows rtçÀØ to exist without

spurious effects, which would otherwise appear as the reflection on the waveboard of the

second-order bound components. With no flow through the waveboard, the natural

24



rearward orbital velocities underneath a wave trough are reflected offthe waveboard and

travel with a free wave velocity, resulting in a location-dependent distortion of the bound

short wave effects, which travel with the wave group velocity. The dimensionless

expression for Fy is (Sand and Mansard, 1986a):

where

4,h =lc;,,nwr'rn'(tcrhtannkrh- krhtann4n)Q+ t t n)f, 
(2.32a)

l@ : r' - k', h') tann t rn(tr, n(L + I / h) tanh k r h - t + B' I cosn n, n)l

k2 -- kr+k,,,

É¡ is the free wave number norn (arr)t = gkt tanh krh ,

^,=[ 
I for 12 o

r fcoshÉr/ for / < 0

,, _ krhtanhkrh ( .,, k,,hk,,h(7*tanh k,,htanhk,,h) k,htanhkrh\
krhtanhkrhl  c:,,h,,lk,hk,,htanhk,htanhk,,h 4G:,,h )

(2.32e)

G),, is a second-order transfer function for the primary frequencies f,+k expressed in

dimensionless form as (Sand and Mansard, i986a):

GL,h = llr@, * o,,)' (k,,hk,,Ìt / d,,,a,, - 4r'ana,,) +

(o,,*a,,)(tj,lr'lan,+k:h'z 1d,,,-47t2(o,,t *o,,'))] tl+o(a,,*o,,)'-af eß)
*l+o'olol,(l * o,, I d,, + a,, I a,) - k,,hk,,hl/ 4na,a,,l6

inwhich (l=2kthtanhkrh, dn,=(lrtfo.,,)''', d,,=þlto.,)t'' andLoisthedeepwater

wavelenEh. Noting that the selÊself interaction binds only half the second-order

(2.32b)

(2.32c)

(2.32d)
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component of an interaction involving two frequencies slightly separated in the frequency

domain, consequently, the transfer function, G,1,,, includes the multiplier á, which has the

value:

I t for n+m
á={

[1/2 for n:nt (2.34)

The transfer function G),,,h is plotted in Figure 2.6 as a function of h / L6 (for the m-

component, m ( n) and the ratiof, /f", The curve forf,/f,,: 1.0 corresponds to the self-

self interaction of one regular wave.

The second part, F12, is related to the X(')ú9 and X(')þ!') terms of the waveboard

boundary condition (Equation (21d)). This so-called "displacement wave" is caused by

the waveboard moving out of its mean position. The product of paddle displacements and

both the horizontal, orbital accelerations in the waves and the vertical velocities,

respectively, form a second-order higher harmonic contribution. To eliminate these free

wave components of frequency or, the control signal includes the function Ftz. In

dimensionless form this function is (Sand and Mansard, 1986a):

F,rh = x(t,, I 7,,', * (f ,, I Í,,)1,, I r:'r) (2.3sa)

in which
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,_ *?n'\+ttn)
'- - 

(t rt çt + I I h)sinhk rh - coshk rh * p')(f,, I f ,, + t)

r '' = #k,þ(P'' * Q'' * R'')

n sinh(É,, + nr)n+ a, sinh(È", - nr)tt* a,'^=-4.þ*Çù-'@
y, - cosn(r,, + kr)h lz -cosh(å,, - tr)h

v" = 
rp,,* o r¡f ç* t r h)" 2@,h - k rhY 0. u h)

D _ k,,h(cosh k,,h cosh k, h - r) - k, h sinh k,,h sinh k, h
t'rt -

and

ø'={"orio r,

a = 
{,,.,n10.1

for/)0
for/<0
for/>0
for/>0

for/>0
for/)0ø = 

{,,"n10.1

+ n,)r

- t,)t
for/>0
for/>0

for/>0
for/>0

ft
z, = 

{cosh (0,,* *r)t -(t ,,t * krh)Q+ I I h)sinh(k,, + nr)t

I

- nrþ -(0,,r- krh)O+ t t h)sinh(r,, - rr)ty, ={"orrr(t 
,,

The first-order transfer function,

paddle displacement is given by:

// lniesd, 1951), between the wave amplitude and the

(2 3sb)

(2.3sc)

(2.3sd)

(2.3se)

(2 3sÐ

(2.3sg)

(2.3sh)

(2.23i)

(2 23j)

(2.23k)
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TQ)=a /X =n, n, nI

z sinh k,,h(k,,h(t + t I h) sinh k,,h - cosh k,,h + þ\
k,,h(l + t I h)(sinh k,,h cosh k,,h + k,,h)

o ={"o,10,,,

For actual calculations, the above equations are applied with subscript n as well as m to

allow the principle of summation to be applied. Figure 2.7 shows the function Fú plotted

versus h / L0 for several values of f,/f.. The curve forf,/f.: 1.0 depicts the function

values for the selÊself interaction of a regular wave.

Lastly, the function Fzs is associated with the local disturbances described by Biésel

(1951). These disturbances are caused by the horizontal velocity profile mismatch

between natural waves and those produced by a planar wave paddle. The disturbances

experience exponential decay with distance from the waveboard and would seem rather

insignificant for practical testing purposes because of their rapid decay. However,

progressive, non-decaying free waves of frequency oL appear as a result of these local

disturbances. Therefore, this effect must not be excluded. Recalling from Equation

(2.3rb) that

Frr=Fr(Fr.,,+Fr.,,),

the components of the Fzs function are described in dimensionless form as (Sand and

Mansard, 1986a):

in which

for/>0
for/<0

(2.36a)

(2 36b)
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klh'
Frh =

r[Dr,(,D(tcr(h + I)tanhkrh -t+ B'lcoshkrh)

D .f,, \g coshk,h(k,@+t)sinhk,h+coshk,h- 2)
1.3,,, - fr * f;, #,

Itt,{n 
* fl(nrntannkrh + k,htank,h)+ krhtanhkrhtank,h - k,

ffi(4r' - klh' - 2k rhtanh* rn)r ,tttank jho,l
k,h

It
1= 

l"ort ,t

for/>0
for/<0

(2.31)

(2.38a)

(2.38b)

(2.38c)

in which

Qr=

- r,nþcln' - k'rh')

(o: r' + klh')cosk ,hcoshk rh

zki hz k rhsin Æ,/ sinh t rt - 
k'r!\k'? 

"h' 
- 

k"!,') *tn I *'n *'t

for/>0

for/<0

and

k h is the real root of al,h I g = -k ¡h tan k,h, for Ç -l l})n < þh < jx. (2 38d)

The dimensionless function Fzsh is plotted in Figure 2.8 versus h / L0 for several values of

f, / f,, The curve depicting anf,, / f,, value of 1.0 shows the self-self interactions of a

regular wave.
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The complete second-order short wave correction signal is given as

N_I N

x,', (t) = f I ((o,u,, + o,,b,,)4 +(o,,o,, -b,,b,,)Frr)cos(ørr)-
n=l n=n+l

((o,o,, - b,,b,,)F, -(o,b, + o,,b,)Frr)sin(ørr)
(2.3e)
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Chapter 3: Wave Generation Software

3.1. General Overview.

The algorithms presented in chapter 2 were coded into an interactive software package

using MATLAB@. The use of MATLAB as the environment for a wave generation

package has several benefits over using a traditional programming language. The basic

data element in MATLAB is a matrix that does not require dimensioning. Any operation

performed on an array is completed as a single operation rather than on an element by

element basis in a loop as is typical of other programming languages. MATLAB is also

capable of working with complex variables using its built-in functions to perform complex

operations' such as conjugation. In addition, MATLAB's visualization (1.e., plotting)

capabilities are such that no other presentation software is needed to display numerical and

experimental results.

The full second-order laboratory wave generation package, entitled WAVGEN, consists

of one controlling script file that calls other function files as specified by the user. The

first function called by the program produces a first-order wavetrain. The user may select

one of three idealized spectra from which an amplitude vector is derived. Random phase

angles are added to the amplitudes to produce a random wavetrain. Regular waves and

bichromatic wave groups can also be specified. The function returns a first-order

waveboard position vector to the controlling script file.
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The user may opt for second-order long wave corrections to the first-order wavetrain

which occur in a WAVGEN function call. The algorithms used to calculate the long wave

corrections for a piston type wave generator are given in $ 2.3.

Selecting second-order short wave corrections to the first-order wavetrain leads to

another WAVGEN function call. The algorithms used to calculate the short wave

corrections are found in $ 2.4. The end result is a waveboard position vector correct to

second-order that eliminates the spurious long and short waves inherent with a first-order

control signal.

The final function call in most instances converts the waveboard position to a voltage that

determines the piston displacement and does the post-processing chores before the file is

sent to the wavetnaker. Compensation is made for the waveboard dynamics and the wave

machine servo dynamics. The post-processing module offsets the displacement array to

center the waveboard motion and manipulates the data so that the waveboard starts and

ends near the central position to avoid start-up transients. An optional gain factor may be

applied to the array. The output is limited to +l- 10 volts. Finally, the array can be

resampled at a higher frequency so that the signal sent to the wavemaker results in a

smoother board motion without affecting the spectral characteristics of the wavetrain.

3.2. First-Order Wave Generation.

The first-order wave function of the WAVGEN wave generation software package

produces a piston position time series based on user selected input parameters as seen in

35



the flowchart in Figure 3.1. Three idealized wave spectra (JONSWAp, Donelan TMA)

are included in the current version of the software. Other spectral forms (pierson-

Moskowitz, Ochi, etc.) canbe readily added.

The JONSWAP spectrum (Hasselmannet at.,1973) is given by

s, (.f ) = #..0 i- 
(+)' 

Ir,.,{-u 

- r,)',, u' r;}
(3. I a)

(3 lb)

(3.1c)

(3 ld)

where

a:0.0?6(Ð

y:3.3 (may vary from I to 7)

¡r : 0.07 
"f 

<fo

:0.09 f>-f,

F is the fetch length , U I s is the wind speed measured at 1 0 metres above the water surface,

and y is the peak enhancement factor. The Donelan spectrum (Donelan et al., 19g5)

differs from the JONSWAP in the slope of the high frequency portion of the spectrum.

Donelan et al. (1985) determined that an.f-o slope was more consistent with observed

natural wave spectra than the JONSWAP/-j slope. The Donelan spectral form is
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begin LINWAVE

select idealized
spectrum type

t__=--

input spectral
parameters

generate amplitude
spectrum and random

phase spectrum

control wavetrain
. groupiness?

create synthetic
SIWEH spectrum

create first-order piston
position vector

Return to WAVGEN

adjust phase spectrum
to match SIWEH

F'igure 3.1 Flow chart of LINWAVE first-order wave generator function in WAVGEN.
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S o(f) =
dg'

(z/t)ofofo

a: O.OO6Wo5s

p: 0.08(1 + 4W3)

y : 7.7 - 6.0log W

: 1.J

0.2<w<r.0

T.0<w<r.2

*'i- (?)' 
l'"'{-u 

- r à'' "' ú} (3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.3a)

(3.3b)

Il is the wave age parameter defined as the ratio of the wave celerity of the peak spectral

frequency,;Ç, to the wind speed component in the direction of travel of the peak waves.

The TMA spectrum (Bouws et a1.,1985) does not assume deep water conditions at the

point of wave generation making it more suitable for intermediate and shallow water

laboratory wave generation than either the JONSWAP or Donelan spectrum. The TMA

spectrum, which is conceptually a shoaled JONSWAP spectrum, is given by

where

where

s,.^ (.f ) = #7.. o 

{ 
- (+)^ 

}, 
-,{- v - r,)'', u",} 

þ,u

óru¿ : 0.5 a] for a¡, < 1

:I -0.5(2- úk)' for I < ot s2

- 1 for at1,> 2

and
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(3.3c)

Figure 3.2 shows the shape of the three idealized spectra included in the WAVGEN

software package for a 256 second wavetrain with 4 Hz sampling and a peak period of 2

seconds. The water depth for the TMA spectrum was set to I m. All spectra are for fully

developed wave conditions (i.e., y : 3.3, w : 0.83). Since the area under each spectrum

is proportional to the wave height, the fully developed JONSWAP spectrum yields alarger

(deep water) wave height than the Donelan spectrum The shoaled TMA spectrum yields

a considerably smaller wave height than either the JONSWAP or Donelan spectrum.

The user is required to provide values for the necessary spectral peak enhancement factors

as well as the overall length of the record to be produced, the sampling frequency, and the

peak frequency of the linear waves. Random phase angles are applied to each frequency

to convert the spectral ordinates into complex Fourier coefücients. The random number

generator seed value can be specified to facilitate comparisons over multiple runs. The

groupiness of the wave record is controlled using the Synthetic Instantaneous Wave

Energy History (SI\ /EH) approach of Funke & Mansard (1979). The SIWEH algorithm

was coded and tested by Baryla (1996). The user is presented with a plot of the time

series in both the time and frequency domains at the conclusion of the function as shown

in Figure 3.3. T'he function returns a waveboard position time series to the controlling

script file.

Cù,,: zrf -E" 
Vg
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3.3. Theshold Limited Approach.

Computing the desired second-order corrections for an irregular wavetrain by

straightforward summation is tedious and time consuming due to the single infinite series

involved in the calculation of the local disturbance \ryaves (see Equations (2.29a) and

(2.38a)). A threshold limited approach is proposed here to facilitate quicker calculation of

the correction factors by applying the corrections to the frequencies that are most affected

by them.

The threshold limited approach to second-order corrections makes use of the knowledge

that for many frequencies, the long or short wave correction is negligible as the amplitude

of frequencies away from the peak is quite small. The long wave corrections are

significant only at the lower frequencies of the wave spectrum, therefore they need not be

calculated over the rest of the spectrum. The threshold cut-off is a user specified

percentage of the power in the spectral peak. The computations are performed only for

those frequencies whose power is less than the threshold value and are limited logically to

the lower portion of the spectrum even though some frequencies in the upper reaches of

the spectrum also meet the threshold criterion. The full frequency space is used in the

calculation of the long wave corrections but only for the frequency differences that fall

within the threshold limited range.

For the short wave corrections, only the frequencies near the first and second harmonics

of the spectral peak experience a significant correction due to the presence of short waves.

The threshold cut-off in this instance defines the range of frequencies that will be used in
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the calculation of these short wave corrections All frequencies whose power exceeds the

threshold limit are considered. The corrections are applied to all possible frequency sums

up to and including the Nyquist frequency. All frequency sums higher than the Nyquist

frequency are not physically reproducible and thus are not considered.

The accuracy of the approximation can be varied by changing the cut-off to a higher or

lower percentage of the peak spectral power. Comparisons can readily be made to a base

case that includes corrections to the entire spectrum for both the long and short waves.

3.4. Long Wave Correction.

The long wave correction function of WAVGEN incorporates the threshold limited

approach described above to improve algorithm efüciency. The algorithm used is

presented in section 2.3 and was subsequently coded into a set of MATLAB function files

that operate according to Figure 3.4. The threshold limit is specified by the user as a

percentage of the variance density in the peak frequency. This percentage is multiplied by

the peak variance density to yield the upper limit for the correction calculations. Only the

low frequencies whose variance density falls below the threshold value calculated have

corrections calculated for them. Figure 3.5 illustrates the thresholding technique for the

case of long wave corrections. With The l}Yo threshold indicated, only those frequency

differences lower than 0.4 Hz will have a correction calculated. The peakedness of the

spectrum enables us to set the threshold quite low resulting in a much faster calculation

without sacrificing a great deal of accuracy. The correction factors F77 and F¡2 ãrc

calculated in order to eliminate the free parasitic wave and the displacement wave, while
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begin LONGWAVE

Fourier transform
linear wavetrain

enter long wave
threshold value

select relevant
frequency differences

based on threshold
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coefficients for each
frequency difference

transform free long
wave coefficients into

time domain

return to WAVGEN

Figure 3.4 Flow chart of LONGWAVE second-order long wave correction function in
WAVGEN.
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F:: which is related to the evanescent wave is omitted as described in chapter 2. The long

wave correction function results in a second-order waveboard position series that

represents the spurious waves generated by a first-order control signal. This time series is

then subtracted from the first-order waveboard position record.

The prototype random wave record used in the threshold analysis was based on a fully

developed TMA spectrum, 600 seconds in length, sampled at 4Hz, with a peak frequency,

fo, of 0 5 Hz. Although the following analysis is numerical, this wave record is typical of

those used in physical testing in the HRTF random wave flume and indicates the extent

and duration of the comection calculations that can typically be expected. Using the TMA

spectrum accounts for any shoaling that needs to occur to correctly place this wavetrain in

the 1 m depth of water found in the wave flume. Figure 3.6 shows the relative times to

complete the threshold limited long wave correction calculations based on the time to fully

correct the wave record. The greatest improvement in the time to calculate the long wave

corrections is 22%o, indicating that the algorithm does not spend much of its time in

calculating the corrections. The actual time for full correction using a 486/DX66 with 12

megabytes of RAM was 537 seconds (8.9 minutes) for long waves. Figure 3.7, panels a-c,

shows the long wave correction piston position series for threshold values of 100% (full

correction), l0o/o and 5Yo, respectively. There is a slight loss of amplitude as the threshold

value decreases and fewer frequencies are corrected for spurious long wave effects,

however, little of the detail in the correction is sacrificed.
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3.5. Short Wave Correction.

The short \ryave correction function in WAVGEN, illustrated in Figure 3.8, includes the

threshold limited approach to improve algorithm efficiency. It is of greafer utility in this

case than for the long wave corrections because of the infinite series that occur in the

calculation of the evanescent wave amplitude ratio, lz: (Equation2.26). In this case the

threshold value calculated results in the lower limit for the primary frequencies to be

included in the short wave corrections. This limits the frequencies used in the calculation

to those near the spectral peak where the majority of the variance density resides. Figure

3.9 shows the use of thresholding in limiting the number of frequencies used in the short

wave corrections. With a 70Yo threshold as indicated, only the energy between the

frequencies of 0.45 Hz and 0.55 Hz are used to calculate the second-order short wave

corrections. Clearly even a low threshold percentage will reduce the computational effort

by a significant amount given the narrow peak of the spectrum. The short wave

correction function calculates values for F11, F12, àndFz: (see S 2 3) to find the amplitudes

of the spurious free parasitic wave, displacement wave, and evanescent wave produced at

each sum frequency. Calculation of Fy and Ftz is straightforward. The Fzs function,

consisting of Fz, Fs,,, ãîd F3,,, includes the evaluation of an infinite series for each

component frequency. The infinite series converges on a solution quickly, so a close

convergence tolerance can be set.

The Newton-Raphson method of root finding is applied to Equation (2.3Sd). A matrix of

solutions for all possible frequency components and sums is precalculated and used as a

lookup
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begin SHRTWAVE
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Figure 3.8 Flow chart of SFIRTWAVE second-order short wave correction function in
WAVGEN
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table later in the corection function. Since the solutions to Equation (2.38d) are sensitive

to the first approximation to the solution, care must be exercised in selecting the first

approximation. By setting the lower bound of each interval as the first approximation to

the solution, a stable solution can quickly be reached. It is quite easy to detect a problem

with the convergence of the series as the time required to reach a stable solution increases

dramatically.

The second-order waveboard position vector describing the spurious free waves is

subtracted from the first-order waveboard position series.

Using the same prototype random wave record used in $ 3.3 for the long wave analysis,

Figure 3.10 shows the relative times to complete the threshold limited short wave

correction calculations based on the time to fully correct the wave record. The short wave

corrections benefit greatly from the use of thresholding with just a30o/o threshold resulting

in a reduction in computational effort by one half. The actual time for full correction using

a 486/DX66 with 12 megabytes of RAM was 10877 seconds (3.02 hours). Figure 3.11

shows the calculated corrections for short wave threshold values of lo/o (full correction),

I0o/o, 30yo, 50Yo, and 70%o are seen in panels a-e, respectively. A closer examination of

Figure 3.10 indicates that lYo and 10% thresholding are virtually identical. The structure

of the correction changes somewhat for 30Yo thresholding. For increased thresholding,

there is a noticeable change in the structure of the correction.
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3.6. Driving Signal Creation.

The final stage in the program converts the waveboard position vector created and

modified in the previous function calls into a piston position record in a form that the

piston driver can understand. This function follows the algorithm laid out in Figure 3.12.

The program uses machine specific values for the machine gain, voltage gain, first and

second half power servo-hydraulic frequencies to convert an input waveboard position

vector into a voltage series. The voltage series is then shifted such that the maximum

board excursion from the mean position is equal in both directions. The beginning and end

of the series are truncated such that it can readily be recycled a number of times without

producing any transients. Maximum and minimum piston positions are imposed on the

signal to stop the piston just shy of the physical stops with appropriate warnings to the

user that the record has been significantly altered. The voltage series is then converted to

a series of integer values that correspond to specific piston displacements. This series

configuration is dependent on the piston length, D/A board con-figuration, and the control

card configuration. The user can opt to resample the driving signal at a higher rate to

smooth the board motion without changing the spectral characteristics of the signal. If the

maximum waveboard slew rate in either direction is exceeded, potentially significant

changes to the record are made to correct that and the user is warned. A sample section

of the driving signal is displayed for a visual inspection by the operator. The signal can be

written to a file as specified by the user, formatted to be accepted by the program used to

drive the waveboard.
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Chapter 4: Physical Testing

4.1. Apparatus.

The data used for testing the veracity of the WAVGEN software package was collected in

the random wave flume in the Hydraulics Research & Testing Facility (HRTF) at the

University of Manitoba. This reinforced concrete flume measures 34-m long, 1.5-m wide,

and 1.5-m deep. It is equipped with a hydraulically-actuated, piston-type waveboard, a

system of upright wave absorbers, wave probes, and a natural sand, wave-absorbing beach

initially with a 1 : 10 slope as shown in Figure 4. 1.

The waveboard is driven by a Z-inch bore, 46-inch stroke high performance cylinder,

which is powered by a 40-HP hydraulic pump capable of supplying 40 USGPM at 2500

psi. All components are manufactured by Vickers. To achieve maximum positional

accuracy, a high frequency Vickers Vlld4-40 bipolar servovalve operates in conjunction

with a Temposonics II linear displacement transducer (LDT) to provide a feedback loop.

The LDT precisely senses the position of an external magnet to measure displacement

with a high degree of accuracy and resolution by using the principle of magnetostriction to

convert the time interval between the initiation of an interrogation pulse and the detection

of a return pulse into a distance measurement.

The piston displacement series is sent to the waveboard using a Keithley-Metrabyte

DAC02 digital to analog (DiÐ card. The signal is subsequently sent to a Vickers EM-D-
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Figure 4.1 Schematic of the HRTF random wave flume used for testing WAVGEN.
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30 servoamplifier with a proportional-integrating-differentiating (PID) circuit. The

amplifier module sends a command signal to the SM4-40 servovalve and receives

feedback from the Temposonics II LDT. The PID feedback loop was tuned to optimal

performance and allows the piston to be located to within 0.25 mm of its assigned

position.

Wave energy created in the flume travels away from the oscillating waveboard in the

forward and reverse directions. The forward propagating wave energy is dissipated on a

natural sand beach. The beach slope and configuration are allowed to change such that an

equilibrium is attained with the incoming wavetrains The sand used for the beach is very

fine both to emulate the conditions found at many of the beaches in Manitoba as well as to

allow scale reductions in future testing protocols. The sand gradation follows the curve

shown in Figure 4.2. Wave energy propagating away from the rear façe of the waveboard

is dissipated by an upright wave absorber. Rear absorbers placed behind wet back

generators prevent the resonance of waves that might otherwise overtop the rear wall of

the flume or reflect back to the wave generator causing excess pressure on the waveboard.

The design of the absorber, based on Jamieson and Mansard (1987), consists of multiple

rows of perforated vertical metal sheets which progressively decrease in porosity towards

the rear of the absorber. Two sheets of Expanded Metal Corp.'s 3/4"-#oBlLT, t/z--#051,

and516"-#051 standard expanded aluminum, with open areas of 75Yo,60%o, and 55Yo,

respectively, were installed behind the waveboard in the HRTF wave flume.
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Water surface fluctuation data was collected using two capacitance-type wave gauges

(Model WG-30) manufactured by Richard Brancker Research Ltd. Two gauges were

used to obtain information on the reflection of wave energy by the beach and on the

temporal stability of the waveforms. Data acquisition from the wave gauges is handled by

Labtech Notebook@ software, through a Keithley-Metrabyte DAS1602 AID card.

Labtech Notebook controls the initiation, samplin g rate, and termination of the data

stream from each ofthe gauges.

4.2 Laboratory Limitations.

Great care is typically exercised in ensuring that laboratory conditions closely emulate

natural conditions. However, certain inherent laboratory limitations exist that can lead to

errors in the experimental results. One potential source of error is the response of the

waveboard to a command signal. If the waveboard cannot perform the position changes

sent to it in the time allotted (slew rate limit), then the waves produced will not be

consistent with the waves desired. In a laboratory flume wave attenuation occurs due to

the sidewall and bottom friction, and due to the gap around the edges of the waveboard.

Reflection of wave energy off of the beach will also affect the shape of the measured

waves which will include both the incident and reflected wave energy. The differences

arising from the wave generating mechanism (wave paddle vs. wind) have been accounted

for in the second-order correction algorithms discussed ïn chapfer 2.
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4.2.1. Waveboard Response.

Once a wavetrain is numerically created and corrected for spurious second-order effects

the waveboard must be able to accurately reproduce it. If it cannot, the waves produced

will be either undersized or distorted especially when long, rapid piston strokes occur.

Response of the HRTF waveboard was tested using an analog function generator to create

the driving signal. With a sine wave being sent to the waveboard, the frequency was

increased progressively from an initial value of 0.5 Hzto 5 Hz. There was no detectable

deterioration in the response of the system over the tested frequency range. Figure 4.3

shows a portion of a control signal and the associated feedback signal from the LDT. The

feedback signal was consistently l0o/o greater than the control signal indicating that the

drive signal was amplified with respect to the feedback loop. After correcting for the gain

difference, the traces of the two signals are virtually identical; only a few small details - I

to 2 mm in amplitude were improperly reproduced.

To further indicate the ability of the wave generator to correctly produce the desired

wavetrain sent to it, it is useful to compare the target and measured primary wave spectra.

Figure 4.4 shows the target spectrum (fully developed TMA spectrum, h: I m, Lt: 0.25

s, fp: 0.5 Hz) and the corresponding measured wave spectrum. The two traces show

clearly that the spectrum of the primary waves produced in the flume are consistent with

the target spectrLlm selected.
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Figure 4.4 Predicted and measured spectra for a wavetrain created using a fully
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4.2.2. Wave Attenuation.
Laboratory waves attenuate with distance due to viscosity primarily in the boundary layers

occurring on the sidewalls and the bottom. There is bottom friction in nature but no wall

friction. Hunt (1952) gave theoretical results for the damping of amplitude for waves over

an inclined bed where the slope is small. Treloar and Brebner (1970), using direct

measurements of sidewall and bottom rates of energy dissipation in a flat bottomed flume,

produced an adjusted formula for the wave height attenuation modulus. The wave height

attenuation equation is given as:

H -ü
Ho

where Ho: wàYè height at position x: 0

H : wave height at position x in the direction of propogation

(4 i)

c[ : wave height attenuation modulus

Treloar and Brebner's (1970) adjusted attenuation modulus, c{,u**, is given as:

k Eil t.qaak +o.94sinh¿khf
wb+w - B\ nl Ztn+sinh2kh l (4 2)

where .B: flume width

y: kinematic viscosity

k: wave number

T: wave period (s)

å: still water depth

For the specific case of the HRTF random wave flume filled to a still water depth of I m,

Figure 4.5a shows the adjusted attenuation modulus for the range of frequencies from 0 to
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zHz. The wave height attenuation ratio at the wave probes (r: 13 m) is illustrated in

Figure 4.5b over the same frequency range. Only the highest frequencies where little of

the energy of the spectrum is found experience significant attenuation. The wave height at

the waveboard (x: 0) at these frequencies is typically on the order of millimetres. Clearly,

wave attenuation due to friction can be considered negligible under the test conditions.

Wet back \¡iave generators have a slight gap that extends around the perimeter of the

waveboard between it and the sidewalls and bottom. This gap allows water to flow

around the waveboard as it oscillates which attenuates the wave amplitude as it is created

at the waveboarcl. On the forward stroke of the piston, water is piled up in front of the

waveboard and the attenuation occurs as some of that water moves behind the waveboard.

In a similar fashion, on the reverse stroke the water tends to pile up on the back side of the

board and bleed off into the wave trough being created on the front of the board. The

attenuation factor due to a gap around the perimeter of the waveboard is given by (CCIW,

personal communication) :

@.3a)

where

kc

"=(2),,f.i"14*ll- \ 7T )"'l-"'\ 2h ))
(4 3b)

1+(kc)z
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Figure 4.5a Wave height attenuation factor d.ue to sidewall and bottom friction as a
function of frequency (Treloar & Brebner, t970).
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Figure 4.5b Ratio of wave height at probe location to wave height at waveboard as
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and LBap is the average gap around the perimeter of the waveboard, in metres. With an

average gap of 9.5 mm, the attenuation is most pronounced in the low frequency region of

the spectrum as seen in Figure 4.6. This gap will clearly have ramifications for the

accurate reproduction of long waves.

4.2.3. Wave Reflection

Wave energy generated by the oscillating waveboard is dissipated as heat and sound in the

wave shoaling and breaking processes. While this is quite an effective mechanism of

energy dissipation for short waves, long wave energy tends to be reflected back in the

direction of the waveboard without breaking and with little attenuation. A random

wavetrain based on a fully developed, idealized TMA spectrum, 600 seconds long initially

sampled at 4 Hz, with a peak period of 2 seconds was sent to the waveboard. This

wavetrain was fully corrected for spurious long and short second-order wave effects To

illustrate the effects of reflection on the recorded wave heights, the series was recycled 3

times during the course of a run. Coincident segments of the run during the first, second,

and third time through the series are shown in Figure 4.7. Clearly, the records are very

similar. Cycle 1 is uncorrupted by reflection since it shows the first pass through the series

and looks cleaner than the other two. Cycles 2 and 3 are nearly identical which implies

that the reflection effects are very small. Larger effects would tend to compound resulting

in cycle 3 being significantly more corrupted than cycle 2. This figure also highlights the

repeatability of the waveboard motion. All three cycles clearly stem from the same basic

waveboard oscillations. It is only in the finest details of the waves that the records differ.

Reflection coeffrcients were calculated over the generating range of 0 FIz to 2 Hz using a

phase shift technique. Knowing the water surface elevation at wave probe WPl, the
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expected wave height at probe WP2 can be calculated by assuming linear dispersion and

applying a phase shift over the separation distance between the probes. Any difference

between the calculated water surface elevation and the actual recorded water surface

elevation is assumed to be a result of reflected wave energy. Reflection coefficients

calculated on the random wavetrain in Figure 4.7 ranged lrom 86.6Yo at O.TZI Hz to

13.2o/o at 0.609 Hz Reflection of long waves can be minimized by having the waves

break gently over a distance by spilling rather than by suddenly and abruptly plunging

(Ottesen Hansen et a|.,1980).
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Ghapter 5: Bispectral Analysis

The bispectrum was first introduced by Hasselmann et al. (1963) and was used to examine

the skewness of two surface wave records collected offthe coast of California. Since then

bispectral techniques have been used to study nonlinearities in a wide variety of fields

including earth noise (Haubrich, 1965), plasma fluctuations (Kim and Powers, 1979), and

shoaling surface gravity waves (Elgar and Guza, 1985, Doering and Bowen, 1987).

If ((t) is a stationary random function of time, it can be represented as a superposition of

statistically uncorrelated waves (i.e having random phases). The "power" spectrum

approach completely describes, to a first approximation, a Gaussian time series as

(s.1a)

where

1?(t): E[e(t)e(t+r)], (s lb)

t is a lag and E[] indicates an expected value. If the phase of the Fourier components are

not randomly distributed but have a phase persistence, then the time series is not Gaussian.

Unfortunately, the "power" spectrum is unable to detect deviations from a Gaussian form

since it discards phase information. Deviations from a Gaussian form can be detected

using the bispectrum. The bispectrum is formally defined as the Fourier transform of the

second-order covariance function (Hasselmann et al., 1963)

p(.f)= !Rç'¡r-''*dr,
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B(fr, fr) = J J 
t t,, r rþ-i(z'{f'r'+ 

fzî z)) ¿r r¿r, (s.2a)

(s.2b)

where

S(t1, t2) : E[e(t) ((t + r) Ç(t + rz)).

For digital data(i.e., Fourier coefficients), the bispectrum can be expressed as (Haubrich,

1965; Kim and Powers, 1979)

B (fr, "fr) 
: EIA(íù A(fr) 

^* 
(fr)1, (s.3)

with the convention thatfi i fz:-fs, A(fl is the complex Fourier coefücient for frequency/

and * denotes the complex conjugate. It can be shown that B(f1, fz) will be zero unless

\¡/aves are present at frequencies/,.f2, andÍ2, and there is a phase relation between the

waves at these frequencies. Physically, if the waves present at ft, fz, and fz are normally

excited modes, then each wave will be characterized by a statistically independent

(random) phase and the expected value of B(f1, Íz) will be zero. However, if the sum or

difference wave, f, is generated through an interaction between fi and fz, then a phase

coherence will exist and the expected value of B(fy,.fz) will be non-zero.

The bispectrum of a finite length record of a truly Gaussian process is non-zero because of

the effects of the finite length. To distinguish normal independent modes from phase-

coupled modes, it is convenient to express the bispectrum in a normalized form known as

the bicoherence. Kim and Powers (1979) defined the bicoherence as
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b' (.f , ,.f ,) =
la(f,,-f)l' (s 4)

nlltv,) A(r,Ll' 
] 
r[l.acr, l' ]

bt (f,, Ír) is normalized and is therefore independent of wave amplitude; B(f,, Í) is not.

For large 4 where v is the number of degrees of freedom, b2 is expected to be f

distributed (Haubrich, 1965). The 95Yo confidence limit on zero bicoherence is given by

5 991
bluo = (s s)

Finally, the bispectrum can also be expressed in terms of a biamplitude and biphase

B (f ,, .f ,) = la (Í,, f ,)l-' 
P(r''r')

(5 6)

where the biphase þ(ftlù is given by

(s 7)

The bispectrum is used here to investigate the performance of the second-order correction

algorithms using laboratory data collected in the HRTF random wave flume.

While the ultimate goal is to use the software developed for studying the numerous effects

of random waves, to test the algorithms we start with the simplest case. Regular waves

make the analysis tractable while still pointing out any problems with the computer code,

yet by superposition they are the foundational components of a random wave train. The

ability of the long wave and short wave corrections to eliminate spurious wave coupling
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was tested using a bichromatic wave group with distinct sum and difference frequency

components. The two corrections were tested exclusive of one another and jointly to

examine any interference between the two cases. A grouped wave series was also

generated without correction to establish a base case for comparison.

The wave series were generated to last 600 seconds (10 minutes) sampled at 4 Hz to give

the series a 2 Hz Nyquist frequency. The grouped wave series were created with

component frequencies of 0.33 and 0.38 Hz, both with amplitudes of 0.06 m. The

resulting wavetrain was chosen because it has sufücient amplitude and sum/difference

frequencies that the long and short wave corrections are clearly distinguishable. Long

\ilave corrections were performed with a threshold value of 5olo, short \ilave corrections

with a value of I0o/o. For a bichromatic series these corrections are equivalent to full

corrections.

The following notes are applicable to all the three-dimensional bispectral plots in this

section:

i) The origin is located at the left corner.

ii) The two axes defining the frequency plane both run from 0 to 5 Hz.

iii) A peak located in the bifrequency plane at frequencies ft and y' implicitly

represents atriad; that is, the convention is, by definition, ft r fz -+ fj, wherefs

:.fi +-fz.

iv) There is symmetry about thelinefl : f2 sinceft + fz -+ Ít is equivalent to f2 + ft

--> 
"fs'
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Figures 5.1 to 5.4 show the biamplitude and bicoherence spectra for the bichromatic tests.

The results for the uncorrected (base case) is shown in Figure 5.1. Three peaks are

observed in the biamplitude spectrum. The largest peak centred at (0.39, 0.31) indicates a

sum interaction between the two bichromatic components. The peaks centred at (0.70,

0.39) and (0.39, 0.08) indicate sum and difference interactions, respectively, between

bichromatic and harmonic components. The faint distortion at (L02,0.31) suggests the

initiation of interactions between the bichromatic components and higher sum components

(l.e., forced harmonics). While the biamplitude spectrum indicates the relative importance

(i.e., contribution to nonlinear properties) of triads in the wave field, it does not identify

significantly coupled interactions in regions of low spectral amplitude; the bicoherence

spectrum does.

For a bichromatic process it has been shown (Kim and Powers, 1979) that b2(f1, f2)

represents the fraction of power atfs that results from nonlinear coupling between/ and

ft Forexample,if b2(ft,-fi):l thenthepower atfiisdueentirelytocouplingbetween

component sf1 andfz. Conversely , if b2 (f1, fz) : 0, thenÍs is a normal independent mode of

the system and the power at fs is not the result of coupling between / and fz.

Unfortunately, there are two possible directions of energy flow, i.e., .ft +.fz -+fj andft -

.ft -+.ft, consequently, the bispectrum cannot be used to determine the direction of energy

flow.
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Figure 5.1 Biamplitude and bicoherence spectra for bichromatic wave series (f*:0.3t
Hz,f,,: 0.39IIz) with no corrections. ôf : 0.0781 Hz, v :92 d.o.f.
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Figure 5.1 also shows the bicoherence spectrum for the base case. The normalized

strength of the nonlinear interactions observed in the biamplitude spectrum are now

apparent. The interaction between the two fundamental bichromatic frequencies is quite

strong (b2(0.39,0.31) = 070) and well above the 95%o confidence limit for zero

bicoherence (:0.26) which is given by the thickness of the "slab". The "noise" observed

above I Hz is believed to be an artifact of the mechanical generation process.

Figure 5.2 shows the biamplitude and bicoherence spectra for the long wave corrected

record. Since the bichromatic record consists of two similar frequencies, wave groupiness

results. The (temporal) variation in wave height gives rise to gradients in radiation stress

(Longuet-Higgins and Stewart, 1964) and hence the presence of a wave at the difference

frequency (f, - ft + Áfl. During the mechanical generation process, the negative velocity

associated with this long wave ìs reflected from the waveboard and cancels out the natural

long wave. The long wave correction adds back this canceled wave. While the

bicoherence peaks associated with difference interactions are "cleaned up", the strength of

these interactions is diminished. This suggests a possible shortcoming in the long wave

correction theory andlor problems arising from the gap around the perimeter of the

waveboard.

Figure 5.3 shows the results for the short wave comected record. The strength of the sum

interaction at (0.39,0.31), which is the only short wave correction that occurs for a

bichromatic record has been increased appreciably; this is in keeping with theoretical
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Figure 5.2 Biamplitude and bicoherence spectra for bichromatic wave series (f,,:0.31
Hz,Í,: 0.39IIz) with long wave corections only. ôf :0.07g1 Hz, v:92
d.o.fl
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Figure 5.3 Biamplitude and bicoherence spectra for bichromatic wave series (f*:0.3I
Hz,Í,: 0.39 Hz) with short wave corrections only. ðf : 0.0781Hz, v : 92
d.o.f.
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expectations as spurious free short wave components that diminish coupling have been

reduced and hopefully eliminated. Any change in the amplitude of the peak at (0.70, 0.3 i)

is a second-order effect resulting from changes in spectral components at 0.70H2, the sum

frequency (0.39 + 0.31 -+ 0.70). It is interesting to note that high frequency coupling

amongst frequencies greater than 1 Hz is significantly reduced when either the long wave

or short \¡/ave correction is employed. The reason for this is not clear. The presence of

coupling at such high frequencies has been observed in another flume (Doering, personal

communication).

Figure 5.4 shows the bispectral results when both the long and short wave correction are

employed. The combined correction leads to two well-defined sum and difference

interaction peaks located at (0.39, 0.31) and (0.39, 0.08), respectively.

Finally, a random wavetrain was analyzed both in uncorrected and fully corrected forms to

show the extension of the theory to the usual case of "natural" waves. The wave records

were 600 seconds in length, sampled at 4Irn, based on a fully developed, TMA spectrum,

with a peak frequency of 0.5 Hz. The wave statistics are the same as those found in the

wave records that were analyzed numerically in chapter 3. The bispectral results for an

uncorrected and fully corrected random wave train are shown in Figures 5.5 and 5.6,

respectively. The biamplitude spectra show an increase in the strength of both the sum

and difference interactions occurring within the spectral peak. The bicoherence spectra of

a broad banded process are not readily interpreted.
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Figure 5.4 Biamplitude and bicoherence spectra for bichromatic wave series (f,,:0.31
Hz,f,: 0.39 Hz) with full corrections. ôf : 0.0781 Hz, v :92 d.o.f.
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Figure 5.5 Biamplitude and bicoherence spectra for random wave series (fully developed
TMA spectrum, I m water depth, sampled at 4Hz,fo: 0.5 Hz) with no

corrections. ôf : 0 0781 Hz, v: 90 d.o.f.
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Figure 5.6 Biamplitude and bicoherence spectra for random wave series (fully developed
TMA spectrum, I m water depth, sampled at 4Hz,fp: 0.5 FIz) with full
corrections. ðf : 0.0781 Hz, v:90 d.o.f.
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Chapter 6: Conclusrons and Recommendations

6.1. Summary and Conclusions.

For the extrapolation of laboratory datato full scale sea conditions it is essential to have a

realistic reproduction of the sea in laboratory experiments. Since it is impractical and

difficult to generate sufficiently large waves in a flume using nature's mechanism (1.e.,

wind) waveboards are used. However, the mechanical generation of realistic waves is

quite complex. The movement of the waveboard and the boundary condition at the

waveboard give rise to numerous unvanted second-order effects that can seriously

corrupt or interfere with natural phenomena. In a natural wave train, with the spectral

energy concentrated around the peak frequency, the non-linearity of the free-surface

boundary conditions introduces sub- and superharmonics which are phase locked to the

primary wave components.

The subharmonics (or bound long waves) can generate the forcing for long period harbour

oscillations, slow-drift motions of moored vessels and tension-leg platforms, and offshore

sand-bar formation due to sediment transport. The superharmonics introduce sharper-

peaked crests and flatter troughs, that are important for sediment transport due to wave

asymmetry and can be of importance for forces on offshore structures. An incorrect

(linear) reproduction in the laboratory generates free waves at the same frequencies as the

bound sub- and superharmonics, but travelling at a different speed. This difference in

speed between the free and bound wave components results in spatial variations in the

water surface fl uctuations.
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Solutions to mechanically produce waves, correct to second-order, have been proposed by

Sand (1982), Barthel et at. (1983), and Sand and Mansard (1986a,b)' They introduced

second-order transfer functions that calculate the amplitude of the spurious, free, second-

order waves created by using a first-order driving signal. These second-order waves are

subtracted out of the first-order control signal resulting in a driving signal free of spurious

second-order effects. These algorithms were developed into MATLAB-based code to

yield an interactive package to generate a first-order wave train using the parameters input

by the user and to calculate second-order long and short wave corrections to eliminate the

spurious free waves that ate inherent in the mechanical generation process'

The complexity of the second-order correction algorithms leads to lengthy computatton

times that increase proportionalto n¡2 whererz¡is the number of frequencies used to make

a..random" wavetrain. To make the algorithms more efficient a method was developed to

limit the number of frequencies used in the second-order corrections using a thresholding

technique outlined in section 3.3. The long wave threshold limits the corrections to only

those frequency differences that constitute the long wave portion of the spectrum. As the

numerical simulation results clearly indicate, the threshold limit can be set as low as 50lo

without signifrcantly altering the amplitude or the appearance of the correction. The

application of thresholding to the short wave correction limits the computation to

frequencies that are a result of an interaction of two frequencies that lie near the spectral

peak. The application of high threshold limits significantly lowers the short wave

amplitude and changes the appearance of the corrections. However, a threshold on the

86



order of 3}yoreduces the computational effort by about afactor of two without drastically

changing the short wave correction series.

Laboratory testing of the WAVGEN wave generation software was undertaken in the

Hydraulics Research & Testing Facility. The use of a laboratory setting introduces several

limitations to the wave generation process that can affect the quality of the data collected.

The ability of the waveboard to respond to a control signal, wave attenuation due to

sidewall and bottom friction, wave attenuation due to an imperfect seal around the

waveboard and reflection of the incident waves offthe end of the flume are all factors that

have been considered.

The response of the waveboard to a control signal was considered to be exceptional.

Using an analog function generator, a low amplitude sine function was sent to the

waveboard at frequencies starting atO.IHz and progressing up to 5Hz. These tests failed

to produce any noticeable deterioration in the waveboard's ability to reproduce the control

signal.

Wave attenuation due to bottom friction is common to both the laboratory setting and the

natural setting. Friction from the sidewalls of the flume, found only in the laboratory,

significantly affected only the highest frequency wave components. The amplitude of

waves at these high frequencies at the waveboard is typically on the order of millimetres

making the effects of frictional attenuation negligible. Any gap around the edges of a

waveboard results in the attenuation of waves as the water flows through the gap,
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impinges on the waveboard, and generates a spurious free wave. With an average gap of

9.5 mm, the attenuation constant was significant at low, long wave frequencies.

In a natural setting, wave energy reflected off of the shoreline propogates offshore and is

of little consequence. With the solid planar waveboard boundary found in a wave flume,

reflection is a much larger problem. Long wave energy can propogate back and forth

between the end wall of the flume and the waveboard setting up a standing wave pattern.

Reflection of wave energy off the end wall of the flume was calculated to be anywhere

from 86.6% to 16.2%o depending on the frequency of the incident waves. The use of a

rather simplistic approach to calculating these reflection coefücients may be the reason for

these high results. The traces of the wave records presented do not apparently exhibit

such a high degree of reflection.

Bispectral testing of the second-order correction algorithms is a ne\¡/ approach to

determining whether the algorithms do in fact eliminate spurious free waves. Previous

investigators examined the stability of the waveforms over the length of the flume and the

amplitude of the power spectrum in the long and short wave frequency bands as a means

of verifying their algorithms. These methods did not take into account the changes in the

strength of the phase coupling between the bound second-order waves and the primary

waves brought about by the presence of free waves at the bound wave frequencies.

Bispectral testing of bichromatic wave trains clearly indicate that the correction algorithms

eliminate both the spurious wave amplitude and the effects of the spurious waves on phase

coupling as seen by comparing the results for an uncorrected wavetrain with the results for
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a fully corrected wavetrain. Testing of a random wave series showed similar results for

the biamplitude spectrum. The implication of the bicoherence spectra of a broad banded

process are not so clear.

6.2. Recommendations for Future Work.

For a substantial simplification of the long wave correction theory, the evanescent modes

can be ignored w'hen the waveboard motion makes a good fit to the velocity profile of the

desired progressive waves. Situations where this approximation fails are often

encountered. Schaffer (1994) quantified the error introduced by ignoring the effects of

evanescent modes in second-order wave generation. Schaffer (1996) recently presented

the complete second-order wavemaker theory for irregular waves. A complex

representation was chosen to facilitate and simplify the theoretical calculations. The

theory was verified for a piston-type wavemaker using regular waves, wave groups, and

irregular waves. This algorithm should be coded and included as an option for the user to

select in WAVGEN and possibly could be the only second-order correction option

available.

The WAVGEN software would benefit from incorporating a graphical user interface

(GUD to make it more user friendly. The user would be able to immediately see the

results of changing the wave parameters or groupiness factor on the primary wave train

and continue on to the corrections and paddle control signal generation once satisfied with

the form of the primary waves. A GUI would also make it possible for the user to correct

input erors without restarting WAVGEN each time. Limits on the input parameters



could be more clearly defined by the use of a slider bar between the upper and lower

bounds as the input mechanism.

Based on the calculated attenuation constant due to the gap around the waveboard and the

results of the bispectral testing of the long wave corrected wave record, it would be

beneficial to retest the long wave algorithm after sealing the gap around waveboard This

would be a better solution than simply overdriving the lower frequency components of the

spectrum. Overdriving leads to large waveboard excursions that can not always be

accommodated by the I metre piston stroke of the HRTF wave generator.

Once the gap around the waveboard is sealed a program of rigorous testing of the

algorithms using the bispectrum and bichromatic waves should be carried out. Results for

bichromatic series with a wide range of f. and f, values and the corresponding range of

bound long and short waves should be examined. Deep, intermediate, and shallow water

primary waves should be examined to see the effects of the corrections when different

spurious wave phenomena are dominant. This sort of exhaustive testing would serve to

increase the confidence in the algorithms and in the WAVGEN code based on those

algorithms.
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