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Abstract

The laboratory setting provides an opportunity to elucidate various aspects of wave
related phenomena. However, the mechanical generation of waves by an impervious
waveboard results in a number of second-order problems not inherent with wind-
generated waves. Since second-order processes play a fundamental role in many wave-
related phenomena, the accurate reproduction of “natural” wave conditions is central to
meaningful laboratory experiments. Mathematical algorithms exist that eliminate the
spurious second-order waves caused by a first-order control signal. These mathematical
algorithms were encoded into an interactive software package using MATLAB to create a
first-order wave train and correct it for second-order effects based on user-defined inputs.
The efficiency of the algorithms was enhanced using a proposed method of thresholding
that limits the range of frequencies over which the various corrections are applied. The
software package (WAVGEN) was tested in the HRTF random wave flume. The
bispectrum was used to examine the ability of the second-order algorithms to eliminate
spurious waves. Bichromatic wave trains showed clearly that the algorithms reduced the
second-order wave effects. Random wave tests showed similar results albeit less clearly

given the broad-banded nature of the random wave spectra.
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Symbols

a wave amplitude (cosine component) [m]

b wave amplitude (sine component) [m]

b(f, ) bicoherence estimate

B first-order velocity potential parameter

B, 15 complex bispectral estimate [(units)’ / Hz’]

C first-order velocity potential parameter

D first-order velocity potential parameter

ET] expected value or average operator

f wave frequency [Hz]

fo peak frequency [Hz]

fo Fourier frequency interval [Hz]

f* lowest frequency in linear spectrum [Hz]

Fy second-order transfer function

F fetch length [m]

g constant of acceleration due to gravity [m/s’]
G evanescent mode transfer function parameter
Gum second-order transfer function for bounded waves
h depth of still water [m]

1 displacement wave transfer function parameter

k radian wave number [m™]



P
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R(9

wave number of free wave [m™]

sum of radian wave numbers %, and %, [m’']
displacement wave transfer function parameter
distance from bottom to hinged point of wave generator [m]
deep water wavelength [m]

number of frequency components in Fourier series
pressure [Pa]

displacement wave transfer function parameter
“power” spectral or variance density estimate [(units)’ / Hz]
displacement wave transfer function parameter
displacement wave transfer function parameter
autocorrelation function

spectral variance density [m”/ Hz]

time [s]

wave record length [s]

first-order transfer function according to Biesel
horizontal, orbital wave velocity [m/s]

bound wave transfer function parameter

wind speed at 10 metres above water surface [m/s]
vertical, orbital wave velocity [m/s]

Donelan wave age parameter

horizontal coordinate [m]
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40,

waveboard position [m]

waveboard position at still water surface [m]
vertical coordinate [m]

wave spectrum parameter

bound wave transfer function parameter
second-order transfer function parameter
velocity potential [m/s]

TMA spectral parameter

displacement wave transfer function parameter or wave spectrum
parameter

water surface elevation [m]

evanescent mode transfer function parameter
dynamic viscosity [kg/mes] or wave spectrum parameter
number of degrees of freedom
transcendental constant

fluid density [kg/m’]

time lag [s]

radian frequency [s™']

sum of radian frequencies @, and @,

long wave surface elevation [m]

stationary random function of time

second-order transfer function parameter
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£2; evanescent mode transfer function parameter

S ordering parameter
Notation

a subscript t denotes partial differentiation
a subscript x denotes partial differentiation
a, subscript z denotes partial differentiation
a™ an n™-order quantity

lal modulus or amplitude

a a vector

m subscript denoting the m™ wave component
n subscript denoting the n™ wave component
R{} real part

3{} imaginary part

\% grad operator

fla) function of a
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Chapter 1: Introduction

1.1 Background.

The laboratory wave flume, a long, relatively narrow channel with a wavemaker at one
end and a wave energy absorption system at the other, is a common facility for the
experimental study of water waves and their interaction with fixed and floating coastal
structures, including the shoreline itself. Although the generated wavefield is often two-
dimensional, this limitation is unimportant in many practical applications (e.g., cross-shore
sediment transport, shore protection testing), and the use of a single planar wavemaker to
produce waves is adequate. The 2-D characteristics of a wave flume must, however, be
kept in mind when interpreting the results of model tests since not all the natural processes
have been accounted for (i.e., alongshore current). Three-dimensional wave fields can be
created in a wave basin using a long segmented waveboard. In order to accurately

simulate coastal phenomena, a “realistic” sea state is required.

The movement of the waveboard and the boundary condition at the waveboard give rise to
numerous spurious second-order effects that can seriously corrupt or interfere with natural
phenomena. In a natural wavetrain the non-linearity of the free-surface boundary
conditions introduces sub- and superharmonics which are phase locked to the primary
wave components. The subharmonics (or bound long waves) can generate the long period
harbour oscillations, slow-drift motions of moored vessels and tension leg platforms, and
sandbar formation due to sediment transport. The superharmonics introduce sharper-

peaked crests and flatter troughs that are important for sediment transport due to wave



asymmetry and can be of importance for forces on offshore platforms. An incorrect (first-
order) reproduction in the laboratory generates free waves at the same frequencies as the
bound long and short waves, but travelling at free wave speed rather than at the wave
group velocity. This difference in speed between the free and bound wave components
results in spatial variations in the water surface fluctuations. A proper understanding of
the complex nature of the sea state and its mechanical reproduction in the laboratory wave

basin or flume have been the subject of intensive research over the past twenty years.

1.2. Literature Review.

Several investigators have studied the non-linear wavefield produced by finite-amplitude
wavemakers using an approach based on the Stokes expansion procedure. The technique
involves expressing the generated waveforms, associated velocity potentials, and, most
recently, piston position as perturbation series, where the expansion parameter is related
to wave steepness (Stokes, 1847). The use of a Stokes expansion results in a series of
linear problems, one at each order of the perturbation approximating the non-linear
problem. Most of the work on this problem has focused on including the second-order

terms in the analysis.

Stokes’ (1847) work included only the waveforms and the associated velocity potentials in
the perturbation technique for regular waves. Only the second-order sum frequencies
appear (difference frequencies vanish) and expressions for the second-order amplitude and
phase were given. Biésel (1951) developed the first-order transfer function relating

piston-type waveboard displacement and the resulting wave amplitude. He also



recognized and quantified the first-order local disturbances due to the horizontal velocity
profile mismatch that results in the production of a second-order evanescent mode wave.
In nature, the horizontal velocity profile is parabolic with zero velocity at the bottom

boundary. In a laboratory, the planar wavemaker creates a uniform velocity profile.

Fontanet (1961) presented the first complete approach to second-order wavemaker theory
for the waves forced by an oscillating plane wavemaker. Using a Lagrangian description
he found the spurious superharmonics generated by a purely sinusoidal oscillation of the
waveboard and described how to suppress these by adding a second-order superharmonic
component to the first-order wavemaker control signal. His choice of a Lagrangian

coordinate system makes the solution complicated to apply.

Longuet-Higgins and Stewart (1962,1964) were the first to point out that the variation of
the radiation stress, which is defined as the excess flux of momentum due to the presence
of waves, in grouped waves is the reason that long period waves are associated with wave
groups. Their theory for the group-induced generation of long waves is based on the
narrow-banded assumption. Ottesen Hansen (1978) and Ottesen Hansen et al. (1980)
derived similar results to Longuet-Higgins and Stewart (1964) without the narrow banded
restriction. The solution presented by Ottesen Hansen ef al. (1980) uses a transfer
function that gives the second-order contribution in terms of the interacting first-order

wave components.




Madsen (1971) developed an approximate theory using a Stokes-like expansion for the
suppression of spurious superharmonics in regular waves generated in fairly shallow
water. His method suppressed spurious free waves by adding a second-order control

signal to the first-order control signal. His solution is limited to relatively long waves.

Buhr Hansen ef al. (1975) chose an empirical approach to pursue the second-order control
signal for regular waves. He was able to determine both the amplitude and phase of a
regular free second-order harmonic wave. For an irregular wavetrain expressed by a
Fourier series, the large number of cross products of second-order makes it impossible to

apply such an empirical approach.

Dean and Sharma (1981) developed a generalization including both subharmonics and
superharmonics for directional waves. Their work included a second-order transfer

function linking the second-order waves to the primary wave components.

Flick and Guza (1980) used a Stokes expansion to analyze the motion of a wavemaker
that is hinged either on or below the channel bottom. They evaluated the relationship
between the second-harmonic free waves forced by the wavemaker and the second-

harmonic Stokes waves using regular waves and wave groups.

Hudspeth and Sulisz (1991) derived the complete second-order solution to the wavemaker
problem using an eigenfunction expansion approach. The solution considered

monochromatic wave paddle motion with special emphasis on Stokes drift and return flow



in wave flumes. Their formulation included new terms previously neglected in the Stokes
type analyses. Sulisz and Hudspeth (1993) presented an eigenfunction expansion
complete to second-order for the two-dimensional wave motion forced by a sinusoid
wavemaker motion. They experimentally verified the work of Hudspeth and Sulisz (1991)
in a 2-D wave basin and calculated second-order amplitudes for the free wave and the
Stokes wave. Mobayed and Williams (1994) extended the theory of Hudspeth and Sulisz
(1991) to cover bichromatic paddle motion. Their derivation explicitly included the
difference frequency second-order effects unlike Hudspeth and Sulisz (1991) and Sulisz

and Hudspeth (1993). Their results were confirmed numerically.

For random waves, Sand (1982) calculated the second-order subharmonic control signal
for a piston type wavemaker needed to suppress three spurious long wave components
created using first-order wave generation techniques without requiring the narrow band
assumption. Barthel ez al. (1983) gave a more detailed description of the theory of Sand
(1982) and extended it to include a rotating waveboard motion, restricting the center of
rotation to a point at or below the bottom of the flume. Sand and Donslund (1985) gave
the theoretical extension to Barthel er al. (1983), needed to include the case of a rotating

waveboard with the hinge located above the flume bottom.

Extending the basic principles outlined in Flick and Guza (1980), Sand and Mansard
(1986a, 1986b) developed the theoretical transfer functions, similar to those used by Sand
(1982), necessary to reproduce correctly the higher harmonics in an irregular sea state. A

second-order control signal was calculated in order to ensure the correct reproduction of



the wave profile without any spurious, higher-harmonic free wave effects. Their technique

is valid for translatory as well as rotating waveboards.

In order to make the wave generation algorithm more efficient, Klopman and Van
Leeuwen (1990) used a technique based on the perturbation method of multiple scales to
derive the formulas for the second-order wavemaker control signal. The method of
multiple scales pursues the corrections in the time domain unlike the frequency domain
methods of Sand (1982), Barthel et al. (1993), Sand and Donslund (1985), and Sand and
Mansard (1986a, b). The amount of work to generate the second-order corrections with
their method is proportional to the amount of work to generate the first-order signal. In
previously used second-order frequency domain methods, this amount of work was
proportional to the square of the effort for generating the first-order signal. Their method

is of limited utility since it assumes a narrow spectral bandwidth for the first-order waves.

For a substantial simplification of the theory, the evanescent modes can be ignored when
the waveboard motion makes a good fit to the velocity profile of the desired progressive
waves. Situations where this approximation fails are often encountered. Schiffer (1994)
quantified the error introduced by ignoring the effects of evanescent modes in second-
order wave generation. Schiffer (1996) recently presented the complete second-order
wavemaker theory for irregular waves. A complex representation was chosen to facilitate
and simplify the theoretical calculations. A method known as the asymptotic summation
method (Schiffer, 1993) was included to quickly find the sum of the infinite series that

appear in his second-order solution. The theory was verified for a piston-type wavemaker



using regular waves, wave groups, and irregular waves. This research appeared too late

(i.e., January, 1996) to be included in the present work.

1.3. Objectives of this Research.

The objectives of this research are:

1) to present a theoretical framework for the generation of a 2-D laboratory wavefield
correct to second-order using the long wave correction algorithms of Sand (1982),
Barthel ef al. (1983), Sand and Donslund (1985), and the short wave correction
algorithms of Sand and Mansard (1986a, b),

i) to create a user-interactive software package in MATLAB, based on the algorithms
presented in (i) to generate waves correct to second-order in the laboratory,

iii) to test and calibrate the software package developed in (ii),

iv) to study the effects of using a thresholding technique to improve algorithm efficiency

v) to use bispectral techniques to test the algorithms.

In the following chapter a theoretical basis for including second-order effects in the
mechanical generation of a wave field free of spurious effects is presented. An overview
of the MATLAB-based software package including an explanation of the thresholding
technique found is found in chapter 3. The experimental setup and the wave data
generated and recorded are described in chapter 4. Chapter 5 includes a brief theoretical
discussion of the bispectrum and its application to the study of triad interactions. The
bispectral analysis of the recorded wave data are also included. A summary of the results,

conclusions and recommendations for future work are given in chapter 6.



Chapter 2: Wavemaker Theory

2.1. Governing Equations.

The Navier-Stokes equation

1
u,+u-Vu:——Vp+ﬁV2u+g 2.1
P

Jo,
is the foundation of fluid mechanics. In the usual notation, p is the fluid density, p is the
pressure, 4 is the dynamic viscosity, u = (», v, w) the x, y, and z components of velocity,
respectively, and g is the acceleration due to gravity. The x-y axes lie in a horizontal plane
and the z-axis points vertically upward. The motion of a Newtonian fluid is well described
by the Navier-Stokes equation, however, problems arise in trying to solve this equation.
For the case of surface gravity waves, finding a solution to this equation is further
complicated by the unknown position of the free surface and the relatively complicated

boundary conditions to be applied there.

To make the problem tractable, the following simplifying assumptions are applied:
i) the flow is irrotational,
ii) the flow is incompressible,
iit) the fluid is inviscid,
iv) surface tension is negligible,
v) pand g are temporally and spatially constant,
vi) the waves propogate in the positive x-axis direction, and

vil) the bottom is flat and impermeable.



The resulting equations describing waves propogating in a flat bottom flume and equipped

with a rotating and/or translating waveboard are given in terms of the velocity potential

@(x,z,1), defined by (Barthel ez a/., 1983)

17
= %}5, V= ;;é (2.2a)
Ag =0 everywhere in the fluid (2.2b)

1

4 +§(¢x2 + ¢ZZ) +gn=0 forz=7 (2.2¢)
n+¢n. -4 =0 forz=n (2.2d)
¢ =0 forz=-h (2.2¢)
condition at the waveboard for x = X(z,7) (2.29)

where ¢ = ¢(x,z,7) velocity potential
1 = n(x,t) water surface elevation
g = acceleration of gravity
h = mean water depth
x, z = horizontal and vertical coordinates
{=time

The position of the waveboard, X, is given as

X(z,1) = f(2) X, () (2.3)
with 7 (z) = 1+ ﬁ (2.4)

where £ is the water depth and / is the distance to a fictitious waveboard pivot point. The
definition sketch shown in Figure 2.1 covers the types of wavemakers considered by the

governing equations above. It appears that there are two limiting cases: a flap, hinged at



: 4 / WAVE BOARD

Xo®)
2=0 >/ /\UT!(XJ) >

X(t)

z=-h

CENTER OF ROTATION

Figure 2.1 Definition sketch for wave generators with translatory, rotational, or
combined modes of operation.
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the bottom of the wave flume (/= 0) and a piston-type wavemaker (/ = «). Values for / in
between these conditions relate to a combined rotating and translating motion of the
waveboard. Elevated piston and flap wavemakers require additional terms in the

governing equations.

Taylor series expansions are applied to the basic equations and the boundary conditions to
obtain boundary conditions at the waveboard, where x = 0 and z = 0. X, ¢, and 7 are

expanded in terms of an ordering parameter, €, which results in first- and second-order

phenomena
n=en®+& p® (2.5a)
p=cgP+ & ¢@ (2.5b)
X, =ex,V+& Xx,2. (2.5¢)

This method of solution results in the following first- and second-order equations

First-order equations:

A =0 (2.63)
i+ gg =0 forz=0 (2.6b)
¢ =0 forz=-h (2.6¢)

dX(l)
¢ = f(2) d; forx=0 (2.6d)
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Second-order equations

AF® =0 (2.7a)
A7+ 80 =1 {gh + 40} + g0 {gn + g0} g0 forz =0 @7b)
¢ =0 forz=-h (2.7¢)
¢ =f(2)%§i—Xé”{f(Z)¢§) —;1;7@“’} forx=0  (279)

Equations (2.6a) - (2.7d) can be solved for the case where the first-order wave motion,

en”, which is far from the wavemaker, is given by

en(x,1) = ﬁ {a,, cos(a)nt - knx) +b, sin(a)nt — k,,x)} (2.8)

n=1
where N is the total number of wave components. The first-order equations are solved for
¢" and X,/. Substituting the first-order solutions into the second-order equations, result
in sinusiodal terms with sum and difference frequencies. The second-order equations are
then solved with the additional condition that no free waves may exist to second-order,

ie, find X

2.2. First-Order Solution.

Since the first-order equations are linear in ¢, the terms in (2.8) can be treated

individually, and then summed to give ¢ and X, Using this approach, we look for a
solution of the form

X =sinwt. (2.9)
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The corresponding potential ¢/ (solution of the first-order equations) is (Flick and Guza,

1980)
a _ pCoshk(z+h) . ot — of) + o CoslEHh) / (2.10a)
¢ B cosh sin(kx — wt) ;Cj cosl 7 e 7 cosw
where
k is the positive and real root of w* = gk tanh kh (2.10b)
0
[ f(2)coshk(z +h) dz
= % cosh kh=~ (2.10c)
Jcoshz k(z+h)dz
-h
I; is the positive and real root of ~ w® = g/, tanl h (2.10d)
with (j -z <Lh< jm, j=123,... (2.10e)
0
[ @ cost,(z+h) dz
@ -h
C, = ~7 cos(h) L (2.10f)
d [cos? 1,(z +h) dz
—h

For the waveboard motion, the general solution of the first-order equations is given by

N
eXxP = ng {an sinw, 1 —b, cosa),,t}. (2.11)
n=1 “ %Wy

2.3. Second-Order Solution : Long Waves.

Due to the linearity of the second-order equations (2.7a)-(2.7d) in ¢, it is possible to
write ¢ as a superposition of three potentials (Barthel ez al., 1983):

Y =+ ¢ 4 ¢ (2.12)
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The potential functions composing ¢ have to satisfy the equations below, which make
¢” satisfy the original second-order equations.

#°" has to satisfy the following equations (Barthel ez al., 1983):

Ap® =0 (2.13a)

4 480 = = (o) + 0} -0 + 80 gl + 0} g0g0Rorz =0 @130)
¢ =0 forz=-h (2.13¢)

no condition at the wave board forx=0 (2.13d)

Physically, this means that ¢”” corresponds to the second-order long waves that are
bound to the wave groups, see Ottesen Hansen (1978). The absence of a boundary
condition at the waveboard indicates that the solution is representative of progressive
waves in general, including those found in nature.

#°? has to satisfy the following equations (Barthel ez a/., 1983):

ApP =0 (2.14a)
O A forz=0 (2.14b)
% =0 forz=-h  (2.14c)
1
4 = —Xé‘){f(zws? Y ;”} 6% forx=0 (214

The waveboard boundary condition (2.14d) indicates that there are several types of free

second-order waves arising from the terms on the right-hand side. The first term,
_ X(l) f(Z) m _ _1__¢(1)
0 xx h +Z z >

appears as the waveboard moves out of its mean position (i.e., X’ #0). Two free long
waves are represented: one is associated with first-order local disturbances and the other is

due to waveboard displacement. The second term, — ¢* | originates as a reflection on the
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waveboard of the group bounded long waves which are naturally generated. The
backward orbital velocities found under the long wave troughs reflect off the waveboard
with the same magnitude but opposite phase as the bound waves. This third type of free
long waves are known as “parasitic long waves”. All three disturbances are spurious long

waves, which have to be suppressed by means of a second-order waveboard displacement
X(Z)
o

¢”? has to satisfy the following equations (Barthel ez al., 1983):

Ag® =0 (2.152)
¢ + g™ =0 forz=0 (2.15b)
¢ =0 forz=-h (2.15¢)
dx$?
6% = f(z)— forx=0 (2.15d)

These equations determine the second-order waveboard motions, X, which are

necessary for the correct generation of grouped waves with only the bound long waves

present. Equations (2.15a) - (2.15d) provide the compensation for the free waves

described by ¢ (Equations (2.14a) - (2.14d)).

In order to solve these second-order equations, the first-order solutions 7™, ¢ and X o
have to be substituted into the right-hand side of the respective equations. However,
because they are linear with respect to ¢, it is sufficient to consider only two first-order
components. Afterwards, superposition can be applied to include the contributions of all

possible combinations of frequencies in a realistic wavetrain,
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The final solution is seen to be the result of the superposition of all the combinations of the

two first-order components. The complete second-order paddle motion is then given by

N-1 N

e xP=3 > x2 (2.16)

n=1 m=n+1
It should be noted that the total waveboard displacement (including the second-order long

wave correction) is given by

X() = f@)(eXP+ e x@). (2.17)

Calculation of the second-order long waves and the second-order piston position are
based on a Fourier decomposition of the primary wavetrain. The long wave elevations are

found from the sum

E0= Y Y&, withm=L 2.18)

n-m=1 m=nr* f 0
where f, = 1/T is the frequency interval in the Fourier decomposition, 7"is the length of the
record, and f* is the lowest frequency in the short wave spectrum. Thus, &) is the sum of

contributions from all pairs of frequencies in the decomposition.

It is sufficient to consider a single long wave contribution generated by one frequency pair,
J» and f,,, with the elevations 7,(#) and 7,,(2), respectively. Such a pair of waves forms a

wave group

NmQ)=n,+1n,=a, cos(a),,z‘ - knx) +b, sin(a),,t - k,,x) (2.19)

+a,, cos(a)mt - kmx) +b, sin(a)mt - kmx)
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in which a is the wave amplitude and @ is the radial frequency. The second-order long

wave generated by this group becomes

+bb
émt(t) = Gnmh{(anamhz - mj COS(A(()","t — Aknmx)

(2.20)
(a b —ab

+ _"L__L'_hz_"ﬂ_) sin(Aa)nmt - Aknmx):]

where G, is a transfer function, A = @, - @, and Ak, = k, - k, are long wave

1

quantities. The long wave frequency is Afym =15 - fin = AW/ 2T.

The dimensionless transfer function G, A is given for a piston type wave generator as

(Ottesen Hansen, 1978; Sand, 1982):

Gl1ﬂl]1 =
47 D DAk, hcosh(Ak, f WD, -D ) h h
7[ an nm 1 COS 1( nm 7) + Aknm 1(Dn m)(kn 7Dm +km Dn ) COt‘h(Aka ) __272,2 (Dn . Dm)2 Ak,,mh
cosh(k,h+k, h) 2D,D,
47*(D, - D,,)* coth(Ak,, h) - Ak, h

2.21)
where D, = (W/g)"*f, and D,, = h/g)"f,. with g being the gravitational acceleration

constant. The dimensionless transfer function G_ 4 is plotted as a function of 4 / L, for

several values of Af/ f,, in Figure 2.2.

The correct second-order piston positions for the reproduction of group-induced long

waves in a natural wavetrain are

X220 =3 > xD0 (2.22)

n-m=1 m=nr*
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Figure 2.2 Long wave transfer function G/ for a pair of wave components £, and f,, as a

function of A/L,.

18



The solution to the second-order equations can be written as (Sand, 1982):

X2 b b +bb
:Ka__fz__)ﬂ, (1612__nnLjE3hJcosAw )
W h

h

(2.23)
+K“L’hi—b"—b-m—)1:h (-‘—'-"’b"h—za"—bﬂ)@h}smm ‘
For the second-order correction calculations, the dimensionless function F;4 is
th :Fuh + F]gh (224)
where
nmhAkh{Ak h— N h)sinh| Ak, 7+ Ak )+ A, -+ Ak ) sinh| Ak Akh]
A e ey
2\ Ak2 1 — Ak ) sinb A, ) sin{ Ak, )
and
o Tk, 1+ G, )|, hsinh(8k; k) + 8 hsinh(S, 7)]
" Afs(k,,,hz ~ AR2? ) sinh( Ak, h) sinh(k, ) tanh(, ) 226
1, N ik 11+ G, )| % hsinh(8k; h) + Gk hsinh(Sk; )]
+

h
AF8(k2H* — A2 )sinh( Ak ) sinh(k, h) tanh(k /1)

The free long wave number Akyis derived from (Aw,,)* = g Akytanh(Akh) and Sk°, = k,, +
Ak The function Fj;h is the contribution to the second-order piston position that
eliminates the free parasitic long wave resulting from a reflection off the waveboard of the
natural rearward orbital velocities found underneath the bound group long wave trough.
This reflected wave is exactly out of phase with the bound long wave at the waveboard
but travels with a free wave velocity resulting in a location-dependent distortion of the
long wave effects. The F;»h function corrects for the free long wave appearing as a result

of the waveboard moving out of its mean position, x = 0. It has thus been historically
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referred to as the displacement function. The dimensionless functions F;;4 and F)oh are
plotted versus 42/ L, for several values of 4f/ f,, in Figure 2.3 and Figure 2.4, respectively.
The sum of these two functions, FA, is shown in Figure 2.5. It is interesting to note that
in shallow water the F;;/ function dominates, while in deep water the F,, function is the

dominant one.

The function Fsk used in the piston position equation above can be written in the form

F_73h = th(F_g,m "F3Jl) (227)
ik P Akfh(1+Gn)(1+Gm). o o 2k
e S etk ) (k) sinh(2%, ) 228
and
£, 2 sinll ) sin i ) otk 1) + Ak cos(k 1)
F, =23 ; (2.29)
A 3 (kfh2 + Ak;hz)[sm(k J.h) cos(k j.h) +k jh]
in which k# is found as the solution to
2 2
4—7%;#—"' =k, htan(k h), with (j-1)z <k < jz (2.29b)

The F3sh function is the contribution that eliminates the free second-order progressive
waves that originate from first-order local disturbances as described by Biésel (1951).
These waves occur as a direct result of the horizontal velocity profile mismatch between
natural waves and those generated by a planar wavemaker. Sand (1982) has shown that
the magnitude of the F»; correction is sufficiently small when compared to the magnitude

of F; to be considered insignificant for the purposes of laboratory testing.
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2.4. Second-Order Corrections : Short Waves.

The Laplace equation with a second-order surface condition is solved for a first-order

wavetrain, 7, described by a Fourier series. To simplify the calculations, the solution is

found for pairs of frequencies and superposition is used to combine the results for all
possible frequency sums. The following wave group is considered

M (?) = a, cos(w,t - k,x) +b, sin(w,t - k,x)
+a, cos(w,t -k, x)+b, sin(w,t - k,x)

(2.30)
in which a is the wave amplitude, @ is the radial frequency, # is the radial wave number
(=2n/L, with wavelength L), x is the horizontal coordinate and m, » are the frequency
subscripts of the two components selected from the Fourier series. Taking the wave

group in Equation (2.18) as a kernel of the Fourier series the solution for the second-order

control signal has the form:

X2 =((a,b, +a,8,)F, +(a,a, —b,b,)F, ) cos{w,1) -

(@,a, ~8,8,)F - (a,b, +a,b,)E,)sin(5) (231a)

in which
F =F, +F, and Fy, = F,(F, , + F,,) (2.31b)
and 5= Dot O (2.31¢)

The function F;, which converts the first-order Fourier amplitudes into a second-order
correction consists of two parts, ;; and F;,. The first part, F;;, is needed as a direct

result of the bounded harmonics in the wavetrain. It allows 72 (¢) to exist without

spurious effects, which would otherwise appear as the reflection on the waveboard of the

second-order bound components. With no flow through the waveboard, the natural
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rearward orbital velocities underneath a wave trough are reflected off the waveboard and
travel with a free wave velocity, resulting in a location-dependent distortion of the bound
short wave effects, which travel with the wave group velocity. The dimensionless

expression for F; is (Sand and Mansard, 1986a):

Fh = |G, hUK (k htanh e~ ks hranh ko )1+ 11 1))

(2.32a)
[(ks2#* — k20 )tanh ko 11+ 1/ By tan e 1+ B cosh ik )
where ks = kythy, (2.32b)
kr 1s the free wave number from (a)z)z =gk, tanh k h, (2.32¢)
- 1 for/>0 (2.32d)
coshk ./ for/<0
_ kghtanhkoh k,hk,h(1+tanhk htanhk h)  khtanhkh
~ k htanhk h 4G+ hJk hk htanhk htanhk h 4G h

(2.32¢)

G,, is a second-order transfer function for the primary frequencies f,+f,, expressed in

nm

dimensionless form as (Sand and Mansard, 1986a):

G, h {[ (an+a)(khkh/aa—47zaa)+

(2, +am)(k3,h2 la, +k2h* | a, —47r2(an3 +am3))]/[47r(an + am)z —~ Q] (2.33)
+|ar’ata(1+ e,/ a, +a,  a,)~ kjk, ]/ dna,a, )6

n m nm

in which Q.= 2k,htanh kyh, @, = (h/L,,,) , @, =(h/L,,)" and Lyis the deep water

wavelength. Noting that the self-self interaction binds only half the second-order
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component of an interaction involving two frequencies slightly separated in the frequency

+
nm?

domain, consequently, the transfer function, G, , includes the multiplier &, which has the

value:

(2.34)

B 1 fornzm
“l1/2forn=m

The transfer function G, A is plotted in Figure 2.6 as a function of 4 / L, (for the m-

nm

component, m < n) and the ratio £, /f,.. The curve for f,/ f,, = 1.0 corresponds to the self-

self interaction of one regular wave.

The second part, Fi5, is related to the X g and XP¢" terms of the waveboard
boundary condition (Equation (2.7d)). This so-called “displacement wave” is caused by
the waveboard moving out of its mean position. The product of paddle displacements and
both the horizontal, orbital accelerations in the waves and the vertical velocities,
respectively, form a second-order higher harmonic contribution. To eliminate these free
wave components of frequency oz, the control signal includes the function F;,. In
dimensionless form this function is (Sand and Mansard, 1986a):

Foh=K(1,/ TP +(f, 1 £,)1, 1 TP) (2.352)

in which
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k22 (1+1/h)

~ (k n(+ 11 Bysinhk = coshk i+ B)1, 1 1, +1)

kb
A

=—>—{P +0O +R
m zsinh km h Qm m)

b sinh(k,, +k, Ja+38, ) sinh(k,, -k, )+,
" 2k,hrkh) (k& ;)
V- cosh(km +k, )h Vs~ cosh(km —k,; )h
0, = 2 + 2
2k +kph) (+1/h) 2k h—ksh) (1+11h)
. k,h(coshk, hcoshk h—1) ~ k hsinh &, hsinh &/
" k b+ 1] W(R2H - K2h?)
and
' 1 for/>0
d :{coshkfl for /<0
for/{>0
4 = {smh(k + kf)l for/>0
for/>0
% = {smh(k —k, )l for/>0
1 for/>0
Vi {cosh(k k)= (kyh+ kph)1+ 1 B)sinh(k,, +k, )| for 20
1 for[>0
V2= {cosh(k ~ kg )~ (k= ke )+ 1/ )sinb(k, ~k, )l for 7120

(2.35b)

(2.35¢)

(2.35d)

(2.35¢)

(2.356)

(2.35g)

(2.35h)

(2.23i)

(2.23)

(2.23k)

The first-order transfer function, 7 (Biésel, 1951), between the wave amplitude and the

paddle displacement is given by:
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_ 2sinhk, ik, h(1+1/ h)sinh ks - cosh k.2 + )

Oy oy - 2.36
m a'" m kmh(l + l/h)(Slnh kmh COSh kmh + kmh) ( a)
in which
1 forl>0
_ 2.36b
P {coshkml for/<0 ( )

For actual calculations, the above equations are applied with subscript # as well as m to
allow the principle of summation to be applied. Figure 2.7 shows the function F;4 plotted
versus h / Ly for several values of f, / f,,. The curve for £, / f,, = 1.0 depicts the function

values for the self-self interaction of a regular wave.

Lastly, the function F; is associated with the local disturbances described by Biésel
(1951). These disturbances are caused by the horizontal velocity profile mismatch
between natural waves and those produced by a planar wave paddle. The disturbances
experience exponential decay with distance from the waveboard and would seem rather
insignificant for practical testing purposes because of their rapid decay. However,
progressive, non-decaying free waves of frequency @, appear as a result of these local
disturbances. Therefore, this effect must not be excluded. Recalling from Equation

(2.31b) that
F;S = F’:Z(F‘S,m + F;,;z) b

the components of the F»; function are described in dimensionless form as (Sand and

Mansard, 1986a):

29



3 el
/
2 ]
/
/ /
1 / ///
]
/_/
< ‘_,_—-—-——‘"———’__—_'_
, /V/
2 ]
—Mm/fm=1.0
— /fm=1.5
3 ]
— fn/fm=2.0
“ SN B
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

hite

Figure 2.7 Short wave transfer function F;4 for a pair of wave components f, and f,, as a
function of A/L,.

30



k2h?
Fh= !
TOT (ke (h+ 1) tanh &~ 1+ B cosh k h)
f. & coshkh{k,(n+)sinh &+ coshk k- 1)

2

F, =
M Sut S SRR K2Rk, (o D)(sinh & heosh &k + k)

[kj (h+ Dk, htanhk b+ k hitank,h)+ k htanhk htank h— & b

k
+ W(kjhz ~ k2H* =2k htanh & h)k tan kth3]

in which
1 for/>0
" lcosk,l  forl<0
I kb2 - K2n)
A S for/>0
(k]?h2 +k}h2)coskjhcoshkfh
Q. =
: k Wk - k20 )cosk Lcosh k, 1
Zkfhzkfh sinkjlsinhkfl— for/<0
(k2 + k217 ) cosk, heosh k

and

ki is the real root of w’h/ g = —khtank;h , for (j-1/2)n < kh <jr.

(2.37)

(2.38a)

(2.38b)

(2.38¢c)

(2.38d)

The dimensionless function F>s/ is plotted in Figure 2.8 versus / / L, for several values of

Jn/ fu. The curve depicting an f, / f,, value of 1.0 shows the self-self interactions of a

regular wave.
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The complete second-order short wave correction signal is given as

N-1

X®@) = ( > ((a,b, +a,b,)F, +(a,a, —b,b, )E,, ) cos{@, 1) -

- (2.39)
(( ., —b.b, )F (a b, +a,b, )Fzs) sin(a)z t)
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Chapter 3: Wave Generation Software

3.1. General Overview.

The algorithms presented in chapter 2 were coded into an interactive software package
using MATLAB®. The use of MATLAB as the environment for a wave generation
package has several benefits over using a traditional programming language. The basic
data element in MATLAB is a matrix that does not require dimensioning. Any operation
performed on an array is completed as a single operation rather than on an element by
element basis in a loop as is typical of other programming languages. MATLAB is also
capable of working with complex variables using its built-in functions to perform complex
operations, such as conjugation. In addition, MATLAB’s visualization (i.e., plotting)
capabilities are such that no other presentation software is needed to display numerical and

experimental results.

The full second-order laboratory wave generation package, entitled WAVGEN, consists
of one controlling script file that calls other function files as specified by the user. The
first function called by the program produces a first-order wavetrain. The user may select
one of three idealized spectra from which an amplitude vector is derived. Random phase
angles are added to the amplitudes to produce a random wavetrain. Regular waves and
bichromatic wave groups can also be specified. The function returns a first-order

waveboard position vector to the controlling script file.
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The user may opt for second-order long wave corrections to the first-order wavetrain
which occur in a WAVGEN function call. The algorithms used to calculate the long wave

corrections for a piston type wave generator are given in § 2.3.

Selecting second-order short wave corrections to the first-order wavetrain leads to
another WAVGEN function call. The algorithms used to calculate the short wave
corrections are found in § 2.4. The end result is a waveboard position vector correct to
second-order that eliminates the spurious long and short waves inherent with a first-order

control signal.

The final function call in most instances converts the waveboard position to a voltage that
determines the piston displacement and does the post-processing chores before the file is
sent to the wavemaker. Compensation is made for the waveboard dynamics and the wave
machine servo dynamics. The post-processing module offsets the displacement array to
center the waveboard motion and manipulates the data so that the waveboard starts and
ends near the central position to avoid start-up transients. An optional gain factor may be
applied to the array. The output is limited to +/- 10 volts. Finally, the array can be
resampled at a higher frequency so that the signal sent to the wavemaker results in a

smoother board motion without affecting the spectral characteristics of the wavetrain.

3.2. First-Order Wave Generation.

The first-order wave function of the WAVGEN wave generation software package

produces a piston position time series based on user selected input parameters as seen in
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the flowchart in Figure 3.1. Three idealized wave spectra JONSWAP, Donelan TMA)
are included in the current version of the software. Other spectral forms (Pierson-

Moskowitz, Ochi, efc.) can be readily added.

The JONSWAP spectrum (Hasselmann ez al., 1973) is given by

S,(f)= (_2%)%—5“1’{_ ({,’4}4}7 sl as) (.1a)

where N
a= Qo76(§%%) (3.1b)
¥=33 (may vary from 1 to 7) (3.10)

n=0.07 S/

=009  f>f,

(3.1d)

F is the fetch length, U is the wind speed measured at 10 metres above the water surface,
and vy is the peak enhancement factor. The Donelan spectrum (Donelan ef al., 1985)
differs from the JONSWAP in the slope of the high frequency portion of the spectrum.
Donelan et al. (1985) determined that an £ slope was more consistent with observed

natural wave spectra than the JONSWAP 7™ slope. The Donelan spectral form is
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<begin LINWAVE>
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control wavetrain
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SIWEH spectrum ves groupiness?
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to match SIWEH g position vector
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Figure 3.1 Flow chart of LINWAVE first-order wave generator function in WAVGEN.
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where
o = 0.006 > (3.2b)
1= 0.08(1 + 4W?) (3.2¢)
y=17-60logh 02<W<1.0
(3.2d)
=1.7 1L0<W<12
W is the wave age parameter defined as the ratio of the wave celerity of the peak spectral

frequency, f;, to the wind speed component in the direction of travel of the peak waves.

The TMA spectrum (Bouws et al., 1985) does not assume deep water conditions at the
point of wave generation making it more suitable for intermediate and shallow water
laboratory wave generation than either the JONSWAP or Donelan spectrum. The TMA

spectrum, which is conceptually a shoaled JONSWAP spectrum, is given by

Sna(f) = o { (Z") }7“"{"““") Sy (3.32)

en' s
where
$na =0.5w;] forap<1
=1-0.502- a)’ for 1 <a,<2 (3.3b)
=1 for @, > 2
and
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g

Figure 3.2 shows the shape of the three idealized spectra included in the WAVGEN
software package for a 256 second wavetrain with 4 Hz sampling and a peak period of 2
seconds. The water depth for the TMA spectrum was set to 1 m. All spectra are for fully
developed wave conditions (i.e., y = 3.3, W = 0.83). Since the area under each spectrum
is proportional to the wave height, the fully developed JONSWAP spectrum yields a larger
(deep water) wave height than the Donelan spectrum. The shoaled TMA spectrum yields

a considerably smaller wave height than either the JONSWAP or Donelan spectrum.

The user is required to provide values for the necessary spectral peak enhancement factors
as well as the overall length of the record to be produced, the sampling frequency, and the
peak frequency of the linear waves. Random phase angles are applied to each frequency
to convert the spectral ordinates into complex Fourier coefficients. The random number
generator seed value can be specified to facilitate comparisons over multiple runs. The
groupiness of the wave record is controlled using the Synthetic Instantaneous Wave
Energy History (SIWEH) approach of Funke & Mansard (1979). The SIWEH algorithm
was coded and tested by Baryla (1996). The user is presented with a plot of the time
series in both the time and frequency domains at the conclusion of the function as shown
in Figure 3.3. The function returns a waveboard position time series to the controlling

script file.
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3.3. Theshold Limited Approach.

Computing the desired second-order corrections for an irregular wavetrain by
straightforward summation is tedious and time consuming due to the single infinite series
involved in the calculation of the local disturbance waves (see Equations (2.29a) and
(2.38a)). A threshold limited approach is proposed here to facilitate quicker calculation of
the correction factors by applying the corrections to the frequencies that are most affected

by them.

The threshold limited approach to second-order corrections makes use of the knowledge
that for many frequencies, the long or short wave correction is negligible as the amplitude
of frequencies away from the peak is quite small. The long wave corrections are
significant only at the lower frequencies of the wave spectrum, therefore they need not be
calculated over the rest of the spectrum. The threshold cut-off is a user specified
percentage of the power in the spectral peak. The computations are performed only for
those frequencies whose power is less than the threshold value and are limited logically to
the lower portion of the spectrum even though some frequencies in the upper reaches of
the spectrum also meet the threshold criterion. The full frequency space is used in the
calculation of the long wave corrections but only for the frequency differences that fall

within the threshold limited range.

For the short wave corrections, only the frequencies near the first and second harmonics
of the spectral peak experience a significant correction due to the presence of short waves.

The threshold cut-off in this instance defines the range of frequencies that will be used in
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the calculation of these short wave corrections. All frequencies whose power exceeds the
threshold limit are considered. The corrections are applied to all possible frequency sums
up to and including the Nyquist frequency. All frequency sums higher than the Nyquist

frequency are not physically reproducible and thus are not considered.

The accuracy of the approximation can be varied by changing the cut-off to a higher or
lower percentage of the peak spectral power. Comparisons can readily be made to a base

case that includes corrections to the entire spectrum for both the long and short waves.

3.4. Long Wave Correction.

The long wave correction function of WAVGEN incorporates the threshold limited
approach described above to improve algorithm efficiency. The algorithm used is
presented in section 2.3 and was subsequently coded into a set of MATLAB function files
that operate according to Figure 3.4. The threshold limit is specified by the user as a
percentage of the variance density in the peak frequency. This percentage is multiplied by
the peak variance density to yield the upper limit for the correction calculations. Only the
low frequencies whose variance density falls below the threshold value calculated have
corrections calculated for them. Figure 3.5 illustrates the thresholding technique for the
case of long wave corrections. With the 10% threshold indicated, only those frequency
differences lower than 0.4 Hz will have a correction calculated. The peakedness of the
spectrum enables us to set the threshold quite low resulting in a much faster calculation
without sacrificing a great deal of accuracy. The correction factors F;; and F), are

calculated in order to eliminate the free parasitic wave and the displacement wave, while
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WAVGEN.




0.008

0.007 +
0.006 +
0.005 ¢
0.004 +

0.003 +

Variance Density [m 2s]

0.002 1
long wave 10% threshold

0] 0.2 04 06 0.8 1 1.2 1.4 1.6 1.8 2
Frequency [Hz]

0.001 +
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F>; which is related to the evanescent wave is omitted as described in chapter 2. The long
wave correction function results in a second-order waveboard position series that
represents the spurious waves generated by a first-order control signal. This time series is

then subtracted from the first-order waveboard position record.

The prototype random wave record used in the threshold analysis was based on a fully
developed TMA spectrum, 600 seconds in length, sampled at 4 Hz, with a peak frequency,
Jp» 0£0.5 Hz. Although the following analysis is numerical, this wave record is typical of
those used in physical testing in the HRTF random wave flume and indicates the extent
and duration of the correction calculations that can typically be expected. Using the TMA
spectrum accounts for any shoaling that needs to occur to correctly place this wavetrain in
the 1 m depth of water found in the wave flume. Figure 3.6 shows the relative times to
complete the threshold limited long wave correction calculations based on the time to fully
correct the wave record. The greatest improvement in the time to calculate the long wave
corrections is 22%, indicating that the algorithm does not spend much of its time in
calculating the corrections. The actual time for full correction using a 486/DX66 with 12
megabytes of RAM was 537 seconds (8.9 minutes) for long waves. Figure 3.7, panels a-c,
shows the long wave correction piston position series for threshold values of 100% (full
correbtion), 10% and 5%, respectively. There is a slight loss of amplitude as the threshold
value decreases and fewer frequencies are corrected for spurious long wave effects,

however, little of the detail in the correction is sacrificed.
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water depth, sampled at 4 Hz, f, = 0.5 Hz.
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3.5. Short Wave Correction.

The short wave correction function in WAVGEN, illustrated in Figure 3.8, includes the
threshold limited approach to improve algorithm efficiency. It is of greater utility in this
case than for the long wave corrections because of the infinite series that occur in the
calculation of the evanescent wave amplitude ratio, F5; (Equation 2.26). In this case the
threshold value calculated results in the lower limit for the primary frequencies to be
included in the short wave corrections. This limits the frequencies used in the calculation
to those near the spectral peak where the majority of the variance density resides. Figure
3.9 shows the use of thresholding in limiting the number of frequencies used in the short
wave corrections. With a 70% threshold as indicated, only the energy between the
frequencies of 0.45 Hz and 0.55 Hz are used to calculate the second-order short wave
corrections. Clearly even a low threshold percentage will reduce the computational effort
by a significant amount given the narrow peak of the spectrum. The short wave
correction function calculates values for F;, Fi2, and Fo; (see § 2.3) to find the amplitudes
of the spurious free parasitic wave, displacement wave, and evanescent wave produced at
each sum frequency. Calculation of F;; and F); is straightforward. The F»; function,
consisting of F,, Fs, and Fj,, includes the evaluation of an infinite series for each
component frequency. The infinite series converges on a solution quickly, so a close

convergence tolerance can be set.

The Newton-Raphson method of root finding is applied to Equation (2.38d). A matrix of
solutions for all possible frequency components and sums is precalculated and used as a

lookup
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table later in the correction function. Since the solutions to Equation (2.38d) are sensitive
to the first approximation to the solution, care must be exercised in selecting the first
approximation. By setting the lower bound of each interval as the first approximation to
the solution, a stable solution can quickly be reached. It is quite easy to detect a problem
with the convergence of the series as the time required to reach a stable solution increases

dramatically.

The second-order waveboard position vector describing the spurious free waves is

subtracted from the first-order waveboard position series.

Using the same prototype random wave record used in § 3.3 for the long wave analysis,
Figure 3.10 shows the relative times to complete the threshold limited short wave
correction calculations based on the time to fully correct the wave record. The short wave
corrections benefit greatly from the use of thresholding with just a 30% threshold resulting
in a reduction in computational effort by one half. The actual time for full correction using
a 486/DX66 with 12 megabytes of RAM was 10877 seconds (3.02 hours). Figure 3.11
shows the calculated corrections for short wave threshold values of 1% (full correction),
10%, 30%, 50%, and 70% are seen in panels a-e, respectively. A closer examination of
Figure 3.10 indicates that 1% and 10% thresholding are virtually identical. The structure
of the correction changes somewhat for 30% thresholding. For increased thresholding,

there is a noticeable change in the structure of the correction.
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3.6. Driving Signal Creation.

The final stage in the program converts the waveboard position vector created and
modified in the previous function calls into a piston position record in a form that the
piston driver can understand. This function follows the algorithm laid out in Figure 3.12.
The program uses machine specific values for the machine gain, voltage gain, first and
second half power servo-hydraulic frequencies to convert an input waveboard position
vector into a voltage series. The voltage series is then shifted such that the maximum
board excursion from the mean position is equal in both directions. The beginning and end
of the series are truncated such that it can readily be recycled a number of times without
producing any transients. Maximum and minimum piston positions are imposed on the
signal to stop the piston just shy of the physical stops with appropriate warnings to the
user that the record has been significantly altered. The voltage series is then converted to
a series of integer values that correspond to specific piston displacements. This series
configuration is dependent on the piston length, D/A board configuration, and the control
card configuration. The user can opt to resample the driving signal at a higher rate to
smooth the board motion without changing the spectral characteristics of the signal. If the
maximum waveboard slew rate in either direction is exceeded, potentially significant
changes to the record are made to correct that and the user is warned. A sample section
of the driving signal is displayed for a visual inspection by the operator. The signal can be
written to a file as specified by the user, formatted to be accepted by the program used to

drive the waveboard.
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Figure 3.12 Flow chart of WAVPADL driving signal generator in WAVGEN.




Chapter 4: Physical Testing

4.1. Apparatus.

The data used for testing the veracity of the WAVGEN software package was collected in
the random wave flume in the Hydraulics Research & Testing Facility (HRTF) at the
University of Manitoba. This reinforced concrete flume measures 34-m long, 1.5-m wide,
and 1.5-m deep. It is equipped with a hydraulically-actuated, piston-type waveboard, a
system of upright wave absorbers, wave probes, and a natural sand, wave-absorbing beach

initially with a 1:10 slope as shown in Figure 4.1.

The waveboard is driven by a 2-inch bore, 46-inch stroke high performance cylinder,
which is powered by a 40-HP hydraulic pump capable of supplying 40 USGPM at 2500
psi. All components are manufactured by Vickers. To achieve maximum positional
accuracy, a high frequency Vickers VM4-40 bipolar servovalve operates in conjunction
with a Temposonics II linear displacement transducer (LDT) to provide a feedback loop.
The LDT precisely senses the position of an external magnet to measure displacement
with a high degree of accuracy and resolution by using the principle of magnetostriction to
convert the time interval between the initiation of an interrogation pulse and the detection

of a return pulse into a distance measurement.

The piston displacement series is sent to the waveboard using a Keithley-Metrabyte

DACO2 digital to analog (D/A) card. The signal is subsequently sent to a Vickers EM-D-
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Figure 4.1 Schematic of the HRTF random wave flume used for testing WAVGEN.
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30 servoamplifier with a proportional-integrating-differentiating (PID) circuit. The
amplifier module sends a command signal to the SM4-40 servovalve and receives
feedback from the Temposonics II LDT. The PID feedback loop was tuned to optimal
performance and allows the piston to be located to within 0.25 mm of its assigned

position.

Wave energy created in the flume travels away from the oscillating waveboard in the
forward and reverse directions. The forward propagating wave energy is dissipated on a
natural sand beach. The beach slope and configuration are allowed to change such that an
equilibrium is attained with the incoming wavetrains. The sand used for the beach is very
fine both to emulate the conditions found at many of the beaches in Manitoba as well as to
allow scale reductions in future testing protocols. The sand gradation follows the curve
shown in Figure 4.2. Wave energy propagating away from the rear face of the waveboard
is dissipated by an upright wave absorber. Rear absorbers placed behind wet back
generators prevent the resonance of waves that might otherwise overtop the rear wall of
the flume or reflect back to the wave generator causing excess pressure on the waveboard.
The design of the absorber, based on Jamieson and Mansard (1987), consists of multiple
rows of perforated vertical metal sheets which progressively decrease in porosity towards
the rear of the absorber. Two sheets of Expanded Metal Corp.’s % -#081LT, ¥4”-#051,
and */1s”-#051 standard expanded aluminum, with open areas of 75%, 60%, and 55%,

respectively, were installed behind the waveboard in the HRTF wave flume.
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Water surface fluctuation data was collected using two capacitance-type wave gauges
(Model WG-30) manufactured by Richard Brancker Research Ltd. Two gauges were
used to obtain information on the reflection of wave energy by the beach and on the
temporal stability of the waveforms. Data acquisition from the wave gauges is handled by
Labtech Notebook® software, through a Keithley-Metrabyte DAS1602 A/D card.
Labtech Notebook controls the initiation, sampling rate, and termination of the data

stream from each of the gauges.

4.2 Laboratory Limitations.

Great care is typically exercised in ensuring that laboratory conditions closely emulate
natural conditions. However, certain inherent laboratory limitations exist that can lead to
errors in the experimental results. One potential source of error is the response of the
waveboard to a command signal. If the waveboard cannot perform the position changes
sent to it in the time allotted (slew rate limit), then the waves produced will not be
consistent with the waves desired. In a laboratory flume wave attenuation occurs due to
the sidewall and bottom friction, and due to the gap around the edges of the waveboard.
Reflection of wave energy off of the beach will also affect the shape: of the measured
waves which will include both the incident and reflected wave energy. The differences
arising from the wave generating mechanism (wave paddle vs. wind) have been accounted

for in the second-order correction algorithms discussed in chapter 2.
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4.2.1. Waveboard Response.
Once a wavetrain is numerically created and corrected for spurious second-order effects

the waveboard must be able to accurately reproduce it. If it cannot, the waves produced
will be either undersized or distorted especially when long, rapid piston strokes occur.
Response of the HRTF waveboard was tested using an analog function generator to create
the driving signal. With a sine wave being sent to the waveboard, the frequency was
increased progressively from an initial value of 0.5 Hz to 5 Hz. There was no detectable
deterioration in the response of the system over the tested frequency range. Figure 4.3
shows a portion of a control signal and the associated feedback signal from the LDT. The
feedback signal was consistently 10% greater than the control signal indicating that the
drive signal was amplified with respect to the feedback loop. After correcting for the gain
difference, the traces of the two signals are virtually identical; only a few small details ~ 1

to 2 mm in amplitude were improperly reproduced.

To further indicate the ability of the wave generator to correctly produce the desired
wavetrain sent to it, it is useful to compare the target and measured primary wave spectra.
Figure 4.4 shows the target spectrum (fully developed TMA spectrum, 2 =1 m, A= 0.25
s, fp = 0.5 Hz) and the corresponding measured wave spectrum. The two traces show
clearly that the spectrum of the primary waves produced in the flume are consistent with

the target spectrum selected.
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4.2.2. Wave Attenuation.
Laboratory waves attenuate with distance due to viscosity primarily in the boundary layers

occurring on the sidewalls and the bottom. There is bottom friction in nature but no wall
friction. Hunt (1952) gave theoretical results for the damping of amplitude for waves over
an inclined bed where the slope is small. Treloar and Brebner (1970), using direct
measurements of sidewall and bottom rates of energy dissipation in a flat bottomed flume,
produced an adjusted formula for the wave height attenuation modulus. The wave height

attenuation equation is given as:
H
L.
|, 4.1

where H, = wave height at position x =0
H = wave height at position x in the direction of propogation
o = wave height attenuation modulus

Treloar and Brebner’s (1970) adjusted attenuation modulus, Olp+w, 1S given as:

k |Tv| 148Bk + 094 sinh 2kh
ab+w =T . (42)
B\ ~# 2kh +sinh2kh

where B = flume width
v = kinematic viscosity
k = wave number
T = wave period ()
h = still water depth
For the specific case of the HRTF random wave flume filled to a still water depth of 1 m,

Figure 4.5a shows the adjusted attenuation modulus for the range of frequencies from O to

65



2 Hz. The wave height attenuation ratio at the wave probes (x = 13 m) is illustrated in
Figure 4.5b over the same frequency range. Only the highest frequencies where little of
the energy of the spectrum is found experience significant attenuation. The wave height at
the waveboard (x = 0) at these frequencies is typically on the order of millimetres. Clearly,

wave attenuation due to friction can be considered negligible under the test conditions.

Wet back wave generators have a slight gap that extends around the perimeter of the
waveboard between it and the sidewalls and bottom. This gap allows water to flow
around the waveboard as it oscillates which attenuates the wave amplitude as it is created
at the waveboard. On the forward stroke of the piston, water is piled up in front of the
waveboard and the attenuation occurs as some of that water moves behind the waveboard.
In a similar fashion, on the reverse stroke the water tends to pile up on the back side of the
board and bleed off into the wave trough being created on the front of the board. The
attenuation factor due to a gap around the perimeter of the waveboard is given by (CCIW,

personal communication):

- ke (4.3a)

a,,, =
1+ (ke)?

where

_ A
c= (——Eﬁ) ln(sin( ”22"” D (4.3b)
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and A, is the average gap around the perimeter of the waveboard, in metres. With an
average gap of 9.5 mm, the attenuation is most pronounced in the low frequency region of
the spectrum as seen in Figure 4.6. This gap will clearly have ramifications for the
accurate reproduction of long waves.

4.2.3. Wave Reflection

Wave energy generated by the oscillating waveboard is dissipated as heat and sound in the
wave shoaling and breaking processes. While this is quite an effective mechanism of
energy dissipation for short waves, long wave energy tends to be reflected back in the
direction of the waveboard without breaking and with little attenuation. A random
wavetrain based on a fully developed, idealized TMA spectrum, 600 seconds long initially
sampled at 4 Hz, with a peak period of 2 seconds was sent to the waveboard. This
wavetrain was fully corrected for spurious long and short second-order wave effects To
illustrate the effects of reflection on the recorded wave heights, the series was recycled 3
times during the course of a run. Coincident segments of the run during the first, second,
and third time through the series are shown in Figure 4.7. Clearly, the records are very
similar. Cycle 1 is uncorrupted by reflection since it shows the first pass through the series
and looks cleaner than the other two. Cycles 2 and 3 are nearly identical which implies
that the reflection effects are very small. Larger effects would tend to compound resulting
in cycle 3 being significantly more corrupted than cycle 2. This figure also highlights the
repeatability of the waveboard motion. All three cycles clearly stem from the same basic
waveboard oscillations. It is only in the finest details of the waves that the records differ.
Reflection coefficients were calculated over the generating range of 0 Hz to 2 Hz using a

phase shift technique. Knowing the water surface elevation at wave probe WP1, the
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expected wave height at probe WP2 can be calculated by assuming linear dispersion and
applying a phase shift over the separation distance between the probes. Any difference
between the calculated water surface elevation and the actual recorded water surface
elevation is assumed to be a result of reflected wave energy. Reflection coefficients
calculated on the random wavetrain in Figure 4.7 ranged from 86.6% at 0.121 Hz to
13.2% at 0.609 Hz. Reflection of long waves can be minimized by having the waves
break gently over a distance by spilling rather than by suddenly and abruptly plunging

(Ottesen Hansen et al., 1980).
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Chapter 5: Bispectral Analysis

The bispectrum was first introduced by Hasselmann ef al. (1963) and was used to examine
the skewness of two surface wave records collected off the coast of California. Since then
bispectral techniques have been used to study nonlinearities in a wide variety of fields
including earth noise (Haubrich, 1965), plasma fluctuations (Kim and Powers, 1979), and

shoaling surface gravity waves (Elgar and Guza, 1985; Doering and Bowen, 1987).

If {(t) is a stationary random function of time, it can be represented as a superposition of
statistically uncorrelated waves (i.e. having random phases). The “power” spectrum

approach completely describes, to a first approximation, a Gaussian time series as
P(f)= [R(z)e™dx, (5.1a)

where

R(7) = E[C(0C(t+T)], (5.1b)
7 is a lag and L[] indicates an expected value. If the phase of the Fourier components are
not randomly distributed but have a phase persistence, then the time series is not Gaussian.
Unfortunately, the “power” spectrum is unable to detect deviations from a Gaussian form
since it discards phase information. Deviations from a Gaussian form can be detected
using the bispectrum. The bispectrum is formally defined as the Fourier transform of the

second-order covariance function (Hasselmann ef a/., 1963)
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where
S(t1, t2) = E[C(0) C(r + 1) Q1 + 12)]. (5.2b)
For digital data (i.e., Fourier coefficients), the bispectrum can be expressed as (Haubrich,
1965; Kim and Powers, 1979)
B(f, f2) = ELTA)A(R)A* ()], (5.3)
with the convention that f; + £, = f5, A(f) is the complex Fourier coefficient for frequency f,
and * denotes the complex conjugate. It can be shown that B(f;, f2) will be zero unless
waves are present at frequencies f, f>, and f5, and there is a phase relation between the
waves at these frequencies. Physically, if the waves present at fi, £, and f; are normally
excited modes, then each wave will be characterized by a statistically independent
(random) phase and the expected value of B(fi, f>) will be zero. However, if the sum or
difference wave, f;, is generated through an interaction between f; and f,, then a phase

coherence will exist and the expected value of B(fi, f2) will be non-zero.

The bispectrum of a finite length record of a truly Gaussian process is non-zero because of
the effects of the finite length. To distinguish normal independent modes from phase-
coupled modes, it is convenient to express the bispectrum in a normalized form known as

the bicoherence. Kim and Powers (1979) defined the bicoherence as
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b’(f, f>) is normalized and is therefore independent of wave amplitude; B(f1, f>) is not.

For large v, where v is the number of degrees of freedom, 5° is expected to be ¥
distributed (Haubrich, 1965). The 95% confidence limit on zero bicoherence is given by

5991 5.5)

95% v

Finally, the bispectrum can also be expressed in terms of a biamplitude and biphase

B(f, 1) =|BCA, 1) PV (5.6)

where the biphase f(f1.1>) is given by

D)
B/, [,) = tan {SR[B(fl,_];)]} 5.7

The bispectrum is used here to investigate the performance of the second-order correction

algorithms using laboratory data collected in the HRTF random wave flume.

While the ultimate goal is to use the software developed for studying the numerous effects
of random waves, to test the algorithms we start with the simplest case. Regular waves
make the analysis tractable while still pointing out any problems with the computer code,
yet by superposition they are the foundational components of a random wave train. The

ability of the long wave and short wave corrections to eliminate spurious wave coupling
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was tested using a bichromatic wave group with distinct sum and difference frequency
components. The two corrections were tested exclusive of one another and jointly to
examine any interference between the two cases. A grouped wave series was also

generated without correction to establish a base case for comparison.

The wave series were generated to last 600 seconds (10 minutes) sampled at 4 Hz to give
the series a 2 Hz Nyquist frequency. The grouped wave series were created with
component frequencies of 0.33 and 0.38 Hz, both with amplitudes of 0.06 m. The
resulting wavetrain was chosen because it has sufficient amplitude and sum/difference
frequencies that the long and short wave corrections are clearly distinguishable. Long
wave corrections were performed with a threshold value of 5%, short wave corrections
with a value of 10%. For a bichromatic series these corrections are equivalent to full

corrections.

The following notes are applicable to all the three-dimensional bispectral plots in this
section:

1) The origin is located at the left corner.

i1) The two axes defining the frequency plane both run from 0 to 5 Hz.

ii)) A peak located in the bifrequency plane at frequencies f; and f> implicitly
represents a triad; that is, the convention is, by definition, f; + f> — f5, where f;
=fitfe

iv) There is symmetry about the line f; = /> since f; + f> —> f; is equivalent to f> + f;

- f3.
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Figures 5.1 to 5.4 show the biamplitude and bicoherence spectra for the bichromatic tests.
The results for the uncorrected (base case) is shown in Figure 5.1. Three peaks are
observed in the biamplitude spectrum. The largest peak centred at (0.39, 0.31) indicates a
sum interaction between the two bichromatic components. The peaks centred at (0.70,
0.39) and (0.39, 0.08) indicate sum and difference interactions, respectively, between
bichromatic and harmonic components. The faint distortion at (1.02, 0.31) suggests the
initiation of interactions between the bichromatic components and higher sum components
(i.e., forced harmonics). While the biamplitude spectrum indicates the relative importance
(i.e., contribution to nonlinear properties) of triads in the wave field, it does not identify
significantly coupled interactions in regions of low spectral amplitude; the bicoherence

spectrum does.

For a bichromatic process it has been shown (Kim and Powers, 1979) that &°(f;, f>)
represents the fraction of power at f; that results from nonlinear coupling between f; and
f>. For example, if 5°(f;, f3) = 1 then the power at f; is due entirely to coupling between
components f; and f5. Conversely, if 5°(f;, f2) = 0, then f; is a normal independent mode of
the system and the power at f5 is not the result of coupling between f; and f>.
Unfortunately, there are two possible directions of energy flow, i.e., f; + f> = f5 and f; -
J2 = f3, consequently, the bispectrum cannot be used to determine the direction of energy

flow.

76



x10

Bl
0.6~ =N
,-'\*_ 0 \\\\\\\A\»"‘ S
b 0.4~ \'.\\‘)r";;:;‘:’:" N
" Ao[ ,"q‘\
, 9 ”" ""l‘l',.\',l,l'l”'u X
il

/i

Figure 5.1 Biamplitude and bicoherence spectra for bichromatic wave series (f,, = 0.31
Hz, f, = 0.39 Hz) with no corrections. 8f=0.0781 Hz, v=92 d.o.f
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Figure 5.1 also shows the bicoherence spectrum for the base case. The normalized
strength of the nonlinear interactions observed in the biamplitude spectrum are now
apparent. The interaction between the two fundamental bichromatic frequencies is quite
strong (5°(0.39, 0.31) ~ 0.70) and well above the 95% confidence limit for zero
bicoherence (= 0.26) which is given by the thickness of the “slab”. The “noise” observed

above 1 Hz is believed to be an artifact of the mechanical generation process.

Figure 5.2 shows the biamplitude and bicoherence spectra for the long wave corrected
record. Since the bichromatic record consists of two similar frequencies, wave groupiness
results. The (temporal) variation in wave height gives rise to gradients in radiation stress
(Longuet-Higgins and Stewart, 1964) and hence the presence of a wave at the difference
frequency (f; - /> — 4f). During the mechanical generation process, the negative velocity
associated with this long wave is reflected from the waveboard and cancels out the natural
long wave. The long wave correction adds back this canceled wave. While the
bicoherence peaks associated with difference interactions are “cleaned up”, the strength of
these interactions is diminished. This suggests a possible shortcoming in the long wave
correction theory and/or problems arising from the gap around the perimeter of the

waveboard.

Figure 5.3 shows the results for the short wave corrected record. The strength of the sum
interaction at (0.39, 0.31), which is the only short wave correction that occurs for a

bichromatic record has been increased appreciably; this is in keeping with theoretical
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Figure 5.2 Biamplitude and bicoherence spectra for bichromatic wave series (f»=0.31

Hz, f, = 0.39 Hz) with long wave corrections only. §f=0.0781 Hz, v = 92
d.of
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Figure 5.3 Biamplitude and bicoherence spectra for bichromatic wave series (f,, = 0.31
Hz, f, = 0.39 Hz) with short wave corrections only. 8f=0.0781 Hz, v =92
d.of
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expectations as spurious free short wave components that diminish coupling have been
reduced and hopefully eliminated. Any change in the amplitude of the peak at (0.70, 0.31)
is a second-order effect resulting from changes in spectral components at 0.70 Hz, the sum
frequency (0.39 + 0.31 — 0.70). It is interesting to note that high frequency coupling
amongst frequencies greater than 1 Hz is significantly reduced when either the long wave
or short wave correction is employed. The reason for this is not clear. The presence of
coupling at such high frequencies has been observed in another flume (Doering, personal

communication).

Figure 5.4 shows the bispectral results when both the long and short wave correction are
employed. The combined correction leads to two well-defined sum and difference

interaction peaks located at (0.39, 0.31) and (0.39, 0.08), respectively.

Finally, a random wavetrain was analyzed both in uncorrected and fully corrected forms to
show the extension of the theory to the usual case of “natural” waves. The wave records
were 600 seconds in length, sampled at 4 Hz, based on a fully developed, TMA spectrum,
with a peak frequency of 0.5 Hz. The wave statistics are the same as those found in the
wave records that were analyzed numerically in chapter 3. The bispectral results for an
uncorrected and fully corrected random wave train are shown in Figures 5.5 and 5.6,
respectively. The biamplitude spectra show an increase in the strength of both the sum
and difference interactions occurring within the spectral peak. The bicoherence spectra of

a broad banded process are not readily interpreted.
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Figure 5.4 Biamplitude and bicoherence spectra for bichromatic wave series (7, = 0.31
Hz, £, = 0.39 Hz) with full corrections. 8f=0.0781 Hz, v=92 d.o.f
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Figure 5.5 Biamplitude and bicoherence spectra for random wave series (fully developed
TMA spectrum, 1 m water depth, sampled at 4 Hz, £, = 0.5 Hz) with no
corrections. 8f=0.0781 Hz, v=90d.o.f
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Figure 5.6 Biamplitude and bicoherence spectra for random wave series (fully developed
TMA spectrum, 1 m water depth, sampled at 4 Hz, J»=0.5 Hz) with full
corrections. 6f=0.0781 Hz, v=90d.o.f

84



Chapter 6: Conclusions and Recommendations

6.1. Summary and Conclusions.

For the extrapolation of laboratory data to full scale sea conditions it is essential to have a
realistic reproduction of the sea in laboratory experiments. Since it is impractical and
difficult to generate sufficiently large waves in a flume using nature’s mechanism (i.e.,
wind) waveboards are used. However, the mechanical generation of realistic waves is
quite complex. The movement of the waveboard and the boundary condition at the
waveboard give rise to numerous unwanted second-order effects that can seriously
corrupt or interfere with natural phenomena. In a natural wave train, with the spectral
energy concentrated around the peak frequency, the non-linearity of the free-surface
boundary conditions introduces sub- and superharmonics which are phase locked to the

primary wave components.

The subharmonics (or bound long waves) can generate the forcing for long period harbour
oscillations, slow-drift motions of moored vessels and tension-leg platforms, and offshore
sand-bar formation due to sediment transport. The superharmonics introduce sharper-
peaked crests and flatter troughs, that are important for sediment transport due to wave
asymmetry and can be of importance for forces on offshore structures. An incorrect
(linear) reproduction in the laboratory generates free waves at the same frequencies as the
bound sub- and superharmonics, but travelling at a different speed. This difference in
speed between the free and bound wave components results in spatial variations in the

water surface fluctuations.
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Solutions to mechanically produce waves, correct to second-order, have been proposed by
Sand (1982), Barthel ef al. (1983), and Sand and Mansard (1986a,b). They introduced
second-order transfer functions that calculate the amplitude of the spurious, free, second-
order waves created by using a first-order driving signal. These second-order waves are
subtracted out of the first-order control signal resulting in a driving signal free of spurious
second-order effects. These algorithms were developed into MATLAB-based code to
yield an interactive package to generate a first-order wave train using the parameters input
by the user and to calculate second-order long and short wave corrections to eliminate the

spurious free waves that are inherent in the mechanical generation process.

The complexity of the second-order correction algorithms leads to lengthy computation
times that increase proportional to n/ where ny is the number of frequencies used to make
a “random” wavetrain. To make the algorithms more efficient a method was developed to
limit the number of frequencies used in the second-order corrections using a thresholding
technique outlined in section 3.3. The long wave threshold limits the corrections to only
those frequency differences that constitute the long wave portion of the spectrum. As the
numerical simulation results clearly indicate, the threshold limit can be set as low as 5%
without significantly altering the amplitude or the appearance of the correction. The
application of thresholding to the short wave correction limits the computation to
frequencies that are a result of an interaction of two frequencies that lie near the spectral
peak. The application of high threshold limits significantly lowers the short wave

amplitude and changes the appearance of the corrections. However, a threshold on the
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order of 30% reduces the computational effort by about a factor of two without drastically

changing the short wave correction series.

Laboratory testing of the WAVGEN wave generation software was undertaken in the
Hydraulics Research & Testing Facility. The use of a laboratory setting introduces several
limitations to the wave generation process that can affect the quality of the data collected.
The ability of the waveboard to respond to a control signal, wave attenuation due to
sidewall and bottom friction, wave attenuation due to an imperfect seal around the
waveboard and reflection of the incident waves off the end of the flume are all factors that

have been considered.

The response of the waveboard to a control signal was considered to be exceptional.
Using an analog function generator, a low amplitude sine function was sent to the
waveboard at frequencies starting at 0.1 Hz and progressing up to 5 Hz. These tests failed
to produce any noticeable deterioration in the waveboard’s ability to reproduce the control

signal.

Wave attenuation due to bottom friction is common to both the laboratory setting and the
natural setting. Friction from the sidewalls of the flume, found only in the laboratory,
significantly affected only the highest frequency wave components. The amplitude of
waves at these high frequencies at the waveboard is typically on the order of millimetres
making the effects of frictional attenuation negligible. Any gap around the edges of a

waveboard results in the attenuation of waves as the water flows through the gap,
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impinges on the waveboard, and generates a spurious free wave. With an average gap of

9.5 mm, the attenuation constant was significant at low, long wave frequencies.

In a natural setting, wave energy reflected off of the shoreline propogates offshore and is
of little consequence. With the solid planar waveboard boundary found in a wave flume,
reflection is a much larger problem. Long wave energy can propogate back and forth
between the end wall of the flume and the waveboard setting up a standing wave pattern.
Reflection of wave energy off the end wall of the flume was calculated to be anywhere
from 86.6% to 16.2% depending on the frequency of the incident waves. The use of a
rather simplistic approach to calculating these reflection coefficients may be the reason for
these high results. The traces of the wave records presented do not apparently exhibit

such a high degree of reflection.

Bispectral testing of the second-order correction algorithms is a new approach to
determining whether the algorithms do in fact eliminate spurious free waves. Previous
investigators examined the stability of the waveforms over the length of the flume and the
amplitude of the power spectrum in the long and short wave frequency bands as a means
of verifying their algorithms. These methods did not take into account the changes in the
strength of the phase coupling between the bound second-order waves and the primary
waves brought about by the presence of free waves at the bound wave frequencies.
Bispectral testing of bichromatic wave trains clearly indicate that the correction algorithms
eliminate both the spurious wave amplitude and the effects of the spurious waves on phase

coupling as seen by comparing the results for an uncorrected wavetrain with the results for
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a fully corrected wavetrain. Testing of a random wave series showed similar results for
the biamplitude spectrum. The implication of the bicoherence spectra of a broad banded

process are not so clear.

6.2. Recommendations for Future Work.

For a substantial simplification of the long wave correction theory, the evanescent modes
can be ignored when the waveboard motion makes a good fit to the velocity profile of the
desired progressive waves.  Situations where this approximation fails are often
encountered. Schiffer (1994) quantified the error introduced by ignoring the effects of
evanescent modes in second-order wave generation. Schiffer (1996) recently presented
the complete second-order wavemaker theory for irregular waves. A complex
representation was chosen to facilitate and simplify the theoretical calculations. The
theory was verified for a piston-type wavemaker using regular waves, wave groups, and
irregular waves. This algorithm should be coded and included as an option for the user to
select in WAVGEN and possibly could be the only second-order correction option

available.

The WAVGEN software would benefit from incorporating a graphical user interface
(GUI) to make it more user friendly. The user would be able to immediately see the
results of changing the wave parameters or groupiness factor on the primary wave train
and continue on to the corrections and paddle control signal generation once satisfied with
the form of the primary waves. A GUI would also make it possible for the user to correct

input errors without restarting WAVGEN each time. Limits on the input parameters
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could be more clearly defined by the use of a slider bar between the upper and lower

bounds as the input mechanism.

Based on the calculated attenuation constant due to the gap around the waveboard and the
results of the bispectral testing of the long wave corrected wave record, it would be
beneficial to retest the long wave algorithm after sealing the gap around waveboard. This
would be a better solution than simply overdriving the lower frequency components of the
spectrum.  Overdriving leads to large waveboard excursions that can not always be

accommodated by the 1 metre piston stroke of the HRTF wave generator.

Once the gap around the waveboard is sealed a program of rigorous testing of the
algorithms using the bispectrum and bichromatic waves should be carried out. Results for
bichromatic series with a wide range of f,, and f, values and the corresponding range of
bound long and short waves should be examined. Deep, intermediate, and shallow water
primary waves should be examined to see the effects of the corrections when different
spurious wave phenomena are dominant. This sort of exhaustive testing would serve to
increase the confidence in the algorithms and in the WAVGEN code based on those

algorithms.
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