Development and Evaluation of Multidatabase
Schedulers

BY

ARUNA ADIL

A Thesis
Submitted to the Faculty of Graduate Studies
in Partial Fulfillment of the Requirements

for the Degree of

MASTER OF SCIENCE

Department of Computer Science
University of Manitoba

Winnipeg, Manitoba

©March, 1998

i+l

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Wellington Street
Ottawa ON K1A ON4

Bibliothéque nationale

du Canada

Acquisitions et _
services bibliographiques

395, rue Wellington
Ottawa ON K1A ON4

Canada Canada
Your fie Votre reférence
Our i Notre référence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canadia

0-612-32044-8

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

L2 2 2 2]

COPYRIGHT PERMISSION PAGE

DEVELOPMENT ARD EVALUATION OF MULTIDATABASE SCHEDULERS

BY

A Thesis/Practicum submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial falfillment of the requirements of the degree

of

MASTER OF SCIENCE

Aruna Adil ©1998

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis
and to lend or sell copies of the film, and to Dissertations Abstracts International to publish
an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum aor
extensive extracts from it may be printed or otherwise reproduced without the author'’s
written permission.

Abstract

The autonomy of local database systems in multidatabase environment poses consistency
problems in transaction scheduling. Several approaches have been proposed to overcome this
problem. In this thesis, we consider the algorithms using two major scheduling approaches.
The aggressive approach submits transaction concurrently, but, to ensure the consistency,
transactions may have to be aborted and restarted several times. The other approach is
serial (or near serial) submission that ensures consistent ordering of transactions. This
prevents subsequent aborts.

Two serial schedulers using serial submaission approach are developed in this thests and
the results are compared with the best known aggressive “Ticket Method” algorithm. A
generic simulator is developed using SMS libraries to implement and evaluate the schedulers.
First. the aggressive approach used by Ticket Method is problematic because it does not
provide any load control. Second. tuning the Ticket Method is extremely difficult and it
does not react well to changes in the load on the local databases. Lastly, the overheads
due to rollback and re-executions of this aggressive algorithm makes it less feasible. In
this stmulation study our serial schedulers perform much better than the Ticket Method in
terms of residence time and number of aborts under different levels of load in local databases.
This study suggests that it is worthwhile to concentrate on developing schedulers that submit
transactions to guarantee that they will not be aborted at the cost of less concurrency.

Acknowledgements

I express my deep sense of appreciation to my thesis supervisor Dr. Ken Barker for his
valuable suggestions, constructive criticisms and cooperation during various stages of the
research. My thanks are also due to my thesis committee members Dr. David C. Blight
and Randal J. Peters for their time, effort and suggestions.

I wish to acknowledge the financial support provided by the Department of Computer
Science, University of Manitoba in the form of research assistantship.

I would like to thank Ramon Lawrence for his guidance and assistance in designing and
developing a simulation model.

I am thankful to my friends Farook, Allwyn, Karl and others for encouragement and
company which has made my stay at Winnipeg pleasant.

Finally. I would like to dedicate this dissertation to my husband Dr. Gajendra Kumar
Adil and daughter Deeksha who have been a constant source of support during my studies
in M.Sc. program.

Contents

1 Introduction 1

1.1 Contribution. 4

1.2 Organization of Thesis 4

2 Related Work 5

2.1 Concurrency Control in MDB Environment. 6

2.2 Scheduling Algorithms Lo 9

2.2.1 Optimistic Ticket Method (OTM) 9

2.2.2 Global Serial Scheduler (GSS), .. 12

2.3 Simulation Studieso 14

2.4 Motivation and Objectives 15

3 Development of Schedulers 17

3.1 New Global Serial Scheduler-1 (NGSS-1) 17

3.1.1 Preliminaries 17

3.1.2 Implementation Details 18

3.1.3 Illustration of Transaction Submission in NGSS-1 20

3.1.4 Algorithm Description 23

3.2 New Global Serial Scheduler-2 (NGSS-2) 24

3.2.1 Algorithm Description 25

4 Simulation Model 35
4.1 Description of the System: Transaction Processing in Multidatabase Envi-

ronment oLl L L L L e e e e e e e e 36

4.1.1 Requirements of Simulation Model 37

4.2 Simulating Static/Passive Objects 37

4.2.1 Local Database 38

4.2.2 Multidatabase 11

4.3 Simulating Dynamic Objects 43

4.3.1 Basic Framework (C++ Simulation Library) 43

4.3.2 Transaction Generation and Processing 45

4.4 Overall Structure of the Simulation Program 48

5 Performance Comparison of MDB Schedulers 54

5.1 Experimental Details 54
5.1.1 Schedulers Compared 54
5.1.2 Performance Metrics 55
5.1.3 Parameter Setting for Local Database 56
5.1.4 Experimental Variables 56
5.1.5 Parameter Setting for Ticket Method 59

5.2 Results 60
5.2.1 Residence Time 63
5.2.2 Number of Aborts 64
5.2.3 Utilization 67
5.2.4 Computational Time 69

5.3 Discussion 71

6 Conclusions 75

6.1 Future Research 76

i

List of Figures

—
D =

R R DN
O W I =

@ w
N -

0oL 0o Lo L W Lo
O 00 O Ut = W

3.10
3.11
3.12
3.13
3.14

1.1
4.2
4.3
4.4
4.5
4.6

5.1
5.2
5.3
5.4

MDB Architecture ([Bar90])
Factors that influence MDBS performance

Indirect Conflict
The effect of the Take-A-Ticket approach
Running Transactions
New Transactions
Currently Running Transactions

Transaction submission in GSS
Transaction Submission in NGSS-1
Grouping of Transactions for seed as DBy,
Grouped transactions forseed as DB;.
Grouping of Transactions for seed as DB>.
[nitial Submission Algorithm
Algorithm to Form Group L.
Algorithm to Determine Overlap
Algorithm to Process Wait_.Q

Deadlock Condition
Function for Grouping
Process New Transaction
Process Wait_Q

Transaction Processing in MDB Environment
Event State Transition Diagram
Local Process Scheduling
Global Process Scheduling
Simulation Initialization
MDBS Flow Control

Transaction Residence Time Vs. Inter-Arrival Time for LTs
Global Transaction Residence Time Vs. Inter-Arrival Time
Transaction Residence Time Vs. Inter-Arrival Time in LDBS1
No. of Aborts Vs. Inter-Arrival Time in Ticket Method

il

W N

P

5.5 Utilization Vs. Inter-Arrival Time
5.6 CPU Time Vs. Inter-Arrival Time

.......................

.......................

iv

List of Tables

Setting values for load related variables 58
Frequency distribution of different lengths and variations of global transaction. 59
Setting parameter in Ticket Method for three databases. 61
Setting parameter in Ticket Method for five databases. 62
Comparison of Global Residence Time 65
Comparison of Local Residence Time (combined LTs and GSTs) in the first

database. Lo 66
Average global transaction aborts in Ticket Method 68
Comparison of Utilization 68
Comparison of Computational (CPU)Time for 100 seconds of Simulation 70

Chapter 1

Introduction

The need for an application to access multiple heterogeneous databases arises in a wide
variety of industries for a number of reasons. Examples include company mergers [HFNL96].
the introduction of new technology [HFNL96] or integrating information across several
functional units within the organization [BHP92]. This can be achieved in two ways. First.
by re-engineering all the systems to a common database model and single access method.
This process is expensive and complicated. Second, incorporating multidatabase system
(MDBS). gives users a common interface to multiple databases and minimizes the impact
on existing database operation. Therefore. mulitidatabases (MDBs) are important area of
research [HFNLI6].

A multidatabase system is a facility that allows user to access data located in multiple
autonomous and possibly heterogeneous local database systems (LDBS) [BGMS95]. Local
transactions (confined to a single database) are submitted directly to the LDBS. while the
global transactions (not necessarily confined to a single database) are channeled through
the MDBS interface.

Transaction processing in a database management system (DBMS) is accomplished by
a transaction manager (TM), scheduler and data manager (DM) as shown in Figure 1.1
[Bar90]. The TM performs two tasks: it interacts with users and coordinates the atomic

execution of transactions. The scheduler ensures the correct execution and interleaving of

all the transactions presented to the TM. The DM maintains the database consistency by
reflecting the effect of committed transactions while ensuring none of the effects of aborted

transactions are made permanent.

MDBS Layer
Global
Transaction
Manager
Global
Scheduler
Global Recovery
Manager
DBMS ! DEMS F
Local Local
Transaction Transaction
Manager Manager
Local | | T Local
Scheduler Scheduler
Local Local
Data Manager Data Manager

Figure 1.1: MDB Architecture ([Bar90])

The scheduler at each LDBS schedules global sub-transactions submitted by the MDBS
and local transactions submitted directly by the user. However, it does not distinguish
between local and global sub-transactions.

The MDBS scheduler performs two functions: (i) determines the submission time of
global sub-transactions to the LDBSs. and (ii) ensures the correctness of global transactions.

LDBS autonomy makes correct execution of global transactions difficult as the MDBS

2

scheduler is unaware of indirect conflicts caused by local transaciions.

The mechanism used to submit global transactions to LDBSs and the correctness crite-

rion employed by the MDBS scheduler affect system performance metrics. such as. transac-

tion residence time and resource utilization. For a given scheduler, the system performance

is generally influenced by operating conditions. such as. the nature of transactions. the

number of LDBSs, the type of LDBS scheduler and traffic loads. The above interactions

are shown in Figure 1.2.

f(1) Correctness criteria used such as
Contlict-serializability,
Quasi-serializability. MDB-
serializability, Chail conflic-
ting-serializability

(2) Mechanism used to schedule

_ transactions)

~N

Scheduler

_/

* Residence Time

* Resource Utilization

* No. of Aborts

Svstem Performance

(‘ Nature of Transaction

.

MDBS

* No. of LDBSs
* Type of LDBS Scheduler

Operating Conditions

Figure 1.2: Factors that influence MDBS performance

Most of the past research has focused on developing correctness criteria. such as. conflict-

serializability (CSR) [GRS94]. quasi-serializability (QSR) [DE89]. MDB-serializability (MDBSR)

[Bar90] and chain-conflicting serializability (CCSR) [ZE93]. These developments form the

basis for designing multidatabase schedulers.

Some schedulers can provide a high degree of concurrency but are unsuitable for an

MDBS environment because of the autonomy of LDBS. In other words. it cannot guar-

antee that the concurrent execution will not cause serializability problem. Although it is

possible to detect such inconsistency and abort some of the running transactions to rec-

tify the problem, this may lead to unnecessary, expensive re-executions. If transaction are

submitted serially so these aborts are avoided. an increased throughput can be realized.
Conventional databases enforce consistency by strict locking and commit protocols

which guarantee that the data is always consistent and trustworthy. Implementation of

these protocols in a distributed environment using global locking and two phase commit

provide the necessary consistency at a much greater cost than in a centralized system.

1.1 Contribution

To the best of our knowledge, there have been no studies that evaluate the two types of
schedulers namely, one that allows concurrent execution but are subject to abort and the
other which executes serially but guarantees no rollbacks. In this thesis. we consider the
Ticket Method in the first type and develop two serial schedulers (in the second type) based
on earlier work reported in [Bar90]. We then develop simulation model to evaluate these
two schedulers, and implemented the Ticket Method [GRS94] to determine the real gain
achieved in throughput as a result of concurrent processing of transactions. Our findings

suggest that an efficient serial submission has good performance characteristics in a MDBS.

1.2 Organization of Thesis

The thesis is organized as follows. Related literature are reviewed in Chapter 2. Two
existing schedulers: Ticket Method [GRS94][GRS91] and Global Serial Scheduler (GSS)
[Bar90] are also described in Chapter 2. The efficient serial schedulers are developed based
on the GSS. are presented in Chapter 3. Chapter 4 presents a simulation model that has
been developed for evaluating MDBS schedulers. Chapter 5 gives experimental details and

results. Finally. Chapter 6 gives conclusions and recommendation for future work.

Chapter 2
Related Work

The majority of work on MDB is on schema integration [BHP92]. Many projects are still
at research level. Some commercial homogeneous MDB systems. "Empress” and “Svbase”
are also reported [LZ88].

The transaction management aspect of MDBS is still an open problem. One of the
transaction management issues. namely. scheduling of global transactions has been the
emphasis in this thesis.

When transactions are executing concurrently they interleave their operations to form
an execution schedule or history. The scheduler controls the execution of transactions by
restricting the order in which the data manager {(DM) executes the Reads. Writes. Commits.
and Aborts of different transactions.

To execute a database operation. a transaction passes that operation to the scheduler.
The scheduler then tries to pass it to DM if it can do so without producing a nonserializable
execution. If it decides that executing the operation may produce an incorrect result. then
it either delays or rejects the operation [BHGS8T7].

Hence. the scheduler has a very important role in concurrency control in databases.
In fact. the study of concurrency control techniques is the study of scheduler algorithms
that attain serializability {[BHG87]. This chapter reviews concurrency control in MDB

environment and two existing algorithms to schedule global transactions followed by a

literature survey on simulation studies.

2.1 Concurrency Control in MDB Environment

In MDB environment. autonomous local databases may not communicate any informa-
tion related to concurrency control to the global transaction manager (GTM) [BHP92]
[MRB*92]. Further. the GTM is unaware of indirect conflicts between global transactions
at the local DBMSs. This can be explained with the example shown in Figure 2.1 from
[GRS94].

Gy

S
a/ S

N | Los,
\
\T

LDBSli rg, (Cl)’wc2 ((l), G1 — Gg

v

LDBS

LDBS;: rr(c)we, (c)re,(b)wr,(b). Go — T} — G,

Figure 2.1: Indirect Conflict

There are two global transactions G, and G,. Global transactions have sub-transactions
in both LDBSs. In LDBS,, G, reads a and G, later writes it. G} and G, directly conflict.
so the serialization order of the transactions is G, — G». In LDBS,. G, and G- access
different data items. G, writes ¢ and later G, reads . Hence. there is no direct conflict
between (G| and G,. However, since local transaction T writes b and reads ¢, G, and G,

conflict indirectly. This indirect conflict is caused by the presence of local transaction 7).

The serialization order becomes G, — T, — G;. Because of the local autonomy. the MDBS
has no information about local transactions. Therefore, it cannot detect indirect conflicts
between G| and G, in LDBS,. Although. both local schedules are serializable, the global
schedule is globally non-serializable (with respect to conflict-serializability).

This phenomena is a cause of major difficulties in trying to ensure global serializability
in a multidatabase environment [BGMS95].

There are several correctness criteria specified in the MDBS literature that form a basis

for scheduling transactions correctly. We review the major ones.

o Conflict-Serializability: A schedule is serializable if and only if it is conflict equivalent
to a serial schedule [OV91]. Two schedules S| and S- are conflict equivalent if for
each pair of conflicting operations O; and O; such that O; precedes O; in S\. then O;
precedes O; in S, [CP84].

[GRS94| [GRS91] proposed the optimistic ticket method using conflict-serializability
(CSR). This method demonstrates that the serialization order of global sub-transactions
in a local site can be determined at the global level without violation of local auton-
omy. However. in this method. global restarts are possible at each site. Further.
acquisition of the ticket may introduce additional conflicts between global trans-
actions that would not have been introduced otherwise. Some improvements to this
basic strategy such as. the conservative ticket method [GRS94]. the cascade-less ticket
method [GRS94], the implicit ticket method [GRS94| and the mixed method [GRS94]

are developed to partially overcome these problem.

& Quasi-serializability: [DE89] introduced a less restrictive criterion than conflict-serializability.
A global schedule in an heterogeneous distributed database system is quasi-serializable
if it is conflict equivalent to a quasi-serial schedule in which all global transactions

are submitted sequentially. A global schedule is quasi-serial if all local schedules are

conflict-serializable and there exists a total order of all global transactions such that
for every two global transactions G; and G; where G; precedes G; in the order then.
all G;'s operations precede G;'s operations in all local histories in which they both
appear. The difference between quasi-serializability and conflict-serializability is that
the later treats global and local transactions in the same way while the former treats
them differently. More specifically. this theory is primarily based on the behavior of

global transactions.

[ZE93] presents three correctness criteria: (a) chain-conflicting serializability. (b)
sharing serializability and (c¢) hybrid ((a) & (b)) serializability. They showed that
global serializability can be ensured at the global level by utilizing the intrinsic char-
acteristics of global transactions and controlling their execution. Quasi-serializability
is a superset of these three criteria while conflict-serializability (used by optimistic

ticket method) is a subset of these three criteria.

MDB-serializability: [Bar90] proposed MDB-serializability which is an extension of
conflict-serializability theory. This generates the same class of scheduler as allowed
by quasi-serializability. The global serial scheduler (GSS) is developed based on this

criterion.

Semantic based approach: [SO93] suggested a semantic based approach to allow more
concurrency by exploiting the semantics of the transaction. The main idea is to spec-
ify acceptable violations of global serializability based on the semantic information
of transactions. They developed a semantic-based correctness criterion for MDB
transactions. In addition. they developed and implemented LTM based concurrency

control algorithms that uses precedence graphs for checking global serializability.

2.2 Scheduling Algorithms

Based on the two correctness criteria. conflict-serializability and MDB-serializability, two
existing schedulers Optimistic Ticket Method (OTM) and Global Serial Scheduler (GSS)
are considered next. The OTM allows concurrent execution and is based on the conflict-
serializability correctness criterion [GRS94]. The GSS allows a global serial execution of
transaction and is based on the MDB-serializability correctness criterion [Bar90}. Both

schedulers handle the problem of indirect conflicts but do so differently.

2.2.1 Optimistic Ticket Method (OTM)

To enforce global serializability, the MDB transaction manager must take into account
the indirect conflicts between multidatabase transactions caused by local transactions (as
explained in Figure 2.1). To overcome these difficulties, [GRS94] proposed to incorpo-
rate additional data manipulation operations known as tickets in the sub-transactions of
each global transaction. These operations create direct conflicts between sub-transactions
at each participating LDBS, and thereby facilitate resolving indirect conflicts even if the

multidatabase system is not aware of their existence.
Handling Indirect Conflicts in OTM

The OTM uses tickets to determine the relative serialization order of the sub-transactions of
global transactions at each LDBS. A ticket is a time stamp whose value is stored as a regular
data item in each LDBS. Each sub-transaction of a global transaction is required to issue
the Take-A-Ticket operation which consist of reading the value of ticket and incrementing
it. Figure 2.2 illustrates the effects of the Take-A-Ticket process.

The ticket data items at LDBS| and LDBS, are denoted by ¢, and ¢,. respectively. In
LDBS;, the t, values obtained by the sub-transactions of G, and G, reflect their relative

serialization order (it really forces the LDB to order transactions in a certain way because

LDBS | LDBS

T

LDBS,: rg (ti))we, (t) + 1)1, (a)rg,(t))we,(t: + 1)we,(a). ie..G, — G

LDBS,: rTl(C)TGI (t-g)wcl (ta +].)w(;1 (C)‘I’G..,(tf_;)wc._.(tz + l)rc,_,(b)w’rl(b). i.e..

G—T —G

Figure 2.2: The effect of the Take-A-Ticket approach

there is a forced read/write operation). This schedule will be permitted by the local concur-
rency controller at LDBS,. In LDBS,. the local transaction T} causes an indirect conflict
such that Go, — 7| — G,. However. by requiring the sub-transactions to take tickets we
force an additional conflict G; — G,. This additional ticket conflict causes the execution

at LDBS, to become locally non-serializable. Therefore. the local schedule:
rr(c)rg, (t2)wg, (t2 + Vwe, (¢)re, (t2)we, (t2 + 1)1, (b)wr, (b)

will not be allowed by the local concurrency controller. (eg: the sub-transaction of G or

the sub-transaction of G2 or T} will be blocked or aborted.)
Enforcing Global Serializability by OTM

The ticket acquisition order is a valid serialization order forced by the direct conflicts

introduced through tickets. The global manager can use this information to maintain

10

consistency in execution of global transactions. The OTM ensures that the sub-transactions
of each global transaction have the same relative serialization order in their corresponding
LDBSs. The sub-transactions of each global transactions is allowed to proceed but commits
them only if their ticket values have the same relative order in all participating LDBS:s.

A global serialization graph (GSG) is constructed in order to record the serialization
order of global sub-transaction at each LDBS. Whenever, a global sub-transaction enters
its prepared to commit state. it is validated using a GSG.

Transaction processing in the OTM takes place as follows. Initially, it sets a timeout for
a global transaction G and submits its sub-transactions to their corresponding LDBSs. All
sub-transactions are allowed to interleave under the control of the LDBSs until they enter
their prepared-to-commit state. If they all enter their prepared-to-commit states. they wait
for the OTM to validate G. The validation is performed using the global serialization graph
(GSG) test. The nodes in the GSG correspond to the committed global transactions.

Initially. the GSG contains no cycles. During the validation of a global transaction G.
the OTM first creates a node for G in the GSG. Then, it attempts to insert edges between
G’s node and nodes corresponding to every recently committed multidatabase transaction.
Depending on the ticket value obtained by a sub-transaction of G at some LDBS. an edge
is added to GSG corresponding to this transaction. If all such edges can be added without
creating a cycle in the GSG. G is validated. Otherwise, G does not pass validation. its node
together with all incident edges is removed from the graph. and G is restarted. G is also
restarted, if at least one LDBS forces a sub-transaction of G to abort for local concurrency

control reasons or its timeout expires.
OTM: Algorithm QOutline

The execution sequence of a transaction in the OTM can be summarized as follows.

(1) Transaction G arrives.

11

(2) Set the “timeout” for G and submit all of its sub-transactions (GST's) to related

LDBSs.

(3) Before starting any operation on the database. sub-transactions perform Take_A _Ticket

operation.
(4) Wait for all GST's of transaction G to enter the prepare-to-commit state.
(5) Perform a GSG check.

(6) If G passes the GSG check, commit G otherwise abort and restart G after a specified

“re-submission time”.

(7) G is also aborted if any sub-transactions abort or “timeout” is expired. Restart G

after specified “resubmit time”.

“timeout™ and “resubmit time” must be specified. The “timeout” is defined to resolve global
deadlock problem. If the global transaction does not commit by the specified “timeout™
period. it will be aborted. The “resubmit time” is the time to submit the transaction again

once it is aborted.

2.2.2 Global Serial Scheduler (GSS)

Scheduling of transactions in a multidatabase system is accomplished at both local and
global levels. If we assume that each DBMS is capable of generating locally serializable
histories. the only requirement of the MDBS is to submit global transactions to each DBMS
so that any local ordering can only produce correct schedule. The corresponding schedule

is called MDB-serializable schedule [Bar90].
Definition: MDB-Serializability

A schedule is MDB-Serial iff every local schedule is conflict serializable and if an operation

of a global transaction precedes an operation of another global transaction in one local

12

schedule. then all operations of the first global transaction must precede any operation of
the second in all local schedules. A schedule is MDB-serializable iff it is equivalent to a
MDB-Serial schedule [Bar90].

The GSS schedules transactions so that MDB-serializability is maintained. Hence. the

GSS does not have to check for global cycles. as any serialization ordering by the LDBS

does not create global inconsistency.
Global Sub-transaction Submission in GSS

The following criterion is used to determine if a transaction is eligible to be submitted for

processing.

e The global scheduler determines if there are active global transactions which access
more than one of the databases accessed by the transaction G being scheduled. If
there is such a set of active global transactions, then G is passivated. If no overlapping

global transactions are present. the global sub-transactions of G are submitted.

e A special case occurs when the global transaction G passes the above test because G

has only one sub-transaction.

The above test is carried out for new transaction at the time they arrive and for all waiting
transactions whenever a running transaction completes because this may make it possible

to submit some of the blocked global sub-transactions.
An Example to Illustrate Transaction Submission in GSS

The following example illustrate the transaction submission mechanism of the GSS. Let
there be two global transactions G and G, running at the databases (see Figure 2.3).
Suppose two new transactions Gz and G4 arrive as shown in Figure 2.4. Gz will be
submitted because it needs only one database. The active set of databases at this time are

DBy, DBy & DB;3. The G4 requires DB, and D B3 which overlap at more than one of the

13

Figure 2.3: Running Transactions
G3 DB 1

G 4 DB 1 DB 3
Figure 2.4: New Transactions

active databases. G, will not be submitted because the currently running transactions (
G).Gy.G3)(Figure 2.5) overlap with those at G,;. In the next chapter. two new schedulers

based on the concept of MDB-serializability are described.

2.3 Simulation Studies

The performance of a scheduler cannot be judged on the basis of correctness criterion.
It employs operating conditions such as loads (transaction inter-arrival-times. database
processing speed) and nature of transactions can greatly influence the performance. Thus.
simulation can be a very appropriate tool to evaluate the existing schedulers. Literature
on simulation studies in the area of transaction processing on database systems is briefly
described next.

[SLSV95] developed a simulation model using the SIM package [ADW92| for centralized
database systems to evaluate the performance of random transactions (chopped into pieces)
running concurrently. Some research has been reported in simulating distributed databases.
For example. [ZYL95] developed a petri-net model to simulate message and transaction

queuing in a mobile computing environment.

14

G, . .
G2 * *
G; *

Figure 2.5: Currently Running Transactions

[Tri97] developed simulation model for an MDBS based on a closed queuing model to
evaluate the performance of their proposed deadlock detection algorithms. Their perfor-
mance metric is the ratio of the number of unnecessarily-aborted global transactions over
the number of committed global transactions. They conclude that their method of deadlock

detection is superior to the one based on time-out in the Ticket Method.

2.4 DMotivation and Objectives

It is evident from the literature review that no research has been reported to compare the
performance of multidatabase schedulers. Simulation appears to be the most appropriate
tool to conduct a detailed study comparing MDB schedulers. The objectives of this thesis

can be summarized as:

e Develop a MDBS simulation model which can accommodate different types of GTMs

and the schedulers required in this study.

® Suggest possible improvements in existing serial and/or concurrent schedulers. This

may lead to development of new schedulers.

e Evaluate the performance of serial and concurrent (Ticket Method) [GRS94] [GRS91]

schedulers with metrics such as transaction residence time and resource utilization.

Assumptions

The following situations will be assumed in the simulation model:

15

e LDBS: The number of LDBS is known. The processing speed of each LDBS is known.

Each LDBS follows the Strict Two-Phase Locking rule for concurrency control.

e Transactions: The division of global transactions into sub-transactions is known.

16

Chapter 3

Development of Schedulers

This chapter develops two serial schedulers (NGSS-1 and NGSS-2). These schedulers use
the concept of MDB-serializability proposed by Barker [Bar90]. In NGSS-1. either all the
sub-transactions of a transaction are submitted together or none of them will be submitted.

NGSS-2 follows the same idea but submits the transactions more aggressively than

NGSS-1. We describe NGSS-1 and NGSS-2 in detail in the following sections.

3.1 New Global Serial Scheduler-1 (NGSS-1)

This section first presents the basics in developing the NGSS-1. Secondly. it provides the
implementation details. an example of the transaction submission. and algorithm descrip-

tion.

3.1.1 Preliminaries

The basic idea used in the NGSS-1 is the same as the GSS. However. the GSS is further
improved by allowing submission of transactions more aggressively while maintaining MDB-
serializability.

To explain the difference between the GSS and the NGSS-1, consider the following ex-
ample. Let there be two global transactions G, and G> currently running in their respective

databases and a new global transaction G arrives as shown in Figure 3.1. Now. we consider

17

Currently Active G, DB, DB,
Global Transactions Ga DB, DB,
New Global Transaction | G3 DB, DB,

Action: Do not submit G;

Figure 3.1: Transaction submission in GSS

the submission criterion employed by the GSS. The GSS checks if there are active global
transactions (Active_GTs) which access no more than one database to be accessed by the
new transaction. The set of databases accessed by all the Active.GTs considered together
in this example are: {DB,.DB,. DB;. DB,}. Since this overlaps with the active databases
required by new global transaction G3 is {DB,.DB,}, (i.e. in more than one database).
(3 cannot be submitted.

By using the NGSS-1. G3 is not blocked as indicated in Figure 3.1. The ordering
indicated in Figure 3.2 is possible. G,.G> and G5 at the local databases cannot create

MDB-serializablilty problem because:
(i) G, and G do not conflict with each other: and
(ii) G3 does not conflict with G; and G- individually in more than one databases.

The NGSS-1 is developed using the concept of grouping to allow the submission of such

transactions (G3).

3.1.2 Implementation Details

To reflect the difference in submission process of the NGSS-1 and the GSS. the test for

submission of global transaction in NGSS-1 is modified as follows.

18

Currently active G DB, DB,
Global transactions Go DB, DBy
New Global Transaction | G3 | DB DB,

Action: Submit Transaction G3

Figure 3.2: Transaction Submission in NGSS-1

e Group all the global transactions which are currently running so that transactions
within a group directly or indirectly conflict with each other. This means that any

two transactions which are in two different groups do not conflict with each other.

e If the new global transaction overlaps with active transactions in each group collec-

tively in less than two databases. then it can be submitted.

Next. we describe the mechanism that enforces the submission test of a new global trans-
action VG (newly arrived or waiting). The test is performed for the new transaction when
it arrives or for the waiting transactions at the completion of an active (executing) global
transaction.

A newly arrived transaction with one sub-transaction passes the submission test auto-
matically. and hence it is always submitted directly. However, the newly arrived transac-
tions with more than one sub-transaction and transactions in a wait queue need to pass
the test to be submitted because they may create inconsistencies. The following procedure
is applied.

We consider each database in which the new transaction (/NG) requires processing one
at a time. For example. if NG requires two databases DB, and DB, then DB, and DB>

are used as “seeds” to the algorithm. For each seed database (DB;), the following steps

19

are performed:
Step 1. Form Group: Identify all the currently active global transactions which need
to access database DB;. These transactions directly conflict with NG. These conflicting
transactions form a set called the Conflict set. The remaining active global transactions
which do not directly conflict with :VG are put into the Complementary_set. To identify
active transactions which may indirectly conflict with VG the following procedure is ap-
plied. From the Complementary set. we identify those transactions that conflict with any
of the transactions in the currently identified Conflict_set. Such transactions are removed
from Complementary set and are included in the Conflict_set. This procedure is repeated
until no such transaction is found. All the transactions in Conflict_set thus obtained form
the “Group” corresponding to the seed DB;.
Step 2. Determine Overlap: The overlap between the databases required by the
new transaction and the databases required by all of transactions in the group considered
collectivaly is determined. This information is used to decide if the transaction can be
submitted.

After performing Step 1 and 2 for all the seed values. a submission decision is made.
[f the transaction overlapped with any of the groups in more than one database. it is put
on wait queue (Wait_Q). otherwise it is submitted. This procedure is illustrated with an

example in the next section.

3.1.3 Illustration of Transaction Submission in NGSS-1

Let there be four global transactions running in five databases DB,. DB>. DB3;. DB, and

DBs as shown in Figure 3.3. Thus. currently active global transactions.
Active .GTs = {G.G2,G3,G4}.

Now, suppose a global transaction (NG) arrives that requires processing in databases DB,

and DB,. The grouping is done as follows. First we consider seed DB,. In DB,. currently

20

Active GTs G, [DB DB3 1
G2 DBs;
Gs DB, DB,
G.; DB5
T
New Transaction | NG | DB, DB,]

T determine transactions conflicting with NG at DB,

Figure 3.3: Grouping of Transactions for seed as DB,
only G, is active. G, directly conflicts with NG. Hence:

Conflictset = { G} and

Complementry set (the remaining active GTs) = { Ga.G3.G,}.

Now. we check for any indirect conflict between NG and transaction in Complementry set.
This requires checking for direct conflict between G, and {G2.G3.Gy}. G, conflicts with
G, only. Thus:

Conflict set = {G,.G2}. Complementry set = {G3.G,}.

G, does not conflict with Gz and G4 nor does G conflict with G3 and Gy. So. the final

conflict set is:
Conflictset = { G,.G»}

using DB, as the seed. The grouped data is presented in Figure 3.4

Next. we determine overlap of transactions in group 1 with NG (Step 2);
{DB,,DB3} N {DB,.DB>} = { DB}

21

-

Thus. the overlap is one database.

By applying the same procedure with seed as DB,. we get the following.

Final Conflict set = {G3} (see Figure 3.5) and the
Overlap = {DB»} N {DB,.DB,} = {DB»}

Since there is no more seed database remaining, the procedure of grouping stops. As we
have found in Step 2. NG does not overlap in more than one database with the two groups:

{G1.G2} and {G;} formed so it can be submitted.

Conflicting G, [DB, DBj;
Transactions G DB
Non-Conflicting G DB, DB,
Transactions Gy DB,
Overlap with Conflicting | NG T
Transaction | DB, DB, |

Figure 3.4: Grouped transactions for seed as DB,.

Conflicting Transactions | Gs [DB, DB,
G, DB, DB;
Non-Conflicting G DB,
Transactions Gy DBs
Overlap with Conflicting | NG T
Transaction | DB, DB,

Figure 3.5: Grouping of Transactions for seed as DB,.

3.1.4 Algorithm Description

The following are the list of data structures and functions necessary to present the algo-

rithm.
e DBMS _set(G;): The set of DBMSs where the sub-transactions of G; are executed.

e Active_set(DBMS*): The set of global transactions which have an active sub-

transaction executing in DBMS¥.

e Wait_Q: Global transactions which cannot be submitted immediately are put in this

queue.

e Conflict_set: Set of DBMSs where a new transaction may directly or indirectly

conflict.

e Complementary set: Set of DBMSs where a new transaction may not directly or

indirectly conflict.
e Card(s): The cardinality function returns the number of elements in the set s.

The algorithm is described with four segments:

SEG 1: Procedure “Process newly arrived transactions (Figure 3.6)

”

SEG 2: Function “Form group (Figure 3.7)

12

SEG 3: Function “Determine overlap (Figure 3.8)
SEG 4: Procedure “Process Wait_Q (Figure 3.9)".

As the transaction arrives SEG 1 is activated. This checks if the transaction requires
only one database or more. It directly submits if this is the case or it calls the SEG 2

Function Group() to group the currently running transactions. Once the group is formed.

23

it calls SEG 3 Function Test() to check if this transaction can be submitted. Based on the

returned value of function Test(). it submits the transaction or places it in the Wait_Q.
As the currently running transaction completes its execution. the sub-transaction Ter-
mination procedure (SEG 4) is called which is responsible for re-testing transactions in

the Wait_Q in first come first served order.

3.2 New Global Serial Scheduler-2 (NGSS-2)

We introduce NGSS-2 using an example shown in Figure 3.10. Assume there is a global
transaction G; running on databases DB, and DBj3. A new global transaction G, ar-
rives which requires databases DB,.DB; and DB3. If we apply NGSS-1. G» will not be

submitted

Seed Overlap
DB, no overiap
DB, | {DB2.DB3}
DB; | {DB>.DB; }

because of the overlap in two databases DB, and DBj; with seeds DB, and DB;. NGSS-
1 follows an all or nothing principle. However. the overlap with seed DB is null. This
suggests that a sub-transaction of G, requiring database DB, could be permitted to execute
while sub-transactions requiring databases DB> and D Bj; are blocked. We develop NGSS-2
to allow such submission. Thus. the sub-transactions (seeds). which passes submission test
can be potentially submitted by NGSS-2. This submission does not cause any serializability
problem with those that are fully submitted (i.e.. have all the sub-transactions running).
However. this may cause problems, for transactions that are not fully submitted.

An example will be illustrative. Let there be a global transaction G, which is active
in databases DBj; and DB;. A new transaction G2 (newly arrived or waiting transaction)
requires DB, DB; and DB,;. Sub-transaction requiring DB; will be submitted because
there is no overlap on this database (seed). Sub-transactions requiring databases DBj

and DBy will not be submitted and will be put on Wait_Q. Now. suppose another new

24

transaction G3 which requires DB,. DB, and DBj; arrives. Since there is no overlap in
DB,, sub-transaction requiring D B> will be submitted. Other sub-transactions will enter
the Wait_Q. Now. Transaction G; completes. The Wait_Q for each database is processed.
For the Wait_Q of database DBj, transaction G»> and G5 will not be submitted ever as
shown in Figure 3.11. Since G and Gj are conflicting transactions the test for submission
of both transactions will fail. To avoid this situation an extra check on the group of
transactions is performed as follows. In NGSS-1. to create the Conflict_set we check the
overlap with only the seed database being checked. In NGSS-2. once this check is done
we make additional tests as follows. We block submission of a sub-transaction (requiring
databse DB;) of transaction NG if any partially submitted transaction is waiting whether
or not they access database DB,.

The NGSS-2's partial submission policy makes it more aggressive than NGSS-1 but the
submission test in NGSS-2 is more rigorous than in NGSS-1. This tradeoff makes it difficult
to predict which of the two is more aggressive. Simulation studies discussed in Chapter 4

are required to answer this question.

3.2.1 Algorithm Description

The list of data structures necessary to describe the algorithm are the same as in NGSS-1
except for the Wait_Q. In NGSS-1. the entire transaction is placed in Wait_Q if it cannot
be processed immediately. In NGSS-2. part of a transaction can be submitted. Thus the

sub-transactions wait in the Wait_Q. An additional structure “GSTs_complete” is required

in NGSS-2.

o Wait_Q(DBAMS): Global sub-transactions which cannot be submitted immediately

are placed on a queue waiting to access the DBMS. There is one Wait_Q for each

DBAMIS.

e GSTs_complete(G;): Set of DBMSs which have completed the global sub-transactions

submitted by G;.

The algorithm is explained in segments described below.

SEG 1: Procedure “Process new transaction (Figure 3.13)

SEG 2: Function “Group (Figure 3.12)".

SEG 3: Function “Determine overlap (same as in NGSS-1) (Figure 3.8)
SEG 4: Procedure “Process wait queue (Figure 3.14)".

As the new transaction arrives. SEG 1 is activated. For each database (required by
transaction) it calls SEG 2 to form groups of active transactions. Once a group is formed.
this segment (SEG 2) is called again to make groups of partially active transactions. After
both groupings are done. SEG 3 function is called to determine the overlap. Based on the
overlaps. SEG 1 decides whether to submit a transaction or put it in Wait_Q.

When an active transaction completes its execution. the transactions waiting in the
Wait_Q of each database is processed in the first come first served order. SEG 4 process

the waiting transactions by calling SEG 2 and SEG 3.

NGSS-1: Submission of A New Transaction (at its arrival)
input NG: new global transaction to be submitted;
var Active_GTs: set of active transactions;
DBMS_set(NG) : set of DBMSs accessed:
output Submit NG: submit transaction:
Wait_Q: Put NG in Wait_Q:
begin
if card(DBMS set(NG) == 1) then
begin
Activeset{ DBM S*)— Activeset(DBMS*)U NG:
submit VG to DBA S
end
else begin
Active GTs — U, Activeset(DBAMS*):
for each DBAS* € DBMS_set(NG) do
begin
call Function group();
end
if test() == pass then
begin
for each DBMS* € DBMSset(NG) do
begin
Activeset{ DBMS*) — Activeset(DBAIS*) UNG
submit VG
end
end
else begin
put Transaction VG in Wait_Q
end
end

Figure 3.6: Initial Submission Algorithm

NGSS-1: Function Group (Grouping of Conflicting Transactions)
input G;: global transaction to be submitted:
seed = DBAMS*. Active GTs:
Conflict_set: set of conflicting transactions:
Complementary set: set of non-conflicting transactions:
begin
for each G; € Active GTs do
if card((DBMS_set(G;)N DBMS*) 1= 0)
then begin
Conflict_set «— Conflict set U G;;
end
else begin
Complementry set — Complementry.set U Gj:
end
end for
for each G; € Complementry set do
for each G, € Conflict set do
if card((DBMS_set(G;) N DBMS_ set(Gy)) '= 0)
then begin
Conflict_set — Conflictset U G;:
Complementry set — Conflict_set - G;:
end
end for
end for
end

Figure 3.7: Algorithm to Form Group

NGSS-1: Function Test (Test for Transaction Submission)
input G;: Global Transaction to be submitted;
begin
if card (Conflict set N DBMS _set(G;)<2)
then begin
return pass
end
else begin
return fail
end
end

Figure 3.8: Algorithm to Determine Overlap

NGSS-1: Resubmission of Waiting Transactions
input: G;: Completed Global Transaction:
var: Active_GTs:
output: Submit: Submit the transaction:
Wait_Q): Put transaction in Wait_Q:

begin
for eachDBMS* eDBMS_set(G;) do
begin
Activeset(DBMS*) — Activeset(DBMS¥) - G;:
DBMS.set(G;) «— DBMS_set(G;) - DBMS*;
end
if DBMSset(G;) == o then
begin
for each G, in Wait_Q) do
begin
Active GTs — (Ui Activeset(DBMS*):
for each DBMS* € DBMS.set(G,) do
begin
call Function group():
end
if test() == pass then
begin
for each DBAIS* € DBMS_set(GT,) do
begin
Activeset(DBMS*) — Activeset(DBMS*) UG,:
Wait_ Q — Wait_Q - G,:
submit G, :
end
end
else begin
put G, in Wait_Q:
end
end for
end if
end

Figure 3.9: Algorithm to Process Wait_Q

30

Active transaction G, DB, DBj

}

New transaction G, DB,| DB, DB;

-~ 4

L i

Figure 3.10: Submission Process in NGSS-2

Transaction G|
Running
New Gy [DB 3] (DB J
Transaction

o (=) |

O — Running
D e Will wait forever

Figure 3.11: Deadlock Condition

31

NGSS-2: Function Group (Grouping of conflicting Transactions)
input G;: Global Transaction to be submitted:
seed = DBMS*, Active GTs. n:
Conflict_set: set of conflicting transactions:
Complementary set: set of non-conflicting transactions:
begin
ifn =1 then
temp = DBMS*;
else if n = 2 then
temp = DBMS_set(G;);
for each G; € Active.GTs do
begin
if card((DBMSset(G;)N temp) != 0)
then begin
Conflict_set — Conflict_set U Gj:
end
else begin
Complementry set — Complementryset U G;:
end
end for
for each G; € Complementry_set do
for each G, €Conflict_set do
if card((DBMS_set(G;) N DBMS_set(Gy)) !'= 0)
then begin
Conflict_set — Conflict set U Gj:
Complementry set — Conflict_set - G;:
end
end for
end for
end

Figure 3.12: Function for Grouping

32

NGSS-2: Scheduling A Newly Arrived Transaction (NG)

input VG: new global transaction;
var Active_GTs: set of active transactions;
DBMS_set(NG) : set of DBMSs accessed:

begin
if card(DBMS set(NG) = 1)then

begin
Activeset(DBMS¥)— Activeset(DBMS*)U NG:

submit NG to DBMS*:

end

else begin
Active_GTs « |J; Activeset(DBM S*):

for each DBMS* € DBMS set(NG) do
begin
call Function group(n=1):
if (test()==1) then

begin
Active GTs — |, Activeset(DBMS*) N U, Wait_Q(DBAMS*):

call Function group(n = 2):
if (test()== pass) then

begin
Activeset(DBAMS*) — Activeset(DBAS*) UNG:

submit VG in DBMS* -

end if
end if
if (test(for n=1)!'=1 || test(for n=2)!=1) then
begin
put Transactin in Wait_Q of DBAMS*:
end
end for
end if
end

Figure 3.13: Process New Transaction

33

NGSS-2: Scheduling A Waiting Transaction
input G;: global transaction completed in a database:
var Active_GTs: set of active transactions;
GSTs_complete: sub-transactions of a global transaction completed:
Activeset(DBMS*): active transactions in each DB S*:
DBMS _set(G;): set of DBMSs accessed by G;;
begin
GSTs.complete — GSTs_complete U G;:
Active_set — active_set - G;:
if (card(GSTs_complete N DBMS_set(G;))) then

begin
for each DBMS* in Wait_Q do
begin
for each G, € Wait_Q(DBAMS*) do
begin
call Function group(n=1):
if test()== pass then
begin
Active GTs — U, Activeset(DBAMS*) N U, Wait_ Q(DBAMS*):
call Function group(n = 2):
if test() == pass then
begin
Activeset(DBAMS¥) «— Activeset(DBAMS*) UG,:
Wait_Q(DBMS*) — Wait_ Q(DBASF) - Gp:
submit G, :
end if
end if
if (test(for n=1)!= 1 || test{for n=2)) then
begin
put G, in Wait_Q of DB/ S*:
end
end for
end for
end if
end

Figure 3.14: Process Wait_Q

Chapter 4

Simulation Model

Simulation is used to study the dynamics of a system without building the actual system.
Furthermore. the simulation approach gives more flexibility and models svstem dynamics
not easily achieved with analytical models. A wide variety of simulation software tools
are available to facilitate the analysis and development of simulation models. Simulation
models can be built using one of the two basic approaches [SSM96]. First. using a general
purpose simulation languages (such as. SIMULA. SIMSCRIPT II.5) to write the required
functions. This approach provides great flexibility in modeling a system’s characteristics.
However. it requires substantial expertise in simulation programming. The second approach
uses high level simulation and prototype tools. which provides an easier means to model
the system. However. these offer less flexibility in modeling specific details. To develop a
generic simulator for multidatabase the first approach is adapted here. A discrete event
simulation model is developed that uses a simulation library augmented by user developed
routines to capture the functionality of the multidatabase system. In this chapter. the
system is described for transaction processing in the multidatabase environment and then

the development of the simulation model is presented.

35

4.1 Description of the System: Transaction Process-
ing in Multidatabase Environment

A multidatabase is a collection of one or more autonomous databases participating in
a global federation for the exchange of data. Basic scheme of transaction processing in
multidatabase (MDB) environment is shown in Figure 4.1.

The MDBS is composed of two layers: (i) the multidatabase (MDB) layer and (ii) the
local database (LDB) layer. Global transactions (GTs) (requiring processing on more than
one database) are submitted to appropriate LDBs through the MDB while local transac-
tions are submitted directly to the LDBs. Next. we describe the transaction manager and
database objects at each layer.

Global Transaction Manager: The MDB layer’s GTM divides GT's into sub-transactions
(GSTs) and handles their execution. GTMs differ in the type of transaction scheduling
and monitoring mechanism used (eg. Ticket Method) for enforcing the correct execution
of global transactions. Global transactions begin executing by submitting some/all of its
sub-transactions to global transaction server (GTS) depending on the global transaction
manager { GTM). The GTS is the interface between the MDBS and the LDBS. The GTS is
responsible for inferring the global view provided by the LDBS and initializing structures
to maintain a communication channel between the two layers. It is also responsible for
creating a new local transaction from a global sub-transaction and returning the result
after its execution.

Global Database Objects (GDOs): GDOs are the objects in the global view. All ob-
jects in the global view are stored in some LDBS. A GDO has a name unique across the
entire MDBS, which may be a local object promoted to the global view. That is. the set
of GDOs provided by the LDBS for the global view may only be a subset of the objects in

the local database. However, it is entirely possible that there exists global objects in the

36

LDBS that are not accessible by local transactions ' .

There are several concurrency control strategies used at the local level including locking
or time stamp ordering. This gives rise to many local transaction managers.
Local Transaction Manager (LTM): The LTM is responsible for all aspects of transac-
tion management including concurrency control. reliability. deadlock resolution. etc. The
simulation model currently implements strategies that is known to produce only correct
execution sequences.
Local Database Objects: Objects can be anything we chose to represent in the database.
They can be actual data objects or control objects used by the system. It can be stored
in many forms. i.e.. as relational database. as object-oriented database etc. These are the

resources used to process local transactions and global sub-transactions.

4.1.1 Requirements of Simulation Model
Based on our discussion in the previous section. simulation of transaction processing in
MDB environment requires:
e \lodeling database functionality and resources at both local and global levels (model
static objects).
e Modeling dynamic activities. i.e.. transaction arrival and processing at local and
global levels.

Our simulation models for static and dynamic objects are described next.

4.2 Simulating Static/Passive Objects

Transaction managers and database objects at local and global databases, and the GTS are

modeled as static objects. Behavior of these objects does not change during the simulation

run.

'This permits modeling strategies that use a partitioning strategy for local and global data

37

4.2.1 Local Database

First. we describe our simulation of local database elements: local database objects and
the local transaction manager itself.

Local Database Objects: There are a variety of database models for representing data.
A general database simulator must not only be able to handle the more common relational
and object-oriented models. but must also capture legacy models such as the hierarchical
model. It is infeasible to implement each model in isolation. so the challenge in modeling
database objects is to define a generic database object usable by many different database
and transaction models.

A generic database object is defined independent of any database model. This indepen-
dence is achieved by realizing that fundamental to all models and information representation
are two basic components: objects and object references.

An object is a generic container for storing information whose use is dependent on the
information stored. Objects in isolation are useless because there is no way to determine
their relationship to other objects in the environment. The meaning of this relationship may
vary with the type of object or how the object is used. but allowing a generic relationship
between objects captures any type of relationship. The meaning of the relationship can
be defined externally to the object. but the object knows the existence of the relationship.
A special type of relationship is also defined for object-oriented models. The subtype or
subobject relationship allows a hierarchy to be imposed on the objects instead of the generic
relationship which implies equality in the object reference.

The generic database object. db_object. has a name unique across the local and the
multidatabase domains. Instead of storing actual data. an integer value stores the object
size. A db.object gathers statistics on object usage and partially mediates object access.

Current statistics gathered on db_objects include:

38

e lock time - The fraction of the time that the object is locked.
e queue size - The number of transactions waiting for the objects.
e number of uses - The number of times that the object is used.

Since locking is common in many transaction management protocols. a db_object im-
plements locking as an interface. A call to lock a db_object by the transaction manager
may result in the object blocking the transaction. by putting it on a FCFS wait queue
for the object. if access cannot be immediately granted. The system allows an unlimited
number of read locks as long as no writer is waiting. Once a transaction process is put on
a queue it stops execution. Control is passed back to the transaction manager. which exits
and waits for the next simulation event from the simulation controller. When a transaction
unlocks an object. the db_object class checks the queue for waiting transactions and wiil
restart any transactions in the simulation that have been waiting for the object. After a
write completes all reads in the queue are processed before another write is started.

Defining database objects does not fully define a database. Each database model will
have a different way of combining these database objects to form a workable database. A
simulated database is constructed by the virtual base_db class and the classes derived
from it. The base.db class defines virtual functions for loading and saving a database
configuration file and for defining database performance. Database performance is a simple
integer value representing the number of bytes it can process per second. There are no
restrictions on parallelism and dividing this resource. For example. many read transactions
can be executing simultaneously and each will receive the maximum processing speed.

The virtual base_db class serves as the basic definition for the different database mod-
els. A relational database model called the rel.db class is defined. The rel.db class
has methods for adding/removing relations from the database, locking/unlocking relations,

and loading/saving database configurations. The database consists of an integer storing

39

the number of relations in the system and a B+Tree storing the unique object names as
keys and pointers to db_objects as data. Database configurations are simulation parameters
that are simply retrieved from text files.

Local Transaction Manager: The transaction manager at the local level is simply re-
ferred to as TM. A lot of database functionality normally provided by the TM has been
divided among the other units to simplify the implementation of the transaction manager.
For example. the database objects help maintain locks and the transactions themselves help
in their execution. Nevertheless. there remains several requirements of a TM that must be
defined and are specific to each individual TM. They include the handling of transaction
initialization. commit. abort. and the execution of operations. The only TM implemented
is relational strict two-phase locking. No deadlocks occur in this implementation as re-
source ordering is used. Since the system will never deadlock. transactions will never be
aborted.

Transaction initialization in the strict-2PL locking implementation assigns a unique
transaction id and records the time of the transaction’s arrival. Transaction commit releases
all locks and records the transaction residence time in the system. Transaction abort is not
required so it is not implemented.

Execution of transaction operations varies depending on how the transaction manager
allocates resources. The strict-2PL locking implementation uses locks to mediate object
access. If a transaction can acquire the necessary locks. it is allowed to execute the opera-
tion. Executing an operation involves waiting for a given time depending on the operation
and then being restarted by the simulation system after this wait is completed. The wait
time of the transaction process equals the time it takes to perform the operation. If a
transaction fails to acquire a lock, it is placed in a queue for the object (in db_object) and
the transaction manager returns control to the simulation system to pick a new transac-

tion to execute. Time for lock acquire/release is assumed to be zero. Lock activities are

40

assumed to take zero time because the time to access the lock in real system is negligible
as compared to the time to read/write the relation. A zero lock time does not affect the
validity of comparing GTMs as all GTMs must use the identical databases with the same
relative performance.

The time to execute an operation is linear in object size. The database has an associated
speed in bytes/second. and the time to execute the operation is the size of the operand
divided by the database speed.

The TM gathers statistics on the number of transactions (committed and aborted) and
throughput in both transactions/sec. and bytes/sec. An important statistic is average
transaction execution time which is a good comparison between transaction managers.

Additional results and metrics are described later.

4.2.2 Multidatabase

The multidatabase simulator is general enough to allow multiple M DBS configurations and
different global transaction managers (GTMs). The MDBS simulator is divided into a
set of classes which provide the required functionality of a MDBS. Testing different NIDBS
transaction managers only requires redefining the class associated with transaction manager
specific functions. This allows for greater code reuse and consistency across simulations of
different transaction managers.

Global Database Objects: Two entities control access to global objects. The MDBS
class is responsible for the entire definition of the MDBS. It has functions for adding and
removing a database (and the global objects they contain). adding global objects to the
global view, and maintaining the list of global objects and local databases. References to
the local databases are stored in a B+Tree using the unique DB name (the key} and a
pointer to the global transaction server (GTS) managing the local database (the data).

Pointers to all global objects in the global view are stored in the B+Tree.

41

Global Transaction Server (GTS): The GTS is responsible for loading the global view
provided by the LDBS and initializing structures to maintain a communication channel
between the two entities. It creates a new local transaction from a global sub-transaction
and returns the result after its execution. A GTS maintains a list of global objects which
the local database provides to the global view. [t also maintains a list of local transactions
submitted from global transactions currently executing on the database. It is assumed that
the time to communicate between the global level (MDBS) and the LDBSs through the
GTS is zero.

Global Transaction Manager (GTM): The global transaction manager insures that
the submission of global transactions and their sub-transactions are executed serializabily.
A GTM has virtual functions for initializing, running, and committing transactions. It
also maintains statistics on the number of committed and aborted transactions and the
residence time of global transactions in the system.

Three transaction management algorithms are implemented: the Ticket Method GTM.
NGSS-1 and NGSS-2 GTM. Each is described below.

Ticket GTM Implementation: The Ticket Method GTM implementation adds a ticket
object to each LDBS participating in the MDBS. A ticket consists of a 1-tuple relation of
size 10 bytes. The ticket for each LDBS is also added to the global view.

When initializing transactions. the global transaction is registered (assigned a unique
id) and its initialization time is recorded. Since the Ticket Method imposes no restrictions
on the order of sub-transaction submission. all sub-transactions of the GT are submitted
immediately. The GT is then passivated while waiting for results from sub-transaction
completion. However. in addition to the normal operations of the sub-transaction. the
Ticket Method adds an operation to increment the ticket counter.

When sub-transactions complete. the GTS reactivates the GT. If there are still out-

standing GSTs. the GT is passivated again. Otherwise, it attempts to commit.

42

In the commit phase, the GTM determines if there were any global conflicts using
the global serializability graph (GSG) test. If there were conflicts. all GSTs are aborted.
Otherwise, a “signal” is sent to all GSTs telling them to commit. This is not two-phase
commit. The simulation assumes that once the signal is sent. all LTs successfully commit.
Implementation of NGSS-1 and NGSS-2: When a global transaction GT; is initiated.
it is determined if the transaction should be scheduled. Note that a G7; with only one
sub-transaction can always be submitted. In NGSS-1. if the DBMS _set of GT; does not
conflict with the Conflict_set of all active GTs (i.e. they have no more than one database
in common) the GT; is submitted. If the test fails. GT; goes into a wait queue. In NGSS-2.
the same check is performed for each sub-transaction individually and sub-transactions are
submitted individually.

A GT reaches the commit phase after completion of all its sub-transactions. DBMS set
and Activeset are updated at the completion of GT. Subsequently the wait queue is

checked. and all the eligible transactions are scheduled.

4.3 Simulating Dynamic Objects

Object behavior changes over time. Section 4.3.1. describes the basic functions provided
by the standard C++ library used in this research. In Section 4.3.2. transaction generation

and processing is described.

4.3.1 Basic Framework (C++ Simulation Library)

The simulation framework is provided by the simulation modeling support (SMS) library
designed at Vrije Universiteit [BE95] using C++. The SMS library uses Discrete Event
Simulation and supports both an event and process-oriented approach in developing sim-
ulations. Essentially modeled components causes events that change the system’s state.

Events exist autonomously and are discrete so “nothing” occurs between two events.

43

The SMS library provides several classes including:
e Session: The Session class derives application from SMS library.

e Simulation: This class schedules the events. It employs a calendar of events and

repeatedly extracts the events. that should execute.
o FEvent and Entity: These classes are used to model dynamic objects.

e Generator: It permits a variety of random number streams and probability distribu-

tions for generating random numbers.
e Resource: A Resource represents a passive objects to be used by events.
o Queue: [t maintain queued events. for example waiting for a resource to become free.
e Histogram: This class gathers statistics and print the results of simulation.

o Additional classes (to support graphical display. animation etc.)

A simulation program, employing the SMS library, derives an application from the
Session class and overwrites its main function. The session::main function then creates
a simulation object which includes the required resources and queues (static objects) and
histogram and analysis objects for gathering and analyzing results. The dynamic objects
are derived from the classes event and entity. and are given functionality by overriding the
application operator of these classes. Before running the simulation. initialization events are
scheduled. The simulation class manages the schedulers that control which event should
be activated.

Once the simulation is initialized it begins by invoking the simulation::run method.
The simulation then runs until the simulation::quit method (i.e.. there are no events left
or for a specified number of time units) is invoked. When an event is due to be activated.

it is extracted from the scheduler and the main simulation routine executes the code from

44

the application operator of that event. Before executing the events. the simulation clock is
updated to the activation time of the current event. Furthermore it maintains a conditional
list where events can be put that could not execute but may execute at a future time.
When an event occurs. it can be managed in various ways. The event can be appended
to a queue or it can be rescheduled. On its way it changes state. Some of the states as

shown in Figure 4.2 can be in: passive. active. queued. pending. conditional etc.

4.3.2 Transaction Generation and Processing

In this section. generation and processing of local transactions followed by global transac-
tions are described.

Local Transaction Generation: The local database simulation involves two processes:
the transaction processes and the transaction generator process. The transaction generator
process runs for the duration of the simulation and generates new transactions which enter
the system at a given interval. Currently. a new transaction enters the system every 1.5 time
unit. but this is tunable parameter. Figure 4.3 illustrates the scheduling of the processes
in the system. A dashed line represents initiation of a process at startup time. A solid line
represents process scheduling that is always performed. and a dotted line represents other
scheduling that may occur. Notice that the generator process continually schedules itself
while also creating and scheduling new transactions that enter the system. A transaction
may also schedule another transaction to run after it releases a resource required by the
other transaction.

Local Transaction Processing: Transactions are added to the system by a transaction
generation process which generates them at a set interval. The transaction generator loads
in a query configuration file consisting of a given number of read and write queries and the
probabilities of their occurrence. Queries consist of a list of read/write operations. The

transaction generator randomly chooses a query for a transaction to execute.

45

Transaction execution is performed by executing the read /write operations. Since each
transaction is associated with a simulation process, a transaction only runs when it is al-
lowed to proceed by the simulation (i.e.. it is not queued for a resource or waiting for
work to complete.) When a transaction does run, it may be in one of four phases: INIT.
RUN, COMMIT. and ABORT. The INIT phase is used when the transaction first begins
executing and registers the transaction with the TM. A transaction is in the RUN phase
while it is executing its operations and has not vet completed. When the transaction has
completely evaluated its query or must abort for some reason. it enters either the COMMIT
or ABORT phases, respectively. These phases call the TM to either commit or abort the
transaction. After the commit or abort is completed. the transaction process is removed
from the system.

Global Transaction Generation: At the global level. there are two simulation processes:
the global transaction process and the global transaction generator process. Both of these
processes behave similar to their local database counterparts. Then. the global trans-
action generation process runs for the duration of the simulation. generating new global
transaction processes at a set interval. Global transaction processes are similar to local
transactions processes. Each process represents a single global transaction which may run.
be blocked waiting for local transaction completion. and then terminate after completion
of the global transaction. Figure 4.4 shows how processes are scheduled in the simulation.
A dashed line represents an initiation of a process at startup time. A solid line represents
process scheduling that is always performed, and a dotted line represents other scheduling
that may occur.

Global Transaction Processing: A global transaction is generated periodically by
the GT_gen process. The GT_gen process has a set of all the possible global queries and
generates them according to their probabilities. After a new GT is created. it is put in the

initialization phase and begins its execution.

46

Initialization depends on the GTM algorithm but may involve submission of some/all
of the global sub-transactions. The sub-transactions of a GT are in the form of a list of
operations (read or write), which may not be the form that the LDBS expects its transac-
tions. It is the responsibility of the GTS to convert the GST into the suitable form for the
LDBS.

Local transactions created from a global sub-transaction enter the prepare-to-commit
phase instead of automatically committing. When a local transaction enters the prepare-to-
commit phase. it calls its GTS. The GTS reactivates the appropriate GT which may choose
to commit or abort the transaction. The local transaction stays in the prepare-to-commit
phase until it receives some signal from the GTM.

A GT remains in the RUN phase until all sub-transactions return results or an error
occurs. The GT handles the completion of a GST. If the GST was aborted. presumably
the GTM should abort and take steps to abort the remaining GSTs. Otherwise. the GST
will correspond to a LT in the prepare-to-commit phase which will be holding resources
and locks waiting for a signal from the GT. For most GTMs. the GT cannot commit the
LT until all other GSTs complete. Therefore. the LT is moved into a holding list which
contains all GSTs processed that are in the prepare-to-commit phase. waiting for the rest
of the GSTs. If there exists more GSTs not vet completed. the GT passivates itself again
waiting to be restarted by the completion of another GST.

When all the GSTs complete. the GT can attempt to commit the GSTs. The GTM
validation procedures are now applied. If the GT fails validation. the GSTs are sent the
signal to abort. otherwise they are told to commit. Each LDBS will handle the commit.
and the GT can be removed from the system. The system does not implement two-phase
commit (2PC) as there is no reply from the LDBS on the success of the commit request.
It is assumed that there are no transmission errors. and once the GTM sends the signal to

commit. all LDBSs will successfully commit.

47

4.4 Overall Structure of the Simulation Program

Simulation initialization involves setting up the MDBS configuration and initializing the
simulation processes. Figure 4.5 details how this is accomplished. Basically. the global
structures for the MDBS, GT_gen and GTM are initialized, and GT_gen is started imme-
diately. Each local database is added to the MDBS in a process similar to loading a single
local database. It is only the forth step. adding the LDBS to the MDBS. which is new. In
this step. a global transaction server (GTS) is created for each LDBS to communicate with
the MDBS. Each LDBS provides a list of objects accessible by the global view. The objects
the LDBS provides to the MDBS may be a subset of the objects in the local view. After all
LDBSs are initialized, a GTM specific initialization routine is called as many GTMs may
need to setup structures after seeing the entire MDBS configuration.

The flow of control shown in Figure 4.6 is best described from the perspective of a global
transaction. The local flow of control at each LDBS is unaffected by global transactions
and vice versa. but it is important to remember that although each LDBS and the gilobal
level are sharing the same scheduler. logically there are separate run-time environments
for each LDBS and the global level. Each LDBS has its own local transactions and global
transactions can only work in a LDBS by issuing local transactions. Thus. each LDBS is
a separate logical entity with its own scheduling mechanism. Similarly. the global level
scheduling can be considered a separate entity with global transaction generation and exe-
cution separate from any local scheduling. Note however that global transaction execution
depends on local scheduling decisions as global transactions must submit transactions and
retrieve results from local databases.

The life of a global transaction begins when the transaction is generated by the global
transaction generator (GT_gen). The GT_gen creates a new global transaction process

and sets it to run immediately. The global transaction then begins its execution in the

48

initialization phase which allows it to initialize its structures and possibly submit some
or all of its sub-transactions depending on the GTM. After initialization is completed
the global transaction is set to run immediately. However. this does not mean that the
global transaction will begin executing immediately. It only means that the next time it
is restarted. it will start in the run phase. It is entirely possible that the initialization will
passivate the transaction (remove it from execution) for a given time. For example. in the
Ticket Method GTM, all local transactions are submitted at the initialization phase. so the
GT)M passivates the transaction until a local sub-transaction returns with a result.

A global transaction in the run phase means that initialization has been completed and
the transaction is running.

In the commit phase, the transaction is first validated. If it fails to commit. it enters the
abort phase. After the commit phase completes. the global transaction process is destroved
and removed from the simulation. Otherwise the aborted transaction is reinitialized and

resubmitted. A global transaction continues execution in the system until it commits.

49

GT Arrives

GT Commits

l Global Transactions (GTs) T

[Multidatabase (MDB) i

1. Global Transaction Manager (GTM)
* Divides GTs into STs
* Schedule (submit) STs to GTS
* Monitor the progress of execution of GT using info from GTS
* Commits/aborts/resubmit GTs

2. Global Database Objects
Resources available to process global objects

v 4 T ¢4 v 4

Global Transa GTS-2

ction Server 1 GTS-n

(GTS-1)

* Reformat GST
* Communication link
between local data-

base and multi-

database

¥ A Y i i

Local Database 1 .)
(LDB-1) LDB-2 LDB-n

1. Transaction
Manager (TM) e o o o
*Obtain/Release Lock

* Submit ST
* Monitor progress

* Commit/Prep-to-
commit/Abort

2. Local Database

Objects
* Resources 0 process

LT & GST

Arrive T

Local Transactions(LTs)l

Figure 4.1: Transaction Processing in M DB Environment

50

At

activate

terminate

schedu

Transaction

Generator

Figure 4.3: Local Process Scheduling

One for each local O - .

-~ DB
TN T Transaction

Generator

Transaction

One for global level : '

Global Trans. Global
transaction
Generator

Figure 4.4: Global Process Scheduling

51

[lnitialize MDBS, GTM, GT_gen]

Y

; Schedule GT_gen immediatel_\l

Another -N—O_>. Initiliaze GTM
LDBS? - GTM::niw)
Y Yes - GTM specific initialization|
Initialize local DB *

- base_db::load_db()

Load local queries

- tr_gen::load_file()

r Schedule local TG immediately |

Y

Add LDBS to MDBS
- MDBS::add_db()
- creates GTS for LDBS
- adds GTS to MDBS
- calls GTS::load() to load
objects for global view
- unions sets of objects with
global view

Start Simulation

Print Results ‘

Figure 4.5: Simulation Initialization

52

T r L
Mainline MDBS.cc Local Events include :
- transaction generation
- transaction operation completion

- see Mainline flow chart

global local events
events ‘} Note: These local events for each
LDBS are scheduled in the

same scheduler as global events.

New Global Transaction
- global_gen :: gen_trans()

|
t
|
i
-
!
¥
|
|
!
1

See LDBS flow chart

Run Global Transaction |-=

determine phase
Yy (global_trans :: operator())

¥]

I init_trans() ' Lrestnrt_trans() l bun_trans() | l commit_trans() -| [abort_trans() l
' '
GTM level Y
Y Y \ Y \i
init_trans() restart_trans() run_trans() commit_trans() abort_trans()

Call GTS to convert operations into form
y suitable for LDBS. (GTS :: new_trans())

Call GTS to Execute Local Transaction

A global transaction is current active event.
Y After issues LTs. passivates waiting for results to return

Block Waiting for GT Reactivation

When LT completes, local transaction manager detects that itis 2 ST of 2 GT
and puts in prepare-to-commit stage if success or abort if failure. Reactivates
GT with LT result in its pending list

Figure 4.6: MDBS Flow Control

33

Chapter 5

Performance Comparison of MDB
Schedulers

Previous chapters developed a simulation model for multidatabase system. described two
existing MDB schedulers and developed two new schedulers. This chapter describes sim-
ulation results that compare performance of these schedulers. First. experimental details

are described followed by results and discussion.

5.1 Experimental Details

In this section the schedulers are described and evaluated. Performance metrics presented

include variables considered in the experiments.

5.1.1 Schedulers Compared

Two existing schedulers, Ticket Method and GSS (Chapter 2) and two new schedulers
NGSS-1 and NGSS-2 (Chapter 3) are evaluated. The purpose of describing GSS is to
present the basis of development of new schedulers NGSS-1 and NGSS-2 but it is not
simulated in this research. Only three schedulers Ticket Method. NGSS-1 and NGSS-2 are

compared.

54

5.1.2 Performance Metrics

Four metrics are used to compare the performance of schedulers.

Residence time: This is the total time a transaction spends in the system. i.e.. the time
from when a transaction arrives to the time when it commits. This is a very important
measure from the point of view of the user (or transaction).

Number of aborts: This metric is considered to check the number of unnecessarily
aborted global transactions verses the number of committed transactions. It indicates the
amount of re-execution of global transactions that results due to aggressive concurrent
submission of global transactions in the Ticket Method. NGSS-1 and NGSS-2 will have no
aborts of global transaction because of their pessimistic submission policies.

Utilization: This measures the percentage of time the database was busy. The percentage
of time the objects are locked is a measure of utilization of objects. Locks are not released
until the last operation of a LT completes in a database in order to enforce serializability
at the local level. In the Ticket Method locks are held for an even longer time (until the
execution of the last GST or the abort of the global transaction. whichever comes first)
to enforce global serializability. Therefore. the time when the database is accessed by
transactions is usually shorter than the lock time. We will report both the information on
utilization. i.e.. lock time and the database access time. Each object in a database can have
different utilization levels and so an average value is reported. It should be noted that the
GST processed through LDBS but aborted later on by the MDBS. will also be included in
the calculation.

Computation Time: The MDB simulator is generic and the transaction manager module
can load one of the three schedulers. The CPU time required to run the simulator. using
a specific scheduler can be used to indicate the computational time of the scheduler. We

report computational time for 100 time units (seconds) of database simulation.

55

5.1.3 Parameter Setting for Local Database

The local database simulator simulates a database with 6 relations varying in size from 75
to 11000 bytes with average relation size of 3400 bytes. The database processing speed is
set at 10000 bytes/sec. Obviously. these numbers are too small to be realistic in today’s
environment but can be scaled appropriately.

There are ten different queries (local transactions) presented to the database. They are
divided into five read and five write queries. The probability of a read query is 0.8 with the
remainder being write queries. Each query has an associated probability. The probabilities
of all read queries sum to 1. as do the probabilities of all write queries. The average number
of bytes accessed over all queries is approximately 10500 bytes. Thus. the average time to

execute a query should be 1.05 sec.

5.1.4 Experimental Variables
The following variables were considered in designing the simulation experiments.

e Load Related Variables: The database load is affected by processing speed of
the databases and the inter-arrival time of global and local transactions as described

below.

(i) Processing Speed: If the processing speed of the database is verv low (as
compared to arrival rates). the database gets overloaded because the queue of
waiting transaction will be too long and the service rate will exceed processing
power.

(ii) Inter-Arrival Time of transaction: If the inter-arrival time of global and

local transactions decreases for a given database the system load increases.

Thus. the values for the three variables (i) processing speed of local databases. (ii)

inter-arrival time of local transactions and (iii) inter-arrival time of global transac-

56

tions need to be set for each experiment. These should be taken in such a way that
the waiting queue (or subsequently the transaction residence time) should not be
infinitely long.

Setting Processing Speed: The value of processing speed of LDBS is set at 10000
bytes/second as noted in Section 5.1.3.

Setting Inter-Arrival Time at the LDBS: LDBS processes LT and GSTs sub-
mitted through MDBS. In order to set an appropriate level of load at LDBS. the local
database simulator was run 10 times for 1000 seconds at processing speed of 10000
bytes/second. Each run has no run-up period and is terminated with a hard-close

after 1000 seconds. Statistics were gathered on transaction residence time. As Figure

10 T T T T T T T T T

| =——= Avg. Residence Time |

Residence Time (sec.)
(4]
T
1

0 0.2 04 0.6 08 1 1.2 14 16 1.8 2
inter arrival Time (sec.)

Figure 5.1: Transaction Residence Time Vs. Inter-Arrival Time for LTs

5.1 shows, the average transaction residence time increases rapidly as the inter-arrival

time increases beyond 0.3 transactions/sec. Note that the system does not get over-

57

Inter-Arrival Time Processing Speed
(sec.) (bytes/sec.)
Global Local
Transaction | Transaction
2.0 1.5 10000
2.5 1.5 10000
3.0 1.5 10000
1.5 1.5 10000
7.5 1.5 10000
15.0 1.5 10000
30.0 1.5 10000

Table 5.1: Setting values for load related variables

loaded at an inter-arrival time of approximately 1 second. Although the arrival rate is
greater than the service rate. the increased parallelism allowed by executing multiple
read transactions simultaneously allows for a higher arrival rate than could normally

be achieved.

Now we need to break up this load into equivalent global and local transactions. We
need to set the inter-arrival time for local transactions at higher than 1 second to ac-
commodate global transactions while avoiding overloading. Global inter-arrival time.
local inter-arrival time and processing speed of LDBSs to be used in the simulation

experiment are summarized in Table 5.1.

Number of Sub-transactions in Global Transaction: Global transactions are
broken into global sub-transactions to be submitted to individual LDBS. If the num-
ber of local databases are more in a multidatabase system. parallelism will be more

(more GST can be submitted concurrently).

In our experiment, we consider three and five LDBSs. The lengths of GTs were chosen

using probabilities shown in the Table 5.2.

58

No. of | No. of LDBSs No. of LDBS Frequency of each
LDBSs | required by combinations possible variation of GT
a GT (Variation of GTs defined)
3 1 3 0.067
2 3 0.200
3 1 0.200
5 1 5 0.010
2 10 0.020
3 10 0.050
4 5 0.040
5 1 0.050

Table 5.2: Frequency distribution of different lengths and variations of global transaction.

5.1.5 Parameter Setting for Ticket Method

The Ticket Method GTM has two parameters critical to its performance. They are the
timeout value assigned to a global transaction (g-timeout) and the time for global trans-
action re-submission after abort (g.resubmit). The algorithm is very sensitive to these
parameters. If the g_timeout is set too low. global transactions may abort when they are
not in global deadlock. If g_timeout is too high. the system suffers from lower concurrency
as the time to recognize global deadlock is high. Further, when g_timeout is too high.
local database overloading is possible as global transactions hold local resources from local
transactions which queue up waiting for the resources. Since the global transactions tend
to access about the same number of bytes in each database. g_timeout is made constant
over all transactions.

Defining the global transaction resubmit time is even more complex. If g_resubmit is
zero, the GTM may overload local databases by continually resubmitting global transac-
tions which cannot complete. Furthermore. besides taking resources and impeding local
transactions. these resubmitted global transactions are more likely to continually abort as

the delay times at the local databases increase due to overloading. G_resubmit has been de-

59

fined to be the square of the number of times the transaction has aborted times a constant
factor a. Even the choice of this constant factor is very sensitive. In testing for a constant
value of 10. the average GT residence time was 4 seconds. However. with constant values
of 5 and 20. the average GT residence times were 131 seconds and 32 seconds. respectively.
We experimented on the values of g_timeout and the constant a as (2*¥g_timeout) in
g_resubmit = a*num_aborts? for each run and the best found was chosen. It turns out to
be better not to limit the growth of g_resubmit (say at some constant 100). This tuning is
specific to the MDBS configuration. It is highly unlikely that this tuning can be performed
in a general. dynamic MDBS. We ran the simulator using different values of g.timeout and
a until 100 GTs were processed. The combination of g_timeout and a which gave the lowest
global residence time, were selected as shown in Table 5.3 (for 3 databases) and Table 5.4

(for 5 databases).

5.2 Results

The MDBS simulator was run 10 times (once for 5 databases using ticket method as com-
putation time was excessively high) for 100 global transactions. A global transaction must
commit before it is allowed to leave the system. so it may be restarted many times un-
til it commits. After 100 global transactions have been generated. the global transaction
generator no longer submits global transactions although the local database transaction
generators continually submit local transactions. This is done to see how the different
GTMs handle the same load. The set of 100 GTs generated will be exactly the same for
three GTMs.

Statistics are gathered on residence time, the number of global transaction aborts,

utilization of LDBS and computational time of the scheduler.

60

Inter-Arrival Time g_timeout a | Residence
(sec.) (sec.) | (sec.) { Time (sec.)
Global Local
Transaction | Transaction
2.0 1.5 2 4 354.281
3* 6* 204.631
4 8 406.234
2.5 1.5 2 4 495.752
3 6 146.331
4 8 348.236
5 10 780.435
6* 12* 37.77.
9 18 357.675
3.0 1.5 2 4 376.074
3 6 9.498
4 3 34.532
5 10 118.399
6* 12* 5.055
7 14 55.217
4.5 1.5 2 4 108.292
3 6 2.293
1* 8* 2.003
7.5 1.5 2 4 2.114
3 6 9.672
4 3 3.827
5* 10* 3.260
6 12 90.736
15.0 1.5 2 4 7.371
3 6 1.846
4 3 1.854
5* 10* 1.844
6 12 1.931
7 14 1.981
30.0 1.5 2 4 2.253
3 6 2.026
4 8 1.716
5% 10* 1.684
6 12 1.684

* Value selected

61

Table 5.3: Setting parameter in Ticket Method for three databases.

Inter-Arrival Time g-timeout a | Residence

(sec.) (sec.) | (sec.) | Time (sec.)
Global Local
Transaction | Transaction

2.0 1.5 2 4 567.590

3* 6* 291.247

4 8 699.022

5 10 2057.373

6 12 1173.480

2.5 1.5 2 4 110.717

3* 6* 202.141

4 8 846.862

5 10 2011.043

3.0 1.5 2 4 345.219

3 6 258.630

4 8 2.470

5% 10* 2.448

6 12 2.448

4.5 1.5 2 4 175.390

3* 6* 53.722

4 8 157.769

) 10 302.741

6 12 206.014

7.5 1.5 2 4 2.197

3 6 1.991

4* 3* 1.952

5 10 1.952

6 12 1.952

15.0 1.5 2 4 2.115

3* 6* 1.890

4 8 1.890

) 10 1.890

6 12 1.890

30.0 1.5 2 4 3.489

3 6 2.798

1 8 2.022

5* 10* 1.944

6 12 1.944

* selected value

62

Table 5.4: Setting parameter in Ticket Method for five databases.

100 T T T T v

+———+ Ticket Method
%0 =~ — —& NGSS-1 .
o- - & NGSS-2

50 b

dof .

Average Residence Time (sec.)

._—i yiaaindin, J 1= — — A T T
0 5 10 15 20 25 30
Global Inter~Arrival Time (sec.)

Figure 5.2: Global Transaction Residence Time Vs. Inter-Arrival Time

5.2.1 Residence Time

Global transaction's average residence time and SD (standard deviation of mean values
obtained over 10 replications of simulation) for Ticket method. NGSS-1 and NGSS-2 are
shown in Table 5.5 and in Figure 5.2. Comparison of residence time of local transactions
and global sub-transactions together in the first database are shown in Table 5.6 and in
Figure 5.3. It can be observed that as the load increases. the residence time of transactions
increases with all the three schedulers. Global residence time is very sensitive to load while
local residence time is not too sensitive to global arrival rate. However. Ticket Method
has a higher residence time than the two algorithms. Further. at high load. performance
of ticket method is poor. As the load decreases (inter-arrival time of GTs increases). its
performance is improved as the transactions are processed serially. In NGSS-1 and NGSS-

2, the residence time for GTs is consistent because the LDBS does not get overloaded. At

63

4.5 T T L] ¥ T

+—+ Ticket Method
- —% NGSS-1
O0— - © NGSS-2

w
(3
Lf

i

W
)
I

Average Residence Time (sec.)
N
o
T

N
T
It

vSr \]
o LN

*-————— ¥ ———-5%

1] 1 i N 1
0) 10 15 20 25 30
Glabal Inter-Arrival Time (sec.)

Figure 5.3: Transaction Residence Time Vs. Inter-Arrival Time in LDBS1

much lower load all the schedulers give verv similar results.

Between NGSS-1 and NGSS-2. neither gives better results consistently. Although
NGSS-2 submits GSTs more aggressively than NGSS-1, the submission test is more rigor-
ous in NGSS-2 than in NGSS-1. Hence. in some cases NGSS-1 is superior while it is inferior
in some other cases. However, the difference is not significant since the load is similar in 3
and 5 databases. Further, the residence time is more with 5 databases than in 3 databases

for the same load due to the increased processing involved.

5.2.2 Number of Aborts

The overloading of the databases with the Ticket Method causes more global transactions
to timeout and abort. The abort rate with the global inter-arrival time is shown in Table
5.7 and in Figure 5.4.

As the load in the database increases or the number of database increases, the abort

64

No. of Inter-Arrival Time Residence Time
Data- (sec.) (sec.)
base Global Local Ticket Method NGSS-1 NGSS-2

Transactions | Transactions mean SD | mean SD | mean SD

3 1.5 1.5 * * 12634 0.870 | 2.510 | 0.831
2.0 1.5 223.410 | 154.302 | 2.114 | 0.323 | 2.143 | 0.347

2.5 1.5 248.462 | 202.574 | 1.919 | 0.239 | 1.941 | 0.238

3.0 1.5 98.742 |1 201.931 | 1.819 | 0.160 | 1.832 | 0.165

4.5 1.5 3.647 5.000 | 1.687 | 0.136 | 1.690 | 0.134

7.5 1.5 5.518 6.146 | 1.571 | 0.085 | 1.570 | 0.084

15.0 1.5 1.679 0.209 | 1.534 | 0.083 | 1.533 | 0.084

30.0 1.5 1.560 0.095 | 1.534 | 0.100 | 1.534 | 0.100

5 1.5 1.5 * *15.252 | 0.524 | 5.373 | 0.647
2.0 1.5 2357.165 **13.888 | 0.639 | 1.149 | 0.903

2.5 1.5 1734.044 ** 1 3.062 | 0.179 | 3.081 | 0.246

3.0 1.5 130.047 ** 12819 0.330 | 2.747 | 0.327

1.5 1.5 178.657 *¥* 12,428 | 0.104 | 2.403 | 0.118

7.5 1.5 4.172 *¥* 12189 | 0.370 | 2.171 | 0.053

15.0 1.5 2.038 ** 1 2.063 | 0.048 | 2.053 | 0.0t

30.0 1.5 2.062 *¥*¥ 12,037 | 0.048 | 2.034 | 0.047

* Execution was aborted as run could not be completed in few hours at this load.

** Ticket method was run for only one replication due to excessive computation time.

Table 5.5: Comparison of Global Residence Time

65

No. of Inter-Arrival Time Average Residence Time
Databases (Sec.) (sec.)
Global Local Ticket Method NGSS-1 NGSS-2

Transactions | Transactions | mean SD | mean SD | mean SD

3 1.5 1.5 * *11.252 1 0.063 | 1.241 | 0.061
2.0 1.5 2.470 0.315 | 1.284 | 0.072 | 1.285 | 0.074

2.5 1.5 1.401 2.787 | 1.256 | 0.086 | 1.260 | 0.086

3.0 1.5 2.378 1.015 | 1.241 | 0.040 | 1.241 | 0.040

1.5 1.5 1.547 0.251 | 1.209 | 0.034 | 1.209 | 0.034

7.5 1.5 1.517 0.356 | 1.192 | 0.027 | 1.192 | 0.027

15.0 1.5 1.260 0.033 | 1.195 | 0.016 | 1.195 | 0.016

30.0 1.5 1.266 0.017 | 1.203 | 0.016 | 1.203 | 0.016

5 1.5 1.5 * * | 1.502 | 0.059 | 1.486 | 0.046
2.0 1.5 1.829 ** 1 1.414 1 0.035 | 1.524 | 0.123

2.5 1.5 1.8343 ** 1 1.413 1 0.064 | 1.411 | 0.049

3.0 1.5 1.930 ** 11.388 | 0.055 | 1.381 | 0.032

1.5 1.5 1.943 ** 11.345 [0.045 | 1.349 | 0.053

7.5 1.5 1.409 *¥* 11.270 | 0.030 | 1.269 | 0.029

15.0 1.5 1.262 **11.226 | 0.009 | 1.224 | 0.010

30.0 1.5 1.216 **11.218 | 0.015 | 1.217 | 0.015

* Execution was aborted as run could not be completed in few hours at this load.

** Ticket method was run for only one replication due to excessive computation time.

Table 5.6: Comparison of Local Residence Time (combined LTs and GSTs) in the first
database.

66

350 L] L 1] T
+—+ Ticket Method

250 h

150 1

Global Transaction Aborts

50 1

1l 1

0 . L +
0 5 10 15 20 25 30

Global Inter-Arrival Time (sec.)

Figure 5.1: No. of Aborts Vs. Inter-Arrival Time in Ticket Method

rate of transactions also increases. The long wait and processing time causes more global

transactions to timeout and hence abort.

5.2.3 Utilization

Table 5.8 and Figure 5.5 shows the comparison of utilization of objects for the three sched-
ulers in the first database (selected arbitrarily). The Ticket Method shows a high percentage
of lock time minus access time as compared to the other two schedulers. Locks on objects
are held (for deadlock detection) until all the sub-transactions are completed in the Ticket
Method. On the other hand there is no cycle check in the two serial schedulers and locks are

released as a sub-transaction completes. Hence. lock time is less in serial schedulers as com- |
pared to Ticket Method. At reduced load all the three algorithms give similar utilization

values due to the serial execution of global transactions.

67

Inter-Arrival Time

Average number of Aborts

(sec.) in 3 database { in 5 database
Global Local mean SD mean
Transaction | Transaction
2.0 1.5 268.0 | 91.75 721.0
2.5 1.5 322.4 | 249.62 635.0
3.0 1.5 74.5 | 131.66 84.0
1.5 1.5 6.4 | 10.62 371.0
7.5 1.5 24.8 24.12 11.0
15.0 1.5 0.7 1.16 0.0
30.0 1.5 0.1 .32 0.0

Table 5.7: Average global transaction aborts

in Ticket Method

No. of Inter-Arrival Time Lock time (database access time)
Databases (Sec.) (%)
Global Local Ticket NGSS-1 NGSS-2
Transaction | Transaction Method
3 1.5 1.5 *1739.93 (18.36) | 10.03 (18.10)
2.0 1.5 | 41.80 (13.82) | 33.73 (16.48) | 33.73 (16.48)
2.5 1.5 | 41.51 (13.52) | 33.92 (16.30) | 33.92 (16.30)
3.0 1.5 | 46.93 (15.30) | 30.70 (14.92) | 30.70 (14.92)
15 1.5 | 34.40 (14.08) | 28.13 (14.05) | 28.13 (14.05)
7.5 1.5} 30.95 (13.34) | 25.90 (13.06) | 25.90 (13.06)
15.0 1.5 96 78 (12.82) | 24.75 (12.79) | 24.75 (12.79)
30.0 1.5 7 (12. 37) 23.88 (12.37) | 23.88 (12.37)
5 1.5 1.5 38.88 (18.32) | 38.00 (18.37)
2.0 1.5 | 29.67 (12.40) | 34.12 (16.76) | 34.25 (16.71)
2.5 1.5 | 30.05 (12.44) | 33.35 (16.59) | 33.93 (16.58)
3.0 1.5 | 31.78 (12.53) | 30.73 (15.06) | 30.51 (15.06)
1.5 1.5 | 32.02 (12.54) | 28.88 (14.15) | 28.86 (14.15)
7.5 1.5 | 33.06 (13 16) | 25.23 (13.12) | 26.81 (13.12)
15 1.5 26.71 (12.82) | 24.80 (12.81) | 24.80 (12.81)
30 1.5 | 24.83 (12.38) | 23.88 (12.38) | 23.88 (12.38)

* Execution was aborted as run could not be completed in few hours at this load

Table 5.8: Comparison of Utilization

68

50 T nl T T T

+——+ Ticket Method
= — —» NGSS-1
O- - © NGSS-2

45+

Lock Time (%)
(&) -3
o o
T T

(%]
o
T

25F

Global Inter~Arrival Time (sec.)

Figure 5.5: Utilization Vs. Inter-Arrival Time

5.2.4 Computational Time

The ticket method processes more transactions because there is no global flow control which
leads to a large number of aborts thereby reducing actual processing of transaction.

The computational time is small at extremely low load as shown in Figure 5.6 and
Table 5.9. At higher load. there appears to be no definite trend. The computational time
is generally more for 5 databases than in 3 databases. Based on the computation time
the schedulers can be ranked (increasing order) as the Ticket Method. NGSS-2. NGSS-1.
Computation time of serial schedulers are more than with the Ticket Method because it

requires more rigorous tests than NGSS-1 and NGSS-2.

69

No. of | Inter-Arrival Time CPU Time
Databases (Sec.) (sec.)
Global Local | Ticket | NGSS-1 | NGSS-2
Trans. Trans. | Method

3 1.5 1.5 * 1.3385 | 4.3462

2.0 1.5 2.0536 3.2698 | 2.8026

2.5 1.5 2.1696 4.8671 | 1.4927

3.0 1.5 3.1117 | 4.6677 | 4.3565

4.5 1.5 2.2955 1.8782 | 1.6695

7.5 1.5 4.1389 4.3898 | 4.1390

15.0 1.5 4.458 1.3814 | 1.3814

30.0 1.5 1.3822 1.256 | 1.2251

5 1.5 1.5 * 8.9013 | 9.5233

2.0 1.5 1.0626 5.5178 | 5.8920

2.5 1.5 1.8244 5.5409 | 4.7894

3.0 1.5{ 6.9323 4.0453 | 4.0453

4.5 1.5} 2.3379 3.5503 | 5.8476

7.9 1.5 3.0114 2.7605 | 2.5095

15.0 1.5 2.4492 2.2609 | 2.2609

30.0 1.5 2.1364 2.1362 | 2.1362

in few hours at this load

70

* Execution was aborted as run could not be completed

Table 5.9: Comparison of Computational (CPU)Time for 100 seconds of Simulation

T T

+—+ Ticket Method!
s — —« NGSS-1
O— - © NGSS-2 g

CPU Time (sec.)

25F

1.5

L 1 1 L I
(v} 5 10 15 20 25 30
Global Inter-Arrival Time (sec.)

Figure 5.6: CPU Time Vs. Inter-Arrival Time
5.3 Discussion

The ticket method allows all the global transactions to be submitted as soon as a global
transaction arrives. The ticket in each LDBS and the GSG check insures global serializ-
ability. but there is no global flow control. In other words. all the sub-transactions are
submitted regardless of the load on the LDBSs. This often results in lower concurrency as
the LDBSs become overloaded.

[t is noticeable that even at moderate LDBS loads. the residence times for global trans-
actions are high and highly variable. This is because sub-transactions of global transactions
are constantly competing with each other for resources. especially the ticket resource. Also.
the constant re-submission after aborts often overloads the LDBSs which further exasper-

ates the problem.

The tuning of the Ticket Method as described previously is fairly difficult and has a

71

great effect on its performance. Unfortunately. this tuning is not very robust and can easily
fall apart as LDBSs loads increase/decrease. global transaction inter-arrival time change,
or the query mix changes. Thus, the Ticket Method is not very robust and suffers from
poor performance in the general case. Although. the algorithm is simple and offers the
potential for higher concurrency. the lack of global-level flow control often overwhelms the
LDBSs causing many global transaction conflicts and aborts leading to an overall weaker
performance.

The NGSS-1 and NGSS-2 are deadlock-free and do not allow global transaction aborts.
This allows the average and maximum GT residence times to be fairly consistent. At
the local level. these algorithms do not cause local aborts. and the gilobal residence time
at an LDBS does not depend on the global inter-arrival time except a little at very low
inter-arrival time.

Thus. the total residence time of all LDBS transactions is not effected by the global inter-
arrival time (except a little at very low inter-arrival time). The stability of the residence
time at the LDBSs arises because both NGSS-1 and NGSS-2 algorithms implement both
concurrency control and flow-control at the global level. Global sub-transactions are only
submitted when no conflicts can arise which limits the number of global sub-transactions
active at any LDBS. Consequently this prevents the NI[DBS from overloading a LDBS with
global sub-transactions. Although performance may be limited slightly by executing some
GSTs serially. this performance is more than made up for by limiting the burden placed
on the LDBSs by global transactions. Thus, global sub-transactions that are submitted to
a LDBS can execute faster than if they were competing for the same resources with other
global sub-transactions. Global-level flow-control is especially important when the global
transaction inter-arrival time is low and when one or more LDBSs are heavily loaded.

In terms of performance, there is no comparison between the Ticket Method and serial

schedulers (NGSS-1 and NGSS-2). The possible higher concurrency, for which the Ticket

72

Method algorithm was designed to allow. ends up being a determinant to its performance.
[t suffers from frequent transaction aborts, local database overloading, and performance
loss through global deadlocks. All these factors significantly reduce the concurrency and
performance.

The NGSS-1 and NGSS-2 have better performance because they control the flow of
global transactions entering the LDBSs. Although this may reduce concurrency in some
situations, it does not cause global deadlock. LDBS overloading, or global transaction
aborts.

In terms of implementation, the NGSS-1 and NGSS-2 are also much easier to build and
configure. They are highly robust and only slightly effected by increases in LDBS load.
query mix changes. or varying global transaction submission rates. The Ticket Method
algorithm is highly susceptible to performance concerns if the deadlock detection time
“timeout”™ and the restart time “resubmit time” are not properly configured. Unfortunately.
the performance varies wildly even within the same configuration in multiple runs. The
Ticket Method supports a visual prepared-to-commit state. This violates autonomy of
local databases [Bar94]. Further, it is not easy to properly configure the system to handle
changing MDBS conditions. For example. the NGSS-1 and NGSS-2 can easily handle local
transaction inter-arrival time of less than one second for the given MDBS configuration.
The Ticket Method algorithm does not even complete the simulation for such values as it
gets stuck in long cycles of global aborts/restarts.

Both the NGSS-1 and NGSS-2. exhibit similar performance although NGSS-2 submits
transactions more aggressively than NGSS-1. However. the computation time required by
NGSS-1 is generally higher than NGSS-2. This is because in NGSS-2 submission criterion
1s more rigorous than in NGSS-1. NGSS-1 submits all the sub-transactions of a transaction
or none which holds all the sub-transactions of a transaction until all the sub-transactions

can be submitted. NGSS-2 submits each sub-transaction of a transaction individually so

73

the sub-transactions do not have to wait for all the sub-transactions to submit. In this
way, NGSS-2 should be faster than the NGSS-1. However. the criterion for submission in
NGSS-2 is more rigorous and some of the sub-transaction of a transaction have to wait for

long time for submission or the completion of other sub-transactions.

74

Chapter 6

Conclusions

In a multidatabase system. transaction management is a major issue because it is very
difficult to have a good concurrency control algorithm without violating local autonomy.
Some scheduling algorithms have been proposed to handle concurrency control. but no
independent simulation or testing has been reported to evaluate their performance.

In this thesis. schedulers that employ two distinct approaches are considered. In one
approach. transactions are submitted concurrently. but, to ensure the consistency (seri-
alizability). transactions may have to be aborted and restarted several times. The other
follows a much less concurrent (almost serial) submission policy but guarantees that such
submission will not lead to serializability problems and hence no aborts. We considered the
Ticket Method [GRS94] in the first category and developed two serial schedulers NGSS-1
and NGSS-2 following the lines of GSS developed by Barker [Bar90]. We have developed
a simulation model for multidatabase system to study the performance of these scheduling

algorithms. Simulation results indicate the following:

e Residence time of transactions increases as load increases (inter-arrival time de-
creases) and length of global transaction increases with all the schedulers. However.
the residence time of local transactions and global sub-transactions are less sensi-
tive to these factors compared to that of global transactions. The number of aborts

resulting using the Ticket Method also increases with load and transaction length.

75

@ Performance of serial schedulers (NGSS-1 and NGSS-2) is much better than the Ticket
Method. especially at higher load. At very low load they all give similar results as

the transactions are processed as they come, i.e., serially.

e Difference in performance (residence time) of serial schedulers NGSS-1 and NGSS-2

is not very significant. However. NGSS-2 requires lower CPU time than NGSS-1.

e In terms of implementations. serial schedulers are much easier to build and configure.
The Ticket Method is highly susceptible to tuning parameters such as “timeout™ and

“resubmit time”.

The Ticket method implementation requires a visual prepared-to-commit state. This vi-
olates autonomy. Serial schedulers do not have the above requirement. thereby allowing

more autonomy.

6.1 Future Research

Some possible extensions of this thesis could be the following. Since results show the
transaction manager which is based on concurrent transaction submission has poor perfor-
mance. it would be interesting to determine if other global transaction scheduling algorithms
which submit transactions concurrently have the same performance liabilities as the Ticket
Method GTM.

The findings of this research suggest that it is worthwhile to concentrate on developing
schedulers that submit transactions to guarantee that they will not be aborted at the cost
of less concurrency.

As indicated in the thesis. parameter setting in Ticket Method for the GSG check for
deadlock detection is difficult. A method for deadlock detection suggested in [Tri97] seems
to give better results when integrated with Ticket method. A detailed simulation study

can be conducted to determine the performance of this method.

76

Currently, the FCF'S rule has been used in processing the queue of NGSS-1 and NGSS-
2. Other queue processing techniques such as longest job first. shortest job first could be
tested to see if they further improve performance.

Currently. Strict 2PL TM is implemented at local databases to evaluate all GTM (sched-
ulers). Performance of the system when LDBS uses other concurrency control methods such

as Time stamp Ordering or Optimistic Concurrency Control can be studied.

[

Bibliography

[ADW92]

[Bar90]

[Bar94]

[BE95]

[BGMS95]

[(BHGS7]

[BHP92

[CP84]

D. Adler, B. Dageville, and K. F. Wong. A C-based Simulation Package. Tech-
nical report, ECRC, Munich. 1992.

K. Barker. Transaction Management on Multidatabase Systems. PhD thesis.

University of Alberta, 1990.

K. Barker. Quantification of Atonomy on Multidatabase Systems. Journal of

Systems Integration, 4:151-169, 1994.

D Bolier and A. Eliens. Simulation Modeling Support for Discrete Event Sim-

ulation in C++. Technical report, Vrije Universiteit. 1995.

Y. Breitbart, H. Garcia-Molina. and A. Silberschatz. Transaction Management

in Multidatabase Systems. Modern Database Systems, pages 573-591. 1995.

P. Bernstein, V. Hadzilacos. and N Goodman. Concurrency Control and Re-

covery 1 Database Systems. Addison-Wesley Publishing Co., 1987.

M. W. Bright, A.R. Hurson, and S. H. Pakzad. A Taxonomy and Current Issues
in Multidatabase Systems. [EEFE, 1992.

S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems.

McGraw-Hill Book Company, 1984.

78

[DESY]

[GRS91]

[GRS94]

[HFNL96]

[LZ88]

[MRB*92]

[OVa1]

W. Du and A.K. Elmagarmid. Quasi Serializability: A Correctness Criterion
for Global Concurrency Control in InterBase. In Proceedings of the Fifteenth
International Conference on Very Large Databases, pages 347-355, Amsterdam.

August 1989.

D. Georgakopolous, R. Rusinkiewicz. and A. Sheth. On Serializability of Mul-
tidatabase Transactions through Forced Local Conflicts. In Proceedings of the
Seventh International Conference on Data Engineering. pages 286-293. April

1991.

D. Georgakopolous, M. Rusinkiewicz. and A. Sheth. Using Tickets to Enforce
the Serializability of Multidatabase transactions. [EEE Transactions on Knowl-

edge and Data Engineering, 6(1):1-15, 1994,

L. Henschen, C. Fernandes, T. Neild. and W.S. Li. Modeling Data Correspon-
dence in Multidatabase Systems. In Proceedings of the International Conference
on Intelligent Information Management Systems (IIMS96). pages 19-23. Wash-
ington, D.C.. USA. June 5-7 1996.

W. Litwin and A. Zeroual. Advances in Multidatabase Systems. In Proc.
European Teleinformatics Conference-Euteco 88, Research into Networks and

Distributed Applications. pages 1137-1151, North-Holland, Amsterdam. 1988.

S. Mehrotra, R. Rastogi. Y. Breitbart, H. F. Korth, and A. Silberschatz. The
Concurrency Control Problem in Multidatabases: Characteristics and Solu-
tions. In Proceedings of the ACM SIGMOD I[nternational Conference on Man-

agement of Data, pages 288-297, San Diega, California, June 1992.

M.T. Ozsu and P. Valduriez. Principles of Distributed Database Systems. Pren-

tice hall, 1991.

79

[SLSV95]

[SO93]

[SSM96]

[Tri97]

[ZE93]

(ZYL95)

D. Shasha, F. Llirbat. E. Simon, and P. Valduriez. Transaction Chopping:
Algorithms and Performance Studies. ACM Transactions on Database Systems.

20(3):325-363. September 1995.

J. Shillington and M.T. Ozsu. Permeable Transactions and Semantics-Based
Concurrency Control for Multidatabases. In Proc. of the 3rd International
Workshop on Research Issues in Data Engineering: Interoperability in Multi-

database Systems. pages 245-248, Vienna. Austria. April 1993.

H. Swaminathan, T. Spracklen, and J. J. Mathieu. Aspects of Model Design
and Development through Simulation Software. In Proceedings of the 1996

Simulation Multiconference. pages 146-151, April 8-11 1996.

P. Triantafillou. An Approach to Deadlock Detection in Multidatabases. Infor-

mation Systems. 22(1):39-55. 1997.

A. Zhang and A. K. Elmagarmid. on Global Transaction Scheduling Criteria
in Multidatabase Systems. VLDB Journal. 2(3):331-360. 1993.

A. Zaslavsky, L. H. Yeo. and S. J. Lai. Transaction Processing Simulation in
Mobile Computing Environment Using Petri Nets. In [ASTED International
Conference on Modeling and Simulation. pages 373-375, Pittsburgh. USA. April
1995.

80

IMAGE EVALUATION
TEST TARGET (QA—3)

I

|

Le

I

150mm

125

N

A
PR
Q \)V' A

Ay A

-aow

APPLIED = IMAGE.Inc

o

y

»
..W \r\.os \ /

S

Loy
LS

© 1993. Applied Image. Inc.. All Rights

A

L

