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Abstract 

The autonom y of local database s ystems in rnultidatabase environment poses consistency 
problems in transaction scheduling. Seueral approaches have been proposed to ouercome this 
problern. In this thesis, we consider the algorithm using two major -scheduling approaches. 
The aggressive approach submits transaction concunently. butt to ensure the consistency, 
transactions rnay have tu be aborted and restarted seueral times. The other approach is 
serial (or near serial) submission that ensures consistent ordering of trcnsactions. This 
preuents subsequent aborts. 

Two serial schedulers wing serial submission approach are deueloped in this thesis and 
the results are compared with the best k n o m  aggressive "Ticket Method" algorithm. .4 
generic simulator is developed wing SMS libraries to implement and evaluate the schedulers. 
First. the aggressive approach used by Ticket Method is problematic because it does not 
provide any load control. Second. tuning the Ticket hlethod is eztremely dzficult and it 
does not react well to changes in the load on the local databases. Lastly. the overheads 
due to rollback and re-executions of this aggressive algorithm makes it less feasible. In 
this simulation study our serial schedulers perform much better than the Ticket Method in  
terms of residence time and number of aborts under dzflerent levels of load in  local databases. 
This study suggests that it is worthwhile to concentrate on developing schedulers that submit 
transactions to guarantee that they ,will not be aborted at the cost of less concurrency. 



Acknowledgements 

1 express my deep sense of appreciation to my thesis supervisor Dr. Ken Barker for his 
valuable suggestions, constructive criticisrns and cooperation during various stages of the 
research. My th& are also due to my thesis committee members Dr. David C. Blight 
and Randal J. Peters for their time. effort and suggestions. 

1 wish to acknowledge the financial support provided by the Department of C o m p t e r  
Science. University of Manitoba in the form of research assistantship. 

I would like to thank Ramon Lawrence for his guidance and assistance in designing and 
developing a sirnulat ion model. 

1 am thankful to  my friends Farook. Allwyn. Karl and others for encouragement and 
Company which has made my stay at Winnipeg pleasant. 

Finally. 1 would like to  dedicate this dissertation to my husband Dr. Gajendra Kurnar 
-4dil and daughter Deeksha who have been a constant source of support during mu studies 
in MSc. program. 



Contents 

1 Introduction 1 
1.1 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 
1.2 Organization of Thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4 

2 Related Work 5 
3.1 Concurrency Control in MDB Environment . . . . . . . . . . . . . . . . . .  6 
3.2 Scheduling Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  9 

. . . . . . . . . . . . . . . . . . .  2.2.1 Optimistic Ticket Method (OT'YI) 9 
2.2.2 Global Serial Scheduler (GSS) . . . . . . . . . . . . . . . . . . . . .  12 

2.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
2.1 .\. lotivation and Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . .  15 

3 Development of Schedulers 17 
3.1 New Global Serial Scheduler-l (NGSS-1) . . . . . . . . . . . . . . . . . . .  17 

3.1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  17 
3.1.2 ImplementationDetails . . . . . . . . . . . . . . . . . . . . . . . . .  18 
3.1.3 Illustration of Transact.ion Subrnission in NGSS-I . . . . . . . . . .  20 
3.1.4 Algorithm Description . . . . . . . . . . . . . . . . . . . . . . . . .  23 

3.2 New Global Serial Scheduler-2 (SGSS-2) . . . . . . . . . . . . . . . . . . .  24 
3.2.1 Algorit hm Description . . . . . . . . . . . . . . . . . . . . . . . . .  25 

4 Simulation Mode1 
4.1 Description of the System: Transaction Processing in Multidatabase Envi- 

ronment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.1.1 Requirements of Simulation Mode1 . . . . . . . . . . . . . . . . . .  

4.2 Simulating Static/Passive Objects . . . . . . . . . . . . . . . . . . . . . . .  
4.2.1 Local Database . . . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.2.2 Ilfultidatabase . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

4.3 Simulating Dynamic Objects . . . . . . . . . . . . . . . . . . . . . . . . . .  
4.3.1 Basic Framework (Cf+ Simulation Library) . . . . . . . . . . . . .  
4.3.2 Transaction Generation and Processing . . . . . . . . . . . . . . . .  

4.4 Overall Structure of the Simulation Program . . . . . . . . . . . . . . . . .  



5 Performance Cornparison of MDB Schedulers 54 
5.1 Experimentd Details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  5.1 

5.1.1 Schedulers Compared . . . . . . . . . . . . . . . . . . . . . . . . . .  54 
5.1.2 Performance Metrics . . . . . . . . . . . . . . . . . . . . . . . . . .  55 
5.1.3 Parameter Setting for Local Database . . . . . . . . . . . . . . . . .  56 
5.1.4 ExperimentalVariables . . . . . . . . . . . . . . . . . . . . . . . . .  56 
5.1.5 Parameter Setting for Ticket Met hod . . . . . . . . . . . . . . . . .  59 

5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  60 
5.2.1 Residence Time . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  63 
5 - 2 2  Number of Aborts . . . . . . . . . . . . . . . . . . . . . . . . . . .  64 
5 - 2 3  Utilization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  67 
5.2.4 Computationd Time . . . . . . . . . . . . . . . . . . . . . . . . . .  69 

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  71 

6 Conclusions 75 
6.1 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  76 



List of Figures 

1.1 LIDB Architecture ([Bargo]) . . . . . . . . . . . . . . . . . . . . . . . . . .  2 
1.2 Factors that influence MDBS performance . . . . . . . . . . . . . . . . . .  3 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  2-1 Indirect Conflict 6 
2.2 The effect of the Take-A-Ticket approach . . . . . . . . . . . . . . . . . . .  10 
2.3 Running Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
2.1 New Transactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  14 
2.5 Currently Running Transact. ions . . . . . . . . . . . . . . . . . . . . . . .  15 

3.1 Transaction submission in GSS . . . . . . . . . . . . . . . . . . . . . . . .  18 
3.2 Transaction Submission in XGSS-1 . . . . . . . . . . . . . . . . . . . . . .  19 
3.3 Grouping of Transactions for seed as  DB1 . . . . . . . . . . . . . . . . . .  21 
3.1 Grouped transactions for seed as DB1 . . . . . . . . . . . . . . . . . . . . .  22 
3.5 Grouping of Transactions for seed as DB? . . . . . . . . . . . . . . . . . .  22 
3.6 Initial Siibmission Algorit hm . . . . . . . . . . . . . . . . . . . . . . . . . .  27 
3.7 .4 lgorithm to Form Group . . . . . . . . . . . . . . . . . . . . . . . . . . .  28 
3.8 Algorit hm to Determine Overlap . . . . . . . . . . . . . . . . . . . . . . .  29 
3.9 Algorithm to Process Wait-Q . . . . . . . . . . . . . . . . . . . . . . . . .  30 
3.10 Submission Process in NGSS-2 . . . . . . . . . . . . . . . . . . . . . . . . .  31 
3.11 Deadlock Condition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  31 
3.12 Function for Grouping . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  32 
3.13 Process Xew Transaction . . . . . . . . . . . . . . . . . . . . . . . . . . . .  33 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  3.14 Process Wait-Q 31 

4 Transaction Processing in MDB Environment . . . . . . . . . . . . . . . .  50 
1.2 Event State Transition Diagram . . . . . . . . . . . . . . . . . . . . . . . .  31 
1.3 Local Process Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
4.4 Global Process Scheduling . . . . . . . . . . . . . . . . . . . . . . . . . . .  51 
4.5 Simulation Initialization . . . . . . . . . . . . . . . . . . . . . . . . . . . .  52 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  4.6 MDBS Flow Control 53 

5.1 Transaction Residence Time Vs . Inter-Arrival Time for LTs . . . . . . . .  57 
5.2 Global Transaction Residence Tirne Vs- Inter-Arrivai Time . . . . . . . . .  63 
5.3 Transaction Residence Time Vs . Inter-Arriva1 Time in LDBSl . . . . . . .  64 
5.4 Xo . of Aborts Vs . Inter-Arrivai Time in Ticket Method . . . . . . . . . . .  67 



5.5 Ut ilization Vs. Inter-Arrival Time . . . . . . . . . . . . . . . . . . . . . . . 69 
5.6 CPU Time Vs. Inter-Arriva1 Time . . . . . . . . . . . . . . . . . . . . . . . 71 



List of Tables 

Setting values for load related variables . . . . . . . . . . . . . . . . . . . .  58 
Frequency distribution of different lengt hs and variations of global transaction . 59 
Setting parameter in Ticket Method for three databases . . . . . . . . . . .  61 
Setting parameter in Ticket hlethod for five databases . . . . . . . . . . . .  62 
Cornparison of Global Residence Time . . . . . . . . . . . . . . . . . . . .  65 
Cornparison of Local Residence Time (combined LTs and GSTs) in the first 
database . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  66 
Average global transaction aborts in Ticket bIethod . . . . . . . . . . . . .  68 
Cornparison of U tilization . . . . . . . . . . . . . . . . . . . . . . . . . . .  68 
Cornparison of Computat.ional (CPU )Tirne for 100 seconds of Simulat.ion 70 



Chapter 1 

Introduction 

The need for an application to access multiple heterogeneous databases arises in a wide 

variety of industries for a number of reasons. Examples include Company rnergers [HFXLSG]. 

the introduction of new technology [HFYL96] or integrating information across several 

functional units within the organizat ion [BHPSS]. This can be achieved in two ways. First. 

by re-engineering al1 the systems to a comrnon database mode1 and single access rnethod. 

This process is expensive and complicat ed. Second. incorporating mult idatabase system 

(MDBS). gives users a cornmon interface to multiple databases and minimizes the impact 

on exist ing database operat ion. Therefore. mult idatabases ('ulDBs) are important area of 

researc h [HF ?i L96] . 

A multidatabase systern is a facility that allows user to access data  located in multiple 

autonomous and possibly heterogeneous local database systems (LDBS) [BGhIS95]. Local 

transactions (confined to a single database) are submitted directly to the LDBS. while the 

global transactions (not necessarily confined to a single database) are channeled through 

the MDBS interface. 

Transaction processing in a database management system ( DB hllS) is accomplished by 

a transaction manager (TM), scheduler and data manager (DM) as shown in Figure 1.1 

[Bargo]. The TM performs two tasks: it interacts with users and coordinates the atomic 

execution of transactions. The scheduler ensures the correct execution and interleaving of 



al1 the transactions presented t o  the TM. The DM maintains the  database consistency by 

reflecting the effect of cornmitted transactions while ensuring none of the effects of aborted 

transactions are made permanent. 

Transaction 

Data Manager 7 

MDBS Layer 

Transaction 
Manager 

Sc heduler 

DBMS 

Transaction 

Figure 1.1: SIDB Architecture ([BarSO]) 

The scheduler at each LDBS schedules gtobal sub-transactions submitted by the MDBS 

and local transactions submitted directly by the user. However. it does not distinguish 

between local and global sub-transactions. 

The MDBS scheduler performs two functions: ( i )  determines the submission time of 

global sub-t ransactions to the LDBSs. and ( ii) ensures the correctness of global transactions. 

LDBS autonomy makes correct execution of global transactions difficult as the MDBS 



scheduler is unaware of indirect conflicts caused by local transactions. 

The mechanism used to  submit global transactions to LDBSs and the correctness crite- 

rion employed by the MDBS scheduler affect system performance metrics. such as. transac- 

tion residence tirne and resource utilization. For a given s ~ h e d u l e r ~  the system performance 

is generally influenced by operating conditions. such as. the nature of transactions. the 

number of LDBSs. the type of LDBS scheduler and t r a c  loads. The above interactions 

are shown in Figure 1.2. 

* Residence Time 

* Resource Utilization 
( 1 ) Correctness criteria used such as 

Contlict-seriaiizability. * No. of Aborts 

Quasi-serializabili ty.MDB- System Pe flonnance 
serializability. Chai1 conflic- i 1 
ting-serializability 

(2) Mechanism used to schedule 

* No. of LDBSs 
Scheduler 

* Type of LDBS Schedulet 

MDBS 
Operating Conditions 

Figure 1.2: Factors that influence MDBS performance 

Most of the past research has focused on  developing correctness criteria. such as. conflict- 

serializability (CSR) [GRSSI] . quasi-serializability (QSR) [DE89]. SIDB-serializability (SIDBSR) 

[Bar901 and chah-conflit ing serializability (CCSR) [ZE93]. These developments form the 

b a i s  for designing multidatabase SC hedulers. 

Some schedulers can provide a high degree of concurrency but are unsuitable for an 

MDBS environment because of the autonomy of LDBS. In other words. it cannot guar- 

antee that the concurrent execution will not cause serializability problem. .Mt hough i t  is 

possible to detect such inconsistency and abort some of the running transactions to rec- 

t i k  the problem. this rnay lead to  unnecessary. expensive re-executions. If transaction are 



subrnitted seridly so these aborts are avoided. an increased throughput can be realized. 

Conventional databases enforce consist,ency by strict locking and commit protocols 

which gciarantee t hat the data is always consistent and trustworthy. Implementation of 

these protocols in a distributed environment using global locking and two phase commit 

provide the necessary consistency at a much greater cost than in a centralized system. 

1.1 Contribution 

To the best of Our knowledge. there have been no studies that evaluate the two types of 

schedulers namely one that allows concurrent execution but are subject to abort and the 

other which executes serially but paran tees  no rollbacks. In this thesis. ive consider the 

Ticket Method in the first type and develop two serial schedulers (in the second type) based 

on earlier work reported in [Bargo]. We then develop simulation model to evaluate these 

two schedulers. and irnplemented the Ticket hlethod [GRS94] to  determine the real gain 

achieved in throughput as a result of concurrent processing of transactions. Our findings 

suggest that an efficient serial submission has good performance characteristics in a SIDBS. 

1.2 Organization of Thesis 

The thesis is organized as follows. Related literatiire are reviewed in Chapter 2 .  Two 

existing schedulers: Ticket '*let hod [GRS94] [GRSSlI and Global Serial Scheduler (GSS) 

(Bar901 are also described in Chapter 2. The efficient serial schedulers are developed baseci 

on the GSS. are presented in Chapter 3. Chapter 4 presents a simulation model that has 

been developed for evaluating MDBS schedulers. Chapter 5 gives experimentai details and 

results. Finally. Chapter 6 gives conclusions and recommendat ion for future work. 



Chapter 2 

Related Work 

The majority of work on MDB is on schema integration [BHPg?]. .LIany projects are still 

a t  research level . Some commercial homogeneous 51DB systems. %mpress9' and -Sy base" 

are also reported [LZ88]. 

The transaction management aspect of MDBS is still an open problem. One of the 

transaction management issues. namely. scheduling of global transactions has been the 

emphasis in t his t hesis. 

When transactions are esecuting concurrently they interleave their operations to form 

an execut ion schedule or history. The scheduler controls the execution of transactions by 

restricting the order in which the data manager (DM) executes the Reads. Writes. Commits. 

and A borts of different transactions. 

To execute a database operat ion. a transaction passes t hat operation to the schediiler. 

The schedriler then tries to pass it to DM if it can do so without producing a nonserializable 

execut ion. If it decides t hat execut ing the operation rnay produce an incorrect result . t hen 

it either delays or rejects the operation [BHG87]. 

Hence. the scheduler has a very important role in concurrency control in databases. 

In fact. the study of concurrency control techniques is the study of scheduler algorithms 

t hat attain serializability [BHG87]. This chapter reviews concurrency control in 41DB 

environment and two existing algorithms to schedule global transactions followed by a 



literature survey on simulation studies. 

2.1 Concurrency Control in MDB Environment 

In 4IDB environment. autonomous local databases may not communicate any informa- 

tion related to concurrency control to the global transaction manager (GT'rI) [BHP92] 

['vIRB+92]. Further. the GT31 is unanrare of indirect conflicts between global transactions 

at the local DBSISs. This can be explained with the example shom in Figure 2.1 from 

[G RS94] . 

LDBS 1 

Figure 2.1: Indirect Conflict 

There are two global transactions G1 and Ga. Global transactions have sub-transact ions 

in both LDBSs. In LDBSl, Gl reads a and G2 Iater mites it. Gl and G2 directly conflict. 

so the serialization order of the transactions is Gl + G?. In LDBS?. Gl and G2 access 

different data items. G1 writes c and later G2 reads b. Bence. there is no direct conflict 

between Gl and G2. However. since local transaction Ti writes b and reads c. Gl and G2 

conflict indirectly. This indirect conflict is caused by the presence of local transaction Tl. 



The serialization order becomes G2 - Tl - Gi. Because of the local autonomy. the MDBS 

has no informat ion about local transactions. Therefore. it cannot detect indirect confiicts 

between Gi and G2 in LDBS2. Alt hough. both local schedules are serializable. the global 

schedule is globally non-serializable (with respect to codict-serializability). 

This phenornena is a cause of major difficulties in trying to ensure global seria1izabilit.y 

in a multidatabase environment [BGMS95]. 

There are several correctness criteria specified in the MDBS literature r hat form a basis 

for scheduling transactions correctly. LVe review the major ones. 

Conflict-Serializability: A schedule is serializable if and only if it is conflict equivalent. 

to a serial schedule [OV91]. Two schedules Si and S2 are conflict equivalent if for 

each pair of conflicting operations Oi and Oj such that Oi precedes Oj in Si. then Oi 

precedes Oj in S2 [CP84]. 

[GRS94] [GRSSl] proposed the opt imistic ticket met hod using conflict-serializability 

(CSR) . This met hod demonstrates t hat the serialization order of global sub- t ransact ions 

in a local site can be determined at the global level without violation of local auton- 

omy. However. in this method. global restarts are possible at  each site. Further. 

acquisition of the ticket may introduce addit ional conflicts between global t rans- 

actions that nrould not have been introduced otherwise. Some irnprovements to this 

basic strategy such as. the conservat ive ticket met hod [GRS94]. the cascade-less ticket 

met hod [GRS94], the implicit ticket method [GRç94] and the miued met hod [GRS94] 

are developed t O part ially overcome t hese problem. 

Quasi-serializability: [DE891 introduced a less restrictive criterion than conflict-serializability. 

A global schedule in an heterogeneous distributed database system is quasi-serializable 

if it is conflict equivalent to a quasi-serial schedule in which al1 global transactions 

are submitted sequentially. A global schedule is quasi-serial if al1 local schedules are 



conflict-serializable and t here exists a total order of al1 global transactions such t hat 

for every two global transactions Gi and G, where Gi precedes Gj in the order then. 

al1 Gi's operations precede Gj's operations in al1 local histories in which they both 

appear. The difference between quasi-serializability and conflict-serializability is t hat 

the later treats global and local transactions in the same way while the former treats 

t,hem differently. More specifically. t his theory is primarily based on the behavior of 

global transactions. 

[ZE93] presents three correctness criteria: (a) chain-conflicting serializability. (b) 

sharing serializability and (c) hybrid ((a) % (b))  serializability. They showed that 

global serializability can be ensurecl at the global level by utilizing the intrinsic char- 

art  eristics of global transactions and cont rolling t heir execution. Quasi-serializability 

is a superset of these three criteria while conflict-serializabiiity (used by opt imist ic 

ticket method) is a subset of these three criteria. 

SIDB-serializability: [Bargo] proposed SIDB-serializability which is an estension of 

conflict-serializability theory. This generates the same class of scheduler as allowecl 

by quasi-serializability. The global serial scheduler (GSS) is developed based on this 

criterion. 

Semantic based approach: [S093] stiggested a semantic based approach to allow more 

concurrency by exploiting the semantics of the transaction. The main idea is to spec- 

ify acceptable violations of global serializability based on the semantic information 

of transactions. They developed a semant ic-based correctness criterion for MDB 

transactions. In addit ion. t hey developed and irnplemented LTXI based concurrency 

control algorithrns t hat uses precedence graphs for checking global serializability 



2.2 Scheduling Algorithms 

Based on the two correctness criteria. codict-seridizability and SIDB-serializability. two 

existing schedulers Optimist ic Ticket Met hod (OTM) and Global Serial Scheduler (GSS) 

are considered ne,xt. The UTSI allows concurrent execution and is based on the conflict- 

serializability correctness criterion [GRS94]. The GSS allows a global serial execution of 

transaction and is based on the MDB-serializability correctness criterion [Bar901 . Bot h 

schedulers handle the problem of indirect conflicts but do so differently 

2.2.1 Optimistic Ticket Method (OTM) 

To enforce global serializability. the MDB transaction manager must take into account 

the indirect conflicts between multidatabase transactions caused by local transactions (as 

explainecl in Figure 7.1). To overcome these difficulties. [GR3941 propoûed to incorpe 

rate addit ional data  manipulation operations known as tickets in the sub-transact ions of 

each global transaction. These operations create direct conflicts between sub-t ransact ions 

a t  each part icipating LDBS. and thereby facilitate resolving indirect conflicts even if the 

multidatabase system is not aware of their existence. 

Handling Indirect Conflicts in OTM 

The OTZLI uses tzckets to determine the relative serializat ion order of the siib-transact ions of 

global transactions a t  each LDBS. A ticket is a time stamp whose value is stored as a regiilar 

data item in each LDBS. Each sub-transaction of a global transaction is required to issue 

the Take-A-Ticket operation which consist of reading the value of ticket and incrementing 

it. Figure 2.2 illustrates the effects of the Take-A-Ticket process. 

The ticket data items at  LDBSi  and LDBS2 are denoted by t l  and t2.  respectively. In 

LDBSl .  the t values obtained by the subtransactions of Gi and G2 reflect their relative 

serialization order (it really forces the LDB to order transactions in a certain way because 



LDBS 1 LDBS 2 

Figure 2.3: The effect of the Take-A-Ticket approach 

there is a forced read/write operat,ion). This schedule will be permitted by the local concur- 

rency controller at LDBSl .  In LDBS?. the local transaction TL causes an indirect conflict 

such that G2 + Tl - Gl. However. by requiring the sub-transactions to take tickets we 

force an additional conflict Gl - Gs. This additional ticket conflict causes the ewcution 

a t  LDBS2 to becorne locally non-serializable. Therefore. the Iocal schedule: 

will not be alloweci by the local concurrency controller. (eg: the subtransaction of Gl or 

the sub-transaction of G2 or Tl will be blocked or aborted.) 

Enforcing Global  Serializability by OTM 

The ticket acquisition order is a wlid serialization order forced by the direct conflicts 

introduced t hrough tickets. The global manager can use t his information to maintain 



consistency in execution of global transactions. The OTM ensures that the sub-transactions 

of eac h global transaction have the sarne relative serializa t ion order in t heir corresponding 

LDBSs. The subtransactions of each global transactions is allowed to proceed but commits 

t hem only if their ticket values have the same relative order in al1 participating LDBSs. 

A global serialization graph (GSG) is constructed in order to record the serialization 

order of global sub-transaction at each LDBS. Whenever. a global subtransaction enters 

its prepared to commit state. it is validated using a GSG. 

Transaction processing in the OTM takes place as follows. Initially. it sets a timeout for 

a global transaction G and submits its sub-transactions to their corresponding LDBSs. A11 

sub-transactions are allowed to interleave under the control of the LDBSs until they enter 

t heir prepared-t *commit state. If they al1 enter t heir prepared-tecornmit states. t hey wait 

for the OThl to wlidate G. The validation is performed using the global serialization graph 

(GSG) test. The nodes in the GSG correspond to the committed global transactions. 

Initially. the GSG contains no cycles. During the validation of a global transaction G. 

the OTM first creates a node for G in the GSG. Then, it attempts to insert edges between 

G's node and nodes corresponding to every recently committed multidatabase transaction. 

Depending on the ticket value obtained by a sub-transaction of G at some LDBS. an edge 

is added to GSG corresponding to this transaction. If al1 such edges can be added without 

creating a cycle in the GSG. G is validated. Ot herwise. G does not pass validation. its node 

together with al1 incident edges is removed from the gaph .  and G is restarted. G is also 

restarted. if at least one LDBS forces a subtransaction of G to abort for local concurrencÿ 

control reasons or its timeout expires. 

OTM: Algorithm Outline 

The execution sequence of a transaction in the OTM c m  be sumrnarized as follows. 

(1) Transaction G arrives. 



Set the %meout" for G and submit al1 of its subtransactions (GSTs) to related 

LDBSs. 

Before starting any operation on the database. sub-transactions perform TakeA-Ticket 

operat ion. 

Wait for ail GSTs of transaction G to enter the prepare-to-commit state. 

Perform a GSG check. 

If G passes the GSG check. commit G otherwise abort and restart G after a specified 

"re-submission t ime" . 

G is also aborted if any sub-transactions abort or '-timeoiit" is expired. Restart G 

after specified "resubmit t ime" . 

"timeoutt' and 'iesubmit time" rnust be specified. The '%imeout" is defined to resolve global 

deadlock problem. If the global transaction does not commit by the specified "timeout" 

period. it will be aborted. The "resubmit time'? is the time to submit the transaction again 

once it. is aborted. 

2.2.2 Global Serial Scheduler ( G S S )  

Schedoling of transactions in a multidatabase system is accomplished at both local and 

dobal ievels. If we assume t,hat each DBkIS is capable of generating locally serializable O 

histories. the only requirement of the hIDBS is to submit global transactions to each DBMS 

so that any local ordering can only produce correct schedule. The corresponding schedule 

is called MDB-serializable schedule [Bargo]. 

Definition: MDB-Serializability 

A schedule is MDB-Serial iff every local schedule is conflict serializable and if an operation 

of a global transaction precedes an operation of another global transaction in one local 



schedule. then al1 operations of the first global transaction must precede any operation of 

the second in al1 local schedules. A schedule is MDB-sorializable iff it is equivalent to a 

!VI DB-Serial schedule [BarSO] . 

The GSS schedules transactions so t hat MDB-serializability is maintained. Hence. the 

GSS does not have t o  check for global cycles. as any serialization ordering by the LDBS 

does not create global inconsistency. 

Global Suh-transaction Submission in GSS 

The following criterion is used to  determine if a transaction is eligible to be submitted for 

processing. 

The global scheduler determines if there are active global transactions which access 

more than one of the databases accessed by the transaction G being scheduled. If 

t here is such a set of active global transactions. then G is passivated. If no overlapping 

global transactions are present. the global sub-transactions of G are submitted. 

A special case occurs when the global transaction G passes the above test because G 

has only one sub-transaction. 

The above test is carried out for new transaction at  the time t hey arrive and for al1 waiting 

transactions whenever a running transaction completes because t his may make it possible 

to  submit some of the blocked global sub-transactions. 

An Exarnple to Illustrate Transaction Submission in GSS 

The following example illustrate the transaction submission mechanism of the GSS. Let 

there be two global transactions Gi and G2 running a t  the databases (see Figure 2.3). 

Suppose two new transactions G3 and G4 arrive as shown in Figure 2.4. G3 will be 

subrnitted because it needs only one database. The active set of databases at t his time are 

D B l ,  DB2 Sr DB3. The G4 requires DBi and DEI3 which overlap at  more than one of the 



Figure 2.3: Running Transactions 

Figure 2.4: Xew Transactions 

active datahases. G4 will not be submitted because the currently running transactions ( 

GL . G2. G3 ) ( Fi,we 2.5) overlap Mth those at G4. In the next chapter. two new schedulers 

based on the concept of MDB-serializability are described. 

2.3 Simulation S t udies 

The performance of a scheduler cannot be judged on the basis of correctness criterion. 

1 t employs operating condit ions such as loads (transaction inter-arrival-t imes. database 

processing speed) and nature of transactions c m  greatly influence the performance. Thiis. 

simillat ion can be a very appropriate tool to evaliiate the existing schedulers. Lit erat ure 

on simulation studies in the area of transaction processing on database systems is briefly 

descr i bed next . 

[SLSV95] developed a simulation mode1 using the SIM package [ADW92] for centralized 

database systems to evaluate the performance of random transactions (chopped into pieces) 

running concurrently. Some research has been reported in simulating distributed databases. 

For example. [ZYL95] developed a petri-net mode1 to simulate message and transaction 

qiieuing in a mobile computing environment. 



Figure 2.5: Currently Running Transactions 

[Tri971 developed simulation model for an MDBS based on a closed queuing model to 

evaliiate the performance of t heir proposed deadlock detect ion algorit hms. Their perfor- 

mance metric is the ratio of the number of unnecessarily-aborted global transactions over 

the number of committed global transactions. They conclude t hat t heir met hod of deadlock 

detection is superior to the one based on time-out in the Ticket Method. 

2.4 Motivation and Objectives 

It is evident from the literature review that no research has been reported to compare the 

performance of multidatabase schedulers. Simulation appears to be the  most appropriate 

tool to  conduct a detailed study comparing MDB schedulers. The objectives of this thesis 

can be summûrized as: 

Develop a MDBS simulation model which can accommodate different types of GTUs 

and the schedulers required in t his study. 

Siiggest possible improvements in existing serial and/or concurrent schedulers. This 

may lead to development of new schedulers. 

Evaluate the performance of serial and concurrent (Ticket Method) [GRS94] [GRSgl] 

schedulers wit h metrics such as transaction residence t ime and resource ut ilization. 

Assumpt ions 

The following situations will be assiimed in the simulation model: 



LDBS: The number of LDBS is known. The processing speed of each LDBS is known. 

Each LDBS follows the St,rict TwePhase Locking rule for concurrency control. 

Transactions: The division of global transactions into sub-transactions is known. 



Chapter 3 

Development of Schedulers 

This chapter develops tm-O serial schedulers (NGSS-1 and YGSS-2). These schedulers use 

the concept of 4IDB-serializability proposed by Barker [BarSO]. In NGSS 1. either al1 the 

sub-transactions of a transaction are submitted together or none of them will be submitted. 

NGSS-2 follows the  same idea but submits the transactions more aggressively t han 

NGSS-1. We describe YGSS-1 and YGSS-2 in detail in the following sections. 

3.1 New Global Serial Scheduler-1 (NGSS-1) 

This section first presents the basics in developing the SGSS-1. Secondly. it provides the 

implementation details. an example of the transaction submission. and dgorit hm descr ip  

t ion. 

3.1.1 Prelirninaries 

The basic idea used in the NGSS-1 is the same as the GSS. However. the GSS is furt her 

improveti by allowing subrnission of transactions more aggressivelu while maintaining SIDB- 

serializability. 

To explain the difference between the GSS and the XGSS-1, consider the following ex- 

ample. Let there be two global transactions Gi and G2 currently running in their respective 

databases and a new global transaction G3 arrives as  shown in Figure 3.1. Xow. vie consider 



Current ly Act ive D& 
Global Transactions 1 zt [ OB2 

DB3 

NewGlobalTransaction Gg DB1 DB2 

Action: Do not submit G3 

Figure 3.1: Transaction submission in GSS 

the submission criterion employed by the GSS. The GSS checks if there are active global 

transactions (Active-GTs) which access no more than one database to be accessed by the 

new transaction. The set of databases accessed by al1 the Active-GTs considered together 

in this exampleare: { D B l .  DB2. DB3.  DB4} .  Since this overlaps with the activedatabases 

required by new global transaction G3 is { D g L .  Dg2}.  (Le. in more than one database). 

G3 cannot be submitted. 

By using the NGSS-1. G3 is not blocked as indicated in Figure 3.1. The ordering 

indicated in Figure 3.2 is possible. Gl.  Ga and G3 at the local databases cannot create 

h1 D B-serializab tilty problem becaiise: 

( i )  G1 and G2 do not conflict with each other: and 

(ii) G3 does not confiict with G l  and GI individually in more than one chtabases. 

The NGSS-1 is developed using the concept of grouping to allow the submission of such 

transactions (G3) .  

3.1.2 Implementation Details 

To reflect the difference in submission process of the 'IGSS-1 and the GSS. the test for 

subrnission of global transaction in NGSS-1 is rnodified as follows. 
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Action: Submit Transaction Gg 

Figure 3.2: Transaction Submission in NGSS- 1 

Group al1 the global transactions which are currently running so that transactions 

within a group directly or indirectly conflict with each other. This means that any 

two transactions which are in two different groups do not conflict Mth each other. 

0 If the new global transaction overlaps with active transactions in each group collec- 

tively in less than two databases. then it can be submitted. 

'iext. ive describe the mechanism that enforces the subrnission test of a new global trans- 

action NG (newly arrived or waiting). The test is performed for the new transaction when 

it arrives or for the waiting transactions at the cornpletion of a n  active (executing) global 

transaction. 

A newly arrived transaction wïth one sub-t ransaction passes the submission test auto- 

rnatically. and hence it is always submitted directly. However, the newly arrived transac- 

tions with more than one sub-transaction and transactions in a wait queue need to pass 

the test to be submit ted because they may create inconsistencies. The following procedure 

is applied. 

CVe consider each database in which the new transaction ( N G )  requires processing one 

at  a time. For example. if NG requires two databases DBi and DB2 then DB1 and RB2 

are used as "seeds" to the algorithm. For each seed database (DBi ) .  the following steps 



are performed: 

Step 1. Form Group: Identify al1 the currently active global transactions which need 

to access database DBi. These transactions direct ly conflict wit h YG. These codic t ing  

transactions form a set called the ConRictset. The remaining active global transactions 

which do not directly c o d i c t  with NG are put into the Complementaryset. To ident ib  

active transactions which may indirect ly conflict wit h :VG the following procedure is ap- 

plied. From the Complementaryset . we identih t hose transactions t hat conflict with any 

of the transactions in the currently identified Conflictset. Such transactions are rernoved 

from Complementa.ryset and are included in the Conflictset. This procedure is repeated 

until no such transaction is found. A11 the transactions in C o d i c t s e t  thus obtained form 

the "Group" corresponding to  the seed DB,. 

Step 2. Determine Overlap: The overlap between the databases reqtiired by the 

new transaction and the databases requirecl by al1 of transactions in the groiip considered 

colIectivaly is determined. This information is used to decide if the transaction can be 

submitted. 

.4fter performing Step 1 and 2 for al1 the seed values. a submission clecision is made. 

If the transaction overiapped with any of the goups  in more than one database. it is put 

on wait queue ( Wait-Q). otherwise it is submitted. This procedure is illustratecl with a n  

example in the next section. 

3.1.3 Illustration of Transaction Submission in NGSS-1 

Let there be four global transactions running in five databases D B l .  DB2. DB3. D B I  and 

DB5 as shown in Figure 3.3. Thus. currently active global transactions. 

New. suppose a global transaction ( NG) arrives t hat requires processing in databases DBl 

and D B2. The grouping is done as follows. First we consider seed D BI .  In DB1. current ly 



T determine transactions conflicting with NG a t  DBi 

Act ive-GTs 

New Transaction 

Figure 3.3: Grouping of Transactions for seed as D BI 

only G1 is active. G1 directly conflicts with NG. Hence: 

GI 
G2 
G3 

G.4 

NG 

Conflictset = { Gi } and 

Complementryset (the rernaining active GTs) = { G2 . G3. G4 } . 

- DB1 DB3 
- 

DB3 
DB2 D& 

DBs 
T 

DB1 DB2 - 

Now. we check for any indirect conflict between NG and transaction in Cornplementryset. 

This requires checking for direct conflict between Gl and {G2.  G3. G4}. Gl conflicts wit h 

G2 only Thus: 

Conflictset = {Gi . G2}. Complementryset = {G3. GI}. 

GI does not conflict. with G3 and G4 nor does G2 conflict with G3 and Gi. So. the final 

cod ic t  set is: 

Conflictset = { Ci. G 2 }  

using DBI  as the seed. The grouped data is presented in Figure 3.4 

Xext. we determine overlap of transactions in groiip 1 with iVG (Step 2); 



Thus. the overlap is one database. 

By applying the same procedure wit h seed as D B2. we get the following. 

Final Conflict,set = (G3) (see Figure 3.5) and the 

Overiap = { D B ? }  n { D B l .  D B z )  = { D B 2 }  

Since there is no more seed database remaining, the procedure of grouping stops. As ure 

have found in Step 2. NG does not overlap in more than one database with the tm-O groups: 

{Gl . G?} and {G3}  formed so it c m  be submitted. 

Conflicting 
Transactions 

Yon-Conflict ing 
Transactions 

Transaction 

Figure 3.4: Grouped transactions for seed as DBi . 

Conflic t irig Transactions G3 
GI DB1 DB3 1 

Non-Conflicting 

Transaction I 

Figure 3.5: Grouping of Transactions for seed as DBÎ.  



3.1.4 Algorithm Description 

The following are the list of data structures and functions necessaxy to present the algo- 

rithm. 

DBMSset (Gi): The set of DBhISs where the subtransactions of Gi are executed. 

~ctiveset(DBMS": The set of global transactions which have an active sub- 

transaction execut ing in DB AISk . 

0 Wait-Q: Global transactions which cannot be submitted irnmediately are put in this 

queue. 

Conflictset: Set of DBiLISs where a new trznsaction may directly or indirectly 

conflict . 

Complementaryset: Set of DBhISs where a new transaction may not directly or 

indirect,lÿ conflict . 

0 Card(s): The cardinality function retiirns the number of elements in the set S .  

The algorithm is described wit h four segments: 

SEG 1: Procedure "Process newly urived transactions (Figure 3.6 )" . 

SEG 2:  Function *'Form group (Figure 3.7)". 

SEG 3: Function "Determine overlap (Figure 3.8 )" . 

SEG 4: Procedure "Process LVait-Q (Figure 3.9):'. 

As the transaction arrives SEG 1 is activated. This checks if the transaction requires 

only one database or more. It directly submits if this is the case or it calls the SEG 2 

Function Group() to group the currently running transactions. Once the group is formed. 



it calls SEG 3 Function Test() to check if this transaction can be submitted. Based on the 

returned value of function Test(). it submits the transaction or places it in the Wait-Q. 

As the currently running transaction completes its execution. the sub-transaction Ter- 

mination procedure (SEG 4) is called which is responsible for re-testing transactions in 

the Wait-Q in first corne first served order. 

3.2 New Global Serial Scheduler-2 (NGSS-2) 

We introduce NGSS-2 using an example shown in Figure 3.10. Assume there is a global 

transaction Gl running on databases DB2 and DB3. A new global transaction G2 a- 

rives which requires databases DB1. DB2 and D g s .  If we apply NGSS-l. G2 will not be 

submit t.ed 

Overlap I I I  
because of the overlap in two databases DB2 and DB3 wit h seeds DB2 and DB3. ' IGSS- 

1 follo~vs an al1 or nothing principle. However. the overlap wit h seed D BI  is null. This 

suggests that a sub-transaction of G2 requiring database DBl could be permit ted to  execute 

while siib-transact ions requiring databases D B2 and D B3 are blocked. We develop NGSS-2 

to allow such submission. Thus. the sub-transact ions (seeds) . which passes submission test 

can be potentially submitted by SGSS-2. This submission does not cause any serializability 

problem wit h those t hat are fully submitted (Le.. have al1 the sub-transactions running). 

However. t his may cause problems. for transactions that are not fully submitted. 

An exaniple will be iIlust.rative. Let there be a global transaction Gl which is active 

in databases DB3 and DB4. A new transaction G2 (newly arrived or waiting transaction) 

requires DBi . DB3 and DB4. Sub-transaction requiring DBi  niIl be submitted because 

there is no overlap on this database (seed). Subtransactions requiring databases DB3 

and DBc will not be submitted and will be put on Wait-Q. Now. suppose another new 



transaction G3 which requires DBi.  DBz and DB3 arrives. Since there is no overlap in 

D& sub-t rançaction requiring D B2 wilt be submitted. Ot her sub-transactions M11 enter 

the Wait-Q. Now. Transaction Gi completes. The Wait-Q for each database is processed. 

For the Wait-Q of database Dg3 .  transaction G3 and Gg will not be submitted ever as 

shown in Fi y r e  3.11. Since G2 and G3 are conflicting transactions the test for submission 

of both transactions rvill fail. To avoid this situation an extra check on the group of 

transactions is performed as follows. In SGSS-1. to create the Conflictset nie check the 

overlap with only the seed database being checked. In XGSS-P. once this check is done 

vie make additional tests as follows. We block submission of a subtransaction (requiring 

databse D Bi ) of transaction :VG if any partially submitted transaction is waiting whet her 

or not they access database DB,. 

The NGSS-2's partial submission policy rnakes it more agressive than SGSS- 1 but the 

strbmission test in NGSS-2 is more rigorous than in NGSS-1. This tradeoff rnakes it difficult 

to predict which of the two is more aWessive. Simulation st,udies discussed in Chapter 4 

are required to answer this question. 

3.2.1 Algorithm Description 

The list of data structures necessary to describe the algorithm are the same as in XGSS- 1 

except for the CVait-Q. In NGSS-1. the entire transaction is placed in LVait-Q if it cannot 

be processed irrimediately. In YGSS-2. part of a transaction can be subrnitted. Thus the 

sub-transactions wait in the Wait-Q. An additional structure --GSTs-cornpiete" is required 

in NGSS-2. 

Wait -Q ( D B A I S )  : Global sub-transactions which cannot be submitted immediately 

are placed on a queue waiting to access the DBMS. There is one Wait-Q for each 

DBMS. 



0 GSTs-complete(Gi) : Set of DBbISs which have cornpleted the global sub-transactions 

submitted by Gi. 

The algorit hm is explained in segments described below. 

SEG 1: 

SEG 2: 

SEG 3: 

SEG 4: 

Procedure -'Process new transaction (Figure 3.13)". 

Function "Group (Figure 3-12)". 

Function "Determine overlap ( sarne as in NGSS- 1) (Figure 3.8)". 

Procedure "Process wait queue (Figure 3.14)". 

As the new transact.ion arrives. SEG 1 is activated. For each database (required by 

transact,ion) it calls SEG 2 to form groups of active transactions. Once a groop is iormed. 

t his segment (SEG 2) is called again to make groups of part ially active transactions. After 

both groupings are done. SEG 3 function is called to determine the overlap. Based on the 

overlaps. SEG 1 decides whether to siibmit a transaction or put it in PVait-Q. 

When an active transaction completes its execution. the transactions waiting in the 

Wait-Q of each database is processed in the first corne first served order. SEG 4 process 

the waiting transactions by calling SEG 2 and SEG 3. 



NGSS-1: Submission of A New Transaction ( at  its arrival) 
input NG: new global transaction to be submitted: 
var Active-GTs: set of active transactions; 

DBhISset (NG) : set of DBMSs accessed: 
output Submit IVG: submit transaction: 

Wait-Q: Put ?lG in Wait-Q: 
begin 

if card(DBBISset(NG) == 1) then 
begin 

~ c t i v e s e t  (DBMSk) +- A c t i v e s e t ( D B M ~ ~ ) ~  NG: 
submit iVG to DBMS" 

end 
else begin 

Act iveCTs t Uk ~ c t i v e s e t  (DBi\fSk) : 
for each D B.U S% DBSISset (NG) do 

begin 
cal1 Function groiip() : 

end 
if test() == pass then 

begin 
for each D B M S ~  E DBbISset(NG) do 

begin 
~ c t i v e s e t ( ~ B i ~ 1 S ~ )  - Act ivese t (DBd1S~ u:VG 
submit iVC7 

end 
end 

else begin 
put Transaction IVG in Wait-Q 

end 
end 

Figure 3.6: Initial Subrnission Algorit hm 



NGSS-1: Function Group (Grouping of Codicting Transactions) 
input Gi: global transaction to  be siibmitted: 

seed = DBM sk. Act ive-GTs: 
Conflict s e t :  set of conflic t ing transactions: 
Complemen tqse t  : set of non-conflicting transactions: 

begin 
for each Gj E ActiveCTs do 

if card((DBMSset (Gj)n DBMS" != 0) 
then begin 

Conflict,set +- Conffictset u Gj: 
end 

else begin 

end 
end for 
for each Gj E Complementryset do 

for each Gk E Conflictset do 
if card((DBSISset(G,) Ti DBMSset(Gk)) != 0) 

t hen begin 
Conflictset - Conflictset u Gj : 
Complemen t~se t  - Conflictset - G,: 

end 
end for 

end for 
end 

Figure 3.7: Algorithm to Form Group 



NGSS-1: F'unction Test (Test for IItansaction Submission) 
input G,: GIobal Transaction to be submitted: 

begin 
if card (Conflict set  n DB h ISse t  (G,) <2) 

then begin 
return pass 

end 
else begin 

return fail 
end 

end 

Figure 3.8: Algorit hm to Determine Overlap 



NGSS-1: Resubmission of Waiting Transactions 
input: G, : Completed Global Transaction: 
var: Active-GTs: 
output: Submit: Subrnit the transaction: 

Wait-Q: Put transaction in Wait-Q: 
begin 

for eachDBM SQ EDMSset (Gi ) do 
begin 

Activeset ( D B ~ c I S ~  + Activeset (DBMS" - Gi: 
DBhISset(G,) + DBMSset(G,) - ~ ~ 1 1 1 ~ ~ :  

end 
if DBSISset(G,) == o then 

begin 
for each G, in Wait -Q do 

begin 
Active-GTs - Uk Activeset (DBAJSk): 
for each DBAJS% DBblSset(G,) do 

begin 
cal1 Function group( ): 

end 
if test () == pass then 

begin 
for each DE?i\fS% DBXISset(GT,) do 

begin 
~ c t i v e s e t ( ~ ~ M S ~ )  - ~ c t i v e s e t ( ~ ~ . \ f ~ ' )  uG,: 
Wait-Q + Wait-Q - G,: 
submit G, : 

end 
end 

else begin 
put G, in Wait-Q: 

end 
end for 

end if 
end 

Figure 3.9: Algorithm to Process Wait-Q 
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Figure 3.10: Submission Process in NGSS-2 
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Figure 3.11: Deadlock Condition 



NGSS-2: F'unct ion Group (Grouping of conflicting 'Ii.ansactions) 
input G,: Global Transaction to be submitted: 

seed = DBMS" Active-GTs. n: 
Conflict se t :  set of conflicting transactions: 
Compiementaryset : set of non-codict ing transactions: 

begin 
ifn = 1 then 

temp = D B M S ~ ;  
else if n = 3 then 

temp = DBMSset(G,): 
for each G, E ActiveCTs do 

begin 
if caxd((DBkISset(G,)n temp) != 0) 

then begin 
Confiictset t Confiictset U Gj: 

end 
else begin 

Complementryset - Complementryset u G,: 
end 

end for 
for each G, E Complementryset do 

for each Gk ~Conflictset do 
if card((DBXISset(G,) n DBhlSset(Gk)) != 0) 

then begin 
Conflictset + Conflictset U G,: 
Complementryset + Conflictset - G,: 

end 
end for 

end for 
end 

Figure 3.12: Function for Grouping 



NGSS-2: Scheduling A Newiy Arrived Tkansaction (NG) 
input  NG: new global transaction: 
var Active-GTs: setofactivet.rânsactions: 

DBMSset(NG) : set of DBMSs accessed: 
begin 

if card(DBMSset(:VG) = 1)then 
begin 

~ c t i v e s e t ( ~ ~ h f ~ ~ ) + - -  ~ c t i v e s e t ( ~ ~ M ~ " ~  .VG: 
submit YG to DBMSk: 

end 
else begin 

ActiveGTs t Uk AC t iveset ( D BAIS') : 
for each DBMS" DBMSset(NG) do 

begin 
cal1 Function group(n= 1): 

if ( t e s t ( )== l )  then 
begin 

Act iveCTs  + Uk ~ c t i v e s e t  (DBM Sk) n Uk Wait-Q( DBdlS": 
caIl Function group(n = 2): 

if (test ( ) == p a s )  t hen 
begin 

~ c t  iveset ( D  B M s ~ )  +- ~ c t i v e s e t  ( D B L \ I S ~  U-VG: 
submit .VG in DBI~IS" 

end if 
end if 

if (test(for n=l)!=l I I  test(for n=3)!=1) then 
begin 

put Transactin in Wait-Q of DBMSk:  
end 

end for 
end if 

end 

Figure 3.13: Process Xew Transaction 



NGSS-2: Scheduling A Waiting Transaction 
input Gi: global transaction completed in a database: 
v a r  ActiveGTs: set of active transactions: 

GSTs-complete: sub-t ransactions of a global transaction completed: 
~ c t i v e s e t ( ~ ~ M ~ ' ) :  active transactions in each DBMSk: 
DBhISset (Gi): set of DBMSS accessed by Gi: 

begin 
GSTsrompIete + GSTs-complete u Gi: 
-Activeset + activeset - Gr: 
if (card(GSTs-complete n DBhISset (Gi)) ) then 

begin 
for each D BMS' in Wait -Q do 

begin 
for each G, E Wait-Q(DBBISk) do 

begin 
call Function group(n= 1): 
if test()== pass then 

begin 
Active-GTs + Uk ~ c t i v e s e t ( ~ ~ i \ f S ' )  n Uk Wait-Q(DBllSk):  
call Fonction group(n = 2): 

if test() == pass then 
begin 

~ c t i v e s e t ( ~ ~ ~ ~ ~ )  t ~ c t i v e s e t ( ~ B A 1  S k )  uG,: 
W ~ ~ ~ - Q ( D B M S ' )  +- Wait-Q(DBJfS7 - G,: 
submit G, : 

end if 
end if 

if (test(for n=l)!= 1 I I  test(for n=2))  then 
begin 

put G, in Wait-Q of DBi\lSk: 
end 

end for 
end for 

end if 
end 

Figure 3.14: Process Wait-Q 



Chapter 4 

Simulation Mode1 

Simulation is used to study the dynamics of a systern without building the actual system. 

Furthermore. the simulation approach gives more flexibility and models systern dynamics 

not easily achieved with analytical models. -4 wide variety of simulation software tools 

are available to facilitate the analysis and development of simulation models. Simulation 

models can be built using one of the two basic approaches [SS'V196]. First. using a general 

purpose simulation languages (such as. SIhIULX. SIMSCRIPT 11.5) to  m i t e  the  required 

funct ions. This approach provides great flexibility in modeling a system's characterist ics. 

However. it requires substantial expertise in simulation programming. The  seconcl approach 

uses high level simulation and prototype tools. which provides an eaîier rneans to model 

the system. However. these offer less flexibility in rnodeling specific details. To develop a 

generic simulator for multidatabase the first approach is adapted here. -1 discrete event 

simulation moclel is developed that uses a simulation library augmented by user clevelopecl 

routines to capture the functionality of the multidatabase system. In this chapter. the 

system is described for transaction processing in the multidatabase environment and then 

the development of the simulation model is presented. 



4.1 Description of the System: Transaction Process- 
ing in Multidatabase Environment 

A multidatabase is a collection of one or more autonomous databases participating in 

a global federation for the exchange of data. Basic scheme of transaction processing in 

multidatabase (MDB) environment is shown in Figure 4.1. 

The f IDBS is composed of two layers: (i) the multidatabase (MDB) layer and (ii) the 

local database (LDB) layer. Global transactions (GTs) (requiring processing on more than 

one database) are submitted to appropriate LDBs through the MDB while local transac- 

tions are submitted directly to the LDBs. Ned*. we describe the transaction manager and 

database objects at each layer. 

Global Transaction Manager: The hIDB layer's GTM divides GTs into sub-transactions 

(GSTs) and handles their execution. GTMs differ in the type of transaction scheduling 

and monitoring mechanism used (eg. Ticket Method) for enforcing the correct execution 

of global transactions. Global transactions begin execut ing by submit t ing some/all of its 

sub-transactions to global transaction server (GTS) depending on the global transaction 

manager (GTM). The GTS is the interface between the MDBS and the LDBS. The GTS is 

responsible for inferring the global view provided by the LDBS and initializing structures 

to maintain a conimunication channel between the two layers. It is also responsible for 

creating a new local transaction frorn a global sub-transaction and returning the result 

after it s execut ion. 

Global Database Objects (GDOs): GDOs are the objects in the global view. Al1 ob- 

jects in the global v i e ~  are stored in sorne LDBS. A G D 0  has a name unique across the 

entire MDBS, which may be a local object promoted to the global view. That is. the set 

of GDOs provided by the LDBS for the global view may only be a subset of t,he objects in 

the local database. However, it is entirely possible that there exists global objects in the 



LDBS that are not accessible by local transactions ' . 
There are several concurrency cont rol st  rategies used at the local level including locking 

or time stamp ordering. This gives rise to  many local transaction managers. 

Local Transaction Manager (LTM): The LTM is responsible for al1 aspects of transac- 

tion management including concurrency control. reliability. deadlock resolution. etc. The 

simulation mode1 currently implements strategies that is known to  produce only correct 

execution sequences. 

Local Database Objects: Objects c m  be anything we chose to  represent in the database. 

They can be artual data  objects or control objects used by the system. It can be stored 

in rnany forms. Le.. as relational database. as object-oriented database etc. These are the 

resources used to process local transactions and global sub-transactions. 

4.1.1 Requirements of Simulation Mode1 

Based on our discussion in the previous section. simulation of transaction processing in 

MDB environment requires: 

Modeling database functionality and resoiirces at both local and global levels (mode1 

static objects). 

lIodelinp dynamic act ivit ies. i.e.. transaction arriva1 and processing at local and 

global levels. 

Our simulation models for static and dynarnic objects are described next. 

4.2 Simulating Static/Passive Ob jects 

Transaction managers and database objects a t  local and global databases. and the GTS are 

rnodeled as static objects. Behavior of t hese objects does not change during the simulation 

run. 

'This pemits  modeling strategies that use a partitioning strategy for local and global data 
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4.2.1 Local Database 

First. we describe our simulation of local database elements: local database objects and 

the local transaction manager itself. 

Local Database Objects: There are a variety of database models for representing data. 

A general database simulator must not only be able to handle t h e  more common relational 

and object-oriented models. but must also capture legacy modeis siich as the hierarehical 

model. It is infeasible to implement each rnodel in isolation. so  the challenge in modeling 

database objects is to define a generic database object usable by rnany different database 

and transaction models . 

A generic database object is definecl independent of any database model. This indepen- 

dence is achieved by realizing t hat fiindamental to d l  models and inforrnat ion represent at  ion 

are two basic components: ob jects and ob ject references. 

An object is a generic container for storing information whose use is dependent on the 

information stored. Objects in isolation are useless because there is no way to cletermine 

t heir relat ionship to ot her ob jects in the environment. The meaning of t his relationship may 

Vary with the type of object or how the object is used. but allowing a generic relationship 

be twe~n objects captures any t r p e  of relationship. The rneaning of the relationship can 

be defined esternally to  the object. but the object knows the existence of the relationship. 

X special type of relationship is also defined for object-orientecl models. The subtype or 

subobject relationship allows a hierarchy to be impased on the objects instead of the generic 

relationship which implies equality in the object reference. 

The generic database object. db-object. has a name unique across the local and the 

multidatabase domains. Instead of storing actual data. an integer value stores the object 

size. A db-object gathers statistics on object usage and partially mediates object access. 

Current statistics gat hered on db-objects include: 



lock time - The fraction of the time that the object is locked. 

0 queue size - The number of transactions waiting for the objects. 

0 number of uses - The number of times that the object is used. 

Since locking is comrnon in many transaction management protocols. a db-object im- 

plements locking as an interface. A cal1 to lock a db-object by the transaction manager 

may result in the object blocking the transaction. by putting it on a FCFS wait queue 

for the object. if access cannot be immediately granted. The system allows an unlimited 

number of read locks as long as no mi te r  is waiting. Once a transaction process is put on 

a queue it stops execution. Control is passed back to the transaction manager. which exits 

and waits for the next simulation event from the simulation controller. When a transaction 

unlocks an object. the db-object class checks the queue for waiting transactions and will 

restart any transactions in the simulation that have been waiting for the object. After a 

mite completes al1 reads in the queue are processed before m o t  her m i t e  is started. 

Defining database objects does not fully define a database. Each database mode1 ni11 

have a different way of cornbining these database objects to  form a workable database. A 

simulated clatabase is const ructed by the virt iial base-db class and the classes derived 

from it. The base-db class defines virtuai functions for loading and saving a dstabase 

configuration file and for defining database performance. Database performance is a simple 

integer value representing the number of bytes it can process per second. There are no 

restrictions on parallelism and dividing t his resource. For example. many read transactions 

can be executing simultaneously and each Nil1 receive the maximum processing speed. 

The virtual base-db class serves as the basic definition for the different database mod- 

els. A relational database mode1 called the rel-db class is defined. The rel-db class 

has methods for addinglremoving relations frorn the database, locking/unlocking relations. 

and loading/saving database configurations. The database consists of an integer storing 



the number of relations in the system and a BfTree storing the unique object names as 

keys and pointers to db-objects as data. Database configurations are simulation parameters 

that are simply retrieved from text files. 

Local Transaction Manager: The transaction manager a t  the local level is simply re- 

ferred to as T M  A lot of database functionality normally provided by the TM has been 

divided among the other units t o  simplify the implementation of the transaction manager. 

For example. the database objects help maintain locks and the transactions themselves heip 

in t heir execution. Nevertheless. there remains several requirements of a TAI t hat must be 

defined and are specific to each individual TM. They include the handling of transaction 

initialization. commit. abort. and the execution of operatiom. The only Th1 implemented 

is relationai strict two-phase locking. No deadlocks occur in this implementation as re- 

source ordering is used. Since the system will never deadlock. transactions will never be 

aborted. 

Transaction initializat ion in the st rict-3PL locking implementat ion assigns a unique 

transaction id and records the time of the transaction's arrivai. Transaction commit releases 

al1 loch  and records the transaction residence time in the system. Transaction abort is not 

required so it is not implemented. 

Execiition of transaction operations varies depending on how the  transaction manager 

allocates resources. The strict-SPL locking implementation uses locks to mediate object 

access. If a transaction can acquire the necessary locks. it is allowed to execute the opera- 

t ion. Executing an operation involves waiting for a given time depending on the operation 

and then being restarted by the sirnulat ion system after this wait is completed. The wait 

time of the transaction process equals the time it takes to perform the operation. If a 

transaction fails to acquire a lock. it is placed in a queue for the object (in db-object) and 

the transaction manager returns controi to the simulation systeni to pick a new transac- 

tion to execute. Time for lock acquire/release is assilrned to be zero. Lock activities are 



assumed to take zero time because the time to access the lock in real system is negligible 

as compared to the time to read/write the relation. A zero lock time does not affect the 

validity of comparing GT'rIs as al1 GTSIs must use the identical databases with the sarne 

relative performance. 

The t ime to execute an operat ion is linear in object size. The database has an associated 

speed in bytes/second. and the time to execute the operation is the size of the operand 

divided by the database speed. 

The TM gathers statistics on the number of transactions (committed and aborted) and 

t hroughput in both transactions/sec. and bytes/sec. An important statistic is average 

transaction execution time which is a good cornparison between tmnsaction managers. 

Addit ional resul ts and metrics are described later. 

4.2.2 Multidat abase 

The multidatabase simulator is general enough to allow miiltiple MDBS configurations and 

different global transaction managers (GT4fs). The MDBS simulator is divided into a 

set of classes which provide the required functionality of a MDBS. Test ing different SIDBS 

transaction managers only requires redefining the class associated wit h transaction manager 

specific functions. This allows for greater code reuse and consistency across simulations of 

different transaction managers. 

Global Database Objects: Two entities control access to global objects. The MDBS 

class is responsible for the entire definition of the MDBS. It has functions for adding and 

removing a database (and the global objects they contain). adding global objects to the 

global view. and maintaining the list of global objects and local dat,abases. References to 

the local databases are stored in a B+Tree using the unique DB name (the key) and a 

pointer to the global transaction server (GTS) managing the local database (the data). 

Pointers to al1 global objects in the global view are stored in the B+Tree. 



Global Transaction Server (GTS): The GTS is responsible for loading the global view 

provided by the LDBS and initializing structures to maintain a cornmunicat,ion channel 

between the two entities. I t  creates a new local transaction from a global sub-transaction 

and returns the result after its execution. A GTS maintains a list of global objects which 

the local database provides to the global view. It also maintains a list of local transactions 

submitted from global transactions currently executing on the database. It is assumed t hat 

the time to communicate between the global level (SIDBS) and the LDBSs through the 

GTS is zero. 

Global Transaction Manager (GTM): The global transaction manager insures that 

the submission of global transactions and t heir sub-transactions are executed seridizabily 

A GT'VI has virtual functions for initializing, running, and committing transactions. It 

also maintains statistics on the number of committed and aborted transactions and the 

residence time of global transactions in the system. 

Three transaction management algorit hms are irnplemented: the Ticket Slethod GTSI. 

YGSS-1 and YGSS-3 GT'LI. Eàch is described below. 

Ticket GTM Implementation: The Ticket SIethod GTM implementation adds a ticket 

object to each LDBS participating in the SIDBS. -4 ticket consists of a 1-tuple relation of 

size 10 bytes. The ticket for each LDBS is also adcled to the global view. 

When init ializing transactions. the global transaction is registered (itssigned a unique 

id) and its initialization time is recorded. Since the Ticket biethod imposes no restrictions 

on the order of sub-transaction subrnission. al1 sub-transactions of the GT are subrnitted 

imrnediatel. The GT is t,hen passivated while waiting for results from sub-transaction 

completion. However. in addition to  the normal operations of the subtransaction. the 

Ticket hIethod adds an operation to  increment the ticket counter. 

When sub-transactions complete. the GTS reactivates the GT. If there are still oiit- 

standing GSTs. the GT is passivated again. Otherwise. it attempts to  commit. 



In the commit phase. the GTbI determines if there were any global conflicts using 

the global serializability graph (GSG) test. If t here were confiicts. al1 GSTs are aborted. 

Otherwise. a "signal" is sent to  al1 GSTs telling them to commit. This is not two-phase 

commit. The simulation assumes t hat once the signal is sent. al1 LTs successfully commit. 

Lmplementation of NGSS-1 and NGSS-2: When a global transaction GTi is initiated. 

it is determined if the transact,ion should be scheduled. Note that a GTi with only one 

sub-t,ransaction can dways be subrnitted. In NGSS-1. if the DBbISset of GT' does not 

conflict with the Conflictset of al1 active GTs ( i.e. t hey have no more t han one database 

in comrnon) the GT, is submitted. If t,he test fails. GT, goes into a wait queue. In NGSS-2. 

the same check is performed for each sub-transaction individually and sub-transactions are 

submi tted individually. 

A GT reaches the commit phase after completion of al1 its sub-transactions. DBXISset. 

and Activeset are updated at  the completion of GT. Subsequently the wait queue is 

c hecked. and al! the eligible transact ions are scheduled. 

4.3 Simulating Dynamic O bjects 

Object behavior changes over time. Section 4.3.1. describes the basic funct ions providecl 

by t h e  standard C f +  library used in t his research. In Section 4.3.2. transaction generation 

and processing is describecl. 

4.3.1 Basic Framework (Cf+ Simulation Library) 

The simulation framework is provided by the simulation modeling support ( S M )  library 

designed at Vrije Universiteit [BE951 iiçing C++. The ShIS library uses Discrete Event 

Simulation and supports both an event and process-oriented approach in developing sim- 

ulations. Essentially rnodeled components causes events that change the system's state. 

Event,s esist autonomously and are discrete so "nothing occurs between two events. 



The S M S  library provides several classes including: 

Session: The Session class derives application from S M  Iibraq-. 

0 Simulation: This class schedules the events. It employs a caiendar of events and 

repeatedly extracts the events. t hat, should execute. 

O Euent and Entity: These classes are used to mode1 dynarnic objects. 

Generator  It permits a variety of random number streams and probability distribu- 

t ions for generating random numbers. 

Resource: ..\ Resource represents a passive objects to be used by events. 

0 Queue: It maintain queued events. for example waiting for a resource to become free. 

O Histogram: This class gathers statistics and print the results of simulation. 

0 Additional classes ( to support. graphical display. animation etc. ) 

A simulation program, employing the SMS library. derives an application from the 

Session class and ovemites  its m a i n  funct ion. The session::mazn funct ion t hen creates 

a simulation object which includes the required resources and queues (static objects) and 

histogram and analysis objects for gat hering and analyzing results. The dynamic objects 

are derived from the classes euent and entity. and are given functionality by overriding the 

application operator of t hese classes. Before running the simulation. init ializat ion events are 

scheduled. The simulation class manages the schedulers t hat control which event should 

be activated. 

Once the simulation is initialized it begins by invoking the sirnulation::rzm method. 

The simulation then runs until the simu1ation::quit method (i.e.. there are no events left 

or for a specified number of time units) is invoked. When an event is due to be activated. 

it is extracted from the scheduler and the main sirnuiation routine executes the code from 



the application operator of t hat event. Before executing the events. the  simulation dock is 

updated to the activation time of the current event. Furthermore it maintains a conditional 

list where events can be put that could not execute but may execute a t  a future time. 

When an event occurs. it can be rnanaged in various ways. The event can be appended 

to  a queue or it can be rescheduled. On its way it changes state. Some of the states as 

shown in Figure 4.3 can be in: passive. active. queued. pending. conditional etc. 

4.3.2 Transaction Generation and Processing 

In this section. generation and processing of local transactions foliow-ed by global transac- 

t ions are described. 

Local Transaction Generation: The local database simulation involves two processes: 

the  transaction processes and the transaction generator process. The transaction generator 

process runs for the duration of the simulation and generates new transactions which enter 

the system a t  a given interval. Current ly. a new transaction enters the systern every 1.5 t ime 

unit. but this is tunable parameter. Figure 4.3 illustrates the scheduling of the processes 

in the system. X dashed line represents initiation of a process a t  startup t ime. A solid line 

represents process scheduling that is ah-ays performed. and a dotted line represents other 

scheduling t hat rnay occur. Notice t hat the generator process continually schediiles itself 

while also creating and scheduling new transactions t hat enter the system. A transaction 

may also schedule another transaction to  run xfter it releases a resource required by the 

ot her transaction. 

Local Transaction Processing: Transactions are added to the system by a transaction 

generat ion process which generates t hem at  a set interval. The transaction generator loads 

in a query configuration file consisting of a given number of read and write queries ancl the 

probabilities of their occurrence. Queries consist of a list of readlwrite operations. The 

transaction generator randomly chooses a query for a transaction to execute. 



Transaction execut ion is performed by executing the read/write operat ions. Since each 

transaction is associated with a simulation process. a transaction only runs when it is al- 

lowed to proceed by the simulation (i.e.. it is not queued for a resource or waiting for 

work to complete.) When a transaction does run. it may be in one of four phases: INT. 

RUN. CO-VIMIT. and ABORT. The INIT phase is used when the transaction first begins 

executing and registers the transaction with the TM. A transaction is in the RUN phase 

while it is executing its operations and has not yet cornpleted. When the transaction has 

completely evaluated its query or must abort for some reason. it enters either the COMMIT 

or ABORT phases. respective- These phases cal1 the TM to either commit or abort the 

transaction. -4fter the commit or abort is completed. the transaction process is removed 

from the systern. 

Global Transaction Generat ion: At the global level. there are two simulation processes: 

the global transaction process and the global transaction generator process. Both of these 

processes behave similar to their local database counterparts. Then. the global trans- 

action generation process runs for the duration of the simulation. generating new global 

transaction processes a t  a set interval. Global transaction processes are similar to local 

transactions processes. Each process represents a single global transaction which may run. 

be blocked waiting for local transaction completion. and then terminate after completion 

of the giobal transaction. Figure 4.4 shows how processes are scheduled in the simulation. 

A dashed line represents an initiation of a process at startup time. A solid line represents 

process scheduling that is always performed. and a dotted line represents other scheduling 

that rnay occur. 

Global Transaction Processing: A global transaction is generated periodically by 

the GT-gen process. The GT-gen process has a set of al1 the possible global queries and 

generates t hem according to their probabilities. After a new GT is created. it is put in the 

initializat ion phase and begins its execution. 



Initialization depends on the GTM algorithm but rnay involve submission of some/all 

of the global subtransactions. The sub-t.ransactions of a GT are in the form of a list of 

operations (read or mite) .  which may not be the form that the LDBS expects its transac- 

tions. It is the responsibility of the GTS to  convert the GST into the suitable form for the 

LDBS. 

Local transactions created from a global subtransaction enter the prepare-to-commit 

phase instead of automatically commit t ing. When a local transaction enters the prepare-te 

commit phase. it calls its GTS. The GTS reactivates the appropriate G T  which may choose 

to  commit or abort the transaction. The  local transaction stays in the prepare-to-commit 

phase until it receives some signal from the G T M  

A GT remains in the RUY phase until al1 sub-transactions retiun results or an error 

occiirs. The GT handles the completion of a GST. If the GST was aborted. presumably 

the GTSI should abort and take steps to abort the rernaining GSTs. Otherwise. the GST 

will correspond to a LT in the prepare-tecommit phase whicli will be holding resources 

and loch  waiting for a signal from the GT.  For most GTMs. the GT cannot commit the 

LT until al1 other GSTs complete. Therefore. the LT is moved into a holding list which 

contains al1 GSTs processed that are in the prepare-tecommit phase. waiting for the rest 

of the GSTs. If there exists more GSTs not yet completecl. the GT passivates itself again 

waiting to be restarteci by the complet ion of another GST. 

When ail the GSTs complete. the G T  can attempt to commit the GSTs. The  G T l I  

validation procedures are now applied. If the GT fails validation. the GSTs are sent the 

signal to abort. otherwise they are told to  commit. Each LDBS will handle the commit. 

and the GT can be removed from the system. The system does not impiement two-phase 

commit (2PC) as there is no reply from the LDBS on the success of the commit request. 

It is assumed that there are no transmission errors. and once the GTM sends the  signal to 

commit. ail LDBSs will successfully commit. 



4.4 Overall Structure of the Simulation Program 

Simulation initialization involves set t ing up the SIDBS configuration and initializing the 

simulation processes. Figure 4.5 details how t his is accomplished. Basically. the global 

structures for the MDBS. GT-gen and GThI are initialized. and G T g e n  is started imme- 

diately. Each local database is added to the MDBS in a process simillu to loading a single 

local database. It is only the forth step. adding the LDBS to the SIDBS. which is new. In 

this step. a global transaction server (GTS) is created for each LDBS to communicate with 

the MDBS. Each LDBS provides a list of objects accessible by the global view. The objects 

the LDBS provides to the MDBS may be a subset of the objects in the local view. After d l  

LDBSs are initialized. a GThI specific initialization routine is called as many GTMs may 

need to setup structures after seeing the entire 5IDBS configuration. 

The ROW of control shown in Figure 1.6 is best described from the perspective of a global 

transaction. The local flow of control at each LDBS is unaffectecl by global transactions 

and vice versa. but it is important to remember that although each LDBS and the global 

level are sharing the same scheduler. logically there are separate run-time environments 

for each LDBS and the global level. Each LDBS hm its own local transactions and global 

transactions can only work in a LDBS by issuing local transactions. Thus. each LDBS is 

a separate logical entity with its own scheduling mechanism. Similady. the global level 

scheduling can be considered a separate entity with global transaction generation and e x -  

cution separate from any local scheduling. Note hotvever that global transaction esecution 

depends on local scheduling decisions as global transactions must submit transactions and 

retrieve results from local databases. 

The life of a global transaction begins when the transaction is generated by the global 

transaction generator (GT-gen). The GT-gen creates a new global transaction process 

and sets it to run immediately. The global transaction then begins its execution in the 



initialization phase which dlows it t o  initialize its structures and possibly submit some 

or al1 of its sub-transactions depending on the GTM. After initialization is completed 

the global transaction is set to  run immediately. However. this does not mean that the 

global transaction will begin executing imrnediately. It only means that the next time it 

is restarted. it will start in the run phase. It is entirely possible that the initialization will 

passivate the transaction (remove it from execution) for a given time. For exarnple. in the 

Ticket 'vlethod GT'LI. al1 local transactions are submitted at  the initialization phase. so the 

GTSI passivates the transaction unt il a local sub-transaction returns wit h a result . 

A global transaction in the run phase means t hat initialization has been completed and 

the transaction is running. 

In the commit phase. the transaction is first vdidated. If it fails to commit. it enters the 

abort phase. After the commit phase completes. the global transaction process is destroyed 

and rernoved from the simulation. Ot  henvise the aborted transaction is reinit ialized ancl 

resubmit tecl. .A global transaction continues execut ion in the system unt il it commits. 
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Chapter 5 

Performance Cornparison of MDB 
Schedulers 

Previous chapters developed a simulation mode1 for multidatabase system. described two 

existing LIDB schedulers and developed two new schedulers. This chapter describes sim- 

ulation restilts t hat compare performance of t hese schedulers. First . experimental det ails 

are desrribed followed by results and discussion. 

5.1 Experimental Details 

In t his section the schedulers are described and evaluat ed. Performance met rics presented 

include variables considered in the experiments. 

5.1.1 Schedulers Compared 

TWO existing schedulers. Ticket Method and GSS (Chapter 2)  and two new schedulers 

XGSS-1 and NGSS-2 (Chapter 3) are evaluated. The purpose of ciescribing GSS is to 

present the basis of development of new schedulers NGSS-1 and NGSS-2 but it is not 

simulated in this research. Only three schedulers Ticket Method. NGSS-1 and NGSS-3 are 

comparecl. 



5-  1.2 Performance Metrics 

Four metrics are used to compare the performance of schedulers. 

Residence time: This is the total time a transaction spends in the system. Le.. the time 

from when a transaction arrives to the time when it commits. This is a very important 

measure from the point of view of the user (or transaction). 

Number of aborts: This metric is considered to check the number of unnecessarily 

aborted global transactions verses the number of committed transactions. It indicates the 

amount of re-execution of global transactions that results due to aggressive concurrent 

submission of global transactions in the Ticket Slethod. NGSS-1 and SGSS-2 will have no 

aborts of global transaction because of their pessimistic submission policies. 

Utilkation: This measures the percentage of time the database was bus- The percentage 

of time the objects are locked is a measure of utilization of objects. Locks are not released 

until the 1s t  operation of a LT completes in a database in order to enforce serializability 

at the local level. In the Ticket Alethocl loch are held for an even longer time (until the 

esecution of the last GST or the abort of the global transaction. m-hichever cornes first) 

to enforce global serializability. Therefore. the time when the database is iwcessed by 

transactions is usually shorter t han the lock time. We will report bot h the information on 

titili~at~ion. i.e.. lock time and the database access time. Each object in a database can have 

different utilization levels and so an average value is reported. It should be noted t hat the 

GST processed through LDBS but aborted later on by the SIDBS. will also be included in 

the calculat ion. 

Computation Time: The MDB simulator is generic and the transaction manager module 

can load one of the three schedulers. The CPU t ime required to run the simulator. using 

a specific scheduler can be used to indicate the computational time of the scheduler. We 

report computational time for 100 time units (seconds) of database simulation. 



5.1.3 Parameter Setting for Local Database 

The local database simulator simulates a database with 6 relations varying in size from 75 

to 11000 bytes with average relation size of 3400 bytes. The database processing speed is 

set at 10000 bytes/sec. Obviously. these numbers are too small to be realistic in today's 

environment but can be scaled appropriately. 

There are ten different queries (local transactions) presented to the database. They are 

divided into five read and five write queries. The probability of a read query is 0.8 with the 

remainder being write queries. Each que- has an associated probability The probabilities 

of al1 read queries sum to 1. as do the probabilities of ail m i t e  queries. The average number 

of bytes accessed over al1 queries is approxïmately 10500 bytes. Thus. the average time to 

esecute a query should be 1.05 sec. 

5.1.4 Experimental Variables 

The follonring variables were considered in designing the simulation experirnents. 

Load Related Variables: The database load is affectecl by processing speed of 

the databases and the inter-arriva1 t ime of global and local transactions as: described 

below. 

(i) Processing Speed:  If the processing speed of the database is very low* (as 

compared to arriva1 rates). the database gets overloaded because the queue of 

waiting transaction vi l1  be too long and the  service rate will exceed processing 

power. 

(ii) Inter-Arriva1 Time of transaction: If the inter-arriva1 tirne of global and 

local t.ransactions decreases for a given database the system load increases. 

Thus. the values for the three variables (i) processing speed of local databases. (ii) 

inter-arriva1 time of local transactions and (iii) inter-arriva1 time of global t ransac- 



tions need to be set for each experiment. These should be taken in such a way that 

the waiting queue (or subsequently the transaction residence time) should not be 

infinitely long. 

Setting Processing Speed: The value of processing speed of LDBS is set at 10000 

bytes/second as noted in Section 5.1.3. 

Setting Inter-Arriva1 Time at the LDBS: LDBS processes LT and GSTs sub- 

mitted through MDBS. In order to set an appropriate level of load at LDBS. the local 

database simulator was run 10 times for 1000 seconds at processing speed of 10000 

bytes/second. Each run has no riin-up period and is terminated wit h a hard-close 

alter 1000 seconds. S tat  k t  ics were gat hered on transaction residence t ime. As  Figure 
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Figure 5.1 : Transaction Residence Time Vs. Inter-Arriva1 Timc for LTs 

5.1 shows. the average transaction residence time increases rapidly as the inter-arriva1 

time increases beyond 0.3 transactions/sec. Yote that the system does not get over- 



Inter-Arriva1 Tirne 1 Processing Speed 

GlobaI 
Transaction 

(sec. ) (bytes/sec.) 

Transaction 1 

Table 5.1: Setting values for Ioad related variables 

loaded a t  an inter-arrivai time of approximately 1 second. Although the arrival rate is 

geater  than the service rate. the increased parallelism allowed by execriting multiple 

read transactions simultaneously allows for a higher arrival rate t han could normally 

be achieved. 

Tow we need to break u p  this load into equivalent global and local transactions. LVe 

need to set the inter-arrival time for local transactions a t  higher t han 1 second to ac- 

commodate global transactions while avoiding overloading. Global inter-arriva1 tirne. 

local inter-arriva1 time and processing speed of LDBSs to  be used in the simulation 

experiment are summarized in Table 5.1. 

Number of Sub-transactions in Global Transaction: Global transactions are 

broken into global siib-transactions to be submittecl to  individuai LDBS. If the niim- 

ber of local databases are more in a multidatabase system. pÿrallelism will be more 

(more GST can be submitted concrirrently). 

In our experiment. we consider three and five LDBSs. The lengt hs of GTs were chosen 

using probabilities shown in the Table 5.2. 



Table 5.2: Frequency distribution of different lengths and variations of global transaction. 

No. of 
LDBSs 

3 

5.1.5 Parameter Setting for Ticket Method 

The Ticket Method GTM has two parameters critical to  its performance. They are the 

timeout value assigned to  a global transaction (g-timeout ) and the tirne for global trans- 

action re-submission after abort (g~esubrni t  ). The algorithm is very sensitive to t hese 

parameters. If the g-timeout is set too low. global transactions may abort when they are 

not in global deadlock. If g-timeout is too high. the system suffers from lower concurrency 

as the  time to recognize global deadlock is high. Further. when p-timeout is too high. 

local clat abase overloading is possible as global transactions hold local resources from local 

transactions which queue up  waiting for the resources. Since the global transactions tend 

to access about the same number of bytes in each database. g-timeout is made constant 

over al1 t ransac t ions. 

Defining the global transaction resubmit time is even more cornplex. If gxesubmit is 

zero. the GThI may overload local databases by continually resubmitting global transac- 

tions which cannot complete. Furt herrnore. besides taking resources and impeding local 

transactions. these resubmitted global transactions are more likely to  continually abort as 

the deiay times a t  the local databases increase due to overloading. Gxesubmit has been de- 

Xo. of LDBSs 
required by 

a GT 
1 
2 
3 

XO. of LDBS 
combinat ions possible 

(Variation of GTs defined) 
3 
3 
1 

Frequency of each 
variation of G T  

0.067 
0.200 
0.300 



fined to  be the square of the number of times the transaction has aborted times a constant 

factor a. Even the choice of this constant factor is very sensitive. In testing for a constant 

value of 10. the average GT residence time was 4 seconds. However. with constant values 

of 5 and 20. the average GT residence times were 131 seconds and 32 seconds. respectively. 

We experimented on the values of g-timeout and the constant CI as (Z*g-timeout) in 

g~esubrn i t  = û*nurnaborts2 for each run and the b a t  found Rias chosen. It turns out to  

be better not to limit the growth of gresubmit (say at  some constant 100). This tuning is 

specific to the MDBS configuration. It  is highly unlikely t hat this tuning can be perforrned 

in a general. dynarnic .LIDBS. We ran the simulator using different values of g-timeout and 

a until 100 GTs were processed. The combination of g-tirneout and a which gave the lowest 

global residence t ime. were selected as s h o w  in Table 5.3 (for 3 databases) and Table 5.4 

(for 5 databases). 

5.2 Results 

The MDBS simulator was run 10 times (once for 5 databases using ticket method as com- 

putation t ime rvas escessively high) for 100 global transactions. A global transaction must 

commit. before it is aIlowed to  leave the sptem. sa it may be restarted many times un- 

til it commits. After 100 global transactions have been generated. the global transaction 

generator no longer submits global transactions alt hough the local dat abase transaction 

generators continually submit local transactions. This is done to see how the different 

GTMs handle the same load. The set of 100 GTs generated will be exact ly the same for 

three GTMs. 

Statistics are gathered on residence tirne! the number of global transaction aborts. 

utilization of LDBS and computational time of the scheduler. 



(sec.) 
Global 

'ransac t ion 
Local 

Transaction 

* Value selected 

,a-timeout 
(sec.) 

2 
3* 
4 
2 
3 
4 
5 

6* 
9 

Table 5.3: Setting parameter in Ticket Method for three databases. 
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Table 5.4: Setting parameter in Ticket Slethod for five databases. 
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Figure 5.2: Global Transaction Residence Time Vs. Inter-Arriva1 Time 
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5.2.1 Residence Time 

Global transaction's average residence time and SD (standard deviation of mean d u e s  

Global Inter-Amval Time (sec.) 

+ 

- 

- 

- 

obtained over 10 replications of simulation) for Ticket method. NGSS-1 and NGSS-3 are 

I 1 1 1 r - Ticket Method 
* - * NGSS-1 - 

- 

* 

- 

s h o w  in Table 5.5 and in Figure 5.2. Cornparison of residence time of local transactions 

+--- - --AA 
1 1 + 

5 1 O 15 20 25 30 

and global subtransactions together in the first database are shown in Table 5.6 and in 

Figure 5.3. It can be observed t hat as the load increases. the residence time of transactions 

increases with al1 the three schedulers. Global residence time is veq- sensit.ive to load while 

local residence time is not too sensitive to global arriva1 rate. However. Ticket LIethod 

has a higher residence time than the two algorithms. Further. a t  high load. performance 

of t,icket method is poor. As the load decreases (inter-arriva1 time of GTs increases). it,s 

performance is improved as the transactions are processed serially. In YGSS-1 and 'iGSS- 

2. the residence time for GTs is consistent because the LDBS does not get overloaded. At 
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Figure 5.3: Transaction Residence Time Vs. Inter-Arriva1 Time in LDBSl 

much lower load al1 the schedulers give very similar results. 

Between NGSS- 1 and SGSS-2. neither gives better results consistently. Ait hoiigh 

YGSS-2 submits GSTs more aggressively than NGSS-1, the submission test is more rigor- 

011s in NGSS-2 tlian in NGSS-1. Hence. in some cases NGSS-1 is superior while it is inferior 

in some other cases. However. t,he difference is not significant since the load is sirnilar in 3 

and 5 databases. Further, the residence time is more with 5 databases than in 3 databases 

for the same load due to the increased processing involved. 

5.2.2 Number of Aborts 

The overloading of the databases wit h the Ticket .\let hod causes more global transactions 

to t imeout and abort. The abort rate \vit h the global inter-arriva1 t ime is shown in Table 

5.7 and in Figure 5.4. 

As the load in the database increases or the number of database increases, the abort 



Residence Time 
Data- 
base 

3 

5 

Xo. of 

Ticket llIet,hod 

Inter-Arriva1 Time 
(sec. ) (sec. ) 

'SGSS-1 Global 
Transactions 

1.5 
2.0 
2.3 
3.0 
4.5 
7.5 
15.0 
30.0 
1.5 
2.0 
2.5 
3.0 
4.5 
7 F 

/ .a 
15.0 
30.0 

* Esecution was aborted as run coulcl not be cornpleted in few hoiirs at t his load. 

** Ticket method was run for only one replication due to excessive computation time. 

Local 
Transactions 

1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 

Table 5.5: Cornparison of Global Resiclence Time 



Databases (Sec. ) 
Global 1 Local 

(sec. ) 
YGSS-1 Ticket blet hod 

Transactions 
1.5 
2.0 
2.5 
3.0 
4.5 
7.5 
15.0 
30.0 
1.5 
2.0 
3.5 
3.0 
4.5 
7.5 
15.0 
30.0 

No. of 1 Inter-Arriva1 Time Average Residence Time 

- 

- 

- 

* Execution was aborted as run could not be cornpleted in few hours a t  this load. 

** Ticket method rvas run for oniy one replication due to  excessive romputation time. 

Transactions 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 
1.5 

Table 5.6: Cornparison of Local Residence Time (combined LTs and GSTs) in the first. 
database. 

mean 
* 

2.470 
4.401 
2.378 
1.547 
1.517 
1.260 
1.266 

JC 

1.829 
1.843 
1 .930 
1.943 
1.409 
1.362 
1.216 
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Figure 5.4: No. of Aborts Vs. Inter-Arriva1 Time in Ticket Methoci 

rate of transactions also increases. The long wait and processing tirne causes more global 

transactions to timeout and hence abort. 

5.2.3 Utilization 

Table 5.8 and Figure 5.5 shows the cornparison of utilization of objects for the t hree sched- 

ulers iii the first database (selected arbit rarily). The Ticket Met hod shows a high percentage 

of lock time minus access time as compared to the other two schedulers. Locks on objects 

are held (for deadlock detection) until al1 the subtransactions are completed in the Ticket 

Methoci. On the other hand there is no cycle check in the two serial schedulers and locks are 

released as a sub-transaction completes. Hence. lock tirne is less in serial schedulers as corn- 

pared to  Ticket Method. At reduced load al1 the three algorithms give similar utilization 

values due to the serial execution of global transactions. 
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2.0 
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3.0 
4.5 - r 
( -3  

15.0 
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1 Inter-Arritd Time Average number of Aborts 
in 5 database 

mean i o c d  
Transaction 
1.5 
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1.5 
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Table 5.7: Average global transaction aborts in Ticket Met hod 
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Inter-Arriva1 Time 

G Iobal 
Transaction 

Lock time ( database access time) 

Local 
Transac t, ion 

1 ~ Ticket 
Met hod 

* Execution was aborted as run could not be completed in few hours at this load 

Table 5.8: Cornparison of Utilization 
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Figure 5.5: U t  ilizat,ion Vs. Inter-Arriva1 Time 

5.2 -4 Computational Time 

The ticket met hoc1 processes more transactions because t here is no global fiow control which 

leacls to a large number of aborts thereb-  reducing actual processing of transaction. 

The cornpiitational time is small at extremely low load as shown in Figure 5.6 and 

Table 5.9. At higher load. there appears to be no definite trend. The  cornputational tirne 

is generally more for 3 databases than in 3 databases. Based on the computation time 

the schediilers can be ranked (increasing order) as the Ticket hlethod. NGSS-3. NGSS-1. 

Cornputation time of serial schedulers are more than nrith the Ticket hIethod because it 

requires more rigorous tests than NGSS-1 and NGSS-2. 



1 Databases ( (Sec. ) 

1 1 Trans. 
Local 

Trans. 

(sec. ) 
Ticket YGSS-1 

Met hod 
* 4.3385 

2.0536 3.2698 
S. 1696 4.8671 
3.11 17 4.6677 
2.2955 1.5782 
4.1389 4.3898 
4.458 1.3814 

1.3822 1.256 
* 8.9013 

4.0626 5.5178 
4.8244 5.5409 
6.9323 4.0453 
2.3379 3.5503 
3.0114 2.7605 
2.4492 2.2609 
2.1364 2.1362 

* Esecution was aborted as run could not be completed 
in few hours at t his load 

Table 5.9: Cornparison of Computational (CPU )Tirne for 100 seconds of Simulatioii 
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Figure 5.6: CPU Tirne Vs. Inter-Arriva1 Time 

5.3 Discussion 

The ticket method allows al1 the global transactions to be submitted as soon as a global 

transaction arrives. The ticket in each LDBS and the GSG check insures global serializ- 

ability. but there is no global flow control. In other words. al1 the sub-transactions are 

submitted regardless of the load on the LDBSs. This often results in lower concurrency as 

the LDBSs becorne overloaded. 

It is noticeable that even a t  moderate LDBS loads. the residence times for global trans- 

actions are high and highly variable. This is because sub-transactions of global transactions 

are constant ly competing with each ot her for resources. especially the ticket resource. Also. 

the constant re-submission after aborts often overloads the LDBSs which furt her exasper- 

ates the problern. 

The tuning of the Ticket Method as described previously is fairly difficult and has a 



great effect on its performance. Unfortunately. t his tuning is not very robust and can easily 

fall apart as LDBSs loads increase/decrease. global transaction inter-arriva1 t ime change, 

or the que- miu changes. Thus. the Ticket Sfethod is not very robust and suffers from 

poor performance in the general case. Although. the algorithm is simple and offers the 

potential for higher concurrency. the lack of global-level flow control often overwhelrns the 

LDBSs causing many global transaction conflicts and aborts leading to an overall weaker 

performance. 

The XGSS-1 and NGSS-2 are cleadlock-free and do not aIIow global transaction aborts. 

This allows the average and maximum GT residence times to  be fairly consistent. At 

the local level. t hese algorithms do not cause local aborts. and the global residence time 

at an LDBS does not depend on the global inter-arriva1 time except a little at very low 

inter-arriva1 t ime. 

Thus. the total residence time of al1 LDBS transactions is not effected by the global inter- 

arriva1 time (except a little a t  very low inter-arriva1 time). The stability of the residence 

time at the LDBSs mises because bot h XGSS-1 and XGSS-2 algorithms implement bot h 

concurrency control and flow-control a t  the global level. Global siib-transactions are only 

submitted when no conflicts can s i s e  which limits the number of global sub-transactions 

active at  any LDBS. Consequently this prevents the hIDBS from overloading a LDBS with 

global sub-t ransact ions. Alt hough performance may be limited slightly by esecut ing some 

GSTs serially. this performance is more than made up for by limiting the burden placed 

on the LDBSs by global transactions. Thus. global sub-transactions t hat are submitted to  

a LDBS can execute faster than if they were competing for the same resources with other 

global sub-transactions. Global-level flow-control is especially important when the global 

transaction inter-arriva1 time is low and when one or more LDBSs are heavily loaded. 

In terms of performance, there is no comparison between the Ticket Method and serial 

schedulers (YGSS- 1 and NGSSS) . The possible higher concurrency. for which the Ticket 



Method algorithm was designed to allow. ends up being a determinant to its performance. 

I t  suffers from frequent transaction aborts. local database overloading, and performance 

loss through global deadlocks. -411 these factors significantly reduce the concurrency and 

performance. 

The XGSS-1 and NGSS? have better performance because they control the Row of 

global transactions entering the LDBSs. Although this may reduce concurrency in some 

situations. i t does not cause global deadlock. LDBS overloading. or global transaction 

aborts. 

In terms of implementation. the XGSS-1 and NGSSP are also much easier t o  build and 

configure. They are highly robust and only slightly effected by increases in LDBS load. 

query miu changes. or varying global transaction submission rates. The Ticket Met hod 

algorit hm is highly susceptible to performance concerns if the deadlock detect ion t ime 

T imeout" and the restart time ?esubmit t ime" are not properly configured. Unfortunately. 

the performance varies wildiy even within the same configuration in multiple runs. The 

T i c h t  lIethod supports a visual prepared-tecommit state. This violates autonomy of 

local databases [Bar94]. Further. it is not easy to properly configure the system to handle 

changing MDBS conditions. For example. the XGSS-1 and YGSS-2 can easily handle local 

transaction inter-arriva1 t ime of less t han one second for the given MDBS configuration. 

The Ticket .\lethoci algorithm does not even complete the simulation for such values as it 

gets stuck in long cycles of global aborts/restarts. 

Both the NGSS-1 and NGSS-2. exhibit sirnilm performance although NGSS-2 submits 

transactions more aWessively t han NGSS-1. However. the computation time required by 

NGSS-1 is generally higher than NGSS-2. This is because in NGSS-2 submission criterion 

is more rigoroiis than in NGSS-1. NGSS-1 submits al1 the sub-transactions of a transaction 

or none which holds al1 the sub-transactions of a transaction until al1 the sub-transact ions 

can be submitted. NGSS-2 submits each subtransaction of a transaction individually so 



the sub-transactions do not have to wait for d l  the sub-transactions to submit. In this 

way. YGSS-2 should be faster than the NGSS-1. However. the criterion for submission in 

NGSS-2 is more rigorous and some of the sub-transaction of a transaction have to wait for 

long t ime for submission or the complet ion of ot her sub- t ransact ions. 



Chapter 6 

Conclusions 

In a multidatabase system. transaction management is a major issue because it is very 

difficult to have a good concurrency control algorithm without violating local autonomy. 

Some scheduling algorithms have been proposeci to handle concurrency control. but no 

independent simulation or testing has been reported to evaluate their performance. 

In this thesis. schedulers that  employ two distinct approaches are considered. In one 

approach. transactions are submitted concurrently. but. to ensure the consistency (seri- 

alizability). transactions may have t o  be aborted and restarted several times. The other 

follows a much less concurrent (almost serial) submission policy but guarantees that siich 

subrnission will not lead to serializability problems and hence no aborts. We considered the 

Ticket Met hod [GRS94] in the first category and developed two serial schedulers NGSS-1 

and SGSS-2following the lines of GSS developed by Baker  [BarSO]. We have developed 

a simulation mode1 for multidatabase system to study the performance of these schediiling 

algorit hms. Simulation results indicate the following: 

Residence time of transactions increases as load increases (inter-arriva1 time de- 

creases) and length of global transaction increases with al1 the schedulers. However. 

the residence t,ime of local transactions and global sub-transactions are less sensi- 

tive to these factors compared to  that of global transactions. The number of aborts 

resulting using the Ticket klethod also increases with load and transaction length. 



Performance of senal schedulers (NGSS-1 and NGSS-2) is much better t han the Ticket 

Met hod. especially at higher load. At very low load they al1 give similar results as 

the transactions are processed as t hey corne. Le.. serially. 

Difference in performance (residence tirne) of serial schedulers NGSSl and XGSS-2 

is not very significant. However. SGSS-2 requires lower CPU time than XGSS- 1. 

In terms of implementations. serial schedulers are much easier to build and configure. 

The Ticket Method is highly susceptible to tuning parameters such as '.tirneout" and 

'kesubmit. t ime" . 

The Ticket method implementation requires a visual prepared-to-commit state. This vi- 

olates autonomy. Serial schedulers do not have the above requirement. thereby allowing 

more autonomy. 

6.1 Future Research 

Some possible exterisions of this thesis could be the following. Since results show the 

transaction manager which is based on concurrent transaction submission has poor perfor- 

mance. it woiild be interesting to  determine if other global transaction scheduling algorithms 

u-hich siibrnit transactions concurrently have the same performance liabilities as the Ticket 

llethod GTM. 

The findings of this research suggest that it is worthwhile to concentrate on developing 

schedulers t hat submit transactions to giarantee that they will not be aborted at the cost 

of l e s  concurrency 

As indicated in the thesis. parameter setting in Ticket Slethod for the GSG check for 

deadlock detection is difficult. A method for deadlock detection suggested in [Tri971 seems 

to  give better resuits when integrated tvith Ticket method. A detailed simulation study 

can be conducted to determine the performance of this method. 



Currently, the FCFS rule has been used in processing the queue of NGSSl  and NGSS- 

2. Other queue processing techniques such as longest job first. shortest job first could be 

tested to see if t hey furt her improve performance. 

Currently. Strict 2PL TM is implemented at local databases to evaluate al1 GTM (sched- 

ulers). Performance of the system when LDBS uses other concurrency control methods such 

as Time stamp Ordering or Optimistic Concurrency Control can be studied. 
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