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Abstract

A challenge in hydrological studies in the Canadian Prairie region is to find good-

quality meteorological data because many basins are located in remote regions where

few stations are available, and existing stations typically have short records and often

contain a high number of missing data.

The recently released North American Regional Reanalysis (NARR) data set ap-

pears to have potential for hydrological studies in data-scarce central Canada. The

main objectives of this study are: (1) to evaluate and utilize NARR data for hydro-

logic modelling and statistical downscaling, (2) to develop methods for estimating

missing precipitation data using NARR data, and (3) to investigate and correct

NARR precipitation bias in the Canadian Prairie region.

Prior to applying NARR for hydrological modelling, the NARR surface data

were evaluated by comparison with observed meteorological data over the Canadian

Prairie region. The comparison results indicated that NARR is a suitable alternative

to observed surface meteorological data and thus useful for hydrological modelling.

After evaluation of NARR surface climate data, the SLURP model was set up

with input data from NARR and calibrated for several watersheds. The results

indicated that the hydrological model can be reasonably calibrated using NARR

data as input. The relatively good agreement between precipitation from NARR and

observed station data suggests that NARR information may be used in the estimation



of missing precipitation records at weather stations. Several traditional methods for

estimating missing data were compared with three NARR-based estimation methods.

The results show that NARR-based methods significantly improved the estimation

of precipitation compared to the traditional methods.

The existence of NARR bias is a critical issue that must be addressed prior to

the use of the data. Using observed weather station data, a statistical interpolation

technique (also known as Optimum Interpolation) was employed to correct gridded

NARR precipitation for bias. The results suggest that the method significantly

reduces NARR bias over the selected study area.
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Chapter 1

INTRODUCTION

1.1 Background

Nine percents of the world’s renewable freshwater is being processed in Canada

(Canada, 2004), and water is one of Canada’s greatest resources, used for domestic

consumption, irrigation, energy and industrial production, transportation and recre-

ation, and the maintenance of natural ecosystems. However, water is not evenly

distributed across the country, and water availability varies both between years and

with the changing seasons. Many regions of the country have experienced water-

related problems such as droughts and floods, and associated water quality issues,

which may be connected to climate change. Climate change has become a critical

global issue as is easily seen from the discussion in the public media. An increasing

number of initiatives and studies related to climate change issues, for instance the

Kyoto Protocol and research activities by the Intergovernmental Panel on Climate

1



1.1. BACKGROUND

Change (IPCC), shows a growing public concern about the impact of climate change

on human life. Understanding the vulnerability of water resources to climate change

is vitally important.

To properly manage and protect water resources, it is essential to understand

the hydrological processes in the region of interest. Hydrologic models are used to

simulate runoff from a watershed by solving the equations that govern the hydrolog-

ical processes within the watershed. Since hydrologic models are used to simulate

the watershed response to a given input, these models are essential tools to assess

the climate change impact on water resources. The simulation of hydrological pro-

cesses using a model involves uncertainties from four sources: (1) errors in the input

data such as precipitation and temperature, (2) errors in the recorded streamflow

data, (3) errors due to non-optimal parameter values, and (4) errors due to an in-

complete or biased model structure. Although the disagreement between simulation

and observation is the combined effect of all four error sources, generally, only error

source 3 is minimized in the calibration process. However, measurement errors, error

sources 1 and 2, put a limit on the achievable agreement. Precipitation is usually the

most important input variables required in hydrological modelling, and thus accurate

knowledge of precipitation is essential for accurate runoff simulation. Beven (2001)

noted that the well-established GIGO principle of ‘garbage in garbage out’ applies

to rainfall-runoff modelling because no model will be able to produce accurate hy-

drograph predictions if the input to the model does not adequately characterize the

2



1.1. BACKGROUND

actual precipitation. Also, the spatial distribution of the precipitation input to hy-

drological model can substantially influence the volume of storm runoff, peak runoff,

and timing of the peak (Wilson et al., 1979).

A common problem in many parts of the Prairie region is the lack of observed

weather data. The weather data are required for hydrological modelling and climate

change assessment. Ideally, the data must be measured at weather stations within or

close to the watershed being modelled, over a long time period without gaps. How-

ever, because many watersheds are located in remote and unpopulated regions, there

are often few weather stations in the vicinity. Bárdossy and Das (2008) investigated

the influence of the spatial representation of the precipitation input, interpolated

from rain gauge networks of different densities, on the calibration of a hydrological

model and found that the overall model performances worsen substantially with an

excessive reduction of rain gauges. They also found that the overall performance was

not significantly improved by increasing the number of rain gauges above a certain

threshold number, especially if stations around but outside the watersheds are con-

sidered. Thus, while interpolation is routinely used to deal with the lack of data in

a watershed, there is a fair chance of poor spatial representation of the watershed

conditions. While northern watersheds, due to their pristine condition, are prime

candidates for climate change studies, the lack of climate data often limits their se-

lection as study area. In remote regions such as the northern part of Prairies, climate

data are generally interpolated using information from neighboring weather stations,
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although stations may be located several hundred kilometers from the watershed be-

ing modelled. The issue is also critical in statistical downscaling which depends on

the quality and the length of the data series used for calibration (Wilby and Wigley ,

1997). Statistical downscaling methods will be discussed in more detail in Chapter

2.

Over the past decade, there have been some efforts to produce retroactive records

of global analyses in support of the needs of the research and climate monitoring

communities, and these products, so-called reanalysis data, have become an impor-

tant and widely utilized resource for the study of atmospheric and oceanic processes

and predictability. The objective of reanalysis projects is to produce atmospheric

analyses from historical data that can then be used for analyzing the spatial and

temporal variability of the climate system (Kalnay et al., 1996; Gibson et al., 1997).

Reanalysis products are used increasingly in many fields that require an observa-

tional record of the state of either the atmosphere or its underlying land and ocean

surfaces. Since reanalysis data are produced using fixed, modern versions of the data

assimilation systems developed for numerical weather prediction, they are suitable for

use in studies of long-term variability in climate. The National Center for Environ-

mental Prediction (NCEP) and National Center for Atmospheric Research (NCAR)

Global Reanalysis-1 (Kalnay et al., 1996) and the European Centre for Medium-

Range Weather Forecasts (ECMWF) Reanalysis (Gibson et al., 1997) are the most

well known reanalysis products. There have been some attempts to overcome the
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lack of data availability by utilizing reanalysis data for macroscale hydrological mod-

elling. A good example is the use of daily precipitation series from the NCEP-NCAR

Reanalysis-1 for hydrological modelling over the Mackenzie River basin by Haberlandt

and Kite (1998).

The NCEP-NCAR Global Reanalysis, henceforth denoted NNGR, is a joint ef-

fort of two institutes to produce new atmospheric analyses using historical data, as

well as to produce analyses of the current atmospheric state using a state-of-the-art

analysis/forecast system. NNGR data are available from 1948 to present. NNGR

data are routinely used as predictors in statistical downscaling models (Kalnay et al.,

1996; Kistler et al., 2001). NCEP has produced an improved version of the NCEP

Reanalysis 1 model, the so-called NCEP-DOE Reanalysis 2, available for the years

1979 to present. More observations were added, assimilation errors were corrected

and a better version of the climate model with updated parameterizations of physical

processes was used.

It should be noted that the surface precipitation data of the NNGR are produced

from an operational weather forecast model (Haberlandt and Kite, 1998) and global

reanalysis products often contain biases originating from the forecast models (Berg

et al., 2003). In addition, global reanalysis products generally do not capture spa-

tial variability at regional scales because of their coarse spatial resolution, typically

in the order of 200 km. The quality of the various reanalysis products has been

evaluated by many researchers around the world (Rao et al., 2002; Rusticucci and
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Kousky , 2002; Tolika et al., 2006; Nieto et al., 2004) and they generally conclude that

the climate variables from global reanalysis products are reasonably close to the ob-

served data when spatially and temporally averaged. In general, due to their coarse

spatial resolutions and biases, global reanalysis products have been used mainly for

forcing continental- to global-scale land surface models rather than for regional-scale

hydrological modelling.

In parallel with NNGR efforts, ECMWF engaged in its first long reanalysis in

collaboration with the University of California (PCMDI, Program for Climate Model

Diagnosis and Intercomparison), the Japan Meteorological Agency (JMA), the World

Climate Research Programme (WCRP) of the World Meteorological Organisation

(WMO), the Centre for Ocean-Land-Atmosphere Studies (COLA), the NCAR and

the NCEP. The first generation of reanalysis, the 15-year ECMWF reanalysis (ERA-

15), was completed in 1995 and spans the period 1979-1993 when the observation

system was relatively homogeneous. Data validations were performed by partners

during 1994-1996 (Gibson et al., 1997). Due to improvements in model resolution

and in the parameterization of physical processes, the ECMWF model has been up-

dated regularly over the years. Accordingly, the second extended reanalysis project,

the ERA-40 (1958-2002), was produced by the ECMWF in 2002. Conventional ob-

servations for ERA-40 come from a much wider selection of sources and the period

begins with the International Geophysical Year of 1958. The observation system has

changed considerably over the reanalysis period with assimilable data provided by a
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succession of satellite-borne instruments from the 1970s onwards, supplemented by

an increasing number of observations from aircraft, ocean-buoys and other surface

platforms. Moreover, ERA-40 applied a new 3D-variational analysis method with a

new model and made comprehensive use of historical observations and satellite data,

most of them provided by NCAR (Uppala et al., 2005).

Recently, NCEP has released a high-resolution reanalysis for the North American

domain, the so-called North American Regional Reanalysis (NARR) (Mesinger et al.,

2006). NARR is a dynamically consistent, high resolution atmospheric and land sur-

face hydrology data set covering the North American domain at a spatial resolution

of 32 km. NARR data are available for the period 1979-present at a 3-hr temporal

resolution. The accuracy of the major climate variables such as temperature, wind,

and precipitation have been substantially improved compared to previous global re-

analysis products (Mesinger et al., 2006; Nigam and Ruiz-Barradas , 2006), and Choi

et al. (2007b) found that the improvement is clear for temperature and precipitation

in Manitoba. Primarily because it is a recently released product, NARR has not been

widely evaluated or used for various applications. Ruiz-Barradas and Nigam (2006)

evaluated it for the Great Plains and Choi et al. (2007a) explored its potential as

input data for hydrological modelling in Manitoba. Woo and Thorne (2006b) used

NARR temperature and precipitation data for the SLURP hydrological model for a

western Canadian basin and obtained reasonable simulation results. Because of its

high resolution and advanced data assimilation, it is reasonable to hypothesize that
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NARR would be useful in hydrologic modelling, especially in the northern parts of

Central Canada, where observed data are often not available. NARR could also be

useful in statistical downscaling methods as reference data instead of weather station

data.

The present thesis deals with the assessment and application of NARR for hydro-

logic modelling. The interest in using NARR data grew out of a climate change study

funded by Manitoba Hydro and carried out over the years 2006-09 at the University

of Manitoba. During the execution of this project, the lack of good climate data for

hydrological modelling and statistical downscaling in the areas of interest became

obvious. At the last stage of the project, NSERC funding was secured to assess

the applicability of NARR in hydrologic studies of climate change. A preliminary

evaluation of the NARR data and its application to hydrological modelling was con-

ducted (Choi et al., 2009). Further research, reported in this thesis, has focussed on

a more thorough evaluation of NARR in the Prairie region, with particular emphasis

on Manitoba, including a comparison of NARR surface variables with observations,

other reanalysis products, and gridded interpolated data sets.

A common problem with observed climate records is missing data. This issue

is particularly important in precipitation records. Traditional methods for missing

data estimation rely on neighbouring stations, which in remote areas may be far

away. As NARR data are spatially and temporally continuous, it is of interest to

evaluate NARR for filling in the occasionally missing data in precipitation records.

8



1.1. BACKGROUND

Therefore, a missing data estimation approach using NARR is developed in this

thesis and compared with the traditional methods.

It is well known that all climate models have inherent biases. Although the

different reanalyses use information about observed precipitation, they do so in an

indirect way and it is not uncommon to observe significant differences between ob-

servations and surface variables from reanalyses. This seems to be particularly an

issue with precipitation. One way to overcome the disagreement between model data

and observations is to adjust reanalysis precipitation fields with whatever observa-

tions are available in the region of interest. Geostatistical tools are suitable for this

exercise. In this thesis, a technique is proposed to fine-tune NARR precipitation

fields using observed station data. The technique employs a geostatistical method

known as statistical interpolation. The choice of this approach is inspired by its use

in the Canadian Precipitation Analysis (CaPA), developed recently at Environment

Canada (Mahfouf et al., 2007). CaPA combines short-term forecasts from Environ-

ment Canada’s numerical weather prediction model GEM with observations from

the synoptic network of weather stations to produce spatial estimations of precipi-

tation. CaPA precipitation fields are only available for the last couple of years. For

hydrologic modelling and climate change studies much longer records are needed.

In our application, NARR essentially replaces GEM output and is used to produce

long-term updated precipitation fields for the region of interest.
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1.2 Objectives

The overall objective of this thesis is to evaluate the usefulness of NARR for hydro-

logic modelling and climate change studies in central Canada. Specific objectives of

this study are:

• To evaluate the reliability of the NARR temperature and precipitation data

against observations in the Prairie region.

• To evaluate the usefulness of NARR surface data for hydrological modelling and

statistical downscaling through a comparison with the ‘traditional’ approach

based on interpolated station data.

• To develop NARR-based methods for estimating missing precipitation records,

and to compare the methods with traditional techniques for infilling missing

data.

• To develop and evaluate a framework for combining NARR precipitation with

observations, with the goal to improve the gridded precipitation estimates.

1.3 Structure

This thesis consists of five main chapters (Chapter 2 to Chapter 6). Chapter 2

describes the climate change project funded by Manitoba Hydro which provided

motivation for the thesis. The project was conducted by students at the University
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of Manitoba and was divided into two parts: (1) statistical downscaling of GCM

outputs, done by two Master students, Lee (2010) and Koenig (2008), and (2) runoff

simulation of future climate scenarios using hydrological modelling, done by a post-

doctorial fellow, Dr. Woonsup Choi and the author of this thesis.

In Chapter 3, NARR is introduced and evaluated by comparing temperature and

precipitation data with observations. The NARR data are applied to hydrological

modelling and statistical downscaling in Chapter 4, in order to investigate the feasi-

bility of NARR for hydrological studies in a particular region of Canada. In Chapter

5, several NARR-based methods are proposed for estimating missing precipitation

data. Chapter 6 describes and evaluates the proposed method for combining NARR

precipitation with observations using statistical interpolation. Finally, Chapter 7

summarizes and discusses the overall findings of this study, highlighting the partic-

ular contributions of the thesis and making suggestions for future research.
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Chapter 2

CLIMATE CHANGE IMPACT

ASSESSMENT STUDY

Climate, freshwater, biophysical and socio-economic systems are interconnected, and

a change in any one of these can induce a change in any other. Many regions are

vulnerable to freshwater-related issues and the relationship between climate change

and freshwater resources has become a major concern for society. Since the energy

generation of a hydropower station is directly dependent on the availability of water,

Manitoba Hydro is a notable beneficiary of water resources. Extended low flows or

droughts reduce the system output and in extreme cases may make it impossible

to supply the required energy demand. Hence, understanding the vulnerability and

severity of change in water resource is important in order to quantify the reliability

of the energy supply. Due to the need for a better understanding of climate change
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impacts on water resources in Manitoba, a climate change impact assessment study,

funded by Manitoba Hydro in 2005-2009, was conducted by a research group at the

University of Manitoba. The project investigated statistical downscaling methods for

the assessment of climate change impacts on water resources in central Canada. Hy-

drological modelling is required to simulate streamflow responses to climate change

and involves the selection of an appropriate model, the setup and calibration of the

model for the study area, and the simulation of runoff for the control period and for

future scenarios. To conduct a hydrological study of climate change, it is necessary to

select one or more watersheds that properly represent the hydrologic regime locally

and are representative of the greater area of interest. Several watersheds were se-

lected based on Manitoba Hydro’s interest in the water supply systems encompassed

by the Nelson-Churchill River basins. A number of factors, including period of avail-

able climate data, location of weather stations and hydrometric gauging stations,

and the availability of required climate variables, were considered in the selection of

study areas and the hydrological model.

Because GCMs, the main tool for climate projections, have coarse resolutions, di-

rect use of GCM data is not appropriate for regional-scale impact assessment. Hence,

to generate future climate scenarios, statistical downscaling techniques must be ap-

plied to downscale the global climate model outputs for hydrological simulations. In

the present study, GCM output was downscaled using three different statistical down-

scaling techniques (SDSM, LARS-WG, and Nearest Neighbour Resampling) and the
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2.1. HYDROLOGICAL MODELLING

three methods were compared in the context of hydrological modelling. Then the

downscaled GCM data sets were applied as input to the selected hydrological model.

The statistical downscaling was done by two Master students (Koenig , 2008; Lee,

2010).

2.1 Hydrological Modelling

2.1.1 Study areas

Manitoba Hydro’s water supply system comprises the Nelson River and the Upper

Churchill River drainage basins. At 1.2 million square kilometers, the Nelson River

Basin is one of the largest basins on a global scale. The Nelson River drains Lake

Winnipeg into Hudson Bay. Lake Winnipeg has several large rivers as contributaries,

more specifically the Saskatchewan River, the Red River, and the Winnipeg River.

The Upper Churchill River, which is naturally independent from the Nelson River,

contributes water into the Nelson River via the diversion at Southern Indian Lake.

The Nelson River generating stations provide approximately 80% of the hydropower

production of Manitoba Hydro.

As shown in Table 2.1, the Winnipeg River, the Churchill River, and the local

flows at the Nelson and Burntwood Rivers are important contributors to Manitoba

Hydro’s system, with 27.6%, 27.4%, and 11.4% of total flow, respectively. The Win-

nipeg River Basin drains over 130,000 km2 in Ontario, Manitoba, and Minnesota. Al-
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Table 2.1: Major hydrologic components of Manitoba Hydro’s system.

Site Av. Annual Contribution to
Flow (cfs) the System (%)

Winnipeg River (at Slave Falls) 31,650 27.6
Saskatchewan River (at Grand Rapids) 20,100 17.5
Churchill River (diverted from SIL) 31,390 27.4
Local Flows (at Nelson and Burntwood R.) 13,140 11.4
Known Flows (Red+Assiniboine+Fairford R.) 8,600 7.5
Unknown Flows (Lake Wpg tributaries-water loss) 9,900 8.6

though the Winnipeg River basin covers a relatively small area of Manitoba Hydro’s

system, the basin receives more annual precipitation compared to western Prairie

watersheds and has a much higher runoff coefficient. It provides approximately 30%

of the inflow to Manitoba Hydro’s system. In contrast, the Saskatchewan River

contributes only 17.5% of the inflow to Manitoba Hydro’s system, even though the

Saskatchewan River is about 2000 km long and has a drainage area of approximately

336,000 km2. Different climatic zones and terrestrial ecozones cover the Saskatchewan

River basin and the runoff in the river may not respond as uniformly to climate vari-

ation as the other three basins mentioned above. Therefore, the Winnipeg River,

the Churchill River, and the local flows to the Nelson and Burntwood Rivers are

the main basins of interest for this study, and the watersheds for assessments were

selected within these basins.
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Hydroclimatology of Manitoba

To select appropriate study areas, it is necessary to understand the hydroclimatology

in the region. For this purpose, six weather stations across Manitoba, located in

Churchill, Thompson, The Pas, Dauphin, Brandon, and Winnipeg, were investigated.

The climatological characteristics of Manitoba are long and cold winters and mild

summers with moderate precipitation. The highest mean monthly temperature is in

July, while the minimum is in January. The mean July temperature is below 20◦C

during the period of 1979 to 2004 at the six stations across Manitoba, and the mean

January temperature is below −20◦C in Churchill and Thompson. In Thompson and

Churchill, the mean April temperature is still below zero while it is above zero in the

other cities. The mean annual temperature ranges from −6.6◦C in the northern part

of the province to −2.8◦C in the southern part. Most of the precipitation occurs from

late spring through early autumn across the province. The mean annual precipitation

at the six stations ranges from 432 to 513 mm.

Figure 2.1 presents the mean monthly streamflow measured at selected gaug-

ing stations (see Table 2.2) in the aforementioned five major river basins. Spring

snowmelt is one of the most significant hydrological characteristics of the basins.

The timing and magnitude of peak flows vary by location. Figure 2.1 shows that

there is a latitude gradient in terms of the average peak flow timing. In the Churchill

and Nelson River basins, the surges generally start in May and the monthly peaks

occur between June and July, while the surges start in April in the Assiniboine and
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Figure 2.1: Mean monthly streamflow from selected large river basins in the Hudson
and Nelson Drainage Areas (see Table 2.1 for station information).

Saskatchewan River basins. The below-zero April temperatures at Thompson and

Churchill explain the latitude gradient in the timing of spring peak flow.

Watersheds selection

The watersheds for the climate change study were selected based on the availability

of both hydrometric gauging stations and weather stations. The Water Survey of

Canada (WSC) provides public access to both real-time and historical hydrometric

information, which includes water level and streamflow data, collected at over 1200

locations in Canada. Most of the stations are located in the southern part of the

country and it is often difficult to find an adequate network to describe hydrologic

characteristics in the northern part of the country. The period of streamflow records
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Table 2.2: Streamflow gauging stations located at selected large river basins in the
Hudson and Nelson Drainage Areas.

Name ID Location Period Size (km2)

Churchill River above Leaf Rapids 06EB004 56◦29′37′′N,
100◦02′55′′W

1973-2003 244,000

Nelson River at Kelsey GS 05UE005 56◦02′20′′N,
96◦31′30′′W

1960-2003 1,050,000

Saskatchewan River at The Pas 05KJ001 53◦50′30′′N,
101◦ 11′10′′W

1913-2003 389,000

Winnipeg River at Slave Falls 05PF063 50◦13′30′′N,
95◦34′15′′W

1981-1999 126,000

Assiniboine River near Miniota 05ME006 50◦06′39′′N,
101◦02′08′′W

1961-2003 84,200

for a study basin needs to be long enough to perform hydrological modelling. As

a rule of thumb, calibration and validation of a hydrological model require ten or

more years of streamflow record, especially for climate-related studies. Another

critical factor for the watershed selection is the regulation of streamflow. Hydrological

models are based on the theory of water balance and the natural hydrological cycle.

Since streamflow records are being used for calibration and validation of models,

hydrometric stations with regulated flows must be avoided.

The availability and the quality of climate data for the study area are criti-

cal for hydrological modelling. In the regions of interest, it is generally difficult

to find weather stations within unregulated watersheds. In practice, weather sta-

tions outside candidate watersheds must be considered, but in this research the

distance from possible weather stations to a study watershed was limited to a max-

imum of 100 km in order to minimize misrepresentation of local weather, especially

precipitation. In addition to the length of record, the availability of the required
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Table 2.3: Selected hydrometric gauging stations for the study.

Station Station Latitude Longitude Drainage Period
Name No. Area (km2) of Record
Sturgeon River 05QA004 50o 10’ 2”N 91o 32’ 26”W 4450 1961-
at McDougall Mills Present
Troutlake River 05QC003 50o 54’ 20”N 93o 5’ 30”W 2370 1970-
above big fall Present
Taylor River 05TG005 55o 29’ 20”N 98o 11’ 10”W 886 1970-
near Thompson Present
Burntwood River 05TE002 56o 30’ 00”N 99o 13’ 20”W 5810 1985-
above Leaf Rapids Present
Sapochi River 05TG006 55o 54’ 30”N 98o 29’ 20”W 391 1993-
near Nelson House Present

climate variables, the continuity, and the temporal resolution (i.e. hourly or daily

intervals) of climate data must also be considered in the selection of weather sta-

tions. The availability of certain essential climate variables, notably precipitation,

temperature, relative humidity, and solar radiation, were considered even though

all the variables are available only at a limited number of weather stations. Daily

climate data for Canada can be downloaded from Environment Canada’s website

(http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html).

Based on the above considerations, three watersheds in northern Manitoba near

Thompson and two watersheds in western Ontario near Sioux Lookout were selected

as regional-scale watersheds (see Table 2.3 and Figure 2.2). Burntwood River, Tay-

lor River, and Sapochi River hydrometric gauging stations in northern Manitoba are

located within a 100 km range from the Thompson weather station. These three hy-

drometric stations have more than 10 years of streamflow records and remain active.

The Thompson weather station contains all the required climate variables for hydro-
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Figure 2.2: Weather stations and streamflow gauges on study area.

logical modelling from 1967 to the present. A few additional weather stations near

Thompson were used to improve the representativeness of certain climate variables

by interpolation.

Trout River and Sturgeon River hydrometric stations in the Winnipeg River basin

are located within 50 km from the Redlake weather station with 74 years of records

and the Sioux Lookout weather station with 66 years of records. Since other weather

stations are located farther than 100 km from the two hydrometric gauges, only these

two weather stations were used and no interpolation was done.

Since the results for watersheds located in the same basin were found to be quite
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similar, the procedures and assessment results are shown here only for the Sturgeon

River and the Taylor River watersheds, representing the Winnipeg River basin and

the northern Nelson River basin, respectively.

2.1.2 Hydrological modelling

Hydrological model selection

Climate change impact studies of water resources are typically conducted by simulat-

ing runoff and soil moisture using hydrological models under climate scenarios (e.g.,

Gleick (1989), Kite (1993)). A hydrological model simulates hydrological processes

in a basin using weather input and a physiographical description of the basin. A

number of hydrological models have been developed with different theoretical back-

ground, purpose, scale, and user interface.

In order to select an appropriate hydrological model among the numerous existing

models, several considerations such as data availability, the intended use, and the

required accuracy must be taken into account (McKillop et al., 1999). In addition,

a model should be able to simulate different climate scenarios for the future (Frakes

and Yu, 1999). The spatial extent and temporal bounds as well as the availability

of hardware and software need to be considered (Chang , 2001).

There were a number of factors to consider in the model selection for this study.

First, the model should be suitable for large basins. The selected model was set

up for small basins, but it was anticipated at the time of the study that the model
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would be applied over large basins in northern Manitoba in subsequent research.

Second, the study aimed to investigate long-term impacts of climate change on water

resources. In this context, the scope of models to consider could be narrowed. As

the model was going to be run under different climate scenarios, the ability of a

model to represent hydrology in different climatic conditions was important. It was

reasonable to require that the model be physically based or at least conceptual, and

empirical models were therefore eliminated. Models designed for simulating single-

event storms were also eliminated, considering the purpose of this study. Since

northern Manitoba is mostly remote, data availability was a critical issue in the

project. Hence, models were required to not be too data-intensive. A model already

applied in other climate change impact studies was preferred. Also, considering

the hydroclimatology of Manitoba the model had to be able to model snow melt

processes. Ideally, the model should have a good graphic user interface and good

documentation and be available to the public at minimal cost.

Given the aforementioned constraints, several models were considered, including

the Soil and Water Assessment Tool (SWAT), the Hydrologic Simulation Program-

FORTRAN (HSPF), the Regional Hydro-Ecologic Simulation System (RHESSys),

the UBC Watershed Model, the Semi-distributed Land Use-based Runoff Processes

(SLURP) model, the WatFLOOD model, the Variable Infiltration Capacity (VIC)

model, and PnET-II. Each model has its own pros and cons, however some mod-

els could be quickly eliminated. They included HSPF, UBC Watershed Model, and
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PnET. HSPF has too many parameters to calibrate and has not been tested for

large basins. The UBC Watershed Model has features (e.g. elevation bands) un-

necessary for northern Manitoba basins and does not have special advantages over

other models. With regard to PnET, it is difficult to conclude that it is a suitable

model for climate change studies based on its past applications. It leans towards

biogeochemical modelling and hydrological modelling is only a part of it. Of the

remaining models, SWAT has some advantages in terms of ease of use, user support,

and previous applications. However, it has been applied mostly in temperate climate

regions and has never been tested in subarctic regions. It also requires detailed soil

information, which generally is not available in the study regions.

SLURP has been applied to several basins in Canada by Kite (1998), Su et al.

(2000), Thorne and Woo (2006), van der Linden and Woo (2003), St.Laurent (2003),

and Woo and Thorne (2006a), although the studies were not necessarily for climate

change impact assessment. In the context of climate change studies, SLURP was used

to examine the effects of land cover change caused by climate change in the Rocky

Mountains of British Columbia (Kite, 1993). Another study used gridded GCM

output as distributed meteorological data input to SLURP for the Mackenzie River

Basin (Kite, 1995). Such a wide range of applications in Canada gives confidence in

the model for the Canadian environment. Therefore, SLURP was selected for use in

this study.
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Figure 2.3: SLURP vertical water balance (Kite, 2000).

The SLURP model

SLURP is a semi-distributed basin-scale hydrological model that simulates runoff

based on daily weather input data and physiographic data (land cover and elevation).

Complete information is available in Kite (2000), but a brief description is given

below.

In the SLURP model, a basin is divided into a number of aggregated simulation

areas (ASAs). An ASA contains certain types of land cover, and the vertical water

balance is calculated in each land cover in each ASA. Then runoff water is routed

to the outlet of each ASA and become input to downstream ASA’s. An ASA is

described by the percentage of each land cover, but not by their locations.

SLURP simulates the vertical water balance with four storage tanks in each land
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cover in each ASA: canopy store, snow store, fast store, and slow store (Figure 2.3).

Precipitation is provided as input of water to ASAs, and fluxes such as interception,

sublimation, evapotranspiration (ET), surface runoff, interflow, and base flow are

calculated from the storage tanks. Four different methods for estimating ET are

available in SLURP, and Spittlehouse’s method was selected for this study since Barr

et al. (1997) found that it is more physically sound and results in better agreement

between simulated and observed streamflow.

Outflow from each land cover is aggregated over each ASA, and outflow from

each ASA is routed to downstream ASAs and eventually to the outlet of the basin.

Users can choose one of three routing methods: no routing, Muskingum routing, and

Muskingum-Cunge routing. Except for the no routing option, the user must assign

appropriate routing parameters or use default values.

Meteorological data

SLURP requires four types of meteorological time series data: daily mean air tem-

perature, total precipitation, mean relative humidity, and solar radiation or hours

of bright sunshine. The meteorological time series data were obtained from Envi-

ronment Canada weather stations in and around the watersheds of interest. Most

of them are available at the Environment Canada website (http://www.climate.

weatheroffice.ec.gc.ca/climateData/canada_e.html) at the daily or hourly scale,

and the bright sunshine hours (BSH) data were purchased from Ontario Climate Cen-

tre. The weather stations used for hydrologic modelling are listed in Table 2.4. It
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Table 2.4: Weather stations for SLURP modelling in the study areas.

Station name Station
ID

Location Elev.(m) Period Variables

Red Lake A 6016975 51◦ 4.2′ N,
93◦ 47.4′ W

385.6 1953-
present

P, T, RH

Sioux Lookout A 6037775 50◦ 7.2′ N,
91◦ 54′ W

383.4 1953-
present

P, T, RH

Thompson A 5062922 55◦ 48′ N,
97◦ 52′ W

222.2 1967-
present

P, T, RH,
BSH

Snow Lake 5062706 54◦ 52′ N,
100◦ 1′ W

295.7 1983-
1998

P, T

Wabowden 5063041 54◦ 55′ N,
98◦ 39′ W

231.6 1982-
2001

P, T

South Indian Lake A 5062736 56◦ 48′ N,
98◦ 54′ W

289.0 1989-
1998

P, T

Lynn Lake A 5061646 56◦ 51′ N,
101◦ 4′ W

356.6 1959-
2005

P, T

The Pas A 5052880 53◦ 58′ N,
101◦ 6′ W

270.4 1953-
present

P, T, RH,
BSH

Gillam A 5061001 56◦ 21′ N,
94◦ 42′ W

145.1 1970-
present

P, T

Pikwitonei A 5062111 55◦ 34′ N,
97◦ 10′ W

192.0 1987-
1995

P, T

Flin Flon A 5050960 54◦ 40′ N,
101◦ 40′ W

303.9 1954-
present

P, T, RH

Island Falls 4063560 55◦ 31′ N,
102◦ 21′ W

299.3 1929-
2004

P, T

*Note: P denotes precipitation, T temperature, RH relative humidity, and BSH bright

sunshine hours.

should be mentioned that a deliberate decision was made not to use the homogenized

precipitation data by Mekis and Hogg (1999). The decision was based on the fact

the homogenized data are not available at all sites used in the study and because

Environment Canada’s data are the official release of weather data in Canada.

It is generally desirable for a hydrologic study that a certain number of weather

stations are located inside the watershed of interest. However, during the selection
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of study areas, it was found that few and sometimes no stations were available in the

candidate watersheds. Therefore, data from the closest stations were used. In some

cases, interpolation of an expanded set of stations was used to fill gaps in meteoro-

logic records. Most weather stations listed in the Table 2.4 contain missing records,

for periods ranging from a few days to several months. Dingman (2002) outlines

several methods to estimate missing records using data from nearby stations, includ-

ing the station-average method, the inverse-distance weighting (IDW) method, and

the regression method. Different methods were adopted to infill missing records. For

precipitation, inverse distance weighting (IDW) interpolation was employed. A linear

regression model was used to infill missing temperature records. Linear regression

models were built using the data from nearby stations as explanatory variables and

the data from the station with missing records as the dependent variable. Then the

data from nearby stations during the missing periods were plugged into the model to

predict the temperature values for the station. When missing temperature records

appear sparsely and isolated, the mean temperature of the previous and the following

day was used to fill the missing records.

Because bright sunshine hour data were not available at the weather stations

in this region, solar radiation data obtained from NARR were used instead. Some

missing records in precipitation and relative humidity were also infilled with NARR

data. Missing records in RH and BSH data series were estimated by simply averaging

the records on the previous and the following day of the missing periods because they
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could not be estimated by interpolation due to lack of station data. Because SLURP

is fairly insensitive to RH and BSH according to our sensitivity test for the Sapochi

River watershed, this approach was regarded as acceptable. Changes of ±20% in RH

and BSH resulted in under 4% change in streamflow.

After the missing records were filled in, the meteorological time series were spa-

tially interpolated to the locations of the watersheds using the IDW method. The

centroid of each basin was calculated and the IDW method was applied to create

times series at the centroids. The weather stations at Thompson and The Pas were

used as main input sources for the watersheds in northern Manitoba, and the weather

stations at Redlake and Sioux Lookout were used for the watersheds in the Winnipeg

River basin.

GIS data

SLURP also requires GIS data sets of digital elevation (DEM) and land cover to

derive physiographic parameters. DEM data from the National Aeronautics and

Space Administration (NASA) Shuttle Radar Topography Mission (SRTM) data

were obtained from the U.S. Geological Survey (USGS) data distribution website

(http://seamless.usgs.gov/) with 3 arc second resolution (about 90 m resolution).

The land cover data sets were derived from the Advanced Very High Resolution

Radiometer (AVHRR) sensor operating on board the United States National Oceanic

and Atmospheric Administration (NOAA) satellites. These land cover data sets are

available at the GeoGratis website (http://geogratis.cgdi.gc.ca/geogratis/
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Figure 2.4: AVHRR covers for the study area in northern Manitoba.

en/index.html). GeoGratis is managed by the Earth Sciences Sector (ESS) of Nat-

ural Resources Canada (NRCan) and provides geospatial data at no cost. The scale

of the AVHRR data is 1:2,000,000 and the data represents the land cover around the

years 1992 and 1993 (Figure 2.4).

Streamflow data

Daily historical streamflow records for the selected hydrometric gauging stations

(listed in Table 2.3) were extracted from HYDAT and used to calibrate the SLURP

model.

Model setup

SLURP has a number of parameters that can be adjusted as part of the model

calibration. In order to properly adjust the parameters, it is important to understand

the climatological and geological environments of the study areas.
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Figure 2.5: 1971-2000 normals of daily mean temperature (curve) and precipitation
(bar) at Red Lake and Thompson stations.

Figure 2.5 presents the 1971-2000 climate normals measured at the Red Lake

and Thompson weather stations. The climate in the Winnipeg River basin region

is warmer and wetter than in the Nelson River region. The December and January

average temperature drops below zero at Thompson but not at Red Lake, and the

months form June to September are the wettest period at both locations. Annual

mean precipitation at Red Lake is 640.2 mm, which is about 24% more than at

Thompson.

The Sturgeon River watershed in the Winnipeg River basin is located in north-

western Ontario, just east of the Manitoba border between the cities of Winnipeg and
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Thunder Bay. There are a few communities around them with very small populations

such as Sioux Lookout, Dryden, and Red Lake. The landscape is characterized by

rugged wilderness, low and rolling terrains, and many lakes (St. George, 2007).

The Taylor watershed in the northern Nelson River basin is located in northern

Manitoba. Nearby communities include Thompson, The Pas, and Flin Flon, and

human activities in the watersheds of interest are minimal. This region belongs to

the boreal forest and is characterized by coniferous trees such as spruce, hemlock,

fir, and pine, and depressions, bogs, and lakes hidden among the trees (de Blij and

Muller , 1996).

The region has a humid cold climate with short, cool summers. As shown in

Figure 2.5, precipitation is highest during the summer season, but remains around

20 mm per month during the winter. The mean annual total precipitation is around

520 mm. Daily average temperature is the highest at 15.8◦C in July, and the lowest

at −24.9◦C in January.

The SLURP model was set up and calibrated for each of the selected watersheds.

The Sturgeon River watershed was divided into seven ASAs with an average size of

637 km2. Water occupies about 19% of the watershed, ranging from 7.7 to 32.1% by

ASA and the percentage of water land cover is much higher than for the watersheds

in the northern Nelson River basin. The most dominant land cover is coniferous

forest, ranging from 58.8 to 82.9% by ASA.

The Taylor River watershed was divided into seven ASAs with average size of 128
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km2. Coniferous forest and muskeg are the main land cover types occupying more

than 60% of the watershed. The two SLURP models will in the following be referred

to as the ‘Sturgeon-model’ and the ‘Taylor-model’.

2.1.3 Model calibration

After the SLURP model was set up for each watershed with DEM and digital land

cover data, each model was calibrated using streamflow data measured at the hydro-

metric gauges listed in Table 2.3. The key parameters adjusted during the calibra-

tion include maximum infiltration rate (mm/d), retention constant for the fast store

(RCFS; in days), maximum capacity of fast store (MCFS; in mm), retention constant

for slow store (RCSS; in days), maximum capacity of slow store (MCSS; in mm),

rain/snow division temperature (in ◦C), canopy capacity (in mm), albedo, snowmelt

rate (in mm/day), and evaporation-related parameters such as wilting point and field

capacity.

The calibration criteria used for evaluating model performance, as suggested and

explained by ASCE (1993) and Legates and McCabe Jr (1999), include the devia-

tion of volume (Dv) of mean runoff, the Nash-Sutcliff Efficiency (E ) of daily runoff

series, and the mean absolute error (MAE). These criteria measure volumetric error,

goodness-of-fit, and daily average error between simulation and observation, respec-
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Table 2.5: Statistics of observed and simulated streamflow of the Sturgeon River and
Taylor River watersheds for the combined periods of calibration and validation.

Sturgeon Taylor

Mean observed streamflow (m3/s) 39.59 4.29

Mean simulated streamflow (m3/s) 40.11 4.33

E 0.69 0.75

Dv (%) 1.33 1.08

MAE (m3s−1) 10.63 1.90

tively. Dv, E, and MAE are calculated as follows:

Dv =
S̄ − Ō
Ō

× 100 (2.1)

E = 1−
∑

(Si −Oi)
2∑

(Oi − Ō)2
(2.2)

MAE =

∑
| Si −Oi |
N

(2.3)

where S̄ is mean streamflow simulated by the model, Ō is mean observed streamflow,

Si is simulated streamflow at time i, Oi is observed streamflow at time i, and N is

the number of records during the period.

The Sturgeon-model was calibrated for 1995-1997 and validated for 1991-2004,

while the Taylor-model was calibrated first for the year 1996 and validated over the

period of 1985-2000.

Table 2.5 shows the goodness-of-fit statistics of the simulation results for the

combined calibration-validation periods. It should be noted that periods with missing

data in the streamflow records and corresponding periods in the simulations were
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Figure 2.6: Annual precipitation (P), observed runoff (Q obs), and simulated runoff
(Q sim) during the calibration and validation periods.

excluded from the calculation.

The Dv values of both models are close to zero, indicating the model’s proficiency

in reproducing mean runoff. However, the model generally overestimates April runoff

and underestimates May runoff, which partly explains the E values of 0.69 and 0.75.

MAE values are 27% and 44% of the observed mean streamflow in the Sturgeon-

model and the Taylor-model, respectively. The simulation results of both models are

satisfactory in terms of volumetric error and goodness-of-fit.

Figure 2.6 presents the annual water balance of the SLURP models. By visually

inspection, the Sturgeon-model and Taylor-model both show reasonably good agree-
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Figure 2.7: The observed and simulated daily runoff during the calibration and
validation periods for Sturgeon and Taylor.

ment in most of the years. Discrepancies are noticeable in 1992, 1996, and 1998 in

the Sturgeon-model, while for the Taylor-model, the years of 1986, 1992, 1995, and

1999 are noticeable. Generally, the simulation results of both models present the

hydrologic water balances quite well.

Figure 2.7 shows the observed and simulated daily runoff for the combined periods

of calibration and validation for each watershed. The Sturgeon-model and Taylor-

model properly presents the timings of snowmelt and spring peak flows in general.

The Sturgeon-model slightly underestimates the spring peak flow in 1992 and 2004,

while the Taylor-model slightly underestimates it in 1991 and 1996. The peak flows

are somewhat better represented in the Taylor-model. It should be noted that the

Sturgeon-model used only climate data from the Sioux Lookout weather station
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located about 40 km from the watershed, while the Taylor-model used interpolated

climate data from several neighbouring stations. Hence, input to the Sturgeon-

model is more likely to misrepresent events in the watershed. For example, the

underestimated runoff in 1996 autumn and the overestimated runoff in 2003 autumn

can likely be linked to errors in meteorologic input. The recession curves after the

spring peaks show quite good agreements with observations when the timing and

magnitude of the peak are correctly captured. The low flows in the Sturgeon-model

are in good agreements with observations except for the above mentioned abnormal

years. The low flows in the Taylor-model are overestimated in 1989, 1990, and 1992,

but observed streamflow records are missing so it is somewhat difficult to assess

the simulation results. In general, the low flows of the Taylor-model show fairly

good agreement with observations. Although the peak flows are sometimes slightly

underestimated, the total volumes are generally close to the observations, as shown

in Figure 2.6. Therefore, the calibration results are deemed to be satisfactory for

representing the hydrological regimes in both watersheds.

2.2 Climate Change Impact Assessment

2.2.1 Statistical downscaling

Output from the Canadian Global Climate Model (CGCM) is used in the following to

define scenarios of changed weather patterns. Due to the coarseness of GCM output,
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it is necessary to downscale GCM data for practical assessment of climate change

in smaller watersheds. Three statistical downscaling methods were employed in this

study: the Statistical Downscaling Model (SDSM: Wilby et al., 2002), the Long Ash-

ton Research Station Weather Generator (LARS-WG: Semenov and Barrow , 1997),

and the nearest neighbor resampling (NNR: Gangopadhyay et al., 2005). Statisti-

cal downscaling was implemented using the daily output from the third-generation

Canadian Coupled General Circulation Model (CGCM3.1). The CGCM3.1 output

was obtained at the T47 resolution (roughly 3.75 degrees latitude/longitude) for

three different greenhouse gas emission scenarios from the Special Report on Emis-

sions Scenarios (Nakićenović et al., 2000): B1, A1B, and A2, which represent ‘low’,

‘medium’ and ‘high’ emissions, respectively.

SDSM

SDSM is a statistical downscaling technique based on multiple regression models

between large-scale atmospheric variables (predictors) and local-scale variables (pre-

dictands), and a stochastic component is also included. Three predictands, daily

maximum temperature, minimum temperature and precipitation, were modelled with

SDSM for the reference and future periods. The general procedure to set up SDSM

is as follows (Wilby and Dawson, 2004): (1) select appropriate predictor variables

from gridded data sets (e.g. GCMs and reanalysis data sets) (2) re-grid the predictor

variables to the same resolutions; (3) calibrate and validate the model against ob-

served climate data; and (4) generate an ensemble of synthetic daily weather series
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given predictor variables for either reference or future climate.

SDSM was set up for each selected weather station using three different daily

meteorological/atmospheric data sets. First, the maximum temperature, minimum

temperature, and precipitation data were obtained from the weather stations and

used for calibration and validation of the SDSM results. Second, the NCEP-NCAR

global reanalysis data (NNGR) were used to obtain predictor variables for the period

1961-2000. Finally, CGCM3.1 was used to obtain predictors, both for the control

period and future periods. Data from the NNGR and CGCM3.1 were obtained from

the grid point closest to the weather station and then standardized to reduce the

impact of biases in the climate model. The GCM data (control as well as future)

were standardized using statistics from the control period. The SDSM model was

calibrated with predictors from the reanalysis data for the period 1961-1990. Param-

eters of the model were adjusted to obtain the best statistical agreement between the

weather station data and the downscaling variables. Then the model was validated

for the period 1991-2000. Details of the climate scenarios generated by SDSM for

use in this study can be found in Koenig (2008).

LARS-WG

LARS-WG is a stochastic weather generator that can produce synthetic daily time

series of precipitation, maximum temperature, minimum temperature, and solar radi-

ation. In LARS-WG, the occurrence of daily precipitation is modelled as alternating

sequences of dry and wet spells. The daily maximum and minimum temperature,
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solar radiation and precipitation amount are then modelled conditional on whether

precipitation occurs or not. In LARS-WG, the lengths of the wet and dry spells

are drawn randomly from a semi-empirical distribution of observed wet and dry

spell lengths, with allowance for seasonality. The general procedure to implement

LARS-WG is as follows (Semenov and Barrow , 2002): (1) the model determines

the statistical properties of the observed weather data and generates parameter files;

(2) the model generates synthetic weather series based on the statistical properties;

(3) climate scenarios are generated by perturbing the parameter files and running

the model. LARS-WG was implemented for the location of the Sioux Lookout and

Thompson weather stations to generate maximum and minimum temperature, and

precipitation. LARS-WG requires the same observed weather station data as input

as SDSM. Data from 1961-1990 were used for the calibration of the model. One

hundred series of synthetic values were then generated to compare with observed

climate data. After calibration, LARS-WG was validated over the 1991-2000 period

(Koenig , 2008). Climate scenarios were generated by perturbing the parameters re-

lated to monthly precipitation, length of wet and dry spells, maximum and minimum

temperature, standard deviation of temperature, and mean radiation simulated by

CGCM3.1. Details of the application of LARS-WG for the study regions can be

found in Koenig (2008).
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Nearest Neighbor Resampling (NNR)

Nearest neighbor resampling (NNR) is a non-parametric method that has the ad-

vantage of avoiding the complex parameterization in other statistical downscaling

methods. It produces local weather data by resampling from the record of observed

weather variables (daily maximum temperature, minimum temperature and precip-

itation), based on the similarity of the daily large-scale atmospheric patterns of a

GCM and the corresponding observed patterns. The basic idea is that by comparing

large-scale atmospheric variables from a GCM for a given simulation day with the

same variables in the historical record, days with similar large-scale variables (near-

est neighbors) can be identified in the historical record. The comparison between

the simulation day and the historical record is done using a vector of variables re-

ferred to as the feature vector. The elements of the feature vector must be carefully

selected and must have a strong relationship with the surface variables of interest.

The number of variables included in the vector may vary from a few (Buishand and

Brandsma, 2001) to many (Gangopadhyay et al., 2005). Using a pre-defined metric,

the distance between the feature vector for a given simulation day and feature vectors

in the historical record can be determined, and the group of the k most similar days

can be identified. One of these is selected at random to provide the local weather

data for the simulation day. The process is repeated for each GCM simulation day

to generate time series of local weather.

The NNR method requires large-scale atmospheric variables for the feature vector
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and corresponding historical weather data relevant for a particular application, in this

case input variables for SLURP. The large-scale variables considered here were sur-

face temperature, 500 hPa temperature, 850 hPa temperature, 500 hPa geopotential

height, and 850 hPa geopotential height covering a significant area over west-central

Canada. The reanalysis and CGCM3.1 data were standardized to remove biases.

Principal component analysis was used to reduce the number of variables in the

feature vector.

It is worth reiterating that the downscaled climate scenarios used in this thesis

were produced by Koenig (2008) and Lee (2010). Both of these Master theses as well

as the present thesis were part of the climate change project funded by Manitoba

Hydro in 2005-2008. The specific contribution of the present thesis is the application

of the downscaled scenarios as input to the SLURP model, and the evaluation of the

corresponding simulation results. A summary of the findings for the Taylor River

and the Sturgeon River watersheds are given in the following.

2.2.2 Impact assessments using observations

Figure 2.8 shows the changes of annual temperature and precipitation with each

downscaling method and with each emission scenario, for the 2050s and 2090s. In

Figure 2.8, the circles, squares, and triangles represent downscaling results for SDSM,

LARS-WG (denoted WG in figures), and NNR, respectively, while emission scenar-

ios B1, A1B, and A2 are shown as green, blue, and red, respectively. The empty
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Figure 2.8: Projected changes by the 2050s and 2090s in annual mean temperature
and precipitation for the Taylor and the Sturgeon River watersheds derived from
three different downscaling methods.

shapes represent the period of 2050s and the filled shapes are for 2090s. The tem-

perature changes are positively correlated with precipitation changes in each of the

two watersheds. Temperature is projected to increase in every case, and most of the

projected precipitation changes are positive as well, except for a few NNR cases for

Taylor. The magnitude and the range of changes between Taylor and Sturgeon are

noticeably different. The changes of precipitation in Taylor range from -10% to 50%,

while the changes in Sturgeon are in the range of -2% to 25% for precipitation and of

2 to 5 ◦C for temperature, with two outliers corresponding to the A2 scenario with

SDSM and LARS-WG. The changes in the 2090s (filled shapes) are generally larger

than the 2050s (empty shapes) in both watersheds. The A2 scenario (red) leads to

more severe changes than the other scenarios. Among the statistical downscaling

methods, the SDSM (circles) shows the largest changes in both annual precipitation

and temperature for the same scenario and period.
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Figure 2.9: Projected changes by the 2090s in mean monthly temperature for the
Taylor and the Sturgeon River watersheds derived from three different downscaling
methods.

Figure 2.9 shows the changes in mean monthly temperature for three scenarios

and three statistical downscaling methods in Taylor and Sturgeon for the period

2090s. In Taylor, the LARS-WG and NNR show larger changes in temperature

during winter, while the changes of SDSM are more evenly spread out over the year

with the most significant changes in October and November for all three scenarios.

However, in Sturgeon, the SDSM shows significant temperature increases in the

summer months, while the LARS-WG and NNR shows more changes during the

winter months, especially January and February.

Figure 2.10 shows the changes in mean monthly precipitation for the three sce-

narios and the three statistical downscaling methods in Taylor and Sturgeon for the
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Figure 2.10: Projected changes by the 2090s in mean monthly precipitation for the
Taylor and the Sturgeon River watersheds derived from three different downscaling
methods.

period 2090s. The LARS-WG shows significant precipitation increases during the

winter months (more than 100% in January and February), but the relative changes

are smaller between May and August for all three scenarios. This may partly be due

to the fact that there is less precipitation in the winter months, so the same abso-

lute amount of change will produce higher relative changes in winter. The SDSM

generally shows precipitation increases from January to July, while the changes are

minimal or negative in other months. It is noticeable that the NNR yields negative

precipitation changes for roughly half of the months, with particularly significant de-

creases in September and October. NNR in Taylor shows significant increases only

in April and May for the A2 scenario. The overall precipitation changes in Taylor are
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Figure 2.11: Projected changes by the 2050s and 2090s in annual mean simulated
runoff for the Taylor and the Sturgeon River watersheds derived from three different
downscaling methods.

significantly larger than the changes in Sturgeon. In Sturgeon, there are some neg-

ative precipitation changes of SDSM and NNR in the B1 and A1B scenarios, while

LARS-WG yields consistently positive changes. For A2 scenarios, all three methods

project positive changes and the changes are more evenly spread out over the year.

The SLURP model was run with input data generated by each downscaling

method for the control period 1970-2000 and the two future periods, 2050s and 2090s.

The projected changes of mean annual runoff for the two periods for each emission

scenario are depicted in Figure 2.11. Changes are defined as relative departures from

the control run. The changes of annual mean runoff reflect the temperature and pre-

cipitation changes shown in Figure 2.8. For Taylor, LARS-WG results in the greatest

runoff increases which is not surprising given that LARS-WG also projects the largest
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precipitation increase. NNR produces negative changes, a reflection of the negative

precipitation changes. The LARS-WG also shows the largest difference between the

two future periods, as the increase in runoff in the 2050s (70%) is sustained into the

2090s (120%). The results of SDSM and NNR vary little between the two periods.

In Sturgeon, the negative changes appear in the NNR and SDSM results for the B1

and A1B scenarios, while most of results show positive changes in the A2 scenario,

which are also reflections of the smaller annual precipitation changes. It is noticeable

that even though the precipitation changes of NNR are all positive, the correspond-

ing runoff changes in Sturgeon are negative. The seasonal temperature changes in

Figure 2.9 are fairly uniform over the year for NNR and LARS-WG, and the pre-

cipitation changes are generally small with these methods. A substantial increase in

temperature causes more evapotranspiration that more than offsets the increase in

precipitation and affects the runoff negatively. It explains the smaller runoff changes

in Sturgeon, especially the negative runoff changes associated with the SDSM re-

sults which generally yields the highest temperature increases during the summer

(Figure 2.9). Overall, the variations between the projections by emission scenarios

are less than between the projections by downscaling methods in Taylor, while the

variations by emission scenarios are more pronounced in Sturgeon. It suggests that

the uncertainty associated with the choice of statistical downscaling methods is more

significant than the uncertainty related to emission scenarios.

Projected changes by the 2090s in mean monthly runoff are shown in Figure 2.12.
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Figure 2.12: Projected changes by the 2090s in mean monthly simulated runoff for
the Taylor and the Sturgeon River watersheds derived from different downscaling
methods.

In most cases, the largest percentage increases occur in April, except with LARS-

WG in Sturgeon for the A1B and A2 scenarios. Since the absolute amount of runoff

is comparably smaller in Taylor than in Surgeon, the percentage of runoff change

in April appears substantially higher in Taylor. In Taylor, the results of the three

emission scenarios show a similar pattern, namely that runoff changes are smallest in

winter and largest in spring. SDSM and LARS-WG show substantial runoff increase

in April, while NNR shows no particularly extreme runoff change. This is primarily

due to different seasonal patterns in the precipitation change. In Sturgeon, LARS-

WG shows positive runoff changes for all emission scenarios, while SDSM and NNR

show negative runoff changes in most months for the B1 and A1B scenarios. For the
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Figure 2.13: Projected in mean daily simulated runoff by the 2090s for the Taylor and
the Sturgeon River watersheds derived from three different downscaling methods.

A2 scenario in Sturgeon, results of all three methods show noticeable changes except

in May and June, and SDSM and NNR show even larger runoff increases between

June and October.

Figure 2.13 shows the mean daily streamflow by the 2090s for each scenario and

downscaling model. The streamflow regimes in the two watersheds show clearly

distinguishable changes in the future projections. In Taylor, the spring freshets

begin about 30 days earlier than in the current climate according to the SDSM and

LARS-WG results, while the peak of spring runoff is almost twice as large with

LARS-WG than with SDSM. In the comparison of projections by emission scenario,

the A2 scenario shows somewhat earlier spring freshet due to the higher temperature

changes, but the variations between the scenarios are not as significant as between
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the downscaling methods. As expected, the NNR results show little impact on

streamflow, in part due to the negative precipitation changes in some months.

In Sturgeon, the spring freshet occurs earlier and the runoff volume is greater

because of earlier snowmelt. The SDSM result for the A2 scenario shows the greatest

increase of flows in early spring and some periods during the summer and autumn,

while the results of other scenarios show a decrease in flows. The LARS-WG results

show earlier increase of flows but the peak flows are similar to the current climate.

It is noticeable that the results for the three scenarios fall in a close range, with a

few spikes occurring during the summer in response to some heavy rainfall events.

The NNR results show slight increase in flows, especially during the autumn in the

A2 scenario, and the future mean flow scenarios are all close to the average for the

current climate. In conclusion, the overall changes in the Taylor watershed are more

significant than in the Sturgeon watershed.

The climate change impact assessments have uncertainties related to construction

of emission scenarios, global climate modelling, and downscaling of GCM outputs.

In this study, the uncertainties in two aspects (choice of emission scenarios and

downscaling methods) have been investigated. The pattern of temperature changes

are similar between the emission scenarios and the differences in the magnitude of

change is a direct consequence of the classification of the emission scenarios: B1,

A1B, and A2 represent ‘low’, ‘medium’ and ‘high’ emissions, respectively. For pre-

cipitation, the changes associated with different scenarios are similar in Taylor, albeit
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not as similar as for temperature. In Sturgeon, it is difficult to find the similarity

in precipitation changes associated with different scenarios. However, the difference

between the statistical downscaling methods is quite significant for both temperature

and precipitation. It clearly indicates that the uncertainty related to the choice of

downscaling method is significantly higher than the uncertainty related to emission

scenarios.
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Chapter 3

EVALUATION OF NARR

SURFACE CLIMATE

3.1 Reanalysis Data

The availability of good-quality climate data is important for hydrological applica-

tions and research. However, hydrologists often face problems with lack of data,

especially in remote areas such as northern Canada. As mentioned in the introduc-

tion, reanalysis products of past observations have emerged as a potential alternative

to observations. In this chapter, the North American Regional Reanalysis (NARR)

is investigated and compared with observed climate data in order to assess its relia-

bility for hydrological modelling in Canada, or more specifically in the Prairie region.

The chapter will also compare NARR with two other popular reanalyses, the NCEP-

NCAR Global reanalysis (NNGR) and the ERA-40 from the European Centre for

51



3.1. REANALYSIS DATA

Medium-Range Weather Forecasts (ECMWF).

NNGR is perhaps the most well-known first generation global reanalysis product.

The NNGR uses a state-of-the-art analysis/forecast system to perform data assimi-

lation using past data from 1948 to the present. It has a spatial resolution of 2.5◦ by

2.5◦ in the horizontal and 17 pressure levels and 28 sigma levels in the vertical, and

6-hourly temporal resolution over the entire globe. Many studies (Mo and Higgins ,

1996; Higgins et al., 1996; Trenberth and Guillemot , 1998; Betts et al., 1999; Roads

et al., 1999; Roads and Betts , 2000) have examined this global reanalysis, focusing

on energy and water budgets, and have typically found a number of noticeable differ-

ences and biases in the large-scale basin averages (Berg et al., 2003). Nevertheless,

many researchers have concluded that the climate variables from global reanalysis

products are reasonably close to the observed data.

The ERA-40 is another global reanalysis product, available from September 1957

to August 2002 at a 6-hourly temporal resolutions over the entire globe. The ERA-40

is provided at two different horizontal resolution: 2.5◦ by 2.5◦ for public users with

limited data processing resources and TL159 spectral fields and N80 Quasi-regular

Gaussian grid with 60 levels in the vertical including a well-resolved boundary layer

and stratosphere. The former data is available for free, while charges apply to the

latter. ERA-40 uses a 3-D variational assimilation system which improved the model

from its predecessor. Betts et al. (2003a,b) assessed the systematic biases in temper-

ature and precipitation, and the surface water budget of ERA-40 for the Mackenzie
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River basin by comparing with the Mackenzie GEWEX (Global Energy and Water

Cycle Experiment) study (MAGS). They found that ERA-40 has a distinct seasonal

temperature bias of 2 to 3◦C from December to April and a cool bias of -1.5◦C in

summer. ERA-40 was found to overestimate precipitation in the northern and west-

ern mountainous basins and to have less variability of evaporation across the basins

than the MAGS estimate.

The North American Regional Reanalysis (NARR) was developed as a follow-up

to the NNGR project. NARR is a high-resolution climate data set for the entire

North American domain, and it appears to be a major improvement upon the earlier

NNGR data sets in both resolution and accuracy. The NARR is a reprocessing of the

historical meteorological observations using NNGR and associated data assimilation

systems (Mesinger et al., 2006). The NARR data cover North America with a 32

km horizontal resolution and 45 layers in the vertical, from 1979 to present. NARR

provides an improved analysis of land hydrology and land-atmosphere interaction,

and Mesinger et al. (2006) expected good representation of extreme weather events

in NARR. This data set would therefore interface well with hydrological models.

A major component of the NARR is the assimilation of precipitation using the

Eta climate model, which is an operational model used primarily for regional weather

prediction and NWP-type applications (Mesinger , 2001). The model has been very

successful also in regional climate and seasonal prediction applications (e.g. Altshuler

et al., 2002; Chou et al., 2005; Katsafados et al., 2005). The precipitation data for

53



3.1. REANALYSIS DATA

Figure 3.1: Distribution of surface observations assimilated in NARR (January 1988).
Source: Mesinger et al. (2006).

the assimilation process come from a variety of sources. The data over the continen-

tal United States come from an interpolated 1/8◦-grid gauge data set obtained using

the PRISM-model (Parameter-elevation Regressions on Independent Slopes Model)

(Daly et al., 1994) and a least-squares distance weighting algorithm. Over Canada

and Mexico where the station networks are less dense, the precipitation comes from

1-degree gauge-interpolated data sets. Also, in the US 24-hr accumulations are disag-

gregated to hourly precipitation using station data, while in Canada and Mexico 24-

hr accumulations are disaggregated to hourly precipitation using Global Reanalysis
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2 precipitation forecast. Much of the rest of the domain’s precipitation comes from

CMAP (Climate Prediction Center’s Merged Analysis of Precipitation), a merged

combination of satellite and gauge precipitation. Mesinger et al. (2006) found that

NARR precipitation was quite similar to the observed precipitation used in the data

assimilation. Figure 3.1 shows the distribution of surface observations for the NARR

data assimilation process. A better performance of NARR precipitation in the US

is to be expected given its higher density of weather stations.

Because the NARR data set is fairly recent, few studies have evaluated and ap-

plied the data. A recent independent examination of NARR precipitation found

it to be superior to global reanalyses over the contiguous United States (Bukovsky

and Karoly , 2007). Becker et al. (2009) examined the seasonal characteristics of

daily precipitation over the US from NARR, and found that NARR mean seasonal

amounts are very close to observations throughout the year, although NARR shows

a slight systematic bias toward more-frequent, lighter precipitation. The study indi-

cates that NARR underestimates extreme precipitation intensity and overestimates

lighter events in the eastern half of the United States, particularly during sum-

mer. Nigam and Ruiz-Barradas (2006) examined the hydroclimatic representation in

ERA-40, NNGR, and NARR of precipitation, evaporation, surface air temperature,

and moisture flux distributions. Their study focused on the description of seasonal

hydroclimatic variability in the NARR data. They concluded that reanalysis pre-

cipitation evolution appears realistic in winter and early spring. Ruiz-Barradas and
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Nigam (2006) also examined the structure of precipitation and the role of evapora-

tion and moisture fluxes. Both studies indicate that the assimilation of precipitation

in NARR improves the representation of land-atmosphere interactions.

The above studies suggest that NARR has significant potential for hydrological

modelling. A detailed evaluation of the NARR data in the Prairie region is therefore

undertaken in this chapter, using observed data as baseline for the assessment.

3.2 Comparison of NARR and Gridded Observa-

tion Data

One of the benefits of using NARR is the grid structure of the data which covers the

entire North American domain. To assess the reliability of NARR, it is necessary

to evaluate the data both spatially and temporally. In Canada, there have been

some efforts to develop gridded climate data sets using various statistical interpo-

lation methods. Two data sets are considered here: CANGRID and ANUSPLIN.

Although these interpolated gridded data sets are not precise observed data, they

are based on quality-controlled data and have been used in a number of studies to

represent Canadian climate data. In this section, NARR precipitation in the Prairie

region is investigated through a comparison with CANGRID and ANUSPLIN, for a

preliminary verification of the spatial representativeness of NARR precipitation.
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Figure 3.2: Annual average NARR precipitation [unit: mm].

3.2.1 Spatial distribution of NARR precipitation

Gridded average annual and seasonal NARR precipitation for the period of 1980 -

2000 are shown in Figures 3.2 and 3.3. The average annual precipitation plot shows a

narrow band of a substantially lower precipitation in the southern part of the Prairie

region along the border between Canada and the US. Considering the shape and

the location of this anomaly, it seems reasonable to hypothesize that it is caused

by a systematic error in the assimilation processes associated with the difference in

observed precipitation input.

For further investigation of this issue, the average seasonal precipitation is plotted

in Figure 3.3. The severity of the band anomaly appears to depend on the season.

In the winter time, the band is weak although still recognizable. In spring and fall,
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Figure 3.3: Seasonal average NARR precipitation (Winter = DJF; Spring = MAM;
Summer = JJA; Fall = SON) [unit: mm].

the band is clearly distinguishable but less severe than summer. The precipitation

input data sets used to construct NARR need to be disaggregated into hourly values,

and, as mentioned earlier, the disaggregation process is different in Canada and the

US. The CMAP data sets used in the US is reliable only up to about 50◦ N close to

where the Canada-US border is located. In order to avoid the sharp discontinuity

along the borders, Shafran et al. (2004) added a blending to the Eta code to adjust

the influence of the CMAP data during the assimilation processes. The narrow band

of bias most likely occurs as a result of the way different data sets were integrated

into the assimilation.
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Figure 3.4: Annual average CANGRID precipitation [unit: mm].

3.2.2 Gridded observation data sets

Canadian Gridded Climate Data (CANGRID)

CANGRID is a Canadian climate archive data set of monthly total precipitation

and mean temperature data, interpolated to 50 km grid scale and available from

1896 to present. CANGRID was developed for climate trend and variability studies

and is based on statistical optimal interpolation of the Adjusted Historical Canadian

Climate Data (AHCCD)1. This statistical optimal interpolation method is known to

perform better than many empirical methods in sparsely and unevenly distributed

climate networks. Recently, CANGRID has been combined with near real-time ob-

servations in the CTVB (Climate Trends and Variations Bulletin) for up-to-date

1http://www.ec.gc.ca/adsc-cmda/default.asp?lang=En&n=F3D25729-1
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Figure 3.5: Annual average ANUSPLIN precipitation [unit: mm].

continuous climate monitoring on a monthly, seasonal, and annual basis. The CAN-

GRID data is provided free of charge for public use under the copyright of Envi-

ronment Canada. The average of annual CANGRID precipitation over the Prairie

regions for the period 1980-2000 is shown in Figure 3.4.

ANUSPLIN

Agri-Geomatics, in collaboration with Natural Resources Canada (NRCan), Environ-

ment Canada, and the Australian National University, recently released a daily 10 km

Raster-Gridded Climate data set called ANUSPLIN for the Canadian landmass south

of 60◦N. The ANUSPLIN contains gridded data of daily maximum and minimum

temperature, and precipitation, interpolated from daily Environment Canada climate
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station observations using a thin plate smoothing spline surface fitting method. The

model fits thin-plate smoothing spline surfaces to multivariate noisy data and uses

a non-parametric version of standard multivariate linear regression. The model is

fitted to observational data using generalized cross-validation (Agriculture and Agri-

Food Canada2). Figure 3.5 shows the distribution of average annual precipitation

over the Prairie regions. Because the data set was initially developed for the Prairie

regions of Alberta, Saskatchewan, and Manitoba, some grid points are missing in the

southern part of western Ontario.

3.2.3 Data comparison

First, the gridded average annual precipitation of NARR was compared with the

same data from CANGRID and ANUSPLIN. Since the three data sets contain data

at different grid resolutions, some regridding was required. For comparison of two

data sets, the data set with the highest resolution was regridded to the larger grid size.

For comparison of NARR and CANGRID, the NARR data (32 km) were regridded

using linear interpolation unto the CANGRID grid (50 km). When comparing NARR

with ANUSPLIN, the ANUSPLIN data (10 km) were interpolated unto the NARR

grid (32 km).

Figure 3.6 shows the difference of average annual precipitation in NARR and

CANGRID (NARR minus CANGRID). The annual precipitation difference in most

of the Prairie region is within a ±50 mm range, except some regions such as the

2http://www4.agr.gc.ca/AAFC-AAC/display-afficher.do?id=1227620138144&lang=eng
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Figure 3.6: Differences between annual precipitation of NARR and CANGRID [unit:
mm].

area around Lake Winnipeg and Lake Manitoba, the mountainous regions in western

Alberta, as well as the Canada-US border line. In both Figures 3.2 and 3.3 showing

NARR data, the shapes of the two lakes are distinguishable, but they are absent from

CANGRID (Figure 3.4). Clearly, the lakes were not considered in the interpolation

process. Also, there is no elevation adjustment in CANGRID so the gridded values

in elevated terrain such as the Rockies are unlikely to reflect the full orographic

influence, and it is generally recommended that the CANGRID data not be used

in mountainous areas. Therefore, the NARR data is possibly more accurate in the

lake and the mountainous regions than the CANGRID data. The aforementioned

narrow band of underestimated precipitation bias clearly appears in the plot along

the border line.
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Figure 3.7: Differences between annual precipitation of NARR and ANUSPLIN [unit:
mm].

Figure 3.7 depicts the difference of average annual precipitation between NARR

and ANUSPLIN (NARR minus ANUSPLIN). The result is quite similar to the com-

parison with CANGRID. Again, the lake areas and the narrow band bias show the

most significant differences. Apart from the above mentioned areas, the discrepancy

is within a ±50 mm range. It should be noted that the southern part of north-

western Ontario should be disregarded due to the absence of ANUSPLIN data for

comparison.

There are some slight differences between the two comparison results, especially

in the northern parts of the Prairies and near mountainous area. NARR precipitation

appears slightly higher than CANGRID in the northern area, especially in northern

Alberta and Manitoba, while this is less evident in the comparison with ANUSPLIN.
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Figure 3.8: Boxplots of annual and seasonal precipitation discrepancies between
NARR and CANGRID and between NARR and ANUSPLIN for the full grid (left
figures) and the trimmed grid that excludes the border band (right figures).

Moreover, as ANUSPLIN takes into account the elevation in its interpolation scheme,

the discrepancies in the mountainous area are within the general range of ±50 mm.

In order to summarize the data discrepancy between grid point values in two

different spatial data sets, a boxplot representation is used, see Figure 3.8. To better

appreciate the significance of the narrow band bias, the box plot comparison was

performed in two ways. The data were first compared at all grid points (left panels

in Figure 3.8), and then a reduced set of grid points that excluded the narrow band
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was compared (right panels in Figure 3.8).

When all grid points are considered in the comparison with CANGRID, the

medians of annual and seasonal precipitation discrepancies are overall negative. The

central 50% of the distribution, represented by the box, of the annual precipitation

discrepancies lies between -75 mm and 5 mm and 99.3% (range of the whiskers)

lies between -200 mm and 110 mm. The seasonal precipitation data show a similar

pattern. Overall, it is clear that NARR precipitation has a significant negative bias

relative to CANGRID. When the grid points in the border band are excluded, the

medians of precipitation discrepancies move up to 0 mm in annual, spring, and fall,

while the medians in winter and summer are still negative. 50% of the distribution

of the annual precipitation discrepancies lies between -50 mm and 15 mm and 99.3%

lies between -150 mm and 120 mm. It is clear that the border band is associated

with significant negative biases. The seasonal precipitation show that the boxes in

winter and summer stays almost the same and that the boxes in the annual, spring,

and fall distributions move up.

The comparison results of ANUSPLIN are similar to the results from CANGRID,

except for the ranges of boxes and whiskers. The box range of annual precipitation

discrepancies in the full grid is between -50 mm and 0 mm, and the whiskers lie be-

tween -110 mm and 50 mm, which is significantly narrower than what was found in

the CANGRID comparison. The results for the seasonal comparison of the border-

excluded data set with ANUSPLIN are similar to the CANGRID comparison, but
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the change of annual median in ANUSPLIN is minimal compared to the CANGRID

comparison. Again, the noticeable differences by excluding the narrow bias band

indicate that the bias is specifically localized in the area. The relatively small dis-

crepancies in areas other than the bias band indicate that the NARR precipitation

reasonably represents the climatology in the Prairie region.

Considering the sophisticated nature of ANUSPLIN, the data set is most likely

better than CANGRID. The narrower range of discrepancy between NARR and

ANUSPLIN provides a basis for confidence in NARR precipitation, at least in terms

of seasonal means and spatial distribution.

The main motivation for studying NARR in this thesis is to assess its reliability

in remote regions such as the northern part of the Prairie provinces, approximately

above 55◦N. Thus, the comparison results that exclude the narrow border band pro-

vide an appropriate validation. Nonetheless, further evaluation of the bias problem

is required.

3.3 Comparison with Weather Station Data

To assess the reliability of NARR as a proxy for observed climate data at station

scale, the NARR data was compared to information from selected weather stations.

The evaluation was conducted for two climate variables, temperature and precip-

itation, which are key input to hydrological models. As an improved version of

NNGR (NCEP-NCAR Global Reanalysis), NARR is expected to show better agree-
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Table 3.1: Daily temperature statistics of NARR, NNGR, ERA-40 and stations.
(RMSE = root mean square error; R = correlation)

OBS NARR NNGR ERA-40

Station Avg Avg RMSE R Avg RMSE R Avg RMSE R

Brandon 2.2 3.9 3.37 0.98 2.4 2.92 0.98 3.0 2.25 0.99

Churchill -6.6 -5.9 3.56 0.97 -7.1 3.64 0.97 -6.0 2.72 0.99

Dauphin 2.3 3.2 3.46 0.97 2.0 3.48 0.97 2.4 3.06 0.98

The Pas 0.4 1.4 2.90 0.98 0.2 2.82 0.98 0.5 2.00 0.99

Thompson -2.9 -1.1 3.50 0.98 -4.4 3.55 0.98 -2.0 2.38 0.99

Winnipeg 3.0 4.0 3.02 0.98 2.1 2.94 0.98 3.2 2.20 0.99

Average -0.2 0.9 3.30 0.98 -0.8 3.23 0.98 0.2 2.44 0.99

ment with observations on a regional scale due to the higher spatial resolution and

general reliability. In order to verify the better agreement of NARR compared to

other reanalysis products, the NNGR and ERA-40 were included in the analysis.

The comparison was conducted for daily, monthly, and annual time scales based on

basic statistics such as averages, root mean square errors (RMSE), and correlation

coefficients (R) for each time scale.

The observed data sets were obtained from six Environment Canada weather

stations: Winnipeg, Brandon, Dauphin, The Pas, Thompson, and Churchill. The

comparison period was chosen as 1981-2000 because ERA-40 covers only the period

from mid-1957 to mid-2002. The NARR, NNGR, and ERA-40 data sets were re-

trieved from the grid points closest to each weather station and interpolated to the

locations of the weather stations using a linear interpolation scheme.
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3.3.1 Temperature

The average daily temperature of observations, NARR, NNGR, and ERA-40 are com-

pared in Table 3.1. NARR and ERA-40 overestimate daily temperature in general

while NNGR underestimates at most stations. NARR temperature is approximately

1◦C higher than observed temperature, while NNGR and ERA-40 are approximately

0.8◦C lower and 0.2◦C higher, respectively. Table 3.1 also shows the RMSE and

daily correlation, R, values of the daily temperature. ERA-40 has the lowest average

RMSE of 2.4 ◦C for the six stations, while NARR and NNGR has RMSEs of 3.3

◦C and 3.2 ◦C. The correlations of daily average temperature for each reanalysis are

between 0.97 and 0.99 for all stations, with ERA-40 consistently showing the highest

correlation.

The mean monthly temperatures for all data sets are compared in Figure 3.9. All

reanalysis data sets appear in reasonable agreement with observations. The NARR

temperature shows the best agreement with observations in Churchill for all months,

but overestimates temperature in summer at other locations, especially in Brandon

and Winnipeg. NNGR shows significant underestimation in spring and autumn at

many stations while ERA-40 shows better agreement for all seasons at most of the

stations. In summary, all three reanalysis products have temperature biases of less

than 1◦C, average RMSE values of less than 3.3 ◦C, and a high daily correlation of

over 0.97. These results suggest that temperature data from reanalyses, in general,

are highly reliable and suitable for use in hydrological studies.
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Figure 3.9: Mean monthly temperature from NARR, NNGR, ERA-40 and weather
stations.
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3.3.2 Precipitation

Table 3.2 compares the annual mean precipitation and daily precipitation RMSE

of reanalysis data sets with observations at the six reference sites. The annual av-

erage precipitation of NARR and ERA-40 are, respectively, about 6% and 2% less

than observed precipitation overall, while NNGR overestimates than observed annual

average precipitation by 25%. In the comparison of individual stations, the differ-

ence of annual average precipitation between NARR and observations in Brandon,

Dauphin, and Winnipeg is more than 50 mm; indeed, NARR precipitation is sub-

stantially lower than other reanalyses and observations at these locations. Winnipeg

and Brandon are located within the bias band identified in Section 3.2 and the sig-

nificant underestimation concurs with the bias issue. However, except for Dauphin

the annual average precipitation of NARR at stations located outside of the bias

band show only small differences (less than 4%). ERA-40 appears to better estimate

Table 3.2: Average annual precipitation and daily precipitation RMSE of observa-
tions, NARR, NNGR, and ERA-40.

Annual mean precipitation (mm) RMSE (mm)

Station OBS NARR NNGR ERA-40 NARR NNGR ERA-40

Brandon 472.1 421.1 609.4 465.6 3.50 4.34 3.87

Churchill 448.8 450.2 467.3 431.8 2.44 2.97 2.78

Dauphin 516.6 460.6 640.4 472.9 4.06 4.48 4.06

The Pas 440.5 445.3 684.9 476.2 2.67 3.52 3.05

Thompson 497.1 477.8 562.4 471.5 3.34 3.85 3.00

Winnipeg 523.7 455.6 671.5 530.2 3.76 4.86 4.32

Average 483.1 451.8 606.0 474.7 3.29 4.00 3.51
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Table 3.3: Daily (Rday) and monthly (Rmon) correlation between observations and
NARR, NNGR, and ERA-40.

Station Correlation (Rday) Correlation (Rmon)

NARR NNGR ERA-40 NARR NNGR ERA-40

Brandon 0.59 0.45 0.50 0.90 0.72 0.77

Churchill 0.72 0.55 0.61 0.90 0.57 0.77

Dauphin 0.54 0.46 0.53 0.81 0.71 0.74

The Pas 0.73 0.56 0.62 0.95 0.68 0.80

Thompson 0.57 0.47 0.67 0.81 0.76 0.83

Winnipeg 0.64 0.42 0.50 0.90 0.72 0.81

Averaged 0.63 0.48 0.57 0.88 0.69 0.79

precipitation at the two stations located within the bias band and in Dauphin; how-

ever, worse agreement is observed at the other stations compared to NARR. NNGR

overestimates the annual average precipitation overall, up to as much as 240 mm in

The Pas.

The daily precipitation of NARR has the lowest RMSE of 3.3 mm which suggests

daily precipitation differences are less than other reanalyses. It is notable that the

RMSE statistic gives a relatively high weight to large errors. Therefore, the RMSE

comparison may suggest that NARR estimates large daily precipitation events better

than NNGR and ERA-40.

The daily and monthly precipitation correlations between reanalysis and obser-

vations are compared in Table 3.3. The averages of daily and monthly correlations

of NARR precipitation are 0.63 and 0.88, respectively, and both correlations are sig-

nificantly higher than the correlation averages of NNGR and ERA-40. At most of

the stations, the correlation of NARR is about 0.2 and 0.1 higher than the correla-
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tions of NNGR and ERA-40, respectively, except in Thompson where the daily and

monthly correlations of ERA-40 precipitation are higher than NARR. The higher

correlations of NARR compared to other reanalyses in the band bias area should not

be a surprise since bias and correlation measure largely different aspects. The higher

correlations and lower RMSE of NARR precipitation may indicate that the NARR

daily precipitation agree better with larger daily precipitation events despite of the

general underestimation in the bias band.

A scatter plot is a useful way to visualize the day-to-day match of daily precipita-

tion. Figure 3.10 shows scatter plots of daily precipitation, with markers representing

different reanalysis data: red circles for NARR, blue crosses for NNGR, and green

triangles for ERA-40. The monthly and annual averages of NARR precipitation in

Churchill are almost the same as observations, and the daily precipitation of NARR

(red circles in left panel of Figure 3.10) in the scatter plot are found near the 45◦-line.

Moreover, at higher values NARR is generally closer to the 45◦-line than NNGR and

ERA-40.

A Q-Q (quantile-quantile) plot is useful for comparing the shapes of two dis-

tributions. Figure 3.11 shows Q-Q plots of observations and reanalysis data sets,

using the same marker representation as in the scatter plots. In Figure 3.11 (left

panel), the NARR precipitation at Churchill lies on the left side of the 45◦-line, sug-

gesting an underestimation of precipitation compared to observations. However, the

dots for NARR lie nearer the line than the dots of NNGR and ERA-40, indicating
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Figure 3.10: Scatter plot for NARR, NNGR, and ERA-40 against observation in
Churchill (left) and Winnipeg (right) [unit: mm] (see Figure A.1 for other stations).
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Figure 3.11: Q-Q plot for NARR, NNGR, and ERA-40 against observation in
Churchill (left) and Winnipeg (right) [unit: mm] (see Figure A.2 for other stations).

that NARR estimates larger precipitation events better than NNGR and ERA-40 at

Churchill. On the other hand, in Winnipeg (Figure 3.11, right panel) NARR and

NNGR significantly underestimate daily precipitation, while the ERA-40 lies closer

to the 45◦-line. However, precipitation of all reanalysis at higher quantiles appear to

be similar to each other.

An investigation of seasonal precipitation is also an important component of the

evaluation of reanalysis products. Figure 3.12 shows that NNGR significantly over-

estimates precipitation in spring and summer at most stations, except in Churchill

where the summer precipitation is significantly underestimated. It is reasonable to

suspect that due to the coarse resolution of NNGR, the influence of the ocean is not

well-captured at the grid points near Churchill. NARR precipitation shows signifi-

cant improvement over NNGR at all stations. In Winnipeg, Brandon, and Dauphin,
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Figure 3.12: Mean monthly precipitation from NARR, NNGR, ERA-40, and weather
stations.
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Figure 3.13: Mean Monthly RMSE for NARR, NNGR, and ERA-40.
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NARR precipitation during the summer months is lower than observations which in

the case of Winnipeg and Brandon is a product of the bias of NARR precipitation

in the band area. NARR precipitation is also lower than observations in other sea-

sons, particularly fall and early winter. In terms of mean monthly precipitation, the

ERA-40 precipitations agree better with observations than NARR in the bias band

area and show similar agreement as NARR at other stations.

As mentioned before, although some averages of ERA-40 precipitation agree bet-

ter with observations than averages of NARR, it does not necessarily imply that

ERA-40 precipitation estimate the day-to-day match better. Figure 3.13 shows the

mean monthly RMSE of daily precipitation. The NNGR clearly has higher RMSEs

in all seasons compared to NARR and ERA-40. The monthly RMSEs of NARR

are lower than ERA-40 in the summer and the two are fairly close to each other in

other seasons. Although the mean monthly precipitation of ERA-40 may be closer

to observations than NARR, the day-to-day errors of NARR appear to be less than

ERA-40, indicating that NARR may represent the day-to-day precipitation events

better than ERA-40. Based on the above comparison, it can be concluded that

NARR considerably improves upon the NNGR precipitation in all respects. The

ERA-40 precipitation also shows significantly better agreement with observations

than NNGR and even NARR for some cases in the narrow bias band area. However,

in the comparisons of RMSE and correlations, NARR appears to be better than

ERA-40.

77



3.3. COMPARISON WITH WEATHER STATION DATA

3.3.3 Comparison over the Prairie region

The Prairie provinces, i.e. Alberta, Saskatchewan, and Manitoba, contain geologic

and climatologic similarities over vast areas, but also contain unique features such as

the Canadian Rockies, the Prairie Pothole region stretching from Alberta through

the middle and lower portion of Saskatchewan to the southern portion of Manitoba,

the Boreal Plains found in central Alberta, extending east through the center of

Saskatchewan and into the center of Manitoba, and the Boreal Shield extending from

northern Saskatchewan east to Newfoundland, passing north of Lake Winnipeg, the

Great Lakes and the St. Lawrence River. An assessment of NARR over the entire

Prairie regions with its diverse ecozones will provide a broader understanding of its

reliability, consistency, and usability in central Canada.

In this section, the area for assessment is expanded to the three Prairie provinces,

Alberta, Saskatchewan, and Manitoba, and to a section of north-western Ontario.

The diversity of geological and geographical characteristics was considered for station

selection. In the first part of this chapter, it was found that NNGR clearly overesti-

mates precipitation amounts compared to NARR and ERA-40. Thus, only ERA-40

is included in the assessment in this section. The weather stations were selected

considering the length and quality of the records. The NARR data is available from

1979 to present and the ERA-40 data is available from 1957 to 2002. The period

of 1981 - 2000 was selected for the assessment. Initially, weather stations in cen-

tral Canada with historical climate records for the assessment period were identified.
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3.3. COMPARISON WITH WEATHER STATION DATA

Figure 3.14: Selected weather stations in Prairie regions.

Stations with more than 30 % missing records were removed. Some further screening

led to 50 weather stations over the Prairie region, including 10 stations in Manitoba,

5 stations in Ontario, 15 stations in Saskatchewan, and 20 stations in Alberta (see

Figure 3.14). The NARR and ERA-40 data were collected at the grid points nearest

to each selected station following the same procedure as in the previous section.

Table 3.4 shows the averaged RMSEs of daily mean temperature and precipita-

tion for each province (see Table A.1, A.2, A.3, and A.4 for each station in each

province, respectively). The averaged temperature RMSEs of NARR is higher than

the average of ERA-40 by 0.7 overall and is also higher in all individual provinces.

On the other hand, the averaged RMSEs of NARR precipitation is lower than ERA-

40 by 0.2 overall and in all individual provinces. In Table 3.5 it is seen that the
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3.3. COMPARISON WITH WEATHER STATION DATA

Table 3.4: Comparison of daily temperature and precipitation averages and RMSEs
of NARR and ERA-40 with observations.

Province

Daily Mean Temperature (◦C) Daily Precipitation (mm)

OBS NARR ERA-40 OBS NARR ERA-40

Avg RMSE Avg RMSE Avg RMSE Avg RMSE

MB (10) 0.1 1.2 3.3 0.5 2.7 1.3 1.1 3.4 1.3 3.9

ON (5) 2.3 3.1 2.8 2.0 2.5 1.9 1.2 4.5 1.7 4.7

SK (15) 2.1 2.9 3.1 2.4 2.5 1.1 1.0 3.0 1.2 3.4

AB (20) 3.0 3.0 3.2 2.8 3.0 1.2 1.3 3.2 1.3 3.5

Total 1.9 2.6 2.9 1.9 2.7 1.4 1.2 3.5 1.4 3.9

mean temperature correlations between observation and both NARR and ERA-40

are above 0.97 for the daily time scale and almost 1.00 for monthly in all Prairie

provinces. The daily precipitation correlations, averaged over all provinces, are 0.6

for NARR and 0.5 for ERA-40. The monthly precipitation correlations average 0.9

and 0.78 for NARR and ERA-40, respectively. The correlations of ERA-40 for tem-

perature are slightly higher than NARR, but for precipitation NARR clearly shows

better correlations with observations at most stations. In all provinces, the precipi-

tation correlations of NARR are 0.1 higher than ERA-40 at both daily and monthly

time scales.

In order to identify spatial patterns in precipitation correlations, the precipitation

correlations of NARR and ERA-40 are displayed on maps. Figure 3.15 depicts the

correlations of monthly precipitation from NARR (above) and ERA-40 (below) with

observations (see Figure A.3 for daily precipitation). The monthly correlations of

NARR are around 0.9 from the US border to above the central part of each province
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Figure 3.15: Correlation coefficient of observed station and NARR and ERA-40
monthly precipitation.
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Table 3.5: Correlation comparison of temperature and precipitation from NARR and
ERA-40 with observations.

Province

Mean Temperature (◦C) Total Precipitation (mm)

Daily Monthly Daily Monthly

NARR ERA-40 NARR ERA-40 NARR ERA-40 NARR ERA-40

MB (10) 0.98 0.99 1.00 1.00 0.59 0.49 0.88 0.77

ON (5) 0.98 0.98 1.00 1.00 0.63 0.52 0.92 0.76

SK (15) 0.98 0.99 1.00 1.00 0.58 0.46 0.91 0.81

AB (20) 0.97 0.97 0.99 1.00 0.62 0.52 0.90 0.79

Total 0.98 0.98 1.00 1.00 0.60 0.50 0.90 0.78

and then gradually decreases northward to 0.7. The correlations at stations located

in southern central Alberta and Saskatchewan are noticeably higher, around 0.95.

This is a region where the station network is dense and the quality of station records

is presumably better than in the remote regions. The correlations in the north-

ern Boreal Shield area and the nearby Rocky mountain area are between 0.7 and

0.8 at some stations. These relatively low correlations suggest that the density of

weather station network and the geographical characteristics such as variation of ele-

vation may considerably affect the performance of NARR. The ERA-40 correlations

of monthly precipitation shows a similar spatial pattern but are generally around 0.1

lower than NARR.

The spatial evaluation suggest that the high correlation and low RMSE of NARR

precipitation is fairly consistent across the Prairie regions. Although the quality

deteriorates northward, the results are still quite good and certainly hold promise

for hydrologic modelling.
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Chapter 4

APPLICATION OF NARR FOR

HYDROLOGICAL MODELLING

AND CLIMATE CHANGE

IMPACT ASSESSMENT

4.1 Introduction

The uncertainty of input data for hydrological modelling significantly affects the

model performance. Sun et al. (2002) demonstrated that the spatial distribution of

precipitation and the representation of spatial conditions across a watershed affect

errors in storm-runoff simulation and found that the accuracy of storm-runoff predic-
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tion considerably depends on the extent of spatial precipitation variability. Michaud

and Sorooshian (1994) found that inadequate rain gauge densities can cause signif-

icant errors in simulated peaks, including a consistent reduction in simulated peaks

due to the spatial averaging of precipitation. Moulin et al. (2009) investigated the

influence of mean areal precipitation estimation errors in hydrological modelling and

found that the mean areal precipitation estimations induce large uncertainties in

hydrological simulations. They also affirmed that even in an optimal situation (good

quality data sets and intensive effort in hydrological model selection and calibration),

reducing runoff simulation errors can be difficult without a significant improvement

of the precipitation measurement networks and techniques. Bárdossy and Das (2008)

investigated the influence of the spatial resolution of the precipitation input on hydro-

logical model calibration and found that models using different raingauge networks

might need re-calibration of the model parameters.

As mentioned in Chapter 2, due to the lack of weather stations, it can be a

challenge to perform hydrologic modelling of Northern Canadian watersheds. In

Chapter 3, NARR was shown to be in good agreements with observed meteorological

data at weather stations and thus may potentially be used in lieu of observed station

data. The relatively good representation of precipitation in NARR suggests that the

data can be used to improve the calibration and validation of hydrological models

in areas where climate stations are limited in number or even non-existent. NARR

may also be useful in statistical downscaling models. In this chapter, NARR will be
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4.2. HYDROLOGICAL MODELLING USING NARR

applied to hydrological modelling and statistical downscaling.

4.2 Hydrological Modelling using NARR

4.2.1 Use of NARR as input to SLURP

Based on the findings in Chapter 3, it is reasonable to assume that NARR will

be useful in hydrologic studies where observed climate data are lacking or of poor

quality. As a preliminary evaluation of the reliability of NARR for hydrological

modelling, the NARR data were applied to the three calibrated watershed models

in northern Manitoba (Taylor, Burntwood, and Sapochi watersheds). The observed

data of nearby weather stations (listed in Table 2.4) were interpolated to the centroid

of each watershed for the model calibration and compared with the NARR data at

the grid point closest to the centroid of each watershed. The observed mean monthly

precipitation and temperature were compared with the corresponding statistics from

NARR for each watershed as shown in Figure 4.1. NARR precipitation during the

summer months is significantly lower than what is observed at weather stations.

NARR precipitation is also lower than measured precipitation in fall and early winter.

The goodness-of-fit is reasonable on a monthly time scale, but is low at the daily

scale (R ≈ 0.5). Average NARR temperatures between May and October are higher

than observations. However, when annually averaged, the difference between NARR

and stations temperature is negligible, and the goodness-of-fit of the daily series is
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Figure 4.1: Mean monthly precipitation and temperature at each watershed.

high (R > 0.9). The daily NARR temperature is off the station data by a few degrees

on average.

A series of experiments were designed to test the use (sensitivity) of NARR

temperature and precipitation data as input to the SLURP models already calibrated

with observed data. For each watershed, four different SLURP runs were performed

for the period 1979-2004, using different combinations of input variables. The first
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Table 4.1: Deviation of volume (Dv) and efficiency (E) of simulated runoff series
from different runs.

Station NARR T NARR P NARR PT

Dv E Dv E Dv E Dv E

Burntwood 0.1 0.47 -0.1 0.44 -19.7 0.36 -20.6 0.38

Taylor 1.1 0.75 4.2 0.67 -22.2 0.55 -21.7 0.47

Sapochi 4.3 0.41 -0.7 0.53 -28.1 0.49 -28.2 0.51

Notes: (1) the Taylor and Burntwood results were calculated for the period 1985-2000 with
missing streamflow records excluded; (2) the Sapochi results were calculated for the period
from 1995 through September 2002 except 1999 with missing streamflow records excluded.

run, referred to as ‘Station’, employed solely observed data from weather stations as

inputs. The second run used NARR precipitation while the remaining data were from

weather stations (denoted ‘NARR P’). The third run used NARR temperature with

the remaining data from weather stations (denoted ‘NARR T’). The forth run used

both precipitation and temperature of NARR (denoted ‘NARR PT’). The output

from each run was compared to the observed streamflow and the agreement was

measured in terms of absolute deviation Dv and efficiency E.

Table 4.1 indicates that the runs with NARR precipitation data underestimated

runoff in all watersheds. The average annual precipitation of NARR is about 6%

lower than the observed precipitation in Thompson (shown in Table 3.1) which ex-

plains the Dv values in Table 4.1 for the NARR P and NARR PT runs. The runoff

from the NARR T run differs from the Station run only by a few percent. The E

values indicate that the SLURP runs with the NARR precipitation data (NARR P

and NARR PT) result in slightly worse goodness-of-fit at the daily time scale for

Burntwood and Taylor while being slightly better for Sapochi. Overall, the goodness-
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Figure 4.2: Mean monthly observed runoff and simulated runoff with different input
data sets.

of-fit from the NARR P and PT runs is better than anticipated, considering the low

correlation coefficients with the station precipitation data (Table 3.5 in Chapter 3).

Figure 4.2 presents the mean monthly runoff in each watershed from the four

different SLURP runs for the period 1980-2004. The year 1979 was used as ‘warm-

up’ period. The runoff from the NARR P run is lower than the runoff from the

Station run, especially in late spring and summer. This result is consistent with the
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4.2. HYDROLOGICAL MODELLING USING NARR

fact that the NARR precipitation is lower than the observed precipitation during

summer. For the NARR T run, the most noticeable feature is that the runoff in May

is higher than for the Station run due to the higher NARR temperature.

4.2.2 SLURP calibration using NARR

As precipitation has the most influence on hydrological modelling, the precipitation

data of observations and NARR were compared in more detail. In practice, the ob-

served climate data from weather stations outside from the watershed are often used

for hydrological modelling in remote regions although they may not be fully repre-

sentative of the watershed conditions. Therefore, the difference between NARR data

and observations from outside of a watershed do not necessarily represent the error of

NARR precipitation in the watershed. Nevertheless, the average precipitation data

of observations and NARR grid points were compared in order to investigate bias

of NARR precipitation prior to hydrological modelling. The average annual precip-

itation for the period 1979 - 2004 in Sturgeon is 748.5 mm (at the Sioux Lookout

station) and 660.9 mm based on the average of NARR grid points in the watershed,

while the averages for the same period in Troutlake are 641.4 mm (Red Lake) and

601.5 mm (average of NARR grid points in the watershed). The difference of an-

nual average precipitation between observation and NARR in Sturgeon (87.6 mm) is

noticeably greater than in Troutlake (39.9 mm), and it indicates that the band bias

of NARR precipitation affects in Sturgeon as the watershed is closer to the US bor-
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Figure 4.3: The monthly mean precipitation of observation and NARR for period
1979-2004 in each watershed.

der than the Troutlake watershed. As shown in Figure 4.3, the differences of mean

monthly precipitation between observation and NARR in Sturgeon are significant in

spring and summer while the differences in Troutlake are minimal.

To verify the reliability of NARR for hydrological modelling, the SLURP model

was calibrated using solely the NARR data and the simulation results were compared

with the observed streamflow records. Each model was calibrated using streamflow

records measured at the Sturgeon River and the Troutlake River. Since all weather

stations and streamflow gauges have missing data, the calibration and validation

were conducted over the periods with best quality records in each watershed. The

Sturgeon-model was calibrated first for the period of 1992-1995 and validated for the

period 2000-2004, while the Troutlake-model was calibrated for the period 1994-1997

and validated for the period 2000-2004. Since NARR does not contain any missing

data, the calibration and validation with NARR data can be conducted using any

period. However, for fair comparison with simulation using observed data, the same
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4.2. HYDROLOGICAL MODELLING USING NARR

Table 4.2: Results from the SLURP model validation using observed and NARR
data for each watershed.

Sturgeon Troutlake

Observed NARR Observed NARR

Observed mean runoff (m3/s) 46.13 20.68

Simulated mean runoff (m3/s) 49.14 45.04 19.86 19.86

Dv of mean runoff (%) 6.51 -2.38 -3.96 -3.99

E of daily runoff series 0.77 0.64 0.65 0.61

validation period (2000-2004) was used. The calibration procedure used in this study

is the same as the one used in Chapter 2. Table 4.2 shows a summary of model

performances of NARR and observed climate data for the validation periods. The

performance statistics using NARR data are close to the statistics obtained using

observed data. In both simulations, the averages of simulated runoff are close to the

streamflow record and daily E-values are at an acceptable level.

Figure 4.4 shows the recorded daily streamflow, and the simulated streamflows

using observed climate data and NARR data for the validation period 2000-2004.

Since the calibration process forces the model to fit the recorded streamflow, the

comparison will focus on the validation period rather than the calibration period. At

Sturgeon, both runoff simulations generally reproduce the timing of spring snowmelt

and the shape of runoff recession. The NARR simulation underestimates the quantity

of recession in 2004 and the simulation using observed climate data overestimates

in 2002. The peaks of NARR simulated spring runoffs are lower than the observed

peaks in 2001, 2002, and 2004. The simulation using observed climate data estimates

91



4.2. HYDROLOGICAL MODELLING USING NARR

Jan/00 Apr/00 Jul/00 Oct/00 Jan/01 Apr/01 Jul/01 Oct/01 Jan/02 Apr/02 Jul/02 Oct/02 Jan/03 Apr/03 Jul/03 Oct/03 Jan/04 Apr/04 Jul/04 Oct/04 Jan/05
0

50

100

150

200

250

F
lo

w
s 

(m
3 /s

)

SLURP simulation for validation period (2000−2004) at Sturgeon

 

 0
20
40
60
80

P
re

ci
pi

ta
tio

n 
(m

m
)

Record
Sim

OBS

Sim
NARR

P
OBS

P
NARR

Jan/00 Apr/00 Jul/00 Oct/00 Jan/01 Apr/01 Jul/01 Oct/01 Jan/02 Apr/02 Jul/02 Oct/02 Jan/03 Apr/03 Jul/03 Oct/03 Jan/04 Apr/04 Jul/04 Oct/04 Jan/05
0

20

40

60

80

F
lo

w
s 

(m
3 /s

)

SLURP simulation for validation period (2000−2004) at Troutlake

 

 0
20
40
60
80

P
re

ci
pi

ta
tio

n 
(m

m
)

Record
Sim

OBS

Sim
NARR

P
OBS

P
NARR

Figure 4.4: The recorded runoff, simulated daily runoff using NARR and observation,
and precipitation of observation and NARR for validation period 2000-2004 in each
watershed.

the peaks better than the NARR simulation in 2001 and 2002, due to the larger

observed precipitation. It is noticeable that the underestimation of peaks in NARR

simulations generally occurs when NARR precipitation is particularly lower than

observations. In autumn 2001, the shape of recession is similar to the recorded

streamflow but due to the higher NARR precipitation in that period, the simulated

recession curve is higher. The same phenomenon is seen in autumn 2002 where the

observed precipitation causes a slight rise at the end of recession and the ensuing

simulated runoff stayed higher than the record streamflow until the next spring.

However, the shape of the recession curve is similar to the record. This indicates that
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Figure 4.5: The simulated monthly runoff using NARR and observed runoff for a
period 1981-2004 in each watershed.

errors in precipitation estimates can affect simulation errors over longer periods, and

considering the general good fit of snowmelt-timing and the shape of recession curves,

most of the simulation errors may be attributed to inaccurate representativeness of

precipitation in the watershed. It should be noted that the band bias of NARR

precipitation is located near the Sturgeon watershed and appears to be the main

cause for the underestimated runoff simulation using NARR. Although the simulation

using observed climate data estimated the peaks somewhat better than the NARR

simulation due to the NARR precipitation bias, the simulation using NARR data is

in good agreement with recorded streamflow.

The SLURP was then run for the extended period of 1981-2004, using the NARR

data at Sturgeon River and Troutlake River watersheds as input. Figure 4.5 shows
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the monthly mean runoff of SLURP simulations compared with observed streamflow

records in the two watersheds. The simulation results show generally good agree-

ment with streamflow records in terms of timing and overall magnitude, although

some months with high runoff are underestimated and some months in dry years

are overestimated (1987, 1988, and 1989). It is again noticeable that more cases of

underestimation are seen in Sturgeon than in Troutlake due to the influence of the

NARR band bias in the Sturgeon watershed.

4.3 Climate Change Impact Assessment using NARR

4.3.1 Downscaling GCM data using NARR

Statistical downscaling methods often require data such as specific humidity and

shortwave solar radiation which are available at few weather stations in the Prairie

region. On the other hand, NARR contains most of these climate variables, making

NARR potentially useful for statistical downscaling in remote regions.

A statistical downscaling technique is used here to downscale the output from

the CGCM3 using the NARR data. Of the three statistical downscaling methods

used in Chapter 2, only the NNR method will be used in this part of the study. The

downscaling procedure for this application is the same as the one applied in Chapter

2 under the SRES A2 and B1 emission scenarios for the period 2081-2100 (2090s).

CGCM data were downscaled to produce time series data of mean daily tem-
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Table 4.3: Downscaled annual precipitation and temperature for 20C3M, A2, and
B1. Changes from 20C3M are shown in parenthesis.

Sturgeon Troutlake

20C3M A2 B1 20C3M A2 B1

Annual 634 687 622 576 597 585

Precipitation
(mm)

(+8.4%) (-1.9%) (+3.6%) (+1.6%)

Average 3.22 5.67 5.63 2.77 5.62 5.30

Temperature (◦C) (+2.45◦C) (+2.41◦C) (+2.85◦C) (+2.53◦C)

perature, relative humidity, solar radiation, and daily accumulated precipitation at

NARR grid points located at the centroid of each watershed. Twenty-six years

(1979-2004) of NARR data are available to use as historical data of local climate.

The NNR model was first used to downscale the CGCM for a control run period

and cross validated with the local NARR climate data. Then the model was used to

downscale the A2 and B1 emission scenarios at two grid points located in the center

of the Sturgeon River and the Troutlake River watersheds. The NNR model used

the large scale climate variables provided by the CGCM to resample days from the

historical NARR data.

Table 4.3 shows the downscaled annual precipitation and averages for the two

watersheds. Both scenarios show increase of annual precipitation at Troutlake, while

annual precipitation at Sturgeon increases in the A2 scenario but decreases in the B1

scenario. As expected, both scenarios show increases in temperature and the average

temperature increases by approximately 2.5◦C in both watersheds (see Table 4.3).

As shown in Figure 4.6, both scenarios show higher increases of temperature in the
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Figure 4.6: Mean monthly precipitation and temperature obtained from CGCM and
downscaled by NNR for 20C3M, A2, and B1.

winter than in the summer. The precipitation for the A2 scenario increases during the

summer months in both watersheds, while the precipitation significantly decreases

for the B1 scenario in Sturgeon. This concurs with the results found in Chapter 2.

4.3.2 Runoff simulations of future scenarios using NARR

The downscaled CGCM3 data are used as input data to the calibrated SLURP

model using NARR for assessing the future climate change impact on water re-

sources. Downscaled CGCM3 data for the two scenarios and the control run are

applied in the SLURP model for each watershed. As expected, simulated future

runoffs reflects the projected change in future precipitation. In the B1 scenario at
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Table 4.4: Mean annual runoff (in m3/s) simulated by SLURP for 20C3M, A2, and
B1. Changes from 20C3M are shown in parenthesis.

20C3M A2 B1

Sturgeon 31.2 34.7 (+11.2%) 28.9 (-7.4%)

Troutlake 14.9 16.1 (+8.1%) 15.3 (+2.7%)

Sturgeon, as precipitation decreases runoff also decreases. However, runoff increases

as precipitation increases in the A2 scenario at Sturgeon River and in both scenarios

at Troutlake. The increasing rate of runoff is proportional to the rate of precipitation.

For instance, runoff increases the most (Table 4.4) in the A2 scenario at Sturgeon,

just as precipitation does (Table 4.3).

Figure 4.7 shows the simulated daily mean runoff for the control run period

and both emission scenarios. The temperature increases in the winter advance the

spring snowmelt runoff by almost 30 days in both watersheds. The increased summer

precipitation in the A2 scenario results in increased runoff in summer and in early

autumn. On the other hand, the B2 scenario shows decrease in summer runoff at

Sturgeon but minimal changes at Troutlake (Figure 4.7). It is noticeable that in

both scenarios the magnitude of spring runoff at Sturgeon is similar to the control

run period, while the spring runoff slightly decreases at Troutlake.

The results of hydrological modelling and climate change assessments using solely

NARR instead of observation from weather stations are generally similar to the

results found in Chapter 2. The timing and magnitude changes in the spring runoff as

well as the runoff changes in summer and early autumn for both scenarios are almost
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Figure 4.7: Mean daily runoff simulated by SLURP with the downscaled CGCM3
output of control run, A2 and B1 scenarios for 2090s.

identical. This suggests that NARR is useful for both the hydrological modelling and

statistical downscaling in climate change related studies.
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Chapter 5

APPLICATION OF NARR FOR

MISSING DATA ESTIMATION

5.1 Introduction

A climate normal is defined as the average of an observed climate variable at a given

location over a specified time period. It is an important concept in climate-related

studies and is used routinely to determine how much a given observation departs from

average conditions. World Meteorological Organization (1989) recommended that the

data record for the calculation of climate normals, ideally, should be 30-years long, be

free of any inconsistencies (e.g. due to changes in station location, instrumentation,

time of observation, surrounding environment, observing practice, sensor drift, etc.)

and be serially complete (i.e., no missing values). World Meteorological Organization

(1989) indicated that inconsistencies can lead to a non-climatic bias in one period of
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a station’s record relative to another, and the series is then said to be inhomogeneous.

The requirement of 30 years of climate data to define normals has been adopted

in many climate change and hydrological studies. However, many observed climate

data sets, especially precipitation, contain missing records which poses problems for

hydrological modelling studies. The availability of weather stations with no missing

data is generally low in the Prairie region, especially in the northern-most parts

of the Prairie provinces, and it is therefore difficult to properly conduct hydrologic

modelling in those areas. Also, although some climate stations have more than

twenty years of records, the record may not cover the desired period.

Despite the small number of reliable stations in the northern Prairie region, there

are some stations containing a suitable period of records, with the occasionally miss-

ing data. The ability to fill in the missing data would increase the number of useable

weather stations for hydrological modelling and research. The traditional meth-

ods for filling in missing data in hydrological studies generally use climate data from

neighbouring weather stations. However, in the northern parts of the Prairie, weather

stations are often more than 200 km apart, which is too far to obtain reliable in-filled

data. Moreover, the climate data of weather stations also have some quality issues.

Metcalfe et al. (1997) quantified the systematic errors in rain gauge catch such as

wetting loss, wind-induced error, and trace precipitation due to method of observa-

tion and gauge design. They found that the combined magnitude of the adjustments

for the systematic errors can exceed 7%. Madsen (1994) found the normal-exposed
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Hellmann rain gauge only catches about 85% of the true annual precipitation. Such

studies indicate that the observed precipitation at weather stations possibly con-

tains some errors. The performance of traditional methods for estimating missing

precipitation data can therefore be affected if neighbouring stations are not carefully

corrected for bias.

In the previous chapters, it was found that the NARR precipitation has a fairly

high correlation with observations and therefore has potential for filling in missing

observations, keeping in mind that NARR has certain biases that must be accounted

for. In this chapter, the usefulness of NARR precipitation for missing data estimation

is investigated. Four different estimation methods using NARR are developed and

compared with traditional methods.

5.2 Preliminary Investigation

The benefit of using NARR for estimating missing precipitation must be evalu-

ated relative to traditional methods based on neighbouring stations. In order to

achieve this goal, it is necessary to understand the relationship between precipita-

tion at neighbouring stations. Here the relationship between neighbouring stations

in weather networks of different density is investigated. Three study areas, located

around Winnipeg, Dryden, and Thompson, were selected based on the density of the

weather station network in each area. The three locations represent as fairly dense

area (Winnipeg), a moderately dense area (Dryden), and a remote area (Thompson).
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To assess neighbouring weather stations and NARR for estimating missing pre-

cipitation events, the wet/dry-day-match and correlation between a target weather

station and a neighbouring station or NARR were investigated and compared. Two

types of NARR estimates were considered: (1) the nine grid points closest to a target

station, and (2) a NARR value interpolated to the target station location. The wet

day match ratio RWW is defined as the number of days where both the target station

and the neighbouring station or NARR is wet, divided by the total number of wet

days at the target station.

Reanalysis products are known to contain a high number of days with precipita-

tion because they produce the precipitable water from atmospheric variables. How-

ever, many days have very small, insignificant amounts of precipitation. To remove

this effect, a cutoff threshold was set to 0.5 mm for NARR precipitation. All days

with precipitation less than 0.5 were assumed dry. A total wet-dry-day mismatch

ratio (WDmR), defined as the number of days where the wet-dry condition of a

neighbouring station (or NARR) is opposite to the target station divided by the

total number of days at the target station, was additionally compared in order to

identify problems with NARR’s wet-day frequency. For instance, when the WDmR

of NARR is significantly higher than the one at a neighbouring station but the RWW

of NARR is similar to the value at the neighbouring station, then this would indicate

that NARR contains substantially more wet-days than the neighbouring station on

dry-day events at the target station. However, it should be noted that the WDmR
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Table 5.1: Wet-day match rate, total wet-dry-day mismatch rate, and correlations of
neighbouring weather stations and NARR grids near Winnipeg, sorted by distances.

Station Dist(km) RWW WDmR R

Winnipeg 0.0 1.00 0.00 1.00

Steinbach 54.6 0.70 0.17 0.60

Miami Thiessen 90.3 0.62 0.20 0.54

Altona 94.1 0.60 0.21 0.49

St. Alphonse 139.3 0.61 0.22 0.44

Cypress River 139.5 0.56 0.22 0.43

Neepawa Water 163.7 0.51 0.23 0.37

Brandon 195.3 0.60 0.18 0.41

Turtle Mountain 11 226.8 0.48 0.24 0.34

Turtle Mountain 6 233.6 0.49 0.25 0.32

Virden 267.5 0.46 0.26 0.29

Pierson 303.6 0.41 0.27 0.21

Nearest NARR grid 7.1 0.76 0.23 0.62

Average of NARR 9grid 36.0 0.75 0.23 0.61

Interpolated NARR 0.0 0.73 0.26 0.62

comparison is a relative measure to identify the bias in wet-day frequency and not

an absolute error measure of NARR.

The dense study area near Winnipeg include the Winnipeg weather station, con-

sidered here to be the target station, and the 11 neighbouring stations listed in Table

5.1. The stations were selected considering the percentage of missing records and the

length of record. The nearest neighbouring station, Steinbach, is located at 54.6 km

from Winnipeg and, as expected, the RWW value of 0.7 and the correlation (R) of 0.6

are the highest among the neighbouring stations. The other stations are more than

90 km from Winnipeg and as the distance between stations and the target station

increases, the correlations and RWW decreases in a fairly systematic way. The RWW
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Table 5.2: Same comparison as in Table 5.1, but with Brandon as the target station.

Station Dist(km) RWW WDmR R

Brandon A 0.0 1.00 0.00 1.00

Neepawa Water 48.7 0.67 0.16 0.62

Virden 72.4 0.64 0.18 0.57

Turtle Mountain 6 72.9 0.63 0.18 0.52

Cypress River 74.4 0.69 0.17 0.59

St Alphonse 84.4 0.71 0.18 0.51

Turtle Mountain 11 87.6 0.61 0.19 0.48

Pierson 125.3 0.55 0.21 0.39

Miami Thiessen 132.9 0.69 0.17 0.48

Winnipeg A 195.3 0.63 0.18 0.41

Altona 195.7 0.61 0.20 0.39

Steinbach 233.1 0.64 0.20 0.39

Nearest NARR grid 15.9 0.74 0.23 0.59

Average of NARR 9grid 38.1 0.74 0.23 0.58

Interpolated NARR 0.0 0.71 0.25 0.59

and correlation of the nearest NARR grid point are higher than all neighbouring

stations (RWW = 0.76 and R = 0.62). The average RWW and correlation of the

9 NARR grid points are close to the results for the nearest grid point, while the

interpolated NARR has slightly lower RWW value although still higher than any of

the neighbouring stations. The WDmR of Steinbach is lower than NARR and, for

the other stations, the mismatch ratio is similar, around 0.23 (see Table B.1 and B.2

for details of wet-dry-day match information).

The same analysis was conducted with Brandon as the target station, and the

results are shown in Table 5.2. Overall, the results are similar to the comparison

for Winnipeg as RWW and correlations show a fairly consistent relationship with

distance. Since the distances in Table 5.2 are somewhat smaller than in Table 5.1,
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Table 5.3: Same comparison as in Table 5.1, but with Dryden as the target station.

Station Dist(km) RWW WDmR R

Dryden A 0.0 1.00 0.00 1.00

Sioux Lookout A 69.0 0.79 0.14 0.79

Rawson Lake 72.7 0.65 0.21 0.54

Kenora A 116.6 0.74 0.16 0.65

Red Lake A 156.4 0.71 0.19 0.52

Nearest NARR grid 17.3 0.79 0.24 0.66

Average of NARR 9grid 38.6 0.78 0.24 0.65

Interpolated NARR 0.0 0.79 0.24 0.66

the RWW and correlations are generally higher and the WDmR are lower than in

the Winnipeg comparison (see Table B.3 and B.4 for details of wet-dry-day match

information). The correlations and RWW for NARR are higher than most of the

stations. On the other hand, the WDmR of neighbouring stations are for the most

part higher than NARR. The correlations with NARR and with stations within a

80-km range are similar, and NARR is significantly higher beyond the 80 km range.

In the moderately dense study area near Dryden, 5 stations were found to have

appropriate precipitation records for the study and Dryden was selected as the target

station. The stations in this study area are located within a radius of 156 km from the

target site. The comparison results in Table 5.3 also are consistent with the results

for Winnipeg and Brandon, with RWW and correlations values that are generally

higher at closer distances. Only the nearest station, Sioux Lookout, has a higher

correlation (0.79) than NARR and a similar RWW value of 0.79 (see Table B.5 and

B.6 for details of wet-dry-day match information).
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Table 5.4: Same comparison as in Table 5.1, but with Thompson as the target
station.

Station Dist(km) RWW WDmR R

Thompson A 0.0 1.00 0.00 1.00

Gillam A 188.0 0.64 0.22 0.55

Norway House A 205.9 0.64 0.22 0.48

Lynn Lake A 231.4 0.62 0.22 0.46

Flin Flon A 273.0 0.47 0.28 0.35

Island Lake A 281.4 0.61 0.24 0.36

The Pas A 290.9 0.48 0.26 0.36

Churchill A 353.1 0.46 0.32 0.20

Nearest NARR grid 5.7 0.81 0.27 0.55

Average of NARR 9grid 35.5 0.80 0.28 0.54

Interpolated NARR 0.0 0.81 0.28 0.55

The study area near Thompson in northern Manitoba represents a remote area

with 8 neighbouring stations generally located at distances of more than 200 km from

the target station. The nearest station, Gillam, is 188 km away from Thompson and

the RWW and correlation are 0.64 and 0.55, respectively, which are the highest among

the neighbouring stations. The RWW of neighbouring stations are in a range of 0.46

- 0.64 and the correlations between 0.2 and 0.55. The NARR correlation of 0.55

is similar to Gillam, but the NARR RWW value of 0.81 is significantly higher than

all neighbouring stations (see Table B.7 and B.8 for details of wet-dry-day match

information).

An additional comparison using The Pas as target station in the same area is

investigated in Table 5.5. It is noticeable that Flin Flon, the second nearest station

87 km away from The Pas, shows higher RWW and correlation values than the nearest
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Table 5.5: Same comparison as in Table 5.1, but with The Pas as the target station.

Station Dist(km) RWW WDmR R

The Pas A 0.0 1.00 0.00 1.00

Island Lake A 32.4 0.53 0.29 0.27

Flin Flon A 87.6 0.67 0.19 0.57

Norway House A 213.2 0.67 0.21 0.48

Gillam A 267.2 0.43 0.33 0.17

Thompson A 290.9 0.54 0.26 0.36

Lynn Lake A 321.7 0.53 0.27 0.24

Churchill A 534.8 0.32 0.38 0.03

Nearest NARR grid 14.6 0.78 0.22 0.71

Average of NARR 9grid 37.7 0.79 0.23 0.70

Interpolated NARR 0.0 0.76 0.24 0.72

station, Island Lake. The correlation and RWW of neighbouring stations except

Island Lake show a similar pattern as in the Thompson comparison. The very low

RWW of 0.32 and lack of correlation with Churchill indicate that a station located

more than 500 km from a target station is not useful for missing data estimation.

The RWW and correlation values of NARR in The Pas are significantly higher than

at all neighbouring stations and also higher than NARR at the other target locations

(Tables 5.1 - 5.4). This result indicates that the NARR correlation and RWW vary

by the location of a target station and a careful comparison is required prior to using

NARR to estimate missing data (see Table B.9 and B.10 for details of Wet-dry-day

match information).

Figure 5.1 shows, for each study area, the correlation (circles) and RWW (squares)

of all stations as a function of distances, and the average correlation and RWW of

the nearest NARR grid points for each station as lines. In the Winnipeg and Dryden
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Figure 5.1: The correlation (R) and RWW for each study area.
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areas, the NARR RWW is higher than the station RWW in most cases and only a

few stations, all within 100 km range, have RWW values of similar magnitude to the

NARR. The average correlation of NARR is generally lower than correlations with

stations within a 50-km range and, for stations in the 50-100 km range, the NARR

correlation is close to the average correlation with stations. In the Thompson area,

the NARR RWW is higher than RWW of all stations and the highest RWW of stations

is 0.1 lower than the NARR RWW . Also, the average correlation of NARR in the

Thompson area is significantly higher than correlations with stations and more than

0.1 higher than the highest station correlation of 0.58.

In conclusion, a distance of 100 km between stations is found to be the dividing

point where the NARR precipitation becomes better in terms of both correlation

and wet day matching ratio. Stations located more than 200 km from the target

station are not particularly useful for missing data estimation as the correlations are

typically lower than 0.5, and RWW values are lower than 0.6. In comparison, the

average NARR correlation is higher than 0.6 and the RWW is higher than 0.75. The

comparison results indicate that NARR precipitation is useful for estimating missing

precipitation at weather stations in remote regions where weather stations often are

located 100 km or more apart.
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5.3 Estimation of Missing Precipitation Data

5.3.1 Traditional estimation methods

Two traditional methods for estimating missing precipitation data are used here

as a baseline for validating methods based on NARR. Missing data at a weather

station are usually estimated either using the available data at the station itself or

using data from neighboring stations. The station-average method (SA) and the

inverse-distance weighting method (IDW) are commonly used methods for missing

data estimation. The station-average method simply computes the missing data as

the average of the values at the nearby stations, i.e.:

p̂ =
1

G

G∑
g=1

pg (5.1)

where pg is the daily precipitation value at station g, and G is the number of neigh-

bouring stations considered. The inverse distance weighted (IDW) method is based

on the idea that the weight of a neighbouring station should depend on its distance

from the target. The IDW method weights the pg value at station g by its inverse

distances, d−1g , from the target station. There are several variations of the IDW

method and it is perhaps more common to consider the inverse squared distance as

weights. In this study, precipitation is estimated as

p̂ =
1

D

G∑
g=1

d−2g · pg (5.2)
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where D =
∑
d−2g .

5.3.2 NARR-based methods

Four different methods based on NARR will be applied here for estimating missing

precipitation and will be compared with the traditional methods. In the first method,

the missing values in an observed precipitation data set are directly replaced by the

corresponding NARR precipitation data from the grid point closest to the station

(NDI). In the second method, the precipitation data from the nearest 9 NARR grid

points are interpolated to the target station location using inverse distance weighting

(NIDW ).

Since NARR precipitation contains biases (Chapter 3), two additional methods,

designed to account for possible biases, were devised. In order to take seasonality

into account, the ratios of monthly mean precipitation for the calendar month with

missing data at stations and from NARR for the longest overlapping period were

calculated. These ratios will be referred to as bias-factors. The bias-factors were

used to correct the NARR bias prior to imputing the NARR data into the missing

period:

P ∗NARR = PNARR ×
P̄OBS,j

P̄NARR,j

, j = 1, . . . , 12 (5.3)

where P ∗NARR is the estimated, bias-corrected daily precipitation, PNARR is the orig-

inal daily NARR precipitation value for the day with missing observation, P̄OBS,j

is the observed monthly mean precipitation in month j at a target location, and
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P̄NARR,j is the monthly mean NARR precipitation in month j. This method is

denoted NBFmon.

The relationship between quantiles of the observed precipitation data and the

corresponding quantiles of the NARR precipitation data provide more specific in-

formation about the differences in the distribution of precipitation. Since proper

estimation of extreme precipitation events is important when filling in missing data,

consideration of quantile ratios seems useful. Thus, bias-factors were applied to quan-

tile ranges instead of just monthly mean precipitation ratios (NBFQ). The quantiles

of observations and NARR were calculated for calendar month j for the longest

overlapping period. Then, for that month the ratios of corresponding quantiles were

calculated. These ratios will be denoted quantile bias-factors (BFQ). The quantile

bias-factors were then used to adjust the NARR precipitation in the corresponding

quantile range prior to imputing the NARR data into the missing record:

P ∗NARR = PNARR ×
POBS
Q%

PNARR
Q%

(5.4)

where P ∗NARR is the estimated, bias-corrected daily precipitation, PNARR is the orig-

inal daily NARR precipitation falling in a given quantile range, Q%, at the target

station, and POBS
Q% and PNARR

Q% are the precipitation quantiles of observation and

NARR, respectively. For instance, to adjust a NARR precipitation event in the

month of August (j=8) corresponding to, say, the 90 percentile in the observed dis-

tribution of precipitation during the month of August, the 90 percentile values of
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NARR and observed precipitation in the same month are sought, and the ratio of the

two values is calculated as the 90% quantile range bias-factor. The NARR precipita-

tion is then multiplied by the calculated bias-factor for correction. The bias-factors

of each quantile range can be precalculated and multiplied by the NARR precipita-

tion event lying in the corresponding quantile range. Because the percentage of wet

days is approximately 25%, five different quantile ranges were defined as 60-75%,

75-90%, 90-95%, 95-99%, and 99-100%. It should be noted that Q-Q plots show

the distribution match but not the day-to-day quantity match. In the low quantiles

(e.g., 60% and 75%), the precipitation amount differences (amount intervals) be-

tween quantiles are smaller, while the amount intervals in the high quantiles (above

90%) are substantially larger. There are three quantile ranges above 90% to reflect

the importance of large precipitation events.

Missing data estimation results by the two traditional methods (station-average

(OSA) and inverse distance weighting (OIDW )) and the four NARR-based meth-

ods (direct imputation of NARR (NDI), IDW of NARR (NIDW ), bias-factor us-

ing monthly data for NARR (NBFmon), and bias-factor using quantiles for NARR

(NBFQ)) are compared in the following section.
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5.3.3 Comparison of methods

The six methods described above are compared using cross-validation. Cross-validation

is a standard statistical method used to evaluate the estimation error of a prediction

model. It is implemented here by removing selected periods from the observed record

at the target station and using the different methods for infilling missing data to re-

construct the period. The reconstructed values can then be compared to the actual

observations and performance statistics can be calculated. The validation period was

selected as 1979-2004 where both observations and NARR data are available. Days

where neighbouring stations had missing data were simply excluded in the analysis.

The statistics for the entire period and the matching ratios for five precipitation

amount ranges were used in the comparison.

Winnipeg area

Table 5.6 shows the statistics of missing data estimation results at Winnipeg. The

NBFmon result shows the best daily and annual mean precipitation agreement with

observations, while the NBFQ and OSA overestimate precipitation. The MAE values

are slightly better with NARR-based methods than with traditional methods, and

the same conclusion applies to correlation values. The correlation values are quite

similar to the values found in Table 5.1.

Figure 5.2 shows the precipitation events at Winnipeg, with the corresponding

estimated precipitation in four quantity ranges: 10-20 mm, 20-30 mm, 30-40 mm,
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Figure 5.2: Missing data estimation results of four precipitation amount ranges (10-
20mm, 20-30mm, 30-40mm, and more than 40mm) at Winnipeg.
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Table 5.6: Statistics of missing data estimation results by two traditional methods
using neighbouring observations (station-average (OSA) and inverse distance weight-
ing (OIDW )) and four NARR applications (direct inputation of NARR (NDI), IDW of
NARR (NIDW ), bias-factor using monthly data for NARR (NBFmon), and bias-factor
using quantiles for NARR (NBFQ)) at Winnipeg.

OBS Traditional NARR-based

OSA OIDW NDI NIDW NBFmon NBFQ

Annual Avg 517.7 530.8 487.8 447.8 420.6 514.3 578.8

MAE 1.36 1.62 1.27 1.26 1.32 1.42

R 0.59 0.41 0.62 0.62 0.62 0.62

and more than 40 mm. Only the first 20 events are shown for each category (fewer

in cases where the actual number of events are less than 20). The estimations with

both traditional and NARR-based methods show a tendency of underestimation in

the 10-20 mm range, while a few cases of overestimation. In the 20-30 mm range, the

traditional methods estimate slightly more wet days, but the estimated precipitation

by NARR-based methods match the quantity of precipitation better. In the higher

ranges of 30-40 mm and above 40 mm, the NBFmon and NBFQ methods clearly

estimate the precipitation amounts better than other methods. It is noticeable that

the precipitation of NDI and NIDW are also better than traditional methods in quite

a number of cases.

Table 5.7 shows the number of wet-days in the five quantity ranges at Winnipeg

and the quantity-match-day ratios of estimated precipitation by each method. The

quantity-match-day ratio is calculated as the number of days when the estimated

daily precipitation amount lies within a range of the target station, divided by the
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Table 5.7: Precipitation match ratios in five amount ranges of missing data estima-
tion results at Winnipeg.

OBS Traditional NARR-based

(days) OSA OIDW NDI NIDW NBFmon NBFQ

5-10mm 354 0.26 0.16 0.25 0.24 0.25 0.24

10-20mm 234 0.26 0.13 0.21 0.20 0.26 0.20

20-30mm 79 0.11 0.06 0.15 0.13 0.20 0.22

30-40mm 21 0.14 0.05 0.00 0.00 0.05 0.24

40mm > 29 0.07 0.03 0.03 0.03 0.21 0.28

total number of days in the range at the target station. It describes how many

days of estimated precipitation events closely match the target precipitation events.

In the lower range of 5-10 mm, most methods estimate precipitation in that range

around 25% of cases and as the ranges become higher, the matching ratios get lower.

The exception is the NBFQ precipitation match which remain high in the higher

precipitation ranges. This indicates that the NBFQ method estimates precipitation

events above 20 mm significantly better than other methods at Winnipeg. The

precipitation of NBFmon also shows quite good matching ratios.

At Brandon, all NARR-based methods are closer to the observation than the

traditional methods (Table 5.8). The correlations are around 0.6, with the OSA

method showing the highest value of 0.65.

Figure 5.3 shows the precipitation events at Brandon with the corresponding

estimated precipitation in the four quantity ranges. A tendency of underestimating

precipitation appears in most ranges and it is more significant than at Winnipeg.

Nevertheless, the NBFmon and NBFQ precipitation estimates show better agreement
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Figure 5.3: Missing data estimation results of four precipitation amount ranges (10-
20mm, 20-30mm, 30-40mm, and more than 40mm) at Brandon.
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Table 5.8: Statistics of missing data estimation results by six methods at Brandon.

OBS Traditional NARR-based

OSA OIDW NDI NIDW NBFmon NBFQ

Annual Avg 458.4 515.0 536.0 441.0 423.5 455.3 507.8

MAE 1.15 1.31 1.22 1.21 1.25 1.30

R 0.65 0.54 0.59 0.60 0.58 0.58

with the target station in the ranges above 30 mm. The NARR-based methods

seem to misestimate a few more wet-days than the traditional methods. However, it

should be noted that the 20 events shown in the figures are a subset of all events.

Table 5.9 shows that the NARR-based methods properly estimate the wet-day

frequency and the quantity better than the traditional methods for the precipitation

events higher than 30 mm. For the precipitation events less than 30 mm, traditional

methods are slightly better than the NARR-based methods, while the NARR-based

methods, especially the NBFmon and NBFQ, estimate precipitation of more than 30

mm substantially better than the traditional methods.

Table 5.9: Precipitation match ratios in five amount ranges of missing data estima-
tion results at Brandon.

OBS Traditional NARR-based

(days) OSA OIDW NDI NIDW NBFmon NBFQ

5-10mm 337 0.36 0.28 0.26 0.26 0.26 0.27

10-20mm 238 0.29 0.24 0.26 0.21 0.24 0.34

20-30mm 63 0.21 0.16 0.10 0.14 0.05 0.19

30-40mm 13 0.00 0.00 0.08 0.00 0.08 0.15

40mm > 19 0.05 0.11 0.05 0.05 0.16 0.37
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Table 5.10: Statistics of missing data estimation results by six methods at Dryden.

OBS Traditional NARR-based

OSA OIDW NDI NIDW NBFmon NBFQ

Annual Avg 709.8 696.4 670.9 642.0 604.7 706.9 792.1

MAE 1.22 1.38 1.61 1.59 1.65 1.77

R 0.79 0.72 0.66 0.65 0.65 0.65

Dryden area

In the Dryden study area, the daily mean precipitation of all six methods shows good

agreement with the observed daily mean precipitation. The OSA and NBFmon annual

mean precipitation are quite close to the observations, while OIDW , NDI , and NIDW

underestimate and NBFQ overestimates the annual precipitation (Table 5.10). The

MAE and correlation values of traditional methods are better than the NARR-based

methods. This indicates that the traditional methods using neighbouring stations

located within 100 km are likely to be better than NARR-based methods.

Figure 5.4 shows the precipitation event match between the observations and the

precipitation for the four quantity ranges at Dryden. The precipitation of traditional

methods shows somewhat better agreements than the NARR-based methods in the

range below 20 mm, but the differences are smaller than those found at Winnipeg and

Brandon. In the 20-30 mm range, it is difficult to conclude which method performs

best because the precipitation of the six methods are quite similar. The precipitation

of NARR-based methods show slightly better agreement with the precipitation above

30 mm, but the differences are minimal and it varies from case to case. Table 5.11
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Figure 5.4: Missing data estimation results of four precipitation amount ranges (10-
20mm, 20-30mm, 30-40mm, and more than 40mm) at Dryden.
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Table 5.11: Precipitation match ratios in five amount ranges of missing data estima-
tion results at Dryden.

OBS Traditional NARR-based

(days) OSA OIDW NDI NIDW NBFmon NBFQ

5-10mm 531 0.38 0.35 0.28 0.25 0.29 0.31

10-20mm 350 0.45 0.31 0.30 0.27 0.30 0.27

20-30mm 96 0.18 0.16 0.16 0.14 0.19 0.19

30-40mm 37 0.11 0.05 0.05 0.03 0.08 0.11

40mm > 33 0.24 0.18 0.18 0.09 0.33 0.52

corroborates the findings from Figure 5.4, showing that for a given range, there is

limited differences in the match ratio of the six methods. At Dryden, the traditional

methods estimate precipitation of more than 40 mm quite well which is in contrast

to the results found at Winnipeg and Brandon. Nevertheless, the NBFmon and NBFQ

methods still estimate the precipitation above 40 mm better than the traditional

methods.

The remote area

The statistics shown in Table 5.12 are quite similar to each other in all respects,

except for the higher daily and annual mean precipitation of NBFQ. It is noticeable

Table 5.12: Statistics of missing data estimation results by six methods at Thompson.

OBS Traditional NARR-based

OSA OIDW NDI NIDW NBFmon NBFQ

Annual Avg 490.5 485.0 476.1 473.8 472.5 486.2 567.3

MAE 1.35 1.32 1.31 1.33 1.31 1.44

R 0.55 0.60 0.55 0.54 0.56 0.53
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Table 5.13: Precipitation match ratios in five amount ranges of missing data estima-
tion results at Thompson.

OBS Traditional NARR-based

(days) OSA OIDW NDI NIDW NBFmon NBFQ

5-10mm 396 0.22 0.23 0.27 0.26 0.26 0.34

10-20mm 206 0.25 0.12 0.19 0.17 0.23 0.25

20-30mm 72 0.14 0.01 0.14 0.11 0.15 0.15

30-40mm 22 0.18 0.00 0.00 0.05 0.05 0.05

40mm > 12 0.25 0.00 0.08 0.00 0.17 0.17

that the difference between observed and estimated annual mean precipitation is

small (<20 mm) for all methods.

In Figure 5.5, the traditional methods, particularly the OSA, is seen to estimate

precipitation better than other methods for many events at Thompson. The perfor-

mance of OSA is significantly better in the range above 40 mm. This is also seen in

Table 5.13 and it is distinctively different than the results obtained at other stations.

The precipitation quantity-match ratios of OIDW , NDI , and NIDW are similar, while

for OSA, NBFmon and NBFQ they appear better in all ranges above 10 mm. For the

range above 30 mm, the OSA estimates precipitation significantly better than other

methods.

The results for The Pas, located in the same general study area as Thompson,

are substantially different than the results for Thompson. The Pas follows a pattern

similar to other stations. Table 5.14 shows that the statistics of NARR-based meth-

ods are significantly better than the ones of traditional methods in all aspects. It is

noticeable that the precipitation of NDI and NIDW shows the best agreement with
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Figure 5.5: Missing data estimation results of four precipitation amount ranges (10-
20mm, 20-30mm, 30-40mm, and more than 40mm) at Thompson
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Table 5.14: Statistics of missing data estimation results by six methods at The Pas.

OBS Traditional NARR-based

OSA OIDW NDI NIDW NBFmon NBFQ

Annual Avg 436.3 506.2 470.7 444.7 446.2 432.9 495.2

MAE 1.30 1.66 1.02 1.03 1.07 1.06

R 0.54 0.26 0.71 0.71 0.66 0.71

observations. The differences of annual mean precipitation of NARR-based methods

are within 10 mm, while the MAE values are about 1.0 and the correlation values

are around 0.7.

Figure 5.6 also shows that the precipitation of NARR-based methods yield the

best match for most events for all quantity ranges. The precipitation quantity-

match ratios of the NBFQ (Table 5.15) are significantly higher than the ones of other

methods in all ranges.

In conclusion for the study areas considered in this chapter, the NARR-based

methods, particularly the ones using bias-factors, estimate daily precipitation better

than traditional methods, with Thompson being the exception. More specifically,

Table 5.15: Precipitation match ratios in five amount ranges of missing data estima-
tion results at The Pas.

OBS Traditional NARR-based

(days) OSA OIDW NDI NIDW NBFmon NBFQ

5-10mm 353 0.27 0.13 0.32 0.30 0.28 0.31

10-20mm 189 0.28 0.07 0.33 0.32 0.30 0.33

20-30mm 57 0.09 0.02 0.19 0.18 0.16 0.37

30-40mm 19 0.11 0.00 0.11 0.11 0.05 0.21

40mm > 12 0.00 0.00 0.00 0.00 0.08 0.42
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Figure 5.6: Missing data estimation results of four precipitation amount ranges (10-
20mm, 20-30mm, 30-40mm, and more than 40mm) at The Pas.
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5.3. ESTIMATION OF MISSING PRECIPITATION DATA

the performances of the NBFmon and NBFQ methods are significant better for precip-

itation events above 30 mm. The performances of traditional methods, as expected,

vary based on the distances from neighbouring stations. The NDI and NIDW often

perform as well as the traditional methods. The results indicate that the NARR-

based methods for estimation missing precipitation data are promising, especially in

remote regions.
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Chapter 6

ASSIMILATION OF OBSERVED

AND NARR PRECIPITATION

6.1 Introduction

Data assimilation is a key component in reanalyses and is applied in many fields

of geosciences, especially in weather forecasting and hydrology. Data assimilation

combines observations at point locations with a background field, typically in the

form of output from a numerical weather prediction model, to produce an analysis

on a regular grid.

Mesinger et al. (2006) mentioned that the most important data addition in NARR

was the assimilation of observed precipitation. Notwithstanding the successful assim-

ilation using a sophisticated physical model, the NARR precipitation is not produced

by direct assimilation of precipitation observations but instead by derivation of ver-
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6.1. INTRODUCTION

tical latent heat flux profiles from precipitation analyses (Mesinger et al., 2006).

Hence, there is a possibility of further improving NARR precipitation by direct as-

similation of precipitation from the network of gauges. As mentioned in Chapter 3,

the NARR assimilation process is different for different countries. The assimilation

of observed precipitation for NARR use a simple daily gauge-based data set on a 1◦

grid over Canada and Mexico, while over the US, a combined data set from a variety

of sources such as NCDC daily cooperative stations, River Forecast Center stations,

and daily accumulations of the Hourly Precipitation Data (HPD) set analyzed using

the Parameter-elevation Regressions on Independent Slopes Model (PRISM, Daly

et al. (1994)) is used. It is obvious that lack of rain-gauges negatively affects the

performance of the assimilation in Canada. In the NARR assimilation process, the

border regions between different countries are blended together to minimize the dis-

continuity caused by the different precipitation sources, but as mentioned in Section

3.2, a critical bias was found along the border between Canada and the US, sug-

gesting problems with the transition zone. The blending process along the borders

likely explains the significant bias observed in these regions. The aforementioned

issues suggests that further improvements of NARR precipitation in Canada can be

achieved by performing additional assimilation.

In this chapter, an assimilation model using the statistical interpolation technique

is developed to allow direct integration of station precipitation into NARR. The

results are compared with the traditional inverse-distance-weighting method.
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6.2. METHODOLOGY: STATISTICAL INTERPOLATION

6.2 Methodology: Statistical Interpolation

Statistical Interpolation is a minimum variance method that is closely related to

the kriging technique (Daley , 1991). Statistical Interpolation uses observations of a

variable to supplement a set of simulated values of the same variable. In general,

the simulated output is in the form of a gridded data set whereas observations are

located irregularly in space. The Statistical Interpolation aims to combine the two

data sets in a way that minimizes the overall variance.

The following is a brief outline of the procedure for assimilating precipitation

from a network of stations into NARR via the Statistical Interpolation scheme. Daily

precipitation is assumed to be available at K sites and the observations at time t are

denoted by Ok, k = 1, . . . , K. The time index is omitted to simplify notation. The

background field values, i.e. the gridded NARR precipitation, on day t is denoted

Bi, i = 1, . . . , n. The true value of precipitation at any point (NARR grid or station)

is denoted Ti. Finally, we let Ai, i = 1, . . . , n be the analysis result at grid point i,

obtained by combining NARR and station data.

For the Statistical Interpolation to yield optimal results, both the NARR field

and the station data must be climatologically unbiased. If one assumes that stations

are unbiased, then station averages can be used to remove systematic biases from

NARR. This is an important step in obtaining good results. The assumption of
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6.2. METHODOLOGY: STATISTICAL INTERPOLATION

unbiasedness can be stated as:

E[Bi] = Ti and E[Ok] = Tk (6.1)

It is assumed that both the NARR precipitation and the station observations

have errors, i.e. differs from the true value, Tk. Error in station precipitation refers

both to instrument error and to errors of representation, i.e. representing areal (grid

cell) precipitation by a point value.

The analysis value at grid point i is obtained by updating the NARR value with a

weighted sum of innovations, where innovations mean the difference between station

values and model values interpolated to the station locations:

Ai = Bi +
K∑
k=1

Wik(Ok −Bk) (6.2)

The weights Wik must be determined in such a way that the variance of the analysis

error at grid point i is minimized. The analysis error is defined as

[Ai − Ti] = [Bi − Ti] +

[
K∑
k=1

Wik(Ok −Bk)

]
(6.3)

131



6.2. METHODOLOGY: STATISTICAL INTERPOLATION

Squaring the left- and right-hand sides and taking expectation yield:

E[(Ai − Ti)2] =E[(Bi − Ti)2] + 2
K∑
k=1

WikE[(Ok −Bk)(Bi − Ti)]

+
K∑
k=1

K∑
`=1

WikWi`E[(Ok −Bk)(O` −B`)] (6.4)

Since both background and observations are assumed unbiased, the analysis will be

unbiased as well so E[(Ai−Ti)2] = Var(Ai−Ti). We seek weights that will minimize

the variance of the analysis error so the partial derivatives are equated to zeros:

∂E[(Ai − Ti)2]
∂Wik

=2E[(Ok −Bk)(Bi − Ti)] + 2
K∑
`=1

Wi`E[(Ok −Bk)(O` −B`)] = 0

(6.5)

for k = 1, . . . , K, or

K∑
`=1

Wi`E[(Ok −Bk)(O` −B`)] = −E[(Ok −Bk)(Bi − Ti)], k = 1, . . . , K (6.6)

Under the assumption that there is no correlation between background errors and

station errors, the above expression can be further simplified. For example, by adding
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6.2. METHODOLOGY: STATISTICAL INTERPOLATION

and subtracting Ti on the right-hand side one finds that

E[(Ok −Bk)(Bi − Ti)] = E[{(Ok − Tk)− (Bk − Tk)}(Bi − Ti)]

= E[(Ok − Tk)(Bi − Ti)]− E[(Bk − Tk)(Bi − Ti)]

= −E[(Bk − Tk)(Bi − Ti)] (6.7)

since the assumption of no correlation between background and observation errors

implies that E[(Ok − Tk)(Bi − Ti)] = Cov(Ok − Tk, Bi − Ti) = 0. Using a similar

technique for the left-hand side, we find:

E[(Ok −Bk)(O` −B`)] = E[((Ok − Tk)− (Bk − Tk))((O` − T`)− (B` − T`))]

= E[(Ok − Tk)(O` − T`)]− E[(Ok − Tk)(B` − T`)]

− E[(Bk − Tk)(O` − T`)] + E[(Bk − Tk)(B` − T`)]

= E[(Ok − Tk)(O` − T`)] + E[(Bk − Tk)(B` − T`)] (6.8)

Substituting Eq.6.7 and Eq.6.8 into Eq.6.6 yields:

K∑
`=1

Wi` {E[(Ok − Tk)(O` − T`)] + E[(Bk − Tk)(B` − T`)]} = E[(Bk − Tk)(Bi − Ti)],

k = 1, . . . , K

(6.9)

This defines a system of K linear equations with K unknown weights. If we define ΣΣΣB
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6.2. METHODOLOGY: STATISTICAL INTERPOLATION

to be the (K ×K)-covariance matrix of background errors at the station locations,

ΣΣΣO to be the (K × K)-covariance matrix of the station errors, and ΣΣΣBi to be the

K-dimensional vector with elements E[(Bk−Tk)(Bi−Ti)] containing the covariances

of errors at the analysis point and at the K stations, then the system of equations

can be written in matrix form as:

[ΣΣΣB + ΣΣΣO]WWW i = ΣΣΣBi (6.10)

which can easily be solved if ΣΣΣB, ΣΣΣO, and ΣΣΣBi are known. These covariances must

be estimated via spatial correlation analysis. It is reasonable to assume that station

errors are spatially uncorrelated, so ΣΣΣO can be assumed diagonal. Furthermore, if

the stations in the network are of the same type, one can assume that error variances

are identical so that ΣΣΣO = σ2
oIII.

Since the true value is never known, the elements of ΣΣΣB, ΣΣΣBi, and σ2
O must be

estimated from knowledge of the innovations. It is clear from Eq.6.8 that [ΣΣΣB+ΣΣΣO] is

exactly the covariance of innovations. With the assumption of spatially uncorrelated

observation errors, Eq.6.8 may be written as

E[(Ok −Bk)(O` −B`)] = Cov(Ok −Bk, O` −B`)

=


σ2
0 + Var(B − T ) if k = `

Cov(Bk − Tk, B` − T`) if k 6= `

(6.11)
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6.3. ASSIMILATION OF NARR PRECIPITATION

This formulation shows that σ2
0 can be represented as a nugget effect in the model

for the spatial covariance of innovations. We can estimate σ0 by fitting a covariance

model to all data for which k 6= `. The fitted model can then be used to determine

Var(B − T ) and σ2
0 will finally be known from the estimation of Var(O −B).

A variogram analysis function was developed using a nonlinear least-squares re-

gression fitting model. ΣΣΣBi
in Eq.6.10 is assumed to be a function of distance alone

(isotropic) and its elements are modelled in this study by the following function:

C(r) = σ2
b

(
1 +

r

L

)
exp

(
− r
L

)
(6.12)

where r is the distance between two points, L is a characteristic horizontal scale, and

σb is the standard deviation of background error. The characteristic horizontal scale,

L, is determined by fitting the model to data. Nonlinear least-squares regression,

which estimates the coefficients of a nonlinear regression function using least squares

estimation, is used to determine L and σ2
b .

6.3 Assimilation of NARR Precipitation

6.3.1 Study area

In order to properly assimilate precipitation observations into NARR, a set of weather

stations with good-quality precipitation records are required. Southern Manitoba, in

particular the area near Winnipeg, has the highest density of weather stations in the
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6.3. ASSIMILATION OF NARR PRECIPITATION

Figure 6.1: Selected weather stations for modelling (purple circles) and validation
(yellow triangles).

province. Hence, the area shown in Figure 6.1 was selected for this part of the study.

In Chapter 3, an evaluation of NARR precipitation was performed focusing on the

spatial representation over the entire prairie region, and a systematic bias along the

border between Canada and the US was discovered. Therefore, it is necessary to

evaluate the NARR precipitation bias more accurately in the study area used in this

chapter.

Initially, 42 weather stations were selected for detailed comparison with NARR

(shown in Figure C.1). However, because many stations have missing records, a

subset of 10 stations with the least amount of missing records were selected for

the assimilation study (henceforth denoted ‘MSG’, Modelling Station Group). An

additional 10 stations were selected, considering their percentage of missing records

and location, for validation purpose (henceforth denoted ‘VSG’, Validation Station
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6.3. ASSIMILATION OF NARR PRECIPITATION

Table 6.1: List of 10 modelling stations and 10 validation stations.

Modelling Station Group (MSG) Validation Station Group (VSG)

No. Station Name No. Station Name

M1 Brandon A V1 Beaver

M2 Carman V2 Glenlea

M3 Cypress River V3 Miami Orchard

M4 Green Ridge V4 Neepawa Water

M5 Indian Bay V5 Piney

M6 Macdonald V6 Rathwell

M7 Ostenfeld V7 St Alphonse

M8 Plum Coulee V8 St Ambroise

M9 Turtle Mountain 11 V9 Steinbach

M10 Winnipeg Int’l A V10 Stony Mountain

Group). The validation stations were chosen to be evenly spread out between the

modelling stations and they were not included in the assimilation modelling. The

list of selected stations is provided in Table 6.1.

6.3.2 Data preparation

Daily precipitation data were extracted for the 91 NARR grid points (shown as dots

in Figure 6.1) covering the study area. A requirement of the Statistical Interpolation

technique in Eq. 6.1 is that both background and observations must be unbiased.

Because the band of NARR precipitation bias found in Section 3.2 overlaps the study

area, the NARR bias was investigated through a comparison with the 42 stations

initially selected. As seen in the upper part of Figure 6.2, the median monthly

precipitation of NARR is lower than observations by roughly 10 mm, and about 75%

of monthly precipitation differences between NARR and observations are negative.
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Figure 6.2: Monthly precipitation difference of NARR against OBS at 42 stations
for 1981-2000.
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6.3. ASSIMILATION OF NARR PRECIPITATION

This bias necessitates correction measures in order to proceed with the modelling.

To correct bias of a spatially distributed data set such as NARR precipitation,

it is desirable to have an observed precipitation data set in gridded format. The

CANGRID data appears to be a useful data set for correcting bias spatially, because

CANGRID is a high-quality interpolated gridded data set. A simple bias-factor

method based on NARR and CANGRID was applied for bias correction. First,

monthly precipitation of NARR and CANGRID were extracted for the period of

1981-2000. Because the resolution of the two data sets are different, the CANGRID

data were re-gridded unto the NARR grid using triangle-based linear interpolation.

Second, the mean monthly precipitation for each grid point was calculated for both

data sets, and the percentage difference of monthly precipitation for each month and

at each grid point was determined. Finally, NARR daily precipitation was corrected

by multiplying by the monthly bias-factor for each grid.

The bias-factor method using CANGRID significantly reduces the bias in NARR

precipitation. As shown in the upper part of Figure 6.2, most of the monthly precip-

itation differences of the uncorrected NARR are negative. The bias-corrected NARR

shows that the medians of the differences generally fall in the ±5 mm range while the

edges of each box, which represent the 25th and 75th percentiles, appears around

the ±10 mm range. Also, the differences of the bias-corrected NARR are evenly

distributed on the positive and negative sides. The outliers represent extreme dif-

ferences of data and most of them are repositioned in a range between +50 mm and
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6.3. ASSIMILATION OF NARR PRECIPITATION

-100 mm, where the range for uncorrected NARR was between +25 mm and -150

mm. The observations in this study were assumed unbiased because the publicly

released observed data from weather stations are quality controlled by Environment

Canada.

6.3.3 NARR precipitation assimilation (NPA) model

The NARR precipitation assimilation (henceforth denoted as ‘NPA’) based on Sta-

tistical Interpolation was implemented in Matlab and observations in the MSG data

set (Table 6.1) were used for assimilation. The NPA procedure requires estimation

of the weights in Eq.6.10 which in turn requires estimation of the covariances of

background errors, station errors, and errors at the analysis point, i.e. ΣΣΣB, ΣΣΣO, and

ΣΣΣBi, respectively. The required variogram was obtained by fitting Eq.6.12 to the

data using nonlinear least-squares regression fitting. The data consisted of distances

between station locations and the covariance of NARR errors at the station loca-

tions. The fitted model produced the optimized L and σ2
b (i.e. Var(B − T )) as 56.5

km and 13.62, respectively. The covariance matrix of background errors, ΣΣΣB, was

computed by Eq.6.12 using the optimized values of L and σ2
b . For estimating ΣΣΣBi, the

same procedure was applied using distances between station locations and NARR

grid points. For the variogram analysis, Var(O − B) was also obtained as shown in

Figure 6.3, and σ2
0 was estimated as 8.36 by subtracting σ2

b from Var(O − B). The

covariance matrix of station errors, ΣΣΣO, was assumed diagonal so [ΣΣΣB + ΣΣΣO] was
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Figure 6.3: Fitted variogram.

estimated as [ΣΣΣB + σ2
oIII]. The weights were then determined by solving Eq.6.10 for

Wik. In the final step, the assimilated NARR precipitation (the analysis value Ai

in Eq. 6.2) was computed using observed precipitation data from the 10 modelling

stations (Ok), NARR precipitation from the 91 grid points (Bi), and the weights

(Wik). In summary, the NPA model requires observed precipitation data, NARR

precipitation, and the optimized parameters L, σ2
b , and σ2

0 as input.

6.3.4 Results of simulation and validation

The performance of the NPA model was assessed by comparison with a traditional

station interpolation method based on inverse distance weighting. Only the MSG
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6.3. ASSIMILATION OF NARR PRECIPITATION

Table 6.2: Daily and annual mean precipitation of observation, NARR, NPA and
IDW for each station group. The period is 1981-2000.

Model Daily Annual

MSG VSG MSG VSG

OBS 1.49 1.48 542.9 540.0

NARR 1.07 1.08 390.8 395.7

NPA 1.53 1.52 557.9 554.7

IDW 1.46 1.48 533.7 540.2

observations were used in the IDW model to allow for a fair comparison with the

NPA model.

The simulation results were assessed by analyzing statistics such as averages at

different time scales, root mean square errors (RMSE), daily data differences (errors),

and correlations at different time scale. Also, basic plotting techniques including

scatter plot, Q-Q plot, and box plot were used.

Table 6.2 shows averages of daily mean precipitation at daily and annual time

scales, averaged over all stations in each station group (see Table C.1 for each station

result). The assessments for MSG represent simulation performance against the

observations used for estimation, while the VSG results are independent, validation

results based on stations that were not involved in the assimilation process. Because

the stations in the two groups (MSG and VSG) were selected to be evenly distributed

across the study region, averages of daily precipitation for the two groups are almost

the same. Although NARR preciptiation was bias corrected, NARR underestimates

daily average precipitation by -0.4 mm for both station groups. The NPA estimation
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Table 6.3: Observed and estimated daily mean precipitation of modelling and vali-
dation stations.

Station MSG Station VSG

No. OBS NARR NPA IDW No. OBS NARR NPA IDW

M1 1.3 1.1 1.4 1.7 V1 1.5 1.2 1.4 1.3

M2 1.5 0.9 1.5 1.4 V2 1.5 1.1 1.6 1.4

M3 1.4 1.0 1.5 1.3 V3 1.5 0.8 1.5 1.5

M4 1.5 0.8 1.6 1.4 V4 1.4 1.2 1.4 1.6

M5 1.7 1.0 1.7 1.5 V5 1.6 1.2 1.7 1.6

M6 1.4 1.2 1.4 1.6 V6 1.4 1.0 1.5 1.4

M7 1.8 1.2 1.7 1.6 V7 1.5 0.9 1.5 1.4

M8 1.5 1.3 1.5 1.6 V8 1.3 1.2 1.5 1.5

M9 1.5 0.9 1.5 1.4 V9 1.6 1.0 1.6 1.6

M10 1.4 1.2 1.5 1.2 V10 1.4 1.3 1.5 1.5

significantly improves the underestimation problem of NARR as the averages are

close to the target values (overestimation by 0.04 mm for both groups). In the

comparison with the IDW simulation, Table 6.2 shows that daily mean precipitation

averaged over all stations is better with IDW than with NPA, although the NPA

results are still very close to observations.

A comparison of daily mean precipitation for each individual station reveals some

additional insight. As seen in Table 6.3, although station averages of IDW were better

than NPA, NPA shows better agreement with observation of daily mean precipitation

at 8 of 10 stations in the MSG data set, while 3 stations showed better agreement

and 4 stations appeared the same in the VSG data set. Table C.1 further shows

that the NPA monthly and annual mean precipitation of individual stations agrees

better with observation than IDW at each station, although the station averages are
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Table 6.4: Average daily errors and RMSE of daily precipitation for NARR, NPA
and IDW.

Station Average Daily Errors RMSE

Group NARR NPA IDW NARR NPA IDW

MSG -0.42 0.04 -0.03 4.04 2.37 3.98

VSG -0.40 0.04 0.00 4.16 3.33 4.23

better for IDW. It is obvious that the average of spatially distributed data need to

be carefully assessed because spatial variations may be concealed by averaging. In

summary, it is concluded here that NPA performes better than IDW in terms of

averages.

An assessment using root mean square error (RMSE) and average daily precipita-

tion errors was conducted for investigating the day-to-day precipitation agreement.

Station averages of NARR mean daily errors are in the order of -0.4 for both sta-

tion groups and are clearly worse than NPA and IDW. Station averages of mean

daily errors for IDW and NPA are fairly close to zero. The lower average RMSEs

of NPA in the MSG group of station compared with the VSG group indicates that

the assimilation performance is affected by the distance from stations involved in the

process. Compared to NARR and IDW, NPA results are significantly better in terms

of RMSEs. The RMSEs of IDW and NARR are quite close while average daily errors

are distinctively different. Although NARR underestimates precipitation in terms

of average, the error in daily precipitation, as measured by the RMSE, is relatively

similar to IDW.
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Figure 6.4: Scatter plot (left) and Q-Q plot (right) of NARR, NPA, and IDW against
observation at the validation station in Steinbach.

A scatter plot is another way to present the day-to-day match of two precipitation

data sets. For instance, the scatter plot shown in Figure 6.4 (left panel) depicts the

day-to-day match between observations and estimations of daily precipitation for

NARR, NPA, and IDW at Steinbach (a station in the VSG data set, see Figure C.2

for all stations). NARR appears to underestimate daily precipitation overall and to

poorly represent the extreme precipitation. The NPA simulation seems to agree more

satisfactorily with observations, especially for the extreme precipitation as many red

dots appear near the 45◦-line at high values. IDW also shows a good agreement with

observations, but NPA appears better for the extreme values.

The distributional aspects of data sets can be examined by a Q-Q plot. Figure

6.4 (right panel) shows the three model simulations (see Figure C.3 for all stations).

Most of the NPA points are founded along the 45◦-line. IDW quantities are generally

lower than observation quantities.

Seasonal performance of each model is an important aspect to assess in estimation
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Figure 6.5: Mean daily error and RMSE of NARR, NPA, and IDW for the MSG and
VSG data sets.

of precipitation, because it is difficult to estimate extreme rainfall events in reanalysis

products. Figure 6.5 depicts the RMSE and daily precipitation errors for each month

(see Table C.3 for each station result). The negative bias of NARR is particularly

significant in the summer until October, which corresponds to the findings in Chapter

3. NPA and IDW show a slight overestimation between May and August. In other

months, NPA shows minimal mean daily errors, while NARR and IDW shows some

underestimation. Overall, the RMSEs of NPA for all months are noticeably lower

than the other two models. Similar to the station average assessment of RSME,

the RSMEs of IDW are almost identical to the NARR results for each month. This

implies that the differences of IDW against observation in the summer months are

as large as with NARR.
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Table 6.5: Average correlation of daily and monthly precipitation of NARR, NPA
and IDW.

Model Daily Monthly

MSG VSG MSG VSG

NARR 0.55 0.53 0.88 0.85

NPA 0.86 0.75 0.96 0.90

IDW 0.58 0.57 0.80 0.78

Finally, averages of correlation between observations and model simulations for

each station group were assessed (Table 6.5, see Table C.2 for details). NPA also

shows the best correlation among the models for all time scales. The NPA model

improved raw NARR daily precipitation from an average correlation of 0.53 to 0.75

in VSG, while the IDW model yields 0.57. The monthly correlation of NPA (0.90) is

high and, noticeably, the IDW (0.78) is even shown lower than NARR (0.85). The

correlations are obviously presenting similar features as the previous RMSE assess-

ments of IDW. Although the average precipitation assessment of IDW performance

appears better than NARR and similar to NPA, the RMSE and correlation assess-

ments show that the IDW performance when considering the day-to-day match is

worse than NPA and comparable to NARR.
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Chapter 7

CONCLUSIONS

This thesis has investigated the usefulness of the North American Regional Reanal-

ysis for hydrologic modelling. In regions that have few climate stations, NARR

precipitation and temperature may constitute a useful data alternative. The thesis

has in particular focussed on NARR for continuous streamflow simulation, estimation

of missing precipitation records, and climate model downscaling.

Any conclusion on the usefulness of NARR will depend on the alternative to

which it is compared. The thesis has attempted to assess NARR for use in central

Canada, with the main focus on Manitoba. Northern and Eastern Manitoba are

known to have a sparse network of climate stations. The conclusions drawn from

the thesis are specific to this particular region and results will be different for other

regions.

The major findings in this thesis are:
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• For the study region, the spatial representativeness of NARR precipitation is

generally good, as demonstrated by comparison with two interpolated gridded

climate data sets, CANGRID and ANUSPLIN, except for a band of systematic

underestimation along the border with the US. The bias band is clearly visible

on spatial maps and must be attributed to problems with reconciling different

input data sets north and south of the border.

• The NARR precipitation and temperature show good statistical agreement

with observations at six weather stations in Manitoba, across a range of time

scales (daily, monthly, seasonal and annual). The NARR precipitation has a

correlation of more than 0.8 at the monthly time scale and 0.6 at the daily

time scale.

• NARR precipitation generally shows better agreement with observations than

NNGR and ERA-40, two other popular reanalysis data sets. ERA-40 temper-

ature shows somewhat better agreement with observations than the other two

reanalyses; the temperature of NARR and NNGR are similar.

• The NARR climate data were found to be useful alternatives to station data in

a climate change study. For the particular case studies considered in the thesis,

the hydrological modelling and statistical downscaling of GCMs using solely

the NARR climate data gave simulation results similar to those obtained using

observations. The case study watersheds had climate observation in reasonable

proximity. The results suggests that NARR can be used in situations where
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no observational data are available.

• The NARR precipitation data show reasonable day-to-day match with obser-

vations at weather stations and may therefore be useful for estimating missing

records of daily observed precipitation. Several NARR-based methods for es-

timating missing data were proposed and demonstrated to generally perform

better than traditional methods using observations from neighbouring stations

when the distance to neighbouring stations is more than 100 km.

• The NARR precipitation can be combined with station data using statistical

interpolation. Such re-assimilation corrects the NARR precipitation bias along

the border as well as other deficiencies in NARR and generally results in an

improved product.

• A climate change study has found that the uncertainty related to the choice of

downscaling method is significantly higher than the uncertainty related to emis-

sion scenarios. The pattern of temperature changes between emission scenarios

is similar and the difference in the magnitude of change is a direct consequence

of the classification of the emission scenarios. However, the difference between

the statistical downscaling methods is quite significant for both temperature

and precipitation.

As already mentioned, the conclusion in this thesis are valid only for the regions and

time scales investigated. NARR was compared with CANGRID and ANUSPLIN
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to assess spatial properties of biases, with observations and other reanalyses at six

weather stations to assess performance at point scale, and with fifty weather stations

across the Prairie region to assess both point and distributed scales for daily, monthly,

seasonal, and annual time steps. The comparison results for monthly, seasonal, and

annual precipitation indicate that NARR has an agreement with observations that

is better than NNGR and ERA-40. The daily correlation of NARR precipitation

(average of 0.6 for 50 weather stations in the Prairie regions) is noticeably lower

than the monthly correlation (average of 0.9 for 50 weather stations in the Prairie

regions), but the difference of average precipitation and RMSE values are quite small.

A hydrological study of long-term climate conditions does not necessarily require

day-to-day match of precipitation; the high values of monthly correlation and the

relatively small bias (outside the bias band) imply that the NARR precipitation is

suitable for long-term assessments.

Due to a significant negative bias band along the border with the US, NARR

must be used with caution in this region. The issue must be linked to a systematic

error in the NARR assimilation process. NARR precipitation outside the bias band

can be used with little or no bias correction but inside the band, a bias correction is

required, for example using the re-assimilation procedure proposed in the thesis.

The day-to-day match of NARR daily precipitation and observations within grid

cells was compared to the match between pairs of climate stations. A distance of 100

km from a target weather station appears to be the point beyond which the daily pre-
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cipitation of NARR agrees better than the ones at the neighbouring weather station.

Several NARR-based methods for infilling missing precipitation records were pro-

posed. The NARR-based estimation methods, particularly the scale-factors meth-

ods (NBFmon and NBFQ), correct the NARR bias and the estimated precipitation

quantities are generally more accurate than those based on traditional methods, in

many cases even when neighbouring stations are within 100 km. This suggests that

the NARR-based methods are useful for infilling missing observations. The NBFQ

method can be further improved by including information about the year-to-year

differences in dryness and wetness. In order to more accurately apply the missing

data estimation methods to a weather station, the local climatic characteristics near

the station need to be thoroughly understood. The missing data estimation using

NARR will increase the number of reliable weather stations with full records which

will be useful in hydrologic modelling studies.

While NARR has a useful role to play in filling holes in observation records, ob-

servations also can be used to improve the gridded NARR precipitation fields. This

was demonstrated using statistical interpolation. The re-assimilation of observed

precipitation records into NARR correct much of the internal biases in NARR, in-

cluding the bias band along the border. The corrected NARR precipitation fields

will be useful in hydrological modelling of large basins.

The NARR climate data were validated by hydrological modelling. The simula-

tion results were quite close to the results obtained using observations at weather
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stations. Generally, the uncertainty of conventional input data is disregarded in the

calibration of hydrologic models. However, precipitation data from weather stations

may not always represent actual precipitation in the watershed, leading to errors

in runoff simulations as well as in calibrated model parameters. Although NARR

surface climate data include some biases, the NARR data do not seem to be any

worse than observed data in this regard, at least for the watersheds modelled in this

thesis.

In order to validate the reliability of NARR for a climate-related study, the NARR

data were also used for statistical downscaling. The assessment of climate change

impacts was conducted using solely the NARR data and compared with the results of

a project that employed observational data, and very similar results were obtained.

The evaluation and various applications of NARR surface variables have demon-

strated its consistency and potential for hydrological studies, including studies related

to long-term climate issues.
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Figure A.1: Q-Q plot for NARR, NNGR, and ERA40 against OBS.
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Figure A.2: Q-Q plot for NARR, NNGR, and ERA40 against OBS.
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Table A.1: Average temperature and precipitation comparison at weather stations
in Manitoba.

Station Mean Temperature Daily Precipitation

MANITOBA OBS NARR ERA40 OBS NARR ERA40

Birtle 1.5 3.5 2.7 1.2 1.2 1.0

Brandon CDA 3.1 4.4 3.5 1.3 1.2 1.4

Churchill A -6.6 -5.1 -4.7 1.2 1.3 1.3

Dauphin A 2.5 3.7 3.1 1.4 1.3 1.1

Gillam A -4.2 -2.6 -5.1 1.3 1.3 1.3

Pierson 4.4 5.3 3.6 1.3 0.7 1.3

Sprague 3.4 5.1 3.8 1.7 1.3 2.0

The Pas A 0.3 2.0 -0.8 1.2 1.2 1.2

Thompson A -3.1 -0.6 -1.2 1.4 1.3 1.3

Winnipeg A 2.9 4.7 3.1 1.4 1.2 1.5

Table A.2: Average temperature and precipitation comparison at weather stations
in north-western Ontario.

Station Mean Temperature Daily Precipitation

Kenora A 2.8 3.8 2.6 1.9 1.4 1.6

Mine Centre 3.2 4.9 2.3 2.1 0.9 1.8

Pickle Lake A -0.3 1.8 -0.8 1.9 1.9 1.8

Sioux Lookout A 1.8 2.7 1.9 2.0 1.9 1.8

Thunder Bay A 2.6 1.8 2.9 1.9 1.2 1.9
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Table A.3: Average temperature and precipitation comparison at weather stations
in Alberta.

Station Mean Temperature Daily Precipitation

ALBERTA OBS NARR ERA40 OBS NARR ERA40

Banff CS 2.3 2.0 3.4 1.0 1.4 1.2

Calgary A 4.3 4.2 3.3 1.1 1.3 1.5

Calmar 3.2 3.7 2.9 1.4 1.4 1.6

Campsie 2.4 3.7 3.0 1.3 1.4 1.1

Carway 4.7 5.8 5.9 1.5 1.1 1.0

Cold Lake A 2.0 2.5 1.8 1.1 1.2 1.2

Edmonton Intl A 2.8 3.6 3.3 1.3 1.3 1.1

Edson A 2.3 2.1 0.5 1.5 1.7 1.9

Entrance 2.8 2.5 0.2 1.5 1.8 1.9

Fort Chipewyan -1.9 0.1 -2.7 1.1 1.1 1.1

Fort Mcmurray 1.0 1.2 0.2 1.2 1.2 1.2

Gleichen 3.8 5.7 5.8 0.9 1.0 1.0

Grande Prairie 2.2 3.2 2.5 1.2 1.4 1.5

High Level A -1.3 0.3 1.0 1.1 1.1 1.2

Lacombe CDA 3.0 4.0 3.0 1.2 1.3 1.6

Lethbridge A 5.9 7.6 6.0 1.0 0.9 1.0

Medicine Hat A 6.0 6.8 5.8 0.9 0.9 0.9

Peace River A 1.7 2.5 3.3 1.1 1.3 1.2

Rocky MTN House 1.5 3.1 3.1 1.8 1.6 1.6

Slave Lake A 2.1 2.7 2.9 1.3 1.4 1.2

170



Table A.4: Average temperature and precipitation comparison at weather stations
in Saskatchewan.

Station Mean Temperature Daily Precipitation

SASKATCHEWAN OBS NARR ERA40 OBS NARR ERA40

Buffalo Narrow 1.2 1.6 1.6 1.3 1.2 1.2

Cluff Lake -0.6 -0.3 0.0 1.3 1.2 1.2

Cree Lake -2.2 -0.5 -1.2 1.2 1.2 1.2

Estevan A 3.9 5.4 3.1 1.1 0.8 1.3

Indian Head CDA 3.0 4.2 3.2 1.2 1.1 1.1

Island Falls -1.7 -1.4 -0.2 1.3 1.3 1.2

Pilger 1.6 3.1 1.6 1.0 1.1 1.4

Prince Albert 1.2 2.6 1.9 1.2 1.1 1.2

Regina A 3.2 4.5 3.9 1.1 1.1 1.0

Saskatoon SRC 4.1 4.4 3.1 1.0 1.0 1.1

Saskatoon Water 4.6 4.5 3.1 0.9 1.0 1.0

Swift Current 4.1 6.4 4.7 1.1 1.0 1.0

Swift Current 4.3 6.3 4.7 0.9 1.0 1.0

Waseca 2.2 2.6 2.8 1.2 1.1 1.0

Yellow Grass 4.4 4.9 4.4 1.3 1.1 1.2
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Appendix B

DETAILED RESULTS OF
MISSING DATA ESTIMATION

Table B.1: Wet-dry-day match between neighbouring stations and Winnipeg.

Station No. S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S10 S11 S12

W-W 1398 1132 956 1149 1467 1437 1638 1324 1075 1400 2349 1201

D-D 6096 6042 5945 5982 6133 5929 6234 6067 5908 6343 7148 6120

W-D 951 1217 1393 1200 882 912 711 1025 1274 949 0 1148

D-W 1052 1106 1203 1166 1015 1219 914 1081 1240 805 0 1028

W-W Ratio 0.60 0.48 0.41 0.49 0.62 0.61 0.70 0.56 0.46 0.60 1.00 0.51

W missing% 0.40 0.52 0.59 0.51 0.38 0.39 0.30 0.44 0.54 0.40 0.00 0.49

Total Err% 0.21 0.24 0.27 0.25 0.20 0.22 0.17 0.22 0.26 0.18 0.00 0.23

OBS (W-D)% 0.10 0.13 0.15 0.13 0.09 0.10 0.07 0.11 0.13 0.10 0.00 0.12

(D-W)% 0.11 0.12 0.13 0.12 0.11 0.13 0.10 0.11 0.13 0.08 0.00 0.11
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Table B.2: Wet-dry-day match between observation and NARR at Winnipeg.

NARR int. G1 G2 G3 G4 G5 G6 G7 G8 G9

W-W 1709 1804 1803 1775 1788 1777 1750 1724 1711 1689

D-D 5603 5526 5477 5415 5619 5548 5499 5737 5724 5647

W-D 640 545 546 574 561 572 599 625 638 660

D-W 1545 1622 1671 1733 1529 1600 1649 1411 1424 1501

W-W Ratio 0.73 0.77 0.77 0.76 0.76 0.76 0.74 0.73 0.73 0.72

W missing% 0.27 0.23 0.23 0.24 0.24 0.24 0.26 0.27 0.27 0.28

Total Err% 0.23 0.23 0.23 0.24 0.22 0.23 0.24 0.21 0.22 0.23

NARR(W-D)% 0.07 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07 0.07

(D-W)% 0.16 0.17 0.18 0.18 0.16 0.17 0.17 0.15 0.15 0.16

Table B.3: Wet-dry-day match between neighbouring stations and Brandon.

Station No. S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8 S 9 S10 S11 S12

Total #Day 9462 9493 9467 9433 9436 9492 9400 9495 9467 9452 9497 9436

W-W 1355 1336 1207 1391 1514 1563 1420 1514 1421 2205 1400 1473

D-D 6162 6352 6297 6326 6290 6170 6126 6367 6361 7247 6311 6500

W-D 850 869 998 814 691 642 785 691 784 0 805 732

D-W 1085 895 950 921 957 1077 1121 880 886 0 936 747

W-W Ratio 0.61 0.61 0.55 0.63 0.69 0.71 0.64 0.69 0.64 1.00 0.63 0.67

W missing % 0.39 0.39 0.45 0.37 0.31 0.29 0.36 0.31 0.36 0.00 0.37 0.33

Total Err % 0.20 0.19 0.21 0.18 0.17 0.18 0.20 0.17 0.18 0.00 0.18 0.16

Table B.4: Wet-dry-day match between observation and NARR at Brandon.

NARR int. G1 G2 G3 G4 G5 G6 G7 G8 G9

W-W 1555 1667 1654 1647 1639 1621 1634 1592 1585 1586

D-D 5532 5517 5558 5501 5652 5666 5637 5766 5762 5677

W-D 573 538 551 558 566 584 571 613 620 619

D-W 1478 1730 1689 1746 1595 1581 1610 1481 1485 1570

W-W Ratio 0.71 0.76 0.75 0.75 0.74 0.74 0.74 0.72 0.72 0.72

W missing % 0.29 0.24 0.25 0.25 0.26 0.26 0.26 0.28 0.28 0.28

Total Err % 0.25 0.24 0.24 0.24 0.23 0.23 0.23 0.22 0.22 0.23
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Table B.5: Wet-dry-day match between neighbouring stations and Dryden.

Station No. S 1 S 2 S 3 S 4 S 5

Total #Day 9405 9475 9402 9481 9434

W-W 3170 2516 2061 2346 2242

D-D 6235 5555 5374 5582 5419

W-D 0 654 1109 824 928

D-W 0 680 861 653 816

W-W Ratio 1.00 0.79 0.65 0.74 0.71

W missing % 0.00 0.21 0.35 0.26 0.29

Total Err % 0.00 0.14 0.21 0.16 0.19

Table B.6: Wet-dry-day match between observation and NARR at Dryden.

NARR int. G1 G2 G3 G4 G5 G6 G7 G8 G9

W-W 2511 2515 2519 2494 2485 2498 2473 2445 2428 2446

D-D 4631 4681 4603 4549 4696 4618 4557 4752 4714 4621

W-D 659 655 651 676 685 672 697 725 742 724

D-W 1604 1554 1632 1686 1539 1617 1678 1483 1521 1614

W-W Ratio 0.79 0.79 0.79 0.79 0.78 0.79 0.78 0.77 0.77 0.77

W missing % 0.21 0.21 0.21 0.21 0.22 0.21 0.22 0.23 0.23 0.23

Total Err % 0.24 0.23 0.24 0.25 0.24 0.24 0.25 0.23 0.24 0.25
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Table B.7: Wet-dry-day match between neighbouring stations and Thompson

Station No. S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

Total #Day 9497 9463 9481 9467 9346 9496 9493 9473

W-W 1212 1657 1696 2656 1258 1271 1689 1619

D-D 5260 5742 5732 6811 5531 5747 5685 5533

W-D 1444 999 960 0 1398 1385 967 1037

D-W 1551 1069 1079 0 1280 1064 1126 1278

W-W Ratio 0.46 0.62 0.64 1.00 0.47 0.48 0.64 0.61

W missing % 0.54 0.38 0.36 0.00 0.53 0.52 0.36 0.39

Total Err % 0.32 0.22 0.22 0.00 0.28 0.26 0.22 0.24

Table B.8: Wet-dry-day match between observation and NARR at Thompson.

NARR int. G1 G2 G3 G4 G5 G6 G7 G8 G9

W-W 2150 2156 2156 2126 2161 2160 2112 2127 2116 2127

D-D 4679 4722 4670 4571 4739 4710 4631 4781 4721 4651

W-D 501 500 500 530 495 496 544 529 540 529

D-W 2112 2089 2141 2240 2072 2101 2180 2030 2090 2160

W-W Ratio 0.81 0.81 0.81 0.80 0.81 0.81 0.80 0.80 0.80 0.80

W missing % 0.19 0.19 0.19 0.20 0.19 0.19 0.20 0.20 0.20 0.20

Total Err % 0.28 0.27 0.28 0.29 0.27 0.27 0.29 0.27 0.28 0.28
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Table B.9: Wet-dry-day match between neighbouring stations and The Pas.

Station No. S 1 S 2 S 3 S 4 S 5 S 6 S 7 S 8

Total #Day 9497 9463 9481 9467 9346 9496 9493 9473

W-W 762 1238 1014 1271 1567 2349 1583 1252

D-D 5134 5657 5375 5762 6166 7147 5900 5489

W-D 1587 1111 1335 1078 782 0 766 1097

D-W 2013 1490 1772 1385 981 0 1247 1658

W-W Ratio 0.32 0.53 0.43 0.54 0.67 1.00 0.67 0.53

W missing % 0.68 0.47 0.57 0.46 0.33 0.00 0.33 0.47

Total Err % 0.38 0.27 0.33 0.26 0.19 0.00 0.21 0.29

Table B.10: Wet-dry-day match between observation and NARR at The Pas.

NARR int. G1 G2 G3 G4 G5 G6 G7 G8 G9

W-W 1796 1866 1845 1835 1839 1839 1837 1853 1846 1844

D-D 5452 5435 5534 5525 5489 5550 5539 5402 5482 5522

W-D 493 483 504 514 510 510 512 496 503 505

D-W 1556 1712 1613 1622 1658 1597 1608 1745 1665 1625

W-W Ratio 0.76 0.79 0.79 0.78 0.78 0.78 0.78 0.79 0.79 0.79

W missing % 0.24 0.21 0.21 0.22 0.22 0.22 0.22 0.21 0.21 0.21

Total Err % 0.24 0.23 0.22 0.22 0.23 0.22 0.22 0.24 0.23 0.22
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Appendix C

DETAILED RESULTS OF NARR
PRECIPITATION
ASSIMILATION

Figure C.1: Study area of NARR precipitation assimilation near Winnipeg.
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Table C.1: Mean monthly and annual precipitation of observations, NARR, NPA,
and IDW for both MSG and VSG.

Station Monthly Mean Annual Mean

No. OBS NARR NPA IDW OBS NARR NPA IDW

Modelling Station Group (MSG)

M1 39.3 33.9 42.4 50.4 472.1 406.2 508.7 605.1

M2 45.1 28.7 45.7 43.0 540.8 344.1 549.0 515.6

M3 43.5 29.5 44.5 38.5 521.9 354.1 533.9 462.6

M4 46.1 25.4 48.7 42.7 553.2 304.5 583.9 513.0

M5 50.6 30.7 50.3 45.4 606.7 368.2 603.7 544.6

M6 42.0 36.1 43.8 47.2 504.5 433.0 525.8 566.5

M7 53.5 37.4 51.7 47.4 641.9 449.3 619.9 568.2

M8 44.4 39.3 46.2 50.1 532.7 471.9 554.3 600.7

M9 44.3 28.7 44.7 42.9 531.2 344.5 537.0 514.4

M10 43.6 36.0 46.9 37.2 523.7 431.7 562.6 445.9

Validation Stations Group (VSG)

V1 45.6 36.0 44.0 38.9 547.8 432.4 528.4 466.5

V2 45.5 32.3 47.8 42.8 546.0 388.2 573.3 513.1

V3 44.7 24.1 45.8 46.3 536.2 289.6 549.2 555.6

V4 42.8 36.8 43.9 48.1 513.9 441.5 526.7 577.0

V5 50.2 35.7 51.4 49.5 602.1 428.7 617.1 594.0

V6 44.1 31.7 45.0 42.7 529.4 380.8 539.8 512.4

V7 45.8 27.0 44.7 42.7 549.6 324.6 536.2 512.7

V8 40.5 36.0 44.2 45.1 486.3 432.1 531.0 541.0

V9 47.2 30.0 50.1 47.7 566.3 360.6 601.3 572.4

V10 43.6 39.9 45.3 46.4 522.7 478.5 544.0 557.0
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Table C.2: Correlation of daily and monthly precipitation of NARR, NPA and IDW.

Station Daily Monthly

No. NARR NPA IDW NARR NPA IDW

Modelling Station Group (MSG)

M1 0.60 0.65 0.56 0.89 0.91 0.80

M2 0.56 0.89 0.62 0.87 0.96 0.80

M3 0.53 0.88 0.69 0.89 0.97 0.86

M4 0.51 0.91 0.49 0.85 0.97 0.74

M5 0.46 0.95 0.42 0.79 0.98 0.68

M6 0.57 0.90 0.67 0.88 0.96 0.85

M7 0.50 0.97 0.45 0.87 0.99 0.71

M8 0.58 0.88 0.53 0.93 0.97 0.79

M9 0.56 0.79 1.00 0.88 0.91 1.00

M10 0.64 0.74 0.40 0.90 0.93 0.71

Validation Stations Group (VSG)

V1 0.58 0.82 0.61 0.88 0.92 0.79

V2 0.51 0.77 0.38 0.86 0.90 0.65

V3 0.51 0.74 0.50 0.77 0.92 0.75

V4 0.54 0.69 0.68 0.85 0.87 0.88

V5 0.56 0.68 0.45 0.90 0.90 0.72

V6 0.54 0.82 0.71 0.87 0.92 0.87

V7 0.49 0.80 0.74 0.83 0.92 0.88

V8 0.52 0.67 0.58 0.84 0.87 0.79

V9 0.55 0.80 0.54 0.87 0.91 0.76

V10 0.50 0.72 0.55 0.82 0.84 0.68
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Table C.3: RMSE and daily errors of precipitation for NARR, NPA and IDW.

Station RMSE Mean Daily Errors

No. NARR NPA IDW NARR NPA IDW

Modelling Stations

M1 3.44 3.57 4.44 -0.18 0.10 0.36

M2 4.03 2.19 3.92 -0.54 0.02 -0.07

M3 3.83 2.16 3.30 -0.46 0.03 -0.16

M4 4.30 2.04 4.53 -0.68 0.08 -0.11

M5 4.79 1.67 5.21 -0.65 -0.01 -0.17

M6 3.70 1.93 3.51 -0.20 0.06 0.17

M7 4.62 1.35 5.06 -0.53 -0.06 -0.20

M8 3.98 2.43 4.86 -0.17 0.06 0.19

M9 3.94 2.95 0.25 -0.51 0.02 -0.05

M10 3.75 3.44 4.75 -0.25 0.11 -0.21

Validation Stations

V1 3.98 2.77 4.05 -0.32 -0.05 -0.22

V2 4.50 3.40 5.46 -0.43 0.07 -0.09

V3 4.42 3.63 4.65 -0.68 0.04 0.05

V4 3.96 3.48 3.56 -0.20 0.04 0.17

V5 4.39 4.04 5.29 -0.47 0.04 -0.02

V6 3.80 2.74 3.27 -0.41 0.03 -0.05

V7 4.17 2.93 3.19 -0.62 -0.04 -0.10

V8 4.06 3.64 4.11 -0.15 0.12 0.15

V9 4.07 3.17 4.36 -0.56 0.10 0.02

V10 4.26 3.47 4.32 -0.12 0.06 0.09
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Figure C.2: Scatter plot of observations and NPA at 10 validation stations.
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Figure C.3: Q-Q plot of observations and NPA at 10 validation stations.
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