
AT.GOR,TT'FTWIS F'TR. T'XãE fuTTNTMTZATTTN

tF'

B TN^AR.V ANÐ &/T.ILT'XPX.Ð. V AK,{JEÐ T,O GTC F''UNC T'TTN S

Gerhard W. Dueck

A thesis

presented to the University of Manitoba

in fulfillment of the

thesis requirements for the degree of
Doctor of Philosophy

in
Computer Science

Winnipeg, Manitoba

@ Gerhard W. Dueck, 1988

by

Fermiesion k¡as been Eranted
t.o the Nat.i.onaL Líbrary of
Canada to mí crof í l-m th í s
thesís and t,o lend or sel-1
copies of the fil-m.

The author (copyríEht owner)
ïras reserved ot}ler
pubX-ícatíon niEht.s ' and
neít.her t.he thesi.s nor
extensive exÈracës f rom i.t
may be prínted or otherwíse
neproduced wíthout, his/her
writ.t.en permíssíon "

f,uauLoríeatíon a êtê accordêe
å l-a Bíbti.othèque r¡ationale
du Canada de mícrofíl-ner
cet,t,e thåse et de prêter @u

de vendre des exempl-aÍres du
t]-Im.

Lu auteur (títul-aíre du ' droit
d'auteur) ce rêserve Les
autres droíte de pubticatíon;
nl ta thèee ni de tr-ongs
eNtnaí es de cel-l-e-ci ne
doívent, être impri.mês ou
autrement neproduíts sana son
auÈorleatlon êcríteo

rsBN 0-31-5-48034-3

Å.X.GOR.TTE{MS F'OR. TFTE MTNTMTZATION

oF

E N,AR.Y AND MUN-TXPT.E -V.AT, IJEÐ [,O GXC F'UNC TXO NS

Gerhard W. Dueck

A thesis submitted to the Faculty of Graduate Studies of the University of Manitoba in

partiat fulfillment of the requirements of the degree of

ÐOCTOR. OF PHXX-OSOPHY

O Gerhard V/. Dueck, 1988

Permission has been granted to the LIBRARY OF TIIE UNIVERSITY OF MANTTOBA to
lend or sell copies of this thesis, to the NATIONAL LIBRARY OF CANADA to microfilm
this thesis and to lend or sell copies of the film, and UMVERSITY MICROFILMS to
publish an abstract of this thesis.

The author reserves other publication rights, and neither the thesis nor extensive extracts
from it may be printed or otherwise reproduced without the author's written permission.

by

-11 -

ABST'R,.ECT'

The objective of logic minimization is to find a representation which lends itself to cost

effective implementation. In this thesis new algorithms for the minimization of multiple-

valued logic functions are presented.

Any binary multiple-output problem can be transformed into a multiple-valued

function. Therefore, the binary multiple-output problem can be solved by the techniques

described in this thesis. Similarly, any multþle-valued multiple-output can be transformed

into a single multiple-valued logic function. The thesis thus covers the complete spectrum

of logic minimization.

In some technologies, the truncated SUM operator is easier to implement than the

more coûìmonly used MAX operator. Due to the increased complexity associated with the

truncated SUM operator, exactminimization is not feasible. A new direct cover algorithm

for minimizatton with the truncated SUM is presented. Two heuristics are used by the

proposed algorithm. First, the most isolated minterm is selected to be initially covered.

Second, for each implicant which contains the chosen minterm the break count reduction is

calculated. The implicant with the best break count reduction is chosen to be part of the

solution.

Directed search minimization integrates the choice of the minimal cover into the prime

implicant generation process. An extension of the directed search algorithm to

accommodate multiple-valued logic function is described. The major drawback of the

directed search algorithm is that it starts with a list of minterms. Often a sum-of-products

expression, where the product terms are not necessarily minterms, is available.

A new binary recursive consensus algorithm which starts with a sum-of-products

expression is presented. The order in which product tenns are generated is different from

the traditional iterated consensus. In addition, information on the intersection between

product terrns is kept. These two changes facilitate the early detection of essential and

pseudo-essential prime implicants. Moreover, the algorithm is adapted to handle multiple-

valued logic functions. The algorithm combines the advantage of starting from a list of

terms and detection of essential prime implicants while generating prime implicants.

Finally, it is shown how the algorithms can be adapted to minimization with window

literals. V/indow literals appear more frequently in the literature and are often easier to

implement.

l1I

ACKNOWI,EÐGEMEIVT'S

I would like to express my gratitude to Dr. Mike Miller who first innoduced me to

multiple-valued logic. He has been an invaluable resource person throughout the

preparation of this thesis. During the flrst year of my studies he was my supervisor and

later he continued to be my unofficial supervisor after he left the University of Manitoba.

I would like to thank Dr. John Bate who was willing to become my supervisor for the

last year of my studies. I would also like to thank the other members of the examining

committee, Dr. Stan Hurst, Dr. John van Rees, and Dr. Bob Mcleod for their effort.

The work required in the preparation of this thesis could not have been done without

the support of my family. The encouragement of my wife Elfriede was instrumental in the

speedy completion of this thesis. Thanks to my three boys, Oliver, Lars, and Niels, who

gave up playing games on the Macintosh, so that I could type my thesis.

Financial assistance was provided by the Natural Sciences and Engineering Research

Council of Canada through a postgaduate scholarship.

lv-

to wry pørents

Concern for man himself and his fate must always form the chief interest of all

technical endeavors, concern for the great unsolved problems of the

organization of labor and the distribution of goods
- in order that the creations

of our mind shall be a blessing and not a curse to mankind. Never forget this in

the midst of your diagrams and equations.

Alben Eínstein

CÛNTÐNT'S

.4.bsÉnact

.A.cknowledgements

n Intnoduction
1.1 Motivation
1.2 Organization of the Thesis
1.3 Notation and Definitions

Fnevious Work
2.1 Introduction
2.2 Bnary Minimization

2.2.I TraÅttional Minimization Techniques .

2.2.2 Dtrected Search Minimization
2.2.3 Heunstic Minimization: MINI and ESPRESSO
2.2.4 McBooIe.
2.2.5 Multþle-Ouçut Minimization
2.2.6 Ree.d-Muller Expansion

2.3 ll4VL Minimization: Previous Work
2.3.1, Dkæt Cover Minimization
2.3.2 CostTable Approach

2.4 Remarks

3 A Ðirect Cover dlgorithm for Truncated S{JM Minimization
3.1 Overview
3.2 Preliminaries
3.3 The Algorithm.
3.4 Examples .

3.5 Results
3.6 Remarks

4 Ðinected Seanch MinimizatÍon of Multiple-Valued Functions
4.1 Overview
4.2 TheAlgorithm
4.3 Examples
4.4 Results
4.5 Remarks

RCM: A Recursive Consensus Minimization Algorithm .

5.1 Overview
5.2 Preliminaries

11I

1V

1

1

5

6

9

9

11

t3
24
3T

32
-^JJ

36
38
40
42
43

44
44
45
49
55
6s
67

68

68

71

78
86
89

9t
91

92
945.3 The Binary Algorithm

-vl -

5.4
5.5
5.6
5.7

Binary Examples
RCM-MV: The Multiple-ValuedExtension of RCM
Multiple-Valued Examples

101

108

IT2
Remarks 118

6 Minirnization With Window LÍteratrs
6.1 Overview .

6.2 Dtre*t Cover Algorithm for Truncated Sum Minimization .

r19
tt9
r2l
tzl
122

134
134
134
135

t4l
t41
143
t47

149

6.2.I T\eExtensi
6.2.2 Examples

aìf1

6.2.3 Remarks
Directed Search Minimization .

6.3.1 The Extension
6.3.2 Examples

Recursive Consensus Minimization Algorithm .

6.4.1 The Extension
6.4.2 Examples

6.5 Remarks

7 Conclusior¡

6.3

6.4

Appendix,4.... I52

R.eferences I54

-vtl -

Chapter X.

TNTR,ODIJCTNON

x..t MoT'xv.4.TIoN

The applications of digital systems are evident in our everyday lives, from digital alarm

clocks to satellite communications - life without digitat systems is diffrcult to imagine. As

the list of possible applications grows daily, design methodologies become more important.

Digital systems accept input signals and produce output signals according to some

functional specification. The outputs can be used to control other systems. They are

classified under trvo headings: combinational systems and sequential systems. The outputs

of a combinational system are a function of its inputs, i.e., the outputs are at any time

uniquely determined by the current inputs. The ouçuts of a sequential system depend on

the current inputs as well as previous inputs. The system then has the capability of

remembering previous inputs. Any sequential system can be represented as a

combinational system plus a memory.

The top-down design methodology is widely used in the design of software systems.

The main thrust of top-down design is to break a large problem into several smaller

problems. Successive refinement continues until all remaining tasks are well understood

and easily implemented. Comer [COM84] describes how this design methodology can be

applied to the design of digital systems. The overall system, described by a set of

specifications, is decomposed into modules. These modules should be as independent as

possible.

Control modules can be realized as state machines. A state machine is a sequential

system which can be described in terms of a set of states that the system may enter. A state

machine consists of a memory which remembers the current state and two combinational

-1-

systems. The combinational systems a.re the input forming logic, which also determines

the next state, and the output forming logic. The general model of a state machine is shown

in Figure 1.1 [COM84]. The design of combinational systems is an integral facet of the

design of sequential systems.

Figure 1.1 General model of a state machine.

The behaviour of a combinational system can be described by a truth table where each

input combination is listed with the corresponding outputs. The table for an n-input binary

function consists of 2n entries. For functions with large number of inputs, such a table is

not practical. A more concise representation must be found.

Boolean algebra can be used to represent logic functions. The axioms and theorems

of Boolean algebra can be used to manipulate logic functions, with the objective of finding

a better representation. Applying Boolean algebra in an ad-hoc fashion is not effective.

Much experience in needed, and it is not clear when a minimal expression has been

reached. A systematic approach is required.

The objective of logic minimization is to find a concise representation which lends

itself to the most cost-effective implementation. Minimization of logic functions is thus an

important step in the design of integrated circuits. Traditionally, cost has been measured in

Inputs

Input

forming

logic

Output

forming

logic

-2-

terms of the number of discrete components, but chip area and speed performance are now

the dominant factors. Minimization is a classic problem in logic design. Numerous

algorithms have been proposed for the minimization of binary logic function.

It is known that binary minimization belongs to the class on NP-complete problems.

Therefore, in general, the exact minimization of logic functions is not feasible.

Nevertheless, exact minimization algorithms may work very well for specific functions. A

number of heuristic minimizations have been proposed. These algorithms produce minimal

or near minimal results.

The ever increasing demand on the implementation of complex systems on a single

chip is pushing very-large-scale-integration (VLS[) to its physical limits. About 70 percent

of a typical VLSI chip is devoted to the connection among devices. Therefore, any

reduction in the interconnection area will result in a significant compaction of the chip area.

With the use of multiple logic levels (multiple-valued logic), in contrast to the traditional

two levels (binary logic), a substantial reduction in the interconnection area can be

achieved.

Moreover, multþle-valued logic (MVL) offers a solution to the pin-outproblem since

more information can be carried on each pin of the chip. For example, a four-valued signal

carries twice the information carried by a binary signal. Also, the MVL realization of a

function often produces a more compact circuit.

Currently, the application of MVL is limited to very few industrial siruations. Several

implementations of multiple-valued memories have been used in industrial chips. A fast,

concise multiplier chip using multiple-valued logic has been implemented tKAM88l.

Continued research in optoelectronics may produce new device structures which employ

multiple-valued logic tHUR86l.

The minimization of binary logic functions has been extensively studied and the

problem is well understood. Multiple-valued logic offers a rich set of operators, this in

turn makes the minimization process more difficult. A subset of the possible operators

must be chosen carefully. The algebra used to represent multiple-valued logic functions

must meet two criteria. First, the implementation of the operators in the target technology

must be economical. Second, the expressions in the given algebra must be easy to

manipulate.

Structured implementations of complex multiple-valued circuits will likely replace

random logic. This is evident in the binary domain where programmable logic arrays

(PLAs), read only memories (ROMs), and multiplexors (MUXs) are now widely used.

The use of regular strucrures simplifies the design process. The minimization algorithms

presented in this thesis are suitable for PLA implementation, i.e., they produce a minimal

or nea.r minimal sum-of-products expression.

It has been shown that binary PLA optimization is a special case of multiple-valued

logic minimization [SAS78]. Therefore, the algorithms presented in this thesis can also be

applied to binary multiple-output problems.

A standard representation of MVL functions has not yet evolved. Therefore, several

operators and literals can be used in the representation of a multiple-valued function.

The aim of this thesis is to provide a comprehensive treatment of multiple-valued

logic minimization. Different literals and operators will be considered. A number of new

algorithms are presented.

The proposed algorithms have the following characteristics:

1) They are suitable for computer implementation. Computer aided

design (CAD) is becoming increasingly important in the manufacturing of

integrated circuits. A minimization program performs one task of the overall

design which is integrated into the CAD sofnvare. The reliability is increased

by reducing the human factors.

2) They employ simple heuristics. As mentioned before, exact

minimization is not feasible. The heuristics are easily understood and simple

to program. Some assurance of the quality of the ¡esults (i.e. the degree of

minimality) of the heuristics is provided.

Results are given in sum-of-products form. Minimal sum-of-

products expressions are needed in binary PLA optimization. Random logic,

which can be used successfully with a small number of inputs, will eventually

be replaced by structured implementations (PLA-like structures). At the

moment, this seems to be the mostpromising approach.

The algorithms are extendible to accommodate window literals.

It is not yet clear which literals are the most suitable for MVL implemen-

tations. The possibility of extending an algorithm from one literal operation to

another one, kindles the hope, should a new literal operation come into

favour, the algorithm can be adapted accordingly.

1.2 ORGANIIZATTON OF TIIE TITESIS

In Chapter 2, binny and multiple-valued logic minimization algorithms are reviewed.

Examples are given to illustrate those algorithms which form the basis for the research

presented in Chapters 3 to 6.

In some technologies, the SUM operator is easier to implement than the more

common MAX operator. In Chapter 3, a new algorittrm for truncated SUM minimization is

introduced. The algorithm makes use of break counts to measure the relative complexity of

a function.

Directed search minimization [RHY77] integrates the selection of a minimal cover into

the prime implicant generation process. In Chapter 4, the binary directed search

minimization algorithm is extended to handle multiple-valued functions.

A new consensus algorithm for the minimization of binary logic functions is

presented in Chapter 5. Further, it is shown how the algorithm can be extended to

accommodate multiple-valued logic functions.

3)

4)

-5-

All algorithms presented in Chapters 3 to 5 make use of the generalized literal

function. However, in some technologies the window literal is easier to implement. In

Chapter 6, the minimization algorithms intrduced in Chapters 3 to 5 are extended to handle

window literals.

All the algorithms have been implemented (in APL or Pascal). Empirical results

concerning the performance of the implementation are presented in the corresponding

Chapters.

1-.3 NOT.AT'XOF{ ^A.ND ÐEF'INNTIONS

Definítion tr.l. Let p¡, i = 1, 2, . . ., n, be positive integers representing the number of

valuesforeachof nvariables. DefinethesetPi= (0, 1,..,pi- 1], i=1,2,...,n,tobe

the p, values that the ith variable may assume. Define the set B = {0, 1, *} to be the

possible values of a binary valued function (* denotes a don't-care condition). A multiple-

valued input, single binary-valued output function/is a mapping

"tPtrPZ,...x Pn-+B

The function/has n multiple-valued input variables. The ith variable can take one of

P¡ Possible values.

Ðefinition n.2. The radíx of a function is defined to be the maximum value of pi, i = 1,

2, . . ,î, and is denoted R. A function with radix equal to two is said tobe binary.

Ðefinition 1.3. Each element in the domain of/is a. minterm of the function.

Definition 1.4. An enumeration of all minterms with the corresponding value of the

function is a truth table.

ÐefÏnition 1.5. A don't care minterm (represented by o e B) is one for which the

-6-

function value is allowed to be either 0 or 1. Hence, functions may be incompletely

specified.

Ðef'ÍnitÍon n.6. The set of all minterms which evaluate to one is called the ON-set.

Similarly, the OFF-ser contains all minterms which evaluate to zero. The set of all

minterms which are don't-cares is called the DC-set.

Ðefinition L.7. Let x, be a variable which can take values from the set P¡, and let S¡ be a

subset of P¡. The literal operation is defined as follows:

si lr-1 ifx.e S.xi = t, ir*.* s.

r is the size of the range of the literal operator. Note for the binary output case r = 2 and the

literal operator becomes:

si I t if x.e S,
xi = j ' I

t 0 if x.ê S.

For a binary function, xl wil be written as x. and xf wiff be written as i. .

Ðefinition 1..8. Aproduct term is the Boolean product (AND) of literals.

If a product term evaluates to 1 for a given minterm, then the product term is said to

contain the minterm.

Ðeflinition 1.9. A product term is an implicant of the function f if f is nonzero for all

minterms contained in the prduct term.

Ðefinition X..X.O. A príme ímplicant of the function/is an implicant which is not itself

-7 -

contained in any other implicant of/.

Ðefinition f,.i,l. An essential prime implicant is a prime implicant which contains at

least one minterm which is not contained in any other prime implicant.

DefinÍtion X..L2. Prime implicant PI1 is said to be domínated by prime implicant PI2 if

all the ON-set minterms included in PIt are also included in PI2.

DefinÍtion 1.13. A prime implicant PI is termed pseudo-essential if it contains a

minterm which is not contained in any otherprime implicant which is not dominated by PL

Defînition 1.n4. A function is said to have a cycle if there exists a minterm which is

not included in an essential or pseudo-essential prime implicant. A function which contains

a cycle is said tobe cyclic.

A multiple-valued output function can be transformed to a set of binary-valued output

functions as shown in Appendix A.

-8-

Chapter 2

PREVTOUS WORK

2.T INTR,ODIJCTXOI{

A logic function maps a combination of input values to one or more output values. This

mapping can be represented in a variety of ways. A truth table is the most sraightforward

representation for a function. However, it is only feasible for functions with a small

number of inputs. The truth table for a binary function with n inputs has 2n rows. For

functions with a large number of inputs a more compact representation must be found. The

truth table representation is inadequate for a direct implementation, unless the function is to

be implemented by a memory or a multiplexor.

ABC
000
001
010
011
100
101
110
111

0

1

0

0

0

1

0

1

Figure 2.1 Truth Table of a Binary Function.

The function F whose truth table is shown in Figure 2.1 can also be represented as a

sum-of-products where each product tetm covers exactly one minterm:

F = ÃEc+eBc+ABC

-9-

or

If one implements the above function without further analysis, two inverters, three 3-input

AND gates and one 3-input OR gate are required. By applying the laws of Boolean

Algebra to the function F we obtain the following simpler expressions

F = EC+AC (2.r)

F = C(B+A) (2.2)

The direct implementation of (2.1) requires two AND gates, one OR gate, and one inverter,

whereas (2.2) can be implemented using one AND gate, one OR gate, and one inverter.

Both expressions yield a nvo-level network, but the second expression is in the product-of-

sums form. This simple example shows that the implementation cost of a logic function

depends on its representåtion.

The objective of logic minimization is to find a representation which lends itself to the

most cost effective implementation of the logic function. In addition, different constraints

such as a limit to the number of levels, a restriction to certain types of gates, the number of

fan-out lines of a gate, etc., may be imposed on the final expression. Each additional

constraint will increase the complexity of the minimization process.

When a function is implemented using discrete gates, the cost of realizing the function

is directly related to the number of gates and gate inputs used. A sum-of-products

expression can be easily implemented in a two-level AND-OR network. Programmable

logic arrays (PLAs) are widely used in VLSI design tFLE75l. A PLA consists of an AND

array which is used to realize the product terms of the function and an OR array which

combines the product terms. The cost of a PLA is directly related to the number of inputs,

ouq)uts, and product terms. Since the number of inputs and outputs for a given function

are fixed, the cost is minimized by minimizing the number of product terrns. Throughout

this thesis, only minimization methods suitable forPLA implementation will be considered.

-10-

2.2 tsTNARY MNNTMXZ,ET'ION

Functions with a small number of inputs can be minimized by applying the laws of Boolean

Algebra in some ad hoc fashion. Experience is needed even to simplify functions with

only four variables. It is not always apparent that a minimal expression has been reached.

In general, functions with more than five variables are very diff,rcult to minimize without a

systematic procedure.

Quine tQUI52l has proven that a minimal sum-of-products Boolean expression

involves only prime implicants. This simplifies the minimization process since not all

implicants need be considered.

Karnaugh [KAR53] introduced a pictorial representation of a Boolean function, now

known as a Karnaugh map. Karnaugh maps aid the detection of prime implicants, as weli

as the selection of a minimal sum-of-products expression. This method is suitable for the

minimization of logic functions with up to five or six input variables. Some 4-input

functions will be used to illustrate the use of Karnaugh maps.

A function can also be expressed by listing the ON-set. For a more concise notation,

each minterm in the ON-set is interpreted as the binary representation of an integer. For

example, the ON-set of the function shown in Figure 2.1 is [(0,0,1), (1,0,1),(1,1,1)]

which can be written as {1,5,7}. This is frequently written as F(x1,x2,x3) = Im(1,5,7).

Example 2.1. Consider the function F(x1,x2,x3,x4) = Im(1 ,3,5,6,7,8,9,10,13,14).

The corresponding Karnaugh mapl with its prime implicants is shown in Figure 2.2 (a).

The minimal sum-of-products expression is shown in Figure 2.2 (b). The prime implicants

ofF are:

ir*0, -*o,lr*z1 , xz\io, *r*rio, *rLL , *rl\îo

The minimal sum-of-products expression is:

F(x' x, x3,x4) = 4*¿ * 4xo + xrxrìo +

I For clarity, the zero values of the function witl be left as blanks on the Karnaugh map.

xtxzx4

- 11-

xrx2 xrxz

'4\

00

01

11

10

00 01 11 10

IJ
G D1l 1

f J
G l o

(b)

\xq x3x

Irx, * xrxzx4+ xrxr-xo+Irxaxo

xrx3 + xr\x¿ + x1x2x3 + xZ\xq

lrt * Ir*¿ + xrx2x3 + Irxrïo

00

01

11

10

Figure 2.2 Karnaugh Maps for F(x1,x2,x3,x4) =)m(1,3,5,6,7,8,9,10,13,14).

(a) all prime implicants, (b) the minimal cover.

V/ith experience it is possible to find a minimal solution without considering all prime

implicants. Unfortunately, the minimal sum-of-products expression of a function is not

always unique. This is illustrated by the next example.

Example 2.2. Consider the function F(x1,x2,x3,x4) = Lm(O,1,3,4,5,6,11,14,15)

(Figure 2.3). The four minimal sum-of-products expressions are:

F = ii\ *
"rxzx4+

xrxrl,+lrlrxo(Ð

(ü)

(üi)

(iv)

F_

p=

F-

-t2-

xrx2 xrx2

x3 x.4 00 01 \xq
00

01

11

00

01

11

1010

(a) (b)

Figure 2.3 A function with four minimal sum-of-products expressions.

(The shaded terms show altematives.)

2.2.î Traditional Minimization Techniques

Classical minimization algorithms start with the generation of ail prime implicants, followed

by the selection of a minimal cover. Quine [QUI52,QUI55] introduced a systematic

procedure to minimize a Boolean function. McCluskey [MCC56] refined the method

described by Quine. This algorithm is commonly known as the Quine-McCluskey

procedure.

In this procedure the generation of all prime implicants is based on the equality

Yx.+Yi.=Y

where Y is an implicant of the function which does not involve xi. This relation is

systematically applied to a list of implicants until all prime implicants are generated.

Initially, the list of terms consists of all minterms.

To aid in prime implicant generation a positional notation is used for the product

terms. Each variable is denoted by 1, the complement of a variable is denoted by 0, and

any missing variable is denoted by a dash. Examples of this notation are given below:

13

All possible pairs of terms must be compared to determine if a new implicant can be

generated from them. Two tenns can be combined if they differ in exactly one position

which is not a dash. Clearly, the number of ones in both tenns must differ by one. By

classifying the terms by the number of ones, the number of comparisons can be cut down

considerably. Initially, all minterms are gouped according to the number of ones in their

positional notation. Groups are separated by a horizontal line. See the example in Table

11

p = fm(1, 2,3,4,

algebraic notation

xrx2x3x4

irïrxrio

\x¡x¿

positional equivalent

0110
0010
0-11

5,9,11, 13, 15)

xrxzx3x4

0001
0010
0100

1

group I Z

4
õ
J

group2 5

9

0011
0101
1001

11
srouo3'13

1011
1101

group4 15 1111

Table 2.1 Initial ordering of minterms.

A term from any group need only be compared with all minterms from the two

adjacent goups. If two tenns combine, they are checked ({) to indicate they are covered

t4-

by the generated term, and the new term is written in the next coluûm. Note that a checked

term is still used to form new tenns. The terms from two adjacent groups with k and k+l

ones, respectively, will generate terrns with k ones in their positional notation. After all

tenns have been compared, the procedure is repeated on the new column, until no new

terms are generated.

The second column of implicants in Table 2.2was generated by combining minterms

from the frst column. Group one in the second column was obtained by combining terrns

from groups one and two from the fust column. After all combinations of terms from

goups one and two from the f,rst column have been tried, a horizontal line is placed below

the last term in column two, since all terms with a single one in their positional notation

have been produced. The same procedure is now performed with the terms from groups

two and three. Table 2.3 shows column three, which was obtained in a similar manner.

Since no pair of terms in column three may be combined, the procedure stops.

P = fm(1, 2,3,4,5,9,11, 13, 15)

group 1

I

xrx2x3x4

1 0 0 0 1{
2 0 0 1 0{
4 0 1 0 0{'3

0 0lTT
s 0 10 1{
9 1 0 0 1{

group2

group 3
11 10117
13 1 101{
1sr fiTT

1,3

1,5

1,9

2,3

4,5

II

){lxzx3x4

00-1
0-01
-001
001-
010-

group 1

3,lL
5,13

9,11

9,13

-011
-101
10-1
1-01

group 2

I 1,15

1 3,15

1-11
11-1

Table 2.2 Listof implicants generated afterpass 1.

group 4

-15-

group 3

All terms that have not been checked are prime implicants. This is easy to see, since

they do not combine with any term of the same size to form a bigger term.

It is important to note that tenns are not uniquely generated. For example, the prime

implicant (1,3,9,11) in column trI of Table 2.3 is obtained in 2 ways, by combining (1,3)

and (9,11) and by combining (1,9) and (3,11). All four terms in column II must be

checked. In general, a tefin in the ift column covers 2i - 1 minterms and is generated i - i

times. This problem cannot be avoided due to the exhaustive nature of the procedure.

¡r = fm(l, 2,3,4,5, 9, 11, 13, 15)

I

xrxzx3x4

1 0 0 0 1{
2 0 0 1 0{
4 0 1 0 0{
3 001-îT
s 0101{
9 1 0 0 1{
rr 1o1TT
13 I 101{
îi fil 1T

tr

xrxzx3x4

1,3 0 0 - 1{
1,5 0 - 0 1{
r,g - 0 0 1{
2,3 001-
4,5 010-m
5,13 - 10 1{
sJr I 0 - 1{
g,t3 1 - 0 1{m
13,15 1 1- 1{

9,17,13,15 1--1

u

1,3,9,1r

1 ,5,9,13

xrxzx3x4

-0-i
--01

Table 2.3 Generation of all implicants of F.

The Quine-McCluskey procedure is guaranteed to generate all prime implicants of the

function. The second step in the Quine-McCluskey minimization procedure is to find a

minimal cover from the generated list of prime implicants. The minimal sum-of-products

expression consists of the fewest prime implicants which cover all the minterms originally

-t6-

specified. To facilitate the choice of the minimal cover a prime implicant table is created

(e.g. Table 2.4). Each row of the table corresponds to a prime implicant and each column

to a minterm. A single x in any column identifies an essential prime implicant. Essential

prime implicants are marked with a star in the table. Since all essential prime implicants

must be part of the minimal cover, they are added to the solution and removed from the

prime implicant table. All minterms which are covered by the essential prime implicants are

also removed from the table, since they need not be covered again (Table 2.5). The table is

now reduced to those minterms which have not yet been covered. In the example shown in

Table 2.5, only minterm 1 needs to be covered. Either term (1,3,9,11) or (1,5,9,11) can

be used to complete the cover.

)Ðt

4,

L,3,9,1

1,5,9, L

9,ll,l3,l

Table 2.4 Prime implicant table for ¡r = fm(1,2,3,4,5,9,11,13,15).

1,3,9,77

1,5,9,1 I

9,17,13,1

Minimal sum F =Ð(2,3),(4,5),(9,11,13,15),(1 ,3,9,11) or

F: i -^ ,,1x2\ +xr*Zt * x1x4 * x2*4

Table 2.5 Prime implicant table after essential prime implicants are removed.

@x
@x

XXXX

K XX X

X X@@

-17

The selection of a minimal cover is not always as straightforward as in the example

above. A logic function may have no essential prime implicants. This makes the selection

of a minimal cover more difficult, since it is not obvious which prime implicants are par:t of

a minimal solution. This problem can be solved by two means: algebraic or heuristic.

With the use of the heuristic approach, a minimal cover is no longer guaranteed. The

algebraic solution, on the other hand, will often require a great deal of computation, but it

guarantees a minimal cover. McCluskey evaluates both approaches in [MCC56].

Example 2.3. Consider the function F(x1 ,x2,x3) =)m(1,2,3,4,5,6). The prime

implicant generation is shown in Table 2.6. The prime implicant table (Table 2.7) has more

than one cross in each column. Such a prime implicant table is said to be cyclic @efinition

1.13). The cycle can be broken by selecting one prime implicant to be part of the solution

(Table 2.8). Prime implicant (2,6) dominates (2,3) and prime implicant (4,5) dominates

(1,5). After removing the dominated prime implicants (Table 2.9) only three prime

implicants remain - two of them are essential. Finally, the solution of the given function

is

F = ir\ + xr* *r\

-18-

I

xlxzx3

1 0 0 1{
2 0 1 0{
4 1 0 0{
3 OlTT
s 101{
6 1 10{

P = fm(1, 2,3, 4, 5, 6)

1,3

1,5

2,3

2,6

4,5

4,6

t234 5 6

XX

XX

XX

XX

XX

XX

t2

x

X X

X

XX

X

tr

xrxzx3

0-1
-01
01-
-10
10-
1-0

Table 2.6 P.nme implicant generation for the function used in Example 2.3.

1,3

L,5

2,3

2,6

4,5

4,6

Table 2.7 Prime implicant table for F(x1,x2,x3) = fm(l,2,3 ,4,5,6).

6

1,3

1,5

2,3

2,6

4,5

4,6

Table 2.8 Prime implicant table after selecting the product term 1,3.

19-

2,6

4,5

4,6

2 4 5 6

X

x@
XX

Table 2.9 P 'rlrrre implicant table afterremoving dominated prime implicants.

The Quine-McCluskey procedure can easily be automated. The generation of prime

implicants can be efficiently implemented. By selecting the comect representation, the

combining of terms requires only a few simple operations. Nevertheless, there are some

drawbacks.

First, the starting point must be a list of minterms. This is particularly inconvenient if

the function to be minimized is given as a sum-of-products expression where some terms

are actually prime implicants. The procedure must expand the terms into minterms, and

then build or perhaps rebuild the prime implicants. Second, if there are don't-care

conditions in the original specification, these must be treated as true minterms during the

prime implicant generation (see Example 2.4). This may cause some don't-care prime

implicants to be generated, i.e. all minterms covered by a prime implicant may be don't-

care minterms. The don't-care minterms will not appear in the prime implicant table, and

this may result in some empty rows.

Example 2.4. Consider the function F(x1,x2,x3,x4) with ON-set = {5,6,7} and DC-set

= { 1,3,10,13,141. The minterms in the DC-set must be considered for prime implicant

generation (Table 2.10). Prime implicant (10,14) only covers don't care minterms, and

this results in an empty row in the prime implicant table (Table2.II (a)). After removing

all dominated prime implicants only two essential prime implicants remain. The minimal

sum-of-products is

-20

F = it xo + -xrxrx,

xtxzx3x4 xtxzx3x4 xtx2x3x4

1 0001{ t3 00-1{ r,3,5,'7 0--1
3 oo1-îT 1,5 o-01{
s 0101{ ffi
6 0110{ 5,7 01-1{
10 1010{ 5,13 -101
7 ollTT 6,7 011-
13 1101{ 6,1.4 -110
14 1110{ 10,14 1-10

Table 2.10 Prime implicant generation forExampleZ. .

m

1,3,5,7

5,13

6,7

6,r4
10,r4

567
XX

X

XX

X

L,3,5,7

6,7

567
@x

@x

(a) (b)

Table 2.11 Prime implicant tables for Example 2.4.

(a) atl prime implicants, (b) without dominated prime implicants.

Quine tQUI55l developed a second method to obtain all prime implicants of a

function. This method is known as iteratíve consensus. Several authors [MOT60]

[T1567] improved this method. A major difference between the iterative consensus and the

Quine-McCluskey procedure is the starting point. The iterative consensus starts with a list

-2t -

of terms which cove the function. The teñns in the sum-of-products expression are not

necessarily minterms or prime implicants.

The method is an iterative application of the consensus of two tenns:

Px. + d*i = k, * Qi, +PQ

where P and Q are product teÍns which do not involve the literal xi. PQ is the consensus

of the two other tenns.

Ðefinitiot¡ 2.î The consensus of two terms is said to be empty if they differ by more

than one literal.

Ilefinition 2.2 The consensus of two tenns is said to be degenerate if it is covered by

one of the terms.

Algorithm:. Iterated consensus to generate all prime implicants of the

function F.

1) remove any tenn which is covered by another term;

2) find the first pair of terms which produces a nondegenerate nonempty

consensus Q;

3) remove all terms in the list which are covered by Q;

4) if Q is not covered by any term in the list, add it to the end of the list;

5) find the next pair of terms whose consensus is nondegenerate and

nonempty, and go back to step 3; if no such pair can be found the procedure

terminates.

Once the set of prime implicants has been found, a minimal cover must be selected.

The selection process is identical to the one used in the Quine-McCluskey procedure.

Generating the list of all prime implicants by iterated consensus offers significant

advantago, since not all implicants of the function are necessarily generated. In fact, if ali

-22-

of the prime implicants are initially given, only a single pass is needed to recognize this. If

the iterated consensus is applied to a list of minterms, it proceeds as the Quine-McCiuskey

method. In this case, it may actually be slower, since the terms are not ordered and pairs

which obviously do not combine must be checked.

More powerful algorithms for the generation of prime implicants have been

developed. Morreale [MOR70] has presented recursive operators for prime implicant

generation. Brayton et al. lBRAS2l describe recursive paradigms for manipulating

Boolean functions. With the use of heuristics they developed an eff,rcient algorithm for the

generation of prime implicants. These algorithms a¡e used in the minimization procedures

of Espresso and McBoole (see Section 2.2.3 and2.2.4).

However, there exist functions which have a large number of prime implicants.

Dunham and Fridshal [DUN59] have shown that the number of prime implicants of a

Boolean function can be prohibitive. Igarashi [IGA79] presented an improved lower

bound on the maximum number of prime implicants. For example, there exists a function

with 10 input variables with 792 minterms in the ON-set and 4,200 prime implicants. The

corresponding prime implicant table has 4,2AO rows and 792 columns. Storage and

manipulation of such a table becomes a serious problem, even on powerful computers.

Functions with 20 input variables can have as many as 133,334,440 prime implicants

[rGA79].

Essential prime implicants are readily detected in the prime implicant table.

Unfortunately, some functions have no essential prime implicants. In fact, functions with a

large number of prime implicants tend to have very few essential prime implicants. The

functions mentioned above [DUN56] UGA79I have no essential prime implicants. This

makes the manipulation of the prime implicant table even more difficult, particularly if a

minimal cover is to be found, as opposed to a near-minimal solution.

-23 -

2.2.2 Ðftected Search Minimizatior¡

In 1977, Rhyne, Noe, McKinney, and Pooch [RHY77] proposed the directed search

algorithm (DSA) for the minimization of single-ouçut binary functions. The cover

selection is integrated into the prime implicant generation process. Ideally, only those

prime implicants should be generated which are part of the final cover. During the prime

implicant generating process, the DSA recognizes essential and pseudo-essential prime

implicants. Not all prime implicants are necessarily generated and, typically, the actual

number is a small fraction of the total number of prime implicants. The DSA is able to

detect cycles but, unfortunately, it does not resolve them. Standard cycle resolution

methods or heuristics must be used.

Ðefïnition 2.3. Two minteûns are said to be adjacenr if they differ in exactly one

literal.

For convenience minterrns are represented by a binary number with x1 being the most

signihcant bit. The binary representations of two adjacent minterms differ in exactly one

bit. Two minterms m¡ and m¡ are adjacent if the following two conditions are satisf,red:

1) ABS(m¡ - m¡) = 2k for some integer k;

2) AND(m¡, m¡) = MIN(m¡, m¡).

where AND is the bitwise Boolean and function, ABS is the absolute value function, and

MIN is the minimum function.

Definition 2.4. The set of directíons of adjacency from the minterm m¡ is defined as the

signed integers {!ZY lk = 0, I,2.. n -1} which, when added to the decimal value of m¡

give all adjacent minterms of m¡.

Definition 2.5. A required adjacency directíon, RAD, is an adjacency direction which

leads a minterm in the ON-set to either a minterm in the ON-set or the DC-set.

24-

Example 2.5. Consider the following 4 variable function with ON-set = t2,5,6,7,9,L31

and DC-se¡ = {0,8,17,74,151. The list of RADs is:

minterm RADs

2 -2, +4

5 +2, +8

6 +1, -4, +8

7 -r, -2, +8

9 -1, +2, +4

13 +2, -4, -8

RADs are used as a starting point for the generation of prime implicants. The strategy

of the DSA is to select a minterm and expand it into larger implicants using its

corresponding RADs. Consider the expansion of minterm 7, shown in Figure 2.4.

Unsuccessful expansions, i.e. those which include a false minterm, are depicted with a

dashed Íurow. All other leaf nodes contain prime implicants. In the above example

minterm 7 is coveredby 2 prime implicants, namely (6,7,14,15) and (5,7,13,15).

(6,
J

J
.t^.| -',

JJ
r\.

.$'

(4, 5, 6,7) (5, 7,13, 15)

Figure 2.4 Apruned RAD tree.

The tree is created using a depth-first search. The tree can be pruned by ignoring

(5,7)

_25 _

every path whose RADs are a subset of the RADs on a path which has led to a prime

implicant. The RAD +8 is ignored at the root level, since +8 is part of a path which has led

to a prime implicant already.

A detailed description of the directed search algorithm follows.

Algorithmz Directed search minimization of a single-output binary

function.

STEP 1 C-ompute the RADs for all minterms in the ON-set.

STEP 2 Select the minterm with the fewest number of RADs from the ON-set and

construct a pruned RAD tree. Remove any dominated prime implicants. The

minterm with the fewest RADs is selected for two reasons:

1) the size of the RAD tree is kept small;

2) there is a higher probability of detecting an essential or pseudo-essential

prime implicant.

The algorittrm terminates if there are no more minterms in the ON-set.

STEP 3 If the current RAD tree contains an essential or pseudo-essential prime implicant

(i.e. one that is the only cover of an expanded minterm), add it to the solution;

remove all minterms covered by the added term from the ON-set, add them to the

DC-set and remove any dominated prime implicant.

Iterate step 3 until either the current RAD tree has no more prime implicants, in

which case go to step 2, or no more essential prime implicants can be found, in

which case go to step 4.

STEP 4 Select the minterm with the fewest RADs which meets the following criteria:

" it is in the ON-set;

'it has not been expanded;

" it is covered by some prime implicant in the current RAD tee.

Construct the pruned RAD tree for the selected minterm and go to step 3. If no

-26 -

such mintenn exists go to step 5.

STEP 5 The current RAD tree contains a cycle. The cycle problem can be solved by

traditional techniques.

Exarnple 2.6. Consider the four-variable function with ON-set = {1,4,5,9,10,11,121,

DC-set = (7,8,I4,I5), and OFF-set = {0,2,3,6,13}. The list of RADs is as follows:

Minterm I 4 5

RADs +4 +1 -1

9101112
-1 +1 -1 +2

+8 +8 +2 +2 -2 -2 -4

-4 -8 +4 +4 -8

Figure 2.5 Pruned RAD tree of minterm 1.

Minterms 1 and 4 have the lowest number of RADs, and so one of them must be

expanded first. Minterm 1 is chosen arbitrarily and its expansion is shown in Figure 2.5.

Two prime implicants cover minterm 1 (prime implicants will be identified by enclosing

them in rectangles). According to the criteria in step 4 minterms 5 and 9 are candidates for

the next expansion. The expansion of minterm 9 is shown in Figure 2.6. The RAD -8 is

not used in the expansion of 9 since it would regenerate the prime implicant (1,9). Don't-

care minterms are underlined. The expansion of minterm 11 (Figure 2.7) yields two prime

implicants (8,9,10,11) and (10,11,14,15). The prime implicant (10,11,14,1Ð is

dominated by @,9,10,11), therefore @,9,10,11) is pseudo-essential (indicated by a light

arrow *****þ"). 51 is added to the solution and all minterms covered by Sr become

-27 -

don't-cares. This in turn makes the prime implicant (1,5) pseudo-essential, since it now

dominates the prime implicant (1,9) (Figure 2.8).

Figure 2.6 RAD trees for minterms 1 and 9.

(1,5) (1,9)

G,9)

-28-

(1,5)

(10,1 1)

Figure 2.7 RAD trees for minterms 1, 9, and 11.

Finally, the expansion of minterm 4 (Figure 2.9) yields the pseudo-essential prime

implicant (4,I2). All minterms are now covered. F = I(8,9,10,11)(1,5)(4,1,2). As

mentioned earlier not all prime implicants are necessarily generated by the DSA. In this

example, the following prime implicants were not generated: (5,7), (8,10,12,14), and

(7,t5).

-29 -

G"9)

(10,1 1)

Figure 2.8 RAD trees with two pseudo-essential prime implicants.

Figure 2.9 RAD Íee for minterm 4.

The directed search algorithm can be applied manually or it can be programmed. The

manual procedure is suitable for the minimization of functions with 5 to 8 input variables

[RHY77]. The strength of DSA lies in its ability to detect essential and pseudo-essential

prime implicants. Don't-cares a¡e well integrated into the minimization process, and there

SE

-30-

is no need to move them into the ON-set as in the Quine-McCluskey or iterated consensus

procedures.

2.2.3 Heuristic Minimization: MINI and ESPRESSO

Hong, Cain, and Ostapko [HON74] presented a heuristic logic minimization technique

(MINI) which addresses some of the shortcomings of traditional minimization algorithms.

The cost of a function is taken to be the number of product terrns, regardless of their size.

Thus it is possible to reduce the size of a product term without increasing the cost of the

function. The function is specified as a list of implicants. Don't-care implicants can also

be specified.

The goal of MINI is to merge implicants towards a minimal cover. Since heuristics

are used during the minimizationprocedure, a minimal cover cannot be guaranteed. A brief

description of the four steps in the minimization procedure follows:

1) Transform. Find a cover for the function which consists of mutually disjoint

implicants. This step will often increase the number of implicants. At the same

time, the size of some implicants will become smaller. A list of small implicants

will have more possibilities of merging two implicants into a single one. MINI

does not go as far as to break the implicants into minterms.

2) Merge2. If two implicants can be covered by a single implicant, then they are

replaced by that implicant. This process continues until no more implicants can

be merged.

3) Reduce. Reduce the size of each implicant to the smallest possible one. The

trimming of implicants facilitates further merging. All redundant implicants are

also removed at this point.

4) Reshnp¿. Find all pairs of implicants that can be transformed into another pak of

2 This step was called expand in the originat work, butmerge is a more appropriate
name for this process.

-3r-

implicants covering the same minterms. The implicants are now ready for another

merging process.

The last three steps are iterated until there is no further decrease in the solution size.

The MINI minimization technique works very well for "shallow" functions, i.e. a

function where the minimal cover consists of a relatively small number of prime implicants.

The execution time of MINI depends mainly on the number of implicants in the final

solution. MINI has been tested with a variety of functions and it produced minimal or near

minimal results in all cases. Problems with multiple ouçuts are handled as well.

ESPRESSO-II [BRA84] basically follows the philosophy of MINI. The operations:

transform, merge, and reduce are iterated until no further reduction of the solution size is

achieved. In addition, all essential prime implicants are extracted after the initial merging

(this step is not done in MINI). The algorithms for merging and reduction are quite

different from the algorithms used by MIM. Finally, the procedu¡e LASTGASP ensures

that no single prime implicant can be added such that two prime implicants become

redundant. All ESPRESSO versions make use of fast recursive Boolean function

manipulation.

ESPRESSO-MV [RUD87] is an extension of ESPRESSO-II which allows the

minimization of multiple-valued functions. The ESPRESSO-EXACT [RUD87] algorithm

allows exact minimizatron of multiple-valued functions.

2.2.4 Mctsoole

McBOOLE [DAG86] is a procedure for exact logic minimization of multiple-output

functions. Its authors claim the procedure is suitable for minimization of functions with up

to 20 input variables and 20 outputs. Surprisingly, all prime implicants are generated. The

implicants which represent the function are recursively partitioned along the input variables,

until the subfunction can be represented by a single term. The terms from both

-32-

subfunctions are merged. The procedure is roughly the same as presented in [BRA84]

with some improvement which allows it to avoid some unnecessary trials.

During the prime implicant generation all prime implicants a¡e linked into a directed

graph. This way information on how a particular prime implicant was obtained is

remembered and essential prime implicants are marked. Because of the information

retained in the covering graph, the covering problem can be solved locally. Cycles in the

function are resolved by branching.

The amount of CPU time used depends mainly on the number of prime implicants

and the number of nested cycles in the function. On average, the execution time of

McBOOLE is similar to ESPRESSO-II. However, for certain functions McBoole is

superior to ESPRESSO-II and vice versa.

2.2.5 Multiple-Output Minimization

In the design of digital system, it is often necessary to minimize several functions which

share the same input variables. The minimizÃtion of the individual functions will not result

in an overall minimal solution. If a term is part of more than one function, its cost appears

only once in the overall cost calculation. All of the minimization procedures reviewed in

the previous sections have been extended to handle multiple-output problems.

The Quine-McCluskey procedure can be extended to solve the multiple output

problem as follows [BAR61]:

1) Each minterm is labeled with symbols which indicate its association with one

or more functions.

Terms can only be combined if their labels intersect, i.e. they belong to at

least one common output. The resulting terrn is labeled with the symbols

which appear with both tenns.

A term is checked off only if all of its output symbols are part of the resulting

2)

3)

11

term.

ENample 2.7. Consider the two functions Fu(x1,x2,x3,x4) = lm(4,8,9,I2,73,I4,I5)

and F6(xt,x2,x3,x4) =)m(4,6,14,15). The prime implicant generation is shown in Table

2.12. Tlne prime implicant table is shown in Table 2.I3. After removing the two essential

prime implicants (14,15) and (8,9,12,13) the prime implicant table is reduced to four rows

and three columns (Table 2.14). Row (6,14) is dominated by row (4,6), i.e. all minterms

covered by (6,14) are also covered by (4,6). Therefore, row (6,14) can be removed. This

in turn makes the prime implicant (4,6) pseudo-essential. Finally, (4,12) is chosen to

cover minterm 4 of Fu since it has fewer literals than (4). The resulting minimal solutions

ate:

Fu = *r xzx3 * xrI, + xrl.r*.'

Fo= xrxrx, +-xrxrï.o

Note that the product term x1x2x3 appears in both solutions. Four product tenns are

needed to realize Fu and Fu. A separate minimization of the two function produces the

following solutions:

Fu=*1x2+xtx3+xzx3x4

Fb=x1*2x3 *-xrxrÍ.^

where five product terms are needed to realize F" and F5.

-34-

I

xrxzx3x4

0100[a,b]
1000ta1./

II

xrx2x3x4

01-0
-100
100-
1-00

8,9,12,L3

ru

xrxzx3*4

1-0-[a]
12,13,14,15 11--[a]

tbl

Ia]

tal ./
tal '/

4

8

6

9

12

0110lbl'v
1001[a]./
1100tal

^/ -110tbl

4,6

4,t2
8,9

8,12

13

t4
1101tal'V
I I 10 [a,b]{

6,14

9,r3
12,13

12,14

1-01
110-
11-0

tal ./
tal 'V

lal ^/
15 1 1 I 1[a,b]{

13,15

14,15

11-1[a]^/
111-[a,b]

4

4,6

4,L2

6,14

14,15

8,9,r2,r3
12,73,14,15

Table 2.12 Prime implicant generation for ExampleZ.7.

Table 2.13 Prime implicant table forExample2.T.

q

4 8 9 t21314 15 4

s
6 14 15

@@ x

x

X

XXX

X

XX

X

x@

35

4

4,6

4,12

Fa

4
R

4 6

X

X

X

x@

Table 2.14 Reduced prime implicant table.

Serra [SER84] proposed an extension of the DSA algorithm to minimize multiple-

output networks. Each minterrn may have different RADs in each of the output functions.

This fact is considered when ranking the minterms in the ON-set. Essential and pseudo-

essential implicants are detected. Some heuristics were added to permit the pruning of

expansion trees. The algorithm was implemented in APL, but no indication of the

performance of the computer progr¿rm, in terms of execution time, was given.

2.2.6 Reed-Muller Expansion

Reed-Muller expansions offer an alternative representation of logic functions to the

naditional sum-of-product expressions. In the Reed-Muller expansion the operators AND,

NOT, and EXOR (exclusive-or) are used. The EXOR operation, denoted by the symbol

@, also known as the Sum-Modulo-Two. Table 2.15 shows the truth table of the EXOR

operation.

36

P@Q
0

0

1

1

0

1

0

I

0

I
I

0

Table 2.15 Truth table for the EXOR operator.

The EXOR operator is useful since it arises naturally in the representation of

arithmetic functions. For example, the least significant bit S of an addition, with inputs x1,

x2, rnd a carry C, can be expressed as

S=xl@x2OC

which is clearly a simpler representation than the sum-of-products expression

S = irî.rc + irxre * xrx2C +xrirõ

Reed-Muller expansions are also used in the design of easily testable realizations of logic

functions [RED72].

The canonic Reed-Muller expansion of an n-variable Boolean function takes the

following form [MUL54] [REE54]

F(x' x, *r,) = b0@blxr@brx, O . . . * O"_rxlx2. . . xn

where b¡e {0,1}, i=0, 1,.., 2n - l.

Wu, Chen, and Hurst IWU82] proposed a geometric representation of Reed-Muller

coefficients to aid the manual minimization process. The proposed representation is similar

to Karnaugh maps. Besslich [BES83] developed a computer method based on the

approach described in [WU82]. Most minimization methods [BES83, ZHA84, SAL79]

are exhaustive in nature. Exhaustive minimization methods are not practical for any

function with a reasonable number of inputs. More recently, heuristic minimization

-37 -

procedures have been proposed [SAS86b, BES87].

2.3 MVI- MII\IMIZATIOI{: PREVIO{JS WORK

The goal of most binary minimization is a minimal sum-of-products expression. The

'þroduct" is the AND of one or more literals. A literal is either an input variable or its

complement. The product terms are "summed" using the OR operator, and less frequently

the EXOR operator. All operations can be implemented quite naturally using integrated

circuits. The minimization goal (a sum-of-products expression with the minimum number

of product terms) is easily understood and reasonable if the function is implemented using a

PLA.

MVL functions can also be expressed as sum-of-products expressions [MUZ86].

Unlike their binary counterparts, there are a wide variety of choices for the "product",

"sum", and unary operators. An operator is said to be unary if it operates on a single

operand. Since Post [POS21] generalized Boolean algebra in 1921, the MIN and MAX

operators have been widely used as "product" and "sum" operators [HUR84]. However,

the use of multi-valued integïated injection logic (I2L) circuits IMCC79] and charge

coupled devices (CCD) [KER84], has led to the introduction of the SUM operator, since in

both technologies the SUM operator can be implemented more efficiently. The SUM is

defined to be the arithmetic sum, truncated at R - 1. R is the radix and R - 1 is the highest

value that any variable can assume.

A wide variety of unary operations have been proposed [HUR84, VRA70, ALL84]:

" complementation

x':{(R_1)_x}
o successor

*i = {(xi + 1) mod R}

-38-

o predecessor

*l = {(*i - 1) mod R}

" literal operator (window)

(

^_u_ J (r- 1) if a<x<b
^-ì

L o otherwise

' generalized literal operator

. l(r-1) ifxes
-.J_ ,,

^ -ì
L O otherwise

" staircase operator

.. (x ifa<xcb
--afb _ tÀ -1

L o otherwise

A set from the unary and binary operators must be selected to give functional

completeness. A set of operators Y is said to be functionally complete if a representation

for any function can be found using only operators from Y. Functional completeness can

be achieved in more than one way. The example in Figure 2.10 shows how a function can

be represented in several ways making use of the different unary operators shown above

and the binary functions MIN and MAX. The choice of a functionally complete set should

reflect the efficiency of the underlying implementation.

-39-

x1

2

0

1

2

J

0123

1 2 2

I 2 2

J) 2

F(1,xr) = r*1T
t.å * *î t4 + z\2r3*)

. 1J201 33 -01 ,33 XZ33
t'11,xr) = xr' xz * xr xì x2 + xì x2 + x1' \

F(\xt = t çi o*1, + z'-i%; + zz*?rt*?, * t.i '.;

P({,*) = t *f *f,i + z xl *f,tt * *f *l

Figure 2.10 Alternate implementations using different unary operators.

Traditional minimization techniques have been extended to MVL [SMI84, SU84,

ALL84I. Miller & Muzio [MIL79] have shown that a minimal sum-of-product expression

does not necessarily consist solely of prime implicants. Some literals are more costly to

implement. If all implicants must be considered, the size of the implicant table becomes

unmanageable, even for functions with a small number of input variables.

2.3.X Ðirect Cover Minimization

The inefficiency of traditional minimization techniques led Pomper and Armstrong

[POM81] to develop a direct cover minimization algorithm. A prime implicant cover is

generated directly, in one pass. The algorithm proceeds as follows:

-40-

Algonithnnz Pomper-Armstrong dírect cover minimization.

1) a non-zero minterm is selected at random;

2) all prime implicants which cover the selected minterm are generated;

3) the largest prime implicant is added to the cover;

4) all covered minterms are changed to don't-cares.

These four steps are iterated until all minterms are covered. V/ith slight modifications the

algorithm can be used to minimize sum-of-products expressions using the SUM operator.

The Pomper-Armstrong minimization procedure can easily be programmed. The

algorithm is efficient in terms of memory requirements as well as execution time.

However, no claim of a minimal or near minimal solution is made. The randomness in the

selection of the minterms to be covered makes an analysis of the algorithm extremely

difficult. The minimization result of a given function is not unique. In fact, the

minimization is likely to produce different results for the same function. This is due to the

fact that a different minterm will be selected which in turn may lead to the choice of a

different prime implicant.

Besslich IBES86] has presented a very general direct cover minimization which can

be readily adapted to any algebra. Each minterm is assigned a weight that measures the

degree to which minterms are clustered around it. The minterm with the minimum weight

is chosen to be covered first. Justification for this choice of minterm is similar to the

directed search algorithm: a minterm with low weight will have fewer possibilities for

expansion and the probability of finding an essential prime implicant is higher. An

efficiency coefficient is calculated for all implicants that contain the minterm to be covered.

The efficiency coefficient is obtained by dividing the number of minterms covered by the

cost of the corresponding implicant. This heuristic takes into consideration that a minimal

sum-of-products expression may contain implicants which are not prime. The most

- 41-

efficient implicant is chosen. The above steps are iterated until all minterms are covered.

Direct cover minimization limits the number of prime implicants which must be

considered at any given point during the minimization process. The number of prime

implicants which cover a given minterm is considerably less than the number of prime

implicants of the function. As with all heuristics, a minimal sum-of-products expression is

no longer guaranteed.

2.3.2 Cosú Table Äpproacla

Cost table minimization makes use of a table where each function is associated with a cost

factor. To realize a function, selections from the table are made which combine to realize

the target function at the lowest possible cost. Since most functions can be realized in more

than one way, an exhaustive enumeration is needed to guarantee a minimal result.

A tabular-cost approach to minimize CCD circuits was first introduced by Kerkhoff

and Robroek [KER82]. Lee and Butler [LEE83] improved this approach by reducing the

size of the cost table. Both techniques are restricted to one variable functions. Abd-El Barr

et al. [ABD86] developed two algorithms for the synthesis of 4-valued one and two

variable functions for CCD implementation. Their results are superior to previous ones.

The main drawback to their approach is its restriction to the two variable case. Since the

number of functions grows ftom 42 to 43, a enumeration based on cost table is

computationally not feasible.

In some technologies the standard sum-of-product expressions result in a very

inefficient implementation. Kerkhoff [KER84] describes two CCD implementations of a

two-input quaternary full-product circuit. Using the Vranesic algebra (with the unary

successor and inverters) the overall cost was 1052. Kerkhoffls tabular-cost approach led

to a total cost of 191. This simple example clearly shows that the algebra cannot be treated

independently of the target technology.

-42

2.4 R,ÐMAR.KS

Binary minimization is well understood. Over the last four decades, numerous algorithms

have been presented, and some of them have been reviewed in this chapter. In general,

exact minimization is not feasible. First, the number of prime implicants can be very large.

If a cyclic function is to be minimized by an exact minimization procedure, all prime

implicants must be considered. Second, the covering problem is known to belong to the

class of NP-complete problems [BRA84]. It is worth noting that for some functions, even

with a large number of input variables, a minimal cover can be extracted with no difficulty.

The intractability of exact minimization becomes evident with McBoole which claims

to minimize functions with up to 20 input variables and 20 oulputs. Yet for the function

MULT4 [DAG86] which has only 8 input variables and 8 outputs, the minimal solution

was not found, because branching was abandoned after 6 nested cycles (see Table 4.6).

Nevertheless, McBoole gave minimal results in reasonable time for a large number of logic

functions used in industrial PLAs.

Heuristic approaches are used in the design of practical PLAs. In the binary domain,

near minimal solutions are acceptable. Minimization of multiple-valued logic functions is

more complex than the minimization of their binary counterparts. Therefore, the need for

heuristics is more evident in the MVL case.

-43-

Chapter 3

A DTRECT COVER. AT.GORNT'FIM P'ON TRUNCAT'ED

SIJM MINIMTZAT{OI{

3.L OVERVIEW

Over the past several years a number of different technologies have been considered for the

implementation of MVL circuits [HUR84]. Each technology is well suited to a pafticular

set of algeb'raic operators. This in turn affects the design methods used.

In the CCD and PL technologies for example, the realization of SUM operators is

more economical than the realization of the MAX oporator. Hence design methods which

employ MIN, MAX and complement operators are not suited toPl- and CCD design.

McCluskey [MCC79] has presented an algebraic system for designing multiple-

valued I2L circuits. White McCluskey's work is applicable solely to IZL, Kerkhoff

[KER84] has shown that it can be extended to the CCD case.

The tabular-cost minimizaÍion results in efficient CCD implementations (see Section

2.3.2). Unfortunately, there are two major disadvantages associated with this approach.

First, tabular-cost minimization is restricted to one and two-variable functions. This

seriously limits its applicability. Second, the implementation of the resulting representation

is unstructured.

Structured implementations of complex multiple-valued circuits will likely replace

random logic. This is evident in the binary domain where PLAs, ROMs, MUX-based

designs, etc., are now widely used. Structured logic has three principal advantages over

random logic:

the use of regular structures aids the design process;

regular structures can usually achieve a higher degree of compaction;

-M

@ regulil structures are more easily tested than random ones.

PLAs seem to be promising for multiple-valued circuits. Several multiple-valued

PLAs have been proposed [SAS86a, KER86, TIR84]. If the PLA is ímplemented using

IZL or CCD technology, a SUM operator is more suitable than the MAX operator for the

'OR' part of the PLA. The SUM operator is both easier to implement and frequently

results in simpler realizations as shown in [BEN85].

The complexity of minimizing sum-of-product expressions using the SUM operator

is similar to the minimization of Reed-Muller expansions - the best solution may not

consist solely of prime implicants. The need for heuristic minimization is evident for

exclusive-or sum-of-products expressions. In Papakonstantiou's opinion [PAP79]

absolute minimization is only feasible for functions with n < 4. Even with extensive

computational resources, absolute minimization is limited to small n since the number of

product terms to be considered is exponential.

Design of PLAs requires a minimization procedure suited to the operators

implemented in the PLA. In a PLA, each product term is realized as a single column in the

'AND' part. Hence, all product terrns require the same area and can be considered to have

the same cost. Realizations which minimize the number of product terms thus have

minimal total cost. The lack of a suitable minimization procedure for PLA's where the

'OR' part employs the SUM operation motivated the development of the algorithm

presented in this chapter.

3.2 PR.EX.TMINAR.IES

The definitions of literal, product term, and implicant used in this chapter are, of necessity,

different from those given in Chapter 1. In addition, the truncated sum operator (TSUM) is

introduced.

LetX = fxyx2,...,*nÌ bea setof ninputvariables. Define the setp = {1,2,

-45

R - 1) which represents the values that the variable xi can assume. An R-valued function/

is a mapping

fP*Px..xP-+P

Each element in the domain of/is aminterm of the function.

Let xt be an input variable and let St be a subset of P. The literal function is defined

as follows:

Aproduct term

e=c*f'*ì'...*j'

is defined to be the minimum of the literals and the constant c € {1,2... R - 1}. If a

product term, Q, contains a literal for which Si = P, Q is said to be independent of xi. An

independent variable may be omitted from the teÍn. c is said to be the value of Q and is

denoted by "Q". A product term contains all minterms for which it evaluates to c.

A product term Q ís an implicant of the function / if the value of the function for

each minterm contained in Q is greater than or equal to <Q>>. An implicant ís termedpríme

if it is itseH not contained in any other implicant of the function.

The truncated sum (TSUM) of two product tenns is denoted by 0 and defined as

follows:

Qr 0 Qz = MIN(<QI>> * (,Q2'), R - 1)

where Ql and QZ ile product tenns of the function and MIN is the arithmetic minimum.

The sum of product tenns is defined to be the truncated sum of the terms. Any function

can be written as a sum-of-products expression.

s. I n-l if x.eS.
*r' = j t I

L o if xia Si

-46-

For simplicity all examples will be given in three-valued or four-valued logic, but the

algorithm presented is applicable to any radix.

0

1

2

J

Figure 3.1 Map of a four-valued function.

Example 3.tr. Consider the function shown in Figure 3.1 which can be expressed as a

TSUM of 3 product terms.

F(x,,xr) - r*l *lo z*l''''4 o t*or4'

Note that the constant 3 can be omitted from the final term.

0

1

2

J

Figure 3.2 }l4ap of the function used in Example 3.2.

For certain functions the minimal solution contains tenns which combine to realize a

larger value. Example 3.2 illustrates such a function.

-47 -

Example 3"2. The function shown in Figure 3.2 can be expressed as the following sum-

of-products expression:

F(x,,xr) = t*,t *f,r o *l't *!ro z*l'' *)o z*l*)f

Here each '3' value is realized by summing a'2' and a '1'.

The minimal solution may contain terms which are not prime implicants as

demonstrated in Example 3.1 where the '1' and the '2' terms are not prime, since each is

part of a larger term. In fact for this example, no minimum TSUM cover exists where all

the product terms are prime implicants. Hence, a minimization procedure cannot be

restricted to considering oniy prime implicants. The set of implicants which must be

considered can become very large.

Lemrna 3.X,. A function of radix R with n input variables may have up to (R - l)crln

implicants, where crl = 2R - 1.

Froof. Any implicant can be written as

sl s2 s3 sn

cxl x2 x3xn

There are (R - 1) choices for c. Each S1 is a subset of P. P has 2R - 1 non-empty subsets.

Hence, the number of implicants follows. All possible product terms are implicants of the

constant function f(X) = (R - 1). Q.E.D.

Clearly it is not feasible to consider all possible implicants of a function. For

example, a 4-valued function with three input variables may have up to 10,125 implicants.

Some heuristic must be applied in order to reduce the set of implicants which will be

considered.

Direct cover minimization was described in Section 2.3.1. A direct cover method for

multiple-valued minimization using the TSUM operator was flrst suggested by Pomper and

Armstrong [POM81]. Their algorithm selects a minterm at random and finds all prime

-48

implicants which include the selected minterm. The "best" prime implicant is then added to

the solution, and the function is modified accordingly. The "best" prime implicant is the

one that covers the most minterms which are not don't-cares. The advantage of this

algorithm is its speed. No claim of a minimal or near minimal solution is made. The

randomness makes the analysis of this algorithm extremely difficult.

Besslich [BES86] has presented a very general direct cover minimization which can

be readily adapted to any algebra. His algorithm can be summarized as follows:

select the most isolated uncovered minterm cr;

calculate the efficiency coefficient for all implicants that contain cr (the efficiency

coefficient is obtained by dividing the number of minterms which the implicant

covers by the cost associated with the implicant);

include the most efficient implicant in the solution;

repeat the process until all minterms are covered.

This algorithm seems to be well suited for minimizations using the maximum

operator. When dealing with the TSUM, making an implicant more efficient, i.e. bigger,

may make the remaining function more complex. If we apply Besslich's algorithm to the

function given in Example 3.1, we obtain

F(x,,xr) - r*i4't o rxl o t*f'" i, o z*or*!r2

which is not minimal. Any minterm which evaluates to R - 1 can be realized by a sum

which may exceed this value, since the sum is always truncated at R - 1.

33 THE AN,GOR.XTÍTM

It is important to select the first minterm intelligently. It has been suggested that the most

"isolated" minterm is the best choice [RHY77]. Isolation is a measure of how many

possible combinations a mintern or a product term has with neighbouring tenns. The

-49-

higher the "isolation", the fewer combinations exist. This concept is formalized in

Definition 3.4 below.

The importance of selecting an isolated minterm is illustrated by the binary example

shown in Figure 3.3 IBES86]. If a direct cover approach begins with one of the minterms

in the central four squares of the map, the prime implicant xrxo will be included in the

solution. Clearly it is redundant. If a direct cover approach begins with each 'isolated'

minterm in turn, the minimal solution of fourprime implicants will be found.

xtx2
x3x4 00 01

00

01

11

10

not required in
minimal solution

Figure 3.3 A binary function with a redundant term.

Ðefinition 3.tr. (identical to Definition 2.3) Two minterms are said to be adjacent if

they differ in one input variable x¡. The minterms are termed adjacent relative to x¿. Each

minterm has n(R - 1) adjacencies.

Ðefinition 3.2. Let cr and B be two adjacent minterms. B is said to be an expandable

adjacency of cr if f(a) < f(Ê). For minterm ü the number of expandable adjacencies is

denoted by EAo.

Defînition 3.3. For minterm cr the number of directions of expandable adjacency of u

@EAo) is

ose =Ë v.
6¿ &'l

L1tsl

-50

where y¡ is 1 if cr has an expandable adjacency with respect to x¡, and is 0 otherwise.

Ðefinition 3.4. The isolation factor of a minterm cr , denoted IFo, is

1

cr DEA (R-1) + EA + 1
cf, cf,

The algorithm must be able to handle don't-care conditions. Don't-care conditions

may be specified in the original function and new don't-care conditions may be introduced

during the minimization process. Don't-care conditions will be given the value of R (the

radix). V/ith this value the above definition of expandable adjacency still holds. A minterm

adjacent to a don't-care can always be expanded in that direction.

The basic idea behind the algorithm is quite simple, consisting of an iteration of the

following two steps:

s select the most isolated minterm a., i.e. the one with the highest isolation factor;

ø consider all implicants that contain a and have the same value as ü, and select the

one which will make the remaining function as simple as possible. A metric for

the simplicity of a function is defined below.

Ðefînition 3.4. Afunction break occurs when two adjacent minterms have different

values.

The method used here for measuring the complexity of a function is to count the

number of function breaks. When an implicant Q is considered for inclusion in the

solution, the total number of breaks in the function which remains to be realized need not

be computed. Rather, only the change in the number of breaks need be considered. This is

called the break count redu.ction (BCR).

Algorithm: Determining the break count reduction for the product term Q

of r(x)

IF

-51 -

Ð BCR +- 0.

ü) Let M be the set of minterms which are contained in Q.

üi) For each cr e M such that f(cr) * R:

iä.a) For k=I, 2,.., rt

iii.a.l) if (there exists a minterm ß ø Nt adjacent to cr relativ€ to x¡ such that

f(ß) = f(G) - <M>) or (f(a) = <<Q>>), then

BCR <- BCR + 1;

äi.a.2) if there exists a minterm ß ø M adjacent to cr relative to x¡ such that

f(ß) = f(cr) and f(cr) * R - L, then

BCR+BCR-1.

Step iii.a.2 requires some explanation. A break introduced for a minterm cr, with

f(a)=R-l,isnotcountedsincethesumatümayexceedR-lsinceitistruncatedtoR

- 1.

Q=t *l't*or''

x2

9= t *l't *9;'

Figure 3.4 Two implicants considered in Example 3.3.

Example 3.3. Consider the implicant Qr of the function shown in Figure ¡.4. Qr has an

BCR of 1, which is obtained as follows:

I
0 I 2 Ĵ

0

1

2

-1

m I ä

J |.¿
')

2

J 0 m
3 2 2

-52-

k=2 totål

0-1

-1 -2

k=2 total

obtained as follows:

minterm

10xrxz

12
x1 x2

30xr x2

32xt x2

minterm

10
xr x2

11xt x2

20xr xz

2txt x2

k=1

1

-1

-1

1

k=1

1

0

-1

1

12
BCR= 1

On the other hand, the implicant Q2, of the same function, has a BCR of 3, which is

1

-1

1

1

-2

2

BCR= 3

This leads to the conclusion that Q2 is likely a better choice than Q1 to cover the

l0
mmterm I xtx2

Algorithm: ÐCM Direct cover minimization for multiple-valued functions

using the truncated sum

Let f(X) be the function to be minimized and let g(X) be a copy of f(X). The

radix of f(X) is denoted by R.

-53-

STEP 1 I.etM be the setof allminterms ß such that 1 < g(ß) <R- 1 andf(ß) ;¿ R - 1.

I -ini*o*valueof g(ß)for ß€ M, if M+Q
MinValue +- I

L R-t, otherwise

All non-zero values of gCX) less than MinValue are replaced by MinValue.

STEP2 If MinValue<R- l then

Find the IFs for each minterm of g(X) whose value is equal to MinValue

for which the value of f(X) was not R - 1.

else

Find the IFs for each minterm whose value is less than R. (All

remaining minterms can be considered to have value R - 1).

STEP 3 Let cr be the minterm with the maximum IF. If more than one such minterm

exists, one is selected arbitrarily.

STEP 4 Find the BCR for all implicants that include the minterm cr. The value of the

implicants considered must be g(cr).

STEP 5 Let Q** be the implicant with the maximum BCR which contains the minterm

ü.

STEP 6 Add Qma(to the solution.

STEP 7 Set g(ü) <- g(c) - ..Qru*n for each minterm cr included in Q*u* for which

g(cr) * R. If g(cr) = 0 and f(g) = R -1 then set g(a) +- R (this ensures that

o is treated a don't-care from this point on).

STEP8 If thereisanymintermcrsuchthat 1<g(cr)<R- I thengotoSTEP 1.

Minterms with the smallest nonzero value are covered first (STEP 1) since they have

fewer possibilities of being realized by "summing" other implicants. The function keeps

changing during the minimization procedure (STEP 7). Once an implicant is added to the

solution, the function must be modified accordingly. If the value of R - I has been reached

-54-

for a minterm cr for which f(ø) = R - 1, g(cr) can now be treated as a don't-care minterm.

The algorithm to find the BCR in STEP 4 requires a slight modification. In step

äi.a.2 of the BCR calculation the value of g(o) is compared to R - 1. g(a) must be

replaced by f(a).

3.4 EX,A.MPLES

In this section, examples are given to illustrate the steps of the DCM algorithm. For

simplicity the product term

will be written as c(S1)(S2XSs) . . . (Sn).

0

1

2

5̂

Figure 3.5 Mapl of the function used in Example 3.4.

Example 3.4. Consider the two-variable 4-valued function depicted in Figure 3.5. The

minimization proceeds as follows:

STEPI Minvalueel.

STEP 2 The isolation factors for the minterms with value 1 are as follows2:

minterm (0,0) (0,2) (3,1) (3,2)

l The minterms for which the function evaluates to R - 1 are shaded because they are
treated differently during the minimization process.
2 In practice the inverse of the isolation factor is calculated to avoid the computationally
expensive divide operation.

sl s2 s3 sn
c*l x2 x3 .. . xn

-55-

IF TlIO Urc Urc Urc

STEP 3 cr <- (0,0).

STEP 4 The six implicants which contain cr have the following break count reductions:

implicant 1(0X0) 1(0,1X0) 1(0,2X0) 1(0,1,2X0) 1(0X0,2) I(0,2)(0,2)

STEP 5

STEP 6

STEP 7

STEP 8

STEP 1

STEP 2

STEP 3

STEP 4

Q,,na*+ t*l'*f,t

Add 1 *?' *l' to the solution.

g(X) now becomes:

Go to STEP 1.

MinValue +- 1.

The isolation factors for the minterms with value 1 are as follows:

minterm (2,2) (3,1) (3,2)

IF UIO UTO II9

a <- (3,2).

The four implicants which contain cr have the following break count reductions:

implicant 1(3)(2) 1(2,3)(2) 1(3X1,2) I(2,3)(1,2)

STEP5 Q**e t*13 *f,z

STEP 6 Add 1 *?t *f,' to the solution.

STEP 7 g(X) now becomes:

-56-

STEP 8

STEP 1

STEP 2

Go to STEP 1.

MinValue e- 3.

(MinValue is assigned the value R - 1 since the two minterms which evaluate to

2had the value 3 in f(X), therefore the sum is allowed to exceed R - 1).

The isolation factors for the minterms with value 3 are as follows.

minterm (1,0) (1,1) (2,0) (2,1)

rF r/9 r/9 t/9 1/9

STEP 3 cr <- (1,0).

STEP 4 The four implicants which contain cr have the following break count reductions:

implicant 3(1X0) 3(1,2X0) 3(1X0,1) 3(1,2X0,1)

BCR 2

STEP 5 Q*"* e

STEP 6 Add *l' *f,t to the solution.

STEP 7 g(X) now becomes:

STEP 8 The termination condition has been reached. The result is

r(xrxr) = t *f *f, o r xf *f o *? *f,t

\2 qlxl xz

-57 -

A class of functions which requires relatively many product terrns is the set of Latin

Square functions [BEN85].

Ðefinition 3.5. f(x1,x2) is a Latin Square Function if f(x1,c) and f(c,x2) assume all R

possible logic values for every c e {0,1, . . .,R - 1}. On the map of a latin square function

each row and each column is a permutation of {0,1, . . .,R - 1}.

Figure 3.6 A latin square function.

The DCM was applied to the four latin square functions given in [DUE86]. For one

of the function (shown in Figure 3.6) a better solution was found. The solution given in

[DUE86] used I product terrns. As shown below, the function only requires 7 product

tenns. The minimization proceeds as follows:

Example 3.5.

STEP 1 Minvalue <- 1.

STEP 2 The isolation factors for the minterms with value 1 are as follows:

minterm (0,1) (1,0) (2,3) (3,2)

rF r/t\ utt 1/11 tlrr

STEP3 a<- (0,1).

x1

2 0 1 2 3

0

1

2

J

I 2 :::::y(:::::::

1 2

2 1

2 1

-58-

STEP 4 The nine implicants which contain G have the following break count reductions:

implicant 1(0X1) 1(0X1,3) 1(0,3X1) i(0Xi,2) 1(0)(1,2,3)

STEP 5

STEP 6

STEP 7

implicant 1(0,3)(1,2) 1(0,1X1) 1(0,1X1,3) 1(0,1,3)(1)

BCR4464
Qrnu* <- 1(0,1)(1,3).

Add 1(0,1)(1,3) to the solution.

g(X) now becomes:

implicant 1(1,2,3X0) 1(1X0,1) 1(1X0,1,3) 1(0,1X0,1)

BCR3234

Q** <- 1(1,2X0,3).

Add 1(1,2)(0,3) to the solution.

gff) now becomes:

STEP 8 Go to STEP 1.

STEP 1 Minvatue <- 1.

STEP 2 The isolation factors for the minterms with value 1 are as follows.

minterm (1,0) (1,3) (2,3) (3,2)

rF lltr tllt utt lltr
STEP3 a <- (1,0).

STEP 4 The nine implicants which contain cr have ttre following break count reductions:

implicant 1(1X0) 1(1X0,3) 1(1,3X0) 1(1,2X0) 1(1,2)(0,3)

STEP 5

STEP 6

STEP 7

-59-

STEP 8

STEP 1

STEP 2

STEP 3

STEP 4

minterm

IF

STEP 3 cr +- (0,2).

(0,2) (3,1)

1/9 t/9

Go to STEP 1.

MinValue +- 1.

The isolation factors for the minterms with value 1 are as foliows.

minterm (2,0) (3,2)

IF TlIO IlII
cr <- (2,0).

The four implicants which contain cr have the following break count reductions:

implicant 1(2X0) 1(2,3X0) 1(2)(0,2) 1(2,3)(0,2)

STEP 5 Qma* <- t(2,3)(0,2).

STEP 6 Add 1(2,3)(0,2) to the solution.

STEP 7 g(X) now becomes:

STEP 8 Go to STEP 1.

STEP 1 MinValve ç-2.

STEP 2 The isolation factors for the minterms with value 2 are as follows.

-60-

STEP 4 The three implicants which contain cr have the following break count reductions:

implicant 2(0)(2) 2(0,2)(2) 2(0)(2,3)

BCR

STEP 5

STEP 6

STEP 7

STEP 8

STEP 1

STEP 2

STEP 5

STEP 6

STEP 7

Q*u* <- 2(0,2)Q)3.

Add 2(0,2)(2) to the solution.

g(X) now becomes:

Go to STEP 1.

MinValue <- 2.

(3,1) is the only minterm with value 2, which did not have the value 3 in f(X),

has an isolation factor of 7/9.

Q*u* + 2(1,3)(1).

Add 2(1,3)(1) to the solution

g(X) now becomes:

STEP 8 Go to STEP 1.

3 The tie be¡veen 2(0,2)(2) and2(0)(2,3) is arbitrady broken.

-6t-

STEP3 a<- (3,1).

STEP 4 The three implicants which contain cr have the following break count reductions:

implicant 2(3X1) 2(1,3X1) 2(3)(1,2)

BCR

The last two iterations of the algorithm are trivial. The two minterms which remain

uncovered, (0,3) and (3,0), can each be covered by a single implicant, 3(0X3) and 3(3)(0)

respectively. These two implicants are added to the solution - the termination condition

has been reached. The result is

r(x.x) - t*Tt*l'0 t*12*\3 o t*13*f,2 o z*12*f,0 z*13*1r03x|d 0 l*l*!

The algorithm does not always produce a minimal result. Example 3.6 shows a

three-variable three-valued function for which the minimal sum-of-product expression was

not obtained.

0t2
0

1

2

I

1 1

1 1

012

0

1

2

1 1

I 1

x3=o x3=1 \=2

Figure 3.7 Three-valued three-variable function used in Example 3.6.

Example 3.6. Consider the function shown in Figure 3.7. The unique minimal sum-of-

products expression is

f(x,,xrxr) = 1*ld{ o t*f *y*:t

The minimization of the above function proceeds as follows:

STEP 1 Minvalue <- 1.

-62-

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

STEP 1

STEP 2

STEP 3

The isolation factors for the minterms with value 1 are as follows:

minterm (i,0,0) (1,1,0) (I,2,0) (2,1,0) (2,2,A)

rF u6 1/t4 r/14 t/r3 t/t3

minterm (1,1,1) (1,2,1> (1,2,1) (2,2,I)

rF t/r3 1/t3 t/13 tlr3

a <- (1,0,0).

The four implicants which contain o have the following break count reductions:

implicant 1(1X0X0) 1(1X0,1)(0) 1(1X0,2X0) 1(1X0,1,2X0)

BCR2225
Qrna* <- 1(1)(0,1,2X0).

Add 1(1X0,1,2X0) to the solution.

This will not lead to a minimal solution. The "best" minterm to cover cr is

1(1X0X0), but it does not have the maximum BCR.

g(X) now becomes:

Go to STEP 1.

MinValue <- 1.

The isolation factors for the minterms with value 1 are as follows:

minterm (2,I,0) (2,2,0) (1,1,1) (1,2,I) (L,Z,L) (2,2,I)

rF 1/9 r/9 1/9 1/9 1/13 1/13

ø e (2,1,0).

x1

x3=o x3=l x3=2

-63-

STEP 4 The four implicants which contain cr have the following break count reductions:

implicant 1(2X1X0) I(2)(1,2)(0) 1(2X1X0,1) 1(2X1,2X0,1)

BCRT4
srEP 5 Q*a* <- 1(2)(1,2X0,1).

STEP 6 Add 1(2X1,2X0,1) to the solution.

STEP 7 g(X) now becomes:

310

STEP 8

STEP 1

STEP 2

Go to STEP 1.

MinValue e- 1.

The isolation factors for the minterms with value I are as follows:

minterm (1,1,1) (1,2,1)

STEP3 a e (1,1,1).

STEP 4 The two implicants which contain cr have the following break count reductions:

implicant 1(1XlX1) 1(1X1,2X1)

STEP 5 Q** <- 1(1)(1,2)(1).

STEP 6 Add 1(1Xl,2)(I) to the solution.

STEP 7 g(X) = 0 for all X.

STEP 8 The termination condition has been reached. The final result is

f(x'x"xr) - r *l *f;t'*lo txlxlxlt o t *i*f 4

which is obviously not minimal.

xl

x3=0 x3=1 x3=2

-64-

Example 3.7. Consider the function

r(x,,xrx) - r*ld{o z*f 4'*?'

This function is similar to the one given in Example 3.6. For this function the algorithm

finds the minimal solution. Again the most isolated minterm (1,0,0) is covered flrst. This

time the implicant 1(1X0X0) has the highest BCR and the minimal sum-of-products

expression is obtained.

3.5 R,ESUT.TS

The algorithm has been implemented in APL. APL provides a suitable environment for

experimentation with an algorithm. Since APL programs are interpreted and hence execute

rather slowly, the algorithm is currently being implemented in a compiled language.

The APL program was tested using several four-valued functions. Some of the

results are summarizedinTable 3.1. The function MINi realizes the minimum of its input

variables. Similarly, MAXi and SUMi reahze the maximum and the arithmetic sum modulo

4 of the input variables. MAX3X is identical to MAX3 except that the 0 function value in

MAX3 is 1 in MAX3X. This doubles the number of implicants which must be considered

for the first minterm covered.

The minimization of the maximum function is extremely time consuming. This is not

surprising, since the most isolated minterm will be contained in 2ß - l)n - 1 implicants. For

all of these implicants the BCR must be calculated. For MAX4 an implicant must be

chosen from a set of 2ll implicants. It took over232seconds of cpu time on an Amdahl

580 to select the frst implicant for MAX4.

It is interesting to compare the computation time required in solving MINi, MAXi,

and SUMi. For MINi the number of terms in the solution is always three and independent

of the value of i. MINi and MAXi do not contain any minterms with a high isolation

factor. In MINi 4i implicants are considered to cover the first minterm, whereas for the

65-

second minterm only 2i tenns are considered, and only one term is considered for the last

minterm. The DCM relies heavily on the isolation factor to limit the number of implicants

to be considered. For SUMi some of the minterms are more "isolated", and hence the time

required to find the first implicant is only a small fraction of the total time.

function n cost

max. time
to choose
l implicant total time

MIN2 2 õJ 0.182 0.237

SUM2 2 6 0.111 0.388

MAX2 2 5 0.354 0.900

MIN3 4J J r.738 1.958

SUM3 3 20 0.401 3.714

MAX3 J 11 8.644 23.024

MAX3X -J 6 t9.994 29.713

MIN4 4 3 t7.3t3 17.99r

SUM4 4 73 1.385 46.tt0
MAX4 4 19 232.461 626.340

MIN5 5 3 178.070 180.433

SUM5 5 276 5.009 745.126

Notes:

a) all functions use four logic levels;

b) n is the number of inputs;

c) the cost is measured by the number of product terms in the solution;

d) c.p.u. time is for the APL execution on an Amdahl580.

Table 3.1 Execution times for aDCM implementation.

-66-

3.6 R,EMAR.KS

A new algorithm to minimize multiple-valued logic functions using the truncated-SUM

(TSUM) operator has been presented. A direct cover method, together with a heuristic

selection of the implicants is used. Implicants are chosen so that the function remaining to

be realized is as simple as possible. The "simplicity" of a function is measured in terms of

the number of breaks between adjacent minterms.

The algorithm appears to produce a near-minimal cover. However, it is impossible to

quantify this since there is no known algorithm which will produce minimal results in

reasonable time.

The main drawback of the algorithm is its exponential complexity. Selecting the

most isolated minterm first is one attempt to deal with this problem. A way of reducing the

set of implicants considered to cover a minterm is also necessary. This is a subject of

ongoing research.

-67 -

Chapter 4

ÐNRECTEÐ SEARCH MXNTMIZATTON OF'

M{T-TNPT,E.VALIJEÐ FUNCTNOFIS

4.1 ovERvnEw

Classical binary minimization algorithms begin with the generation of all prime implicants

(see Section 2.2.L). The second step is the selection of a minimum, or near minimum,

number of prime implicants which cover the function. This approach is readily extended to

the multiple-valued case [SMI84] but it is very inefficient.

In 1977, Rhyne, Noe, McKinney, and Pooch [RHY77] proposed the directed search

algorithm (DSA) for the minimization of single-output binary functions. A review of the

DSA algorithm, together with examples, was given in Section 2.2.2. During the prime

implicant generating process, the DSA recognizes essential and pseudo-essential prime

implicants. Not all prime implicants are necessarily generated and, typically, the actual

number is a small fraction of the total number of prime implicants. The DSA is able to

detect cycles but, unfortunately, it does not resolve them. Standard cycle resolution

methods or heuristics must be used.

Serra [SER84] has extended the directed search algorithm to multiple-ourput binary

minimization. In this chapter, an extension of the DSA, termed DSA-MV, to handle

functions with multiple-valued inputs and a binary output is introduced. Any multiple-

output binary or multiple-valued problem can be mapped to this type of function so the

algorithm presented is applicable to a large class of problems. The method presented here

has been found to produce equivalent results for the examples given in [SER84]. Results

a¡e considered equivalent if they use the same number of product tetms.

The handling of the multiple-output problem as a multiple-valued input variable

-68

eliminates the need for flags an complex heuristics used by Serra [SER84]. Empirical

results have shown that the ranking of DSA-MV is more efficient than the one introduced

by Serra, i.e. the expansion of the chosen minterm results in an essential prime implicant

more frequently.

For multiple-valued functions the solutions found take the form

r-1
E-r

f(xr,...,x,r) = /-m' f*(xr,...,*r,)
m=1

(4.r)

where the f* are decisive functions (assuming only the values 0 and R-1) expressed in sum

of products form.

A number of difficulties associated with multiple-valued minimization have been

identified by Muzio and Miller lMUZ7gl. The problems arise from the costing of the

literals required to form product terms. These problems are avoided in this chapter since

the urget circuit implementation is a PLA. This allows the use of heuristics which consider

the cost of all product tenns to be equal. Heuristics are required since exact minimization,

even for PLAs, is computationally very expensive. The algorithm has been found to

produce minimal or nearly minimal results for a variety of problems.

Any binary problem with n inputs and m oulputs can be represented by a multiple-

valued input function g with a single binary output. g has n + 1 variables, where pi=z

fori= I,2... n, andpn+1 = ffi. The example below shows how the truth table of g is

derived from the truth table of thefr.

-69-

Example 4.X,.

x1

0

0

1

1

xz hfzf3
0101
1110
0011
1111

xl
0

0

1

1

x2

0

1

0

1

x3

0

0

0

0

oô

1

1 (fromfi)

0

1

00
01
10
11

1

1

1

1

0

1 (from/2)

1

1

002
0t2
102
112

1

0 (from/3)

1

1

Sasao [SAS78] has shown that minimizing g is equivalent to minimizing thel.. It

is clear that this is also true for multiple-valued input functions.

If arealization of the form of (4.1) is sought, the minimization of a multiple-valued

output function can be transformed to the minimization of a set of binary-valued output

functions as shown in Appendix A.

The product term

sl s2 sn
xlx2...xn

is denoted by the binary vector:

0 1 Pr-l 0 1 pz-l 0 1 o -1cl cl ...cl -c2c2...c2 cncr,...c;'

where

-10 -

I l1 if je s,))-1
rl

L o tr je s,

This is known as the cube notation [SU84]. A cube is said to have n coordinates where

the bit string ciOcil. . .c¡Pi- 1 ,epres"nts the iú coordinate of the cube. A minterm contains a

single 1 in each coordinate.

Example 4.2. LetP= {3, 4,4}. The product term

0,1 I0,2,3xl xz\

is represented by the cube 110-0100-101 1.

Definition 4.L. (identical to Definition 2.1) Two minterrns are said to be

they differ in only one of their input variables.

Ðefinition 4.2. Let M, be a minterm in the ON-set of the function /.
minterm M2 is said to be an expandable adjacency of M, if and only if M,

adjacent and M2 is in the ON-set or the DC-set of/

adjacent if

A second

and M2 are

4.2 TE\E AI.GOR,NTITM

Directed search minimization starts with the list of minterms which are in the ON-set. A

minterm is selected from the ON-set and expanded into all possible prime implicants

containing that minterm. During the expansion process a tree is created. Clearly, it is

advantageous to keep the size of the tree as small as possible. By selecting a minterm

which offers very few possibilities for expansion the growth of the tree can be limited (at

least the initial branching possibilities are keep as low as possible). Therefore, the first step

in the minimization procedure is to find all expandable adjacencies for each minterm in the

ON-set.

-71

The expandable adjacencies of a minterm can be represented by a bit string similar to

the cube notation of the minterm. l-et M b a minterm and let Mc b the cube representing

M. Let Qt, Qz, . . .a,. be the minterms which are expandable adjacencies of M and let Qr1,

Qcz, .. .Q, be their respective cube representations. The bit string representing the

expandable adjacencies of M, EAVM (Expandable Adjacency Vector), is obtained as

follows

EAVM = (Q.r + Q"z +. . + Q"r) . (M")'

where +, ", and ' represent the bitwise OR, AND, and COMPLEMENT operations

respectively.

Example 4.3. Let

ffi= 010 - 1000 - 0010,

Qt= 100-1000-0010,

Q2= 001-1000-0010,
and q3 = 010 - 1000 - 0100.

Then EAVy = 101 - 0000 - 0100.

Each expandable adjacency vector has an associated weight EAVW which consists of

a pair of integers. The integers in EAWV are obtained as follows:

- The first integer indicates the number of coordinates of EAV which are not all zeros.

- The second number is the total number of ones in the EAV.

Example 4.4. Consider the function shown in Figure 4.1, with P = {4, 4,3}. The

expandable adjacencies with the corresponding weightpairs are shown in Table 4.1.

-72-

x.2

J 0r23
0

1

2

1 I

1 1 I

1

*1 = o *1 = 1

*L=2

ON-set

x1 x2 x3

0100-1000-100
0010-1000-100
0100-0010-100
0100-1000-010
0100-0100-010

0100-0010-010

0010-0100-010
0010-0010-010
0100-0100-001

0010-0100-001

0001-0100-001

EAV

x1 x2 x3

0010-0010-010
0100-0000-000
0000-1000-010
0000-0110- 100

0010-1010-001

0010- 1100- 100

0100-0010-001
0100-0100-000
0011-0000-010

0101-0000-010

01 10 - 0000 - 000

*1 =3

Figure 4.1 Sample function used in Example 4.4.

EAVW

(3,3)

(1,1)

(2,2)

(2,3)

(3,4)

(3,4)

(3,3)

(2,2)

(2,3)

(2,3)

(1,2)

Table 4.1 Expandable adjacencies with the corresponding weight pairs @xample 4.4).

-73

Let A and B be minterms of/. Let EAVWA= (a1,a2) and EAVWB = (br,bz).

(araz) is said to be less than (b1,b) if a1 < b1 or if â1 = bl and a2 < b2. For convenience,

this is denoted by (aya) < (br,bÐ.

The general strategy of the directed search is to start at one minterm and expand it into

all possible prime implicants which include it. The complete expansion of the minterm

0100 - 0010 - 010 from the function given in Figure 4.1 would yield the tree shown in

Figure 4.2. Each prime implicant is enclosed in a rectangle. Branches which yield terms

which are not implicants of the function are marked by (x). Clearly, these need be

expanded no further.

The expansion tree for a particular minterm M is generated from left to right, depth

flrst. Each path in the tree corresponds to a subset of the EAV for M. Generating the tree

in a canonic order allows for pruning, and all possible expansions need not be tried. At

each node in the tree the possible expansions are determined by examining the EAV I bits

to the right of the 1 bit corresponding to the adjacency leading to this node. The valid

possibilities are tried in order from left to right. Under this ordering, no path need be

followed if its expansions are entirely contained in a path which has led to a prime

implicant. The effect is clear in Figure 4.2 where there are eleven branches whereas the

EAV has four 1 bits and hence fifteen non-empty subsets so that the complete expansion

tree has fifteen branches. There may be as few as s branches in the tree, where s is the

number of ones in the EAV. This happens when the minterm which is expanded is

contained in a single prime implicant of the function, i.e. the prime implicant is essential.

After pruning all branches which are not implicants of the function, i.e. those

marked by (x) in Figure 4.2, most leaf nodes are prime implicants. Unfortunately, there

¿ìre exceptions to this rule. The rightmost branch in Figure 4.2 shows a leaf node which is

not a prime implicant.

-74 -

0100-0010-010

0110 - 1010 - 010 x

0100-1010-010

./\
0100- 1010- 110

t O1OO - 0110 - 010 is not a prime implicanr since it is conrained in 0100 - 1110 - 010.

Figure 4.2 Expansion tree for minterm 0100 - 0010 - 010.

The choice of the minterm in Figure 4.2 is not the best one possible, since we don't

know if any of the prime implicants generated are essential. It is usually more profitable to

start at a minterm which has a low EAVVV. For example, the two minterms 0010 - 1000 -

100 and 0001 - 0001 - 001, with EAVW (1,1) and (1,2) respectively, yield the trees shown

in Figure 4.3. Both minterms expand into a unique prime implicant. Therefore both prime

implicants are essential
- they will be part of the final cover. Once an essential prime

implicant is determined, all minterms it covers can be changed to don't-cares since

including them in the rest of the solution is optional.

*/
- 010

\
0110 - 0010 - 110 x

10

L

0110 - 00 0100 - 01 10 - 0107

Iq
0100 - 0110 - 110 x

0110 - 0110 - 110 x

0100- 1110- 110 x

-75-

0010-1000-100

&

0001 - 0100 - 001

&
- 0100 - 001

&

Next

minterm is

covered so

the two minterms with EAVW

only considered for expansion

far.

0110- 1000- 100 0101

0111-0100-001

Figure 4.3 Expansion trees for two minterms.

equal to (2,2) are expanded (Figure 4.4). A

if it is still in the ON-set i.e. it has not been

100 0010-0010-010

t
0110-0010-010

t

0100 - 0010

t
0100 - 1010

#

100

100- 1010- 11 110-0110-010

Figure 4.4 Expansion rees for minterms 0100 - 0010 - 100 and 0010 - 0010 - 010.

Again both prime implicants are essential. The four prime implicants identified in

Figure 4.3 and 4.4 cover the entire function. Unfortunately, not all functions can be

covered by essential prime implicants.

A prime implicant will, in general, cover a set of minterms from the ON-set and a set

of minterms from the DC-set. A prime implicant including only minterms from the DC-set

is always dominated (and always discarded). An advantage of the directed search approach

is that dominated prime implicants are identified during prime implicant generation and no

prime implicant table is required for this purpose.

-76 -

A detailed description of the new directed search algorithm follows:

,{Xgorithm: ÐSA-MV Directed search for multiple-valued input functions

with a single binary output

1) Find the EAVs and EAWVs for all minterms in the ON-set.

2) For each minterm with an EAVW < (1,"") find the prime implicant which covers it.

These prime implicants must be essential and can therefore be added to the solution.

Remove all covered minterms from the ON-set and include them in the DC-set.

3) If ttre ON-set is empty, then stop; else select the minterm with the lowest EAWV from

the ON-set. Form the pruned expansion tree from this minterm.

4) Remove any dominatedprime implicants.

5) If there is only one prime implicant in the expansion tree, then add it to the solution,

adjust the ON-set and DC-set accordingly, and go to step 3.

6) Select a minterm which meets the following criteria:

- it is in the ON-seq

- it has not been expanded;

- it is covered by some prime implicant in a previous expansion tee.

If several minterms meet the above criteria then select the one with the lowest EAWV.

If no such minterm exists go to step 9, else build a new pruned expansion tree from

the selected minterm.

7) Remove all dominated prime implicants from all current expansion trees. If no prime

implicants remain to be considered, go to step 3.

8) If any expansion tree contains a single prime implicant and the minterm which

originated the tree is still in the ON-set, add the prime implicant to the solution, adjust

the ON-set and the DC-set accordingly, and go to step 7; else go to step 6.

9) A cycle exists. Select the prime implicant which covers the most minterms in the

ON-set, add it to the solution and go to step 7.

-77 -

Step 6 requires some explanation. At this point, the algorithm has expanded one (or

more) minterms and found that none a¡e covered by a single essential or pseudo-essential

prime implicant (one that becomes the only prime implicant covering an expanded minterm

after dominated prime implicants are removed). The idea of step 6 is to further expand a

minterm encountered in a previous expansion in the hope of finding that the minterm is

covered by either an essential or a pseudo-essential prime implicant. Care must be taken

not to generate any part of the parent expansion tree from which the minterm is selected,

but this is straighforward due to the canonic order in which the trees are generated.

The way in which a cycle is resolved in step 9 is simplistic. Selecting the prime

implicant which covers the largest number of minterms does not always result in a minimal

cover. If a minimal solution is required, this step must be replaced by a more sophisticated

algorithm. For example, McCluskey describes an algorithm to resolve cycles in [MCC56].

In order to detect a cycle, all minterms which are covered by the cycle must be

expanded. Expansion of the final minterms in this process is unlikely to find any new

prime implicants. Hence, it seems a reasonable heuristic to halt the expansion process

when a "substantial" number of minterms have been expanded and to assume the presence

of a cycle. The key is to determine when to stop the expansion process. In the

implementation of the algorithm, a limit was set to the number of prime implicants in the

culrent expansion trees. Once the limit is surpassed a cycle is assumed to be present.

Substantial time saving has been obtained using this heuristic. A minimal cover is not

guaranteed.

4.3 EXAMPLES

Example 4.5. Consider the 4-valued function with three input variables shown in Figure

4.5. The ON-set with the expandable adjacency vectors and the corresponding EVAW is

shown in Table 4.2. Two minterms (0100 - 0100 - 0001 and 0001 - 0010 - 0100) have a

-78-

EVAW of (2,4). Minterm 0100 - 0100 - 0001 is arbitrarily selected to be expanded first.

The expansion tree results in two prime implicants as shown in Figure 4.6 (expanded

minterms a¡e underlined). PI2 is deleted, since it is dominated by PIl. Therefore, PIl is

pseudo-essential and is added to the solution.

Minterm 0001 - 0010 - 0100 is expanded next. As shown in Figure 4.7 it yields two

prime implicants. Minterm 0001 - 0001 - 0010 is the candidate for the next expansion.

The expanded minterm is contained in the prime implicants PI3 and PI5. PI3 is chosen to

be part of the solution, since it dominates PI5. The pruned expansion tree now contains

only one prime implicant (PI4). PI4 does not contain any minterm which has been

expanded and is still in the ON-set. Therefore, step 6 must be executed again. The

expansion of 0001 - 0010 - 0001 yields 3 new prime implicants (PI6, PI7, and PI8). PI7

is chosen to be part of the solution, since it dominates all other prime implicants in the

expansion tree. The expansion tree is now empty.

Finally, minterm 1000 - 1000 - 1000 is expanded (Figure 4.9). PIg dominates PI10

and is therefore added to the solution. All minterms in the ON-set are covered. The

solution includes the prime implicants PIl, PI3, PI7, and PI9. Formally, the solution is

given by ttre expression:

F(x'xrxr) - .l' *f," *1 * *l*f, + * w2q3 w2 q2oxl xz\ + xl x2 x3

-79 -

xr =2

Figure 4.5 Map of the function

xr =1

xr =3

used in Example 4.5.

ðz
x3 0r23

0

1

2

Ĵ

I

1 1

1

1

-80-

ON-set

x1 x2 x3

1000-10{Ð-1000
1000-0010- 1000

0100 - 1000- 1000

0100-1000-0001

0100-0100-0001

0100-0010- 1000

0100-0010-0001

0010-1000-1000
0010-1000-0001

0010-0010- 1000

0010-0010-0001

0001-0010-1000
0001-0010-0100
0001-0010-0010
0001-0010-0001

0001-0001-0100

EAV

x1 x2 x3

0110-0010-0010
0111-1000-0010
1010-0010-0001

0011-0111- 1000

0010-1011-0000
1011-1000-0001

0011-1101-1000
1100-0010-0001

0101-0110-1000
1101 - 1000- 0011

0101 - 1100- 1010

1110-0100-0111

0000-0001-1011
1010-0001 -1101

0110- 1000- 1110

0100-0010-0010

EAVW

(3,4)

(3,5)

(3,4)

(3,6)

(2,4)

(3,5)

(3,6)

(3,4)

(3,5)

(3,6)

(3,6)

(3,7)

(2,4)

(3,6)

(3,6)

(3,3)

Table 4.2Bxpandable adjacencies with the corresponding weight pairs @xample 4.5).

- 0001

0110*1100-0001 0100- 1110-0001

PIz

Figure 4.6 The expansion tree for minterm 0100 - 0100 - 0001 @xample 4.5).

0100-0100-0001

./\
0110 - 0100 - 0001 0100 - 1100t\vk

PI1

-81 -

0001-0010-0100
,/\

ñ\
0001 - 0011- 0100 0001 -0010-1100J

Pr3@ 0001-00i0-1110

\
Pr4

Figure 4.7 A pruned expansion tree.

0001 - 0011- 0100 0001 - 001 100

0001-0010-0001

0001-0010-0100

/\
0- 1

\

0101 -0010-0001 0011 -0010-0001

\
\

0011-0010-1001

0001-0011-0110

0101-0001-0010

0001-0010-1110

0001-0010-1111

0111-1010-0001 0111-0010-1001 0011-0010-1011

_/\

0111-0010-0001

Figure 4.8 A pruned expansion tree.

- 82-

1000- 1000- 1000

1100-lffÐ-1000 1000- 1010- 1000

PIlO

b ,<4

Figure 4.9 The expansion tree for minterm 1000 - 1m0 - 1000 @xample 4.5).

00 01 x3 x4 00 01 b x4 00 01

00

01

11

10

00

01

11

10

00

01

11

10

F1 =f,m(l1,12,13,14,15) F2 =lm(3,7,II,12,13,L5) F3 =)m(3,7,12,13,14,15)

Figure 4.10 A binary mulúple output problem.

Example 4.6. Consider the binary multiple output problem shown in Figure 4.10

[SER84]. First, the three functions are mapped into one multiple-valued function (Table

4.3). The ON-set with the expandable adjacency vectors and the corresponding EVAWs is

also shown in Table 4.3. Minterms are expanded in the order shown in Table 4.4. F,ach of

the four minterms results in an essential prime implicant. The minimal sum of products for

the three functions a¡e:

F, (x'x'xr,*o) = xi x, *¿ + xr xz L * xrx2

1000-1010-1010

1110- 1010- 1000

xt xz xrxz xrxz

-83-

F, (xyxrx3xo) = *1 *3 x4 + xr x, x¿ + xr xz t

F, (x'xrx
'x4)

= Ïrxrxo+ *r\4+ xt L

The sum of product expression for F1 contains a redundant term (x, xri,) . The cost of a

PLA implementation will not decrease if the redundant term is removed since this term is

required in Ft and F2. The solution in [SER84] is similar to the one given above.

However, Serra uses a different ranking for the minterm expansion. The first two

minterms are expanded as shown in this example. Minterm 15, which is included in all

three functions, is expanded next. This expansion results in four prime implicants.

Further expansions are needed to find the essential ones. The weight ranking presented in

this chapter is more efficient, since only essential prime implicants are generated for this

example.

-84-

F1

minterm

11

L2

t3

t4
15

EAVON-set

x1 x2 x3 x4

01 -10-01 -01 -
01 -01 -10-10-
01 -01 -10-01 -

01 -01 -01 -10-
01-01-01-01-

EAVW

x1 xZ x3 x4 x5

00 - 01 - 00 - 00 - 010 (2,2)

00 - 00 - 01 - 01 - 01t (3,4)

00 - 00 - 01 - 10 - 011 (3,4)

00 - 00 - 10 - 01 - 001 (3,3)

00 - 10 - 10 - 10 - 011 (4,5)

x5

100

100

100

100

100

F2

J

7

11

T2

13

15

10-10-01 -01 -010

10-01 -01 -01 -010

01 -10-01 -01 -010

01 -01 -10-10-010
01 -01 -10-01 -010

01-01-01-01-010

01 - 01 - 00 - 00 - 001 (3,3)

01 - 10 - 00 - 00 - 001 (3,3)

10 - 01 - 00 - 00 - 100 (3,3)

00 - 00 - 00 - 01 - 101 (2,3)

00 - 00 - 01 - 10 - 101 (3,4)

10 - 10 - 10 - 00 - 101 (4,5)

F3

J

7

t2
T3

t4
15

10-10-01 -01 -001

10-01-01-01-001
01 -01 -10-10-001
01 -01 -10-01 -001

01-01-01-10-001
01-01-01-01-001

00 - 01 - 00 - 00 - 010 (2,2)

01 - 10 - 00 - 00 - 010 (3,3)

00 - 00 - 01 - 01 - 110 (3,4)

00 - 00 - 01 - 10 - 110 (3,4)

00 - 00 - 10 - 01 - 100 (3,3)

10 - 00 - 10 - 10 - 110 (4,5)

pdme impliczurts

01-11-01-01-110
10-11-01-01-011
01 - 01 - 10 - 11 - 111

01-01-11-11-101

Table 4.3 Expandable adjacencies with the corresponding weight pairs @xample 4.6).

1)

2)

3)

4>

minterms

01-10-01-01-100
10-10-01 -01 -001

01 -01 -10-10-010
01-01-01-10-100

Table 4.4 Expansion of minterm with the corresponding prime implicants (Example 4.6).

The algorithm was applied to each example presented by Serra [SER84]. These are

all binary examples. Most are multiple-ouÞut problems. In each case, the identical

solution, or one with the same number of product terms, was found by the DSA-MV

-85-

algorithm. The algorithm presented here is simpler than Serra's algorithm which employs

complex heuristics to accorrìmodate multiple ouçuts.

4.4 RESIJX,TS

A prototype program has been implemented in Pascal and executed on an Amdahl580. As

a benchmark, the algorithm has been applied to certain two-valued multiple-output

functions. Execution times are quoted to show the increase in complexity with respect to

the increase in the number of inputs/outputs and the number of prime implicants of the

function.

Let ADDn be the function which adds 2 n-bit numbers and produces a result of n + 1

bits. This function is described in [BRA84] as being particularly time consuming to

minimize. Multiplication has also proven to be an interesting function. SQR6 is a 6-input

function where the 12 outputs are the square of the inputs. SYM9 is a 9-input, l-output,

function which is equal to I if and only if the number of l's in the input is 3,4,5, or 6.

SYM9 has 1680 prime implicants, none of which are essential. Table 4.5 summarizes the

results obtained in the minimization of the ADDn, MULT4, SQR6, and SYMS function.

By limiting the maximum number of prime implicants generated before assuming the

presence of a cycle, it is possible to cut the minimization time of some functions, in half

without increasing the size of the final result. Unfortunately, it is generally very difficult to

determine the optimal value for the limiting number of prime implicanrs.

The performance of the DSA-MV algorithm could not be compared directly with other

algorithms on the s¿rme computer. At the time this research was conducted, the source code

for the Espresso algorithms [RUD87] was not available. While source code for the

McBoole algorithm tDAGS6l was available, time did not permit the required conversions to

run it on the Amdahl. An empirical comparison of the DSA-MV algorithm with

McBoole[DAG 86] and Espres so.MV [RLID 87] is underway.

-86-

According to the timing given in [DAG86] Espresso tIC required 83.0 sec to

minimize the function ADD4, whereas McBoole required 27.0. One must keep in mind

that the time measurements were taken on a VAX 750, which is about a factor of twenty

slower than an Amdahl 580. The speed of our algorithm is therefore of the same order as

McBoole and Espresso IIC. All three algorithms obtained the same number of terms in the

final solution.

Execution time for the minimization of the MULT4 function was 305.7 and 859.1 for

Expresso IIC and McBoole respectively. The solution found by McBoole contained I24

terms, and the solution found by Espresso IIC contained 133 terms. According to one

referee of [DUE88] the minimum number of terms is 121. DSA-MV produced solutions

with 123 to 133 tenns. It is somewhat disturbing that the best solution was nor found by

giving our algorithm the highest bound on the number of prime implicants that could be

generated before a cycle was assumed.

A comparison of the results obtained from Espresso, McBoole and DSA-MV is

shown in Table 4.6. It shows that the results obtained by the DSA-MV algorithm are

indeed very good. Unfortunately, it is only possible to compare the sizes of the solutions,

because details of the solutions produced McBoole an Espresso were not published.

-87

function n m
cpu
time
sec.

tenns
limit on
number of
prime imp.

ADD3 6 4 0.31 31 nil

ADD3 6 4 0.27 31 t2
ADD4 I 5 6.t2 75 nil

ADD4 I 5 3.45 75 100

ADD4 8 5 2.63 75 50

ADD4 8 5 2.20 78 25

ADD5 10 6 r48.32 t7l nil

ADD5 10 6 116.09 17l 200

ADD5 10 6 74.95 174 100

MULT4 8 8 70.71 In nil

MULT4 I 8 63.11 t28 500

MULT4 I 8 51.30 127 400

MULT4 8 8 36.84 t23 300

MULT4 8 8 27.07 127 200

MULT4 8 I 15.01 133 100

sQR6 6 T2 11.26 50 nil

sQR6 6 t2 3.82 48 100

SYM9 9 I 180.93 84 1000

SYM9 9 1 62.02 89 s00

SYM9 9 I 20.93 100 100

Notes:

a) n is the number of inputs - m is the number of ouçuts;

b) c.p.u. time is for optimized PVS Pascal on an Amdahl 580 (NOCHECK option

specified);

c) the number of terms is the number of prime implicants in the solution;

d) the limit on the number of prime implicants as applied to the curently acrive

expansion trees.

Table 4.5 Results produced by an implementation of DSA-MV.

-88-

Function Espresso.MV
-fast -exact

McBoole DSA
¿

minimum I

sQR6 51 50 49 48 47

MULT4 131 L28 r24 123 72r

ADD5 167 t67 177 167

SYM9 88 84 84 84

SYMlO 231 270 2to ,|

T Minima for these functions were supplied by one of the referees of [DUE88].
*

Branching abandoned after 6 nested cycles.
**

Branching abandoned after I nested cycles.

Table 4.6 Comparisons of Espresso, McBoole, and DSA-MV.

4.5 R.EMAR,KS

It has been shown that the directed search algorithm can be extended to accommodate

multiple-valued input variables. Essential and pseudo-essential prime implicants are

detected during the generation of prime implicants. The benefît of this early detection is

that typically not all prime implicants are generated. A heuristic was presented which

speeds up the algorithm by limiting the number of prime implicants generated before one is

chosen to appeff in the solution.

The algorittrm is suitable for the minimization of medium size functions. Functions

with up to 10 binary input variables and 6 ouçuts can be handled in reasonable time. The

current implementation is not appropriate for minimization problems with a much larger

number of variables. The DSA-MV algorithm has some clear advantages:

It is simple. The principles which underlie each step are easy to understand.

The ranking of minterms together with the use of heuristics eliminate the need

for generating all prime implicants.

It can minimize multiple-valued input functions.

1)

2)

3)

-89-

4) By applying suitable translations, it can be used to minimize multiple-valued

functions as well as multiple-oulput functions.

The examples shown in the previous section suggest that simple heuristics can

produce reasonable results. More investigation is required to determine if the presented

heuristics are optimum. There may be a better way to limit the growth of the expansion

tree. A number of alternatives are under investigation.

-90-

Chapten 5

RCM: A REC{JRSIVE CONSENSUS MINIMIZATION AI,GORI'IHM

5.I OVER.VIEW

A major drawback of the directed search minimization algorithm is that it must start with a

list of minterms
- a disadvantage that it shares with the Quine-McCluskey method. If the

function is specified as a list of product terms, where each product terrn covers more than a

single minterm, all minterms must be generated. This is particularly regrettable if the

function is given as a minimal or near-minimal sum-of-products expression.

The iterated consensus algorithm (described in Section 2.2.I) improved on the

Quine-McCluskey method by starting with a set of product terrns. The new recursive

consensus minimization algorithm presented in this chapter combines the advantages of the

directed search and the iterated consensus.

The traditional iterated consensus algorithm [QUI55] is only concerned with the

generation of prime implicants
- the selection of a minimal cover is independent of the

prime implicant generation. However, during this process valuable information about the

relationship between cubes can be obtained. In the algorithm presented here, intersecting

terrns are detected during the generation of consensus terms. A list containing all

intersecting terms is associated with each product term.

With this additional information, essential and pseudo-essential prime implicants can

be recognized early. This in turn simplifies the choice of a minimal cover. Unfortunately,

the cyclic problem must still be solved by algebraic or heuristic means. Nevertheless, the

minimization of a cyclic function is simplified with the additional information kept along

with each prime implicant.

-9r-

5.2 PR,EX,XMTN.AR,TES

Definition 5.1. The distance between two product terrns is the number of variables

which appear complemented in one terrn and uncomplemented in the other.

Example S.tr. Consider the function F(x1,x2,x3,x4) = fm(O,1,3,4,5,6,11,14,15). A

partial list of pairs of product terms and their distances are shown in Table 5.1.

product terms

xr\

xr \x¿

xrxz*4

xz\x¿

distance

0

1

xr xz\ xt\\x¿ 3

Table 5.1 Product terms and their distance.

Lemma 5.1,. Let P and Q be two product tenns of the function F. There exists a minterm

which is in P, and also in Q, if and only if the distance between P and Q is zero.

Proof. Let P and Q be at distance zeÍo. PQ contains at least one minterm since no

variable that appears complemented in P appears uncomplemented in Q and no variable that

appears uncomplemented in P appears complemented in Q.

Let cr be a minterm such that P contains o and Q contains cr. Let M be the product term

that covers a only. The literals involved in P must be a subset of the literals contained in

M. The same is true for the literals of Q. Therefore, there is no variable that appears

complemented in one term and uncomplemented in the other - the distance between P and

Q is zero. Q.E.D.

Example 5.2. Consider the function given in Example 5.1. The distance between the

product terms ir-x, and irirxo is zero and their intersecrion isirÏrirxo. The

-92 -

corresponding Karnaugh map is shown in Figure 5.1.

x3x

xrx2

.4ì

00

01

11

10

00 01 11 10

G ì

G J
tt 1 I

I 1

Figure 5.1 Two product terrns at distance zero.

Ðefinition 5.2. The consensus between two product terms Pxi and G, wittr distance

equal to one is defined to be PQ.

Example 5.3. Consider the function given in Example 5.1. The consensus term of

x1x3x4 and xrxrÏo is xrx2x3. The two product terms and their consensus tenn are

shown in Figure 5.2.

x3x

xr x2

'4\

00

01

11

10

00 01 11 10

I 1

I I

1

ffi
il.l1Dc il consensus

term

Figure 5.2Two product terrns and their consensus.

ÐefÏnition 5.3. The sharp operation of two product tenns P and Q of F, denoted

-93-

P # Q, is defined to be PQ.

Example 5.4"

î.rLrxo = l, -\ (*, L *o) = ï, *r\ * i, \ io

[,emma 5.2. Let P and Q be product tenns of the function F such that the distance

between them is greater than zero. P # Q = p.

Froof. The intersection of P and Q is empty (Lemma 5.1). Therefore, Q contains all

minterms which are contained in P. Q.E.D.

5.3 THE BXNAR.Y AI,GORTTHM

The recursive consensus minimization (RCM) starts with t'wo lists of cubes (product terms)

of the function to be minimized. The first list covers all minterms in the ON-set plus all

minterms in the DC-set and a second list covers all minterms in the DC-set. The two lists

are called Onlist and Dclist, respectively. RCM differs from the traditional iterated

consensus tQUI55l in two ways:

1) the order in which cubes are selected for expansion;

2) the information retained on the intersection be¡ween cubes.

The new ordering helps to detect prime implicants early in the generation process. The

information on the interaction between cubes allows for an immediate detection of essential

and pseudo-essential prime implicants.

The algorithm will, for simplicity and brevity, be described in terms of PASCAL-like

pseudo-code. Each cube is stored in the following data structure:

it\ #

Cube = record

Znro : set of [1..N];

One : set of [1..N1;

{ complemented variables }

{ uncomplemented variables }

Kind : (Deleted,PlCandidate,Implicant);

PIKind : (Essential, NonEssential);

-94-

The subscript of a complemented variable appears only in setzero. The subscript of an

uncomplemented variable appears only in set One. The subscript of a missing variable will

appeff in both sets. Initially, the Kind of each cube will be Implicant. A cube becomes a

PlCandidate (prime implicant candidate) if it is thought to be a prime implicant. A

particular ordering and a special structure of the cubes, in the Onlist, results in the marking

of a cube as a PlCandidate when it is not a prime implicant. This phenomenon will be

explained later. The PIKind field in the Cube record is only meaningful if the Kind of the

cube is PlCandidate. A cube marked Essential is always a prime implicant (see Lemma 5.3

below). The information about intersecting cubes is kept in the Intersections list. Each

Link in the Intersections list is stored in the following data structure:

Lirk = record

InterCube: CubePtr;

Next : LinkPtr;

end;

DCFlag:Boolean;

Intersections : LinkPq

Next: CubePtr;

end;

{ true if it is a don't-ca¡e cube }

{ pointer to a list of intersecting cubesJ

{ pointer to next cube in the list }

{ Intersecting cube }

{ next Link in the list }

Exampte 5.5. Let F be a function with 6 input variables. The cube 'xrxoi, will be

stored in the cube C as follows:

C.Zero <- fI,2,3,5,6]
C.One <- 1I,3,4,61

C.Kind'<- Implicant

C.PIKind <- NonEssential

C.DCFlag <- false

C.Intersections <- Nil

Each cube is linked with its intersecting cubes. Cubes are linked on two different

occasions. Iftwo cubes are found to be at distance zero, and one cube is not a subset of

-95-

the other, then they are linked. If two cubes have a consensus, the consensus cube is

linked to each of its parents (unless the parent is deleted). This information is useful when

checking for essential prime implicants. Only intersecting cubes need to be sharped with

the prime implicant in question. Furthermore, if dominated prime implicants of Q are to be

removed, they must intersect with Q. Since all these cubes are on the intersection list,

there is no need to check all prime implicanß in the Onl-isl

Cubes which cover only don't-care minterms must be placed at the end of the Onl-ist.

They are not expanded, but they must be used in the expansion of all other cubes in the

Onlist. Once all implicants in Onlist have been expanded, Onlist contains only prime

implicants (except the cubes which cover only don't-care minterms, since they are not

expanded). All essential and pseudo-essential prime implicants are marked Essential. Not

all prime implicants of the function will be in the Onlist, since dominated cubes will have

been deleted during the process.

The procedure GeneratePls and Expand identify candidate prime implicants.

GeneratePls invokes Expand repeatedly.

Fnocedune GenenatePtrs(Onlist) ;

for each Cube in the Onlist
if Cube is not marked Deleted and Cube is not in

Expand(Onlist,Cube) { Cube can also

end for
end GeneratePls

the Dclist then

be seen as the fust element in a list

Frocedure Expand (Onlist,Cubelist)

FirstCube <- first element in the Cubelist

CubeElement é- second element in the Cubelist

while (CubeElement * nil) and (FirstCube is not deleted) do

Distance <- distance between CubeElement and FirstCube

ifDistance=0then

IntersectionCutre <- intersection of FirstCube and CubeElement

if IntersectionCube = CubeElement then

-96

delete CubeElement

else if IntersectionCube = FirstCube then

delete FirstCube

if CubeElement and FirstCube are not deleted then

LinkCubes(CubeElement, FirstCube)

else if Distance = 1 then

ConsensusCube <- consensus of FirstCube and CubeElement

if ConsensusCube is not a subset of any cube in the Onlist then

remove all subsets of ConsensusCube from the Onlist
mark ConsensusCube as Implicant

insert ConsensusCube to the front of Onlist
if FirstCube is not deleted then

LinkCubes (Consen su sCube, FirstCube)

if CubeElement is not deleted then

LinkCubes (Consensu sCube, CubeElement)

Expand(OnList)

end while

if FirstCube has not been deleted then

mark FirstCube as PlCandidate

CheckEs sential (FirstCube)

end Expand

The procedure Expand finds the consensus cubes between the first cube and the

remaining (undeleted) cubes in Cubelist. Cubelist is a sub-list of Onlist. Intersecting

cubes (cubes at distance zero) must be checked to determine if one cube completely covers

the other (i.e. the intersection is equal to one of the cubes); if this is the case, the covered

cube must be deleted, otherwise the cubes must be linked to each other. If a consensus

cube is found which is not already in the list, then this new cube is added to rhe front of the

list and the Expand procedure is called recursively. The recursive expansion of the newly

created cube enables the early recognition of prime implicants. Furthermore, it can be

determined if a prime implicant is essenrial.

The procedure LinkCubes allocates a Link for each cube. The Link contains a pointer

-97 -

to the other cube and is inserted in the corresponding intersection list.

If FirstCube has not been deleted during the expansion process it is most likely a

prime implicant. The consensus of FirstCube and any cube at distance one from it has also

been expanded. This will ensure, in most cases, that the prime implicant which includes

FirstCube is found during the expansion. The only case in which FirstCube is not a prime

implicant occurs when all cubes that are part of the prime implicant which includes

FirstCube intersect with it. This is illustrated in Example 5.6. This causes no concern

since the cube will be deleted later on when the prime implicant is generated.

Example 5.6. Consider the four-variable function shown in Figure 5.3. The Onlist is

given as follows (using the positional notation introduced in Chapter 2):

-1-1 FirstCube

010-
1 10_

-11-
FirstCube is at distance zeÍo from all other cubes, and therefore no consensus term is

generated. Clearly FirstCube is not a prime implicant since it is part of the cube - 1 - -.

tx¿ 00 01

00

01

FirstCube

Figure 5.3 Function used in Example 5.6.

The pseudo-code for the procedure to determine whether or not a cube is essential is

given below.

xrxz

-98-

Frocedure Checl<Essential (PI: Cube)

delete all cubes in the Onlist which are dominated by PI

NotDCList <- Sharp(PI, DCList)

Uniquelist <- S h arp (NotD CLi st, Pl.Intersec tion s)

if Uniquelistis notempty then

PI is essential

insert PI in the DCList

if a cube linked to PI is dominated by a nonessential prime implicant PI* then

CheckEssential(Pl*)

end CheckEssential

The CheckEssential procedure is fairly straightforward. Cubes dominated by PI are

deleted. All cubes that intersect with PI are known, since they are in the intersection list.

During the expansion process, the distance between PI and every cube in the Onlist was

determined, and cubes at distance zero were linked. Uniquelist will cover all minterms

which are only covered by PI. Clearly, PI is essential if Uniquelist is not empty (some

minterms are only covered by PI). As pointed out earlier, a cube can be marked as a

PlCandidate even when it is not aprime implicant. The following lemma shows that such a

cube is never marked Essential.

n emma 5.3. A cube (PI) marked as Essential, in the CheckEssential procedure, is a

prime implicant of ttre given function.

Froof. Assume that there exists a prime implicant Q which covers PI, and PI * Q, i.e.

assume PI is not a prime implicant. Clearly, Q is not in the Onlist - otherwise PI would

have been deleted. Uniquelist contains a cube P which is covered by the cube Q. P has

no cubes at distance 0 in the Onlist (all cubes at distance 0 have been sharped with PI).

There must be a cube C in the Onlist at distance 1 from P. This implies that the distance

between PI and C is 1. This is a contradiction, since CheckEssential is only called after all

consensus cubes that can be formed wittr PI have been expanded.

-99-

Q.E.D.

l-emma 5.4. At the termination of the procedure GeneratePls, Onlist contains only

prime implicants of the function (with the exception of the don't-care cubes, which are not

expanded).

Froof. Assume that Onlist contains a cube Q which is not prime and which contains ar

least one true minterm of the function. Q is not essential, by Lemma 5.3. Therefore, Q is

completely covered by other cubes in the Onlist. The consensus of these cubes yields the

prime implicant which includes Q. This is a contradiction, since the generation of such a

cube would result in the deletion of Q. Q.E.D.

If, after applying GeneratePls, the Onlist contains any cube which is marked as

NonEssential and is not in the Dclist, the function is cyclic. In order to break the cycle, a

cube must be chosen to be part of the solution. For convenience, such a cube will be

marked Essential, even though it is not essential. This, in turn, may make other

NonEssential cubes pseudo-essential. The pseudo-code for the BreakCycle procedure

follows.

Procedure BreakCycle (Onl-ist)

let Cyclelist be the list of all cubes C, where C e Onlist,

C.PIkind = NonEssential,

and C.DCFlag is false

while Cyclelist is not empty do

let PI e Cyclelist be the cube which covers the largest number of uncovered

minterms of F

mark PI Essential

insert PI in the Dclist
if a cube linked to PI is dominated by a nonessential prime implicant PI* then

CheckEssential@I*)

end BreakCycle

-100-

Krx2

5.4 BNN,A.R.Y ÐXAMPT,ÐS

The examples given in this section will clarify the steps in the RCM algorithm.

x3 x4

00

Figure 5.3 Function used in Example 5.6.

Ðxample 5.6. Consider the function shown in Figure 5.3. The function is specified

with the following five cubes:

x1x2x3x4

0-00
-1-1
0110
1 -- I

100-

The minimizatton would proceed as shown below. For identification purposes each cube is

assigned a unique identifier (Id #). The intersections will be shown as a list of Id numbers.

The initial Onlist contains the following information.

Id # cube Kind

1 0-00 Implicant

2 -1-1 Implicant

3 01 10 Implicant

4 1--1 Implicant

5 100- Implicant

PIKind

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

Intersections

tl
tl
tl
tl
tl

101

Cube 1 is expanded first. The f,rrst cube at distance 1 is cube 2. The consensus of these

cubes is added to the front of the Onlist.

Id # cube

6 010-
Kind

Implicant

1 0-00 Implicant

2 -1-1 Implicant

3 01 10 Implicant

4 1--1 Implicant

5 100- Implicant

PIKind

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

Intersections

ll,2l
t6l

t6l

tl
tl
tl

Intersections

t6l

U,2,7f

t6l

t6l

tl
tl
tl

Intersections

Í21

[6,1]

Í1,2,71

[6,7]

[6,8]

tl
tl

Expand is called recursively with cube 6 as its argument. Cube 3 is at distance 1 from cube

6. Their consensus includes cube 3. Therefore, cube 3 is deleted.

Id# cube Kind PIKind

7 01-0 Implicant NonEssential

6 010- Implicant NonEssential

1 0-00 Implicant NonEssential

2 -1-1 Implicant NonEssential

3 0 1 10 Deleted NonEssential

4 1--1 Implicant NonEssential

5 100- Implicant NonEssential

Expand is called recursively with cube 7 as its argument. Cube 2 is at distance 1 from cube

7. Their consensus includes cubes 6 and 7. Therefore, both cubes are deleted. During

this expansion it was also found that cubes 1 and 7 intersect. It turns out that this

information is not very useful since cubes 6 and 7 are deleted.

Id # cube Kind PIKind

8 0 1-- Implicant NonEssential

7 01-0 Deleæd NonEssential

6 010- Deleted NonEssential

1 0-00 Implicant NonEssential

2 -1-1 Implicant NonEssential

4 1--1 Implicant NonEssential

5 100- Implicant NonEssential

-102-

Expand is called recursively with cube 8 as argument. Cube 8 has no useful consensus

with any of the cubes in the Onlist (í.e. all consensus cubes that can be obrained with

cube I are already covered by a cube in the list). Cube 8 also intersects with cube 1.

Id # cube Kind PIKind

8 0 1 -- PlCandidate NonEssential

1 0-00 Implicant NonEssential

2 - 1- 1 Implicant NonEssential

4 1--1 Implicant NonEssential

5 100- Implicant NonEssential

lntersections

Í2,11

t8l

t8l

tl
tl

Cube 8 is now checked to determine if it is essential. The sharp of cube 8 with cubes 1 and

2 (the intersecting cubes) results in the implicant 0 I I 0. Cube 8 is ma¡ked as Essential

and is now part of the minimal cover. All minterms covered by cube I need not be covered

again. Therefore, cube 8 can be considered a don't-care cube for the remaining steps in the

minimization process. A copy of cube 8 is created and inserted in the Dclist. The

algorithm now returns (by unwrapping the recursion) to the expansion of cube 1. A

consensus of cube I and 5 yields -0 0 0.

rd#
9

dcl 8

1

2

4

5

cube Kind PIKind Intersections

-000 Implicant NonEssential [1,5]
01-- PlCandidate Essential l2,ll
0-00 Implicant NonEssential [8,9]

-1-1 Implicant NonEssential t8l
1--1 Implicant NonEssential tl
100- Implicant NonEssential t9l

The consensus of cube 9 and 4 is 1 0 0 -, which is already in the Onlist (cube 5). Cube 9

does not yield any new consensus cubes. Cube 9 dominates cube 1. Cube 1 is deleted and

cube 9 is found to be essential.

1 this cube is also in the Dclist.

-103-

dc

dc

Id#
9

8

1

2

4

5

cube Kind

-000 PlCandidate

01-- PlCandidate

0-00 Deleted

-1-1 Implicant

1-- 1 Implicant

100- Implicant

PIKind

Essential

Essential

NonEssential

NonEssential

NonEssential

NonEssential

Intersections

[1,5]

12,rl

[8,9]

t8l

tl
tel

The expansion of cubeZ yields no new implicants. Cubes 2 and 4 intersect. Cube 2 is not

essential since the sharp with its intersecting cubes (4 and 8) is empty.

Id# cube Kind PIKind

dc 9 -000 PlCandidate Essential

dc 8 01-- PlCandidate Essential

2 -1-1 PlCandidate NonEssential

4 1--1 Implicant NonEssential

5 100- Implicant NonEssential

Intersections

tsl
t2)

[8,4]

tzl
tel

No implicants are generated during the expansion of cube 4. Cubes 4 and 5 intersect.

Cube 4 dominates both of its intersecting cubes (2 and 5).

Id# cube Kind PIKind

dc 9 -000 PlCandidate Essential

dc 8 01-- PlCandidate Essential

2 -1-1 deleted NonEssential

dc 4 1--1 PlCandidate Essential

5 100- deleted NonEssential

Intersections

tsl
t2)

[8,4]

[2,5]

19,41

The final Onlist contains only essential (cubes 4 and 8) and pseudo-essential (cube 9)

prime implicants
-

it contains the solution to given problem.

Id# cube Kind PIKind

dc I -000 PlCandidate Essential

dc 8 01-- PlCandidate Essential

dc 4 1--1 PlCandidate Essential

lntersections

tl
tl
tl

- 1,04 -

bxz
'5'

00

01

11

10

00 01 11 10

1

1 1

1 1 1

Izxz
x4x x4 x5 00 01

00

01

11

10

xl =0 xl = 1

Figure 5.4 Function used in Example 5.7.

Example 5.7. Consider the S-variable function shown in Figure 5.4. The function is

specified with the following lists of cubes:

Onlist

11010

-001 1

-- 1 1 1

-11-1
0000-
-01-0

DcList

-01-0

The Dclist contains the don't-care cube. Cubes are never deleted from the Dclist. A

don't-care cube Q may be deleted from the Onlist if a cube is generated of which Q is a

subset. Don't-care cubes are not linked to intersecting cubes because they are dominated

by any cube, but they should not be deleted. The initial Onlist is shown below.

-105-

dc

Id#
1

2

3

4

5

6

cube

11010

-001 1

-- 1 1 1

-11-1
0000-
-01-0

Kind

Implicant

Implicant

Implicant

Implicant

Implicant

Implicant

cube Kind

000-1 PlCandidate

-0-11 Implicant

1 10 10 PlCandidate

--111 Implicant

-11-1 Implicant

0000- Implicant

-01-0 Implicant

PIKind

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

PIKind

NonEssential

Essential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

PIKind

NonEssential

NonEssential

Essential

NonEssential

NonEssential

NonEssential

NonEssential

Intersections

tl
tl
tl
tl
tl
tl

Intersections

t3l

tl
tl
17l

I]
tl
tl

lntersections

15,71

[3,8]

tl
t7l
tl
t8l

tl

Cube 1 is expanded first. No consensus can be formed. Cube 1 is found to be essential.

Cube 2 is expanded next. The consensus of cube 2 and 3 (cube 7) is added ro rhe Onl-ist.

Cube2 is a subset of cube 7 andis therefore deleted.

Id # cube Kind

7 -0-11 Implicant

1 11010 PlCandidate

2 -0011 Deleted

3 --111 Implicant

4 -11-1 Implicant

5 0000- Implicant

dc 6 -01-0 Implicant

Cube 7 has a consensus with cube 5. Cube 8 does not have a useful consensus with any

cube in the list. Cube 8 is not essential.

dc

dc

Id#
8

7

1

J

4

5

6

The expansion of cube 7 continues. Cubes 7 and6 yield- 0 1 1 -. No useful consensus

cubes can be obtained with cube 9. The expansion of cube 7 terminates. Cube 7 is

-106-

essential. It dominates cube 9.

Id # cube Kind

9 -011- Deleted

I 000-1 PlCandidate

dc 7 -0-11 PlCandidate

dc 1 1 10 10 PlCandidate

3 --111 Implicant

4 -11-1 Implicanr

5 0000- Implicanr

dc 6 -01-0 Implicant

cube Kind

-011- Deleted

000-1 PlCandidate

-0-11 PlCandidate

I 10 10 PlCandidate

--111 Deleted

-11-1 PlCandidate

0000- Implicant

-01-0 Implicant

cube Kind

00-00 PlCandidate

000-1 PlCandidate

-0-11 PlCandidate

1 10 10 PlCandidate

-11-1 PlCandidate

0000- Implicant

-01-0 Implicant

The expansion of cubes 3 and 6 yields cube 10 which is not essential. Cube 3 is not

essential. Cube 3 dominates cube 10, which is deleted. The expansion of cube 4 does not

yield a new cube. Cube 4 is essential, and it dominates cube 3.

rd#
10

8

dc7
dc1

4J

dc4
5

dc6

The consensus of cubes 5 and 6 yields cube 11. Cube 11 is found to be a non-essential

prime implicant.

Id#
11

I
7

1

4

5

6

dc

dc

dc

dc

PIKind

NonEssential

NonEssential

Essential

Essential

NonEssential

NonEssential

NonEssential

NonEssential

PIKind

NonEssential

NonEssential

Essential

Essential

NonEssential

Essential

NonEssential

NonEssential

PIKind

NonEssential

NonEssential

Essential

Essential

Essential

NonEssential

NonEssential

Intersections

13,71

15,71

[3,8]

I]
Í71

tl
t8l

tl

Intersections

13,71

L5,71

[3,8]

tl
[4,7]

t3l

t8l

tl

Intersections

tsl

[5,7]

t8l

tl
tl

[8,1 1]

tldc

-107 -

Cube 5 dominate both its intersecting cubes (8 and 11). Hence, cube 5 is essential and

cube 8 and 11 are deleted. The minimal solution is shown below. The don't-care cube (6)

has been removed.

5.5 RCM-MV: TIIE MULTIPLE-VALUEÐ EXTENSION OF RCM

The cube notation introduced in Section 4.2 wtll be used to represent multiple-valued logic

product terms. The definitions for distance, consensus, and the sharp operator, together

with multiple-valued examples, are given below.

Ðefinition 5.4. Let P and Q be two cubes of a multiple-valued function. Let S be a

cube obtained as follows:

S = AND(p,e)

where AND is the bitwise AND of the cube notation of P and Q. The distance of P and Q

is the number of coordinates in S which contains only zeros.

Exarnple 5.8. Table 5.2 shows some cubes of a 3-valued logic function and their

corresponding distance.

Id#
dc7
dcL
dc4
dc5

P

011-111-100

011-111-100

011-111-100

cube Kind

-0-11 PlCandidate

1 10 10 PlCandidate

-11-1 PlCandidaæ

0000- PlCandidate

a

110-110-110

100-101-101

100-111-O11

PIKind

Essential

Essential

Essential

Essential

AND(P,Q)

010-110-100

000-101-100

000-111-{00

Intersections

tl
tl
tl
tl

distance

0

1

2

Table 5.2 Cubes and their distance.

-108-

Ðefinition 5.5. I-etP=pt -pz-...-pn be acubeof amultiple-valuedlogic function

F where p¡ represents the ift coordinate of P. Similarly, let Q = ql - q2 - .. . - qn be a

cube of F such that the distance between P and Q is 1 . Let j e {I,2,. . .,n} such that

AND(p¡,q¡) is equal to a bitstring consisting only of zeros. The iú coordinate of the

consensus cube W - w1 - w2- .. . - wn of P and Q can be obtained as follows:

,,,. - I ANDþ. ,q.), f i* j
vvl - ì

L on1p,,9i), ifi=j

where AND and OR are the bitwise AND and OR operations respectively.

Example 5.9. Some cubes with their corresponding consensus cube are shown in Table

5.3.

P a consensus ofP and Q

011-111-100 100-101-101 111-101-100

001-110-101 100-101-011 101-10H01

111-O1H11 11H01-111 110-011-011

Table 5.3 Product terms and their consensus.

Ðefinition 5.6. The sharp operation P # Q, is defined as a sum of cubes which covers

all minterms which are covered by P and not covered bV Q. The procedural definition of #

is given below. Consider two cubes P = pt -p2-. . -pn and Q = ql - q2-.. -gn.
P # Q = C1 * CZ+ .. * Cn , where the cube C¡ is given by

Cr = ANDþ1,NOT(qr)) -pz - . . -pn

Cz= pt- eND(pz,NOT(q/) - . . - pn

Cn = pl -pz-. . -AND(pn,NOT(qn))

-109-

AND is the bitwise AND operation and NOT is the binary complement operarion. If Ci

becomes a null culcr-, i.e. one coordinate consists only of zeros, then Ci is removed from

the list.

Example S.tr0. Consider the cubes P = 011-111-100-101 and Q = 110-101-101-110.

P # Q is given by

Cr = 001-111-100-101

Cz=0I1-O10-100-101

Cs = 011-111-{00-101 null cube (delete)

C¿ = 011-111-10G{01

The data structure used to store each multiple-valued cube is slightly different from

the one used for a binary cube. R is the radix of the function and N denotes the number of

input-variables.

Cube = record

Ones : array[O..R-1] of set of [1..N1; { ones in each coordinate }

Kind : @eleted,PlCandidate,Implicant);

PIKind : @ssential, NonEssential);

DCFlag : Boolean; { true if it is a don't care cube }

Intersections : LinkPq { pointer to a list of intersecting cubes}

Next : CubePr; { poinrer to next cube in the list }
end;

Exarnple 5.Lt. Let F be a 4-valued function with 3 input variables. The cube

P = 0110-1 1 11-1000 will be stored as follows:

P.Ones[O] <- 12,3f

P.Ones[l] <- 11,21

P.Ones[2] <- ll,2l
P.Ones[3] <- [2]

P.Kind <- Implicant

P.PIKind <- NonEssential

-110-

P.DCFlag <- false

P.Intersections <- Nil

P.Ones is an array indexed by the logical value where each element is a set of the function

variables.

The pseudo-code for the basic operations is given below.

F unction Ðistance(CubeA,CubeB);

TempSet <- [] { empty set }

Distance <- 0

forl<-0to(R-1)do
TempSet <- TempS et + CubeA.Ones[! *CubeB. Ones [I]

end for
forl<- ltoNdo

if I in TempSet then

Distance <- Distance + 1

end for

end Distance

Frocedure Consensus(CubeA,CubeB,CubeR);

{CubeA and CubeB are at distance 1}

let Position be the coordinate in which CubeA and CubeB don't intersecr

forl<-0to(R-1)do
CubeR[I] <- CubeR[I] + CubeA.Ones[] *CubeB.Ones[Il

if (Position in CubeA.Oneslll) or (Position in CubeB.Ones[I]) then

CubeR[I] <- CubeR[! + [Position]
end for

end Consensus

Frocedure Sharp(CubeA,CubeB,Result); {Result is a list of cubes }

Result <- empty Iist

if Distance(CubeA,CubeB) > 0 then

add CubeA to Result

- 111-

else

TempSet <- [] { empty set }

forl<-0to(R-1)do
TempSet <- TempSet + (CubeA.Ones[I] - CubeA.Ones[!*CubeB.Ones[!)

end for

forl<- l toNdo
if I in TempSet then

let NewCube be a copy of CubeA

forJ<-0to(R-1)do
if I in CubeA.Ones[[*CubeB.Ones[[then

NewCube.Ones[J] <- NewCube.Ones[Il - [[
end for

insert NewCube in the list Result

end for

end Sharp

With the new definitions given above, the procedures GeneratePls, Expand, and

CheclGssential can be immediately applied as presented in Section 5.3.

5.6 MULTIPT,E.VALUED EXAMPI,ES

Ðxample 5.12. Consider the 4-valued function with three input variables represented by

the following five cubes:

0001-0100-0010

0100-1010-1 100

0110-0100-0110

0010-1000-1000

0010-0010-0100

The initiat Onlist contains the following information.

- 1.12 -

The consensus of cubes 1 and 3 yields cube 6. Cube 1 is a subset of cube 6 and is

therefore deleted. Cube 6 yields no further consensus cubes. Cube 6 is essential.

Id # cube Kind

dc 6 0111-0100-0010 PlCandidate

1 0001-0100-0010 Deleted

2 0100-1010-1100 Implicant

3 0110-0100-0110 Implicant

4 0010-1000-1000 Implicant

5 0010-0010-0100 Implicant

Id # cube

1 0001-0100-0010

2 0100-1010-1100

3 0110-0100-0110

4 0010-1000-1000

5 0010-0010-0lm

Id# cube

8 0110-0010-0100

7 0100-1110-0100

dc 6 0111-0100-0010

2 0100-1010-1100

3 0110-0100-0110

4 0010-1000-1000

5 0010-0010-0100

PIKind Intersections

Essential t3l
NonEssential I l
NonEssential t l
NonEssential t6l
NonEssential t l
NonEssential t l

Kind

Implicant

Implicant

Implicant

Implicant

Implicant

Kind

Implicant

Implicant

PlCandidate

Implicant

Implicant

Implicant

Deleted

PIKind

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

Intersections

tl
tl
tl
tl
tl

Cube 2 is expanded next. The consensus of cubes 2 and 3 yields cube 7. Cube 7 is at

distance 1 from cube 5. Cube 5 is a subset of cube 8.

PIKind Intersections

NonEssential Í71

NonEssential 12,3,81

Essential t3l
NonEssential ï71

NonEssential 16,71

NonEssential t l
NonEssential t l

Cube 8 is a subset of cube 9. Cube 9 isThe consensus of cubes 8 and 3 yields cube 9.

essential. Cube 3 is dominated by cube 9.

-Lr3-

dc

dc

Id # cube

9 0110-0110-0100

8 0110-0010-0100

7 0100-1110-0100

6 0111-0100-0010

2 0100-1010-1100

3 0110-0100-0110

4 0010-1000-1000

Kind

PlCandidate

Deleted

Implicant

PlCandidate

Implicant

Deleted

Implicant

PIKind

Essential

NonEssential

NonEssential

Essential

NonEssential

NonEssential

NonEssential

Intersections

L2,3,71

t7l

L2,3,91

t3l

17,9)

16,7,91

tl

Cube 7 can not be expanded any further. Cube 7 is not essential. The expansion of cube 2

yields cube 10 (the consensus of cubes 2 and 4). Cube 4 is a subset of cube 10. Cube 10

is essential.

dc

dc

Id # cube

10 0110-1000-1000

9 0110-0110-0100

7 0100-1110-0100

6 0111-0100-0010

2 0100-1010-1100

4 0010-1000-1000

Kind

PlCandidate

PlCandidate

PlCandidate

PlCandidate

Implicant

Deleted

PIKind Intersections

Essential l2l
Essential [2,7]

NonEssential 12,9)

Essenúal t l
NonEssential [7,9,10]
NonEssential t l

dc

Cube2 is essential. Cube 2 dominates cube 7. The minimal solution is shown below.

Id # cube Kind PIKind Intersecrions

dc 10 0110-1000-1000 PlCandidate Essential ÍZl
dc 9 0110-0110-0100 PlCandidate Essentiat LZI

dc 6 0111-0100-0010 PlCandidate Essenrial t 1

dc 2 0100-1010-1100 PlCandidate Essential [9,10]

Example 5.X3. Consider the binary multiple-output problem described in Example 4.6.

The Karnaugh maps for the three functions ¿ue shown in Figure 4.10. The three functions

can be mapped into a multiple-valued function as shown in Table 4.3. The list of cubes

used in initial Onlist represent the minimal sum-of-products for each binary function,

without considering the multiple output. The given cubes are:

-1t4-

01-o1-11-11-1m
01*11-O1-O1-100

01-o1-10-11-O10

11-11-O1-O1-010

F3 01-01-11-11-001

10-11-O1-O1-O01

The initial Onlist contains the following information.

Id # cube Kind PIKind Inrersertions

1 01-{1-11-11-100 Implicant NonEssential I l
2 01-11-01-01-100 Implicanr NonEssential I l
3 01-01-10-11-010 Implicant NonEssential t l
4 11-11-01-01-010 Implicant NonEssential I l
5 01-01-11-11-001 Implicanr NonEssential t l
6 10-11-01-01-{41 Implicant NonEssential t l

Cubes 1 and 3 yield cube 7. Cube 3 is a subset ofcube 7. The consensus ofcubes 7 and4

yields cube 8. Cubes 8 and 1 yield cube 9. Cube 8 is a subset ofcube 9. The consensus

of cubes 9 and 5 yields cube 10. Cube 9 is a subset of cube 10.

Id # cube Kind PIKind Intersecrions

10 01-01-11-01-111 Implicanr NonEssential t5l
9 01-01-11-01-110 Deleted NonEssential t l
8 01-{1-11-01-010 Deleæd NonEssential t l
7 01-01-10-11-110 Implicanr NonEssential tll
1 01-01-11-11-100 Implicant NonEssential [2,7]
2 01-11-01-01-100 Implicant NonEssential t1l
3 01-{1-10-11-010 Deleted NonEssentiat t l
4 11-11-O1{1-O10 Implicant NonEssential t l
5 01-01-11-11-{01 Implicant NonEssential [10]
6 10-11-O1-O1-O01 Implicanr NonEssential I l

The expansion of cube 10 yields cube 11 (the consensus of cubes 10 and 6). The

F1

F2

-115-

consensus of cubes 11 and 4

consensus cubes. Cube 12 is

Cube 10 is not essential.

yields caþ- 12. Cube 12 does not generate any useful

not essential. The expansion of cube 10 also terminates.

Id # cube Kind

12 11-O1-O1-O1-O11 PlCandidate

11 11-{1-01-01-O01 Deleæd

10 01{1-11-01-111 PlCandidate

7 01-{1-10-11-110 Implicant

1 01-01-11-11-100 Implicant

2 01-11-01-01-100 Implicant

4 11-11-O1-O1-O10 Implicant

5 01-01-11-11-001 Implicant

6 10-11-O1-O1-O01 Implicant

PIKind Intersections

NonEssential [4,5,6,10]
NonEssential t l
NonEssential U,2,4,5,7,I2)
NonEssential [1,10]

NonEssential 12,7,L}f
NonEssential [1,10]
NonEssential ll0,l2l
NonEssential [10,12]

NonEssential UZ)

The expansion ofcube 7 continues. The consensus ofcubes 7 and 5 yields cube 13. Cube

7 is a subset ofcube 13. Cube 13 is essential.

Id # cube Kind

dc 13 01{1-10-11-111 PlCandidate

12 11-01-01{1-{11 PlCandidate

10 01-01-11-01-111 PlCandidate

7 01-01-10-11-110 Deleted

1 01-O1-11-11-100 Implicant

2 01-11-01-01-100 Implicant

4 11-11-O1-O1-O10 Implicant

5 01-01-11-11-001 Implicant

6 l0-11-O1-O1-O01 Implicant

PIKind Intersections

Essential [1,10]

NonEssential [4,5,6,10]
NonEssential 11,2,4,5,121
NonEssential I l
NonEssential l2,l0l
NonEssential [1,10]

NonEssential U0,l2l
NonEssential ll0,12l
NonEssential LL?l

Cubes I and 5 yield cube 14. Both cubes are subsets of cube 14. Cube 14 is essential.

Cube 12 is checked to determine if it is essential since it dominates cube 10 which intersects

with cube 14. Cube 12 is not essential.

-116-

Id # cub€ Kind PIKind Intersecrions

dc L4 01-01-11-11-101 PlCandidate Essential [2,12,\3]
dc 13 01-01-10-11-111 PlCandidate Essential t14l

12 11-{1-{1-{1-011 PlCandidate NonEssential 14,6,14f
10 01-{1-11-01-111 Deleted NonEssential t l
1 01*01-11-11-100 Deleted NonEssential t l
2 01-11-01-01-100 Implicant NonEssential U4l
4 11-11{1-01-010 Implicant NonEssential ll2l
5 01-O1-11-11-m1 Deleted NonEssential t l
6 10-11-O1-O1-O01 Implicant NonEssential l12l

Cube 2 is expanded next. Cubes 2 and 4 yield cube 15. Cube 2 is a subset of cube 15.

The consensus of cubes 15 and 13 yields cube 16. Cube 16 is immediately deleted since it

is dominated by cube 15. Cube 15 is essential.

Id # cube Kind PIKind Intersecrions

1,6 01-01-11-01-110 Deleted NonEssenrial t l
dc 15 01-11-{1-O1-110 PlCandidate Essential [4,12,14)
dc 14 01-01-11-11-101 PlCandidate Essential |2,13,151
dc L3 01-01-10-11-111 PlCandidate Essential t14l

12 11-O1-O1-O1-O11 PlCandidate NonEssential 14,6,14,151

2 01-11-{1-01-100 Deleted NonEssential t l
4 11-11-{)1{1-010 Implicant NonEssential Í12,151
6 10-11-01-01-001 Implicant NonEssential [12]

The consensus of cubes 4 and6 yields cube 17. Cube 6 is a subset of cube 17. Ctbe 17

dominates cubes 12 and 4. Finally,4 essential cubes remain in Onl-ist. The identical result

was obtained by the DSA-MV (see Example 4.6)

Id# cube Kind

dc 17 10-11-01-{1-011 PlCandidate

dc 15 01-11-O1-O1-110 PlCandidate

dc 1.4 01-01-11-11-101 PlCandidate

dc 13 01{1-10-11-111 PlCandidate

PIKind Intersections

Essential t l
Essential t14l
Essential [13,15]
Essential t14l

-TT7 -

5.7 R.EM,ARKS

Prototypes of both algorithms have been implemented in Turbo Pascal on a Macintosh

computer. The results of all examples given in this chapter (Sections 5.4 and 5.6) were

obtained using these computer programs.

The implementation of the algorithms presented in this chapter is straightforward.

Once the binary implementation was complete, the extension from RCM to RCM-MV was

accomplished by simply replacing the data structure to store a cube and the procedures

Distance, Consensus, and Sharp, together with new input and output routines.

Due to the new ordering of the cubes in Onlist, which enables the detection of

essential and pseudo-essential prime implicants, as well as the deletion of all dominated

cubes, the number of elements in Onlist is kept small.

-118-

Chapten 6

MTIVTMTU AT{ON WXTF{ WTNÐOW [,TTER,AN,S

6.f. ovERvrEw

A wide variety of literal operations for multiple-valued logic have been proposed (see

Section 2.3). The three minimization procedures presented in the preceding chapters use

the generalized literal operation (see Definition 1.7). The window literal is defined as

follows:

ab I t
X.=rl

LO
if a<*i.b

otherwise
(6.1)

Window literal are a subset of generalized literal. For example, a four-valued variable has

10 distinct non-trivial window literals, whereas the number of generalized literals is 15. In

general, an R-valued variable has

R(R+1)
2

window literals and

R2-t

generalized literals. The number of literals is an important factor if the function is to be

implemented using a PLA, since all literals must be generated. The number of literals

determines the number of "rows" of the PLA needed for each input variable. The number

of product terms of the function determines the number of PLA "columns". A sum-of-

products expression is likely to have more terrns using the window literal than the

generalized literal.

The cube notation for window literals is similar to the cube notation for generalized

tl9 -

literals (Section 4.1). The product term

1x} %x^b... u,*on

I¿N

is denoted by the binary vector:

0 I Pt-l 0 I Pz-l 0 I o -1cl cl . .. cl - c2c2...c2 c' crr... c;"

where

,i = {
1 irarjrb,

L 0 otherwise

Example 6.X.. If P= {4, 3,4, 41, then the product term

021I23t2*r \\x+

is represented by the cube 111G41G{011-{1 10.

The definition of adjacency must be changed slightly and the definition of expandable

adjacencies in the direct cover algorithm is different from the one in the directed search

algorithm.

Ðefinition 6.L. Two minterms are said to be adjacent if they differ in exactly one of

their input variables, and the magnitude of the difference in that input variable is exactly

one. Let cr and ß be adjacent minterms, let x¡ be the input variable in which they differ

a"= (ã1,â.2,. . .,âi, . . .,an)

ß = (a1,ã2,. . .,bi, . . .,an)

then la¡-b¡l=1

Any minterm has between n and2n adjacent minterms since a minterm has at least

one adjacent minterm with respect to each coordinate and at most two. In conffast, the

number of adjacencies for the generalized literal operator is:

-120-

n

L@,- t)
i=I

6.2 ÐTR,ECT COVER. AT,GORTT'HM FOR. TR.UNCAT'EÐ SIJM

MINIMXZATION

6.2.1. The Extension

Since we are dealing with functions with multiple-valued outputs, the literal operation will

yield the values R-1 and 0 (not 1 and 0 as shown in (6.1)). The defrnition of expandable

adjacency from Chapter 3 is used in this section (Defînition 3.2). A minterm may be

expanded beyond its adjacent minterms (Figure 6.1). This must be considered when

ranking minterms.

mintermto be
considered

in the first coordinate

Figure 6.1 A minterm may be expanded beyond its adjacent minterms.

ÐefÏnition 6.2. Given the minterm

a,, = (e-1a'2,. . .,âi, . . .,an)

let Q be an implicant of the function of the form

kl. a atlnnx.... xln

-tzt-

fl*t
LJ expandableadjacencies

C:] maximumexpansion

x2

e=c^'*?%*

where ki < ai (li, c = ..f(cr)>>, and Q is not contained in any other implicant of the same

form, i.e. Q is the largest implicant of this type. All minterms contained in Q , excluding

d, Ne said to be the extendible mínterms of cr in the iú coordinate. The total number of

extendible minterms of a is denoted by EMo.

Definition 6.3. The isolation factor of a minterm o is

I
EA.,(R-1)+EMo+1

With these three new definitions the algorithm to determine the break count reduction

(BCR) can be used without modification. Furthermore, the minimization algorithm

presented in Chapter 3 can be applied as given. This algorithm will be referred to as

DCMW.

6.2.2 Examples

Tirumalai and Butler [TIRSSI analyzed several minimization algorithms for multiple-valued

PLAs using the truncated sum operator and window literals. Tirumalai and Butler's

adaptation of the DCM algorithm (DCM*) gave results which are not as good as rhe

extension of the DCM algorithm (DCMW) presented in Section 6.2.7. For the following

three examples [BUT88] DCMW gave better resulrs than DCM*.

For simplicity, the product term

1qcx1

IF

abnnxn

will be written as c(a1,b1)(az,bz). . . (an,bn).

%\
\

-122-

K2 0123

0

1

2

J

2 2 2

2 2

1 1

1 1

Figure 6.2 Mapr of the function used in Example 6.2.

Example 6.2. Consider the function shown in Figure 6.2. The function was realized

with I implicants using the DCM* algorithm IBUTSSI. With DCMW a minimal cover

consisting of 6 implicants was obtained. The minimizattonproceeds as follows:

STEP 1 MinValueê 1.

srEP 2 The isolation factors for the minterms with value 1 are as follows:

minterm (2,2) (3,2) (0,3) (2,3)

rF Llrg tlrr t/r3 t/1.6

STEP 3 cr <- (3,2).

STEP 4 The eight implicants which contain cr have the following break count reductions:

implicant 1(3,3)(2,2) I(3,3)(2,3) l(2,3)(2,2) l(2,3)(2,3)

BCROOOl
implicant I(1,3)(2,2) 1(1,3)(2,3) I(0,3)(2,2) t(0,3)(2,3)

BCRI2T2
STEP 5 Qmax +I(0,3)(2,3)2.

STEP 6 Add 1(0,3X2,3) to the solurion.

l The minterms for which the function evaluates to R - 1 are shaded because they are
treated differently during the minimization process.

'fng last implicant with the highest BRC is selected. This choice is arbitrary, but
consistent throughout the examples in this chapter.

-123-

STEP 7 g(X) now becomes:

STEP 1 MinValue<-z.

STEP 2 The isolation factors for the minterms with value 2 a¡e as

minterm (0,0) (1,0) (3,0) (1,1)

IF I/12 rl16

follows:

(2,1)

rlrc

considered since they

w r/r8

Note: minterms (0,2), (1,2), (1,3), and (3,3) are nor

evaluated to 3 in f(X).

STEP 3 cr <- (3,0).

STEP 4 The four implicants which contain cr have the following break count reductions:

implicant 2(3,3X0,0) 2(2,3)(0,0) 2(1,3X0,0) 2(0,3X0,0)

BCRll-1
STEP 5 Qmax <-2(2,3)(0,0).

STEP 6 Add 2(2,3X0,0) to the solution.

STEP 7 g(X) now becomes:

STEP 1 MinValueç-Z.

(MinValue is not assigned the value 1 because the minterm which evaluates to 1 is

shaded- it originally evaluared ro 3)

srEP 2 The isolation factors for the minterms with value 2 are as follows:

2
0

1

)
J

-t24-

STEP 3

STEP 4

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

minterm (0,0) (1,0) (1,1) (2,1)

rF rlrr 1/ß t/r8 r/10

cr <- (1,2).

The six implicants which contain cr have the following break count reductions:

2(2,2)(1,t) 2(2,2)(0,7) 2(t,2)(t,t) 2(t,2)(0,1) 2(0,2)(1 J) 2(0,2)(0,1)

STEP 5 Q** <- 2(0,2)(0,1).

STEP 6 Add 2(0,2)(0,1) to the solution.

STEP 7 g(X) now becomes3:

STEP 1

STEP 2

MinValue +- 3.

(all remaining minterms for which ..g(X)n < 4, had the value 3 in f(X).)

The isolation factors for the minterms with value 3 are as follows:

minterm (0,1) (0,2) (1,2) (1,3) (3,3)

us 1/9 tle us tlr

a e- (3,3).

There is only one implicant 3(3,3X3,3) with BRC 2.

Qr* + 3(3,3X3,3).

Add 3(3,3)(3,3) to the solution.

g(X) now becomes:

3 Minterms with value 4 are don't-care minterms.

-L25-

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

MinValue e- 3.

The isolation factors for the minterms with value 3 are as follows:

minterm (0,1) (0,2) (1,2) (1,3)

rF tls t/9 t/9 tls

G <- (0,1).

The ¡vo implicants which contain cr have the following break count reductions:

implicant 3(0,0X1,1) 3(0,0X1,2)

BCR23
Qrn* e- 3(0,0X1,2).

Add 3(0,0)(1,2) to the solution.

g(X) now becomes:

STEP 1 MinValue e- 3.

srEP 2 The isolation factors for the minterms with value 3 are as follows:

minterm (1,2) (1,3)

STEP3 cre (1,3).

STEP 4 The two implicants which contain ø have the following break count reductions:

implicant 3(1,1X3,3) 3(1,1X2,3)

BCR24
STEP 5 Qmax <- 3(1,1)(2,3).

STEP 6 Add 3(1,1)Q,3) ro rhe solution.

-126-

STEP 7 g(X) now becomes:

STEP 8 The termination condition has been reached. The result is

f(xrxr) =to*1'*10 z2*10*f,0 z0*10*!ro z3*?r3*f,0 l0*0rt*10 z1*12*)

The result obtained by DCM* [BUT88] is

F(x' xr) = 1 '-1'40 z3*13*)0 2
t.lo*)o z'-it-:, o

zt*?ro*lro zo*oro*lo 1o*f
14 o 32*?o*l

Example 6.3. Consider the function shown in Figure 6.3. The function was realized

with 9 implicants using the DCM* algorithm tBUT88l. A minimal cover consisting of 7

implicants was obtained using the DCMW algorithm. The terms were obtained in the

following order

most isolated minterm best implicant

tt22xl xz

0011xl xz

2233x1 \

1100xl xz

33rrx1 \

- 1122I*rx2

- 0013l*tx2

^2 3 3 3¿xlx2

t'*1 o4

^3 3 0 3zxlx2

-t27 -

22L Ixr\

3322xl \

32

J

211xl x2

323xl xz

Figure 6.3 Map of the function used in Example 6.3.

,t*1';r o zt*lo*f,0 z
o.io.l

o

^1222¿ xt\

Figure 6.4 Map of the function used in Example 6.4.

Example 6.4. Consider the function shown in Figure 6.4. DCM* produced a

realization with 10 implicants [BUT88]. The minimal realization of this function consists

of 7 implicants (see Figure 6.4). The DCMril dgorithm produced a solution with 8 terrns

which is not minimal, but better than the solution proposed by DCM*. The execution of

DCMW proceeds as follows:

f(xrxr) =L'*or'*10 r
l*f 3*l o t2*12*)o

2 0 I 2 -J

0

1

2

)

6 øq 2

îì ,) 2

1,l 6 rù 2

a lz) J

-t28-

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

MinValue <- 1.

The isolation factors for the minterms with value 1 are as follows:

minterm (0,2) (1,3)

rF l/12 rltz

cr e (0,2).

The eight implicants which contain cr have the following break count reductions:

implicant l(0,0)(2,2) 1(0,0)(1,2) 1(0,0)(0,2) l(0,1)(2,2)

BCR1321
implicant 1(0,lxl,2) 1(0,1)(0,2) I(0,2)(2,2) l(0,3)(2,2)

BCR333T

Qmax + l(0,2)(2,2).

Note: this choice will not lead to the minimal solution. The implicanr 1(0,0X1,2)

should have been chosen at this point. The BRC for the "best" implicant

1(0,0X1,2) is the same as the BRC for the chosen implicant 1(0,2)(2,2).

Add 1(0,2)(2,2) to the solution.

g(X) now becomes:

STEP 1 MinValue <- 1.

srEP 2 Ttre isolation factors for the minterms with value 1 are as follows:

minterm (1,2) (1,3)

rF 1/t5 1/12

STEP3 cr+ (1,3).

-r29-

STEP 4 The eight implicants which contain cr have the following break counr reductions:

implicant 1(1,1)(3,3) l(l,l)(2,3) 1(1,lX1,3) 1(1,1)(0,3)

implicant 1(1,2X3,3) I(1,2)(2,3) l(1,3X3,3) l(I,3)(2,3)

BCR-1 201
STEP 5 Qmax <- 1(1,1)(0,3) .

STEP 6 Add 1(1,1X0,3) to rhe solution.

STEP 7 g(X) now becomes:

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5 Qmax + 1(0,1)(1,1).

STEP 6 Add 1(0,1X1,1) to the solurion.

STEP 7 g(X) now becomes:

STEP 1 MinValueç-2.

srEP 2 The isolation factors for the minterms with value 2 arc asfollows:

MinValue <- 1.

The only minterm which evaluates to 1 (1,1) has an isolation factor of 1/9.

o e (1,1).

The four implicants which contain c have the fotlowing break count reductions:

implicant 1(1,1X1,1) 1(1,1X0,1) 1(0,1)(1,1) 1(0,1)(0,1)

- 130-

STEP3 u<-(2,3)

STEP 4 T\e four implicants which contain cr have the following break count reductions:

implicant 2(2,2)(3,3) 2(2,2)(2,3) 2(2,3)(3,3) 2(2,3)(2,3)

STEP 5 Qmax + 2(2,2)(2,3).

STEP 6 Add 2(2,2)(2,3) to the solution.

STEP 7 g(X) now becomes:

STEP 1 MinValue <- 2.

STEP 2 The isolation factors for the minterms with value 2 are as follows:

minterm (0,0) (2,0) (3,1) (3,21

rF 1/11 t/10 t/10 t/14

STEP 3 cr <- (2,0).

STEP 4 The six implicants which contain cr have the following break count reductions:

2(2,2)(0,0) 2(2,3X0,0) 2(7,2)(0,0) 2(1,3X0,0) 2(0,2X0,0) 2(0,3)(0,0)

STEP 5 Qmax e 2(1,3X0,0).

STEP 6 Add 2(1,3X0,0) to rhe solution.

minterm (0,0)

IF T/T1

(2,0) (3,1) (3,2) (2,3)

utj t/10 Ur4 rl9

-131 -

STEP 7 g(X) now becomes:

STEP 1 MinValue 4-2.

STEP 2 ^the isolation factors for the minterms with value 2 are as follows:

minterm (0,0) (¡,t) (3,2)

1/9 Ur} 1/t4

STEP 3 cr <- (0,0).

STEP 4 The three implicants which contain cr have the following break count reducrions:

implicant 2(0,0)(0,0) 2(0,0)(0,1) 2(0,1X0,0)

BCR -1 2 -1

STEP 5 Qmax <- 2(0,0X0,1).

STEP 6 Add 2(0,0X0,1) to the solution.

STEP 7 g(X) now becomes:

STEP 1 MinValue<-z.

STEP 2 The isolation factors for the minterms with value 2 are as follows:

minterm (3,1) (3,2)

IF

STEP3 a<- (3,1).

I/10 UT4

-132-

STEP 4

STEP 5

STEP 6

STEP 7

The six implicants which contain cr have the following break count reductions:

2(3,3)(t,t) 2(3,3)(1,2) 2(3,3)(1,3) 2(3,3X0,1) 2(3,3)(0,2) 2(3,3)(0,3)

-1 00122
Q.* <- 2(3,3)(0,3).

^dd2(3,3)(0,3)
to the solution.

g(X) now becomes:

MinValue <- 3.

The only minterm which evaluates to 3 (3,3) has an isolation factor o17/1.

a <- (3,3).

The only implicant 3(3,3X3,3) has a BRC of 2.

Qmax e- 3(3,3X3,3).

Add 3(3,3)(3,3) to the solution.

g(X) now becomes:

STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8 The termination condition has been reached.

r(xrx) = t
o*?'*30

1
lxl T] o r %l'4 o z2*12*)

The resulr obtained by DCM* [BUT88] is

The result is

o 21*?o4o2o*To4 o z3xlo*)o tt-1'-?,

-r33-

F(x,, xr) : 1'-i'-:0 1ti3'; o r2x?240 zL*?r2*?ro z3*13*)o

z3*l'*)o z0*10*10 r 1*f0*! 0 2çi'*)o z'.iT;

6.2.3 R.emarks

The DCMW minimization algorithm produced better results than Tirumalai and Butler's

[TIR88] extension of the DCM algorithm. However, a minimal result is not always

produced by DCMW (see Example 6.4). The break reduction count often produces ties for

different implicants. In Example 6.4, the "best" implicant (the implicant which is part of a

minimal solution) always had the highest BRC. Frequently, several terrns had the same

BRC and the "best" implicant was not always chosen to be part of the solution. Additional

investigation is needed to find an effective way to break BRC ties. One possibility is to

build a pafüal tree containing all of the "best" choices.

6.3 ÐIRECTED SEARCH MINIMIZATXON

6.3.n The Ðxtension

The definition of expandable adjacency from Chapter 4 (Definition 4.2) is used here. In

this section we are dealing with multiple-valued input, binary-valued output functions. As

pointed out in Section 6.2.1, a minterm may be expanded beyond its adjacent minterms

(Figure 6.2).

Definition 6.4. Given the minterm

ü, = (ayà2,. . . ,âi, . . . ,ân)

let Q be an implicant of the function of the form

at\\az \lt un"n
v- xl \... xi... Xo

-t34-

where k¡ I a¡ < l¡ and Q is not contained in any other implicant of the same form. All

minterms contained in Q, excluding cr, are said to be the extendible minterms of cr in the

ift coordinate.

The extendible minterms of a minterm can be represented by a bit string similar to the

cube notation of the minterm. Let M be a minterm and let Mc be the cube representing M.

Let Q1, QZ, . . .Q,. be the extendible minterms of M and let Qcl, Qc2, . . .Q* be their

respective cube representations. The bit string representing the extendible minterms of M,

EMVM (Extendible Minterms Vector), is obtained as follows:

EMV¡a = (Qcl + Q"z +. . + Q.r)' (M.)'

where +, ", and ' represent the bitwise oR, AND, and COMPLEMENT operations

respectively.

Each extendible minterms vector has associated with it a weight EMVWM which

consists of apair of integers. The integers in EMVW¡a a¡e obtained as follows:

" The first integer indicates the number of adjacent minterms of M which are also

extendible minterms of M.

' The second integer is the number of ones in the EMV¡a.

The following modifications are needed to adapt the DSA-MV algorittrm (see Section

4.2), to handle window literals - replace EAV by EMV and replace EAVW by EMVW.

The modified version of the directed search algorithm is called DSA-MVW.

6.3.2 Examples

Ðxample 6.5. Consider the three-variable function with radix three shown in Figure 6.5.

The minterms in the ON-set with their corresponding extendible minterm vectors and

weights are shown in Table 6.1. Minterrns are expanded in the order shown in Table 6.2.

Each of the expansions results in an essential prime implicant. The finat result is

, 0001 0001 010112.t(xl,xzxt = xt \+ \ \+ xl \ \

- 135

012

0

1

2

I 1

1 I

1 1

x2x2

J 0t2
0

1

2

1

1 I

1 1

xl =0 x1=1

Figure 6.5 Function used in Example 6.5.

x3

xr =2

Table 6.1 Extendible minterms with the corresponding weight pairs @xample 6.5).

ON-set

100-100-100

100-10H10
100-10H01
1m.{10-100
10H)10-O10

10H1H01
010-100-100

010-10H10
010-10H01
0lHlH10
0lHlH01
001-100-100

001-10H10

EMV

011{)1H)11

011-O10-101

01H10-110
000-10H11
010-100-101

010-100-110

101-O0H11

101-O10-101

10M10-110
100-10H)01

100-10H)10

11H0H10
11H00-100

minærm

10(H10-100

001-100-100

01M1H10

EMVW

(3,5)

(4,5)

(3,4)

(2,3)

(4,4)

(3,4)

(3,4)

(5,5)

(3,4)

(3,3)

(3,3)

(2,3)

(2,3)

1)

2)

3)

prime implicant

100-110-111

111-100-110

110-11H11

Table 6.2 Expanded minterms with the corresponding prime implicants @xample 6.5).

-136-

þ

xl =o xl =1 xr =2

Figure 6.6 Map of the function used in Example 6.6.

Example 6.6. Consider the three-variable function with P = {3,4,41, shown in Figure

6.6. The minterms in the ON-set with their corresponding extendible minterm vectors and

weights are shown in Table 6.3. The minterm with the lowest weight (001-1000-1000) is

expanded first. The pruned expansion tree is shown in Figure 6.7 (expanded minterms are

underlined). Two prime implicants (PIl and PI2) cover the expanded minterm. Minterm

(001-0010-1000) meets the criteria of step 6 in DSA-MW/, and so it is expanded next

(Figure 6.8). Two prime implicants, PI2 and PI3, cover the expanded minterm.

Next, minterm (001-O01H001) is expanded. PI4 is added to rhe ftee (Figure 6.9).

PI4 is dominated by PI3. PI3 becomes pseudo-essential. Now PIl dominares PI2
- PI1

is pseudo-essential. The expansion tree is now empty.

Minterm 10H10H100 is expanded next (Figure 6.10). Two prime implicants are

left in the pruned expansion tree (PI5 and PI6). The expansion of minterm

100-O10H010 yields one new prime implicant (PI7). PI7 is dominated by PI6. PI6 is

pseudo-essential
- it is added to the solution. Prime implicant PI5 covers the only 2

remaining minterms in the ON-set. Therefore, even if the expansion of one of the two

remaining minterms in the ON-set may yield new prime implicants, they will all be

0r23
0

1

2

Ĵ

1 1 1

1

137 -

dominated by PI5 -
expression is

F(x'xrx) =

PI5 is added to the solution4. The minimal sum-of-products

120100 222203 001312 011311xl x2 x3* xl x2 x3* xl x2 x3+ x, x" x,

ON-set

1m10H100
10m10m10
10m1H100
10H01H010
010-1000-1000

01H100.-1000

01M10H100
01H01H100
001-1000-1000

001-o100-1000

001-{01(Þl000

001-o01H001

EMV

01m11-O010
000-1011-o100

01r-o101-{010

000-1011-o100

001-{10H100
001-100H100
100-1011-1000

101-1101-0000

01H11H000
010-101H)000

000-110H111
01H)000-1110

EMVW

(3,4)

(3,4)

(4,5)

(3,4)

(3,3)

(3,3)

(4,5)

(4,5)

(2,3)

(3,3)

(2,5)

(2,4)

Table 6.3 Extendible minterms with the corresponding weight pairs @xample 6.6).

001-1000-1000

/\
011-1000-1000 001-1100-1000ttvv

PI1 011-1100-1000 001-1 1 10-1000 PI2

Figure 6.1 The pruned expansion rree for minrerm (001-1000-1000).

o Ïi.t shortcut may not be-recognized by a progïammed version of the algorithm. An
additional expansion would be required.

-138-

\
001-1100-1000

001-1000-1000

{
011-1000-1000

&

lo11-110-rooolPI1

PI3

I
I

Y
00l{n10-1100

I

v
001-0010-1110

I

v
lml-oolo_]Till

Figure 6.8 Pruned expansion tree.

001-1 1 10-1000

001-o010-1000

-139-

001-1000-1000r'\
{\

011-1000-10cK)

001-{010-1000

I

v
001-o010-1100

I

v
001-0010-1 1 10

Figure 6.9 A pruned expansion tee.

-r40-

011-1100-1000 001-1110-1000

001-0010-1111

011-O01H001

001-o01H001

1M1ru100
/\M&

11H10H100 10M11H100

/\øk
1lH11H)100

/
6

I rro-orrr-oroolPI5 PI6

10H100--0010

t
100-1100-0010

t
100-111H010

PT7

Figure 6.10 A pruned expansion tree (Example 6.6).

6.4 RECUR,SIVE CONSEhISIJS MINIMTZATXON

6.4.1 The Extension

The adaptation of the new recursive consensus minimization algorithm (RCM-MV) to

handle window literals requires minor changes in the basic definitions. In particular, the

consensus of two product terrns at distance 1 does not always exist
- an additional relation

must be satisfied. Furthermore, a new procedural definition for the sharp operation is

required.

The definition of the distance between two cubes given in Chapter 5 (Definition 5.4)

will be used in this section.

lm111-O100

10H111-O110

100-1111-{010

-141-

Example 6.7 " Table

corresponding distance.

P

0110-111H100
0110-111H)100

0110-11l(H100

0110-111H100

P

0110-111H100
110M1lHl11
110H1lMl11

a
111M110-1r10
1100-1100-0011

1100-110H001

0001-111M011

a
111H11H011
0011-110H001

01 10-1000-1 1 10

AND(P,Q)

011Hl1H100
010M110-{000
010H11H000
m00-111H000

6.4 shows some cubes of a A-valued function and their

distance

0

1

1

2

Table 6.4 Cubes and their distance.

Unfortunately, two cubes at distance one do not necessarily have a consensus cube.

For example, the cubes 01 10-111H100 and 1100-110m01 are ar disrance 1, and their

consensus, according to Definition 5.5, is 0100-0110-{101, but x3 can not be expressed

using a single window literal. Therefore, two cubes must satisfy an add.itional condition to

have a consensus cube.

Let P = pt - p2- .. . -pn be a cube of a multþle-valued logic function F where pi

represents theith coordinateof P. Similarly,let Q = et -ez-.. . -en be acube of F such

that the distance between P and Q is 1. Let j e {1,2, .. . ,n} such that AND(p¡,e¡) is equal

to a bitstring consisting of zeros only. P and Q have a consensus (as defîned in Definition

5.5) if and only if all 1's in OR (n¡,1¡) are consecutive, where OR is the bitwise OR

operation.

Example 6.8. Table 6.5 shows some cubes with their corresponding consensus cube.

consensus ofP and Q

01lH1lH111
1111{10H001
0100-1 11H110

Product tenns and their consensus.Table 6.5

-142-

Each product term using the generalized literals can be expressed as a sum ofproduct

terms using window literals. Some examples are given below.

1101-O110-110O = 110û{110-1100 + 0001-O110-1100

1101-0101-0110 = 110G{1(}}{110 + 11H}001-0110 + 0001-0100-O110 +

0001-0001-0110

The sharp operator has been defined in Section 5.5 (Defînition 5.6). The procedural

definition of # has to be modif,red is such a way that all product tenns are using the window

literal. This is illustrated by Example 6.9.

Example 6.9. Consider the cubes P = 1110-0110-0011 and Q = 0100-1100-{111.

According to the procedural definition @efinition 5.6) P # Q is given by

Cr = 1010-O11G{011,

C2= 111G401G{011,

C3 = 11l0_0l1(H000 null cube (delete).

Cube C1 can not be expressed as one product term using window literals.

101H11(H011 = 001G{11G4011 + 1000-O110-m11. Hence,

P # Q = 001G4110{)011 + 1000-0110_0011 + 1110-{010_{011

The changes described in this section affect the procedure Expand and the procedure

Sharp. In the procedure Expand, an additional check must be made before Consensus is

called. In the Shatp procedure each cube must only use window literals. No other

procedure is affected. The algorithm which implements the changes described above will

be called RCM-MVW.

6.4.2 Examples

Example 6.X.0. Consider the three-variable function shown in Figure 6.5. The initial

Onlist contains the following information.

-143-

The consensus of cubes 1 and 2 yields cube 4. Cube I is deleted since it is contained in

cube 4. The consensus of cubes 4 and 3 yields cube 5. Cube 3 is deleted since it is

contained in cube 5.

Id#
L

2
-J

Id#
5

4

1

2

3

cube

10{Þ110-1m

110-1lH11
011-100-110

cube

111-100-l l0
100-110-111

100-1 10-100

110-1lH11
011-100-110

Kind

Implicant

Implicant

Implicant

PIKind

NonEssential

NonEssential

NonEssential

Intersections

tl
tl
tl

Kind PIKind Intersections

Implicant NonEssential 12,41

Implicant NonEssential [2,5]
Deleted NonEssential tl
Implicant NonEssential 14,51

Deleted NonEssential tl

No further consensus tenn can be formed with cube 5. Cube 5 is essential. Cube 4 is also

found to be essential. The final Onlist contains the minimal solution.

Id # cube Kind PIKind Inrersecions

dc 5 111-100-110 Implicant NonEssential lL,4l
dc 4 100-110-111 Implicant NonEssential lL,sl
dc 2 110-11H11 Implicant NonEssential [4,5]

-lM-

0123
0

1

2

J

(, I CI
k_ r) rù

tt l-,

5z
x3

xr =o xl =1

Figure 6.1 1 Function used in Example 6.1 1.

Figure 6.11. The

DcList

10H001-{111
0lH100-o110

PIKind

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

xr =2

function can be

lntersections

tl
I
tl
tl
tl
tl

Example 6.11. Consider the function shown in

represented by the following cubes.

OnList

001-o111-0010

01H011-{010
100-110H110
10M10m11

The initial Onlist contains the following information.

Id # cube Kind

1 001{111-{010 Implicant

2 01(}-0011-{010 Implicant

3 100-110G4110 Implicant

4 100-o10Go011 Implicant

dc 5 10H001-0111 Implicant

dc 6 01H10(H110 Implicanr

The consensus cubes are obtained in the following order. Cubes 1 and 2 yield, cube 7

(cube 2 is deleted). Cubes 7 and 4 yield cube 8. Cubes 8 and 3 yield cube 9. Cubes 9 and

5 yield cube 10 (cube 9 is deleted). Cubes 10 and 7 yie\d, cube 11 (cubes 7 and 8 are

-145-

deleted).

is deleted).

ofcube 14

Kind

Implicant

Implicant

Deleted

Deleted

Deleted

Implicant

Deleted

Implicant

Implicant

Implicant

Implicant

Kind

PlCandidate

Deleted

Deleted

Deleted

PlCandidate

Deleted

Implicant

Implicant

Implicant

Implicant

PIKind

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

NonEssential

Intersections

t10l

u1l
tl
tl

tl
tl
tl
tl
I
tl
tl

Id # cube

11 111-0011-{010

10 100*1111-0010

9 100-111m10
I 111-O01m10
7 0t1-o011-{Ð10

1 001-0111-O010

2 01H011-0010
3 100-110H110
4 10H10H011

dc 5 10(H001-0111

dc 6 01G{10G{110

Theconsensusofcubes 11 and6yieldscube 12. Cubes 12and l0yieldcube 13 (cube12

cubes 13 and 1 yield cube 14 (cubes 13,l\, and 1 are delered). The expansion

terminates - it is found to be essential. The expansion of cube 10 terminates.

Cube 10 is not essential.

dc

Id# cube

t4 1 11-0111-0010

t3 1lH111-0010
12 01M111-0010
11 111-O011-0010

10 100-1111-0010

1 001{111-{010
3 100-110H)110

4 10H10(H011
5 10m01-o111
6 01H10H110

PIKind Intersections

Essential 13,4,701

NonEssential tl
NonEssential u
NonEssential tl
NonEssential 13,4,141

NonEssential tl
NonEssential [10,14]
NonEssential [10,14]
NonEssential tl
NonEssential tl

dc

dc

Cube 3 is expanded next. Cubes 3 and 6 yield cube 15 (cube 6 is deleted). Cube 15 is an

non-essential prime implicant. The expansion of cube 3 terminates. Cube 3 is essential (it

- 146

dominates cube 15).

Id# cube

15 11H10H110
dc 14 111{111-0010

10 100-1111-,û010

dc 3 100-110H)110

4 1m10M011
dc 5 10G{001-O111

dc 6 010-{10o_o110

Kind

Deleted

PlCandidate

Deleted

PlCandidate

Implicant

Implicant

Deleted

PIKind

Non-Essential

Essential

NonEssential

Essential

NonEssential

NonEssential

NonEssential

lntersections

tl
13,41

tl
t14l

lt4l
il
tl

The expansion of cube 4 (consensus with cube 5) yields cube 16 (cube 4 is deleted).

Cubes 16 and 3 yield cube 17. Cube 17 is not essential. Cube 16 is essential (it dominates

cube 17).

Kind PIKind Intersections

Deleted NonEssential tl
PlCandidate Essential I14l
PlCandidate Essential [3,16]
PlCandidate Essential tl4l

Deleted NonEssential tl
Implicant NonEssential tl

Finally, the minimal solution is given below.

Id # cube

dc 16 10M011-O011

dc 14 111-O111-0010

dc 3 100-110H)110

6.5 REMAR,KS

The algorithms presented in Chapters 3 to 5 are easily extended to accommodate window

literals. In each case, only the basic defînitions, such as adjacency, expandable minterms,

consensus, etc., required some changes. The main thrust of the algorithms is left

unchanged.

Id# cube

t7 100-1111-0010

dc 16 10H011-0011
dc 14 111-O111-0010

dc 3 100-110H110
4 10M10H011

dc 5 10H001-O111

Kind

PlCandidate

PlCandidate

PlCandidate

PIKind

Essential

Essential

Essential

Intersections

t14l

[3,16]

114l

147 -

Tirumalai and Butler ITIRSSI compared four different minimization algorithms using

the truncated SUM operator and window literals. Minimization results from a set of 7,000

randomly generated four-valued, two-variable functions were compared. The extension of

the direct cover algorithm presented here produced better results than the examples in

[BUT88] which used the previously reported extension [TIR88]. It would be interesting to

compute the results for all 7,000 functions using DCMW and compare them with the results

reported in [TIR88].

Tirumalai and Butler [TIR88] conjecture that no more than 10 implicants are needed

in a minimal sum-of-products expression of a four-valued, two-variable function, using the

truncated SUM and window literals. A function which needs 12 implicants is given in

Example 6.12.

Example 6.L2. Consider the function shown in Figure 6.12. A minimum sum-of-

products expression, shown below, consists of 12 terms

F(x,,xr) = to*lo*l 0 r0*10*1 0 r0*f0*! o r2*10*f,0 r3*10*! ot2*lr*!ro

z'*12*?ro f*12*?r0 r0*f3*] 01çl'.]o rçT'40 r3*]3*3,

Essentially, one implicant is needed for each non-zero minterm. It is easy to see that no

minterm can be covered by extending adjacent minterms.

I
0 I 2 3

0

1

2

J

J I 2 J

1 3

J 1

õ
^1 2 1 J

Figure 6.12 A function which needs 12 implicants.

x2

-148-

Chapten 7

CONCLIJSTON

This thesis provides a comprehensive treatment of multiple-valued logic minimization. The

truncated SUM operator as well as the maximum operator are employed by the proposed

algorithms. The algorithms presented in Chapters 3 to 5 use the generalized literal

operation. However, the algorithms are easily adapted to handle window literals as shown

in Chapter 6. This demonstrates the flexibility of the algorithms. Flexibility is an

important feature since new literal operators may come into use as altemative technologies

evolve.

Algorithms which minimize multiple-valued logic functions can be used to minimize

the multiple-oulput problem. The multiple-output problem is transformed into a single

multiple-valued function with a binary output. Several examples have been given to

illustrate this approach.

The direct cover algorithm presented in Chapter 3 is not suitable to solve the binary

multiple-output problem. In binary logic, the truncated SUM is equivalenr to the OR

operation. For two reasons it is not efficient to use the DCM algorithm to solve this

problem. First, it is known that a minimal solution consists of prime implicants only. The

DCM algorithm considers all implicants. Second, a break intoduced with a minterm with

value r - 1 (the only non-zero value in a binary function) is not counted. Therefore, new

breaks will never be introduced.

Directed search minimization (Chapter 4) offers two significant advantages over

traditional minimization algorithms. First, it has the ability to detect essential and pseudo-

essential prime implicants early during the generation process. Second, not all prime

implicants ¿re necessarily generated. Unfortunately, cycles must be resolved using

149

traditional techniques and it must stafi with a list of minterms. The lirst disadvantage was

diminished by adding a heuristic which limits the growth of the tree and solves the cycle

problem before all prime implicants are generated. The results are not always optimal but

are, in general, very good.

The recursive consensus minimization algorithm presented in Chapter 5 combines the

advantages of the directed search minimization with the advantage of the iterated

consensus. The starting point is a list of terms, which are not necessarily minterms. The

recursive expansion of terms leads to an early generation of prime implicants. With the

additional information kept along with each term, it is possible to detect essential and

pseudo-essential prime implicants during the generation process.

The strength of the proposed algorithms lies in their simplicity. The heuristics

employed are easily understood. All algorithms have been implemented as computer

programs. It is worth noting that the coding of the algorithms is straightforward. These

programs can be integrated into CAD software systems.

PLAs have found wide application in VLSI implementations. The advantages of

structured implementations leads to the conclusion that multiple-valued logic

implementation will take a PLA-like structure. In fact, several multiple-valued logic PLAs

have been proposed [SAS86a, KER86, TIR84]. All results produced by the algorithms are

in sum-of-products form zurd are thus geared towards a PLA implementation.

At this time, the practical applications of multiple-valued logic minimization are

limited to research implementations of multiple-valued logic circuits and to solve the binary

multiple-output problem. Nevertheless, the benefîts of efficient multiple-valued logic

minimization algorithms will become evident with the advances in multiple-valued logic

circuit realizations. Etiemble and Israel [ETI88] presented a critical comparison of binary

and multi-valued integrated circuits. According to theirresearch, multiple-valued logic will

not replace binary implementations, but the implementation of special purpose multiple-

valued circuits offers a significant advantage over their binary counterparts. Furthermore,

150 -

the advances in optoelectronics research [HUR86], will make multiple-valued logic more

atracdve.

Several questions remain unanswered. For example, how good are the results

produced by the DCM algorithm? Until an algorithm which will frnd minimal solutions in

reasonable time exists, this question will remain unanswered. For some problems, where

the answers were known, DCM did produce minimal results. The complexity is too high

for any four-valued function with more than 5 inputs. The search for better, or additional,

heuristics to be used in the DCM algorithm continues.

It may be possible to improve the heuristics used by the directed search algorithm.

Other ways to limit the growth of the expansion trees have been investigated. Limiting the

size of the expansion tree was ttre best alternative.

The initial list of terms presented to the RCM procedure is unordered. Through

observation it was found that the order in the list has an effect on the efficiency of the

algorithm. Clearly it is advantageous to generate the essential and pseudo-essential prime

implicants first. Moreover, if the function contains disjoint cycles, it is beneficial to detect

and solve them independently.

Testing is an important facet of digital logic design. The generation of test vecrors

has traditionally been divorced from the minimization process. Each product term in a

sum-of-products expression which has been minimized using the RCM algorithm has an

associated list of intersecting terms. This information is valuable for the generation of test

vectors. Further research is needed to fully exploit this information.

-151 -

Appendix A

In this appendix, it will be shown that any function with multiple-valued inputs and ouçuts

can be mapped into a set of binary-valued functions with multiple-valued inputs. Note that

the definitions of literals and product terms are, of necessity, different from those used in

the body of the thesis.

Let X = {x1,x2, . . .,xn} be a set of n input variables. Define the set P = { l, 2, . .

R - 1] which represents the values that the variable xi can assume. An R-valued function

/is a mapping

fP*Px..xP-+P

Let x¡ be an input variable and let S¡ be a subset of P. The literal function is defined

as follows:

S.I

I

Aproduct term

{
R-1

Lo
if x.I

if x.
1

S.
I

S.
I

S,
cxl

s,
x2-

S
n...x n

isdefinedto betheminimumof theliterals andtheconstanrc e {1,2... R- 1}. If aterm

contains Si = P the term is said to be independent of xi. An independent variable may be

omitted from the term. The sum of product tenns is defined to be the maximum of the

tefins. Any function can be written as a sum-of-produ.cts.

Let c¡¡Q¡¡ be a product term where Qii = xrSi¡ r xrsij2. . . *nsij,, and c¡¡ = j. Any

152 -

sum-of-productscanbewritteninthefollowingform: l(Qrr+QZr+...+Qq1r)+Z(Qtz

+Qzz+... + Qq2z) +...+R- l(Q1r_t *Qzr_r +... +Qr_rr_r). NotethatQli+

Qzi + . . . + Qqii is a binary function, since it can take on either the value 0 or R - 1.

To find the minimal expression for i(Q1¡ + Qzi + . . . + Qq¡i) the ON-set will consist

of all minterms which are equal to i; the OFF-set will contain all minterms which are less

than i; the DC-set is the union of the DC-set of the function and all minterms which are

greater than i. Therefore, the minimization of an R-valued function is equivalent to the

minimization of R - 1 multiple-valued input, binary oulput functions.

-153-

R.EF'ER.ENCES

tABDS6l M. H. Abd-El Ban, Z. G. Vranesic, and S. G. Z*y, "Synrhesis of MVL
functions for CCD implementafion," Proceedings of the l6th International
Symposíum on Multiple-Valued Ingíc, May 1986, pp. 116 - 727.

[ALL84] C. M. Allen and D. D. Givone "The Allen-Givone implementation oriented
algebra," in Computer Science and Multiple-Valued Logic, D. C. Rine Ed.,
2nd Ed., North Holland, New York T984, pp. 268 - 288.

[BAR61] T. C. Bartee, "Computer design of multiple-output logic networks," IRE
Transactions on Electronic Computers,Yol. EC-10, 1961, pp. 21 - 30.

[BEN85] E. A. Bender, J. T. Butler, and H. G. Kerkhoff, "Comparing the SUM with
the MAX operator for use in four-valued PLA's," Proceedings of the Líth
Internatíonal Symposium on Multiple-Valued Logic, May 1985, pp. 30 - 35.

[BES79] P. W. Besslich, "Anatomy of Boolean-function simplification," Computers
and DigitalTechniques, Vol. 2, No. 1, February 1979,pp.7 - 12.

[BES83] P. W. Besslich, "Efficient computer methd for EXOR logic design," IEE
Proceedings, Vol. 130, Part E, November 1982,pp.203 - 206.

[BES86] P. W. Besslich, "Heuristic Minimization of MVL functions: a direct cover
approach," IEEE Transactíons on Computers, Vol. C-35, February 1986, pp.
r34 - 144.

[BES87] P. V/. Besslich and H. Bässmann, "Synthesis of exclusive-OR logic functions
using spectral techniques," preprint.

[BRA82] R. K. Brayton, J. D. Cohen, G. D. Hachtel, B. M. Trager, and D. Y. Y. Yun,
"Fast recursive Boolean function manipulation," Proceedings of the 1982
Internat¡onal Symposíutn on Circuits and System.s, 1982, pp. 58 - 62.

[BRA84] R. K. Brayron, G. D. Hachtel, c. T. McMullen, and A. L. sangiovanni-
Vincentelli, Logic Minímization Algoríthms for VLSI Synthesis, Kluwer
Academic Publishers, Boston, 1 884.

[BUT88] J. T. Butler, private communication.

ICIIATBI A. K. Chandra and G. Markowsky, "On the number of prime implicants,"
Discrete Mathematics 24,1978, pp. 7 - ll

-r54-

[COM84] D. J. Comer, Digital Logíc and State Machíne Design, Holt, Rinehart and
Winston, New York, 1984.

tDAGS6l M. R. Dagenais, V. K. Agarwal, and N. C. Rumin, "McBOOLE: A new
procedure for exact logic minimization," IEEE Transactions on Computer
Aíded Design, Vol. CAD-S, January 1986, pp.229 - 238.

tDUES6l G. w. Dueck and D. M. Miller, "A 4-valued PLA using the MODSIJM,"
Proceedtngs of the l6th Internatíonal Symposium on Multþte-Valued Logic,
May 1986, pp.232 - 240.

IDUESTI G. W. Dueck and D. M. Miller, "A direct cover MVL minimization using the

truncated sum," Proceedings of the lTth International Symposium on Multiple-
Valued Logic, May 1987, pp.22l - 226.

IDUESSI G. W. Dueck and D. M. Miller, "Directed search minimization of multiple-
valued functions," Proceedíngs of the lSth lfiernational Symposíum on
Multiple-Valued Logic, May 1988, pp. 218 - 225.

[DUN59] B. Dunham and R. Fridshal, "The problem of simplifying logical expressions,"
The Journal of Symbolic Logic, Yol.24, Ma¡ch 1959, pp. 17 - 19.

IETISSI D. Etiemble and M. IsraëI, "Comparison of binary and multivalued ICs
according to VLSI criteria," Computer, April 1988,pp.28 - 42.

[FLE75] H. Fleisher and L. I. Maisel, "An introduction to array logic," IBM Journal of
Research and Development,March 797s,pp. 98 - 109.

[HON74] S. J. Hong, R. G. Cain, and D. L. Ostapko, "MIM: A heuristic approach for
logic minimization," IBM Journal of Research and Developmenf, September
1974,pp.443 - 458.

[HUR84] S. L. Hurst, "Multiple-valued logic - Its status and its future," IEEE Trans-
actíons on Computers, Vol. C-33, December 1984, pp. 1160 - 1,179.

tHURS6l S. L. Hurst, "A survey: developments in optoelctronics and its applicability to
multiple-valued logic," Proceedíngs of the l6th International Symposium on
Multiple-Valued Logic, May 1986, pp. 179 - 188.

[IGA79] Y. Igarashi, "An improved lower bound on the Maximum number of prime
implicants," The Transactíons of the IECE of Japan, Vol. E62, June 1979, pp.
389 - 394.

[JoH87] E. L. Johnson and M. A. Karim, Digital Desígn A Pragm-atic Approach, pws,
Boston, 1987.

-155-

[KAM88] M. Kameyama, S. Kawahito, and T. Higuchi, "A multiplier chip with multþle-
valued bidirectional cunent-mode logic circuits," Computer, April 1988, pp.
43 - 56.

[KAR53] M. Karnaugh, "The map method for synthesis of combinational logic circuits,"
NEE Transactíons, part I Communícation and Electronics, Vol. 72, November
1953, pp. 593 - 599.

[KER82] H. G. Kerkhoff and H. A. J. Robroek, " The logic design of multiple-valued
logic functions using charge coupled devices," Proceedíngs oÍ the l2th
Interrntional SymposiuÍn on Multiple-Valued Logic, May 1982,pp.34 - 44.

[KER86] H. G. Kerkhoff and J. T. Butler, "Design of a high-radix programmable logic
array using profiled peristaltic charge-coupled devices," Proceedings of the
I6th Internatíonal Symposíum on Multíple-Valued Logíc,May 1986, pp. 128 -
136.

tKERS4l H. G. Kerkhoff, "Theory, design and applications of digital charge-coupled
devices," Ph.D. Thesis, University of Twente, Enschede, Netherlands, 1984.

[LEE83] J. K. Lee and J. T. Butler, "Tabular methods for the design of CCD multiple-
valued circuits," Proceedings oÍ the l3th Internatíonal Symposium on
Multiple-Valued Logíc, May 1983, pp. 162 - 170.

MCC56I E. J. McCluskey, "Minimization of boolean functions," The BelI System
Technical fournal, November. 1956, pp. l4l7 - 1444.

tMCCTgl E. J. McCluskey, "Logic design of multivalued I2L logic circuits," IEEE
Transactions on Computers, Vol. C-28, August 1979,pp.546 - 559.

[MCM86] C. McMullen and J. Shearer, "Prime implicants, minimum covers, and the
complexity of logic simplificatlon," IEEE Transactions on Computers, Vol. C-
35, August 1986, pp. 761 - 762.

tMILTgl D. M. Miller and J. C. Muzio, "On the minimization of many-valued
functions," Proceedings of the 9th International Symposium on Multiple-
Valued Logic,May 1979, pp. 294 - 299.

[MOR70] E. Morreale, "Recursive operators for prime implicant and iredundant normal
form determination," IEEE Transactions on Computers, Vol. C-19, June
1970, pp. 504 - 509.

[MOT60] T. H. Mott, "Determination of the irredundant normal forms of a truth function
by iterated consensus of the prime implicants," IRE Transactions on Electronic
Computers, June 1960, pp. 245 - 252.

- 156-

tMUL54l D. E. Muller, "Application of Boolean algebra to switching circuit design and
error detection," IRE Transactíons on Electronic Computers, September 1954,
pp.6 - 12.

[MUZ86] J. C. Muzio and T. C. Wesselkamper, Multíple-Valued Swítchíng Theory,
Adam Hilger, Boston, 1986.

[PAP79] G. Papakonstantiou, "Minimization of modulo-2 sums of products for
switching functions," IEEE Transactions on Computers, Vol. C-28, February
1979, pp. 163 - 167.

[POM81] G. Pomper and J. R. Armstrong, "Representation of multivalued functions
using the direct cover method," IEEE Transactions on Computer¡ Vol. C-30,
September 1981, pp. 674 - 679.

[POS21] E. L. Post, "Introduction to a general theory of elementary propositions,"
American Journnl of Mathematics,Yol. 43, lgzl,pp. 163 - 185.

tQUI52l W. V. Quine, "The problem of simplifying truth functions," American
Mathemntical Monthly, Vol. 59, October.1952,pp.52l - 531.

tQUI55l W. V. Quine, "A way to simplify truth functions," American Mathematícal
Monthly, Vol. 62, November. 1955, pp.627 - 631.

[REE54] I. S. Reed, "A class of multiple-error-correcting codes and the decoding
scheme," IR E Trans actíons on I nformntion T heory, IT -4, 19 54, pp. 38 - 49.

[RED72] S. M. Reddy, "Easily testable realizations for logic functions," IEEE
Transactíons on Computers,C-21, November 1972,pp.1183 - 1188.

[R[IY77] V. T. Rhyne, P. S. Noe, M. H. McKinney, and U. W. Pooch, "A new
technique for the fast minimization of switching functions ," IEEE Transactions
on Computers, C-26, August 1977,pp.757 - 764.

[RUD87] R. Rudell and A. L. Sangiovanni-Vincentelli, "Multiple-valued minimization
for PLA optimization," Proceedings of the lTth lwernational Sympostum on
Multiple-Valued Logìc, May 1987, pp. 198 - 208.

tSALTgl K. K. Saluja and E. H. Ong, "Minimization of Reed-Muller canonic
expansion," IEEE Transactíons on Computers, Vol. C-ZB, June 1979, pp. 535
- 537.

[SAS78] T. Sasao, "An application of multiple-valued logic to a design of programmable
logic arrays," Proceedings of the \th International Symposíum on Multíple-
Valued Logíc,May 1978, pp. 65 - 72

-157-

[SAS86a] T. Sasao, "On the optimal design of multiple-valued PLA's," Proceedíngs of
the 16th International Symposium on Multiple-Valued Logic, May 1986, pp.
2r4 - 223.

lsASs6bl T. Sasao and P. V/. Besslich, "On the the complexity of MOD-2 sum PLA's,"
Technical Paper FTS86-17, Institute of Electronics, Communication and
Information Engineering of Japan.

M. Serra, "Directed search minimization of multiple-output networks," M.Sc.
Thesis, University of Victoria, available as Technical Report DCS-42-IR,
University of Victoria, Deparrnent of Computer Science, May 1984.

V/. R. Smith III, "Minimization of multivalued functions," in Computer
Science and Multíple-Valued Logíc, D. C. Rine Ed., 2ndFd,., North Holland,
New York 1984,pp.227 - 267.

S. Y. H. Su and P. T. Cheung, "Computer simplification of multi-valued
switching functions," in Computer Scíence and Multíple-Valued Logic, D. C.
Rine Ed., 2nd Ed., North Holland, New York 1984, pp. 195 - 226.

P. Tirumalai and J. T. Butler, "On the realization of multiple-valued functions

using CCD PLA's," Proceedings of the l4th Internatíonal Symposíum on
Multiple-Valued Logíc, 1984,pp.33 - 42.

P. Tirumalai and J. T. Butler, "Analysis of minimization algorithms for
multiple-valued programmable logic arrays," Proceedings of the ISth
Internntíonal Symposium on Multiple-Valued Logic,1988, pp.226 - 236.

P. Tison, "Generalization of consensus theory and application to the mini-
mization of boolean functions," IEEE Transactions on Electronic Computers,
Vol. EC-16, August 1967,pp. 446 - 456.

Z. G. Vranesic, E. S. Lee, and K. C. Smith, "A many valued algebra for
switching systems," IEEE Transactions on Computers, C-19, October 1970,
pp.9& - 971.

X. Wu, X. Chen, and S. L. Hurst, "Mapping of Reed-Muller coefficients and
the minimisation of exclusive OR-switching functions," IEE Proceedings, Vol.
129,PartE, January 1982, pp. 15 - 20.

[sER84]

lsMrs4l

[su84]

lrrRs4l

[rrR88]

trrs6Tl

[vRA70]

lwu82l

lTIAS4l Y.Z.Zhang and P. J. W. Rayner, "Minimisation of Reed-Muller polynomials
with fixed polarity," IEE Proceedíngs, Vol. 131, Part E,September 1984, pp.
r77 - 186.

158

