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ABSTRACT

The objective of logic minimization is to find a representation which lends itself to cost
effective implementation. In this thesis new algorithms for the minimization of multiple-
valued logic functions are presented.

Any binary multiple-output problem can be transformed into a multiple-valued
function. Therefore, the binary multiple-output problem can be solved by the techniques
described in this thesis. Similarly, any multiple-valued multiple-output can be transformed
into a single multiple-valued logic function. The thesis thus covers the complete spectrum
of logic minimization.

In some technologies, the truncated SUM operator is easier to implement than the
more commonly used MAX operator. Due to the increased complexity associated with the
truncated SUM operator, exact minimization is not feasible. A new direct cover algorithm
for minimization with the truncated SUM is presented. Two heuristics are used by the
proposed algorithm. First, the most isolated minterm is selected to be initially covered.
Second, for each implicant which contains the chosen minterm the break count reduction is
calculated. The implicant with the best break count reduction is chosen to be part of the
solution.

Directed search minimization integrates the choice of the minimal cover into the prime
implicant generation process. An extension of the directed search algorithm to
accommodate multiple-valued logic function is described. The major drawback of the
directed search algorithm is that it starts with a list of minterms. Often a sum-of-products
expression, where the product terms are not necessarily minterms, is available.

A new binary recursive consensus algorithm which starts with a sum-of-products
expression is presented. The order in which product terms are generated is different from
the traditional iterated consensus. In addition, information on the intersection between
product terms is kept. These two changes facilitate the early detection of essential and
pseudo-essential prime implicants. Moreover, the algorithm is adapted to handle multiple-
valued logic functions. The algorithm combines the advantage of starting from a list of
terms and detection of essential prime implicants while generating prime implicants.

Finally, it is shown how the algorithms can be adapted to minimization with window
literals. Window literals appear more frequently in the literature and are often easier to

implement.
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Chapter 1
INTRODUCTION

1.1 MOTIVATION
The applications of digital systems are evident in our everyday lives, from digital alarm
clocks to satellite communications — life without digital systems is difficult to imagine. As
the list of possible applications grows daily, design methodologies become more important.

Digital systems accept input signals and produce output signals according to some
functional specification. The outputs can be used to control other systems. They are
classified under two headings: combinational systems and sequential systems. The outputs
of a combinational system are a function of its inputs, i.e., the outputs are at any time
uniquely determined by the current inputs. The outputs of a sequential system depend on
the current inputs as well as previous inputs. The system then has the capability of
remembering previous inputs. Any sequential system can be represented as a
combinational system plus a memory.

The top-down design methodology is widely used in the design of software systems.
The main thrust of top-down design is to break a large problem into several smaller
problems. Successive refinement continues until all remaining tasks are well understood
and easily implemented. Comer [COM84] describes how this design methodology can be
applied to the design of digital systems. The overall system, described by a set of
specifications, is decomposed into modules. These modules should be as independent as
possible.

Control modules can be realized as state machines. A state machine is a sequential
system which can be described in terms of a set of states that the system may enter. A state

machine consists of a memory which remembers the current state and two combinational
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systems. The combinational systems are the input forming logic, which also determines
the next state, and the output forming logic. The general model of a state machine is shown
in Figure 1.1 [COMS84]. The design of combinational systems is an integral facet of the

design of sequential systems.

Inputs

Output:
Input > Output £>

forming forming

logic :> Memory logic

Figure 1.1 General model of a state machine.

The behaviour of a combinational system can be described by a truth table where each
input combination is listed with the corresponding outputs. The table for an n-input binary
function consists of 2" entries. For functions with large number of inputs, such a table is
not practical. A more concise representation must be found.

Boolean algebra can be used to represent logic functions. The axioms and theorems
of Boolean algebra can be used to manipulate logic functions, with the objective of finding
a better representation. Applying Boolean algebra in an ad-hoc fashion is not effective.
Much experience in needed, and it is not clear when a minimal expression has been
reached. A systematic approach is required.

The objective of logic minimization is to find a concise representation which lends
itself to the most cost-effective implementation. Minimization of logic functions is thus an

important step in the design of integrated circuits. Traditionally, cost has been measured in
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terms of the number of discrete components, but chip area and speed performance are now
the dominant factors. Minimization is a classic problem in logic design. Numerous
algorithms have been proposed for the minimization of binary logic function.

It is known that binary minimization belongs to the class on NP-complete problems.
Therefore, in general, the exact minimization of logic functions is not feasible.
Nevertheless, exact minimization algorithms may work very well for specific functions. A
number of heuristic minimizations have been proposed. These algorithms produce minimal
or near minimal results.

The ever increasing demand on the implementation of complex systems on a single
chip is pushing very-large-scale-integration (VLSI) to its physical limits. About 70 percent
of a typical VLSI chip is devoted to the connection among devices. Therefore, any
reduction in the interconnection area will result in a significant compaction of the chip area.
With the use of multiple logic levels (multiple-valued logic), in contrast to the traditional
two levels (binary logic), a substantial reduction in the interconnection area can be
achieved.

Moreover, multiple-valued logic (MVL) offers a solution to the pin-out problem since
more information can be carried on each pin of the chip. For example, a four-valued signal
carries twice the information carried by a binary signal. Also, the MVL realization of a
function often produces a more compact circuit.

Currently, the application of MVL is limited to very few industrial situations. Several
implementations of multiple-valued memories have been used in industrial chips. A fast,
concise multiplier chip using multiple-valued logic has been implemented [KAMS8].
Continued research in optoelectronics may produce new device structures which employ
multiple-valued logic [HURS6].

The minimization of binary logic functions has been extensively studied and the
problem is well understood. Multiple-valued logic offers a rich set of operators, this in

turn makes the minimization process more difficult. A subset of the possible operators
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must be chosen carefully. The algebra used to represent multiple-valued logic functions
must meet two criteria. First, the implementation of the operators in the target technology
must be economical. Second, the expressions in the given algebra must be easy to
manipulate.

Structured implementations of complex multiple-valued circuits will likely replace
random logic. This is evident in the binary domain where programmable logic arrays
(PLAs), read only memories (ROMs), and multiplexors (MUXs) are now widely used.
The use of regular structures simplifies the design process. The minimization algorithms
presented in this thesis are suitable for PLA implementation, i.e., they produce a minimal
or near minimal sum-of-products expression.

It has been shown that binary PLA optimization is a special case of multiple-valued
logic minimization [SAS78]. Therefore, the algorithms presented in this thesis can also be
applied to binary multiple-output problems.

A standard representation of MVL functions has not yet evolved. Therefore, several
operators and literals can be used in the representation of a multiple-valued function.

The aim of this thesis is to provide a comprehensive treatment of multiple-valued
logic minimization. Different literals and operators will be considered. A number of new
algorithms are presented.

The proposed algorithms have the following characteristics:

1) They are suitable for computer implementation. Computer aided
design (CAD) is becoming increasingly important in the manufacturing of
integrated circuits. A minimization program performs one task of the overall
design which is integrated into the CAD software. The reliability is increased
by reducing the human factors.

2) They employ simple heuristics. As mentioned before, exact
minimization is not feasible. The heuristics are easily understood and simple

to program. Some assurance of the quality of the results (i.e. the degree of
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minimality) of the heuristics is provided.

3) Results are given in sum-of-products form. Minimal sum-of-
products expressions are needed in binary PLA optimization. Random logic,
which can be used successfully with a small number of inputs, will eventually
be replaced by structured implementations (PLA-like structures). At the
moment, this seems to be the most promising approach.

4) The algorithms are extendible to accommodate window literals.
It is not yet clear which literals are the most suitable for MVL implemen-
tations. The possibility of extending an algorithm from one literal operation to
another one, kindles the hope, should a new literal operation come into

favour, the algorithm can be adapted accordingly.

1.2 ORGANIZATION OF THE THESIS

In Chapter 2, binary and multiple-valued logic minimization algorithms are reviewed.
Examples are given to illustrate those algorithms which form the basis for the research
presented in Chapters 3 to 6.

In some technologies, the SUM operator is easier to implement than the more
common MAX operator. In Chapter 3, a new algorithm for truncated SUM minimization is
introduced. The algorithm makes use of break counts to measure the relative complexity of
a function.

Directed search minimization [RHY77] integrates the selection of a minimal cover into
the prime implicant generation process. In Chapter 4, the binary directed search
minimization algorithm is extended to handle multiple-valued functions.

A new consensus algorithm for the minimization of binary logic functions is
presented in Chapter 5. Further, it is shown how the algorithm can be extended to

accommodate multiple-valued logic functions.
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All algorithms presented in Chapters 3 to 5 make use of the generalized literal
function. However, in some technologies the window literal is easier to implement. In
Chapter 6, the minimization algorithms introduced in Chapters 3 to 5 are extended to handle
window literals.

All the algorithms have been implemented (in APL or Pascal). Empirical results
concerning the performance of the implementation are presented in the corresponding

Chapters.

1.3 NOTATION AND DEFINITIONS

Definition 1.1. Letp;,i=1,2,.. ., n, be positive integers representing the number of
values for each of n variables. Define the set P; = {0, 1, . ., p;- 1},i=1,2,...,n,tobe
the p; values that the ith variable may assume. Define the set B = {0, 1, *} to be the
possible values of a binary valued function (* denotes a don't-care condition). A multiple-

valued input, single binary-valued output function f is a mapping
fPyxPyx...x P, —>B

The function f has n multiple-valued input variables. The ith variable can take one of

p; possible values.

Definition 1.2. The radix of a function is defined to be the maximum value of p;,i=1,

2,..,n, and is denoted R. A function with radix equal to two is said to be binary.
Definition 1.3. Each element in the domain of fis a minterm of the function.

Definition 1.4. An enumeration of all minterms with the corresponding value of the

function is a truth table.

Definition 1.5. A don't care minterm (represented by * € B) is one for which the
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function value is allowed to be either 0 or 1. Hence, functions may be incompletely

specified.

Definition 1.6. The set of all minterms which evaluate to one is called the ON-set.
Similarly, the OFF-set contains all minterms which evaluate to zero. The set of all

minterms which are don't-cares is called the DC-set.

Definition 1.7. Let X be a variable which can take values from the set P;, and let S;bea

subset of P;. The literal operation is defined as follows:
s, \[ r-1  ifxe S,
1 1

Lo ifx. e 8.
1 1

r is the size of the range of the literal operator. Note for the binary output case r = 2 and the

literal operator becomes:
s, { 1 ifxe S
1 1 1
0 if x.¢ S.
1 1
For a binary function, xi1 will be written as x, and x? will be written as ;ci .
Definition 1.8. A product term is the Boolean product (AND) of literals.

If a product term evaluates to 1 for a given minterm, then the product term is said to

contain the minterm.

Definition 1.9. A product term is an implicant of the function fif f is nonzero for all

minterms contained in the product term.

Definition 1.10. A prime implicant of the function fis an implicant which is not itself
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contained in any other implicant of f.

Definition 1.11. An essential prime implicant is a prime implicant which contains at

least one minterm which is not contained in any other prime implicant.

Definition 1.12. Prime implicant PI; is said to be dominated by prime implicant PI, if

all the ON-set minterms included in PI; are also included in PL,.

Definition 1.13. A prime implicant PI is termed pseudo-essential if it contains a

minterm which is not contained in any other prime implicant which is not dominated by PL

Definition 1.14. A function is said to have a cycle if there exists a minterm which is
not included in an essential or pseudo-essential prime implicant. A function which contains

a cycle is said to be cyclic.

A multiple-valued output function can be transformed to a set of binary-valued output

functions as shown in Appendix A.



Chapter 2
PREVIOUS WORK

2.1 INTRODUCTION

A logic function maps a combination of input values to one or more output values. This
mapping can be represented in a variety of ways. A tmth table is the most straightforward
representation for a function. However, it is only feasible for functions with a small
number of inputs. The truth table for a binary function with n inputs has 2™ rows. For
functions with a large number of inputs a more compact representation must be found. The
truth table representation is inadequate for a direct implementation, unless the function is to

be implemented by a memory or a multiplexor.

ABCI|F
00010
001]|1
010fj0
011{0
10010
10141
110(0
1 11(1

Figure 2.1 Truth Table of a Binary Function.

The function F whose truth table is shown in Figure 2.1 can also be represented as a
sum-of-products where each product term covers exactly one minterm:

F = ABC + ABC + ABC



If one implements the above function without further analysis, two inverters, three 3-input
AND gates and one 3-input OR gate are required. By applying the laws of Boolean
Algebra to the function F we obtain the following simpler expressions

F = BC+AC 2.1

or

F = O +A) (2.2)

The direct implementation of (2.1) requires two AND gates, one OR gate, and one inverter,
whereas (2.2) can be implemented using one AND gate, one OR gate, and one inverter.
Both expressions yield a two-level network, but the second expression is in the product-of-
sums form. This simple example shows that the implementation cost of a logic function
depends on its representation.

The objective of logic minimization is to find a representation which lends itself to the
most cost effective implementation of the logic function. In addition, different constraints
such as a limit to the number of levels, a restriction to certain types of gates, the number of
fan-out lines of a gate, etc., may be imposed on the final expression. Each additional
constraint will increase the complexity of the minimization process.

When a function is implemented using discrete gates, the cost of realizing the function
is directly related to the number of gates and gate inputs used. A sum-of-products
expression can be easily implemented in a two-level AND-OR network. Programmable
logic arrays (PLAs) are widely used in VLSI design [FLE75]. A PLA consists of an AND
array which is used to realize the product terms of the function and an OR array which
combines the product terms. The cost of a PLA is directly related to the number of inputs,
outputs, and product terms. Since the number of inputs and outputs for a given function
are fixed, the cost is minimized by minimizing the number of product terms. Throughout

this thesis, only minimization methods suitable for PLA implementation will be considered.
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2.2 BINARY MINIMIZATION

Functions with a small number of inputs can be minimized by applying the laws of Boolean
Algebra in some ad hoc fashion. Experience is needed even to simplify functions with
only four variables. It is not always apparent that a minimal expression has been reached.
In general, functions with more than five variables are very difficult to minimize without a
systematic procedure.

Quine [QUIS52] has proven that a minimal sum-of-products Boolean expression
involves only prime implicants. This simplifies the minimization process since not all
implicants need be considered.

Karnaugh [KARS53] introduced a pictorial representation of a Boolean function, now
known as a Karnaugh map. Karnaugh maps aid the detection of prime implicants, as well
as the selection of a minimal sum-of-products expression. This method is suitable for the
minimization of logic functions with up to five or six input variables. Some 4-input
functions will be used to illustrate the use of Karnaugh maps.

A function can also be expressed by listing the ON-set. For a more concise notation,
each minterm in the ON-set is interpreted as the binary representation of an integer. For
example, the ON-set of the function shown in Figure 2.1 is {(0,0,1), (1,0,1),(1,1,1)}

which can be written as {1,5,7}. This is frequently written as F(x1,X9,X3) = Xm(1,5,7).

Example 2.1. Consider the function F(x{,X,x3,x4) = 2m(1,3,5,6,7,8,9,10,13,14).
The corresponding Karnaugh map! with its prime implicants is shown in Figure 2.2 (a).
The minimal sum-of-products expression is shown in Figure 2.2 (b). The prime implicants

of F are:

X1 %g0 B3Xyy XXXy, XXXy Xy XgXys X XXgs X X%y
The minimal sum-of-products expression is:

F(xl, Xy Xgp x4) = XXyt KXt XXXt X XX,

1 For clarity, the zero values of the function will be left as blanks on the Karnaugh map.
-11-



X1%2 , X1 %2 .
00 01 11 '10|

X3 X4 X3 X4
00 (D 00 1
ot [(L] )] 1 [\ orffal N 1]1)

11 kl (D 11 h__y
10 (W) 10 amin

(a) (b)

Figure 2.2 Karnaugh Maps for F(x1,X5,X3,x4) = 2m(1,3,5,6,7,8,9,10,13,14).

(a) all prime implicants, (b) the minimal cover.

With experience it is possible to find a minimal solution without considering all prime
implicants. Unfortunately, the minimal sum-of-products expression of a function is not

always unique. This is illustrated by the next example.

Example 2.2. Consider the function F(xi,X9,X3,X4) = 2>m(0,1,3,4,5,6,11,14,15)

(Figure 2.3). The four minimal sum-of-products expressions are:

@) F = X X3+ X XX, + XX, X, +§1§2x4
(11) F = )—(11_(3 + X X, X, + x2x3§4 +7—(1x3x4
(i) F = ')_(1323 + )_<1x3x4 + X XXy + x2x3;(4
@(iv) F =X X + X X%, + X XX, + X, X, X,
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*1%2 X} Xy
e\ 00 01 11 10 N\ 00 ,0L 11 10

oo |(1] 1) 00 |(1 |\
o [K o [\ 1/
No @i A NG
ol |D o @D

(a) (b)

Figure 2.3 A function with four minimal sum-of-products expressions.

(The shaded terms show alternatives.)

2.2.1 Traditional Minimization Techniques
Classical minimization algorithms start with the generation of all prime implicants, followed
by the selection of a minimal cover. Quine [QUI52,QUISS5] introduced a systematic
procedure to minimize a Boolean function. McCluskey [MCC56] refined the method
described by Quine. This algorithm is commonly known as the Quine-McCluskey
procedure.

In this procedure the generation of all prime implicants is based on the equality

Yxi + Y;(i =Y

where Y is an implicant of the function which does not involve x;. This relation is
systematically applied to a list of implicants until all prime implicants are generated.
Initially, the list of terms consists of all minterms.

To aid in prime implicant generation a positional notation is used for the product
terms. Each variable is denoted by 1, the complement of a variable is denoted by 0, and

any missing variable is denoted by a dash. Examples of this notation are given below:
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algebraic notation positional equivalent

X Xy Xa X, 0110
X, X, XgX, 0010
-)21x3x4 0-11

All possible pairs of terms must be compared to determine if a new implicant can be
generated from them. Two terms can be combined if they differ in exactly one position
which is not a dash. Clearly, the number of ones in both terms must differ by one. By
classifying the terms by the number of ones, the number of comparisons can be cut down
considerably. Initially, all minterms are grouped according to the number of ones in their
positional notation. Groups are separated by a horizontal line. See the example in Table

2.1.

F=2%>m(1,2,3,4,5,9, 11, 13, 15)
X1 XgX3Xy4
1 0001
2 0010
4 0100
3 0011
5
9
1

aaaaaaaaaaaaaaaa

0101
1001

1 1011
13 1101

groupd 15 1111

Table 2.1 Initial ordering of minterms.

A term from any group need only be compared with all minterms from the two

adjacent groups. If two terms combine, they are checked () to indicate they are covered
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by the generated term, and the new term is written in the next column. Note that a checked
term is still used to form new terms. The terms from two adjacent groups with k and k+1
ones, respectively, will generate terms with k ones in their positional notation. After all
terms have been compared, the procedure is repeated on the new column, until no new
terms are generated.

The second column of implicants in Table 2.2 was generated by combining minterms
from the first column. Group one in the second column was obtained by combining terms
from groups one and two from the first column. After all combinations of terms from
groups one and two from the first column have been tried, a horizontal line is placed below
the last term in column two, since all terms with a single one in their positional notation
have been produced. The same procedure is now performed with the terms from groups
two and three. Table 2.3 shows column three, which was obtained in a similar manner.

Since no pair of terms in column three may be combined, the procedure stops.

F=2>m(1,2,3,4,5,9, 11, 13, 15)

I I
X1X2X3X4 X1X2X3X4
1 0001V 1,3 00-1
goupl 2 0010vV 1,5 0-01
4 0100V 1,9 -001  groupl
"""""" 3 001 1V 2,3 001 -
group2 5 0101+ 4,5 010-
9 1001V 3,11 -011 7T
""""""""" 11 1011V 5,13 ~101
gOUPS s 101+ 911 10-1  group?2
groupd 15 111 1V 9,13 1-01
11,15 1-11 77
1305 11-1 o

Table 2.2 List of implicants generated after pass 1.
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All terms that have not been checked are prime implicants. This is easy to see, since
they do not combine with any term of the same size to form a bigger term.

It is important to note that terms are not uniquely generated. For example, the prime
implicant (1,3,9,11) in column III of Table 2.3 is obtained in 2 ways, by combining (1,3)
and (9,11) and by combining (1,9) and (3,11). All four terms in column IT must be
checked. In general, a term in the ith column covers 2i-1 minterms and is generated i - 1

times. This problem cannot be avoided due to the exhaustive nature of the procedure.

F=2Ym(l,2,3,4,5,9, 11, 13, 15)

I I I
X1X2X3X4 X1X2X3X4 X1X2X3X4

1 0001+ 1,3 00-1+ 1,3,9,11 -0-1

2 0010V 1,5 0-01+ 1,5,9,13 --01

4 0100V 1,9 -00 1Y 9,11,13,15 1 --1

3 0011+ 2,3 001 -

5 0101+ 4,5 010 -

9 1001+ 3,11 -01 1+

11 1011+ 5,13 -10 1+

13 1101+ 9,11 10-1

15 1111+ 9,13 1-01+

11,15 1-11+
13,15 11-1+

Table 2.3 Generation of all implicants of F.

The Quine-McCluskey procedure is guaranteed to generate all prime implicants of the
function. The second step in the Quine-McCluskey minimization procedure is to find a
minimal cover from the generated list of prime implicants. The minimal sum-of-products

expression consists of the fewest prime implicants which cover all the minterms originally
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specified. To facilitate the choice of the minimal cover a prime implicant table is created
(e.g. Table 2.4). Each row of the table corresponds to a prime implicant and each column
to a minterm. A single X in any column identifies an essential prime implicant. Essential
prime implicants are marked with a star in the table. Since all essential prime implicants
must be part of the minimal cover, they are added to the solution and removed from the
prime implicant table. All minterms which are covered by the essential prime implicants are
also removed from the table, since they need not be covered again (Table 2.5). The table is
now reduced to those minterms which have not yet been covered. In the example shown in
Table 2.5, only minterm 1 needs to be covered. Either term (1,3,9,11) or (1,5,9,11) can

be used to complete the cover.

1 23 45 911 13 15

2,3 ® x *

4,5 ® x *
1,3,9,11] x X X X
1,5,9,11] x X X X

9,11,13,15 X x ® ® |*

Table 2.4 Prime implicant table for F = ¥m(1,2,3,4,5,9,11,13,15).

1 2 3 4 5 9 11 13 15

2,3 Bk *

4,5 H—k *
1,3,9,11} x X X X
1,5,9,11] x K X X

9,11,13,15 S—D |*

Minimal sum F = }(2,3),(4,5),(9,11,13,15),(1,3,9,11) or
F= )_(1)_<2x3 +§1x2)_<3 + X X, + >—(2x4

Table 2.5 Prime implicant table after essential prime implicants are removed.
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The selection of a minimal cover is not always as straightforward as in the example
above. A logic function may have no essential prime implicants. This makes the selection
of a minimal cover more difficult, since it is not obvious which prime implicants are part of
a minimal solution. This problem can be solved by two means: algebraic or heuristic.
With the use of the heuristic approach, a minimal cover is no longer guaranteed. The
algebraic solution, on the other hand, will often require a great deal of computation, but it

guarantees a minimal cover. McCluskey evaluates both approaches in [MCC56].

Example 2.3. Consider the function F(xq,x3,x3) = >m(1,2,3,4,5,6). The prime
implicant generation is shown in Table 2.6. The prime implicant table (Table 2.7) has more
than one cross in each column. Such a prime implicant table is said to be cyclic (Definition
1.13). The cycle can be broken by selecting one prime implicant to be part of the solution
(Table 2.8). Prime implicant (2,6) dominates (2,3) and prime implicant (4,5) dominates
(1,5). After removing the dominated prime implicants (Table 2.9) only three prime
implicants remain — two of them are essential. Finally, the solution of the given function
is

F = X Xy + X Xy + X, X,

- 18 -



F=Ym(1,2,3,4,5,6)

I I

X1 XyXg X1XoX3
1 001V 1,3 0-1
2 010+ 1,5 ~01
4 100 2,3 01 -
3 011+ 2,6 ~10
5 101+ 4,5 10 -
6 110+ 4,6 1-0

Table 2.6 Prime implicant generation for the function used in Example 2.3.

1 2 3 4 5 6
1,3 ]x X
1,5 |Ix X
2,3 X X
2,6 X X
4,5 X X
4,6 X X

Table 2.7 Prime implicant table for F(x,X9,x3) = 2m(1,2,3,4,5,6).

1 2 3 4 5 6

1,3
1,5 |x X
2,3 X X
2,6 X X
4,5 X X

4,6 X X

Table 2.8 Prime implicant table after selecting the product term 1,3.
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2,6 I® X *
4,5 x ® *
4,6 X X

Table 2.9 Prime implicant table after removing dominated prime implicants.

The Quine-McCluskey procedure can easily be automated. The generation of prime
implicants can be efficiently implemented. By selecting the correct representation, the
combining of terms requires only a few simple operations. Nevertheless, there are some
drawbacks.

First, the starting point must be a list of minterms. This is particularly inconvenient if
the function to be minimized is given as a sum-of-products expression where some terms
are actually prime implicants. The procedure must expand the terms into minterms, and
then build or perhaps rebuild the prime implicants. Second, if there are don't-care
conditions in the original specification, these must be treated as true minterms during the
prime implicant generation (see Example 2.4). This may cause some don't-care prime
implicants to be generated, i.e. all minterms covered by a prime implicant may be don't-
care minterms. The don't-care minterms will not appear in the prime implicant table, and

this may result in some empty rows.

Example 2.4. Consider the function F(x1,X,X3,%4) with ON-set = {5,6,7} and DC-set
= {1,3,10,13,14}. The minterms in the DC-set must be considered for prime implicant
generation (Table 2.10). Prime implicant (10,14) only covers don't care minterms, and
this results in an empty row in the prime implicant table (Table 2.11 (a)). After removing
all dominated prime implicants only two essential prime implicants remain. The minimal

sum-of-products is
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1
X XpXqXy

000 1Y

AN N W e

0011+
0101+
0110V
1010V

13
14

0111+
1101+
1110V

Table 2.10 Prime implicant generation for Example 2.4.

1,3,5,7
5,13
6,7
6,14
10,14

I
X1X2X3X4
1,3 00-1+
1,5 0-01+
3,7 0-11+
5,7 01-1v
5,13 -101
6,7 011 -
6,14 ~110
1014 1-10

1,3,5,7
6,7

1,3,5,7

I

5 6
®
®
(b)

Table 2.11 Prime implicant tables for Example 2.4.

(a) all prime implicants, (b) without dominated prime implicants.

X1X2X3X4

0--1

Quine [QUIS5S] developed a second method to obtain all prime implicants of a

function. This method is known as iterative consensus.

Several authors [MOT60]

[TIS67] improved this method. A major difference between the iterative consensus and the

Quine-McCluskey procedure is the starting point. The iterative consensus starts with a list
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of terms which cover the function. The terms in the sum-of-products expression are not
necessarily minterms or prime implicants.
The method is an iterative application of the consensus of two terms:

Px. + Qx, = Px, + Qx, +PQ

where P and Q are product terms which do not involve the literal x;. PQ is the consensus

of the two other terms.

Definition 2.1 The consensus of two terms is said to be empty if they differ by more

than one literal.

Definition 2.2 The consensus of two terms is said to be degenerate if it is covered by

one of the terms.

Algorithm: [terated consensus to generate all prime implicants of the

function F.

1) remove any term which is covered by another term;

2) find the first pair of terms which produces a nondegenerate nonempty
consensus Q;

3) remove all terms in the list which are covered by Q;

4) if Qis not covered by any term in the list, add it to the end of the list;

5) find the next pair of terms whose consensus is nondegenerate and
nonempty, and go back to step 3; if no such pair can be found the procedure

terminates.

Once the set of prime implicants has been found, a minimal cover must be selected.
The selection process is identical to the one used in the Quine-McCluskey procedure.
Generating the list of all prime implicants by iterated consensus offers significant

advantage, since not all implicants of the function are necessarily generated. In fact, if all
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of the prime implicants are initially given, only a single pass is needed to recognize this. If
the iterated consensus is applied to a list of minterms, it proceeds as the Quine-McCluskey
method. In this case, it may actually be slower, since the terms are not ordered and pairs
which obviously do not combine must be checked.

More powerful algorithms for the generation of prime implicants have been
developed. Morreale [MOR70] has presented recursive operators for prime implicant
generation. Brayton et al. [BRA82] describe recursive paradigms for manipulating
Boolean functions. With the use of heuristics they developed an efficient algorithm for the
generation of prime implicants. These algorithms are used in the minimization procedures
of Espresso and McBoole (see Section 2.2.3 and 2.2.4).

However, there exist functions which have a large number of prime implicants.
Dunham and Fridshal [DUN59] have shown that the number of prime implicants of a
Boolean function can be prohibitive. Igarashi [IGA79] presented an improved lower
bound on the maximum number of prime implicants. For example, there exists a function
with 10 input variables with 792 minterms in the ON-set and 4,200 prime implicants. The
corresponding prime implicant table has 4,200 rows and 792 columns. Storage and
manipulation of such a table becomes a serious problem, even on powerful computers.
Functions with 20 input variables can have as many as 133,334,440 prime implicants
[IGAT79].

Essential prime implicants are readily detected in the prime implicant table.
Unfortunately, some functions have no essential prime implicants. In fact, functions with a
large number of prime implicants tend to have very few essential prime implicants. The
functions mentioned above [DUNS56] [IGA79] have no essential prime implicants. This
makes the manipulation of the prime implicant table even more difficult, particularly if a

minimal cover is to be found, as opposed to a near-minimal solution.
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2.2.2 Directed Search Minimization

In 1977, Rhyne, Noe, McKinney, and Pooch [RHY77] proposed the directed search
algorithm (DSA) for the minimization of single-output binary functions. The cover
selection is integrated into the prime implicant generation process. Ideally, only those
prime implicants should be generated which are part of the final cover. During the prime
implicant generating process, the DSA recognizes essential and pseudo-essential prime
implicants. Not all prime implicants are necessarily generated and, typically, the actual
number is a small fraction of the total number of prime implicants. The DSA is able to
detect cycles but, unfortunately, it does not resolve them. Standard cycle resolution

methods or heuristics must be used.

Definition 2.3. Two minterms are said to be adjacent if they differ in exactly one

literal.

For convenience minterms are represented by a binary number with x; being the most
significant bit. The binary representations of two adjacent minterms differ in exactly one
bit. Two minterms m; and m; are adjacent if the following two conditions are satisfied:

1) ABS(m; - my) = 2K for some integer k;

2) AND(my, m;) = MIN(my, m;).
where AND is the bitwise Boolean and function, ABS is the absolute value function, and

MIN is the minimum function.

Definition 2.4. The set of directions of adjacency from the minterm my is defined as the
signed integers {£ 2k 1k =0, 1, 2.. n-1} which, when added to the decimal value of m;

give all adjacent minterms of my;.

Definition 2.5. A required adjacency direction, RAD, is an adjacency direction which

leads a minterm in the ON-set to either a minterm in the ON-set or the DC-set.
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Example 2.5. Consider the following 4 variable function with ON-set = {2,5,6,7,9,13}
and DC-set = {0,8,11,14,15}. The list of RADs is:

minterm RADs

2 -2, +4
5 +2, +8

6 +1, -4, +8
7 -1,-2,+8
9 -1, 42, +4
13 +2, -4, -8

RADs are used as a starting point for the generation of prime implicants. The strategy
of the DSA is to select a minterm and expand it into larger implicants using its
corresponding RADs. Consider the expansion of minterm 7, shown in Figure 2.4.
Unsuccessful expansions, i.e. those which include a false minterm, are depicted with a
dashed arrow. All other leaf nodes contain prime implicants. In the above example

minterm 7 is covered by 2 prime implicants, namely (6,7,14,15) and (5,7,13,15).

AN

(6,7) (5.7)
) +8 +8
4,5,6,7) 6,7, 14, 15) (5,713, 15)

Figure 2.4 A pruned RAD tree.

The tree is created using a depth-first search. The tree can be pruned by ignoring
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every path whose RADs are a subset of the RADs on a path which has led to a prime

implicant. The RAD +8 is ignored at the root level, since +8 is part of a path which has led

to a prime implicant already.

A detailed description of the directed search algorithm follows.

Algorithm: Directed search minimization of a single-output binary

STEP 1
STEP 2

STEP 3

STEP 4

function.

Compute the RADs for all minterms in the ON-set.
Select the minterm with the fewest number of RADs from the ON-set and
construct a pruned RAD tree. Remove any dominated prime implicants. The
minterm with the fewest RADs is selected for two reasons:
1) the size of the RAD tree is kept small;
2) there is a higher probability of detecting an essential or pseudo-essential
prime implicant.
The algorithm terminates if there are no more minterms in the ON-set.
If the current RAD tree contains an essential or pseudo-essential prime implicant
(i.e. one that is the only cover of an expanded minterm), add it to the solution;
remove all minterms covered by the added term from the ON-set, add them to the
DC-set and remove any dominated prime implicant.
Iterate step 3 until either the current RAD tree has no more prime implicants, in
which case go to step 2, or no more essential prime implicants can be found, in
which case go to step 4.
Select the minterm with the fewest RADs which meets the following criteria:
o it is in the ON-set;
» it has not been expanded;
* it is covered by some prime implicant in the current RAD tree.

Construct the pruned RAD tree for the selected minterm and go to stép 3. Ifno
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such minterm exists go to step 5.
STEP 5 The current RAD tree contains a cycle. The cycle problem can be solved by

traditional techniques.

Example 2.6. Consider the four-variable function with ON-set = {1,4,5,9,10,11,12},
DC-set = {7,8,14,15}, and OFF-set = {0,2,3,6,13}. The list of RADs is as follows:
Minterm 1 4 5 9 10 11 12
RADs +4 +1 -1 -1 +1 -1 +2
+8 +8 +2 +2 -2 -2 -4
-4 -8 +4 +4 -8

+4 8

(1,5) (1,9)

Figure 2.5 Pruned RAD tree of minterm 1.

Minterms 1 and 4 have the lowest number of RADs, and so one of them must be
expanded first. Minterm 1 is chosen arbitrarily and its expansion is shown in Figure 2.5.
Two prime implicants cover minterm 1 (prime implicants will be identified by enclosing
them in rectangles). According to the criteria in step 4 minterms 5 and 9 are candidates for
the next expansion. The expansion of minterm 9 is shown in Figure 2.6. The RAD -8 is
not used in the expansion of 9 since it would regenerate the prime implicant (1,9). Don't-
care minterms are underlined. The expansion of minterm 11 (Figure 2.7) yields two prime
implicants (8,9,10,11) and (10,11,14,15). The prime implicant (10,11,14,15) is
dominated by (8,9,10,11), therefore (8,9,10,11) is pseudo-essential (indicated by a light

arrow %> ). Sp is added to the solution and all minterms covered by S; become
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don't-cares. This in turn makes the prime implicant (1,5) pseudo-essential, since it now

dominates the prime implicant (1,9) (Figure 2.8).

1
+4 +8
(1,5) (1,9)
-1
(8,9)
+2
8,9,10,11)

Figure 2.6 RAD trees for minterms 1 and 9.
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(8,9,10,11)| s;

(10,11)

+4

(10,11,14,15)

Figure 2.7 RAD trees for minterms 1,9, and 11.

Finally, the expansion of minterm 4 (Figure 2.9) yields the pseudo-essential prime
implicant (4,12). All minterms are now covered. F = X(8,9,10,11)(1,5)(4,12). As
mentioned earlier not all prime implicants are necessarily generated by the DSA. In this
example, the following prime implicants were not generated: (5,7), (8,10,12,14), and

(7,15).
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(8,9,10,11)| 8

-1

(10,11)

+4

(10,11,14,15)

Figure 2.8 RAD trees with two pseudo-essential prime implicants.

+1 +8

(4.5 (4,12)| S3

Figure 2.9 RAD tree for minterm 4.

The directed search algorithm can be applied manually or it can be programmed. The
manual procedure is suitable for the minimization of functions with 5 to 8 input variables
[RHY77]. The strength of DSA lies in its ability to detect essential and pseudo-essential

prime implicants. Don't-cares are well integrated into the minimization process, and there
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is no need to move them into the ON-set as in the Quine-McCluskey or iterated consensus

procedures.

2.2.3 Heuristic Minimization: MINI and ESPRESSO
Hong, Cain, and Ostapko [HON74] presented a heuristic logic minimization technique
(MINI) which addresses some of the shortcomings of traditional minimization algorithms.
The cost of a function is taken to be the number of product terms, regardless of their size.
Thus it is possible to reduce the size of a product term without increasing the cost of the
function. The function is specified as a list of implicants. Don't-care implicants can also
be specified.

The goal of MINI is to merge implicants towards a minimal cover. Since heuristics
are used during the minimization procedure, a minimal cover cannot be guaranteed. A brief

description of the four steps in the minimization procedure follows:

1) Transform. Find a cover for the function which consists of mutually disjoint
implicants. This step will often increase the number of implicants. At the same
time, the size of some implicants will become smaller. A list of small implicants
will have more possibilities of merging two implicants into a single one. MINI
does not go as far as to break the implicants into minterms.

2) Merge?. If two implicants can be covered by a single implicant, then they are
replaced by that implicant. This process continues until no more implicants can
be merged.

3) Reduce. Reduce the size of each implicant to the smallest possible one. The
trimming of implicants facilitates further merging. All redundant implicants are
also removed at this point.

4) Reshape. Find all pairs of implicants that can be transformed into another pair of

2 This step was called expand in the original work, but merge is a more appropriate
name for this process.
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implicants covering the same minterms. The implicants are now ready for another
merging process.

The last three steps are iterated until there is no further decrease in the solution size.

The MINI minimization technique works very well for “shallow” functions, i.e. a
function where the minimal cover consists of a relatively small number of prime implicants.
The execution time of MINI depends mainly on the number of implicants in the final
solution. MINI has been tested with a variety of functions and it produced minimal or near
minimal results in all cases. Problems with multiple outputs are handled as well.

ESPRESSO-II [BRA84] basically follows the philosophy of MINI. The operations:
transform, merge, and reduce are iterated until no further reduction of the solution size is
achieved. In addition, all essential prime implicants are extracted after the initial merging
(this step is not done in MINI). The algorithms for merging and reduction are quite
different from the algorithms used by MINI. Finally, the procedure LASTGASP ensures
that no single prime implicant can be added such that two prime implicants become
redundant. All ESPRESSO versions make use of fast recursive Boolean function
manipulation.

ESPRESSO-MYV [RUDS87] is an extension of ESPRESSO-II which allows the
minimization of multiple-valued functions. The ESPRESSO-EXACT [RUDS87] algorithm

allows exact minimization of multiple-valued functions.

2.2.4 McBoole

McBOOLE [DAG86] is a procedure for exact logic minimization of multiple-output
functions. Its authors claim the procedure is suitable for minimization of functions with up
to 20 input variables and 20 outputs. Surprisingly, all prime implicants are generated. The
implicants which represent the function are recursively partitioned along the input variables,

until the subfunction can be represented by a single term. The terms from both
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subfunctions are merged. The procedure is roughly the same as presented in [BRA84]
with some improvement which allows it to avoid some unnecessary trials.

During the prime implicant generation all prime implicants are linked into a directed
graph. This way information on how a particular prime implicant was obtained is
remembered and essential prime implicants are marked. Because of the information
retained in the covering graph, the covering problem can be solved locally. Cycles in the
function are resolved by branching.

The amount of CPU time used depends mainly on the number of prime implicants
and the number of nested cycles in the function. On average, the execution time of
McBOOLE is similar to ESPRESSO-II. However, for certain functions McBoole is

superior to ESPRESSO-II and vice versa.

2.2.5 Multiple-Output Minimization
In the design of digital system, it is often necessary to minimize several functions which
share the same input variables. The minimization of the individual functions will not result
in an overall minimal solution. If a term is part of more than one function, its cost appears
only once in the overall cost calculation. All of the minimization procedures reviewed in
the previous sections have been extended to handle multiple-output problems.
The Quine-McCluskey procedure can be extended to solve the multiple output
problem as follows [BAR61]:
1) Each minterm is labeled with symbols which indicate its association with one
or more functions.
2) Terms can only be combined if their labels intersect, i.e. they belong to at
least one common output. The resulting term is labeled with the symbols
which appear with both terms.

3) A termis checked off only if all of its output symbols are part of the resulting
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ferm.

Example 2.7. Consider the two functions F,(x,%7,X3,x4) = 2m(4,8,9,12,13,14,15)
and Fy(x1,X9,X3,X4) = 2m(4,6,14,15). The prime implicant generation is shown in Table
2.12. The prime implicant table is shown in Table 2.13. After removing the two essential
prime implicants (14,15) and (8,9,12,13) the prime implicant table is reduced to four rows
and three columns (Table 2.14). Row (6,14) is dominated by row (4,6), i.e. all minterms
covered by (6,14) are also covered by (4,6). Therefore, row (6,14) can be removed. This
in turn makes the prime implicant (4,6) pseudo-essential. Finally, (4,12) is chosen to
cover minterm 4 of F, since it has fewer literals than (4). The resulting minimal solutions
are:

+ X, X, X

XXy XXXy

a 1X2 X3

+ X, X,X

X3 1%2%4

Note that the product term x;x,x, appears in both solutions. Four product terms are
needed to realize F, and Fy,. A separate minimization of the two function produces the

following solutions:

Fa = X Xy F X Xy + XXXy

X3 + Xl X2X4

where five product terms are needed to realize F, and Fy,.
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I

II

III

X1X2X3X4 X1X2X3X4 X1X2X3X4
4 0100 [ab] 4,6 01-0([b] 8,9,12,13 1 -0 — [a]
8 1000 T([a 4,12 - 100 [a] 12,13,14,15 1 1 — — [a]
6 0110([b] V 8,9 100 - [a] V
9 1001 [a] V 8,12 1-00([a] V
12 1100T([a] V 6,14 —~ 110 [b]
13 1101T([a W 9,13 1-01T[a] V
14 1110 [ab]V 12,13 110-1[a V
15 1111 [ab]V 12,14 11-0T7a] V
13,15 11-1[a]
14,15 111 - [ab]
Table 2.12 Prime implicant generation for Example 2.7.
K,
9 13 14 15 | 4 6 14 15
4 X
4,6 X
4,12 X
6,14 X
14,15 X X @ *
8,9,12,13 ® ® X *
12,13,14,15 X X

Table 2.13 Prime implicant table for Example 2.7.
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B K,
4 4 6
4 X X
16 « @
4,12 X
614 %

Table 2.14 Reduced prime implicant table.

Serra [SER84] proposed an extension of the DSA algorithm to minimize multiple-
output networks. Each minterm may have different RADs in each of the output functions.
This fact is considered when ranking the minterms in the ON-set. Essential and pseudo-
essential implicants are detected. Some heuristics were added to permit the pruning of
expansion trees. The algorithm was implemented in APL, but no indication of the

performance of the computer program, in terms of execution time, was given.

2.2.6 Reed-Muller Expansion

Reed-Muller expansions offer an alternative representation of logic functions to the
traditional sum-of-product expressions. In the Reed-Muller expansion the operators AND,
NOT, and EXOR (exclusive-or) are used. The EXOR operation, denoted by the symbol

@, also known as the Sum-Modulo-Two. Table 2.15 shows the truth table of the EXOR

operation.
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et s O O MO
_- o = ol
o = = o|®

Table 2.15 Truth table for the EXOR operator.

The EXOR operator is useful since it arises naturally in the representation of
arithmetic functions. For example, the least significant bit S of an addition, with inputs x;,
Xg, and a carry C, can be expressed as

S=x1®x,®C
which is clearly a simpler representation than the sum-of-products expression

S = x1x2C + x1x2C + x1x2C +x1x2C

Reed-Muller expansions are also used in the design of easily testable realizations of logic
functions [RED72].
The canonic Reed-Muller expansion of an n-variable Boolean function takes the

following form [MUL54] [REE54]

F(xl, Xy oo ,xn) = bO@ b1x1® b2x2 ... bzn_lxlxz. X

where bje {0,1},i=0,1,..,2"- 1.

Wu, Chen, and Hurst [WU82] proposed a geometric representation of Reed-Muller
coefficients to aid the manual minimization process. The proposed representation is similar
to Karnaugh maps. Besslich [BES83] developed a computer method based on the
approach described in [WU82]. Most minimization methods [BES83, ZHA84, SAL79]
are exhaustive in nature. Exhaustive minimization methods are not practical for any

function with a reasonable number of inputs. More recently, heuristic minimization
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procedures have been proposed [SAS86b, BES87].

2.3 MVL MINIMIZATION: PREVIOUS WORK

The goal of most binary minimization is a minimal sum-of-products expression. The
“product” is the AND of one or more literals. A literal is either an input variable or its
complement. The product terms are “summed” using the OR operator, and less frequently
the EXOR operator. All operations can be implemented quite naturally using integrated
circuits. The minimization goal (a sum-of-products expression with the minimum number
of product terms) is easily understood and reasonable if the function is implemented using a
PLA.

MVL functions can also be expressed as sum-of-products expressions [MUZ86].
Unlike their binary counterparts, there are a wide variety of choices for the “product”,
“sum”, and unary operators. An operator is said to be unary if it operates on a single
operand. Since Post [POS21] generalized Boolean algebra in 1921, the MIN and MAX
operators have been widely used as “product” and “sum” operators [HUR84]. However,
the use of multi-valued integrated injection logic (I2L) circuits [MCC79] and charge
coupled devices (CCD) [KER84], has led to the introduction of the SUM operator, since in
both technologies the SUM operator can be implemented more efficiently. The SUM is
defined to be the arithmetic sum, truncated at R - 1. R is the radix and R - 1 is the highest
value that any variable can assume.

A wide variety of unary operations have been proposed [HUR84, VRA70, ALL84]:

e complementation
x'={R-1)-x}

e successor

x;" = {(x, + 1) mod R}
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o predecessor

x; = {(x,- 1) mod R}

e literal operator (window)
- if a<x<
%bzl'@ 1) if a<x<b

L o otherwise

» generalized literal operator
s Ja-n if xe S
XY =

Lo otherwise

1 < <

Lo otherwise

A set from the unary and binary operators must be selected to give functional
completeness. A set of operators W is said to be functionally complete if a representation
for any function can be found using only operators from ‘Y. Functional completeness can
be achieved in more than one way. The example in Figure 2.10 shows how a function can
be represented in several ways making use of the different unary operators shown above
and the binary functions MIN and MAX. The choice of a functionally complete set should

reflect the efficiency of the underlying implementation.
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X1

O\ 0 1 2 3
0 1 212
1 1 212
2
3 3 212
F(x,x,) = 2)(;13 Ox; + x;_ 3x§ + 2 zxf 3xz

. 12o1 33 01 « 33 2233
F(xl,xz)—x1 X, + XK X X, + X X, +X

2 1 2 1

1301 2301 2333 0033

F(XPXZ) =1 X; Xy + 2 X, X, + 2 X, X5 + XX,
_ 123 Q1 23 Q3 0.3
F(xl,xz) = lx1 X, + 2x1 Xy, XX,

Figure 2.10 Alternate implementations using different unary operators.

Traditional minimization techniques have been extended to MVL [SMI84, SU84,
AL184]. Miller & Muzio [MIL79] have shown that a minimal sum-of-product expression
does not necessarily consist solely of prime implicants. Some literals are more costly to
implement. If all implicants must be considered, the size of the implicant table becomes

unmanageable, even for functions with a small number of input variables.

2.3.1 Direct Cover Minimization
The inefficiency of traditional minimization techniques led Pomper and Armstrong
[POMS&1] to develop a direct cover minimization algorithm. A prime implicant cover is

generated directly, in one pass. The algorithm proceeds as follows:
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Algorithm: Pomper-Armstrong direct cover minimization.

1) anon-zero minterm is selected at random;
2) all prime implicants which cover the selected minterm are generated;
3) the largest prime implicant is added to the cover;
4) all covered minterms are changed to don't-cares.
These four steps are iterated until all minterms are covered. With slight modifications the

algorithm can be used to minimize sum-of-products expressions using the SUM operator.

The Pomper-Armstrong minimization procedure can easily be programmed. The
algorithm is efficient in terms of memory requirements as well as execution time.
However, no claim of a minimal or near minimal solution is made. The randomness in the
selection of the minterms to be covered makes an analysis of the algorithm extremely
difficult. The minimization result of a given function is not unique. In fact, the
minimization is likely to produce different results for the same function. This is due to the
fact that a different minterm will be selected which in turn may lead to the choice of a
different prime implicant.

Besslich [BES86] has presented a very general direct cover minimization which can
be readily adapted to any algebra. Each minterm is assigned a weight that measures the
degree to which minterms are clustered around it. The minterm with the minimum weight
is chosen to be covered first. Justification for this choice of minterm is similar to the
directed search algorithm: a minterm with low weight will have fewer possibilities for
expansion and the probability of finding an essential prime implicant is higher. An
efficiency coefficient is calculated for all implicants that contain the minterm to be covered.
The efficiency coefficient is obtained by dividing the number of minterms covered by the
cost of the corresponding implicant. This heuristic takes into consideration that a minimal

sum-of-products expression may contain implicants which are not prime. The most
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efficient implicant is chosen. The above steps are iterated until all minterms are covered.
Direct cover minimization limits the number of prime implicants which must be
considered at any given point during the minimization process. The number of prime
implicants which cover a given minterm is considerably less than the number of prime
implicants of the function. As with all heuristics, a minimal sum-of-products expression is

no longer guaranteed.

2.3.2 Cost Table Approach

Cost table minimization makes use of a table where each function is associated with a cost
factor. To realize a function, selections from the table are made which combine to realize
the target function at the lowest possible cost. Since most functions can be realized in more
than one way, an exhaustive enumeration is needed to guarantee a minimal result.

A tabular-cost approach to minimize CCD circuits was first introduced by Kerkhoff
and Robroek [KERS2]. Lee and Butler [LEE83] improved this approach by reducing the
size of the cost table. Both techniques are restricted to one variable functions. Abd-El Barr
et al. [ABD86] developed two algorithms for the synthesis of 4-valued one and two
variable functions for CCD implementation. Their results are superior to previous ones.
The main drawback to their approach is its restriction to the two variable case. Since the
number of functions grows from 42 to 43, a enumeration based on cost table is
computationally not feasible.

In some technologies the standard sum-of-product expressions result in a very
inefficient implementation. Kerkhoff [KER84] describes two CCD implementations of a
two-input quaternary full-product circuit. Using the Vranesic algebra (with the unary
successor and inverters) the overall cost was 1052. Kerkhoff's tabular-cost approach led
to a total cost of 191. This simple example clearly shows that the algebra cannot be treated

independently of the target technology.
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2.4 REMARKS
Binary minimization is well understood. Over the last four decades, numerous algorithms
have been presented, and some of them have been reviewed in this chapter. In general,
exact minimization is not feasible. First, the number of prime implicants can be very large.
If a cyclic function is to be minimized by an exact minimization procedure, all prime
implicants must be considered. Second, the covering problem is known to belong to the
class of NP-complete problems [BRA84]. It is worth noting that for some functions, even
with a large number of input variables, a minimal cover can be extracted with no difficulty.

The intractability of exact minimization becomes evident with McBoole which claims
to minimize functions with up to 20 input variables and 20 outputs. Yet for the function
MULT4 [DAG86] which has only 8 input variables and 8 outputs, the minimal solution
was not found, because branching was abandoned after 6 nested cycles (see Table 4.6).
Nevertheless, McBoole gave minimal results in reasonable time for a large number of logic
functions used in industrial PLAs.

Heuristic approaches are used in the design of practical PLAs. In the binary domain,
near minimal solutions are acceptable. Minimization of multiple-valued logic functions is
more complex than the minimization of their binary counterparts. Therefore, the need for

heuristics 1s more evident in the MVL case.
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Chapter 3
A DIRECT COVER ALGORITHM FOR TRUNCATED
SUM MINIMIZATION

3.1 OVERVIEW

Over the past several years a number of different technologies have been considered for the
implementation of MVL circuits [HUR84]. Each technology is well suited to a particular
set of algebraic operators. This in turn affects the design methods used.

In the CCD and I2L technologies for example, the realization of SUM operators is
more economical than the realization of the MAX operator. Hence design methods which
employ MIN, MAX and complement operators are not suited to 2L and CCD design.

McCluskey [MCC79] has presented an algebraic system for designing multiple-
valued I2L circuits. While McCluskey's work is applicable solely to I?L, Kerkhoff
[KER84] has shown that it can be extended to the CCD case.

The tabular-cost minimization results in efficient CCD implementations (see Section
2.3.2). Unfortunately, there are two major disadvantages associated with this approach.
First, tabular-cost minimization is restricted to one and two-variable functions. This
seriously limits its applicability. Second, the implementation of the resulting representation
is unstructured.

Structured implementations of complex multiple-valued circuits will likely replace
random logic. This is evident in the binary domain where PLAs, ROMs, MUX-based
designs, etc., are now widely used. Structured logic has three principal advantages over

random logic:

e the use of regular structures aids the design process;

e regular structures can usually achieve a higher degree of compaction;
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e regular structures are more easily tested than random ones.

PLAs seem to be promising for multiple-valued circuits. Several multiple-valued
PLAs have been proposed [SAS86a, KER86, TIR84]. If the PLA is implemented using
I2L or CCD technology, a SUM operator is more suitable than the MAX operator for the
‘OR’ part of the PLA. The SUM operator is both easier to implement and frequently
results in simpler realizations as shown in [BEN85].

The complexity of minimizing sum-of-product expressions using the SUM operator
is similar to the minimization of Reed-Muller expansions — the best solution may not
consist solely of prime implicants. The need for heuristic minimization is evident for
exclusive-or sum-of-products expressions. In Papakonstantiou's opinion [PAP79]
absolute minimization is only feasible for functions with n < 4. Even with extensive
computational resources, absolute minimization is limited to small n since the number of
product terms to be considered is exponential.

Design of PLAs requires a minimization procedure suited to the operators
implemented in the PLA. InaPLA, each product term is realized as a single column in the
‘AND’ part. Hence, all product terms require the same area and can be considered to have
the same cost. Realizations which minimize the number of product terms thus have
minimal total cost. The lack of a suitable minimization procedure for PLA's where the
‘OR’ part employs the SUM operation motivated the development of the algorithm

presented in this chapter.

3.2 PRELIMINARIES

The definitions of literal, product term, and implicant used in this chapter are, of necessity,
different from those given in Chapter 1. In addition, the truncated sum operator (TSUM) is
introduced.

Let X = {xy,X, .. .,X,} be a set of n input variables. Define the setP = {1, 2, ..,
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R - 1} which represents the values that the variable x; can assume. An R-valued function f
iS a mapping

[PxPx..xP—>P
Each element in the domain of fis a minterm of the function.

Let x; be an input variable and let S; be a subset of P. The literal function is defined

as follows:
s. J R-1 if x € S,
X = ! !
1
Lo if x ¢ S,
A product term
S S
Q=cx, x,° ...x"

is defined to be the minimum of the literals and the constantce {1,2...R-1}. Ifa
product term, Q, contains a literal for which S; = P, Q is said to be independent of x;. An
independent variable may be omitted from the term. c is said to be the value of Q and is
denoted by «Q». A product term contains all minterms for which it evaluates to c.

A product term Q is an implicant of the function f if the value of the function for
each minterm contained in Q is greater than or equal to «Q». An implicant is termed prime
if it is itself not contained in any other implicant of the function.

The truncated sum (TSUM) of two product terms is denoted by ¢ and defined as
follows:

Q1 9 Q= MING«Qy» + «Qp», R - 1)
where Qq and Q, are product terms of the function and MIN is the arithmetic minimum.
The sum of product terms is defined to be the truncated sum of the terms. Any function

can be written as a sum-of-products expression.
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For simplicity all examples will be given in three-valued or four-valued logic, but the

algorithm presented is applicable to any radix.

LR G222
2 g
3

Figure 3.1 Map of a four-valued function.

Example 3.1. Consider the function shown in Figure 3.1 which can be expressed as a

TSUM of 3 product terms.
F(x;,x,) = 1x1xg 0 2)(;'2’3)(; ¢ 3x(1) x;’z

Note that the constant 3 can be omitted from the final term.

X

X, 0 (l\ 2 3
0 1
1 @B G D
T G
3

Figure 3.2 Map of the function used in Example 3.2.

For certain functions the minimal solution contains terms which combine to realize a
larger value. Example 3.2 illustrates such a function.
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Example 3.2. The function shown in Figure 3.2 can be expressed as the following sum-

of-products expression:

1 01

F(xx,) =1x %, ¢ 1% %

1 %2

01 1

2 12
0 2x1 X, 0 2x1 X,

Here each ‘3’ value is realized by summing a ‘2’ and a ‘1°.

The minimal solution may contain terms which are not prime implicants as
demonstrated in Example 3.1 where the ‘1’ and the ‘2’ terms are not prime, since each is
part of a larger term. In fact for this example, no minimum TSUM cover exists where all
the product terms are prime implicants. Hence, a minimization procedure cannot be
restricted to considering only prime implicants. The set of implicants which must be

considered can become very large.

Lemma 3.1. A function of radix R with n input variables may have up to (R - 1)o"
implicants, where @ = R.1.
Proof. Any implicant can be written as

S, S, S, S

CX1 X2 X3 ....Xn

n

There are (R - 1) choices for c. Each §; is a subset of P. P has 2R 1 non-empty subsets.
Hence, the number of implicants follows. All possible product terms are implicants of the
constant function f(X) = (R - 1). Q.E.D.
Clearly it is not feasible to consider all possible implicants of a function. For
example, a 4-valued function with three input variables may have up to 10,125 implicants.
Some heuristic must be applied in order to reduce the set of implicants which will be
considered.
Direct cover minimization was described in Section 2.3.1. A direct cover method for
multiple-valued minimization using the TSUM operator was first suggested by Pomper and

Armstrong [POMS81]. Their algorithm selects a minterm at random and finds all prime
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implicants which include the selected minterm. The “best” prime implicant is then added to
the solution, and the function is modified accordingly. The “best” prime implicant is the
one that covers the most minterms which are not don't-cares. The advantage of this
algorithm is its speed. No claim of a minimal or near minimal solution is made. The
randomness makes the analysis of this algorithm extremely difficult.

Besslich [BES86] has presented a very general direct cover minimization which can

be readily adapted to any algebra. His algorithm can be summarized as follows:

e select the most isolated uncovered minterm o

e calculate the efficiency coefficient for all implicants that contain a (the efficiency
coefficient is obtained by dividing the number of minterms which the implicant
covers by the cost associated with the implicant);

e include the most efficient implicant in the solution;

e repeat the process until all minterms are covered.

This algorithm seems to be well suited for minimizations using the maximum
operator. When dealing with the TSUM, making an implicant more efficient, i.e. bigger,
may make the remaining function more complex. If we apply Besslich's algorithm to the

function given in Example 3.1, we obtain

1 01 1 023 1 0 12
F(xx) =1x; %, ¢ 1x, ¢ 1x7 x, ¢ 3x; X,

which is not minimal. Any minterm which evaluates to R - 1 can be realized by a sum

which may exceed this value, since the sum is always truncated at R - 1.

3.3 THE ALGORITHM
It is important to select the first minterm intelligently. It has been suggested that the most
“isolated” minterm is the best choice [RHY77]. Isolation is a measure of how many

possible combinations a minterm or a product term has with neighbouring terms. The
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higher the “isolation”, the fewer combinations exist. This concept is formalized in
Definition 3.4 below.

The importance of selecting an isolated minterm is illustrated by the binary example
shown in Figure 3.3 [BES86]. If a direct cover approach begins with one of the minterms
in the central four squares of the map, the prime implicant X,Xy will be included in the

solution. Clearly it is redundant. If a direct cover approach begins with each ‘isolated’

minterm in turn, the minimal solution of four prime implicants will be found.

X1X2
X3X4 00 01 11 10
00 7
1 —
0 gllam)
NN OO not required in
minimal solution
10 \1)

Figure 3.3 A binary function with a redundant term.

Definition 3.1. (identical to Definition 2.3) Two minterms are said to be adjacent if
they differ in one input variable x;. The minterms are termed adjacent relative to x;. Each

minterm has n(R - 1) adjacencies.

Definition 3.2. Let o and B be two adjacent minterms. [ is said to be an expandable
adjacency of o if f(o) < f(B). For minterm o the number of expandable adjacencies is

denoted by EA .

Definition 3.3. For minterm o the number of directions of expandable adjacency of o

(DEA,,) is

n
DEA =Z %
* =
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where v; is 1 if o has an expandable adjacency with respect to x;, and is O otherwise.

Definition 3.4. The isolation factor of a minterm o , denoted IF,, is

1
IFa B DEAa R-1) + EAa +1

The algorithm must be able to handle don't-care conditions. Don't-care conditions
may be specified in the original function and new don't-care conditions may be introduced
during the minimization process. Don't-care conditions will be given the value of R (the
radix). With this value the above definition of expandable adjacency still holds. A minterm
adjacent to a don't-care can always be expanded in that direction.

The basic idea behind the algorithm is quite simple, consisting of an iteration of the
following two steps:
e select the most isolated minterm @, i.e. the one with the highest isolation factor;
e consider all implicants that contain o and have the same value as , and select the
one which will make the remaining function as simple as possible. A metric for

the simplicity of a function is defined below.

Definition 3.4. A function break occurs when two adjacent minterms have different

values.

The method used here for measuring the complexity of a function is to count the
number of function breaks. When an implicant Q is considered for inclusion in the
solution, the total number of breaks in the function which remains to be realized need not
be computed. Rather, only the change in the number of breaks need be considered. This is

called the break count reduction (BCR).

Algorithm: Determining the break count reduction for the product term Q

of f(X)
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i) BCR« 0.
ii)  Let M be the set of minterms which are contained in Q.
i) Foreach o e M such that f(o) #R:
iii.a) For k=1, 2,..,n
iii.a.1) if (there exists a minterm B ¢ M adjacent to o relative to xi such that
f(B) = f(ar) - «M») or (f(a) = «Q»), then
BCR < BCR + 1;
iii.a.2) if there exists a minterm B ¢ M adjacent to o relative to xy such that
f(B) = f(o) and f(o) # R - 1, then
BCR < BCR - 1.

Step iii.a.2 requires some explanation. A break introduced for a minterm o, with
f(o) =R - 1, is not counted since the sum at & may exceed R - 1 since it is truncated to R

- 1.

o 1 2 3
X

Figure 3.4 Two implicants considered in Example 3.3.

Example 3.3. Consider the implicant Q; of the function shown in Figure 3.4. Qq has an

BCR of 1, which is obtained as follows:
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minterm k=1 k=2 total

x; X(z) 1 1 2
X, X, -1 0 1
xi?' xg -1 -1 -2
xf x; 1 1 2

BCR = 1

On the other hand, the implicant Q,, of the same function, has a BCR of 3, which is

obtained as follows:

minterm k=1 k=2 total
xi Xg 1 1 2
x; x§ 0 1 1
xf xg -1 -1 -2
xi xg 1 1 2
BCR = 3

This leads to the conclusion that Q, is likely a better choice than Qy to cover the
. 1 <l
minterm 1 x, X,

Algorithm: DCM Direct cover minimization for multiple-valued functions

using the truncated sum

Let £f(X) be the function to be minimized and let g(X) be a copy of f(X). The
radix of f(X) is denoted by R.
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STEP 1

STEP 2

STEP 3

STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

Let M be the set of all minterms 8 such that 1 <g(B)<R-1and f(B) #R - 1.

[ minimum value of g(B) for Be M, if M= ¢
MinValue « 4

l R-1, otherwise
All non-zero values of g(X) less than MinValue are replaced by MinValue.
If MinValue <R - 1 then
Find the IFs for each minterm of g(X) whose value is equal to MinValue
for which the value of f(X) was notR - 1.
else
Find the IFs for each minterm whose value is less than R. (All
remaining minterms can be considered to have value R - 1).
Let o be the minterm with the maximum IF. If more than one such minterm
exists, one is selected arbitrarily.
Find the BCR for all implicants that include the minterm o. The value of the
implicants considered must be g(o).
Let Qquax be the implicant with the maximum BCR which contains the minterm
.
Add Qp,x to the solution.
Set g(o) « g(a) - «Qpax» for each minterm o included in Qp,,4 for which
gla)#R. If g(a) =0 and f(o) =R -1 then set g(o) < R (this ensures that
ol is treated a don't-care from this point on).

If there is any minterm o such that 1 < g(a) <R - 1 then go to STEP 1.

Minterms with the smallest nonzero value are covered first (STEP 1) since they have

fewer possibilities of being realized by “summing” other implicants. The function keeps

changing during the minimization procedure (STEP 7). Once an implicant is added to the

solution, the function must be modified accordingly. If the value of R - 1 has been reached
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for a minterm « for which f(a) =R - 1, g(a) can now be treated as a don't-care minterm.
The algorithm to find the BCR in STEP 4 requires a slight modification. In step
ili.a.2 of the BCR calculation the value of g(a) is compared to R - 1. g(a) must be

replaced by f(o).

3.4 EXAMPLES

In this section, examples are given to illustrate the steps of the DCM algorithm. For

simplicity the product term
Sl SZ s3 Sn
CX; Xy Xy ... X

0 1

1 1
211 2 |1
3

Figure 3.5 Map! of the function used in Example 3.4.

Example 3.4. Consider the two-variable 4-valued function depicted in Figure 3.5. The
minimization proceeds as follows:

STEP1 MinValue « 1.

STEP2  The isolation factors for the minterms with value 1 are as follows?:

minterm (0,0) (0,2) 3,1) (3,2)

1 The minterms for which the function evaluates to R - 1 are shaded because they are
treated differently during the minimization process.

2 In practice the inverse of the isolation factor is calculated to avoid the computationally
expensive divide operation.
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STEP 3
STEP 4

STEP 5

STEP 6

STEP 7

STEP 8
STEP 1
STEP 2

STEP 3
STEP 4

STEP 5

STEP 6

STEP 7

IF 1/10 1/10 1/10 1/10

o < (0,0).

The six implicants which contain & have the following break count reductions:
implicant 1(0)(0) 1(0,1)(0) 1(0,2)(0) 1(0,1,2)(0) 1(0)(0,2) 1(0,2)(0,2)
BCR 1 1 2 2 3 4

02 Q2
Qmax ¢ 1x; x,

02 Q2

Add 1 X, X, to the solution.

g(X) now becomes:

W N = O
—
-

Go to STEP 1.

MinValue < 1.

The isolation factors for the minterms with value 1 are as follows:
minterm (2,2) 3,1 (3,2)

IF 1/10 1/10 1/9

o < (3,2).

The four implicants which contain o have the following break count reductions:

implicant 1(3)(2) 1(2,3)(2) 1(3)(1,2) 1(2,3)(1,2)
BCR 0 3 3 7
23 12

Qmax < 1 X, X,

23 12

Add lx1 X, to the solution.

g(X) now becomes:
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STEP 8
STEP 1

STEP 2

STEP 3
STEP 4

STEP 5

STEP 6

STEP 7

STEP 8

Go to STEP 1.

MinValue - 3.

(MinValue is assigned the value R - 1 since the two minterms which evaluate to
2 had the value 3 in f(X), therefore the sum is allowed to exceed R - 1).

The isolation factors for the minterms with value 3 are as follows.

minterm (1,0) (1,1 (2,0) 2,1

IF 1/9 1/9 1/9 1/9

o« (1,0).

The four implicants which contain o have the following break count reductions:
implicant 3(1)(0) 3(1,2)(0) 3(1)(0,1) 3(1,2)(0,1)

BCR 2 4 4 8

12 01
Qmax < X[ X,

12 a1

Add X[ X, 1o the solution.

g(X) now becomes:

The termination condition has been reached. The result is

_ 2 a2 23 12 12_a1
fixpx)) = 1x7x, € Ix7x, 0 x7x, .
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A class of functions which requires relatively many product terms is the set of Latin
Square functions [BENS§5].
Definition 3.5. f(x{,x,) is a Latin Square Function if f(x1,c) and f(c,xp) assume all R
possible logic values for every c € {0,1,...,R - 1}. On the map of a latin square function

each row and each column is a permutation of {0,1,...,R - 1}.

Figure 3.6 A latin square function.

The DCM was applied to the four latin square functions given in [DUE86]. For one
of the function (shown in Figure 3.6) a better solution was found. The solution given in
[DUES6] used 8 product terms. As shown below, the function only requires 7 product
terms. The minimization proceeds as follows:

Example 3.5.

STEP1 MinValue « 1.

STEP 2  The isolation factors for the minterms with value 1 are as follows:
minterm 0,1) (1,0) 2,3) (3,2)
IF 1/11 1/11 1/11 1/11

STEP3 o« (0,1).
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STEP 4

STEP 5
STEP 6
STEP 7

STEP 8
STEP 1
STEP 2

STEP 3
STEP 4

STEP 5
STEP 6
STEP 7

The nine implicants which contain o have the following break count reductions:
implicant  1(0)(1) 1(0)(1,3) 1(0,3)(1) 1(0)(1,2) 1(0)(1,2,3)
BCR 2 4 3 3 4
implicant  1(0,3)(1,2) 1(0,1)(1) 1(0,1)(1,3) 1(0,1,3)(1)

BCR 4 4 6 4

Qmax < 1(0,1)(1,3).

Add 1(0,1)(1,3) to the solution.

g(X) now becomes:

Go to STEP 1.
MinValue « 1.

The isolation factors for the minterms with value 1 are as follows.

minterm (1,0) (1,3) (2,3) (3,2)
IF 1/11 1/11 1/11 1/11
o < (1,0).

The nine implicants which contain o have the following break count reductions:
implicant ~ 1(1)(0) 1I(D(©O0,3)  1(1,3)0) 1(1,2%(0) 1(1,2)(0,3)
BCR 1 3 3 2 6
implicant 1(1,2,3)(0) 1(1)(0,1) 1(1)(0,1,3) 1(0,1)(0,1)

BCR 3 2 3 4

Qmax < 1(1,2)(0,3).

Add 1(1,2)(0,3) to the solution.

g(X) now becomes:
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STEP 8
STEP 1
STEP 2

STEP 3
STEP 4

STEP 5
STEP 6
STEP 7

STEP 8
STEP 1
STEP 2

STEP 3

Go to STEP 1.
MinValue « 1.

The isolation factors for the minterms with value 1 are as follows.

minterm (2,0) (3.,2)
IF 1/10 1/11
o« (2,0).

The four implicants which contain o have the following break count reductions:
implicant 1(2)(0) 1(2,3)(0)  1(2)(0,2) 1(2,3)(0,2)

BCR 2 3 3 6

Qmax < 1(2,3)(0,2).

Add 1(2,3)(0,2) to the solution.

£(X) now becomes:

Go to STEP 1.
MinValue « 2.

The isolation factors for the minterms with value 2 are as follows.

minterm (0,2) 3,1
IF 1/9 1/9
a < (0,2).
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STEP 4

STEP 5
STEP 6
STEP 7

STEP 8
STEP 1
STEP 2

STEP 3

STEP 4

STEP 5
STEP 6
STEP 7

STEP 8

The three implicants which contain o have the following break count reductions:
implicant 2(0)(2) 2(0,2)(2) 2(0)(2,3)

BCR 0 3 3

Qmax < 2(0,2)(2)3.

Add 2(0,2)(2) to the solution.

g(X) now becomes:

Go to STEP 1.

MinValue < 2.

(3,1) is the only minterm with value 2, which did not have the value 3 in f(X),
has an isolation factor of 1/9.

o« (3,1).

The three implicants which contain ¢ have the following break count reductions:
implicant 2(3)(1) 2(1,3)(1) 2(3)(1,2)

BCR 0 3 3

Qmax < 2(1,3)(D).

Add 2(1,3)(1) to the solution

g(X) now becomes:

Go to STEP 1.

3 The tie between 2(0,2)(2) and 2(0)(2,3) is arbitrarily broken.
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The last two iterations of the algorithm are trivial. The two minterms which remain
uncovered, (0,3) and (3,0), can each be covered by a single implicant, 3(0)(3) and 3(3)(0)
respectively. These two implicants are added to the solution — the termination condition

has been reached. The result is
a1 13 12 Q3 23 02 Q2 2 13 1 03 30
f(xpx) = 1x1 X, 0 1x] X, 0 1x]7x, <>2x1 x20 2%, x203x1x20 3 X)X,

The algorithm does not always produce a minimal result. Example 3.6 shows a

three-variable three-valued function for which the minimal sum-of-product expression was

not obtained.
X1 X1 X1
X 0 1 2 X 0 1 2 X 0 1 2
0 1 0 0
1 1 1 1 1 1 1
2 1 1 2 1 1 2
X3 = O X3 =1 X3 = 2

Figure 3.7 Three-valued three-variable function used in Example 3.6.
Example 3.6. Consider the function shown in Figure 3.7. The unique minimal sum-of-
products expression is

f(xpxpxy) =1 xixgxg 01 x;’z x;’zx(11

3

The minimization of the above function proceeds as follows:

STEP1 MinValue « 1.
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STEP 2

STEP 3

STEP 4

STEP 5
STEP 6

STEP 7

STEP 8

STEP 1
STEP 2

STEP 3

The isolation factors for the minterms with value 1 are as follows:

minterm (1,0,0) (1,1,0) (1,2,0) (2,1,00 (2,2,0)
IF 1/6 1/14 1/14 1/13 1/13
minterm (1,1,1)  (1,2,1) (1,2,1) (2,2,1)

IF 1/13 1/13 1/13 1/13

o « (1,0,0).

The four implicants which contain o have the following break count reductions:
implicant I(MO)O0)  1(O,1)(0) 1(1)(0,2)(0) 1(1)(0,1,2)(0)

BCR 2 2 2 5

Qmax < 1(1)(0,1,2)(0).

Add 1(1)(0,1,2)(0) to the solution.

This will not lead to a minimal solution. The “best” minterm to cover o is
1(1)(0)(0), but it does not have the maximum BCR.

g(X) now becomes:

X1 X1
XoN 01 2 XoN_01 2 XonN 01 2
0 0 0
1 1 1 11 1 1
1 11 1 2
X3=0 X3=1 X3=2
Go to STEP 1.
MinValue « 1.

The isolation factors for the minterms with value 1 are as follows:

minterm 2,1,0)  (2,2,00 (1,1,1) (1,2,1) (1,2,1) (2,2,1)
IF 1/9 1/9 1/9 1/9 1/13 1/13
o« (2,1,0).
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STEP 4

STEP 5
STEP 6
STEP 7

STEP 8
STEP 1
STEP 2

STEP 3
STEP 4

STEP 5
STEP 6
STEP7
STEP 8

The four implicants which contain o have the following break count reductions:
implicant 12)DHO)  12)(1,2)0)  1(2)(1)(O,1) 1(2)(1,2)(0,1)

BCR 1 4 3 10

Qmax < 1(2)(1,2)(0,1).

Add 1(2)(1,2)(0,1) to the solution.

g(X) now becomes:

X1 X1
XoN 01 2 XaoN 01 2 XoN 01 2
0 0 0
1 1 1 1
1 2
X3=0 X3=1 X3=2
Go to STEP 1.
MinValue < 1.

The isolation factors for the minterms with value 1 are as follows:

minterm (1,1,1)  (1,2,1)
IF 1/5 1/5
a « (1,1,1).

The two implicants which contain o have the following break count reductions:
implicant I 1(1)(A,2)(1)

BCR 2 6

Qmax < 1(1)(1,2)(1).

Add 1(1)(1,2)(1) to the solution.

g(X) =0 for all X.

The termination condition has been reached. The final result is

1012 001X21,2Q1

— 1 12 1
f(xl,xz,x3) = lx1 Xy Xq 1 %o Xg 0 lx1 Xy X,

which is obviously not minimal.
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Example 3.7. Consider the function

f(x X%y = 1 xixgxg 0 2xi’2xgl xgl
This function is similar to the one given in Example 3.6. For this function the algorithm
finds the minimal solution. Again the most isolated minterm (1,0,0) is covered first. This

time the implicant 1(1)(0)(0) has the highest BCR and the minimal sum-of-products

expression is obtained.

3.5 RESULTS

The algorithm has been implemented in APL. APL provides a suitable environment for
experimentation with an algorithm. Since APL programs are interpreted and hence execute
rather slowly, the algorithm is currently being implemented in'a compiled language.

The APL program was tested using several four-valued functions. Some of the
results are summarized in Table 3.1. The function MINi realizes the minimum of its input
variables. Similarly, MAXi and SUMi realize the maximum and the arithmetic sum modulo
4 of the input variables. MAX3X is identical to MAX3 except that the O function value in
MAX3 is 1 in MAX3X. This doubles the number of implicants which must be considered
for the first minterm covered.

The minimization of the maximum function is extremely time consuming. This is not
surprising, since the most isolated minterm will be contained in oR-1n-1 implicants. For
all of these implicants the BCR must be calculated. For MAX4 an implicant must be
chosen from a set of 211 implicants. It took over 232 seconds of cpu time on an Amdahl
580 to select the first implicant for MAX4.

It is interesting to compare the computation time required in solving MINi, MAXi,
and SUMi. For MINi the number of terms in the solution is always three and independent
of the value of i. MINi and MAXi do not contain any minterms with a high isolation

factor. In MINi 41 implicants are considered to cover the first minterm, whereas for the
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second minterm only 21 terms are considered, and only one term is considered for the last
minterm. The DCM relies heavily on the isolation factor to limit the number of implicants
to be considered. For SUMIi some of the minterms are more “isolated”, and hence the time

required to find the first implicant is only a small fraction of the total time.

max. time
function n |cost tloircr?I%)cS:nt total time
MIN2 2 3 0.182 0.237
SUM2 2 6 0.111 0.388
MAX2 2 5 0.354 0.900
MIN3 3 3 1.738 1.958
SUM3 3120 0.401 3714
MAX3 3111 8.644 23.024
MAX3X 3 6 19.994 29.713
MIN4 4 3 17.313 17.991
SUM4 4 173 1.385 46.110
MAX4 4119 232.461 626.340
MINS 5 3 178.070 180.433
SUMS5 5 1276 5.009 745.126

Notes:

a)  all functions use four logic levels;

b)  nis the number of inputs;

¢) the costis measured by the number of product terms in the solution;
d) c.p.u. time is for the APL execution on an Amdahl 580.

Table 3.1 Execution times for a DCM implementation.
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3.6 REMARKS

A new algorithm to minimize multiple-valued logic functions using the truncated-SUM
(TSUM) operator has been presented. A direct cover method, together with a heuristic
selection of the implicants is used. Implicants are chosen so that the function remaining to
be realized is as simple as possible. The “simplicity” of a function is measured in terms of
the number of breaks between adjacent minterms.

The algorithm appears to produce a near-minimal cover. Howeuver, it is impossible to
quantify this since there is no known algorithm which will produce minimal results in
reasonable time.

The main drawback of the algorithm is its exponential complexity. Selecting the
most isolated minterm first is one attempt to deal with this problem. A way of reducing the
set of implicants considered to cover a minterm is also necessary. This is a subject of

ongoing research.
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Chapter 4
DIRECTED SEARCH MINIMIZATION OF
MULTIPLE-VALUED FUNCTIONS

4.1 OVERVIEW

Classical binary minimization algorithms begin with the generation of all prime implicants
(see Section 2.2.1). The second step is the selection of a minimum, or near minimum,
number of prime implicants which cover the function. This approach is readily extended to
the multiple-valued case [SMI84] but it is very inefficient.

In 1977, Rhyne, Noe, McKinney, and Pooch [RHY77] proposed the directed search
algorithm (DSA) for the minimization of single-output binary functions. A review of the
DSA algorithm, together with examples, was given in Section 2.2.2. During the prime
implicant generating process, the DSA recognizes essential and pseudo-essential prime
implicants. Not all prime implicants are necessarily generated and, typically, the actual
number is a small fraction of the total number of prime implicants. The DSA is able to
detect cycles but, unfortunately, it does not resolve them. Standard cycle resolution
methods or heuristics must be used.

Serra [SER84] has extended the directed search algorithm to multiple-output binary
minimization. In this chapter, an extension of the DSA, termed DSA-MYV, to handle
functions with multiple-valued inputs and a binary output is introduced. Any multiple-
output binary or multiple-valued problem can be mapped to this type of function so the
algorithm presented is applicable to a large class of problems. The method presented here
has been found to produce equivalent results for the examples given in [SER84]. Results
are considered equivalent if they use the same number of product terms.

The handling of the multiple-output problem as a multiple-valued input variable
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eliminates the need for flags an complex heuristics used by Serra [SER84]. Empirical
results have shown that the ranking of DSA-MYV is more efficient than the one introduced
by Serra, i.e. the expansion of the chosen minterm results in an essential prime implicant
more frequently.

For multiple-valued functions the solutions found take the form

r-1
fx) 0% ) = Zm»fm(xl,...,xn) (4.1)

m=1

where the f,, are decisive functions (assuming only the values 0 and R-1) expressed in sum
of products form.

A number of difficulties associated with multiple-valued minimization have been
identified by Muzio and Miller [MUZ79]. The problems arise from the costing of the
literals required to form product terms. These problems are avoided in this chapter since
the target circuit implementation is a PLA. This allows the use of heuristics which consider
the cost of all product terms to be equal. Heuristics are required since exact minimization,
even for PLAs, is computationally very expensive. The algorithm has been found to
produce minimal or nearly minimal results for a variety of problems.

Any binary problem with n inputs and m outputs can be represented by a multiple-
valued input function g with a single binary output. g has n + 1 variables, where p; =2
fori=1,2...n,andp__, =m. The example below shows how the truth table of g is

n+l

derived from the truth table of the f;.

- 69 -



Example 4.1.

X| X f1 fo f3
0 0 1 0 1
0 1 1 1 0
1 0 0 1 1
1 1 1 1 1

X] X9 X3 g
0 0 O 1
0 1 0 1 (fromf))
1 0 O 0
1 1 0 1
0 0 1 0
0 1 1 1 (fromf,)
1 0 1 1
1 1 1 1
0 0 2 1
0 1 2 0 (fromf3)
1 0 2 1
1 1 2 1

Sasao [SAS78] has shown that minimizing g is equivalent to minimizing the f;. It

is clear that this is also true for multiple-valued input functions.

If a realization of the form of (4.1) is sought, the minimization of a multiple-valued

output function can be transformed to the minimization of a set of binary-valued output

functions as shown in Appendix A.

The product term
Sl SZ Sn
X, Xy o X

is denoted by the binary vector:

pp-1
1

0

1
C1C1...C

where
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az{l if j e S,
1 0 ifje s

This is known as the cube notation [SU84]. A cube is said to have n coordinates where
the bit string ¢;0¢;1.. .c{?i" ! represents the it coordinate of the cube. A minterm contains a

single 1 in each coordinate.

Example 4.2. Let P= {3, 4, 4}. The product term

0,1 1 023
X

X %

is represented by the cube 110-0100-1011.

Definition 4.1. (identical to Definition 2.1) Two minterms are said to be adjacent if

they differ in only one of their input variables.

Definition 4.2. Let M; be a minterm in the ON-set of the function f. A second
minterm M, is said to be an expandable adjacency of M, if and only if M; and M, are

adjacent and M, is in the ON-set or the DC-set of f.

4.2 THE ALGORITHM

Directed search minimization starts with the list of minterms which are in the ON-set. A
minterm is selected from the ON-set and expanded into all possible prime implicants
containing that minterm. During the expansion process a tree is created. Clearly, it is
advantageous to keep the size of the tree as small as possible. By selecting a minterm
which offers very few possibilities for expansion the growth of the tree can be limited (at
least the initial branching possibilities are keep as low as possible). Therefore, the first step
in the minimization procedure is to find all expandable adjacencies for each minterm in the

ON-set.
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The expandable adjacencies of a minterm can be represented by a bit string similar to
the cube notation of the minterm. Let M be a minterm and let M, be the cube representing
M. Let Qy, Qy, . . .Q; be the minterms which are expandable adjacencies of M and let Q.1,
Qc2, . . .Qr be their respective cube representations. The bit string representing the
expandable adjacencies of M, EAV),; (Expandable Adjacency Vector), is obtained as
follows

EAVy1=(Qgp +Qep +. .+ Qgp) © (M)
where +, °, and ' represent the bitwise OR, AND, and COMPLEMENT operations

respectively.

Example 4.3. Let

M= 010 - 1000 - 0010,
Q= 100 - 1000 - 0010,
Q= 001 - 1000 - 0010,
and Q3= 010 - 1000 - 0100.

Then EAVyy= 101 - 0000 - 0100.

Each expandable adjacency vector has an associated weight EAVW which consists of
a pair of integers. The integers in EAVW are obtained as follows:
- The first integer indicates the number of coordinates of EAV which are not all zeros.

- The second number is the total number of ones in the EAYV.

Example 4.4. Consider the function shown in Figure 4.1, with P = {4, 4, 3}. The

expandable adjacencies with the corresponding weight pairs are shown in Table 4.1.
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X9
0 1 2 3
0
1
2
x1=0
X9
0 1 2 3
0] 1
1 1] 1
2 1
x1=2

X3 0 1 2
0 1
1 1|1
2 1

x1=1
X2

X3 0 1 2
0
1
2 1

x1=3

Figure 4.1 Sample function used in Example 4.4.

ON-set
Xl X2 X3
0100 - 1000 - 100
0010 - 1000 - 100
0100 - 0010 - 100
0100 - 1000 - 010
0100 - 0100 - 010
0100 - 0010 - 010
0010 - 0100 - 010
0010 - 0010-010
0100 - 0100 - 001
0010 - 0100 - 001
0001 - 0100 - 001

EAV
X1 Xo X3
0010 - 0010 - 010
0100 - 0000 - 000
0000 - 1000 - 010
0000 - 0110 - 100
0010 - 1010 - 001
0010 - 1100 - 100
0100 - 0010 - 001
0100 - 0100 - 000
0011 - 0000 - 010
0101 - 0000 - 010
0110 - 0000 - 000
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EAVW

(3,3)
(1L,D
2,2)
(2,3)
(3,4)
3.4
(3,3)
2,2)
2,3)
2,3)
(1,2)

Table 4.1 Expandable adjacencies with the corresponding weight pairs (Example 4.4).




Let A and B be minterms of f. Let EAVW, = (aj,a5) and EAVWyg = (by,by).
(aq,ap) is said to be less than (by,by) if a; < b orif a; = by and ay < by. For convenience,
this is denoted by (aj,ap) < (by,by).

The general strategy of the directed search is to start at one minterm and expand it into
all possible prime implicants which include it. The complete expansion of the minterm
0100 - 0010 - 010 from the function given in Figure 4.1 would yield the tree shown in
Figure 4.2. Each prime implicant is enclosed in a rectangle. Branches which yield terms
which are not implicants of the function are marked by (x). Clearly, these need be
expanded no further.

The expansion tree for a particular minterm M is generated from left to right, depth
first. Each path in the tree corresponds to a subset of the EAV for M. Generating the tree
in a canonic order allows for pruning, and all possible expansions need not be tried. At
each node in the tree the possible expansions are determined by examining the EAV 1 bits
to the right of the 1 bit corresponding to the adjacency leading to this node. The valid
possibilities are tried in order from left to right. Under this ordering, no path need be
followed if its expansions are entirely contained in a path which has led to a prime
implicant. The effect is clear in Figure 4.2 where there are eleven branches whereas the
EAY has four 1 bits and hence fifteen non-empty subsets so that the complete expansion
tree has fifteen branches. There may be as few as s branches in the tree, where s is the
number of ones in the EAV. This happens when the minterm which is expanded is
contained in a single prime implicant of the function, i.e. the prime implicant is essential.

After pruning all branches which are not implicants of the function, i.e. those
marked by (x) in Figure 4.2, most leaf nodes are prime implicants. Unfortunately, there
are exceptions to this rule. The rightmost branch in Figure 4.2 shows a leaf node which is

not a prime implicant.
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0100 - 0010 - 010

i W

0110-0010 - 010 0100 - 0110 - 010
0110 - 1010 - 010 X 0110 - 0010 - 110 X 0100- 0110 - 110 X
0110 - 0110 - 010
v
L 0100 - 1010 - 010

0110-0110- 110 x / \

0100-1110- 010 0100 - 1010 - 110

;

0100-1110- 110 x

T0100-0110- 010isnota prime implicant since it is contained in 0100 - 1110 - 010.

Figure 4.2 Expansion tree for minterm 0100 - 0010 - 010.

The choice of the minterm in Figure 4.2 is not the best one possible, since we don't
know if any of the prime implicants generated are essential. It is usually more profitable to
start at a minterm which has a low EAVW. For example, the two minterms 0010 - 1000 -
100 and 0001 - 0001 - 001, with EAVW (1,1) and (1,2) respectively, yield the trees shown
in Figure 4.3. Both minterms expand into a unique prime implicant. Therefore both prime
implicants are essential — they will be part of the final cover. Once an essential prime
implicant is determined, all minterms it covers can be changed to don't-cares since

including them in the rest of the solution is optional.
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0010 - 1000 - 100 0001 - 0100 - 001

; ;

0110 - 1000 - 100 0101 - 0100 - 001

;

0111 - 0100 - 001

Figure 4.3 Expansion trees for two minterms.

Next the two minterms with EAVW equal to (2,2) are expanded (Figure 4.4). A
minterm is only considered for expansion if it is still in the ON-set i.e. it has not been

covered so far.

0100 - 0010 - 100 0010 - 0010 - 010
0100 - 1010 - 100 0110- 0010 - 010
0100 - 1010 - 110 0110-0110 - 010

Figure 4.4 Expansion trees for minterms 0100 - 0010 - 100 and 0010 - 0010 - 010.

Again both prime implicants are essential. The four prime implicants identified in
Figure 4.3 and 4.4 cover the entire function. Unfortunately, not all functions can be
covered by essential prime implicants.

A prime implicant will, in general, cover a set of minterms from the ON-set and a set
of minterms from the DC-set. A prime implicant including only minterms from the DC-set
is always dominated (and always discarded). An advantage of the directed search approach
is that dominated prime implicants are identified during prime implicant generation and no

prime implicant table is required for this purpose.
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A detailed description of the new directed search algorithm follows:

Algorithm: DSA-MYV Directed search for multiple-valued input functions

1)

2)

3)

4)
3)

6)

7

8)

9)

with a single binary output

Find the EAVs and EAVWs for all minterms in the ON-set.
For each minterm with an EAVW < (1,e0) find the prime implicant which covers it.
These prime implicants must be essential and can therefore be added to the solution.
Remove all covered minterms from the ON-set and include them in the DC-set.
If the ON-set is empty, then stop; else select the minterm with the lowest EAVW from
the ON-set. Form the pruned expansion tree from this minterm.
Remove any dominated prime implicants.
If there is only one prime implicant in the expansion tree, then add it to the solution,
adjust the ON-set and DC-set accordingly, and go to step 3.
Select a minterm which meets the following criteria:

- it is in the ON-set;

- it has not been expanded;

- it is covered by some prime implicant in a previous expansion tree.
If several minterms meet the above criteria then select the one with the lowest EAVW.
If no such minterm exists go to step 9, else build a new pruned expansion tree from
the selected minterm.
Remove all dominated prime implicants from all current expansion trees. If no prime
implicants remain to be considered, go to step 3.
If any expansion tree contains a single prime implicant and the minterm which
originated the tree is still in the ON-set, add the prime implicant to the solution, adjust
the ON-set and the DC-set accordingly, and go to step 7; else go to step 6.
A cycle exists. Select the prime implicant which covers the most minterms in the

ON-set, add it to the solution and go to step 7.
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Step 6 requires some explanation. At this point, the algorithm has expanded one (or
more) minterms and found that none are covered by a single essential or pseudo-essential
prime implicant (one that becomes the only prime implicant covering an expanded minterm
after dominated prime implicants are removed). The idea of step 6 is to further expand a
minterm encountered in a previous expansion in the hope of finding that the minterm is
covered by either an essential or a pseudo-essential prime implicant. Care must be taken
not to generate any part of the parent expansion tree from which the minterm is selected,
but this is straightforward due to the canonic order in which the trees are generated.

The way in which a cycle is resolved in step 9 is simplistic. Selecting the prime
implicant which covers the largest number of minterms does not always result in a minimal
cover. If a minimal solution is required, this step must be replaced by a more sophisticated
algorithm. For example, McCluskey describes an algorithm to resolve cycles in [MCC56).

In order to detect a cycle, all minterms which are covered by the cycle must be
expanded. Expansion of the final minterms in this process is unlikely to find any new
prime implicants. Hence, it seems a reasonable heuristic to halt the expansion process
when a “substantial” number of minterms have been expanded and to assume the presence
of a cycle. The key is to determine when to stop the expansion process. In the
implementation of the algorithm, a limit was set to the number of prime implicants in the
current expansion trees. Once the limit is surpassed a cycle is assumed to be present.
Substantial time saving has been obtained using this heuristic. A minimal cover is not

guaranteed.

4.3 EXAMPLES

Example 4.5. Consider the 4-valued function with three input variables shown in Figure
4.5. The ON-set with the expandable adjacency vectors and the corresponding EVAW is
shown in Table 4.2. Two minterms (0100 - 0100 - 0001 and 0001 - 0010 - 0100) have a
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EVAW of (2,4). Minterm 0100 - 0100 - 0001 is arbitrarily selected to be expanded first.
The expansion tree results in two prime implicants as shown in Figure 4.6 (expanded
minterms are underlined). PI2 is deleted, since it is dominated by PI1. Therefore, P11 is
pseudo-essential and is added to the solution.

Minterm 0001 - 0010 - 0100 is expanded next. As shown in Figure 4.7 it yields two
prime implicants. Minterm 0001 - 0001 - 0010 is the candidate for the next expansion.
The expanded minterm is contained in the prime implicants PI3 and PIS5. PI3 is chosen to
be part of the solution, since it dominates PIS. The pruned expansion tree now contains
only one prime implicant (PI4). PI4 does not contain any minterm which has been
expanded and is still in the ON-set. Therefore, step 6 must be executed’ again. The
expansion of 0001 - 0010 - 0001 yields 3 new prime implicants (P16, PI7, and PI8). PI7
is chosen to be part of the solution, since it dominates all other prime implicants in the
expansion tree. The expansion tree is now empty.

Finally, minterm 1000 - 1000 - 1000 is expanded (Figure 4.9). PI9 dominates PI10
and is therefore added to the solution. All minterms in the ON-set are covered. The
solution includes the prime implicants PI1, PI3, PI7, and PI9. Formally, the solution is
given by the expression:

3.3 12 123 2 03 012
1 1

_ 12 a2 3
F(xl,xz,x3) =X X, X3+ XXy Xyt X XX, + X

1 72 3
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X3
011 1 0 1 1
1 1
2| - - 2
3 311 1 1
x; =0 x =1
X3X2 0 1 2 3 X3X2 0 1 2
01 1 0 - 1
1 1 1
2 - 2 1
311 - 1 3 - 1
X =2 Xy =3

Figure 4.5 Map of the function used in Example 4.5.
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ON-set EAV EAVW
X1 X9 X3 X1 Xy X3
1000 - 1000 - 1000 0110 - 0010 - 0010 3.4)
1000 - 0010 - 1000 0111 - 1000 - 0010 (3.5)
0100 - 1000 - 1000 1010 - 0010 - 0001 (3,4)
0100 - 1000 - 06001 0011 - 0111 - 1000 (3,6)
0100 - 0100 - 06001 0010 - 1011 - 0000 (2,4)
0100 - 06010 - 1000 1011 - 1000 - 0001 (3.5)
0100 - 0010 - 0001 0011 - 1101 - 1000 (3,6)
0010 - 1000 - 1000 1100 - 0010 - 0001 3.4)
0010 - 1000 - 0001 0101 - 0110 - 1000 (3,5)
0010 - 0010 - 1000 1101 - 1000 - 0011 (3,6)
0010 - 0010 - 0001 0101 - 1100 - 1010 (3,6)
0001 - 0010 - 1000 1110 -0100- 0111 3.7
0001 - 06010 - 0100 0000 - 0001 - 1011 2,4)
0001 - 06010 - 0010 1010 - 0001 - 1101 (3,6)
0001 - 0010 - 0001 . 0110-1000- 1110 (3.6)
0001 - 0001 - 0100 0100 - 0010 - 0010 (3,3)

Table 4.2 Expandable adjacencies with the corresponding weight pairs (Example 4.5).

0100 - 0100 - 0001

N\

0110 - 0100 - 0001 0100 - 1100 - 0001

¢ \

0110 - 1100 - 0001 0100 - 1110 - 0001

PI1} 0110-1110- 0001 ; 0100 - 1111 - 0001

P12

Figure 4.6 The expansion tree for minterm 0100 - 0100 - 0001 (Example 4.5).
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0001 - 0010 - 0100

N\

0001 - 0011- 0100 0001 - 0010 - 1100

i

N\

P13 | 0001-0011-0110 0001 -0010- 1110

Figure

0001 -

N

0001-0010- 1111 | p14

4.7 A pruned expansion tree.

0010 - 0100

e

0001 - 0011- 0100

v

PI3 | 0001 -0011-0110

0001 - 0001 - 0010

!

PI5 | 0101 - 0001 - 0010

N\

0001 - 0010 - 1100

N\

0001 - 0010 - 1110

N

0001 -0010- 1111 | PI4

0001 - 0010 - 0001

N\

0101 - 0010 - 0001 0011 - 0010 - 0001

N \

0111 - 0010 - 0001 0011 - 0010 - 1001

0111 - 1010 - 0001

~ —_

0111 -0010 - 1001 0011 - 0010 - 1011

PI%

P17 PI8

Figure 4.8 A pruned expansion tree.
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1100 - 1000 - 1000 1000 - 1010 - 1000

' N\

1110 - 1000 - 1000 s] 1000-1010- 1010 | PII0

i

PI9 | 1110-1010- 1000

Figure 4.9 The expansion tree for minterm 1000 - 1000 - 1000 (Example 4.5).

*1%2 X% X| X,
N0 01 11 10 N 00 01 11 10, \ 00 01 11 10
00 1 00 1 00 1
01 1 01 1 01 1
11 1)1 1] 1 1 111 1] 1 1 1
10 1 10 10 1

F; =2m(11,12,13,14,15) F5 =¥m(3,7,11,12,13,15) F3 =3m(3,7,12,13,14,15)

Figure 4.10 A binary multiple output problem.

Example 4.6. Consider the binary multiple output problem shown in Figure 4.10
[SER84]. First, the three functions are mapped into one multiple-valued function (Table
4.3). The ON-set with the expandable adjacency vectors and the corresponding EVAWS is
also shown in Table 4.3. Minterms are expanded in the order shown in Table 4.4. Each of
the four minterms results in an essential prime implicant. The minimal sum of products for

the three functions are:

F) (RpXpXgX ) = X X3 X, + X Xy X+ X, X,
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F) (XpXpXpX) =X X3 X, + X X5 X, + X, X, Xy

Fy (XpXpXpX) =X XX+ X X Xy + X, X,
The sum of product expression for Fy contains a redundant term ( X X, )_<3 ). Thecostof a
PLA implementation will not decrease if the redundant term is removed since this term is
required in F; and F,. The solution in [SER84] is similar to the one given above.
However, Serra uses a different ranking for the minterm expansion. The first two
minterms are expanded as shown in this example. Minterm 15, which is included in all
three functions, is expanded next. This expansion results in four prime implicants.
Further expansions are needed to find the essential ones. The weight ranking presented in
this chapter is more efficient, since only essential prime implicants are generated for this

example.
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minterm ON-set EAV EAVW
X1 X9 X3 X4 X5 X1 X3 X3 X4 X5

11 01-10-01-01-100 00-01-00-00-010 2,2)

12 01-01-10-10-100 00-00-01-01-011 3.4

Fq 13 01-01-10-01-100 00-00-01-10-011 3,4)
14 01-01-01-10-100 00-00-10-01-001 (3.,3)

15 01-01-01-01-100 00-10-10-10-011 (4,5)

3 10-10-01-01-010 01-01-00-00-001 3.,3)

7 10-01-01-01-010 01-10-00-00-001 3,3)

F, 11 01-10-01-01-010 10-01-00-00- 100 3,3)
12 01-01-10-10-010 00-00-00-01-101 (2,3)

13 01-01-10-01-010 00-00-01-10-101 3.4

15 01-01-01-01-010 10-10-10-00- 101 4,5)

3 10-10-01-01-001 00-01-00-00-010 (2,2)

7 10-01-01-01-001 01-10-00-00-010 (3.,3)

F3 12 01-01-10-10-001 00-00-01-01-110 3.4)
13 01-01-10-01-001 00-00-01-10-110 3.4)

14 01-01-01-10-001 00-00-10-01- 100 (3,3)

15 01-01-01-01-001 10-00-10-10-110 4,5)

Table 4.3 Expandable adjacencies with the corresponding weight pairs (Example 4.6).

minterms prime implicants
1) 01-10-01-01-100 01-11-01-01-110
2) 10-10-01-01-001 10-11-01-01-011
3) 01-01-10-10-010 01-01-10-11-111
4) 01-01-01-10-100 01-01-11-11-101

Table 4.4 Expansion of minterm with the corresponding prime implicants (Example 4.6).

The algorithm was applied to each example presented by Serra [SER84]. These are
all binary examples. Most are multiple-output problems. In each case, the identical

solution, or one with the same number of product terms, was found by the DSA-MV
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algorithm. The algorithm presented here is simpler than Serra's algorithm which employs

complex heuristics to accommodate multiple outputs.

4.4 RESULTS

A prototype program has been implemented in Pascal and executed on an Amdahl 580. As
a benchmark, the algorithm has been applied to certain two-valued multiple-output
functions. Execution times are quoted to show the increase in complexity with respect to
the increase in the number of inputs/outputs and the number of prime implicants of the
function.

Let ADDn be the function which adds 2 n-bit numbers and produces a result of n + 1
bits. This function is described in [BRA84] as being particularly time consuming to
minimize. Multiplication has also proven to be an interesting function. SQR6 is a 6-input
function where the 12 outputs are the square of the inputs. SYMO9 is a 9-input, 1-output,
function which is equal to 1 if and only if the number of 1's in the input is 3, 4, 5, or 6.
SYMO9 has 1680 prime implicants, none of which are essential. Table 4.5 summarizes the
results obtained in the minimization of the ADDn, MULT4, SQR6, and SYM9 function.
By limiting the maximum number of prime implicants generated before assuming the
presence of a cycle, it is possible to cut the minimization time of some functions, in half
without increasing the size of the final result. Unfortunately, it is generally very difficult to
determine the optimal value for the limiting number of prime implicants.

The performance of the DSA-MYV algorithm could not be compared directly with other
algorithms on the same computer. At the time this research was conducted, the source code
for the Espresso algorithms [RUDS87] was not available. While source code for the
McBoole algorithm [DAGS86] was available, time did not permit the required conversions to
run it on the Amdahl. An empirical comparison of the DSA-MV algorithm with

McBoole[DAG86] and Espresso-MV[RUDS87] is underway.
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According to the timing given in [DAG86] Espresso IIC required 83.0 sec to
minimize the function ADD4, whereas McBoole required 27.0. One must keep in mind
that the time measurements were taken on a VAX 750, which is about a factor of twenty
slower than an Amdahl 580. The speed of our algorithm is therefore of the same order as
McBoole and Espresso IIC. All three algorithms obtained the same number of terms in the
final solution.

Execution time for the minimization of the MULT4 function was 305.7 and 859.1 for
Expresso IIC and McBoole respectively. The solution found by McBoole contained 124
terms, and the solution found by Espresso IIC contained 133 terms. According to one
referee of [DUESS] the minimum number of terms is 121. DSA-MYV produced solutions
with 123 to 133 terms. It is somewhat disturbing that the best solution was not found by
giving our algorithm the highest bound on the number of prime implicants that could be
generated before a cycle was assumed.

A comparison of the results obtained from Espresso, McBoole and DSA-MV is
shown in Table 4.6. It shows that the results obtained by the DSA-MV algorithm are
indeed very good. Unfortunately, it is only possible to compare the sizes of the solutions,

because details of the solutions produced McBoole an Espresso were not published.
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cpu limit on
function n |m time terms | number of
sec. prime imp.

ADD3 6 4 0.31 31 nil
ADD3 6 4 0.27 31 12
ADDA4 81 5 6.12 75 nil
ADD4 81 5 345 75 100
ADD4 81 5 2.63 75 50
ADD4 81 5 2.20 78 25
ADD35 10| 614832 ] 171 nil
ADDS 10] 6|116.09 171 200
ADDS5 10] 6| 7495 174 100
MULT4 81 8] 70.71 127 nil
MULT4 81 8] 63.11 128 500
MULT4 81 8] 51.30 127 400
MULT4 81 8| 36.84 123 300
MULT4 8| 8| 27.07 127 200
MULT4 81 8] 15.01 133 100
SQR6 6 | 12| 11.26 50 nil
SQR6 6 | 12| 3.82 48 100
SYM9 9 1118093 84 1000
SYM9 9 1] 6202 ] 89 500
SYM9 9 112093 | 100 100

Notes:

a)  nis the number of inputs — m is the number of outputs;

b) c.p.u. time is for optimized PVS Pascal on an Amdahl 580 (NOCHECK option
specified);

¢) the number of terms is the number of prime implicants in the solution;

d) the limit on the number of prime implicants as applied to the currently active

expansion trees.

Table 4.5 Results produced by an implementation of DSA-MV.
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Function Espresso-MV McBoole | DSA | minimum?
-fast -exact

SQR6 51 50 497 48 47

MULT4 131 128 124%% 123 121

ADDS5 167 167 171 167

SYM9 88 84 84 84

SYM10 231 210 210 ?

T Minima for these functions were supplied by one of the referees of [DUESS].
* Branching abandoned after 6 nested cycles.
e Branching abandoned after 8 nested cycles.

Table 4.6 Comparisons of Espresso, McBoole, and DSA-MV.

4.5 REMARKS
It has been shown that the directed search algorithm can be extended to accommodate
multiple-valued input variables. Essential and pseudo-essential prime implicants are
detected during the generation of prime implicants. The benefit of this early detection is
that typically not all prime implicants are generated. A heuristic was presented which
speeds up the algorithm by limiting the number of prime implicants generated before one is
chosen to appear in the solution.

The algorithm is suitable for the minimization of medium size functions. Functions
with up to 10 binary input variables and 6 outputs can be handled in reasonable time. The
current implementation is not appropriate for minimization problems with a much larger

number of variables. The DSA-MV algorithm has some clear advantages:

1)  Itis simple. The principles which underlie each step are easy to understand.
2)  The ranking of minterms together with the use of heuristics eliminate the need
for generating all prime implicants.

3) It can minimize multiple-valued input functions.
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4) By applying suitable translations, it can be used to minimize multiple-valued

functions as well as multiple-output functions.

The examples shown in the previous section suggest that simple heuristics can
produce reasonable results. More investigation is required to determine if the presented
heuristics are optimum. There may be a better way to limit the growth of the expansion

tree. A number of alternatives are under investigation.
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Chapter 5
RCM: A RECURSIVE CONSENSUS MINIMIZATION ALGORITHM

5.1 OVERVIEW

A major drawback of the directed search minimization algorithm is that it must start with a
list of minterms — a disadvantage that it shares with the Quine-McCluskey method. If the
function is specified as a list of product terms, where each product term covers more than a
single minterm, all minterms must be generated. This is particularly regrettable if the
function is given as a minimal or near-minimal sum-of-products expression.

The iterated consensus algorithm (described in Section 2.2.1) improved on the
Quine-McCluskey method by starting with a set of product terms. The new recursive
consensus minimization algorithm presented in this chapter combines the advantages of the
directed search and the iterated consensus.

The traditional iterated consensus algorithm [QUISS5] is only concerned with the
generation of prime implicants — the selection of a minimal cover is independent of the
prime implicant generation. However, during this process valuable information about the
relationship between cubes can be obtained. In the algorithm presented here, intersecting
terms are detected during the generation of consensus terms. A list containing all
intersecting terms is associated with each product term.

With this additional information, essential and pseudo-essential prime implicants can
be recognized early. This in turn simplifies the choice of a minimal cover. Unfortunately,
the cyclic problem must still be solved by algebraic or heuristic means. Nevertheless, the
minimization of a cyclic function is simplified with the additional information kept along

with each prime implicant.
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5.2 PRELIMINARIES
Definition 5.1. The distance between two product terms is the number of variables

which appear complemented in one term and uncomplemented in the other.

Example 5.1. Consider the function F(x,x5,x3,x4) = 2m(0,1,3,4,5,6,11,14,15). A

partial list of pairs of product terms and their distances are shown in Table 5.1.

product terms distance
X % X, X)X, 0
X1%3%y X, %3 %, 1
X; X, X3 X)X X; X, 3

Table 5.1 Product terms and their distance.

Lemma 5.1. Let P and Q be two product terms of the function F. There exists a minterm
which is in P, and also in Q, if and only if the distance between P and Q is zero.

Proof. Let P and Q be at distance zero. PQ contains at least one minterm since no
variable that appears complemented in P appears uncomplemented in Q and no variable that
appears uncomplemented in P appears complemented in Q.

Let o be a minterm such that P contains o and Q contains a.. Let M be the product term
that covers o only. The literals involved in P must be a subset of the literals contained in
M. The same is true for the literals of Q. Therefore, there is no variable that appears
complemented in one term and uncomplemented in the other — the distance between P and

Q is zero. Q.E.D.

Example 5.2. Consider the function given in Example 5.1. The distance between the

XX, . The

product terms x, x, and X;X,X, is zero and their intersection is 1 Xy Xg Xy
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corresponding Karnaugh map is shown in Figure 5.1.

00|(1] 1)
o QL

11 |\ Y 1] 1

10 111

Figure 5.1 Two product terms at distance zero.

Definition 5.2. The consensus between two product terms Px; and Q)-(i with distance

equal to one is defined to be PQ.

Example 5.3. Consider the function given in Example 5.1. The consensus term of

X, X

1%3%

4 and x,x, )_(4 is x,X,X; . The two product terms and their consensus term are

shown in Figure 5.2.

X1 %

xx\_ 00 01 11 10
001 1 1
01 1 1

z
1] 1 Q_l?
N

10 ( 1 %}M [~ consensus

term

Figure 5.2 Two product terms and their consensus.

Definition 5.3. The sharp operation of two product terms P and Q of F, denoted
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P # Q, is defined to be PQ.

Example 5.4.

Lemma 5.2. Let P and Q be product terms of the function F such that the distance
between them is greater than zero. P# Q =P.
Proof. The intersection of P and Q is empty (Lemma 5.1). Therefore, Q contains all

minterms which are contained in P. Q.E.D.

5.3 THE BINARY ALGORITHM
The recursive consensus minimization (RCM) starts with two lists of cubes (product terms)
of the function to be minimized. The first list covers all minterms in the ON-set plus all
minterms in the DC-set and a second list covers all minterms in the DC-set. The two lists
are called OnList and DcList, respectively. RCM differs from the traditional iterated
consensus [QUIS5] in two ways:

1) the order in which cubes are selected for expansion;

2) the information retained on the intersection between cubes.
The new ordering helps to detect prime implicants early in the generation process. The
information on the interaction between cubes allows for an immediate detection of essential
and pseudo-essential prime implicants.

The algorithm will, for simplicity and brevity, be described in terms of PASCAL-like

pseudo-code. Each cube is stored in the following data structure:

Cube =record
Zero : set of [1..N]; { complemented variables }
One :setof [1..N]; { uncomplemented variables }
Kind : (Deleted,PICandidate,Implicant);
PIKind : (Essential, NonEssential);
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DCFlag : Boolean; { true if it is a don't-care cube }

Intersections : LinkPtr; { pointer to a list of intersecting cubes}
Next : CubePtr; { pointer to next cube in the list }
end;

The subscript of a complemented variable appears only in set Zero. The subscript of an
uncomplemented variable appears only in set One. The subscript of a missing variable will
appear in both sets. Initially, the Kind of each cube will be Implicant. A cube becomes a
PICandidate (prime implicant candidate) if it is thought to be a prime implicant. A
particular ordering and a special structure of the cubes, in the OnList, results in the marking
of a cube as a PICandidate when it is not a prime implicant. This phenomenon will be
explained later. The PIKind field in the Cube record is only meaningful if the Kind of the
cube is PICandidate. A cube marked Essential is always a prime implicant (see Lemma 5.3
below). The information about intersecting cubes is kept in the Intersections list. Each

Link in the Intersections list is stored in the following data structure:

Link = record
InterCube : CubePtr; { Intersecting cube }
Next : LinkPtr; { next Link in the list }
end;

Example 5.5. Let F be a function with 6 input variables. The cube X, x,x, will be

stored in the cube C as follows:
C.Zero « [1,2,3,5,6]
C.One « [1,3,4,6]
C.Kind ¢« Implicant
C.PIKind « NonEssential
C.DCFlag « false
C.Intersections « Nil

Each cube is linked with its intersecting cubes. Cubes are linked on two different

occasions. If two cubes are found to be at distance zero, and one cube is not a subset of
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the other, then they are linked. If two cubes have a consensus, the consensus cube is
linked to each of its parents (unless the parent is deleted). This information is useful when
checking for essential prime implicants. Only intersecting cubes need to be sharped with
the prime implicant in question. Furthermore, if dominated prime implicants of Q are to be
removed, they must intersect with Q. Since all these cubes are on the intersection list,
there is no need to check all prime implicants in the OnList.

Cubes which cover only don't-care minterms must be placed at the end of the OnList.
They are not expanded, but they must be used in the expansion of all other cubes in the
OnList. Once all implicants in OnList have been expanded, OnList contains only prime
implicants (except the cubes which cover only don't-care minterms, since they are not
expanded). All essential and pseudo-essential prime implicants are marked Essential. Not
all prime implicants of the function will be in the OnList, since dominated cubes will have
been deleted during the process.

The procedure GeneratePIs and Expand identify candidate prime implicants.

GeneratePls invokes Expand repeatedly.

Procedure GeneratePIs(OnList);
for each Cube in the OnList
if Cube is not marked Deleted and Cube is not in the DcList then
Expand(OnList,Cube) { Cube can also be seen as the first element in a list }

end for
end GeneratePls

Procedure Expand (OnList,CubeList)
FirstCube « first element in the CubeList
CubeElement « second element in the CubeList
while (CubeElement # nil) and (FirstCube is not deleted) do
Distance « distance between CubeElement and FirstCube
if Distance = 0 then
IntersectionCube « intersection of FirstCube and CubeElement
if IntersectionCube = CubeElement then
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delete CubeElement
else if IntersectionCube = FirstCube then
delete FirstCube
if CubeElement and FirstCube are not deleted then
LinkCubes(CubeElement, FirstCube)
else if Distance = 1 then
ConsensusCube « consensus of FirstCube and CubeElement
if ConsensusCube is not a subset of any cube in the OnList then
remove all subsets of ConsensusCube from the OnList
mark ConsensusCube as Implicant
insert ConsensusCube to the front of OnList
if FirstCube is not deleted then
LinkCubes(ConsensusCube, FirstCube)
if CubeElement is not deleted then
LinkCubes(ConsensusCube, CubeElement)
Expand(OnList)
end while
if FirstCube has not been deleted then
mark FirstCube as PICandidate
CheckEssential(FirstCube)
end Expand

The procedure Expand finds the consensus cubes between the first cube and the
remaining (undeleted) cubes in CubeList. CubeList is a sub-list of OnList. Intersecting
cubes (cubes at distance zero) must be checked to determine if one cube completely covers
the other (i.e. the intersection is equal to one of the cubes); if this is the case, the covered
cube must be deleted, otherwise the cubes must be linked to each other. If a consensus
cube is found which is not already in the list, then this new cube is added to the front of the
list and the Expand procedure is called recursively. The recursive expansion of the newly
created cube enables the early recognition of prime implicants. Furthermore, it can be
determined if a prime implicant is essential.

The procedure LinkCubes allocates a Link for each cube. The Link contains a pointer
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to the other cube and is inserted in the corresponding intersection list.

If FirstCube has not been deleted during the expansion process it is most likely a
prime implicant. The consensus of FirstCube and any cube at distance one from it has also
been expanded. This will ensure, in most cases, that the prime implicant which includes
FirstCube is found during the expansion. The only case in which FirstCube is not a prime
implicant occurs when all cubes that are part of the prime implicant which includes
FirstCube intersect with it. This is illustrated in Example 5.6. This causes no concern

since the cube will be deleted later on when the prime implicant is generated.

Example 5.6. Consider the four-variable function shown in Figure 5.3. The OnlList is

given as follows (using the positional notation introduced in Chapter 2):

—~1-1 FirstCube
010-
110-
-11-

FirstCube is at distance zero from all other cubes, and therefore no consensus term is

generated. Clearly FirstCube is not a prime implicant since it is part of the cube — 1 ——.

X%
xx\_00 01 11 10
oo| |[1)[1)
o| |
T N T~
1 %wl"’{ \FirstCube
o] \alu

Figure 5.3 Function used in Example 5.6.

The pseudo-code for the procedure to determine whether or not a cube is essential is

given below.
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Procedure CheckEssential (PI: Cube)
delete all cubes in the OnList which are dominated by PI
NotDClList « Sharp(PI, DCList)
UniqueList «- Sharp(NotDCList, PLIntersections)
if UniqueL.ist is not empty then
PI is essential
insert PI in the DCList
if a cube linked to PI is dominated by a nonessential prime implicant PI* then
CheckEssential(PI*)
end CheckEssential

The CheckEssential procedure is fairly straightforward. Cubes dominated by PI are
deleted. All cubes that intersect with PI are known, since they are in the intersection list.
During the expansion process, the distance between PI and every cube in the OnList was
determined, and cubes at distance zero were linked. UniqueList will cover all minterms
which are only covered by PI. Clearly, PI is essential if UniqueList is not empty (some
minterms are only covered by PI). As pointed out earlier, a cube can be marked as a
PICandidate even when it is not a prime implicant. The following lemma shows that such a

cube is never marked Essential.

Lemma 5.3. A cube (PI) marked as Essential, in the CheckEssential procedure, is a
prime implicant of the given function.

Proof. Assume that there exists a prime implicant Q which covers PI, and PI # Q, i.e.
assume PI is not a prime implicant. Clearly, Q is not in the OnList — otherwise PI would
have been deleted. UniqueList contains a cube P which is covered by the cube Q. P has
no cubes at distance 0 in the OnList (all cubes at distance 0 have been sharped with PI).
There must be a cube C in the OnList at distance 1 from P. This implies that the distance
between PI and Cis 1. This is a contradiction, since CheckEssential is only called after all

consensus cubes that can be formed with PI have been expanded. Q.E.D.
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Lemma 5.4. At the termination of the procedure GeneratePIs, OnList contains only
prime implicants of the function (with the exception of the don't-care cubes, which are not
expanded).

Proof. Assume that OnList contains a cube Q which is not prime and which contains at
least one true minterm of the function. Q is not essential, by Lemma 5.3. Therefore, Q is
completely covered by other cubes in the OnList. The consensus of these cubes yields the
prime implicant which includes Q. This is a contradiction, since the generation of such a

cube would result in the deletion of Q. Q.E.D.

If, after applying GeneratePlIs, the OnList contains any cube which is marked as
NonEssential and is not in the DcList, the function is cyclic. In order to break the cycle, a
cube must be chosen to be part of the solution. For convenience, such a cube will be
marked Essential, even though it is not essential. This, in turn, may make other
NonEssential cubes pseudo-essential. The pseudo-code for the BreakCycle procedure

follows.

Procedure BreakCycle (OnList)
let CycleList be the list of all cubes C, where C € OnList,
C.PIkind = NonEssential,
and C.DCFlag is false
while CycleList is not empty do
let PI € CycleList be the cube which covers the largest number of uncovered
minterms of F
mark PI Essential
insert PI in the DcList
if a cube linked to PI is dominated by a nonessential prime implicant PI* then
CheckEssential(PI*)
end BreakCycle
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5.4 BINARY EXAMPLES

The examples given in this section will clarify the steps in the RCM algorithm.

X1 %2

xxg\_00 01 11 10
oG] D] |
om0
11 kl kl) 1V
o] |

Figure 5.3 Function used in Example 5.6.

Example 5.6. Consider the function shown in Figure 5.3. The function is specified
with the following five cubes:

X1X9X3X4
0-00
-1-1
0110
1 —--1
100 -

The minimization would proceed as shown below. For identification purposes each cube is
assigned a unique identifier (Id #). The intersections will be shown as a list of Id numbers.

The initial OnList contains the following information.

Id # cube Kind PIKind Intersections
1 0-00 Implicant NonEssential []
2 -1-1 Implicant NonEssential []
3 0110 Implicant NonEssential []
4 1—-1 Implicant NonEssential [1
5 100- Implicant NonEssential [1
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Cube 1 is expanded first. The first cube at distance 1 is cube 2. The consensus of these

cubes is added to the front of the OnList.

Id #

6

WV BN e

cube
010~
0-00
-1-1
0110
1--1
100-

Kind
Implicant
Implicant
Implicant
Implicant
Implicant
Implicant

PIKind
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections
[1,2]

(6]
[6]
[]
[]
[]

Expand is called recursively with cube 6 as its argument. Cube 3 is at distance 1 from cube

6. Their consensus includes cube 3. Therefore, cube 3 is deleted.
Id #

7

Wt B W N = N

cube
01-0
010-
0-00
-1-1
0110
1—-1
100-

Kind
Implicant
Implicant
Implicant
Implicant

Deleted
Implicant
Implicant

PIKind
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections

(6]

[1,2,7]

[6]
(6]
[]
[]
[]

Expand is called recursively with cube 7 as its argument. Cube 2 is at distance 1 from cube

7. Their consensus includes cubes 6 and 7. Therefore, both cubes are deleted. During

this expansion it was also found that cubes 1 and 7 intersect. It turns out that this

information is not very useful since cubes 6 and 7 are deleted.

Id #

8

| N S A - RN ]

cube
01--
01-0
010-
0-00
-1-1
1--1
100-

Kind
Implicant
Deleted
Deleted
Implicant
Implicant
Implicant
Implicant
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PIKind
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections

[2]

[6,1]
[1,2,7]
[6,7]
[6,8]

[]
[]



Expand is called recursively with cube 8 as argument. Cube 8 has no useful consensus
with any of the cubes in the OnList (i.e. all consensus cubes that can be obtained with

cube 8 are already covered by a cube in the list). Cube 8 also intersects with cube 1.

Id # cube Kind PIKind Intersections
8 01—-— PICandidate = NonEssential [2,1]
1 0-00 Implicant NonEssential [8]
2 -1-1 Implicant NonEssential (8]
4 1—--1 Implicant NonEssential (1
5 100- Implicant NonEssential [1

Cube 8 is now checked to determine if it is essential. The sharp of cube 8 with cubes 1 and
2 (the intersecting cubes) results in the implicant 0 1 1 0. Cube 8 is marked as Essential
and is now part of the minimal cover. All minterms covered by cube 8 need not be covered
again. Therefore, cube 8 can be considered a don't-care cube for the remaining steps in the
minimization process. A copy of cube 8 is created and inserted in the DcList. The
algorithm now returns (by unwrapping the recursion) to the expansion of cube 1. A

consensus of cube 1 and 5 yields — 0 0 0.

Id # cube Kind PIKind Intersections
9 -000 Implicant NonEssential [1,5]
dcl 8 01--  PICandidate Essential [2,1]
1 0-00 Implicant NonEssential [8,9]
2 -1-1 Implicant NonEssential [8]
4 1—--1 Implicant NonEssential [1
5 100- Implicant NonEssential [9]

The consensus of cube 9 and 4 is 1 0 0 —, which is already in the OnList (cube 5). Cube 9
does not yield any new consensus cubes. Cube 9 dominates cube 1. Cube 1 is deleted and

cube 9 is found to be essential.

1 This cube is also in the DcList.
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&
3

dc
dc

N DN = 0 O

cube
-000
01--
0-00
-1-1
1—-1
100-

Kind
PICandidate
PICandidate

Deleted
Implicant
Implicant
Implicant

PIKind
Essential
Essential

NonEssential
NonEssential
NonEssential
NonEssential

Intersections
[1,5]
[2,1]
[8.9]

[8]
[]
[9]

The expansion of cube 2 yields no new implicants. Cubes 2 and 4 intersect. Cube 2 is not

essential since the sharp with its intersecting cubes (4 and 8) is empty.

Id#
dc 9
dc 8
2
4
5

cube

Kind
PICandidate
PICandidate
PICandidate

Implicant
Implicant

PIKind
Essential
Essential

NonEssential
NonEssential
NonEssential

Intersections
[5]
[2]
[8,4]
[2]
[9]

No implicants are generated during the expansion of cube 4. Cubes 4 and 5 intersect.

Cube 4 dominates both of its intersecting cubes (2 and 5).

Id #
dc 9
dc 8
2
dc 4
5

cube
-000
01—~
-1-1
1--1
100-

Kind
PICandidate
PICandidate

deleted
PICandidate
deleted

PIKind
Essential
Essential

NonEssential
Essential
NonEssential

Intersections

[5]

[2]
[8.4]
[2,5]
[9.4]

The final OnList contains only essential (cubes 4 and 8) and pseudo-essential (cube 9)

prime implicants — it contains the solution to given problem.

Id#
dc 9
dc 8
dc 4

cube
-000
01--
1--1

Kind
PICandidate

PICandidate

PICandidate
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Essential
Essential
Essential

Intersections

[]
[]
[]
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X4 X5 X4 X5
00 1| - 00 -
011 1 1 01 1
11 11 ]1 Imjp 1111
10 - 10 - 1
x1=0 x1=1

Figure 5.4 Function used in Example 5.7.

Example 5.7. Consider the 5-variable function shown in Figure 5.4. The function is

specified with the following lists of cubes:

OnlList DcList

11010 -01-0
-0011
--111
-11-1
0000-
-01-0

The DcList contains the don't-care cube. Cubes are never deleted from the DcList. A
don't-care cube Q may be deleted from the OnList if a cube is generated of which Q is a
subset. Don't-care cubes are not linked to intersecting cubes because they are dominated

by any cube, but they should not be deleted. The initial OnList is shown below.
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d# cube Kind PIKind Intersections
1 11010  Implicant NonEssential []
2 —-0011  Implicant NonEssential []
3 ——-111 Implicant NonEssential [1]
4 -11-1 Implicant NonEssential [1
5 0000-  Implicant NonEssential [1
dc 6 —01-0  Implicant NonEssential []

Cube 1 is expanded first. No consensus can be formed. Cube 1 is found to be essential.
Cube 2 is expanded next. The consensus of cube 2 and 3 (cube 7) is added to the OnList.
Cube 2 is a subset of cube 7 and is therefore deleted.

Id # cube Kind PIKind Intersections
7 -0-11 Implicant NonEssential [3]
1 11010 PICandidate Essential []
2 -0011 Deleted NonEssential []
3 --111 Implicant NonEssential [7]
4 -11-1 Implicant NonEssential [
5 0000-  Implicant NonEssential []
dc 6 —-01-0  Implicant NonEssential [1]

Cube 7 has a consensus with cube 5. Cube 8 does not have a useful consensus with any

cube in the list. Cube 8§ is not essential.

Id# cube Kind PIKind Intersections
8 000-1 PICandidate  NonEssential [5,7]
7 -0-11 Implicant NonEssential [3,8]
dc 1 11010 PICandidate Essential []
3 ——111  Implicant NonEssential [7]
4 -11-1 Implicant NonEssential [1
5 0000~  Implicant NonEssential [8]
dc 6 ~01-0  Implicant NonEssential []

The expansion of cube 7 continues. Cubes 7 and 6 yield —0 1 1 —. No useful consensus

cubes can be obtained with cube 9. The expansion of cube 7 terminates. Cube 7 is
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essential. It dominates cube 9.

dc
dc

de

Id #

9

AN W D W e g 0o

cube
-011-
000-1
-0-11
11010
-—-111
-11-1
0000-
-01-0

Kind
Deleted
PICandidate
PICandidate
PICandidate
Implicant
Implicant
Implicant
Implicant

PIKind
NonEssential
NonEssential

Essential
Essential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections

[3,7]

[5,7]

[3.8]
[]
[7]
[]
(8]
[]

The expansion of cubes 3 and 6 yields cube 10 which is not essential. Cube 3 is not

essential. Cube 3 dominates cube 10, which is deleted. The expansion of cube 4 does not

yield a new cube. Cube 4 is essential, and it dominates cube 3.

dc
dc

dc

dc

Id#

10

AN O AW = g o

cube
-011-
000-1
-0-11
11010
--111
-11-1
0000~
-01-0

Kind
Deleted
PICandidate
PICandidate
PICandidate
Deleted
PICandidate
Implicant
Implicant

The consensus of cubes 5 and 6 yields cube 11.

prime implicant.

dc
dc
dc
dc

dc

Id #

11

AN W b o 3

cube
00-00
000-1
-0-11
11010
-11-1
0000~
-01-0

Kind
PICandidate
PICandidate
PICandidate
PICandidate
PICandidate

Implicant
Implicant
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PIKind
NonEssential
NonEssential

Essential
Essential
NonEssential
Essential
NonEssential
NonEssential

PIKind
NonEssential
NonEssential

Essential

Essential

Essential
NonEssential
NonEssential

Intersections

[3,7]
[5.7]
[3.8]
[]
[4,7]
[3]
(8]
[]

Cube 11 is found to be a non-essential

Intersections

[5]
[5,7]
[8]
[]
[]
[8,11]
[]



Cube 5 dominate both its intersecting cubes (8 and 11). Hence, cube 5 is essential and

cube 8 and 11 are deleted. The minimal solution is shown below. The don't-care cube (6)

has been removed.

Id#
dc 7
dc 1
dc 4
dc 5

cube
-0-11
11010
-11-1
0000~

Kind
PICandidate
PICandidate
PICandidate
PICandidate

PIKind
Essential
Essential
Essential
Essential

Intersections

[]
[]
[]
[]

5.5 RCM-MV: THE MULTIPLE-VALUED EXTENSION OF RCM

The cube notation introduced in Section 4.2 will be used to represent multiple-valued logic

product terms. The definitions for distance, consensus, and the sharp operator, together

with multiple-valued examples, are given below.

Definition 5.4. Let P and Q be two cubes of a multiple-valued function. Let S be a

cube obtained as follows:

S = AND(P,Q)

where AND is the bitwise AND of the cube notation of P and Q. The distance of P and Q

is the number of coordinates in S which contains only zeros.

Example 5.8. Table 5.2 shows some cubes of a 3-valued logic function and their

corresponding distance.

P
011-111-100
011-111-100
011-111-100

Q

110-110-110

100-101-101

100-111-011

AND(P,Q)
010-110-100
000-101-100
000-111-000

Table 5.2 Cubes and their distance.
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Definition 5.5. LetP =p; —py —...—py, be a cube of a multiple-valued logic function
F where p; represents the it coordinate of P. Similarly, let Q =q;—qy—. .. — qp be a
cube of F such that the distance between P and Qis 1. Letje {1,2,...,n} such that
AND(p;,q;) is equal to a bitstring consisting only of zeros. The ith coordinate of the
consensus cube W = wy —wp —. .. —wp of P and Q can be obtained as follows:
{ AND(p,,q.), if i#]
Wi =
OR(p;, q,) » ifi=j

where AND and OR are the bitwise AND and OR operations respectively.

Example 5.9. Some cubes with their corresponding consensus cube are shown in Table

5.3.
P Q consensus of P and Q
011-111-100 100-101-101 111-101-100
001-110-101 100-101-011 101-100-001
111-010-011 110-001-111 110-011-011

Table 5.3 Product terms and their consensus.

Definition 5.6. The sharp operation P # Q, is defined as a sum of cubes which covers
all minterms which are covered by P and not covered by Q. The procedural definition of #
is given below. Consider two cubes P=p;—py~..-pyand Q=q;~qp—..—qy.

P#Q=C;+Cy+..+C,, where the cube C; is given by

C1 = AND(p;,NOT(Q)) ~p2—- . — Py

C2=p1 — AND(pp,NOT(gp)) - . . - py

......

Ch=p1—-p2—-..- AND(p,,NOT(qp))
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AND is the bitwise AND operation and NOT is the binary complement operation. If C;
becomes a null cube, i.e. one coordinate consists only of zeros, then C; is removed from

the list.

Example 5.10. Consider the cubes P = 011-111-100-101 and Q = 110-101-101-110.
P # Q is given by

C; =001-111-100-101

G, =011-010-100-101

C3=011-111-000-101  null cube (delete)

C4 =011-111-100-001

The data structure used to store each multiple-valued cube is slightly different from
the one used for a binary cube. R is the radix of the function and N denotes the number of
input-variables.

Cube =record
Ones : array[0..R-1] of set of [1..N]; { ones in each coordinate }

Kind : (Deleted,PICandidate,Implicant);
PIKind : (Essential, NonEssential);

DCFlag : Boolean; { true if it is a don't care cube }
Intersections : LinkPtr; { pointer to a list of intersecting cubes}
Next : CubePtr; { pointer to next cube in the list }

end;

Example 5.11. Let F be a 4-valued function with 3 input variables. The cube

P =0110-1111-1000 will be stored as follows:
P.Ones[0] « [2,3]
P.Ones[1] « [1,2]
P.Ones[2] « [1,2]
P.Ones[3] « [2]
P.Kind « Implicant
P.PIKind « NonEssential
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P.DCFlag « false
P.Intersections « Nil

P.Ones is an array indexed by the logical value where each element is a set of the function

variables.

The pseudo-code for the basic operations is given below.

Function Distance(CubeA,CubeB);
TempSet« [] { empty set }
Distance « 0
forI« Oto(R-1)do

TempSet « TempSet + CubeA.Ones[I]*CubeB.Ones[I]
end for
forI« 1toNdo

if Iin TempSet then

Distance « Distance + 1

end for
end Distance

Procedure Consensus(CubeA,CubeB,CubeR);
{CubeA and CubeB are at distance 1}
let Position be the coordinate in which CubeA and CubeB don't intersect
forI« Oto(R-1)do
CubeR[I] « CubeR[I] + CubeA.Ones[I] *CubeB.Ones[]]
if (Position in CubeA.Ones[I]) or (Position in CubeB.Ones[I]) then
CubeR[I] « CubeR[I] + [Position]
end for
end Consensus

Procedure Sharp(CubeA,CubeB,Result); {Result is a list of cubes }
Result « empty list
if Distance(CubeA,CubeB) > 0 then

add CubeA to Result
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else
TempSet« [] { empty set }
forT«0to(R-1)do
TempSet « TempSet + (CubeA.Ones[I] - CubeA.Ones[I]*CubeB.Ones[I])

end for
forI« 1toNdo
if I in TempSet then
let NewCube be a copy of CubeA
forJ«~0to(R-1)do
if I in CubeA.Ones[J]*CubeB.Ones[J] then
NewCube.Ones[J] <« NewCube.Ones[J] - [I]

end for
insert NewCube in the list Result

end for

end Sharp

With the new definitions given above, the procedures GeneratePIs, Expand, and

CheckEssential can be immediately applied as presented in Section 5.3.

5.6 MULTIPLE-VALUED EXAMPLES

Example 5.12. Consider the 4-valued function with three input variables represented by

the following five cubes:

0001-0100-0010
0100-1010-1100
0110-0100-0110
0010-1000-1000
0010-0010-0100

The initial OnList contains the following information.

-112 -



Id #

N AW N

cube
0001-0100-0010
0100-1010-1100
0110-0100-0110
0010-1000-1000
0010-0010-0100

Kind
Implicant
Implicant
Implicant
Implicant
Implicant

PIKind
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections
[]
[]
[]
[]
[]

The consensus of cubes 1 and 3 yields cube 6. Cube 1 is a subset of cube 6 and is

therefore deleted. Cube 6 yields no further consensus cubes. Cube 6 is essential.

Id #

dc 6

wn AW N

cube
0111-0100-0010
0001-0100-0010
0100-1010-1100
0110-0100-0110
0010-1000-1000
0010-0010-0100

Kind
PICandidate
Deleted
Implicant
Implicant
Implicant
Implicant

PIKind
Essential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections
[31]
[]
[]
[6]
[]
[]

Cube 2 is expanded next. The consensus of cubes 2 and 3 yields cube 7. Cube 7 is at

distance 1 from cube 5. Cube 5 is a subset of cube 8.

Id #

8

dc

(% B N CL R S e

cube
0110-0010-0100
0100-1110-0100
0111-0100-0010
0100-1010-1100
0110-0100-0110
0010-1000-1000
0010-0010-0100

Kind
Implicant
Implicant

PICandidate
Implicant
Implicant
Implicant

Deleted

PIKind
NonEssential
NonEssential

Essential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections
(7]
[2,3,8]
[3]

[7]
[6,7]

[]

[]

The consensus of cubes 8 and 3 yields cube 9. Cube 8 is a subset of cube 9. Cube 9 is

essential. Cube 3 is dominated by cube 9.
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Id# cube Kind PIKind Intersections

dc 9 0110-0110-0100 PICandidate Essential [2,3,7]

g8 0110-0010-0100 Deleted NonEssential (7]

7 0100-1110-0100  Implicant NonEssential [2,3,9]
dc 6 0111-0100-0010 PICandidate Essential [3]

2 0100-1010-1100  Implicant NonEssential [7,9]

3 0110-0100-0110 Deleted NonEssential [6,7,9]

4  0010-1000-1000  Implicant NonEssential [1]

Cube 7 can not be expanded any further. Cube 7 is not essential. The expansion of cube 2

yields cube 10 (the consensus of cubes 2 and 4). Cube 4 is a subset of cube 10. Cube 10

is essential.
Id # cube Kind PIKind Intersections
dc 10 0110-1000-1000 PICandidate Essential 2]
de 9 0110-0110-0100 PICandidate Essential [2,7]
7  0100-1110-0100 PICandidate = NonEssential [2,9]
dc 6 0111-0100-0010 PICandidate Essential []
2 0100-1010-1100  Implicant NonEssential [7,9,10]
4 0010-1000-1000 Deleted NonEssential []

Cube 2 is essential. Cube 2 dominates cube 7. The minimal solution is shown below.

Id# cube Kind PIKind Intersections
dc 10 0110-1000-1000 PICandidate Essential [2]
dec 9 0110-0110-0100 PICandidate Essential [2]
dc 6 0111-0100-0010 PICandidate Essential []
dc 2  0100-1010-1100 PICandidate Essential [9,10]

Example 5.13. Consider the binary multiple-output problem described in Example 4.6.
The Karnaugh maps for the three functions are shown in Figure 4.10. The three functions
can be mapped into a multiple-valued function as shown in Table 4.3. The list of cubes
used in initial OnList represent the minimal sum-of-products for each binary function,

without considering the multiple output. The given cubes are:

114 -



01-01-11-11-100
01-11-01-01-100

01-01-10-11-010
11-11-01-01-010

01-01-11-11-001
10-11-01-01-001

The initial OnList contains the following information.

Id #
1

AN N AW

cube
01-01-11-11-100
01-11-01-01-100
01-01-10-11-010
11-11-01-01-010
01-01-11-11-001
10-11-01-01-001

Kind
Implicant
Implicant
Implicant
Implicant
Implicant
Implicant

PIKind
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections
[]
[]
[]
[]
[]
[]

Cubes 1 and 3 yield cube 7. Cube 3 is a subset of cube 7. The consensus of cubes 7 and 4

yields cube 8. Cubes 8 and 1 yield cube 9. Cube 8 is a subset of cube 9. The consensus

of cubes 9 and 5 yields cube 10. Cube 9 is a subset of cube 10.

Id #

p—
o

AN B W N e 0 O

cube
01-01-11-01-111
01-01-11-01-110
01-01-11-01-010
01-01-10-11-110
01-01-11-11-100
01-11-01-01-100
01-01-10-11-010
11-11-01-01-010
01-01-11-11-001
10~-11-01-01-001

Kind
Implicant
Deleted
Deleted
Implicant
Implicant
Implicant
Deleted
Implicant
Implicant
Implicant

PIKind
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections
[5]
[]
[]
[1]

[2,7]
[1]
[]
[]

[10]
[]

The expansion of cube 10 yields cube 11 (the consensus of cubes 10 and 6). The
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consensus of cubes 11 and 4 yields cube 12. Cube 12 does not generate any useful

consensus cubes. Cube 12 is not essential. The expansion of cube 10 also terminates.

Cube 10 is not essential.

Id# cube Kind PIKind Intersections
12 11-01-01-01-011 PICandidate NonEssential [4,5,6,10]
11 11-01-01-01-001 Deleted NonEssential [1]

10 01-01-11-01-111 PICandidate = NonEssential [1,2,4,5,7,12]
7 01-01-10-11-110  Implicant NonEssential [1,10]

1 01-01-11-11-100  Implicant NonEssential  [2,7,10]

2  01-11-01-01-100  Implicant NonEssential [1,10]

4 11-11-01-01-010  Implicant NonEssential [10,12]

5 01-01-11-11-001  Implicant NonEssential [10,12]

6 10-11-01-01-001  Implicant NonEssential [12]

The expansion of cube 7 continues. The consensus of cubes 7 and 5 yields cube 13. Cube

7 is a subset of cube 13. Cube 13 is essential.

Id # cube Kind PIKind Intersections

dc 13 01-01-10-11-111 PICandidate Essential [1,10]

12 11-01-01-01-011 PICandidate = NonEssential [4,5,6,10]

10 01-01-11-01-111 PICandidate = NonEssential [1,2,4,5,12]

7 01-01-10-11-110 Deleted NonEssential []

1 01-01-11-11-100  Implicant NonEssential [2,10]

2 01-11-01-01-100  Implicant NonEssential [1,10]

4 11-11-01-01-010  Implicant NonEssential [10,12]

5 01-01-11-11-001  Implicant NonEssential {10,12]

6 10-11-01-01-001 Implicant NonEssential [12]

Cubes 1 and 5 yield cube 14. Both cubes are subsets of cube 14. Cube 14 is essential.

Cube 12 is checked to determine if it is essential since it dominates cube 10 which intersects

with cube 14. Cube 12 is not essential.
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Id#

dc 14
dc 13
12

(o N B S

cube
01-01-11-11-101
01-01-10-11-111
11-01-01-01-011
01-01-11-01-111
01-01-11-11-100
01-11-01-01-100
11-11-01-01-010
01-01-11-11-001
10-11-01-01-001

Kind
PICandidate
PICandidate
PICandidate

Deleted
Deleted
Implicant
Implicant
Deleted
Implicant

PIKind
Essential
Essential

NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections

[2,12,13]
[14]
[4,6,14]
[]

[]
[14]
[12]

[]
[12]

Cube 2 is expanded next. Cubes 2 and 4 yield cube 15. Cube 2 is a subset of cube 15.

The consensus of cubes 15 and 13 yields cube 16. Cube 16 is immediately deleted since it

is dominated by cube 15. Cube 15 is essential.

Id #
16
dc 15
dc 14
dc 13
12
2
4
6

cube
01-01-11-01-110
01-11-01-01-110
01-01-11-11-101
01-01-10-11-111
11-01-01-01-011
01-11-01-01-100
11-11-01-01-010
10-11-01-01-001

Kind
Deleted
PICandidate
PICandidate
PICandidate
PICandidate
Deleted
Implicant
Implicant

PIKind
NonEssential
Essential
Essential
Essential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections

[]
[4,12,14]
[12,13,15]
[14]

[4,6,14,15]

[]
[12,15]
[12]

The consensus of cubes 4 and 6 yields cube 17. Cube 6 is a subset of cube 17. Cube 17

dominates cubes 12 and 4. Finally, 4 essential cubes remain in OnList. The identical result

was obtained by the DSA-MV (see Example 4.6)

Id #
dc 17
dc 15
dc 14
dc 13

cube
10-11-01-01-011
01-11-01-01-110
01-01-11-11-101
01-01-10-11-111

Kind
PICandidate
PICandidate
PICandidate
PICandidate
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Essential
Essential
Essential
Essential

Intersections

[]
[14]
[13,15]
[14]



5.7 REMARKS

Prototypes of both algorithms have been implemented in Turbo Pascal on a Macintosh
computer. The results of all examples given in this chapter (Sections 5.4 and 5.6) were
obtained using these computer programs.

The implementation of the algorithms presented in this chapter is straightforward.
Once the binary implementation was complete, the extension from RCM to RCM-MV was
accomplished by simply replacing the data structure to store a cube and the procedures
Distance, Consensus, and Sharp, together with new input and output routines.

Due to the new ordering of the cubes in OnList, which enables the detection of
essential and pseudo-essential prime implicants, as well as the deletion of all dominated

cubes, the number of elements in OnList is kept small.
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Chapter 6
MINIMIZATION WITH WINDOW LITERALS

6.1 OVERVIEW

A wide variety of literal operations for multiple-valued logic have been proposed (see
Section 2.3). The three minimization procedures presented in the preceding chapters use
the generalized literal operation (see Definition 1.7). The window literal is defined as

follows:

a b 1 ifasx <b
(6.1)

0 otherwise

Window literal are a subset of generalized literal. For example, a four-valued variable has
10 distinct non-trivial window literals, whereas the number of generalized literals is 15. In

general, an R-valued variable has

RR+1)
2

window literals and

R -1

generalized literals. The number of literals is an important factor if the function is to be
implemented using a PLA, since all literals must be generated. The number of literals
determines the number of “rows” of the PLA needed for each input variable. The number
of product terms of the function determines the number of PLA “columns”. A sum-of-
products expression is likely to have more terms using the window literal than the
generalized literal.

The cube notation for window literals is similar to the cube notation for generalized
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literals (Section 4.1). The product term

3 b ab a, b
x1 X2 Xn

is denoted by the binary vector:

p;-1

0 1 01 0
Clcl...C1 -C2C2...C —...-CnC...C

where
{ 1 ifa <j<b,
1 1

0 otherwise

Example 6.1. If P= {4, 3, 4, 4}, then the product term

02112312
X% XX

is represented by the cube 1110-010-0011-0110.

The definition of adjacency must be changed slightly and the definition of expandable
adjacencies in the direct cover algorithm is different from the one in the directed search

algorithm.

Definition 6.1. Two minterms are said to be adjacent if they differ in exactly one of
their input variables, and the magnitude of the difference in that input variable is exactly
one. Let o and B be adjacent minterms, let x; be the input variable in which they differ

o =(ag,a,...,3j...,4,)

B=(ajap,....b;....a.)
then la;-b;l=1

Any minterm has between n and 2n adjacent minterms since a minterm has at least

one adjacent minterm with respect to each coordinate and at most two. In contrast, the

number of adjacencies for the generalized literal operator is:
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2@1 -
i=l

6.2 DIRECT COVER ALGORITHM FOR TRUNCATED SUM
MINIMIZATION

6.2.1 The Extension

Since we are dealing with functions with multiple-valued outputs, the literal operation will
yield the values R-1 and O (not 1 and 0 as shown in (6.1)). The definition of expandable
adjacency from Chapter 3 is used in this section (Definition 3.2). A minterm may be
expanded beyond its adjacent minterms (Figure 6.1). This must be considered when

ranking minterms.

expandable adjacencies

@ maximum expansion in the first coordinate

Figure 6.1 A minterm may be expanded beyond its adjacent minterms.

Definition 6.2. Given the minterm
o =(ag,az,...,3j ... ,3a)
let Q be an implicant of the function of the form
3 4 %3 kKL o3 g

Q=c S R T
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where kj <a; <1, ¢ = «f(a)», and Q is not contained in any other implicant of the same
form, i.e. Q is the largest implicant of this type. All minterms contained in Q , excluding

o, are said to be the extendible minterms of o in the it coordinate. The total number of

extendible minterms of o is denoted by EM,,.

Definition 6.3. The isolation factor of a minterm o, is

1
Ich ~ EA R-1D+EM +1
o 0]
With these three new definitions the algorithm to determine the break count reduction
(BCR) can be used without modification. Furthermore, the minimization algorithm
presented in Chapter 3 can be applied as given. This algorithm will be referred to as

DCM™.

6.2.2 Examples

Tirumalai and Butler [TIR88] analyzed several minimization algorithms for multiple-valued
PLAs using the truncated sum operator and window literals. Tirumalai and Butler's
adaptation of the DCM algorithm (DCM™) gave results which are not as good as the
extension of the DCM algorithm (DCM"™) presented in Section 6.2.1. For the following
three examples [BUT88] pcmY gave better results than DCM™.

For simplicity, the product term

ahab g b
¢ X Xy ... X

will be written as c(ay,by)(as,by) . . . (ap,by).
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Figure 6.2 Map! of the function used in Example 6.2.

Example 6.2. Consider the function shown in Figure 6.2. The function was realized

with 8 implicants using the DCM™ algorithm [BUT88]. With DCM" a minimal cover

consisting of 6 implicants was obtained. The minimization proceeds as follows:

STEP 1
STEP 2

STEP 3

STEP 4

STEP 5
STEP 6

MinValue < 1.

The isolation factors for the minterms with value 1 are as follows:

minterm (2,2) (3,2) 0,3) (2,3)
IF 1/19 1/11 1/13 1/16
a « (3,2).

The eight implicants which contain o have the following break count reductions:
implicant 1(3,3)(2,2) 1(3,3)(2,3) 1(2,3)(2,2) 1(2,3)(2,3)

BCR 0 0 0 1

implicant 1(1,3)(2,2)  1(1,3)(2,3) 1(0,3)(2,2) 1(0,3)(2,3)

BCR 1 2 1 2

Qmax «1(0,3)(2,3)2.
Add 1(0,3)(2,3) to the solution.

1 The minterms for which the function evaluates to R - 1 are shaded because they are
treated differently during the minimization process.

2 The last implicant with the highest BRC is selected. This choice is arbitrary, but
consistent throughout the examples in this chapter.
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STEP 7

STEP 1
STEP 2

STEP 3

STEP 4

STEP 5
STEP 6
STEP 7

STEP 1

STEP 2

g(X) now becomes:

X1

X

0

1

2

3
MinValue « 2.
The isolation factors for the minterms with value 2 are as follows:
minterm (0,0) (1,0) (3,0) (1,1) 2,1)
IF 1/12 1/16 1/7 1/18 1/10

Note: minterms (0,2), (1,2), (1,3), and (3,3) are not considered since they
evaluated to 3 in f(X).

o < (3,0).

The four implicants which contain o have the following break count reductions:
implicant  2(3,3)(0,0)  2(2,3)(0,0)  2(1,3)(0,0) 2(0,3)(0,0)

BCR 1 1 -1 0

Qmax <2(2,3)(0,0).

Add 2(2,3)(0,0) to the solution.

£(X) now becomes:

MinValue « 2.
(MinValue is not assigned the value 1 because the minterm which evaluates to 1 is
shaded — it originally evaluated to 3)

The isolation factors for the minterms with value 2 are as follows:
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minterm 0,0) (1,0) (1,1 2,1)
IF 1/11 1/15 1/18 1/10
STEP 3 « « (1,2).
STEP 4 The six implicants which contain o have the following break count reductions:
2(2,2)(1,1) 2(2,2)(0,1) 2(1,2)(1,1) 2(1,2)(0,1) 2(0,2)(1,1) 2(0,2)(0,1)
1 2 0 1 0 2
STEP 5 Qmax < 2(0,2)(0,1).
STEP 6 Add 2(0,2)(0,1) to the solution.
STEP 7 g(X) now becomes3:

STEP 1 MinValue - 3.
(all remaining minterms for which «g(X)» < 4, had the value 3 in f(X).)
STEP 2 The isolation factors for the minterms with value 3 are as follows:
minterm 0,1) 0,2) (1,2) (1,3) (3,3)
IF 1/5 1/9 1/9 1/5 /1
STEP 3 o « (3,3).
STEP 4 There is only one implicant 3(3,3)(3,3) with BRC 2.
STEP 5 Qmax « 3(3,3)(3,3).
STEP 6 Add 3(3,3)(3,3) to the solution.
STEP 7 g(X) now becomes:

3 Minterms with value 4 are don't-care minterms.
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STEP 1
STEP 2

STEP 3
STEP 4

STEP 5
STEP 6
STEP 7

STEP 1
STEP 2

STEP 3
STEP 4

STEP 5
STEP 6

MinValue < 3.

The isolation factors for the minterms with value 3 are as follows:

minterm 0,1) 0,2) (1,2) (1,3)
IF 1/5 1/9 1/9 1/5
o« (0,D).

The two implicants which contain o have the following break count reductions:
implicant 3(0,0)(1,1)  3(0,0)(1,2)

BCR 2 3

Qmax < 3(0,0)(1,2).

Add 3(0,0)(1,2) to the solution.

g(X) now becomes:

MinValue < 3.

The isolation factors for the minterms with value 3 are as follows:

minterm (1,2) (1,3)
IF 1/9 1/5
o« (1,3).

The two implicants which contain o have the following break count reductions:
implicant 3(1,1)(3,3)  3(1,1)(2,3)

BCR 2 4

Qmax « 3(1,1)(2,3).

Add 3(1,1)(2,3) to the solution.
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STEP 7 g(X) now becomes:

XoN01 2 3

STEP 8 The termination condition has been reached. The result is

0323 2300 0201 3333 0012 1123
fix,x)=1%xx, ¢ 2 x1x202 x1x203 X, X, €3 X1X203 X)X,
The result obtained by DCM* [BUTSS8] is
0323 3333 1103 2211
F(x;, %)) = 1%, 0 27%%, ¢ 2 % X, 0 2% x, ¢

3300 000 2 0011 2200
2xlx2<>2x1x2<>1x1x2<>3x1x2

Example 6.3. Consider the function shown in Figure 6.3. The function was realized
with 9 implicants using the DCM™ algorithm [BUT88]. A minimal cover consisting of 7
implicants was obtained using the DCMW algorithm. The terms were obtained in the

following order

most isolated minterm best implicant
1122 {4122
X % X %
0011 L 0013
X % X %
2233 ,2.333
SRR X%
1100 y 1,300
1 %2 SR
3311 53,303
X SR
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2211 2 21
X 37x] 'x
1 1

3322 3332
X X, X, X

X1
N0 1 2 3
0 2
111
21111
311

Figure 6.4 Map of the function used in Example 6.4.

DCMY proceeds as follows:
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B W

0 1 2 3
() 0012 1333 2223

(2 (’D 2 |3/ fxpx) =1 % %0 1%%, 0 1%%, ¢
2 2

! @ =% 23xi0x§ ¢ ZIXfOxg ¢ ZOXiOX; ¢
QJ G [(3)||2

21x22x§
~
( [2)[{3) '

Example 6.4. Consider the function shown in Figure 6.4. DCM* produced a
realization with 10 implicants [BUT88]. The minimal realization of this function consists
of 7 implicants (see Figure 6.4). The DCM" algorithm produced a solution with 8§ terms

which is not minimal, but better than the solution proposed by DCM*. The execution of



STEP 1
STEP 2

STEP 3

STEP 4

STEP 5

STEP 6
STEP 7

STEP 1
STEP 2

STEP 3

MinValue «- 1.

The isolation factors for the minterms with value 1 are as follows:

minterm 0,2) (1,3)
IF 1/12 1/12
o « (0,2).

The eight implicants which contain o have the following break count reductions:
implicant  1(0,0)(2,2) 1(0,0)(1,2) 1(0,0)(0,2) 1(0,1)(2,2)

BCR 1 3 2 1

implicant ~ 1(0,1)(1,2)  1(0,1)(0,2) 1(0,2)(2,2) 1(0,3)(2,2)

BCR 3 3 3 1

Qmax « 1(0,2)(2,2).

Note: this choice will not lead to the minimal solution. The implicant 1(0,0)(1,2)
should have been chosen at this point. The BRC for the “best” implicant
1(0,0)(1,2) is the same as the BRC for the chosen implicant 1(0,2)(2,2).

Add 1(0,2)(2,2) to the solution.

g(X) now becomes:

MinValue « 1.

The isolation factors for the minterms with value 1 are as follows:

minterm (1,2) (1,3)
IF 1/15 1/12
o« (1,3).
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STEP 4

STEP 5
STEP 6
STEP 7

STEP 1
STEP 2
STEP 3
STEP 4

STEP 5
STEP 6
STEP 7

STEP 1
STEP 2

The eight implicants which contain o have the following break count reductions:
implicant  1(1,1)(3,3)  1(1,1)(2,3) 1(1,1)(1,3)  1(1,1)(0,3)

BCR 0 2 2 4

implicant ~ 1(1,2)(3,3) 1(1,2)(2,3) 1(1,3)(3,3) 1(1,3)(2,3)

BCR -1 2 0 1

Qmax « 1(1,1)(0,3) .

Add 1(1,1)(0,3) to the solution.

g(X) now becomes:

MinValue < 1.

The only minterm which evaluates to 1 (1,1) has an isolation factor of 1/9.
o« (1,1.

The four implicants which contain o have the following break count reductions:
implicant ~ 1(1,1)(1,1)  1(1,1)(0,1)  1(0,1)(1,1)  1(0,1)(0,1)

BCR 2 2 3 2

Qmax « 1(0,1)(1,1).

Add 1(0,1)(1,1) to the solution.

g(X) now becomes:

MinValue « 2.

The isolation factors for the minterms with value 2 are as follows:
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STEP 3
STEP 4

STEP 5
STEP 6
STEP 7

STEP 1
STEP 2

STEP 3
STEP 4

STEP 5
STEP 6

minterm (0,0) (2,0) 3,1 (3,2) 2,3)

IF 1/11 1/10 1/10 1/14 1/9

o« (2,3)

The four implicants which contain o have the following break count reductions:
implicant ~ 2(2,2)(3,3)  2(2,2)(2,3) 2(2,3)(3,3) 2(2,3)(2,3)

BCR 0 3 0 2

Qmax « 2(2,2)(2,3).

Add 2(2,2)(2,3) to the solution.

g(X) now becomes:

MinValue < 2.

The isolation factors for the minterms with value 2 are as follows:

minterm (0,0) (2,0 3.1) (3,2)

IF 1/11 1/10 1/10 1/14

o« (2,0).

The six implicants which contain o have the following break count reductions:

2(2,2)(0,0) 2(23)(0,0) 2(1,2)(0,0) 2(1,3)(0,0) 2(0,2)(0,0) 2(0,3)(0,0)
0 0 2 2 1 1

Qmax « 2(1,3)(0,0).

Add 2(1,3)(0,0) to the solution.
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STEP 7

STEP 1
STEP 2

STEP 3
STEP 4

STEP 5
STEP 6
STEP 7

STEP 1
STEP 2

STEP 3

2(X) now becomes:

MinValue « 2.

The isolation factors for the minterms with value 2 are as follows:

minterm (0,0) 3,1) (3,2)
IF 1/9 1/10 1/14
o < (0,0).

The three implicants which contain o have the following break count reductions:
implicant  2(0,0)(0,0)  2(0,0)(0,1)  2(0,1)(0,0)

BCR -1 2 -1

Qmax < 2(0,0)(0,1).

Add 2(0,0)(0,1) to the solution.

g(X) now becomes:

MinValue < 2.

The isolation factors for the minterms with value 2 are as follows:

minterm 3,1 (3,2)
IF 1/10 1/14
o<« (3,1).
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STEP 4 The six implicants which contain o have the following break count reductions:
2(3,3)(1,1)  2(3,3)(1,2) 2(3,3)(1,3) 2(3,3)(0,1) 2(3,3)(0,2) 2(3,3)(0,3)
-1 0 0 1 2 2
STEP 5 Qmax < 2(3,3)(0,3).
STEP 6 Add 2(3,3)(0,3) to the solution.
STEP 7 g(X) now becomes:

STEP 1 MinValue « 3.

STEP 2 The only minterm which evaluates to 3 (3,3) has an isolation factor of 1/1.
STEP3 o « (3,3).

STEP 4 The only implicant 3(3,3)(3,3) has a BRC of 2.

STEP S5 Qmax « 3(3,3)(3,3).

STEP 6 Add 3(3,3)(3,3) to the solution.

STEP 7 g(X) now becomes: '

STEP 8 The termination condition has been reached. The result is

0222 10

1 3 0111 2223 1300 0001 3303 3333
f(xl,x2)—1 x1x201x1x2<> 1 x1x2<>2x1x

2()2)(1)(202x1x2<>2x1x2<>3xlx2

The result obtained by DCM™ [BUT88] is
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0012 1333 2223 1322 3333
F(xl,x?_)—lx1x2<>1x1x201x1x202x1x202x1x20

3311 0200 1100 0111 3300
2xlx2<>2x1x2(>1x1x2<>2x1}\{2(>3x1x2

6.2.3 Remarks

The DCM" minimization algorithm produced better results than Tirumalai and Butler's
[TIR88] extension of the DCM algorithm. However, a minimal result is not always
produced by DCM™ (see Example 6.4). The break reduction count often produces ties for
different implicants. In Example 6.4, the “best” implicant (the implicant which is part of a
minimal solution) always had the highest BRC. Frequently, several terms had the same
BRC and the “best” implicant was not always chosen to be part of the solution. Additional
investigation is needed to find an effective way to break BRC ties. One possibility is to

build a partial tree containing all of the “best” choices.

6.3 DIRECTED SEARCH MINIMIZATION

6.3.1 The Extension

The definition of expandable adjacency from Chapter 4 (Definition 4.2) is used here. In
this section we are dealing with multiple-valued input, binary-valued output functions. As
pointed out in Section 6.2.1, a minterm may be expanded beyond its adjacent minterms

(Figure 6.2).

Definition 6.4. Given the minterm
o = (al,az, RN ,an)
let Q be an implicant of the function of the form

Q= alxal Hh kixli anxan
= 1 X2 e s e



where k; <a; <1; and Q is not contained in any other implicant of the same form. All
minterms contained in Q, excluding o, are said to be the extendible minterms of o in the
ih coordinate.
The extendible minterms of a minterm can be represented by a bit string similar to the
cube notation of the minterm. Let M be a minterm and let M, be the cube representing M.
Let Qp, Qg, . . .Q; be the extendible minterms of M and let Q.q, Qca, - .‘ Q¢ be their
respective cube representations. The bit string representing the extendible minterms of M,
EMYVy (Extendible Minterms Vector), is obtained as follows:
EMVy=(Qc1 + Qe +. . +Qp) « (M)
where +, ¢, and ' represent the bitwise OR, AND, and COMPLEMENT operations
respectively.
Each extendible minterms vector has associated with it a weight EMVWy; which
consists of a pair of integers. The integers in EMV W, are obtained as follows:
o The first integer indicates the number of adjacent minterms of M which are also
extendible minterms of M.
* The second integer is the number of ones in the EMV),.
The following modifications are needed to adapt the DSA-MYV algorithm (see Section
4.2), to handle window literals — replace EAV by EMV and replace EAVW by EMVW.
The modified version of the directed search algorithm is called DSA-MVW,

6.3.2 Examples

Example 6.5. Consider the three-variable function with radix three shown in Figure 6.5.
The minterms in the ON-set with their corresponding extendible minterm vectors and
weights are shown in Table 6.1. Minterms are expanded in the order shown in Table 6.2.

Each of the expansions results in an essential prime implicant. The final result is

0001 0001 010112

FxpxpXy) = X X5 + X X3+ X X, X
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X3

Table 6.1 Extendible minterms with the corresponding weight pairs (Example 6.5).

Table 6.2 Expanded minterms with the corresponding prime implicants (Example 6.5).

X2

Xl =0

x3X2 0 1
0] 1
11 111
2l 111

X1=1

Figure 6.5 Function used in Example 6.5.

ON-set

100-100-100
100-100-010
100-100-001
100-010-100
100-010-010
100-010-001
010-100-100
010-100-010
010-100-001
010-010-010
010-010-001
001-100-100
001-100-010

1)
2)
3)

EMV

011-010-011
011-010-101
010-010-110
000-100-011
010-100-101
010-100~110
101-000-011
101-010-101
100-010-110
100-100-001
100-100-010
110-000-010
110-000-100

minterm
100-010-100
001-100-100
010-010-010
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EMVW
3.5)
(4,5)
3.4
(2,3)
4.4)
(3.4)
(3.4
(,5)
3.4
3,3)
(3.,3)
2,3)
2,3)

prime implicant

100-110-111
111-100-110
110-110-011




0 of 1{ 1 0 1 111
1 1§ 1] - 1| - 1 1]~ 1 _
2] - 1 1| - 2 2 - - -
3 3 - 3 1
x; =0 Xy =1 X; =2

Figure 6.6 Map of the function used in Example 6.6.

Example 6.6. Consider the three-variable function with P = {3,4,4}, shown in Figure
6.6. The minterms in the ON-set with their corresponding extendible minterm vectors and
weights are shown in Table 6.3. The minterm with the lowest weight (001-1000—1000) is
expanded first. The pruned expansion tree is shown in Figure 6.7 (expanded minterms are
underlined). Two prime implicants (PI1 and P12) cover the expanded minterm. Minterm
(001-0010-1000) meets the criteria of step 6 in DSA-MVW, and so it is expanded next
(Figure 6.8). Two prime implicants, PI2 and PI3, cover the expanded minterm.

Next, mintefm (001-0010-0001) is expanded. PI4 is added to the tree (Figure 6.9).
PI4 is dominated by PI3. PI3 becomes pseudo-essential. Now PI1 dominates PI2 — PI1
is pseudo-essential. The expansion tree is now empty.

Minterm 100-0100-0100 is expanded next (Figure 6.10). Two prime implicants are
left in the pruned expansion tree (PI5 and PI6). The expansion of minterm
100-0100-0010 yields one new prime implicant (PI7). PI7 is dominated by PI6. PI6 is
pseudo-essential — it is added to the solution. Prime implicant PI5 covers the only 2
remaining minterms in the ON-set. Therefore, even if the expansion of one of the two

remaining minterms in the ON-set may yield new prime implicants, they will all be
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dominated by PI5S — PI5 is added to the solution®. The minimal sum-of-products

expression is

120100 222203 001312 01131

F = + + + &AL
(XI’XZ’X3> = X X, X, X, Xy X3 X, X, Xy X, Xy X5

Table 6.3 Extendible minterms with the corresponding weight pairs (Example 6.6).

ON-set EMV EMVW
100-0100-0100 010-0011-0010 (3.4
100-0100-0010 000-1011-0100 (3.4
100-0010-0100 011-0101-0010 4,5)
100-0010-0010 000-1011-0100 (3.4)
010-1000-1000 001-0100-0100 3.,3)
010-0100-1000 001-1000-0100 (3,3)
010-0100-0100 100-1011-1000 “,5)
010-0010-0100 101-1101-0000 4,5)
001-1000-1000 010-0110-0000 (2,3)
001-0100-1000 010-1010-0000 @3.,3)
001-0010-1000 000-1100-0111 (2,5)
001-0010-0001 010-0000-1110 2,4)

001-1000-1000

LN\

001-1100-1000

v

001-1110-1000

011-1000-1000

:

011-1100-1000

P11 P12

Figure 6.7 The pruned expansion tree for minterm (001-1000-1000).

4 This shortcut may not be recognized by a programmed version of the algorithm. An
additional expansion would be required.
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001-1000-1000

Y\

011-1000-1000 001-1100-1000

: !

P11 | 011-1100-1000 001-1110-1000| PI2

!

001-0010-1000

001-0010-1100

.

001-0010-1110

'

001-0010-1111] PI3

Figure 6.8 Pruned expansion tree.
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001-1000-1000

O\

011-1000-1000 001-1100-1000

e

PI1 | 011-1100-1000 001-1110-1000| PI2

!

001-0010-1000

001-0010-1100

001-0010-1110

:

001-0010-1111] PI3

!

001-0010-0001

:

011-0010-0001| PI4

Figure 6.9 A pruned expansion tree.
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100-0100-0100

110-0100-0100 100-0110-0100

¢/ \

110-0110-0100 100-0111-0100

/ \

PI5| 110-0111-0100 100-0111-0110{ PI6

100-0100-0010

)

100-1100-0010

;

100-1110-0010

!

100-1111-0010| PI7

Figure 6.10 A pruned expansion tree (Example 6.6).

6.4 RECURSIVE CONSENSUS MINIMIZATION
6.4.1 The Extension
The adaptation of the new recursive consensus minimization algorithm (RCM-MV) to
handle window literals requires minor changes in the basic definitions. In particular, the
consensus of two product terms at distance 1 does not always exist — an additional relation
must be satisfied. Furthermore, a new procedural definition for the sharp operation is
required.

The definition of the distance between two cubes given in Chapter 5 (Definition 5.4)

will be used in this section.
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Example 6.7. Table 6.4 shows some cubes of a 4-valued function and their
corresponding distance.

P Q AND(P,Q) distance
0110-1110-0100 1110-0110-1110 0110-0110-0100 0
0110-1110-0100 1100-1100-0011 0100-0110-0000 1
0110-1110-0100 1100-1100-0001 0100-0110-0000 1
0110-1110-0100 0001-1110-0011 0000-1110-0000 2

Table 6.4 Cubes and their distance.

Unfortunately, two cubes at distance one do not necessarily have a consensus cube.
For example, the cubes 0110-1110-0100 and 1100-1100-0001 are at distance 1, and their
consensus, according to Definition 5.5, is 0100-0110-0101, but X3 can not be expressed
using a single window literal. Therefore, two cubes must satisfy an additional condition to
have a consensus cube.

Let P =p; —py—...—pp be a cube of a multiple-valued logic function F where p;
represents the ith coordinate of P. Similarly, let Q = d1—qp—...—qy be a cube of F such
that the distance between Pand Qis 1. Letje {1,2,...,n} such that AND(p;,q;) is equal
to a bitstring consisting of zeros only. P and Q have a consensus (as defined in Definition
5.5) if and only if all 1's in OR (pj,qj) are consecutive, where OR is the bitwise OR

operation.

Example 6.8. Table 6.5 shows some cubes with their corresponding consensus cube.

P Q consensus of P and Q
0110-1110-0100 1110-0110-0011 0110-0110-0111
1100-0110-0111 0011-1100-0001 1111-0100-0001
1100-0110-0111 0110-1000-1110 0100-1110-0110

Table 6.5 Product terms and their consensus.

- 142 -



Each product term using the generalized literals can be expressed as a sum of product

terms using window literals. Some examples are given below.

1101-0110-1100
1101-0101-0110

1100-0110-1100 + 0001-0110-1100
1100-0100-0110 + 1100-0001-0110 + 0001-0100-0110 +
0001-0001-0110

The sharp operator has been defined in Section 5.5 (Definition 5.6). The procedural
definition of # has to be modified is such a way that all product terms are using the window

literal. This is illustrated by Example 6.9.

Example 6.9. Consider the cubes P = 1110-0110-0011 and Q = 0100-1100-0111.
According to the procedural definition (Definition 5.6) P # Q is given by

C; = 1010-0110-0011,

C, = 1110-0010-0011,

C3=1110-0110-0000 null cube (delete).
Cube C; can not be expressed as one product term using window literals.
1010-0110-0011 = 0010-0110-0011 + 1000-0110-0011. Hence,

P #Q =0010-0110-0011 + 1000-0110-0011 + 1110-0010-0011

The changes described in this section affect the procedure Expand and the procedure
Sharp. In the procedure Expand, an additional check must be made before Consensus is
called. In the Sharp procedure each cube must only use window literals. No other
procédure is affected. The algorithm which implements the changes described above will

be called RCM-MVW,

6.4.2 Examples
Example 6.10. Consider the three-variable function shown in Figure 6.5. The initial

OnList contains the following information.
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Id # cube Kind PIKind Intersections

1 100-110-100 Implicant NonEssential (1
2 110-110-011 Implicant NonEssential il
3 011-100-110 Implicant NonEssential [

The consensus of cubes 1 and 2 yields cube 4. Cube 1 is deleted since it is contained in
cube 4. The consensus of cubes 4 and 3 yields cube 5. Cube 3 is deleted since it is

contained in cube 5.

Id # cube Kind PIKind Intersections
5 111-100-110 Implicant NonEssential [2,4]

4 100-110-111 Implicant NonEssential [2,5]
1 100-110-100 Deleted NonEssential (1
2 110-110-011 Implicant NonEssential [4,5]
3 011-100-110 Deleted NonEssential [

No further consensus term can be formed with cube 5. Cube 5 is essential. Cube 4 is also

found to be essential. The final OnList contains the minimal solution.
Id# cube Kind PIKind Intersections
de 5 111-100-110 Implicant NonEssential [2,4]
de 4 100-110-111 Implicant NonEssential [2,5]
dc 2 110-110-011 Implicant NonEssential [4,5]
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Figure 6.11 Function used in Example 6.11.

Example 6.11. Consider the function shown in Figure 6.11. The function can be

represented by the following cubes.

OnList DcList
001-0111-0010 100-0001-0111
010-0011-0010 010-0100-0110
100-1100-0110
100-0100-0011

The initial OnList contains the following information.

Id# cube Kind PIKind Intersections
1 001-0111-0010  Implicant NonEssential §
2 010-0011-0010  Implicant NonEssential [1
3 100-1100-0110  Implicant NonEssential (]
4 100-0100-0011 Implicant NonEssential []
dc 5 100-0001-0111  Implicant NonEssential (]
dc 6 01001000110  Implicant NonEssential (1

The consensus cubes are obtained in the following order. Cubes 1 and 2 yield cube 7
(cube 2 is deleted). Cubes 7 and 4 yield cube 8. Cubes 8 and 3 yield cube 9. Cubes 9 and
5 yield cube 10 (cube 9 is deleted). Cubes 10 and 7 yield cube 11 (cubes 7 and 8 are
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deleted).

dc
dc

A N B W = g 00 O

cube
111-0011-0010
100-1111-0010
100-1110-0010
111-0010-0010
011-0011-0010
001-0111-0010
010-0011-0010
100-1100-0110
100-0100-0011
100-0001-0111
010-0100-0110

Kind
Implicant
Implicant

Deleted
Deleted
Deleted
Implicant
Deleted
Implicant
Implicant
Implicant
Implicant

PIKind
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections
[10]
[11]

(1
(1
(1
[l
(]
(]
(]
(1
(1

The consensus of cubes 11 and 6 yields cube 12. Cubes 12 and 10 yield cube 13 (cube 12

is deleted). Cubes 13 and 1 yield cube 14 (cubes 13, 11, and 1 are deleted). The expansion

of cube 14 terminates — it is found to be essential. The expansion of cube 10 terminates.

Cube 10 is not essential.

dc

dc
dc

Id #

14
13
12
11
10

[ N T - O B

cube
111-0111-0010
110-0111-0010
010-0111-0010
111-0011-0010
100-1111-0010
001-0111-0010
100-1100-0110
100-0100-0011
100-0001-0111
010-0100-0110

Kind
PICandidate
Deleted
Deleted
Deleted
PICandidate
Deleted
Implicant
Implicant
Implicant
Implicant

PIKind
Essential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential
NonEssential

Intersections

[3,4,10]
[l
[l
[
[3.4,14]
[l
[10,14]
[10,14]
1l
[l

Cube 3 is expanded next. Cubes 3 and 6 yield cube 15 (cube 6 is deleted). Cube 15 is an

non-essential prime implicant. The expansion of cube 3 terminates. Cube 3 is essential (it
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dominates cube 15).

Id # cube Kind
15 110-0100-0110 Deleted
dc 14 111-0111-0010 PICandidate
10 100-1111-0010 Deleted
dc 3  100-1100-0110 PICandidate
4 100-0100-0011  Implicant
dc 5 100-0001-0111  Implicant
dc 6 010-0100-0110 Deleted

PIKind
NonEssential
Essential
NonEssential
Essential
NonEssential
NonEssential
NonEssential

Intersections
(]
[3.4]
(1
[14]
[14]
]
[l

The expansion of cube 4 (consensus with cube 5) yields cube 16 (cube 4 is deleted).

Cubes 16 and 3 yield cube 17. Cube 17 is not essential. Cube 16 is essential (it dominates

cube 17).
Id # cube Kind

17  100-1111-0010 Deleted
dc 16 100-0011-0011 PICandidate
dc 14 111-0111-0010 PICandidate
dc 3 100-1100-0110 PICandidate

4 100-0100-0011 Deleted
dc 5 100-0001-0111  Implicant

Finally, the minimal solution is given below.

Id # cube Kind
dc 16 100-0011-0011 PICandidate
dc 14 111-0111-0010 PICandidate
de 3 100-1100-0110 PICandidate

6.5 REMARKS

PIKind
NonEssential
Essential
Essential
Essential
NonEssential
NonEssential

PIKind
Essential
Essential
Essential

Intersections
[l
[14]
[3,16]
[14]
(]
[l

Intersections
[14]
[3,16]
[14]

The algorithms presented in Chapters 3 to 5 are easily extended to accommodate window

literals. In each case, only the basic definitions, such as adjacency, expandable minterms,

consensus, etc., required some changes. The main thrust of the algorithms is left

unchanged.
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Tirumalai and Butler [TIR88] compared four different minimization algorithms using
the truncated SUM operator and window literals. Minimization results from a set of 7,000
randomly generated four-valued, two-variable functions were compared. The extension of
the direct cover algorithm presented here produced better results than the examples in
[BUT88] which used the previously reported extension [TIR88]. It would be interesting to
compute the results for all 7,000 functions using DCMW and compare them with the results
reported in [TIR88].

Tirumalai and Butler [TIR88] conjecture that no more than 10 implicants are needed
in a minimal sum-of-products expression of a four-valued, two-variable function, using the
truncated SUM and window literals. A function which needs 12 implicants is given in

Example 6.12.

Example 6.12. Consider the function shown in Figure 6.12. A minimum sum-of-

products expression, shown below, consists of 12 terms

0001

0300 0000 2300 3300 2211
F(x, x,) =1 X, X

I X x, 01 x, x, 01 % x,01% x,03% %

2 172 172 172 172 12<>

1122<> 3323 0333 01330 0033 3333

3)(1x2 1x1x2<>1x1x2<>1x1x2 1)(1x2<>1x1x2

Essentially, one implicant is needed for each non-zero minterm. It is easy to see that no

minterm can be covered by extending adjacent minterms.

2 3 1

3 1312¢f(1]3

Figure 6.12 A function which needs 12 implicants.
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Chapter 7
CONCLUSION

This thesis provides a comprehensive treatment of multiple-valued logic minimization. The
truncated SUM operator as well as the maximum operator are employed by the proposed
algorithms. The algorithms presented in Chapters 3 to 5 use the generalized literal
operation. However, the algorithms are easily adapted to handle window literals as shown
in Chapter 6. This demonstrates the flexibility of the algorithms. Flexibility is an
important feature since new literal operators may come into use as alternative technologies
evolve.

Algorithms which minimize multiple-valued logic functions can be used to minimize
the multiple-output problem. The multiple-output problem is transformed into a single
multiple-valued function with a binary output. Several examples have been given to
illustrate this approach.

The direct cover algorithm presented in Chapter 3 is not suitable to solve the binary
multiple-output problem. In binary logic, the truncated SUM is equivalent to the OR
operation. For two reasons it is not efficient to use the DCM algorithm to solve this
problem. First, it is known that a minimal solution consists of prime implicants only. The
DCM algorithm considers all implicants. Second, a break introduced with a minterm with
value r - 1 (the only non-zero value in a binary function) is not counted. Therefore, new
breaks will never be introduced.

Directed search minimization (Chapter 4) offers two significant advantages over
traditional minimization algorithms. First, it has the ability to detect essential and pseudo-
essential prime implicants early during the generation process. Second, not all prime

implicants are necessarily generated. Unfortunately, cycles must be resolved using
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traditional techniques and it must start with a list of minterms. The first disadvantage was
diminished by adding a heuristic which limits the growth of the tree and solves the cycle
problem before all prime implicants are generated. The results are not always optimal but
are, in general, very good.

The recursive consensus minimization algorithm presented in Chapter 5 combines the
advantages of the directed search minimization with the advantage of the iterated
consensus. The starting point is a list of terms, which are not necessarily minterms. The
recursive expansion of terms leads to an early generation of prime implicants. With the
additional information kept along with each term, it is possible to detect essential and
pseudo-essential prime implicants during the generation process.

The strength of the proposed algorithms lies in their simplicity. The heuristics
employed are easily understood. All algorithms have been implemented as computer
programs. It is worth noting that the coding of the algorithms is straightforward. These
programs can be integrated into CAD software systems.

PLAs have found wide application in VLSI implementations. The advantages of
structured implementations leads to the conclusion that multiple-valued logic
implementation will take a PLA-like structure. In fact, several multiple-valued logic PLAs
have been proposed [SAS86a, KER86, TIR84]. All results produced by the algorithms are
in sum-of-products form and are thus geared towards a PLA implementation.

At this time, the practical applications of multiple-valued logic minimization are
limited to research implementations of multiple-valued logic circuits and to solve the binary
multiple-output problem. Nevertheless, the benefits of efficient multiple-valued logic
minimization algorithms will become evident with the advances in multiple-valued logic
circuit realizations. Etiemble and Israél [ETI88] presented a critical comparison of binary
and multi-valued integrated circuits. According to their research, multiple-valued logic will
not replace binary implementations, but the implementation of special purpose multiple-

valued circuits offers a significant advantage over their binary counterparts. Furthermore,
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the advances in optoelectronics research [HUR86], will make multiple-valued logic more
attractive.

Several questions remain unanswered. For example, how good are the results
produced by the DCM algorithm? Until an algorithm which will find minimal solutions in
reasonable time exists, this question will remain unanswered. For some problems, where
the answers were known, DCM did produce minimal results. The complexity is too high
for any four-valued function with more than 5 inputs. The search for better, or additional,
heuristics to be used in the DCM algorithm continues.

It may be possible to improve the heuristics used by the directed search algorithm.
Other ways to limit the growth of the expansion trees have been investigated. Limiting the
size of the expansion tree was the best alternative.

The initial list of terms presented to the RCM procedure is unordered. Through
observation it was found that the order in the list has an effect on the efficiency of the
algorithm. Clearly it is advantageous to generate the essential and pseudo-essential prime
implicants first. Moreover, if the function contains disjoint cycles, it is beneficial to detect
and solve them independently.

Testing is an important facet of digital logic design. The generation of test vectors
has traditionally been divorced from the minimization process. Each product term in a
sum-of-products expression which has been minimized using the RCM algorithm has an
associated list of intersecting terms. This information is valuable for the generation of test

vectors. Further research is needed to fully exploit this information.
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Appendix A

In this appendix, it will be shown that any function with multiple-valued inputs and outputs
can be mapped into a set of binary-valued functions with multiple-valued inputs. Note that
the definitions of literals and product terms are, of necessity, different from those used in
the body of the thesis.

Let X = {xl,xz, .. .,xn} be a set of n input variables. Define the setP = {1, 2, . .
R - 1} which represents the values that the variable x; can assume. An R-valued function

fis a mapping
[iPxPx..xP—>P

Let x; be an input variable and let S; be a subset of P. The literal function is defined

as follows:
S. { R-1 if x. € S.
X' = 1 1
1
0 if x. ¢ S.
1 1
A product term
S, S, S,
CX, X, X

is defined to be the minimum of the literals and the constant ¢ € {1,2...R-1}. Ifaterm
contains S; = P the term is said to be independent of xj. An independent variable may be
omitted from the term. The sum of product terms is defined to be the maximum of the
terms. Any function can be written as a sum-of-products.

Let ¢;5Q;j be a product term where Qj; = X141 %5812 - -+ x,,S1jn and cij=j. Any
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sum-of-products can be written in the following form: 1(Q; + Qo1 +... + Qq1) +2Q12
+Qpp+. .. +Qg) . +R-1(Qpr 1 + Q1 +...+ Qg 4r-1). Note that Qp5 +
Qi +. .. + Qg;j is a binary function, since it can take on either the value O orR - 1.

To find the minimal expression for i(Qq; + Qp; +.. . + Qq;1) the ON-set will consist
of all minterms which are equal to i; the OFF-set will contain all minterms which are less
than i; the DC-set is the union of the DC-set of the function and all minterms which are
greater than i. Therefore, the minimization of an R-valued function is equivalent to the

minimization of R - 1 multiple-valued input, binary output functions.
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