XML-Based Internet Performance Analysis

By

Nghi Lao

A Thesis
submitted to the Faculty of Graduate Studies
In Partial Fulfillment of the Requirements
For the Degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba
Winnipeg, Manitoba, 2000

© Copyright by Nghi Lao, September 2000

ivi

National Library
of Canada

Acquisitions and
Bibliographic Services

395 Waellington Street
Ottawa ON K1A ON4

Bibliothéque nationale

du Canada

Acquisitions et

services bibliographiques
3895, ve Wellington

Ottawa ON K1A ON4

Canada Canada

Your Me Votre relérsnce

Our fle Notre réfdcence
The author has granted a non- L’auteur a accordé une licence non
exclusive licence allowing the exclusive permettant a la
National Library of Canada to Bibliothéque nationale du Canada de
reproduce, loan, distribute or sell reproduire, préter, distribuer ou
copies of this thesis in microform, vendre des copies de cette thése sous
paper or electronic formats. la forme de microfiche/film, de

reproduction sur papier ou sur format
électronique.

The author retains ownership of the L’auteur conserve la propriété du
copyright in this thesis. Neither the droit d’auteur qui protége cette thése.
thesis nor substantial extracts from it Ni la thése ni des extraits substantiels

may be printed or otherwise de celle-ci ne doivent étre imprimés
reproduced without the author’s ou autrement reproduits sans son
permission. autorisation.

Canada

0-612-56134-8

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

222 2]

COPYRIGHT PERMISSION PAGE

XML - Based Internet Performance Analysis

BY

Nghi Lao

A Thesis/Practicam submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree
of

Master of Science

NGHI LAO © 2000

Permission has been granted to the Library of The University of Manitoba to lend or seil
copies of this thesis/practicum, to the National Library of Canada to microfilm this
thesis/practicum and to lend or sell copies of the film, and to Dissertations Abstracts
International to publish an abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor
extensive extracts from it may be printed or otherwise reproduced without the author's
written permission.

[hereby declare that I am the sole author of this thesis.

[authorize the University of Manitoba to lend this thesis to other institutions or
individuals for the purpose of scholarly research.

I also authorize the University of Manitoba to reproduce this thesis by photocopying
or by other means, in total or in part, at the request of other institutions or individuals
for the purpose of scholarly research.

Nghi Lao, 2000

The University of Manitoba requires the signatures of all persons using or photocopy-
ing this thesis. Please sign below, and give address and date.

Abstract

This thesis will define a method in which Web performance can be measured and
summarize the results obtained from the application of this procedure to Extensible
| Markup Language or XML (can be described as a metalanguage that permits users to
define their own markup language) performance analysis. It will also examine some
common metrics used to measure the performance of the World Wide Web (WWW).

The procedure to measure performance includes the creations of similar HTML
and XML applications that will be used as the base applications for testing. These
applications will be a representation of the general content seen on the WWW today.

Tests were done with the server being located in Winnipeg, and the client located
in Winnipeg or Calgary. Winnipeg and Calgary are two Canadian cities that are
geographically separated by approximately 1300 kilometers. The tests in Calgary
show the results when there is a greater network separation, while the Winnipeg tests
are used to represent the opposite.

The test results show that XML applications that are highly stylized have better
performance than comparable HTML application. The XML applications are able to
serve 70%-100% more connections. Another interesting observation is the difference
between the round trip times, an XML application overall has a round trip time that
is 40%-50% less than the comparable HTML application.

For non-stylized applications created using XML, the performance is poorer than
comparable HTML applications. Shown by the total average rounds served by the

HTML application, which is 46%-66% more than the comparable XML application.

The round trip time of the XML application is also shown to be approximately 34%-
44% longer then the comparable HTML application.

This thesis shows how XML and XSL style sheet can be used to improve the
performance of highly stylized Web application, by using a separate XSL file to avoid

repeating the styling tags.

iv

Acknowledgements

I would like to thank TRLabs and MCI WorldCom for supporting and proposing
the ideas for this thesis. Special thanks go to Jose Rueda for all his help, guidance,
support and ideas throughout my stay at TRLabs. I also want to thank Professor
Pawlak for letting me be one of his students. My appreciation and thanks goes out to
all the help given to me by the TRLabs staff and students, for answering my questions;
proof reading my papers and resetting my Web server a bunch of times. My two years
spent at TRLabs was a great experience and [leave with many memories and friends.

The acknowledgments would not be complete if I did not mention my family. who

help me immensely, thank you all.

Contents

1

Abstract e e e e e ii
Acknowledgements Lo v
List of Abbreviationsand Acronyms xi
Listof Figures. i e xii
Listof Tables i e xiv
Introduction 1
1.1 Thesis Statement 1
Web Technology 5
21 Introduction G]
22 ServerSide e 3

221 WebServer 6

2.2.2 Server Side Programming 7
23 ClientSide. e e e e 10
24 XML Swymtax. o e e e e 11

241 XMLdocuments 13

2.4.2 Well-formed XML documents 14

2.4.3

2.44

2421 Prolog
2422 Body
2423 Opening Tag and Attributes
2424 ClosingTag
24.25 Empty-Element Tag
Structure of an XML Document
2.43.1 Unique Root Element
243.2 ProperNesting
2.4.3.3 Predefined Entity References
2434 CDATASection.
2435 Comments.
Valid XML documents
2.4.4.1 Document Type Definition (DTD)
2442 DTDDeclaration
2.4.4.3 Internal DTD Declaration
2.4.44 External DTD Declaration.
2445 DTDSyntax0 coeunur..n
2446 Entities oo
2447 General Entities
2448 Parameter Entities
2449 Element declaration
2.44.10 Attribute declaration

20

21

24

25

25

26

25 XMLextensions 33
2.5.1 Extensible Stylesheet Language (XSL) 33
252 XMLULinking H
2.5.3 Document Object Modeland SAX 35
254 Namespacettt e 37

26 Summary e e e e e e e 37

3 Performance Measures 39

3.1 Introduction e e 39

3.2 Network Performance Methods 40
321 IETF . . . e 40
322 ITU-T . .. e e i
323 NIMI. ... e 42
324 Surveyor e e e e e 42
323 XIWT . .. e e e 43

3.3 Servers Performance Methods H

34 MeasuringSolutions L ... 46
3.4.1 Network Testing and Measuring Tools 46
3.42 Sever Benchmarking Tools 48
3.43 Load Generatorsand Testers. 48

35 SummAary e e e e e e e e e e e e 50

4 Test Applications 51

4.1 Imtroduction e e e e .
42 Applicationl L o

43 Application2

Test Setup

3.1 Introduction e e
3.2 ServerSideSetup e
53 ClientSideSetupo ..

3.4 Test Procedure e

Results

6.1 Imtroduction
6.2 Calgary Results Applications 1
6.3 Calgary Results Applications 2
6.4 Winnipeg Results Applications1

6.5 Winnipeg Results Applications2

Explanation of Results

7.0 Imtroduction e e e
7.2 Application L e
73 Application 2 e

T4 SUMMALY . . .« . . it i e e e e e e e e

Discussion

8.1 Introduction e e e e e e e e

51

37

58

61

61

62

62

62

65

66

70

73

78

78

9

81

82

84

82 WhyUseXML? 84

8.3 XML Application File Size 88
8.4 Server Communication Using XML 91
85 SUMMALY . . . - . v et e e e e e e e e et e e e e e e 95
Conclusion and Recommendations 96
9.1 Conclusion. 96
9.2 Recommendations.t e 98

List of Abbreviations and Acronyms

AIAG
ASP
CGI
CML
CSS
DOM
DTD
HTML
HTTP
ICE
IETF

IS
IPPM WG
ISO
KOML
MML
NCSA
NIMI
PERL
PHP
SAX
SGML
SNMP
SOAP
SQL

SS1
VBSeript
W3C
WDDX
WWW
XIWT
XLink
XML
XML-RPC
XMQP
XPointer
XSL

Automotive Industry Action Group

Active Server Pages

Common Gateway Interface

Chemical Markup Language

Cascading Style Sheets

Document Object Model

Document Type Definitions

HyperText Markup Language

HyperText Transfer Protocol

Information and Content Exchange

Internet Engineering Task Force

Internet Information Server

Internet Protocol Performance Metrics Work Group
International Organization for Standardization
Koala Object Markup Language
Mathematical Markup Language

National Center for Super Computing Applications
National Internet Measurement Infrastructure
Practical Extraction and Report Language
Personal Home Page

Simple API for XML

Standard Generalized Markup Language
Simple Network Management Protocol
Simple Object Access Protocol

Structure Query Language

Server Side Includes

Visual Basic Script

World Wide Web Consortium

Web Distributed Data Exchange

World Wide Web

Cross-Industry Working Team

XML Linking Language

Extensible Markup Language

XML Remote Procedural Calling

XML Metadata Object Persistence

XML Pointer Language

Extensible Stylesheet Language

List of Figures

6.1

6.2

Typical markupelement

Input data form to query application.
Car and engine table, linked by model.

Application 1 - HTML wcb page (XML application displays the same

data but has an additional form for data manipulation on the client side) 5

Application 2

Test setup used to measure performance.

Connect time plot between Table 6.1- Test 2 and Table 6.2 - Test 1 .

Response time plot between Table 6.1- Test 2 and Table 6.2 - Test 1 .

32

54

60

61

69

70

List of Tables

6.1

6.2

6.3

6.4

6.6

6.7

6.8

6.9

6.10

6.11

6.12

7.1

Server performance HTML - Application 1 (client in Calgary)

Server Performance HTML - Application 1 (with additional server side
processing and client in Calgary)
Server Performance XML - Application 1 (client in Calgary)
Server Performance HTML - Application 2 (client in Calgary)
Server Performance HTML - Application 2 (with additional server side
processing and client in Calgary)
Server Performance XML - Application 2 {client in Calgary)
Server Performance HTML - Application 1 (client in Winnipeg) . . .
Table 8. Server Performance HTML - Application 1 (with additional
server side processing and client in Winnipeg)
Server Performance XML - Application 1 {client in Winnipeg) . . .
Server Performance HTML - Application 2 {client in Winnipeg) . . .
Server Performance HTML - Application 2 (with additional server side
processing and client in Winnipeg)

Server Performance XML - Application 2 (client in Winnipeg)

Application 1 - HTML FileSize

67

68

7

72

73

74

76

9

7.2

7.3

74

7.5

Application 1 - XML File Size
Difference in HTML File Size as compared with XML Application1 . 80
Application 2- HTML FileSize 81
Application 2 - XML File Size

Difference in HTML File Size as compared with XML Application 2 . 82

xiv

Chapter 1

Introduction

The World Wide Web has been accepted as an effective method of communicating
ideas and information. As the number of web users continues to increase on a daily
basis. a need arises for better and more efficient methods for distribution of this
information. Individual uscrs, companies, and other organizations worldwide view the
web as a medium to gather, distribute information, advertise, and market products.
For companies, a web application has an audience of millions of potential clients.
Thus creating the possibility of hundreds, if not thousands of requests to access their
web site at any given time.

The problem is evident; there is a need for techniques to manage information on
line. It is not only important to enable databases for online access, but it is also
important to find a way to interact with the web browsers that users will utilize to
access these online databases.

The Extensible Markup Language (XML) is a markup language used to describe
and present data in a structured form. XML is a recommendation made by the World

Wide Web Consortium (W3C) and it is a simplified form of Standard Generalized

Markup Language (SGML). In 1986, SGML became the international standard for
defining descriptions of structure and content for different types of electronic docu-
ment or the international standard metalanguage (a language that is used to describe
another language) for markup, adopted by the [nternational Organization for Stan-
dardization (ISO). XML is intended to make it easier for the implementation of SGML
on the World Wide Web by leaving out the complex and less used parts of SGML.
Therefore XML can be described as a metalanguage that permits the definition of
custom markup languages. With the XML language specification being designed as
an extensible data interchange format and a method for electronic publishing on the
World Wide Web (WWW).

The HyperText Markup Language (HTML} is a predefined markup language and
is a specific application of SGML that is used on the WWW. With HTML the tags
are used to describe how data should be rendered by the computer, they’re meant as
a method for interactions between humans and computers. Therefore tags in HTML
do not describe the data in an HTML document, but rather how the data should
be displayed. Whereas in XML the tags are used to describe the data, thus giving
meaning to an XML document. This makes XML documents understandable for
humans while still retaining the ability for a computer to interpret and displaying the
information.

HTML is the most widely used method to bring together text, images, sounds and
videos to the WWW. The goal of XML is not to be a replacement for HTML, since

they're both designed for different purposes. With XML being the web’s language

for data interchange and HTML being the web’s language for data rendering. XML
is not intended to replace HTML but rather complement it. XML has the abilities to
improve upon the many tasks that are currently being implemented by HTML.

XML is still a new technology in which to describe data in the electronic form.
Currently the supporting languages that will assist in the deployment of XML on the
WWW include: XML Linking Language (XLink) and Extensible Stylesheet Language
(XSL). XLink and XSL are still working drafts and are not yet recommendations by
W3C. XLink is a language that defines all the required elements in which to build
links into XML documents. XSL is a formatting language that is used to transform an
XML document into some arbitrary output structure (ex. HTML) which can then be
displayed. By using Cascading Style Sheets (CSS) to present an XML document the
content and presentation are separated, whereas with an HTML document content
and presentation are combined. Just using CSS on an XML document without XSL
can apply style to the document, but using XSL give more functionality in displaying
a document than CSS on its own. With XLink and XSL, information defined using
XML can be deployed on the WWW with more functionality than HTML. But XLink
and XSL are still working drafts thus deeming them unstable languages, making them
not yet deployable on the WWW.

Therefore SGML can be described as a method used to define thousands of dif-
ferent electronic document types; XML is an abbreviated version of SGML making
it casier to define documents in electronic form for the WWW and HTML as just a

language used to display documents for the WWW.

1.1 Thesis Statement

The thesis is concerned with determining the performance measures of XML. The
general conception with XML is that it performs poorly compared with conventional
content deliver methods (HTML). Performance problems encountered with XML are
due to the fact that XML appiications have larger file size and because of the tagging
used to structure and describe the data. A larger application results in greater net-
work traffic and server resources in delivering the content. It will look at how XML
and its relating technologies can be used to reduce the application size as compared
with conventional content delivery methods on the Internet. Along with how perfor-
mance on the Internet can be measured and how a XML base Internet can benefit in
terms of performance and functionality.

It also includes a look at the common metrics used in measuring Web perfor-
mance and describes how these performance metrics are collected. An introduction
to XML and Web technologies used to deliver XML will be discussed. The method to
measure performance includes creating similar XML and HTML applications, from
which tests will be performed to collect the performance data. Since the majority
of the Web applications today are HTML files that are filled with text and images,
our applications will represent how typical HTML Web applications seen today can
be created using XML and show how XML may positively or negatively affect Web

performance.

Chapter 2
Web Technology

2.1 Introduction

Content-delivery technology for the Internet is evolving dramatically. The tech-
nology used to deliver Web content today include instructions that are passed to the
client for processing as well as those that are processed by the Web server. This
chapter will give an introduction to some of the most popular Web techniques use to
create and deliver the dynamic Web content. The discussion will generally be geared
to open source development application since they are easily accessible and generally
the most widely used, which includes discussion on server side and client side Web

technology, along with an introduction to XML syntax and document creation.

2.2 Server Side

This section will give a brief discussion on the three top web servers used on the
Internet today as determined by Netcraft [74]. It also includes a discussion on the
most popular server side programming languages used to help deliver dynamic Web

content.

2.2.1 Web Server

The three most popular Web servers used on the Internet today as declared by
Netcraft [74] are Apache web server, Microsoft-IIS, and Netscape-Enterprise. As a
result of polling over 9.5 million sites, from December of 1999, Netcraft determined
the Apache web server to be first with a usage of 54.81%, followed by Microsoft-IIS
at 24.26%, Netscape-Enterprise at 7.39% and other web servers making up the final
percentage.

Microsoft, [nternct [nformation Server (IIS) is a built in Web server on Microsoft
Windows NT Server operating system. Server side scripting on IIS is done mostly
using ASP (Active Server Page) and the platform supported by IIS is Windows NT.
Netscape-Enterprise Server is product of Netscape Communications Corp., it is a
platform for which JAVA is used for development and provides multiple platform
support.

The Apache Web server is a HTTP server that is developed by the non-profit
Apache group and is based on the National Center for Super Computing Applications
(NCSA) Web server. The Apache group along with developers via the Internet are
the people who are currently building on the server and its modules. Although the
Apache group has the final say on what will be included in Apache server. The
Apache Web server is a fast, reliable and has multi platform supported, making it
the most popular Web server used on the lnternet as declared by Netcraft [74]. Since
mid 1996 to the present Netcraft shows the Apache web server as the most widely

used server on the Internet.

Testing by PC Magazine [72] shows Microsoft-IIS to be the fastest web servers to
server static HTML pages and one of the top performers for dynamic web content
(CGI tests) performers. Test results show Netscape-Enterprise Server to be a good
static HTML performer with average dynamic performance. The Apache Server is
shown to be an average static HTML performer and one of the top dynamic web
content performers.

Both Microsoft and Netscape Web servers are commercial software, therefore a lee
must be paid to use these products whereas the Apache Web server is free. All three
Web servers have SQL database support along with support for XML. But support for
XML is still in development and has not been totally defined yet. For example, with
the Apache server XML parsers, XSL. and XSLT are still being developed and more
information can be found at [23]. Netscape is developing ECXpert, an application
that enables the exchange of commerce information between business systems that

will provide an XML interface for sending and receiving XML documents.

2.2.2 Server Side Programming

As mention previously the Web server can pass web content to the client for processing
as well as processing the content itself. The simplest forms of instructions that are
executed on the server are known as server-side HTML or SSI (server side includes).
A SSI page is an HTML page with embedded commands for the web server. With
normal HTML pages the server does not parse the page but just sends it to the
client. However with an SSI page, the server first parses the page and executes the

instructions before they are sent to the client. The more complex methods of server

side processing include PERL (Practical Extraction and Report Language), JAVA,
ASP (Active Server Pages), and PHP.

PERL is an interpreted language used mainly for text processing and on the In-
ternet as a method to write Common Gateway Interface (CGI) scripts. When HTML
forns are submitted, CGI scripts are used to process the information. CGI scripts are
resource intensive because they require an additional process to be forked, involving
the server to start a new process for each CGI script. Adrian Cockeroft shown in the
March 1996 issue of SunWorld, that a 75 MHz uniprocessor SPARCstation 20 can
handle about 20 requests per second when the server must fork a new process for
each request. The same system can handle about 300 requests per second, if it does
not have to fork a new process for each request. Therefore it would be better to use
implementations that executing commands with an API running as a thread within
the server’s process. If CGI were required, a better alternative would be FastCGI,
which acts like a server application and therefore eliminates the overhead of forking a
new process. FastCGI is a proposed open standard implemented in the Apache Server
that provides a better performance alternative for writing CGI in different program-
ming language such as PERL, C, C++, and JAVA. Both Netscape and Microsoft have
their alternative for CGI or application programming interface (API) cailed NSAPI
and ISAPI, respectively. PERL also has support for many types of databases, a list
can be found at [75] and there are also many PERL based XML parser available.

JAVA is an object-oriented programming language that is a creation of Sum Mi-

crosystems. When a JAVA program is running on the client side it is referred to as

applets and server side JAVA programs are referred to as servlets. JAVA has the
ability to be platform independent, the JAVA Virtual Machine is what makes this
possible. Therefore any machine can execute a JAVA program as long as it has the
JAVA Virtual Machine. JAVA has a SQL database class and many JAVA based XML
parser are also available,

ASP is a Microsoft implementation that allows server side scripting based on the
Visual BASIC programming language. An ASP implementation only runs on the
following servers, Microsoft Internet Information Server (IIS) and O’Reilly Website
Pro. ASP has SQL database support along with XML support.

In 1994, Rasmus Lerdotf developed PHP(Personal Home Page) for personal use
on his home page. As of November 1999, Netcraft's survey shows there are over !
million severs using PHP. Currently PHP is only supported to run as a module for the
Apache Web server. The PHP code is embedded into the HTML document and the
cade is exccuted on the server side, PHP syntax is similar to that of PERL and C++.
PHP has support for talking to other services using protocols such as IMAP, SNMP,
NNTP, POP3, and HTTP. A raw network socket can be opened and interactions can
be done using other protocols. But PHP at its basic levels can accomplish what a CGI
program can. What PHP is known for is as a method to access databases, because
it does provide support for a wide range of databases. By using the Apache XML
parser, along with some native PHP XML parser functions, it can provide support

for XML applications.

2.3 Client Side

Client side exccution of Web content is done using the Web browser, such as
Netscape Navigator, Microsoft Internet Explorer, Opera, Mosaic, or Lynx. A Web
browser works by creating a connection with the Web server, requests the data, then
formats and displays the data on the clients machine. There are many different meth-
ods in which to achieve dynamic content on the client side. They include JavaScript,
VBScript (Visual Basic Script), ActiveX and Java. XML support for Web browsers
at the time of this writing is currently limited to Microsoft Internet Explorer (versions
4.0 and higher), but the next version of Netscape Navigator (version 6.0) will provide
XML support.

JavaSeript is an embedded scripting language, which is placed in an HTML doc-
ument and is a creation of Netscape. JavaScript can also be used as server side
scripting language but it is more widely used as a client side scripting language.
All major browsers that are version 3.0 or higher support JavaScript on the client
side. Although the more popular browsers support JavaScript, they do not implement
JavaScript in the same manner. Therefore, certain browsess have there own additions
of JavaScript and not all implementations of JavaScript will run on every browser.
But what JavaScript provides is dynamic content that can be created oun the client
side with out having to access the server for data. With JavaScript, a Web page can
react to what you're doing. Form elements can influence each other instantaneously
and calculations can be made on the client side.

VBScript is a subset of the Visual Basic programming language, created by Mi-

10

crosoft to be used on the Web. What VBSecript provides is a similar functionality to
JavaScript, but is only supported by Microsoft’s Internet Explorer browser.

ActiveX is a specification from Microsoft and is Microsoft’s version of applets.
ActiveX control can be written in any language as long as the client has the support
for that language in which the ActiveX program was written. With ActiveX, the
controls are downloaded and installed on the client’s computer and are available to
all client side applications. The downside to ActiveX are security issues and the fact
that controls are executable files complied for the client’s operating system, which

require multiple executable to be created for the clients platform.

2.4 XML Syntax

This section will look at the markup syntax used in the creation of an XML
document. [t gives a description of the basic structure and rules that are required
to create the XML document. Which includes an explanation on well-formed and
valid XML documents, in addition to the syntax used in the creation of a DTD
that accompanies valid XML documents. Also a general overview of some XML
extensions will be given, these extensions give XML the functionality that is needed
to be a suitable markup language used on the Web. The extensions that are explained
include: Extensible Stylesheet Language (XSL), Document Object Model (DOM),
Simple API for XML (SAX), Namespace and XML Linking Language (XLink and
XPointer).

But first a description of the terminology that will be used in defining the elements

used in markup. With the help of Fig. 2.1, the items that are part of a markup

11

element include: tags, attributes and element content, and are described as follows:
® Tags are the character strings (tag name) that are used to define the
opening and closing part of an element.

@ Attributes are the name and value pair that is contained within the

opening tag of the element.

e Element is the entire character string, including the tag, attribute and

the element content.

<H1 AI.IG}B“CB'!T!R"F Heuding 1</H1>
Asringe

—

g 7 Teg |
Elomere.

—

Figure 2.1: Typical markup element

From Fig. 2.1, asimple HTML markup element, the opening tag is <H1 ALIGN="CENTER” >
with a tag name “H1” (first level heading element tag) and has an attribute named
“ALIGN” with a value of “CENTER”. The element content is the string value rep-
resented by “Heading 1" with a closing tag that is represented by </H1>. This is
a representation of the content that is contained by a typical markup element and

shows the parts and the terminology used in describing such an element.

12

2.4.1 XML documents

XML can be described as a metalanguage that permits users to define their own
markup language to be primarily used on the WWW. Since XML is a metalanguage,
documents created using XML do not have any predefined tags that authors must
follow. This Allows for freedom in creation of documents that is not possible with
the use of HTML. This gives the author the ability to create documents that have
structure and allows for creation of data that is self-describing.

This section will explain the rules and syntax used in the creations of an XML
document. It includes a discussion on the two types of XML documents: well-formed
and valid XML documents. With the difference between well-formed and valid XML
documents being, valid XML documents must follow the syntax outline set by a DTD
or Schema (the grammar that defines the data structure and rules that must be fol-
lowed when creating an XML document, set by the author). While well-formed XML
documents must only follow the validity constraints set by the XML specification;
these validity constrains must also be followed when creating valid XML documents.

Therefore well-formed documents are easier to create, since the author does not
need to create an additional DTD document if it is not required. This Makes well-
formed documents faster to process, since there is no need for additional processing
to validate a document against a DTD or Schema. But a benefit with valid XML
documents being, that all documents created with a given DTD or Schema will have
the same syntax and structure. Which may not be the case for well-formed XML

documents since there is no DTD or Schema to check the created document against.

13

2.4.2 Weli-formed XML documents

XML documents that are described as being well formed must follow the spec-
ifications of well-formed documents defined by the XML specification [19] or follow
the basic syntax rules of XML. A well-formed XML document generally contains two
main sections, described as the prolog, and body.

2.4.2.1 Prolog

The prolog is the optional XML declaration that is found as the first element in the
document. Although the prolog is an optional element it should be included in a
document, since it contains useful information that can be used by the XML parser.
The following is a XML prolog without any options and it must be defined in lower

case letters:

<Mxml version=“1.0"7>

Next is a prolog with the two optional components, they are the character encoding
being used by the XML document and if the document declaration is given by an

external DTD.

<7xml version=“1.0" encoding=“UTF-8" standalone="‘“no”?>

The encoding attribute gives the encoding type used in the document; it helps
other applications to determine the content of the document and is useful in mixed
platform or mixed-language situation. If the encoding type is left out the assumed
default type is usually set as UTF-8 or UTF-16 and is dependent on the parser

used. The standalone attribute is used to tell that parser if there is an external DTD

14

required for the document. If standalone is set to “no” an external DTD is required,
otherwise if the document does not requires an external DTD, if standalone is set as
“yes” or is omitted completely, since “yes” is assumed as being the default vaiue.

2.4.2.2 Body

The body of an XML document is where the data is contained, it must comprise of
one or more elements and its what gives the document the tree like structure.

The markup used to define a XML element tag is defined with the less than char-
acter (<) and ending with the greater than character (>) or angle brackets, which
enclose the tag name. The tag and attribute names used in the XML element are
case sensitive, opening tag names must be the same as closing tag names; therefore a
tag named “Car” is not the same as another tag name “car’. Names must begin with
a letter, underscore or colon and followed by letters, digits, hyphens, underscores,
colous, or full stops. An exception to the naming construct is that names are not
allowed to start with the “xml” string or any other string that matches these charac-
ters (for example Xml, XML, xML, etc.). The reason being that the “xml” string at
the start of a name is reserved for standardization in the current and future versions
of the XML specification.

Every XML element must have an opening tag and a closing tag, with the excep-
tion being the empty-element tag.

2.4.2.3 Opening Tag and Attributes

All opening tags must contain the tag name and can be followed by attributes, which

are optional data and are not required. Attributes are additional data that is com-

15

prised of a name-value pair, where the attribute value must be enclosed by single
quotes or double quotes, as shown by the unit and mpg, attribute name value pair

below.

<fuelEconomy unit="mpg”> 24 </fuelEconomy>
<fuelEconomy unit=‘mpg’> 24 </fuelEconomy>

Attributes are a method in which additional information can be added to an
element. For the XML element above, the tag name is “fuelEconomy”, with an
attribute named “unit” and a value of “mpg”. By adding the unit attribute to this
element the additional information of mpg (miles per gallon) is now known about
the element content. As shown, the attribute value can be either enclosed in single
quotes or double quotes and by adding attributes to an clement provides the reader
with more information about the element content.

There are two special attributes defined in the XML 1.0 recommendation they
are xmi:space and xml:lang. The attribute xml:space is used to preserve the text
format or white space and is similar to the <pre> tag (preformatted text element) in
HTML. The xml:lang attribute is used as a method to define the rendering of text or
allows for creation of documents that are international. Since it allows definition of
standard language codes [21}, [22] or user defined codes. The xml:space and xml:lang
attribute is applied to the element data and all other element that it encapsulates.

2.4.2.4 Closing Tag

The closing tag of an element is comprised of a forward slash (/), followed by the tag

name and enclosed in angle brackets. The closing tag name must match that of the

16

opening tag name for the corresponding element.

2.4.2.5 Empty-Element Tag

The empty-element tag is used as a short hand to describe elements where there is

no data, for example given the following data less element:
<price>< /price>
An cquivalent empty-element tag would be:
<price/>

An empty-element tag contains a tag name, optional attributes that might be
added, followed by the forward slash (/). enclosed in angle brackets. Another use
for empty-element tags is a method to specify anchor points in a XML document,

allowing for future programs to access these points in the document.

2.4.3 Structure of an XML Document

Now that we know how to create an XML element, this section will describe how
these elements can be used to create an XML document such that it will be well-
formed and structure will be given to the data. Rules of well-formed documents state
that all XML document must contain a unique root element, have proper nesting of
elements and entity references must be used in the place of reserved markup.

2.4.3.1 Unique Root Element

All XML documents must contain at least one element; therefore the one element that

encloses all other elements in an XML document is referred to as the root element.

17

The root element must be unique and cannot be found anywhere else in the XML
document. For example, a complete XML document of the following form in not

well-formed:

<CAR>
<MANUFACTURER> Honda </MANUFACTURER>
<MODEL> Accord </MODEL>
<CLASS> Midsize </CLASS>

</CAR>

<CAR>
<MANUFACTURER> Honda </MANUFACTURER>
<MODEL> Civic </MODEL>
<CLASS> Subcompact </CLASS>

</CAR>

This is because it does not have a unique root element to make the document

well-formed a root element would be required, as follows:

<CARLIST>

<CAR>
<MANUFACTURER> Honda </MANUFACTURER>
<MODEL> Accord </MODEL>
<CLASS> Midsize </CLASS>

</CAR>

<CAR>
<MANUFACTURER> Honda </MANUFACTURER>
<MODEL> Civic </MODEL>
<CLASS> Subcompact </CLASS>

</CAR>
</CARLIST>

18

2.4.3.2 Proper Nesting

Another rule that must be followed is elements must be properly nested. Nesting
is where elements are embedding or constructed within another element. Nesting
gives a parent/child relationship and is how XML document structure is created.
For proper nesting to occur element tags must not overlap. No overlapping of tags
means that the child element tag must be closed before the closing element tags of it
parent/ancestors.

An example of improper nesting of clements is given by the following example, if
we had a XML document written for some program that represents a for loop and
an if statement within the for loop. The improper nesting is apparent in the code
segment below, since the if statement in the for loop must be ciosed before we close

the for loop.

<Program>

<For i=*1" to="10" increment="1'> ...
<Ifi=3"> ...
< /For>

</If>

< /Program>

Therefore for proper nesting to occur the closing tag for the if statement </If>,
would have to appear before that of the for loop </For>, the proper nesting of the

code segment above is shown below, as follows:.

<Program>

<For i=*1" to="10’ increment="1"> ...
<Ifi=*3"> ...
</If>

19

< /For>

< /Program>

This is what is meant by all child element tag must be closed before the closing

element tags of it parent/ancestors.

2.4.3.3 Predefined Entity References

There is a set of reserved characters that are not to be used in the data source of the
document or attribute values and must be replace by a particular character sequence
referred to as the predefined entity references. These characters include the reserved

characters for marking up an XML document and given by the following table .

[Entity String | Usage |
& Used to escape the & character (except within
CDATA data section)
< Used to escape the < character (except within
CDATA data section)
> Used to escape the > character (within a CDATA

data section entity must be used if the > is followed
by a || string)

' Used to cscape the ' character

" Used to escape the ” character

Users can also define their own entity references, but these entity references must
be defined prior to use in the DTD. A further explanation will follow on how entity
references can be defined and is found in the DTD section to follow.

2.4.3.4 CDATA Section

The CDATA section is used as a technique to add text characters that would otherwise
be interpreted as markup, without usage of entity strings. Since the XML parser does

not parse the data that is contained in the CDATA section.

20

The CDATA section can occur anywhere document data can appear, but CDATA

sections may not be nested. The syntax of the CDATA section is as follows:

<! [CDATA[... ||>

An example of how it can be used is when XML markup is required to be added

to the document data as shown by the following section of an XML document:

<singleCar>

<! [CDATA[

<CAR>
<MANUFACTURER> Honda </MANUFACTURER:>

<MODEL> Accord </MODEL>
<CLASS> Midsize </CLASS>
</CAR>

>

< fsingleCar>

2.4.3.5 Comments

Addition of comments into an XML document is added using the following syntax:

<!+ - Comment Text - ->

The “Comment Text” can be any character string, with the exception of “- -7
(double hyphen) which cannot be found in the comment text section. Plus the last
character of the commented text cannot be a hyphen since this can be misinterpreted
as part of the closing delimiter. Any entities found in the “Comment Text” section
are not expanded and markup is not interpreted. Comments are not part of the
data. If comments are placed within an element data they will not be interpreted
as comments. In addition, placement of the comment must not appear within an

element tag.

21

2.4.4 Valid XML documents

If an XML document is described as being valid it must obey and follow all
grammar defined by the Document Type Definition (DTD) or schema. By creating
a valid XML documents using a DTD or schema, this allows for different documents
written by different authors to all have the same structure. All valid XML documents
must follow the well-formed XML syntax and those defined by the DTD or Schema.

Therefore it can be said that all valid XML documents are well-formed, whereas
well-formed XML documents are not valid XML documents unless they obey the rules

set by a DTD or schema.

2.4.4.1 Document Type Definition (DTD)

The Document Type Definition (DTD) is the grammar that defines the data structure
and is the rules that must be followed when creating an XML document. Schema on
the other hand is an improved method in implementing a DTD, allowing for better
data type definition and schema are created using the XML specification. The idea
is to make Schemas easier to learn and more extensible than DTD when defining the
documents structure. Schema are still in the working draft phase and are divided into
two parts, structure [24], dealing with controls that describe the structural rules of a
document and data types [25], dealing with definition of data types of the content.
The benefits of having a DTD is that the vocabulary used in the document is
precisely defined, since all the rules of the vocabulary are contained in the DTD. In
addition, by using a validating parser the XML document can be compared with its

DTD to see if it follows the rules. This allows for different authors to create an XML

22

document all having the same syntax and structure.

2.4.4.2 DTD Declaration

The DTD can be declared in an external file or internally within the XML file. The
benefit of having an external declaration is that the DTD can be reused by many
different XML documents. An internal DTD allows for a single file to be sent that
includes all the information, but if multiple documents are sent to a client requiring
the same DTD, using an internal DTD makes for transmission of redundant data.
Both an internal and external DTD can be used by an XML document, if declarations
appear in both the internal and external DTD, the internal DTD declaration will
have precedence. Otherwise by using an external DTD with additional internal DTD
declarations allows for extra declarations to be added that are not present in the
external DTD. This allows for fine-tuning of a predefined DTD to suit the authors

requirements.

2.4.4,3 Internal DTD Declaration

The Internal DTD declaration is defined using the DOCTYPE tag name, followed by
the root element name of the XML document. This is then preceded by the document
declarations used to define the structure of the document, which is all enclosed in
square brackets. The entire DTD declaration is then enclosed in the “<!” and “>".

The following is a generic internal DTD declared within the XML document:

<!DOCTYPE rootElementName [document declarations ... |>

23

2.4.4.4 External DTD Declaration

As with the internal DTD declaration the external declaration is defined using the
DOCTYPE tag name, followed by the root element name of the XML document.
Instead of declaring the document declarations, the external DTD file location is

defined as being PUBLIC or SYSTEM, as follows:

<!DOCTYPE rootElementName PUBLIC “public_identifier” “URL_of DTD">
<'DOCTYPE rootElementName SYSTEM “URL_of DTD” >

The SYSTEM declaration is used to locate the DTD at the given URL. Whereas
the public_identifier used in the PUBLIC declaration is a location string of the internal
or external location of the DTD. If the DTD can no be found at location represented
by the public_identifier string, the string representing URL_of DTD is used instead
as a URL naming the DTD file. The public.identifier consist of a text string that can

be defined as being divided by double slashes using the following form:

“.//TRLabs//DTD carlist //EN"

The “” character that begins the public_identifier is used to show that this is a
non-registered identifier. If the identifier was registered with the W3C then a “+”
character is required, and for an ISO standard a character string of “ISO” is required.
The next section is an identifier for the author or organization, in this case TRLabs.
Then followed by the keyword that is used to indicate the content format, in this case
DTD. followed by a string used to indicate the document name, in this case “carlist”.
The final section is the language code, in this case “EN” used to represent English.

Therefore the PUBLIC identifier is generally used for well known DTD decla-

24

rations that are standardized or for authors that define a repository for their own

DTD.

2.4.4.5 DTD Syntax

There are basically four markup declarations used in a DTD. They are element,
attlist, entity and notation. These declarations are used in defining and constructing
the DTD. The element and attlist declarations are used to define the XML elements
and the attributes of an element, respectively. The entity declaration is used for
declaration of reusable data and its primary design is to make XML creation easier.
The notation declaration is used to declare data that is not XML and defines an
external program associated with this data. An example is within 2 XML document
a notation c¢an be used to associate a JPEG binary data with a viewer to render
the JPEG data. This section will be used to define the syntax of the four markup
declarations and how they can be used.

2.4.4.6 Entities

By using entities, a predefined section of data can be referenced multiple times
through a predefined name. Resulting in space being saved since larger repeated
text can be replace by a small entity string and avoid retyping of repeated data.
Entitics can be referred to as being in one of the following predefined entities, gen-
eral entity or parameter entity. Entities are also classed as parsed entity, where the
replacement text will become part of the XML document or unparsed entity, where
the replacement data is not XML or not even text therefore not required to be parse.

As stated by the predefined entity reference section, there is a set of special entities

25

that are reserved for markup, and are referred to as predefined entities. Therefore all

that needs to be defined is general entity and parameter entity.

2.4.4.7 General Entities

A user defined entity is referred to as general entities, allowing a name to be paired
with a text string. This entity is declared by using the keyword ENTITY, a name

and the text string that is associated with this name, shown as follows:
<!ENTITY projectTitle “XML-Based Internet: Performance Analysis” >

Now that the entity is defined, to place the entity text into any element content,
an ampersand is placed before the entity name followed by a semicolon. The following

is how the projectTitle entity would be referred in a XML element:
<TITLE> Title: &projectTitle; </TITLE>

An external file can also be used to give the entity data and is given by the

following form:

<!ENTITY myProjectTitle SYSTEM “http://nelson.win.trlabs.ca/projectTitle.txt” >

Using the keyword ENTITY, a name and the keyword SYSTEM followed by the
URL of the file declare this entity. The keyword SYSTEM can be replace with
PUBLIC and a public identifier and fall back URL can be used as shown in the

External DTD Declaration section.

26

2.4.4.8 Parameter Entities

Entities that are only used within the DTD are called parameter entities and allow
changes to DTD constructs. Parameter entities are declared using the keyword EN-
TITY, a percent sign, a name and the text string that is associated with this name.

The following is an example of a parameter entity:
<!ENTITY % unitAtt “unit CDATA #REQUIRED” >

Now to use the parameter entity within the DTD the following syntax is used. A
percent character is placed before the entity name followed by a semicolon, shown as

follows:
%unitAtt;

A requirement of parameter entities is that they must be declared before they are
referred. In addition the text that is added must be a valid declaration. if not the

DTD will not be valid.

2.4.4.9 Element declaration

Element declarations in a DTD are used to define the syntax that elements must
follow in a XML document. These element declarations are defined with the keyword
ELEMENT and are followed by an element tag name. These names must follow the
rules as those that were defined in the well-formed section previously. The name is
than followed by the element content that can be one of the following four categories:

empty, element, mixed and any enclosed in the “<!" and “>".

27

[Element Content Category | Definition

empty Elements with no data content and child
clements contained within it, but it can
contain attributes

element This element contains child elements but
not text data

mixed This element is a mix of element and text
data

any Any elements content that does not vio-
late XML sell-formed syntax

Therefore an example of how to create element declarations for the empty and

any category above, is shown as follows:

<!ELEMENT car EMPTY>

<!ELEMENT carlist ANY>

The XML element that could be created from the empty declaration is <car/>.
But by carlist as of type ANY the carlist element can have any combination of ele-
ments and text as long as the content between the tags is well-formed. This makes
for placement of any well-formed XML document within the carlist element tags as
being valid.

The “empty” and “any” element content category does not allow for definition
of structure to be added to an XML document. By defining element content that
fall in the “element” and “mix” content category a content model structure can be
added to an XML document. Content model cousists of some combination of element
names. operators and the keyword #PCDATA, that is enclosed in parentheses. The
#PCDATA keyword stands for parsed character data, which represents any text
character but those that are used for markup. Any markup that is required must be

replaced with an equivalent entity string.

28

The following table lists the content model operators that can be use in element

definition to add structure to a XML document.

| Operator | Definition

. Separates items and shows the order they must appear
| Separates items that list a choice of possibilities

? Indicates items can appear one time or not at all
* Indicates items can appear zero or more times
+ Indicates items can appear one or more times

For example given the following element declaration using the comma order op-

erator:

<!'ELEMENT car (manufacture, model, class }>

The following XML data that comes from the element declaration must have the

elements appear in this order for it to be valid.

<Lcar>

<manufacture> ... </manufacture>
<model> ... </model>
<class> ... </class>

< /car>

Next example will give an element declared using the pipe operator:

<'ELEMENT fuelEconomy (city | highway)>

The XML data that comes from this element declaration can be of the following
forms:

<fuelEconomy>
<highway> ... </highway>

< /fuelEconomy>

29

or

<fuelEconomy>
<city> ... <fcity>

< /fuelEconomy>

To add more complexity and create more complex structures requires the use of
?. * and + operators. They allow for the repetitions of elements and #PCDATA as
shown by the following examples:

This element declaration is used to show how mixed content of different elements
and #PCDATA can be combined in addition to the * operator. For mixed elements
and #PCDATA must be separated by the | operator, and the #PCDATA type must

be the first choice that appears.

<'ELEMENT testString (#PCDATA | aaa | bbb | ccc)*>

The element declaration allows for and element testString to be a parent of zero
or more character strings, or elements aaa, bbb, and ccc.
The next example will show how the ? operator can be used in a declaration of

an element.

<!ELEMENT testString (aaa?, bbb, cce)>

With the element declaration above, the testString element can have zero or one
aaa child element followed by a bbb and ccc child element.
The next element declaration is used to show how a + operator can be used in a

declaration of an element.

30

<'ELEMENT testString (aaa | bbb | ccc }+>

With the element declaration above, the testString element can have zero or one
or more child element aaa, bbb and ccc child element in any combination.

As shown above, a combination of these operators can be used to form a complex
structure to represent almost any kind of data structure available.

2.4.4.10 Attribute declaration

The attribute declaration used by a DTD in defining attribute values for an element

is defined using the following syntax.

<!ATTLIST elementName attributeName attributeType attributeDefaults>

All attribute declarations start with the keyword ATTLIST, followed by an ele-
ment name that contains the attribute, the attribute name, an attribute type given
by the attribute type table below or a character string, and an attribute default value.

The following table gives a list of possible attribute default values available.

LAttribute default values | Definition

#REQUIRED The attribute must appear for the defined
element.

#IMPLIED The attribute may or may not appear for
the defined element.

#FIXED fixedValue | The attribute may be declared; but it will
always appear and is set as a default string
value being represented by fixedValue.
Default value only The attribute may appear if it does appear
the default value is the assigned the value.

Since the #REQUIRED and #IMPLIED defauit values are easy to understand
the following attribute example of a declaration using the attribute default value of

#FIXED and default value only will be given.

31

<!ATTLIST fuelEconomy units CDATA #FIXED “mpg”>

By using the #FIXED attribute default value when the <fuelEconomy> tag is de-
clared the XML parser will include the unit=“mpg” attribute to the <fuelEconomy>
clement, even if the clement does not contain the unit attribute. The attribute value
is fixed and therefore cannot be changed.

By just using a default value only, given by the following attribute declaration:
<!ATTLIST fuelEconomy units CDATA “mpg” >

If the <fuelEconomy> element is declared with out any attributes the units at-
tribute will be added with the default value of “mpg’. But the units attribute can
also be set to any character data string which is not possible by using the #FIXED
attribute default value.

The following is a table of the possible attribute types that are available.

| Attribute Type | Definition

CDATA Character data strings only of any length that
can’t contain markup

ENTITY Name referring to a external entity declared in the

DTD
ENTITIES | Series of ENTITY names separated by white space
ID Unique name within a given document

IDREF Value referring to an ID declared to some element

with the same value as the IDREF attribute
[DREFS Series of IDREF names separated by white space

NMTOKEN | A name

NMTOKENS | Series of NMTOKEN names separated by white

space

NOTATION | Take a name from a set of name indicating the no-

tation types declared by the DTD, used to declare

non XML data like GIFs or JPEGs

Enumerated | Excepts one from a set of user defined values

The enumerated data type is interesting since it lets the user defined a set of

32

items that the attribute value can be. An example of how this is declared is shown

as follows:
<!ATTLIST price currency NOTATION (US | CANADIAN | BRITISH) "US” >

By using the notation attribute type the user can create a list of possibilities
that the attribute value must be and assign values must be in the defined set. For
the example above the price element has an attribute name currency that can have
values of US, CANADIAN, or BRITISH. With the default value being US, by using
a notation attribute type allows authors to set a predefined set of values to a given
attribute.

Instead of covering the other possible attribute types and give an example for all
the possible data types [would like to reference [4] that covers the topic and provides

examples for each.

2.5 XML extensions

As mentioned previously, XML is a way to describe and structure data, therefore
it is limited to what it can do. But by using the XML extensions or supporting
languages additional functionality can be achieved. Below is a set of specifications of

the extensions that support XML and a description of its value.

2.5.1 Extensible Stylesheet Language (XSL)

Extensible Stylesheet Language (XSL) is currently a working draft being devel-
oped by W3C [26], used to provide style and transform an XML document. The XSL

language can be split into three separate languages: transformation (XSLT) [29],

33

accessing XML document structure (XPath) [30] and rendering/formatting (XSLF).
Both XSLT and XPath are recommendations, while XSLF is still a working draft.
The XSL design is based on two styling languages DSSSL (Document Style Semantics
and Specification Language) and CSS (Cascading Style Sheets), both can be used to
apply style to an XML document. DSSL is used as a language to style or transform a
document, and is an [SO standard since 1996 [27]. CSS is a recommendation made by
W3C [28], developed as an easy method in which to add style to an HTML and XML
document. Where XSL differs from CSS is that it cannot be used with HTML, and
it has the ability to transform a document. Difference with DSSSL is that, DSSSL
is designed mainly for printed material and not only line documents. But what XSL
provides is a styling and transformation language that is written using the XML syn-
tax. There is also a submission for a proposed language called Spice, introduced by

HP for a more CSS style sheet language for XML [31].

2.5.2 XML Linking

The proposed method in which linking is done in XML is called XLink or XML
Linking Language (XLL) [36] and XPointer or XML Pointer Language (XPL) {37].
The XPointer specification is designed to allow for specifying single or muitipie links
within an XML document. Were as XLink, is designed to be used to link different
XML documents and resources together. The links that are created using XLink can
be categorized as being one of two types, simple links or extended links. Simple links
have the same functionality as the HTML linking element, that is, links can connect

in only one direction and has one resource identifier. With extended linking, multiple

34

resources can be connected, allowing for groups of resources to be linked from a single
link. Extended links can also be used to filter the set of target links, allowing the
user to perform real-time filtering of the linked resources.

Therefore, the problems with HTML linking that are solved with XLink and

XPointer are:

o HTML links are inefficient use of bandwidth when only portions of a

document are requested because the entire page is retrieved and displayed.

o HTML links can only return a single resource, therefore omitting related
links that is also available. While with XLink a single link can relate to
many resources, and is able to help searches return a list of related topics

as well.

¢ HTML links have no knowledge of the structure of a document, and
is dependent on the placement of anchor element. Therefore if the doc-
ument data was changed the link could be invalid and rendered useless.
Also with anchor elements placed in the document, requires them to be

updated if the links are changed.

2.5.3 Document Object Model and SAX

The Document Object Model (DOM) [32] is a W3C specification that allows for
a standardized method to access and manipulate document structure. The objects

defined by the DOM allow for reads, searches, additions and deletions from a docu-

ment and defines a standard interface for accessing,and manipulation of both HTML
and XML data. To make the DOM platform neutral, W3C defines an interface for
the different objects of the DOM but no specific method of implementation are given.
This allows for the DOM to be written in any language and for legacy data to be
accessed using the DOM. When the DOM is used to read the data, it parses the file
and creates a tree like representation of the data in memory. This allows for faster
access and manipulation of a document, but is not practical for large amount of data
since it puts a strain on the system’s memory. Currently there is a DOM level 2
specification [33] that is currently a candidate recommendation, which adds support
for namespaces (allows for examination and modification), style sheets (includes ob-
ject model, query and manipulation), filtering, event modeling and ranges (includes
functions for manipulating large blocks of data).

There is another method to process the document structure similar to DOM,
known as the Simple API for XML (SAX) [34]. The SAX is designed primarily using
JAVA as an event-based interface, specifically a parser is used to read the document
and report to the program about the symbols/events that it finds. This allows for
larger data files to be parsed for events without loading the euntire file into memory.
Making it a simple and relatively fast way to get at the XML data, plus it is a good
method to use when there is a large amount of data. The disadvantages of using
SAX are that it has no random access to a document’s data and complex searches

are difficult to implement.

36

2.5.4 Namespace

Namespace is a method that ensures that element names are unique no matter
where an element is used. In the W3C's Recommendations for Namespaces [35]. a
Namespace is defined as “...a collection of names, identified by a URI reference, which
are used in XML documents as element types and attribute names.”. The need for
namespaces arises when there is collaboration between different XML documents
that contain similar element names but have different meaning. [f these elements
from different XML documents were combined into a single document, the repeated
element names would lose their meaning or would be undistinguishable. This problem
of similar element name with different meaning can arise when XML is used on the
Web or in large organizations. Therefore namespaces are required to distinguish

between possible similar element names that might occur.

2.6 Summary

This chapter discussed the content-delivery technology used on the Internet, this
included server side technology, client side technology, and XML syntax.

Server side web technology included a discussion on the web server along with a
discussion on the programming languages that are used by the web sever. The client
side discussion includes a brief introduction to the Web browser and programming
languages that are used by them.

XML syntax was given along with the rules that must be followed in the creation

of a XML document. This included an explanation of well-formed and valid XML

37

documents, along with the syntax of a DTD and how it can be used in valid XML
documents to structure and validate the document.

Also a general overview of the extensions used by XML was given. These exten-
sions give XML applications similar or more functionality than HTML documents, in
addition to solving some problems faced with HTML. Which included the Extensible
Stylesheet Language (XSL), that can give style to an XML document and can also
be used to transform the XML document into another format. Linking is done us-
ing XPointer and XLink, with XPointer being used to specify single or multiple links
within an XML document and XLink being designed to be used to link different XML
documents and resources together. Document accessing and manipulation can also
be done using Document Object Model (DOM) or Simple API for XML (SAX). With
the DOM the entire document is loaded in memory therefore requiring more system
resources, SAX is an event driven parser of the document that uses less resources and
docs not allow for random access or quicker access. In addition, namespaces was also
explained as a method to avoid conflicts of similar tag names that might occur when
XML documents are combined in the Web environment. Namespaces use a Universal

Resource Identifier (URI), which allows for tags to be unique and distinguishable.

38

Chapter 3

Performance Measures

3.1 Introduction

The World Wide Web {(WWW) can he described by the following three elements:
servers, networks, and clients (3] [5] [12]. [n measuring the performance of the WWW
one must deal with collecting performance metrics for each of these three elements.
Since there are many different clients that access the WWW by different configura-
tions and connections, it would be hard to characterize the performance of the client.
Therefore the majority of performance measures of the WWW deal with performance
analvsis on the server and network.

Server performance [9] [11] [12] is most often measured using the following four
metrics: connections served per second, throughput (bytes/second), round trip time,
and errors per second.

Metrics used to measure the performance of the Internet (networks) are currently
still being standardized by the Internet standard organizations. The Internet Pro-
tocol Performance Metrics Work Group (IPPM WG) a work group for the Internet

Engineering Task Force ([ETF) is currently working on defining [P level metrics.

39

The work currently being done by IPPM WG [17] are still drafts or request for com-
ments and outlines criteria in which acceptable metrics should follow. While the
ITU Telecommunication Standardization Sector (ITU-T) has a new recommendation
[.380 [18] and is an approved text but is not in its final form. The metrics proposed
by both standards organization can be summarized as belonging to the following
headings: connectivity, throughput, packet loss and packet delay.

The methods used to measure the performance of the WWW deals mainly with
performing tests on the network and server elements of the WWW. This chapter will
give an overview of the metric and methods currently used to measure the WWW
performance. It describes the measures used to define the networks and servers perfor-
mance as it relates to the WWW. [t then gives an overview of methods and products

that are used.

3.2 Network Performance Methods

This section includes discussion on standards that are currently implemented or

being developed, plus some other work done by industry.

3.2.1 IETF

The [ETF's Internet Protocol Performance Metrics Work Group (IPPM WG] is
currently working on metrics that can be used to define IP performance. The [PPM

WG [17) metrics include:

o connectivity

o packet loss (one-way packet loss)

40

o delay (one-way delay, instantaneous packet delay variation and round-
trip delay)
® bulk throughput (TReno bulk transfer capacity and empirical bulk

transfer capacity).

All the metrics are currently working drafts with the exception of connectivity,

which is still a request for comment.

3.2.2 ITU-T

The ITU-T is currently the only standard organization that has recommended
metrics to measure the performance of IP networks. [TU-T recommendation is [.380
(18] titled “Internet Protocol Data Communication Service - [P Packet Transfer and
Availability Performance Parameters”. It outlines the following parameters required

to measure end-to-end or point-to-point IP performance:

o Population of interest (total set of packets being sent from source to

destination)

o [P packet transfer delay
® [P packet error ratio

o [P packet loss ratio

o Spurious IP packet rate (packets not from predefined source, measured

for a time period and then divided by the time period)

e Flow related parameters: IP packet throughput, octet based [P packet

41

throughput (parameters measured using probes, with parameter satisfying

requirements outline in recommendation)

The 1.380 recommendation also states methods and conditions that must be fol-

lowed when measuring the metrics.

3.2.3 NIMI

The National Internet Measurement Infrastructure (NIMI) (1] (2] is another orga-
nization that is trying to defined methods and metrics used to measure the perfor-
mance of the [nternet. NIMI methods include using software tools, called probes to
measure the metrics currently proposed by the IPPM WG, these probes are placed

throughout the network to measure performance.

3.2.4 Surveyor

Surveyor [56) is a joint idea of Advanced Network & Services, Inc. (ANS), and the
Common Solutions Group (made up of 23 universities). Surveyor uses several metrics
including one-way delay and packet loss metrics proposed by IPPM WG. To obtain
the metrics Surveyor uses measurement devices (Surveyor tools) that are deployed
at each university and measures the performance of Internet paths between the sites
in the study. The Surveyor tools are PCs (running FreeBSD) equipped with GPS
antennae to provide time stamps accurate to 350 microseconds. Data is then stored
into a database and put on the web so the participants in this experiment can access

it.

42

3.2.5 XIWT

The article by Borthick [6] talks about metrics and techniques in measuring the
performance of [nternet service providers (ISP). That includes early methods intro-
duced by Bellcore used in measuring the performance for the Automotive Industry Ac-
tion Group (AIAG). This lead to a new method proposed by Cross-Industry Working
Team (XIWT). XIWT is an organization whose goal is to “foster the understanding,
development and application of technologies that cross industry boundaries™ [16].

The metrics used by Bellcore and XIWT [16] to measure ISP performance include
throughput, packet lost and round trip delay. XIWT states the minimal metric
required to measure performance should include packet lost and round-trip delay.
The metrics used by XIWT to measure reliability include reach ability (defined as
a agent can send a packet to a test point and receive an acknowledgement from
the test point), network service availability, duration of outage, and time between
outage. Plus some ancillary metrics such as network resource utilization and DNS
performance.

The procedure proposed by XIWT to measure these metrics includes placing mea-
suring devices throughout the Internet to gather data simultaneously. This was pro-
posed such that a standard procedure and metrics would be used to measure the

performance of the ISP.

43

3.3 Servers Performance Methods

In this section we describe the metrics and methods that are used to measure the
server performance of the WWW. The methods used to measure the performance of
the servers deals with using software to obtain performance measures on the server.
These measures are then used to specify the performance or could be used for input for
a queueing network model of the server. Server performance [9] [11] [12] is most often
measured using the following four metrics: connections served per second, throughput
(bytes/second), round trip time and errors (errors/second).

The methods described in [12] describe how to use industry benchmarks to mea-
sure CPU, servers, and system level performance. With the aid of monitoring tools
used to measure certain aspects of a client-server system and are located throughout
the system. These measures are then used to obtain input parameters for representa-
tion of a queueing network of the system. A Performance analysis can then be done
using the queueing network to determine maximum capacity or the bottlenecks in
the systemm. QOtherwise the measured data can be used to describe performance in
general.

The procedure described in [5] deals with measuring workload by using logs gener-
ated from the server’s activities. The logs are then used to characterize the workload
of the server and how the workload affects the server’s performance.

The procedure described in [9] [11] deals with measuring server performance
through industry benchmarks. Tools that include WebStone by MindCraft (60], and

Webperf a product of SPEC {61] (Standard Performance Evaluation Committee),

a non-profit organization that develops standard benchmarks and publishes official
results.

The procedure described in [14] deals with using a queueing model to represent a
single and multi web server system. Using a typical response time curve to represent
the web server.

The procedure described in (13] deals with using actual solicited and unsolicited
users around the world to test the performance of specified sites. Users were ask to
record the time required to download files from the site and send the data back to the
experimenters. A log of the server was used to measure the server side performance.

The test procedure used by [55] deals with measuring downloading times of spec-
ified HTML pages. The HTML pages were divided up into 4 categories: Large slow
loading page (no special tags), short fast loading page (advanced html tags), frame
page (specialty tags and Java applets) and VRML [71] (Virtual Reality Modeling
Language - “an open standard for 3D multimedia and shared virtual worlds on the
Internet.”), and complex page (browser specific html tags). Users are then asked
to download these pages and record the times; then send the results back to the
experimenters.

The test procedure used by [3] deals with setting up a server using WebStone,
a benchmarking tool that generates HTTP requests, and a monitoring tool called
Webmonitor. This allows for experimenting multiple requests being sent to the server
with all four server metrics mentioned previously being measured along with other

system metrics like CPU and disk utilization

45

3.4 Measuring Solutions

This section deals with the software available to obtain the measurement for in-
putting into a queueing model or just used as a performance measure. Free measuring
tools can be found at Cooperative Association for Internet Data Analysis (CAIDA)
[58]. CAIDA provides a wide range of free software that can be used to measure and
analyze network performance. Another method is to write script using the Simple
Network Management Protocol (SNMP) tools [69], to obtain certain network perfor-
mance measures. There are also monitoring and test tools that are usually provided
with the web server that can also be used to obtain server performance measures. But
the majority of the software mentioned below is not free, they tend to have limited
time evaluation periods, or certain features not available unless the software is pur-
chased. This section is broken into three subsections, describing network and server
measuring tools. plus a section with tools that can be used to describe the network,
server and client.

3.4.1 Network Testing and Measuring Tools

Cisco’s Netsys Service-Level Management Suite [65] is used to monitor network
routers and optimize performance of the network. Cisco’s Netsys Service-Level Man-
agement Suite contains two modules: connectivity service manager and performance
service manager. The connectivity service manager allows apalyze of traffic flows,
topologies, routing parameters, router configurations, and Cisco IOSTM software fea-

tures. The performance service manager is used to collect routing configuration data

46

and can create service-level policies for connectivity, reliability, and security services.
The performance service manager also can use VISTA (View, [solate, Solve, Test,
Apply) troubleshooting methodology to diagnosis and repair network problems. Net-
sys is a way to obtain important measures and provides solutions for many network
problems.

HP Openview Tools with CiscoWorks200, designed Netmetrix [67] that uses the
simple network management protocol (SNMP) to provide information about the net-
works performance.

INS Enterprise Pro is a network monitoring service provided by [nternational
Network Services [68]. INS will monitor a web site and then give web-based reports
that include latency, throughput, errors and treads.

Real-time Applications Performance System (RAPS) by Resolute Software [39]
used to monitor applications, servers and networks through agents. There are different
agents to collect and measure the system performance and reports back to a central
server at regular intervals.

SE Toolkit is a Unix performance monitor {64] designed by Adrian Cockceroft
and Rich Pettit. Some measures that are collected by SE Toolkit include: TCP
throughput, TCP connections, TCP retransmits, NIC rates, collisions, overruns and
CPU plus disk usage levels. The SE Toolkit has analysis tools that can be used on
the log files that are collected.

Visual UpTime by Visual Networks {70] is a WAN service level management system

used for ATM, frame relay, leased line and [P/Internet services. Visual UpTime uses

47

monitoring agents and a database engine to measure and collect the performance of

the network.

3.4.2 Sever Benchmarking Tools

WebStone by MindCraft [60], and SpecWeb96 by Standard Performance Evalua-
tion Corporation [61] are used to send multiple HTTP GET requests to a web server.
Therefore they are benchmarking tools used to measure the ability of a web server to
handle HTTP GET requests.

WebBench [62] measures web server software performance by simulating clients
requests to test for requests per second and throughput handled by the server. [t
allows test to be created by users for both static (HTML and GIF) and dynamic

content (CGI, NSAPI and ISAPI).

3.4.3 Load Generators and Testers

The following is a list of tools used to test web performance by creating muitiple
client requests LoadRunner by Mercury [44], WebLoad by Radview [40], WebLoad
by Platinum [47], WebART by OCLC Inc. [45], Socrates by Morph Technologies
[46], Silk Performer by Segue Software [51], Load test tool by Portent [43], InetLoad
by Microsoft [52], QALoad by Compuware [41], Forecast by Facilita Software [42],
Performance Studio by Rational [49], and E-Test by RSW Software {30]. All these
testers generate loads though a scripting language, or by recording an event and
replaying it multiple times. These tools provide some measures of performance for

all or a combination of client, network and server.

48

MS Web Application Stress tool, created by Microsoft's {53} is used to test a
server’s performance by reproducing multiple browser requests. It then gives the
following measures get request per second, post requests per second, percent processor
time, percent total processor time, and requests per second which then could be used
to measure performance.

WebSizr by Technovations {48] is a load generator that can simulate up to 200
simultancous HTTP users and record the results. By also using other supporting
applications like DBSiazr (test databases simulates SQL calls) and WebCorder (records
HTTP transactions) along with WebSizr good simulations can be performed.

Keynote Perspective a service provided by Keynote [66] that uses over 100 cites
across United States of America to download a specific page every 15 minutes. This
will give webmasters information on how the users actually view their page throughout
each cite.

VeloMeter [34] is a Java based HTTP server load tester that gencrates multiple
client requests and measures the response times of the requests.

Baseline from TeamQuest [63] is used to measure performance of CPU, disk, buffer
cache, memory usage, disk space utilization, network file system, TCP/IP, Sybase and
Oracle database applications for Unix, NT and Unisys platforms.

Best/1 from BMC software, [57] runs on Unix and NT systems and collects data

about the system resource usage, along with other measures.

49

3.5 Summary

The performance of the WWW can be described by measuring two elements, they
are the servers and networks. The metrics used to describe the performance of the
servers being connections served per second, throughput (bytes/second), round trip
time and errors (errors/second). The metrics used to describe the performance of
networks being connectivity, bulk throughput, packet loss, and delay.

The measures of performance can be obtained by software that creates multiple
client requests and then measures the effects of the requests. These types of software
arc generally used to measure the capacity of the server and network. There are
also monitoring tools that can be used to sample and test the performance which are
geared toward maintaining performance.

This chapter provides information on the metrics and methods used to measure
the performance of the WWW. Plus a list of tools that could be used to obtain

measures used to test or monitor the performance of the WWW.

Chapter 4

Test Applications

4.1 Introduction

Web applications can be described as being static or dynamic. Static web appli-
cations are created once and the content does not change, this makes determining
performance easier because larger pages require more server, network, and client re-
sources. With dynamic web applications, the content that is delivered varies on the
client’s request, making performance more difficult to measure.

For a good performance comparison to be made, exact replications of XML and
HTML Web applications were created. The test applications created for the test are
dynamic since the data returned is dependent on the clients input. There are two
different XML and HTML applications created to test the performance, and will be
referred to as Application 1 and Application 2. Both applications contain a form for
client input, from which a query will be made to return data in the form of text and
graphics, with the theme of the applications being automobiles.

The form allows a client to enter the manufacturer’s name, selected from a drop

down list, the vehicle class and select a check box to display all data in the database.

For the HTML applications the form also includes a drop down list that allows for
selection of the return data to be sorted and for the currency data element to be

changed. An example of the form for the applications is shown in Fig. 4.1.

Car Information Search (Returns data as HTML file)

Easer Menalocagrers Nomo
Selocs Vohicls Chuss
Setswrin by:

Seleet rmveney vo Snpig el &

F Chork thin hux te shaw ol dote fn i dssham

e St i n e et v o - pyick o=y

Figure 4.1: Input data form to query application.

Once the form is submitted, the Web server will process the request and sends
the request to the MySQL database server. MySQL database server will than process
the request and return the requested information back to the Web server.

MySQL is described as being a fast, multi-threaded, and multi-user SQL (Struc-
tured Query Language) relational database server. The phrase relational database

can be broken down and described as follows:

o Database is described as being a collection of stored information that

is structured and organized into tables. Each table is organized into rows

52

and columns; a row in a table represents a record. The records can have
many entries, with each column in the table corresponding to one of the

records entries.

o The word “relational” is used to state that this database is good at
matching up information stored in one table to information stored in an-
other table. This permits for information from differenc tables to be com-
bined and allows for information to be gathered that cannot be generated

from a single table alone.

To get the information out of the database requires the use of a language called
SQL. The SQL language is the standard database language used to interact with the
database and is used by all major database systems.

With the brief introduction to MySQL, we will now look at the tables that are
used for our applications. Two tables were created for our database, named “car”
and “engine”. The record or row of the car table contains the following information:
manufacturer, model, class, and image. While the record or row of the engine table
contains the following information: model, liters, horsepower, rpm, city_mpg, high-
way.mpg, cylinder, and price. Since for a given car, there might be several different
engines, the relational properties of MySQL allow us to match the model entries of the
car table with the model entry in the engine table. The table setup and relationship
between the two are shown by Figure 4.2.

By creating two tables and linking them by the model entry allows for data to

be stored more efficiently. The data could have been stored in a single table, but for

53

1!

Car Table

manufactwrer | model clots mage

Acwrs CL < (megneCLgy |

F—' Acurs act M degre pg

o U LAC

Acura RL P i

o o [megesRLgg |

| Engine Table

model | liters | bor m P ighwa! Ke cylader

e o 1 e

I =1 5 I
:II 5 N] :
E) r

19

Figure 4.2: Car and engine table, linked by model.

each car with multiple engines, the manufacturer, class and image entries would be
repecated if a single table was used. Therefore using two tables is more efficient and
with MySQL being a relational database the data from the tables can be matched
and linked.

The server side processing, including the MySQL database connectivity was done
using PHP (Personal Home Page). PHP is a scripting language with syntax similar
to that of PERL and C-++, and is embedded into the XML and HTML documents.
When an application is requested the embedded PHP code is executed by the server,
and is used to generate the dynamic content sent to the client. PHP was built to run
as a module for the Apache Web server, rather than as a CGI interpreter. By building
PHP as an Apache module, every time a PHP script is interpreted the PHP module
runs in the same address space or as part of the Apache process. This avoids the

problems faced by spawning a different process, which affects performance negatively.

54

Therefore when the client submits the form, the Web server uses the PHP script
to connect to the MySQL database and generate the query request. The database
server will then return the results, from which PHP was used to generate the XML
and HTML applications files sent to the client. Print statements in the PHP script
were used to generate and tag the data returned from the database into either XML
or HTML markup.

Although both applications are the same in appearance, the XML application
is a little different in functionality. Within the XSL style sheet file for Application
1. scripting is included to give the client’s side the ability to sort by manufacturer,
model, and class, along with the ability to change the price data to a different currency
value. The XML version of Application 2, allows for client side sorting of data, all
that is required is a click of the mouse on the column value in the title row. This
allows for sorting to be done on the table by manufacturer, model, class, engine type,
horsepower, RPM, price, city MPG, or highway MPG in ascending order.

The sorting and data manipulation functions are not available on the client side
once the data is received from the server with the HTML application. Instead, the
client must enter these values into the form before the submission of the query or
hit the back button on the browser and query the server again. Implementing this
kind of functionality on the client side with the HTML application would be very
difficult since data manipulation is difficult or not possible. Therefore the returned
XML application from the query has a drop down list that allows for the data to be

sorted and for the currency data element to be changed on the client side.

Sorting the received XML data on the client side is done using JavaScript and the
Document Object Model (DOM). To sort the XML data, some Microsoft proprietary
DOM extensions were used to interface with the XSL file. Currently the DOM level
1 specifications does not allow for stylesheet object modeling, querying and manip-
ulation, but the DOM level 2 specifications, currently a candidate recommendation
allows for this to be done. Therefore using Microsoft Internet Explorer to parse the
XML and XSL files creates a document object model (DOM) for both files. Having
the document object model for the XSL file allows access to the sort field object in
the XSL file. The sorting object in the XSL file is found in the element that contains
the “order-by” attribute. Using the DOM, the “order-by” attribute can be accessed
from which the value can be changed and the way the data is sorted. The script
to sort the data was created using a function that contains an input string with the
desired sort value. The sort value is inputted from a form, with the submission of
the form the sorting function would be called and the sorting would be done on the
client side.

To change the price data values in the XML files requires the use of JavaScript
and the Document Object Model (DOM). But the price value change does not require
any special proprietary extensions and can be done with the methods provided in the
DOM level 1 specifications. As with sorting of the data, a form was provided to
allow the client to choose the currency value that would be displayed. When the
client chooses a currency other than the default value and submits the form, the price

change script is executed on the client side. The price data is found in the XML file

in the elements with a tag name PRICE. What is done in the price change script
is the use of the getElementsByTagName(“PRICE”) method, which uses the XML
file document object model to allow us access to all PRICE elements in the XML
document. From which a loop was used to change the values in the PRICE element
in our XML document to the new value.

The disadvantage of including scripting in the XSL style sheet to manipulate the
data is that unnccessary data might be sent to the client, which increases the size of
the style sheet sent to the client. The advantage is that the client will not have to
make another trip to the server to manipulate data that is already on their machine.
This will save on network traffic, plus reduce the load that is placed on the server.

The setup deseribes how dynamic content was created for both XML and HTML
applications. The database setup used was kept the same for both XML and HTML

applications along with application 1 and application 2.

4.2 Application 1

Application 1 is designed to be a nicely styled Web page, where data is returned
in muitiple table form along with an image pertaining to the data. The result from
a client query contains images of the vehicle followed by a nicely formed table with
the information of the vehicle under each image. The table contains a centered
heading with the manufacturer’s name, vehicle name, and the class of the vehicle;
with a font size setting set equaled to four. This heading spans four columns and
has a background that is orange in color. The heading is followed by four rows of

data; the data is formatted in a table with borders, cell padding, and cell spacing

57

all set to zero. The first row listing the engine type of the vehicle, this data is
centered with a white background. The second row represents the horsepower and
RPM of the engine; the data spans two rows and has a light gray background. The
third row is used to represent the fuel economy of the engine; the data spans two
rows and has a white background. The forth row represents the price in American
dollars with a background that is light gray in color. Depending on the vehicle being
displayed, any additional engines available for that vehicle would be represented by
additional columns in the table. The table ends with an additional row that is similar
to the heading that spans four columns and has a background that is orange in color.
Therefore a submitted query wouid return a list of vehicles, and each vehicle would
have its image followed by a stylized table with data on that vehicle. An example of
how application 1 is seen by the client is shown in Fig. 4.3.

Application 1 is intended to determine how XML/XSL can benefit from a highly
stylized web application. With a highly stylized application there is repeated data
that will benefit from a separate XML and XSL file. With XSL the styling data is
only required once to style the entire page, and will not be repeated as is required
by HTML. This may result in smaller web pages being generated and less network

traffic for the XML application.

4.3 Application 2

Application 2 is a simple single table display containing text data only. All the
resulting data returned is displayed in a single table with nine columns. The table

contains a title row that is orange in color with the following column values: man-

58

)

Figure 4.3: Application 1 - HTML web page (XML application displays the same
data but has an additional form for data manipulation on the client side)

ufacture, model, class, engine type, horsepower, RPM, price, city MPG (miles per
gallon) and highway MPG. The tabie is displayed with no borders and cell spacing,
and the data is just centered in the appropriate column in the table. An example of
how application 2 is seen by the client is shown in Fig. 4.4.

The idea behind Application 2 is to test how well XML might perform when data
is not stylized heavily. This takes away the benefits of having a style sheet that will
reduce the repeated styling data.

Application 2 also allows for testing to see if performance of the server will increase
if the load placed on the server to sort the data is taken off. The sort option for the
XML application is done on the client side using scripting, whereas with the HTML

applications the database server does the sorting.

59

44 v

Figure 4.4: Application 2

60

Chapter 5

Test Setup

5.1 Introduction

This section will describe the setup used in the implementation of the XML and
HTML applications, shown in Fig. 5.1, as well as the software and hardware used.
The setup uses open source development applicatious since these applications are
free, easily accessible and generally the most widely used on the Web. The following
section contains a discussion on the server side setup, client side setup, and how the

test was performed.

Load Gmenstes

Figure 5.1: Test setup used to measure performance.

61

5.2 Server Side Setup

The server side setup consists of the Apache Web server (version 1.3.12) and
MySQL database server (version 3.22.32), running on the Linux Mandrake (version
6.1) operating system. The Apache server is a HTTP Web server that is developed by
the non-profit Apache group and is based on the National Center for Super Computing
Applications (NCSA) Web server.

The server side scripting is done by PHP (version 4.0.0), since PHP provides
native functions that support both XML and MySQL.

The hardware sctup of the server was an Intel Celeron 466 with 64 MB of memory;

and the server accesses the Internet through a T1 line.

5.3 Client Side Setup

The client was based on Microsoft Internet Explorer, because at the time of this
writing it is the only browser that supports XML and XSL. Using Internet Explorer

allows for testing of client side execution of XML applications with XSL.

5.4 Test Procedure

WebLoad by RadView Software Inc. [40] was used to load the server in addition
to determining the performance metrics of the created XML and HTML applications.
WebLoad can be described as a load-stress tester based on creating client requests. It
provides a scripting language to create the actual client requests, these client request

are called virtual clients and are used to emulate a Web browser. WebLoad provides

62

testing for information pages (pages that just contain data), interactive forms (pages
which provide users interactions through forms), and search facility (pages which pro-
vide data entry to submit queries) allowing testing of the majority of web applications
currently deployed on the WWW. This allows for simulations of multiple access to
Web applications for real-time performance analysis. A trial version of WebLoad was
used, that allows for 25 virtual clients to be simulated at the same time.

The WebLoad test session contains a console and load generator. The console can
be described as the machine used to setup, run and controls each test session. With
the console, the user can define the hosts that will participate, specify the program
that will be executed, schedule, and view the performance results of the test. The load
generator is the machine that runs the muitiple simultaneous virtual clients request.

The load machine was setup on a PC that contains an AMD K6-3 400 MHz
processor, with 128 MB. While the console is an IBM laptop with a Intel 233 MHz
Pentium processor, with 96 MB. These machines are on a 10Mbps local area network,
connected by a Linksys Etherfast Cable/DSL Router and access the Internet through
a cable modem connection.

All test performed by WebLoad requires an Agenda, which is a file that is used to
define the test to be performed. The Agenda for our tests consists of a request to the
Web server for the form, from which the form field would be filled in and posted back
to the Web server. To be realistic and fair, an input file was created that contains
50 valid input parameters of possible input that can be entered into the form, which

would be used as input for the virtual clients in all of the test situations. Once the

end-of-file is reached, WebLoad loops back to the start of the file for input again,
allowing for the 50 input values to be used an infinite number of times. Each test
simulation was performed for a duration of 5 minutes. This testing procedure allows
for different queries to be simulated simultaneously and is a fair representation that
was maintained between tests, since all test queries are from the same set of 50 input
parameters for both HTML and XML applications.

Tests were also performed with the sorting field left blank, designed as a test for
general application performance. Selecting a non-blank value for the sorting field in
the form allowed for testing of additional server side processing. This was done to
see if the scripting included in the XSL file to sort the data on the client side was
worth the additional bandwidth. A benefit of XML is the separation of data from
the styling information, which allows for easy manipulation of the data on the client

side.

Chapter 6

Results

6.1 Introduction

This chapter contains the collected performance results of the HTML and XML
applications with the client located in two different locations.

When tests were performed on Application 1 the difference between the HTML and
XML applications were not noticeable. This was because the images included with the
application would be much larger than the entire data being transferred. For testing
purposes the images were not included since the actual performance measurements
resulting from the test of the HTML or XML application would be difficult to see.

Now an explanation of the performance metrics of total rounds and round trip time
will be given, since it may be perceived as something ather than what was measured.
WebLoad [40] defines a round “as a complete execution of the agenda”, and for our
tests, the agenda represents the downloading of the form, filling plus posting of the
form and the returned results in either XML or HTML format. Therefore the round
trip time metric gives a measure in seconds it takes a client to download the form,

post the data back to the server, and download the requested result, with the total

rounds being the total amount of time this process was successful.

The tests were taken with the server located in Winnipeg, and the client located
in either Winnipeg or Calgary. Winnipeg and Calgary are two Canadian cities that
are geographically separated by approximately 1300 kilometers.

The results of Tables 6.1-6.6 were taken with the Web server located in Winnipeg
and load generator located in Calgary. Having the server and the load generator in
different cities allows for greater network separation.

The results of Tables 6.7-6.12 are taken with the Web server and load generator
located in Winnipeg. These results show how the applications would perform when
both client and server are located in the same city, and the network separation is less
of a factor.

The variance was also determined for the collected data, using the following for-

mula:

ny s - (Xz)

Variance = Y

(6.1)

6.2 Calgary Results Applications 1

These results were collected on June 9th, 2000, with all tests times being indicated
in Mountain Standard Time. Tables 6.1-6.3 are the performance results of the HTML
and XML application 1, with the client located in Calgary and the server located in

Winnipeg

66

Table 6.1: Server performance HTML - Application 1 (client in Calgary)

Test | Test 2 Test 3 Test 4 || Variance

(2:40pm) | (2:50pm) | (3:10pm) | (3:15pm)
Connections 7.8 3.3 5.6 7.3 3.2
served per second
Total throughput | 28507137 | 19221696 | 20353345 | 26465153 —
(Bytes)
Throughput 95023.8 | 64072.3 | 67844.5 | 88217.2 —
(Bytes/second)
Round Trip Time | 2.502 3.796 3.425 2.463 0.805
(Seconds)
Total Errors 0 1 0 1
Total Rounds 2325 1565 1660 2157

Table 6.2: Server Performance HTML - Application 1 {with additional server side

processing and client in Calgary)

Test 1 Test 2 Test 3 Test 4 | Variance

(3:20pm) | (3:30pm) | (5:25pm) | {5:30pm)
Connections 8.7 8.2 7.6 5.9 2.3
served per second
Total throughput | 31817544 | 29918558 | 27560711 | 21386700 -
(Bytes)
Throughput 106058.5 | 99728.5 91869 71289 —_
(Bytes/second)
Round Trip Time | 2.508 3.022 3.182 4.323 0.924
(Seconds)
Total Errors 0 1 1 0 —_
Total Rounds 2598 2443 2255 1748 —

For the results of Application 1, Table 6.1, 6.2 and 6.3, there is a noticeable differ-
ence in the amount of connections served between the HTML and XML applications.
The XML application has an average connections served per second equaling to 13,
compared with 6.5 and 7.6 as shown in Table 6.1 and Table 6.2 test of the HTML ap-
plications, respectively. This results in twice as many connections being served for the
additionally loaded HTML application and almost that many for the non-additional

loaded HTML application, resulting in more XML applications being served in the

67

Table 6.3: Server Performance XML - Application 1 (client in Calgary

Test 1 Test 2 Test 3 Test 4 | Variance
(2:55pm}) { {(3pm) [(3:40pm) | (3:45pm}

Connections 124 12.7 14.1 12.7 3.2
served per second
Total throughput | 25609423 | 26243183 | 20143206 | 26234605 —
(Bytes)
Throughput 85364.7 | 87477.3 | 97144 87448.7 —
(Bytes/second)
Round Trip Time | 1.754 1.738 1.515 1.542 || 0.073984
(Seconds)
Total Errors 1 | 1 1 -
Total Rounds 3705 3796 4214 3793

same time [rame.

Even by scrving more rounds, the XML application sent 3453096 bytes less or 3%
less bytes of data, shown by the smaller throughput values.

Another interesting observation is the difference between the round trip times, the
XML applications tend to have a round trip time that is 1.622 seconds or 50% less
than the comparable additionally loaded HTML applications

The additional server side processing of sorting and changing content did not really
affect the performance metrics negatively. The results of Table 6.2, with additional
server side processing scemed to perform better than that of Table 6.1, without addi-
tional server side processing, this is an unexpected result. An explanation of why the
non-additionally loaded HTML application performs worst than the regularly loaded
HTML applications is explained by a more detailed look at the collected data. This
includes the plot of the connection time, Fig. 6.1 and response time, Fig. 6.2, of test
1 of Table 6.2 and test 2 of Table 6.1, respectively, the extreme cases of the collected

data for the HTML application.

68

Connect Time Plot

06
05
0.4
03

0.2
0.1

0
¢ P LE PSSP PP
Simulation Time {Sec]

—4—Table2- Test |
—a— Table 1 - Test2

Connect Time [Sec]

Figure 6.1: Connect time plot between Table 6.1~ Test 2 and Table 6.2 - Test 1

WebLoad [40] defines connection time metric, as being “the time until a connection
was achieved between the Client and the server (including the time it takes to establish
the connection and receive the TCP/IP OK)". Response time metric is defined as,
“the time required for the server to respond to a request sent by a client (starting
from the end of the send including the time until the end of a blocked read of the
incoming data)”. Figure 6.1 shows that test run 1 from Table 6.1 has overall a higher
connection time to the server, in addition to Fig. 6.2 that show a higher response
time for test run 1 from Table 6.1. This observation was noticed between the test
runs of application 1 in both Table 6.1 and Table 6.2. Figure 6.1 and Fig. 6.2 shows
the noticeable difference in performance is caused by the poor network performance
at the time the tests were performed, since the connection time and the response time

should have been similar, which is not shown by Fig. 6.1 and Fig. 6.2.

69

Response Time Plot

(24

~
N o

—— Table 2 - Test 1
—a— Table 1 - Test2

—

Response Time [Sec]
P —
=] ™

D
SRS LP PP
Sim ulation Time [Sec]

Figure 6.2: Response time plot between Table 6.1- Test 2 and Table 6.2 - Test 1

This shows that XML applications that have a separate style sheet, with repeated
styling tags only required to be defined once for the data, results would be better
performance than the comparable HTML applications. This may not be true in all
cases since the larger data files will tend to show a larger difference in file size than

those with less data, as discuss in the explanation of results section to follow.

6.3 Calgary Results Applications 2

These results were collected on June 9th, 2000, with all tests times being indicated
in Mountain Standard Time. Tables 6.4-6.6 show the performance results of the
HTML and XML Application 2, with the client located in Calgary and the server

located in Winnipeg.

70

Table 6.4: Server Performance HTML - Application 2 (client in Calgary)

Test 1 Test 2 Test 3 Test 4 || Variance
(4pm) | (4:05pm) | (4:55pm) | (5pm)
Connections 12.5 12.5 109 11.2 2.3
served per second
Total throughput | 22203071 | 22213703 | 19430364 | 19912443 —
(Bytes)
Throughput 74010.2 | 74045.7 | 647679 | 66374.8 —
(Bytes/second)
Round Trip Time | 1.702 1.861 2.150 2.167 |1 0.096721
(Seconds)
Total Errors 1 1 1 1
Total Rounds 3715 3715 3252 3333

Table 6.5: Server Performance HTML - Application 2 (with additional server side

processing and client in Calgary)

Test 1 Test 2 Test 3 Test 4 || Variance

(4:35pm) | (4:45pm) | (5:40pm) | (5:55pm)
Connections 10.8 11.3 9.9 11.6 2.6
served per second
Total throughput | 19234781 | 20056173 | 17689131 | 20692007
(Bytes)
Throughput 64115.9 | 66853.9 | 538963.8 | 68973.4 —
(Byvtes/second)
Round Trip Time 2.185 2.139 2.381 1.940 0.186
(Seconds)
Total Errors 0 1 1 1 —
Total Rounds 3217 3357 2960 3462 —

For the results of Applications 2, Table 6.4, 6.5, and 6.6, the results are opposite
to those obtained from Application 1. The round trip time of XML is larger than the
HTML and the number of rounds served is larger for the HTML compared with the
XML.

The average round trip time of the XML application is 3.003 seconds, compared
with that of regular loaded HTML application at 1.97 seconds and the additional

server side processing HTML application at 2.161 seconds. This shows the additional

Table 6.6: Server Performance XML - Application 2 (client in Calgary)

Test 1 Test 2 Test 3 Test 4 || Variance

(4:15pm) | (4:25pm) | (5:10pm) | (5:15pm)
Connections 16.2 15.2 13.9 14.7 18
served per second
Total throughput | 23232939 | 21753908 | 19818742 | 20976928 —
(Bytes)
Throughput 77443 72513 66062.5 | 69923.1 —
{Bytes/second)
Round Trip Time | 2.749 3.130 3.333 2.780 0.229
(Seconds)
Total Errors 1 1 1 1 —
Total Rounds 2418 2265 2062 2182 -

loaded HTML application requires one second or 34% less time to serve than the
XML application.

The total average round served by the XML application is 2232, compared with
that of the regular loaded HTML application at 3504 and the additionai server side
processing HTML application at 3249. This shows the HTML application can be
served over a thousand more times or 46% more times than the comparable XML
applications.

In the Application 2 test the additional loaded HTML application had a notice-
able difference in the average amount of applications served compared with the non-
additional loaded HTML application, this value being 255 additional rounds. There
is also a smaller difference of 0.191 seconds in the average round trip time between the
additionally loaded and regular loaded application. Plus the connections served per
second by the additionally loaded application are 0.9 iess than the regularly loaded

or approximately an average of 1 connection less per second.

72

Application 2 shows that non-stylized applications created using XML does not
benefit in terms of performance with a comparable HTML file, since these XML

applications tend to be bigger and therefore suffer in terms of performance.
6.4 Winnipeg Results Applications 1

These results were collected on June 21st, 2000, with all tests times being indicated
in Central Standard Time. Tables 6.7-6.9 are the performance results of the HTML

and XML Application 1, with the client and server both located in Winnipeg.

Table 6.7: Server Performance HTML - Application 1 (client in Winnipeg)

Test 1 Test 2 Test 3 Test 4 Variance

(9:45pm) | (9:50pm) | (10:20pm) | (10:25pm)
Connections 13.5 12.8 121 11.6 3.2
served per second
Total throughput | 49185689 | 46925931 | 44307849 | 42524710
(Bytes)
Throughput 163952.3 | 156419.8 | 147692.8 | 141749.0 —
(Bytes/second)
Round Trip Time | 1.819 1.450 1.369 1.423 0.089
(Seconds)
Total Errors 0 0 0 1 —
Total Rounds 4015 3828 3611 3467 _

The results from Tables 6.7, 6.8, and 6.9 show similar results of those of Tables
6.1. 6.2, and 6.3, collected when the client was located in Calgary. They show that
the XML application was able to perform better than the HTML applications.

Tables 6.7, 6.8, and 6.9 shows on average that the XML application was able to

serve 2437 or 70% more rounds then the additionally loaded HTML applications.

3

Table 6.8: Table 8. Server Performance HTML - Application 1 (with additional server
side processing and client in Winnipeg)

Test, 1 Test 2 Test 3 Test 4 Variance
(9:55pm) | (10pm} | (10:30pm) | (10:35pm)
Connections 11.1 9.9 124 13.1 3.6

served per second

Total throughput | 40468645 | 36039920 | 45293935 | 47983730 —
(Bytes)

Throughput 134895.5 | 120133.1 | 150979.8 | 159945.8 —
(Bytes/second)

Round Trip Time | 1.947 2.321 2.052 1.867 0.143
(Seconds)

Total Errors 0 1 0 1 —
Total Rounds 3305 2042 3699 3917 —

Table 6.9: Server Performance XML - Application 1 (client in Winnipeg)

Test 1 Test 2 Test 3 Test 4 || Variance

(10:10pm} | (10:15pm) | (10:45pm) | (10:50pm)
Connections served 19.2 18.5 20.6 20.8 4.4
per second
Total throughput | 39815058 | 38230902 | 42491369 | 42923371
(Bytes)
Throughput 132716.9 | 127436.3 | 141637.9 | 143077.9 —
(Bytes/second)
Round Trip Time 1.252 1.372 1.116 1.177 0.025921
(Seconds)
Total Errors 0 1 0 0 —
Total Rounds 3752 5526 6142 6204 —

Also on average the results show that the XML application had a total average
throughput that was 1581382 bytes or 4% less then the additionally loaded HTML
applications.

Another interesting result was the round trip time between the XML and addition-
ally loaded HTML application. The average results show that the XML application

takes 0.818 seconds or 40% less time to serve a round of the application.

74

The total errors that resulted when doing the test are minimal, therefore a final
conclusion as to which application is better cannot be determine from these results.
But these results tend to be in agreement with those collected in Calgary where XML
performs better in all the measured performance metrics than the HTML applications.

From Tables 6.7 and 6.8 the results show that the non-loaded HTML application
performs better than the loaded HTML application on average by 7.6% on the rounds
served, 7.7% less bytes on the total throughput and has a round trip time that is 26%
less. These results were expected since there was additional load placed on the server
to sort and change the data, resulting in poorer performance. This was not observed
in the test taken in Calgary, due to the poor network performance when the data was
collected as shown above.

From these results., we can see that the XML application is able to outperform
the comparable HTML application. Even though the XML application is served 70%
mote rounds, it is able to send 4% less total bytes of throughput and bave a round

trip time that is on average 40% less.
6.5 Winnipeg Results Applications 2

These resuits were collected on June 21st, 2000, with all tests times being indi-
cated in Central Standard Time. Tables 10-12 show the performance results of the

HTML/XML Application 2, with the client and server both located in Winnipeg.

(6]

Table 6.10: Server Performance HTML - Application 2 (client in Winnipeg)

Test 1 Test 2 Test 3 Test 4 Variance

(12:10am) | (12:15am) | (12:45am) | (12:30am})
Connections served 26.5 27.2 27.2 27.0 0.81
per second
Total throughput | 47416428 | 48643946 | 48521590 | 48335966 —
{Bytes)
Throughput 158054.8 | 162146.5 | 161738.6 | 161119.9 -
(Bytes/second)
Round Trip Time | 0.900 0.919 0.905 0.893 0.003
(Seconds)
Total Errors 0 0 0 0 -
Total Rounds 7938 8143 8121 8090 |

Table 6.11: Server Performance HTML - Application 2 (with additional server side
processing and client in Winnipeg

Test 1 Test 2 Test 3 Test 4 [Variance

(12:20am) | {12:25am) | (12:35am) | (lam)
Connections served 25.0 27.2 26.9 27.0 14
per second
Total throughput | 44700489 | 48579400 | 48129434 | 48330485 -
(Bytes)
Throughput 149001.6 | 161931.3 | 160431.4 | 161101.6 —
(Bytes/second)
Round Trip Time| 0.701 0.897 0.929 0.889 0.011
(Seconds})
Total Errers 1 1 0 0 —
Total Rounds 7483 8131 8055 8089 —

The results from Tables 6.10, 6.11, and 6.12 show similar findings of those of
Tables 6.4, 6.5, and 6.6, collected when the client was located in Calgary. They show
on average that the additionally loaded HTML application was able to serve 3148 or
66% more rounds then the XML applications.

Also on average the results show that the additionally loaded HTML application
had a total average throughput that is 863274 bytes or 3% more than the XML

applications. This is due to the greater number of rounds of the applications that

76

Table 6.12: Server Performance XML - Application 2 (client in Winnipeg)

Test 1 Test 2 Test 3 Test 4 || Variance
(12am) | (12:05am) | (12:35am) | (12:40am)
Connections served 32.5 J2.1 32.0 31.8 1.0
per second
Total throughput | 46446809 | 46066651 | 45763488 | 45423394 —_
(Bytes)
Throughput 154822.7 | 153555.5 | 152545.0 | 151411.3 -
(Bytes/second)
Round Trip Time | 1.5341 1.497 1.563 1.454 0.005
(Seconds)
Total Errors 0 0 1 0 -
Total Rounds 4844 4810 4773 4738 —

were served.

The round trip time of the additionally loaded HTML application, on average, is
0.660 seconds or 44% less time to serve a round of the application.

From these results we can see that the HTML application is able to outperform
the comparable XML application. The HTML application is served 66% more rounds,
but it sends 3% more total bytes of throughput and has a round trip time that is
on average 44% less. Another interesting observation is the variance for connections
served per second and round trip time (in seconds) for the data with the client located
in Winnipeg is smaller than the data collected with the client in Calgary. This is
expected since the data collected in Winnipeg has less hops than the data collected
in Calgary. Since the duration of the test was only five minutes, the amount of
data collected was not enough for a realistic variance calculation to be made for
the performance metrics of total throughput (bytes), throughput (bytes/second), and
total rounds. Therefore these variance values are not included since they do not

represent a steady state value.

Chapter 7

Explanation of Results

7.1 Introduction

To clearly see why the XML version of Application 1 outperforms the HTML
application we have to look at the file size of certain iterations of the application.
Tables 13 and 14 are used to show the file size of Application | and the breakup of
the file size by the number of elements returned {a single table of data or each vehicle
represents an element). The differences between the HTML and XML files size are
shown in Table 15, for Application 1.

To take a closer look at why the XML version of Application 2 does so poorly with
respect to its HTML counterpart, we took a look at the file size of the comparabie
XML and HTML applications. Tables 16 and 17 show the file size of the HTML
and XML version of Application 2 respectively, where an element in these tables is
represented by a single row in the table of Application 2. While Table 18 represents

the difference between the HTML and XML files size for Application 2.

8

7.2 Application 1

Tables 7.1 and 7.2 are a breakdown of the file size of the HTML and XML Ap-
plication 1 respectively, for a single client tequest. These tables are intended to show
the actual data that is requested from the server. Table 7.3 is then used to show the

difference between the comparable HTML and XML application being transferred.

Table 7.1: Application 1 - HTML File Size

Number of | Form (bytes) | HTML File | Total (bytes)

Elements (bytes)
1 1896 913 2809
b) 1896 4332 6428
9 1896 8409 10305
12 1896 11138 13034
14 1896 12733 14629
18 1896 16469 18365
22 1896 21296 23192
70 1896 63185 65081
164 1896 154097 155993

Table 7.2: Application 1 - XML File Size

Number of | Form +XSL File | XML File | Total (bytes)
Elements (bytes) (bytes)
1 7504 461 7965
5 7504 2252 9756
9 7504 4461 11965
12 7504 5859 13363
14 7504 6384 13888
18 7504 8288 15792
22 7504 12175 19679
70 7504 34608 42112
164 7504 82726 90230

From the difference shown in Table 7.3 the XML application is larger than the

HTML application when the numbers of elements sent are small. But as the number

[£]

Table 7.3: Difference in HTML File Size as compared with XML Application 1

Number of Elements | Difference (bytes)

1 -5156

5 -3328

9 -1660

12 329

14 741

18 2573

22 3513

70 22969

164 65763

of elements increased, the data for the XML application is smaller than that of the
HTML application. This is shown in Table 7.3, when the XML application reaches
12 elements, the served XML application is 329 bytes less than it HTML counterpart.
This is the explanation for why the XML application outperforms the HTML
application. The reason for a smaller file size is the fact that with more elements
being requested the formatting data for the XML file is constant. While for the
HTML files the formatting data is dependent on the number of elements, as more
elements are requested the larger the file becomes, due to the repeated formatting
data. Even with the tagging that is required on the XML file that is not present in
HTML, XML applications can be smaller than the comparable HTML application.
The smaller the files size the better the performance on the server side in addition
to creating less network traffic, since less resources are needed in the creation and
serving of the XML application. Another benefit of XML is that the XSL file is
static and does not change therefore it can be cached by the server for faster access.

Also better network performance is observed from the smaller round trip times that

80

are required to server the XML application. This shows that a highly stylized Web
application can have better performance by using XML and XSL, as compared with

HTML.
7.3 Application 2

Tables 7.4 and 7.5 are a breakdown of the file size of the HTML and XML Ap-
plication 2 respectively, for a single client request. These tables are intended to show
the actual data that is requested from the server. Table 7.6 is then used to show the

difference between the comparable HTML and XML application being transferred.

Table 7.4: Application 2 - HTML File Size

Number of | Form (bytes) | HTML Fiie | Total (bytes)
Elements (bytes)
1 1732 877 2609
7 1732 1922 3654
15 1732 3350 5082
20 1732 4148 2880
27 1732 5549 7281
44 1732 8407 10139
71 1732 12474 14206
129 1732 21890 23622
290 1732 51627 23359

As shown by Table 7.6 the file size of the XML application is larger than the
comparable HTML application for all cases. This is due to the tagging that is required
in the creation of the XML application and the fact that a separate XSL file cannot
benefit from repeated formatting tagging, as seen in Application 1. Therefore the

XML application results in a larger file size for all cases.

81

Table 7.5: Application 2 - XML File Size

Number of | Form +XSL File | XML File | Total (bytes)
Elements (bytes) (bytes)
1 4486 346 4832
7 4486 1737 6243
15 4486 3673 8159
20 4486 4776 9262
27 4486 6604 11090
44 4486 10499 14985
71 4486 16219 20705
129 4486 29173 33659
290 4486 68725 73211

Table 7.6: Difference in HTML File Size as compared with XML Application 2

Number of Elements | Difference (bytes)

1 -2223

7 -2589

15 -3077

20 -3382

27 -3809

44 -4846

71 -6499

129 -10037
290 -19852

7.4 Summary

This chapter shows the results of how XML and XSL were used to improve the
performance of XML based applications. The performance benefit as a result of sep-
aration of the display tags from the data content. This generally results in smaller
XML application file size for Application 1, the highly stylized Web content appli-
cation, as compared with the HTML application. Due to the fact that XSL can be
used to repeat all the display tags only once, while with HTML the display tags are

required for each data element. But for non-highly stylized Web content, Application

82

2, the XML application performs poorly due to the fact that the created application
is larger in size. This results from the fact that, there is not much formatting data
that can benefit from a separate styling file.

By using XML, Web application can also be created with extra functionality that
cannot be done using HTML. This functionality includes scripting sent to the client
that can manipulate the data on the client’s side. This can result in less network

traffic. and reduced the load placed on the server.

Chapter 8

Discussion

8.1 Introduction

In this chapter we will look at the advantages that XML has over HTML, and the
problems that can be solved by using XML. In addition to how XML can be used as

a interchange technology between servers.

8.2 Why Use XML?

HTML is the most excepted markup language on the WWW, the question is why
do we need a new markup language for the WWW? This question can be answered
by stating the problems that are faced when using HTML on the WWW today. The

problems with HTML are:

¢ Broken links - Since links in a web page are usually changing. Web
masters are required to find these links on all HTML pages and change

each link manually. This can cause required changes to be missed and

broken links.

e Static tags - When using HTML developers can’t define their own tags

84

to represent content. This leads to HTML extensions that are not stan-
dard or requires approval by W3C. Which leads to browser wars, where
browsers having different tags. This can cause unreadable documents or
require the creation of multiple documents to make them viewable by

different browsers.

o Structure - HTML documents do not have any structure to describe
the hierarchy and object representation of data in a document. Making
searching time consuming because searching is limited to the full text,

plus navigation and manipulation of documents difficult.

e Content description - HTML documents describe how the document
should look and not what the document contains. This results in topic

searches coming up with hits that are not related with the topic.

e Specialized/International characters - With HTML there is a lack of
support for specialized and international characters. These are the char-
acters required 2 or more bytes and those used by the science community

for formulae.

e Reusability - HTML documents make it difficult to reuse the informa-
tion. Since data for Web publishing, printed media, and data storage

requires an HTML document be reformatted.

¢ Data interchange - With HTML data interchange is difficult because the
data tags are used to describe how the data looks, making parsing data in

an HTML document difficult. HTML is also an unreliable format to use

85

since there is no way to verify the received document.

The problem with HTML makes way for a new kind of markup language, this
is where XML fits in. The introduction of XML is meant to add more functionality
to the WWW, in addition to solving the problems faced by HTML today. Many
think that XML is a replacement for HTML; this statement is only partially true.
These two markup languages should be thought as being complementary, since they
are designed for different purposes. With HTML being a method to display the data
and XML used to describe and structure the data. Therefore XML should not be
thought as a replacement for HTML, but XML can be thought as a way to solve the

shortcomings of HTML and add more functionality to the WWW.

o Broken links - By using XML links can be defined through an aliases
variable. This variable is then used to describe the link throughout the
XML document. When the link changes the web master will only need
to change the variable value and all links in the document will be change.

similar to a constant variable in most programming languages.

e Static Tags - In XML tags are defined by the developer and are not
required to be static. This allows an XML capable browser the ability
to view the document even though the developers define their own tags.
Allowing for browser independent documents to be created and creation
of unique tags that better represent the documents without requiring the

tags be approved by the W3C.

86

o Structure - All XML documents have structure defined by the devel-
oper. Structured documents allows for quicker searches because the entire
documents does not have to be searched. Structure allows for easier cre-
ation of document maps making it faster to navigate the document. Plus
manipulation of documents become easier, since the data now has a hier-
archy and object representation making moving or changing of data in a

page an easy task.

e Content description - With HTML, the tags are used to describe how
data should be rendered by the computer, this is meant as a method for
interactions between humans and computers. Therefore tags in HTML do
not describe the data in an HTML document, but rather how the data
should be displayed. Whereas in XML the tags are used to describe the
data, thus giving meaning to an XML document. This makes XML doc-
uments understandable for computer to human interaction and computer
to computer interaction, while still retaining the ability to interpret and
displaying of the information. This allows for more accurate searches to
be performed since the tags will describe the data and can be used to

better the search.

¢ Specialized /International characters - With XML, data can be described
using different encoding declarations. This allowing for XML to be used as
a format for different encoding schemes to define character formats or lan-

guages. Some examples are Chemical Markup Language (CML) and the

87

Mathematical Markup Language (MML) written using XML for chemists

and mathematicians to describe the complex characters and formulas.

o Reusability - With XML, data and display information are separate.
When a user wants to display their information on a different medium they
would apply a different style sheet to their XML document. With HTML,
each medium that a user wants to display their information requires them

to reformat or recreate the HTML document.

¢ Data interchange - With XML data interchange is a simple task, since
all XML documents are self-describing, making them understandable by
both computer to computer interaction and computer to human inter-
action. A Document Type Definition (DTD) can be used to check for
syntax, structure, and validate an XML document. This makes it easier

for developers to create applications to exchange XML document.

8.3 XML Application File Size

Using XML to structure and define data requires tagging that can increase the data’s
file size. But the added bytes used to tag the application are dependent on the
document structure and tagging name used by the author. Therefore the file size of
an XML file varies and is dependent on the author’s implementation of the data. For

example lets take a look at an example of a single car representation using the XML

tagging format for Application 1, shown below.

<?xml version=“1.0"7>
<CARLIST>

<CAR>
<MANUFACTURER> Jaguar </MANUFACTURER>

88

<MODEL> XJ Sedan</MODEL>
<CLASS> Luxury </CLASS>

<IMAGE> images/X/.jpg </IMAGE>
<EN%II\II\IC§II[NIST ENGINES_AVAILABLE=2">

\E
<TYPE> 4L V8 </TYPE>
<HORSEPOWER> 290 </HORSEPOWER>
<RPM> 6100 </RPM>
<PRICE> 556530.00 </PRICE>
<FEULECONOMY UNITS="‘mpg”>
<CITY> 17 </CITY>
<HIGHWAY> 24 </HIGHWAY>
</FEULECONOMY>
</ENGINE>

<ENGINE>
<TYPE> 4L V8 </TYPE>

<HORSEPOWER> 370 </HORSEPOWER>

<RPM> 6150 </RPM>

<PRICE> 67250.00 </PRICE>

<FEULECONOMY UNITS=“mpg”>
<CITY> 16 </CITY>
<HIGHWAY> 21 </HIGHWAY>

</FEULECONOMY>

</ENGINE>
</ENGINELIST>
</CAR>
</CARLIST>

The XML tagging format for Application 1 shows how each data element is tagged.
With additional cars being represented by additional <CAR> . . . </CAR> using
the tagging scheme shown above. The creation using this tagging format is pretty
generous in the tagging name and style used.

But the car data could have as easily been represented using more attribute rep-

resentation rather than each data item having its own element, as shown as follows:

<?xml version="1.0"?>
<CARLIST>
<CAR \/IANUFACTURER— “Jaguar”
MODEL="XJ Sedan"
CLASS=“Luxury”
IMAGE="“images/XJ.jpg" >
<ENGINELIST ENGINES_AVAILABLE="2">

<ENGINE
TYPE="4L V8"

89

HORSEPOWER—“290"

RPM=¢%6

PRJCE— “5:3650.00”

<FEULECONOMY
UNITS="“mpg”
CITY “rm

HIGHWAY=%24">
</FEULECONOMY>
</ENGINE>

<ENGINE
TYPE="“4L V8"
HORSEPOWER=“370"
RPM="6150"
PRICE="67250.00" >
<FEULECONOMY
UNITS="mpg”

=“16"
HIGHWAY="%2]1">
</FEULECONOMY>
</ENGINE>
</ENGINELIST>
</CAR>
</CARLIST>

This representation shows the same data being displayed with the same structure
and tagging names used to describe the data. But the data is now represented using
attributes, by doing this, one can see that the XML file size is reduced, since most
of the closing tags are climinated. With this representation the functionality of the
XML data is not affected because all that can be accomplished with the previous
implementation is still possible with this implementation. The only thing that is
affected is that the author has to create a different style sheet to represent this XML
data.

Therefore XML file size is really relative to the author’s implementation of the
data, since different implementation can still have the same structure and function-
ality while having varying file size. But if applications are implemented using HTML
the tagging format is fixed and there is generally only one way to tag data. Mak-

ing HTML file size more predictable and performance easier to determine. While

XML application file size determination is difficult due to the fact that each authors
implementation can be different, even if the application has the same appearance,

functionality, structure and tagging name format.

8.4 Server Communication Using XML

The Web is observed as a client-server system, were a client would make a request
to the server and the server returns information on the server or queries a database.
But the web server cannot requests another web server for help in fulfilling the client’s
request. Using XML enables web applications to be created such that a web server can
communicate with another web server for information or provide a service. Allowing
for complex applications to be created from the current setup, with XML as the
technology to provide a layer that can connect different systems. A list of techniques
using XML for server-to-server communication is given bellow, which includes: XML-
RPC, SOAP, Coin, WDDX, XMOP, WebBroker, ICE, and KOML.

For server to server communication over a network we need to first serialize the
data, serialization is defined as “a process whereby a data term is structured in a
simple one-dimensional format suitable for transport across the wire” [4] and its
inverse, de-serialization. What serialization gives us is the ability to reduce platform
dependencies and make the transmitted data less complex to manipulate.

Serialization of the data into XML gives us the ability to communicate simple or
complex data types over the [nternet. Since the transmitted data is just text and can
be easily understood by all applications. The following is a list of methods in which

data can be serialized into XML for Internet communication:

91

o XML-RPC (XML Remote Procedural Calling), allows serialization of
data for Internet communication using HTTP. It is supported by many
different implementations, where client/server side implementations in-
clude: Java, Perl, Tcl, ASP and PHP; client side only implementation
include: Python, COM and AppleScript. A list of supported implemen-

tation along with specifications can be found at {76].

¢ SOAP (Simple Object Access Protocol) is similar to XML-RPC, but
makes improvements on how the data being sent is tagged (based on using
XML schema), allows for multi-reference of data {data defined once and
reference multiple times) and greater control of HTTP header, allowing
site administrators greater control of what can be done on the server. It
also allows for multiple function calls be treated as a single transaction.
This is not standard on XML-RPC but requires the user to implement
this capability themselves. The Internet draft for SOAP can be found at

[77).

» Coin is another serialization method that combines XML with Java. It’s
a way to improve on Javabeans, which uses Java serialization. By using
Coins, it makes data less sensitive to changes and easier for exchange of
data between applications. Coin allows linking therefore Coins can be
returned to an XML document with an external reference, which can’t be
done using Javabeans, since it has no linking capabilities. By using XML-

RPC the interface for communications is static, but Coin does not have

92

this limitation that allows for data elements to be added without updating
all dependent programs. More information on Coin can be found at its

homepage (78].

e WDDX (Web Distributed Data Exchange), it a method to commu-
nicate data structures between programming languages or a standard
for language independent representations of XML data. Allaire devel-
ops the serialization/de-serialization modules, with supported implemen-
tation including: JavaScript 1.x, ColdFusion 4.0, COM, Perl, Java and
PHP. WDDKX is just a way to produce the data into XML object for com-
munication and does not specify how the XML objects are transferred. It
only requires that it be posted to a web page that can access the XML

object. More information on WDDX can be found at its homepage [79].

e XMOP (XML Metadata Object Persistence) is a proposed way to al-
low for COM, Java and CORBA to inter-operate by serialization that
does not tie it to a particular system object. With current intention to
make XMOP complementary to XML-RPC or SOAP. XMOP uses SODL
(Simple Object Definition Language) [80], an XML IDL DTD that allows
objects to be created such that they are compatible with the IDL’s used
in COM and CORBA. More information on XMOP can be found at its

homepage [81].

e WebBroker is a proposal method in which distributed object computing

like COM and CORBA can be implemented on the Web. A submission

93

made by DataChannel to W3C describing WebBroker can be found at
[83]. WebBroker is described as a method in which HTTP, XML and URI
are used to define a software model such that it will not be hampered by

incompatibles protocols when used over the Web, which is the case with

COM and CORBA.

s [CE (Information and Content Exchange) Protocol defines a standard
method to allow websites to exchange structured data using XML. ICE
is being developed by the following companies: Adobe, CNET, Microsoft
Corporation, National Semiconductor, News Internet Services, Sun Mi-
crosystems, Tribune Media Services, and Vignette Corporation. ICE al-
lows for automatic exchanging and updating of data between Web sites
without knowledge of the remote Web sites structure. ICE is still in devel-
opment, its homepage is found at (84] and [CE version 1 notes can found

at W3C notes at [85].

e KOML (Koala Object Markup Language) is a method in which Java is
used to serialization/de-serialization Java Objects into an XML document.

More information on WDDX can be found at its homepage [82].

The disadvantages of serialization/de-serialization using XML is the additional

bandwidth and decrease speed. The additional bandwidth that is required is in the
form of tagging the data being sent in the creation of an XML document. The
slower speed involves the parsing and validatiog of the XML data received, before

it can be passed onto the application. This requires the server to do more work on

94

each request that is received compared with the traditional communications methods
COM/CORBA.

The traditional server to server communications using COM or CORBA are not
really suited for the Internet, since it requires a degree of dependency and or platform
related issues. This is where XML and the related techniques for serialization/de-
serialization of data can be used to £ll in the gaps or create new methods to allow

servers to communicate over the Internet.

8.5 Summary

In this chapter we looked at why we need XML and some advantages that XML
has over HTML. Also a discussion on server to server communications using XML
was given, were traditional methods of COM or CORBA are not suited for the use

on the Internet.

95

Chapter 9

Conclusion and Recommendations

9.1 Conclusion

A method was shown on how applications could be measured on the WWW using
WebLoad. WebLoad is just one of many programs that are available in which testing
of this type can be performed. The performance measures section found in this paper
described numerous additional ideas and methods in which the WWW performance
can be measured.

A general overview of content-delivery technology, along with a discussion on
XML syntax and extensions were given. This included server and client side content
creation technology along with how to use XML to create these applications. XML
was also explained in how it can benefit content creation on the Web, which includes
server to server communication and the advantages that is has over HTML.

The test results show that XML/XSL has a performance benefit that can be
observed in applications that are highly stylized. This is because with XML the
stvle that is applied to the data is separated from the data and is repeated once

for all elements, compared to HTML where all data elements contain the style tags.

96

The tests show that using an XSL styling sheet to avoid repeating the styling tags,
compensates for the tagging that is required in creating an XML document. The
performance benefits of which include faster transfers, more rounds and less data
being sent. In addition to having smaller files less server resources are used to create
an XML application and since the XSL file is static it can be cached for faster access.

Another performance benefit that XML has is the ability to manipulate the data
on the client side, which in most cases is not possible with HTML. This helps the
client in avoiding another trip to the server for information that the client has already
received. There was really no fair way in testing for this benefit but it is worth
mentioning since the additional scripting does not affect the file size of the XML
application that much. Even with the extra scripting, Application 1 file sizes are
generally small and this helps the client in avoiding another trip to the server.

For data that is not heavily stylized, using XML/XSL does not benefit in terwms
of performance. For non-highly stylized application XML applications are larger,
resulting in poor performance in terms of the server and network. This is the result
of tagging that is needed to create an XML document that is not required with the
comparable HTML applications.

With XML the tagging of data is done to describe and give the data structure,
this tagging results in a larger file. But the results from this paper show that Web
applications that are highly stylized can benefit from using XML/XSL to add more
functionality, in addition to smaller applications file size when there is more data to

tepresent.

97

9.2 Recommendations

Recommendations for future work on measuring XML performance includes col-
lecting larger amount of performance data so that modeling can be done. The col-
lected data should include a more detailed description of the server and network
resources. This allows for more accurate input parameters for the model, which could

be simulated using OPNET.

98

Bibliography

1] A. Adams, J. Mahdavi, M. Mathis, and V. Paxson, “Creating a Scalable Archi-
tecture for Internet Measurement”,

http://www.psc.edu/networking/papers/nimi.html

{2] A. Adams, J. Mahdavi, M. Mathis, and V. Paxson, “An Architecture for Large-

Scale Internet Measurement”, IEEE Communications 36(8), pp 48-54, August
1998.

(3] J. M. Almeida, V. Almeida, and D. J. Yates, “Measuring the Behavior of a World-

Wide Web Server”, Seventh I[FIP Conference on High Performance Networking
(HPN), April, 1997

(4] R. Anderson, M. Birbeck, M. Kay, S. Livingstone, B. Loesgen, D. Martin, S.

Mohr, N. Ozu, B. Peat, J. Pinnock, P. Stark, and K. Williams, Professional
XML. Wrox Press, 2000.

[3] M. Arlitt and C. Williamson, “Internet Web Server: Workload Characterization

and Performance Implications”, IEEE/ACM Transactions on Networking Vol. 5.
No. 5. pp 631-645, 1997.

[6] S. L. Borthick, “Why We Can’t Compare ISP Performance-Yet”, Business Com-
munication Review, Vol. 28, Num. 9, pp. 35-40, Sept. 1998.

(7| D.Cintron, "Fast Track Web Programming: A programmer’s Guide to Mastering
Web Technologies”, New York, NY: Wiley Computer Publishing, 1999.

[8] A. Homer, XML IES5. Acocks Green, Birmingham: Wrox Press, 1999.

[9] J. R. Lay, “Keeping the 400lb. Gorilla at Bay: Optimizing Web Performance”.
http://eunuch.ddg.com/LIS/CyberHornsS96/j.rubarth-lay/PAPER.html

[10] M. Leventhal, D. Lewis, and M. Fuchs, Designing XML Internet Applications.
Upper Saddle River, NJ: Prentice Hall, 1998.

[11] R. E. McGrath, “Measuring the Performance of HTTP Daemons”. NCSA, 1996.
http://www.ncsa.uiuc.edu/InformationServers/Performance/Benchmarking/bench.html

(12] D. A. Menasce and V. A. F. Almeida, Capacity Planning for Web Performance
Metrics, Models, and Methods. Upper Saddle River, NJ: Prentice Hall, 1998.

[13] W. J. Pardi, XML in Action. Redmond, Washington: Microsoft Press, 1999.

[14] L. Slothouber, A Model of Web Server Performance.
http://louvx.biap.com/white-papers/performance/overview.html

99

[15] A. Smith, “Web performance metrics for online journals: monitoring and im-
proving accessibility”.
http://www.doe.gov/html/inforum98/apsmith.html

[16] Cross-Industry Working Team, “Customer View of Internet Service Performance:
Measurement Methodology and Metrics”, Sept. 1998.
http://www.xiwt.org/documents/documents.html

[17] “IP Performance Metric Draft and Request For Comments Page”,
http://www.ietf.org/html.charters/ippm-charter.html

(18] “IPPM Documents Page”, http://www.advanced.org/IPPM/docs.html

[19] “W3C XML Recommendation”,
http://www.w3.org/TR/1998/REC-xml-19980210

[20] “Frequently Asked Questions about XML",
http://www.ucc.ie/xml/#FAQ-VALIDWF

[21] “ISO 639 language code page”, http://sunsite.berkeley.edu/amher/iso_639.html
[22] “IETF’s RFC 1766 language code ", http://www.ietf.org/rfc/rfc1766.txt

[23] “Apache Web Server homepage”™, http://xml.apache.org

[24] “Schema part 1: structures ”, http://www.w3.org/TR/xmlschema-1/

[25] “Schema part 2: data types”, http://www.w3.org/TR/xmlschema-2/

[26] “W3C XSL homepage”, http://www.w3.org/Style/XSL/

[27] “DSSSL specification”,
http://metalab.unc.edu/pub/sun-info/standards/dsssl/draft/

(28] “CSS homepage”, http://www.w3.org/Style/CSS/
[29] “XSLT recommendation”, http://www.w3.org/TR/xslt
(30] “XPath recommendation”, http://www.w3.org/TR/xpath

[31] “Spice submission page”,
http://www.w3.org/TR/1998/NOTE-spice-19980123.html

(32] “DOM level 1 recommendation”, http://www.w3.org/TR/REC-DOM-Level-1/

[33] “DOM level 2 candidate recommendation”,
http://www.w3.0rg/TR/DOM-Level-2/

[34] “SAX homepage”, http://www.megginson.com/SAX/

[35] “Namespaces in XML",
hetp://www.w3.org/TR/1999/REC-xml-names-19990114/

[36] “XML Linking Language (XLink)", http://www.w3.org/TR/xlink/
[37] “XML Pointer Language (XPointer)”, http://www.w3.org/TR/xptr

100

[38] “Web Performance Measuring Tools Article”,
http://webreview.com/wr/pub/1999/01/15/feature/index3.html

[39] “Web testing resource page”, http://www.softwareqatest.com/qatwebl.html

[40] “Web Load Generator and Analysis Software by Radview Inc.”,
http://www.radview.com/

[41} “QALoad Web Load Generator and Analysis Software”,
http://www.compuware.com/products/auto/

[42] “Forecast, Web Load Generator and Analysis Software”,
http://www.facilita.co.uk/

[43] ‘Portent. Web Load Generator and Analysis Software”,
http://www.loadtesting.com/

[44] ‘LoadRunner, Web Load Generator and Analysis Software”,
http:/ /www.merc-int.com/products/loadrunguide.html

[45) “WebART, Web Load Generator and Analysis Software”,
http://www.oclc.org/webart/

[46] “Socrates, Web Load Generator and Analysis Software”,
http://www.jump.net/ bpav/socrates/index.html

[47) “WebLoad by Platinum, Web Load Generator and Analysis Software”,
http://www.platinum.com/products/

[48] “WebSizr, Web Load Generator and Analysis Software”,
http://www.technovations.com/home.htm

{49] “Performance Studio, Web Load Generator and Analysis Software”,
http://www.rational.com/products/index.jtmpl

[50] “e-TEST, Web Load Generator and Analysis Software”,
http://www.rswsoftware.com/

[51) “Silk Performer, Web Load Generator and Analysis Software”,
http://www.segue.com/

[52] “InetLoad, Web Load Generator and Analysis Software”,
http:/ /support.microsoft.com/support/DNA /Bundles/QA /loadtest.asp

[53] “Web Application Stress Test Tool”, http://homer.rte.microsoft.com/

[54] “A Java-based load simulation and response measurement tool”,
http://www.binevolve.com/velometer/index.vep

[55] “HTML Web Performance Test Page”,
http://hjs.geol.uib.no/htmi/htmitest/t15506.htm

[56] “Surveyor Web Measurement Project”, http://io.advanced.org/surveyor/

[57] “Unix and NT systems resource usage collector”,
http://www.bmc.com/products/index.html

101

(58] “free software used to measure and analyze network performance”,
http://www.caida.org/

[59] “Real-time Applications Performance System (RAPS), tool to monitor applica-
tions, servers and networks”, http://www foglight.com/

(60] *WebStone, Web Server Benchmarking Tool”,
hetp://www.mindcraft.com/webstone/

[61] “SpecWeb96, Web Server Benchmarking Tool”,
http:/ /www.spec.org/osg/web96/

[62] “WebBench, Web Server Benchmarking Tool”,
http://wwwl.zdnet.com/zdbop/webbench/webbench.html

[63] “Bascline, System resource measurement tool”, http://www.teamquest.com/

[64] “SE Toolkit is a Unix performance monitor”,
hetp://www.sun.com /960601 /columns/adrian/se2.5.html

[65] “Cisco Systems Homepage”, http://www.cisco.com/

[66] “Keynote Internet performance measurement, diagnostic, and load testing ser-
vices”, hetp://www.keynote.com/

[67] “Netmetrix, network measurement tool”, http://openview.hp.com/
(68] “INS Enterprise Pro is a network monitoring service”, http://www.ins.com/

[69] “Simple Network Management Protocol (SNMP) tools”,
http://www.dart.com/powertcp/e/SNMPtrap.html

[70] “Visual UpTime, network measurement tool”,
http://www.visualnetworks.com/welcome.htm

[71] “Virtual Reality Modeling Language homepage”, http://www.vrml.org/

[72] G. Alwang, "Web Servers”, PC Magazine, May 5, 1998.
http://www.zdnet.com/pcmag/features/webserver98 /intro.html

[73] "Cold Fusion”, http://www.allaire.com/products/coldfusion/index.cfm

{74] "Netcraft”, http://www.netcraft.com/survey/

[75] "PERL Database Support”, http://www.perl.com/reference/query.cgi?database+index
[76] “XML-RPC homepage”, http://www.xmlrpc.com/

77] “SOAP internet draft”,
http://msdn.microsoft.com/xml/general/soapspec-v1l.asp

[78] "Coin homepage”, http://www.jxml.com/coins/index.htm}
{79] "WDDX homepage”, http://www.wddx.org/
[80] "SODL homepage”, http://jabr.ne.mediaone.net/documents/sodl.htm

102

[81] "XMOP homepage”, http://jabr.ne.mediaone.net/documents/xmop.htm
[82] "KOML homepage”, http://www.inria.fr/koala/XML /serialization/

(83] "WebBroker Submission to W3C”,
http://www.w3.org/TR /1998 /NQTE-webbroker-19980511/

[84] "ICE homepage”, http://www.idealliance.org/ice/
[85] "ICE W3C notes”, http://www.w3.org/TR/NOTE-ice.html

103

