
XM L B ased Internet Performance Analy sis

BY

Yghi Lao

A Thesis
submitted to the Faculty of Graduate Studies

In Partial Fulfillment of the Requirements
For the Degree of

Master of Science

Department of Electrical and Computer Engineering
University of Manitoba

Winnipeg, Manitoba, 2000

@ Copyright by Nghi Lao, September 2MHl

National Library 1+1 of Canada
BiMiihèque nationale
du Canada

Acquisitions and Acquisidions et
Bibliographie Services seMces bibliographiques
395 Wellington Street 395. rue wsltington
ûttawaON K l A W MtawaON K 1 A W
canada CaMda

The author has granted a non-
exclusive licence aiiowing the
National Library of Canada to
reproduce, loan, distri'bute or seil
copies of this thesis in microfonn,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or othenivise
reproduced without the author's
permission.

L'auteur a accordé une licence non
exclusive permettant à la
Bibliothèque nationale du Canada de
reproduire, prêter, distri'buer ou
vendre des copies de cette thèse sous
la fome de microfiche/^ de
reproduction sur papier ou sur format
électronique.

L'auteur conserve la propriété du
droit d'auteur qui protège cette thèse.
Ni la thèse ni des extraits substantiels
de celle-ci ne doivent être imprimés
ou autrement reproduits sans son
autorisation.

THE t.rmmum OF MANITOBA

FACULTY OF O U A T E STüDIES
****+

COPYRIGHT PERMESION PACE

XML - Based Interuet Pedonnance Analysis

Ngbi Lao

A ThesidPracticum subdtted to the Facuity of Graduite Studies of The University

of Manitoba in partid fulnIlment of the requhments of the degree

of

Master of Science

lVGHI LAO Q 2000

Permission has been granted to the Libny of The University of Manitoba to lend or seU
copies of this thesidpracticum, to the Nationil Library of Caniâa to dcrotlim this
thesidpracticum and to lend or seli copies of the fflm, and to Dis~rtadons Abstrrcts
international to pubüsh an rbstract of this thcsislpracticum.

The author reserves other publication rigbts, and neither this thesidpracticum nor
extensive extracts from it may be printed or othtrwise repmduced without the author's
written permission.

1 hereby declare that 1 am the sole author of this thesis.

I authorize the University of Manitoba to lend this thesis to other institutions or
individuals for the purpose of scholarly research.

1 also authorize the Lniversity of kfanitoba to reproduce t h i thesis by photocopying
or hy other means, in total or in part? at the request of other institutions or individuals
for the purpose of scholarly research.

Nghi Lao. 2000

The University of Manitoba requires the signatures of al1 persons using or pbotocopy-
ing this thesis. Please sign below, and give address and date.

Abstract

This thesis will define a method in which Web performance can be measured and

summarize the results obtained From the application of this procedure to Extensible

Markrip Language or XML (cm be described as a metalanpage, that permits iisen to

define their own markup language) pedormance analysis. It will alsa examine some

conimon metrim u d to rneasure the performance of the World Wide Web (WWW).

The procedure to nieasure performance includes the creatious of sirnilar HTML

and XML applications that wiii be used as the base applications for testing. Thesc

applications will be a representation of the generai content seen on the WVW today-

Tests were done with the server being located in Winnipeg, and the client located

in Winnipeg or Calgary, Winnipeg and C a l g a ~ are two Canadian cities that are

geographicalIy separated by approximately 1300 kilometers. The tests in Calgary

show the results when thtire is a greater network separation, while the Winnipeg tests

are used to represent the opposite.

The tmt rcsults show that XML applications ttiat are highly stylized have bcttcr

performance than comparable HTML application. The XML applications are able to

serve 70%-100% more connections. h o t her interest ing observation is the digerence

between the round trip times, an XML application overall has a round trip time that

is 40%-50% l e s than the comparable HTML application.

For non-stylized applications created using XML, the performance is poorer than

comparabk HTML applications. Shown by the total average rounds served by the

HTML application, whi& is 46%-66% more than the comparable IXML application.

The round trip time of the XML application is also shown to be approximately 34%-

44% longer t heu the comparable HTML application.

This thesis shows how XML and XSL style sheet can be used to improve the

performance of highly stylized Web application, by using a separate XSL file to avoid

repeating the styling ta@.

Acknowledgement s

1 would like to thank TRLabs and MC1 WorldCom for supporting and praposing

the ideas for this thesis. Special thanks go to Jose Rueda for al1 his help, guidance,

support and ideas throiighout my stay at TRLabs. 1 also want to thank Professot

Pawlak for letting me be one of his students. My appreciation and tbanks goes out to

al1 the help given to me by the TRLabs staff and students, for answering my questions;

proof reading rny papers and resetting my Web server a bunch of times. M y two years

spcnt at TRLabs was a grcat expericnce and 1 leave with many mernories and friends.

The acknowledgments would not be complete if 1 did not mention my family, who

help me immensely, thank you d l .

Contents

.Ahstract . - iii

Xcknowlcdgcmcnts - . v

List of Abbreviations and Acronyms . xi

List of Figures. xii

List of Tables - - xiv

1 Introduction

1.1 Thesis Statement - * . . * . . . f

2 Web Technology 5

2.1 Introduction . 5

2.2 Server Side - - - J

2.2.1 Web Semer - 6

2.2.2 Scrvcr Side Programming - . - . . . - 7

2.3 Client Side - . . . - - - - - . 10

2.4 XML Syntax. - - . . - - 11

2.4.1 XML documents - . - - . . - - . - . 23

2.4.2 Well-formed XML documents - 14

. 2.4.2.1 Prolog 14

. 2.4.2.2 Body 15

. 2.4.2.3 Opening Tag and Attributes 15

. 2.4.2.4 Closing Tag 16

. 2.4.2.5 Empty-Element Tag 17

. 2.4.3 Structure of an XML Document 17

. 2.4.3.1 Unique Root Element 17

. 2.4.3.2 Proper Nesting 19

. 2.4.3.3 Predefined Entity References 20

. 2.4.3.4 CDATA Section 20

. 2.4.3.5 Comments 21

. 2.4.4 Valid XML documents 22

. 2.4.4.1 Document Type Definition (DTD) 22

. 2.4.4.2 DTD Declaration 23

. 2.4.4.3 Internal DTD Declaration 23

. 2.4.4.4 Extemal DTD Declaration 24

. 2.4.4.5 DTD S_vntau 25

. 2.4.4.6 Entities 25

. 2.4.4.7 General Entities 26

. 2.4.4.8 Parameter Eatities 27

. 2.4.4.9 Element declaration 27

. 2.4.4.10 Attribute declaration 31

vii

. 2.5 XML extensions

2.5.1 Extensible Styiesheet Language (XSL)

. 2.5.2 XML Linking

. 2.5.3 Document Object Mode1 and SAX

2.5.4 Namespace .

2.6 S u m m y .

3 Performance Measures

. 3.1 Introduction

. 3.2 Nctwork Performance Mcthods

. 3.2.1 LETF

. 3.2.2 ITU-T

. 3.2.3 NIMI

3.2.4 Surveyor .

. 3.2.5 XIWT

. 3.3 Servers Performance Methods

. 3.4 Measuring Solutions

. 3.4.1 Network Testing and Measuring Tools

. 3.4.2 Sever Benchmarking Tools

. 3.4.3 Load Generators and Testers

4 Test Applications

. 4.1 Introduction

. 4.2 Application 1

. 4.3 Application 2

5 Test Setup

. 5.1 Introdiiction

. 5.2 Server Side Setup

. 3.3 Client Side Setup

. 2.4 Test Procedure

6 Results

. 6.1 Introduction

. 6.2 Calgary Results Applications 1

. 6.3 Calgary Results Applications 2

. 6.4 Winnipeg Results Applications 1

. 6.5 Winnipeg Results Applications 2

7 Explmation of Results 78

. 7.1 Introduction 78

. 7.2 Application 1 79

. 7.3 Application 2 81

. 4 Surnrnary 82

8 Discussion 84

. 8.1 introduction 84

. 8.2 Why Use XML? 84

. 8.3 XML Application File Size 88

. 8.4 Semer Communication Using XML 91

. 8.3 S u m m q 95

9 Conclusion and Recommendations 96

. 9.1 Conclusion 96

. 9.2 Recomrnendations 98

List of Abbreviat ions and Acronyms

AIAG
ASP
CG1
CML
css
DOM
DTD
HTSIL
HTTP
ICE
IETF
11s
IPPM WG
ISO
KOhIL
hIML
NCSA
NIMI
PERL
PHP
S Ai(
SGML
Siu'MP
S0.4P
SQL
SS 1
b'BScript
W3C
CVDDX
WWW
SIWT
SLink
XML
'CPrIL-RPC
XMOP
XPointer
XSL

Automotive Industry Action Group
Active Server Pages
Common Gateway interface
Chemical Markup Language
Cascading Style Sheets
Document Object Mode1
Document Type Definitions
HyperText Markup Language
HyperText Transfer Protocol
Information and Content Exchange
Internet Engineering Task Force
Internet Information Server
Intemet Protocol Performance Metrics Work Group
International Organization for Standardization
Koala Object Markup Language
Mathematical Markup Language
National Centcr for Super Cornputing Appljcations
National Internet Measurement Infrastructure
Practicai Extraction and Report Language
Personal Home Page
Simple .\PI for XML
Standard Generalized Markup Language
Simple Network Management Protocol
Simple Object Access Protocol
Structure Query Language
Servcr Side Includes
Visuai Basic Script
World Wide Web Consortium
Web Distributed Data Exchangc
World Wide Web
Cross-Industry Working Team
XML Linking Language
Extensible Markup Languag
XML Remote Procedural Calling
XML Metadata Object Persistence
XML Pointer Language
Extensible Styles heet Language

List of Figures

1 Input data fotm to query application. 52

-4.2 Car and engine table, iiiked by model. 64

-4.3 -4pplication 1 - HTML wcb page (XML application displays the samc

data but has an additional form for data manipulation on the client side) 59

4.4 Application 2 . 60

3.1 Test setup used to mesure performance. 61

6.1 Connect tirne plot betwcco Table 6.1- Test 2 and Table 6.2 - Test 1 . 69

6.2 Response time plot between Table 6.1- Test 2 and Table 6.2 - Test 1 . 70

List of Tables

6.1 Semer performance HTML . Application 1 (client in Calgary)

6.2 Scrvcr Pcrforrnancc HTML . Application 1 (with additional server sidc

processing and client in Calgary) .

6.3 Server Performance XML . Application 1 (client in Calgary)

6.4 Semer Performance HTML . Application 2 (client in Calgary)

6.0 Server Performance HTML . Application 2 (with additional server side

processing and client in Calgary) .

6.6 Semer Performance XML . Application 2 (client in Calgary)

* . . . 6.7 Scrver Performance HTML Application 1 (client in Winnipeg)

6.8 Table 8 . Server Performance HTML . Application 1 (with additional

semer side processing and client in Wmnipeg)

. - . . . 6.9 Server Performance XML .4 pplication 1 (client in Winnipeg)

. . . . 6.10 Semer Performance fITML Application 2 (client in Winnipeg)

6.1 1 Semer Performance HTML . Application 2 (with additional semer side

. processhg and client in Winnipeg)

6.12 Server Performance XIIL . Application 2 (client in Winnipeg)

7.1 Application 1 . HTML Fie Size .

7.2 Application 1 - XhlL File Size . 79

7.3 Difference in HTML File Size as compared with XhlL Application 1 . 80

7.4 Application 2 - HTML File Size . 81

7.5 Application 2 - XML File Size . 82

7.6 Difference in HTYL File Size as compared with XML Application 2 . 82

Chapter 1

Introduction

The World Wide Web has been accepteri as an effective method of communicating

ideas and infunnation. As the number of web userv continua to increase on a duily

bais . a necd arises for better and more efficient methods for distribution of this

iriiorrriation. lndividual uscrs, cornpanics, nnd other organizations worldwide vicw the

web as a medium to gather, distribute information, advertise, and market products.

For companies, a web application has an audience of millions of potential clients.

Thus creating the possibility of hundteds, if not thousands of requests to access their

web site at any given tirne.

The problem is evident; there is a need for techniques to manage information on

hie. It is not only important to enable databases for online access, but it is also

important to End a way to intcract with the web browsers chat users wüi utilize to

access these online databases.

The Extensible Markup Language (XML) is a markup language used to describe

and present data in a structured form. XML is a recommendation made by the World

Wide Web Consortium (W3C) and it is a simpliied form of Standard Generalized

4Iarkup Language (SGML). In 1986: SGhL became the international standard for

defining descriptions of structure and content for daerent types of electronic docu-

nient or the international standard metalanguage (a language that is used to describe

another language) for markup, adopted by the International Organization for Stan-

dardization (ISO). XML is intended to make it easier for the irnplementation of SGML

or1 the World Wide Web by leaving out the cornplex and l e s used parts of SGML.

Thcrcforc XML can bc described as a metalanguage that permits the definition of

custom markup languages. With the XML language specification being designed as

an extensible data interchange format and a method for electronic publishing on the

World ÇVide Web (WWW).

The HyperText Markup Language (HTML) i s a predefined markup langage and

is a specific application of SGML that is used on the ÇVFVW. With HTML the tags

are useci to describe liow data should be rendered by the computer, they're nieant as

a rncthod for interactions betwccn humans and cornputers. Thcrefore tags in HTML

do not describe the data in an HTML document, but rather how the data should

be displayed. Whereas in XML the tags are used to describe the data, thus giving

nieaning to an XML document. This makes XML documents understandable for

hurnans while still retaining the ability for a computer to interpret and displaying the

information.

HTML is the niost widely used method to bring together text, images, sounds and

vidcos to the WVW. The goal of XML is not to be o replacement for HTML, since

they're both designed for diierent purposes. With ,YIML being the web's language

for data interchange and HTML being the web's language for data rendering. XML

is not intended to replace HTML but rather complement it. XML has the abiities to

improve upon the many tasks that are cunently being implementd by HTML.

XhIL is still a new technology in which to describe data in the electronic form.

Currently the supporting languages that wiii assist in the deployment of XIML on the

LiWW include: XML Linking Language ('Uink) and Extensible Stylesheet Language

(XSL). XLink and XSL are still working drafts and are not yet rccamrnendations by

W3C. XLink is a language that defines al1 the required elements in which to build

links into XML documents. XSL is a formatting language that is used to transfortn an

XML document into some arbitrary output structure (ex. HTML) which can then be

displayed. By using Cascading Style Sheets (CSS) to present aa XML document the

content and presentation are separateci, whereas with an HTWL document content

aud presentation are combineci. Just using CSS on an XML documerit without XSL

can apply style to the document, but using XSL give more functionnlity in displaying

a document than CSS on its own. With XLink and XSL, information defined using

S M L can be deployed on the WWW with more functionality than HTML. But XLink

and XSL are still working drafts thus deeming them unstable languages, making them

not yet deployable on the WWW.

Therefore SGEYlL can be described as a method used to define thousands of dii-

ferent electronic document types; XML is an abbreviated version of SGML making

it easier to define documents in electronic form for the WWW and HTML as just a

language used to display documents for the FVWM:.

1.1 Thesis Statement

The thesis is concemed with determining the performance measures of XML. The

general conception with XML is that it performs poorly compared with conventional

content deliver methods (HTML). Performance problems encountered with XML are

due to the fact that XML applications have larger file size and because of the tagging

used to structure and describe the data. A larger application results in greater net-

work triiffic a~ id server cesources in delivering the content. It wiU look at iiow LML

and its rclating tcchnologics can bc uscd to rcduce the application size as compared

with conventional content delivery methods on the Internet, .4long with how perfor-

mance on the Intemet can be measured and how a XML base internet can benefit in

terms of performance and functionality.

It also includes a look at the common metrics used in measuring Web perfor-

mance and describes how these performance metrics are collected. .b introduction

to XML and Web teclinologies used to deliver 'YML will be dicussed. The method to

mcasure pcrfortnance includcs creating similar XML and HTML applications, from

which tests will be perfomed to collect the performance data. Since the majority

of the Web applications today are HTML files that are filled with text and images,

our applications mil1 represent how typical HTML Web applications seen today can

be created using XML and show how XML may positively or negatively affect Web

performance.

Chapter 2

Web Technology

2.1 Introduction

Content-rielivery technology for the Internet is evolving dramatically. The tech-

nology used to deliver Web content today include instructions that are passed to the

clierit for ycocessiug as well as tttose ttiat are processecf by the Web server. This

chapter will give an introduction to some of the most popular W b techniques use to

create and deliver the dynamic Web content. The diussion will geoeraily be geared

so open source devehpment application since they are easily accessible and generally

the most widely used, which includes discussion on server side and client side Web

tcchnology, ahng with an introduction to XML syntax and document creation.

This section will give a brief discussion on the three top web servers used on the

Internet today as determined by Netcraft [74]. It also includes a discussion on the

most popular server side pmgramrning languages used to help deliver dynamic Web

content.

2.2.1 Web Server

The three most popular Web serves used on the Internet today as declareci by

Netcraft (741 are Apache web server, Microsoft-IIS, and Netscape-Enterprise. As a

resiilt of polling over 9.5 million sites, from December of 1999, Netcraft determineci

the Apache web server to be k t with a usage of 01.81%, followed by Microsoft-IIS

at 24.26%, Netscape-Enterprise at 7.39% and other web servers making up the final

percentage.

hficrosoft Intcrnct Informatioo Semr (11s) is a built in Web scrvcr on Microsoft

Windows NT Server operating system. Server side scripting on IIS is done mostly

using .4SP (Active Server Page) and the platform supported by IIS is Windows NT.

Nctscape-Enterprise Server is product of Netscape Communications Corp., it is a

platform for which JAV.4 is used for development and provides multiple platform

support.

The Apache Web server is a HTTP server that is developed by the non-profit

Apache group and is based on the National Center for Super Computing Applications

('ICSA) Web server. The Apache group dong with developers via the Internet are

the people who are currently building on the server and its modules. Although the

Apache group has the final Say on what d l be included in Apache semer. The

Apache Web server is a fast: reliable and has multi platform supported, making it

the most popular Web semer used on the lnternet as deelareci by Netcraft [71]. Since

rnid 1996 to the present Netcraft show the Apache web semer as the most widely

uscd server on the Internet.

Testing by PC Magazine [721 shows bficrosoft-11s to be the fastest web servers to

server static HTML pages and one of the top performers for dynamic web content

(CG1 tests) performers. Test results show Netscape-Enterprise Server to be a good

static HTML performer with average dynamic performance. The Apache Server is

shown to be an average static HTBIL performer and one of the top d-vnamic web

content performers.

Both Microsoft and Nctscapc Web servers arc cornmerciai software, tbereforc a fec

must be paid to use these products whereas the Apache CVeb server is free. .AU three

Web servers have SQL database support dong with support for XML. But support for

XhlL is still in cievelopment and has not been totally defined yet. For example, with

the Apache semer XML parsers, XSL. and XSLT are still being developed and more

information can be found at [23]. Xetsctipe is developing ECXpert, an application

thüt euables the exchange of commerce înfomation between business systeins that

will providc an XML interfacc for scnding and rccciving XML documents.

2.2.2 Server Side Programming

.As mention previously the CVeb server can p a s web content to the client for processing

as well as processing the content itself. The simplest f o m of instructions that are

executed on the server are known as sewer-side HTML or SSI (server side inchdes).

A SSI page is an HTML page with embedded commands for the web server. With

normal HTML pages the server does not parse the page but just sends it to the

client. However with an SSI page, the server ârst parses the page and executes the

instructions before they are sent to the client. The more complex methods of server

side processing include PERL (Practical Extraction and Report Language), JAVA,

ASP (Active Server Pages), and PHP.

PERL is an interpreted language used mainly for text processing and on the In-

temet as a method to mite Common Gateway Interface (CGI) scripts. When HTML

fonns are subniitted, CG1 scripts are used to process the information. CG1 scripts are

reçource intensive because they require an additional process to be forked, involving

t hc scrver to start a ncw procm for each CG1 script. Adrian Cockcroft shown in the

4Iarch 1996 issue of SunWorld, that a 75 MHz uniprocessor SPARCstation 20 can

handle about 20 requests per second when the server must fork a new process for

each request. The same system can handle about 300 requests per second, if it does

nat have to fork a new process for each request. Therefore it would be better to use

implenientations that executing cotnmands with an XPI running as a thread within

the server's process. If CG1 were required, a better alternative wodd be FastCGI,

which acts likc a scrvcr application and thercforc climinates the ovcrhead of forking o

new process. FastCGI is a proposeci open standard implemented in the .Apache Server

t hat provides a better performance alternative for writing CG1 in different program-

ming language such as PERL, C, C++, and JAVA. Both Netscape and Micromft have

ttieir alternative for CG1 or application programming interface (API) cdled YSAPI

and IS.4PI. respectively. PERL also has support for many types of databases, a list

can be found at [75] and there are also many PERL based h ; v 5 parser available.

JAVA is an object-oriented programming Ianguage that is a creation of Sum Mi-

crosystems. When a JAVA program is running on the client side it is referred to as

applets and server side JAVA programs are referred to as servlets. JAVA has the

ability to be platform independent, the JAVA Virtual Machine is what makes this

possible. Therefore any machine can execute a JAVA program w long as it has the

J.4V-A Virtiial Machine. JAVA has a SQL database class and many JAVA b a s 4 XML

parver are also amilable.

ASP is a Microsoft implementation that allows server side scripting based on the

Visual BtISIC progamming languagc. An ASP implementation only nrns on the

following servers, MicrmFt Internet Information Server (11s) and O'Reilly Website

Pro. .4SP has SQL database support dong with XML support.

In 1994. Rasmus Lerdorf developed PHP(Personal Home Page) for personal use

on his home page. .As of November 1999, Netcraft's survey shows there are mer I

million severs using PHP. Currently PHP is only supported tr, run as a module for the

Apache CVeb server. The PHP code is ernbedderl ioto the HTML document and the

code is cxccutcd on the server side. PHP syntax is similu to that of PERL and C++.

PHP has support for talking to other services using protocols such as IMAP, SNMP.

YNTP, POP3, and HTTP. -4 raw network socket can be opened and interactions can

be done using other protocols. But PHP at its basic levels can accornplish what a CG1

program can. What PHP is known for is as a method to access databases, because

it does provide support for a wide range of databases. By using the Apache XML

parser, dong with some native PHP XML parsec functions, it can provide support

for XML applications.

2.3 Client Side

Client side exccution of Web content is donc using the Web browser, such as

Netscape Yavigator, Microçoft Internet Explorer, Opera, Mosaic, or Lynx. A Web

browser works by creating a coaaectioa with the Web server, requests the data, then

formats and displays the data on the clients machine. There are many different meth-

ods in which to achieve dynamic content on the client side. They include Javascript,

VBScript (Visual Basic Script), Activ~X and Java. XML support for Web browsers

üt the time of this writing is curtently lirnited to Micrasoft Internet Explorer (versions

4.0 and higher), but the ncxt version of Netscapc Navigator (version 6.0) will providc

XbIL support.

JavaScript is an embedded scripting language, which is placeà in an HTML doc-

ument and is a creation of Netscape. JavaScript c m also be used as server side

scripting language but it is more widely used as a client side scripting laaguage.

.A11 major browsers that are version 3.0 or higher support JilrvaSctipt on the client

side. Xlthough the more popular browvers support Javascript, they do not implerrient

.lavascript in thc sam mnnncr. Thcrefore, certain browscrs have thcrc own additions

of JavaScript and not al1 implementations of JavaScript will run on every browser.

But what JavaScript provides is dynamic content that can be created on the client

side with out having to access the Servet for data. With JavaScript, a Web page can

react to what you're doing. Fom elements can influence each other instantaneously

and caicuiations can be made on the client side.

kBScnpt is a s u k t of the Viai Basic programming language, created by Mi-

crosoft to be used on the Web. Wbat VI3Script provides is a similar functionality to

Javascript, but is only supported by Microsoft's Intemet Explorer browser.

XctiveX is a specification €rom Microsoft and is Microsoft's version of applets.

ActiveX control c m be written in any language as long as the client has the support

for that language in which the ActiveX program was written. With ActiveX, the

controls are downloaded and instded on the client's cornputer and are available to

ail client sidc applications. The downside to ActiveX are security issues and the fact

that controls are executable files complied for the client's operating system, which

require multiple executable to be created for the clients platform.

2.4 XML Syntax

This section will look at the markup syntax used in the creation of an XML

document. It gives a description of the basic structure and d e s that are required

to create the XML document. Which includes an explanation on weli-formed and

valid S M L documents, in addition to the syntax used in the creation of a DTD

that accompanies valid XML documents. A h a general overview of some XML

extensions will be given, these extensions give XML the iunctionality that is needed

to be a suitable markup language used on the Web. The extensions that ;ire explliined

include: Extensible Stylesheet Language (XSL), Document Object Mode1 (DOM),

Simple .\PI for XML (SAX), Namespace and XML Linking Language (XLink and

XPointer) .

But first a description of the terminology that will be used in defining the elements

used in markup. With the help of Fig. 2.1, the items that are part of a markup

element include: tags, attributes and element content, and are described as follows:

Tags are the character strings (tag name) that are useci to define the

opening and closing part of an element.

Attributes are the name and value pair that is contained within the

opening tag of the elernent.

e Element is the entire character string, including the tag, attribute and

the element content.

Figure 2.1: Typicai markup element

From Fig. 2.1, asimple HTML rnarkup element, the opening tag is <Hl ALIGN="CENTERY' >

with a tag name "Hl" (first level heading element tag) and has an attribute named

"XLIGN" with a value of TENTER". The element content is the string value r e p

reseoteù by "Heading 1" with a closhg tag that is represented by </Hl>. This is

a rcprcscntation of the content that is contained by a typical markup element and

shows the parts and the terminotogy used in describing such an element.

2.4.1 XML documents

S M L can be described as a metalanguage that permits users to define their own

markup language to be pcirnarily used on the WWW. Since XML is a metalanguage,

documents created using XML do not have any predefined tags that authors must

follow. This Allows for Ereedom in creation of documents that is not possible with

the use of HTML. This gives the author the ability to create documents that have

structure and allows for creation o l data that is self-describing.

This section will cxplain the cules and syntax used in the crcations of an XML

document. It includes a discussion on the two types of XML documents: well-formed

and valid XML documents. With the difference between well-formed and valid XML

documents being, valid XML documents must follow the W t a x outline set by a DTD

or Schema (the grammar that defines the data structure and niles that must be fol-

lowed when creating an XML document, set by the author). While well-formed XML

documents must only follow the validity constraints set by the XML specification;

thcsc validity constrains must a h bc followcd whcn creating valid XML documcnts.

Thereforc well-formed documents are easier to create, since the author does not

need to create an additional DTD document if it is not required. This Makes well-

formed documents faster to process, siuce thece is no need for additional processing

to validate a document against a DTD or Schema. But a benefit with valid 'WIL

documents being, that al1 documents created with a given DTD or Schema wii i have

the same syntax and structure. Which may not be the case for weii-formed , U f L

documents since there is no DTD or Schema to check the created document against.

2.4.2 Well-formed XML documents

XhIL documents that are described as being well fomed must f'ollow the spec-

ifications of well-formed documents defined by the XML specification [19] or follow

the hasic syntax niles of XML. A well-formeci XML document generdly contains two

main sections, described as the prolog, and body.

2.4.2.1 Prolog

The prolog is the optional -XML declaration that is found as the first ejement in the

document. Although the prolog is an optiond element it should be included in a

document, since it contains useful information that can be used by the XML parser.

The following is a XML prolog without any options and it must be defined in lower

case Letters:

Sext is a prolog with the two optional components, they are the character enmding

bcing uscd by the XML document and if the document declaration is giwn by an

external DTD.

The encoding attribute gives the encoding type used in the document; it helps

other applications to determine the content of the document and is useful in mived

platform or mixed-language situation. if the encoding type is left out the assumed

default type is usuaiiy set as UTF-8 or UTF-16 and is dependent on the parser

used. The standalone attribute is used to tell that parser if there is an external DTD

required for the document. If standalone is set to %on an externa1 DTD is required,

othcrwise if the document does not requires an exterual DTD, if standalone is set as

.es'' or is omitted completely, since "yes" is assurneci as being the default value.

2.4.2.2 Body

Thc body of an XML document is where the data is containeci, it m u t comprise of

one or more elements and its what gives the document the tree like stmcture.

The markup used to define a XML element tag is defined with the l e s than char-

acter (<) and ending with the greater than character (>) or angle brackets, which

enclose the tag name. The tag and attribiite narnes used in the XML element are

case sensitive, opening tag names must be the same as closing tag names; therefore a

tag named "Carn is not the same as another tag name "car". Nmes must begin with

a letter, underscore or colon and followed by letters, digits, hyphens, underscores,

colons, or full stops. .L\n exception to the naming constmct is that names are not

allowed to start with the 'hln string or any other string that matches these charac-

ters (for example Xml. XML: xML, etc.). The reason being that the 'kmln string at

the start of a narne is teserveci for standardization in the current and future versions

of the XML specification.

Every XML element must have an opening tag and a closing tag, with the excep

tion being the ernpty-element tag.

2.4.2.3 Opening Tag and Attributes

All opening tags must contain the tag name and can be foilowed by attributes, which

are optional data and are not required. Attributes are additional data that is corn-

pnsed of a name-due pair, where the attribute value must be enclosed by single

quotes or double quotes, as shown by the unit and mpg, attribute name value pair

belon..

Attributes are a method in which additional information can be added to an

element. For the XML element above, the tag name is "fuelEconorny", with an

attribute named "unit" and a value of "mpg'. By adding the unit attribute to this

elenient the additional information of mpg (d e s per gallou) is now known about

the element content. As shown, the attribute value can be either enclosed in single

quotcs or double quotcs and by iidding attributcs to an clcmcnt providcs the rcadcr

with niore information about the element content.

There are two specid attributes defined in the XML 1.0 recommendation they

are 'rml:space and xrnl:lang. The attribute xm1:space is iised to preserve the text

format or white space and is similar to the <pre> tag (preformatted text element) in

HTML. The xm1:larig attribute is u d as a method to defilie the rendering of text or

allows for creation of documents that are international. Since it allows definition of

standard languagc codes [21], [22] or user defined codes. The xm1:space and xm1:lang

attribute is appiied to the element data and al1 other element that it encapsulates.

2.4.2.4 Closing Tag

The closing tag of an element is comprised of a forward slash (/), followed by the tag

name and endosed in angle brackets. The cloûing tag name must match that of the

opening tag name for the correspondhg element.

2.4.2.5 Empty-Element Tag

The empty-element tag is used as a short hand to describe elements where there is

rio data, for example given the lollowing data less element:

An cquivalcnt cmpty-clement tag would be:

An empty-element tag contains a tag oame, optiooal attributes that might be

added, followed by the forward slash (/), enclosed in angle brackets. Another use

for empty-element tags is a method to s p i & anchor points in a XML document,

dlowing for future progrus to access these points in the document.

2.4.3 Structure of an XML Document

Sow that we know how to m a t e an XML element, this section will describe how

these elements can be used to m a t e an W C documtent such that it will be well-

formed and structure will be given to the data. Rules of well-formed documents state

that al1 XML document must contain a unique roat element, have proper nestiog of

elements and entity references must be used in the place of reserved markup.

2.4.3.1 Unique Root Element

All XkIL documents must contain at least one element; thecefore the one element that

encloses al1 other elements in an XML document is ceferreci to as the root element.

The root element must be unique and cannot be found anywhere else in the XML

document. For example, a complete XML document of the foiiowing form in not

well-formed:

<C.L\R>

<MANUF'.4CTURER> Honda </MANUFACTURER>
<MODEL> Accord </MODEL>
<CLASS> Midsize </CLASS>

&.\RB

<.\IIIANUFACTURER> Honda </MANUFACTURER>
<MODEL> Civic </MODEL>
<CL&%> Subcompact </CLASS>

This is bccause it does not have a unique root element to make the document

well-fornied a root element would be required, as foiiowu:

<CAR>
<MANUFACTURER> Honda </MANUFA4CTL'RER>
<MODEL> Civic </MODEL>
<CLASS> Subcompact </CLASS>

</CAR>

2.4.3.2 Proper Nesting

Another d e that must be foilowed is elernents must be properly nested. Nesting

is where elements are embedding or constructeci within another element. Nesting

gives a parent/child relationship and is how XML document structure is created.

For proper nesting to occur element tags must not overlap. No overlapping of tags

rnearis that the child element tag must be closed before the closing element tags of it

An cxaniplc of impropcr nesting of elernents is given by the following example, if

we had a XML document written for some program that represents a for loop and

an if statement within the for loop. The improper nesting is apparent in the code

segment below, since the if statement in the for Loop must be closed before we ciose

the for loop.

Therefore for proper nesting to occur the closing tag for the if statement </If>,

would have to appear before that of the for looy </For>, the proper nesting of the

code segment above is s h o m below, as foliows:.

This is what is meant by al1 chiid element tag must be closed before the closing

element tags of it parent/ancestors.

2.4.3.3 Predeflned Entity References

Ttierc is a set of USe~ed characters that are not to be used in the data source of the

document or at trihute values and must be replace by a particular character sequence

referred to as the predefined entity references. These characters include the reserved

characters for niarking up an XML document and given by the lollowing table .

Entity String

&:

Usage
Iised to escape the & character (exept within

Srlt;

Csers can also define their own entity references, but these entity references must

CDATA data section)
Used to escape the < character (except within

>

kapos;
"

he defined prior to use in the DTD. A hirther explanation will follow on how entity

CDATA data section)
üsed to escape the > chwacter (withii a CDAT-4
data section entity must be used if the > is followed
by a 11 string)
Used to escape the ' character
Used to escape the " character

references can be defined and is found in the DTD section to follow.

2.4.3.4 CDATA Section

The CDATA section is used as a technique to add text charaeters that would otherwise

be interpreted as markup, without usage of entity strings. Since the XML parser does

not parse the data that is contained in the CDATA section.

The CD.4T.4 section can occur anywhere document data c m a p p w , but CDATA

sections may not be nested. The syntax of the CDATA section is as follows:

An cxample of how it can be used is wben XML markup is required to be added

to the document data as shown by the following section of an XML document:

<C.\R>
<MANUFACTURER> Honda </MANUFACTURER>
<MODEL> Accord </MODEL>
cCLASS> Midsize </CLASS>

</CAR>
11 >

</sirigIeCar>

2.4.3.5 Comments

Addition of comments into an XML document is added using the following syntax:

<!- - Comment Text - -3

The "Commcnt Text" cm be any charactet string, with the exception of " -"
(doubte hyphen) which cannot be found in the comment text section. Plus the last

charac ter of the commented text cannot be a hyphen since this can be misinterpreted

as part of the closing delimiter. Any entities found in the "Comment Text" section

are not expanded and markup is not interpreted. Comments are not part of the

data. if comments are placed within an elemeot data they will not be interpreted

as commeuts. In addition, placement of the comment must not appear withia an

elemcnt tag.

2.4.4 Valid XML documents

If an XML document is describeci as being valid it must obey and follow al1

grammar defined by the Document Type Definition (DTD) or schema. By creating

a valid XML dociiments iising a DTD or schema, this allows for different documents

written by different authors to aU have the same structure. ,911 valid XML documents

riiust follow the well-foruied XblL syntax and those defineù by the DTD or Schema.

Therefore it can be said that al1 vdid XML documents are well-formed, whereas

wcll-formcd XML documents arc not valid XML documents unless they obcy the rules

set by a DTD or schema.

2 4 . 4 1 Document Type Definition (DTD)

Thc Document Type Definition (DTD) is the grammar that defines the data structure

arid is the rules that rriust be followeù when creating an XML document. Scheuia ori

thc othcr hand is an improvcd method in implemcnting a DTD, allowing for bctter

data type definition and schema are created using the XML specification. The idea

is to make Schemas easier to leam and more extensible than DTD when defining the

documents structure. Schema are still in the working draft phase and are divided into

two parts, striicture [24], dealing with controls that describe the stnictiiral niles of a

document and data types [25], dcaling with definition of data types of the content.

The benefits of having a DTD is that the vocabulary used in the document is

prcciscly dcfined, since al1 the rules of the vocabulary are containeci in the DTD. In

addition, by using a vaiidating parser the .WL document can be compared with its

DTD to see if it follows the rules. This d o w s for different authors to create an ,XML

document al1 having the same syntax and structure.

2.4.4.2 DTD Declaration

The DTD can be declared in an external file or internally within the XML file. The

lienefit of having an extemal declaration is that the DTD can be reused by many

diffcrent XML documents. An internal DTD ailows for a single file to be sent that

inchdes al1 the information, but if multiple documents are sent to a client requiring

the same DTD, using an intemal DTD makes for transmission of redundant data.

Both an internal and external DTD can be used by an XML document, if declarations

appear in both the internal and extemal DTD, the intemal DTD declaration will

have precedence. Otherwise by using an exteruai DTD with additionai internal DTD

declaratious allows for extra declarations to be dded that are uot present in the

exterual DTD. This ailows for fine-tuning of a predefined DTD to suit the authors

rcquircrnerits.

2.4.4.3 Internal DTD Declaration

The Internal DTD declaration is defineci using the DOCTYPE tag name, followed by

the root element name of the XML document. This is then preceded by the document

declarations used to define the structure of the document, which is aU enclosecl iu

square brackets. The cntire DTD declaration is then enclosed in the "c!" and ">"-

The following is a generic internal DTD declared within the XbiL document:

<!DOCTYPE rootElementName [document declarations ...]>

2.4.4.4 External DTD Declaration

As with the internal DTD declaration the external declaration is dehed using the

DOCTYPE tag name, followed by the root element name of the XML document.

Instead of declanng the document declarations, the extenial DTD file location is

defined as being PUBLIC or SYSTEM, as foiiows:

<!DOCTYPE rootElcmentName PUBLIC $ublicidentifier" "URL_ofDTDn>
c!DOCTYPE rootEIementName SYSTEM "URL-ofDTDn >

The SYSTEM declaration is used to locate the DTD a t the given URL. Whereas

the publicidentifier used in the PUBLIC declaration is a location string of the internal

or external location of the DTD. If the DTD ciin no be found at locatiou represented

by the publicidentifier string, the string representing URL-ofDTD is used instead

as a URL naming the DTD file. The publicidentifier consist of a text string that can

t ~ e defined as being divided by double slashes using the followiag form:

"-//TRLabs//DTD carlist //ENn

The "" character that begins the publicidentifier is used to show that this is a

non-registered identifier. If the identifier was registered with the W3C then a '+"

character is required, and for an ISO standard a character string of "ISOn is required.

The next section is an identifier for the author or organization, in this case TRLabs.

Thcn Followcd by the keyword that is uscd to indicatc the content format, in this case

DTD. followed by a string used to indicate the document name, in this case "cariistn .

The final section is the Ianguage code, in this case "EN" used to represent English.

Therefore the PUBLIC identifier is generally used for well known DTD decla-

rations that are standardized or for authors that define a repository for their own

DTD.

2.4.4.5 DTD Syntax

Ttiere are basically four markup cleclarations used io a DTD. They are element,

attiiit, cntity and notation. These rleclarations are uscd in defining and constructing

the DTD. The element and attlist declarations are USA to detine the XML elements

and the attributes of an element, respectively. The entity declaration is used for

declaration of reusable data and its primary design is to make XML creation easier.

The notation declaration is iiwd to declare data that is not XML and defines an

eaternal program associated with this data. An example is within a XML document

a notation can be used to associate a JPEG binary data with a viewer to reader

the .JPEG data. This section will be useci to define the syntax of the four markup

dcclarations and how they cm bc used.

2.4.4.6 Entities

By iising entities, a predehed section of data c m be referenced multiple times

through a predefined name. Resulting in space being saved since larger repeated

text can be replace by a smaii entity string and avoid retyping of repeated data

Entitics c m bc rcferred to as being in one of the following predehed entities, gcn-

eral entity or parameter entity. Entities are aiso classed as parsed entity, where the

replacement text will become part of the XML document or unparseci entity, where

the replacement data is not XML or not even text therefore not required to be parse.

-4s stated by the predehed entity reference section, there is a set of special entities

that are resewed for markup, and are referred to as predefined entities. Therefore al1

that needs to be defined is general entity and parameter entity.

2.4.4.7 General Entities

.-\ user defirieci entity is referred to as general entities, allowing a name to be paired

with a tcxt string. This entity is declared by using the keyword EENTITY, a name

and the text string that is associatecl with this name, shown as follows:

<!ENTITY projectTitle uXhlL-Based Internet: Performance .4ndysisP >

Sow that the entity is detined, to place the entity text into any element content,

an ampersand is placed before the entity name followed by a semicolon. The following

is how the projectTitle entity would be referred in a XML element:

<TITLE> Title: &projectTitle; </TITLE>

-411 external file can also be used to give the entity data and is given by the

following form:

<!ENTITY rnyProjectTitle SYSTEM "bttp://nelson.win.trlabs.ca/projectTit1.txtn >

Csing the keyword ENTITY, a name and the keyword SYSTEhl followed by the

URL of the file declare this entity. The kepord SYSTEM can be replace with

PCBLIC and a public identifier and faU back URL cm be used as shown in the

External DTD Declaration section.

2.4.4.8 Parameter Entities

Entities t hat are only used within the DTD are called parameter entities and allow

changes to DTD constructs. Parameter entities are declared using the keyword EN-

TITY, a percent s i p , a name and the text string that is associated with this name.

The following is an example of a parameter entity:

<!E?ITITY % unitAtt "unit CDATA #REQUIRED" >

Xow to use the parameter entity within the DTD the following syntax is used. A

pcrccnt charactcr is placeà before the cntity name followed by a semicolon, shown as

follows:

.4 requirement of parameter entities is that they must be declared before they are

referred. In addition the t e d that is added must be a valid declaration. if not the

DTD NiIl not be valid.

2.4.4.9 Element declaration

Element declarations in a DTD are used to define the syntax that elements must

follow in a XML document. These element declarations are defined with the keyword

ELEMENT and are followed by an element tag name, These names must follow the

rules a s those that were defined in the weU-formed section previously. The name is

than followed by the element content that can be one of the following four categories:

empty, element, mixed and any encLosed in the "<!" and ">".

1 Element Content Cateeorv 1 Definition 1
I " ' , - I

1 cm PtY 1 Elements with no data content and child (
1 1 elements contained within it, but it can 1

element

data
any Amy elernents content that does not vio-

contain attributes
This element contains elements but

mi~ed

Therefore an example of how to create elernent declaratiooç for the ernpty

not text data
This element is a m k of element and text

and

any catcgory abovc, is shown as follows:

c!ELEMEYT car EMPTY>

<!ELEMEXT carlist ANY>

The XML element that couid be created from the empty declaration is <car/>.

But by carlist as of type A h i the carlist element can have any combination of ele-

ments and text as long as the content between the tags is well-formed. This makes

for placement of any well-formeci XML document within the carlist element tags as

bcing valid.

Thc "cmptyn and "any" element content category does not allow for definition

of structure to be added to an XML document. By defining element content that

fa11 in the "element" and "mi" content category a content mode1 structure can be

acided to an XML document. Content mode1 consists of some cornhination of element

names. operators and the keyword #PCDATA, that is enclosed in parentheses. The

#PCDATA keyword stands for parsec! character data, which represents any text

character but those that are used for markup. Any markup that is required must be

replaced with an quivalent entity string.

The foliowing table lists the content model operators that can be use in element

definition to add structure to a XML document.

Operator

1

For example given the following element declaration using the comma order op-

Definition
Separates items and shows the order they must appear
Se~arates items that list a choice of possibilities

- -

7

*
+

erator:

- - --

Indicates items can appear one time or not at al1
Indicates items can appear zero or more times
Indicates items can appear one or more times

<!ELEMEYT car (manufacture, model, c las)>

The following XML data that cornes from the elernent dechration must have tbe

elements appear in this order for it to be valid.

Sext example w i l give an element declared iisîng the pipe operator:

<!ELEMENT fuelEconomy (city (highway)>

The XML data that cornes from this element declaration cm be of the fdowing

To add more complexity and create more complex structures requires the use of

?. * and + operators. They allow for the repetitions of elements and #PCDATA as

shown by the following examples:

This element declaration is used to show how mixed content of different elements

auci #PCDAT.?\ cau be conibiued in addition to the * operator. For mived elements

and #PCDATA must be separated by the 1 operator, and the #PCDATA type must

be the first choice that appears.

c!ELEME.UT teststring (#PCDATA 1 aaa 1 bbb 1 ccc)*>

The element declaration allows for and element teststring to be a parent of zero

or more character strings, or elements a a , bbb, and ccc.

The next example will show how the ? operator can be used in a declaration of

au elenient.

<!ELEbIENT teststring (aaa?, bbb, ccc)>

With the element declaration above: the testStrhg element can have zero or one

aaa child elernent foiiowed by a bbb and ccc child element.

The next element declaration is used to show how a + operator can be used in a

dedaration of an element.

<!ELEbIEYT teststring (aaa (bbb (ccc)+>

With the element declaration above, the teststring element can have zero or one

or more child element aaa, bbb and ccc chiid element in any combination.

-4s shown abovc, a combination of these operators can bc used to form a complex

structure to represent almost any kind of data structure available.

2.4.4.10 Attribute declaration

The attribute declaration used by a DTD in defining attribute vdues for an element

is defined using the following syntax.

-411 attribute declarations start with the keyword ATTLIST, followed by an ele-

ment narne that contains the attribute, the attribute name, an attribute type given

by the attribute type table below or a character string, and an attribute default value.

The following table gives a list of possible attribute default values available.

At tributc dcfault valucs
#REQUIRED

Definition
The attributc must appcar for the defined

#IbIPLIED

1 1 always appear and is set as a default string (

element .
The attribute may or may not appear for

#FIXED fi,uedValue
the defined element.
The attribute may be declared; but it wiU

1 the default value k the assigneci the value. 1
Default value only

Since the #REQUIRED and #IMPLIED default values are easy to understand

val& be& represented by 6xedValue.
The attribute may appear if it does appear

the following attribute example of a declaration using the attribute default value of

#FIXED and default value only will be given.

<!.4TTLIST fueiEconomy units CDATA # F W D kpg" >

By using the #FIXED attribute default d u e when the <fuelEconomy> tag is de-

clared the XML parser will ùiclude the ununit='knpg" attribute to the <fuelEconorny>

clcmcnt, cvcn if the clement docs not contain the unit attribute. The attributc value

is Lxed and therefore cannot be changed.

By just using a default value only, given by the following attribute declaration:

<!.lTTLIST fuclEconomy uni ts CDATA "mpg" >

If the <fiielEconorny> element is declared with out any attributes the units nt-

tribute will be added with the default value of "rnpg". But the units attribute cm

also be set to any character data string which is not possible by using the #FIXED

attributc default value.

The following is a table of the possible attribute types that are available.

Attribute Type
CD.iT.4

EYTITY

) space
NOT.4TION 1 Take a name fiom a set of name indicating the n e

Definition
7

Character data strings only of any length that
can't contain markup
Name referring to a extemal entity declared in the
DTD

ENTITIES
ID

IDREF

IDREFS
NMTOKEK
NMTOKENS

Series of ENTITY names separated by white space
Unique n m e within a given document
Value referring to an ID d e c l d to sonie element
with the same value as the IDREF attribute
Series of LDREF names separated by white space
A name
Series of NMTOKEN names separated by white

The enumerated data type is interesthg since it Iets the user dehed a set of

Enurnerateci

tatioo types declared by the DTD, used to declare
non &ML data like GlFs or JPEGs
Excepts one from a set of user definecl values

items that the attribute d u e can be. An example of how t h is declareci is shown

as follows:

<!.4TTLIST price currency NOTATION (US (CANADIAN] BRITISH) " U S >

By using the notation attribute type the user can create a list of possibilities

that the attribute value must be and assign volues must be in the defined set. For

the exariiple above the price element has ari attribute name currency that cm have

values of US? CANADL\N, or BRITISH. With the default value king US, by using

a notation attribute type allows authors to set a predefined set of values to a given

attribute.

Instead of covering the other possible attribute types and give an example for al1

the possible data types 1 would Iike to reference [r l] that covers the topic and provides

exan ples for each.

2.5 XML extensions

As mentioned previously, XML is a way to describe and structure data, therefore

it is limited to what it can do. But by using the XhfL extensions or supporting

languages additionai hinctionality can be achieved. Below is a set of specifications of

the extensions that support XML and a description of its value.

2.5.1 Extensible Stylesheet Language (XSL)

Extensible Stylesheet Language (XSL) is currentiy a working draft being devel-

oped by W3C [26], used to provide style and transfom an XiML document. The XSL

Ianguage can be split into tiuee separate languages: transformation (XSLT) [29],

accessing XML document structure (XPath) [30] and rendering/ formatting (XSLF) ,

Both XSLT and XPath are recommendations, while XSLF is still a working draft.

The XSL design is based on two styling languages DSSSL (Document Style Semantics

and Specification Language) and CSS (Cascading Style Sheets), both can be used to

apply style to an !ML document. DSSL is used as a language to style or tranvform a

docurne~it, and is an ISO standard since 1996 [27]. CSS is a recommendation made by

W3C 1281, dcvelopcd as an easy method in which to add style to an HTML and XML

docurrient. Where XSL differs tiom CSS is that it cannot be used with HTML, and

it has the ability to transfocm a document. Difference with DSSSL is that, DSSSL

is designeci mainly for printed material and not only line documents. But what XSL

provides is a s t y h g and transformation language that is written using the SML çyn-

tax. There is also a submission for a proposed language called Spice, introduced by

HP for a triore CSS style slieet language for XML [NI.

2.5.2 XML Linking

The proposed method in which linking is done in XML is called XLink or XML

Linking Language (XLL) [36] and XPointer or XML Pointer Language (XPL) [37].

The SPointer specification is designed to allow for spctci&ing single or multiple links

within an XML document. Miere as XLink, is designed to be used to h k different

SML documents and resources together. The links that are created using XLink can

be categorized as being one of two types, simple links or extended links. Simple links

have the same functionality as the HTML linking element, that is, links can connect

in only one direction and has one resource identifier. With extended iiaking, multiple

resources can be cunnected, allowing for groups of resaurces to be Wed fiom a single

link. Extended links cm also be used CO filter the set of target links, allowing the

user to perform real-time filtering of the iiiked resources.

Therefore, the prnblems with HTML linking that are solved with ,Uink and

SPoiiiter are:

HTML links are inefficient use of b d w i d t h when anly portions of a

document are requested because the entire page is retrieved and displayed.

HTML links can only return a single resource, therefore ornitting related

Links that is also available. m i l e with XLink a single link can relate to

many resaiirces, and is able to help searches return a list of relateci topics

as well.

O HTML links have no knowledge of the structure of a document, and

is dependent on the placement of anchor elernent. Therefore if the doc-

ument data was changed the iink could be invalid and rendered useless.

Xlso with anchor elements placed in the document. requires them to be

updated if the links are changed.

2.5.3 Document Object Model and SAX

The Document Object Model (DOM) [32] is a W3C specification that ailows For

a standardized rnethod to access and manipulate document structure. The objets

defiued by the DOM d o w for reads, searcha, additions and deletions b m a docu-

ment and defines a standard interface for accessing,and manipulation of both HTML

and XML data. To make the DOM platform neutral, W3C defines an interface for

the different objects of the DOM but no specific method of implementation are given.

This allows for the DOM to be written in any language and for legacy data to be

accesstxi using the DOPrI. When the DOM is uYed to read the data, it pames the file

and creates a tree like representation of the data in rnemory. TES allows for faster

ricccss and manipulation of a document, but is not practicai for large amount of data

since it puts a strain on the system's memory. Currently there is a DO41 level 2

specification [33] that is currently a candidate recomrnendation, which adds support

for namespaces (allows for examination and modification), style sheets (includes oô-

ject model, qiiery and manipulation), filtering, event modeling and ranges (includes

functions for manipulating large blocks of data).

There is another niethod to process the document structure similar to DOM,

kriown as the Simple API for XML (SAX) [Ml. The SAY is designcd primarily using

.J.\V.i as an event-based interface, speciücally a paner is used to read the document

and report to the program about the symbols/events that it Bnds. This allows for

larger data files to be parsed for events without loading the entire file into memory.

4Iaking it a simple and relatively fast way to get at the XML data, plus it is a good

method to use when there is a large amount of da t a The disadvantages of using

SAY are that it has no randorn access to a documentts data and complex searches

are difficult to implement.

2.5.4 Namespace

Samespace is a method that ensures that element names are unique no matter

where an element is used. In the W3C's Recommendations for Yamespaces [35]' a

Namespace is defined as "...a collection of names, identifid by a UR[reference, which

are used in XhIL documents as elernent types and attribute names.". The need for

rianiespaces arises when there is collaboration between different XML documents

that coutain similar element names but have different meaning. If these elements

€rom diffcrcut XML documents were combincd into a single document, the rcpcated

element names would lose their meaning or would be undistinguishable. This problem

of similar element name with different meaning can arise when XhiL is used on the

Web or in large organizations. Therefore namespaces are requireà to distinguish

between possible similar element names that might occur.

2.6 Sumrnary

This chapter discussed the content-delivery technology used on the Internet, this

included server side technology, client side technology, and XML syntau.

Semer side web technolog. included a discussion on the web server along with a

discussion on the programming languages that are used by the web sever. The dient

side discussiou includes a brief introduction to the Web browser and programming

languages that are used by them.

XhfL syntax was given dong with the d e s that must be foiiowed in the creation

of a SiVL document. This included an explanation of weii-fonned and valid XhIL

documents, dong with the syntax of a DTD and how it can be used in d i d ,WfL

documents to structure and validate the document.

Also a general overview of the extensions used by X i i L was given. These exten-

sions give XML applications simiiar or more functionality than HTML documents, in

addition to solving some problems laced with HTML. Which includeà the Extensible

Stylesheet Language (XSL), that can give style to an XML document and can aiso

bc used to transform the XML document into another format. Linking is done u s

ing '(Pointer and XLink, with ,YPointer being used to specify single or multiple links

within an M L document and XLink being designeci to be used to link different XML

documents and resources together. Document accessing and manipulation can also

be done iising Document Object Model (DOM) or Simple API for XML (SAX). With

the DOM the entire document is loaded in memory therefore requiring more system

resources, S A X is an event driven parser of the document that uses l e s resources and

docs not allow for random access or quicker acccss. In addition, namespaccs was aiso

explained as a method to avoid conflicts of similar tag names that might occur when

?&IL documents are combined in the Web environment. Namespaces use a Universal

Resource Identifier (URJ), which allows for tags to be unique and distinguishable.

Chapter 3

Performance Measures

3.1 Introduction

The CVorld Wide Web (WWW) can he describeci by the following three elements:

servers, networks, and clients [3] [5] [121. ln measuring the performance of the CWW

one rriust deal with coltecting perfonnauce uietrics for each of these three elements.

Since there are many different clients that access the M V by different configura-

tions and connections, it would be hard to characterize the performance of the client.

Therefore the majority of performance measures of the WWW deal with performance

anaiysis on the semer and network.

Server performance [9] [I l] (121 is most often measured using the following fout

metrics: connections serveci per second, througbput (bytes/second), round trip tirne,

and m o r s per second.

Metrics used to rneasure the performance of the Internet (networks) are currently

still being standardized by the Internet standard organizations. The Internet Pr*

toc01 Performance Metrics Work Group (PPM WG) a m r k group for the internet

Engineering Task Force @TF) is currently working on defining il? level metrics.

The work currently being done by IPf M WG (171 are still drafts or request for com-

ments and outlines cnteria in which acceptable metrics should follow. While the

ITU Telecommunication Standardization Sector (ITU-T) has a new recommendation

1.380 [If?] and is an approved text but is not in its final form. The rnetrïcs propased

by botti staudards organization can be summarized as beloagiug to the foliowing

hendings: connectivity, throughput, packet ioss and packet delay.

The mcthods used to rneasure the performance of the WWW deah mainly with

perforrning tests on the network and semr elements of the WWW. This hapter will

give an overview of the metric and methods currently used to measure the WWW

performance. It describes the mesures used to define the networks and servets perfor-

mance as it relates to the WWW. [t then gives an overview of methods and products

that are used.

3.2 Network Performance Methods

This section includes discussion on standards that are currently implemented or

being developed, plus some nther work doue by industry.

3.2.1 IETF

The IETF's Internet Protocoi Performance Metrics Work Group (IPPM WG) is

currently working on metrics tbat cm be used to define iP performance. The IPPM

WC: II?] rnetrics inciude:

O packet Ioss (oneway packet ioss)

delay (one-way delay, instantaneous packet delay variation and round-

trip delay)

bulk throughput (TReno bulk transfer capacity and empirical bulk

transfer capacity).

Al1 the metrics are currently working drafts with the exception of connectivity,

which is still a request for comment.

3.2.2 ITU-T

The ITU-T is ciirrently the only standard organization that has recornmended

nietric3 to rnecrsure the performance of IP networks. ITU-T recommendation is 1.380

[181 titled "Internet Protocol Data Communication Service - IP Packet Transfer and

Atnilability Performance Paramctcrs". It outlines the following parmeters required

co rneasure end-to-end or point-t~point il? performance:

0 Population of interest (total set of packets being sent from source to

destination)

IP packct transfcr delay

IP packet error ratio

IP packet l o s ratio

Spiirious IP packet rate (packets not fiom predefined source, measured

for a time period and then divided by the time period)

0 Flow related parameten: IP packet throughput, octet based P packet

throughput (parameters measured using probes, with parameter satisfymg

requirements outline in recommendation)

The 1.380 recommendation also states methods aad conditions that must be fol-

lowed when measuring the metrics.

3.2.3 NIMI

The National Internet Measurement Infrastructure (NIMI) [Il [2] is another orga-

nization that is trying to defined methods and metrics used to measure the perfor-

mance of the Internet. NTMI methods include using software tools, caiied probes to

rrieasure the rnetrics currently proposed by the IPPM WG, these probes are placd

t hroughout thc nctwork ta measure performance.

3.2.4 Surveyor

Surveyor [56) is a joint idea of Advanced Network & SeMces, Inc. (ANS), and the

Common Solutions Group (made up of 23 universities). Surveyor uses several metrics

iricludirig one-way delay and packet loss metrics proposed by IPPM WC. To obtain

thc mctrics Survcyor uses meamremeut deviccs (Surveyor tools} that are deployed

a t each univerçity and rneasures the performance of Intemet paths between the sites

in the study. The Surveyor tools are PCs (d n g F'reeBSD) equipped with GPS

antennae to provide tirne stamps accurate to f 50 microseconds. Data is then stored

into a database and put on the web so the participants in this -riment can access

it.

The article by Bort hick [6] talks about metrics and techniques in measuring the

performance of Internet service providers (lSP)+ That includes early methods i n t r ~

diiced by Bellcore used in measuring the performance for the Automotive Indiistry Ac-

tion Croup (AIAG). This lead to a new method proposed by Cross-Industry Working

Tearri (XIWT). . W T is an organization whose goal is to %ter the understanding,

developrnent and application of technologies that cross industry boundariesn [16].

Thc mctrics uscd by Bcllcore and XIWT [161 to meastue ISP pcrformancc include

throughput, packet lost and round trip delay. W T states the minimal metric

required to measure performance should include packet lost and round-trip delay.

The rnetrics used by XIWT to measure reliability include reach ability (defined as

a agent can send a packet to a test point and receive an acknowledgement from

t lie test point), network service avaiiability, duration of outage, and time between

outage. Plus sorne ancillary metrics such as network resource utilization and DNS

pcrformancc.

The procedure proposed by X W ï to measure these metrics includes placing mea-

suring devices throughout the Internet to gather data simultaneously. This was pro-

posed such that a standard procedure and metrics would be used to measure the

performance of the ISP.

3.3 Servers Performance Methods

In this section WC describe the metrics and methods that are used to measure the

server performance of the WWW. The methods used to measure the performance of

the servers deals with using software to obtain performance measures on the server.

These measures are then used to specify the performance or could be used for input for

a queueing network mode1 of the server. Semer performance [9] [Il] [12] is most oiten

measured ming the following four metrics: connections served per second, throughput

(bytes/secorid), round trip time and errors (errors/second).

Thc mcthods describcd in [12] describe how to use industry benchmarks to mea-

sure CPU, servers, and system level performance. With the aid of monitoring tools

used to measure certain aspects of a client-server system and are located throughout

the system. These measures are then used to obtain input parameters for representa-

tion of a queueiag network of the system. A Performance analysis can then be done

using the queueing network to determine maximum capacity or the bottlenecks in

the systerri. Otherwise the measureci data can be used to describe perfomiance in

gcncral.

The procedure described in [5] deals with measuring workload by using logs gener-

ated from the semer's activities. The logs are then used to characterize the workload

of the server and how the workload affects the semer's performance.

The procedure described in 191 [llj de& with measuring semer performance

through industry benchrnarks. Tools that inchde WebStone by MindCraft [601, and

Webperf a product of SPEC [61] (Standard Performance Evaluation Commit tee),

a non-profit organization that develops standard benchmarks and publishes officiai

results.

The procedure describeci in [14] deals with using a queueing mode1 to represent a

single and multi web server system. Using a typical response time curve to represent

the web semer.

The procedure described in [lsj deah with using actual soticited and unsolicitecl

uscrs around thc world to test the pcrformancc of specificd sites. Users werc ask to

record the time required to download files frorn the site and send the data back to the

experirnenters. A log of the server was used to measure the semer side performance.

The test procedure used by [55] deals with measuring downloading tirnes of spec-

ified HTML pages, The HTML pages were divided up into 4 categories: Large slow

loading page (no special tags), short fast loading page (advanced htmi tags), barne

page (specialty tags and Java applets) and VRML [71] (Virtual Reaiity Mocielirig

Lmguagc - "an open standard for 3D multimedia and sharcd virtud worlds on the

Internet."), and cornplex page (browser specific html tags). Users are then asked

to download these pages and record the times; then send the results back to the

experimenters.

The test procediire used by [31 deals with setting up a server using IVebStone,

a benchmarking tool that generates HTTP requests, and a monitoring tool called

Webuionitor. This allows for expetimenting multiple requests being sent to the server

with al1 four server metrics meutioned previously being memeci dong with other

system metrics iike CPiI and disk utilization

3.4 Measuring Solut ions

This section deals with the software avaihble to obtain the measurement for in-

putting into a queueing mode1 or just used as a performance measure. Free measuring

tools can be found at Cooperative .hc ia t ion for Internet Data Analysis (CAIDA)

[%]. CAIDA provides a wide range of €tee software that c m be used to measure and

analyze network performance. ho the r method is to mite script using the Simple

Yetwork Management Protocol (SNhiP) tools [69], to obtain certain network perfor-

mance uiemures. There are also monitoring and test tools that are usuaily provideù

with the wcb scrvcr thnt cm also be uscd to obtain server pcrformancc mensurcs. But

the majority of the software mentioned below is not free, they tend to have Iirnited

time evaluation periods, or certain features not a d a b l e unless the software is pur-

chased. This section is broken into three subsections, describing network and server

measuring tools. plus a section with tools that can be used to describe the network,

s e m r and client.

3.4.1 Network Testing and Measuring Tools

Cisco's Netsys Service-Level Management Suite [65] is used to monitor network

routers and optimize performance of the netmork. Cisco's Netsys Service-Level Man-

agement Suite contains two modules: connectivity service manager and performance

service manager. The comectivity service rnaaager dows analyze of t r a c flows,

topologies, routing parameters, router con5gurations, and Cisco IOSTM software fea-

turcs. The performance service manager is used to coiiect routing con6guration data

and can create service-level policies for connectivity, reliabiity, and security services.

The performance service manager also can use VISTA (View, isolate, Solve, Test,

Xpply) troubleshooting methodology to diagnosis and repair network problems. Net-

sys is a way to obtain important measures and provides solutions for many network

problems.

HP Openview Tools with CiscoWorks200, designecl Netmetrk [67] that uses the

simple nctwork management protocol (SNMP) to provide information about the net-

works performance.

IIIS Enterprise Pro is a network monitoring service provided by International

Network Services [68]. INS will monitor a web site and then give web-based reports

t hat include latency, t hroughput, errors and trends.

Real-time Applications Performance System (RPIPS) by Resolute Software [59]

used to rriotiitor applications, servers and networks through agents. There are different

agents to collect and rneasure the system performance and reports back to a central

server at regular intervals.

SE Toolkit is a Unix performance monitor [641 desigaed by Adrian Cockcroft

and Rich Pettit. Some measures that are collected by SE Toolkit include: TCP

throughpiit, TCP connections, TCP retransmits, MC rates, collisions, overnins and

CPU plus disk usage levels. The SE Toolkit has analysis tools that can be used on

the log files that are collected.

Visual UpTime by Viud Networks i701 is a WAN service levd management system

used for ATM, frame relay, leased line and IP/Internet services. Viia l UpTime uses

monitoring agents and a database engine to measure and coiiect the performance of

the network.

3.4.2 Sever Benchmarking Tools

WcbStonc by MindCraft [60], and SpecWeb96 by Standard Performance Evalua-

tioo Corporation [61] are used to send multiple HTTP GET requests to a web server.

Therefore they are benchmarkhg tools used to measure the abiiity of a web server to

handle HTTP GET requests.

WebBench [62] measures web server software performance by simulating clients

requests to test for requests per second and throughput handled by the server. lt

allows test to be created by users for bath static (HTML and GIF) and dpamic

content (CGI, NSAPI and ISAPI).

3.4.3 Load Generators and Testers

The following is a list of tools used to test web performance by creating multipk

client requests LoadRunner by Mercury [44], WebLoad by Radview [40], WebLoad

by Platirium (471, WebART by OCLC Inc. [45], Socrates by Morph Techuologies

[46], Silk Pcrformcr by Segue Software [51], Load test tool by Portent [43j, InetLoad

by Microsoft [52], QALoad by Compuware [41], Forecast by Facilita Software [42],

Performance Studio by Rational [491, and ETest by RSW Software (:O]. AH these

testers generate loads though a scripting language, or by recording an event and

replayîng it multiple times. These tools provide some m e m e s of performance for

ai1 or a combination of client, network and server.

MS Web Application Stress tool, created by Microçoft's 1531 is used to test a

semer's performance by reproducing multiple browser requests. It then gives the

following rneasures get request per second, post requests per second, percent processor

time, percent total processor time, and requests per second whicti then could be used

to measure performance.

WebSizr by Technovations [481 is a load generator that can simulate up to 200

simultancous HTTP uscrs and record the rcsults. By also using othcr supporthg

applications like DBSizr (test databases simulates SQL calls) and WebCorder (records

HTTP transactions) dong with WebSizr good simulations can be perforrned.

Keynote Perspective a service provided by Keynote [661 that uses over 100 cites

across United States of Arnerica to download a specific page every 15 minutes. This

will give webmasters information on how the users actually view their page throughout

each cite.

VclobIcter [54j is a Java based HTTP scrvcr load tester that gencntes multiple

client requests and measures the response times of the requests.

Baseline from TeamQuest [63] is used to measure performance of CPC;, disk, buffer

cache, memory usage, disk space utilization, network file system, TCP/IP! Sybase and

Oracle database applications for Unk, NT and Unisys platforms.

Best/l from BMC software, [57] nuis on Unix and NT srjtems and coliects data

about the system resource usage, dong with other measures.

3.5 Summary

The pcrfomancc of the WWV can be desctibed by measuring two elements, they

are the servers and networks. The metrics used to describe the performance of the

servers being connections serveci per second, throughput (bytes/second), round trip

tirne and errors (enors/second). The metrics used to describe the performance of

networks being connectivity, bulk throughput, packet los, and delay.

The rneasures of performance can be obtained by software that creates multiple

client requests aud then rneasures the effects of the requests. These types of software

arc gcnerally uscd to mcasurc the capacity of the server and nctwork. Thcrc are

also monitoring tools that can be used to sample and test the performance which are

geared toward maintaining performance.

This chapter provides information on the metrics and methods used to measure

the performance of the WWW. Plus a list of tools that could be used to obtain

measures uscd to test or monitor the performance of the WWW.

Chapter 4

Test Applications

4.1 Introduction

\.Y& applications can be described as being static or dynamic. Static web appli-

cations are created once and the content does not change, this rnakes determining

perforrnauce easier because larger pages require more semer, uetwork, and client re-

sources. With dynamic web applications, the content that is delivered varies on the

client's request, making performance more difficdt to measure.

For a good performance cornparison to be made, exact replications of XML and

HTML Web applications were created. The test applications created for the test are

dynamic since the data returned is dependent on the clients input. There are two

different XML and HTML applications created to test the performance, and will be

referred to as Applicatiou 1 and Application 2. Both applications coutain a fonu for

client input, from which a query will be made to r e t m data in the form of text and

graphies, with the theme of the applications being automobiles.

The form allows a client to enter the manufacturer's name, selected from a &op

d o m list, the vehicle class and select a check box to display d l data in the database.

For the HTML applications the form also includes a drop down list that allows for

selection of the return data to be sorted and for the currency data element to be

changed. An example of the form for the applications is shown in Fig. 4.1.

Figure 4.1: Input data fonn to query application.

Once the form is submitted, the Web server will proces the request and sends

the request to the MySQL database server. MySQL database server will than process

the request and retiirn the requested information back to the Web server.

MySQL is described as being a fast, multi-threaded, and multi-user SQL (Stnic-

tured Query Language) relational database server. The phrase relational database

can be broken down and described as foiiows:

Database is described as being a collection of stored information that

is stmctured and organized into tables. Each table is organized into rom

and columns; a row in a table represents a record. The records can have

many entries, with each column in the table correspondmg to one of the

records entries.

The word "relationd" is used to state that thii database is good at

matching up information stored in one table to information stored in an-

other table. This permits for information from different tables to be corn-

bined and allows for information to be gathered that cannot be generated

from a single table alone.

To get the information out of the database requires the use of a language called

SQL. The SQL language is the standard database language used to interact with the

databasc and is uscd by aii major databnsc systcms.

With the brief introduction to MySQL, we will now look at the tables that are

used for our applications. Two tables were created for our database, named "cd '

and "engine". The record or row of the car table contains the following information:

manufacturer, model, class, and image. While the record or row of the engine table

contains the following information: model, liters, horwpower, rpm, citympg, high-

waympg, cyhder, and price. Since for a given car, there might be several different

engines, the relational properties of MySQL allow us to match the model entries of the

car table with the model entry in the engine table. The table setup and relationship

hetween the two are shown by Figure 4.2.

By creating two tables and linking them by the model entry allows for data to

be stored more efficiently. The data could have been stored in a single table, but for

Figure 4.2: Car and erigine table, linked by niodel.

cach car with rriultiple eugines, the ruanufacturer, class and image eutries would be

rcpcatcd if a single table was used. Thcrefore using two tables is morc efficient and

witli MySQL being a relational database the data fiom the tables can be rnatched

and linked.

The server side processing, including the MySQL database connectivity was done

iising PHP (Personal Home Page). PHP is a scripting language with syntau similar

to that of PERL and C++, and is embedded into the XML and HTML documents.

Wheu an applicatiou is requested the embedded PHP code is executed by the server,

and is uscd to gencrate the dynamic content sent to the client. PHP was built to nui

as a module for the Apache Web server, rather than as a CG1 interpreter. By building

PHP as an Apache module, every tirne a PHP script is interpreted the PHP module

m s in the same address space or as part of the Apache proces. This avoids the

problems faced by spawning a different process, which affects performance negatively.

Therefore when the client submits the fom, the Web server uses the PHP script

to connect to the MySQL database and generate the query request. The database

server will then return the results, from which PHP was used to generate the XML

and HTML applications files sent to the client. Print statements in the PHP script

were used to generate and tag the data returnd from the database into either XML

or HTML markup.

Although both applications are the samc in appearancc, the ,MAL application

is a little different in functionali~ Within the XSL style sheet file for Application

1, scripting is included to give the client's side the ability to sort by manufacturer,

model, and class, dong with the ability to change the price data to a different currency

value. The XLIL version of Application 2, allows for client side soning of data, al1

that is required is a click of the mouse on the column value in the title row. This

allows for sortirig to be done on the table by rnanufacturer: model, class, engine type,

horscpowcr, RPM, pricc, city MPG, or highway MPG in asccnding order.

The sorting and data manipulation tiinctions are not available on the client side

once the data is received from the semer with the HTMI, application. instead, the

client must enter these values into the form before the submission of the query or

hit the hack button on the browser and query the server again. Implementing this

kind of functionality on the client side with the HTML application wouid be very

difficult since data manipulation is difEcult or not passible. Therefore the returned

XML applicatiou from the query has a drop d o m list that dows for the data to be

sorted and For the currency data element to be changeci on the client side.

Sorting the received XML data on the client side is doue using Javascript and the

Document Object Mode1 (DOM). To sort the X M L data, some Microsoft proprietary

DOM extensions were used to interface with the XSL file. Currently the DOM level

1 specifications does not allow for stylesheet object modeling, q u e m g and manip

ulatiori, but the DOM level 2 specifications, currently a candidate recommendation

allows for this to be done. Therefore using Microsoft htemet Explorer to parse the

XML and XSL files crcates a document object model (DOM) for both files. Having

the document object model for the XSL file allows access to the sort field object in

the XSL file. The sorting object in the XSL file is found in the element that contains

the "order-by" attribute. Using the DOM, the "order-by" attribute can be accessed

from which the value cm be changed and the way the data is sorteci. The script

to sort the data was created using a function that contains an input string with the

desired sort value. The sort value is inputted from a form, with the submission of

the form the sorting function would be callcd and the sorting would bc done on the

client side.

To change the ptice data values in the ,XML files requires the use of JavaScript

and the Document Object Mode1 (DOM). But the price value change does not require

any special proprietary extensions and can be done with the methods provided in the

DOM level 1 specifications. As with sorting of the data, a fom was provided to

allow the client to choose the currency value that would be displayed. When the

clicnt chooses a currency other thm the default d u e and submits the form, the price

change script is e~ecuted on the client side. The price data is found in the Xh,iL file

in the elements with a tag name PRICE. Wbat is doue in the pnce change script

is the use of the getElementsByTagName("PRICEn) method, which uses the XML

file document object mode1 to allow us access to al1 PRICE elements in the XML

document. From which a loop was used ta change the values in the PMCE elernent

ici our X4IL docurrient to the new value.

The tlisadvantage of includiig scripting in the XSL style sheet to manipulate the

data is that unnccessary data might be sent to thc client, which increases the size of

the style sheet sent to the client. The advantage is that the client will not have to

make another trip to the server to manipulate data that is already on their machine.

This will Save on network traffic, plus reduce the load that is placed on the server.

The setiip describes how dynamic content was created for both XML and HTSIL

applications. The database setup used was kept the same for both XML and HTML

applicatioris alorig with application 1 and application 2.

Application 1

Application 1 is designed to be a nicely styled Web page, where data is returned

in muitiple table form along with an image pertaining to the data. The result From

a client query contains images of the vehicle foliowed by a nicely formeci table with

the information of the vehicle under each image. The table contains a centered

heading with the manufacturer's name, vehicle name, and the class of the vehicle;

with a font size setting set equaled to four. This heading spans four columns and

has a background that is orange in color. The heading is foiiowed by four rows of

data; the data is formatted in a table with borders, cell padding, and ce11 spacing

ail set to zero. The firçt row Listing the engine type of the vehicle, this data is

centered with a white background. The second row represents the horsepower and

RPhl of the engine; the data spans two rom and has a light gray background. The

third row is iised to represent the fuel economy of the engine; the data spans two

rom and ha ri white background. The forth row represeuts the price in American

dollars with a background that is light gray in color. Depending on the vehicle being

displaycd, any additional cngines available for that vehicle woutd be represented by

additional columns in the table. The table ends with an additional row that is similar

to the heading that çpans four columns and has a background that is orange in color.

Therefore a submitted q u e l would return a Iist of vehicles, and each vehicle would

have its image followed by a stylized table with data on that vehicle. An example of

how application 1 is seen by the client is shown in Fig, 4.3.

Xpplicatiori 1 is iuteuded to detemine how XMLJXSL cati beiiefit frou a highly

sty lizcd wcb application. With a highly sty lized application there is repented data

that d l benefit frotn a separate XML and XSL file. With SSL the styling data is

only required once to style the entire page, and will not be repeated as is required

by HTML. This may result in smaller web pages being generated and l e s network

traffic for the XBIL application.

4.3 Application 2

Application 2 k a simple single table display containing text data only. Ai1 the

resulting data retumed is displayed in a single table with nine columns. The table

contains a title row that is orange in color with the fallowing colurnn values: man-

Figure 4.3: Application 1 - HTML web page (XML application displays the same
data btit has an additional focm for data manipulation on the client side)

ufacture, model, class, engine type, horsepower, RPM, price, city MPG (miles per

gallon) and highway MPG. The tabie is displayeâ with no borders and cell spacing,

and the data is jiist centered in the appropriate column in the table. An example of

how application 2 is seen by the dient is shown in Fig. 4.4.

The idea behind Application 2 is to test how well XML might perform when date

is not stylized heavily. T h i takes away the benefits of having a style sheet that wiii

rcducc the rcpcated styling da t a

Application 2 also aiiows for testing to see if performance of the semer d l increase

if the load placed on the semer to sort the data is taken off. The sort option for the

XML application is done on the client side usiog scripting, whereas with the HTML

applications the database Servet does the sorting.

.- - . . --

Figure 4.4: Application 2

Chapter 5

Test Set up

5.1 Introduction

This section will describe the setup used in the implementation of the XML and

HTML applications, shown in Fig. 5.1, as weii as the software and hardware used.

The setup uses open source developuie~it applicatious siuce tbese applications are

free, easily accessible and generally the most widely used on the Web. The following

section contains a discussion on the server side setup, client side setup, and bow the

test was perfomed.

I
Figure 5.1: Test setup used to measure performance.

5.2 Server Side Setup

Thc scrver side setup consists of the Apache Web semer (version 1.3.12) and

MySQL database server (version 3.22.32), ninning on the Linux Mandrake (version

6.1) operating system. The Apache server is a HTTP Web server that is developed by

the non-profit Apache group and is based on the National Center for Super Computing

AppIications (NCSA) Web server.

The server side scripting is done by PHP (version 4.O.O), since PHP provides

native functions that support both Xh4L and MySQL.

The hardware setup of the server was an Intel Celeron 466 with 64 MB of memol;

and the server accesses the Intemet through a Tl line.

Client Side Setup

The client wau based on Microsoft Intemet Explorer, because at the time of t b

writing it is the only browser that supports XYL and XSL. Using Internet Explorer

aiIows for tcsting of client side execution of XML applications with XSL.

5.4 Test Procedure

WebLoad by FtadView Software Inc. [40] was useci to load the semer in addition

to determinhg the performance metics of the createù XML and HTML applications.

UTebLoad cm be described as a Ioad-stress tester based on creating client requcsts. It

provides a scripting language to create the actual client requests, these client request

are called virtual clients and are used to emulate a Web browser. ÇVebLoad provide

testing for information pages (pages that just contain data), interactive foms (pages

which provide users interactions through fonns), and search faciiity (pages which prw

vide data entry to submit queries) allowing testing of the majority of web applications

ciirrently deployed on the WWW. This allows for simulations of multiple access to

Web applications for reai-the performance analysis. A trial version of WebLoad was

used, that allows for 25 virtud clients to be simulated at the same tirne.

The CVebLoad tcst session contains a consolc and load generator. The consolc can

be described as the machine used to setup, run and controls each test session. With

the console, the user can define the hosts that will participate, specify the program

that will be executed, schedule, and view the performance results of the test. The load

generator is the machine that mus the multiple simultaneous virtual clients request.

The load machine was setup on a PC that contains an AMD K6-3 400 MHz

processor, with 128 MB. Whiie the console is an IBM laptop with a Intel 233 MHz

Pcntium proccssor, with 96 MB. These machines are on a lOMbps local area network,

connected by a Linkçys Etherfast Cable/DSL Router and access the Internet through

a cable modem connection.

.AI1 test performed by WebLoad requins an Agenda, which is a file that is used to

define the test to be performed. The Agenda for our tests consists of a request to the

Web server for the form, from which the form field would be fdled in and posted back

to the CVeb server. To be realistic and fair, au input file was created that contains

50 valid input parameters of possible input that can be enterai into the formt which

would be used as input for the virtual clients in al1 of the test situations. Once the

end-of-file is reached, WebLoad laops back to the start of the file for input again,

allowing for the 50 input values to be used an infinite number of times. Each test

simulation was performed for a duration of 5 minutes. This testing procedure allows

for different queries to be simulateci simultaneously and is a fair representation that

w u rriaintained between te&, since al1 test queries are fiom the same set of 50 input

parameters for both HTML and XML applications.

Tests were also pcrforrned with the sorting field lei? blank, designcd as a test for

general application performance. Selectiag a non-bIank value for the sorting field in

the form alloweci for testing of additionai server side processing. This was doue to

set! if the scripting included in the XSL file to sort the data on the client side was

warth the additional bandwidth. A benefit of XML is the separation of data from

the styling information, which allows for easy manipulation of the data on the client

side.

Chapter 6

Results

6.1 Introduction

This chapter contains the collecteci performance results of the HTML and XhiL

applications with the client located in two àiierent locations.

Wlieri tests were performed on Application I the diiereuce between the HTML a d

XML applications were not noticeable. This was because the images included with the

application would be much larger than the entire data being transferred. For testing

purposes the images were not included since the actual performance measurements

resulting frorn the test of the HTML or XML application would be difficult to see.

Kow an explmation of the performance metrics of total rounds and round trip titne

wiIl be given, since it may be perceived as sornething other than what was measured.

Webtoad [40] defines a round "as a complete execution of the agenda", and for our

tests, the agenda represents the downloading of the form, filling plus postiag of the

form and the returned results in either XML or HTML format. Therefore the round

trip time rnetric gives a measure in seconds it takes a client to download the fom,

post the data back to the semer, and download the requested result, with the total

rounds being the total amount of time this process was successful.

The tests were taken with the server located in Winnipeg, and the client located

in either Winnipeg or Calgary. Winnipeg and Calgary are two Canadian cities that

are geographically separated by approximately 2300 kilometers.

The results of Tables 6.1-6.6 were taken with the Web server located in Winnipeg

a d load generator located in Calgary. Having the server and the load generator in

differcnt citics allows for grcater network separation.

The results of Tables 6.7-6.12 are taken with the Web server and load generator

located in Winnipeg. These results show how the applications would perform when

both client and server are located in the same city, and the network separation is less

of a factor.

The variance was also determined for the collected data, using the following for-

d a :

Variance = n w - (W2
n(n - 1)

6.2 Calgary Result s Applications

These results were collected on June 9th, 2000, with al1 tests times being indicated

iu Mouritain Standard Tirne. Tables 6.1-6.3 are the performance results of the HThlL

and ,LVL application 1, with the client located in Calgary and the server located in

Winnipeg

Table 6.1: Server performance HTML - Applica

Connections
served per second
Total throughput
(Bytes)
Throughput

Test 1
(2:40pm)

7.8

28507137

(Byt es/second)
Round Trip Time

ion l (clien
Test 4

(3:15pm)
7.3

26465153

88217.2

2.463

95023.8

(Scconds)
Total Errors
Total Rounds

in Calgary)
Variance

3.2

-

-

0.805

- ..

Test 2
(250pm)

5.3

19221696

2.502

- - - - - . -

Table 6.2: Server Performance HTML - Application 1 (with additionai semer side

Test 3
(3:lOpm)

5.6

20353345

64072.3

O
2325

iroçesing and client in Calgary)
1 Tcst 1 1 Tex 2 1 Test 3 1 Test 4 [/ Variance

67844.5

3.796 3.425

1
1565

O
1660

Connections
served per second
Total throughput
(Bytes)
Throughput
(Bytes/second)
Round Trip Time

For thc rcsults of Application 1, Table 6.1,ô.Z and 6.3, therc is a noticeable differ-

(3:ZOpm)
8.7

(Seconds)
Total Errors
Total Rounds

ence in the amount of connections serveci between the HTML and XML applications.

The XML application has an average connections serveci per second equaling to 13,

compared with 6.5 and 7.6 as shown in Table 6.1 and Tabie 6.2 test of the HTML ap-

plications, respectively. This results in twice as many co~ect ioas being served for the

additiondIy loaded HTML application and almost that many for the non-additional

loaded HTML application, resulting in more XML applications being serveci in the

31817544

106058.5

2.508

(3:30pm)
8.2

O
2598

29918558

99728.5

3.022

(5:25pm)
7.6

1
2443

27060711

91869

3.182

(5:30pm)
5.9

1
2255

2.3

21386700

71289

4.323

- -

-

0.924

O
1748

-
-

Table 6.3: Server Performance XML - Application I (client in Calgary)
1 Test 1 (Test 2 (Test 3 (Test 4 T(Variance '

Evcn by scrving more rounds, thc XML appiication sent 3453096 bytes less or 3%

Less bytes of data, shown by the smdler throughput d u a .

Another interest ing observation is the difference between the round trip times, the

SML applications tend to have a round trip time that is 1.622 seconds or 50% Les

than the comparable additionally loaded HTML applications

The additionai server side processing of sorting and changing content did not really

affect the performance metrics negatively. The results of Table 6.2, with additional

scrvcr sidc proccssing sccmcd to perform better than that of Table 6.1. without addi-

cionai server side processing, this is an unexpected resdt. An explanation of why the

non-additionally loadeà HTML appiication perfonns worst than the reguiarly loaded

HTML applications is explained by a more detaild look at the coiiected data. This

includes the plot of the connection time, Fig. 6.1 and response tirne, Fig. 6.2, of test

1 of Table 6.2 and test 2 of Table 6.1: respectively, the evtnme cases of the collected

data for the HTML application.

Connections
(255prn) ((3pm)
12.4 1 12.7

(3:40pm)
14.1

(3:45pm)
12.7 3.2

Carinect Time Pbt

Figure 6.1: Connect time plot between Table 6.1- Test 2 and Table 6.2 - Test 1

WebLoad [4O] defines connection time metric, as being 9he time until aconnection

was achieved between the Client and the semer {including the time it takes to establish

the connection and receive the TCP/IP OK)". Response time metric is detined as,

"the time reqiiired for the semer to respond to a request sent by a client (starting

from the end of the send including the time until the end of a blocked read of the

ixicoming data)". Figure 6.1 shows that test cun 1 from Table 6.1 has overd a higher

connection time to the server, in addition CO Fig. 6.2 that show a higher response

time for test run 1 from Table 6.1. This observation was noticed between the test

runs of application 1 in bath Table 6.1 and Table 6.2. Figure 6.1 and Fig. 6.2 shows

the noticeable difference in performance is caused by the poor network performance

at the time the tests were performed, since the connection time and the response time

shoiild have been similar, which is not shown by Fig. 6.1 and Fig. 6.2.

3

7; 2.5
0)

2
E i= 1.5

+Table 1 - Test2 g 1
O

0.5
QI a

O

.O S 4 Q @ , $ Q @ Q Q $
Sim ultion Timt [Sec]

Figure 6.2: Response t h e plot between Table 6.1- Test 2 and Table 6.2 - Test 1

This shows that XML applications that have a separate style sheet, with repeated

styling tags only required to be defined once for the data, results would be better

performance than the comparable HTML applications. This may not be true in al1

cases since the larger data files will tend to show a larger difference in file size than

those with less data, as discuss in the explanation of results section to follow.

6.3 Calgary Results Applications 2

These results were collected on June 9th, 2000, with al1 tests times being indicated

in Mountain Standard Tirne. Tables 6.4-6.6 show the performance results of the

HTML and S M L Application 2, with the client located in Calgary and the server

located in Winnipeg.

Table 6.4: Server Performance HTML - Application 2 (client in Calgary)

served per second
Total throughput
(Bytes)
Throughput

Table 6.5: Server Performance HTML - Application 2 (with additional semr side

(Bytes/second)
Round Trip Time
(Scconds)
Total Errors
Total Rounds

Test 3
(4:55pm)

10.9

Test 2
(4:05pm)

12.5 Connections

22203071

74010.2

For the rcsults of Applications 2, Tablc 6,4,6.5, and 6.6, the results arc oppositc

Test 1
(4pm)
12.5

1.702

1
3715

. -

cocessing and client in Calgary)

to those obtained from Application 1. The round trip time of XML is larger than the

HTML and the number of rounds served is larger for the HTML cornpared with the

XML.

The average round trip time of the XML application is 3.ûû3 seconds, compared

with that of regular loaded HTML appücation at 1.97 seconds and the additioud

semr side processing HTML application at 2.161 seconds. This shows the additiouaI

Test 4
(5pm)
11.2

22223703

74045.7

Variance

2.3

1.861

1
3715

Test 3
(5:40pm)

9.9

17689131

58963.8

2.381

1
2960

Connections
served per second
Total throughput
(Bytes)
Throughput
(Bytes/second)
Round Trip Time
(Seconds)
Total Enors
Total Rounds

19430364

64767.9

2.150

1
3252

Test 1
(k35pm)

10.8

19234781

64115.9

2.185

O
3217

19912443

66374.8

Test 2
(4:45pm)

11.3

20056173

66853.9

2.139

1
3357

-

-

2.167

1
3333

0.096721

. -

loaded HTML application requires one second or 34% less time to serve than the

SSIL application.

The total average round served by the XML application is 2232, compared with

that of the regular loaded HTML application at 3504 and the additionai semer side

procesing HTtvIL, application at 3249. This shows the HTML application can be

served over a thoiisand more times or 46% more times than the comparable XML

applications.

I n the Application 2 test the additional loaded HTML application hd a notice-

able diffcrcnce in the average amount of applications served c o m p d with thc non-

additional loadcd HTML application, this value being 255 additional rounds. There

is dso a srnaller differeace of 0.191 seconds in the average round trip time between the

additionally Loaded and regular loaded application. Plus the connections senred per

second by the additionally loaded application are 0.9 Iess than the regularly loaded

or approximately an average of 1 connection l e s per second.

Table 6.6: Semer Performance XML - Application 2 (client in Calgary)

Connections
served aer second

Test 3
(5:lOpm)

13.9

Test 1
(4:ljpm)

16.2

Test 4
(5:Epm)

14.7

Test 2
(4:25pm)

15.2

Variance '

4.8

Application 2 shows chat non-styiized applications created using ,XML does not

beaefit in terms of performance with a comparable HTML file, since these XML

applications tend to be bigger and therefore suffer in terms of performance.

6.4 Winnipeg Result s Applications 1

These results were collected on June 21st: 2000, with al1 tests times being indicated

in Central Standard Time. Tables 6.7-6.9 are the performance results of the HTML

and XML Application 1, with the client and server both located in Winnipeg.

Table 6.7: Server Performance HTML - Application 1 (client in Winnipeg
(Test 1 (Test 2 1 Test 3 1 Test 4 (1 Variance

Connections
scmcd per second
Totai throughput
(Bytes)
Throughput

(9:45pm)
13.5

(%y tcs/sccond)
Round Trip Time

The results from Tables 6.7, 6.8, and 6.9 show similar results of those of Tables

6.1. 6.2, and 6.3, collected when the client was located in Calgary. They show that

the XkIL application was able to perform better than the HTML applications.

Tables 6.7, 6.8, and 6.9 shows on average that the Xh3L application was able to

serve 2137 or 70% more rounds then the additionally loaded HTML applications.

49185689

263952.3

(Seconds)
Total Errors
Total Rounds

(9:50pm)
12.8

1.819

46925931

156419.8

O
4010

(10:20pm)
12.1

1.450

44307849

147692.8

O
3828

(10:25pm)
11.6

1.369

3.2

42524710

141749.0

O
361 1

A

1 A23 0.089

1
3467

-
-

Table 6.8: Table 8. Semer Performance HTML - Application 1 (with additional server

1 1 1 1 II

Total throughput 1 40468645 1 36039920 1 45293935 1 47983730 11
- 1

side processiug and client in Winnipeg)

Connections
served Der second

Table 6.9: Server Performance XML - Application 1 (client in Winnipeg)

Test 3
(10:30pm)

12.4

(Bytes)
Throughput

.- --

Also on average the results show that the XML application had a total average

throughput that was 1581382 bytes or 4% less then the additionally loaded HTML

applications.

Another interesting result was the round trip time between the XML and addition-

ally loaded HTML application. The average results show that the XML application

takes 0.818 seconds or 40% l e s time to serve a round of the application.

Test I
(9:55pm)

21.1

Variancc

4.4

(Bytes/second)
Round Trip Tirne
(Seconds)
Total Errors
Total Rounds

Test 4
(10:35pm)

13.1

Test 2
(10pm)

9.9

Connections served
per second
Total throughput

132716.9

Variance

3.6

Tcst 2
(10:15prn)

18.5

38230902

Test 1
(10:lOpm)

19.2

39815058

1.252

O
5752

127436.3

Test 3
(10:45pm)

20.6

42491369

1.372

1
5526

Test 4
(10:50pm)

20.8

12923371

141637.9

1.116

O
6142

143077.9 -

1.177

O
6204

0.025921

-
-

The total errors that resulted when doing the test are minimal, therefore a final

conclusion as to which application is better cannot be determine from these resuits.

But these results tend to be in agreement with those collected in Calgary where XML

performs better in al1 the measured performance metrics than the HTYL applications.

From Tables 6.7 and 6.8 the results show that the non-loaded HTML application

performs better than the loaded HTML application on average by 7.6% on the rounds

scrvcd, 7.7% Icss bytes on the total throughput and has a round trip time that is 26%

les. These results were e-upected since there was additional load placed on the server

to sort and change the data, resulting in poorer performance. This was not observed

in the test taken in Calgary, due to the poor network performance when the data was

collecteri as shown above.

From these results. we can see that the XML application is able to outperform

the coniparable HTML application, Even though the XML application is served 70%

morc rounds, it is able to send 4% lcss total bytes of throughput and have a round

trip time that is on average 40% less.

6.5 Winnipeg Results Applications 2

These results were coiiected on June 21&, 2000, with ail tests tirnes being indi-

cated in Central Standard Time. Tables 1&12 show the performance resuhs of the

HTML/XML Application 2: with the client and server both located in Winnipeg.

Table 6.10: Server Performance HTML - Application 2 (ciient in Winnipeg)

The resuits from Tables 6.10, 6.11, and 6.12 show simiiar 6ndings of those of

Tables 6.4, 6.& and 6.6, collected when the client was located in Calgary. They show

on average that the additionally loaded HTML application was aide to serve 3148 or

66% more rounds then the XML applications.

Also on average the results show that the additionally loaded HTML application

liad a total average throughput that is 863274 bytes or 3% more than the XML

applications. This iç due to the greater number of rounds of the applications that

Table 6.11: Server Performance HTML - Application 2 (with additionai server side
processing and client in Winnipeg)

1

Connections served
per second
Total throughput
(Bytes)
T hroughput
(Bytes/second)
Round Trip Time
(Scconds)
Total Errors
Total Rounds

Test 4
(12:50am)
27.0

4833366

161119.9

0.893

O
8090

Variancc

1.4

--

0.01 1

-

Variance

0.81

-

. -

O.ûû3

-

Test 1
(12:lOam)

26.5

47426428

158054.8

0.900

O
7938

Test 4
(lam)
37.0

483301185

L61101.6

0.889

O
8089

Connections serverl
per second
Totd t hroughpu t
(Bytes)
Throughput
(Bytes/second)
Round Trip Time
(Seconds)
Total Errors
Total Rounds

Test 2
(12:lnam)

27.2

48643946

162146.5

0.919

O
8143

Test 3
(12:45am)

27.2

48521590

161738.6

0.905

O
8121

Tcst 3
(1255am)

26.9

48129434

160431.4

0.929

O
8055

Test 1
(12:20am)

25.0

44700489

149001.6

0.701

1
7483

Test 2
(12:25arn)

27.2

48579400

162931.3

0.897

1
8131

Table 6.12: Seni
I

Connections served C--
Throughput F

!r Perform
Test 1

(1 2 4
32.5

46446809

154822.7

l.i?41

nce XML - Application 2 (client in Winnipeg)
Test 2 1 Test 3 1 Test 4 11 Variance

were served.

The round trip time of the additionally loaded HTML application, on average, is

0.660 seconds or 44% less time to serve a round of the application.

€rom these results we can see that the HTML application is able to outperforrn

the comparable XML application. The HTML application is serveci 66% more rounds,

but it sends 3% more total bytes of throughput and has a roiind trip time that is

on average 44% les. Another interesting observation is the variance for co~ect ions

served per second and round trip tiuie (in seconds) for the data with the clieut locatecl

in Winnipeg is smaller than the data collected with the ciicnt in Calgary. This is

cxpcctcd since the data collected in Winnipeg has less hops chan the data collectcd

in Calgary. Since the duration of the test was only five minutes, the amount of

data collected was not enough for a realistic variance calcdation to be made for

the performance metrics of total throughput (bytes), throughput (bytes/second), and

total rounds. Therefore these variance values are not included since they do not

reprmnt a steady state value.

Chapter 7

Explanat ion of Results

7.1 Introduction

To clearly see why the XML version of Application 1 outperforms the HTML

application we have to look a t the file size of certain iterations of the application.

Tables 13 and 14 are used to show the 6le ske of Application 1 and the breakup of

the file size by the number of elements returned (a single table of data or each vehicle

represents an element). The differences between the HTML and XML files size are

shown in Table 15: for Application 1.

To take a closer look a t why the XML version of Application 2 does so poorly with

respect to its HTML coiinterpart, we took a look a t the file size of the comparable

XIVIL and HTML applications. Tables 16 and 17 show the Ne size of the HTML

and XML versiou of Application 2 respectively, where an element in these tables is

represented by a single row in the table of Appücation 2. While Table 18 represents

the difference betmeen the HTML and XML files size for Application 2.

7.2 Application 1

Tables 7.1 and 7.2 are a breakdown of the file size of thc HTML and XML A p

plication 1 reçpectively, for a single client request. These tables are intended tu show

the actual data that is requested from the semer. Table 7.3 is then used to show the

difference between the comparable HTML and XML application being transferred.

Table 7.1: Application 1 - HTML File Size
Nuniber of 1 Fonn (bytes) 1 HTML File 1 Total (bytes) (
Elements

4532
1896 8409

Table 7.2: Application 1 - XML File Size
r Number of l Form +XSL File (,XilL File (Total (bytes) [

From the difference shown in Table 7.3 the XJML application is larger than the

HTML application when the numbers of elements sent are small. But as the number

Application 1 Table 7.3: Difference in HTML File Size as compared with XML

of elements increased, the data for the XML application is smaller than that of the

HTML application. This is show in Table 7.3, when the XML application reaches

12 elernents, the served XML application is 329 bytes l e s than it HTML counterpart.

This is the explmation for why the , W L application outperforms the HTML

application. The reason for a srnaller fie size is the fact that with more elements

bcing rcqucsted the formatting data for the XML filc is constant. While for the

HTML files the formatting data is dependent on the number of elements, as more

elements are requested the larger t h e file becomes, due to the repeated forrnatting

data. Even with the tagging that is required on the XML file that is not present in

HTML, XML applications can be smaller than the comparable HTML application.

The smaller the files size the better the performance on the server side in addition

to creating less uetwork traûic, since l e s cesources are needed in the creation and

scrving of the ,KML application. Anothcr benefit of Xb& is that the XSL filc is

static and does not change thecefore it can be cacheci by the server for faster access.

Also better network performance is observed Eiom the malier round trip times that

Nurnber of Elements
1
5
9
12
14

Difference (bytes)
-5156
-3328
-1660
329
741

are required to server the ,WL application. This shows that a highly stylied Web

application can have better performance by using XML and XSL, as compared with

HTML.

7.3 Application - 2

Tables 7.4 and 7.5 are a breakdowu of the file size of the HTML and XML Ap

plication 2 respectively, for a single client request. These tables are intended to show

the actual data that is requested from the server. Table 7.6 is then used to show the

difference between the comparable ATML and XML application being transferred.

Table 7.4: Application 2 - HTML File Size
Number of Form (bytes) HTML File Total (bytes)
Elements (bytes)

1 732 1922 3654

As show by Table 7.6 the file size of the XML application is larger than the

comparable HTML application for aU cases. This is due to the tagging that is required

in the creation of the XML application and the fact that a separate XSL 6ie cannot

benefit from repeated formatting tagging, as seen in Application 1. Thetefore the

XhIL application results in a larger file size for al1 cases.

Elements

4486 1757 6243

This chapter shows the results of how XML and 'YSL were used to improve the

Table 7.6: Difference in HTML File Size as compared with XML Application 2

performance of XML based applications. The performance benefit as a result of sep

Xumber of Elements
1
7
15
20
27

aration of the display tags Erom the data content. This generally results in smaller

Difference (bytes)
-2223
-2589
-3077
-3382
-3809

XML application file size for Application 1, the highly stylized Web content appli-

cation, as compared with the HTML application. Due to the fact that XSL can be

used to repeat aU the display tags only once, while with HTML the display tags are

required for each data element. But for non-highly stylized Web content, Application

2, the XblL application performs poorly due to the fact that the created application

is larger in size. This results from the fact that, there is not much formatting data

that can benefit from a separate styling file.

By using XML, Web application can also be created with extra functionality that

cannot be done using HTML. This functionality includes scripthg sent to the client

that can manipulate the data on the client's side. This can result in less network

traffic. and rcduccd the load placcd on the server.

Chapter 8

Discussion

8.1 Introduction

In this chapter we will look at the advantages that XML has over HTML, and the

problems that can be solved by using XML. In addition to how XML can be used as

a interchange technology between serven.

8.2 Why Use XML?

HTML is the most excepted markup language on the W V , the question is why

do we need a new markup language for the WWW? This question c m be answered

by stating the problems that are faced when using HTML on the WWW today. The

problerns with HTML are:

0 Broken Iinks - Since liiks in a web page are usually changing. Web

rnasters are required to find these links on al1 HTML pages and change

each link manually. This can cause required changes to be missed and

broken Iinks.

0 Static tags - When using HTML developers can't define their own tags

to represent content. This leads to HTML extensions that are not stan-

dard or requires approval by W3C. Which l d s to browser wars, where

browsers having different ta@. This can cause unreadable documents or

require the creation of multiple documents to make them viewable by

differetit browsers.

Structure - HTML documents do not have any structure to describe

the hierarchy and objcct representation of data in a document. Making

searching tirrie consuming because searching is limited to the Full text,

plus navigation and manipulation of documents difficult.

Content description - HTML documents describe how the document

should look and not what the document contains. This results in topic

çeardies corning up with hits that are tiot related with the topic.

SpeciaIized/Intemational charactefi - With HTML there is a lack of

support for specialized and international charactem. These are the char-

actecs required 2 or more bytes and those used by the science community

[or formulae.

Reusability - HTML documents make it difficult to reuse the informa-

tiou. Since data for Web publishing, prhted media, and data storage

rcquires an HTML document be reformattcd.

Data interchange - With HTML data interchange is difficult because the

data tags are used to describe how the data looks, making parsing data in

an HTML document difficuit. HTML is also an unreliable format to use

since there is no way to verify the received document.

The problem with HTML makes -y for a new kind of markup language, this

is where XML fits in. The introduction of XML is meant to add more functionality

to the W i W . in addition to solving the problems faced by HTML today. Many

think that XML is a replacement for HThiL; this statement is only partially tme.

Thesc two markup languages should be thought as being complementary, since they

are designed for different purpcses. With HThiIL being a method to display the data

and XML used to describe and structure the data. Therefore ,X.ML should not be

thought as a replacement for HTML, but XML can be thought as a way to solve the

shortcomings of HTML and add more fiinctionality to the L M .

O Broken liriks - By using Xh4L links c m be defined through an aliases

variable. This variable is then used to describc the link throughout thc

! M L document. When the link changes the web master will only need

to change the variable value and dl links in the document will be change.

similar to a constant variable in m a t programming languages.

Static Tags - In XML tags are definecl by the developer and are not

rcquired to be static, This allows an XML capable browser the ability

t o view the document even though the developers define their own tags.

.Uowing for browser independent documents to be created and creation

of unique tags that better represent the documents without requiring the

tags be approved by the W3C.

a Structure - Al1 XML documents have structure defined by the devel-

oper. S t mc tured documents allows for quicker searches because the entire

documents does not have to be searched. Structure allows for easier c r e

ation of document maps making it faster to navigate the document. Plus

manipulation of documents become easier, since the data now has a hier-

archy and object representation making moving or changing of data in a

page an easy task.

Content description - With HTML, the ta@ are useci to describe how

data should be rendered by the computer, this is meant as a method for

iuteractions between humtuiu and computers. Therefore tags in HTML do

tiot describe the data in an HTML document, but rather how the data

should bc displayed. Whereas in XML the tags arc used to desccibc the

data, thus giving meaning to an XML document. This makes XhlL doc-

uments understandable for cornputer to human interaction and computer

to compiiter interaction, while still retaining the ability to interpret and

displaying of the information. This allows for more accurate searches to

be performed since the tags will describe the data and can be used to

better the search.

O Specialized/lntemational characters - With XML, data can be described

using different encoding declarations. This allowing for XML to be wed as

a format for different encoding schemes to define character formats or lan-

pages. Some examples are Chernical Markup Longuage (CU) and the

Mathematical Markup Language (MML) written using XML for chemists

and rnathernaticians to describe the cornplex c&aracten and formulas.

Reusability - With XML, data and display ioformation are separate.

When a user wants to display their information on a different medium tbey

r~ould apply a differcnt style sheet to their XML document. With HTBIL,

each medium that a user wants to display their information requires them

to reformat or recreate the HTML document.

O Data interchange - With ,Y1\11L data interchange is a simple task, since

al1 W L documcnts arc self-describing, making them understandable by

both cornputer to computer interaction and computer to human inter-

action. A Document Type Definition (DTD) can be used to check for

syntax, structure, and validate an XML document. This makes it easier

for developers to create applications to exchange XML document.

8.3 XML Application File Size

k ing XML to structure and define data requires tagging that can increase the data's

file size. But the added bytes used to tag the application are dependent on the

document structure and tagging name used by the author. Therefore the file size of

an XML file varies and is dependent on the author's implementation of the da t a For

example lets take a look at an example of a single car representation using the XML

tagging format for Application 1, shown below.

<.?A version= "l.On?>
<CARLIST>

<CAR>
<MANUFACTURER> Jaguar </MANUFACTURER>

The !ML tagging format for Application 1 shows how each data eicmcnt is tagged.

With additional cars being represented by additional <CAR> . . . </CAR> using

the tagging scheme shown above. The creation using this tagging format is pretty

generous in the tagging name and styb used.

But the car data could have as easily been represented using more attribute rep

resentation rather than each data item having its own elernent, as shown as foiiows:

c'!A version= "l.W'?>
<CARLIST>

<CAR MANUFACTURER= "Jaguar"

This representation shows the same data being displayed with the same structure

and taggîng names used to describe the data. But the data is now represented using

attributes, by doing this, one can see that the XML file size is reduced, since most

of thc closing tags arc climinated. With this reprcscntation thc functiondity of the

S M L data is not affected because al1 that can be accomplished with the previous

implementation is still possible with this implernentation. The only thing that is

affected is that the author has to create a different style sheet to represent this XML

data.

Therefore XML file size is really relative to the author's implementation oE the

data, since different implementation can stili have the same structure and Eunetion-

ality while having varying file sizc, But if applications are implemented using HTML

the tagging format is fixed and there is generally only one way to tag data. Mak-

ing HTML üie size more predictable and performance easier to determine. While

XML application file size detennination is difficult due to the fact that each authors

implementation can be different, evea if the application has the same appearance,

functionality. structure and tagging name format.

Server Communication Using XML

The Web is observeci as a client-server system, were a client would make a request

to the server and the server returns information on the server or queries a database.

But the web server cannot requests another web secver for help in ful6lling the client's

reqtiest. Using XML enables web applications to be created such that a web Servet can

communicate with another web server for information or provide a service. Allowing

for complex applications to be created €rom the current setup, with XML as the

technology to provide a layer that cm connect different systems. A list of techniques

using XML for server-to-server communication is given beiiow, which includes: XML-

RPC, SOAP, Coin, WDDX, XiiOP, WebBroker, ICE, and KOML.

For server to server communication over a network we n d to fimt serialize the

data, scrialization is defined as "a process whereby a data term is structiired in a

simple one-dimensional format suitable for transport across the wire" [II] and its

inverse, dcseriiilization. What serializatioo gives us is the abiity to reduce platforrn

dependencies and make the transrnitted data l e s complex to manipulate.

Secialization of the data into XhlL gives us the abiity to cornmunicate simple or

complex data types over the Internet- S i c e the transmitted data is just text and can

be easily understood by all applications. The following is a list of methods in which

data can be serialized into XiiIL for Internet communication:

XML-RPC (XML Remote Procedurai Calling), allows serialization of

data for Intemet communication using HTTP. It is mpported by many

difierent implementations, where client/server side implementations in-

clude: Java, Perl, Tcl, ASP and PHP; client side on- implementation

iudude: Python, COM and AppleScript. -4 List of supported implemen-

tation dong with specifications can be found at (761.

r SOAP (Simple Object Access Protocol) is sirniiar to XMLRPC, but

makes improvernents on haw the data being sent is taged (hased on irsing

XIVIL scherna), allows for multi-reference of data (data detined once and

reference multiple times) and greater control of HTTP header, diowing

site administrators greater control of what can be done on the server. Et

also allows for multiple h c t i o n calls be treatcd as a single transaction.

This is not standard on XMLRPC but requires the user to implement

this capability themselves. The Intemet draft for SOAP can be found at

1771 -

Coin is anothcr seriahdon method tbat combines XML with Java. It's

a way to improve on Javabeans, which uses Java serialization. By using

Coins, it makes data less sensitive to changes and easier for exchange of

data between applications- Coin allows Linking therefore Coins can be

retutned ta an XML document with an externai teference, which can't be

doue i~sing Javabeans, since it has no linking capabilities. By using X M L

RPC the interface for communications is static, but Coin does not have

this limitation that allows for data elements to be added without updating

al1 dependent programs. More information on Coin can be found at its

homepage [78].

WDDX (Web Distributed Data Exchange), it a method to commu-

nicatc data structures betwm programming languages or a standard

for language independent representatious of XML data. Aiiaire devel-

ops the se~alization/dese~alization modules, with supported implemen-

tation incliiding: JavaScript l x , ColdFusion 4.0, COM, Perl, Java and

PHP. WDDX is just a way to produce the data into XML object for corn-

munication and does not specify how the XML objects are tranuferred. It

only requires that it be posted to a web page that can access the XML

objcct. More information on WDDX can be found a t its homcpage (791.

XMOP (XhIL Metadata Object Persistence) is a proposed way to al-

low for COM. Java and CORBA to inter-operate by serialization that

does not tie it to a particular system object. With current intention to

makc XMOP complementary CO XiiL-RPC or SOAP. XMOP uses SODL

(Simple Object Definition Language) [BO], an XML DL DTD that allows

objects to be created such that they are compatible with the IDL's used

in COM and CORBA. More information on XMOP can be found at its

homepage [8 11.

FVcbBrokcr is a proposal method in which distributeci object computing

like COM and CORBA can be irnplemented on the Web. A submiçsion

made by DataChannel to W3C describing WebBroker can be found at

[83]. WebBroker is describeci as a method in which HTTP, XML and CRI

are used to define a software mode1 such that it will not be hampered by

incompatibles protocols when used over the Web, which is the case with

COM and CORBA.

ICE (Information and Content Exchange) Protocol defines a standard

method to allow websites to exchange structureci data using XML. ICE

is heing developed by the follawing companies: Adobe, CNET, Microsoft

Corporation, Rational Semiconductor, News Internet Services, Sun Mi-

crosystenis, Tribune Media Services, and Vignette Corporation. ICE d-

lows for automatic exchanging and updating of data between Web sites

without knowledgc of the rcmote Web sitcs structure. ICE is still in devcl-

opment, its homepage is found at [84] and ICE version 1 notes can found

at W3C notes at (851.

KOML (Koala Object Markup Language) is a method in which Java is

used to serialization/de-serialkation Java Objects into an XML document.

More information on WDDX can be found at its homepage [82].

The disadvantages of serialization/deserialization using XhfL is the additional

bandwidth and decrease speed. The additional bandwidth that is required is in the

form of tagging the data being sent in the creation of an X-ML document. The

slower speed involves the parsing and validating of the 'YML data received, before

it can be passed onto the application. T6is requirw the servcr to do more work on

each request that is received compared with the traditional communications methods

COM/CORBA.

The traditional server to server communications using COM or CORBA are not

really suited for the Internet, since it requires a degree of dependency and or platform

related issues. This is where XML and the related techniques for yerialization/de-

serialization of data can be used to Hl in the gaps or create new methods to allow

scrvcrs to comrnunicate ovcr the Intemct.

8.5 Summary

In this chapter we looked at why we need XML and some advantages that XML

lias over HTML. Also a discussion on server to server communications using lYiML

was given, were traditional rnethods of COM or CORBA are not suited for the use

on the Internet.

Chapter 9

Conclusion and Recommendat ions

9.1 Conclusion

-4 rnethod was shown on how applications could be measiired on the WVW iising

WebLoad. CVebLoad is just one of many programs that are available in which testiag

of tliis type cari be perforrned. The performance measures section found in this paper

described nurnerous additional ideas and methods in which the R i V performance

can be measured.

A general overview of content-delivery technology, along with a discussion on

M L syntLx and extensions were given. This inciuded server and client side content

creatian technology along with how to ilse XML ta create these applications. XML

\vas aiso explained in how it can benefit content creation on the Web, which includes

server to server communication and the advantages that is has over HTML.

The test results show that XML/XSL has a performance benefit that can be

observed in applications that are highly stylized. This is because with XML the

style that is applied to the data is separateci fiom the data and is repeated once

for all elements, compared to HTML where al1 data elements contain the style tags.

The tests show that using an XSL styling sheet to avoid repeating the styling tags,

compensates for the tagging that is required in creating an XML document. The

performance benefits of which include faster transfers? more rounds and less data

being sent. In addition to having smaller files l e s semer resources are used to create

an XML application and since the XSL file is static it cari be cached for faster access.

Another performance benefit that 'DIIL has is the ability to manipulate the data

on the client sidc, which in most cases is not possible with HTML. This helps the

client in avoiding another trip to the server for information that the client has aiready

received. There was really no fair way in testing for this benefit but it is worth

rnentioning since the additional scripting does not affect the file size of the XML

application that miich. Even with the extra scripting, Application I file sizes are

generally small and this helps the client in avoiding another trip to the server.

For data that is not heavily styii~ed, using XML/XSL does not benefit in tenns

of performance. For non-highly stylized application !OIL applications are largcr,

resulting in poor performance in terms of the semer and network. This is the remit

of tagging that is needed to create an XML document that is not required with the

comparable HTML applications.

With XML the tagging of data is done to describe and give the data structure,

this tagging results in a larger Me. But the results hom this paper show that Web

appiicatious that are highly stylized can benefit Erom using .WL/XSL to arid more

functionality, in addition to smaller applications 6ie size whcn there is more data to

represent .

9.2 Recommendations

Rccommendations for future work on measuring XML performance includes col-

lecting larger amount of performance data so that modeling can be done. The col-

lected data should include a more detailed description of the semer and network

resources. This allows for more accurate input parameten for the model: which could

be simiilated using OPNET.

Bibliography

flj A. Adams, J. Mahdavi, M. Mathis, and V. Paxson, "Creating a Scalable Archi-
tecture for Internet Measurement",
ht t p:// ww w.psc.edu/networking/papen/nimi.html

[2] -4. Adams, J, Mahdavi, M. Mathis, and V. Paxson, "An Architecture for Large-
Scde Interriet Measurement", LEEE Communications 36(8), pp 48-54, August
1998.

[3] d. M. Almeida, V. Almeida, and D. J. Yates, "Measuring the Behavior of a World-
Wicle Weh ServeJ', Seventh IFIP Conference on High Performance Networking
(HPY), April. 1997

[4j R. .inderson, >II. Birbeck, M. Kay, S. Livingstone, B. Loesgen, D. Martin, S.
Ivlohr, K. Ozu, B. Peat, J. Pinnock, P. Stark, and K. WiUiams, Professional
M L . Wrox Press, 2000.

[5] M. .Witt and C. Williamson, "Intenet Web Semer: Workload Characterization
and Performance Implicationsn, IEEE/ACM Transactions on Networking Vol. 5.
?JO. 5. pp 631-645? 1997.

[6] S. L. Borthick, "Why \Ve Can't Compare ISP Performance-Yet" : Business Com-
munication Review, Vol. 28, hm. 9, pp. 35-40, Sept. 1998.

[il D. Cintron, "Fast Track Web Programming: A programmer's Guide to Mastering
LVeb Technologies", New York, NY: Wiley Cornputer Publishing, 1999.

[8j PL. Homer, XhIL IE5. Acocks Green, Birmingham: Wrox Press, 1999.

[9] J. R. Lay, "Keeping the 4001b. Gorilla at Bay: Optimizing Web Performance".
ht tp://eunuch.ddg.com/LIS/CyberHornsS96/j.nibarth-lay/PAPER.html

[IO] M. Leventhal, D. Lewis, and M. Fuchs, Designing XML Internet Applications.
C'pper Saddle River, NJ: Prentice H d , 1998.

[Il] R. E. McGrath, "Measuring the Performance of HTTP Daemonsn. NCSA? 1996.
h t t p : / / ~ . n c s a . u i u c . e d u / I n f o m a t i o n S ~ ~ h t m 1

[12] D. A. Menasce and V. A. F. h e i d a , Capacity Planning for Web Performance
Metrics, Models, and Methods. Upper Saddle River, NJ: Prentice Hall, 1998.

(131 W. J. Pardi, ,Yh/IL in Action. Redmond, Washington: Microsoft Press, 1999.

[14] 1;. Slothouber, A Mode1 of Web Server Performance.
ht tp://louv?c.biap.com/white-papen/performance/overvïew.html

[l5] A. Smith, "Web performance metrics for online journals: monitoring and im-
proving accessibility" .
http://www.doe.gov/htd/infonim98/apsmithhhtml

[16] Cross-Industry Working Team, "Customer View of Interne t Service Performance:
Measurement Methodology and Metrics", Sept. 1998.
ht tp://www.xiwt.org/documcnts/documcnts.html

[17] "IP Performance Metric Draft and Request For Cornments Pagen,
http://www.ietf.org/html.charters/ippm-charter.html

[18] "IPPM Documents Pagen, http://~.advanced.org/IPPM/docs.html

[20] "Freqtiently Asked Questions about XMLn ,
http://www.ucc.ie/xml/#FAQ-VALIDWF

[L 11 "ISO 639 language code page", http://siinsite.berkeley.edii/amher/iso-639.html

[22] "IETF7s RFC 1766 language code http://www.ietf.org/rfc/rfcl766.txt

[23] "-ipache Web Semer homepage", http://xml.apache.org

[24] "Schema part 1: structures ", http://m.w3.org/TR/mlscherna-1/

['2S] "Schema part 2: data typesn, http://www.w3.org/TR/mlschema-2/

[26] "W3C XSL homepage"? http://www.w3.org/Style/XSL/

[-71 "DSSSL specificationn ,
http://metdab.unc.edu/pub/sun-info/st-/

(281 "CSS homepage", http://www.w3.org/Style/CSS/

[31] "Spice submission pagen,
http://www.w3.org/TR/1998/MOTEspicel9980123.htrnl

[32] "DOM level 1 recommendationn, http://t~ww.w3.org/TR/REGDO.U[-Level-l/

[33] ''DOM level 2 candidate recommendation" ,
ht t p://www. w3.org/TR/DOM-Level-2/

[36] "XML Linking Language (XLink)", http://www.w3.org/TR/xl'mk/

[37] 'XML Pointer Language (XPointer)" , http://m.w3.org/TR/xptr

[38] "Web Performance Meamring Tools Article",
http://webreview.com/wr/pub/1999/01/15/feature/index3.html

[39] "Web testing cesource pagen, http://www.softw~~eqatest.com/qatwebl.bt

[40] "Web Load Generator and halysis Software by Radview Inc.",
http://www.radview.com/

(411 "QALoad Web Load Generator and Analysis Software",
http://www.cornp~iware.com/prod~~cts/auto/

[42] "Forwast, Web Load Generator and Analysis Software",
ht tp://www.facilita.co.uk/

[43] 'Portent. Web Load Generator and Analysis Software",
http://www.loadtesting.com/

[4 4 ' LoadRunner, We b Load Generator and .L\nalysis Software",
lit tp://www.merc-int.com/products/loaclmguide.html

(451 VebART, Web Load Generator and Analysis Software",
http://www.oclc.org/webart/

[4G] "Socrates, Web Load Generator and Analysis Software",
http://www.jump.nct/ bpav/socrates/indcx.html

[LL?] iiWcbL~üd by Platinum, Wcb Load Gcncrator and Analysis Software" ,
htt p://www. plat inum.com/products/

[48] "WebSizr, Web Load Generator and Analysis Software",
http://www. technovations.com/home.htm

j491 .'Performance Studio, Web Load Generator and Anaiysis Softwaren,
http://www.rational.com/products/index.jtmpl

[XI] LPTEST, Web Load Generator and Anaiysis Software",
http://~.rswsoftware.com/

[fil] "Silk Performer, Web Load Generator and Analysis Software",
http://www.segue.com/

[fi21 "TnetLoad, Web Load Generator and halysis Software",
http://support.microsoft.com/support/DNA/Bundles/QA/loadtest.asp

[53] V e b Application Stress Test Tool", http://homer.rte.microsoft.com/

[54] "-4 Java-based load simulation and response measurement tool"
ht tp://www .binevolve.com/velometer/index.vep

[551 "HTML Web Performance Test Page",
ht tp://hjs.geol.uib.no/html/htmItest/t15506.htrn

(561 "Surveyor Web I'vIeasurernent Projectn , ht tp://io.advanced.org/surveyor/

1571 "Unix and NT systems resource usage collecter",
http://www.bmc.com/products/indcx.html

[û8] "free software used to meamire and analyze network performance",
http://www.caida.org/

[59] "Red-time Applications Performance System (RAPS), tool to monitor applica-
tions, secvers and networks", http://www.foglight.com/

[60] "WebStone, Web Server Benchmarking Tool" ,
hctp://www.mindcraft.com/webstone/

1611 "SpecWeb96, Web Semer Benchmarking Tool",
ht t p://www,spec.org/osg/web96/

[62] .'WcbBcnch, Web Scrver Benchmarking Tool" ,
http://wwwl.zdnet.com/zdbop/webbench/webbench.html

[63] "Basclinc, Systcm resource measurement tooi" , http://www.teamqucst.com/

[64] "SE Toolkit is a Unix perfomance monitor",
ht tp://www.sun.com/96OGOl/~0l~mn~/adrian/se2.5.html

[65] "Cisco Systems Homepage", http://www.cisco.com/

[66] "Keynote Internet performance measurement, diagnostic, and load testing ser-
vices" http://www.keynote.corn/

[67] "Netmetrix, network measurement tool" , http://openview.hp.com/

[68] "INS Enterprise Pro is a network monitoring service", http://www.ins.com/

[69] "Simple Ketwork iktanagement Protocol (SNMP) tools",
http://www.dart.com/powertcp/e/SNMPtrap.html

[XI] "Visual UpTime, network measurement tool",
http://www.visualnetworks.com/welcome.htm

[il] Virtual Reality Modeling Laquage homepage", http://www.vmil.org/

[i2] G. Alwang! " Web Semers" , PC Magazine, May 5, 1998.
http://www.zdnet.com/pcmag/features/webse~er98/intro.html

('731 "Cold Fusionn, ht tp : / /m .a l l a i re . com/produc t s / co ld fu

174) " Xetcraft" , http://www.netcraFt.com/survey/

1731 " PERL Database Support", http://www.perl.com/reference/query.cgi?datab~~e+indw

[76] %ML-RPC homepage", http://www.xmlrpc.com/

[ÏÏ] "SOM" internet draft",
http://mscin.microsoft.com/xmI/general/soapspec-vl.asp

(781 "Coin homepage": http://~.~l.com/coins/index.html

[79] " WDDX homepage", http://www.wddx.org/

[SOI "SODL homepage", http://jabr.ne.mediaone.net/documents/sod.htm

[81] " SMOP homepage", http://jabr.ne.mediaone.net/docurnents/xmop.htm

[82] "KOML homepage", http://m.inna.fr/koala/XbiL/çe~alization/

[83] " WebBroker Submission to W 3 C ,
http://www.w3.org/TR/1998/NOTEwebbroker-l998O511/

(841 " ICE homepagen, http://www.idealliance.org/ice/

[85] " ICE W3C notes", http://www.w3.org/TR/NOTE-ice.htm1

