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Abstract

Multivariate data collected over time on the same experimental unit, referred to
as multivariate longitudinal data, are typical of many agricultural, biological, clinical
and medical studies. One way to account for the correlations that exist both within
and across time is to express the variance-covariance matrix as the Kronecker product
of two matrices. These matrices, denoted by A and 2, reflect the characteristic and
time dimensions underlying multivariate longitudinal data. The purpose of this thesis is
to investigate the asymptotic relative efficiency (ARE) of hypothesis tests in the linear
model for multivariate longitudinal data, evaluated through the trace asymptotic relative

efficiency (TARE) and curvature asymptotic relative efficiency (CARE).

The gain in efficiency from exploiting a Kronecker product covariance structure
when it is appropriate is investigated. To estimate the TARE and CARE, a Monte-
carlo simulation study is conducted. The loss of efficiency from imposing a Kronecker
product model when it is not appropriate is also considered. Using a class of non-
Kronecker product covariance matrices and an index, which quantifies how far a given
matrix departs from Kronecker product structure, a Monte-carlo simulation study is
conducted. Ordinary least squares and generalised least squares procedures were also

compared under a Kronecker product model.

For the designs and covariance matrices considered, the gain in efficiency from
exploiting the Kronecker product covariance structure is most pronounced when there is
high correlation across time. For the class of non-Kronecker product covariance matrices
defined, a noticeable loss of efficiency occurs when the covariance matrix is far from
Kronecker product structure, in particular when there is a moderate departure from the
null hypothesis under consideration. The use of ordinary least squares, which ignores
cross-sectional and longitudinal correlations, is shown to be inefficient, especially when

these correlations are high in absolute value.
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Executive summary

The multivariate longitudinal design, in which multiple characteristics are measured
over time on the same experimental unit, is typical of many agricultural, biological,
clinical and medical studies. For example, in a medical study, measurements on systolic
blood pressure and diastolic blood pressure may be taken on each subject at a number
of points in time. In such studies, it is important to account for both cross-sectional and
longitudinal correlations. In some problems, it may be reasonable to express the within-
subject variance-covariance matrix as the Kronecker product of two matrices, that is,
Yo = AR The matrices A and 2 reflect the characteristic and time dimensions
underlying multivariate longitudinal data. Implicit in such a representation is that the
covariance matrix for the different characteristics measured at each time point is constant
with respect to time, and the correlation matrix for the longitudinal measurements on a

given characteristic is the same for all characteristics.

The purpose of this thesis is to investigate the gain from exploiting the Kronecker
product structure when it is appropriate. The converse of this situation is also considered,
that is, the loss from imposing the Kronecker product structure when it is not appropri-
ate. This will be accomplished by investigating the asymptotic relative efficiency (ARE)
of hypothesis tests for the mean vector in the linear model for multivariate longitudinal
data. For the purpose of this thesis, efficiency will be evaluated through the trace asymp-
totic relative efficiency (TARE) and curvature asymptotic relative efficiency(CARE), two
measures of asymptotic relative efficiency. They can be applied to compare competing
test statistics with limiting non-central chi-square distributions through a suitable Pit-

man alternative.

Chapter 2 reviews the existing literature on areas that are relevant to this dis-
sertation. This includes the linear model for correlated data and estimation thereof,
models for multivariate longitudinal data and the comparison of tests both in the one
parameter and multi-parameter testing problem. Chapter 3 presents a detailed review
of existing results that are useful in this dissertation. These include estimation in the

linear model for correlated data assuming normally distributed errors using maximum



likelihood and restricted maximum likelihood estimation. Measuring test efficiency in the
one parameter case and the concept of Pitman efficiency are also presented, including
an example of measuring test efficiency in the one parameter case. Test efficiency in the

multi-parameter case is reviewed and an example illustrated using two parameters.

Chapter 5 focuses on the potential gain in efficiency that would result from ex-
ploiting a Kronecker structured within-subject variance-covariance matrix when it is
appropriate. This is done by evaluating the efficiency of a test based on a completely un-
structured covariance matrix relative to one based on a Kronecker structured covariance
matrix. Using the TARE and CARE to estimate efficiency, a Monte-carlo simulation
study is conducted. A second goal of Chapter 5 is to describe a preliminary likelihood
ratio test of the hypothesis H, : ¥, = A ® Q versus H, : ¥, = X,, where ¥, is an
arbitrary covariance matrix. From the simulation study, efficiency is demonstrated to be
a function of the covariance parameters defining A and Q. For the design and covariance
matrices considered, a gain in efficiency occurs from exploiting the Kronecker product
structure. The parameter defining €2 was found to have the greatest impact on efficiency.
For testing the hypotheses H, : ¥, = A ®  versus H, : ¥, = ¥,, a likelihood ratio test
is incorporated and applied to data on two measures of lung function capacity recorded

on subjects in two groups over five years.

Chapter 6 investigates the converse of the situation considered in Chapter 5; specif-
ically, the loss of efficiency from imposing a Kronecker structured covariance matrix in
hypothesis testing when it is not appropriate is investigated. To accomplish this, a class
of matrices with some degree of departure from the Kronecker product model is intro-
duced. A measure, called the Kronecker product deviation index, is defined. It is used
to quantify how far a given variance-covariance matrix departs from Kronecker product
structure. A Monte-carlo simulation study using this class of covariance matrices is per-
formed to compare the impact of the Kronecker product deviation index on a test based
on imposing a Kronecker product structure, relative to one based on a unstructured co-
variance matrix. For the design and class of non-Kronecker product covariance matrices

considered, a loss of efficiency occurs from imposing the Kronecker product structure.




The power of the test under an assumed Kronecker product model was consistently lower
than that of the test based on a unstructured covariance matrix. Also, the difference in
power between the two tests was found to increase as the Kronecker product deviation

index increased.

Chapter 4 compares the efficiency of ordinary least squares which ignores both
cross-sectional and longitudinal correlations to generalised least squares which utilises
the within-subject variance-covariance matrix assumed to be of the Kronecker product
form. To this end, the efficiency of a test procedure that ignores correlation relative to
one that models correlation as the Kronecker product of two matrices is evaluated using
the TARE and CARE. Results are presented for two designs (growth curve and repeated
measures analysis of variance) and two covariance structures for 2 (compound symmetry
and first-order autoregressive). For the designs and covariance matrices considered, a loss
of efficiency occurs from ignoring the two sources of correlation. As expected, the loss
is greatest when the correlations between the characteristics and between longitudinal

measurements on a given characteristic are high in absolute value.

The primary advantage of using the Kronecker product approach to model cor-
relation in multivariate longitudinal data is that it takes into account and separates
cross-sectional and longitudinal correlations. It aliows one to study the differences in
the way characteristics change over time for subjects classified into different groups while
simultaneously incorporating correlations that arise both within and across time. Results
obtained in this dissertation emphasize the importance of appropriately modelling the
variance-covariance matrix. For example, if the underiying Kronecker product covariance
structure is exploited, a gain in efficiency will occur in hypothesis testing. Conversely,
imposing the Kronecker product covariance structure will result in a loss of efficiency.
The loss is most noticeable when the covariance matrix is far from Kronecker product
structure, in particular when there is a moderate departure from the null hypothesis.
Failing to model correlations that exist both within and across time is shown to be sta-
tistically less efficient than if one appropriately accounts for these correlations, especially

when the cross-sectional and longitudinal correlations have high absolute values.
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Introduction

1.1 Introduction

Suppose we have data collected on C characteristics over T occasions for [ indi-
viduals who may be divided into G groups. The analysis of these kind of data, known
as multivariate longitudinal data, assuming a Kronecker structured covariance matrix, is
considered. In general, multivariate longitudinal data models are concerned with data
recorded on several occasions, on individuals receiving different treatments or divided
into different classes, such that each record consists of measurements made on a number
of response variables or characteristics. The term “multivariate longitudinal” points to
the fact that the data are multivariate in the direction of distinct responses, as well as
longitudinal. Longitudinal data is defined broadly as data arising from designs in which
the response of each unit is observed on two or more occasions. In this context, repeated
measures designs, cross-over designs and growth-curve designs are considered variations

of the basic longitudinal design.

The longitudinal design is very useful because a wide variety of scientific questions
can only be addressed by utilising longitudinal data, including questions concerning the
processes of development and aging. For this reason, it is widely used in medical and

social science research. This research was motivated by an interest in finding solutions to
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commonly occuring problems in the analysis of quality of life data, specifically data aris-
ing from cancer clinical trials. Useful references include Olshewski and Schumacher [47];
Zwinderman {82]; Tandon [61]; Schumacher and Olschewski [56]; Cox et al [9] and Hop-
wood, Stephens and Machin [23].

If the outcome variable is univariate and approximately normally distributed, and
the data are balanced and complete, a large class of linear models are available and data
analysis is relatively straightforward. When the data are unbalanced and incomplete,
as is often the case when dealing with human subjects, most analysis techniques in-
volve an individual formulation of multivariate linear models which can explore tracking
of individual characteristics such as the random effects models proposed by Laird and
Ware [34] or the structured covariance matrix proposed by Jennrich and Schluchter [25].
Recently, the seemingly unrelated regression model has been applied to longitudinal data,

as proposed by Park and Woolson [49].

In many longitudinal studies, it is often of interest to collect a number of differ-
ent characteristics on each of several occasions. That is, for each individual, multiple
measurements are recorded at each time point instead of one. Krzanowski and Mar-
riott [30] note that when individuals are followed up over a period of time, the cost of
data collection is almost unaffected by the number of measurements taken at each time.
An example is given in Sy, Taylor and Cumberland [60], who describe the relationship
between two important immunologic measurements in HIV/AIDS research, namely, CD4
and beta-2-microglobulin. Both variables are measured longitudinally using data from
the Los Angeles section of the Multicenter AIDS Cohort study. The resulting data are
unique in that correlation arises in two ways: (i) the different characteristics recorded at

each time point, and (ii) the same characteristics measured on different occasions.

The techniques for analysing multivariate longitudinal data must in some way take
into account these two sources of correlation. However, when faced with multivariate
longitudinal data, most researchers tend to analyse each variable or characteristic that
has been measured over time separately. Apart from the issues raised by multiple testing,

this approach does not in any way take into account the correlation that may exist
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between the different variables on each occasion. For researchers interested in analysing
this type of longitudinal design from a multivariate perspective, using a model with a

Kronecker structured covariance matrix may provide a possible alternative.

Continous data from multivariate longitudinal data designs are sometimes analysed
using ordinary least squares. If different subjects are being measured at different times,
this might be a reasonable approach. However, when we have the same subjects being
measured over time, it is more realistic to assume that the observations within a subject
are correlated. The Kronecker product approach represents one way of modelling this
correlation. One major advantage of using this approach in the analysis of multivari-
ate longitudinal data is that it takes into account both cross-sectional and longitudinal
correlations. Hence, the model allows one to study the differences in the way C charac-
teristics change over time for subjects classified into different groups while simultaneously

incorporating correlations that arise both within and across time.

The Kronecker product model assumes that the within-subject variance-covariance
matrix can be expressed as the Kronecker product of two matrices. For the Kronecker
product covariance structure to be valid, we should be able to determine from the data
that the within-subject variance-covariance matrix can be modelled as the Kronecker
product of a C x C matrix and a T x T matrix. The C x C matrix represents the
covariance matrix between the C characteristics at each time point and is assumed to
remain constant over time. This covariance matrix captures the cross-sectional (and
consequently the multivariate) component of the data. The 7 x T matrix represents
the covariance matrix for each of the C characteristics measured on T occasions and is
assumed to remain constant for all C characteristics. This covariance matrix captures
the longitudinal component of the data. Additionally, homegeneity of the covariance

matrices across the levels of the between subjects or grouping factor is assumed.

The model can be written as y = (@ ® Ic ® X)\ + e, where © is the I x G between
subject design matrix for I subjects in G treatment groups; I¢ is the C x C identity
matrix; X is the T x p within subject design matrix where p represents the number of

columns in the design matrix; A is the pCG x 1 vector of unknown parameters and e
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is the error vector with covariance matrix ¥ = It ® ¥,, where I, is the I x I identity
matrix. 3, is the CT x CT within-subject variance-covariance matrix and takes the form
Y, =A®02; Ais the C x C covariance matrix for C dependent variables and Q is the
T x T covariance matrix for 7" repeated measures on each dependent variable. ¥, depends
on 7y and -y, the parameter vectors defining A and 2 respectively. If one does not assume
that the within-subject variance-covariance matrix has the Kronecker product structure,
another approach would be to let this matrix be an unstructured CT x CT matrix. Using
this approach, no restrictions are placed on the structure of the common within-subject

variance-covariance matrix and it need not be Kronecker product.

Galecki [18] states that one of the advantages of the Kronecker product approach is
that it simplifies computation in what might otherwise be a very difficult situation. Par-
tial derivatives, inversion and Cholesky decomposition of the overall variance-covariance
matrix are reduced to operations on factor specific matrices with smaller dimensions.
Other advantages to using the Kronecker product approach, as outlined by Galecki [18]

include:

1. clear and useful interpretation in terms of the contribution of the dimensions in-
volved (characteristics and time) to the overall within-subject variance-covariance

matrix,

[ QW)

reduction in number of covariance parameters that need to be estimated,

3. and an enrichment of the class of covariance structures available for modelling

multivariate longitudinal data.

1.2 Statement of the problem

In the context of multivariate longitudinal data, as in many other settings, one
is sometimes faced with the problem of comparing the relative performance of two (or
more) tests for testing some multi-parameter hypothesis of interest. For example, in a

growth curve setting involving two or more groups, one may wish to test for parallelism.
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In a repeated measures analysis of variance setting, one may wish to test for equality of
two or more treatment groups. If there are two or more tests available for testing the
null hypothesis of interest and one has information available on the relative performance
of the tests under consideration, then an informed decision can be made on which test

to use for the purpose of statistical inference.

Two criteria of asymptotic relative efficiency have been proposed by Woolson and
Sen [79] for the multi-parameter testing problem. The criteria are known as the CARE
(Curvature Asymptotic Relative Efficiency) and the TARE (Trace Asymptotic Relative
Efficiency). Both criteria may be applied for the comparison of competing test statistics,
each with limiting noncentral chi-square distributions utilising a suitable Pitman alterna-
tive. The criteria are products of a scalar adjustment function and a term involving the
noncentrality parameters. More specifically, the curvature asymptotic relative efficiency
is a function of the determinants of the matrices in the noncentrality parameters, while
the trace asymptotic relative efficiency is a function of the traces of the matrices in the

noncentrality parameters.

Woolson and Sen [79] give an application of these efficiency criteria to the multi-
variate one-sample location problem. The primary purpose of this research is to apply
these two measures of asymptotic relative efficiency to the multivariate longitudinal data
problem. Of concern in this work is the comparison of models that utilise the Kronecker
product approach to models that do not. Incorporating a test designed to test the null
hypothesis that the within-subject variance-covariance matrix has a Kronecker product
structure will be considered. An index that can be used to measure how far a given

variance-covariance matrix departs from Kronecker product will be presented.

1.3 Motivation

This research was motivated by the analysis of longitudinal data arising from quality
of life studies in cancer clinical trials. Most cancer treatments are palliative in nature

and patient’s quality of life is of primary concern. During the course of cancer treatment,
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the quality of life of the cancer patient is closely monitored. The assessment of the
effects on quality of life of different treatments in clinical trials is now regarded as an
important tool in comparing the effectiveness of different treatments. Quality of life is a
multi-dimensional construct comprising the physical, emotional and social well-being of

patients.

Additionally, quality of life and its dimensions are not directly observable, hence
the need for several items measuring the same latent variable. Quality of life is also
a dynamic, time-dependent process resulting in repeated measurements over time per
individual. The fact that most patients are usually very ill frequently results in quality
of life data sets that are unbalanced and incomplete. The linear model for multivariate
longitudinal data with a Kronecker structured covariance matrix presents a reasonable

and flexible way of dealing with the complex issues associated with quality of life data.

In practical work carried out in various disciplines, the longitudinal design is very
popular and usually involves collecting multiple characteristics on the subjects under
study instead of a single characteristic over time. Modelling covariance structure is even
more critical in this setting because of the two dimensions involved (characteristics and
time). Without specifying a covariance model, TC(T'C + 1) covariance parameters
must be estimated. Modelling the covariance structure using a Kronecker product model
results in a tremendous reduction in the number of covariance parameters to be estimated.
This may be especially advantageous in studies that result in highly unbalanced and/or
missing data, a common problem in designs that involve following subjects over time.
However, the validity of this model will depend to a large extent on the special covariance

structure that it assumes.

Assuming the Kronecker product structure is valid, we wish to compare the linear
model with a Kronecker structured covariance matrix with other approaches typically
used for multivariate longitudinal data and discover which advantages, if any, that it
offers. We will show that the model is very flexible, with applications to many kinds of
longitudinal designs, and offers a rich class of covariance structures. On the other hand,

if the Kronecker product structure is not valid, then we also wish to find out the negative
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consequences of imposing such a structure.

1.4 Objectives of the study

1. Apply the CARE (Curvature Asymptotic Relative Efficiency) and the TARE (Trace
Asymptotic Relative Efficiency), both measures of asymptotic relative efficiency
developed for the multiparameter testing problem, to investigate efficiency as it

relates to testing hypotheses of interest in multivariate longitudinal data.

[R]

Investigate the consequences of ignoring correlations that arise both within and

across time in multivariate longitudinal data.

3. Incorporate a preliminary test for the null hypothesis that the within-subject variance-

covariance matrix has a Kronecker product structure.

4. Assess the gain in efficiency that results from exploiting a Kronecker structured

covariance matrix in testing hypotheses of interest in multivariate longitudinal data.

5. To describe an index that can be used to measure the departure of a given variance-

covariance matrix from Kronecker product structure.

6. Investigate the consequences of imposing a Kronecker product covariance matrix

when there is some departure from the Kronecker product structure.

1.5 Problem domain (Example)

In this section, a real multivariate longitudinal data set is discussed in order to
highlight the issues that will be the focus of this dissertation. The data is kindly pro-
vided by Dr. Jure Manfreda at the Respiratory Hospital, Health Sciences Center, in
Winnipeg, Manitoba. Survey data were collected yearly between 1976 and 1991, using
both occupational and non-occupational surveys. The data selected do not represent any

particular group and generalization of results to the Manitoba population or any segment
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of it should not be attempted. The data set was created for the purpose of developing a
methodological (statistical) approach. The discussion presented here will focus on FEV1
and FVC, both measures of lung function capacity. Methods of measuring lung function

(spirometry) were the same.

Spirometry refers to the measurement of the forced expiratory vital capacity (FVC)
and the expiratory flow rates which occur during a FVC maneuver {16]. A maneuver
consists of a subject inhaling as much air as possible, then exhaling it as rapidly and
completely as possible. Spirometry is used to detect chronic obstructive pulmonary
disease (COPD). COPD is a term commonly used to broadly refer to individuals (usually
patients) with non-specific obstructive lung disease. The incidence and prevalence of
COPD has increased tremendously in recent years and it has now become a major public
health problem. The high prevalence justifies efforts to detect early obstruction of airways
caused by COPD. Spirometry is the first test for early detection of COPD, where “early”
means before the occurrence of significance symptoms requiring the attendance of a
physician. Only spirometry can detect COPD 5-10 years before the onset of significant
symptoms. The earlier one can detect airway obstruction, the better the response to

therapy.

The most important spirometry variable is FEV1, short for forced expiratory vol-
ume in 1 second. We can think of FEV1 as the average flow rate during the first second of
the forced vital capacity maneuver. FEV1 is reduced with airflow limitation or obstruc-
tion. “Restriction” in lung disorders always means a decrease in lung volume. Spirometry
provides a measure of the FVC, the volume of air that can be exhaled after a subject
takes as deep a breath as possible. A reduction in the FVC measured by spirometry is

consistent with restriction.

From the above discussion, we see that using spirometry, two disorders can be
detected. The first disorder is obstruction, which refers to reduced flow rates and is
detected by a reduced FEV1. The second disorder is restriction, which refers to reduced
lung volume and detected by a reduced FVC given that obstruction of airways has been

excluded. Therefore, spirometry maneuvres are best visualised by graphs that enable
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one to simultaneously view flow rates and volumes produced by the maneuvres. If the
maneuvers have been conducted over time on the same subjects, then there is need for a
statistical procedure that can simultaneously consider flow rates and volumes measured

over time.

Demographic variables collected at the beginning of the study included gender,
birth date and age at which an individual started smoking. Smoking status represents
a time varying covariate and was collected at each time point along with the date of
test, height in inches and weight in pounds. Whether an individual was a surface worker
or an underground worker represents a time invariant covariate since it remained fixed
over the course of the study. The discussion presented here will focus on the potential
effects of being a surface or underground worker on lung function capacity as measured
by FEV1 and FVC. The data considered will be restricted to the subjects with complete
data during the first 5 years of the study (1976 —1980), resulting in 140 subjects of whom
52 were surface workers and 88 were underground workers. Issues that one must consider
in applying the linear model with a Kronecker structured covariance matrix model to

this type of data are now presented.

In using the Kronecker structured covariance matrix, the model incorporates two
sources of correlation: the correlation that exists between FEV1 and FVC at each time
point as well as the correlation that exists over time within each of FEV1 and FVC.
A potentially inefficient way to analyze this data would be by ordinary least squares
(unless the covariance matrix is known to be ¥, = 62Ir¢). This would not only ignore
the correlation between FEV1 and FVC at each time point but also the correlation within
each of FEV1 and FVC over time. How inefficient this is when the underlying covariance
structure between the two variables measured over time is known to take on a Kronecker
product form is investigated. Mathematical expressions for the TARE and CARE will be
derived and numerical results presented for some specific within-subject design matrices

and covariance structures.

Suppose that the within-subject variance covariance matrix ¥, for FEV1 and FVC

is known to have the Kronecker product form, but instead one models the data using an
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unstructured T'C’ x TC matrix. How inefficient is the latter approach in this situation?
The answer to this question will be sought by assessing the gain in relative efficiency
that may result from taking advantage of the Kronecker product structure rather than
using an unstructured T'C' x TC matrix. The efficiency of the test based on a completely
unstructured covariance matrix relative to a test based on a Kronecker structured covari-
ance matrix is evaluated, employing two measures of asymptotic relative efficiency. A
simulation study is conducted to assess the gain in efficiency that may result from taking

advantage of the Kronecker product structure.

Another question of considerable practical interest is as follows: how does one
know that the variance-covariance matrix for FEV1 and FVC can be modelled as the
Kronecker product of two matrices? To find an answer to this question, a preliminary test
of the hypothesis that the covariance matrix has a Kronecker product structure versus
the hypothesis that the covariance matrix is completely unstructured is presented. The

observed significance level and power of this test will also be examined.

So far, we have considered the situation in which the Kronecker product structure
is thought to be suitable for FEV1 and FVC. The consequence of ignoring this structure
either by the use of ordinary least squares or by fitting a completely unstructured covari-
ance matrix are presented as issues that need further investigation. The converse of this
situation is also of interest and needs further investigation, that is, the situation in which
the within-subject variance covariance matrix for FEV1 and FVC measured over time
is known to deviate from the Kronecker product form. In this case, modelling the data
using a completely unstructured covariance matrix may be more suitable than imposing
a Kronecker structured covariance matrix. What are the consequences of imposing a
Kronecker product structure in testing hypotheses of interest in multivariate longitudi-
nal data? The answer to this question will also be sought. An index that measures how
far a given covariance matrix deviates from Kronecker product is a useful measure and
is introduced. A simulation study to assess the consequences of imposing a Kronecker

structured covariance matrix on hypothesis testing will also be conducted.
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1.6 Thesis organisation

In Chapter 2, we review the existing literature on areas that are relevant to this
dissertation. This includes the linear model for correlated data and estimation thereof,
models for multivariate longitudinal data and the comparison of tests both in the one
parameter and multi-parameter testing problem. Chapter 3 presents a detailed review
of existing results that are useful in this dissertation. These include estimation in the
linear model for correlated data assuming normally distributed errors using maximum
likelihood and restricted maximum likelihood estimation. Measuring test efficiency in
the one parameter case and the concept of Pitman efficiency will be discussed, including
an example of measuring test efficiency in the one parameter case. Test efficiency in
the multi-parameter case will also be reviewed and an example illustrated using two

parameters.

Chapter 4 investigates the problem of how inefficient ordinary least squares can be.
The chapter begins with a detailed look at the formulation of the linear model for multi-
variate longitudinal data with a Kronecker structured covariance matrix. Since efficiency
is defined in terms of hypothesis testing, a discussion of hypothesis testing and power
in the linear model for multivariate longitudinal data is presented. Algebraic results for
measuring test efficiency using the TARE and CARE are presented and numerical re-
sults for some within-subject design matrices and special covariance structures are given.
Chapter 5 investigates the potential gain in test efficiency that may result from utilising
the Kronecker product structure when it is appropriate. A test of the null hypothesis
that the within-subject variance-covariance matrix has a Kronecker product structure is
discussed. Algebraic results for measuring test efficiency are presented and numerical

results from a simulation study presented.

Chapter 6 investigates the consequences of imposing a Kronecker structured covari-
ance matrix in testing hypotheses of interest from multivariate longitudinal data when
it is not appropriate. An index, referred to as the Kronecker product deviation index,
which measures how far a given within-subject variance-covariance matrix departs from

Kronecker product structure, is introduced and computed for a specially defined class of
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matrices. Numerical results from a Monte-carlo simulation study designed to evaluate the
consequences of imposing Kronecker structured covariance matrix on testing hypotheses

of interest are also presented.

1.7 Simulation Study Overview

Chapters 5 and 6 involve simulating data from the multivariate normal distribution.
Chapter 5 assumes a Kronecker product covariance matrix of the form £, = A ® Q2 for
the within-subject variance-covariance matrix. In this chapter, the matrix A is defined
by parameters p. and v and the matrix § is defined by a parameter p;. The values of
the parameters considered in simulating a multivariate normal distribution are: p. from
—0.6 to 0.6 by 0.3; v from 0.5 to 2.0 by 0.5 and p; from 0.1 to 0.9 by 0.1. At each
parameter combination, 200 simulation trials are carried out. Depending on the purpose
of a simulation, 200 trials may be perceived to be small. For this study, however, interest
lies in the overall relationship between the measures of asymptotic relative efficiency
and the covariance parameters, and we will see that a sample of 200 at each parameter

combination is sufficient to demonstrate the nature of the relationships of interest.

Chapter 6 assumes a non-Kronecker product covariance matrix for the within-
subject variance-covariance matrix ¥,. ¥, is now defined by covariance parameters oy,
092 and o1 and correlation parameters p;, g2 and p;2. The covariance parameters oy;, 02
and o2 are kept fixed at 4, 4 and 2 respectively. The values of the correlation parameters
considered in simulating a multivariate normal distribution are: p, from 0.1 to 0.9 by 0.2;
p2 from 0.1 to 0.9 by 0.2 and p,;, from 0.2 to 0.8 by 0.2. As in Chapter 5, 200 simulation

trials are carried out at each parameter combination.
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Review of relevant research and

theory

2.1 Introduction

The literature on the analysis of a single characteristic measured in a longitudinal
design is extensive. The currently available methods cover quantitative data (continous
or measured data) as well as qualitative data (binary and count data). Developments
that have taken place in the last decade have also made it possible to cope with both
unbalanced designs and missing data. Many of these techniques have also been incor-

porated into statistical software. Sections 2.1 and 2.2 will review the literature for a
univariate quantitative characteristic.

The body of literature for multiple characteristics measured in a longitudinal design
is rapidly expanding. As with the univariate case, earlier methods in this area were mainly
“analysis of variance” based but there is now a move towards more “regression” based

methods. The literature for multivariate longitudinal data is reviewed chronologically in
section 2.3.

The literature on the comparison of tests is presented in section 2.4. The compari-

son of two tests for a given situation with the aim of evaluating their relative efficiencies

13
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is a fundamental concept in this dissertation. The review presented is for both the single

parameter and multi-parameter settings.

2.2 Linear model for longitudinal data

The models for univariate quantitative longitudinal data are based primarily on
the multivariate normal distribution with the repeated observations within an individual
assumed to follow a multivariate normal distribution. This means that for the T; (say)
observations on individual 7, 7 = 1,2,...,7, represented by the 7; x 1 vector y;, we
assume that y; has a multivariate normal distribution with mean vector u; and T; x 7;
variance-covariance matrix ¥,; which is unspecified. In addition, the mean structure for
the repeated observations is assumed to be linear, which means that y; arises from the
linear model y; = X; B+¢€;, where X is the design matrix for the i** individual and ¢; is the
vector of deviations with multivariate normal distribution with an unspecified covariance
matrix X,;. B is a vector of unknown fixed effects. Laird [33] gives several features of the
multivariate normal with a linear mean structure that makes it particularly attractive
for modelling continous longitudinal data. One of the features mentioned is the fact that

the mean vector and covariance matrix are distinct parameters that can be modelled

separately.

Ware [75] gives a straightforward discussion of linear models for longitudinal data
that include modelling both the expected values of the responses and their covariance
structure. The model discussed by Ware [75] is of the form given above, that is y; =
X: B + ¢;.. This approach to modelling the mean function of y; as X;8 is more direct
than the mean value function usually assumed for growth data. For example, the model
considered by Rao [53] for a balanced growth-curve data is given by Efy;] = A8 where the
madtrix A is constant over all units representing powers of time or orthogonal polynomials.
These model is restrictive in two ways: (i) all units must have the same design in time
and (ii) other covariates that are not functions of time cannot be included in the model.

Grizzle and Allen [20] generalised Rao’s [53] model by appending a vector of covariates,
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giving E[y;] = ABz;, where z; is the vector of covariate values for the i** subject. The

model given by Ware [75] is a further generalisation of the Grizzle and Allen [20] model.

Ware [75] also considers possible forms for the within subject variance-covariance
matrix ¥,;. Specifically, he discusses three models for the covariance structure: multi-
variate or unstructured, random effects and the first-order autoregressive model. The
unstructured model is suitable when the data are relatively balanced and there are not
too many missing values. It is also a reasonable model when the number of observations
per unit is not too large compared to the total number of units. When the data are highly
unbalanced and/or there are lots of missing data, or when the number of observations
per unit is large relative to the total number of units, then structured models for the

covariance structure must be considered.

Jennrich and Schluchter [25] provide a detailed discussion of modelling unbalanced
and incomplete longitudinal data using structured covariance matrices. They model the
expected value of the responses as a linear function of unknown regression parameters
as in Ware [75]. The covariance matrix ¥,; is modelled as an arbitrary function of a
set of unknown covariance parameters. The covariance structures discussed include the
random-effects and the first-order autoregressive models discussed in Ware [75]. Addi-
tional structures discussed include independence, compound symmetry, factor analytic,

banded or general autoregressive models.

The mixed model is a useful alternative for modelling unbalanced and/or incomplete
data. The mixed model approach is a further generalisation of the linear model discussed
by Ware [75] and Schluchter [25]. It is formulated so that the probability distribution for
the repeated measurements has the same form for every unit but the parameters of that
distribution vary from one unit to unit. Laird and Ware [34] discuss a general family of

random effects models.

Although the models proposed by Ware [75] and Schluchter [25] are useful, one
cannot always model serial correlation. This is because their approach requires one to
choose a particular covariance structure and this need not be the first-order autoregressive

structure. Modelling serial correlation is important in longitudinal data, especially when
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measurements are collected over extended periods of time. For this reason, Diggle [13]
provides another choice of covariance structure useful for longitudinal data. The spe-
cial correlation structure provides parameters for measurement error, variation between
experimental units and serial correlation within units. In using this model, one must
not only include parameters for measurement error and variation between experimental

units, but also provide for serial correlation between measurements within a unit.

2.3 Estimation in the linear model for longitudinal

data

Estimation of the parameters defining the p x 1 mean parameter vector 8 and the
within subject covariance matrix X,; denoted by the ¢ x 1 vector ¢ has been discussed by
various authors. Under the assumption of multivariate normality of the repeated observa-
tions within an individual, estimation procedures are mostly likelihood-based. Ware [75]
notes that when the data are balanced and complete, closed form maximum likelihood
estimators of 8 and # are easily available. However, in the more typical situation involv-
ing unbalanced and/or incomplete data, closed form solutions do not exist and iterative

procedures must be used.

Jennrich and Schluchter [25] consider maximum likelihood and restricted maximum
likelihood estimation using the Newton-Raphson and Fisher Scoring algorithms as well as
the Estimation-Maximisation (EM) algorithm. Diggle [13] discusses maximum likelihood
estimation using the simplex algorithm of Nelder and Mead [45]. Laird, Lange and
Stram [32] consider the use of the Estimation-Maximisation algorithm for both maximum

likelihood and restricted maximum likelihood estimation.

For the mixed effects model, estimation of the mean and covariance parameters is
usually accomplished using iterative procedures. Laird and Ware [34] discuss using the
Estimation-Maximisation algorithm to obtain both maximum likelihood and restricted
maximum likelihood estimators as well as a combination of empirical Bayes and max-

imum likelihood estimators. Jennrich and Sampson [24] discuss three algorithms for
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maximum likelihood estimation of mean and variance components in a mixed analysis
of variance model. These include the Newton-Raphson algorithm, the Fisher Scoring
algorithm and the Hemmerle and Hartley algorithm. However, their work is more geared
towards analysis of variance and may be of limited use in the longitudinal setting. Lind-
strom and Bates [39] also consider the Newton-Raphson and Estimation-Maximisation
algorithms for the random effects model using both maximum likelihood and restricted
maximum likelihood estimation. Wolfinger, Tobias and Sall [77] give several algorithms

for computing gaussian likelihoods or restricted likelihoods for the mixed model.

2.4 Models for multivariate longitudinal data

The literature on the analysis of several characteristics measured in a longitudinal
design continues to grow steadily, more so in the past fifteen years. The analysis of such
data has usually been confined to analysing each of the response variables separately.
Boik [6] notes that separate analyses may be appropriate if the dependent variables
are uncorrelated or if they are measures of distinct theoretical constructs. A combined
analysis (or multivariate analysis) is necessary if the dependent variables are functionally
related, as is usually the case. As we shall infer from the discussion that follows, a lot of

focus in this area has been in the growth curve setting.

Pothoff and Roy [52] provide an extension of the usual multivariate analysis of
variance model and show that it applies to many kinds of problems, including growth
curve. One application of the extended model is to the situation where more than one
characteristic is measured on each occasion. The situation described is as follows using
the notation in their paper: m groups of animals are being measured at, say, g/ points
in time, more than one characteristic associated with growth is measured at each of the
¢’/ time points. Pothoff and Roy [52] do not impose any structure on the within-subject
variance covariance matrix. An application of the extended model is demonstrated us-
ing data collected by investigators at the University of North Carolina Dental School.

Measurements were made on 11 girls and 16 boys at 4 different ages (8, 10, 12 and
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14). Each measurement is the distance, in mm, from the centre of the pituitary to the

pteryomaxillary fissure.

Reinsel [54] also considers the longitudinal design where several characteristics are
measured on each individual at each time point, assuming a multivariate random effects
model for the repeated measurements. The covariance structure is the multivariate analog
of the compound symmetry pattern used in the univariate case. Reinsel’s model applies
only to balanced data and considers estimation under a restricted covariance structure.
Reinsel [54] notes that if no special assumptions are made about the structure of the
covariance matrix, then we have the general model considered by Pothoff and Roy [52]
among others but involving multiple measurements. Applications of the proposed model
are shown using the growth curve data introduced by Pothoff and Roy [52] and medical
data from the Department of Anesthesiology, University of Wisconsin-Madison, from an

experiment designed to study the effects of certain anesthetics on dogs.

Wang [73] examines the relationship between the mixed-model analysis and mul-
tivariate approach to a repeated measures design with multiple measurements. In the
multivariate setting, the two methods are referred to as the multivariate mixed model
approach and the doubly multivariate model approach, respectively. The two approaches,
like the Pothoff and Roy [52] and Reinsel [54] models, differ in the assumptions underlying
the models. The multivariate approach imposes no structure on the correlation structure
and represents one extreme on the spectrum characterising covariance structure parsi-
mony. The mixed-model approach imposes a structure based on the assumption of the
mixed-effects model. Thomas [63] also considers the multivariate mixed model analysis
for multivariate repeated measures. This model is an extension of the univariate mixed
model approach whose validity depends on a special covariance structure for the multi-
variate repeated meausures discussed in Reinsel [54]. Thomas [63] derives conditions for
the validity of the multivariate mixed model analysis and presents a test for determining

whether or not given data satisfy these conditions.

Boik [6] reviews both the multivariate mixed model approach and the doubly mul-

tivariate model approach for analysing repeated measures on multivariate responses.
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Three new results concerning the multivariate mixed model are also presented. One of
the results presented is that, given multivariate normality, a condition called multivariate
sphericity of the covariance matrix is both necessary and sufficient for the validity of the
multivariate mixed model analysis. A likelihood ratio test can be employed to test for
departure from multivariate sphericity. Boik {7] compares the two models for multivari-
ate repeated measures: the doubly multivariate model and the p-variate generalisation
of Scheffe’s mixed model (the multivariate mixed model). Boik [7] points out that re-
quiring multivariate sphericity for the multivariate mixed model approach is in fact a
disadvantage and that even small departures from multivariate sphericity inflate the size
of multivariate mixed model tests. Boik [7] notes that the question of how to model
the covariance parameters is even more critical because without specifying a covariance
model, there are %pt(p + t) covariance parameters to estimate where p is the number of
dependent variables measured and ¢ is the number of occasions. The model presented
by Boik [7] is a special case of Reinsel’s [54] multivariate random effects growth curve
model. Vasdekis [67] generalises the model proposed by Reinsel [54] to the mixed effects
model with an arbitrary number of random effects and considers maximum likelihood
and restricted maximum likelihood estimation. Reinsel [54] considered a single random

factor.

More recent developments in the analysis of multivariate longitudinal data include
the work of Rochon [55], who considers bivariate repeated measures and applies a gen-
eralised estimating equations approach to relate each set of repeated measures to impor-
tant explanatory variables. Zhang [81] presents several choices of structured covariance
matrices for analysing multivariate repeated measures and provides a computational al-
gorithm using Gibbs sampling. Matsuyama and Ohashi [41] develop a bivariate mixed
effects model that is a generalisation of the univariate mixed model discussed by Laird
and Ware [34]. Estimation is achieved via the Gibbs sampler. Sy, Taylor and Cum-
berland [60] present another model for multivariate repeated measures that incorporates
random effects, correlated stochastic processes and measurement errors. Maximum like-
lihood estimation is used to obtain estimates of the fixed effects and covariance param-

eters. Diaz and Johnson [11] consider the situation when the patterned within subject
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covariance matrix can be reduced to a diagonal form, for example, the Wiener stochastic
process. Diagonalisation results in a reduction in the number of parameters to be esti-
mated. Maximum likelihood estimates are derived for the mean vector and covariance

madtrices.

2.5 The comparison of tests

Suppose we have two « level tests available for testing a given set of null and
alternative hypotheses. For comparing the two tests, a reasonable measure of relative

efficiency is to use

RE(e, 8,6,) = 2—:

where n; and n, are the minimum sample sizes required for the two tests at level a to
have the same power § against a fixed alternative § = 6,. To study this ratio for all
values of «,  and 6, would be a very complicated study, as stated in Woolson [80], hence
the restriction to asymptotic results in test comparison. An alternative to the approach
described above was considered and generalised by Noether [46]. He proposed that a
sequence of alternative hypotheses depending on the sample size NV be chosen such that
the limit of this sequence approaches the null hypothesis and simultaneously, the power
is bounded away from one. By Pitmans’s theorem, the null and alternative hypotheses

are stated as
H,:0=0, vs H,:0=0xk=0,+N"°A,

where A is a fixed but arbitrary constant considered to be small and § > 0. Comparing

two tests using Pitman efficiency is discussed in detail in Kendall and Stuart [26] and
Gibbons [19].
Now consider the multiparameter testing problem where, in the Pitman sense, the

null and alternative hypotheses are given by

H,:0=06, vs H,:0=0xk=0,+N"),
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where now 67 = (6y,0,,...,0,) are the location parameters for r populations and A =
(A1, A2, ..., As) is a fixed but arbitrary non-null vector considered to be small and § > 0.
How does one now measure the relative efficiency of two tests that are available for testing
the above hypotheses? Woolson [80] first considered this problem, focusing on comparing
two test statistic sequences which have limiting chi-square distributions with possibly
different degrees of freedom. He suggested and justified some measures of asymptotic
relative efficiency that may be used in comparing the two test sequences. These measures
are presented in detail in Woolson and Sen [79]. The new measures of asymptotic relative

efficiency for the multiparameter testing problem are:

1. Local asymptotic relative efficiency (LARE),
2. Curvature asymptotic relative efficiency (CARE) and

3. Trace asymptotic relative efficiency (TARE).

The three measures depend on the level of significance of the test « and the degrees
of freedom for the two test statistics. The CARE and TARE are “average” measures of
efficiency, independent of the direction of approach of 8y to 8,. The CARE is a function
of the ratio of the determinants of the non-centrality parameters while the TARE is a
function of the ratio of the traces of the non-centrality parameters. An application of the

TARE and CARE to the one-sample location problem is discussed in Woolson {78].
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A detailed review of relevant

concepts

3.1 Estimation in the linear model for correlated

data assuming normally distributed errors

The matrix formulation of the linear model for correlated data is given by:

X
voo 2B e (3.1)
TI x 1 Tixppx1l T x1
with:
o 0 ... O
o 2 ... 0
Cov(y) == |, (3.2)
0O 0 ... 3%,

where ¥ is a block-diagonal matrix with 7" x T" non-zero blocks ¥,, each representing
the covariance matrix of the vector of cbservations on a single subject. Suppose we
re-parameterise ¥,:

S, = oV, (3.3)

22
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so that:
Y = o,

where o2 is a scale factor. Hence,

2, 0 0 o2V, 0 0
) 0 5, 0 0 o, 0
S =0V = = 7
0 0 5, 0 0 o2V,

23

(3-4)

(3-5)

Under this specifications, the linear model for correlated data treats y as a realization of

a multivariate normal random vector with

Y ~ MVN(XB,0%V).

3.1.1 Maximum likelihood estimation

(3-6)

Consider simultaneous estimation of the parameters of interest 8 and the covariance

parameters ¢2 and V, using the likelihood function given by
_1 1 _
fr@:B,%) = 2r %8| 7F exp(—5(y — XBYE" (y — XB)).

Substituting o2V for ¥, we obtain

Fely: 8,0%V) = 2% (VI exp(— sy — XBYV 7y — XB).

Noting that

1 L
22 = /o?V] = ™|V, 2,

the likelihood function using the re-parameterised form of ¥ is now given by

L(B,0%V,) =

2n= % (o?) " F |V, |7 exp(—ﬁ(y = XB) V' y — XB))-

3.7)

(3.8)

(3.9)

(3.10)
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The log-likelihood is therefore given by

log L(8, 02, V;)

TI TI

I 1
—_—— o —— 2 _ —_— — -1 —_
5 log2r — —~logo 5 log |V, 557 (y—XB)Vly—-XB). (3.11)

To find the maximum likelihood estimators of 3, ¢ and V, proceed as follows:

1. Fix V, and find the maximum likelihood estimator of 3 by differentiating equation
(3.11) with respect to 8 and setting the equation to zero. It can be shown that

dlog L(B, 0%, V,)

Y —2X'Vly+2X'VIXB (3.12)

=0.
Solving the above equation, we obtain

X'v1ly = XV1lXp,
By, = (X'VIX)T'X'V 1. (3.13)

2. Substitute By, given by equation (3.13) into equation (3.11) and obtain

Z(BVO 2 027 I/0)
TI TI I 1

=-3 log 2m — '2—10802 - §IOgIVo| — P(y — XBv,) V7 (y — XBv,)
TI I, I 1
=—— - — - = - = Vo), 1
5 log 27 5 logo 5 log | V5] 2UzRSS( ) (3.14)
where
RSS(V,) = (y—XBv)V 'y~ XBy). (3.15)

3. Now maximise equation (3.14) with respect to o2 for fixed V, to obtain the maxi-

mum likelihood estimation of o2; that is,

o _ _TI RSS(\) (3.16)

do2 202 204
=41}
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Solving the above equation gives

az_R_SS_(_Vi).

= 3.17

4. Substitute 62 given by equation (3.17) into equation (3.14) to obtain a reduced
log-likelihood for V,, that is

l(ﬁ%’ UV ’ o)

TI TI
I logIVoI — z{log RSS(V,) — 111 log2m + —logT1 — -5 (3.18)

5. The reduced log-likelihood is now a function of the ¢ unknown parameters in V,

and in simplified form is given by

(Vo) = U(Bw,5%,V,)

TI

= _é log |V,| — glogRSS(Vo) — —{1 + log2m — logT1}
I TI 2T

= —_ . — 3.19
> log V.| — - log RSS(V.) {1+1 g(T[)} (3.19)

Ignoring the constants in equation (3.19) above, we have
(Vo) = l(ﬁV UV s Vo)
= ——é{TIlogRSS(VO) + Ilog|V,|}. (3.20)

6. Maximisation of equation (3.19) with respect to V, yields v,

7. Substitute V, into equation (3.13) and obtain
By, = (XVIX)T XV (3.21)

8. Substitute V, into equation (3.17) and obtain

&y, = ___RS;(I%) (3.22)
In general, maximisation of /.(V,) given by equation (3.19) will require numerical opti-
misation techniques such as the Newton-Raphson algorithm. The dimensionality of the

optimisation process will depend on what structure has been imposed on ,.
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3.1.2 Restricted maximum likelihood estimation

Unfortunately, maximum likelihood estimation as presented in the previous section
produces biased estimators of variance components. For example, in the classical linear

model given by

y=XB+e, (3.23)

where X is a n x p matrix of full rank, 8 is p x 1 vector of unknown parameters and €
is an m x 1 normally distributed random vector with mean O and variance 02I,,, the

maximum likelihood estimator of 3 is

B=(X'X)"'X"y (3.24)
and the maximum likelihood estimator of o2 is

6% =SS es /M, (3.25)
which is biased. SS,es is the residual sum of squares given by

(y — XB)'(y — XB). (3.26)
The unbiased estimator is given by

5% = SSes/(n — D), (3.27)

which in fact, is the restricted maximum likelihood estimator of 2 under this model.
Note that p is the number of parameters in B and hence the difference between &2
and s? is that the former has not taken into account the fact that S8 is also estimated
while the latter does. In general, restricted maximum likelihood estimation is a modified

approach which takes into account the fact that 3 is also estimated in estimating variance
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components and essentially yields unbiased estimators. Recall from the previous section

that the log-likelihood for the data y;,ys, ...,y is

lOgL(AB7 ¢) = LI(:Bz ¢)

TI I 1d rm
= ——log2m — 'é’loglzol 3 > (i — XB)'E] (v — XiB),  (3.28)

2 i=1
where ¢ is the vector of covariance parameters.

Restricted maximum likelihood estimation maximises the part of the likelihood
which is invariant to 8, that is, the restricted maximum likelihood estimator is defined as
the maximum likelihood estimator based on a linearly transformed set of data y* = Ay
such that the distribution of y* does not depend on 3. Harville [22] calls the elements of
A “error contrasts”. This is equivalent to saying that the restricted maximum likelihood
estimator maximises the likelihood of a vector of linear combinations of the observations
which are invariant to X3. If we use the data vector y to estimate ¢, then as noted
before, the maximum likelihood estimator of ¢ takes no account of the loss in degrees of
freedom resulting from estimating 3. Patterson and Thompson [51] proposed a modified
maximum likelihood technique which does not suffer from this defect. The technique
proposed consists of maximising the likelihood function associated with a specified set
of (T'I — p) linearly independent error contrasts rather than the full likelihood function

given earlier.

The linear model for correlated data (using the matrix formulation of the model)

treats y as a realization of a multivariate normal random vector with

Y ~ MVN(XB,X). (3.29)

Note that for convenience, o has been reabsorbed into V and hence we are now using
¥ and not o?V. Also, & = X(¢), where ¢ is a ¢ x 1 vector used to characterise . The

likelihood function is therefore given by

fY(y;ﬁ:E) = 21r‘r2—!l2l"%exp(—%(y——X,B)'E‘l(y—Xﬂ)), (330)
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and the log-likelihood is given by

log L(6, %)
TI '
=~ log 2w — 2 log [ — 2(y — XY= (y — XB). (3.31)

If B is estimated by [5‘ for fixed ¥, then

log L(. %)
TI .t -
=~ log2r — - log %] — 5y~ XB)'™(y — XA), (3.32)

and this is the reduced log-likelihood used to find the maximum likelihood estimator of
Y. So what form does the reduced log-likelihood used to find the restricted maximum

likelihood estimator of ¥ take, and how does it differ from equation (3.32)7

Definition 3.1.1 (Error Contrast) A linear combination a'y of the observations such

that

E(a'y) = 0, thatis,

adX = 0,
is called an error contrast.

The maximum possible number of linearly independent error contrasts in any such
set is (I'/ — p). Define the T'I x TI matrix A = Ii7r) — X(X'X)™'X'. Also, define the
TI x (TI — p) matrix B to satisfy A = BB’ and B’'B = Ii7r_p). The vector w = B'y

provides a particular set of (I'] — p) linearly independent error contrasts.
Proposition 3.1.1 w = B’y is an error contrast.

The proof is as follows:

E(B'y) = B'E(y)
— B'Xp
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= I(B'Xp)

= (B'B){B'XpB) (since I = B'B)
= (B)(BB')(X8)

= B'AXB (since A= BB’

= B'{I-X(X'X)"'X'}XB

= B{X-X(X'X)"'X'X}B

= B{X-X}8

= 0

The likelihoods based on w = B’y and w* = B™y, where B’ is an error contrast
matrix, are proportional. This implies that the restricted maximum likelihood estimator
based on B’y and By are identical. In general, the likelihood function associated with
any other set of (' — p) linearly independent error contrasts is proportional to that
associated with w. So what is the likelihood function associated with w = B’y? Denote
the likelihood function associated with w by f(B'y|¢), where f(.|¢) is the probability
density function of w indexed by ¢. We now proceed to find a convenient expression for
F(B'ylg).

For fixed ¢, the maximum likelihood estimator of 3 is the generalised least squares

estimator given by

B = (X'= X)) 'xX's Ty
= Gly. (3.33)

From the above equation, we obtain

¢ = {(x=x)'x'= Y
= olX(X'=X)7. (3.34)

Denoting the probability density function of 3 = G'y by f5(- |¢,B), it can be shown that
since 4 is distributed as N ~ (3, (X'E"1X)™"), then
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- e — i 1 - ! fea— ~
(2m)F|X'ETX]? exp{~5(B - B) (X'E'X)(B - B)}- (3.35)
If we now denote the probability density function of ¥ by fy(y|®,3), then

fY(y|¢7 :B) =
(m)" ¥ |81 exp{—5(y — XBY(2) "y — X)) (3.36)

Now define z such that
z =Ty =[B,Gly, (3.37)
where T is a T x TI matrix and consider the transformation from y to Ty. Now,

y = T 'z and the Jacobian of the transformation is given by

d(T1'2)

| =T =TI (3.38)

1=1541=]

We now derive |T|.

We know that for a square matrix such as 7',

T'T| = |T'||T|
= [T(|T|
= |TP,
so that
IT| = [T'Tz. (3.39)

Since T' = [B, G|, by using result (3.39) we obtain

IT| = |[B,G]|?
— |[B,G][B,G]?
= |[B',G[B,C]|*

(M

B'B B'G
G'B G'G
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Definition 3.1.2 (Schur Complements) If

EF F

A = and
G H

S = H—-GE™'F, then

E F

G H
= |E]]S]

Al =

Using the above definition of Schur complements, we have

B'B BG
G'B G'G
= |B'B||G'G - G'B(B'B) 'B'G|

= lizr-pllG'G —~G'BLz1"'B'G| (since B'B=Ir/_,)
= |G'G - G'BB'G|

= |G'G—G'AG| (since BB' = A)

= |G'G-G'{I - X(X'X)"'X"}G|

= |G'G-GG+GX(X'X)'X'G|

= [(X'X)7'X'G| (since G'X =1)

TP =

= |(X'X)7Y (since X'G=1),
hence
IT] = |(XX) "% = [(X'X)[* #0. (3.40)
The probability density function of z = Ty is therefore given by

9(2) = [JIfr(T7'2)

1

= l-ﬁfv(ylfﬁ, B) (3.41)
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Also,

9(z) = f(G'ylo, B) f(B'yl9), (3.42)

since w = B'y and 8 = G'y are independent, which is proved by showing that the

covariance between w and S is zero:

-~

coviw, 8] = E{(w— E(w))(6— E(B))}
= Ew(@-p)]
= E[B'y(G'y—-p)]
= E[B'y(y'G - B
= E(B'yy'G| - E[B'yp’]
= B'E[yy|G - E[B'yS]
= B'[var(y) + E(y)E(y')|G — B'XBB" (since E(y) =Xj)
= B'[Z+(XB)(XB)]G (since B'X =0)
= B'SG+ B'(XB)(XB)'G
= B'SG (since B'X =0)
= BEEX(X'TX)7Y
= B'EXX(X'zix)™
= B'X(X's7lx)™!
= 0 (since B'X =0)

Equating equations (3.41) and (3.42), we obtain

1

f(z) = mfy(quﬁ, B) = f(G'yle, B) f(B'yl#). (3.43)
and hence

IT|f(G'yl¢,8)
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The probability density function of w = B’y is therefore given by:

f(B'y|o)

equation (3.36)

- |T|equation (3.35)

1

(2m)" 2172 exp{~L(y — XB)'(E) "y — XB)} .
(27) 5| X'=-1X|2 exp{—L(8 — B) (X'S1X) (B - B)H(X'X)[ =

The following result will now be used to simplify equation (3.45):

(y—XB)(Z)  (y — XB)

(y— XB)(Z) vy — XB) + (B - B) (X'E'X)(B - B).

The proof is as follows:

(v - XB)(5) ™ (y — XB)
= {y—XB+XB-XBYSHy— XB+XB~Xp}
= {y—XB+XB-B)}sy— XB+X(B-B)}
= {y-XB+XB-BY{Z ' y—XB)+='X(B-B)}
= {y-XB) +B-BXHZ(y— XB) +T7'X(8 - B)}
= (y—XB) Sy - XB)+(y— XB) T X(B-B)

+ (B-B)X'T Ny —XB) + (B - B) (X'TX)(B - B)

= @W-XA)T'y-XB+B-8)(XEX)B-4)

+ 2(8-B)X'THy - XB)

33

(3.45)

(3.46)

(3.47)

Substituting 8 = (X'S"1X) " X'S~ly into the last expression of (3.47) above, we have

2(6

-8 X'y — XB)

H(X'S1X) XSy — Y X'SHy — X(X'ST1X) T XSy}
2{(X’E‘1X)_1X'2'1y — ﬁ}’{X'E’ly — X'z}
0.
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Substituting 0 for the last expression of (3.47), we obtain result (3.46). Using result
(3.46), equation (3.45) simplifies to:
f(B'ylg) = (3.48)

(TI—p)

(2m) 52 X RIS XS X F e~ 5w — XB) S w - XA}

The log-likelihood is therefore given by

log L*(B,%) =
TI — 5 5
_TI-p) 5 P) log 2m — %log [Z] - %(y - XB)s Yy — XB) + %Iong’Xl
~ 3 log [ XS X, (3.49)

and this is the reduced log-likelihood used to find the restricted maximum likelihood
estimator of X. It is very similar to equation (3.32), the reduced log-likelihood used to
find the maximum likelihood estimator of 3. The difference between equations (3.32) and
(3.49) is that the latter has a new piece given by | X'E71X ]“é that is very closely related
to var(8). The other additional piece in equation (3.49) corresponds to the Jacobian of
the transformation |(X'X )l_% which does not depend on any of the parameters of the

model and can therefore be ignored in making inferences for S or ¢.

The following results will be used in what follows:

1. Bz = /lo?V] = oTI|V,|5.

2.

IX'SxE = |X(02V)7IX|
= IX'o2v-1X|
o P|X'VIX]|2.

Substituting o2V for T, (3.48) becomes

f(B'y|¢) =

(27‘.) _ (le—p)

exp{—55(y — XB) V" (y ~ X)), (3.50)

X X)) TV )XV x
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and the log-likelihood given by equation {3.49) becomes

log L*(8,0%,V,) =

I— I 1
_£T2_P)10g27r — glogrf2 — §log]V:,[ + I‘)—)loga2 - §log]X'V‘lX]
1 o .
"%2'(?/ - XB)V~l(y — XB). (3.51)

For given V, B is written as
By, = (X'VIX)' X'V ly. (3.52)

To find the restricted maximum likelihood estimators of ¢ and V', use the following

iterative process:

1. Substitute By, given by equation (3.52) into equation (3.51) and obtain

I (By,, 0%, Vo) =

TI—p TI o I p , 1 .
-— log 2m — —2—logd - Elog[Vol + —2—loga - ElongV X|
1 Ao .
—55y— XBv) V7 (y — Xbv)
— 1
- "TI~ Zlog2m — %{ logo® ~ éloglVol + glogor2 — 5 log|X'VTIX|
~ - RSS(Y%), .
20
where
RSS(V,) = (v—XBw)V ™y~ Xbv)- (3.54)

o

Now maximise equation (3.53) with respect to o2 for fixed V, to obtain the restricted

maximum likelihood estimator of o2; that is,

ar TI , p _ RSS(V) (3.55)

do2 202 207 204
0.
Solving the above equation gives

- RSS(V,)
2 = e 3.56
oy, TT—p ( )
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3. Substitute 5% given by equation (3.56) into equation (3.53) to obtain a reduced

log-likelihood for V,, that is:

[(Bv,,5%,,V,) =

I TI — — —

—3 log |V,| — (—o—ﬂ log RSS(V,) — QIQ—p)log 2r + M log(TI — p)
TI — 1

—g——I—‘)—L) - 5 10g IX’V_IJYI. (3-57)

4. The reduced log-likelihood is now a function of the g unknown parameters in V,

and in simplified form is given by

(Vo)
= U(Bv..5%,, V%)
= 7 log|V| — 5log [X'V=X] @2——1’)1%1133(%)
— QI—;—P—)-{I + log 27 — log(TI — p)}
= —g log |Vo| — %long'V‘lXI -~ (—IizlP—lIOgRSS(V;)
— (—TI—;—QQ + log (lei p) }. (3.58)

Ignoring the constants in equation (3.58) above, we have

(Vo) = UBv., 5%, Vo)
1 1
= —-2—{(TI —p) logRSS(V,) + [ log |V,|} — -2-[og IX'V-IX|. (3.59)
5. Maximisation of equation (3.58) with respect to V, yields V.

6. Substitute V, into equation (3.52) to obtain
B;, = (X'VIX)T X'V Yy, (3.60)

7. Substitute V, into equation (3.56) to obtain:

52 = ES_SL@Q (3.61)

. © TI—p
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As with maximum likelihood estimation, maximisation of {;(V,) given by equation (3.58)
requires numerical optimisation techniques such as the Newton-Raphson algorithm. Once
again, the dimensionality of the optimisation process will depend on what structure has
been imposed on ¥,. The estimation procedure is greatly simplified by the block diagonal

structure for V', particularly in terms of evaluating its inverse and determinant.

3.2 Measuring test efficiency in the one parameter

case: Pitman efficiency

The problem of comparing two tests for a given situation with the aim of evaluating
their relative efficiency is reviewed. This is important because of the need to evaluate
the loss of efficiency incurred in using any other test apart from the optimum one. Fol-
lowing Kendall and Stuart [26], the simplest way of comparing two tests for a given null
hypothesis against a given alternative for fixed sample size is by direct examination of
their power functions. The following definition of the relative efficiency of two tests is

taken from Kendall and Stuart [26]:

Definition 3.2.1 If an “efficient” test (that is, the most powerful in the class considered)
of size a requires it to be based on n; observations to attain a certain power, and a
second size « test requires np observations to attain the same power against the same
alternative, then the relative efficiency of the second test in attaining that power against

that alternative is ny/n,.

A similar definition can be found in Gibbons [19] where it is referred to as power efficiency.

The relative efficiency or power of two tests is therefore a function of three arguments:

1. the size « of the tests,

2. the distance between the value of the parameter under the null hypothesis and its

value under the alternative, and
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3. the sample size n; required by the efficient test.

Hence we do not have, by this definition, a single summary measure of the relative
efficiency of one test to another. The efficiency varies as the arguments listed above
change. The need to achieve a single measure of efficiency is the driving force behind

restriction to asymptotic results in evaluating test efficiency.

The following definition of the asymptotic relative efficiency of two tests is based

on Gibbons [19]:

Definition 3.2.2 Let A and B be two consistent tests of a null hypothesis H, and al-
ternative hypothesis H, at significance level a. The asymptotic relative efficiency of test
A relative to test B is the limiting value of the ratio ny/n,, where n, is the number of
observations required for the power of test A to equal the power of test B based on n,

observations while simultaneously, n, — co and H, — H,.

Gibbons [19] notes that in many applications, the above ratio is the same for all choices

of a so that the ARE is a single number.

The ARE of two tests can also be obtained by applying Pitman’s theorem. Pitman
efficiency was considered and generalised by Noether [46]. The general review presented
here is based primarily on Kendall and Stuart [26] and Gibbons [19]. Suppose we have

two consistent size « tests T, and 7T, for testing the hypothesis set
H,:0=6, vs H,:0>80,.

The first test rejects H, if t, > t; , while the second test rejects H, if t; > ¢ ,, where

t, and £} are chosen such that:
PT,2thel0=6,) =«
and

P(T:>t,10=0,)=a

T
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respectively. The sequence of alternative hypotheses considered is such that # approaches
the value tested, 8,, with increasing sample size. If 7;, and T} satisfy regularity conditions

outlined in Noether [46] and Kendall and Stuart [26], then the ARE of T relative to T*

is

o _ v [dE(T.)/d6 ls=s raza“) lo=s
ARE(T.T*) = li 2 n =, 3.62
(T.17) = lim, [dE(T;)/de lozs. | 2(Ts) loms.’ (362)
or simply,
. e(Ty,)
A *) = — .
RE(T,T™) Jim o(T7)’ (3.63)

where e(7},) is the efficacy of the test statistic T, when used to test the hypothesis 8 = 8,
and

dE(T,)/db) |s=s, _ (3.64)

_
e(Tn) = 02(Tv) [o=s,

3.3 An example of measuring test efficiency in the

one parameter case

Suppose we wish to test the hypothesis that the mean u of a normal population
with known variance (taken to be equal to 1), is 0 versus that it’s greater than zero, that

is:
Hy:p=0 ws H;:pu>0. (3.65)

We will consider two tests for testing the above null hypothesis and use them to illustrate
the ideas of measuring test efficiency in the one parameter case. The first test is the
usual z test based on the mean and the second test is the sign test. In this section, the
asymptotic relative efficiency of the sign test relative to the usual test is found using the

methods discussed above.
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For testing the above null hypothesis, the power function of the usual test is given

by
Powerysua = ®(Vnp — zo) (3.66)

while the approximate power function for the sign test is given by

V(i) — 0.5) — 052, } (3.67)

Powergign, = ®
e { SR — B()

Figures 3.1 and 3.2 show the above power functions for varying values of n as a function

of u. Figure 3.3 shows the two power functions together at n = 50, with the usual test

1.0

0.8
L

0.6

Power

04

02

0.0 0.2 04 X 0.8 1.0 12

Figure 3.1: Power function based on the the usual z test for the mean g of a normal population

at a = 0.05.

clearly having higher power than the sign test in the neighbourhood of H,. Re-arranging

the above power functions, expressions for the sample sizes needed to achieve a given



Chapter 3: Relevant concepts review 41
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Figure 3.2: Power function based on the sign test for the mean u of a normal population at

a = 0.05.

power for the usual test and the sign test are

and
2
(1 - 8)/B()(1 - 0.5z,
Msign = { ( B)‘/@((z))(-o.s () + } , (3.69)

respectively. Figure 3.4 shows the ratio nysyuai/nsign for varying values of power. Note
that as H, approaches H,, the ratio appears to be somewhere between 0.63 and 0.65. As
the power increases, the ratio approaches this value even faster even when H, is far from
H,. The asymptotic relative efficiency of the sign test relative to the usual test is the
limiting value of Nysyai/Tsign, Where 7 yn is the number of observations required for the

power of the sign test to equal the power of the usual test based on m,.,, observations
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Figure 3.3: Power functions based on the usual z test and sign test for the mean g of a normal

population at @ = 0.05 and n = 50.

while simultaneously 7,5, — o0 and H, — H,. We have that

' (1—B) + 2za }{‘I’(ﬂ) —0.5}
B)\/®(1)(1 — B(u)) + 0.5 7

= 2lim {———‘D(") — 0‘5}

n—0

(ARE): = lim{ P

§u~+0 Jv;
= 2lim — {——————@(”)—05}
#=0 dp Iz
— olim 2
u—0 1
. _;ﬁ
= 2ﬁl‘1_r)r1‘/_
= 2[1m 1
‘/—( )
2

™
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Overall:

2
ARE = lim sl _ { 3} = % = 0.637. (3.70)

u—+0 Nsign

Alternatively, the ARE of the two tests can be obtained by expanding their power
functions in Taylor series at 4 = 0 and equating the two series so that the two tests
have equal power against the same alternative. For the usual test, expanding the power

function in a Taylor series gives:

(p(\/ﬁ:u - za)
= ®(—za) + ué(za)Vn
= o + pg(za)Vn. (3.71)

For the sign test, expanding the power function in a Taylor series gives:

{ﬂ@(u) 0.5) — 05%}
Ve (1 — @(u))

= ®(— za)+u . (Za)

Vo
0.5

=a+ U¢(Za) (3.72)

Figures 3.5 and 3.6 display the power functions, and their respective Taylor series ap-
proximations, of the usual test and sign test for varying sample sizes. Observe that the

Taylor series approximations get closer to the power functions with increasing sample
size.
Equating the two approximations so that the two tests have the same power against

the same alternative, we have

a + #Qb(za)v Nusual

2”3:’
=+ ﬂqs(za) ——_r_gfl’

1

which simplifies to

Nusual __ Z (373)

- b

Nsign Us



Chapter 3: Relevant concepts review 44

the same result obtained previously.

The ARE of the sign test relative to the usual test could also have been obtained

by applying Pitman’s theorem. For testing
H,:p=0 wvs Hya:u>0 (3.74)

using the mean (usual test), the test statistic is

T =< /‘f/ﬁ = /ni.
For large n:

E(T") = vnu
and

var(T*) = n var(x) = 1.
Also,

d . B
@E(T ) Iu=0 = \/E

Hence, the efficacy of T is given by

e(T*) =n. (3.75)

For testing the same hypothesis using the sign test, we re-write H, and H, in terms

of the population median M:
H,- M=0=0 vs H,:M=6>0 (3.76)

since the mean and median coincide for the normal distribution. The test statistic is T,

the number of positive observations. T follows the binomial distribution with parameters
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n and p where p = P(X > 0), the probability of observing a positive observation. Note

that p = 0.5 under H,. Hence,
E(T) =np

and
var(T) = np(1 — p)-

Note that when § =0, p = 1/2 and hence:

var(T) |o=o = %

Now,

d
ZE(T) la=o

— d[np] lo=0
J do
= = [2(8)] lo=o

= n¢(0) ls=o
__n

2

The efficacy of T is given by

2

e(T) = 2. (3.77)
T

The ARE of the sign test relative to the usual test is therefore given by the ratio of

equation (3.77) to equation (3.75)

ARE(T,T*) = 2“11/ L % (3.78)
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3.4 Measuring test efficiency in the multi-parameter

case

In the multi-parameter setting, consider testing null and alternative hypotheses of

the form
H,:0=0, vs H,:0=80,+N%\

where 67 = (61,60,,...,0.) are the location parameters for r populations and A =
(A1, A2,..-;A.) is a fixed but arbitrary non-null vector considered to be small and J > 0.
For testing the above null hypothesis, Woolson [80] considered the problem of comparing
two test statistic sequences which have limiting chi-square distributions with possibly
different degrees of freedom. He suggested and justified some measures of asymptotic
relative efficiency that may be used in comparing the two test sequences. Of special in-
terest was developing measures of ARE independent of A. Woolson and Sen [79] discuss
in detail these measures of ARE. The measures developed can all be justified on the

behavior of the power function in the neighbourhood of the null hypothesis.

The test statistics considered were quadratic forms Qf,?, where QS\’}) ~ x3(t:; A;)

under H,,7 = 1,2. In calculating measures of ARE, they used an adjustment factor

R(ty, ta, @), where

- l {X%tw-z) > sz,a} -«

R(tly t21 a) -
P{X?h-i—?) > Xgl,a} —a

3

and « is the level of the test.

We shall consider two of the measures, the curvature asymptotic relative efficiency
(CARE) and the trace asymptotic relative efficiency (TARE). The motivation for choos-
ing the CARE and TARE is that they are both average measures of ARE, independent
of A. This review of the two measures is based primarily on Woolson [80] and Woolson
and Sen [79]. The test ¢; is based on the test statistic QS&) and the test ¢ is based on

the test statistic QS?,).
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The CARE of ¢, relative to ¢, is given by

D5 571D | }” “

DD (3.79)

CARE(¢y/¢1) = [R(ty, ta, a)]/* {

with D; and D, being related to the non-centrality parameters of tests ¢; and ¢, re-
spectively. The CARE works out well when at least one of t,t; is > g. Geometrical
considerations show that if CARE > 1, then the power function of ¢, has faster average

local growth at the null point than does the power function of ¢;.

The TARE of ¢, relative to ¢, is given by

tr(D5 %3 Do) }1/25 (3.80)

TARE = [R(ty, t2, @)%
(452/(151) [ ( 1, b2, a)] tl‘(Dg_zrlDl)

The TARE is valid for all values of ¢;, t> and q and hence the range of applicability of the

TARE is wider than that of the CARE. If TARE > 1, then the test ¢, is more optimum

locally by virtue of its greater average power over the family of spheres.

3.5 An example of measuring test efficiency in the

multi-parameter case using two parameters

The example presented here is discussed in Woolson [78], which compares the usual
Hotelling’s test statistic for the one-sample location problem to the nonparametric rank
scores statistics utilizing the CARE and TARE as the modes of comparison. Since the two
tests (at the same level a) have the same degrees of freedom, the criteria of comparison
are scalar functions of the matrices in the non-centrality parameters. The CARE is a

function of the determinants of these matrices while the TARE is a function of the traces

of these matrices.

Let X; (+ = 1,2,...,N) be N independent random vectors from the bivariate
normal distribution with mean vector u and variance-covariance matrix ¥. Consider

testing the hypothesis set

H,-u=p, vs Hy:pF# po, (3.81)
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where p under H, is given by p,+ 5. Using Hotelling’s test statistic, the null hypothesis

is rejected if:
N(Z — po) T7HE — o) > x5(a), (3.82)

where x3(a) represents the upper 100a percentage point of the chi-square distribution

with two degrees of freedom. The power of this test under H, is given by:

power = Pr{N(Z — ) S7Z - po) > xj(a)}
= Pr{x;? (N — 1o)S7 1 — o)) > x3(@)}
= 1-Pr{x? (N — 1) S (1 — 1)) < x3(@)}- (3.83)

As an illustration, the above power function is plotted at o = 0.05 for N = 5, 20, 50, 100,

zz(j:).

See Figures 3.7t0 3.10. The non-centrality parameter is given by N(p — o)’ St (11— o)

with

and

which simplifies to N'X71A.

Let ¢; be the test based on the usual Hotelling statistic and let ¢, be the test based
on the non-parametric rank score statistic. The non-centrality parameters in the two test

statistics are N’E7*A and AT\ respectively. From the definitions of the CARE and

TARE given previously, we have

1/2
CARE($o/t1) = {}TE{} (3.8
and
TARE($/r) = So— (3.85)

tro—1°



Chapter 3: Relevant concepts review 49

Power=0.80 Power=0.85

0 o A [=)
] = Q
3 S 5 S |
@ 2 1
Q.
£ 8 E 8
@ S & S
s o e o |
s @ = @
@ o v (=)

0.0 04 0.8 1.2 0.0 0.4 0.8 1.2

1 i
Power=0.90 Power=0.95

g R g R
[/p} o 75) o
o o 1
[=% _\\\
g T E 8 |
[¢p) o (75 o
S S
=} o K=] =]
T 5 0
@ o @ o

0.0 0.4 0.8 1.2 0.0 0.4 0.8 1.2

K n

Figure 3.4: Ratio of sample sizes (nysya1/Msign) required to achieve a given power at a = 0.05

for the test of the mean p of a normal population based on the usual z test and

sign test.
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Figure 3.5: Power function (solid line) and first-order Taylor series expansion of the power

function (dotted line) at x = O based on the usual z test for the mean u of a

normal population at a = 0.05.
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Figure 3.6: Power function (solid line) and first-order Taylor series expansion of the power
function (dotted line) at x = 0 based on the sign test for the mean y of a normal

population at o = 0.05.
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Figure 3.7: Power function based on Hotelling’s test statistic for the bivariate one sample

location problem (n=>5).
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Figure 3.8: Power function based on Hotelling’s test statistic for the bivariate one sample

location problem (n=20).
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Figure 3.9: Power function based on Hotelling’s test statistic for the bivariate one sample

location problem (n=50).



Chapter 3: Relevant concepts review 55

n=100

Figure 3.10: Power function based on Hotelling’s test statistic for the bivariate one sample

location problem (n=100).



Chapter 4

Efficiency of ordinary least squares
for multivariate longitudinal data

with Kronecker product covariance

matrices

4.1 Introduction

In a multivariate longitudinal design, several characteristics of interest are measured
on each experimental unit over time. One approach to analysing the resulting data is to

use a linear model with a Kronecker structured covariance matrix. The model can be

written as
Y= I X)\+e, (4.1)

where:

© — I x G between subject design matrix for I subjects in G treatment groups;
Ic — C x C identity matrix;

X — T x p within subject design matrix;

56
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A — pCG x 1 vector of unknown parameters; and

e — error vector with ¥ =cov(e) =} ® &,.

The parameter of interest is A and we now consider two ways of testing hypothesis
concerning A. One approach is to use a test statistic that is a function of the ordinary least
squares estimator of A, which will be fully efficient only if £, = 0?I7¢. For multivariate
longitudinal data, this is an unlikely situation since we expect responses on the same
subject to be correlated. Correlation arises from the multiple characteristics measured at
each time point as well as the same characteristic being measured over time. Therefore,

it 1s more realistic to assume that

Y = covie) = ® %,
= IIA®Q,

where

Iy — the [ x I identity matrix;

3, — CT x CT within-subject covariance matrix;

A — C x C covariance matrix for C' dependent variables; and

0 — T x T covariance matrix for T repeated measures on each dependent variable.

¥, depends on 7; and +», the parameter vectors for A and Q respectively.

The present chapter investigates the problem of how inefficient ordinary least
squares may become. Efficiency is defined in terms of testing hypotheses that are of
interest in a given problem. Since correlation arises in two ways in this setting, we ex-
pect that ignoring these two sources of correlation and proceeding to do inference on the
resulting data based on ordinary least squares will result in hypotheses of interest being
inefficiently tested. As stated in Matthews [42], who considered a similar problem for
cross-over designs, efficiency depends on the design in question, the choice of which is
determined by many factors, some of which may not be statistical. The formulation of
the model is reviewed in detail in section 4.2. Hypothesis testing and power are discussed
in section 4.3. Estimation of model parameters is discussed in section 4.4. Algebraic re-

sults for efficiency evaluation using the TARE and CARE are presented in section 4.5.
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Numerical results which assume some special structures for A and Q are presented in

section 4.6. Finally, the chapter closes with a discussion in section 4.7.

4.2 Formulation of the model

Suppose we have a sample of I individuals or experimental units that have been
selected for a longitudinal study. C responses are obtained for each individual, indexed
by ©« = 1,2,...,I at the same set of T time points, indexed by t = 1,2,...,7. The
T time points need not be equally spaced. Let y.; represent the measurement of the

cth characteristic at occasion t on individual i for ¢ = 1.2,...,C; t=1,2,....T; i =

1,2,...,1. The data may be represented as follows:

1 Characteristics C
Individuals 1 2 ... T Time 1 2 ... T
1 yir 21 ---  Nim - ycir Yca --- YcTi
2 Y2 Y122 --- Y12 ce Ycr2 Yc22 --- YcT2
I Yiir Yior ---  WYiTr e Yciur Yeor ---  Yorr

Y; is a T x C matrix representing C characteristics (columns) measured on T

occasions (rows):

( Yui Y2ui --- Yeai --- Ycu \
Yi2i Y22i ... Ye2i --- Yc2u
Y;
- Cz(ym Yois --vs Yois -, yC'i)z (4.2)
* Yiei Y2 --- Yeti --- Yot
\ Yiri Yori --- Yeri --- YoTi J

Note that if C = 1, then only the first column in the matrix Y; remains. This represents

the T' x 1 vector of repeated observations on individual 7 used in the linear model for
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correlated data. Associated with the 1 x C vector y; (the t* row of ¥;) is a p x 1 vector

of covariates or explanatory variables that is given by

( Tti1 \

T2

T _ : ) (4.3)

x I
P ik

\ Ztip J

Consequently, X; is a T x p design matrix for the i** individual as shown below:

( Tiip T2 --- Tk --- ZTiip \
T2i1 T2i2 --- T2k --- T2p
X: : Do, Do,
P = : (4.4)
T
P Ttir ZTez --- ZTtik --- Ttip
\ ITi1 TTie --- ZITik --- ZTTip }

The matrix X is obtained by making z,; a row vector (that is, taking its transpose). The
rows in X; correspond to the different times or occasions of measurement and the columns
correspond to the different covariates. This representation of the design matrix allows
for time-varying covariates (for example, age), time-invariant covariates (for example,

treatment group) as well as covariates that are functions of time.

4.2.1 Modelling the expected values

From section 4.2, yu; represents the measurement of the c** characteristic at oc-
casion t on individual z for ¢ = 1,2,...,C; t = 1,2,...,T; © = 1,2,...,I. Hence
Yei = (Yeris Ye2is - - -, Yeri) Tepresents the T x 1 vector of characteristic ¢ measured over T'

occasions on individual 2. Assume a model for y.; of the form

Yei = Xibi + € (4.5)
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where X; is a T' x p design matrix and b; is a p x 1 vector of unknown parameters. Letting

Y;
TxC:(yva Y2i; ---5 Yeis .- yCi)’
we have
}’i = XiBi + g{ (4—6)

fori=1,2,...,I where Y; is the T x C matrix of observations and X; is the T x p design
matrix for the ¢** individual. In equation (4.6) above, B; is a p x C matrix of unknown
parameters and &; is the matrix of errors for the i* individual. Using the vec operator

such that y; = vec(Y;), we can express equation (4.6) as
yi=([C®Xi)16i+€ia i:1,2,...,I, (4'7)

where ¢; = vec(&;), f; = vec(B;) and we have used the result that vec(PQR) = (R’ ®

P)vec(Q). For I individuals, we have:

i = ([e®X1)B1+6e
Y2 = (Ic® X2)B2 + €

yr = (Ic® X1)Br+er.

The design matrix for the #** individual is given by (Ic ® X;). This specification of
the design matrix has been used by Matsuyama and Ohashi [41] for bivariate response
repeated measures data.

To better illustrate the model and without loss of generality, suppose two response
variables are measured on each individual at each of T occasions. Let y;; and ¥.; be the
T x 1 response vectors on the ** individual for i = 1,2,...,I and set y; = (v};, y5:) -
Consider the model for a single individual given by equation (4.7) which can be written

as (for two response variables):

(yli):(Xi 0)(,31i)+(€1i) (4.8)
Yai 0 X; Bai €2;
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where
Bei — p x 1 individual vector of unknown fixed effects for the c** response
€e; — T x 1 within subject random error vector for the ¢** response. Making the notation

more compact, let
Bi = (B1:: Ba:)',
€ = (ey;, ffzi){-
Then
yi = X{Bi + €, (4.9)

where
B: — 2p x 1 vector of unknown fixed effects,

¢ — 2T x 1 within individual random error vector, and

X; 0
X: - .

With reference to equation (4.7), the complete system of equations can be written as

(v ] [xr 0 - o ][a] [a]

0 X3 --- 0
Sl I B PP ] e (4.10)
(yr ) |0 0 - Xp||Br] |er]

or more compactly as
y= X0 +e, (4.11)
with

E=cov(y) = ®%,. (4.12)
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4.2.2 Modelling the covariance structure

3, is the CT x CT within-subject variance-covariance matrix. It follows that if
Y, is left completely unstructured, it is defined by CT(CT + 1)/2 parameters. In some
cases however, CT is too large relative to I and in this situation, some structure should
be imposed on ¥,. Consider modelling the CT x CT covariance matrix ¥, using the
Kronecker product of the covariance structures A and Q such that ¥, = A ® Q. Since y;
is arranged by characteristic and by time within characteristic, the covariance between
the outcome variables is specified by the C x C matrix A, whereas the covariance among

the repeated measures for a given outcome variable is specified by the T x T matrix Q.

If no restrictions are placed on A and (Q, then they are defined by C(C + 1)/2
and T(T + 1)/2 parameters respectively. Restrictions may be placed on A and/or Q
to ensure identifiability of all parameters. Since A represents the covariance matrix
between the C outcome variables, it is left unstructured. Also, since  represents the
covariance matrix for the T repeated measurements on any characteristic, it can be
modelled parsimoniously, for example, using the compound symmetry and first-order
autoregressive structures. Restrictions are placed on 2 to ensure identifiability of all
parameters. We denote the parameter vectors for A and Q by 7; and v, respectively,

!

and let £ =[], 7]

This approach to directly modelling the dependence of variables which exists not
only within but also across time in the form of a. Kronecker product of covariance matrices
has been considered by various authors, including Zhang [81] for bivariate longitudinal
data. Rochon [55] proposes this model as one method by which the evolving relationship
between two sets of repeated measures is taken into consideration. Note that Rochon [55]
suggests using ¥, = Q2 ® A, where §2 is the 7' x T covariance matrix among the repeated
measures and A is the 2 x 2 covariance matrix for the pair of outcome variables. For our
purposes, the order of these two matrices has been reversed. Verbyla and Cullis [69] use
the Kronecker structured covariance matrix to analyse repeated measures data when an
additional level of dependence exists. Galecki [18] parametrically models the covariance

structure for repeated measures specified by more than one repeated factor using the
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Kronecker product of underlying factor specific covariance profiles. Note that if in the
model propesed by Zhang [81] one assumes that the diagonal elements of the within
subject covariance matrix ¥, are equal, then this model will be equivalent to the model

proposed by Galecki [18].

For bivariate longitudinal data and again without loss of generality, the matrices

A and 2 are given below. Now,
S, =A®QN (4.13)

where

g11 012
A = cov(yri, You:) =
12 022

and
Q2 = cov(Yei)-
In later sections, A is reparameterised as follows (to facilitate interpretation):

A= on Per/O11VO2 | [ 1 b

Per/T114/022 022 b v
with o011 set to one. Using this reparametrisation, v now represents the ratio of the
variances for the two characteristics and p. = corr(yuti, y2:i) is the correlation between

the two characteristics at any given time.

How can one justify using a Kronecker structured covariance matrix for multivariate
longitudinal data? For univariate longitudinal data, there are several choices of struc-
tured covariance structures that one can utilise. This is discussed in detail in Ware [75],
Jennrich and Schluchter [25] and Diggle, Liang and Zeger [14]. Alternatively, one can
introduce random effects in the model as presented by Laird and Ware [34]. The question

we will address is how can one model ¥, in the case of multivariate longitudinal data.
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One possibility is to model the covariance structure as the Kronecker product of an un-
structured covariance matrix (accounting for the covariance among the characteristics)
with some time series covariance matrix (accounting for the covariance across time) as
presented in section 4.2.2. This model is based primarily on Galecki’s [18] model pro-
posed for two or more repeated factors. Modelling data spanned by two or more repeated
factors as discussed in Galecki [18] is indeed quite different from modelling multivariate

longitudinal data. A similar model is presented in Zhang [81].

Suppose we imagine that the longitudinal data on an individual is spanned by two
“factors”, characteristic (factor A) and time (factor B), with levels ¢ = 1,2, ...,C and
t=1,2,....T respectively. The complete set of observations on an individual consists of
CT measurements, with variances and covariances collected in a CT x CT within subject
covariance matrix ¥,. Initially, we focus attention on the T x T submatrices of marginal
distributions of measurements taken over time (Factor B) for every characteristic sepa-
rately. We can assume for the purpose of modelling that the marginal covariance matrices
associated with factor B (time) are equivalent at every level of Factor A (characteristic).
We now shift our focus to the C x C submatrices of marginal distributions of the dif-
ferent characteristics (factor A) for every time point separately. Again, it is acceptable
for modelling purposes to assume that the covariance matrices associated with factor A

(characteristics) are equivalent at every time point (factor B).

As discussed in Galecki [18], one way to model a covariance matrix with repeated
measures in more than one dimension is to use the Kronecker product of “factor” specific
covariance profiles with the underlying assumption that the marginal profile for a given
“factor” is invariant for every level of the other “factor”. Our two dimensions here are
characteristics and time and hence the CT x CT within subject covariance matrix ¥,
can be expressed as the Kronecker product of the marginal covariance matrices of the
“factors”: characteristics and time. For bivariate longitudinal data for example, this
means that A = cov(y1e, Yaei) is constant with respect to both ¢ (time) and ¢ (individual)
and Q = cov(y.;) is constant with respect to both ¢ (characteristics) and 7 (individual).

Table 4.1 gives four examples of covariance structures based on an unstructured A and
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several choices of 2 for C = 2 and T = 3. In Tabie 4.1, “un” denotes unstructured; “sim”
denotes simple; “ar(1)” denotes first-order autoregressive and “cs” denotes compound

symmetry.

Table 4.1: Examples of within-subject covariance models (C = 2 and T = 3).

Model # | Structure Form (A ® Q) # Parameters
1 00
011 012
1 UN®SIM ® [0 10 3
012 022
0 01
1 pi2 pi3
011 012 . . .
2 UN®UN @ | plz P22 P2z 8
O12 022 . . .
P13 P23z P33
1 p p°
o o
3 UN®AR(1) T lel o1 p 4
O12 022 2
p- p 1
1 pop
o o
4 UN®CS v 1 p 4
Ji12 O
p 1

If ¥, is left completely unstructured in this case, it is defined by 21 parameters.
Using the Kronecker structured covariance matrix results in a tremendous reduction in
the number of parameters as illustrated by model 2. A further reduction in the number
of parameters defining ¥, is achieved by imposing a structure on the 7" x T covariance
matrix  among the repeated measures as illustrated by models 1, 2 and 3. Note that
the number of parameters in 2 does not increase with 7" for models 1,3 and 4. The

interpretation of model 3, for example, is as follows:

1. Covariance matrix of the marginal distribution of the 2 characteristics y; and yss

has an unstructured covariance matrix and is the same for all 3 levels of the other

factor (time).
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2. Covariance matrix of the marginal distribution of the 3 measurements ycii, Yc2:
and ycs: is first-order autoregressive and is the same for both levels of the other

factor (characteristic).

4.2.3 Identifiability of ¥,

Since ¥, is expressed as the Kronecker product of two matrices, then the issue of
identifiability has to be addressed. As discussed in Galecki [18], nonidentifiability arises
from the fact that if A ® €2 is equal to the overall within-subject covariance matrix ¥,
then there exists a continuum of other pairs of covariance matrices, for example, § * A
and Q/§ for 6§ > O which give the same Kronecker product. Consequently, we cannot
identify A and 2. To avoid this nonidentifiability, the matrix Q is rescaled so that the
upper left element of this matrix is equal to 1. This is reflected in the form of Q given in

Table 4.1.

4.2.4 A simplification of the model

Suppose that in equation 4.6 in section 4.2.1 we have X; = X sothat X isaT xp
matrix of known constants identical from one one individual to the next. For instance,
we may think of X as containing the values of p functions of time at T" time points. Then

the model for ¥; becomes:

Y; = XB; +&; (4.14)
and consequently, equation (4.7) becomes:

vi={Tc®X)B:+e i=12,...,1 (4.15)
For I individuals, we suppose that

[B1. B2, - - -, Br] = A (4.16)
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where A is a pC x G matrix of unknown parameters and ©' = (0,,0,,...,0))isa G x I
matrix of known constants of full rank G < I, corresponding to the design matrix for I
subjects in G treatment groups. In this context, X corresponds to the within subject

design matrix and © corresponds to the between subject design matrix. Letting ¥ =

{y17 Ya, - . 'xyf}7 FE = {611 €2, - --,6{}, we have:

Y =(Ic ® X)A® +E. (4.17)

The columns of E given by given by €, €, .., ¢ are assumed to be independently dis-
tributed as N ~ (0,%,), where X, is the CT x CT Kronecker structured covariance
matrix so that ¥, = A x 2 as discussed in section 4.2.2. Applying the vec operator to

the above model, we obtain
y=(08Ilc® X)A+e, (4.18)
where y = vec(Y), A = vec(A) and e = vec(E), with

Y = coviy) =L®%,
= [ARQ (4.19)

4.2.5 Application to bivariate growth curve data

Consider the model given by equation (4.18). We now consider a specific application
of this model, restricting attention to bivariate longitudinal data for individuals in G
groups. Let the growth curves for the first and second characteristics for an individual
in the g** group for g = 1,2,...,G be polynomials in time of degree (p — 1). Then the

expected value of the measurement at time ¢ for characteristic 1 in group g is given by
Bgo + Bgrt + B2 2 + ...+ By pat® T, (4.20)
and the expected value of the measurement at time ¢ for characteristic 2 is given by

Ogo + Ogrt+ Qg2 t® +... + gy tPTL (4.21)



Chapter 4: Ignoring correlation in multivariate longitudinal data 68

The observation matrix Y is arranged so that each column represents 2T measurements
on an individual, arranged by characteristic and by time within characteristic. For every
unit, we have 2T observations with a 27T x 2T covariance matrix ¥,. We expect the T
observations on characteristic 1 to be correlated among themselves and the T observations
on characteristic 2 to be correlated among themselves. This correlation is captured by the
matrix (2. Additionally, we expect the observations on characteristic 1 to be correlated
with the observations on characteristic 2. This correlation is captured by the matrix A.
Suppose we have n, individuals in group g for ¢ = 1,2,...,G. Then the matrices ©, A

and X are defined as follows:

1,, O 0
o— 0 1, 0 ,
0 0 1.,
( Bro Bao --- Boo )
B P -.. Bar
A = ﬁl,p—l )BZ,p—]. .. ﬂG,p—I.
Q1o Qg .. aco
ar1 Qz ... Qa1
\ Qrp-1 Q2p-1 --. QAGp-—1 )
and
1t t2 ... &7t
X = 1t 8 ... 57t
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In matrix ©, 1,, denotes a n, x 1 vector of unities. If p =2 and G =2, then Aisa 4 x 2

matrix as given below:

Bro Bz
B Ba

g Qoo

;1 (o

where 3, and oy, represent the coefficients for the first and second characteristic re-
spectively for g** group. Row 1 and row 3 consist of the intercept effects of groups 1
and 2 of the first and second characteristics, respectively. Row 2 and row 4 consists of

the slope effects of groups 1 and 2 of the first and second characteristics, respectively.

Consequently,

( Bro )
B

Qo
Q11
B0
B2

(8 509

=y

A =vec(A) =

4.2.6 Application to bivariate repeated measures ANOVA data

Now suppose I = ny + ns + ...+ ng subjects in G treatment groups are measured
repeatedly on two response variables of interest under 7" different experimental conditions.
The T conditions represent the 7 levels of a factor of interest, with each subject being
observed under all T levels of this factor. The goals of such a design include quantifying
differences in the experimental conditions as well as between the groups. The observation

matrix Y is arranged so that each column represents 27" measurements on an individual,
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arranged by characteristic and by condition within characteristic. For ng individuals in

group g for g = 1,2,...,G, the matrices ©, A and X are defined as follows:
1,, 0 0
0 1., 0
0= ) ,
0 0 Ln,
((Bu Ba ... Bor )
Bz Pa2 --- Bo2
A= Bir Bor --. PBer ’
Qpp Qg ... Qa1
G2 Q22 ... Qg2
\ air axr ... acr )
and
1 00 0
010 0
X =
0 00O 1

For three conditions 7' = 3 and two groups G = 2, A is a 6 x 2 matrix as given below:

( Bu B
Br2 B2
Bz Pas
a1 Q2

Q2 2

\ o3 23 )
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and consequently

( Bu )
Pz
Prs
a1
a2
Q3
B
Ba2
B23

4031

A =vec(A) =

Q22

\ o2

4.3 Hypothesis testing

Consider testing
H,:QA=0 Vs. H,:Q\#0, (4.22)

where @ is a r x (pCG) matrix of rank < pCG. In the Pitman sense, the alternative

hypothesis can be written as:
H,:Q\=6; =I"% (4.23)

so that limy_, r = 0. The estimate of QA is QX and can be obtained either by ordinary
least squares or by generalised least squares. Asymptotically, QX is a r x 1 multivariate
normal random variable with mean vector QA and variance-covariance matrix QV Q'
where V' = var(A). From Corollary 2.3.4 on page 64 in Myers and Milton [44], we know
that

@N (QVQ)™ (@) (4.24)
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follows a non-central x? distribution with r degrees of freedom and non-centrality pa-

rameter

$(@Y (QV@) (@Y. (4.25)
Lemma 4.3.1 7o test the hypotheses

H,:QA=0 Vs. H,:Q\#0,
compute the test statistic:

T =(Q}) (V)™ (@), (4.26)

and compare it to a x* distribution with T degrees of freedom.

4.3.1 Hypotheses testing: Some examples

Example 4.3.1 Consider the application discussed in section 4.2.5. To test the overall

hypothesis of parallelism, that is

Bro Bao

P11 B
H,: = ,

Q10 Qizo

Q11 (853}

compute the test statistic
T= (@Y (QVQ)™ (@Y

and compare it to a x* distribution with 4 degrees of freedom, where

100010 0 0
Jo1o00 0 -1 0 o0
°=looi100 0 -1 0

0001 6 0 0 -1
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Rejecting H, implies that the overall hypothesis of parallelism does not hold at significance

level «. Note that under H,,

Bio — Bao 0
— 0
O\ = B — B _
Qayp — Qg 0
Q11 — Q21 0

Example 4.3.2 Now consider the application discussed in section 4.2.6. To test the

hypothesis that the mean vectors for the two treatment groups are equal, that is,

( BPu \ ( B2 )
Br2 P22
H, - P13 _ B2a ,
an a2
an2 Q2
Lo ) Lo )

compute the test statistic
T =(QV) (QVQ) ™ (@)

and compare it to a x* distribution with 6 degrees of freedom, where

(100000 -1 0 0 0 0 0)
0100000 -1 0 0 0 0
oo 1000 0 0 -1 0 0 o
°={000100 0 o ~1 0 0
000010 0 0 0 0 —1 0
\0 00001 0 0 0 0O 0 -1}

Rejecting H, tmplies that the equality of means for the two groups does not hold at
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significance level a. Note that under H,,

(Bu~6Ba) [0)
P12 — B2z 0
Or = Bz — P23 _| 0
Qi1 — a2 0
Q12 — Q2 0
\ 03 — Q23 ) \ 0 )

4.3.2 Power Discussion

Consider the hypothesis set discussed in section 4.3. At significance level a, the

null hypothesis is rejected if
~ 7 _ ~
T =(Q) (QVQ) ™ (QN) > xi(e)-
Lemma 4.3.2 The power of the test when QM) # 0 is given by

Power = Pr{(QN @QVQ)™" Q) > x (o)}
= Pr{x? (50 @V@) ™ (@V) > ¥(@)}
= 1-Pr{x? (5@ @V@) T @) < x(e)} (4.21)

where x2(a) represents the upper 100 percentage point of the chi-square distribution with

T degrees of freedom.

For fixed o and given @, the power can be evaluated when V is known.
4.4 Estimation of model parameters and associated

variances

The parameters in equation (4.18) can be estimated by ordinary least squares, but

if cov(e) # o2Iyc, then this method will not in general be fully efficient. A fully efficient
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method is generalised least squares based on the variance covartance matrix (4.19). This
is only possible when the parameter vectors y; and 7. defining A and 2, respectively,
are known, as is assumed in this chapter. The practical alternative is generalised least
squares based on the matrix (4.19) evaluated at the estimates 4, and 7 of the parameter

vectors 71 and 7. This is the subject of subsequent chapters.

While generalised least squares is almost always the most efficient method of anal-
ysis, ignorance of y; and 4, makes it an unattainable ideal. Also, sampling variation in
the estimators 4; and 7, also means that the generalised least squares will not always be
more efficient than ordinary least squares. The efficiency of an analysis using ordinary
least squares, relative to that obtained using generalised least squares, can be evaluated

if the true values of 4; and v, are assumed to be known.
Lemma 4.4.1 The ordinary least squares estimator of A is given by
Aots = (0'0)7'0' ® Ic ® (X'X) 7' X'y, (4.28)
while the generalised least squares estimator is given by
Ats = (0'0) 'O @ Ic ® (X'Q71X) T X'Q 7Yy (4.29)
Lemma 4.4.2 The variance of the ordinary least squares estimator is given by
var(Aqs) = (00) ' @ A @ (X'X) X' QX(X'X) . (4.30)

If one proceeds to assume that the correlation matriz is given by £, = 0*Ipc = 0*Ic R I,

then the variance of the ordinary least squares estimator in this case would be taken to

be
Valincoreet(Aois) = 02(0'0) ' @ Ic ® (X'X) . (4.31)
The variance of the generalised least squares estimator is given by

var(Ags) = (0'0) '@ A® (X'Q71X) (4.32)
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See Reinsel [54] to understand how the estimators and the variance of these esti-
mators were derived. Equations (4.30), (4.31) and (4.32) will be used in section 4.5 to
assess the efficiency of the test based on the ordinary least squares estimator relative to
the test based on the generalised least squares estimator for a range of possible values
of the parameter vectors v; and 7. The main focus will be on using the TARE and
CARE to compare the efficiency of using equation (4.31) relative to equation (4.30). The

efficiency of equation (4.30) relative to equation (4.32) is also considered.

4.5 Evaluating efficiency using TARE and CARE

Consider testing the hypothesis discussed in section 4.3 using the test statistic
T given by equation (4.26). The power function based on this test is given by equa-
tion (4.27). Let ¢; be the test based on the generalised least squares procedure which
utilises the correct covariance structure (assumed to be Kronecker structured) in both
the estimator and the estimator of the variance. Let ¢; and ¢, be tests based on the
ordinary least squares procedure. The test ¢, is “correct” in that it utilises the correct
covariance structure in the variance of the estimator. The test ¢, is “incorrect” in that

it ignores the covariance structure in the variance of the estimator.

4.5.1 Efficiency of ¢- relative to ¢,

For the test ¢, the matrix V is given by equation (4.31) while for the test ¢,, it
is given by equation (4.30). The non-centrality parameters in the power function (4.27)

for the tests ¢, and ¢; are given by

;@ {Q(2@e) e loe (X' X)) Q) @) (4.33)
and

s@v{Q(@e) e ae (x'X) T Xax(x'x) ™) @) @), (4.34)

respectively.
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Lemma 4.5.1 The TARE and CARE of ¢, with respect to ¢, are given by

tr{Q (s2(00) " @ lc® (XX) ) Q}

TARE(¢2/$1) = — — T (4.35)
tr {Q ((0'0)™ ® A ® (X'X) ' X'QX(X'X) )}
and
nsieey - |0 ko0 ey Y
AR {Q(eo)'2as (X' X)X QX (X' X)) Q'}“1
_ [le(eeteas xx)xaxxx)) @\ 116
= ‘Q (0’2(@’6)_1 ® IC® (X,X)—l) Q, 1 ( . )
respectively.

4.5.2 Efficiency of ¢; relative to ¢;

The non-centrality parameter for the test ¢, is given by equation (4.34). For the
test @3, the matrix V is given by equation (4.32). The non-centrality parameter in the

power function (4.27) for the test ¢; is therefore given by
1 / ! - 1y — - ’ -1
s@V{e(ee)"eas (X X)T)Q} (@) (4.37)

Lemma 4.5.2 The TARE and CARE of ¢, with respect to ¢3 are given by

r{Q ((0'0) '@ A e (XX)XOX(X'X) ) Q)

- 4.38
ir {Q((@0) " @ A® (x21X) ) @} o

TARE(¢1/¢3) =

and

1 =

{e (o eas X xoxxx) ™)@}
CARE(¢1/¢3) = _ : )¢ |
{Q ((@’e) 1 QAR (X'Q—IX) 1) Q,} l
Qeerteasxarx el " o
@(eo) vas xx) xox(X X))@ T

respectively.
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4.6 Numerical results for special covariance struc-

tures

The TARE and CARE for evaluating the efficiency of ¢, with respect to ¢; are
given by equations (4.35) and (4.36) respectively. Also, the TARE and CARE for eval-
uating the efficiency of ¢; with respect to ¢3; are given by equations (4.38) and (4.39)
respectively. These measures of asymptotic relative efficiency are computed with the

following quantities being manipulated in the computations:

=

. total sample size [;

o

within subject design matrix X;
3. the matrix ), which is dependent on the hypothesis of interest;

4. for the covariance matrix A, the degree of correlation among the dependent vari-

ables (p.) as well as the ratio of the variability of the various characteristics (v);

5. the covariance matrix §2, specified to be either compound symmetry or first order

autoregressive;

6. the parameter p, in €2, representing correlation between any two measurements on
a given characteristic on the same subject when it is specified to be compound
symmetry. When (2 is specified to be first-order autoregressive, p, is the correlation

between successive observations on a given characteristic on the same subject.

The number of characteristics is kept constant at C' = 2 and the number of repeated
observations per characteristic is also kept constant at T = 3.

Consider the model discussed in section 4.2.5 and the test of hypotheses discussed

in example 4.3.1. For G = 2, the matrices X, © and @ are defined as follows:
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O]

Il
N
o I

=
& o
”
N’

with n; = n, = 30,60, 90 and

1 000 -1 O 0 O

0100 0 -1 0 O
Q=

0 010 O -1 0

0001 O O 0 -1

The matrices A and €2 are modeled following models 3 and 4 in Table 4.1. This

means that A is completely unstructured:

o111 O12
A= ;
O12 022
reparameterised as

A= o1 Pc\/ 011/ 022
Pcr/T114/022 o2

with oq; set to one. In contrast, 2 is either first-order autoregressive,

1 p p?
Q= p 1 p |>
P? pe 1

or compound symmetry

1 pe pe
Q=1 p 1 pe
pe P 1

The parameter values used for p., p and 7 in the covariance matrices A and 2 are given

in Table 4.2.
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Table 4.2: Values of parameters defining A and ? used in computing the TARE and CARE.

Parameter Values
Pe —09 to 09 by O.1
Pe 0.1 to 09 by 0.1
0% 05 to 25 by 05

This gives a total of 855 parameter combinations which are varied enough to rep-

resent parameters that may arise in practice.
Now consider the model discussed in section 4.2.6 and the test of hypotheses dis-

cussed in example 4.3.2. For G = 2, the matrices X, © and Q are defined as follows:

1 00
X=|l010
0 01

with ny =ng = 30, 60. 90 and

(100000 -1 0 0 0 0 0 )
010000 0 -1 0 0 0 0
foo1000 0 0 -1 0 0 o
°=loo001000 0 0 1 0 o
000010 0 0 0 0 -1 0
\0 00001 0O 0 0 0 0 -1)

The covariance matrices A and € are modelled following the growth curve example
discussed above. In the graphs that follow, the results from fitting the two models are
presented obtained from evaluating the efficiency of test ¢o relative to ¢,. The results
from evaluating the efficiency of test ¢, relative to ¢ did not yield very interesting results

in either model.
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4.7 Discussion

The results displayed in Figures 4.1 to 4.8 can be summarised as follows:

1.

o

First, we observe that overall, the results for the two designs investigated (growth
curve and repeated measures ANOVA) are quite similar. For example, Figure 4.1
and Figure 4.2 are quite similar. This is especially true when Q takes on the

compound symmetry covariance pattern.

For both the compound symmetry model and the first-order autoregressive model,
the graphs clearly show that the covariance parameters p;, p. and v have a pro-
nounced impact on both the TARE and CARE. It appears that the loss of efficiency,
when it occurs, from ignoring correlation and the degree of the loss of efficiency are
both functions of the covariance parameters v, p. and p,. Overall, it appears that
the efficiency of test ¢, relative to test ¢, is poor for high absolute values of p, and

pc and low values of ~.

To gain a better understanding of the results displayed in the plots, consider a
single graph in the multi-panel display. First, we observe that for a given value of
p¢, the plot is symmetric about p. = 0. Again, if we consider a single value of p, (a
single curve in the plot), the largest efficiency is observed at p. = 0. The efficiency
of test ¢, relative to test ¢; is worst at high negative and high positive values of
pc (note the shape of the curves as p. moves from —0.9 to +0.9). The efficiency is

clearly decreasing as p. approaches —1 and +1.

Now we examine the effect of the parameter p;. Overall, the efficiency of ¢, relative
to ¢, is low for high values of p, (values of p, closer to 1). Observe that the higher
the value of p;, the lower the efficiency of ¢, relative to ¢;. In fact, as p, approaches

0, the maximum efficiency gets larger.

A question of considerable interest is: are all the plots (panels) on a given figure
the same? To answer this question, we now shift focus from a single plot to the five

plots or panels displayed on each figure. The five plots on any given figure display



Chapter 4: Ignoring correlation in multivariate longitudinal data 90

the effect of v (the ratio of the variances of the two characteristics) for a given
design and covariance structure. The panels are clearly not the same. Overall,
efficiency increases as a function of . For example, consider a single value of p; in
each plot (any single curve) and observe what happens to this curve as we move
from plot to plot corresponding to different values of 4. As % increases, so does
the efficiency of ¢, relative to ¢;. Observe that when - is greater than one, test ¢»
appears to be more efficient than test ¢; for a restricted range of p. and low values
of p;. The test ¢, is substantially inefficient relative to the test ¢, when ~ is less
than or equal to one as demonstrated by the two bottom panels in each figure. The
efficiency is especially poor for large values of p,. The maximum efficiency achieved

for each design and covariance structure also changes as 7 increases.

Overall, the results are as expected. For the designs and covariance structures considered,
a loss of efficiency is shown to occur from ignoring the two sources of correlation in
testing hypotheses of interest. The loss is greatest when (i) the correlation between the
characteristics is high and (ii) when the correlation between longitudinal measurements
on a given characteristic is high. Ignoring these two correlations when they have high

values is statistically less efficient than if one appropriately accounts for these correlations.



Chapter 5

Increasing efficiency from
multivariate longitudinal data by
using a Kronecker product to model

the covariance structure

5.1 Introduction

A question of considerable practical interest, and the focus of the present chapter,
concerns the potential gain in efficiency that would result from exploiting the Kronecker
product covariance structure. As in the previous chapter, efficiency is defined in terms of
testing hypotheses that are of interest in a given problem. Assessing the gain in efficiency
that results from using a Kronecker structured covariance matrix will be accomplished
by evaluating the efficiency of a test based on a completely unstructured covariance ma-
trix relative to one based on a Kronecker structured covariance matrix. The measures of
efficiency used are the TARE and CARE. Results obtained from the investigation will
enable us to make general statements about the usefulness of utilising the Kronecker

product structure when it exists in hypotheses testing for multivariate longitudinal data.

91
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Additionally, we will be able to state what parameter ranges signify more serious conse-

quences, if any, in ignoring the Kronecker product structure.

A second goal of the present chapter is to describe a preliminary test of H, :
Y0 = A® versus H, : £, = X,, where ¥, is an arbitrary covariance matrix in the
analysis of multivariate longitudinal data. Incorporating the test in practical work will
be useful in that it will provide protection against doing the wrong thing and increase
efficiency if we do the right thing. Section 5.2 presents the model to be used. Section 5.3
discusses likelihood estimation of model parameters. Section 5.4 introduces the test
for the Kronecker product pattern. Section 5.5 discusses hypothesis testing and power.
Several examples are presented in section 5.6. Evaluating efficiency using TARE and
CARE is given in section 5.7. Section 5.8 presents a Monte-carlo simulation study used
to assess the gain in efficiency that results from using a Kronecker structured covariance
matrix in hypothesis testing. The chapter closes with results obtained from the Monte-

carlo simulation study and a general discussion in section 5.9.

5.2 Model specifications

The model presented section 4.2 is assumed in this chapter. Additionally, it is

assumed that

y~ MVN(u,X),
where

=0 Ic® X)A
and

¥ = cov(y) =h®Z%,
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Suppose, for example, that we have two characteristics measured on each of three occa-

sions for each subject. Then A is given by

A — oun 012 ,
012 022
and is reparameterised as follows (to facilitate interpretation):

A= o111 Per/O11/022 | [ 1 b
Per/O111/022 022 b v

with oy; set to one. If € is assumed to be first-order autoregressive, then:

1 pe p?
Q=1 p 1 pe
pi pe 1

with the upper left element set to 1 to avoid nonidentifiability of ¥,. In this case,
parameter vectors y; and 72 defining A and Q, respectively, are given by v, = (v, pc)
and v, = (p;). v represents the ratio of the variances for the two characteristics and p.
is the correlation between them. All covariance parameters are assumed to be unknown
and must be estimated from the data using maximum likelihood or restricted maximum

likelihood estimation.

5.3 Likelihood estimation of model parameters

Since y is assumed to be
y~MVN{ORIc® X))\, I[;@ AR Q}, (5.1)

then parameters of interest can be estimated using maximum likelihood estimation or
restricted maximum likelihood estimation. To find the likelihood estimators of A, A and
2, the likelihood function (and hence the log-likelihood function) is derived in terms of

A, A and Q.
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Lemma 5.3.1 IfA = A, and Q = Q,, the mazimum likelihood estimate or the restricted

mazimum likelihood estimate of A is given by
A=(00)'0' @ Ic ® (X'Q1X) T X'ty (5.2)

Refer back to equation (4.29). Equation (5.2) is substituted back into the log-likelihood
function and the resulting equation, a function of A, and Q,, is maximised with respect to
71 and v,. Maximisation yields A and Q, the maximum likelihood or restricted maximum

likelihood estimates of A, and 2, respectively.
Lemma 5.3.2 Substituting the likelihood estimates back into equation (5.2), we get:
daxe = (00)7'O® Ic ® (X'O1X) T X' 1y, (5.3)
with
vir(Aaxe) = (00) '@ A @ (X'O1X) 7. (5.4)

Lemma 5.3.3 If A is estimated ignoring the Kronecker product structure by using an

arbitrary completely unstructured CT x CT matriz, then

Aun = (0'0)7'0 @ (X'S71X") T XSy, (5.5)
with

var(A,) = (00) 7' ® (X' X)) 7, (5.6)

where X* = Ic @ X and %, is the mazimum likelihood or restricted mazimum. likelihood

estimate of ¥,, an arbitrary CT x CT matriz.
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5.4 Testing for the Kronecker product pattern

We can test the null hypothesis that the CT x CT covariance matrix ¥, has the

Kronecker product structure £, = A ® Q using the likelihood ratio test statistic:

=I

LR = {_ITE,LC} S (5.7)
Al €]

where ¥, has an arbitrary pattern and ¥, is its maximum likelihood or restricted maxi-

mum likelihood estimate. A and } are the maximum likelihood or restricted maximum

likelihood estimates of A and 2 assuming ¥, is a Kronecker structured covariance ma-

trix. Under the null hypothesis, the quantity 2log,(LR) has an asymptotic Chi-square

distribution with

TcTCc+1) C(C+1)+2 (5.8)
2 2 ’

degrees of freedom when  is assumed to be compound symmetry or first-order autore-
gressive. The test described here is similar to the test discussed in Diaz and Johnson [11]
for testing for the Wiener stochastic process pattern in the covariance matrix of multi-

variate repeated measures data.

5.5 Hypothesis testing and power

Hypothesis testing concerning the parameter vector A is based on the result (5.3)
which, in conjunction with (5.1), implies that

A~MVN{A (©@0) ' ®A® (X'Q'X)'}. (5.9)

We assume (5.9) continues to hold, to a good approximation, if we replace -y; and +y», the

parameter vectors defining A and  respectively, with their likelihood estimates. This

gives

A~ MVN{A,V =var(Aaxe) } (5.10)
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where var(Aayq) is given by equation (5.4). If a completely unstructured covariance

matrix has been used, then A is given by (5.5) and
A~ MVN{AV = var(Au)}, (5.11)

where var(\,,) is given by equation (5.6). Consider testing the hypotheses discussed in
section 4.3. In this case, the estimate of QA is Q:\, with A given either by equation 5.2 if
the parameters defining A and Q are known or by equations 5.3 and 5.5 if the covariance

parameters have to be estimated. Since

A~ MVN(AV), (5.12)
then

QA ~ MV N {QA, QVQ'}, (5.13)
and

(@Y V) (@N) (5.14)

follows a non-central x? distribution with r degrees of freedom and non-centrality pa-

rameter

S @V (QVQ) ™ (@), (5.15)
Lemma 5.5.1 To test the hypotheses

H,:QA\=0 Vs. H,:QA#0,
compute the test statistic

T* = (@Y (QVQ) ™ (QN), (5.16)

and compare it to a x? distribution with v degrees of freedom.



Chapter 5: Utilising the Kronecker product structure 97
Following section 4.3.2, the null hypothesis H, : QA = 0 is rejected at level a if
*x VY ¥ 7 -1 EY
" =(Q)) (QVQ) (QX) > xj(a).

Lemma 5.5.2 The power of the test under the alternative hypothesis H, : QXA # 0 s

given by
Power =1 Pr{x* (5(QV @)™ @Y) < (@)} (5.17)

where x?*(a) represents the upper 100a percentage point of the (central) chi-square dis-

tribution with r degrees of freedom.

For fixed o and given Q, the power can be evaluated once V has been obtained from the

data using maximum likelihood or restricted maximum likelihood estimation.

5.6 Examples

In this section, we present three examples to illustrate the application of the linear
model for multivariate longitudinal data with a Kronecker structured covariance matrix.
The examples will also serve to illustrate multivariate longitudinal designs that frequently
occur in practice. The first example considers a growth curve setting while the second
example considers a repeated measures analysis of variance problem. The third example
re-visits the data introduced in Chapter 1. One of the major roles of these examples is
to provide structure to simulations that will be carried out later in this chapter and also

in the next chapter.

The first example concerns 18 patients randomized to two treatment groups in
order to evaluate the changes in vertical position on the mandible. Three variables,
called SOr-Me (mm), ANS-Me (mm), and Pal-Me (degrees) were measured at three time
points during therapy. The data has been discussed previously in Timm [65], Thomas [63]
and Boik [6]. Timm [65] gives the mean plots of the data for each group and variable,

which suggests that the growth curves for the three variables are approximately linear.
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A question of practical interest concerns whether the growth curves for the two groups
are parallel for one or more variables. For our purposes, we will consider only the last

two variables, that is, ANS-Me and Pal-Mp angle.

The model fit to the two variables is
y=0@®Ic® X)A+e, (5.18)

with

1 -1
X=11 o0
1 1
and
( Bio )
Bu
Q10
A =vec(A) = o1
Bzo
B2
Q20
\ oz )

The error vector e is assumed to have covariance matrix ¥ given by ¥ = cov(e) =

LI®E =LA ®Q, and Q is assumed to be first-order autoregressive. The estimates
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Table 5.1: Estimated regression coeflicients for the growth curve example.

Group | Characteristic | Parameter | Estimate | Standard Error
1 1 Bio 64.411 1.782
1 1 Bu 1.194 0.2998
1 2 agg 24.893 0.589
1 2 o 0.222 0.267
2 1 o 65.726 1.782
2 1 B 1.444 0.2998
2 2 Qg 24.146 1.589
2 2 Q21 0.144 0.267

Table 5.2: Estimated covariance parameters for the growth curve example.

Covariance Matrix | Parameter | Estimate
A o11 29.374
12 1.257
022 23.378
Q p 0.972
Auto-Regressive(1)

obtained for the regression coefficients, obtained by maximum likelihood estimation, are

given in Table 5.1. The covariance parameter estimates are given in Table 5.2.

To test for parallelism simultaneously for both variables, that is

Bo Bao

Bu Ba
H,: = ,

(8311 Q0

Qg1 2]

we compute the test statistic

T = (QX) (QVQ) ™ (QN)
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and compare it to a x? distribution with 4 degrees of freedom where:

1000 -1 0 0 O
0100 0 -1 0 O
Q= :
060010 0 0 -1 0
0001 0 0 0 -1

We obtain T = 0.803 with a p-value of 0.938. From this, we conclude that the two
treatments do not differ significantly with respect to their linear growth curves. This is

in agreement with conclusions drawn by others who have looked at this data.

The second example considers a repeated measures analysis of variance setting, with
measurements taken under what we can think of as three experimental conditions. The
data is discussed in Hand and Crowder [21]. The data relates to patients who suffer from
panic attacks (group 1) and the control set who do not suffer from panic attacks (group
2). 11 repeated measures are recorded on 3 variables: the first variable is the score on an
anxiety scale, increasing from 0 to 8; the second is CO, expiration; and the third is pulse
rate. The three variables are recorded together at times 4,6, 8,10,11,14,16,17,18,19
and 23 minutes. Times 4,11,14,19 and 23 are rest times. Times 6,8 and 10 are times
at which subjects are spoken to on the topic about which they are anxious. Times 6,17
and 18 are times at which subjects are asked to hyperventilate. There was missing data

for some of the subjects on the response variables.

As mentioned in Hand and Crowder [21], the scope for relating anxiety scores to
the explanatory variables is wide. Their analysis focused on the effects of “group” and
“circumstances” (rest, spoken to, hyperventilate), on CO, expiration. We will also focus
on the effects of “group” and “circumstances”, applying the linear model for multivariate
longitudinal data with Kronecker structured covariance matrix. The data is treated as
a two sample bivariate repeated measures ANOVA, with the subjects in two groups
measured repeatedly under three different conditions (rest, spoken to, hyperventilate).
Times 4,10 and 16 are chosen to correspond to each of the three conditions respectively.

The two variables considered are anxiety scores and CO, expiration.
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The model fit to the two variables is:
y=O [ X)A+e (5.19)

with:

100
X=]1010|,
001

and

(Bu )
Br2
P13
an1
a2
an3
B2
B2
Ba3

Q21

A =vec(A) =

Q22
oz J

The error vector e is assumed to have covariance matrix £ given by £ = cov(e) = [[®%, =

L A®Q, and Q is assumed to be compound symmetry. The estimates obtained for



Chapter 5: Utilising the Kronecker product structure 102

Table 5.3: Estimated regression coefficients for the repeated measures analysis of variance

example.

Group | Characteristic | Parameter | Estimate | Standard Error
1 1 Bu 3.667 0.414
1 1 P12 6.000 0.414
1 1 B3 5.571 0.414
1 2 ap 32.190 0.836
1 2 Q2 30.095 0.836
1 2 a3 19.190 0.836
2 1 B21 1.000 0.435
2 1 B22 4.684 0.435
2 1 B23 2.842 0.435
2 2 Q21 35.947 0.879
2 2 Qa2 34.053 0.879
2 2 Q23 19.579 0.879

Table 5.4: Estimated covariance parameters for the repeated measures analysis of variance

example.

Covariance Matrix | Parameter | Estimate

A o1 3.600
012 -0.752
022 14.665

Q P 0.395

Compound Symmetry

the regression coefficients, using maximum likelihood estimation, are given in Table 5.3.

The covariance parameter estimates are given in Table 5.4.

To test the hypothesis that the mean vectors for the two groups (panic=yes,
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panic=no) are equal simultaneously for both variables, that is:

(Bu) [ 8a)
B2 B2z
H, - B1s _ Ba3 ’
(835] Qo1
Q2 Qa2

\aw )\ o

compute the test statistic:
~ ! N —1 -
T =(Q) (QVQ) (@A)

and compare it to a x? distribution with 6 degrees of freedom where:

/100000 -1 0 0 0 0 0
010000 0 -1 0 0 0 O
Joo1000 0 0 -1 0 0 O
°= 10001000 0 0 -1 0 o0
000010 0 O O 0 -1 0
\00 0001 0 0 0 0 0 -1}

We obtain T = 44.912 with a p-value of 4.87 x 1078, From this, we conclude that the two

groups do differ significantly with respect to anxiety scores or CO; expiration or both.

The third example re-visits the data introduced in Chapter 1. In treating the data
as a growth curve problem, the model fit to FEV1 and FVC is:

y=0ORIc® X)A+e (5.20)

with:
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1 0
IC:‘— .

(1 —2 )

1 -1
X=]1 0
1 1

(12 )
and

(B0 )
P
2310
a1
B0
B21

Q2o

=y

The error vector e is assumed to have covariance matrix ¥ given by ¥ = cov(e) =

A =vec(A) =

L®E, =51 ®@A®Q, and Q is assumed to be first-order autoregressive. The estimates
obtained for the regression coefficients, obtained by maximum likelihood estimation, are

given in Table 5.5. The covariance parameter estimates are given in Table 5.6.

To test for parallelism simultaneously for both variables, that is:

Bo B2

B Ba1
H,: = ,

(6311] Q2o

an a

we compute the test statistic:

T = (QN) (QVQ) ™ (@)
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Table 5.5: Estimated regression coefficients from fitting a growth curve model to FEV1 and

FVC.
Group | Variable | Parameter | Estimnate | Standard Error
Sw fevl Bio 5.1226 0.1298
SW fevl Bu 0.4058 0.08493
SW fve Qg 5.6547 0.1206
Sw fvc o 0.3744 0.07890
Uw fevl B0 5.4422 0.09287
uw fevl B2 0.3150 0.06075
Uw fve Qa9 5.7548 0.08627
uw fve Qg 0.3162 0.05644

Table 5.6: Estimated covariance parameters from fitting a growth curve model to FEV1 and

FVC.
Covariance Matrix | Parameter | Estimate
A o 2.8413
012 2.2662
02 2.4518
Q p 0.1712
Auto-Regressive(1)

and compare it to a x? distribution with 4 degrees of freedom where:

1000 -1 0 0 O

0100 0 -1 0 O
Q=

0010 0 0 -1 0

0001 0 0 0 -1

We obtain T = 8.995 with a p-value of 0.061. From this, we conclude that at o = 0.1,
surface and underground workers differ significantly with respect to one or both of their

tung function capacities. Suppose the data is now treated as a repeated measures analysis
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of variance problem with the error vector e is assumed to have covariance matrix ¥ given
by ¥ =cov(e) =1 %, =[® A®Q, and Q is assumed to be compound symmetry.
In testing the hypothesis that the mean vectors for the two groups (worker=surface,
worker=underground) are equal simultaneously for both variables, we obtain T = 20.073
with a p-value of 0.029. From this, we conclude that the two groups do differ significantly
with respect to FEV1 or FVC or both.

The test for the Kronecker product pattern described in section 5.4 is also applied
to this data. Using the first model (un ® ar(1)), we obtain x? = 870.821 and using the
second model (un ® c¢s), we obtain x? = 830.661. The null hypothesis that the within-
subject variance-covariance matrix has a Kronecker product pattern is therefore rejected
in both cases, indicating that for these data, the unstructured covariance matrix may be

more suitable.

5.7 Evaluating efficiency using TARE and CARE

Counsider testing the hypothesis discussed in section 5.5 using the test statistic
T* given by equation (5.16). The power function based on this test is given by equa-
tion (6.17). Let ¢} be the test based on the likelihood procedure which specifies the
correct covariance structure and ¢3 be the test based on the likelihood procedure which
ignores the Kronecker product structure by specifying a completely unstructured covari-
ance matrix. To evaluate the efficiency of ¢; relative to ¢7, the TARE and CARE of ¢;3
relative to ¢7 are computed. The TARE and CARE in this specific case are discussed in

the next two sections.

5.7.1 Efficiency of ¢; relative to ¢]

If the covariance parameters defining A and Q are known, then for the test ¢j,

the covariance matrix V is given by (6/0)™' ® A ® (X'Q27'X)™!. The non-centrality
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parameters in the power function (5.17) for the tests ¢3 and ¢ are therefore given by

@' {Q(@e) e (x5 x07™) @) (@A) (5.21)
and

%(QA)’ (o) easxx)™) Q) @), (5.22)
respectively.

Lemma 5.7.1 The TARE and CARE of ¢; with respect to ¢ are given by:

e {Q((@0) o Xzt x) ) Q)

TARE(¢3/¢7) = — —— (5-23)
r{Q (@) v ae x01X) ) Q)
and
|{Q ((@e) e (X5t X)) Q’}—1 ’
CARE(¢3/¢1) = " TR
{@(@e)'oae (xa1x)™)Q} ]
{Q((e'@r‘@ww'ﬂ*xr‘) Q’l}é (5.24)
@ (e e x =t x @] [
respectively.

The quantities (5.23) and (5.24) are estimated in the simulation study later in this chap-

ter.

5.7.2 Estimated efficiency of ¢; relative to ¢

For the test ¢3, the estimated covariance matrix V is given by equation (5.6) while
for the test ¢7, it is given by equation (5.4). The non-centrality parameters in the power

function (5.17) for the tests ¢3 and ¢} are estimated by

s {e (o)t e s x07) @) @) (5.25)
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and

S@\ (e ede (xaix™) Q'}-I Q) (5.26)
respectively.
Lemma 5.7.2 The estimated TARE and CARE of ¢35 with respect to ¢] are given by

tr {Q ((@'e)"1 ® (X5 x*)’l) Q'}_1

tr {Q (((—)'@)*1 RA® (X’Q—IX) _1) Q,}—l (5.27)

TARE (63/¢1) =

and
. — e -1 ) -1 H
CAREex(¢3/61) = 9 '{Q ((@ o o X )Q} ~1
\ {Q ((e'@)“‘ ®A® (X'Q-1X)-l) Q’}
(10 ((e'e)-1 RA® (X’Q‘IX)—I) Q|
= AL (5.28)
L IQ ((eerl ® (X5 X*)-l) Q’|
respectively.

The quantities (5.27) and (5.28) are used to evaluate the efficiency of test ¢ relative
to test ¢ when the covariance parameters defining A and Q are unknown and estimated

from the data by fitting a Kronecker product covariance structure.

5.8 A Monte-carlo study

5.8.1 Data generation

Multivariate normal data with u = (@@ Ic @ X)Aand E=[;QL, =; 9 A®Q
is generated for two characteristics C = 2 and three time points T = 3. Multivariate

normal data were generated using the Cholesky root of the variance-covariance matrix.
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To illustrate this, let X be N,(u, £) and Y be N,(0, I). Y is generated by p repeated calls
to a univariate normal generator and X is obtained from the transformation X = LY +pu

such that LL = X.

The vector p is specified from the design specifications and results of a previous
study. The study was conducted by Dr. Tom Zullo in the school of Dental Medicine at the
University of Pittsburgh and is discussed in Timm {65], Thomas [63] and Boik [6] among
others. The study concerned the relative effectiveness of two orthopaedic adjustments
of the mandible. Nine subjects were assigned to each of two orthopaedic treatments,
called activator treatments. On each of three occasions, three dependent variables were
observed which, in combination, reflected the position and size of the mandible. Mean
plots of the data for each group and variable revealed that the growth curves of the three
variables were approximately linear. Timm [65] fit a quadratic regression model to the
data. In the study described here, p is specified by ignoring the quadratic terms and

using data only for the first two variables.

The matrices A and €2 are specified according to model 3 in Table 4.1. The pa-
rameter values used for p., p: and v in the covariance matrices A and {2 are given in

Table 5.7. This gives a total of 180 parameter combinations. The range of parameters

Table 5.7: Values of parameters defining A and 2 used in the Monte-carlo simulation study.

Parameter Values
Pe ~06 to 06 by 0.3
Pt 0.1 to 09 by 0.1
¥ 1 to 2 by 0.5

and parameter combinations considered are varied enough to represent parameters that
may arise in practice. Computational problems were encountered for values of p, very
close to 0 and 1 and hence the range of values considered for p; is restricted to lie between

0.1 and 0.9, inclusive. For each set of parameters considered, 200 simulation trials were

carried out.
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5.8.2 Model fit and quantities of interest

The data generated by each trial is analyzed using a linear model for multivariate
longitudinal data. More specifically, a linear growth curve model is fit to each of the
two response variables in each of the two groups. Evaluation of the efficiency of test
¢35 relative to test ¢ depends on whether the covariance parameters defining A and
Q are known or not. If they are known, then X is given by (5.2) and var(;\) is given
by (00)7'® A ® (X’Q LX) . To evaluate the efficiency of test #5 relative to test ¢7
following section 5.7.1, an unstructured covariance matrix is fit to the simulated data and
Aun given by equation (5.5) and its covariance matrix v&r(&m) given by equation (5.6) are
computed. The TARE and CARE given by equations 5.23 and 5.24 are then evaluated.

In simplified form, we evaluate

tr {Qvar(;\lm)Q’ }-1

TARE(¢5/47) = - — (5.29)
tr {Qvar(3axa)Q'}
and
IQVB.I(XAXQ)Q’[
CARE(¢;/¢7]) = - _ 5.30
92/ ) |Quar(Au)Q| (530

In practical situations, the covariance parameters are unknown and must be esti-
mated from the data. The efficiency of test ¢3 relative to test ¢; is evaluated by fitting

two different covariance models to the data:

1. unstructured covariance matrix;

2. Kronecker product covariance matrix (the true model).

Using the Kronecker product covariance matrix means computing Aaga given by equa-
tion (5.3) and its covariance matrix var(Aaxe) given by equation (5.4). Ignoring the
Kronecker structure and using an unstructured covariance matrix means computing :\,m

given by equation (5.5) and its covariance matrix var(A.,) given by equation (5.6).
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The quantities discussed in section 5.7.2 for evaluating the efficiency of @3 (test
based on a likelihood procedure that ignores the Kronecker product covariance struc-
ture) relative to @} (test based on a likelihood procedure that specifies the Kronecker
product covariance structure) are computed from the generated data. Specifically, the
quantities are given by equation (5.27) for the TARE and equation (5.28) for the CARE.

In simplified form, we evaluate

T Nt
TAREes: (#3/¢7) = tr{Qt’afgkm)Q} _ (5.31)
tr{Qvar(/\Axp_)Q’}
and
~ :\ 5 ’
CAREcc(¢3/47) = I(IQ(;::(; ‘;()QQ’ (5.32)

where @ reflects a hypothesis of interest. The results are summarised in the tables and

graphs that follow.

5.9 Results and discussion

Tables 5.8 to 5.16 give the efficiency, as measured using the TARE and CARE, of
test ¢3 relative to test @] for the covariance parameter values given in Table 5.7 obtained
from the simulation study. For clarity, the results are presented separately for each value

of p; and are cross-classified by the values of p. and 7.

The parameters p. and v do not appear to have a significant impact on the TARE
and CARE as can be clearly seen from Table 5.8 to Table 5.16. We observe that the values
of the TARE and CARE do not change very much as p. progresses from —0.6 to 0.6 and
as vy progresses from 0.5 to 2. As a result, the values within a given table are quite close.
It appears that the parameter which impacts efficiency most profoundly is p;. The values
of the TARE and CARE change as we move from table to table. The CARE gives higher

values for all parameter combinations considered. The TARE and CARE are closer for
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TARE and CARE for the test based on a unstructured model relative to one based

on a Kronecker product model cross-classified by p. and v: p; = 0.1.
v 0.5 1 1.5 2 Total
Pc }3—6 Tare Care jt Tare Care _N Tare Care q%’o— Tare Care i%_'rm:e Care
-0.6 0.955 0.924 0.930 0.965 0.925 0.931 0.97 G.926 0.932 0.97 0.926 0.932 3.86 0.925 0.931
-0.3 1 0.947 0.974 1 0.943 0.967 L 0.944 0.967 I 0.944 0.967 4 0.945 0.969
0 1 0.950 Q.974 L 0.946 0.967 1 0.947 0.967 L 0.947 0.967 4 0.947 0.969
0.3 L 0.956 0.985 L 0.949 0.973 1 0.950 0.973 L 0.951 0.973 4 0.951 0.976
0.6 1 0.961 1.002 L 0.958 0.991 L 0.959 Q.991 1 0.959 0.991 4 0.939 0.99%
Total 4.955 0.948 0.973 4.965 0.944 0.966 4.97 0.945 0.966 4.97 0.946 0.966 19.86 0.946 0.968
Table 5.9: TARE and CARE for the test based on a unstructured model relative to one based
on a Kronecker product model cross-classified by p. and v: p, = 0.2.
¥ 0.5 1 1.5 2 Total
Pc % Tare Care % Tare Care 2‘(}’0 Tare Care % Tare Care ,_,‘DVO Tare Car
-0.6 1 0.819 0.850 1 0819 0.850 1 0.819 0.850 1 0.820 0.850 4 0819 085
-0.3 1 0.820 0.850 1 0.821 0.850 1 0.821 0.850 1 0.822 0.850 4 0821 085
0 1 0.821 0.850 1 0822 0.850 1 0.823 0.850 1 0.823 0.850 4 0822 0.85
0.3 1 0.821 0.850 1 0822 0.850 1 0.823 0.850 1 0824 0.850 4 0823 0.85
0.6 1 0.820 0.850 1 0822 0.850 1 0.823 0.850 1 0823 0.850 4 0822 0.85
Total 5 0.820 0.850 5 0.821 0.850 5 0.822 0.850 5 0822 0850 20 0.821 0.85
Table 5.10: TARE and CARE for the test based on a unstructured model relative to one based
on a Kronecker product model cross-classified by p. and v: p; = 0.3.
5 0.5 1 1.5 2 Total
Pe & Tare Care &5 Tare Care &~ Tare Care —z‘g—o Tare Care sy~ Tare Car
-0.6 1 0.742 0.796 1 0.742 0.796 1 0.742 0.796 1 0742 0.796 4 0.742 0.79
-0.3 1 0.742 0.796 1 0743 0.796 1 0.744 0.796 1 0.744 0.796 4 0.743 0.79
0 1 0.743 0.796 1 0.744 0.796 1 0744 0.796 1 0.745 0.796 4 0.744 0.79
0.3 1 0743 0.796 1 0.744 0.796 1 0.745 0.796 1 0.745 0.796 4 0744 0.79
0.6 1 0.743 0.796 1 0744 0.796 1 0.744 0.79 1 0.745 0.796 4 0744 0.79
Total 5 0.743 0.796 5 0.743 0.796 5 0.744 0.796 5 0.744 0.796 20 0.743 0.79
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Table 5.11: TARE and CARE for the test based on a unstructured model relative to one based

on a Kronecker product model cross-classified by p. and v: p, = 0.4.

¥ 0.5 1 1.5 2 Total

Pe s Tare Care &5 Tare Care - Tare Care &=  Tare Care S5 Tare Car
-0.6 1 0.691 0.769 1 0691 0.769 1 0692 0.769 1 0692 0.769 4 0691 0.76
-0.3 1 0.692 0.769 1 0692 0.769 1 0692 0.769 1 0.693 0.769 4 0692 0.76
0 1 0.692 0.769 1 0.692 0.769 1 0693 0.769 1 0693 0.769 4 0693 0.76
0.3 1 0692 0.769 1 0.693 0.769 1 0693 0.769 1 0693 0.769 4 0693 0.76
0.6 1 0692 0.769 1 0.692 0.769 1 0693 0.769 1 0693 0.769 4 0692 076
Total 5 0692 0.769 5 0.692 0.769 5 0.692 0.769 5 0693 0.769 20 0692 0.76

Table 5.12: TARE and CARE for the test based on a unstructured model relative to one based
on a Kronecker product model cross-classified by p. and v: p, = 0.5.

¥ 0.5 1 1.5 2 Total

pe &= Tare Care #s Tare Care &y~  Tare Care 2 Tare Care - Tare Car
-0.6 1 0667 0.772 1 0667 0.772 1 0667 0.772 1 0667 0.772 4 0.667 0.77
-0.3 1 0667 0.772 1 0667 0.772 1 0667 0.772 1 0668 0.772 4 0667 0.77
0 1 0667 0.772 1 0667 0.772 1 0668 0.772 1 0668 0.772 4 0667 0.77
0.3 1 0667 0.772 1 0.667 0.772 1 0667 0.772 1 0667 0.772 4 0667 0.77
0.6 1 0667 0.772 1 0667 0.772 1 0.667 0.772 1 0.667 0.772 4 0.667 0.77
Total 5 0.667 0.772 5 0.667 0.772 5 0667 0.772 5 0667 0.772 20 0.667 0.77
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Table 5.13: TARE and CARE for the test based on a unstructured model relative to one based

on a Kronecker product model cross-classified by p. and v: p: = 0.6.

P 0.5 1 1.5 2 Total

Pe 55> Tare Care N~ Tare Care 5= Tare Care S~ Tare Care s> Tare Car
0.6 1 0.674 0.813 1 0674 0.813 1 0674 0.813 1 0.674 0.813 4 0674 0.81
-0.3 1 0.674 0.813 1 0.674 0.813 1 0674 0.813 1 0674 0813 4 0674 081
0 1 0.673 0.813 1 0674 0.813 1 0.674 0.813 1 0674 0.813 4 0674 081
0.3 1 0.673 0.813 1 0.673 0.813 1 0.673 0.813 1 0673 0813 4 0673 081
0.6 1 0.673 0.813 1 0673 0.813 1 0673 0.813 1 0673 0.813 4 0673 081
Total 5 0673 0.813 5 0.673 0.813 5 0674 0.813 5 0.674 0.813 20 0673 081

Table 5.14: TARE and CARE for the test based on a unstructured model relative to one based
on a Kronecker product model cross-classified by p. and v: pr = 0.7.

¥ 0.5 1 1.5 2 Total

Pe -  Tare Care %ﬁ Tare Care 7= Tare Care & Tare Care &= Tare Car
-0.6 1 0.730 0.92L 1 0730 0.921 1 0730 0.921 1 0.731 0.921 4 0.730 0.92
0.3 1 0.729 0921 1 0730 0921 1 0730 0.921 1 0.730 0921 4 0730 0.92
0 1 0.729 0.921 1 0.729 0.921 1 0729 0921 1 0729 0.921 4 0729 0.92
0.3 1 0.728 0921 1 0.728 0921 1 0728 0921 1 0.728 0.921 4 0728 092
0.6 1 0728 0921 1 0.727 0921 1 0727 0921 1 0.727 00921 4 0727 0.92
Total 5  0.729 0.921 5 0.729 0.921 5 0.720 0921 5 0.729 0.921 20 0.729 0.92
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Table 5.15: TARE and CARE for the test based on a unstructured model relative to one based

on a Kronecker product model cross-classified by p. and +: p; = 0.8.

~ 0.5 1 1.5 2 Total
De s3> Tare Care ._,%'0— Tare Care & Tare Care 5 Tare Care o Tare Car
-0.6 1 0.893 1.180 1 0894 1.180 1 0.894 1.180 1 0895 1.180 4 0894 1.8
-0.3 1 0.892 1.180 1 0.893 1.180 1 0.893 1.180 1 0893 1.180 4 0893 1.8
0 1 0.891 1.180 1 0.891 1.180 L 0.891 1.180 1 0891 1.180 4 0891 1.8
0.3 1 0.890 1.180 1 0889 1.180 1 0.889 1.180 1 0889 1.180 4 0889 1.18
0.6 1 0.889 1.180 1 0.888 1.180 1 0.888 1.180 1 0.887 1.180 4 0888 1.18
Total 5 0.891 1.180 5 0.891 1.180 5 0891 1.180 5 0.891 1.180 20 0.891 1.18
Table 5.16: TARE and CARE for the test based on a unstructured model relative to one based
on a Kronecker product model cross-classified by p. and v: p, = 0.9.

- 0.5 1 1.5 2 Total

Pc ._,‘O—Va- Tare Care ;,_ain Tare Care ._,‘%0 Tare Care —2‘—;% Tare Care 5%"5 Tare Car
-0.6 1 1.429 1982 1 1464 2029 1 1465 2.029 1 1466 2.029 4 1456 2.01
-0.3 1 1.420 1.969 1 1.463 2.029 1 1464 2029 1 1464 2.029 4 1452 2.01
0 1 1.420 1974 1 1459 2029 1 1460 2.029 1 1460 2.029 4 1450 2.01
0.3 1 1410 1.961 1 1456 2.029 1 1456 2.029 1 1455 2029 4 1444 201
0.6 1 1.423 1.982 1 1453 2.029 1 1452 2.029 1 1451 2.029 4 1445 201
Total 5 1.420 1974 5 1459 2.029 5 1.459 2.029 5 1.459 2029 20 1.449 2.01
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small values of p, with an increasing difference as p, approaches 0.9. At p, = 0.8, the
CARE exceeds 1 and at p, = 0.9, both measures exceed 1. This is somewhat surprising
and is worth further investigation. To understand how the parameter p, affects efficiency,
a graphical representation of the results is shown in Figures 5.1 to 5.4. A quadratic curve
has been fit to the data. A loss of efficiency occurs for values of p; from 0.1 to about
0.8. The degree of the loss of efficiency depends on the value of p;. Efficiency drops as
we move from p; = 0.1 to p, = 0.5 and then begins to rise again. There appears to be no

loss of efficiency for high values of p; (above 0.8). Efficiency is worst for mid values of p;.

For the design and within-subject variance-covariance matrices considered, the re-
sults presented in the Tables 5.8 to 5.16 and Figures 5.1 and 5.4 demonstrate the useful-
ness of utilising the Kronecker product covariance structure for muitivariate longitudinal
data. If one ignores the underlying Kronecker product covariance structure, a potential
loss of efficiency will occur in testing hypotheses that are of interest. The parameters
v and p. defining the covariance matrix A do not appear to impact the efficiency very
significantly. However, the parameter p; defining the covariance matrix Q appears to

have a large impact on efficiency.

5.10 Evaluating the performance of the test for the
Kronecker product pattern in the covariance

matrix

This section investigates the performance of the test described in section 5.4 for
testing the null hypothesis that the CT x CT covariance matrix ¥, has the Kronecker
product structure A x 2. The null and alternative hypotheses are given respectively by :

Hy,: L, =A%
Versus

H,: ¥,=%, (Arbitrary).
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As mentioned in the introduction to this chapter, there are two reasons why this is a very
useful test in practical work involving multivariate longitudinal data. First, the test will
provide one with protection against doing the wrong thing in terms of basing inference
on an incorrect covariance matrix. Secondly, it will give one increased efficiency if one
does the right thing. The test is based on computing the likelihood ratio test statistic
given by:

ot &

£ |7
LR = {—Ta (5.33)
A€

where 2, has an arbitrary pattern and f),, is its maximum likelihood or restricted maxi-
mum likelihood estimate. A and ) are the maximum likelihood or restricted maximum
likelihood estimates of A and 2 assuming ¥, has a Kronecker structured covariance
matrix. Under the null hypothesis, 2In(LR) has an asymptotic chi-square distribution
with

TC(TC+1) C(C+1)+2
5 - 5 (5.34)

degrees of freedom when (Q is assumed to be compound symmetry or first-order autore-
gressive. The idea of incorporating the test is that the choice of parameter estimates
contained in the vector A to be used in testing hypotheses of interest will depend on the
results of this test. If the p-value obtained is less than or equal to «, where « is the fixed
significance level of the test, then Aun Will be used in subsequent analysis since the null
hypothesis for the Kronecker product pattern will have been rejected. Otherwise, AAxQ

will be used.

The data in the Monte-carlo study discussed in section 5.8 was generated using
the covariance matrix ¥, = A x  and varying the parameters in A and 2. Hence, we
can evaluate the performance of the test for the Kronecker product pattern by finding
the empirical Type I error rates for this test for a given a. This is accomplished for
each parameter combination considered by counting the number of times (out of the
total number of simulation trials per parameter combination) that the null hypothesis

H, : ¥, = A xQ is rejected. This translates to the number of times ;\,m is chosen over
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Aaxa IS subsequent analysis. We then observe what happens to the Type I error rates
as a goes from 0.05 to 0.95 in steps of 0.05 for the different parameter combinations
considered. The results are presented in Table 5.17, from which we observe that the
performance of the test described in section 5.4 is very good, with empirical Type I error

rates being very close to a.
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Table 5.17: Type I error rates (per 100 tests) for the test for the Kronecker product covariance

structure cross-classified by «a and p;.

P

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0.05
0.1
0.15
0.2
0.25
0.3
0.35
0.4
0.45
0.5
0.55
0.6
0.65
0.7
0.75
0.8
0.85
0.9
0.95

5.86
11.88
18.60
23.08
28.90
34.94
37.46
41.97
47.05
53.50
59.06
62.43
68.67
72.40
76.91
78.95
84.89
91.44
95.44

5.50
11.85
18.00
22.50
29.00
35.42
38.40
41.60
46.50
52.45
58.00
62.40
66.40
72.00
75.50
79.00
85.00
91.50
95.50

5.00
11.38
18.15
23.00
28.00
34.50
38.42
41.82
46.00
51.78
57.00
61.50
66.30
72.00
76.50
79.50
85.50
90.50
95.50

5.50
11.50
17.50
23.00
28.50
33.50
38.00
42.50
46.50
51.00
56.50
61.50
66.50
72.00
76.50
80.00
85.08
90.50
96.00

6.00
12.00
18.50
23.00
28.50
32.50
38.00
41.50
46.18
50.50
57.00
60.50
66.50
72.50
77.50
80.00
85.50
90.50
96.00

5.70
12.50
18.50
23.50
29.05
33.00
37.50
41.00
45.50
52.00
57.00
61.00
64.97
73.50
77.50
80.50
86.00
90.50
94.50

6.05
12.00
18.00
23.68
30.00
33.50
37.00
40.95
44.72
51.50
56.62
61.00
66.00
71.60
77.50
81.00
86.00
90.00
94.50

6.00
12.00
18.50
23.50
30.00
34.00
37.00
39.50
45.50
51.50
57.50
62.42
66.00
71.00
77.50
80.50
84.45
89.50
95.50

7.00
12.00
17.05
23.95
30.90
33.50
36.50
40.10
46.48
53.02
58.00
63.10
67.65
71.50
76.55
80.05
83.50
89.50
96.00
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Figure 5.1: TARE (averaged over 200 simulations) of the test based on a unstructured within-

subject variance-covariance matrix relative to one based on the Kronecker product

model for varying values of 7.
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Figure 5.2: TARE (averaged over 200 simulations) of the test based on a unstructured within-
subject variance-covariance matrix relative to one based on the Kronecker product

model for varying values of p..
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Figure 5.3: CARE (averaged over 200 simulations) of the test based on a unstructured within-
subject variance-covariance matrix relative to one based on the Kronecker product

model for varying values of ~.
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Figure 5.4: CARE (averaged over 200 simulations) of the test based on a unstructured within-
subject variance-covariance matrix relative to one based on the Kronecker product

model for varying values of g..



Chapter 6

The effect of covariance structure on
hypothesis testing in multivariate

longitudinal data

6.1 Introduction

In Chapter 5, we investigated the gain from utilising a Kronecker structured co-
variance matrix for multivariate longitudinal data. Using the TARE and CARE, we
evaluated the efficiency of a test based on a completely unstructured covariance matrix
relative to one based on a Kronecker structured covariance matrix. For the designs and
covariance structures considered, the results demonstrated that if one ignores the under-
lying Kronecker product covariance structure, a potential loss of efficiency could occur
in testing hypotheses of interest. The degree of the loss of efficiency was determined to
a large extent by the parameters defining the matrices A and 2. The parameter p, in

had the greatest effect on efficiency.

In this chapter, we investigate the converse of the situation considered in Chapter 5.
Specifically, the loss from imposing a Kronecker structured covariance matrix in testing

hypotheses of interest in multivariate longitudinal data is investigated. To achieve this,

124
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the concept of non-Kronecker product covariance matrices is introduced and a class of
matrices that is non-Kronecker product defined. The class of matrices are specified in a
way that makes them easy to interpret. An index, referred to as the Kronecker product
deviation index, is introduced. It is used to quantify how far a given covariance matrix
departs from Kronecker product structure. To assess the consequences of imposing a
Kronecker product covariance matrix, hypotheses of interest are tested using two models.
The first model is based on a Kronecker product covariance matrix and the second model
is based on a non-Kronecker product covariance matrix. The impact of the Kronecker

product deviation index on the results of hypothesis testing using the two models are

carefully studied.

Results obtained from the investigation will enable us to make general statements
about the consequences of imposing Kronecker product structure when it is not appro-
priate in testing hypotheses of interest for multivariate longitudinal data. Additionally,
we will be able to state what parameter ranges signify more serious consequences, if any,
in imposing the Kronecker product structure. Section 6.2 gives an alternative and more
general formulation for the within-subject variance-covariance matrix ¥,. Section 6.3
discusses how to measure departure from the Kronecker product structure. Section 6.4
presents a Monte-carlo simulation study designed to investigate the impact of the Kro-
necker product deviation index on testing hypotheses of interest. The chapter closes with

results and a general discussion in section 6.5.

6.2 An alternative formulation for ¥,

A detailed discussion on modelling the covariance matrix for multivariate longitu-
dinal data in the form of a Kronecker product is discussed in detail in section 4.2.2. A
justification for using the model is also given. Two of the structures that are most com-
monly used are reproduced in Table 6.1. In these structures, A represents the covariance
matrix for the characteristics at any time point and 2 represents the correlation matrix

for any of the characteristics over time. To model the within-subject covariance matrix
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Table 6.1: Examples of within-subject covariance models (C =2 and T = 3).

Structure Form (A ® Q) # Parameters
1 p /o
oy o
UN®AR(1) BT el b1 ) 4
O12 022 2
prFp 1
” 1L p0p
o
UN®CS oo 1 p 4
T2 022
p 1

Yo as the Kronecker product of two matrices A and Q , the assumption is made that
A does not change with time and €2 is the same for all characteristics. This assumption
will work in many situations but will be unrealistic in some cases. For example, if one
is modelling both diastolic and systolic blood pressure over time in a group of patients
diagnosed with high blood pressure, then it is reasonable to assume that 2 is the same
for both of these characteristics. However, if one is modelling two distinctly different
characteristics that have been measured over time, then it may be unrealistic to assume
that their correlation structures over time are the same. An alternative formulation for

3, must therefore be considered.

There are several options one may consider, one of which is to drop the assumption
that the covariance matrix that models the T repeated measurements on a given char-
acteristic is the same for all characteristics. For C' characteristics each measured on T

occasions, consider the following formulation for £,:

o1l o122 -+ o1cQic
0218221 022822  --- 03cQc
20 = . . . 1
o101 0c2fc2 -+ occflc
where ., forc = 1,2,...,C, represents the T x T correlation matrices for characteristics
1,2,...,C measured on T occasions and Q. forc=1,2,...,Cand k=1,2,...,C repre-

sents the correlation matrices between the pairs of characteristics over time. The matrices
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Q. and Q¢ forc =1,2,...,C and £ = 1, 2,...,C may be left completely unstructured
or may be structured in some way. Possible structures include compound symmetry and
first-order autoregressive. Without loss of generality, consider two characteristics each
measured on three occasions and assume a first-order autoregressive structure over time.

The correlation matrix for the first characteristic is given by

1 po pf
Q= n 1 p '
i om 1

and for the second characteristic by

1 p2 p3
L=|p 1 p
ps pr 1

Also,

1 pr2 P%z
Qu=\|p2 1 p2 |,
Pl pr2 1
representing the correlation between the two characteristics over time. The overall within-

subject covariance matrix ¥, is therefore given by:

( ( L p 4 L piz PP ) )
oul pr 1 p |on2| pra 1 pi2
5 = ? i m 1 Pl P2 1 <
1 p2 piy 1 p2 p3
gi2| prz2 1 p12 |022] p2 1 p2
k \ P2 P2 1 p3 p2 1) |

which cannot be expressed as the exact Kronecker product of two matrices except in the
special case when the parameters p;, p, and p;2> are all equal to each other. The matrix
¥, is defined by 6 parameters, namely: 11, 012 and 22, py (defining 2;), po defining ()

and P12 deﬁning (ng).
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6.3 Measuring departure from Kronecker product

An important goal of the present chapter is to define an index that gives an in-
dication of how well a given TC x T'C variance-covariance matrix for C characteristics
measured on 7T occasions can be expressed as the Kronecker product of a C x C matrix
and a 7" x T matrix. The index would enable one to decide when to base inference for
multivariate longitudinal data on a model with a Kronecker structured covariance ma-
trix. This section describes the index that will be used which is based on Verhees and

Wansbeek [71].

Verhees and Wansbeek [71] describe a multimode direct product model for covari-
ance structure analysis. They justify the model by stating that in the psychometric
literature, there is evidence that the modes in multimode data interact multiplicatively.
They also state that a basic expression of this idea is that a covariance matrix may then
be written as the repeated Kronecker product of k, say, parameter matrices, where k
is the number of modes. This is, in fact, the covariance matrix that has been central
to the work done in this dissertation, specifically as it applies to multivariate longitudi-
nal data with £ = 2 to reflect the two dimensions (characteristics and time). Verhees
and Wansbeek [71] call this model the “factorial covariance structure”. For this model,
they give an integrated treatment of maximum likelihood, weighted least squares and
unweighted least squares estimators. In this section, we focus on the unweighted least
squares estimator. We pay particular attention to the modified unweighted least squares
estimator which is non-iteratively computable. To avoid confusion and to be consistent
with the notation in Verhees and Wansbeek [71], the following equivalences should be
kept in mind. The notation on the right is the notation used in this dissertation and the

notation on the left is the notation used in Verhees and Wansbeek [71].
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4. ’n]_:C 11.2=T.

Consider the data vector for a single subject ¢z, ¢ = 1,2,...,7, in multivariate
longitudinal data with C = n; characteristics measured on T = n; occasions. Let y;
represent the T' x 1 vector representing the data for a given characteristic measured on T
occasions and y;; represent the C x 1 vector representing the data for C characteristics
measured at each time point. The first index (characteristic) is the slower running index
and the second index (time) is the faster running index. The total number of observations
on a given subject is n = n; X ny = C X T which are given by the vector y; of length
ny X ny = C x T. The variability in the observations is summarised in their n x n =
CT x CT sample covariance matrix S. The covariance matrix from which y; is drawn is
given by ¥,, also n x n = CT x CT. %, is said to have a factorial covariance structure

when it has the form:
L, =A®Q (6.1)

where A and (2 are symmetric positive-definite matrices of order C x C and T x T
respectively. We consider estimation of the matrices A and 2 in equation (6.1). Three
criteria are available for estimating the parameters in A and 2. The three criteria are
maximum likelihood, weighted least squares and unweighted least squares. The three

criteria are given by equations 6.2, 6.3 and 6.4 respectively.

min(In|%,| + trSX; ) (6.2)
min tr((S — ¥,)8™1)? (6.3)
min tr(S — )2 (6.4)

The parameter vector & contains the parameters in A and . The three criteria can be

summarised as:
min tr((S — So)W1)%, (6.5)

with W =%, (ML), W = S (WLS) or W = I,, (ULS).
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6.3.1 Notation

The following notation will be useful:

1. C;is a n xn commutation matrix that changes the running order of the observations

in the vector y in such a way that C;y has the #** index fastest.

n

i_yk .. _ n
2. n' =1l =g

3. W;, S; and X,; are the permuted versions of W, S and £, respectively. For example,
considering the general situation with & dimensions, ; = £*® X; where the n? x n*

matrix ¢ is given by:
Ei221®"’®Zi—1®2i+1®"'®zk. (6'6)

The vectorized matrices are given by o; = vec &; and o® = vec X'

4. §; = vec S; where S; comes from stacking each of the (n")2 blocks of order n; x n;
of S; in a vector according to the vec operator, and placing these vectors together

next to each other as columns of the matrix S;.

6.3.2 Estimation

Following Verhees and Wansbeek [71], the estimator ; of o; is given by
PR U S
6 = [XUWer Wi T X X WirWi) ™ 5, (6.7)

where W; = §; (ML), W; = S; (WLS) or W; = I, (ULS), and hats on X; and W;
indicate their possible dependence on unknown parameters that also have to be estimated.
Also, WiaW; = B,-(W,- ® PV,»)B{-, where B; is a permutation matrix. Elaboration of
equation (6.7) gives three distinct estimators for the three estimation criteria. All three
estimators require an iterative procedure. Fortunately, a modification of the unweighted

least squares estimator is possible that allows for non-iterative estimator.
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The unweighted least squares estimator for o; is

6: = (6%'6%) ' 867, (6.8)
and the unweighted least squares estimator for ¢* is

&' = (5}67) " Sl (6.9)
Substituting equation (6.9) into equation (6.8) yields

(5:5/ — AI)é; =0, (6.10)
where A is defined as

&' (6.11)

imposing the normalisation that §;6; = 1. This gives the very important result that &; is
an eigenvector of the n? x n? matrix 5',—5—';. The optimum value of the modified unweighted
least squares criterion is shown to be a — A, where a = tr (S?). Therefore, in order to
render this minimal, the largest eigenvalue in equation (6.10) should be chosen. Verhees
and Wansbeek [71] proved that there exists a non-iterative unweighted least squares
estimator for &;. This estimator is consistent but not asymptotically efficient. When
k = 2, as in our case with multivariate longitudinal data, &; can be seen to be the first
left singular vector of S; and &, to be the first right singular vector of this same matrix
Si. Based on this, we define an index that measures how far a given variance-covariance

matrix is from Kronecker product:

Definition 6.3.1 Let ¥ be a n x n variance-covariance matriz. The Kronecker product

deviation indezx of ¥ denoted by 6(X) is defined as:

5(%) =mintr(S ~ (A® Q))>. (6.12)
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Definition 6.3.2 Let ¥ be a n X n variance-covariance matriz. A modified definition of

the Kronecker product deviation indez of ¥ denoted by §*(X) is given by:

()

(5*(2) = |8‘2/".

(6.13)

The second definition ensures that the Kronecker product deviation index is invariant
under scale change. In this thesis, the matrices considered are all of comparable size in
terms of their determinants, hence the first definition of the Kronecker product deviation

index is used.

6.3.3 An example

To illustrate the modified unweighted least squares estimator that is the solution

of an eigenvalue equation, consider the following matrix:

(4 32 256 2 04 008)

32 4 32 04 2 04

5 _| 26 32 ¢ 008 04 2
2 04 008 4 16 064

04 2 04 16 4 16
008 04 2 064 16 4 )

The modified unweighted least squares estimates of o; and o5 are found to be:

0.745
0.246
0.246
0.568
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and

(047
0.263
0.174
0.263
o2 = | 047
0.263
0.174
0.263
\ 0.47 )

Hence,

A 0.745 0.246
0.246 0.568 |
and

0.47 0.263 0.174
Q=] 0263 047 0.263
0.174 0.263 0.47

Applying Definition 6.3.1, the value of the Kronecker product deviation index is found

to be 10.154.

The values of the Kronecker product deviation index obtained by applying Defini-
tion 6.3.1 to the class of matrices introduced in section 6.2 are displayed in the histogram
in Figure 6.1. The values in the histogram are obtained by specifying values for the cor-
relation parameters as given in Table 6.2. The parameters 011, 022 and 012 and are kept
constant at 4, 4 and 2 respectively. Note that the distribution of these values is strongly

skewed to the right. Summary statistics for these values are also given in Table 6.3.

The results are also given for each value of p;2 in Table 6.4 to Table 6.7 where they

have been cross-classified by the parameters p; and p>. The value of the criterion in the
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Figure 6.1: Histogram of the values of the Kronecker product deviation index.

Table 6.2: Values of correlation parameters used in computing the Kronecker product devia-

tion index.
Parameter Values
P1 0.1 to 09 by 0.1
P2 01 to 09 by 0.1
P12 0.1 to 09 by 0.1

optimum is 0 when the values of the parameters p;, p» and p;> are equal. Also note that

the tables are symmetric along p, = p».

Examining each of the four tables closely, we focus on the cell where the value of
the Kronecker product deviation index is 0. This is the cell for which the values of p,,
p2 and p;o are equal. Observe that the values in the immediate vicinity of this cell are
small and increase quickly as we move outwards away from this cell in all directions.

This intuitively makes sense since moving away from this cell (which we can think of as
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Table 6.3: Overall summary statistics for the Kronecker product deviation index.

Min. 0
1st Qu. 2.555
Median 6.024
Mean 7.233
3rd Qu. 10.73
Max. 26.54

135

Table 6.4: Values of the Kronecker product deviation index cross-classified by p; and p3: p12 =

0.2.
P2

o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 026 039 131 3.08 574 930 13.74 1895 24.69
02 039 000 040 164 3.76 6.79 10.73 15.49 20.88
03 131 040 026 094 248 494 831 12.54 17.50
04 308 164 094 102 195 3.78 6.52 10.15 14.58
05 5.74 3.7 248 195 223 338 543 838 12.18
06 930 679 494 378 338 380 511 731 10.38
0.7 13.74 10.73 831 652 543 511 562 701 9.29
0.8 1895 15.49 1254 1015 838 731 7.01 7.56 8.98
09 24.69 20.88 1750 14.58 12.18 1038 9.29 898 9.51
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Table 6.5: Values of the Kronecker product deviation index cross-classified by p; and ps: p12 =
04.

p1 0.1 0.2 0.3 04 05 0.6 0.7 0.8 0.9

0.1 250 206 237 349 547 833 12.06 1659 21.74
0.2 206 112 095 159 3.08 548 878 1293 17381
03 237 095 028 0.41 139 327 6.08 9.79 14.29
04 349 159 041 000 043 175 400 7.19 11.23
0.5 547 3.08 139 043 027 099 263 520 8.68
06 833 548 327 1.75 099 1.06 202 392 6.75
0.7 12.06 878 6.08 4.00 263 2.02 228 344 5.53
0.8 16.59 1293 979 7.19 520 392 344 382 5.12
09 21.74 17.81 14.29 11.23 B8.68 6.75 5.53 5.12 5.58
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Table 6.6: Values of the Kronecker product deviation index cross-classified by p, and pa: p12 =

0.6.
P2

P1 0.1 0.2 03 04 05 06 0.7 0.8 0.9

0.1 752 642 6.02 637 750 9.46 12.25 15.83 20.08
0.2 642 488 404 395 467 624 868 11.97 16.03
03 602 404 276 222 249 3.63 566 8.59 12.36
04 637 395 222 122 102 167 323 572 911
0.5 750 467 249 102 030 043 146 344 6.35
06 946 6.24 363 167 043 0.00 045 1.85 4.19
0.7 1225 868 566 323 146 045 029 103 273
0.8 15.83 1197 859 572 344 185 1.03 1.09 2.08
0.9 20.08 16.03 1236 9.11 635 4.19 273 2.08 232
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Table 6.7: Values of the Kronecker product deviation index cross-classified by p; and pa: p12 =

0.8.

p1 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

0.1 16.04 14.19 1295 1236 1246 1330 1490 17.25 20.29
0.2 14.19 1196 1035 941 9.17 971 11.05 13.21 16.14
0.3 1295 1035 838 7.06 647 666 769 958 1231
04 1236 941 7.06 537 439 419 485 6.41 885
0.5 1246 9.17 647 439 300 238 262 3.76 5.83
06 1330 971 666 419 238 131 107 174 3.34
0.7 1490 11.05 7.69 485 262 107 032 045 1.52
0.8 17.25 1321 958 641 3.76 174 045 0.00 0.47
09 20.29 16.14 1231 885 583 334 152 047 0.29
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the center of the table) means that the values of the parameters p; and p, are moving
further away from the value of p;>. The departure of p; and p, further and further away
from p;» implies that we are getting further away from the Kronecker product structure

and hence the values of the Kronecker product deviation index are getting larger.

6.4 A Monte-Carlo study

In this section, a Monte-carlo simulation study was undertaken to evaluate the
impact of the Kronecker product deviation index on testing hypotheses of interest in
multivariate longitudinal data. The evaluation is done both under the null and alterna-
tive hypotheses. The test based on imposing a Kronecker product covariance matrix is
compared to a test based on a non-Kronecker product covariance matrix. These tests are
investigated for a multivariate longitudinal design consisting of data from two groups of

subjects measured on three different occasions on two characteristics.

6.4.1 Data generation

Multivariate normal data with gy = (O ® Ic @ X)Aand X = I; ® X, = [} ® £,
where ¥, = 3, is as defined in section 6.2, is generated for two characteristics C = 2 and

three time points 7' = 3. As discussed in Chapters 4 and 5, for testing the hypotheses
H,:QA=0 Vs. Hy:QA#0, (6.14)
we compute the test statistic
T = (@) (QVQ) ™ (@N), (6.15)

and compare it to a x? distribution with r degrees of freedom. The null hypothesis

H, : QX = 0 is rejected at level a if

T = (QX) (QVQ) ™ (Q}) > x2(a).
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In the Monte-carlo simulation study conducted here, the vector u is specified in two
different ways. To assess the impact of the Kronecker product deviation index under the
null hypothesis, the vector u is specified so that the null hypothesis is true. This means
specifying p so that QXA = 0. To assess the impact of the Kronecker product deviation
index under the alternative hypothesis, p is specified so that the null hypothesis is not
true. This means specifying u so that QA # 0. To be more specific, the vector p is
specified for a bivariate growth curve data problem where one is interested in the overail

hypothesis of parallelism. Under H,, we have

Bo Bao

Bu B21
H,: =

ayp (85])]

(2551 Q91

If H, is true, then

Bro — Bao 0
— By 0
O = 1 — Bar _
Qg — Qg 0
Qy1 — Qo 0

If H, is not true, then QA # 0.

Under the null hypothesis, we specify p so that:

Bio Bao
Pu | | Bx
Q10 Q20 ’
2351 Qo1

where the intercepts and slopes for the two groups are equal for both characteristics.
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Under the alternative hypothesis, u is specified so that:

Bio B2o
Bi1 P21
#

Qg (851
agx Q21

For the sake of simplicity, we specify equal intercepts (819 = B20, @10 = @) but different
slopes. For the slopes, we let 8,3 = k811 and as; = ka;; and specify the constant & so

that the alternative hypothesis represents just a slight departure from the null hypothesis.

The specific values in p are specified following modified results of the study de-
scribed in section 5.8. The study concerned the relative effectiveness of two orthopaedic
adjustments of the mandible. Nine subjects were assigned to each of two orthopaedic
treatments, called activator treatments. On each of three occasions, three dependent
variables were observed. The three dependent variables, in combination, reflected the
position and size of the mandible. Mean plots of the data for each group and variable
revealed that the growth curves of the three variables were at least linear. Timm [65] fit
a quadratic regression model to the data. In the study described here, the parameters for
group 1 are specified by ignoring the quadratic terms and using the data from the first
group on the first two variables. The parameters for group 2 are specified as a function

of group 1 parameters, that is:

Bao B1o

Bu | | kBu

Q20 10 ’
Qo kan

and k is specified so that group 2 slopes for both characteristics are 20% greater than
group 1 slopes. Note that when £ = 1, QA = 0 and the data is therefore generated
assuming H, is true. All other values of k&, that is, & > 1 signify some departure from H,
and hence QA # 0. In the simulation study done here, only one alternative is considered

which is the case where group 2 slopes are 20% greater than the group 1 slopes. The
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Jjustification is that the main focus here is to understand the effect of the Kronecker

product deviation index on hypothesis testing.

The within-subject variance-covariance matrix is specified to be non-Kronecker
product following the specification outlined in section 6.2. To evaluate how far each of
the covariance matrices departs from the Kronecker product form, the index of departure
discussed in section 6.3 is computed prior to data generation. The further the index is
from O, the further the given covariance matrix is from Kronecker product. The param-
eter values used in specifying the within-subject variance covariance matrix are given in

Table 6.8. This gives a total of 100 parameter combinations. The range of parameters

Table 6.8: Values of parameters defining €2 used in the Monte-carlo simulation study.

Parameter Values
o1 0.1 to 09 by 0.2
02 0.1 to 09 by 0.2
P12 0.2 to 08 by 0.2

and parameter combinations considered is varied enough to represent parameter combi-
nations that may arise in practice. Computational problems are encountered for values
of p1, p2 and p12 very close to 0 and 1 and hence the range of values considered for these
parameters is restricted to lie between 0.1 and 0.9 inclusive. The parameters o;; and
022 are kept constant. We did not see the need to vary these parameters since they had
minimal effects on any of the quantities of interest investigated in Chapter 5. For each

set of parameter combinations, 200 simulation trials are carried out.

6.4.2 Model fit and quantities of interest

The data generated by each trial is analyzed using a linear model for multivariate
longitudinal data. More specifically, a linear growth curve model is fit to each of the two

response variables in each of the two groups. The model fit to the two variables is

y=(0R1Ic:® X)A+e, (6.16)
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with

1 -1
"Y - 1 O ?
1 1
and
( Bro )
P11
1357))
a
A=vec(A) =]
Bzo
B21
Q20
oy

To test for parallelism simultaneously for both variables, that is:

Bo B2

Bu1 B2
H,: = ,

Q1o Q29

ary Q21

we compute the test statistic

T = QN (QVQ) ™ (QX)




Chapter 6: Imposing the Kronecker product structure 144

and compare it to a x* distribution with 4 degrees of freedom, where

1000 -1 0 0 O

60100 0 -1 0 0O
Q=

0010 0 O -1 0

0001 0 0 0 -1

Two different covariance models are fit to the data:

1. a non-Kronecker product covariance matrix;

2. a Kronecker product covariance matrix.

Each trial yields two test statistics and the p-values for the two tests are easily
obtained from the x? distribution with 4 degrees of freedom. Note that for each trial, we
obtain two test statistics and corresponding p-values as a result of fitting two different
covariance models to the data. For each of the two models fit, we can evaluate observed
significance level by counting the proportion of times (out of the total number of trials)
that the null hypothesis QA = 0 is falsely rejected. This is the number of times the
p-value obtained is less than or equal to the fixed significance level a out of the total
number of trials carried out. When £ > 1, QX # 0 and the null hypothesis is not true.
In a similar way, we can find the power for the two models fit by counting the proportion
of times (out of the total number of trials) that the null hypothesis QA = 0 is correctly
rejected. This is the number of times the p-value obtained is less than or equal to the
fixed significance level a out of the total number of trials carried out. The primary focus,

however, will be on the impact of the Kronecker product deviation index on hypothesis

testing.

6.5 Results and discussion

Under the null hypothesis, data was generated to simulate a two treatment bivari-

ate growth curve model in which the mean vectors for the groups on the two variables
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measured on three occasions are equal. Under the alternative hypothesis, data was gen-
erated to simulate a two treatment bivariate growth curve model in which the mean
vectors for the groups on the two variables measured on three occasions are not equal.
Specifically, the intercepts for the two characteristics were set equal in both groups, but
the slopes for both characteristics in group 2 exceeded those of group 1 by 20%. This
represents a slight departure from the null hypothesis. The hypothesis of interest in both
cases was the overall hypothesis of parallelism between the two groups which was tested
by fitting two different covariance models to the data. Tables 6.9 to 6.12 give the values
of observed significance level obtained while Tables 6.13 to 6.16 give the achieved power.

Table 6.9: Values of the observed significance level for the test of overall hypothesis of par-

allelism between two groups in a growth curve model under the null hypothesis

cross-classified by p; and p2: p12 =0.2.

/1 0.1 0.3 0.5 0.7 0.9
p2 KP UN KP UN KP UN KP UN KP UN

0.1 7.00 11.50 8.50 12.00 8.00 12.00 9.00 11.00 5.50 11.50
0.3 7.00 11.50 9.50 12.00 10.50 11.00 9.00 6.50 7.50 12.00
0.5 6.50 10.50 10.50 10.50 11.50 7.50 8.50 7.50 7.00 12.00
0.7 7.00 11.50 11.00 8.50 9.00 8.50 7.50 10.00 7.50 11.50
0.9 5.00 11.50 7.00 10.50 7.54 10.05 6.53 10.55 6.00 11.50

The histograms in Figure 6.2 show the distribution of the p-values obtained from
testing the null hypothesis of parallelism between the two groups under the two covariance
models. Under the null hypothesis, the distribution of the p-values is expected to be
close to uniform when the hypothesis of parallelism between two groups is tested using
an unstructured covariance matrix. Some slight deviation from the uniform distribution

may be expected when the same hypothesis is tested using a Kronecker product covariance
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Table 6.10: Values of the observed significance level for the test of overall hypothesis of par-
allelism between two groups in a growth curve model under the null hypothesis

cross-classified by p; and gs: p12 =04.

1 0.1 0.3 0.5 0.7 0.9
p» KP UN KP UN KP UN KP UN KP UN

0.1 7.14 12.86 6.00 12.00 7.50 12.00 8.00 11.00 6.50 8.50
0.3 5.00 11.50 7.50 11.50 8.50 12.00 8.50 11.00 7.00 10.00
0.5 5.50 11.50 6.50 11.50 10.00 11.50 10.50 8.50 7.07 11.62
0.7 6.00 11.00 7.50 11.00 11.50 10.00 10.50 8.00 8.08 11.62
0.9 5.50 11.50 6.03 10.05 8.08 10.10 8.04 11.56 7.04 11.56

Table 6.11: Values of the observed significance level for the test of overall hypothesis of par-

allelism between two groups in a growth curve model under the null hypothesis

cross-classified by p; and ps: p12 = 0.6.

0 0.1 0.3 0.5 0.7 0.9
p» KP UN KP UN KP UN KP UN KP UN

0.1 9.80 14.71 5.50 11.50 4.50 12.00 5.50 12.00 6.50 11.50
0.3 6.50 11.50 6.50 11.50 6.50 12.00 7.50 12.50 9.05 11.56
0.5 5.50 11.50 6.00 11.50 8.50 12.50 8.50 12.50 9.23 10.77
0.7 3.50 11.50 6.00 11.50 8.00 12.00 11.00 11.50 8.60 11.83
0.9 5.00 11.50 5.53 10.55 9.18 9.69 9.28 10.82 9.28 11.34
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Table 6.12: Values of the observed significance level for the test of overall hypothesis of par-

allelism between two groups in a growth curve model under the null hypothesis

cross-classified by p; and p2: p12 = 0.8.

P1 0.1 0.3 0.5 0.7 0.9

p2 KP UN KP UN KP UN KP UN KP UN
0.1 7.04 11.56 6.50 11.50 6.00 12.00 4.00 12.00 9.00 11.50
0.3 7.00 11.50 7.50 11.50 7.00 12.00 5.00 12.50 7.00 11.50
0.5 5.50 11.50 7.50 11.50 6.50 12.50 7.00 12.50 8.06 10.75
0.7 5.00 12.00 6.00 12.50 9.00 12.50 9.50 12.50 9.46 12.84
0.9 4.00 11.50 6.50 11.00 8.81 11.40 1091 1091

Table 6.13: Values of empirical power for the test of overall hypothesis of parallelism be-

tween two groups in a growth curve model under the alternative hypothesis cross-

classified by p; and p2: p12 = 0.2.

pL 0.1 0.3 0.5 0.7 0.9

P2 KP UN KP UN KP UN KP UN KP UN
0.1 20.00 27.00 20.50 26.00 20.00 24.00 22,50 23.50 40.00 99.50
0.3 24,50 32.00 31.00 32.00 31.50 29.00 29.50 25.50 29.50 85.00
0.5 40.00 51.50 47.00 51.50 95.00 49.00 49.50 53.00 38.00 40.00
0.7 92.00 97.50 96.50 98.50 97.00 99.50 66.50 100.00 49.00 57.50
0.9 100.00 100.00 100.00 100.00 98.49 100.00 66.83  99.50 63.50 80.00
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Table 6.14: Values of empirical power for the test of overall hypothesis of parallelism be-

tween two groups in a growth curve model under the alternative hypothesis cross-

classified by p; and p2: p12 = 0.4.

P1 0.1 0.3 0.5 0.7 0.9
P2 KP UN KP UN KP UN KP UN KP UN
0.1 19.29 30.00 20.50 28.50 19.50 25.00 2250 28.00 76.50 100.00
0.3 21.50 31.50 27.00 31.50 30.00 29.00 30.00 28.50 95.50 100.00
0.5 28.50 46.50 41.00 47.00 46.50 47.50 32.00 42.50 46.46 85.86
0.7 71.00 93.00 86.50 93.00 96.00 95.00 99.50 100.00 65.15 63.64
0.9 100.00 100.00 100.00 100.00 100.00 100.00 99.50 100.00 86.93 88.94
Table 6.15: Values of empirical power for the test of overall hypothesis of parallelism be-

tween two groups in a growth curve model under the alternative hypothesis cross-

classified by p1 and pa2: p12 = 0.6.
P1 0.1 0.3 0.5 0.7 0.9
02 KP UN KP UN KP UN KP UN KP UN
0.1 16.67 33.33 16.00 30.50 17.00 28.00 2250 32.50 78.50 99.50
0.3 16.50 32.00 23.50 32.00 25.50 33.00 31.50 34.50 94.97 99.50
0.5 22.00 44.00 33.50 44.00 42.00 44.00 49.50 42.00 100.00 99.49
0.7 53.50 82.00 67.50 83.00 77.50 83.00 88.50 84.00 80.65 98.92
0.9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00 99.48
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Table 6.16: Values of empirical power for the test of overall hypothesis of parallelism be-
tween two groups in a growth curve model under the alternative hypothesis cross-

classified by p; and ps: p12 = 0.8.

P1 0.1 0.3 0.5 0.7

0.9

P2 KP UN KP UN KP UN KP UN KP

UN

0.1 13.57 32.66 15.00 33.50 16.50 34.00 25.00 40.50 91.00 99.00
0.3 1450 36.50 18.00 37.00 24.50 38.00 32.50 44.00 94.50 99.00
0.5 2200 46.50 29.00 46.00 38.50 48.00 48.00 50.00 95.70 97.85
0.7 49.50 79.50 59.50 78.50 71.50 78.50 78.50 76.50 9595 93.92

0.9 100.00 100.00 100.00 100.00 100.00 100.00 100.00 100.00

matrix. Quantile plots of the p-values when the null hypothesis is true, based on the
uniform distribution for both the unstructured and Kronecker product covariance models,
are given in Figure 6.3. It appears that the distribution of the p-values from the two

tests do not depart too much from the uniform distribution.

To better understand the role of the Kronecker product deviation index, the p-
values obtained from the two tests are plotted conditioning on intervals of the Kronecker
product deviation index. Figure 6.4 shows the results where the endpoints of the Kro-
necker product deviation index intervals are chosen so as to make the counts of points
in the intervals as nearly equal as possible. Figure 6.5 shows the same results where the
endpoints of the Kronecker product deviation index intervals are chosen so as to make
the intervals to be of equal width. The p-values in both plots are given when the alterna-
tive hypothesis is true. Figures 6.6 and 6.7 show the results under the null hypothesis.
Figures 6.4 and 6.5 clearly show that the variability in the p-values obtained increases as
the Kronecker product deviation index increases. Another important observation is that

the dark cloud of points is shifting towards the horizontal axis as the Kronecker product
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deviation index increases. This implies that overall, while the the p-values of the test
using the unstructured covariance matrix get smaller as the Kronecker product deviation
index increases, the p-values of the test using the Kronecker product covariance matrix
are getting larger. Figure 6.8 further clarifies this point with a general upward trend in
the scatter of points confirmed by the fitted least squares regression line. Overall, the
figure shows that the differences in power observed under the two tests is increasing as
the Kronecker product deviation index increases. The effect on the observed significance
level of the test is not as pronounced even though we do observe an increase in the

variability as the Kronecker product deviation index increases.

Another outcome of interest in this study was the power of the test for the null
hypothesis that the within subject variance covariance matrix has a Kronecker product
structure described in section 5.4. Figure 6.9 shows the relationship between the Kro-
necker product deviation index and the p-values obtained from testing this hypothesis.
From the figure, we note that when the Kronecker product index is large, the p-value for
the test of the null hypothesis that the within subject variance covariance matrix has a
Kronecker product structure is small, indicating that the test is, for the most part, doing

the right thing and is able to detect departure from Kronecker product structure.
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Figure 6.2: Histograms of the p-values for the test of overall hypothesis of parallelism between
two groups in a growth curve model under the null hypothesis (top figures) and
alternative hypothesis (bottom figures).
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Figure 6.3: Quantile plots of the p-values for the test of overall hypothesis of parallelism
between two groups in a growth curve model under the null hypothesis based on

the uniform distribution.
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Pvaiue for overall test of parallelism under unstructured model

Pvalue for overall test of parallelism under kronecker product model

Figure 6.4: Scatter plots and fitted least squares regression lines of the p-values for the test of
overall hypothesis of parallelism between two groups in a growth curve model un-
der the alternative hypothesis. Plots are conditioned on intervals of the Kronecker

product deviation index (counts of points in the intervals nearly equal).
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Figure 6.5: Scatter plots and fitted least squares regression lines of the p-values for the test of
overall hypothesis of parallelism between two groups in a growth curve model un-
der the alternative hypothesis. Plots are conditioned on intervals of the Kronecker

product deviation index (intervals of equal width).
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Pvalue for overall test of parallelism under unstructured model

Pvalue for overall test of parallelism under kronecker product model

Figure 6.6: Scatter plots and fitted least squares regression lines of the p-values for the test
of overall hypothesis of parallelism between two groups in a growth curve model
under the null hypothesis. Plots are conditioned on intervals of the Kronecker

product deviation index (counts of points in the intervals nearly equal).
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Figure 6.7: Scatter plots and fitted least squares regression lines of the p-values for the test
of overall hypothesis of parallelism between two groups in a growth curve model
under the null hypothesis. Plots are conditioned on intervals of the Kronecker

product deviation index (intervals of equal width).
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Figure 6.8: Scatter plot and fitted least squares regression line of the difference in power
(power of test based on a unstructured covariance matrix - power of test based
on a Kronecker product covariance matrix) for the test of overall hypothesis of

parallelism between two groups in a growth curve model under the alternative

hypothesis.
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Figure 6.9: Scatter plot of the Kronecker product deviation index versus the p-values for the
test of the null hypothesis that the within-subject variance-covariance matrix has

a Kronecker product structure.



Chapter 7

Summary and further research

7.1 General discussion

In this dissertation, we have investigated efficiency in the linear model for multivari-
ate longitudinal data with a Kronecker structured covariance matrix. The distinguishing
characteristic of this model is that it requires the within-subject variance-covariance ma-
trix to be specified as the Kronecker product of two matrices that reflect the two dimen-
sions underlying multivariate longitudinal data, namely characteristic and time. The
same model has been used to model covariance structure when two or more repeated

factors are present in a given study as discussed by Galecki [18].

Some advantages of using this model for multivariate longitudinal data include
clear and meaningful interpretation in terms of the contribution of the characteristic
and time dimensions to the overall within-subject variance-covariance matrix. Under
different settings, efficiency was evaluated by deriving the trace asymptotic relative ef-
ficiency (TARE) and curvature asymptotic relative efficiency (CARE), both measures
of asymptotic relative efficiency. Both measures can be applied to compare competing
test statistics which have limiting non-central chi-square distributions through a suitable

Pitman alternative.

One approach commonly used to analyse data from multivariate longitudinal de-

159
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signs is ordinary least squares. If different subjects are being measured at different times,
this might be a reasonable approach. However, if the same subjects being measured over
time, it is more realistic to assume that the measurements within a subject are correlated.
Modelling the covariance matrix using the Kronecker product of two matrices is one way
to capture this correlation. The efficiency of a test procedure that ignores correlation
relative to a test that models the covariance matrix as the Kronecker product of two

matrices (assumed to be the true structure) was evaluated using the TARE and CARE.

Numerical results were presented for two designs (growth curve and repeated mea-
sures analysis of variance) and two covariance structures for the matrix that models the
repeated measures on a given characteristic (compound symmetry and first-order autore-
gressive). The covariance parameters p;, p. and -y were found to have a pronounced effect
on both measures of asymptotic relative efficiency. The degree of the loss of efficiency
was clearly demonstrated to be a function of these covariance parameters. For the de-
signs and covariance matrices considered, the results indicate that the efficiency of a test
procedure that ignores correlation relative to a test that models the covariance matrix
as the Kronecker product of two matrices (assumed to be the true structure) is worse for

high values of p, and p. and low values of ~.

Another issue investigated, and considered to be of considerable practical interest,
was the potential gain in efficiency that would result from testing hypotheses of inter-
est using a test that utilised the Kronecker product structure. The efficiency of a test
procedure that ignores the Kronecker product structure relative to one that models the
covariance matrix as the Kronecker product of two matrices was evaluated using the
TARE and CARE. Expressions for the TARE and CARE are derived. To estimate ef-
ficiency, a Monte-carlo simulation study was conducted. The design in the simulation
study was specified to correspond to a two group bivariate growth curve setting and the
covariance matrix was specified to be the Kronecker product of a unstructured covari-
ance matrix and a first-order autoregressive matrix. The parameters defining the two
matrices were varied to represent various parameter combinations that are likely to arise

in practise.
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Once again, efficiency is shown to be a function of the covariance parameters p;, p.
and . For the design and covariance parameters considered, the parameter p; defining
2 was found to have the greatest impact on efficiency. In practical work, one would also
need to know if the Kronecker product structure is suitable or not. In this regard, a test
of the null hypothesis that the within-subject variance-covariance matrix has a Kronecker
product structure was also presented. Since in the simulation study the within-subject
variance-covariance matrix was specified to be the Kronecker product of a unstructured
covariance matrix and a first-order autoregressive matrix, the performance of the test
was evaluated as a by-product of the simulations. The type I error rates of the test of

Kronecker product structure were found to be very close to the nominal values.

The validity of the model considered so far depends largely on the special covariance
structure that it assumes. If the Kronecker product model is not suitable in a given situ-
ation, then there should be some consequences if hypotheses of interest are tested under
the Kronecker product structure. The consequences of imposing the special covariance
structure were also investigated. A class of matrices with some degree of departure from
the Kronecker product model is introduced. An index, called the Kronecker product
deviation index, is used to quantify how far a given variance-covariance matrix departs

from Kronecker product. The index is described and evaluated for the class of matrices

introduced.

A Monte-carlo simulation study using this class of covariance matrices was used to
compare the impact of the Kronecker product deviation index on a test based on imposing
a Kronecker product structure relative to a test based on a unstructured covariance
matrix. The null hypothesis of interest was that of overall parallelism in a two group
bivariate growth curve design. The results obtained indicate that the greatest negative
consequence from imposing a Kronecker product model in testing hypotheses of interest
occurred when there was moderate departure from the null hypothesis. For the parameter
combinations considered, the power of the test that imposed the Kronecker product model
was consistently lower. Also, the difference the power between the two tests was found

to increase as the Kronecker product deviation index increased.
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7.2 Limitations

1. The within-subject design considered is the same for all subjects. This is too
restrictive and a more general specification that allows different subjects to have

different designs should be considered.

o

Study considered two within-subject designs (growth curve and repeated measures

ANOVA). Other designs should be considered.

3. Study only looked at covariates that are time invariant, for example, the treatment
group that an individual is assigned to. It would be useful to consider time varying
covariates as well, for example, characteristics of the subject that change with time

and that may have an effect on the response of interest.

4. Two covariance matrices were used for {2, namely, compound symmetry and first-
order autoregressive. Other types of matrices that can be used to model €2, includ-

ing unstructured and simple, should be considered.

7.3 Further research

1. Most of the work in this dissertation has focused on two within-subject design
matrices: the growth curve design and the repeated measures analysis of variance
design. Another design that is equally important and needs to be investigated is the
crossover design. In a crossover trial, the entire study period is first divided into say
p experimental phases. A wash-out period is usually allowed between the phases.
The design also specifies a number of different treatment sequences and outlines the
order in which the treatments are to be administered for each treatment sequence.
Subjects are then randomly assigned to the different treatment sequences. The
design is commonly used in areas such as agriculture and medicine. If multiple
characteristics are being measured on each study subject, then the model with a
Kronecker product covariance matrix can be used. The efficiency of this model

needs to be investigated for the crossover design.
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2.

In Chapter 4, the efficiency of a test procedure that ignores correlation relative
one that models the covariance matrix as the Kronecker product of two matrices
(assumed to be the true structure) was evaluated using the trace asymptotic relative
efficiency and curvature asymptotic relative efficiency. Mathematical expression for
the trace asymptotic relative efficiency and curvature asymptotic relative efficiency
were derived and shown to be functions of various quantities. For different within-
subject designs and different covariance matrices, it would be useful to establish
bounds on both the trace asymptotic relative efficiency and curvature asymptotic
relative efficiency. For example, if the within-subject design corresponds to a growth
curve setting and the within-subject variance-covariance matrix is the Kronecker
product of a unstructured covariance matrix and a first-order autoregressive matrix,

then bounds on both the TARE and CARE should be derived.

The greatest benefit from using the Kronecker product model for multivariate longi-
tudinal data may be in the presence of unbalanced and/or missing data, a common
problem in designs that involve long or short term follow up of subjects. Further
simulation work is required to investigate this. To investigate the benefit of using
the Kronecker product model in the presence of missing data, for example, data
can be simulated with a Kronecker product covariance matrix for the within-subject
variance-covariance matrix. Observations can then be systematically deleted at dif-
ferent rates in specific patterns. The trace asymptotic relative efficiency and cur-
vature asymptotic relative efficiency from testing hypothesis of interest can then
be evaluated for a test based on a Kronecker product model relative to other tests,

for example, a test based on a unstructured covariance matrix.

Another potential benefit from using the Kronecker product model for multivariate
longitudinal data may be in cases where a given study involves only a small number
of subjects. It is expected that the effects of mis-specified covariance structures on
testing hypotheses of interest may not be substantial if the number of subjects
I in the study is large. However, this is likely not to be the case when only a

small number of subjects have been enrolled or are available for the study. Hence,
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the trace asymptotic relative efficiency and curvature asymptotic relative efficiency

need to be evaluated with small and moderate sample sizes.

5. The response vector for a given subject y;,7 = 1,..., I has been represented so far
with the time index running faster than the characteristics index. For example, for

a single subject with 2 characteristics measured on 3 occasions, the response vector

is given by:

( Y \
Y12

Y13
Yi - (7.1)
Y2

Y22
\ ¥23 )

with the first index representing characteristics and the second index representing

time. Using this formulation, the within-subject variance-covariance matrix has
been expressed as ¥, = A ® Q. The covariance between the outcome variables
is specified by the C x C matrix A whereas the covariance among the repeated
measures for a given outcome variable is specified by the T x T" matrix Q. If the

order of the two dimensions is reversed, we now have:

(yuw

Y21

Y12
Yi . (7.2)
Y22

i

s
\ Y23 }

This formulation of y; may have some advantages and needs to be considered, espe-

cially in terms of the within-subject variance-covariance matrix ¥,. For example,
in defining a class of matrices that depart from Kronecker product, the correlation

between the characteristics can be specified to change over time. Without loss of
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generality, for two characteristics measured on three occasions, let p;, p» and p3 be
the correlations between characteristic 1 and characteristic 2 at times 1, 2 and 3
respectively. Allowing p;, p2 and p; to take on different values removes the rather
restrictive assumption that the correlation between the characteristics is constant
over time. This seems more practical and can also be easily interpreted. In extreme
situations, we can model p; > 0, p, =0 and p3 < 0. This alternative formulation
needs to be investigated both in terms of evaluating efficiency in different settings
using the trace asymptotic relative efficiency and curvature asymptotic relative
efficiency and in assessing the consequences of imposing the Kronecker product

structure on testing hypothses of interest.

6. The model considered in this dissertation applies to multivariate longitudinal data
when the measurements are assumed to be multivariate normal. In many prac-
tical situations, however, this assumption will not hold. In particular, when the
responses are discrete or represent count data, different methodology must be used.
When a single outcome variable is being recorded over time, generalised estimating
equations provide one practical means for dealing with discete or count data. The
approach to be taken when multiple outcome variables that are discrete or repre-
sent count data needs to be investigated. In particular, a way of modelling the
covariance matrix that is similar to the Kronecker product approach for continous

data should be sought.




Bibliography

[1]

[6]

[7]

[10]

[11]

B. Abraham and Ch. E. Minder. A time series model with random coefficients.
Communications in Statistics, Theory and Methods, 11(12):1381-1391, 1982.

Blair M. Anderson, T. W. Anderson, and Ingram Olkin. Maximum likelihood es-
timators and likelihood ratio criteria in multivariate components of variance. The
Annals of Statistics, 14(2):405-417, 1986.

Adelchi Azzalini. Growth curve analysis for patterned covariance matrices. In M. L.
Puri and J. P. Vilaplana, editors, New perspectives in theoretical and applied statis-
tics, pages 61-74. John Wiley and Sons Inc., 1987.

Peter Bloomfield and Geoffrey S. Watson. The inefficiency of least squares.
Biometrika, 62(1):121-128, 1975.

R. D. Bock. Multivariate statistical methods in behavioral research. McGraw-Hill
Series in Psychology. McGraw-Hill Inc., New-York, 1975.

Robert R. Boik. The mixed model for multivariate repeated measures: Validity
conditions and an approximate test. Psychometrika, 53:469-486, 1988.

Robert R. Boik. Scheffe’s mixed model for multivariate repeated measures: A relative
efficiency evaluation. Communications in Statistics, Theory and Methods, 20:1233~
1255, 1991.

Vernon M. Chinchilli and Walter H. Carter Jr. A likelihood ratio test for a patterned
covariance matrix in a multivariate growth-curve model. Biometrics, 40:151-156,
1984.

D. R. Cox, R. Fitzpatrick, A. E. Fletcher, S. M. Gore, D. J. Spiegelhalter, and D. R.
Jones. Quality of life assessment: Can we keep it simple? Journal of the Royal
Statistical Society, Series A, 155:353-393, 1992.

Martin J. Crowder and David J. Hand. Analysis of Repeated Measurements, vol-
ume 41 of Monographs on Statistics and Applied Probability. Chapman and Hall,
London, 1990.

Carroll J. Diaz and William D. Johnson. An F-test for multivariate repteated mea-
sures data with the Wiener stochastic process pattern in the covariance matrix.
Communications in Statistics, Theory and Methods, 27(2):275-289, 1998.

166




Bibliography 167

[12]

[15]
[16]

[17]

Terry E. Dielman and Roger C. Pfaffenberger. Efficiency of ordinary least squares for
linear models with autocorrelataion. Journal of the American Statistical Assoctation,

84(405):248-248, 1989.

Peter J. Diggle. An approach to the analysis of repeated measurements. Biometrics,
44:959-971, 1988.

Peter J. Diggle, Kung-Yee Liang, and Scott L. Zeger. Analysis of Longitudinal Data,
volume 13 of Ozford Statistical Science Series. Oxford University Press, London,

1994.

Dorothy D. Dunlop. Regression for longitudinal data: A bridge from least squares.
The American Statistician, 48(4):299-303, 1994.

Paul L. Enright and Robert E. Hyatt. Office Spirometry: A practical guide to the
selection and use of spirometers. Lea & Febiger, Philadelphia, 1987.

Garrett M. Fitzmaurice, Nan M. Laird, and Andrea G. Rotnizky. Regression models
for discrete longitudinal responses. Stetistical Science, 8(3):284-309, 1993.

Andrzej T. Galecki. General class of covariance structures for two or more repeated
factors in longitudinal data analysis. Communications in Statistics, Theory and
Methods, 23(11):3105-3119, 1994.

Jean Dickinson Gibbons. Nonparametric statistical inference, volume 65 of Statistics,
tertbooks and monographs. Marcell Dekker, Inc., New York, second edition, 1985.

James E. Grizzle and David M. Allen. Analysis of growth and dose response curves.
Biometrics, 25:357-381, 1969.

David Hand and Martin Crowder. Practical Longitudinal Data Analysis. Texts in
Statistical Science. Chapman and Hall, London, 1996.

David A. Harville. Bayesian inference for variance components using only error
contrasts. Biometrika, 61:383-385, 1974.

P. Hopwood, R. J. Stephens, and D. Machin. Approaches to the analysis of quality of
life data: experience gained from a Medical Research Council Lung Cancer Working
Party palliative chemotherapy trial. Quality of Life Research, 3:339-352, 1994.

R. I. Jennrich and P. F. Sampson. Newton-Raphson and related algorithms for
maximum likelihood variance component estimation. Technometrics, 18(1):11-17,

1976.

Robert I. Jennrich and Mark D. Schluchter. Unbalanced repeated-measures models
with structured covariance matrices. Biometrics, 42:805-820, 1986.

M. Kendall and A. Stuart. Inference and relationship, volume 2 of The advanced
theory of statistics. Charles Griffin and company ltd., london, fourth edition, 1979.



Bibliography 168

[27] M. G. Kenward. The use of fitted higher-order polynomial coefficients as covariates
in the analysis of growth curves. Biometrics, 41:19-28, 1985.

[28] Gary G. Koch, Janet D. Elashoff, and Ingrid A. Amara. Repeated measurements -
design and analysis. In Samuel Kotz and Norman L. Johnson, editors, Encyclopedia
of Statistical Sciences, volume 8, pages 46—73. John Wiley and Sons Inc., 1982.

[29] Walter Kramer. Finite sample efficiency of ordinary least squares in the linear
regression model with autocorrelated errors. Journal of the American Statistical
Association, 75(372):1005—-1009, 1980.

[30] W. J. Krzanowski and F. H. C. Marriott. Multivariate Analysis Part 2: Classifi-
cation, Covariance Structures and Repeated Measurements, volume 2 of Kendall’s
Library of Statistics. Arnold, London, 1995.

[31] Nan Laird. Longitudinal data analysis, 1997. Draft course notes presented by the
author at the NSF/CBMS Longitudinal Data Analysis Conference at the University
of Missouri-Columbia.

[32] Nan Laird, Nicholas Lange, and Daniel Stram. Maximum likelihood computations
with repeated measures: Application of the EM algorithm. Journal of the American
Statistical Association, 82(397):97-105, 1987.

[33] Nan M. Laird. Topics in likelihood-based methods for longitudinal data analysis.
Statistica Sinica, 1:33-50, 1991.

[34] Nan M. Laird and James H. Ware. Random-effects models for longitudinal data.
Biometrics, 38:963-974, 1982.

[35] Nicholas Lange and Nan M. Laird. The effect of covariance structure on variance
estimation in balanced growth-curve models with random parameters. Journal of
the American Statistical Association, 84(405):241-247, 1989.

[36] Jack C. Lee. Prediction and estimation of growth curves with special covariance
structure. Journal of the American Statistical Association, 83(402):432-440, 1988.

[37] Martin L. Lesser, Nina E. Kohn, Barbara A. Napolitano, and Savita Pahwa. The FU-
PLOT: A graphical method for visualising the timing of Follow-Up in longitudinal
studies. The American Statistician, 49(2):139-143, 1995.

[38] J. K. Lindsey. Models for Repeated Measurements, volume 10 of Ozford Statistical
Science Series. Oxford University Press Inc., New York, 1993.

[39] Mary J. Lindstrom and Douglas M. Bates. Newton-Raphson and EM algorithms for
mixed-effects models for repeated-measures data. Journal of the American Statistical
Association, 83(404):1014-1022, 1988.

[40] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate analysis. Probability and
Mathematical Statistics. Academic Press, London, 1979.



Bibliography 169

[41]
[42]
[43]

[44]

[49]

[50]

[51]

Yutuka Matsuyama and Yasuo Ohashi. Mixed models for bivariate repeated mea-
sures data using Gibbs sampling. Statistics in Medicine, 16:1587-1601, 1997.

J. N. S. Matthews. The analysis of data from crossover deigns: The efficiency of
ordinary least squares. Biometrics, 46:689-696, 1990.

Robert A. Mclean, William L. Sanders, and Walter W. Stroup. A unified approach
to mixed linear models. The American Statistician, 45(1):54-64, 1991.

Raymond H. Myers and Janet S. Milton. A first course in the theory of linear
statistical models. The Duxbury advanced series in statistics and decision sciences.
PWS-KENT Publishing Company, Boston, 1991.

J. A. Nelder and R. Mead. A simplex method for function minimisation. Computing
Journal, 7:303-313, 1965.

Gottfried E. Noether. On a theorem of pitman. Annals of Mathematical Statistics,
26:64-68, 1955.

M. Olshewski and M. Schumacher. Statistical analysis of quality of life in cancer
clinical trials. Statistics in Medicine, 9:749-763, 1990.

Richard W. Park. Efficient estimation of a system of regression equations when the
disturbances are both serially and contemporaneously correlated. Journal of the
American Statistical Association, 62:500-509, 1967.

Taesung Park and Robert F. Woolson. Generalised multivariate models for longitu-
dinal data. Communications in Statistics, Simulations, 21(4):925-946, 1992.

H. I. Patel. Analysis of repeated measures designs with changing covariates in clinical
trials. Biometrika, 73(3):707-715, 1986.

H. D. Patterson and R. Thompson. Recovery of interblock information when block
sizes are unequal. Biometrika, 58:545-554, 1971.

Richard F. Pothoff and S. N. Roy. A generalised multivariate analysis of variance
model useful especially for growth curve problems. Biometrika, 51(3 and 4):313-326,
1964.

C. R. Rao. Some problems involving linear hypothesis in multivariate analysis.
Biometrika, 46:49-58, 1959.

Greg Reinsel. Multivariate repeated-measurement or growth curve models with
multivariate random-effects covariance structure. Journal of the American Statistical
Association, T7(377):190-195, 1982.

James Rochon. Analyzing bivariate repeated measures for discrete and continous
outcome variables. Biometrics, 52:740-750, 1996.



Bibliography 170

[56]
[57]

[58]

[59]

[60]

(61]

M. Schumacker, M. Olschewski, and G. Schulgen. Assessment of quality of life in
clinical trials. Statistics in Medicine, 10:1915-1930, 1991.

Shayle R. Searle. Matriz algebra useful for statistics. Wiley sertes in probability and
mathematical statistics. John Wiley and Sons Inc., New York, 1982.

Burton Singer. Longitudinal data analysis. In Samuel Kotz and Norman L. Johnson,
editors, Encyclopedia of Statistical Sciences, volume 5, pages 142-155. John Wiley
and Sons Inc., 1982.

Judith D. Singer. Using SAS PROC MIXED to fit multilevel models, hierarchi-
cal models, and individual growth models. Journal of Educational and Behavioral
Statistics, 24(4):323-355, 1998.

J. P. Sy, J. M. G. Taylor, and W. G. Cumberland. A stochastic model for the
analysis of bivariate longitudinal AIDS data. Biometrics, 53:542-555, 1997.

P. K. Tandon. Applications of global statistics in analysing quality of life data.
Statistics in Medicine, 9:819-827, 1990.

C. W. Therrien and K. Fukunaga. Properties of separable covariance matrices and
their associated Gaussian random processes. IEEFE Transactions on Pattern analysis
and Machine Intelligence, 6(5):652-656, 1984.

Roland D. Thomas. Univariate repeated measures techniques applied to multivariate
data. Psychometrika, 48:451-464, 1983.

Neil H. Timm. Multivariate analysis with applications in education and psychology.
Wadsworth Publishing Company Inc., Belmont, California, 1975.

Neil H. Timm. Multivariate analysis of repeated measurements. In P. R. Krishnaiah,
editor, Handbook of statistics, Analysis of variance, volume 1, pages 41-87. North
Holland publishing company, 1980.

Kao-Tai Tsai and James A. Koziol. Score and Wald tests for the multivariate growth
curve model with missing data and a patterned covariance matrix. Communications
in Statistics, Theory and Methods, 22(2):311-317, 1993.

V. G. S. Vasdekis. An investigation of certain methods in the analysis of growth
curves. PhD thesis, University of Oxford, England, 1993. Unpublished Doctor of
Philosophy thesis.

A. P. Verbyla. Analysis of repeated measures with changing covariates. Biometrika,
75(1):172-174, 1988.

A. P. Verbyla and B. R. Cullis. The analysis of multistratum and spatially correlated
repeated measures data. Biometrics, 48:1015-1032, 1992.

A. P. Verbyla and W. N. Venables. An extension of the growth curve model.
Biometrika, 75(1):129-138, 1988.



Bibliography 171

(71]

[72]

(73]

[74]

[78]

[79]

(80]

J. Verhees and T. J. Wansbeek. An multimode direct product model for covariance
structure analysis. Journal of Mathematical and Statistical Psychology, 43:231-240,

1990.

Edward F. Vonesh and Randy L. Carter. Efficient inference for random coefficient
growth curve models with unbalanced data. Biometrics, 43:617-628, 1987.

Ming C. Wang. On the analysis of multivariate repeated measures designs. Com-
munications in Statistics, Theory and Methods, 12:1647-1659, 1983.

James H. Ware. Growth curves. In Samuel Kotz and Norman L. Johnson, editors,
Encyclopedia of Statistical Sciences, volume 3, pages 539-542. John Wiley and Sons
Inc., 1982.

James H. Ware. Linear models for the analysis of longitudinal studies. The American
Statistician, 39(2):95-101, 1985.

Russ Wolfinger. A tutorial on mixed models. Technical report, SAS Institute Inc.,
SAS Campus Drive, Cary NC, 27513 USA, October 1992.

Russ Wolfinger, Randy Tobias, and John Sall. Computing Gaussian likelihoods
and their derivatives for general linear mixed models. STAM Journal of Scientific
Computing, 15(6):1294-1310, 1994.

Robert F. Woolson. Application of an efficiency criterion to the multivariate one-
sample location problem. Saenkhya: The Indian Journal of Statistics, Series B,
38:290-293, 1976.

Robert F. Woolson and Pranab Kumar Sen. Asymptotic comparison of a class
of multivariate multiparameter tests. Communications in Statistics, 3(9):813-828,
1974.

Robert Francis Woolson. Some alternative measures of asymptotic relative efficiency
for the multiparameter testing problem with application to the growth curve problem.
PhD thesis, University of North Carolina, Chapel Hill, 1974. Doctor of Philosophy
thesis.

Xiang Zhang. Multivariate longitudinal data analysis with a family of covariance
matrices. PhD thesis, University of California, Los Angeles, 1996. Unpublished
Doctor of Philosophy thesis.

A.H. Zwinderman. The measurement of change of quality of life in clinical trials.
Statistics in Medicine, 9:931-942, 1990.



Appendix A

Chapter 4 Computer Programs

A.1 Computing the TARE and CARE for a growth curve
design and compound symmetry structure for

Jmacro chap4;
proc iml;

* Specify the within-subject design matrix X and find
its transpose;

X=4{1-1,
1 0,
1 1},
Xp = t(X);

* Specify the matrix Q corresponding to a hypothesis of
interest and find its transpose;

Q={t000-1000,

01000 -100,

001000 -10,

0001000 -1};
Qp = t(Q;

* Specify the between-subject design matrix Theta that
depends on the total sample size I and the number of
groups G and find its transpose;

gsize = &n*30;

tsize = gsizex2;

gl = J(gsize, 1, 1);
g2 = J(gsize, 1, 1);
theta = block(gl,g2);
thetap = t(theta);

* Specify the identity matrix needed for OLS estimation
whose dimension depends on the number of characteristics;
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I2={1 0,
0 1};

* Create V-C matrix based on the Kronecker product of a
unstructured matrix delta and a compound symmetry matrix
or first order autoregressive matrix omega;

gamma=&r#*0.5;

rhoc = (&p - 9)#*0.1;
rhot = &g*0.1;

rhot2 = rhot**2;
rtgamma = sqrt(gamma);
rhoc2 = rhoc*rtgamma;
diag = 1;

invrhot2 = 1 - rhot2;

* Defining Delta;

delta = J(2,2,0);
deltal[1,1] = diag;

delta[1,2] = rhoc2;
delta[2,1] = rhoc?2;
delta[2,2] = gamma;

* Defining Compound Symmetry Omega;
omega = J(3,3,0);

omegal[1l,1] = diag;
omega[1,2] = rhot;
omegal1,3] = rhot;
omegal[2,1] = rhot;
omegal[2,2] = diag;
omega[2,3] = rhot;
omega[3,1] = rhot;
omega[3,2] = rhot;
omega[3,3] = diag;

* Defining AR(1) Omega;
omega2 = J(3,3,0);

omega2[1,1] = diag;
omega2[1,2] = rhot;
omega2(1,3] = rhot2;
omega2[2,1] = rhot;
omega2[2,2] = diag;
omega2{2,3] = rhot;
omega2([3,1] = rhot2;
omega2(3,2] = rhot;
omega2[3,3] = diag;

* Quantities needed to compute TARE and CARE;

qual = thetap * theta;
qualinv = inv(qual);
qua3 = Xp * X;
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qua3dinv = inv(qua3);

qua4 = Xp * omega;
quab = quad * X;
qua6 = qua3inv * quabS * qua3inv;

* Computing the TARE21 and CARE21;

nume = qualinv @ I2 @ qua3inv;

nume2 = Q * nume * Qp;
nume3 = inv(nume2);
nume4 = det (nume2);

denoc = qualinv @ delta @ qua6;

deno2 = Q * deno * Qp;

derno3 = inv(deno2);

deno4 = det(deno2);

tare21 = trace(nume3) / trace(deno3);

care2l1 = (deno4 / numed) ##0.25;

* Additional Quantities needed to find TARE13 and CARE13;

qua7? = inv(omega);
qua8 = Xp * qua7 * X;
qua8inv = inv(qua$8);

* Computing the TARE13 and CARE13;

deno5 = qualinv Q@delta @ qua8inv;
deno6 = Q * denoS5 * Qp;

deno7 = inv(deno6);

deno8 = det(deno6);

tarel3d = trace(deno3) / trace(deno7);
carel3 = (deno8 / deno4d)##0.25;

* Sending results to an external text file;

file ’chapda.text’;
put tare2l +1 care21 +1 tarel3 +1 carel3;

* Setting printing options and printing the parameters
used and results obtained;

options linesize=96 pagesize=54 nocenter nodate nonumber;

titlel;
print tsize gamma rhoc rhot tare2l care2l tarel3 carel3;

quit;

* % X ¥

%mend chap4;

* Inputting prameters and results obtained into a SAS
data set;

%macro accum;
data cscov?;

infile ’chap4a.text’;
input tare2l care2l tarel3 carel3;
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run;

data cscov3;
ssize = &n%*60;
gamma=&r*0.5;

rhoc = (&p - 9)%0.1;
rhot = &q*0.1;
run;

data cscov;
set cscov3;
set cscov2;
run;

proc append base=chap4a data=cscov;
run;

proc datasets nolist;

delete cscov cscov2 cscov3;
run;
quit;

%mend accum;

Jimacro para;
%do n=1 Y%to 3;
“do r=1 %to 5;
%do p=0 Y%to 18;
“do q=1 Y%to 9;
%chap4
%accum
%end;
%end;
%end;
Jend;
%mend para;

“para;
run;

* Saving results as a permanent SAS data set;

libname wam °’wambugu’;
run;

proc datasets library=work;
copy out=wam memtype=data;
select chap4a;

run;

quit;

proc contents data=wam.chap4a position;

run;
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A.2 Computing the TARE and CARE for a growth curve
design and first-order autoregressive structure for €2

“macro chap4;
proc iml;

* Specify the within-subject design matrix X and find its
transpose;

X ={1 -1,
1 0,
1 1};
Xp = t(X);

* Specify the matrix Q corresponding to a hypothesis of
interest and find its transpose;

Q={1000-1000,
-100,
-1 0,

00
00 0
1000 -1};

[eNoNe!
NO O
~ OO

[eNe]

Q

* Specify the between-subject design matrix Theta that
depends on the total sample size I and the number of
groups G and find its transpose;

Qp =t

]

gsize = &n*30;

tsize = gsizex2;

gl = J(gsize, 1, 1);
g2 = J(gsize, 1, 1);
theta = block(gl,g2);
thetap = t(theta);

* Specify the identity matrix needed for OLS estimation
whose dimension depends on the number of characteristics;

I2={1 0,
0 1};

* Create V-C matrix based on the Kronecker product of a
unstructured matrix delta and a compound symmetry matrix
or first order autoregressive matrix omega;

gamma=&r*0.5;

rhoc = (&p - 9)*0.1;
rthot = &q*0.1;

Thot2 = rhot**2;
rtgamma = sqrt(gamma);
rhoc2 = rhoc*rtgamma;
diag = 1;

invrhot2 = 1 - rhot2;

* Defining Delta;
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delta = J(2,2,0);
deltaf[1,1] = dlag,

delta[1,2] = rhoc2;
deltal[2,1] = rhoc2;
delta[2,2] = gamma;

* Defining Compound Symmetry Omega;

omega = J(3,3,0);
omegalfl,1] = dlag,

omegal1,2] = rhot;
omega[1,3] = rhot;
omegal[2,1] = rhot
omegal[2,2] = diag;
omegal[2,3] = rhot;
omega[3,1] = rhot;
omega(3,2] = rhot;
omega[3,3] = diag;

* Defining AR(1) Omega;

omega2 = J(3 3,0);
omega2[1,1] dlag,

omega2([1,2] = rhot;
omega2[1,3] = rhot2;
omega2[2,1] = rhot;
omega2[2,2] = diag;
omega2[2,3] = rhot;
omega2[3,1] = rhot2;
omega2[3,2] = rhot;
omega2[3,3] = diag;

* (uantities needed to compute TARE and CARE;

qual = thetap * theta;
qualinv = inv(qual);
quad = Xp * X;
gqua3inv = inv(qua3);

qua4 = Xp * omega2;
quabS = qua4 * X;
quaé = qua3dinv * qua5 * qua3inv;

* Computing the TARE21 and CARE21;

nume = qualinv @ I2 @ qua3inv;

nume2 = [ * nume * Qp;
nume3 = inv(nume2);
nume4 = det (nume2);

deno = qualinv Q delta @ qua6;

deno2 = Q * deno * Qp;
deno3 = inv(deno2);
deno4 = det(deno2);

tare21 = trace(nume3) / trace(deno3);
care21 = (deno4 / numed)##0.25;
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* Additional Quantities needed to find TARE13 and CARE13;

qua7 = inv(omega2);
qua8 = Xp * qua7 * X;
qua8inv = inv(qua8);

* Computing the TARE13 and CARE13;

denob5 = qualinv Qdelta @ qua8inv;
deno6 = Q * deno5 * Qp;

deno7 = inv(deno6);

deno8 = det(denob);

tarel3 = trace(deno3) / trace(deno?);
carel3 = (deno8 / deno4)##0.25;

* Sending results to an external text file;

file ’chap4b.text’;
put tare2l +1 care2l +1 tarel3 +1 carel3;

* Setting printing options and printing the parameters
used and results obtained;

options linesize=96 pagesize=54 nocenter nodate nonumber;
titlel;

print tsize gamma rhoc rhot tare2l care2l tarel3 carel3;
quit;

* % * *

“mend chap4;

* Inputting prameters and results obtained into a SAS data
set;

%macro accum;

data arcov2;

infile ’chapé4b.text’;

input tare2l care2l tarel3 carel3;
run;

data arcov3;

ssize = &nx*60;
gamma=&r*0.5;

rhoc = (&p - 9)*0.1;
rhot = &q*0.1;

run;

data arcov;
set arcov3;
set arcov2;
run;

proc append base=chap4b data=arcov;
run;
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proc datasets nolist;

delete arcov arcov2 arcov3;
run;
quit;

Jmend accum;

/macro para;
%do n=1 Y%to 3;
%do r=1 %to 5;
%do p=0 %to 18;
%“do g=1 ¥%to 9;
%chap4
Y%accum
%end;
Y%end;
%end;
%end;
%mend para;

Jpara;
run;

* Saving results as a permanent SAS data set;

libname wam ’wambugu’;
run;

proc datasets library=work;
copy out=wam memtype=data;
select chap4b;

run;

quit;

proc contents data=wam.chap4b position;

run;
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A.3 Computing the TARE and CARE for a repeated mea-
sures analysis of variance design and compound symmetry
structure for 2

#macro chap4;
proc iml;

* Specify the within-subject design matrix X and find its
transpose;

=100,
010,
0 0 1};

Xp = t(X);

* Specify the matrix Q corresponding to a hypothesis of
interest and find its transpose;

={100000-100000,
010000 0-10000,
001000 00-1000,
000100 000-100,
000010 0000 -10,
000001 00000 -1};
Qp = t(Q;

* Specify the between-subject design matrix Theta that
depends on the total sample size I and the number of
groups G and find its transpose;

gsize = &n*30;

tsize = gsize*2;

gl = J(gsize, 1, 1);
g2 = J(gsize, 1, 1);
theta = block(gl,g2);
thetap = t(theta);

* Specify the identity matrix needed for OLS estimation
whose dimension depends on the number of characteristics;

I2={1 0,
0 1};

* Create V-C matrix based on the Kronecker product of a
unstructured matrix delta and a compound symmetry matrix
or first order autoregressive matrix omega;

gamma=&r*0.5;

rhoc = (&p - 9)*0.1;
rhot = &q*0.1;

rhot2 = rhot*%*2;
rtgamma = sqrt(gamma);
rhoc2 = rhoc*rtgamma;
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diag = 1;

invrhot2 = 1 - rhot2;

* Defining Delta;

delta = J(2,2,0);
deltal1,1] = diag;

delta[1,2] = rhoc2;
deltal[2,1] = rhoc2;
delta[2,2] = gamma;

* Defining Compound Symmetry Omega;

omega = J(3,3,0);
omegal[1,1] = diag;

omega[1l,2] = rhot;
omegal[1,3] = rhot;
omegal[2,1] = rhot;
omegal[2,2] = diag;
omega[2,3] = rhot;
omega[3,1] = rhot;
omega[3,2] = rhot;
omega[3,3] = diag;

* Defining AR(1) Omega;
omega2 = J(3,3,0);

omega2[1,1] = diag;
omega2(1,2] = rhot;
omega2(1,3] = rhot2;
omega2[2,1] = rhot;
omega2[2,2] = diag;
omega2(2,3] = rhot;
omega?2[3,1] = rhot2;
omega2[3,2] = rhot;
omega2[3,3] = diag;

* Quantities needed to compute TARE and CARE;

qual = thetap * theta;
qualinv = inv(qual);
qua3d = Xp * X;
qua3inv = inv(qua3);

qua4 = Xp * omega;
quab = qua4 * X;
qua6 = qua3inv * quab * qua3inv;

* Computing the TARE21 and CARE21;

nume = qualinv @ I2 @ qua3inv;

nume2 = Q * nume * Qp;
nume3 = inv(nume2);
nume4 = det (nume2);

deno = qualinv @ delta @ qua6;
deno2 = Q * deno * Qp;
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deno3 = inv(deno2);
deno4 = det(deno2);
tare21 = trace(nume3) / trace(deno3);
care21 = (deno4 / numed)##0.17;

* Additional Quantities needed to find TARE13 and CARE13;

qua7 = inv(omega);
qua8 = Xp * qua7 * X;
qua8inv = inv{(qua8);

* Computing the TARE13 and CARE13;

denod = qualinv Qdelta @ qua8inv;
deno6 = Q * denoS * Qp;

deno7 = inv(deno6);

deno8 = det(denof);

tarel3 = trace(deno3) / trace(deno7);
carel3 = (deno8 / denod4)##0.17;

* Sending results to an external text file;

file ’chap4d.text’;
put tare2l +1 care2l +1 tarel3d +1 carel3;

* Setting printing options and printing the parameters
used and results obtained;

options linesize=96 pagesize=54 nocenter nodate nonumber;
* titlel;
* print tsize gamma rhoc rhot tare2l care2l tarel3 carel3;
* quit;

“mend chap4;

* Inputting prameters and results obtained into a SAS
data set;

Jmacro accum;

data cscov2;

infile ’chap4d.text’;

input tare2l care2l tarel3 carel3;
run;

data cscov3;

ssize = &n*60;
gamma=&r*0.5;

rhoc = (&p - 9)*0.1;
rhot = &q*0.1;

run;

data cscov;
set cscov3;
set cscov2;
run;
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proc append base=chap4d data=cscov;
run;

proc datasets nolist;

delete cscov cscov2 cscov3;
run;
quit;

%mend accum;

/Zmacro para;
%do n=1 Y%to 3;
%“do r=1 %tz 5;
Ado p=0 %to 18;
%do g=1 Jto 9;

%chap4

%accum
%end;
%end;

%end;

%end;

Jmend para;

“ipara;
run,

* Saving results as a permanent SAS data set;

libname wam ’wambugu’;
run;

proc datasets library=work;
copy out=wam memtype=data;
select chap4d;

run;

quit;

proc contents data=wam.chap4d position;
run;
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A.4 Computing the TARE and CARE for a repeated ma-
sures analysis of variance design and first-order autoregres-
sive structure for {2

Ymacro chap4;
proc iml;

* Specify the within-subject design matrix X and find its
transpose;

X=4{100,
010,
0 0 1};

Xp = t(X);

* Specify the matrix Q corresponding to a hypothesis of
interest and find its transpose;

Q=410

SCOOOO0
QOO0
QOrooo
O, OO0OO0O0
,OO0OO0OO0O

0
0
1
0
0
0
) .

Qp = t(Q);

* Specify the between-subject design matrix Theta that
depends on the total sample size I and the number of
groups G and find its transpose;

gsize = &nx*30;

tsize = gsize*2;

gl = J(gsize, 1, 1);
g2 = J(gsize, 1, 1);
theta = block(gl,g2);
thetap = t(theta);

* Specify the identity matrix needed for OLS estimation
whose dimension depends on the number of characteristics;

I2={1 0,
0 1};

* Create V-C matrix based on the Kronecker product of a
unstructured matrix delta and a compound symmetry matrix
or first order autoregressive matrix omega;

gamma=&r*0.5;

rhoc = (&p - 9)%0.1;
rhot = &q*0.1;

rhot2 = rhot**2;
rtgamma = sqrt(gamma) ;
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rhoc2 = rhoc*rtgamma;
diag = 1;
invrhot2 = 1 - rhot2;

* Defining Delta;

delta = J(2,2,0);
deltal[1l,1] = diag;

delta[1,2] = rhoc2;
delta[2,1] = rhoc2;
deltaf2,2] = gamma;

* Defining Compound Symmetry Omega;
omega = J(3,3,0);

omega[1,1] diag;
omega[1,2] = rhot;
omegal[1,3] = rhot;
omega[2,1] = rhot;
omegal[2,2] = diag;
omega[2,3] = rhot;
omega[3,1] = rhot;
omega[3,2] = rhot;
omegaf3,3] = diag;

* Defining AR(1) Omega;
omega2 = J(3,3,0);

omega2[1,1] = diag;
omega2[1,2] = rhot;
omega2[1,3] = rhot2;
omega2[2,1] = rhot;
omega2[2,2] = diag;
omega2(2,3] = rhot;
omega2[3,1] = rhot2;
omega2(3,2] = rhot;
omega2[3,3] = diag;

* Quantities needed to compute TARE and CARE;

qual = thetap * theta;
qualinv = inv(qual);
qua3d = Xp * X;

quadinv = inv{(qua3);

quad = Xp * omega2;
quab5 = quad * X;
qua6 = qua3inv * quab * qua3inv;

* Computing the TARE21 and CARE21;

nume = qualinv @ I2 @ qualdinv;

nume2 = Q * nume * Qp;
nume3 = inv(nume2);
nume4 = det (nume2);

deno = qualinv @ delta @ qua6;
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deno2 = Q * deno * Qp;

deno3 = inv(deno?2);

deno4 = det(deno2);

tare2l trace(nume3) / trace(deno3);

care21 = (deno4 / nume4)##0.25;

* Additional Quantities needed to find TARE13 and CARE13;
qua7 = inv(omega?2);

qua8 = Xp * qua7 * X;

qua8inv = inv(qua8);

* Computing the TARE13 and CARE13;

denob = qualinv @delta @ qua8inv;
deno6 = Q * deno5 * Qp;

deno7 = inv(deno6);

deno8 = det(deno6);

tarel3 = trace(deno3) / trace(deno7);

carel3 = (deno8 / deno4)##0.25;
* Sending results to an external text file;

file ’chapde.text’;
put tare2l +1 care21 +1 tarel3 +1 carel3;

* Setting printing options and printing the parameters
used and results obtained;

options linesize=96 pagesize=54 nocenter nodate nonumber;
* titlel;
* print tsize gamma rhoc rhot tare2l care2l tareld carel3;
* quit;

“%mend chap4;

* Inputting prameters and results obtained into a SAS
data set;

/macro accum;

data arcovZ;

infile ’chapéde.text’;
input tare2l care2l tarel3 careld;
run;

data arcov3;
ssize = &n#*60;
gamma=&r*0.5;

rhoc = (&p - 9)%0.1;
rhot = &q*0.1;
run;

data arcov;
set arcov3;
set arcov?;
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run;

proc append base=chap4e data=arcov;
run;

proc datasets nolist;

delete arcov arcov2 arcov3;
run;
quit;

%mend accum;

Jmacro para;
%do n=1 Y%to 3;
%do r=1 Y%to 5;
%do p=0 %to 18;
%do q=1 Y%to 9;
%chap4
Jaccum
%end;
%end;
%end;
Jend;
“mend para;

%para;
run;

* Saving results as a permanent SAS data set;

libname wam ’wambugu’;
run;

proc datasets library=work;
copy out=wam memtype=data;
select chap4e;

run;

quic;

proc ccntent= data=wam.chap4e position;

run;
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B.1 Simulation program to compute TARE and CARE

* Referencing the library where simulation results will be
saved as a permanent SAS data set;

libname syl ’chapterb’;
run;

* Ensuring program runs as it would in interactive mode;
options nosyntaxcheck;

* Suppress printing of the PROC MIXED output;

%global _PRINT_;
%let _PRINT_ = OFF;

* The simulation program starts here;
Ymacro simulate;

%do j=1 %to 200; * j = the simulation
index;

* One rep of the simulation starts herex;

data sbp(replace=yes);

* Generate 6 independent standard normal random variables
for two groups;

do i =1 to 50; * where 50 is the desired sample size in
each group,i is the subject index;

x1 = rannor(647 + i + &j*2);
x2 = rannor(372 + i + &j*2);
x3 = rannor(425 + i + &j*2);
x4 = rannor(162 + i + &j*2);
x5 = rannor(528 + i + &j*2);
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x6 = rannor(289 + i + &j*2);
X7 = rannor(467 + i + &j*2);
x8 = rannor(732 + i + &j*2);
x9 = rannor(245 + i + &j*2);
x10 = rannor(612 + i + &j*2);

x11 = rannor(258 + i + &j*2);
x12 = rannor(829 + i + &j*2);
output;

end;

run;

* Convert generated data set into matrices;

proc iml;

use sbp;

read all var {x1 x2 x3 x4 x5 x6} into x1;
read all var {x7 x8 x9 x10 x11 x12} into x2;
txl = t(x1);

tx2 = t(x2);

* Create V-C matrix based on the Kronecker product and
obtain lower triangular choleski factorization;

rhoc = (&p - 3)*0.3;
rhot = &q*0.1;
gamma=&r*0.5;

w = (&p - 1)*9 + &q;

z = (w - 1)*4 + &r;
rhot2 = rhot**2;
rtgamma = sqrt{(gamma) ;
rhoc2 = rhoc*rtgamma;

diag=1;

A = 7J(2,2,0);
Al1,1] = diag;
A[1,2] = rhoc2;
Af2,1] = rhoc2;
A{2,2] = gamma;
B = J(3,3,0);
B[1,1] = diag;
B[1,2] = rhot;
B[1,3] = rhot2;
B[2,1] = rhot;
B[2,2] = diag;
B[2,3] = rhot;
B[3,1] = rhot2;
B[3,2] = rhot;
B[3,3] = diag;

sigma = A Q@ B;
lsigma=t (root(sigma)) ;

* Enter the mean vector for group 1;

meanvl = {112,
116,
120,
63.5,
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63,
62.5};
mul=repeat (meanvl,1,50);

* Enter the mean vector for group 2;

meanv? = {113,
118,
123,
59,
62,
65};
mu2=repeat (meanv2,1,50);

* Create 6 correlated variables on each individual in
group 1 and save as a SAS data set;

yl=lsigma*txi+mul;

tyl=t(y1);

varnames=’sbpl’:’sbp6’;

create sbpmodl from tyl [colname=varnames];
append from tyl;

* Create 6 correlated variables on each individual in
group 2 and save as a SAS data set;

y2=lsigma*tx2+mu2;

ty2=t(y2);

varnames=’sbpl’:’sbp6’;

create sbpmod2 from ty2 [colname=varnames];
append from ty2;

quit;

*Combine the two data sets;

data sbpmod;
set sbpmodl sbpmod2;
run;

* Create variable to use in transposing the created data;

data nested;
do i =1 to 100;
output;
end;
run;

* Merge the two data sets;
data all;

merge nested sbpmod;
run;

* Transpose data into format required by PROC MIXED;

proc transpose data=all out=allt;
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by 1;
var sbpl sbp2 sbp3 sbp4 sbpS sbp6;
Tun;

* Create data set on I individuals based on C
characteristics measured T times;

data mult;
do person = 1 to 100;
do chara = 1 to 2;
do time = 1 to 3;
output;
end;
end;
end;
run;

* Create design matrix to fit a linear growth-curve model
to the two response variables;

proc iml;
A1=3(50,1,1);
A2=3(50,1,1);
theta=block (A1,A2);
thetap=t (theta);

X={1 -1,

10,

1 1};
Xp=t (X);
I2={1 0,
0 1};

D = theta@I2@X;

varnames=’'x1’:’x8’;

create des from D [colname=varnames];
append from D;

quit;

* Create the final data set to be used by the Mixed
procedure;

data actual;
merge allt mult des;
run;

* Model fitting and estimating parameters of interest;

/* Completely Unstructured V-C Matrix */
proc mixed data=actual;
class person;
model coll = x1 x2 x3 x4 x5 x6 x7 x8/ covb noint s;
repeated / type=un subject=person r=1 ri=il;
make ’SolutionF’ out=seun&j;
make ’R’ out=cmun&j;
make ’'COVB’ out=emunkj;
run;
quit;
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/* Unstructured by AR(1) V-C Matrix */
proc mixed data=actual;

class chara time person;

model coll = x1 x2 x3 x4 x5 x6 x7 x8 / covb noint s;

repeated chara time / type=un@Qar(1) subject=person
r=1 ri=1;

make ’SolutionF’ out=sear&j;

make ’R’ out=cmarkj;

make ’COVB’ out=emar&j;

run;
quit;

*

Convert generated data sets into matrices and compute
the likelihood ratio test statistic, chi-square
statistic, p-value and the measures of asymptotic
relative efficiency;

proc iml;

rhoc = (&p - 3)%0.3;
rhot = &q*0.1;
gamma=&r*0.5;

rhot2 = rhot**2;
rtgamma = sqrt(gamma) ;
rhoc2 = rhoc*rtgamma;

diag=1;

A= J(2,2,0);
Al1,1] = diag;
A[1,2] = rhoc2;
A[2,1] = rhoc2;
A[2,2] = gamma;
B = J(3,3,0);
B[1,1] = diag;
Bf1,2] = rhot;
B{1,3] = rhot2;
B[2,1] = rhot;
B[2,2] = diag;
B[2,3] = rhot;
B[3,1] = rhot2;
B[3,2] = rhot;
B[3,3] = diag;
A1=J(50,1,1);
A2=3(50,1,1);

theta=block(A1,A2);
thetap=t(theta);

X=41-1,
10,
1 1};

Xp=t (X);

use cmun&j var{coll col2 col3 col4 col5 col6};
read all var _num_ into arbi&j;

num&j = det(arbikj);

use cmar&j var{coll col2 col3 col4 col5 col6};
read all var _num_ into kscm&j;

deno&j = det(kscm&j);

Irgj = J(1,1,0);
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ir&j = (num&j/deno&j)##-50;
chi&j = 2#log(lr&j);
pval&j = 1 - probchi(chi&j,17);

Q={1000-100 0,
01000-100,
001000-10,
0001000 -1};

gprime = t(Q);

* Code to find TARE and CARE based on optimal

variance—~covariance matrix;

qual = thetap#*theta;
qualinv = inv(qual);

qua4 = Xp * B;

quab5 = quad * X;

qua6é = inv{(quab);

qua7 = qualinv @ A @ qua6b;
real = Q * qua7 * qprime;

realinv = inv(real);
realt = trace(realinv);
realc = det(real);

use emun&j var{_coll _col2 _col3 _col4 _colS _col6

_col7 _col8};
read all var _num_ into vh2&j;

use emar&j var{_coll _col2 _col3 _col4 _col5 _col6

_col7 _col8};

read all var _num_ into vhl&j;
qua2&j Q*vh2kj*qprime;
qualkj Q*vhl&j*qprime;
tar2&j = inv(qua2&j);

tarl&j = inv(qual&j);

tarekj
atar&j
car&j
carlkj

trace(tar2&j) /realt;
det(qua2&j);
det(qual&j);

care&j = (carl&j/car2&j)##0.25;
acar&j (realc/car2&j)##0.25;
1rt&j = J(1,7,0);

1rt&j[1,1] 1r&j,;

1rt&j[1,2] = chikj;

1rt&j[1,3] = pvalkj;
1rt&j[1,4] = tarekj;
1rt&j[1,5] carekj;
1rt&j[1,6] atar&j;
1rt&j[1,7] acarkj;

lrtm&j = repeat(lrt&j,8,1);
parakj = J(8,1,0);

LI T T | 1 1 T

LI T T | I T T 1

trace(tar2&j)/trace(tarikj);

para&j[1,1] = 116;
parakj[2,1] = 4;
parakj[3,1] = 63;
parak&j[4,1] = -0.5 ;
para&j[5,1] = 118;
parakj[6,1] = 5;
para&j[7,1] = 62;
para&j[8,1] = 3;
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lmod&j = lrtm&j || parakj;

varnames = ’hypol’:’hypo8’;

create unar&j from lmod%j [colname=varnames];
append from lmod&j;

quit;

* Merging the results from the different models.
Note: The merged data sets will be empty if one of the
data sets is empty as a result of the model failing
to converge;

data std&j;
merge seun&j(drop=_df_ _t_ _pt_ rename=(_est_=est_un)
rename=(_se_=se_un))
sear&j(drop=_df_ _t_ _pt_ rename=(_est_=est_ar)
rename=(_se_=se_ar))
unar&j (rename=(hypol=lrtest) rename=(hypo2=chisq)
rename=(hypo3=pvalue) rename=(hypo4=Tare)
rename=(hypo5=Care) rename=(hypo6=atare)
rename=(hypo7=acare) rename=(hypo8=trueval));
attrib simu length=$8;
simu="Sim &j ";
output;

proc datasets nolist force;
delete sbp sbpmodl sbpmod2 sbpmod nested all allt mult

des actual sear&j seun&j unar&j;
append base=std new=std&j;
run;
quit;

Y%end;
“mend simulate;

Y%macro combine;

data std;

set std;
rhoc = (&p - 3)%0.3;
rhot = &q*0.1;
gamma=&r*0.5;
w = (&p - 1)%9 + &q;
z=(w - 1)*4 + &r;
run;

proc append base=syl.results2 data=std;
run;

proc datasets nolist;
delete std;
run;

%mend combine;

Jmacro krone;
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%do p=1 %to 5;
%do g=1 %to 9;
Ado r=1 %to 4;
Y%simulate
%combine
%end;
%end;
Yend;
Yimend krone;

Ykrone;
run;
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C.1 Computing the Kronecker product deviation in-
dex

* This program computes the umweighted least squares
estimator under the assumption of a "factorial
covariance structure" or kronecker product covariance
structure for the within-subject covariance matrix
as described in Verhees and Wansbeek (1990) when k=2;

* The program also computes the value of the criterion
that is minimised in finding the umweighted least
squares estimator;

Jmacro chap6a;

proc imil;

* Specifying the covariance parameters;

rhol = &p*0.1;
rho2 = &q*0.1;
rho3 = &r+*0.1;
diag = 1;

rholm = rhol**2;
rho2m = rho2*%2;
rho3m = rho3*%*2;

* Specifying the matrices that make up the within-subject
covariance matrix Sigmao;

A = J(3,3,0);

Al1,1] = diag;
A[1,2] = rhol;
Al1,3] = rhoim;
Al2,1] = rhoil;
A[2,2] = diag;
A[2,3] = rhoi;
A[3,1] = rholm;

196




Appendix. Chapter 6 Computer Programs 197

A[3,2] = rhoil;
A[3,3] = diag;

Amod = A#4;
= J(3,3,0);
B[1,1] = diag;
B[1,2] = rho3;
B[1,3] = rho3m;
B[2,1] = rho3;
B{2,2] = diag;
B[2,3] = rho3;
B[3,1] = rho3m;
B[3,2] = rho3;
B[3,3] = diag;
Bmod = B#2;
J(3 3,0);

C[1 1] dlag,
C[1,2] = rho2;
C[1,3] = rho2m;
C[2,1] = rho2;
Cc[2,2] = diag;
Cl[2,3] = rho?2;
C[3,1] = rho2m;
C(3,2] = rho2;
Cc[3,3] = dlag,
Cmod = C#4;

* Specifying Sigmao;

AB = Amod//Bmod;
BC = Bmod//Cmod;
Sigmao = AB| [BC;

* Computing the umweighted least squares estimator
following Verhees and Wansbeek (1990) and finding
the value of the criterion in the optimum;

Ct={100000,
000100,
010000,
000010,
001000,
00000 1};
S = Sigmao;

S1 =C1l S = t(Cl1);
al = trace(S1*%2);
* print al;

S11 = shape(81[1:2, 1:2],4,1);
S12 = shape(S1[3:4, 1:2],4,1);
S13 = shape(S1[5:6, 1:2],4,1);
S14 = shape(S1[1:2, 3:4],4,1);
S15 = shape(S1[3:4, 3:4],4,1);
S16 = shape(S1(5:6, 3:4],4,1);
S17 = shape(S1[1:2, 5:6],4,1);
S18 = shape(S1[3:4, 5:6]1,4,1);
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S19 = shape(S1[5:6, 5:6],4,1);

* print S1;

* print S11 S12 S13 S14 S15 S16 S17 S18 S19;
Sitilde = S11}|S12|1S1311S14|1S1511S1611S17[[S1811S19;
* print Sltilde;

realmatl = Sitilde * t(Sitilde);

evall = eigval(realmatl);

evecl = eigvec(realmatl);

* print evall;

* print evecl;

lambdah = evall[1,1];

* print lambdah;

52 = S;

a2 = trace(S2*x2);

* print a2;

S21 = shape(S2[1:3, 1:3],9,1);
S22 = shape(S2[4:6, 1:3],9,1);
S$23 = shape(S2[1:3, 4:6],9,1);
S24 = shape(S2[4:6, 4:6]1,9,1);

* print S2;

* print S21 S22 523 S24;
S2tilde = S21IIS22||S23||S24
* print S2tilde;

realmat2 = S2tilde * t(S2tilde);
eval2 = eigval(realmat2);
evec?2 = eigvec(realmat2);

* print eval2;

* print evecZ2;

call svd(ul,ql,vl,Sitilde);
* print ul q1 vi;

delta = ul{1:4,1];

* print delta;

call svd(u2,q2,v2,S2tilde);
* print u2 g2 v2;

omega = u2[1:9, 1]

* print omega;

criterioc = al - lambdah;
*print criterio;

* Sending results to an external file;

file ’chap63a.text’;
put criterio;

“%mend chap6a;

* Inputting parameters and results obtained into a SAS
data set;

“macro accum;

data verhees2;
infile ’chapé63a.text’;
input criterio;
attrib criterio format=6.3;
run;
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data verhees3;
rhol = &p*0.1;

rho2 = &q*0.1;
rho3 = &r+*0.1;
run;

data verhees;
set verhees3;
set verhees?2;
run;

proc append base=chap63a data=verhees;

run,

proc datasets nolist;
delete verhees verhees2 verhees3;
run;

quit;
%mend accum;

Jmacro para;
%do p=1 %to 9;
%do g=1 %to 9;
%do r=1 %to 9;
%chap6a
%accum
%end;
%end;
%end;
/mend para;

hpara;
run;

* Saving results as a permanent SAS data set;

libname kpd ’chapter6’;
run;

proc datasets library=work;
copy out=kpd memtype=data;

select chap63a;

run;

quit;

proc contents data=kpd.chap63a position;

run;

proc print data=kpd.chap63a;
run;
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C.2 Simulation program to evaluate the impact of

the Kronecker product
deviation index under the null hypothesis

* Referencing the library where simulation results will be
saved as a permanent SAS data set;

libname kpd ’chapter6’;
run;

* Ensuring program runs in batch mode as it would in
interactive mode;

options nosyntaxcheck nosource;
* Suppress printing of the PROC MIXED output;

%global _PRINT_;
%#let _PRINT_ = OFF;

* The simulation program starts here;
“macro simulate;

%do j=1 %to 200;

* j = the simulation index;

* One rep of the simulation starts here;
data sbp (replace=yes);

* Generate 6 independent standard normal random variables
for two groups;

do i =1 to 50; * where 50 is the desired sample size in each

group,

1 is the subject index;
x1 = rannor(647 + i + &j*2);
x2 = rannor(372 + i + &j*2);
x3 = rannor(425 + i + &j*2);
x4 = rannor(162 + i + &j*2);
x5 = rannor(528 + i + &j*2);
x6 = rannor(289 + i + &j*2);
X7 = rannor(467 + i + &j*2);
x8 = rannor(732 + i + &j*2);
x9 = rannor(245 + i + &j*2);
x10 = rannor(612 + i + &j*2);

x11 = rannor(258 + i + &3j*2);
x12 = rannor(829 + i + &j*2);
output;

end;

run;
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* Convert generated data set into matrices;

proc iml;

use sbp;

read all var {x1 x2 x3 x4 x5 x6} into x1;
read all var {x7 x8 x9 x10 x11 x12} into x2;
txl = t(x1);

tx2 = t(x2);

* Create the within subject V-C matrix;

* Specifying the covariance parameters;

rhol = &p*0.1;
rho2 = &g*0.1;
rho3 = &r*0.1;
diag = 1;

rholm = rhol#*%2;
rho2m = rho2%%2;
rho3m = rho3*%2;

* Specifying the matrices that make up the within-subject

covariance
matrix Sigmao;

A = 7J(3,3,0);
Al1,1] = diag;
Al1,2] = rhoi;
A[1,3]1 = rholm;
A[2,1] = rhoi;
A[2,2] = diag;
A[2,3] = rhol;
A[3,1] = rhoim;
A[3,2] = rhoi;
A[3,3] = diag;
Amod = A#4;

B = J(3,3,0);
B[1,1] = diag;
B[1,2] = rho3;
B[1,3] = rho3m;
B[2,1] = rho3;
B[2,2] = diag;
B[2,3] = rho3;
B[3,1] = rho3m;
B[3,2] = rho3;
B(3,3] = diag;
Bmod = B#2;

C = J(3,3,0);
C[1,1] = diag;
C[1,2] = rho2;
C[1,3] = rho2m;
Cl2,1] = rho2;
c[2,2] = diag;

cl2,3] rho2;
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C[3,1] = rho2m;
C(3,2] = rho2;

C[3,3] = diag;

Cmod = Ci#4;

* Specifying Sigmao (lsigma in this program);

AB = Amod//Bmod;
BC = Bmod//Cmod;
lsigma = AB!|BC;

o

* Enter the mean vector for group 1;

meanvl = {113,

118,

123,

59,

62,

65};
mul=repeat(meanvi,1,50);

* Enter the mean vector for group 2;

meanv2 = {113,
118,
123,
59,
62,
65};
mu2=repeat (meanv2,1,50);

* Create 6 correlated variables on each individual in group 1
and save as a SAS data set;

yl=lsigma*txl+mul;

tyl=t(y1);

varnames=’sbpl’:’sbp6’;

create sbpmodl from tyl [colname=varnames];
append from tyl;

* Create 6 correlated variables on each individual in group 2
and save as a SAS data set;

y2=1lsigma*tx2+mu?2;

ty2=t(y2);

varnames=’sbpl’:’sbp6’;

create sbpmod2 from ty2 [colname=varnames];
append from ty2;

quit;

*Combine the two data sets;
data sbpmod;

set sbpmodl sbpmod2;
run;
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* Create variable to use in transposing the created data;

data nested;
do i =1 to 100;
output;
end;
run;

* Merge the two data sets;
data all;

merge nested sbpmod;
run;

* Transpose data into format required by PROC MIXED;

proc transpose data=all out=allt;

by i;
var sbpl sbp2 sbp3 sbp4 sbp5 sbp6;
run;

* Create data set on I individuals based on C characteristics
measured T times;

data mult;
do person = 1 to 100;
do chara =1 to 2;
do time = 1 to 3;
output;
end;
end;
end;
run;

* Create design matrix to fit a linear growth-curve model to the
two response variables;

proc iml;
A1=J(50,1,1);
A2=3(50,1,1);
theta=block(A1,A2);
thetap=t(theta);

X=4{1-1,

10,

1 1};
Xp=t (X);
I2={1 0,
0 1};

D = theta®I2RQX;

varnames=’x1’:’x8’;

create des from D [colname=varnames];
append from D;

quit;

* Create the final data set to be used by the Mixed procedure;
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data actual;
merge allt mult des;
run;

* Model fitting and estimating parameters of interest;

/* Completely Unstructured V-C Matrix */
proc mixed data=actual;
class person;
model coll = x1 x2 x3 x4 x5 x6 x7 x8/ covb noint s;
repeated / type=un subject=person r=1 ri=1;
make ’SolutionF’ out=seun&j;
make ’R’ out=cmun&j;
make ’COVB’ out=emun&j;
run;
quit;

/* Unstructured by AR(1) V-C Matrix */

proc mixed data=actual;
class chara time person;
model coll = x1 x2 x3 x4 x5 x6 x7 x8 / covb noint s;
repeated chara time / type=un@ar(l) subject=person r=1 ri=i;
make ’SolutionF’ out=sear&j;
make ’R’ out=cmar&j;
make ’'COVB’ out=emarkj;

run;

quit;

* Convert generated data sets into matrices and compute the
likelihood ratio test statistic, chi-square statistic and
p-value;

proc iml;

use cmun&j var{coll col2 col3 col4 col5 col6};
read all var _num_ into arbik&j;

num&j = det(arbi&j);

use cmar&j var{coll col2 col3 col4 col5 col6};
read all var _num_ into kscm&j;

deno&j = det(kscm&j);

1r&j = J(1,1,0);

1r&j = (num&j/denokj)##-50;

chi&j = 2#log(lr&j);

pval&j = 1 - probchi(chi&j,17);

Q={1000-1000,
01000-100,
001000-10,
0001000 -1};

qprime = t(Q);

* Computing the test statistics abd p-values for testing the
hypothesis of overall parallelism;;

use emun¥j var{_coll _col2 _col3 _col4 _col5 _col6 _col7 _col8};

read all var _num_ into vh2&j;
use emarkj var{_coll _col2 _col3 _col4 _colS _col6 _col7 _col8};
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read all var _num_ into vhig&j;
qua2&j = Q*vh2&j*qprime;
qual&j = Q*vhi&j*qprime;

use seun&j var{_est_};
read all var _num_ into lam2&j;
use sear&j var{_est_};
read all var _num_ into lami&j;

quad&j = Q*lami&j;
quad&j = Q*lam2&j;
qua5&j = t(qua3&j);
quab&j = t(quad¥j);
tar&j = quab&j*inv(qual&j)*qua3¥j;

tun&j = quabij*inv(qua2%j)*quadij;
j = 1 ~ probchi(tar&j, 4);
pvun&j = 1 - probchi(tun&j, 4);

1rt&j = J(1,7,0);

1rtgj[1,1] = 1r&j;
1rt&j[1,2] = chikj;
1rt&j[1,3] = pvalkj;
1rt&j[1,4] = tarkj;
1rt&j[(1,5] = tun&j;
1rt&j[1,6] = pvarkj;

1rt&j[1,7] = pvun&j;
lrtm&j = repeat(lrt&j,8,1);

para&j = J(8,1,0);
para&j[1,1] = 118;
para&j[2,1] = 5;
para&j(3,1] = 62;
para&j[4,1] = 3 ;
para%j[5,1] = 118;
para&j[6,1] = 5;
para&j[7,1] = 62;
para%j[8,1] = 3;

Imod&j = lrtm&j,ll para&j;
varnames = ’hypol’:’hypo8’;

create unar&j from lmod&j [colname=varnames];

append from lmod&j;
quit;

* Merging the results from the different models.
Note: The merged data sets will be empty if one of the data
sets is empty as a result of the model failing to converge;

data std&j;

length _effect_ $8 est_un se_un est_ar se_ar lrtest chisq
pvalue T_AR T_UN PVA_AR PVA_UN trueval 8 simu $8;

run;

data std&j;
set std&j(obs=0);
run;

data std&j;
attrib _effect_ length=$8;
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merge seun&j(drop=_df_ _t_ _pt_ rename=(_est_=est_un)
rename=(_se_=se_un))
sear&j(drop=_df_ _t_ _pt_ rename=(_est_=est_ar)
rename=(_se_=se_ar))
unar&j (rename=(hypol=lrtest) rename=(hypo2=chisq)
rename=(hypo3=pvalue) rename=(hypo4=T_AR)
rename=(hypo5=T_UN)
rename=(hypo6=PVA_AR) rename=(hypo7=PVA_UN)
rename=(hypo8=trueval));

attrib simu length=$8;

simu="Sim &j ";

output;

proc datasets nolist;
delete sbp sbpmodl sbpmod2 sbpmod nested all allt mult des
actual searkj
seun&j unar&j;
append base=std new=std&j;
run;
quit;

%end;
Ymend simulate;

/Jmacro combine;

data std;

set std;
rhol &p*0.1;
rho2 = &q*0.1;
rho3 &rx0.1;
run;

proc append base=kpd.dec18 data=std(where=(_effect_='X1’));
run;

proc datasets nolist;
delete std;
run;

%mend combine;

“%macro Kkrone;
“do p=1 %to 9 Yby 2;
“do g=1 %to 9 %by 2;
“do r=2 Yto 8 Y%by 2;
/Zsimulate
%combine
%end;
%end;
%end;
%mend Krone;

Ykrone;
run;
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C.3 Simulation program to evaluate the impact of
the Kronecker product
deviation index under the alternative hypothesis

* Referencing the library where simulation results will be
saved as a permanent SAS data set;

libname kpd ’chapter6’;
run;

* Ensuring program runs in batch mode as it would in
interactive mode;

options nosyntaxcheck nosource;
* Suppress printing of the PROC MIXED output;

%global _PRINT_;
%let _PRINT_ = OFF;

* The simulation program starts here;
/macro simulate;

%do j=1 %to 200;

* j = the simulation index;

* One rep of the simulation starts here;
data sbp (replace=yes);

* Generate 6 independent standard normal random variables for
two groups;

do i =1 to 50; * where 50 is the desired sample size in each

group,

i is the subject index;
x1 = rannor(647 + i + &j*2);
x2 = rannor(372 + i + &j*2);
x3 = rannor(425 + i + &j*2);
x4 = rannor(162 + i + &j*2);
x5 = rannor(528 + i + &j*2);
x6 = rannor(289 + i + &j*2);
x7 = rannor(467 + i + &j*2);
x8 = rannor(732 + i + &j*2);
xS = rannor(245 + i + &j*2);
x10 = rannor(612 + i + &j*2);

x11 = rannor(258 + i + &j*2);
x12 = rannor(829 + i + &j*2);
output;

end;

run;
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* Convert generated data set into matrices;
proc iml;

use sbp;

read all var {x1 x2 x3 x4 x5 x6} into x1;
read all var {x7 x8 x9 x10 x11 x12} into x2;
txl = t(x1);

tx2 = t(x2);

* Create the within subject V-C matrix;

* Specifying the covariance parameters;

rhol = &p*0.1;
rho2 = &g*0.1;
rho3 = &r*0.1;
diag = 1;

rholm = rhol*%*2;
rho2m = rho2*%2;
rho3m = rho3*%2;

* Spec1fy1ng the matrices that make up the within-subject
covariance
matrix Sigmao;

= J(3,3,0);
A[l 1] = dlag,
A[1,2] = rhoi;
A[1,3] = rholm;
Al2,1] = rhol;
A[2,2] = diag;
A[2,3] = rhol;
A[3,1] = rhoim;
A[3,2] = rhoti;
A[3,3] = diag;
Amod = A#4;
= J(3,3,0);

B[l 1] = dlag,
B[1,2] = rhoS3;
B[1,3] = rhoSm;
B[2,1] = rho3;
B[2,2] = diag;
B(2,3] = rho3;
B[3,1] = rho3m;
B[3,2] = rho3;
B[3,3] = diag;
Bmod = B#2;

C = J(3,3,0);
Cl{1,1] = diag;
C[1,2] = rho2;
C[1,3] = rho2m;
C[2,1] = rho2;
c[2,2] = diag;
C[2,3] = rho2;

C(3,1] = rho2m;
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C[3,2] = rho2;
C[3,3] = diag;
Cmod = C#4;

* Specifying Sigmao (lsigma in this program);

AB = Amod//Bmod;
BC = Bmod//Cmod;
lsigma = AB||BC;

* Enter the mean vector for group 1;

meanvl = {113,
118,
123,
59,
62,
65};
mul=repeat (meanvl,1,50);

* Enter the mean vector for group 2;

meanv? = {112,

118,

124,

58.4,

62,

65.6};
mu2=repeat (meanv2,1,50);

* Create 6 correlated variables on each individual in group 1
and save as a SAS data set;

yl=lsigma*txi+mul;

tyl=t(yl1);

varnames=’sbpl’:’sbp6’;

create sbpmodl from tyl [colname=varnames];
append from tyli;

* Create 6 correlated variables on each individual in group 2
and save as a SAS data set;

y2=lsigma*tx2+mu2;

ty2=t(y2);

varnames=’sbpl’:’sbp6’;

create sbpmod2 from ty2 [colname=varnames];
append from ty2;

quit;

*Combine the two data sets;
data sbpmod;
set sbpmodl sbpmod2;

run;

* Create variable to use in transposing the created data;
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data nested;
do 1 =1 to 100;
output;
end;
run;

* Merge the two data sets;

data all;
merge nested sbpmod;
run;

* Transpose data into format required by PROC MIXED;

proc transpose data=all out=allt;
by 1i;
var sbpl sbp2 sbp3 sbp4 sbpS sbp6;
run;

* Create data set on I individuals based on C characteristics
measured T times;

data mult;
do person = 1 to 100;
do chara = 1 to 2;
do time = 1 to 3;
output;
end;
end;
end;
run;

* Create design matrix to fit a linear growth-curve model to the
two response variables;

proc iml;
A1=3(50,1,1);
A2=3(50,1,1);
theta=block (A1,A2);
thetap=t(theta);

X=4{1-1,

10,

1 1};
Xp=t (X);
I2={1 O,
0 1};

D = theta@I2@X;

varnames=’x1’:’x8"’;

create des from D [colname=varnames];
append from D;

quit;

* Create the final data set to be used by the Mixed procedure;

data actual;
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merge allt mult des;
run;

* Model fitting and estimating parameters of interest;

/* Completely Unstructured V-C Matrix */
proc mixed data=actual;
class person;
model coll = x1 x2 x3 x4 x5 x6 x7 x8/ covb noint s;
repeated / type=un subject=person r=1 ri=l;
make ’SolutionF’ out=seun&j;
make 'R’ out=cmun&j;
make ’'COVB’ out=emun&j;
run;
quit;

/* Unstructured by AR(1) V-C Matrix =*/

proc mixed data=actual;
class chara time person;
model coll = x1 x2 x3 x4 x5 x6 x7 x8 / covb noint s;
repeated chara time / type=un@ar(1) subject=person r=1 ri=i;
make ’SolutionF’ out=searkj;
make 'R’ out=cmark&j;
make ’'COVB’ out=emar&j;

run;

quit;

* Convert generated data sets into matrices and compute the
likelihood ratio test statistic, chi-square statistic and
p-value;

proc iml;

use cmun&j var{coll col2 col3 col4 col5 colé};
read all var _num_ into arbi&j;

num&j = det(arbi&j);

use cmar&j var{coll col2 col3 col4 col5 col6};
read all var _num_ into kscm&j;

deno&j = det(kscm&j);

1r&j = J(1,1,0);

1r&j = (num&j/deno&j)##-50;

chi&j = 2#log(1lr&j);

pval%&j = 1 - probchi(chi&j,17);

Q={1000-1000,
010060-100,
001000-10,
0001000 -1};

gprime = t(Q);

* Computing the test statistics and p-values for testing the
hypothesis of overall parallelism;;

use emunj var{_coll _col2 _col3 _col4 _colS5 _col6 _col7 _col8};

read all var _num_ into vh2&j;

use emargj var{_coll _col2 _col3 _col4 _col5 _col6 _col7 _col8};

read all var _num_ into vh1l&j;
qua2&j = Q*vh2&j*qprime;
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qual&j = Q*vhil&j*qprime;

use seun&j var{_est_};
read all var _num_ into lam2&j;
use sear&j var{_est_};
read all var _num_ into lami&j;

qua3d&j = Q*lami&j;
quad&j = Q*lam2&j;
quab&j = t(qua3kj);
qua6&j = t(quad&j);
tar&j = quaS&j*inv(qualkj)*qua3kj;

tun&j = quab&j*inv(qua2&j)+*quad&j;
pvar&j = 1 - probchi(tarkj, 4);
pvung&j = 1 - probchi(tun&j, 4);

1rtgj = J(1,7,0);

1rt&jl1,1] = 1r&j;

1rt&j[1,2] = chigj;

1rt&j[1,3] = pval&j;
1rt&j[1,4] = tarkj;
1rt&j[1,5] = tunk&j;
1rt&j[1,6] = pvarkj;
1rt&j[1,7] = pvunkj;

lrtm&j = repeat(lrt&j,8,1);
para&j = J(8,1,0);

parakj(1,1] = 118;
para&j[2,1] = 5;

para&j[3,1] = 62;
para&j[4,1] = 3 ;
para&j[5,1] = 118;
para&j[6,1] = 6;

para&jl7,1] = 62;
para&j[8,1] = 3.6;

lmod&j = lrtm&j || parakj;

varnames = ’hypol’:’hypo8’;

create unar&j from lmod&j [colname=varnames];
append from lmod&j;

quit;

* Merging the results from the different models.
Note: The merged data sets will be empty if one of the data
sets is empty as a result of the model failing to converge;

data std&j;
length _effect_ $8 est_un se_un est_ar se_ar lrtest chisq
pvalue T_AR T_UN PVA_AR PVA_UN trueval 8 simu $8;
run;

data std&j;
set std&j(obs=0);
run,;

data stdkj;
attrib _effect_ length=$8;
merge seun&j(drop=_df_ _t_ _pt_ rename=(_est_=est_un)
rename=(_se_=se_un))
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sear&j(drop=_df_ _t_ _pt_ rename=(_est_=est_ar)
rename=(_se_=se_ar))
unar&j (rename=(hypol=lrtest) rename=(hypo2=chisq)
rename=(hypo3=pvalue) rename=(hypo4=T_AR)
rename= (hypoS5=T_UN)
rename=(hypo6=PVA_AR) rename=(hypo7=PVA_UN)
rename= (hypo8=trueval)) ;

attrib simu length=$§8;

simu="Sim &j ";

output;

proc datasets nolist;
delete sbp sbpmodl sbpmod2 sbpmod nested all allt mult des
actual sear&j seun&j unarkj;
append base=std new=std&j;
run;
quit;

%end;
%mend simulate;

Ymacro combine;

data std;

set std;
rhol &p*0.1;
rho2 = &q*0.1;
rho3 &rx0.1;
run;

proc append base=kpd.jan05 data=std(where=(_effect_=’X1’));
run;

proc datasets nolist;
delete std;
run;

%mend combine;

Jmacro Krone;
%do p=1 Yto 9 Y%by 2;

%do gq=1 %to 9 %by 2;

“do r=2 %to 8 %by 2;
%simulate
%combine
%end;

%end;
Y%end;
Jmend krone;

Ykrone;
run;





