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Abstract 

Multivariate data collected over t h e  on the same experimental unit, referred to 

as multivariate longitudinal data, are typical of many agricultural, biological, clinical 

and medical studies. One way to account for the correlations that exist both within 

and across time is to express the variance-covariance rnatrix as the Kronecker product 

of two matrices- These matrices, denoted by A and Q, refiect the characteristic and 

time dimensions underlying muhivariate longitudinal data. The pwpose of this thesis is 

to investigate the asymptotic relative efficiency (ARE) of hypothesis tests in the linear 

model for multivariate longitudinal data, evduated t hrough the trace asympto tic relative 

efficiency (TARE) and curvature asymptotic relative efficiency (CARE) . 

The gain in efficiency from exploiting a Kronecker product covariance structure 

when it is appropriate is investigated. To estimate the TARE and CARE, a Monte- 

car10 simulation study is conducted. The loss of efficiency from imposing a Kronecker 

product model when it is not appropriate is also considered. Using a class of non- 

Kronecker product covariance matrices and an index, which quantifies how far a given 

rnatrix departs from Kronecker product structure, a Monte-car10 simulation study is 

conducted. Ordinary least squares and generalised least squares procedures were also 

compared under a Kronecker product model, 

For the designs and covariance matrices considered, the gain in efficiency from 

exploiting the Kronecker product covariance structure is most pronounced when there is 

high correlation across time. For the class of non-Kronecker product covariance matrices 

defined, a noticeable loss of efficiency occurs when the covariance matrix is far from 

Kronecker product structure, in particular when there is a moderate departure from the 

nul1 hypothesis under consideration. The use of ordinary least squares, which ignores 

cross-sectional and longitudinal correlations, is shown to be inefficient, especiaIly when 

these correlations are high in absolute value. 
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Executive summary 

The mu1 t ivariate longitudinal design, in which multiple characteristics are measured 

over time on the same experimental unit, is typical of many agricultural, biological, 

clinical and medical studies. For example, in a medical study, measurements on systolic 

blood pressure and diastolic blood pressure may be taken on each subject at a number 

of points in time. In such studies, it is important to account for both cross-sectional and 

longitudinal correlations. In some problems, it may be reasonable to express the within- 

subject variance-covariance mat& as the Kronecker product of two matrices, that is, 

Co = A 8 fl. The matrices A and f2 reflect the characteristic and time dimensions 

underlying multivariate longitudinal data. Implicit in such a representation is t hat the 

covariance matrix for the different characteristics measured a t  each time point is constant 

with respect to time, and the correlation matrix for the longitudinal measurements on a 

given characteristic is the same for al1 characteristics. 

The puïpose of this thesis is to investigate the gain from e?rploiting the Kronecker 

product structure when it is appropriate- The converse of this situation is also considered, 

that is, the loss from imposing the Kronecker product structure when it is not appropri- 

ate. This will be accomplished by investigatiag the asymptotic relative efficiency (ARE) 

of hypothesis tests for the mean vector in the linear mode1 for multivariate longitudinal 

data. For the purpose of this thesis, efficiency wiIl be evaIuated through the trace asymp- 

totic relative efficiency (TARE) and curvature asymptotic relative efficiency (CARE) , two 

measures of asymptotic relative efficiency. They can be applied to compare competing 

test statistics with limiting non-central chi-square distributions through a suitable Pit- 

man alternative. 

Chapter 2 reviews the existing Literature on areas that are relevant to this dis- 

sertation. This includes the linear mode1 for correiated data and estimation thereof, 

models for multivariate longitudinal data and the cornparison of tests both in the one 

parame ter and multi-parameter testing problem. Chapter 3 presents a detailed review 

of existing results that are useful in this dissertation. These include estimation in the 

linear mode1 for correlated data assuming normally distributed errors using maximum 



likelihood and restricted maximum Likelihood estimation. Measuring test efficiency in the 

one parameter case and the concept of Pitman efficiency are also presented, including 

an example of measuring test efficiency in the one parameter case. Test efficiency in the 

multi-parameter case is reviewed and an example illustrated using two parameters. 

Chapter 5 focuses on the potential gain in efficiency that would result fiom ex- 

ploiting a Kronecker structured within-subject variance-covariance matrix when it is 

appropriate. This is done by evaluating the efficiency of a test based on a completely un- 

struct ured covariance matrix relative to one based on a Kronecker structured covariance 

matrix. Using the TARE and CARE; to estimate efficiency, a Monte-car10 simulation 

study is conducted. A second goal of Chapter 5 is to describe a preliminary likelihood 

ratio test of the hypothesis Ho : Co = A @ 0 versus Ha : Co = Ca: where Ca is an 

arbitrary covariance matrix. From the simulation study, efficiency is demonstrated to be 

a function of the covariance parameters defining A and $2. For the design and covariance 

matrices considered, a gain in efficiency occurs from exploiting the Kronecker product 

structure. The parameter defining 0 was found to have the greatest impact on efficiency. 

For testing the hypotheses Ho : Co = A @ Q versus Ha : Co = Ca, a likelihood ratio test 

is incorporated and applied to data on two measures of lung function capacity recorded 

on subjects in two groups over five years. 

Chapter 6 investigates the converse of the situation considered in Chapter 5; specif- 

ically, the loss of efficiency f?om imposing a Kronecker structured covariance matrix in 

hypothesis testing when it is not appropriate is investigated. To accomplish this, a class 

of matrices with some degree of departure from the Kronecker product mode1 is intro- 

duced. A measure, called the Kronecker product deviation index, is defined. It is used 

to quantify how far a given variance-covariance matrix departs fiom Kronecker product 

structure. A Monte-car10 simulation study using this class of covariance matrices is per- 

formed to compare the impact of the Kronecker product deviation index on a test based 

on imposing a Kronecker product structure, relative to one based on a unstructured co- 

variance matrix. For the design and class of non-Kronecker product covariance matrices 

considered, a loss of efficiency occurs fiom imposing the Kronecker product structure. 



The power of the test under an assumed Kronecker product model was consistently lower 

than that of the test based on a unstructured covariance matrix. Nso, the difference in 

power between the two tests was found to increase as the Kronecker product deviation 

index increased. 

Chapter 4 compares the efficiency of ordinary least squares which ignores both 

cross-sectional and longitudinal correlations to generalised least squares which utilises 

the within-subject variance-covariance matrix assumed to be of the Kronecker product 

form. To this end, the efficiency of a test procedure that ignores correlation relative to 

one that models correlation as the Kronecker product of two matrices is evaluated using 

the TARE and CARE. Results are presented for two designs (growth curve and repeated 

measures analysis of variance) and two covariance structures for 0 (compound symmetry 

and first-order autoregressive). For the designs and covariance matrices considered, a loss 

of efficiency occurs from ignoring the two sources of correlation. As expected, the loss 

is greatest when the correlations between the characteristics and between longitudinal 

measurements on a given characteristic are high in absolute value. 

The primary advantage of using the Kronecker product approach to model cor- 

relation in multivariate longitudinal data is that it takes into account and separates 

cross-sectional and longitudinal correlations. It aliows one to study the differences in 

the way characteristics change over time for subjects classified into different groups while 

sirnultaneously incorporating correlations that arise both within and across time. Results 

ob tained in t his dissertation emphasize the importance of appropriately modelling the 

variance-covariance matrix. For example, if the underiyizg Kronecker product covariance 

structure is exploited, a gain in efficiency will occur in hypothesis testing. Conversely, 

imposing the Kronecker product covariance structure d l  result in a loss of efficiency- 

The loss is most noticeable when the covariance matrix is far from Kronecker product 

structure, in particular when there is a moderate departure from the nul1 hypothesis. 

Failing to model correlations that exist both within and across time is shown to be sta- 

tistically less efficient t han if one appropriately accounts for t hese correlations, especially 

when the cross-sectional and longitudinal correlations have high absolute values. 



Chapter 1 

Introduction 

1.1 Introduction 

Suppose we have data  collected on C characteristics over T occasions for 1 indi- 

viduals who may be divided into G groups. The analysis of these kind of data, known 

as multivariate longitudinal data, assuming a Kronecker struct ured covariance matrix, is 

considered. In general, multivariate longitudinal data models are concerned with data 

recorded on several occasions, on individuals receiving different treatments or divided 

into different classes, such that each record consists of measurements made on a nuniber 

of response variables or characteristics. The term "multivariate longitudinal" points to 

the fact that the data are multivariate in the direction of distinct responses, as well as 

longitudinal. Longitudinal data is defined broadly as data  arising from designs in which 

the response of each unit is observed on two or more occasions. In this context, repeated 

measures designs, cross-over designs and growth-curve designs are considered variations 

of the basic longitudinal design. 

The longitudinal design is very useful because a wide variety of scientific questions 

can only be addressed by utilising longitudinal data, including questions concerning the 

processes of development and aging. For this reason, it is widely used in medical and 

social science research. This research was motivated by an interest in h d i n g  solutions to 
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commonly occuring problems in the analysis of quality of iife data, specifically data aris- 

ing from cancer clinical trials. Useful references include Olshewski and Schumacher [47]; 

Zwinderman [82]; Tandon [61]; Schumacher and Olschewski [56]; Cox et al [9] and H o p  

wood, Stephens and Machin [23]. 

If the outcome variable is univariate and approximately normally distributed, and 

the data are balanced and complete, a large class of Linear models are available and data 

analysis is relatively straightforward. When the data are unbalanced and incomplete, 

as is often the case when dealing with human subjects, most analysis techniques in- 

volve an  individual formulation of multivariate linear models which can explore tracking 

of individual characteristics such as the random effects models proposed by Laird and 

Ware [34] or the structured covariance matrix proposed by Jennrich and Schluchter [25]. 

Recently, the seemingly unrelated regression mode1 has been applied to longitudinal data, 

as proposed by Park and Woolson [49]. 

Zn many longitudinal studies, it is often of interest to collect a number of differ- 

ent characteristics on each of several occasions. That is, for each individual, multiple 

measurements are recorded at  each time point instead of one. Krzanowski and Mar- 

riott [30] note that when individuals are followed up over a period of time, the cost of 

data collection is almost unaffected by the number of measurements taken at each time. 

An example is given in Sy, Taylor and Cumberland [60], who describe the relationship 

between two important immunologie measurements in HIV/AIDS research, namely, CD4 

and beta-2-microglobulin. Both variables are measured longitudinally using data from 

the Los Angeles section of the Multicenter AIDS Cohort study. The resulting data are 

unique in that correlation arises in two ways: (i) the different characteristics recorded at 

each time point, and (ii) the same characteristics measured on different occasions. 

The techniques for analysing multivariate longitudinal data must in some way take 

into account these two sources of correlation. However, when faced with multivariate 

longitudinal data, most researchers tend to analyse each variable or characteristic that 

has been measured over time separately. Apart from the issues raised by multiple testing, 

this approach does not in any way take into account the correlation that may exist 
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between the different variables on each occasion. For researchers interested in analysing 

this type of longitudinal design from a multivariate perspective, using a model with a 

Kronecker structured covariance matrix may provide a possible alternative. 

Continous data from multivariate longitudinal data designs are sometimes analysed 

using ordinary least squares. If different subjects are being measured at different times, 

this might be a reasonable approach- However, when we have the same subjects being 

measured over tirne: it is more realistic to assume that the observations within a subject 

are correlated. The Kronecker product approach represents one way of modelling this 

correlation. One major advantage of using this approach in the analysis of rnultivari- 

ate longitudinal data is that it takes into account both cross-sectional and longitudinal 

correlations. Hence, the mode1 allows one to study the differences in the way C charac- 

teristics change over time for subjects classified into different groups while simultaneously 

incorporating correlations that arise both within and across time. 

The Kronecker product model assumes that the within-subject variance-covariance 

matrix can be expressed as the Kronecker product of two matrices. For the Kronecker 

product covariance structure to be valid, we should be able to determine from the data 

t hat the within-subject variance-covariance matrix can be modelled as the Kronecker 

product of a C x C matrix and a T x T matrix. The C x C matrix represents the 

covariance matrix between the C characteristics a t  each time point and is assumed to 

remain constant over time. This covariance matrix captures the cross-sectional (and 

consequently the multivariate) component of the data. The T x T matrix represents 

the covariance matrix for each of the C characteristics measured on T occasions and is 

assumed to remain constant for al1 C characteristics. This covariance matrix captures 

the longitudinal component of the data. Additionally, homegeneity of the covariance 

matrices across the levels of the between subjects or grouping factor is assumed. 

The mode1 can be written as y = (O @ Ic @ X)X + e, where 8 is the 1 x G between 

subject design matrix for I subjects in G treatment groups; Ic is the C x C identity 

matrix; X is the T x p within subject design mat+ where p cepresents the number of 

columns in the design matrix; X is the pCG x 1 vector of unknown parameters and e 
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is the error vector with covariance matrix C = II @ Co, where Ir is the 1 x I identity 

matrix. Co is the CT x CT within-subject variance-covariance matrix and takes the f o m  

Co = A 8 0; A is the C x C covariance matrix for C dependent variables and St is the 

T x T covariance matrix for T repeated measures on each dependent variable. Co depends 

on and 72, the parameter vectors defining A and 0 respectively. If one does not assume 

that the within-subject variance-cova~ance matrix has the Kronecker product structure, 

another approach wodd be to let this matrix be an unstructured CT x CT matrix- Using 

this approach, no restrictions are placed on the structure of the cornmon within-subject 

variance-covariance matrix and it need not be Kronecker product. 

Galecki [IS] states that one of the advantages of the Kronecker product approach is 

that it simplifies computation in what might otherwise be a very difficult situation. Par- 

tial derivatives, inversion and Cholesky decomposition of the overall variance-covariance 

mat ri^ are reduced to operations on factor specific matrices with smaller dimensions. 

Other advantages to using the Kronecker product approach, as outlined by Galecki [18] 

include: 

1. clear and useful interpretation in terms of the contribution of the dimensions in- 

volved (characteristics and time) to the overdl within-subject variance-covariance 

matrix, 

2. reduction in number of covariance parameters that need to be estimated, 

3. and an enrichment of the class of covariance structures available for modelling 

multivariate longitudinal data. 

1.2 Statement of the problem 

In the context of multivariate longitudinal data, as in many other settings, one 

is sometimes faced with the problem of comparing the relative performance of two (or 

more) tests for testing some multi-parameter hypothesis of interest. For example, in a 

growth curve setting involving two or more groups, one may wish to test for parallelism. 
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In a repeated measures analysis of variance setting, one rnay wish to test for equality of 

two or more treatment groups. If there are two or more tests available for testing the 

null hypothesis of interest and one has information available on the relative performance 

of the tests under consideration, then an informed decision can be made on which test 

to use for the purpose of statistical inference. 

TNO criteria of asyrnptotic relative efficiency have been proposed by Woolson and 

Sen [79] for the multi-parameter testing problem. The criteria are known as the C m  

(Curvature Asyrnptotic Relative Efficiency) and the TARE (Trace Asymptotic Relative 

Efficiency). Both criteria may be applied for the comparison of competing test statistics: 

each with limiting noncentral chi-square distributions utilising a suit able Pitman alterna- 

tive. The criteria are products of a scalar adjustment function and a term involving the 

noncentrality parameters. More specifically, the curvature asymptotic relative efficiency 

is a function of the deterrninants of the matrices in the noncentrality parameters, while 

the trace asymptotic relative efficiency is a function of the traces of the matrices in the 

noncent rality parameters. 

Woolson and Sen [79] give an application of these efficiency criteria to the multi- 

variate one-sample location problem. The primary purpose of this research is to apply 

these two measures of asyrnptotic relative efficiency to the multivariate longitudinal data 

problem. Of concern in this work is the comparison of models that utilise the Kronecker 

product approach to models that do not. Incorporating a test designed to test the nul1 

hypothesis t hat the wit hin-subject variance-covariance matrix has a Kronecker product 

structure will be considered. An index that can be used to measure how far a given 

variance-covariance m a t r ~ ~  departs from Kronecker product will be presented. 

1.3 Motivation 

This research was motivated by the analysis of longitudinal data arising from quality 

of life studies in cancer clinical trials. Most cancer treatments are palliative in nature 

and patient's quality of Iife is of primary concern. During the course of cancer treatment, 
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the quality of life of the cancer patient is closely monitored. The assessrnent of the 

effects on quality of life of different treatments in clinical trials is now regarded as an 

important tool in comparing the effectiveness of different treatments. Quality of Life is a 

multi-dimensional construct comprising the physical, emotional and social well-being of 

patients. 

Additionally, quality of life and its dimensions are not directly observable, hence 

the need for several items measuring the same latent variable. Quality of life Is also 

a dynamic, tirne-dependent process resulting in repeated measurements over time per 

individual. The fact that most patients are usually very ill frequently results in quality 

of life data sets that are unbalanced and incomplete. The linear model for multivariate 

longitudinal data with a Kronecker structured covariance rnatrix presents a reasonable 

and flexible way of dealing with the complex issues associated with quality of life data. 

In practical work carried out in various disciplines, the longitudinal design is very 

popular and usually involves coiiecting multiple characteristics on the subjects under 

st udy instead of a single characteristic over time. Modelling covariance structure is even 

more critical in this setting because of the two dimensions involved (characteristics and 

time). Without specifying a covariance model, !TC(TC + 1) covariance parameters 

must be estimated. Modelling the covariance structure using a Kronecker product mode1 

resul ts in a tremendous reduction in the number of covariance parameters to be estimated. 

This may be especially advantageous in studies that result in highly unbalanced and/or 

missing data, a common problem in designs that involve following subjects over time- 

However, the validity of this model will depend to a large extent on the special covariance 

structure that it assumes. 

Assuming the Kronecker product structure is valid, we wish to compare the linear 

model wit h a Kronecker structured covariance matrix wit h ot her approaches typically 

used for multivariate longitudinal data and discover which advantages, if any, that it 

offers. We will show that the model is very flexible, with applications to many kinds of 

longitudinal designs, and offers a rich class of covariance structures. On the other hand, 

if the Kronecker product structure is not valid, then we also wish to find out the negative 
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consequences of imposing such a structure. 

1.4 Objectives of the study 

1. Apply the C A M  (Curvature Asymptotic Relative Efficiency) and the TARE (Trace 

Asymptot ic Relative Efiiciency) , both measures of asympto t ic relative efficiency 

developed for the multiparameter testing problem, to investigate efficiency as it 

relates to testing hypotheses of interest in multivariate longitudinal data. 

2. Investigate the consequences of ignoring correlations that arise both within and 

across time in multivariate longitudinal data. 

3. Incorporate a preliminary test for the nul1 hypothesis that the within-subject variance- 

covariance matrix has a Kronecker product structure. 

4. Assess the gain in efficiency that results from exploiting a Kronecker structured 

covariance matrix in testing hypotheses of interest in multivariate longitudinal data. 

5 .  To describe an index that can be used to measure the departure of a given variance- 

covariance matrix from Kronecker product structure- 

6. Investigate the consequences of imposing a Kronecker product covariance matrix 

when there is some departure from the Kronecker product structure. 

1.5 Problem domain (Example) 

In this section, a real multivariate longitudinal data set is discussed in order to 

highlight the issues that wiil be the focus of this dissertation. The data is kindly pro- 

vided by Dr. Jure Manfieda a t  the Respiratory Hospital, Health Sciences Center, in 

Winnipeg, Manitoba. Survey data were collected yearly between 1976 and 1991, using 

both occupational and non-occupational surveys. The data selected do not represent any 

particular group and generalization of results to the Manitoba population or any segment 
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of it should not be attempted. The data set was created for the purpose of developing a 

methodological (statistical) approach. The discussion presented here will focus on FEVl 

and FVC, both measures of lung function capacity. Methods of measuring lung function 

(spirometry) were the same. 

Spirometry refers to the measurement of the forced expiratory vital capacity (FVC) 

and the expiratory flow rates which occur during a FVC maneuver [16]. A maneuver 

consists of a subject inhaling as much air as possible, then exhaling it as rapidly and 

completely as possible. Spirometry is used to detect chronic obstructive pulmonary 

disease (COPD). COPD is a term commoniy used to broadly refer to individuals (usually 

patients) wit h non-specific obstructive lung disease. The incidence and prevalence of 

COPD has increased tremendously in recent years and it has now become a major public 

health problern. The high prevalence justifies efforts to detect early obstruction of airways 

caused by COPD. Spirometry is the first test for early detection of COPD, where "early" 

means before the occurrence of significance symptoms requiring the attendance of a 

physician. Only spirometry can detect COPD 5-10 years before the onset of significant 

syrnptoms. The earlier one can detect airway obstruction, the better the response to 

therapy. 

The most important spirometry variable is FEVI, short for forced expiratory vol- 

ume in 1 second. We can think of FEVl as the average flow rate during the first second of 

the forced vital capacity maneuver. FEVl is reduced with airfiow limitation or obstruc- 

tion. "Restriction" in lung disorders always means a decrease in h g  volume. Spirometry 

provides a measure of the FVC, the volume of air that can be exhaled after a subject 

takes as deep a breath as possible. A reduction in the FVC measured by spirometry is 

consistent with restriction. 

From the above discussion, we see that using spirometry, two disorders can be 

detected. The first disorder is obstruction, which refers to reduced flow rates and is 

detected by a reduced FEV1- The second disorder is restriction, which refers to reduced 

lung volume and detected by a reduced FVC given that obstruction of airways has been 

excluded. Therefore, spirometry maneuvres are bes t visualised by graphs t hat enable 
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one to simultaneously view flow rates and volumes produced by the maneuvres. If the 

maneuvers have been conducted over time on the same subjects, then there is need for a 

statistical procedure that can simultaneously consider flow rates and voIumes measured 

over time. 

Demographic variables collected at the beginning of the st udy included gender, 

birth date and age at which an individual started smoking. Smoking status represents 

a time varying covariate and was collected at each t h e  point along with the date of 

test, height in inches and weight in pounds. Whether an individual was a surface worker 

or an underground worker represents a time invariant covariate since it remained h e d  

over the course of the study. The discussion presented here will focus on the potential 

efYects of being a surface or underground worker on lung function capacity as measured 

by FEVl and FVC. The data considered will be restricted to the subjects with complete 

data during the first 5 years of the study (1976 - 1980), resulting in 140 subjects of whom 

52 were surface workers and 88 were underground workers. Issues that one must consider 

in applying the linear mode1 with a Kronecker structured covariance matrix model to 

this type of data are now presented. 

In using the Kronecker structured covariance matrix, the model incorporates two 

sources of correlation: the correlation that exists between FEVl and FVC at each time 

point as well as the correlation that exists over time within each of FEVl and FVC. 

A potentially inefficient way to analyze this data would be by ordinary least squares 

(unless the covariance matrix is known to be Co = (r21TC). This would not only ignore 

the correlation between FEVl and FVC at each time point but also the correlation wit hin 

each of FEVl and FVC over time. How inefficient this is when the underlying covariance 

structure between the two variables measured over time is known to take on a Kronecker 

product form is investigated. Mathematical expressions for the TARE and CARE w i l  be 

derived and numerical results presented for some specific within-subject design matrices 

and covariance structures. 

Suppose that the within-subject variance covariance matrix Co for FEVl and FVC 

is known to have the Kronecker product form, but instead one models the data using an 
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unstructured TC x TC matrix. How inefficient is the latter approach in this situation? 

The answer to this question will be sought by assessing the gain in relative efficiency 

that may result from taking advantage of the Kronecker product structure rather than 

using an unstructured TC x TC matrix. The efficiency of the test based on a completely 

unstructured covariance matrix relative to a test based on a Kronecker structured covari- 

ance matrix is evahated, employing two measures of asymptotic relative efficiency. A 

simulation study is conducted to assess the gain in efficiency that may result from taking 

advantage of the Kronecker product structure. 

Another question of considerable practical interest is as follows: how does one 

know that the variance-covariance mat& for FEVl and FVC can be modeiled as the 

Kronecker product of two matrices? To find an answer to this question, a preliminary test 

of the hypothesis that the covariance mat* has a Kronecker product structure versus 

the hypothesis t hat the covariance matrix is completely unstructured is presented. The 

observed significance level and power of this test w i U  also be examined. 

So far: we have considered the situation in which the Kronecker product structure 

is thought to be suitable for FEVl and FVC. The consequence of ignoring this structure 

either by the use of ordinary least squares or by fitting a completely unstructured covari- 

ance matrix are presented as issues that need further investigation. The converse of this 

situation is also of interest and needs further investigation, that is, the situation in which 

the within-subject variance covariance matrix for FEVl and FVC measured over time 

is k n o m  to deviate from the Kronecker product form. In this case, modelling the data 

using a cornpletely unstructured covariance niatrix may be more suitable than imposing 

a Kronecker structured covariance matrk.  What are the consequences of imposing a 

Kronecker product structure in testing hypotheses of interest in multivariate longitudi- 

nal data? The answer to this question will also be sought. An index that measures how 

far a given covariance matrix deviates from Kronecker product is a useful measure and 

is introduced. A simulation study to assess the consequences of imposing a Kronecker 

structured covariance matrix on hypothesis testing wili also be conducted. 
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1.6 Thesis organisation 

In Chapter 2, we review the existing literature on areas that are relevant to this 

dissertation. This includes the linear model for correlated data and estimation thereof: 

models for multivariate longitudinal data and the comparison of tests both in the one 

parameter and multi-parameter testing problern. Chapter 3 presents a detailed review 

of existing results that are useful in this dissertation. These include estimation in the 

linear model for correlated data assuming normally distributed errors using maximum 

likelihood and restricted maximum likelüiood estimation- Measuring test eficiency in 

the one parameter case and the concept of Pitman efficiency will be discussed, including 

an example of measuring test efficiency in the one parameter case. Test efficiency in 

the multi-parameter case will also be reviewed and an example illustrated using two 

parameters. 

Chapter 4 investigates the problem of how inefficient ordinary least squares can be. 

The chapter begins with a detailed look a t  the formulation of the linear model for multi- 

variat e longitudinal data wit h a Kronecker structured covariance matrix. Since efficiency 

is defined in terms of hypothesis testing, a discussion of hypothesis testing and power 

in the linear model for multivariate longitudinal data is presented. Algebraic results for 

measuring test efficiency using the TARE and CARE are presented and numerical re- 

sults for some within-subject design matrices and special covariance structures are given. 

Chapter 5 investigates the potential gain in test efficiency that may result from utilising 

the Kronecker product structure when it is appropriate. A test of the nul1 hypothesis 

that the within-subject variance-covariance matrix has a Kronecker product structure is 

discussed. Algebraic results for measuring test efficiency are presented and numerical 

results from a simulation study presented- 

Chapter 6 investigates the consequences of irnposing a Kronecker structured covari- 

ance matrix in testing hypotheses of interest from multivariate longitudinal data when 

it is not appropriate. An index, referred to as the Kronecker product deviation index, 

which measures how far a given within-subject variance-covariance matrix departs from 

Kronecker product structure, is introduced and computed for a specially defined class of 
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matrices. Numerical results from a Monte-car10 simulation study designed to evaluate the 

consequences of imposing Kronecker st ruct ured covariance matrix on t esting hypo t heses 

of interest are also presented. 

1.7 Simulation S t udy Overview 

Chapters 5 and 6 involve simulating data from the multivariate normal distribution. 

Chapter 5 assumes a Kronecker product covariance matrix of the form Co = A @ Cl for 

the within-subject variance-covariance matrix. In this chapter, the matrix A is defined 

by parameters p, and -( and the matrix Q is defined by a parameter pt. The values of 

the parameters considered in simulating a multivariate normal distribution are: p, from 

-0.6 to 0.6 by 0.3; y Erom 0.5 to 2.0 by 0.5 and p, fkom 0.1 to 0.9 by 0.1. At each 

parameter combination, 200 simulation trials are carried out. Depending on the purpose 

of a simulation, 200 trials may be perceived to be small, For this study, however, interest 

lies in the overall relationship between the measures of asymptotic relative efficiency 

and the covariance parameters, and we will see that a sample of 200 a t  each parameter 

combination is sufficient to demonstrate the nature of the relationships of interest. 

Chapter 6 assumes a non-Kronecker product covariance matrix for the within- 

su  bject variance-covariance matrix Co. C,  is now defined by covariance parameters 011 

-2 and al2 and correlation parameters pl ,  pz and p12 - The covariance parameters ull, 

and 012 are kept fixed at 4: 4 and 2 respectively. The values of the correlation parameters 

considered in simulating a multivariate normal distribution are: pi from 0.1 to 0.9 by 0.2; 

p2 from 0.1 to 0.9 by 0.2 and pl* from 0.2 to 0.8 by 0.2. As in Chapter 5, 200 simulation 

trials are carried out at  each parameter combination. 
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Review of relevant research and 

t heory 

2.1 Introduction 

The literature on the analysis of a single characteristic measured in a longitudinal 

design is extensive. The currently available methods cover quantitative data (continous 

or measured data) as weU as qualitative data (binary and count data). Developments 

that have taken place in the last decade have also made it possible to cope with both 

unbalanced designs and missing data. Many of these techniques have also been incor- 

porated into statistical software, Sections 2.1 and 2.2 will review the literature for a 

univariate quantitative characteristic. 

The body of literature for multiple characteristics measured in a longitudinal design 

is rapidly expanding. As with the univariate case: earlier methods in this area were mainly 

"analysis of variance" based but there is now a move towards more "regression" based 

rnethods. The literature for multivariate longitudinal data is reviewed chronologically in 

section 2.3. 

The literature on the cornparison of tests is presented in section 2.4. The compari- 

son of two tests for a given situation with the aim of evaluating their relative efficiencies 
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is a fundamental concept in this dissertation. The review presented is for both the single 

parameter and multi-parameter settings- 

2.2 Linear model for longitudinal data 

The models for univariate quantitative longitudinal data are based primarily on 

the multivariate normal distribution wit h the repeated observations wit hin an individual 

assumed to follow a multivariate normal distribution. This means that for the Ti (say) 

observations on individual i: i = 1,2 ,  -. . : 1, represented by the Ti x 1 vector yi: we 

assume that y,- has a multivariate normal distribution with mean vector pi and Ti x Ti 

variance-covariance matrix C, which is unspecified, In addition, the mean structure for 

the repeated observations is assumed to be linear, which means that yi arises from the 

linear model Yi = Xi P+4, where Xi is the design matrix for the ith individual and ci is the 

vector of deviations wit h multivariate normal distribution with an unspecified covariance 

matrix C,. p is a vector of unknown fixed effects. Laird [33] gives several features of the 

multivariate normal with a linear mean structure that makes it particularly attractive 

for modelling continous longitudinal data. One of the features mentioned is the fact that 

the mean vector and covariance matrix are distinct parameters that can be modelled 

separately. 

Ware [75] gives a straightforward discussion of linear models for longitudinal data 

that include modelling both the expected values of the responses and their covariance 

structure. The model discussed by Ware [75] is of the form given above, that is Yi = 

XiP + éi- This approach to modelling the mean function of yi as XiP is more direct 

than the mean value function usually assumed for growth data. For example, the model 

considered by Rao [53] for a balanced growth-curve data is given by E[yi]  = AP where the 

matrix A is constant over al1 units representing powers of time or orthogonal polynomials. 

These model is restrictive in two ways: (i) all units must have the same design in time 

and (ii) other covariates that are not functions of time cannot be included in the model. 

Grizzle and Allen [20] generalised Rao's 1531 model by appending a vector of covariates, 
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giving E = APxi, where xi is the vector of covariate values for the - subject. The 

model given by Ware [75] is a further generalisation of the Gnzzle and Allen [20] model. 

Ware [75] also considers possible forms for the within subject variance-covariance 

rnatrix C,. Specifically, he discusses three models for the covariance structure: multi- 

variate or unstructured, random effects and the first-order autoregressive model. The 

unstructured model is suitable when the data are relatively balanced and there are not 

too many missing values. It is also a reasonable model when the number of observations 

per unit is not too large compared to the total number of units. When the data are highly 

unbalanced and/or there are lots of missing data, or when the number of observations 

per unit is large relative to the total number of unitsl then structured modeIs for the 

covariance structure must be considered. 

Jennrich and Schluchter [25] provide a detailed discussion of modelling unbalanced 

and incomplete longitudinal data using structured covariance matrices. They mode1 the 

expected value of the responses as a linear function of unknown regression parameters 

as in Ware [75]. The covariance matru< C, is modelled as an  arbitrary function of a 

set of unknown covariance parameters. The covariance structures discussed include the 

random-effects and the first-order autoregressive models discussed in Ware [75]. Addi- 

tional structures discussed include independence, compound symmetry, factor analytic, 

banded or general autoregressive models. 

The rnixed model is a useful alternative for modelling unbalanced and/or incomplete 

data. The mixed rnodel approach is a further generalisation of the linear model discussed 

by Ware [75] and Schluchter [25]. It is formulated so that the probability distribution for 

the repeated measurernents has the same form for every unit but the parameters of that 

distribution Vary from one unit to unit. Laird and Ware [34] discuss a general family of 

random effects models. 

Although the models proposed by Ware [75] and Schluchter 1251 are useful, one 

cannot always mode1 serial correlation. This is because their approach requires one to 

choose a particular covariance structure and this need not be the first-order autoregressive 

structure. Modelling serial correlation is important in longitudinal data, especially when 



Chapter 2: Literature review 16 

measurements are collected over extended periods of tirne. For this reason, Diggle [13] 

provides another choice of covariance structure useful for longitudinal data. The spe- 

cial correlation structure provides parameters for measurement error, variation between 

experimental units and serial correlation within units. In using this model, one must 

not only include parameters for measurement error and variation between experimental 

units, but also provide for serial correlation between measurements within a unit. 

2.3 Estimation in the linear model for longitudinal 

data 

Estimation of the parameters defining the p x 1 mean parameter vector B and the 

within subject covariance matrix C ,  denoted by the q x 1 vector 4 has been discussed by 

various authors. Under the assumption of multivariate normality of the repeated observa- 

t ions wit hin an individual, estimation procedures are mos t ly likelihood-based. Ware [75] 

notes that when the data are balanced and complete, closed form maximum likelihood 

estirnators of ,û and û are easily available. However, in the more typical situation involv- 

ing unbalanced and/or incomplete data, closed form solutions do not exist and iterative 

procedures must be used. 

Jennrich and Schluchter [25] consider maximum likelihood and restricted maximum 

likelihood estimation using the Newton-Raphson and Fisher Scoring algorit hms as well as 

the Estimation-Maximisation (EM) algorithm. Diggle [13] discusses maximum likelihood 

estimation using the simplex algorithm of Nelder and Mead [45]. Laird, Lange and 

S tram [32] consider the use of the Estimation-Maximisation algorit hm for bo th maximum 

likelihood and restricted maximum likelihood estimation. 

For the mixed effects model, estimation of the mean and covariance parameters is 

usually accomplished using iterative procedures. Laird and Ware [34] discuss using the 

Estimat ion-Maximisation algorit hm to obtain both maximum likelihood and restricted 

maximum likelihood estirnators as well as a combination of empirical Bayes and max- 

imum likelihood estimators. Jennrich and Sampson [24] discuss three algorithms for 
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maximum likelihood estimation of mean and variance components in a mixed analysis 

of variance model. These include the Newton-Raphson algorithm, the Fisher Scoring 

algorithm and the Hemmerle and Hartley algorithm. However, their work is more geared 

towards analysis of variance and may be of Limited use in the longitudinal setting. Lind- 

s trom and Bates [39] also consider the Newton-Raphson and Estimation-Maximisation 

algorithms for the random effects mode1 usiog both maximum likelihood and restricted 

maximum likelihood estimation. Wolfmger, Tobias and Sa11 [77] give several algorithms 

for computing gaussian likelihoods or restricted likelihoods for the mixed model. 

2.4 Models for multivariat e longitudinal data 

The literature on the analysis of several characteristics measured in a longitudinal 

design continues to grow steadily, more so in the past fifteen years. The analysis of such 

data has usually been confined to analysing each of the response variables separately. 

Boik [6] notes that separate analyses may be appropriate if the dependent variables 

are uncorrelated or if they are measures of distinct theoretical constructs. A combined 

analysis (or multivariate analysis) is necessary if the dependent variables are functionally 

related, as is usually the case. As we shall infer from the discussion that follows, a lot of 

focus in this area has been in the growth curve setting. 

Pothoff and Roy [52] provide an extension of the usual multivariate analysis of 

variance model and show that it applies to many kinds of problems, including growth 

curve. One application of the extended model is to  the situation where more than one 

characteristic is measured on each occasion. The situation described is as folIows using 

the notation in their paper: rn groups of animais are being measured at, Say, ql points 

in time, more than one characteristic associated with growth is measured a t  each of the 

q? time points. Pothoff and Roy [52] do not impose any structure on the within-subject 

variance covariance matrix. An application of the extended model is demonstrated us- 

ing data collected by investigators a t  the University of North Carolina Dental School. 

Measurenients were made on 11 girls and 16 boys a t  4 different ages (8, 10, 12 and 
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14). Each measurement is the distance, in mm, Erom the centre of the pituitary to the 

pt eryomaxillary fissure- 

Reinsel [54] also considers the longitudinal design where several characteristics are 

measured on each individual at  each time point, assuming a multivariate random effects 

model for the repeated measurements. The covariance structure is the multivariate analog 

of the compound symmetry pattern used in the univariate case. Reinsel's model applies 

only to balanced data and considers estimation under a restricted covariance structure. 

Reinsel [54] notes that if no special assumptions are made about the structure of the 

covariance matrix, then we have the general model considered by Pothoff and Roy [52] 

among others but involving multiple measurements. Applications of the proposed model 

are shown using the growth curve data introduced by Pothoff and Roy [52] and medical 

data from the Department of Anesthesiology, University of Wisconsin-Madison, from an 

experiment designed to study the effects of certain anesthetics on dogs. 

Wang [73] examines the relationship between the mixed-model analysis and mul- 

tivariate approach to a repeated measures design with multiple measurements- In the 

multivariate setting, the two methods are referred to as the multivariate mixed model 

approach and the doubly multivariate mode1 approach, respectively. The two approaches, 

like the Pothoff and Roy [52] and Reinsel [54] models, differ in the assumptions underlyuig 

the models. The multivariate approach imposes no structure on the correlation structure 

and represents one extreme on the spectrum characterising covariance structure parsi- 

mony. The mixed-mode1 approach imposes a structure based on the assumption of the 

mixed-effects model. Thomas [63] also considers the multivariate mixed model analysis 

for multivariate repeated measures. This model is an extension of the univariate mixed 

model approach whose validity depends on a special covariance structure for the multi- 

variate repeated meausures discussed in Reinsel [54]. Thomas [63] derives conditions for 

the vaIidity of the multivariate mixed model analysis and presents a test for determining 

whether or not given data satisfy these conditions. 

Boik [6] reviews both the multivariate mixed model approach and the doubly mul- 

tivariate model approach for analysing repeated measures on multivariate responses. 
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Three new resdts concerning the multivariate mixed model are also presented. One of 

the results presented is t hat , given multivariate normality, a condition called multivariate 

sphericity of the covariance matrix is both necessary and suflicient for the validity of the 

multivariate mixed model analysis. A Likeiihood ratio test can be empioyed to test for 

departure from multivariat e sphericity. Boik [7] compares the two models for mult ivari- 

ate repeated measures: the doubly multivariate model and the p-variate generalisation 

of Scheffe's mixed model (the multivariate mixed model). Boik [7] points out that re- 

quiring multivariate sphericity for the multivariate mixed model approach is in fact a 

disadvantage and t hat even srnall departures £rom multivariate sphericity infiate the size 

of multivariate mixed model tests. Boik [7] notes that the question of how to model 

the covariance parameters is even more critical because without specifying a covariance 

model, there are + t )  covariance parameters to estimate where p is the number of 

dependent variables measured and t is the number of occasions. The model presented 

by Boik [7] is a speciai case of Reinsel's [54] multivariate random effects growth curve 

model. Vasdekis [67] generalises the model proposed by Reinsel [54] to the mixed effects 

model with an arbitrary number of random effects and considers maximum likelihood 

and restricted maximum likelihood estimation. Reinsel [54] considered a single random 

factor. 

More recent developments in the analysis of multivariate longitudinal data include 

the work of Rochon [55], who considers bivariate repeated measures and applies a gen- 

eralised estimating equations approach to relate each set of repeated measures to impor- 

tant explanat ory variables. Zhang [8 11 present s several choices of st  ruct ured covariance 

matrices for analysing multivariate repeated measures and provides a computational al- 

gorithm using Gibbs sampling. Matsuyama and Ohashi [41] develop a bivariate mixed 

effects model that is a generalisation of the univariate mked  model discussed by Laird 

and Ware [34]. Estimation is achieved via the Gibbs sampler. Sy, Taylor and Cum- 

berland [60] present another mode1 for multivariate repeated measures that incorporates 

random effects, correlated stochastic processes and measurement errors. Maximum like- 

lihood estimation is used to obtain estimates of the h e d  effects and covariance param- 

eters. Diaz and Johnson [LI] consider the situation when the patterned within subject 
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covariance matrix can be reduced to a diagonal form, for example, the Wiener stochastic 

process. Diagonalisation results in a reduction in the number of parameters to be esti- 

mated. Maximum likelihood estimates are derived for the mean vector and covariance 

mat rices. 

2.5 The comparison of tests 

Suppose we have two cr level tests available for testing a given set of null and 

alternative hypot heses. For comparing the two tests, a reasonable measure of relative 

efficiency is to use 

where n1 and 722 are the minimum sample sizes required for the two tests a t  level cr to 

have the same power p against a fixed alternative 0 = 8,. To study this ratio for al1 

values of or, p and 8, would be a very complicated study, as stated in Woolson [80], hence 

the restriction to asyrnptotic results in test comparison. An alternative to the approach 

described above was considered and generalised by Noether [46]. He proposed that a 

sequence of alternative hypotheses depending on the sample size N be chosen such that 

the limit of t his sequence approaches the nul1 hypothesis and simultaneously, the power 

is bounded away fiom one. By Pitmans's theorem, the null and alternative hypotheses 

are stated as 

where X is a fixed but arbitrary constant considered to be small and 6 > O .  Comparing 

two tests using Pitman efficiency is discussed in detail in Kendall and Stuart [26] and 

Gibbons [19]. 

Now consider the multiparameter testing problem where, in the Pitman sense, the 

null and alternative hypotheses are given by 
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where now BT = (Ol, 02, - . . , Br j are the location parameters for r populations and X = 

(A1, X1, . - - , Ar)  is a k e d  but arbitrary non-nuii vector considered to be small and b > 0. 

How does one now measure the relative efficiency of two tests that are available for testing 

the above hypotheses? Woolson [SOI fust considered this problem, focusing on comparing 

two test statistic sequences which have Iimiting chi-square distributions with possibly 

different degrees of fkeedom. He suggested and justified some measures of asymptotic 

relative efficiency that may be used in comparing the two test sequences. These measures 

are presented in detail in Woolson and Sen [79]. The new measures of asymptotic relative 

efficiency for the multiparameter testing problem are: 

1. Local asymptotic relative efficiency (LARE), 

2. Curvature asymptotic relative efficiency (CARE) and 

3. Trace asymp to tic relative efficiency (TARE). 

The three measures depend on the level of significance of the test a and the degrees 

of freedom for the tnro test statistics. The CARE and TARE are "average" measures of 

efficiency, independent of the direction of approach of f l N  to 8,. The CARE is a function 

of the ratio of the determinants of the non-centrality parameters while the TARE is a 

function of the ratio of the traces of the non-centrality parameters. An application of the 

TARE and GARE to the one-sample location problem is discussed in Woolson [78]. 
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A detailed review of relevant 

concepts 

3.1 Estimation in the linear model for correlated 

data assuming normally distributed errors 

The rnatrix formulation of the linear model for correlated data is given by: 

with: 

where C is a block-diagonal matrix with T x T non-zero blocks Co, each representing 

the covariance matrix of the vector of observations on a single subject. Suppose we 

re-parameterise Co: 
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so that: 

C = u 2 r  

where o2 is a scale factor. Hence, 

Under this specifications, the linear mode1 for correlated data  treats y as a reaiization of 

a multivariate normal rândom vector with 

3.1.1 Maximum likelihood estimation 

Consider simultaneous estimation of the parameters of interest 0 and the covariance 

parameters o2 and Io using the likelihood function given by 

Substituting u2V for C, we obtain 

Noting that 

the likelihood function using the re-parameterised form of C is now given by 

L(B, a2, K) = 
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The log-likelihood is therefore given by 

To find the maximum likelihood estimators of B, o2 and V, proceed as follows: 

1. Fix V, and h d  the maximum likelihood estimator of by differentiating equation 

(3.11) with respect to ,B and setting the equation to zero. It can be shown that 

Solving the above equation, we obtain 

2. Substitute & given by equation (3.13) into equation (3.11) and obtain 

where 

3. Now maximise equation (3.14) with respect to o2 for k e d  K to obtain the maxi- 

mum likelihood estimation of a2; that is, 

az - - TI RSS (V,) 
- -- 

do2 202 
+ 

2a4 
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Solving the above equation gives 

4. Substitute ô% given by equation (3.17) into equation (3.14) to obtain a reduced 

log-likelihood for Ky that is 

5 .  The reduced log-likelihood is now a Function of the q unknown parameters in V, 

and in simplified form is given by 

Ignoring the constants in equation (3.19) above, we have 

6. Maximisation of equation (3.19) with respect to V,  yields R. 

7. Substitute into equation (3.13) and obtain 

8. Substitute into equation (3.17) and obtain 

In general, maximisation of l,(V,) given by equation (3.19) Nil1 require numerical opti- 

misation techniques such as the Newton-Raphson algorithm. The dimensionality of the 

optimisation process will depend on what structure has been imposed on Co. 
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3.1.2 Restricted maximum likelihood estimation 

Unfortunately, maximum likelihood estimation as presented in the previous section 

produces biased estimators of variance components. For example, in the classical linear 

mode1 given by 

where X is a n x p matrix of full rank, B is p x 1 vector of h o w n  parameters and e 

is an n x 1 normally distnbuted random vector with mean O and variance c21,,,, the 

maximum Iikelihood estirnator of f l  is 

and the maximum likelihood estimator of u2 is 

which is biased. SS, is the residual sum of squares given by 

The unbiased estimator is given by 

which in fact, is the restricted maximum Iikelihood estimator of a2 under this model. 

Note that p is the number of parameters in and hence the ciifference between ô2 

and s2 is that the former has not taken into account the fact that p is also estimated 

while the latter does. In general, restricted maximum likelihood estimation is a modified 

approach which takes into account the fact that ,8 is also estimated in estimating variance 
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cornponents and essentially yields unbiased estimators- Recall £rom the previous section 

that the log-likelihood for the data yl, 32, . - - y1 is 

where # is the vector of covariance parameters. 

Restricted maximum likelihood estimation maximises the part oE the likelihood 

which is invariant to P,  that is, the restricted maximum likelihood estimator is d e h e d  as 

the maximum likelihood estimator based on a linearly transformed set of data y* = Ay 

such that the distribution of y* does not depend on P. Harville [22] calls the elements of 

A Lcerror contrasts'' . This is equivalent to saying that the restricted maximum likelihood 

estirnator maximises the likelihood of a vector of linear combinat ions of the observations 

which are invariant to XP. If we use the data vector y to estimate 4, then as noted 

before, the maximum likelihood estimator of # takes no account of the loss in degrees of 

freedom resulting from estimating P.  Patterson and Thompson [51] proposed a modified 

maximum likelihood technique which does not suffer from this defect. The technique 

proposed consists of maximising the likelihood function associated with a specified set 

of (TT - p) linearly independent error contrasts rather than the full likelihood function 

given earlier. 

The linear model for correlated data (using the matrix formulation of the model) 

treats y as a realizâtion of a multivariate normal random vector with 

Note that for convenience, o2 has been reabsorbed into V and hence we are now using 

C and not 02V. Also, C = C ( 4 ) ,  where 4 is a q x 1 vector used to characterise C .  The 

likelihood function is therefore given by 
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and the log-likelihood is given by 

- - T I  -- 1 1 
2 

log 2* - log [CI - -(y - x@)'c-yY - XP) .  
2 

If is estimated by j for fked C, then 

and this is the reduced log-likelihood used to h d  the maximum Iikelihood estimator of 

C. So what form does the reduced log-likelihood used to find the restricted maximum 

likelihood estimator of C take, and how does it ciiffer &orn equation (3.32)? 

Definition 3.1.1 (Error Contrast) A linear combination a'y of the observations such 

that 

E ( a f y )  = O ,  that is, 

atX = 0, 

is called an e m r  contrast. 

The maximum possible number of linearly independent error contrasts in any such 

set is (TI - p ) .  Define the T I  x SI matrix A = I(TI) - x(x'x)-lx'. Also, define the 

TI x (TI - p) matrix B to satisfy A = BB' and B'B = I(TI-pp The vector w = B'y 

provides a particular set of (TI - p) linearly independent error contrasts. 

Proposition 3.1.1 w = B'y i s  an error contrast. 

The proof is as follows: 
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= I (BfXf l )  

= (B'B)(BfXP) (since 1 = B'B) 

= (B') (BB1) (XP)  

= B'AXP (since A = B B') 

= B' { I  - x(x'x)-'x')x/~ 

= Bt{X - x(x'x)-'x'x),~ 

= B f { X  - X ) @  

= O 

The likelihoods based on w = B'y and w* = Br*y, where B'' is an error contrast 

matrix, are proportional. This implies that the restricted maximum likelihood estirnator 

based on B'y and B" y are identical. In general, the Likelihood function associated with 

any other set of (TI  - p) linearly independent error contrasts is proportional to that 

associated with W. So what is the likelihood function associated with w = B'y? Denote 

the likelihood function associated with w by f (Br y1 4) , where f (. 14) is the probability 

density function of w indexed by 4. We now proceed to find a convenient expression for 

f ( B ' y l d -  

For Lxed 4, the maximum likelihood estimator of P is the generalised least squares 

estimator given by 

From the above equation, we obtain 

Denoting the probability density function of ,8 = G'y by fâ (. 14, p),  it can be shown that 
lx -1 since ,8 is distributed as N - (0, (X'C- ) ), then 
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If we now denote the probability density Function of y by f~(ylq5, p),  then 

Now define z such that 

where T is a TI x T I  matrix and consider the transformation from y to Ty. Now, 

y = T- l z  and the Jacobian of the transformation is given by 

We now derive ITI. 

We know that for a square matrix such as T ,  

so that 

Since T = [B, G], by using result (3.39) we obtain 

- - / G'B G'G 1 . 
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Definition 3.1.2 (Schur Complements) If 

A = (C L) and 

Using the above definition of Schur complements, we have 

= IB'BIIG'G-G'B(B'B)-'B'GI 

= 1  TI-^) 1 1 G'G - G'B I ( T ~ - ~ )  -'BIG 1 (since B'B = I(TI-p) ) 

= IG'G - G'BB'GI 

= IG'G - G'AGI (since BB' = A) 

= IG'G - G'{I - x(x'x)-'X')GI 

= 1 G'G - G'G + G'X(X'X) -' X'GI 

= 1 (x'x)-'x'G( (since G'X = I )  

= 1 ( x )  (since X'G = 1) , 

]Tl2 = 

hence 

ITI = I ( x ' x ) - ' ~ ~  = I ( x ' x ) ~ - ~  # O. 

The probability density function of z = T y  is therefore given by 

9 ( 4  = l~lfY(T-'r) 

- 1 
- i T j f ~ ( ~ l e y P )  

B'B BIG 

G'B G'G 
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AIso: 

since w = B'y and = G'y are independent, which is proved by showing that the 

covariance between w and ,8 is zero: 

COV[W, BI = E{(W - ~ ( w ) )  (B - ~(8))) 
= E [ ~ B  - P)'] 

= E[B' y (G' y - p)'] 

= E[B'y (y'G - p')] 

= E[B'yy'G] - E[B'gPf] 

= B'E [yy']G - E[B'g,û'I 

= B' [var(y) + E(y) E (y') ]G - B'XP@' (since E( y) = XD) 

= B'[C + (,v) (xP)']G (since B'X = 0) 

= B'CG + B'(XP) (XP)'G 

= B'CG (since B'X = 0) 

= B'C[C-'X (x'c-lx)-'] 

= B'cc-~x(x~c-~x)-' 
= BIX (x'c-lx) -' 
= O (since B'X = 0) 

Equating equations (3.41) and (3.42), we obtain 

and hence 
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The probability density h c t i o n  of w = B'y is therefore aven by: 

The following result will now be used to simpli€y equation (3.45): 

The proof is as follows: 

Substituting ,8 = (x'c-'x)-'x'c-~~ into the last expression of (3.47) above, we have 
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Substituting O for the last expression of (3.47), we obtain result (3.46). Using result 

(3.46): equation (3.45) simplifies to: 

The log-likelihood is 

log L*@, C) = 

therefore given by 

I 
-- log lXfc-'XI. 

2 

and this is the reduced log-likelihood used to find the restricted maximum Likelihood 

estimator of C .  It is very similar to equation (3.32), the reduced log-likelihood used to 

find the maximum likelihood estimator of C. The difference between equations (3.32) and 

(3.49) is that the latter has a new piece given by [X'C-'XI-) that is very closely related 

to var(,&. The otber additional piece in equation (3.49) corresponds to the Jacobian of 

the transformation [(x'x)I-4 which does not depend on any of the parameters of the 

mode1 and can therefore be ignored in making inferences for or 6. 

The following results M U  be used in what follows: 

Substituting 02V for C, (3.48) becornes 
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and the log-likelihood given by equation (3.49) becomes 

log L*@, a*, &) = 

For given V i ,  ,6 is written as 

To find the restricted maximum likelihood estîmators of t? and V: 

iterative process: 

use the foiiowing 

1. Substitute BV0 given by equation (3.52) into equation (3.51) and obtain 

1*(BK7 g2, K) = 

where 

2. Now maximise equation (3.53) with respect to a* for 6xed K., to obtain the restricted 

maximum likelihood estimator of u2; that is, 

Solving the above equation gives 
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3. Substitute 5% given by equation (3.56) into equation (3.53) to obtain a reduced 

log-likelihood for Vo7 that is: 

1 -5 log(r/ol - logRSS(K) - - log 2r + 
2 

- log(Tr - p)  
2 2 

- ( T r  - P) 1 
- - log lx'v-'xI. (3.57) 

2 2 

4. The reduced log-likelihood is now a function of the q unknown parameters in Vo 

and in simplified form is given by 

- 1 1 
- - 5 l o g p q  - -1ogIX'V-'XI - 

2 
- log RSS (K) 

2 

- ( T I  - P) 
(1 + log 27r - log(TI - p)} 

2 

- - I 1 
-- log - -log IX'v-LXI - 

2 2 
- *) log RSS(K) 

2 

Ignoring the constants in equation (3.58) above, we have 

5 .  Maximisation of equation (3.58) with respect to V, yields c. 
6. Substitute into equation (3.52) to obtain 

7. Substitute into equation (3.56) to obtain: 
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As wit h maximum likelihood estimation, maximisation of 1: (V.) given by equation (3.58) 

requires numerical optimisation techniques such as the Newton-Raphson algorithm. Once 

again, the dimensionality of the optimisation process will depend on what structure has 

been imposed on Co. The estimation procedure is greatly simplified by the block diagonal 

structure for V, particularly in terms of evaluating its inverse and determinant. 

3.2 Measuring test efficiency in the one parameter 

case: Pitman efficiency 

The problem of comparing two tests for a given situation Mth the aim of evaluating 

their relative efficiency is reviewed. This is important because of the need to evaluate 

the loss of efficiency incurred in using any other test apart Erom the optimum one. Fol- 

lowing Kendall and Stuart [26],  the simplest way of comparing two tests for a given nu11 

hypothesis against a given alternative for fixed sample size is by direct examination of 

their power functions. The following definition of the relative efficiency of two tests is 

taken from Kendall and Stuart [26]: 

Definit ion 3.2.1 If a n  "eflcient " test (that is, the most power-l  in the class considered) 

of size ar requires it t o  be based on nl observations to attain a certain power: and a 

second size a test requires nz observations to attain the same power against the same 

alternative, then the relative eficiency of the second test in attaining that power against 

that alternative is nl/nz 

A similar definition can be found in Gibbons [19] where it is referred to as power efficiency. 

The relative efficiency or power of two tests is therefore a function of three arguments: 

1. the size ûr of the tests, 

S. the distance between the value of the parameter under the nul1 hypothesis and its 

value under the alternative, and 



Chapter 3: Relevant concepts review 

3. the sample size nl required by the efficient test. 

Hence ive do not have, by this definition: a single summary measure of the relative 

efficiency of one test to another. The efficiency varies as the arguments listed above 

change. The need to achieve a single measure of efficiency is the driving force behind 

restriction to asymptotic results in evaiuating test efficiency. 

The following definition of the asymptotic relative efficiency of two tests is based 

on Gibbons [19]: 

Definition 3.2.2 Let A and B be two consistent tests of a null hypothesis H, and al- 

ternative hypothesis H, at signijicance level a. The asymptotic relative eficiency of test 

A relative to test B zs the limiting value of the ratio nb/n,, where na is the number of 

observations required for the power of test A to equal the power of test B based on n b  

observations while simultaneously, n b  --+ m and H, + Ho- 

Gibbons [19] notes that in many applications, the above ratio is the same for ad choices 

of a so that the ARE is a single number. 

The ARE of two tests can also be obtained by applying Pitman's theorem. Pitman 

efficiency was considered and generalised by Noether [46]. The general review presented 

here is based primarily on Kendall and Stuart [26] and Gibbons [19]. Suppose we have 

two consistent size a: tests Tn and T,' for testing the hypothesis set 

The first test rejects Ho if t, 2 tn,, while the second test rejects Ho if tz > ti,,, where 

t, and ti are chosen such that: 

and 
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respectively. The sequence of alternative hypotheses considered is such that 9 approaches 

the value tested, 0,' with increasing sample size. If Sn and T,' s a t i s e  regularity conditions 

outlined in Noether [46] and Kendall and Stuart [26], then the ARE of T relative to T* 

is 

or simply, 

e(Tn) ARE(T,T*) = iim - 
e (Tz ) ' 

where e(T,) is the eficacy of the test statistic Tn when used to test the hypothesis 19 = 8, 

and 

3.3 An example of measuring test efficiency in the 

one parameter case 

Suppose we wish to test the hypothesis that the mean p of a normal population 

with known variance (taken to be equal to 1): is O versus that it's greater than zero, that 

is: 

We will consider two tests for testing the above nul1 hypothesis and use them to illustrate 

the ideas of measuring test efficiency in the one parameter case. The first test is the 

usual z test based on the mean and the second test is the sign test. In this section, the 

asymptotic relative efficiency of the sign test relative to the usual test is found using the 

methods discussed above. 
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For testing the above nuii hypothesis, the power function of the usual test is given 

while the approximate power function for the sign test is given by 

Figures 3.1 and 3.2 show the above power functions for varying values of n as a function 

of p. Figure 3.3 shows the two power functions together at n = 50, with the usual test 

Figure 3.1: Power function based on the the usual z test for the mean p of a normal population 

at a = 0.05. 

clearly having higher power than the sign test in the neighbourhood of Ho. Re-arranging 

the above power functions, expressions for the sample sizes needed to achieve a given 
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Figure 3.2: Power function based on the sign test for the mean p of a normal population at 

a! = 0.05. 

pouTer for the usual test and the sign test are 

and 

respectively. Figure 3.4 shows the ratio nu,ual /ns~,  for varying values of power. Note 

that as H, approaches Ho, the ratio appears to be somewhere between 0.63 and 0.G5. As 

the power increases, the ratio approaches this value even faster even when H, is far from 

H,. The asymptotic relative efficiency of the sign test relative to  the usual test is the 

limiting value of n,,,al/nsig,, where n,,, is the number of observations required for the 

power of the sign test to equal the power of the usual test based on n,,,,l observations 



Chap ter 3: Relevant concepts review 

Figure 3.3: Power functions based on the usual z test and sign test for the mean p of a normal 

population at a = 0.05 and n = 50. 

while simultaneously n,,,,l + m and Ha + Ho. We have that 

1 
= 2 lim - (1) 

p+o 
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Alternatively, the ARE of the two tests can be obtained by expanding their power 

functions in Taylor senes a t  p = O and equating the two series so that the two tests 

have equal power against the same alternative. For the usuaI test; expanding the power 

function in a Taylor series gives: 

For the sign test, expanding the power function in a Taylor series gives: 

Figures 3.5 and 3.6 display the power functions, and their respective Taylor series ap- 

proximations, of the usual test and sign test for varying sarnple sizes. Observe that the 

Taylor series approximations get doser to the power functions with increasing sampIe 

size. 

Equating the two approximations so that the two tests have the same power against 

the same alternative, we have 

which simplifies to 
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the same result obt ained previously. 

The ARE of the sign test relative to the usual test could also have been obtained 

by applying Pitman's theorem. For testing 

using the mean (usual test), the test statistic is 

For large n: 

and 

Also, 

Hence, the efficacy of T* is given by 

For testing the same hypothesis using the sign test, we rewrite H, and Ha in terms 

of the population median M: 

since the mean and median coincide for the normal distribution. The test statistic is T, 

the nurnber of positive observations. T follows the binomial distribution with parameters 
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n and  p where p = P(X > O), the probability of observing a positive observation. Note 

that  p = 0.5 under Ho. Hence, 

and 

Note tha t  when 9 = O, p = 1/2 and hence: 

The efficacy of T is given by 

The ARE of the sign test relative to the usual test is therefore given by the ratio of 

equation (3.77) to equation (3.75) 
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3.4 Measuring t es t  efficiency in the multi-parameter 

case 

In the mu1 ti-parame ter setting, consider testing nul1 and alternative hypot heses of 

the form 

where BT = (Ol, 02, - . . , B r )  are the location parameters for r populations and X = 

(A1, X2,.  . .;A,) is a fked but arbitrary non-null vector considered to be small and 6 > 0. 

For testing the above nul1 hypothesis, Woolson [80] considered the problem of comparing 

two test s t atistic sequences which have limiting chi-square distributions wit h possibly 

different degrees of freedom. He suggested and justified some measures of asymptotic 

relative efficiency that may be used in comparing the two test sequences. Of special in- 

terest was developing measures of ARE independent of A. Woolson and Sen [79] discuss 

in detail these measures of ARE. The measures developed can a11 be justified on the 

behavior of the power function in the neighbourhood of the nul1 hpothesis. 

The test statistics considered were quadratic forrns QN, where Q: - x2(ti; Ai) 

under Ha, i = 1 , 2 .  In calculating measures of ARE, they used an adjustment factor 

R(t1, t 2 ,  a ) ,  where 

and a  is the level of the test. 

We s hall consider two of the measures, the curvat ure asyrnpt otic relative efficiency 

(CARE) and the trace asymptotic relative efficiency (TARE). The motivation for choos- 

ing the CARE and TARE is that they are both average measures of ARE, independent 

of A. This review of the two measures is based prirnarily on Woolson [80] and Woolson 

and Sen [79]. The test C#I~ is based on the test statistic QN) and the test d2 is based on 

the test statistic QN. 
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The CARE of qj2 relative to is given by 

with Dl and D2 being related to the non-centrality parameters of tests q51 and d2 re- 

spectively. The CARE works out well when at least one of tl, tz is 2 q. Geometrical 

considerations show that if CARE > 1, then the power b c t i o n  of 42 has faster average 

local growth at  the nuli point than does the power function of &. 

The TARE of 42 relative to is given by 

The TARE is valid for all values of t l ,  t2 and q and hence the range of applicability of the 

TARE: is wider than that of the CARE. If TARE > 1, then the test 4 1 ~  is more optimum 

locally by virtue of its greater average power over the family of spheres. 

3.5 An example of measuring test efficiency in the 

multi-parameter case using two parameters 

The example presented here is discussed in Woolson [78], which compares the usual 

Hotelling's test statistic for the one-sample location problem to the nonparametric rank 

scores statistics utilizing the GARE and TARE as the modes of cornparison. Since the two 

tests (at the same level a) have the same degrees of freedom, the criteria of cornparison 

are scalar functions of the matrices in the non-centraiity parameters. The CARE is a 

function of the determinants of these matrices wbile the TARE is a function of the traces 

of these matrices. 

Let Xi (i = 1,2,  . . . , N) be N independent random vectors from the bivariate 

normal distribution with mean vector p and variance-covariance matrix C .  Consider 

testing the hypothesis set 
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where p under Ha is given by p, + -&. Using Hotelling's test statistic, the n d i  hypothesis 

is rejected if: 

where x2(a) represents the upper 100a percentage point of the chi-square distribution 

with two degrees of freedom. The power of this test under Ha is given by: 

As an illustration, the above power function is plotted at a! = 0.05 for N = 5, 20: 50,100, 

with 

and 

See Figures 3.7 to 3.10. The non-centrality parameter is given by N ( p  - (P-P,) 

which simplifies to A' C-'A. 

Let q5i be the test based on the usual Hotelling statistic and let q52 be the test based 

on the non-parametric rank score statistic. The non-centraLi@ parameters in the two test 

statistics are X'C-'A and AIT% respectively. From the definitions of the CARE and 

TARE given previously, we have 

and 
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Figure 3.4: Ratio of sample sizes (n,,u,r/n,ig,) required to achîeve a given power at a = 0.05 

for the test of the mean p of a normal population based on the usual z test and 

sign test. 
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Figure 3.5: Power function (solid Line) and fmst-order Taylor series expansion of the power 

function (dotted line) at p = O based on the usual z test for the mean p of a 

normal population at a = 0.05. 
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Figure 3.6: Power function (solid iine) and first-order Taylor series expansion of the power 

function (dotted line) at p = O based on the sign test for the mean p of a normal 

population at a = 0.05. 
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Figure 3.7: Power h c t i o n  based on Hotelling's test statistic for the bivariate one sample 

location problem (n=5). 
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Figure 3.8: Power function based on Hoteliing's test statistic for the bivariate one sample 

location problem (n=20). 
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Figure 3.9: Power function based on Hotelling's test statistic for the bivariate one sarnple 

location problem (n=50). 
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Figure 3.10: Power function based on Hotelling's test statistic for the bivariate one sample 

location problem (n=100). 



Chapter 4 

Efficiency of ordinary least squares 

for mult ivariat e longitudinal data 

wit h Kronecker product covariance 

mat rices 

4.1 Introduction 

In a multivariate longitudinal design, several characteristics of interest are measured 

on each experimental unit over tirne. One approach to analysing the resulting data is to 

use a linear model with a Kronecker structured covariance matrix- The model can be 

written as 

where: 

O -+ I x G between subject design matrix for I subjects in G treatment groups; 

Ic -++ C x C identity matrix; 

X -+ T x p within subject design matrix; 
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X + pCG x 1 vector of unknown parameters; and 

e + error vector with C = cov(e) = Ir @ Co. 

The parameter of interest is X and we now consider two ways of testing hypothesis 

concerning A. One approach is to use a test statistic that is a function of the ordinary least 

squares estimator of A, which will be fuily efficient only if Co = 021TC. For multivariate 

longitudinal data, this is an unlikely situation since we expect responses on the same 

subject to be correlated. Correlation anses fiom the multiple characteristics measured a t  

each tirne point as well as the same characteristic being measured over t h e .  Therefore, 

it is more realistic to assume that 

where 

Ir --+ the I x I identity matrix; 

Co + CT x CT within-subject covariance rnatrix; 

4 + C x C covariance matrix for C dependent variables; and 

Cl --+ T x T covariance m a t e  for T repeated measures on each dependent variable. 

Co depends on y, and 2; the parameter vectors for A and R respectively. 

The  present chapter investigates the problem of how inefficient ordinary least 

squares may become. Efficiency is defined in terms of testing hypotheses that are of 

interest in a given problem. Since correlation arises in two ways in this setting, we ex- 

pect that ignoring these two sources of correlation and proceeding to do inference on the 

resulting data based on ordinary least squares Nil1 result in hypotheses of interest being 

inefficiently tested. As stated in Matthews [42], who considered a similar problem for 

cross-over designs, efficiency depends on the design in question, the choice of which is 

determined by many factors, some of which may not be statistical. The formulation of 

the model is reviewed in detail in section 4.2. Hypothesis testing and power are discussed 

in section 4.3. Estimation of model parameters is discussed in section 4.4. Algebraic re- 

sults for efficiency evaluation using the TARE and CARE are presented in section 4.5. 
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Numerical results which assume some special structures for A and Q are presented in 

section 4.6. Finally, the chapter closes with a discussion in section 4-7. 

4.2 Formulation of the model 

Suppose we have a sample of 1 individuah or  experimental units that have been 

selected for a longitudinal study. C responses are obtained for each individual, indexed 

by i = 1 ,2 ,  . . . : 1 at the same set of T time points, indexed by t = 2 . - - , T The 

T time points need not be equally spaced. Let ydi represent the measurement of the 

cth characteristic at occasion t on individual i for c = 1 .2 , .  . . ,C; t = 1 ,2? .  . . , T; i = 

1 , 2 , .  . . , I .  The data may be represented as follows: 

1 C harac terist ics 

Individuals 1 2 ... T Time 1 2 . T 

1 Y i i r  Y121 - . - Y ~ T I  YCII  Yc21 - - - YCTI . - .  

is a T x C matrix representing C characteristics (columns) measured on S 

occasions (rows) : 

Note that if C = 1, then only the first column in the m a t r i .  k;- remains. This represents 

the T x 1 vector of repeated observations on individual i used in the linear model for 
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correlated data. Associated with the I x C vector yti (the tth row of k;-) is a p x 1 vector 

of covariates or explanatory variables that is given by 

Consequently. Xi is a T x p design matrix for the zth individual as shown below: 

The matrix Xi is obtained by making xti a row vector (that is, taking its transpose). The 

rows in Xi correspond to the different times or occasions of measurement and the columns 

correspond to the different covariates. This representation of the design matrix allows 

for time-varying covariates (for example, age), time-invariant covariates (for example, 

treatment group) as well as covariates that are functions of time. 

4.2.1 Modelling the expected values 

From section 4.2, y, represents the measurement of the cth characteristic a t  oc- 

casion t on individual i for c = 1,2, .  . . ,C; t = 1,2, -. . , T; i = 1 , 2 , .  . . : 1. Hence 

y& = (ycli, yc2i, . . . , YcTi)' represents the T x 1 vector of characteristic c measured over T 

occasions on individual i. Assume a mode1 for of the form 
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where Xi is a T x p design matrix and bi is a p x 1 vector of unknown parameters. Letting 

we have 

for i = 1 , 2 , .  . . , 1 where k;. is the T x C matrix of observations and Xi is the T x p design 

matriv for the ith individual. In equation (4.6) above, is a p x C matrix of unknown 

parameters and Ei is the m a t r k  of errors for the ith individual. Using the vec operator 

such that 2/i  = vec(Yi) , we can express equation (4.6) as 

where ~i = vec(Ei), Bi = vec(Bi) and we have used the result that vec(PQR) = (R' @ 

P) vec ( Q )  . For 1 individuais, we have: 

The design matrix for the zqh individual is given by (Ic @ Xi). This specification of 

the design matrix has been used by Matsuyama and Ohashi @1] for bivariate response 

repeated measures data. 

To better illustrate the model and without loss of generality, suppose two response 

variables are measured on each individual at each of T occasions. Let yli and yzi be the 

T x 1 response vectors on the ith individual for i = l , 2 ,  . . . , I and set yi = (y;,, y;i)'. 

Consider the model for a single individual given by equation (4.7) which can be written 

as (for two response variables): 
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where 

fin + p x 1 individual vector of d o m  fked effects for the cth response 

En -t T x 1 within subject random error vector for the cLh response. Making the notation 

more compact, let 

where 

&- --, 2p  x 1 vector of unknown fixed effects, 

ci + 2T x 1 within individual random error vector, and 

With reference to equation (4.7), the complete system of equations can be written as 

or more compactly as 

y = X B + e ,  

with 

C = COV(Y) = Ir 8 Co. 
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4.2.2 Modelling the covariance structure 

Co is the CT x CT within-subject variance-covariance m a t r k  It follows that if 

Co is left completely unstructured, it is defined by CT(CT + 1)/2 parameters. In some 

cases however: CT is too large relative to I and in this situation, some structure should 

be imposed on Co. Consider m o d e h g  the CT x CS covariance matrix Co using the 

Kronecker product of the covariance structures A and $2 such that Co = A 8 0. Since Yi 

is arranged by characteristic and by time within characteristic, the covariance between 

the outcome variables is specified by the C x C matrix A; whereas the covariance among 

the repeated measures for a given outcome variable is specified by the T x T matrix 0. 

If no restrictions are placed on A and R- then they are defined by C(C + 1)/2 

and T(T + 1)/2 parameters respectively Restrictions may be placed on A and/or R 

to ensure identifiability of al1 parameters. Since A represents the covariance matrix 

between the C outcome variables, it is left unstructured. Also, since Q represents the 

covariance matrix for the T repeated measurements on any characteristic, it can be 

modelled parsimoniously, for example, using the cornpound symmetry and first-order 

aut oregressive structures. Restrictions are placed on S1 to ensure identifiability of al1 

parameters. We denote the parameter vectors for A and fl by y1 and yz, respectively, 

and let K = [T;, 

This approach to directly modelling the dependence of variables which exists not 

only within but also across t h e  in the form of a Kronecker product of covariance matrices 

has been considered by various aut hors, including Zhang [8 11 for bivariate longitudinal 

data. Rochon [55] proposes this mode1 as one method by which the evolving relationship 

between two sets of repeated measures is taken into consideration. Note that Rochon [55] 

suggests using Co = R @ A, where 0 is the T x T covariance matrix among the repeated 

measures and A is the 2 x 2 covariance matrix for the pair of outcome variables. For our 

purposes, the order of these two matrices has been reversed. Verbyla and Cullis [69] use 

the Kronecker structured covariance matrix to analyse repeated measures data when an 

additional level of dependence exists. Galecki [18] parametrically models the covariance 

structure for repeated measures specified by more than one repeated factor using the 
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Kronecker product of underlying factor specific covariance profiles. Note that if in the 

model proposed by Zhang [SI] one assumes that the diagonal elements of the within 

subject covariance m a t e  Co are equal, then this model will be equivalent to the mode1 

proposed by Galecki [18]. 

For bivariate longitudinal data and again without loss of generality, the matrices 

A and St are given below. Now, 

where 

and 

In later sections, A is reparameterised as follows (to facilitate interpretation) : 

with 011 set to one- Using this reparametrisation, y now represents the ratio of the 

variances for the two characteristics and p, = ~ ~ ï ï ( y ~ ~ ~ , y ~ ~ ~ )  is the correlation between 

the two characteristics at  any given time. 

How can one j u s t e  using a Kronecker structured covariance matrix for multivariate 

longitudinal data? For univariate longitudinal data, there are several choices of struc- 

tured covariance structures that one can utilise. This is discussed in detail in Ware [?5], 

Jennrich and Schluchter [25] and Diggle, Liang and Zeger [14]. Alternatively, one can 

introduce randorn effects in the model as presented by Laird and Ware [34]. The question 

we will address is how can one model C, in the case of multivariate longitudinal data. 
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One possibility is to model the covariance structure as the Kronecker product of an un- 

st ructured covariance matrix (accounting for the covariance among the charact erist ics) 

with some time series covariance matrix (accounting for the covariance across time) as 

presented in section 4.2-2. This model is based primarily on Galecki's [18] model pro- 

posed for two or more repeated factors. M o d e h g  data spanned by two or more repeated 

factors as discussed in Galecki [18] is indeed quite different from modelling multivariate 

longitudinal data. A similar model is presented in Zhang [SI]. 

Suppose we imagine that the longitudinal data on an individual is spanned by two 

"factors" , characteristic (factor A) and time (factor B) , wit h Levels c = 1,2; . . . , C and 

t = 1 ,2 ,  . . . : T respectively. The complete set of observations on an indhldual consists of 

CT measurements, with variances and covariances collected in a CT x CT within subject 

covariance matrix Co.  Initially, we focus attention on the T x T submatrices of marginal 

distributions of measurements taken over time (Factor B) for every characteristic sepa- 

rately. We can assume for the purpose of modelling that the marginal covariance matrices 

associated with factor B (time) are equivalent at  every level of Factor A (characteristic). 

We now shift our focus to  the C x C submatrices of marginal distributions of the dif- 

ferent characteristics (factor A) for every time point separately. Again, it is acceptable 

for modelling purposes to assume that the covariance matrices associated with factor A 

(characteristics) are equivalent at  every time point (factor B) . 

As discussed in Galecki [18], one way to model a covariance matrix with repeated 

measures in more than one dimension is to use the Kronecker product of "factor7' specific 

covariance profiles with the underlying assumption that the marginal profile for a given 

"factor" is invariant for every level of the other "factor". Our two dimensions here are 

characteristics and time and hence the CT x CT within subject covariance matrix Co 

can be expressed as the Kronecker product of the marginal covariance matrices of the 

"factors": characteristics and time. For bivariate Iongitudinal data for example, this 

means that A = cov(ylti, yZti) is constant with respect to both t (time) and i (individual) 

and 0 = cov(y&) is constant with respect to both c (characteristics) and i (individual). 

Table 4.1 gives four examples of covariance structures based on an unstructured A and 
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several choices of R for C = 2 and T = 3. In Tabie 4.1, 'iin" denotes unstructured; "sim" 

denotes simple; "ar (1) " denotes first-order autoregressive and "CS" deno tes compound 

symrnet ry. 

Table 4.1: Examples of within-subject covariance modek (C = 2 and T = 3). 

If Co is left completely unstructured in this case, it is defined by 21 parameters. 

Using the Kronecker structured covariance matrk  results in a tremendous reduction in 

the number of parameters as illustrated by mode1 2. A further reduction in the number 

of parameters dehning Co is achieved by imposing a structure on the T x T covariance 

matrix f2 among the repeated measures as illustrated by models 1, 2 and 3. Note that 

the number of parameters in R does not increase with T for models 1,3 and 4. The 

interpretation of rnodel 3, for example, is as follows: 

Mode1 # 

1 

2 

3 

4 

1. Covariance matrix of the marginal distribution of the 2 characteristics ylti and y*ti 

has an unstructured covariance matrix and is the same for al1 3 levels of the other 

factor (t ime) . 

Structure 

UN@SIM 

Form (A @ R) 

1 0 0  

O 0 1  
- 

# Parameters 

3 

8 

4 

4 

1 P;, p;3 

tJN@AR(l) 

UN@CS 

[ :: :: ] @ 

-. 
1 P p2 

p 1 p 

P' P 1 - - 
1 P P  

P P l  
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2. Covariance mat& of the marginal distribution of the 3 measurements ycli, yczi 

and Y c ~ i  is fkt-order autoregressive and is the same for both levels of the other 

factor (characteristic). 

4.2.3 Identifiability of Co 

Since Co is expressed as the Kronecker product of two matrices, then the issue of 

identifiability has to be addressed. As discussed in Galecki [18], nonidentifiability arises 

from the fact that if A 8 R is equal to the overall within-subject covariance mat& Co, 

then there exists a continuum of other pairs of covariance matrices, for example, 6 * A 

and R/S for 6 > O which give the same Kronecker product. Consequently, we cannot 

identify A and O. To avoid this nonidentifiability, the matrix i-2 is rescaled so that the 

upper left element of this matrix is equal to 1. This is reflected in the form of R given in 

Table 4.1. 

4.2.4 A simplification of the model 

Suppose that in equation 4.6 in section 4.2.1 we have Xi = X so that X is a T x p 

matrix of known constants identical from one one individual to the next. For instance, 

tve may think of X as containing the values of p functions of time a t  T time points. Then 

the model for I;- becomes: 

and consequent ly, equation (4.7) becomes: 

For 1 individuah, we suppose that 

[A,P2,  - - - ,Pr]  = ne' 
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where A is a pC x G mat+ of unknown parameten and 8' = (O1, 02, - . . , O r )  is a G x 1 

matrix of known constants of full rank G < 1, corresponding to  the design matrix for 1 

subjects in G treatment groups. In this context, X corresponds to the within subject 

design matrix and 8 corresponds to the between subject design matrix. Letting Y = 

{YI; 3/27 - - - 7 YI), E = (€1, €2, - - - , cr) ,  we have: 

The columns of E given by given by el, Q , .  . . ,CI are assumed to  be independently dis- 

tributed as N - (O, Co),  where Co is the CT x CT Kronecker structured covariance 

rnatrix so that C, = A x R as discussed in section 4.2.2. Applying the vec operator to 

the above model, we obtain 

where y = vec(Y), X = vec(A) and e = vec(E), with 

4.2.5 Application to bivariate growt h curve data 

Consider the model given by equation (4.18). CVe now consider a specific application 

of this model, restrïcting attention to bivariate Longitudinal data for individuals in G 

groups. Let the growth curves for the first and second characteristics for an individual 

in the gth group for g = 1,2,.  . . , G be polynomials in time of degree (p - 1). Then the 

expected value of the measurement at time t for characteristic 1 in group g is given by 

and the expected value of the rneasurement a t  time t for characteristic 2 is given by 
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The observation matrix Y is arranged so that each column represents 2T measurements 

on an individual, arranged by characteristic and by time within characteristic. For every 

unit, we have 2T observations with a 2T x 2T covariance mat& Co.  We expect the T 

observations on characteristic 1 to be correlated among themselves and the T observations 

on characteristic 2 to be correlated among themselves. This correiation is captured by the 

matrix R. Additionally, we expect the observations on characteristic 1 to be correlated 

with the observations on characteristic 2. This correlation is captured by the matrix A. 

Suppose we have n, individuals in group g for g = l , 2 ,  ..., G. Then the matrices 8, A 

and X are defined as folows: 

Pli 

and 



Chapter 4: Ignoring correlation in multivariate longitudinal data 

In matrix 8, ln, denotes a n, x 1 vector of unities. If p = 2 and G = 2, then A is a 4 x 2 

matrix as given below: 

where 4, and or,, represent the coefficients for the first and second characteristic re- 

spectively for gth group. Row 1 and row 3 consist of the intercept effects of groups 1 

and 2 of the first and second characteristics, respectively. Row 2 and row 4 consists of 

the slope effects of groups 1 and 2 of the first and second characteristics, respectively. 

Consequently, 

4.2.6 Application to  bivariate repeated measures ANOVA data 

Now suppose I = nl + n2 + . . . + nc subjects in G treatrnent groups are measured 

repeatedly on two response variables of interest under T different experimental conditions. 

The T conditions represent the T levets of a factor of interest, with each subject being 

observed under al1 T levels of this factor. The goals of such a design include quantifying 

differences in the experimental conditions as weU as between the groups. The observation 

rnatrix Y is arranged so that each column represents 2T measurements on an individual, 
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arranged by characteristic and by condition within characteristic. For n, individuals in 

and 

g = l , S  ,-.-, G,  t h e r  ,trices Q! II and X are defined as foilows: 

Y 

For three conditions T = 3 and two groups G = 2, A is a 6 x 2 matrix as given below: 

Pli P 2 1  

P i 2  B22 

Pl3 p23 

Q'll Q'21 

Q12 0 2 2  

a13 a 2 3  
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and consequently 

X = vec(h) = 

Pli 
B r 2  

P l 3  

a11 

a 1 2  

a 1 3  

P 2 1  

P 2 2  

P 2 3  

a 2 1  

(322 

(323 

4.3 Hypothesis testing 

Consider tes ting 

where Q is a r x (pCG) matrix of rank 5 pCG. In the Pitman sense: the alternative 

hypothesis can be written as: 

so that limI,, O1 = O .  The estimate of QA is QX and can be obtained either by ordinary 

least squares or by generalised least squares. Asymptotically, ~i is a r x 1 multivariate 

normal random variable with mean vector Q X  and variance-covariance matrix QVQ' 

where V = var(&. From Corollary 2.3.4 on page 61 in Myers and Milton [44], we know 

that 
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follo~vs a non-central X2 distribution with r degrees of freedom and non-centrality pa- 

rameter 

Lemma 4.3.1 To test the hypotheses 

Ho : QX = O Vs. Ha : QX # O, 

compute the test statistic: 

and compare it to a x2 distribution with r degrees of freedom. 

4.3.1 Hypotheses testing: Some examples 

Example 4.3.1 Consider the application dzscussed in section 4.8.5. To test the ouerall 

hgpothesis of parallelism, that is 

cornpute the test statistic 

and compare it t o  a X2 distribution with 4 degrees of freedom, where 
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Rejecting Ho implies that the overall hypothesis of parallelism does not hold at significance 

level cr. Note that under Ho, 

Example 4.3.2 Now consider the application discussed in section 4.2.6. Tu test the 

hypothesis that the mean vectors for the two treatment groups are equal, that is, 

compute the test statistic 

and compare it to a x2 distribution with 6 degrees of freedom, vhere 

Rejecting H, implies that the equality of means for the h o  groups does not hold at 
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significance level a. Note that under H,, 

4.3.2 Power Discussion 

Consider the hypothesis set discussed in section 4.3. At significance level a: the 

nul1 hypothesis is rejected if 

Lemma 4.3.2 The power of the test when Q X  # O is given by 

where ~ ; ( o l )  represents the upper l O O a  percentage point of the chi-square distribution with 

r degrees of freedom. 

For fixed a and given Q, the power can be evaluated when V is known. 

4.4 Estimation of mode1 paramet ers and associated 

variances 

The parameters in equation (4.18) can be estimated by ordinary least squares, but 

if cov(e) # u21TC, then this method will not in general be fully efficient. A fully efficient 
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method is generalised least squares based on the variance covariance matrk (1.19). This 

is only possibIe when the parameter vectors and 7 2  defining A and R, respectively, 

are known, as is assurned in this chapter. The practical alternative is generalised least 

squares based on the rnatriv (4.19) evaluated at the estimates Tl and T2 of the parameter 

vectors y1 and 79. This is the subject of subsequent chapters. 

WhiIe generalised least squares is a h o s t  always the most efficient method of anal- 

ysis, ignorance of 71 and 7 2  makes it an unattainable ideal. Also, sampling variation in 

the estimators 5 and also means that the generalised least squares will not always be 

more efficient than ordinary least squares. The efficiency of an analysis using ordinary 

least squares, relative to that obtained using generalised least squares, can be evaluated 

if the true values of yl and yz are assumed to be known. 

Lemma 4.4.1 The ordinary least squares estimator of ;\ is given by 

while the generalised least squares estimator is gïven by 

Lemma 4.4.2 The variance of the ordinary least squares estimator is given by 

If one proceeds to assume that the correlation rnatrix is given by Co = a21Tc = 021c BIT,  

then the variance of the ordinary least squares estimator in thzs case wodd be taken to 

be 

The variance of the generalised least squares estimator zs giuen by  
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See Reinsel [54] to understand how the estimaton and the variance of these esti- 

mators were derived. Equations (4.30), (4.31) and (4.32) wiU be used in section 4.5 to 

assess the efficiency of the test based on the ordinary least squares estimator relative to 

the test based on the generalised least squares estimator for a range of possible values 

of the parameter vectors y1 and 2. The main focus will be on using the TARE and 

CARE to compare the efficiency of using equation (4.31) relative to equation (4.30). The 

efficiency of equation (4.30) relative to equation (4.32) is also considered. 

4.5 Evaluating efficiency using TARE and CARE 

Consider testing the hypothesis discussed in section 4.3 using the test statistic 

T given by equation (4.26). The power function based on this test is given by equa- 

tion (4.27). Let ds be the test based on the generalised least squares procedure which 

utilises the correct covariance structure (assurned to be Kronecker structured) in both 

the estimator and the estimator of the variance. Let & and 42 be tests based on the 

ordinary least squares procedure. The test #2 is "correct" in that it utilises the correct 

covariance structure in the variance of the estimator. The test 41 is "incorrect" in that 

it ignores the covariance structure in the variance of the estimator. 

4.5.1 Efficiency of qh2 relative to 41 

For the test @Z, the matrix V is given by equation (4.31) while for the test &, it 

is given by equation (4.30). The non-centrality parameters in the power function (4.27) 

for the tests d2 and 4l are given by 

and 
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Lemma 4.5.1 The TARE and CARE of 42 with respect to @1 are given by 

and 

respectively. 

4.5.2 Efficiency of t # ~  relative to 43 

The non-centrality parameter for the test q51 is given by equation (4.34). For the 

test 4 3 ,  the matrix V is given by equation (4.32). The non-centrality parameter in the 

power function (4.27) for the test 4 3  is therefore given by 

Lemma 4.5.2 The TARE and CARE of with respect to q53 are given by 

and 

respectively. 
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4.6 Numerical results for special covariance st ruc- 

tures 

The TARE and CARE for evaluating the efficiency of #2 with respect to C#L are 

given by equations (4.35) and (4.36) respectively. Also, the TARE and CARE for eval- 

uating the efficiency of qjl with respect to 43 are given by equations (4.38) and (4.39) 

respectively. These measures of asymptotic relative efficiency are computed mith the 

foLlowing quantities being manipulated in the computations: 

1. total sample size 1; 

2. within subject design matrix X; 

3. the matrix Q, which is dependent on the hypothesis of interest; 

4. for the covariance matrix A, the degree of correlation among the dependent vari- 

ables (p,) as well as the ratio of the variability of the V ~ ~ O U S  characteristics (y); 

5 .  the covariance matrix Cl, specified to be either compound symrnetry or first order 

au t oregressive; 

6 .  the parameter pt in S1, representing correlation between any two measurements on 

a given characteristic on the same subject when it is specified to be compound 

symrnetry. When $2 is specified to be first-order autoregressive, pt is the correlation 

between successive observations on a given characteristic on the same subject- 

The number of characteristics is kept constant a t  C = 2 and the number of repeated 

observations per characteristic is also kept constant at T = 3. 

Consider the mode1 discussed in section 4.2.5 and the test of hypot heses discussed 

in example 4.3.1. For G = 2, the matrices X, O and Q are defined as follows: 
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with nl = nz = 30,60,90 and 

The matrices A and f-2 are modeled following models 3 and 4 in Table 4.1. This 

means that A is completely unstmctured: 

reparameterised as 

with ail set to one. In contrast, 0 is either first-order autoregressive, 

or compound symmetry 

The parameter values used for p,, p, and y in the covariance matrices A and Z2 are given 

in Table 4.2. 
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Table 4.2: Values of parameters defining A and fl used in computing the TARE and C A R . .  

I parameter I Values I 

This gives a total of 855 parameter combinations which are varied enough to rep- 

resent parameters that may arise in practice. 

Now consider the model discussed in section 4.2.6 and the test of hypotheses dis- 

cussed in example 4.3.2. For G = 2, the matrices X :  O and Q are defined as follows: 

with nl = nz = 30,60: 90 and 

The covariance matrices A and 0 are rnodelled following the growth curve example 

discussed above. In the graphs that follow, the results from fitting the two models are 

presented obtained from evaluating the efficiency of test q52 relative to q51. The results 

from evaluating the efficiency of test q51 relative to qj3 did not yield very interesting results 

in either model. 
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Figure 4.1: Values of TARE for ignoring correlation in the growth curve model: compound 

syrnmetry pattern for Q. 
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Figure 4.3: Values of CARE for ignoring correlation in the growth cuve model: compound 

symrnetry pattern for a. 
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Figure 4.4: Values of CARE for ignoring correlation in the repeated measures analysis of 

variance model: compound symmet ry pattern for R. 
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Figure 4.5: Values of TARE for ignoring correlation in the growth curve model: £kt-order 

autoregressive pattern for Cl. 
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Figure 4.6: Values of TARE for ignoring correlation in the repeated measures analysis of 

variance model: fist-order autoregressive pattern for O. 
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Figure 4.7: Values of CARE for ignoring correlation in the growth curve model: ht-order 

autoregressive pattern for 0. 
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4.7 Discussion 

The results displayed in Figures 4.1 to 4.8 can be summarised as follows: 

1. First, we observe that overall, the results for the two designs investigated (growth 

curve and repeated measures ANOVA) are quite similar. For example, Figure 4.1 

and Figure 4.2 are quite similar. This is especially true when 0 takes on the 

compound syrnmetry covariance pattern. 

2. For both the compound syrnmetry model and the first-order autoregressive model, 

the graphs clearly show that the covariance parameters p,: p, and y have a pro- 

nounced impact on both the TARE; and C-4RE. I t  appears that the l o s ~  of efficiency, 

when it occurs, from ignoring correlation and the degree of the loss of efficiency are 

both functions of the covariance parameters y, pc and p,. Overall, it appears that 

the efficiency of test qb2 relative to test q ! ~  is poor for high absolute values of pt and 

p, and low values of y. 

3. To gain a better understanding of the results displayed in the plots, consider a 

single graph in the multi-panel display. First; we observe that for a given value of 

pt, the plot is syrnmetric about p, = O. Again, if we consider a single value of pt (a 

single curve in the plot), the largest efficiency is observed a t  p, = O. The efficiency 

of test 42 relative to test 4i is worst at high negative and high positive values of 

pc (note the shape of the culves as pc moves from -0.9 to +0.9). The efficiency is 

clearly decreasing as pc approaches -1 and tl. 

4. Now we examine the effect of the parameter p,. Overall, the efficiency of 42 relative 

to & is low for high values of pt (values of p, closer to 1). Observe that the higher 

the value of pt, the Iower the efficiency of 42 relative to qbl. In fact: as pt approaches 

0: the maximum efficiency gets larger. 

5. A question of considerable interest is: are al1 the plots (panels) on a given figure 

the same? To answer this question, we now shift focus from a single plot to  the five 

plots or panels displayed on each figure. The five plots on any given figure display 
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the effect of y (the ratio of the variances of the two characteristics) for a giveo 

design and covariance structure. The panels are clearly not the same- Overall, 

efficiency increases as a function of y. For example, consider a single value of pt in 

each plot (any single curve) and observe what happens to this curve as we move 

from plot to plot corresponding to diaerent values of y. As y increases, so does 

the efficiency of relative to #l. Observe that when y is greater than one, test 42 
appears to be more efficient than test & for a restricted range of p, and low values 

of p,. The test q52 is substantially inefficient relative to the test #l when y is less 

than or equal to one as demonstrated by the two bottom panels in each figure. The 

efficiency is especially poor for large values of pt. The maximum efficiency achieved 

for each design and covariance structure also changes as +y increases. 

Overall, the results are as expected. For the designs and covariance structures considered, 

a loss of efficiency is shown to occur £rom ignoring the two sources of correlation in 

testing hypotheses of interest. The loss is greatest when (i) the correlation between the 

characteristics is high and (ii) when the correlation between longitudinal measurements 

on a given characteristic is high. Ignoring these two correlations when they have high 

values is statistically less efficient t han if one appropriately accounts for t hese correlations. 



Chapter 5 

Increasing efficiency from 

mult ivariat e longitudinal data by 

using a Kronecker product to mode1 

the covariance structure 

5.1 Introduction 

A question of considerable practicd interest, and the focus of the present chapter, 

concerns the po tential gain in efficiency that would result from exploiting the Kronecker 

product covariance structure. As in the previous chapter, efficiency is defined in terms of 

testing hypotheses that are of interest in a. given problem. Assessing the gain in efficiency 

that results from using a Kronecker structured covariance matrix will be accomplished 

by evaluating the efficiency of a test based on a completely unstructured covariance ma- 

trix relative to one based on a Kronecker structured covariance matrix. The measures of 

efficiency used are the TARE and CARE. Results obtained £rom the investigation will 

enable us to make general statements about the usefulness of utilising the Kronecker 

product structure when it exïsts in hypotheses testing for multivariate 1ongitudinaI data. 
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Additionaily, we will be able to state what parameter ranges si@& more senous conse- 

quences, if any, in ignoring the Kronecker product structure. 

A second goal of the present chapter is to describe a preliminary test of Ho : 

C, = A @ 0 versus Ha : Co = Ca,  where Ca is an arbitrary covariance matrix in the 

analysis of multivariate longitudinal data. Incorporating the test in practical work will 

be useful in that it will provide protection against doing the wrong thing and increase 

efficiency if we do the right thing. Section 5.2 presents the model to be used. Section 5.3 

discusses likelihood estimation of model parameters. Section 5 -4 introduces the test 

for the Kronecker product pattern. Section 5.5 discusses hypothesis testing and power. 

Several examples are presented in section 5.6. Evaluating efficiency using TARE and 

CARE is given in section 5.7. Section 5.8 presents a Monte-car10 simulation study used 

to assess the gain in efficiency that results from using a Kronecker structured covariance 

rnatrix in hypothesis testing. The chapter closes with results obtained from the Monte- 

car10 simulation study and a general discussion in section 5.9. 

5.2 Mode1 specificat ions 

The model presented section 4.2 is assumed in this chapter. Additionally, it is 

assumed t hat 

where 

and 
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Suppose, for example, that we have two characteristics measured on each of three occa- 

sions for each subject. Then A is given by 

and is reparame terised as follows ( to facilitate interpretation) : 

with set to one. If 0 is assurned to be 

with the upper left element set to 1 to 

first-order autoregressive, then: 

avoid nonidentifiability of Co. In this case, 

parameter vectors yl and y2 d e h i n g  A and Q, respectively, are given by yl = (y, p,) 

and 7 2  = (pJ. y represents the ratio of the variances for the two characteristics and p, 

is the correlation between them. AI1 covariance parameters are assumed to be unknown 

and must be estimated fiom the data using maximum likelihood or restricted maximum 

likelihood estimation. 

5.3 Likelihood estimation of mode1 paramet ers 

Since y is assumed to be 

t hen parameters of interest can be estimated using maximum Likelihood estimation or 

restricted maximum likelihood estimation. To find the likelihood estimators of A, A and 

0, the likelihood function (and hence the log-likelihood function) is derived in terms of 

A, A and S1. 
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Lemma 5.3.1 If A = A, and R = no, the mazimurn likelihood estimate o r  the restn'cted 

maxzrnum likelihood estimate of A is given by 

Refer back to equation (4.29). Equation (5.2) is substituted back into the log-likelihood 

function and the resulting equation, a finction of 4, and Cl,, is maximised with respect to 

71 and 72. Maximisation yields A and 6, the maximum Likelihood or restricted maximum 

likelihood estimates of A, and 0, respectively. 

Lemma 5.3.2 Substétuting the likelihood estimates 6ack into equation (5.2): we get: 

with 

Lemma 5.3.3 If A is estimated ignoring the Kronecker prodvct structure by using an 

arbitrary completely uns tmc tu~ed  CT x CT matriz, then 

with 

where X*  = Ic @ X and 2, is  the maximum likelihood o r  restricted rnazimum likelihood 

estimate of Co, a n  arbitrary CT x CT matnx.  
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5.4 Testing for the Kronecker product pattern 

We can test the nul1 hypothesis that the CT x CT covariance matrix C, has the 

Kronecker product structure Co = A @ $2 using the likelihood ratio test statistic: 

- r  

where Co has an arbitrary pattern and 2, is its maximum likelihood or restricted maxi- 

mum likelihood estimate. A and fi are the maximum likelihood or restricted maximum 

likelihood estimates of A and Cl assuming Co is a Kronecker stmctured covariance ma- 

trix. Under the nul1 hypothesis, the quantity Slog,(LR) has an asymptotic Chi-square 

distribution with 

degrees of freedom when Q is assumed to be compound symmetry or first-order autore- 

gressive. The test described here is similar to the test discussed in Diaz and Johnson [Il] 

for testing for the Wiener stochastic process pattern in the covariance matrix of multi- 

variate repeated measures data. 

5.5 Hypothesis testing and power 

Hypothesis testing concerning the parameter vector X is based on the result (5.3) 

which, in conjunction with (5.1), implies that 

We assume (5.9) continues to hold, to a good approximation, if we replace -(1 and 7 2 ,  the 

paramet er vectors defining A and Cl respectively, wit h t heir likelihood estimates. This 

gives 

- M V N  {A, P = vâr(/îAXQ)} (5.10) 
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where vâr(AAxn) is given by equation (5.4). If a completely unstructured covariance 

matrix has been used, then is given by (5.5) and 

where vâr(i,,) is given by equation (5.6). Consider testing the hypotheses discussed in 

section 4.3. In this case, the estimate of Q X  is QX, with given either by equation 5.2 if 

the parameters defining A and 0 are known or by equations 5.3 and 5.5 if the covariance 

parameters have to be estimated. Since 

A - MVN(X,  V ) ,  (5.12) 

and 

follows a non-central X2 distribution with r degrees of freedom and non-centrality pa- 

rameter 

Lemma 5.5.1 To test the hypotheses 

Ho : QX = O Vs. Ha : QX # 0, 

cornpute the test statistic 

and compare it to a x2 distribution with r degrees of freedorn. 
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Following section 4.3.2, the nul1 hypothesis Ho : Q X  = O is rejected at level a if 

T' = (QA)' (QVQ')-' (&A) > &a). 

Lemma 5.5.2 The power of the test under the alternative hypothesis Ha : Q X  # O is 

given by 

where X ; ( C ~ )  represents the upper lOOa percentage point of the (central) chi-square dis- 

tribution with r degrees of freedom. 

For k e d  a and given Q: the power can be evaluated once V has been obtained from the 

data using maximum likelihood or restricted maximum likelihood estimation. 

5.6 Examples 

In this section, we present three examples to illustrate the application of the linear 

mode1 for multivariate longitudinal data wit h a Kronecker structured covariance matrix. 

The examples will also serve to illustrate multivariate longitudinal designs that frequently 

occur in practice. The first example considers a growth curve setting while the second 

example considers a repeated measures analysis of variance problem. The third example 

re-visits the data introduced in Chapter 1. One of the major roles of these examples is 

to provide structure to simulations that will be carried out Iater in this chapter and also 

in the next chapter. 

The first example concerns 18 patients randomized to two treatment groups in 

order to evahate the changes in vertical position on the mandible. Three variables, 

called Soi-Me (mm), ANS-Me (mm), and Pal-Me (degrees) were measured at  three t h e  

points during therapy. The data has been discussed previously in Timm [65], Thomas [63] 

and Boik [ 6 ] .  Timm [65] gives the mean plots of the data for each g o u p  and variable, 

which suggests that the growth curves for the three variables are approximately linear. 



Chap ter 5: Utilising the Kronecker produc t stmct ure 98 

A question of practical interest concerns whether the growth curves for the two groups 

are parauel for one or more variables. For our purposes, we will consider only the last 

two variables, that is, ANS-Me and Pd-Mp angle. 

The mode1 fit to the two variables is 

wit h 

and 

The error vector e is assumed to have covariance matrix C given by C = cov(e) = 

11 €3 Co = 11 @ A @ Q, and R is assumed to be first-order autoregressive. The estimates 
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Table 5.1: Estimated regression coefficients for the growth curve example. 

1 Group 1 Characteristic 1 Parameter 1 Estimate 1 Standard Error 1 

Table 5.2: Estimated covariance parameters for the growth curve example. 

ob tained for the regression coefficients, obtained by maximum likelihood estimation, are 

given in Table 5.1. The covariance parameter estimates are given in Table 5.2. 

Covariance Matrix 

A 

To test; for parallelism simultaneousiy for both variables, that is 

we c o m p t e  the test statistic 

Parameter 

011 

Estimate 

29.374 
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and compare it to a x2 distribution with 4 degrees of freedom where: 

We obtain T = 0.803 with a p-value of 0.938. From this, we conclude that the two 

treatments do not differ significantly with respect to their linear growth curves. This is 

in agreement with conclusions drawn by others who have looked at this data. 

The second example considers a repeated measures analysis of variance setting, with 

measurements taken under what we can think of as three experimental conditions. The 

data is discussed in Hand and Crowder [21]. The data relates to patients who suffer from 

panic attacks (group 1) and the control set who do not suffer Gom panic attacks (group 

2). 11 repeated measures are recorded on 3 variables: the first variable is the score on an 

anxiety scale, increasing fiom O to 8; the second is CO2 expiration; and the third is pulse 

rate. The three variables are recorded together at times 4,6,8,10,11,14,16, 17,18,19 

and 23 minutes. Times 4: 11,14,19 and 23 are rest times. Times 6,s and 10 are times 

at which subjects are spoken to on the topic about which they are anxious. Times 6,17 

and 18 are times at which subjects are asked to hyperventilate. There was missing data 

for some of the subjects on the response variables. 

As mentioned in Hand and Crowder [21], the scope for relating anxiety scores to 

the explanatory variables is wide. Their analysis focused on the effects of "group" and 

"circumstances" (rest: spoken to, hyperventilate), on COÎ expiration. We will also focus 

on the effects of "group" and "circumstances" , applying the linear mode1 for multivariate 

longitudinal data with Kronecker structured covariance matrix. The data is treated as 

a two sample bivariate repeated measures ANOVA, with the subjects in two groups 

measured repeatedly under three different conditions (rest, spoken to, hyperventilate). 

Times 4,lO and 16 are chosen to correspond to each of the three conditions respectively. 

The two variables considered are anxiety scores and CO2 expiration. 
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The mode1 fit to the two variables is: 

y = ( O @ I c @ X ) X + e  

wit h: 

and 

The error vector e is assumed to have covariance matrix C given by C = cov(e) = Ir@C, = 

II @ A 8 0, and f2 is assumed to be compound symmetry. The estimates obtained for 



Chapter 5: Utilising the Kronecker product structure 

Table 5.3: Estimated regression coefficients for the repeated measures analysis of variance 

example- 

1 Group 1 Characteristic 1 Parameter 1 Estirnate 1 Standard Error 1 

-- - - 

Table 5.4: Estimated covariance parameters for the repeated measures analysis of variance 

1 

1 

1 

1 

1 

1 

Covariance Mat r ix 

Compound Symmetry 

1 

1 

1 

2 

2 

2 

Estimate 

the regression coefficients, using maximum likelihood estimation, are given in Table 5.3. 

The covariance parameter estimates are given in Table 5.4. 

Pir 

P12 

013 

au 

a12 

a 1 3  

To test the hypothesis that the mean vectors for the two groups (panic=yes, 

3 -667 

6.000 

5 -571 

32.190 

30-095 

19.190 

0.414 

0.414 

0-414 

0.836 

0.836 

0.836 
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panic=no) are equâl simultaneously for both variables, that is: 

compute the test statistic: 

and compare it to a x2 distribution with 6 degrees of freedorn where: 

We obtain T = 44.912 with a p-value of 4.87 x 10-~. From this, we conclude that the two 

groups do differ significantly with respect to anxiety scores or COz expiration or both. 

The third example re-visits the da ta  introduced in Chapter 1. In treating the data 

as a growth curve problem, the mode1 fit to FEVl and FVC is: 

with: 
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and 

The error vector e is assumed to have covariance matrix C given by C = cov(e) = 

II @ C, = II @ A @ Q, and R is assumed to be first-order autoregressive. The estimates 

obtained for the regession coefficients, obtained by maximum likelihood estimation. are 

given in Table 5.5. The covariance parameter estimates are given in Table 5.6. 

To test for parallelism simultaneously for both variables, that is: 

we compute the test statistic: 

T = (QX)' (QVQI)-' (~i) 
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Table 5.5: Estimated regression coefficients fiom fitting a growth curve model to FEVl and 

FVC. 

Group 

S W 

SW 

SW 

SW 

Variable 

UW 

fevl 

fevl 

fvc 

fvc 

UW 

UW 

Table 5.6: Estimated covariance parameters £rom fitting a growth curve model to FEVl and 

FVC. 

Parameter 

fevl 

UW 

Pio 

A l  

a10 

a11 

fevl 

fvc 

and compare it to a XZ distribution with 4 degrees of freedom where: 

- 

Est imate 

f i 20  

fvc 

Covariance Matrix 

We obtain T = 8.995 with a p-value of 0.061. From this, we conclude that at a = 0.1, 

surface and underground workers differ significantly with respect to one or both of their 

'iung function capacities. Suppose the data is now treated as a repeated measures analysis 

Standard Error 

5.1226 

0.4058 

5-6547 

0.3744 

P21 

a 2 0  

O .  1298 

0.08493 

0.1206 

0.07890 

5 -4422 

mi 

Parameter 

0-0928'7 

, 

0.3150 

5.7548 

Estimate 

O -06075 

0-08627 

0.3162 0.05644 
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of variance problem with the error vector e is assumed to have covariance matrbc C given 

by C = cov(e) = Ir @ Co = II @ A @ 0, and 0 is assumed to be compound symmetry. 

In testing the hypothesis that the mean vectors for the two groups (worker=surface, 

worker=underground) are equal simultaneously for both variables, we obtain T = 20.073 

with a p-value of 0.029. From this, we conclude that the two groups do m e r  significantly 

with respect to FEVl or FVC or both. 

The test for the Kronecker product pattern described in section 5.4 is also applied 

to this data. Using the first model (un 8 ar(l)), we obtain x2 = 870.821 and using the 

second model (un @ CS), we obtain X2 = 830.661. The nul1 hypothesis that the within- 

subject variance-covariance matrix has a Kronecker product pattern is therefore rejected 

in both cases, indicating that for these data, the unstructureci covariance matrix may be 

more suitable. 

5.7 Evaluating efficiency using TARE and CARE 

Consider testing the hypothesis discussed in section 5.5 using the test statistic 

S* given by equation (5.16). The power function based on this test is given by equa- 

tion (5.17). Let 4; be the test based on the likelihood procedure which specifies the 

correct covariance structure and 6; be the test based on the likelihood procedure which 

ignores the Kronecker product structure by specZying a completely unstruct ured covari- 

ance matrix. To evaluate the efficiency of 4; relative to 4;, the TARE and CA= of 4; 
relative to 4; are computed. The TARE and GARE in this specific case are discussed in 

the next two sections. 

5.7.1 Efficiency of 45 relative to 4; 

If the covariance parameters defining A and 0 are knom, then for the test $;, 

the covariance rnatrix V is given by (8'8)-' @ A @ (x'Q-lx)-'. The non-centrality 
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parameters in the power function (5.17) for the tests 4; and 4; are therefore given by 

1 
-(QA)' {Q ((8'0) -' @ ( x * ' c ~ ~  x*) -') QI)-' (QX) 
2 

and 

Lemma 5.7.1 The TARE and C'ARE of 4; with respect to #; are given by: 

and 

respectively. 

The quantities (5.23) and (5.24) are estimated in the simulation study later in this chap- 

ter. 

5.7.2 Estimated efficiency of 4; relative to q5; 

For the test #;, the estimated covariance matrix Y is given by equation (5.6) while 

for the test 4;, it is piven by equation (5.4). The non-centrality parameters in the power 

function (5.17) for the tests 4; and 4; are estimated by 
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and 

respec tively. 

Lemma 5.7.2 The estimated TARE and CARE of $; with respect tu 4; are giuen by 

and 

The quantities (5.27) and (5.28) are used to evaluate the efficiency of test 4; relative 

to test 4; when the covariance parameters defining A and C2 are unknown and estimated 

from the data by fitting a Kronecker product covariance structure. 

5.8 A Monte-car10 study 

5.8.1 Data generation 

Multivariate normal data with p = (8 8 Ic 8 X)X and C = II 631 Co = II @ A 8 R 

is generated for two characteristics C = 2 and three time points T = 3. Multivariate 

normal data were generated using the Cholesky root of the variance-covariance matrix. 
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To illustrate this, let X be NP(/1, C) and Y be Np(O, 1). Y is generated by p repeated calls 

to a univariate normal generator and X is obtained from the transformation X = LY + p 

such that LL' = C. 

The vector p is specified from the design specifications and results of a previous 

study. The study was conducted by Dr. Tom Zuilo in the school of Dental Medicine a t  the 

University of Pittsburgh and is discussed in Timm [65], Thomas [63] and Boik [6] among 

others. The study concerned the relative effectiveness of two orthopaedic adjustments 

of the mandible. Nine subjects were assigned to each of two orthopaedic treatments, 

called activator treatments. On each of three occasions, three dependent variables were 

observed which, in combination, reflected the position and size of the mandible. Mean 

plots of the data for each group and variable revealed that the growth curves of the three 

variables were approximately linear. Timm [65] fit a quadratic regression model to the 

data. In the study described here, p is specified by ignoring the quadratic terrns and 

using data only for the first two variables. 

The matrices A and 0 are specified according to model 3 in Table 4.1. The pa- 

rameter values used for p,, p, and y in the covariance matrices A and f-2 are given in 

Table 5.7. This gives a total of 180 parameter combinations. The range of parameters 

Table 5.7: Values of parameters dehing A and 0 used in the Monte-carlo simulation study. 

and parameter combinations considered are varied enough to represent parameters that 

may arise in practice. Computational problems were encountered for values of p, very 

close to O and 1 and hence the range of values considered for p, is restricted to lie between 

0.1 and 0.9, inclusive. For each set of parameters considered, 200 simulation trials were 

carried out. 

Parameter 

Pc 

Values 

-0.6 to 0.6 by 0.3 
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5.8.2 Mode1 fit and quantities of interest 

The data generated by each trial is analyzed using a Linear model for mdtivariate 

longitudinal data. More specifically, a linear growth curve model is fit to each of the 

two response variables in each of the two groups. Evaluation of the efficiency of test 

4; relative to test 4; depends on whether the cova~ance parameters defining A and 

.rl are known or not. If they are known, then 5 is given by (5.2) and var(i) is given 

by (8'0)-' @ A 8 (x'Q-~x)-'. To evaluate the efficiency of test q5; relative to test q5; 

following section 5.7.1, an unstructured covariance matrix is fit to the simulated data and 

;\,, given by equation (5.5) and its covariance rnatrix vâr(A,,) given by equation (5.6) are 

computed. The TARE and CARE given by equations 5.23 and 5.24 are then evaluated. 

In simplified form, we evaluate 

and 

In practical situations, the covariance parameters are unknown and must be esti- 

mated from the data. The efficiency of test 4; relative to test 4; is evaluated by fitting 

two different covariance models to the data: 

1. unstruc tured covariance matrix; 

2. Kronecker product covariance matrix (the true model). 

Using the Kronecker product covariance matrix means computing given by equa- 

tion (5.3) and its covariance matrix vâr(Aaxn) given by equation (5.4). Ignoring the 

Kronecker structure and using an unstructured covariance matrix means comput ing %, 
given by equation (5.5) and its covariance matrix vâr(A,) given by equation (5.6) - 
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The quantities discussed in section 5.7.2 for evaluating the efficiency of 4; (test 

based on a likelihood procedure that ignores the Kronecker product covariance struc- 

ture) relative to 4; (test based on a likelihood procedure that specifies the Kronecker 

product covariance structure) are computed from the generated data. Specificaily. the 

quantities are given by equation (5.27) for the TARE and equation (5.28) for the CARE. 

In simplified form, we evaluate 

and 

where Q reflects a hypothesis of interest. The results are summarised in the tables and 

graphs that follow. 

5.9 Results and discussion 

Tables 5.8 to 5.16 give the efficienc~, as measured using the TARE and CARE, of 

test 4; relative to test 4; for the covariance parameter values given in Table 5.7 obtained 

from the simulation study. For clarity, the results are presented separately for each value 

of pt and are cross-classified by the values of p, and y. 

The parameten p, and y do not appear to have a significant impact on the TARE 

and CARE as can be clearly seen from Table 5.8 to Table 5.16. We observe that the values 

of the TARE and CARE do not change very much as p, progresses from -0.6 to 0.6 and 

as y progresses from 0.5 to 2. As a result, the values within a given table are quite close. 

It appears that the parameter which impacts efficiency most profoundly is pt. The values 

of the TARE and CARE change as we move fkom table to table. The CARE gives higher 

values for al1 parameter combinations considered. The TARE and CARE are closer for 
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Table 5.8: T - W  and CARE for the test based on a unstructured model relative to one based 

on a Kronecker product mode1 cross-classified by p, and y: pt = 0.1. 

7 0.5 1 1-15 2 Total 

Pc 
'V Tare Care Tare Care &J Tare Care Tare Care Tare Carc 

Table 5.9: TARE and CAM3 for the test based on a unstructured model relative to one based 

on a Kronecker product model cross-classified by p, and y: pt = 0.2. 

7' 0.5 

Pc - & Tare Care 

- - - -  - - 

1 1.5 2 Total 

- &, Tare Care - - Tare Care - IV Tare Care 100 Tare Car 

Total 5 0.820 0.850 5 0.821 0.850 5 0.822 0.850 5 0-822 0.850 20 0.821 0.85 

Table 5.10: TARE and CARE for the test based on a unstructured model relative to one based 

on a Kronecker product model cross-classified by p, and y: pt = 0.3. 

7 0.5 1 1.5 2 Total 

Pc - & làse Care - Tare Case - - &, Tare Car &, 'Eue Care - Tare Care 

Total 5 0.743 0.796 5 0.743 0.796 5 0-744 0.796 5 0.744 0.796 20 0.743 0.79 
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Table 5.11: TARE and CARE for the test based on a unstructured model reiative to one based 

on a Kronecker product mode1 cross-classified by p, and y: pt = 0-4. 

7 0.5 1 1.5 2 Total 

Pc - Tare Care - ?Co Tare Care - - - &, Tare Care Tare Care & Tare Car 

Total 5 0.692 0.769 5 0.692 0.769 5 0.692 0.769 5 0.693 0-769 20 0.692 0-76 

Table 5.12: TARE and CARE for the test based on a unstructured model relative to one based 

on a Kronecker product model cross-classified by p, and y: pt = 0.5. 

7 0.5 1 1.5 2 Total 
- Tare Care iv 

Pc - T u e  Care 7 ?O, Tare Care - - & Tare Care ?O, Tare Car 

Total 5 0.667 0.772 5 0.667 0.772 5 0.667 0.772 5 0.667 0.772 20 0.667 0.77 
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Table 5.13: TARE and CARE for the test based on a unstructured model relative to one based 

on a Kronecker product model cross-classified by p, and .y: pt = 0.6. 

7 0.5 1 1.5 2 Total 

Pc - &., Tare Care - Tare Care - Tare Care - &, Tare Care - Tare Car 

Total 5 0.673 0.813 5 0.673 0.813 5 0.674 0.813 5 0.674 0.813 20 0.673 0.81 

Table 5.14: TARE and CARE for the test based on a unstructured model relative to one based 

on a Kronecker product model cross-classified by p, and y: pt = 0.7- 

7 0.5 1 1.5 2 Total 
- Tare Care - go Tare Care N - Tare Care - LV Pc - 200 Tare Care 20, Tare Car 

Total 5 0.729 0.921 5 0.729 0-921 5 0.729 0.921 5 0.729 0.921 20 0.729 0.92 
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Table 5.15: TARE and CARE for the test based on a unstructured model relative to one based 

on a Kronecker product model cross-classified by p, and y: pt = 0.8. 

7' 0.5 

Pc - " Tare Care 
200 

- Tare Care - Tare Care - " Tare Care 
200 

Total 

- " Tare Car 
100 

Table 5.16: TARE and CARE for the test based on a unstructured model relative to one based 

on a Kronecker product model cross-classified by p, and y: pt = 0.9. 

- 

7 0.5 1 1.5 2 Total 
N - Tare Care - & Tare Cace - Tare Care - &, Tare Care - L V  

Pc & Tare Car 

Total 5 1.420 2.974 5 1.459 2.029 5 1.459 2.029 5 1.459 2.029 20 1.449 2.01 



Chap ter 5: Utilising the Kronecker product structure 116 

small values of pt with an increasing clifference as p, approaches 0.9. At pt = 0.8: the 

CARE exceeds 1 and at  pt = 0.9, both measures exceed 1. This is somewhat surprising 

and is worth further investigation. To understand how the parameter pt affects efficiency, 

a graphitai representation of the results is shown in Figures 5.1 to 5.4. A quadratic curve 

has been fit to the data- A loss of efficiency occurs for values of pt from 0.1 to about 

0.8. The degree of the loss of efficiency depends on the value of p,. Efficiency drops as 

we move from pt = 0.1 to pt = 0.5 and then begins to rise again. There appears to be no 

loss of efficiency for high values of pt (above 0.8). Efficiency is worst for mid values of pt. 

For the design and within-sub ject variance-covariance matrices considered, the re- 

sults presented in the Tables 5.8 to 5-16 and Figures 5.1 and 5.4 demonstrate the useful- 

ness of utilising the Kronecker product covariance structure for muitivariate longitudinal 

data. If one ignores the underlying Kronecker product covariance structure, a potential 

loss of efficiency will occur in testing hypotheses that are of interest- The parameters 

y and p,  defining the covariance matrix A do not appear to impact the efficiency very 

significantly. However, the parameter pt defining the covariance matrix Q appears to 

have a large impact on efficiency. 

5.10 Evaluating the performance of the test for the 

Kronecker product pattern in the covariance 

mat rix 

This section investigates the performance of the test described in section 5.4 for 

testing the null hypothesis that the CT x CT covariance matrix Co has the Kronecker 

product structure A x 0. The null and alternative hypotheses are given respectively by : 
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As mentioned in the introduction to this chapter, there are two reasons why this is a very 

useful test in practical work involving multivariate longitudinal data. First, the test will 

provide one with protection against doing the wrong thing in terms of basing inference 

on an incorrect covariance matrix. Secondly, it will give one increased efficiency if one 

does the right thing. The test is based on computing the Likelihood ratio test statistic 

given by: 

where Co has an arbitrary pattern and 2, is its maximum likeiihood or restricted maxi- 

mum likelihood estimate. & and fi are the maximum likelihood or restricted maximum 

likelihood estimates of A and 0 assuming Co has a Kronecker structured covariance 

mat rix. Under the null hypothesis, 2In(LR) has an asymptotic chi-square distribution 

with 

degrees of freedom when 0 is assumed to be compound syrnmetry or first-order autore- 

gressive. The idea of incorporating the test is that the choice of parameter estimates 

contained in the vector ;\ to be used in testing hypotheses of interest will depend on the 

results of this test. If the p-value obtained is less than or equal to a, where a is the fixed 

significance level of the test, then Ln will be used in subsequent analysis since the null 

hypothesis for the Kronecker product pattern will have been rejected. Otherwise, Aaxn 

will be used. 

The data in the Monte-car10 study discussed in section 5.8 was generated using 

the covariance matrix Co = A x 0 and varying the parameters in A and R. Hence, we 

can evaluate the performance of the test for the Kronecker product pattern by finding 

the empirical Type 1 error rates for this test for a given a. This is accomplished for 

each parameter combination considered by counting the number of times (out of the 

total number of simulation trials per parameter combination) that the null hypothesis 

Ho : Co = A x f2 is rejected. This translates to the number of times i,, is chosen over 
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XAxn is subsequent analysis. We then observe what happens to  the Type 1 error rates 

as cr goes €rom 0.05 to 0.95 in steps of 0.05 for the different parameter combinations 

considered. The results are presented in Table 5-17, fiom which we observe that the 

performance of the test described in section 5.4 is very good, with empirical Type 1 error 

rates being very close to a- 
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Table 5.17: Type  I error rates (per 100 tests) for the test for the Kronecker product covariance 

structure cross-classified by a and pt. 
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Figure 5.1: TARE (averaged over 200 simulations) of the test based on a unstructured within- 

sub ject variance-covariance matrix relative to one based on the Kronecker product 

mode1 for varyïng values of y. 
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Figure 5.2: TARE (averaged over 200 simulations) of the test based on a unstructured within- 

subject variance-covariance matrix relative to one based on the Kronecker product 

mode1 for varying values of p,. 
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Figure 5.3: CARE (averaged over 200 simulations) of the test based on a uostructured within- 

subject variance-covariance matrix relative to one based on the Kronecker product 

mode1 for varying values of y. 
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Figure 5.4: CARE (averaged over 200 simulations) of the test based on a unstructured within- 

sub ject variance-covariance rnatrix relative to one based on the Kronecker product 

mode1 for varying values of p,. 



Chapter 6 

The effect of covariance structure on 

hypothesis testing in multivariate 

longitudinal data 

6.1 Introduction 

In Chapter 5, we investigated the gain from utilising a Kronecker structured co- 

variance matrix for multivariate longitudinal data. Using the TARE and C M ,  we 

evaluated the efficiency of a test based on a completely unstructured covariance matrix 

relative to one based on a Kronecker structured covariance matrix. For the designs and 

covariance structures considered, the results demonstrated that if one ignores the under- 

lying Kronecker product covariance structure, a potential loss of efficiency could occur 

in testing hypotheses of interest. The degree of the loss of efficiency was determined to 

a large extent by the parameters defining the matrices A and 52. The parameter pt in R 

had the greatest effect on efficiency. 

In this chapter, we investigate the converse of the situation considered in Chapter 5. 

Specifically, the loss from imposing a Kronecker structured covariance matrix in testing 

hypot heses of interest in multivariate longitudinal data is investigated. To achieve this, 
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the concept of non-Kronecker product covariance matrices is introduced and a class of 

matrices that is non-Kronecker product defined. The class of matrices are specifred in a 

way that makes them easy to interpret. An index, referred to as the Kronecker product 

deviation index, is introduced. It is used to quanti& how far a giveo covariance matrix 

departs from Kronecker product structure. To assess the consequences of imposing a 

Kronecker product covariance matrix, hypotheses of interest are tested using two models. 

The first mode1 is based on a Kronecker product covariance mat& and the second model 

is based on a non-Kronecker product covariance matrix. The impact of the Kronecker 

product deviation index on the results of hypothesis testing using the two models are 

carefully studied. 

Results obtained from the investigation ndl enable us to make general statements 

about the consequences of imposing Kronecker product stmcture when it is not appro- 

priate in testing hypotheses of interest for multivariate longitudinal data. Additionaily, 

we will be able to state what parameter ranges s i p i &  more serious consequences, if any, 

in imposing the Kronecker product structure. Section 6.2 gives an alternative and more 

general formulation for the within-subject variance-covariance matrix Co - Section 6.3 

discusses how to measure departure from the Kronecker product structure. Section 6.4 

presents a Monte-carlo simulation study designed to investigate the impact of the Kro- 

necker product deviation index on testing hypotheses of interest. The chapter closes with 

results and a general discussion in section 6.5. 

6.2 An alternative formulation for Co 

A detailed discussion on modelling the covariance matrix for multivariate longitu- 

dinal data in the form of a Kronecker product is discussed in detail in section 4.2.2. A 

justification for using the model is also given. Two of the structures that are most com- 

monly used are reproduced in Table 6.1. In these structures, A represents the covariance 

matrix for the characteristics a t  any time point and 0 represents the correlation matrix 

for any of the characteristics over time. To model the within-subject covariance matrix 
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Table 6.1: Examples of within-subject covariance modeis (C = 2 and T = 3). 

Co as the Kronecker product of two matrices 4 and f2 , the assumption is made that 

A does not change with time and 0 is the same for al1 characteristics. This assumption 

will work in many situations but will be unrealistic in some cases. For example, if one 

is modeliing both diastolic and systolic blood pressure over time in a group of patients 

diagnosed with high blood pressure, then it is reasonable to assume that Q is the same 

for both of these characteristics. However, if one is modelling two distinctly different 

characteristics that have been measured over time, then it rnay be unrealistic to assume 

that their correlation structures over time are the same. An alternative formulation for 

Co must therefore be considered. 

Structure 

There are several options one may consider, one of which is to drop the assumption 

that the covariance matrix that models the T repeated measurements on a given char- 

acteristic is the same for al1 characteristics. For C characteristics each measured on T 

occasions, consider the following formulation for Co: 

where O,, for c = 1,2, . . . , C, represents the T x T correlation matrices for characteristics 

1 , 2 ,  . . . , C measured on T occasions and Ock for c = 1,2, .  . . , C and k = 1,2, . . . , C repre- 

sents the correlation matrices between the pairs of characteristics over time. The matrices 

- - Form (A @ R) # Parameters 
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0, and OCk for c = 1 , 2 , .  . . , C and k = 1,2 , .  . . , C may be left completely unstructured 

or rnay be structured in some way. Possible structures include compound symmetry and 

first-order autoregressive. Without loss of generality, consider two characteristics each 

rneasured on three occasions and assume a first-order autoregressive structure over time. 

The correlation matrix for the first characteristic is given by 

and for the second characteristic by 

fi2 = 

Also, 

0 1 2  = 

representing the correlation between the two characteristics over time. The overall within- 

su b jec t covariance matrix Co is t herefore given by : 

which cannot be expressed as the exact Kronecker product of two matrices except in the 

special case when the parameters pl, p;! and p l 2  are al1 equal to each other. The matrix 

Co is defined by 6 parameters, namely: ail, a l 2  and 022, pl  (defining nl), f i  defining (Ci2) 

and defining (al2). 
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6.3 Measuring departure from Kronecker product 

An important goal of the present chapter is to define an index that gives an in- 

dication of how well a given TC x TC variance-covariance matrix for C characteristics 

measured on T occasions can be expressed as the Kronecker product of a C x C matrix 

and a T x T matrix. The index would enable one to decide when to base inference for 

multivariate longitudinal data on a model with a Kronecker structured covariance ma- 

t r~u .  This section describes the index that will be used which is based on Verhees and 

Wansbeek [71]. 

Verhees and Wansbeek [71] describe a multimode direct product model for covari- 

ance structure analysis. They justiS. the model by stating that in the psychometric 

literature, there is evidence that the modes in multimode data interact multiplicatively. 

They also state that a basic expression of this idea is that a covariance matrix may then 

be written as the repeated Kronecker product of k, Say, parameter matrices, where k 

is the number of modes. This is, in fact, the covariance matrix that bas been central 

to the work done in this dissertation, specifically as it applies to multivariate longitudi- 

nal data with k = 2 to reflect the two dimensions (characteristics and tirne). Verhees 

and Wansbeek [71] cal1 this model the "factorial covariance structure". For this model, 

they give an integrated treatment of maximum likelihood, weighted least squares and 

unweighted least squares estimators. In this section, we focus on the unweighted least 

squares estimator. We pay particular attention to the modified unweighted least squares 

estimator which is non-iteratively comput able. To avoid confusion and to be consistent 

with the notation in Verhees and Wansbeek [71], the following equivalences should be 

kept in rnind. The notation on the right is the notation used in this dissertation and the 

notation on the left is the notation used in Verhees and Wansbeek [71]. 
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Consider the data vector for a single subject i, i = 1, 2 , .  . .: 1: in multivariate 

longitudinal data with C = nl characteristics measured on T = nz occasions. Let Yi* 

represent the T x 1 vector representing the data for a given characteristic measured on T 

occasions and yil represent the C x 1 vector representing the data for C characteristics 

measured at  each time point. The iîrst index (characteristic) is the slower ruming index 

and the second index (time) is the faster running index. The total number of observations 

on a given subject is n = nl x n2 = C x T which are given by the vector yi of length 

nl x n2 = C x T.  The variability in the observations is summarised in their n x n = 

CT x CT sample covariance matrix S. The covariance matrix £rom which yi is drawn is 

given by Co? also n x n = CT x CT. Co is said to have a factorial covariance structure 

when it has the form: 

where A and Cl are symmetric positive-definite matrices of order C x C and T x T 

respectively. We consider estimation of the matrices A and Cl  in equation (6.1). Three 

criteria are available for estimating the parameters in A and 0- The three criteria are 

maximum likelihood, weighted least squares and unweighted least squares- The three 

criteria are given by equations 6.2, 6.3 and 6.4 respectively. 

min tr((S - c,)s-')~ 
e 

min tr(S - 
6 

The parameter vector 8 contains the parameters in A and Q. The three criteria can be 

summarised as: 

min tr((S - c,)w-')~, 

with W = 2, (ML), W = S (WLS) or W = In (ULS). 



Chap ter 6: Xmposing the Kronecker prod uct structure 

6.3.1 Notation 

The following notation will be useiùl: 

1.  Ci is a n x n commutation mat& that changes the running order of the observations 

in the vector y in such a way that Ciy has the zqh index fastest. 

3. Wi, Si and C ,  are the permuted versions of W :  S and Co respectively. For example, 

considering the general situation with k dimensions' Ri = Ci@ Ci where the ni x n' 

matrix Ci is given by: 

The vectorized matrices are given by cri = vec Ci and ai = vec Ci. 

4. Pi = vec Si where Si cornes from stacking each of the (ni12 blocks of order ni x ni 

of Si in a vector according to the vec operator, and placing these vectors together 

next to each other as columns of the matrix Si. 

6.3.2 Estimation 

Following Verhees and Wansbeek [71], the estimator âi of ai is given by 

where Wi = fii (ML), W- = Si (WLS) or W- = In (ULS), and hats on Xi and W- 
indicate their possible dependence on unknown parameters that also have to be estimated. 

Also, @TW~ = =i(Wi @ w~)B,!, where Bi is a permutation rnatrix. Elaboration of 

equation (6.7) gives three distinct estimators for the t hree estimation criteria. Al1 three 

estimators require an  iterative procedure. Fortunately, a modification of the unweighted 

least squares estimator is possible that allows for non-iterative estimator. 
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The unweighted least squares estimator for q is 

squares estimator for O' is 

Substituting equation (6.9) into equation (6.8) yields 

where X is defined as 

imposing the normalisation that â,!âi = 1. This gives the very important result that ûi is 

an eigenvector of the ni! x n; rnatrix Sis,!. The optimum value of the modified unweighted 

least squares criterion is shovm to be a - 1, where a = tr (S:). Therefore, in order to 

render this minimal, the largest eigenvalue in equation (6.10) should be chosen. Verhees 

and Wansbeek [71] proved that there exists a non-iterative unweighted least squares 

estimator for ei. This estimator is consistent but not asyrnptotically efficient. When 

k = 2, as in our case with multivariate longitudinal data, can be seen to be the first 

left singular vector of SI and â2 to  be the first right singular vector of this same matrix 

Si. Based on this, we define an index that measures how far a given variance-covariance 

matrix is from Kronecker product: 

Definition 6.3.1 Let C be a n x n variance-covariance rnatrix. The  Kronecker product 

deviation index of C denoted by b(C) zs defined as: 

b(C)  = min tr(C - (A @ O))* .  
4 0  
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Definition 6.3.2 Let C be a n x n variance-covariance matriz. A rnodified definition of 

the Kronecker product deuiation index of C denoted 6 y 6' ( C )  zs giuen by: 

The second definition ensures that the Kronecker product deviation index is invariant 

under scale change. In this thesis, the matrices considered are all of comparable size in 

terms of their deterrninants, hence the first dehnition of the Kronecker product deviation 

index is used. 

6.3.3 An example 

To illustrate the modified unweighted least squares estimator that is the solution 

of an eigenvalue equation, consider the following matrix: 

The modified unweighted Ieast squares estimates of al and a2 are found to be: 
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and 

Hence, 

and 

Applying Definition 6-3.1, the value of the Kronecker product deviation index is found 

to be 10.154. 

The values of the Kronecker product deviation index obtained by applying Defini- 

tion 6.3.1 to the class of matrices introduced in section 6.2 are dispiayed in the histogram 

in Figure 6.1. The values in the histogram are obtained by specifiing values for the cor- 

relation parameters as given in Table 6.2. The parameters 011, n* and ai2 and are kept 

constant at 4, 4 and 2 respectively. Note that the distribution of these values is strongly 

skewed to  the right. Summary statistics for these values are also given in Table 6.3. 

The results are also given for each value of in Table 6.4 to Table 6.7 where they 

have been cross-classified by the parameters pl and pz.  The value of the criterion in the 
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Optnnurn values d the unweighted least squares criterian 

Figure 6.1: Histogram of the values of the Kronecker product deviation index. 

Table 6.2: Values of correlation parameters used in comput ing the Kronecker product devia- 

tion index. 

( parameter ( Values 

optimum is O when the values of the parameters pi, pz and pl* are equal. Also note that 

the tables are symmetric along pl = pz. 

Examining each of the four tables closely, we focus on the ce11 where the value of 

the Kronecker product deviation index is O. This is the ce11 for which the values of pl,  

p:. and pi2 are equal. Observe that the values in the immediate vicinity of this ce11 are 

srnaIl and increase quickly as we move outwards away from this cell in all directions. 

This intuitively makes sense since moving away fkom this ce11 (which we can t h h k  of as 
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Table 6.3: Overali summary statistics for the Kronecker product deviation index. 

Min. 

Table 6.4: Values of the Kronecker product deviation index cross-classified by pl and pz: pl2 = 

0.2. 
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Table 6.5: Values of the Kronecker product deviation index cross-classîfied by pl and PL: pl2 = 

0.4. 



Chap ter 6: Imposing the Kronecker product structure 

Table 6.6: Values of the Kronecker product deviation index cross-classified by pi  and pz: pi2 = 

0.6. 



Chap ter 6: Lmposing the Kronecker product structure 

Table 6.7: Values of the Kronecker product deviation index cross-classified by pl and p2: pl2 = 

0.8. 
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the center of the table) means that the values of the parameters pi and f i  are moving 

further away from the value of pl,. The departure of pl and p, further and further away 

from pl, implies that we are getting further away from the Kronecker product stmcture 

and hence the values of the Kronecker product deviation index are getting larger. 

6.4 A Monte-Carlo study 

In t his section, a Monte-carlo simulation study was undertaken to evaluate the 

impact of the Kronecker product deviation index on testing hypotheses of interest in 

rnultivariate longitudinal data- The evaluation is done both under the null and alterna- 

tive hypotheses. The test based on imposing a Kronecker product covariance matrix is 

compared to a test based on a non-Kronecker product covariance matrix. These tests are 

inves tigated for a multivariate longitudinal design consisting of data from two groups of 

subjects n~easured on three different occasions on two characteristics. 

6.4.1 Data generation 

Multivariate normal data with p = (8 @ Ic €31 X)X and C = Ir @ Co = 11 @ Ca, 

where Co = Ca is as defined in section 6.2, is generated for two characteristics C = 2 and 

three time points T = 3. As discussed in Chapters 4 and 5, for testing the hypotheses 

H, : &A = O  Vs. Ha: QX # O ,  

we compute the test statistic 

T* = (Q$ (QPQ')-' (QX), 

and compare it to a X2 distribution with r degrees of freedom 

Ho : QX = O is rejected at level a if 

T* = (QQ' ( Q V Q ~ '  (~i) I X:(a). 

(6.15) 

The null hypothesis 
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In the Monte-car10 simulation study conducted here, the vector p is specsed in Mo 

different ways. To assess the impact of the Kronecker product deviation index under the 

nul1 hypotkesis, the vector p is specified so that the n d l  hypothesis is true. This means 

specifying p so that Q X  = O. To assess the impact of the Kronecker product deviation 

index under the alternative hypothesis, p is specified sa that the null hypothesis is not 

true. This means specifying p so that Q A  # O. To be more specific, the vector p is 

specified for a bivariate growth curve data problem where one is interested in the overall 

hypothesis of parallelism. Under Ho, we have 

If Ho is true, then 

If Ho is not true, then QX # O. 

Under the null hypothesis, we specib p so that: 

where the intercepts and slopes for the two groups are equal for both characteristics. 
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Under the alternative hypothesis, p is specified so that: 

For the sake F simplicity, we speci& equal intercepts (,LIio = &, a10  = aZO) but different 

slopes. For the slopes, we let ,& = kBll and a21 = kall and speciS. the constant k so 

that the alternative hypothesis represents just a slight departure fiom the nul1 hypothesis. 

The specific values in p are specified following modified results of the study de- 

scribed in section 5.8. The study concerned the relative effectiveness of two orthopaedic 

adjustments of the mandible. Nine subjects were assigned to each of two orthopaedic 

treatments, called activator treatments. On each of three occasions, three dependent 

variables were observed. The three dependent variables, in combination, reflected the 

position and size of the mandible. Mean plots of the data for each group and variable 

revealed that the growth curves of the three variables were a t  least linear. Timm [65] fit 

a quadratic regression mode1 to the data. In the study described here, the parameters for 

group 1 are specified by ignoring the quadratic terms and using the data from the Erst 

group on the first two variables. The parameters for group 2 are specified as a function 

of group 1 parameters, that is: 

and k is specified so that group 2 slopes for both characteristics are 20% greater than 

group 1 slopes. Note that when k = 1, Q X  = O and the data is therefore generated 

assuming Ho is true. Al1 other values of k, that is, k > 1 signie some departure from W, 

and hence QX # O. In the simulation study done here, only one alternative is considered 

which is the case where group 2 slopes are 20% greater than the group 1 slopes. The 
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justification is that the main focus here is to understand the effect of the Kronecker 

product deviation index on hypot hesis testing. 

The wit hin-sub ject variance-covariance matrix is specified to be non-Kronecker 

product following the speciftcation outlined in section 6.2- To evaluate how far each of 

the covariance matrices departs kom the Kronecker product form, the index of departure 

discussed in section 6.3 is computed prior to data generation. The further the index is 

from 0, the further the given covariance matrix is from Kronecker product. The param- 

eter values used in specifjring the within-subject variance covariance mat+ are given in 

Table 6.8. This gives a total of 100 parameter combinations. The range of parameters 

Table 6.8: Values of parameters defining R used in the Monte-car10 simulation study. 

1 Parameter 
7 

Values 

and parameter combinations considered is varied enough to represent parameter combi- 

nations that may arise in practice. Computational problerns are encountered for values 

of p l ,  pl and pl2 very close to O and 1 and hence the range of values considered for these 

parameters is restricted to lie between 0.1 and 0.9 inclusive. The parameters oll and 

q2 are kept constant. We did not see the need to Vary these parameters since they had 

minimal effects on any of the quantities of interest investigated in Chapter 5.  For each 

set of parameter combinations, 200 simulation trials are carried out. 

6.4.2 Mode1 fit and quantities of interest 

The data generated by each trial is analyzed using a linear model for multivariate 

longitudinal data. More specifically, a linear growth curve mode1 is fit to each of the two 

response variables in each of the two groups. The model fit to the two variables is 
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with 

and 

r 

A 0  

Pl1 

010 

Qrll 

B20 

B21 

a20 

a21 , 
To test for parallelism simultaneously for both variables, that  is: 

we compute the test statistic 

T = (QX)' (QVQ/)-' (QX) 
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and compare it to a X2 distribution with 4 degrees of fieedom, where 

Two different covariance models are fit to the data: 

1. a non-Kronecker product covariance rnatrix; 

2. a Kronecker product covariance matrix. 

Each trial yields two test statistics and the p-values for the two tests are easily 

obtained from the xZ distribution with 4 degrees of fieedom. Note that for each trial, we 

obtain two test statistics and corresponding p-values as  a result of fitting two different 

covariance models to the data. For each of the two models fit: we can evaluate observed 

significance level by counting the proportion of times (out of the total number of trials) 

that the nuIl hypothesis QX = O is falsely rejected. This is the number of times the 

p-value obtained is less than or equal to the fked significance level a! out of the total 

number of trials carried out. When k > 1, Q X  # O and the null hypothesis is not true. 

In a similar way, we can b d  the power for the two models fit by counting the proportion 

of times (out of the total number of trials) that the null hypothesis QX = O is correctly 

rejected. This is the number of times the p-value obtained is less than or equal to the 

fixed significance level a, out of the total number of trials carried out. The primary focus, 

however, will be on the impact of the Kronecker product deviation index on hypothesis 

testing. 

6.5 Results and discussion 

Under the null hypothesis, data was generated to simulate a two treatment bivari- 

ate growth curve mode1 in which the mean vectors for the groups on the two variables 
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measured on three occasions are equal. Under the alternative hypothesis, data was gen- 

erated to simulate a two treatment bivariate growth curve model in which the mean 

vectors for the groups on the two variables measured on three occasions are not equal. 

Specifically, the intercepts for the two characteristics were set equal in both groups, but 

the slopes for both characteristics in group 2 exceeded those of group 1 by 20%. This 

represents a slight departure from the null hypothesis. The hypothesis of interest in both 

cases was the overall hypothesis of parallelism between the two groups which was tested 

by fitting two different covariance models to the data. Tables 6.9 to 6.12 give the values 

of observed significance level obtained while Tables 6.13 to 6.16 give the achieved power. 

Table 6.9: Values of the observed significance level for the test of overall hypothesis of par- 

allelism between two groups in a growth curve model under the nuil hypothesis 

cross-classified by pl and p2: pl2 = 0.2- 

The histograms in Figure 6.2 show the distribution of the p-values obtained from 

testing the nul1 hypothesis of parallelism between the two groups under the two covariance 

models. Under the null hypothesis, the distribution of the p-values is expected to be 

close to uniform when the hypothesis of parallelism between two groups is tested using 

an unstructured covariance matrix. Some slight deviation from the uniform distribution 

may be expected when the same hypothesis is tested using a Kronecker product covariance 
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Table 6.10: Values of the observed significance level for the test of overall hypothesis of par- 

allelism between two groups in a growth curve model under the nuil hypothesis 

cross-classified by pl  and pz: p l2  = 0.4. 

Pi 0.1 0.3 0.5 0.7 0.9 

P2 K P  UN K P  UN KP UN KF' UN KP UN 

Table 6.11: Values of the observed significance ievel for the test of overail hypothesis of par- 

alIeiism between two groups in a growth cuve model under the nuii hypothesis 

cross-classified by pl and p2: pi2 = 0.6. 
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Table 6.12: Values of the observed significance level for the test of overd hypothesis of par- 

ailelism between two groups in a growth cuve  mode1 under the nuil hypothesis 

cross-classified by pl and p2: pl2 = 0.8. 

Table 6.13: Values of empirical power for the test of overail hypothesis of paralleiism be- 

tween two groups in a growth curve mode1 under the alternative hypothesis cross- 

classified by pl and pz: pl2 = 0-2. 
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Table 6.14: Values of empirical power for the test of overd hypothesis of parallekm be- 

tnreen two groups in a growth curve model under the alternative hypothesis cross- 

classified by pl and p2: pl2 = 0.4. 

Table 6.15: Values of empirical power for the test of overall hypothesis of parallelism be- 

tween two groups in a growth curve model under the alternative hypothesis cross- 

classified by pi  and p2: pl2 = 0.6. 
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Table 6.16: Values of empïrical power for the test of overail hypothesis of parallelism be- 

tween two groups in a growth curve mode1 under the alternative hypothesis cross- 

classified by pi and p2: pi2 = 0.8- 

Pz 0.1 0.3 0.5 0.7 0.9 

P2 KP UN KP UN KF' UN KP UN KP UN 

matrix. Quantile plots of the p-values when the null hypothesis is true, based on the 

uniform distribution for both the unstructured and Kronecker product covariance models, 

are given in Figure 6.3- It appears that the distribution of the p-values from the two 

tests do not depart too much from the uniform distribution. 

To better understand the role of the Kronecker product deviation index, the p- 

values O btained £rom the two tests are plot ted conditioning on intervals of the Kronecker 

product deviation index. Figure 6.4 shows the results where the endpoints of the Kro- 

necker product deviation index intervals are chosen so as to make the counts of points 

in the intervals as nearly equal as possible. Figure 6.5 shows the same results where the 

endpoints of the Kronecker product deviation index intervals are chosen so as to make 

the intervals to be of equal width. The p-values in both plots are given when the alterna- 

tive hypothesis is true. Figures 6.6 and 6.7 show the results under the null hypothesis. 

Figures 6.4 and 6.5 clearly show that the variability in the p-values obtained increases as 

the Kronecker product deviation index increases. Anot her important observation is that 

the dark cloud of points is shifting towards the horizontal axis as the Kronecker product 
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deviation index increases. This implies that overaii, while the the p-values of the test 

using the unstnictured covariance matrix get smaller as the Kronecker product deviation 

index increases, the pvalues of the test using the Kronecker product covariance mat& 

are getting larger. Figure 6.8 further clarifies this point with a general upward trend in 

the scatter of points confirmed by the fitted least squares regression iine. Overall, the 

figure shows that the differences in power observed under the two tests is increasing as 

the Kronecker product deviation index increases. The effect on the observed significance 

level of the test is not as pronounced even though we do observe an increase in the 

variability as the Kronecker product deviation index increases. 

Another outcome of interest in this study was the power of the test for the nuil 

hypothesis that the within subject variance covariance matrix has a Kronecker product 

structure described in section 5-4. Figure 6.9 shows the relationship between the Kro- 

necker product deviation index and the pvalues obtained from testing t his hypot hesis. 

From the figure: we note that when the Kronecker product index is large, the p-value for 

the test of the null hypothesis that the within subject variance covariance matrix has a 

Kronecker product structure is small, indicating that the test is, for the most part, doing 

the right thing and is able to detect departure from Kronecker product structure. 
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Pvalue under unstructured model 

0.0 0.4 0.8 

Pvalue under kronecker product rnodel 

0.0 0.4 0.8 

Pvalue under unstructured model 

0.0 0.4 0.8 

Pvalue under kronecker product rnodel 

Figure 6.2: Histograms of the pvalues for the test of overali hypothesis of parallelism between 

two groups in a growth cuve model under the nul1 hypothesis (top figures) and 

alternative hypot hesis (bottom figures). 
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Figure 6.3: Quantile plots of the p-values for the test of overaii hypothesis of parallelism 

between two groups in a growth curve mode1 under the null hypothesis based on 

the uniform distribution. 
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Pvalue for overal! test of parallelism under kronecker product model 

Figure 6.4: Scatter plots and fitted least squares regression lines of the p-values for the test of 

overall hypothesis of paralleikm between two groups in a growth curve model un- 

der the alternative hypot hesis. Plots are conditioned on intervals of the Kronecker 

product deviation index (counts of points in the intervals nearly equal). 
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0 6 0.8 1.a 

Pvalue for overall test of parallelism under kronecker product model 

Figure 6.5: Scatter plots and fitted least squares regression lines of the pvalues for the test of 

overali hypothesis of pardelkm between two groups in a growth cuve model un- 

der the alternative hypothesis. Plots are conditioned on intervals of the Kronecker 

product deviation index (intervals of equal width). 
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0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Pvalue for overall test of parallelism under kronecker product mode1 

Figure 6.6: Scatter plots and fitted least squares regression lines of the pvalues for the test 

of overali hypothesis of parallelism between two groups in a growth c u v e  mode1 

under the nul1 hypothesis. Plots are conditioned on intervals of the Kronecker 

product deviation index (counts of points in the intervals nearly equal). 
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0.0 0.2 0.4 0-6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0 

Pvalue for overall test of parallelisrn under kronecker product model 

Figure 6.7: Scatter plots and fitted least squares regression lines of the pvalues for the test 

of overall hypothesis of paralielism between two gmups in a growth cunre mode1 

under the nuii hypothesis. Plots are conditioned on intervals of the Kronecker 

product deviation index (intervals of equal width). 
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O 

1 I i 1 I 1 I 
O 5 10 15 20 25 

Kronecker product deviation index 

Figure 6.8: Scatter plot and fitted least squares regression line of the clifference in power 

(power of test based on a unstructured covariance matrix - power of test based 

on a Kronecker product covariance matrix) for the test of overall hypothesis of 

parallelism between two groups in a growth cuve  mode1 under the alternative 

hypot hesis. 
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I I i 1 I I 

O 5 10 15 20 25 

Kronecker product deviation index 

Figure 6.9: Scatter plot of the Kronecker product deviation index versus the gvalues for the 

test of the null hypot hesis t hat the within-subject variance-covariance matrix has 

a Kronecker product structure. 



Chapter 7 

Summary and further research 

7.1 General discussion 

In this dissertation, we have investigated efficiency in the linear model for multivari- 

ate longitudinal data with a Kronecker structured covariance matrix. The distinguishing 

characteristic of t his model is that it requires the wit hin-sub ject variance-covariance ma- 

trix to be specified as the Kronecker product of two matrices that reflect the two dimen- 

sions underlying multivariate longitudinal data, namely characteris tic and t ime. The 

same model has been used to model covariance structure when two or more repeated 

factors are present in a given study as discussed by Galecki 1181. 

Some advantages of using this model for multivariate longitudinal data include 

clear and meaningful interpretation in terms of the contribution of the characteristic 

and time dimensions to  the overall within-subject variance-covariance matrix. Under 

different settings, efficiency was evaluated by deriving the trace asymptotic relative ef- 

ficiency (TARE) and curvature asymptotic relative efficiency (CARE) , both measures 

of asymptotic relative efficiency. Both measures can be applied to compare competing 

test stat ist ics which have limiting non-central chi-square distributions through a suitable 

Pitman alternative. 

One approach commonly used to analyse data from multivariate longitudinal de- 
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signs is ordinary least squares. If different subjects are being measured at different times, 

this might be a reasonable approach. However, if the same subjects being measured over 

time, it is more realistic to assume that the measurements within a subject are correlated. 

Modelling the covariance matrix using the Kronecker product of two matrices is one way 

to capture this correlation. The efficiency of a test procedure that ignores correlation 

relative to a test that models the covariance m a t h  as the Kronecker product of two 

matrices (assumed to be the true structure) was evaluated using the TARE and CARE. 

Numerical results were presented for two designs (growth curve and repeated mea- 

sures analysis of variance) and two covariance structures for the matrix that models the 

repeated measures on a given characteristic (compound symmetry and hst-order autore- 

gressive). The covariance parameters p,, p, and y were found to have a pronounced effect 

on both measures of asymptotic relative efficiency. The degree of the loss of efficiency 

was clearly demonstrated to be a function of these covariance parameters. For the de- 

signs and covariance matrices considered, the results indicate that the efficiency of a test 

procedure that ignores correlation relative to a test that rnodels the covariance matrix 

as the Kronecker product of two matrices (assumed to be the true structure) is worse for 

high values of p, and p, and low values of y. 

Another issue investigated, and considered to be of considerable practical interest, 

was the potential gain in efficiency that would result from testing hypotheses of inter- 

est using a test that utilised the Kronecker product structure. The efficiency of a test 

procedure that ignores the Kronecker product structure relative to one that models the 

covariance matrix as the Kronecker product of two matrices was evaluated using the 

TARE and CARE. Expressions for the TARE and CARE are derived. To estimate ef- 

ficiency, a Monte-car10 simulation study was conducted. The design in the simulation 

study was specified to correspond to a two group bivariate growth curve setting and the 

covariance matrix was specified to be the Kronecker product of a unstructured covari- 

ance matrix and a first-order autoregressive matrix. The parameters defining the two 

matrices were varied to  represent various parameter combinations that are likely to arise 

in practise. 
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Once again, efficiency is shown to be a function of the covariance parameters f i ,  

and y. For the design and covariance parameters considered, the parameter pt defining 

R was found to have the greatest impact on efficiency. In practical work, one would also 

need to know if the Kronecker product structure is suitable or not. In this regard, a test 

of the null hypothesis that the within-subject variance-covariance matrix has a Kronecker 

product structure was also presented. Since in the simulation study the wit hin-subject 

variance-covariance matrix was specified to be the Kronecker product of a unstructured 

covariance matrix and a first-order autoregressive matrix, the performance of the test 

was evaluated as a by-product of the simulations. The type 1 error rates of the test of 

Kronecker product structure were found to be very close to the nominal values. 

The validity of the model considered so far depends largely on the special covariance 

structure that it assumes. If the Kronecker product model is not suitable in a given situ- 

ation, then there should be some consequences if hypotheses of interest are tested under 

the Kronecker product structure. The consequences of imposing the special covariance 

structure were also investigated. A class of matrices with some degree of departure from 

the Kronecker product model is introduced. An index, called the Kronecker product 

deviation index, is used to quantify how far a given variance-covariance matrix departs 

from Kronecker product. The index is described and evaluated for the class of matrices 

introduced. 

A Monte-car10 simulation study using this class of covariance matrices was used to 

compare the impact of the Kronecker product deviation index on a test based on imposing 

a Kronecker product structure relative to a test based on a unstructured covariance 

matrix. The null hypothesis of interest was that of overall parallelism in a two group 

bivariate growth curve design. The results obtained indicate that the greatest negative 

consequence from imposing a Kronecker product model in testing hypotheses of interest 

occurred when there was moderate departure from the null hypothesis. For the parameter 

combinations considered, the power of the test that imposed the Kronecker product model 

was consistently lower. ,41so, the difference the power between the two tests was found 

to increase as the Kronecker product deviation index increased. 
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7.2 Limitations 

1. The within-subject design considered is the same for al1 subjects. This is too 

restrictive and a more general specification t hat ailows difFerent su bjects t O have 

different designs should be considered- 

2. S t udy considered two wit hin-subject desips  (growt h curve and repea ted measures 

ANOVA). Other designs should be considered. 

3. Study only looked at  covariates that are time invariant, for example, the treatment 

group that an individual is assigned to. It would be useful to consider time varying 

covariates as well, for example, characteristics of the subject that change with time 

and that may have an effect on the response of interest. 

4. Two covariance matrices were used for Q, namely, compound syrnmetry and first- 

order autoregressive. Other types of matrices that can be used to model 0, includ- 

ing unstructured and simple, should be considered. 

7.3 Further research 

1. Most of the work in this dissertation has focused on two within-subject design 

matrices: the growth curve design and the repeated measures analysis of variance 

design. Another design that is equally important and needs to be investigated is the 

crossover design. In a crossover trial, the entire study period is first divided into Say 

p experimental phases- A wash-out penod is usually allowed between the phases. 

The design also specifies a number of different treatment sequences and outlines the 

order in which the treatrnents are to be administered for each treatment sequence. 

Sub jects are then randomly assigned to the different treatment sequences. The 

design is commonly used in areas such as agriculture and medicine. If multiple 

characteristics are being measured on each study subject, then the model with a 

Kronecker product covariance matrix can be used. The efficiency of this model 

needs to be investigated for the crossover design. 
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2. In Chapter 4, the efficiency of a test procedure that ignores correlation relative 

one that models the covariance matrix as the Kronecker product of two matrices 

(assumed to be the true structure) was evaluated using the trace asymptotic relative 

efficiency and curvature asymptotic relative efficiency. Mathematical expression for 

the trace asyrnp totic relative efficiency and curvat ure asymp to tic relative efficiency 

were derived and shown to be functions of various quantities. For different within- 

subject designs and different covariance matrices, it would be useful to establish 

bounds on both the trace asymptotic relative efficiency and curvature asymptotic 

relative efficiency. For example, if the within-subject design corresponds to a growth 

curve set ting and the within-subject variance-covariance matrix is the Kronecker 

product of a unstructured covariance matrix and a Fst-order autoregressive matrix, 

then bounds on both the TARE and CARE should be derived. 

The greatest benefit from using the Kronecker product model for multivariate longi- 

tudinal data may be in the presence of unbalanced and/or missing data, a common 

problem in designs that involve long or short term follow u p  of subjects. Further 

simulation work is required to investigate this. To investigate the benefit of using 

the Kronecker product model in the presence of missing data, for example, data 

can be simulated with a Kronecker product covariance matrix for the within-subject 

variance-covariance matrix. Observations can then be systematically deIeted a t  dif- 

ferent rates in specific patterns. The trace asymptotic relative efficiency and cur- 

vat ure asymptotic relative efficiency from testing hypot hesis of interest can then 

be evaluated for a test based on a Kronecker product model relative to other tests, 

for example, a test based on a unstructured covariance matrix. 

4. Another potential benefit from using the Kronecker product model for multivariate 

longitudinal data may be in cases where a given study involves only a small number 

of subjects. It is expected that the effects of mis-specified covariance structures on 

testing hypotheses of interest may not be substantial if the number of subjects 

I in the study is large. However, this is likely not to be the case when only a 

small number of subjects have been enrolled or are available for the study. Bence, 
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the trace asymptotic relative efficiency and curvature asymptotic relative efficiency 

need to be evaluated with smaU and moderate sample sizes. 

5 .  The response vector fur a given subject Yi:  i = 1, . . . , I has been represented so far 

wit h the time index running faster than the characteristics index For example, for 

a single subject with 2 characteristics measured on 3 occasions, the response vector 

is given by: 

with the first index representing characteristics and the second index representing 

t ime. Using t his formulation, the within-subject variancecovariance matrix has 

been expressed as Co = A @ 0. The covariance between the outcome variables 

is specified by the C x C mat& A whereas the covariance among the repeated 

measures for a given outcome variable is specified by the T x T matrix S1. If the 

order of the two dimensions is reversed, we now have: 

This formulation of yi may have some advantages and needs to be considered, espe- 

cially in terms of the wit hin-sub ject variance-covariance matrix Co. For example, 

in defining a class of matrices that depart from Kronecker product, the correlation 

between the characteristics can be specified to change over time. Without loss of 



generality, for two characteristics measured on three occasions, let f i ,  pz and p3 be 

the correlations between characteristic 1 and characteristic 2 at times 1, 2 and 3 

respectively. Aiiowing p l ,  p2 and PJ to take on different values removes the rather 

restrictive assumption that the correlation between the characteristics is constant 

over time. This seems more practical and can aIso be easily interpreted. In extreme 

situations, we can model pl > O, pl = O and p3 < O .  This alternative formulation 

needs to be investigated both in terms of evaluating efficiency in different settings 

using the trace asymptotic relative efficiency and curvature asymptotic relative 

efficiency and in assessing the consequences of imposing the Kronecker product 

structure on testing hypothses of interest. 

6. The model considered in t his dissertation appiies t O multivariate longitudinal data 

when the measurements are assumed to be multivariate normal. In many prac- 

tical situations, however, this assumption will not hold. In particular, when the 

responses are discrete or represent count data, different rnethodology must be used. 

When a single outcome variabte is being recorded over time, generalised estirnating 

equations provide one practical means for dealing with discete or count data. The 

approach to be taken when multiple outcome variables that are discrete or repre- 

sent count data needs to be investigated. In particular, a way of modelling the 

covariance matrix that is similar to the Kronecker product approach for continous 

data should be sought. 



Bibliography 

[l] B. Abraham and Ch. E. Minder. A t h e  series model with random coefficients. 
Communications an Statistics, Theory and Methods, 11 (12) : 1381-1391, 1982. 

[2] Blair M. Anderson, S. W. Anderson, and Ingram O h .  Maximum likelihood es- 
timators and Iikelihood ratio criteria in multivariate components of variance. The 
ilnnals of Statistics, 14(2):405-417, 1986. 

[3] Adelchi Azzalini. Growth curve analysis for patterned covariance matrices. In M. L. 
Puri and J .  P. Vilaplana, editors, New perspectives in theoretical and applied statis- 
tics, pages 61-74. John Wiley and Sons Inc., 1987. 

[4] Peter Bloomfield and Geoffrey S. Watson. The inefficiency of least squares. 
Biometrika, 62(1):121-128, 1975. 

[5] R. D. Bock. Multivariate statistical methods in behavioral research. McGraw-Hill 
Series in Psychology. McGraw-Hill Inc., New-York, 1975. 

[6] Robert R. Boik. The mixed model for multivariate repeated measures: Validity 
conditions and an approximate test. Psychometrika, 53:469-486, 1988. 

[7] Robert R. Boik. Scheffe's mixed model for multivariate repeated measures: A relative 
efficiency evaluation. Communications in Statistics, Theory and Methods, 20:1233- 
1255, 1991. 

[8] Vernon M. Chinchilli and Walter H. Carter Jr. A likelihood ratio test for a patterned 
covariance matrix in a multivariate growth-curve model. Biometrics, 40:151-156, 
1954. 

[9] D. R. Cox, R. Fitzpatrick, A. E. Fletcher, S. M. Gore, D. J. Spiegelhalter, and D. R. 
Jones. Quality of life assessment: Can we keep it simple? Journal of the Royal 
Statistical Society, Series A, 155:353-393, 1992. 

[IO] Martin J. Crowder and David J. Hand. Analysis of Repeated Measurements, vol- 
ume 41 of Monographs on Statistics and Applzed Probability. Chapman and Hall, 
London, 1990. 

[Il] Carroll J. Diaz and William D. Johnson. An F-test for multivariate repteated mea- 
sures data with the Wiener stochastic process pattern in the covariance matrix. 
Communications in Statistics, Theory and Methods, 27(2):275-289, 1998. 



[12] Terry E. Dielman and Roger C .  Pfaffenberger. Efficiency of ordinary least squares for 
Iinear models with autocorrelataion. Journal of the American Statistical Association, 
84(405):248-248, 1989. 

[13] Peter J. Diggle. An approach to the analysis of repeated measurements. Biometrics, 
44:959-971, 1988. 

[14] Peter J. Diggle, Kung-Yee Liang, and Scott L. Zeger. Analysis of Longitudinal Data, 
volume 13 of Oxford Statistical Science Series. Oxford University Press, London, 
1994. 

[15] Dorothy D. Dunlop. Regression for longitudinal data: A bridge fiom least squares. 
The American Statistician, 48(4):299-303, 1994. 

[16] Paul L. Enright and Robert E. Hyatt. Ofice Spirometry: A practical guide to the 
selection and use of spirometers. Lea 96 Febiger, Philadelphia, 1987. 

[17] Garrett M. Fitzmaurice, Nan M. Laird, and Andrea G.  Rotnizky. Regression models 
for discrete longitudinal responses. Stctistical Science, 8(3):284-309, 1993. 

[18] Andrzej T. Galecki. General class of covariance structures for two or more repeated 
factors in longitudinal data analysis. Communications in Statistics, Theory and 
Methods, 23(11):3105-3119, 1994. 

[19] Jean Dickinson Gibbons. Nonparametric statistical inference, volume 65 of Statistics, 
textbooks and monographs. Marcel1 Dekker, Inc., New York, second edition, 1985. 

[20] James E. Gnzzle and David M. Allen. Analysis of growth and dose response curves. 
Biometrics, 25:357-381, 1969. 

[21] David Hand and Martin Crowder. Practical Longitudinal Data Analysis. Texts in 
S tat istical Science. Chapman and Hall, London, 1996. 

[22] David A. HaMlle. Bayesian inference for variance components using only error 
contrasts. Biometrika, 61:383-385, 1974. 

[23] P. Hopwood, R. J. Stephens, and D. Machin. Approaches to the analysis of quality of 
life data: experience gained from a Medical Research Council Lung Cancer Working 
Party palliative chemotherapy trial. Quality of Life Research, 3:339-352, 1994. 

[24] R. 1. Jennrich and P. F. Sampson. Newton-Raphson and related algorithms for 
maximum likelihood variance component estimation. Technometrics, 18(1):11-17, 
1976. 

[35] Robert 1. Jennrich and Mark D. Schluchter. Unbalanced repeated-measures modelç 
with structured covariance matrices. Biometrics, 42:805-820, 1986. 

[26] M. Kendall and A. Stuart. Inference and relationshzp, volume 2 of The aduanced 
theoq of stutistics. Charles Griffin and Company ltd., london, fourth edition, 1979. 



Bi bliography 168 

[27] M. G. Kenward. The use of fitted higher-order poiynomial coefficients as covariates 
in the analysis of growth curves. Biometnks, 41:19-28, 1985. 

[28] Gary G .  Koch, Janet D. Elashoff, and Ingrid A. Amara. Repeated measurements - 
design and analysis. In Samuel Kotz and Norman L- Johnson, editors, Encyclopedia 
of Statistical Sciences, volume 8, pages 46-73. John Wiley and Sons Inc., 1982. 

[29] Walter Kramer. Finite sample efficiency of ordinary l e s t  squares in the linear 
regressioa mode1 with autocorrelated errors. Journal of the Amencan Statistical 
Association, 75 (372):lOO5-1009, 1980. 

[30] W. J. Krzanowski and F. H. C. Marriott. Multivariate Analysis Part 2: Classifi- 
cationJ Covariance Structures and Repeated Measurements, volume 2 of Kendall's 
Libraq of Statistics. h o l d ,  London, 1995. 

[31] Nan Laird. Longitudinal data analysis, 1997. Draft course notes presented by the 
author at the NSFfCBMS Longitudinal Data Analysis Conference at  the University 
of Missouri-Columbia. 

[32] Nan Laird, Nicholas Lange, and Daniel Stram. Maximum likelihood computations 
with repeated measures: Application of the EM algorithm. Journal of the American 
Strltistical Association, 82 (397) :97-105, 1987. 

[33] Nan M. Laird. Topics in likelihood-based methods for longitudinal data analysis. 
Statistica Sinica, 1:33-50, 1991. 

[34] Nan M. Laird and James H. Ware. Random-effects models for longitudinal data. 
Biometrics, 38:963-974, 1982. 

[35] Nicholas Lange and Nan M. Laird. The effect of covariance structure on variance 
estimation in balanced growth-curve models with random parameters. Journal of 
the American Statistical Association, 84(405):241-247, 1989. 

[36] Jack C. Lee. Prediction and estimation of growth curves with special covariance 
structure. Journal of the Amen'can Statistical Association, 83(402):432-440, 1988. 

[37] Martin L. Lesser, Nina E. K o h . ,  Barbara A. Napolitano, and Savita Pahwa. The FU- 
PLOT: A graphical method for visualising the timing of Follow-Up in longitudinal 
studies. The American Statistician, 49(2):139-143, 1995. 

[38] J. K. Lindsey. Models for Repeated Measurements, volume 10 of Oxford Statistical 
Science Series. Oxford University Press Inc., New York, 1993. 

[39] Mary J. Lindstrom and Douglas M. Bates. Newton-Raphson and EM algorithms for 
mixed-effects models for repeated-measures data. Journal of the American Statzstical 
Association, 83 (404) : 1014-1022, 1988. 

[40] K. V. Mardia, J. T. Kent, and J. M. Bibby. Multivariate analysis. Probability and 
Mathematical S tatistics. Academic Press, London, 1979. 



[41] Yutuka Matsuyama and Yasuo Ohashi. hlixed models for bivariate repeated mea- 
sures data using Gibbs sampling. Statistics in Medicine, 16:1587-1601; 1997. 

[42] J. N. S. Matthews. The analysis of data fiom crossover deigns: The efficiency of 
ordinary least squares. Biometncs, 46:689-696, 1990. 

[43] Robert A. Mclean, William L. Sanders, and Walter W. Stroup. A unified approach 
to mixed linear models. The Amencan Statisticàan, 45(1):54-64, 1991. 

[44] Raymond H. Myers and Janet S. Milton. A first course in the theory of linear 
statistical models. The Duxbury advanced series in statistics and decision sciences. 
PWS-KENT Publishing Company, Boston, 1991. 

[45] J. A. Nelder and R. Mead. A simplex method for function minimisation. Computzng 
Journal, 7:303-313, 1965. 

[46] Gottfried E. Noether. On a theorem of pitman. Annals of Mathematical Statistics; 
26:64-68, 1955. 

[47] M. Olshewski and M. Schumacher. Statistical analysis of quality of life in cancer 
clinical trials. Statistics in Medicine, 9:749-763, 1990. 

[45] Richard W. Park. Efficient estimation of a system of regression equations when the 
disturbances are both serially and contemporaneously correlated. Journal of the 
American Statistical Assoczation, 62:500-509, 1967. 

[49] Taesung Park and Robert F. Woolson. Generalised multivariate models for longitu- 
dinal data. Communications in Statistics, Simulations, 21(4):925-946, 1992. 

[50] H. 1. Patel. Analysis of repeated measures designs with changing covariates in clinical 
trials. Biometrika, 73(3):707-715, 1986. 

[51] H. D. Patterson and R. Thompson. Recovery of interblock information when block 
sizes are unequal. Biometrika, 58:545-554, 1971. 

[52] Richard F. Pothoff and S. N. Roy. A generalised multivariate analysis of variance 
mode1 useful especially for growth curve problems. Biometrika, 51(3 and 4):313-326, 
1964. 

[53] C. R. Rao. Some problems involving linear hypothesis in multivariate analysis. 
Biometrika, 46:49-58, 1959. 

[54] Greg Reinsel. Multivariate repeated-measurement or growt h curve models wit h 
multivariate random-effects covariance structure. Journal of the American Statistical 
Association, 77(377) : 190-195, 1982. 

[55] James Rochon. Analyzing bivariate repeated measures for discrete and continous 
outcome variables. Biometn'cs, 52:740-750, 1996. 



Bibliography 170 

[56] M. Schumacker, M. OLschewski, and G. Schulgen. Assessrnent of quality of life in 
clinical trials. Statistics in  Medicine, 10: 1915-1930, 1991. 

[57] Shayle R. Searle. Matriz algebra useful for statistics. Wiley series in probability and 
mathematical statistics. John Wiley and Sons Inc., New York, 1982- 

[58] Burton Singer. Longitudinal data analysis. Kn Samuel Kotz and Norman L. Johnson, 
editors, Encyclopedia of Statistical Sciences, volume 5, pages 142-155. John Wiley 
and Sons Inc., 1982- 

[59] Judith D. Singer. Using SAS PROC MMED to fit multilevel models, hierarchi- 
cal models, and individual growth models. Journal of Educational and Behavioral 
Statistics, 24(4) :323-355, 1998. 

1601 J. P. Sy, J. M. G.  Taylor, and W. G.  Cumberland. A stochastic model for the 
analysis of bivariate longitudinal iuDS data. Biometrics, 53542-555, 1997. 

[61] P. K. Tandon. Applications of global statistics in analysing quality of Me data. 
Statistics in Medicine, 9:819-827, 1990. 

[62] C. W. Therrien and K. Fukunaga. Properties of separable covariance matrices and 
their associated Gaussian random processes. IEEE Tmnsactzons on Pattern analysis 
and Machine Intelligence, 6(5):652-656, 1984. 

[63] Roland D. Thomas. Univariate repeated measures techniques applied to  multivariate 
data. Psychometrika, 48:451-464, 1983. 

[64] Neil H. Timm. Multivariate analysis with applications in education and psychology. 
Wadswort h Publishing Company Inc., Belmont, California, 1975. 

[65] Neil H. Timm. Multivariate analysis of repeated measurements. In P. R. Krishnaiah, 
editor, Handbook of statistics, Anatysis of variance, volume 1, pages 41-87. North 
Holland publishing Company, 1980. 

[66] Kao-Tai Tsai and James A. Koziol. Score and Wald tests for the multivariate growth 
curve model with missing data and a patterned covariance matrk. Communications 
in Statzstics, Theory and MeMods, 22(2):311-317, 1993. 

[67] V. G. S. Vasdekis. A n  investigation of certain methods in the analysas of growth 
cumes. P hD thesis, University of Oxford, England, 1993. Unpublished Doctor of 
Philosophy thesis. 

[68] A. P. Verbyla. Analysis of repeated measures with changing covariates. Biometrika, 
75 (1) : 172-174, 1988. 

[69] A. P. Verbyla and B. R. Cullis. The analysis of multistratum and spatially correlated 
repeated measures data. Biometrics, 48:1015-1032, 1992. 

[70] A. P. Verbyla and W. N. Venables. An extension of the gowth curve model. 
Biometrika, 75(1): 129-138, 1988. 



[71] J. Verhees and T. J. Wansbeek. An multimode direct product mode1 for covariance 
structure analysis. Journal of Mathematical and Statistical Psychology, 43:231-240, 
1990. 

[72] Edward F. Vonesh and Randy L. Carter. Efficient inference for random coefficient 
growth curve models with unbalanced data. Biometrics, 43:617-628, 1987. 

[73] Ming C. Wang. On the analysis of multivariate repeated measures designs. Com- 
munications in Statistics, Theory and Methods: 12:1647-1659, 1983. 

[74] James H. Ware. Growth curves. In Samuel Kotz and Norman L. Johnson, editors, 
Enc y clopedia of Statistical Sciences, volume 3 pages 539-542. JO hn Wiley and Sons 
Inc., 1982. 

[75] James H. Ware. Linear models for the analysis of longitudinal studies. The Arnerican 
Statistician, 39(2):95-101, 1985. 

[76] Russ Wolhger. A tutonal on mixed models. Technical report, SAS Institute Inc., 
SAS Campus Drive, Cary NC, 27513 USA, October 1992. 

[77] Russ Wolfinger, Randy Tobias, and John Sali. Computing Gaussian likelihoods 
and their derivatives for general linear mixed models. SIAM Journal of Sczéntijic 
Computing, 15 (6):1294-l3lO, 1994. 

[78] Robert F. Woolson. Application of an efficiency criterion to the multivariate one- 
sample location problem. Sankhya: The Indian Journal of Statzstzcs, Series B, 
38:290-293, 1976. 

[79] Robert F. Woolson and Pranab Kumar Sen. Asymptotic cornparison of a class 
of multivariat e multiparameter tests. Communications in Statistics, 3(9)  :813-828, 
1974. 

[80] Robert Francis Woolson. Some alternative rneasures of asymptotic relative eficiency 
for the rnvltzpararneter testing problem with application to the growth curve problem. 
PhD thesis, University of North Carolina, Chapei Hiil, 1974. Doctor of Philosophy 
thesis. 

[81] Xiang Zhang. Multivariate longitudinal data analysis with a farnily of covariance 
matrices. PhD thesis, University of California, Los Angeles, 1996. Unpublished 
Doctor of Philosophy thesis. 

[82] A.H. Zwinderman. The measurement of change of quality of life in clinical trials. 
Statistics in Medicine, 9:931-942, 1990. 





Appendix. Chapter 4 Cornputer Programs 

* Create V-C matrix based on the bonecker product of a 
unstructured matrix delta and a compound symmetry matrix 
or f irst order autoregressive matrix omega; 

gamma=&r*0.5; 
rhoc = (&p - 9)*0.1; 
rhot = &q*0.1; 
rhot2 = rhot**2; 
rtgamma = sqrt (gamma) ; 
rhoc2 = rhoc*rtgamma; 
diag = 1; 
invrhot2 = 1 - rhot2; 

* Defining Delta; 
delta = J(2,2,0) ; 
delta[l,l] = diag; 
delta[l,2] = rhoc2; 
delta[2,11 = rhoc2; 
delta[2,21 = gamma; 

* Defining Compound Symmetry Omega; 
omega = J(3,3,0); 
omegaC1,lI = diag; 
omega[1,21 = rhot; 
omega[i,3] = rhot; 
ornega[2,1] = rhot; 
omega[2,2] = diag; 
omega[2,3] = rhot; 
omega[3,1] = rhot; 
omega [3,2] = rhot ; 
omegaC3,3] = diag; 

* Def ining AR(1) Omega; 

omega2 = J(3,3,0); 
omega2 [l ,Il = diag ; 
omega2[1,2] = rhot; 
omega2[1,3] = rhot2; 
omega2 CS, 11 = rhot ; 
omega2[2,2] = diag; 
omega2 [2,31 = rhot ; 
omega2 C3, il = rhot 2 ; 
omega2[3,21 = rhot; 
omega2 [3,3] = diag; 

* Quantities needed to compute TARE and CARE; 
quai = thetap * theta; 
qualinv = inv (qua11 ; 
qua3 = Xp * X; 
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qua3 inv = inv (qua31 ; 
qua4 = Xp * omega; 
qua5 = qua4 * X;  
qua6 = qua3inv * qua5 * qua3inv; 

* Computing the TARE21 and CARE21; 

nume = qualinv Q 12 Q qua3inv; 
nume2 = Q * nume * Qp; 
nume3 = inv(nume2) ; 
nume4 = de t  (nume2) ; 
deno = qualinv Q d e l t a  Q qua6; 
den02 = Q * deno * Qp; 
den03 = inv(deno2); 
den04 = de t  (deno2) ; 
t a re21  = t r ace  (nume3) / t r a c e  (den031 ; 
care21 = (den04 / nume4)##0.25; 

* Additional Quant i t i es  needed t o  f i n d  TARE13 and CARE13; 

qua7 = inv (omega) ; 
qua8 = Xp * qua7 * X; 
qua8inv = inv (qua81 ; 

* Computing the TARE13 and CARE13; 

den05 = qualinv (Pdelta Q qua8inv; 
den06 = Q * deno5 * Qp; 
den07 = inv(deno6); 
den08 = de t  (den061 ; 
t a re13  = t r a c e  (deno3) / t r a c e  (den071 ; 
care l 3  = (den08 / deno4) ##0.25 ; 

* Sending r e su l t s  t o  an ex t e rna l  t e x t  f i l e ;  

f i l e  'chap4a.text1;  
put t a re21  +1 care21 +l ta r e13  +1 carel3;  

* Set t ing  pr int ing options and pr in t ing  the parameters 
used and r e su l t s  obtained; 

* options linesize=96 pagesize=54 nocenter nodate nonumber; 
* t i t l e l ;  
* p r i n t  t s i z e  gamma rhoc rho t  tare21 care2l tare13 ca re l3 ;  
* q u i t ;  

* Input t ing prameters and r e s u l t s  obtained in to  a SAS 
da ta  s e t ;  

Xmacro accum; 

da ta  cscov2; 
inf  ile ' chap4a. t e x t  ' ; 
input tare21 care21 ta re13  care l3;  
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run ; 

da ta  cscov3; 
s s i z e  = &n*60; 
gamma=&r*0.5; 
rhoc = (%p - 9)*0.1; 
r h o t  = &q*O.l; 
run; 

da t a  cscov; 
s e t  cscov3; 
s e t  cscov2; 

run; 

proc append base-chap4a data=cscov; 
run ; 

proc da t a se t s  n o l i s t ;  
de l e t e  cscov cscov2 cscov3; 

run ; 
quit ; 

%mend accum; 

Xmacro para; 
%do n=i  %to 3: 
%do r=l x t o - 5 ;  

%do p=O %to 18; 
%do q=l  Xto 9;  

%chap4 
% a c c u  

%end; 
%end; 

%end; 
%end; 
%mend para; 

* Saving r e s u l t s  as a permanent SAS da t a  s e t ;  

libname wam ' wambugu ' ; 
run ; 

proc dat  a s e t s  library=work; 
copy out=wam memtype=data; 
s e l e c t  chap4a; 

run ; 
q u i t  ; 

proc contents  data=vam.chap4a pos i t ion ;  
run ; 
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A.2 Computing the TARE and CARE for a growth curve 
design and first-order autoregressive structure for 0 

proc i d ;  

* Specify the within-subject design matrix X and find its 
transpose; 

x = €1 -1, 
1 O, 
1 13; 

Xp = t (x) ; 
* Specify the matrix Q corresponding to a hypothesis of 
interest and find its transpose; 

* Specify the between-subject design matrix Theta that 
depends on the total sample size I and the number of 
groups G and find its transpose; 

gsize = &n*30; 
tsize = gsize*2; 
gl = Jcgsize, 1, 1); 
g2 = J(gsize, 1, 1); 
theta = block(g1, g2) ; 
thetap = t(theta) ; 

* Specify the identity matrix needed for OLS estimation 
whose dimension depends on the number of characteristics; 

* Create V-C matrix based on the Kronecker product of a 
unstructured matrix delta and a compound symmetry matrix 
or f irst order autoregressive matrix omega; 

gamma=&r*0.5; 
rhoc = (&p - 9)*0.1; 
rhot = &q*0.1; 
rhot2 = rhot**2; 
rtgamma = sqrt(gamma) ; 
rhoc2 = rhoc*rtgamma; 
diag = 1; 
invrhot2 = 1 - rhot2; 
* Defining Delta; 
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delta = J(2,2,0); 
deltacl, 11 = diag; 
deltacl, 21 = rhoc2; 
delta[2,11 = rhoc2; 
deltaC2,21 = gamma; 

* Defining Compound Symmetry Omega; 
omega = J(3,3,0); 
omega El, il = diag; 
omega Cl, 21 = rhot ; 
omega[1,3] = rhot; 
omega C2,il = rhot ; 
omega[2,2] = diag; 
omega[2,3] = rhot ; 
omega [3,11 = rhot ; 
omega [3,21 = rhot ; 
omega[3,3] = diag; 

* Defining AR(1) Omega; 

omega2 = J(3,3,0) ; 
omega2[1,1] = diag; 
omega2ClY21 = rhot; 
omega2 Cl, 31 = rhot2 ; 
omega2 [2,1] = rhot ; 
omega2 C2,21 = diag; 
omega2 [2,31 = rhot ; 
omega2 [3,11 = rhot2 ; 
omega2 [3,21 = rhot; 
omega2[3,3] = diag; 

* Quantities needed to compute TARE and CARE; 
qual = thetap * theta; 
qualinv = inv (qual) ; 
qua3 = Xp * X; 
qua3inv = inv (qua3) ; 
qua4 = Xp * omega2; 
qua5 = qua4 * X; 
qua6 = qua3inv * qua5 * qua3inv; 
* Computing the TARE21 and CARE21; 
nume = qualinv @ 12 Q qua3inv; 
nume2 = Q * nume * Qp; 
nume3 = inv(nume2); 
nume4 = det (nume2) ; 
deno = qualinv @ delta @ qua6; 
den02 = Q * deno * Qp; 
den03 = inv(deno2) ; 
den04 = det(deno2) ; 
tare21 = trace (nue31 / trace (den031 ; 
care21 = (den04 / nume4)##0.25; 
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* Additional Puant i t ies  needed t o  f ind TARE13 and CARE13; 

qua7 = inv (ornega2) ; 
qua8 = Xp * qua7 * X; 
qua8inv = inv (qua8) ; 

* Computing t he  TARE13 and CARE13; 

den05 = qualinv @del ta  B qua8inv; 
den06 = Q * den05 * Qp; 
den07 = inv(deno6) ; 
den08 = de t  (den061 ; 
t a r e  l 3  = t r a c e  (den031 / t r a c e  (den071 ; 
ca re i3  = (den08 / deno4)##0.25; 

* Sending r e s u l t s  t o  an ex t e rna l  t e x t  f i l e ;  

f i l e  ' chap4b. t e x t  ' ; 
put tare21 +1 care2l  +1 tare13 +1 carel3; 

4 Se t t i ng  p r in t i ng  options and pr in t ing  the  parameters 
used and r e s u l t s  obtained; 

4 options linesize=96 pagesize=54 nocenter nodate nonumber; 
* t i t l e l ;  
* p r i n t  t s i z e  gamma rhoc rho t  t a re21  care21 ta re13  care l3 ;  
* q u i t ;  

* Input t ing prameters and r e s u l t s  obtained in to  a SAS data 
s e t ;  

%macro accum; 

d a t a  arcov2; 
i n f i l e  'chap4b.text ' ;  
input  t a r e21  care21 tare13 care13; 

run ; 

d a t a  arcov3; 
s s i z e  = &n*60; 
gamma=&r*O. 5 ; 
rhoc = (&p - 9)*0.1; 
rho t  = &q*O. 1; 
run ; 

da ta  arcov; 
s e t  arcov3; 
s e t  arcov2; 

run; 

proc append bas e=chap4b da t  a=arcov ; 
run; 
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proc datasets no l i s t  ; 
delete  arcov arcov2 arcov3; 

run ; 
quit ; 

%mend accum; 

ïmacro para; 
%do n=l %to 3; 

%do r=1 %to 5; 
%do p=O %to 18; 

%do q=l %to 9; 
%chap4 
%accum 

%end ; 
%end; 

%end; 
%end ; 
%mend para; 

* Saving results  as a permanent SAS data set ;  

libname wam 'wambugu'; 
run; 

proc datasets library=work; 
copy out=wam memtype=data; 
s e l e c t  chap4b; 

run ; 
quit ; 

proc contents data=wam. chap4b position; 
r u ;  
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A.3 Computing the TARE and CARE for a repeated mea- 
sures analysis of variance design and compound symmetry 
structure for fl 

proc iml; 

* Specify t h e  within-subject design matrix X and f i n d  i t s  
transpose;  

* Specify t h e  matrix Q corresponding t o  a hypothesis of 
i n t e r e s t  and f i nd  i ts  transpose;  

* Specify t h e  between-subject design matrix Theta t h a t  
depends on t h e  total sample s i z e  1 and the number of 
groups G and f i nd  its transpose;  

gs ize  = &n*30; 
t s i z e  = gsize*2; 
g1 = Jcgsize, 1, 1); 
g2 = J(gsize, 1 ,  1); 
t h e t a  = block(g1 ,g2) ; 
the tap  = t ( theta)  ; 

* Specify t h e  iden t i ty  matrix needed f o r  OLS es t imat ion 
whose dimension depends on t h e  number of c h a r a c t e r i s t i c s ;  

* Create V-C matrix based on t h e  Kronecker product of a 
unstructured matrix d e l t a  and a compound symmetry matr ix  
o r  f irst order autoregressive matrix omega; 

gamma=&r*O.S; 
rhoc = (&p - 9)*0.1; 
rhot  = &q*0.1; 
rhot2 = rhot**2; 
rtgamma = s q r t  (gamma) ; 
rhoc2 = rhocartgamma; 
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diag = 1; 
invrhot2 = 1 - rhot2; 

* Defining Delta; 
delta = J(2,2,0) ; 
delta [l , 11 = diag; 
deltaCl, 21 = rhoc2; 
delta CS, 11 = rhoc2; 
delta[2,2] = gamma; 

* Defining Compound Symmetry Omega; 
omega = J(3,3,0); 
omega [1 ,1] = diag ; 
omegah,2] = rhot; 
omega[1,31 = rhot ; 
omegaC2,ll = rhot ; 
omega[2,2] = diag; 
omega[2,3] = rhot ; 
omega [3,11 = rhot ; 
omega[3,2] = rhot ; 
omega[3,3] = diag; 

* Def ining ARCI) Omega; 
omega2 = J(3,3,0); 
omega2C1,lI = diag; 
omega2[1,21 = rhot; 
omega2[1,31 = rhot2; 
omega2[2,11 = rhot; 
omega2 [2,2] = diag; 
omega2 [2,3] = rhot; 
omega2[3,1] = rhot2; 
omega2 [3,21 = rhot; 
omega2 C3,3] = diag; 

* Quantities needed to compute TARE and CARE; 
qua1 = thetap * theta; 
qualinv = inv (quai) ; 
qua3 = Xp * X; 
qua3inv = inv (qua31 ; 
qua4 = Xp * omega; 
qua5 = qua4 * X; 
qua6 = qua3inv * qua5 * qua3inv; 
* Computing the TARE21 and CARE21; 
nume = qualinv Q 12 @ qua3inv; 
nume2 = Q * nume * Qp; 
nume3 = inv (nume2) ; 
nume4 = det(nume2) ; 
deno = qualinv Q delta Q qua6; 
deno2 = Q * deno * Qp; 
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den03 = inv(deno2) ; 
den04 = det (den021 ; 
tare21 = trace (nue31 / trace (den031 ; 
care21 = (den04 / nume41 ##O. l?; 

* Additional Quantities needed to find T M 1 3  and CARE13; 

qua7 = inv (omega) ; 
qua8 = Xp * qua7 * X; 
qua8inv = inv (qua81 ; 

* Computing the TARE13 and CARE13; 
den05 = qualinv @delta Q qua8inv; 
den06 = Q * den05 * Qp; 
den07 = inv(deno6) ; 
deno8 = det (den061 ; 
tare13 = trace (den031 / trace (deno7) ; 
carel3 = (den08 / deno4)##0.17; 

* Sending results to an external text file; 
file 'chap4d.text); 
put tare21 +1 care21 +1 tare13 +1 carel3; 

* Setting printing options and printing the parameters 
used and results obtained; 

options linesize=96 pagesize=54 nocenter nodate nonumber; 
* titlel; 
* print tsize gamma rhoc rhot tare21 care21 tare13 carel3; 
* quit; 

* Inputting prameters and results obtained into a SAS 
data set; 

data cscov2; 
infile 'chap4d.text'; 
input tare21 care2l tare13 carel3; 

run ; 

data cscov3; 
ssize = &n*60; 
gamma=&r*O. 5 ; 
rhoc = (&p - 9)*0.1; 
rhot = &q*0.1; 
r u ;  

data cscov; 
set cscov3; 
set cscov2; 

run ; 
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pro c append base=chap4d data=cscov; 
-; 

proc datasets n o l i s t  ; 
delete  cscov cscov2 cscov3; 

run; 
quit ; 

Xmend accum; 

%macro para; 
%do n=l %to 3; 
%do r=l %ZS 5; 

%do p=O %to 18; 
%do q=l %to 9 ;  

%chap4 
%accum 

%end; 
%end ; 

%end ; 
%end; 
%mend para; 

* Saving resu l t s  as a permanent SAS data set; 

libname wam 'wambuguy; 
run ; 

proc datasets library=work; 
copy out=wam memtype=dat a; 
s e l e c t  chap4d; 

run ; 
quit ; 

proc contents data=wam.chap4d position; 
run ; 
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A.4 Computing the TARE and CARE for a repeated ma- 
sures analysis of variance design and first-order autoreges- 
sive structure for R 

proc iml; 

* Specify the within-subject design matrix X and f ind its 
transpose; 

x = (1 O O, 
0 1 O, 
O O 1); 

Xp = t (X) ; 

* Spec i fy  the matrix Q corresponding to a hypothesis of 
interest and find its transpose; 

* Spec i fy  the between-subject design matrix Theta that 
depends on the total sample size 1 and the number of 
groups G and find its transpose; 

gsize = h*30; 
tsize = gsize*2; 
g1 = J(gsize, 1, 1); 
g2 = Xgsize, 1, 1); 
t he t a  = block(gl,g2); 
thetap = t (theta) ; 

* Specify the identity matrix needed for OLS estimation 
whose dimension depends on the number of characteristics; 

* Create V-C matrix based on the Kronecker product of a 
unstructured matrix delta and a compound symmetry matrix 
or first order autoregressive matrix omega; 

gamma=&r*O. 5 ; 
rhoc = (&p - 9)*0.1; 
rhot = &q*O .l; 
rhot2 = rhot**S; 
rtgamma = sqrt (gamma) ; 
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rhoc2 = rhoc*rtgamma; 
diag = 1; 
invrhot2 = 1 - rhot2; 
* Defining Delta; 
delta = J(2,2,0); 
delta[1,1] = diag; 
delta[1,2] = rhoc2; 
delta[2,1] = rhoc2; 
delta[2,2] = gamma; 

* Defining Compound Symmetry Omega; 
omega = J(3,3,0); 
omegarl ,1] = diag; 
omegacl, 21 = rhot ; 
omegaC1,3] = rhot; 
omega [2,1] = rhot ; 
omega[2,2] = diag; 
omega [2,3] = rhot ; 
omega C3,1] = rhot ; 
omega[3,21 = rhot ; 
omegaf3,31 = diag; 

* Defining ARCI) Omega; 
omega2 = J(3,3,0); 
omega2[1,l] = diag; 
omega2[1,2] = rhot; 
omega2 Cl, 31 = rhot 2 ; 
omega2C2,lI = rhot; 
omega2[2,2] = diag; 
omega2[2,31 = rhot; 
omega2 [3,1] = rhot 2 ; 
omega2[3,2] = rhot; 
omega2[3,3] = diag; 

* Quantities needed to compute TARE and CARE; 
qua1 = thetap * theta; 
qualinv = inv (quai) ; 
qua3 = Xp * X; 
qua3inv = inv (qua31 ; 
qua4 = Xp * omega2; 
qua5 = qua4 * X; 
qua6 = qua3inv * qua5 * qua3înv; 
* Computing the TARE21 and CARE21; 
nume = qualinv Q 12 @ qua3inv; 
nume2 = Q * nume * Qp; 
nume3 = inv(nume2) ; 
nue4 = det (nume2); 
deno = qualinv Q delta B qua6; 
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den02 = Q * deno * Qp; 
den03 = inv(deno2) ; 
den04 = det  (den021 ; 
t a re21  = t r ace  (nume3) / t r a c e  (den031 ; 
care2l  = (den04 / nume4)##0.25; 

* Additional Quant i t i es  needed t o  f ind  TARE13 and CARE13; 

* Computing the TARE13 and CARE13; 

den05 = qualinv @del ta  Q qua8inv; 
den06 = Q * den05 * ap; 
den07 = inv(deno6); 
den08 = det (deno6) ; 
tare13 = t r ace  (den031 / t r a c e  (den071 ; 
care l3  = (den08 / deno4)##0.25; 

* Sending r e su l t s  t o  an ex te rna l  t ex t  f i l e ;  

f i l e  ' chap4e. t e x t  ' ; 
put tare21 +1 care21 +1 tare13 +1 carel3; 

Se t t i ng  pr int ing options and print ing t he  parameters 
used and r e su l t s  obtained; 

options linesize=96 pagesize=54 nocenter nodate nonunber; 
t i t l e i ;  
p r i n t  t s i z e  gamma rhoc rhot  tare21 care21 t a r e13  carel3;  
qu i t  ; 

* Inputt ing prameters and r e s u l t s  obtained i n t o  a SAS 
da ta  s e t ;  

da t a  arcov2; 
inf i l e  ' chap4e. t e x t  ' ; 
input tare21 c a r e î l  t a re13  carel3; 

r u -  ; 

da ta  arcov3; 
ssize = &n*60; 
gamma=&r*O .5 ; 
rhoc = (%p - 9)*0.1; 
rhot  = &q*O.l; 
run ; 

da ta  arcov; 
s e t  arcov3; 
s e t  arcov2; 
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proc append base=chap4e data=arcov; 
run; 

proc datasets  n o l i s t  ; 
dele te  arcov arcov2 arcov3; 

run; 
qu i t  ; 

%mend accum; 

Xmacro para; 
%do n=l %to 3; 

%do r=l %to 5; 
%do p=O %to 18; 

%do q=l %to 9; ;;:, 
%end; 

%end; 
%end ; 

%end; 
%mend para; 

* Saving r e s u l t s  as a permanent SAS da t a  set;  

libname wam uambugu ' ; 
r u ;  

proc  datasets  library=work; 
copy out =wam memtype=data; 
se lec t  chap4e; 

run ; 
qui  L ; 

proc  c ~ n t 3 z t ~  data=wam.chap4e posit ion;  
run ; 
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Chapt er 5 Cornputer Programs 

B. 1 Simulation program to compute TARE and CARE 

* Referencing the library where simulation results will be 
saved as a permanent SAS data set; 

libname syl 'chapter5'; 
run ; 

* Ensuring program runs as it would in interactive mode; 
options nosyntaxcheck; 

* Suppress printing of the PROC MIXED output; 
%global ,PRINT,; 
%let -PRINT- = OFF; 

* The simulation program starts here; 
%macro simulate; 

%do j=l %to 200; * j = the simulation 
index ; 

* One rep of the simulation starts here*; 
data sbp (replace=yes) ; 

* Generate 6 independent standard normal random variables 
for two groups; 

do i = 1 to 50; * where 50 is the desired sample size in 
each group,i is the subject index; 

xi = rannor(647 + i + %j*2) ; 
x2 = rannor(372 + i + %j*2) ; 
x3 = rannor (425 + i + % j*2) ; 
x4 = rannor(l62 + i + %j*2); 
x5 = rannor (528 + i + &j*2) ; 
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x6 = rannor(289 + i + &j*2); 
x7 = rannor(467 + i + &j*2); 
x8 = rannor(732 + i + aj.2); 
x9 = ranaor  (245 + i + &j*2) ; 
x l 0  = rannor(612 + i + &j*2) ; 
xll = rannor (258 + i + & j*2) ; 
x12 = rannor(829 + i + &j*2) ; 
output ; 
end ; 
-; 

* Convert genera ted  d a t a  s e t  i n t o  matr ices  ; 

proc iml; 
use sbp; 
read al1 var {xl x2 x3 x4 x5 x6) i n t o  xl; 
read a l 1  var {x7 x8 x9 x10 xll x12) i n t o  x2; 
t x l  = t (x1)  ; 
t x 2  = t (x2)  ; 

* Create V-C matrix based on t h e  Kronecker product and 
obtain loue r  t r i a n g u l a r  choleski  f a c t o r i z a t i o n ;  

rhoc = (&p - 3)*0.3; 
r h o t  = &q*0.1; 
gamma=&r*O. 5 ; 
w = (&p - 1)*9 + &q; 
z = (w - 1)*4 + D r ;  
rho t2  = rhot**S; 
rtgamma = s q r t  (gamma) ; 
rhoc2 = rhoc*rtgamma; 
d iag=l  ; 
A = J (2 ,2 ,0 ) ;  
ALI, 11 = diag; 
A[1,2] = rhoc2; 
~ [ 2 , 1 ]  = rhoc2; 
AC2,21 = gamma; 
B = J (3 ,3 ,0 ) ;  
B Cl, 11 = d iag ;  
BC1,21 = r h o t ;  
B[1,31 = rhot2 ;  
BC2,11 = r h o t ;  
BC2,21 = diag;  
B[2,3] = rho t  ; 
BC3,Il = rhot2 ;  
B C3,21 = rho t  ; 
B C3,31 = diag;  
sigma = A O B; 
lsigma=t ( root  (sigma) ) ; 

* Enter t he  mean v e c t o r  f o r  group 1; 
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* Enter t he  mean vector  f o r  group 2; 

* Create 6 co r r e l a t ed  variables on each individual  i n  
group 1 and Save as a SAS da ta  s e t ;  

yl=lsigma*txl+mul; 
t y l = t  (y11 ; 
va~names='sbpl ' : 'sbp6';  
create sbpmodl from t y l  [colname=varnames] ; 
append from t y l ;  

* Create 6 co r r e l a t ed  variables on each individual  i n  
group 2 and Save as a SAS data  s e t ;  

y2=lsigma*tx2+mu2; 
ty2=t (y21 ; 
varnames='sbpl':'sbp6'; 
c rea te  sbpmod2 f rom ty2 ~colname=varnamesl ; 
append from ty2 ;  
qu i t  ; 

*Combine t he  t a o  d a t a  s e t s ;  

data sbpmod; 
s e t  sbpmodl sbpmod2; 

run; 

* Create var iab le  t o  use i n  transposing t he  created da t a ;  

data nested; 
do i = 1 t o  100; 

output ; 
end ; 

run ; 

* Merge the  two data sets; 

data a l l ;  
merge nested sbpmod; 

run ; 

* Transpose d a t a  i n t o  format required by PROC MIXED; 

proc transpose data=all ou t=a l l t ;  
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by i; 
v a r  sbpl  sbp2 sbp3 sbp4 sbp5 sbp6; 

run; 

* Create d a t a  s e t  on 1 ind iv idua l s  based on C 
c h a r a c t e r i s t i c s  measured T t i m e s  ; 

data mult; 
do person = 1 t o  100; 

do chara  = 1 t o  2; 
do t ime = 1 t o  3; 

output  ; 
end; 

end ; 
end; 

run; 

* Create des ign  matrix t o  f i t  a linear grouth-cuve model 
t o  t h e  tno response va r i ab les ;  

proc iml; 
AI=J(~O, 1,l) ; 

create des from D [colname=varnames~ ; 
append from D ;  
quit ; 

* Create t h e  f i n a l  da ta  s e t  t o  be used by the Mixed 
procedure; 

da ta  a c t u a l ;  
merge a l l t  mult des; 

r u ;  

* Mode1 f i t t i n g  and est imating parameters of i n t e r e s t ;  

/* Completely Unstructured V-C Matrix */ 
proc mixed d a t  a=actual  ; 

class  person; 
model col1 = xl x2 x3 x4 x5 x6 x7 x8/ covb no in t  s ; 
repeated / type-un subject=person r=l r i = l ;  
make 'Solut ionF'  out=seun&j; 
make 'R' out=cmun&j ; 
make ) COVB ' out=emun& j ; 

run ; 
qui t  ; 
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/* Unstructured by AR(1) V-C Matrix */ 
proc mixed data=actual;  

class chara time person; 
mode1 col1 = xl x2 x3 x4 xS x6 x7 x8 / covb no in t  s; 
repeated chara time / type-un@ar(l) sub ject=person 

r=l r i = l ;  
make 'SolutionFJ out=sear&j; 
make 'R' out=cmar&j; 
make 'COVB' out=emar&j; 

run ; 
qu i t  ; 

* Convert generated data sets i n t o  matrices and compute 
t he  l ikel ihood r a t i o  t e s t  s t a t i s t i c ,  chi-square 
s t a t i s t i c ,  p-value and t h e  measures of asymptotic 
r e l a t i v e  e f f i c iency ;  

proc i d ;  
rhoc = (&p - 3)*0.3; 
rho t  = &q*0.1; 
gamma=&r*O. 5 ; 
rhot2 = rhot**2; 
rtgarnma = s q r t  (gamma) ; 
rhoc2 = rhoc*rtgamma; 
diag=l ; 
A = J (2 ,2 ,0 ) ;  
A Cl, 11 = diag ; 
~ C 1 , 2 1  = rhoc2; 
AC2,LI = rhoc2; 
AC2,21 = gamma; 
B = J (3 ,3 ,0 ) ;  
B [ l ,  Il = diag; 
BC1,2l = rho t ;  
BCl,31 = rhot2; 
0 [2,1] = rhot ; 
B[2,21 = diag;  
B [2,31 = rhot ;  
BC3,11 = rhot2; 
B [3,21 = rhot ;  
B[3,31 = diag; 
Al=J(5O, 1 , l )  ; 
A2=J(50,1,1) ; 
theta=block (Ai, AS) ; 
the tap=t  ( theta)  ; 
x = ( 1 - 1 ,  

1 O ,  
1 1); 

xp=t (X) ; 
use cmun&j var{coll col2  co l3  col4 col5 col6); 
read a l 1  var  -nu- i n t o  a r b i t j ;  
n u &  j = det  (arbiOj) ; 
use cmar&j var{coll col2 co l3  col4  col5 ~ 0 1 6 ) ;  
read al1 var - n u -  i n t o  kscmOj; 
deno&j = det  (kscmk j) ; 
lr&j = J ( l , l , O ) ;  
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0 1 0 0 0 - 1 0 0 ;  
0 0 i 0 0 0 - 1 0 ,  
O O 0 1 0 0 0  -1); 

qprime = t (Q) ; 

* Code t o  find TARE and CARE based on optimal 
variance-covariance matrix; 

qua1 = thetap*theta;  
qualinv = inv  (qua11 ; 
qua4 = Xp * B; 
qua5 = qua4 * X ;  
qua6 = inv (qua51 ; 
qua7 = qualinv Q A Q qua6; 
r e a l  = Q * qua7 * qprime; 
r e a l i n v  = inv(rea1) ; 
r e a l t  = t r a c e  ( rea l inv)  ; 
r e a l c  = det ( r e a l )  ; 
use ernunkj var(-col1 -col2 ,col3 -col4 ,col5 ,col6 

,col7 ,co18>; 
read a l 1  var ,nu- into vh2âj;  
use emar&j var(-col1 -col2 ,col3 ,col4 ,col5 -col6 

,col7 ,co18); 
read a l1  var ,num, i n t o  v h l â j ;  
qua2&j = Q*vh2&j*qprime; 
qual&j = Q*vhl&j*qprime; 
t ar2& j = inv  (qua2& j ; 
tarl&j = inv(qual&j) ; 
tare& j = trace i ta r2P j) / t r a c e  ( t a r l k  j) ; 
atar&j = t r a c e  ( ta r2&j)  /realt ; 
car2&j = d e t  (qua2Qj) ; 
c a l &  j = d e t  (qual& j) ; 
care&j = (carl&j/car2&j)##0.25;  
acar& j = (realc/car2& j ) ##O. 25 ; 
Irt&j = J ( l , 7 , 0 )  ; 
lrt&j[i,l] = lr&j; 
l r t â j  [1,2] = chiPj ;  
l r t â j  Cl, 31 = pval&j ; 
lr t&j [1,4] = t a r e k j ;  
l r t â j  Cl, 51 = c a r e â j  ; 
lrt&j [1,61 = atar&j ; 
lrt&j C l ,  71 = acark j  ; 
lrtrn&j = repeat  (lrttj ,8 ,1 )  ; 
para&j = 5(8 ,1 ,0 ) ;  
para&j[1,1] = 116; 
para&jC2,11 = 4; 
para& j C3,lJ = 63 ; 
para&j[4,11 = -0.5 ; 
para&j[5,1] = 118; 
para&j[6,1] = 5; 
parakj  C7,lI = 62 ; 
para& j C8,1] = 3 ; 
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lmod&j = lrtm&j 1 1 parakj ; 
varnames = 'hyp0l~:'hypo8~; 
create uar& j f rom lmod&j [colname=varnames] ; 
append from Imod&j ; 
quit ; 

* Merging the results from the different models. 
Note: The merged data sets will be empty if one of the 
data sets is empty as a result of the mode1 failing 
t o  converge; 

data std&j; 
merge seun&j(drop=-df- -t- -pt- rename=(,est,=est-un) 

Tename= (,se,=se-un) ) 
se=& j (*op=-df- -t- -pt- remme=(-est-=est_=) 

rename= (,se,=se-ar) 
unar&j (rename=<hypo l=lrtest) rename= (hypo2=chisq) 

rename=(hypo3=pvalue) rename=(hypo4=Tare) 
rename=(hypo5=Care) rename=(hypoô=atare) 
rename= (hypo7=acare) rename=(hypo8=tnieva1) ) ; 

attrib simu length=$8; 
~imu=~~Sim &j "; 

output ; 

proc datasets nolist force; 
delete sbp sbpmodl sbpmod2 sbpmod nested al1 allt mult 

des actual s e d j  seuntj unar&j; 
append base=std new=std&j ; 

r u ;  
quit ; 

%macro combine ; 

data std; 
set std; 

rhoc = (Sep - 3)*0.3; 
rhot = &q*O.l; 
gamma=&r*0.5; 
w = (&p - 1)*9 + &q; 
z = (w - 1)*4 + &r; 
run ; 

proc append base=syl.results2 data=std; 
run; 

proc datasets nolist ; 
delete std; 

run; 

%mend combine ; 

%macro krone ; 
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%do p=1 % t o  5; 
%do q=l %to 9; 

%do r=l % t o  4; 
%s imulat e 
%combine 

%end ; 
%end ; 

%end ; 
%mend k r o n e ;  



Appendix C 

Chapter 6 Computer Programs 

C .  1 Computing the Kronecker product deviation in- 
dex 

* This program computes the umueighted least squares 
estimator under the assumption of a "factorial 
covariance structure" or kronecker product covariance 
structure for the within-subject covariance matrix 
as described in Verhees and Wansbeek (1990) when k=2; 

* The program also computes the value of the criterion 
that is minimised in f inding the umueighted least 
squares est imator ; 

proc iml; 

* Specifying the covariance parameters; 
rhol = &p*0.1; 
rho2 = &q*O. 1; 
rho3 = &r*O . 1 ; 
diag = 1; 
rholm = rhol**2; 
rho2rn = rho2**2; 
rho3m = rho3-2; 

* Specifying the matrices that make up the within-subject 
covariance matrix Sigmao ; 

A = J ( 3 , 3 , 0 ) ;  
A Cl, 11 = diag; 
AC1,2] = rhol; 
A[l,3] = rholm; 
A[2,11 = rhol; 
A[2,2] = diag; 
AC2,3J = rhol; 
A[3,1] = rholm; 
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AC3,21 = rhoi; 
AC3,31 = diag; 
Amod = A#4;  

B = J(3,3,0); 
B Cl, 11 = diag; 
B[1,21 = rho3: 

BC2,21 = diag; 
B C2,31 = rho3; 
BC3,iI = rho3m; 
BC3,21 = rho3; 
BC3,31 = diag; 
Bmod = B#2; 

C = J(3,3,0); 
C[1,11 = diag; 
C[l,21 = rho2; 
C[1,3] = rho2m; 
Cf2,lJ = rho2; 
CC2,23 = diag; 
C[2,3] = rho2; 
CC3,lI = rho2m; 
C[3,21 = rho2; 
CC3,31 = diag; 
Cmod = C # 4 ;  

* Specifying Sigmao; 
AB = Amod//Bmod; 
BC = Bmod//Cmod; 
Sigmao = AB1 IBC; 

* Computing the umveighted least squares estimator 
following Verhees and Wansbeek (1990) and finding 
the value of the criterion in the optimum; 

C 1 = C 1 0 0 0 0 0 ,  
0 0 0 1 0 0 ,  

0 1 0 0 0 0 ,  
0 0 0 0 1 0 ,  
0 0 1 0 0 0 ,  
0 0 0 0 0  1); 
S = Sigmao; 
SI = Cl * S * t(C1) ; 
a1 = trace (S1**2) ; 
* print al; 
Sl1 = shape(Sl[1:2, 1:21,4,1); 
SI2 = shape(S1[3:4, 1:21,4,1); 
Si3 = shape(S1[5:6, 1:2],4,1); 
Si4 = shape(S1[1:2, 3:4] ,4,l); 
Si5 = shape(Sl[3:4, 3:41 ,4,1); 
SI6 = shape(S1[5:6, 3:41 ,4,l); 
SI7 = shape(S1[1:2, 5:6],4,1); 
Si8 = shape(S1[3:4, 5:63,4,l) ; 
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Si9 = shape(S1[5:6, 5:6] . 4 , l ) ;  
* p r i n t  S I ;  
* p r i n t  S I 1  Si2  S i3  SI4 SI5 SI6 SI7 SI8 Sig;  
S l t i l d e  = S l l i  lS121 fS131 1S141 IS15l IS16I ISl7I IS18I IS19; 
* p r i n t  S l t i l d e ;  
realmatl  = S l t i l d e  * t (S1t i lde)  ; 
eva l l  = e i gva l  (realmat 1)  ; 
evecl = eigvec (realmatl) ; 
* p r i n t  e v a l l ;  
* p r i n t  evec l ;  
lambdah = e v a l l  C l ,  11 ; 
* p r i n t  lambdah; 
S2 = S; 
a2 = t r a c e  (S2**2) ; 
* p r i n t  a2 ; 
S21 = shape(S2[1:3, 1:3] , 9 , l ) ;  
S22 = shape(S2[4:6, l:3] , g , l ) ;  
S23 = shape(S2[1:3, 4:6] ,9,1);  
S24 = shape(S2[4:6, 4:61,9,1) ; 
* p r i n t  S2; 
* p r i n t  S21 S22 S23 S24; 
S2t i lde  = S21l (S221 lS2311S24; 
* p r i n t  S2 t i l de ;  
realmat2 = S2t i lde  * t (S2 t i l de ) ;  
eval2 = eigval(realmat2) ; 
evec2 = eigvec (realmat2) ; 
* p r i n t  eval2;  
* p r i n t  evec2; 
c a l l  s v d ( u l , q l , v l , S l t i l d e ) ;  
* p r i n t  u l  ql v l ;  
d e l t a  = u 1 ~ 1 : 4 , 1 ] ;  
* p r i n t  d e l t a ;  
c a l l  svdCu2,q2 ,~2 ,S2t i lde) ;  
* p r i n t  u2 q2 v2; 
omega = u2 C l  : 9 , l l ;  
* p r i n t  omega; 
c r i t e r i o  = a l  - lambdah; 
*print  c r i t e r i o ;  

* Sending r e s u l t s  t o  an external  f i l e ;  

f i l e  ' chap63a. t e x t  ' ; 
put c r i t e r i o  ; 

* Input t ing parameters and r e su l t s  obtained i n t o  a SAS 
da ta  set; 

%macro accum; 

da ta  verhees2 ; 
i n f i l e  'chap63a.text'; 
input c r i t e r i o ;  
a t t r i b  c r i t e r i o  format=6.3; 

run ; 
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d a t a  verhees3 ; 
rhol = &p*0.1; 
rho2 = &q*O. 1; 
rho3 = &r*O - 1  ; 

-; 

d a t a  verhees; 
set verhees3; 
set verhees2; 

r u ;  

proc append base=chap63a data=verhees; 
run ; 

proc datasets n o l i s t  ; 
delete verhees verhees2 verhees3; 

run ; 

quit ; 

%mend accum; 

%macro para; 
%do p=l %to 9; 

%do q=i %to 9; 
%do r=l %to 9; 

%chap6a 
Xaccum 

%end ; 
%end ; 

%end; 
Xmend para; 

%para; 
run ; 

* Saving results as a permanent SAS data set ; 

libname kpd 'chapter6'; 
r u ;  

proc datasets library=work; 
copy out=kpd memtype=data; 
select chap63a; 

run ; 
q u i t  ; 

proc contents data=kpd.chap63a position; 
run ; 

proc print data=kpd . chap63a; 
r u  ; 
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C.2 Simulation program to evaluate the impact of 
the Kronecker product 
deviation index under the nul1 hypothesis 

* Referencing the l i b r a r y  where simulation r e su l t s  w i l l  be 
saved as a permanent SAS d a t a  s e t  ; 

libname kpd 'chapter6'; 
run; 

* Ensuring program runs in batch mode a s  it would i n  
i n t e r ac t i ve  mode ; 

options nosyntaxcheck nosource; 

* Suppress pr in t ing of t h e  PROC MIXED output; 

%global -PRINT, ; 
% l e t  -PRINT, = OFF; 

* The simulation program starts here; 

%macro simulate; 

* j = t h e  simulation index; 

* One rep of the simulation starts here;  

* Generate 6 independent standard normal random var iab les  
f o r  two groups; 

do i = 1 t o  50; * where 50 is t h e  des i red sample s i z e  i n  each 
group, 
i i s  the  sub jec t  index; 

xl = rannor(647 + i + %j*2); 
x2 = rannor(372 + i + &j*2) ; 
x3 = rannor(425 + i + &j*2) ; 
x4 = rannor(l62 + i + &j*2); 
x5 = rannor(528 + i + %j*2); 
x6 = rannor(289 + i + %j*2); 
x7 = rannor(467 + i + &j*2); 
x8 = rannor(732 + i + 8j*2) ; 
x9 = rannor (245 + i + &j*2) ; 
x l 0  = rannor(612 + i + &j*2) ;  
xi1 = rannor (258 + i + &j*2) ; 
x12 = rannor(829 + i + &j*2);  
output ; 
end ; 
run ; 
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* Convert generated data s e t  i n t o  matrices; 

proc iml; 
use sbp; 
read al1 var  (xl x2 x3 x4 x5 x6) i n t o  x l ;  
read al1 var (x7 x8 x9 xlO x l i  x12) in to  x2; 
tx1 = t (XI) ; 
t x 2  = t (x2)  ; 

* Create the within subject  V-C matrix; 

* Specif ying t he  covariance parameters ; 

rho l  = &p*O.l; 
rho2 = &q*O . 1 ; 
rho3 = &r*0.1; 
diag = 1; 
rholm = rhol**2; 
rho2m = rho2**2; 
rho3m = rho3**2; 

* Specifying t he  matrices t h a t  make up the  within-subject 
covariance 

matrix Sigmao ; 

A = J (3 ,3 ,0 ) ;  
AC1,II = diag; 
ACl,2] = rhol;  
A[1,31 = rholm; 
A[2,1] = rhol ;  
A[2,2] = diag; 
A[2,3] = rhol;  
A[3,i] = rholm; 
A[3,2] = rhol ;  
AC3,3] = diag; 
Amod = A#4; 

B = J (3 ,3 ,0 ) ;  
B[l ,I]  = diag; 
B[1,2] = rho3; 
B[1,3] = rho3m; 
B[2,1] = rho3; 
B[2,2J = diag; 
B[2,3] = rho3; 
BC3,1] = rho3m; 
B[3,2] = rho3; 
B[3,3] = diag; 
Bmod = B#2; 

C = J (3 ,3 ,0 ) ;  
Cr i ,  11 = diag; 
C[1,21 = rho2; 
C[1,3] = rho2rn; 
CC2,lI = rho2; 
CC2,21 = diag; 
C[2,3]  = rho2; 
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CC3,11 = rho2m; 
CC3,21 = rho2; 
CC3,3] = diag; 
Cmod = C#4; 

* Specifying Sigmao (lsigma in this program); 
AB = Amod//Bmod; 
BC = Bmod//Cmod; 
lsigma = AB1 IBC; 

* Enter the mean vector for group 1; 
meanvl = (113, 

Il8 , 
123, 
59, 
62, 
651; 

mul=repeat (meanvl, l,5O) ; 

* Enter the mean vector for group 2; 

* Create 6 correlated variables on each individual in group 1 
and Save as a SAS data set; 

yi=lsigma*txl+mul; 
tyl=t (y11 ; 
varnames='sbpl':'sbp6'; 
create sbpmodl f rom tyl Ccolname=varnames] ; 
append from tyl; 

* Create 6 correlated variables on each individual in group 2 
and Save as a SAS data set; 

y2=lsigma*tx2+mu2; 
ty2=t (y21 ; 
varnames='sbpi':'sbp6'; 
creat e sbpmod2 f rom ty2 [colname=varnames] ; 
append from ty2; 
quit ; 

*Combine the two data sets; 

data sbpmod; 
set sbpmodl sbpmod2; 

run ; 
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* Create var iable  t o  use i n  transposing the  created da ta ;  

d a t a  nested;  
do i = 1 t o  100; 

output ; 
end ; 

r u .  ; 

* Merge t h e  two data s e t s ;  

da t a  a l l ;  
merge nested sbpmod; 

run ; 

* Transpose da t a  into format required by PROC MIXED; 

proc transpose data=al l  o u t = a l l t ;  
by i; 
var sbpl  sbp2 sbp3 sbp4 sbp5 sbp6; 

run ; 

* Create data s e t  on 1 individuals  based on C cha rac t e r i s t i c s  
measured T times; 

da ta  mult ; 
do person = 1 t o  LOO; 

do chara = 1 t o  2; 
do time = 1 t o  3; 

output ; 
end ; 

end ; 
end ; 

run; 

* Create design matrix t o  f i t  a l i n e a r  grouth-curve mode1 t o  t h e  
two response variables ; 

proc iml; 
~ i = J ( 5 O , l , l ) ;  
A2=J(50,1,1) ; 
theta=block(Ai, A2) ; 
the tap=t  ( theta)  ; 
x = ( 1-1, 

1 01 
1 13; 

Xp=t (XI ; 
I2=.c1 O ,  

O 13; 
D = theta631263X; 
varnames='xl': 'x8'; 
c rea te  des from D [colname=va.names~ ; 
append from D ;  
q u i t  ; 

* Create t h e  f i n a l  data  s e t  t o  be used by the  Mixed procedure; 
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d a t a  a c tua l ;  
merge allt mult des ;  

m; 

* Mode1 f i t t i n g  and es t imat ing  parameters of i n t e r e s t ;  

/* Completely Unstructured V-C Matrix +/ 
proc mixed data=actuai ;  

c l a s s  person; 
model co l1  = x l  x2 x3 x4 x5 x6 x7 x8/ covb noint  s; 
repeated / type=un subject=person r=1 r i = l ;  
make 'SolutionF' out=seun&j; 
make 'R' out=cmun&j; 
make 'COVB' out=emun&j; 

run ; 
q u i t  ; 

/* Unstructured by AR(1) V-C Matrix */ 
proc mixed data=actual ;  

class chara time person; 
model co l1  = xl x2 x3 x4 x5 x6 x7 x8 / covb noint  s ;  
repeated chara time / type=un@ar(l) subject=person r=l r i = l ;  
make 'SolutionF' out=sear&j;  
make 'R' out=cmar& j ; 
make ' COVB ' out=emar& j ; 

run ; 
quit ; 

* Convert generated d a t a  sets i n t o  matrices and compute t h e  
l ike l ihood  r a t i o  t e s t  s t a t i s t i c  , chi-square s t a t i s t i c  and 
p-value ; 

proc iml; 
use cmun&j var{coll col2 c o l 3  col4  col5 col6); 
read al1 var ,num, i n t o  a r b i k j ;  
num&j = det(arbi&j)  ; 
use cmar&j var(col1 col2 c o l 3  co l4  col5 ~ 0 1 6 ) ;  
read a l1 va r  ,mm, i n t o  kscmkj; 
deno&j = de t  Ckscm&j) ; 
lr&j = J ( l , l , O ) ;  
Ir& j = (nu& j /deno& j ) ##-50 ; 
chi& j = 2#log (lr& j) ; 

0 1 0 0 0 - 1 0 0 ;  
0 0 1 0 0 0 - 1 0 ,  
O 0 0  1 0 0 0 - 1 3 ;  

qprime = t ( Q )  ; 

* Computing the  t e s t  s t a t i s t i c s  abd p-values f o r  t e s t i n g  t h e  
hypothesis of ove ra l l  pa r a l l e l i sm; ;  

use emun&j var{,coll -col2 -col3 ,col4 ,col5 ,col6 -col7 ,co18); 
read al1 var  ,nm, i n t o  vhS&j; 
use emar&j var{,coll -col2 ,col3 ,col4 ,col5 -col6 ,col7 ,co183; 
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read al1 var  - n u -  into vhl&j;  
qua2& j = Q*vh2& j *qprime ; 
qual&j = Q*vhl&j*qprime; 

use seun&j var(,est-1; 
read al1 var  -nu- into lam2âj; 
use sear&j var(,est-1; 
read al1 var  -num- into laml&j ;  
qua3&j = Q*laml&j ; 
qua4&j = Q*lam2&j; 
qua5&j = t (qua3&j) ; 
qua6&j = t (qua4kj) ; 
ta& j = qua5& j *inv (quall j) *qua3& j ; 
tun&j = qua6&j*inv(qua2%j) *qua4gj ; 
pvar&j = 1 - probchi ( t a r&j ,  4) ; 
pvm& j = 1 - probchi (tunkj, 4) ; 

lrt&j = J (1 ,7 ,0 ) ;  
l r t&jC1,1] = lr&j; 
lrt&j C l ,  21 = chi&j  ; 
lrt&jC1.31 = pval&j;  
l r tâ j  [1,4] = tar%j; 
l r t & j [ l , 5 ]  = tun&j;  
lrt&jC1,61 = pvar&j; 
l r t & j [ i , 7 ]  = pvun&j; 
l r t m &  j = repeat  ( k t &  j ,8,1) ; 
para&j = J (8 ,1 ,0 ) ;  
pa ra&j[ i , l ]  = 118; 
para&jC2,i] = 5; 
para& j C3,iI = 62 ; 
para&j[4,1] = 3 ; 
para&jC5,1] = 118; 
para&jC6,1] = 5; 
para&jC7,11 = 62; 
para&jC8,11 = 3; 
lmod&j = l r t m & j  I 1 para&j ; 
varnames = 'hypol':'hypo8'; 
c rea te  unardc j f rom lmod% j [colname=varnamesl; 
append from lrnod%j; 
qu i t  ; 

* Merging t h e  r e s u l t s  from the d i f f e r en t  models. 
Note: The merged data s e t s  v i l 1  be empty i f  one of t he  data  
s e t s  i s  empty as  a r e su l t  of t he  mode1 f a i l i n g  t o  converge; 

d a t a  s t d & j ;  - 
length  -effect-  $8 est-un se-un est-ar  se-ar lrtest chisq 

pvalue T-AR T-UN PVA-AR PVA-UN trueval  8 simu $8; 
r u  ; 

da ta  std&j; 
s e t  st&j ( o b s = ~ )  ; 

rur; 

da t a  s t d & j ;  
a t t r i b  -ef f ect-  length=$8; 
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merge seua&j(drop=-df- -t- -pt- rename=(-est-=est-ua) 
Tename= (-se-=se-un) ) 
searkj (drap=-df- -t- -pt- rename=(-est-=est_-) 
Tename= (-se-=se-=) ) 
unar& j (rename= (hypo l=lrtest) rename= (hypo2=chisq) 
rename= (hypo3=pvalue) rename= (hypo4=T_AR) 
rename=(hypoS=T,UN) 
rename= (hypoG=PVA-AR) rename= (hypo7=PVA_UN) 
rename= (hypo8=trueval) ) ; 

attrib simu length=$8 ; 
simu="Sim &j lu; 

output ; 

proc datasets nolist ; 
delete sbp sbpmodl sbpmod2 sbpmod nested al1 allt mult des 

actual searâj 
seun&j una rk j ;  
append base=std neli=std&j; 

run ; 
q u i t  ; 

%end; 
%mend s imulat e ; 

Xmacro combine ; 

data std; 
set std; 

rhol = &p*0.1; 
rho2 = &q*0.1; 
rho3 = & r * O .  1; 
run ; 

proc append base=kpd,decl8 data=std(where=(-effect-='Xiy)); 
run ; 

proc datasets nolist ; 
delete std; 

run; 

%mend combine; 

%macro krone; 
%do p=l %to 9 %by 2; 
%do q=l %to 9 Xby 2; 

%do r=2 %to 8 %by 2; 
%s imulat e 
%combine 

%end ; 
%end ; 

%end ; 
%mend krone; 
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C.3 Simulation program to evaluate the impact of 
the Kronecker product 
deviat ion index under the alternat ive hypot hesis 

* Referencing the library uhere simulation results uill be 
saved as a permanent SAS data s e t  ; 

libname kpd ' chapter6 ' ; 
run; 

* Ensuring program runs in batch mode as it would in 
interactive mode ; 

options nosyntaxcheck nosource; 

* Suppress printing of the PROC MIXED output; 

%global ,PRINT,; 
%let ,PRINT- = OFF; 

* The simulation program starts here; 
Xmacro simulate; 

%do j=l %to 200; 

* j = the simulation index; 

* One rep of the simulation starts here; 
data sbp (replace=yes) ; 

* Generate 6 independent standard normal random variables for 
two groups; 

* where 50 is the desired sample size in each 
50UP 3 
i is the subject index; 

+ i + &j*2);  
+ i + &j*2); 
+ i + %j*2);  
+ i + &j*2); 
+ i + &j*2); 
+ i + &j*2); 
+ i + &j*2); 
+ i + &j*2); 
+ i + %-j*2) ; 

x l0  = rannor(612 + i + &j*2); 
x i 1  = rannor (258 + i + O j *2 )  ; 
x12 = rannor(829 + i + & j * S ) ;  
output ; 
end ; 
run ; 
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* Convert generated d a t a  s e t  into matrices; 
proc iml; 
use sbp; 
read al1 v a r  Cxl x2 x3 x4 x5 x6) i n to  x l ;  
read a l 1  var (x7 x8 x9 x10 x l l  x12) i n to  x2; 
t x l  = t (xi)  ; 
tx2 = t (x2) ; 

* Create t h e  within subject  V-C matrix; 

* Specifying the  covariance parameters; 

rho l  = &p*O.l; 
rho2 = &q*0.1; 
rho3 = &r*O.  1 ; 
diag = 1; 
rholm = rhol**2; 
rho2m = rho2**2; 
rho3m = rho3**2; 

* Specifying the matrices t h a t  make up the  within-subject 
covariance 

matrix Sigmao ; 

A = J (3 ,3 ,0) ;  
A L I ,  11 = diag;  
A[1,21 = rho l ;  
AC1,31 = rholm; 
AE2,ll = rho l ;  
A[2,21 = diag;  
AC2,31 = rho l ;  
A C3,11 = rho lm; 
AC3,21 = rho l ;  
AC3,31 = diag;  
Amod = A#4;  

BEI, 11 = diag;  
B[1,21 = rho3; 

B[3,1] = rho3m; 
BC3,21 = rho3; 
BC3,31 = diag;  
Bmod = B#2; 

C = J (3 ,3 ,0) ;  
C Cl, 11 = diag; 
C[1,2] = rho2; 
C[l,3] = rho2m; 
C[2,1] = rho2; 
CL2,21 = diag; 
C[2,3] = rho2; 
C C3,11 = rho2m; 
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CC3,21 = rh02; 
CC3,31 = diag; 
Cmod = C#4; 

AB = Amod//Bmod ; 
BC = Bmod//Cmod; 
lsigma = AB1 IBC; 

* Enter the mean vector for group 1; 
meanvl = (113, 

118, 
123, 
59, 
62, 
653 ; 

mul=repeat (meanvl, l,5O) ; 

* Enter the mean vector for group 2; 

* Create 6 correlated variables on each individual in group 1 
and save as a SAS data set; 

yl=lsigma*txl+mul; 
tyl=t (yl) ; 
varname~='sbpl':'sbp6~; 
create sbpmodl from tyl [colname=varnames] ; 
append from tyl; 

* Create 6 correlated variables on each individual in group 2 
and save as a SAS data set; 

y2=lsigma*tx2+mu2; 
ty2=t (y2) ; 
varnames='sbpl : 'sbp6' ; 
create sbpmodl from ty2 [colname=varnames] ; 
append from ty2; 
quit ; 

*Combine the two data sets; 

data sbpmod; 
set sbpmodl sbpmod2; 

run ; 

* Create variable to use in transposing the created data; 
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da t a  nested; 
do i = 1 t o  100; 

output ; 
end ; 

r u ;  

* Merge the  two data sets; 

da t a  a l l ;  
merge nested sbpmod; 

-; 

* Transpose da t a  i n t o  format required by PROC MIXED; 

proc transpose data=all ou t=a l l t ;  
by i; 
var  sbpl sbp2 sbp3 sbp4 sbp5 sbp6; 

r u ;  

* Create da ta  s e t  on 1 individuals based on C charac te r i s t i c s  
measured T t imes; 

da t a  mult; 
do person = 1 t o  100; 

do chara = 1 t o  2; 
do time = 1 t o  3; 

output ; 
end ; 

end; 
end ; 

run ; 

* Create design matrix t o  f i t  a l i n e a r  growth-cuve mode1 t o  t h e  
two response var iab les ;  

proc i m l ;  
A1=J(5O2l,1) ; 
A ~ = J ( ~ O ,  1 , l )  ; 
theta=block(Al ,A21 ; 
the tap=t  ( theta)  ; 
x = ( 1 -1, 

1 O, 
1 13; 

Xp=t (X) ; 
I2=(1 O, 

O 1); 
D = thetaQI2QX; 
varname~='xl':~x8'; 
crea te  des from D [colname=varnamesl; 
append from D ;  
q u i t  ; 

* Create the  final d a t a  s e t  t o  be used by t h e  Mixed procedure; 

da t a  ac tual ;  
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merge a l l t  mult des;  
=; 

* Mode1 f i t t i n g  and est imating parameters of i n t e r e s t ;  

/* Completely Unstructured V-C Matrix */ 
proc mixed data=actual ;  

c l a s s  person; 
model c o l l  = x l  x2 x3 x4 x5 x6 x7 x8/ covb no in t  s; 
repeated / type-- subject=person r=l ri=l; 
make 'SolutionF' out=seun&j; 
make ' R' out=cmun& j ; 
make 'COVB' out=emun%j; 

=; 
q u i t  ; 

/* Unstructured by AR(1) V-C Matrix */ 
proc mixed da ta=ac tua l ;  

c l a s s  chara t i m e  person; 
model c o l l  = x l  x2 x3 x4 x5 x6 x7 x8 / covb noint  s; 
repeatcd chara t ime / type=un@ar(l) subject=person r=l ri=l; 
make 'SolutionFJ out=sear%j; 
make ' R '  out=cmar%j; 
make ' COVB ' out=emar% j ; 

run ; 
quit ; 

* Convert generated d a t a  s e t s  i n to  matr ices and compute t h e  
l ikel ihood r a t i o  t e s t  s t a t i s t i c  , chi-square s t a t i s t i c  and 
p-value ; 

proc iml; 
use cmun&j var{coll co l2  col3  col4 col5 col6); 
read al1 var -nu- i n t o  a rb i&j  ; 
num& j = det  ( a rb i&j  ) ; 
use cmar&j va.r{coll col2  col3  col4 col5 co16); 
read al1 var  - n u -  i n t o  kscm%j ; 
deno& j = de t  (kscm& j )  ; 
lr&j = J ( l , l , O ) ;  
Ir& j = ( n u &  j /deno& j ) ##-50 ; 
chi& j = 2#log (lrâ j ) ; 
pval&j  = 1 - probchi(chi%j ,171 ; 
Q = C l O O O - 1 0 0 0 ,  

O 1 0 G O - 1 0 0 ,  
0 0 1 0 0 0 - 1 0 ,  
0 0 0 1 0 0 0 - 1 ) ;  

qprime = t (Q) ; 

* Computing t h e  test s t a t i s t i c s  and p-values f o r  t e s t i n g  t h e  
hypothesis of o v e r a l l  pa ra l l e l i sm; ;  

use emun&j var<-col1 -col2 -col3 -col4 -col5 -col6 -col7 -co18); 
read al1 var  -num- i n t o  vh28j ; 
use emar%j v a r c c 0 1 1  -col2 -col3 -col4 -col5 -col6 -col7 -col8); 
read al1 var  i n t o  vhlkj ;  
qua2â j = Q*vh2% j *qprime ; 
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use seun&j var(-est-3; 
read a l 1  v a r  -mm- i n t  O la& j ; 
use s e a r & j  vari-est-); 
read  al1 v a r  -num- i n t o  lamlkj; 
qua3&j = Q*laml&j; 
qua4&j = Q*lam2&j ; 
qua5& j = t (qua3t j ; 
qua6& j = t (qua4& j ; 
t a r k j  = qua5&j*inv(qual&j)*qua3%j; 
tun%j = qua6&j*inv(qua2&j)*qua4&j; 
pvarkj  = 1 - probchi(t-j, 4) ; 
pvunk j = 1 - probchi (tunâ j , 4) ; 

lrt&j = 5(1 ,7 ,0 ) ;  
lrt& j Cl, 11 = lrtj ; 
lrtr j Cl, 21 = ch i%j  ; 
l r t&j [1 ,3 ]  = pvalkj ;  
l r t&jC1,4]  = tarêj; 
lrt&j Cl, 51 = t u n t j  ; 
l r t&j [1 ,6 ]  = pvarâ j ;  
lrt&j C l ,  71 = pvun&j ; 
l r t m &  j = repea t  (lrt&j, 8,l) ; 
para&j  = 5(8 ,1 ,0) ;  
parz&jCl , l ]  = 118; 
para&jC2,13 = 5; 
para& j C3 ,l1 = 62 ; 
para& j C4,ll = 3 ; 
para&jC5,11 = 118; 
para&jC6,11 = 6;  
para&j C7,11 = 62; 
para&jC8,11 = 3.6 ;  
lmod& j = l r t m k j  1 1 para& j ; 
varnames = 'hypolJ: 'hypo8';  
c r e a t  e unarlé j f rom lmod& j Ccolname=varnames] ; 
append from lmod&j; 
q u i t  ; 

* Merging t h e  r e s u l t s  from the d i f f e r e n t  models. 
Note: The merged d a t a  s e t s  v i l 1  be empty i f  one of t h e  d a t a  
s e t s  is empty as a r e s u l t  of t h e  mode1 f a i l i n g  t o  converge; 

d a t a  s t d & j ;  - 
l eng th  -effect-  $8 est-un se-un es t -a r  se-ar l r t e s t  chisq 

pvalue T-AR T-UN PVA-AR PVA-_UN t r u e v a l  8 simu $8; 
r u ;  

d a t a  s t d & j ;  
s e t  s t d & j  (obs=O) ; 

run ; 

d a t a  s t d & j ;  
a t t r i b  -ef f ec t -  length=$8 ; 
merge seun&j(drop=-df- -t- -pt- remme=(-est-=est-un) 

r e n n e =  (-se-=se-un) ) 



Appendk Chap ter 6 Compter Programs 

searâj (&op=-df- -t- -pt- rename=(-est-=est_=) 
rename= (-se,=se-ar) ) 

unar&j (rename=(hypol=lrtest) rename=(hypo2=chisq) 
remme= (hypo3=pvalue) rename= (hypo4=T_AR) 
rename= (hypoS=T-UN) 
rename=(hypoG=PVA-AR) rename=(hypo7=PVA_UN) 
rename=(hypo8=trueval)); 

attrib simu length=$8 ; 
simu="Sim &j "; 

output  ; 

proc datasets nolist ; 
delete sbp sbpmodl sbpmod2 sbpmod nested al1 allt mult des 

actual sear%j seun&j unar&j; 
append base=std neu=std& j ; 

run ; 
quit ; 

%end; 
%mend simulate; 

%macro combine ; 

data std; 
s e t  std; 

rhol = &p*O.l; 
rho2 = &q*O. 1; 
rho3 = &r*O. 1 ; 
run ; 

proc appead base=kpd. jan05 data=std(where=(-eff ect-= 'XI ' ) ; 
run ; 

proc datasets nolist; 
delete std; 

run ; 

%mend combine; 

Xmacro krone ; 
%do p=l %to 9 %by 2; 
%do q=l %to 9 %by 2; 

%do r=2 %to 8 %by 2; 
%simulate 
%combine 

%end; 
%end ; 

%end; 
Xmend krone; 




