A Framework for an Automated Neural
Network Designer using Evolutionary
Algorithms

by
Markian D. Hlynka
B.C.Sc. (University of Manitoba) [997

A dissertation submitted in partial satisfaction of the requirements for the degree of
Master of Science
in

Computer Science
Department of Computer Science

University of Manitoba,

Winnipeg, Manitoba

© by Markian D. Hlynka, August 1999

i+l

National Library

of Canada du Canada

Acquisitions and Acquisitions et

Bibliographic Services
395 Wellington Street

Ottawa ON K1A ON4

Canada Canada

The author has granted a non-
exclusive licence allowing the
National Library of Canada to
reproduce, loan, distribute or sell
copies of this thesis in microform,
paper or electronic formats.

The author retains ownership of the
copyright in this thesis. Neither the
thesis nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

395, rue Wellington
Ottawa ON K1A ON4

Bibliothéque nationale

services bibliographiques

Your file Votre reférence

Qur file Notre rélérence

L’auteur a accordé une licence non
exclusive permettant a la
Bibliothéque nationale du Canada de
reproduire, préter, distribuer ou
vendre des copies de cette thése sous
la forme de microfiche/film, de
reproduction sur papier ou sur format
électronique.

L’ auteur conserve la propriété du
droit d’auteur qui protége cette thése.
Ni la thése ni des extraits substantiels
de celle-ci ne doivent étre imprimés
ou autrement reproduits sans son
autorisation.

0-612-41716-6

i+l

Canada

THE UNIVERSITY OF MANITOBA
FACULTY OF GRADUATE STUDIES

o e do kb

COPYRIGHT PERMISSION PAGE

A Framework for an Automated Neural Network Designer Using Evolutionary
Algorithms

BY

Markian D. Hlynka

A Thesis/Practicam submitted to the Faculty of Graduate Studies of The University
of Manitoba in partial fulfillment of the requirements of the degree

of
MASTER OF SCIENCE

MARKIAN D. HLYNKA®©1999

Permission has been granted to the Library of The University of Manitoba to lend or sell
copies of this thesis/practicum, to the National Library of Canada to microfilm this thesis and
to lend or sell copies of the film, and to Dissertations Abstracts International to publish an
abstract of this thesis/practicum.

The author reserves other publication rights, and neither this thesis/practicum nor extensive
extracts from it may be printed or otherwise reproduced without the author's written

permission.

A Framework for an Automated Neural
Network Designer using Evolutionary
Algorithms

Copyright © 1999

by
Markian D. Hlynka
All rights reserved

“ﬂncf because, in all the ga[ax_x/, tﬁey had founJ

notﬁing more precious than Mind, tﬁey encouragecf its
cfawning everywﬁere. T] ﬁey became farmers in the ﬁ’e[d's qf

stars; tﬁey sowed, and sometimes tﬁey rea]oecf

~ »
And sometimes, dispassionate[y, tﬁey had to weed.

Arthur C. Clarke
3001: The Final Odyssey

Acknowledgments

Many people have contributed to the completion of this dissertation in many ways: explic-
itly. unwittingly. serendipitously. I hope to name them herein. As my memory is encased

in a biological substrate, it is fallible. If your name does not appear here, forgive me: [am

thankful to you as well.

[n no particular order. [would like to thank:

My advisor, Dr. David Scuse, for his support and encouragement.
My committee members. Dr. Robert Tait and Dr. John Anderson.
My parents. for their own unique form of support.

My grandmother, who kept asking, “are you finished yet?”

My brother Anthony.

The professors who have most supported and encouraged me:

Dr. Bill Kocay

Dr. John Bate

Dr. Neil Arnason
Dr. Dekang Lin
Dr. John Anderson
Dr. Peter Graham
Dr. Hugh Williams

Gilbert Detillieux and Tom Dubinski, who keep our computers running.

iv

Lynne Romuld. without whom [wouldn’t have managed to get anything done.

Susan Harder, who has now managed to put up with me for years.

My friends and fellow students. of whom [can not possibly name but a few. Significant

contributions of debugging. proofreading, and designing were made (in no particular order)
by:

Hamish Carr
Andrea Mantler
Ryan Szypowski
Daniel Neilson
Doug Hamilton
Brian Doob
Patrick Pantel
Jenny Chadee
Cathy Leung
Sara Arenson

Finally, thanks to some of my greatest sources of inspiration and motivation:

R. Daneel Olivaw

Susan Calvin

HAL 9000

Rossum’s Universal Robots
Deep Thought

The Shockwave Rider

Dr. Who

K-9

To all who became involved in this thesis, principally and peripherally, [extend my grati-

tude and my thanks.

Markian Hlynka
The University of Manitoba
July 1999

Abstract

A Framework for an Automated Neural Network Designer using Evolutionary Algorithms
by
Markian Hlynka
Master of Science in Computer Science

University of Manitoba

One of the major stumbling blocks of neural networks is the difficulty of designing the
networks. Networks must be created by experts who understand both the problem domain
and the process of developing neural networks. For complex problems. the process. even
for experts, can be an intuitive rather than ratiocinative process. Evolutionary and genetic
algorithms are a robust, probabilistic search strategy that excel in large, complex problem
spaces. Research involving the application of evolutionary algorithms to neural networks
for purposes of both training and selection of an optimal network has been carried out. The
focus of such research, however, has been to generate an optimal network of a given struc-
ture. No generic framework exists which allows for the automation of the network creation
process — the selection and design of the architecture — for a particular problem. This the-
sis is concerned with the design of such an evolutionary framework. The system is subse-
quently evaluated with backpropagation networks on an unknown data set. A new method
of evolution. probabilistic Lamarkian learning transfer, appears to produce the desired

results.

vi

Table of Contents

Acknowledgments. iv
AbStract . . e, vi
CHAPTER 1 Introduction i 1
1.1 Neural NetworKs et e e e e et e e e e |
1.2 Evolutionary Algorithms e 2
1.3 Overview of ThesiS oo i e e et ettt e +
CHAPTER 2 Neural Networks. 5
2.1 Neural Networks: A brief history 5
201 InThe Beginning i 5

2 e A 572 ¥y 1 11 o V-2 OGO 6
2.1.3 OvercomingtheBlock................ e e e e e e 7
2o ONWaArd. ... e e e e e 3
2.2 Neural Network Basics .« ... i e e 8
e T © N o G 11 G 8
2,22 The NCUION it e e e e e e e et e 9
223 MeChanics . ..o e e e 9
224 The Activation Function e e e 10
225 Learming. e et 11
226 The Layer. e e 12
227 The NetwWorK ... i it e e e 13
2.2.8 Linear Separability.o e i4
2.3 BacKpropagalionot 16
2.3.1 The Network Model.o e e 16
2.3.2 Supervised and Unsupervised Learning. i 17
233 The Learning Algorithm e 18
234 TheHidden Layer . ..o . e 19
.20 T SN oY, £ 1 4 U 1 11 1o o U YU 20
2351 TheProblem. ... et 20
2.3.5.2 TheContradiCon et e e 21
2.3.53.3 TRE SOIULON. . .ottt et e e i e et et e e et e 22
2.3.6 Bias Values e 23
2.4 Training Problems in Backpropagation. o 24
241 Initial Welghts . ..o e 24
242 Numberof Hidden Unitso e e e 25
243 Lengthof Training. . ..o oo i i e e e i ittt iie i 26
244 Evalualion Strategiesottt e 26
2.3 SUMIMIAIY -t ottt et et et et e e et e e 27

vii

CHAPTER 3 Evolutionary Algorithms. 28

3.0 Background e e e 28
3.2 MEChanics e e e 29
A B © 1 o T 29
3.2.2 A Simple Example of an Evolutionary Algorithm, 30
3.2.3 A Detailed Examplie of a Genetic Algorithm. 34
3.2 SUMMAIY . e e e 39
3.3 Comparisonto Other Search Methods. 40
330 Calculus Based.o e e 10
332 EnUMerative . ..o e 41
333 RaANdOM ... e e 41
3.34 Random Versus Randomized. 4l
3.35 Genelic AlgOMItMSo e e 41
3.4 Neural Networks as Candidates for Genetic Search o Lo o i 42
34.1 Motivation for Evolutionary Networks 43
3.5 Neural Networks and Evolution inthe Literature -
350 Initial Weights oo o e -
3.5.2 Triningand Evolution i 45
3.5.3 Adaptive NeuroevolULION. . . .o o e 16
354 Other Mentions e e +7
36 SUMMANY ... e e 47
CHAPTER 4 Structure of the System 48
b Goal . e e 18
411 Implementation e e e 8
4.2 Newral Network Implementation. o L 49
2L T he Layer. . o e e 19
422 The NEIWOIK . oo e e e e e e e e e 30
+.2.3 The Backpropagation Class e e e 30
424 Network Evaluationo e e 51
425 System Verification L e e D2
4.3 Evolutionary Algorithm. i 33
43,1 Representalionot e e e 54
4.3.2 Pre-reproduction approaches L L e o 35
4.3.3 The Fitness FUnClion e e 57
434 Standard Genetic Operations i e 58
4.4 Consolidation: The System e 39
441 Mating Trained Weights o e 60
4401 Lamarkian Evolution oo e e 60
4-4.1.2 Mixing Weights in Neural Networks. o i i 61
44.1.3 Nurture overcomes NaUIe.t it i i e 62
442 Mating Initial Weights. o e 63
4421 TheBaldwin Effect e 63

41422 Baldwin Evolution in Neural Networks.ottt i e e e e e e 63

4.14.2.3 Distributed Learning Trials and Baldwin Evolution o4
+.4.3 Probabilistic Lamarkian Learning Transfer. i o4
444 The Algorithm Revisited - o e 66

A UMMy . o e e e e e e 67
CHAPTER 5 Experimentation. i.iiiiimieonn. 69
S.b 0 DeSCiPUION. . . oo e e e e e e 69
3. 2 PUIPOSC. - oo e e e e e e e e 69
3.3 Malerials ... e e e e 69
530 COmMPUICT . o e e e e e e e 69

G 00 - 1 L1 S PP 70
5.3, 2 0 FCalUICS . oot e e e e e e 71

SH4 Methodology . . e e e 73
S4 L The Train/ Fest SIralC gy - o . oo i e e e et et e e e e e e i e 73

5411 k-foldcross validation L e 74

5.-L.1.2 Separating the Validation of the Algorithms L ... 75
542 Training by hand 75
5.4.3 N-fold Crossvalidation.o e 76

5.5 EXPCriment.o e e 76
3.3 S o e e 77
5.6 CoNCIUSIONo e et 80
CHAPTER 6 Conclusion. e 82
.l SUMMIANY ... e e e e e e e 82
.11 SUCCESSES . o ettt ittt e e e e e e e 82
6.1.2 AVl . . oo e e e e 82
T e b 1 S 83
6.1.2.2 Limited lexibility e e 83
6.2 FULUIE WOTK. - o o e e e e e e e 8+
6.2.1 Improved Implementation 84
6.2.2 Curved Fitness FUNCHONS. . . oo oo ittt e e e e e et eieaes 84
6.2.3 Other Genelic OPEralors it e e e e e 86
6.2 4 Network Types. . o o e 87

6.24.1 Mixed Population. e 87

6.2.4.2 Segregated Population L e 87

6.2.4.3 Cooperative Population 87
6.2.5 Survival Traits 88

6.2.5.1 PreventInbreeding. . ..o i e 88

6.2.5.2 Age-correlated Filness oo 88

6.2.53.3 Dataset Partitioning e e 89

6.3 CONCIUSION . « .. o 89

Bibliography e 91

AppPendiX A . . e A-1
Al Longrun. full EAwith PLLT ..o e A-l
ALl First Five Generaltions. .« . .. oottt e e e e e e e e e A-l

A L2 Final Five Generationso et e e A-13
Appendix B . .. B-1
B.1 Neural Network Code . ..o e B-1
Bl Debug h. . e e e e B-1
Bl 2 NLayer oo e B-1

B. L3 neurallh o e e e et B-3
Bl 4 backprop.h. . oo B-6
Bl NLayerce ..o e e e e e e B-6
B.1.6 neuralice ... e e B-10

B 1.7 backprop.cc. ... oo e e B-21
B.2 Evolutionary System and Supporting System Code o i il B-28
B.2.1 genetich . oo e oo B-28
B.2.2 metparms.h. . oL e B-28
B.2.3 gONCUC.CC. oo e e B-29

B 2 mMaIN.CC .. e e e e e e B-36

1 Introduction

This Chapter presents a brief overview of neural networks and their main failing, parameter

selection.

1.1 Neural Networks

Neural networks are a non-symbolic approach to pattern recognition. Based on a loose par-
adigm of neurons in the brain. neural networks are able to pick out pertinent patterns in
data, often when the data is incomplete, corrupted. noisy. or uncertain. While their training
processes can be slow, completed neural networks are generally quite fast in application.
Their strengths include the ability to generalize large numbers of patterns into classes. and
to learn from a presentation of example problems and solutions. One major impediment to

the design of neural networks is the selection of an ideal set of parameters for a particular

problem.

Neural networks are hand-crafted by experts with years of experience in the field. Two
major drawbacks of this approach are a lack of experts, and a lack of a rigorous design
methodology. The first problem is straightforward enough: there simply are not enough
experts to attend to all the potential neural network projects the world has to offer. The
second problem is somewhat more subtle. No tractable algorithm exists to optimally deter-

mine the parameters for a particular neural network application. The result of this complex-

ity is that the science of designing neural systems is imprecise at best. At worst. the process
is guided by intuition alone. To this end. a system is required to determine neural network

designs more efficiently and in greater number than the experts can manage.

[tis unreasonable to expect that any single neural network will be able to solve any problem
regardless of complexity. To address this problem. research is being conducted into mod-
ular neural networks. In these systems, several networks cooperate to solve a problem
which would be unsolvable by any single neural network architecture. While the power and
flexibility of the resulting gestalt has the potential to outperform simple neural networks,
the combination of multiple networks increases the difficulty of crafting the system.
Whereas before an expert had to craft only a single network. the problem becomes one of
designing multiple networks while simultaneously enabling them to cooperate on the prob-

lem at hand. The work load rises exponentially with the size of the system.

Clearly, a method is needed to free experts from the imprecise drudgery of hand-crafting
networks. The recent trend to modular networks only exacerbates this need. One promising
method of solving both problems is through the use of evolutionary algorithms (EAs). This

thesis presents a systematic approach to automating the design of neural networks through

the use of EAs.

1.2 Evolutionary Algorithms

Genetic algorithms were developed by John Holland at the University of Michigan. With

his students and colleagues, Holland set out to achieve two goals. First, to “abstract and rig-

orously explain thie adaptive processes of natural systems™, and second, to “*design artificial
systems software that retains the important mechanisms of natural systems.” [Goldberg]| [n
other words, Holland was trying to find out how natural. biological systems manage to be

so adaptive. and how this knowledge might be applied to artificial systems.

Due to the inherent difficulty in the process of creating neural networks, genetic algorithms
have become a focus of study in the field. Using genetic algorithms, it is possible to remove
some of the burden of trial and error design from the designer. Rather, the genetic algorithm

is used to search a solution space for effective neural network parameters.

Genetic algorithms have been used to select various features of neural networks. These
include learning parameters, hidden units, topology, connections. and even to evolve the
synaptic weights themselves (a task usually achieved by the learning algorithm) {Korning;

Caudill].

Possibly the most successful neuroevolutionary algorithm to date is the SANE algorithm
devised by David Moriarty [Moriarty]. The SANE algorithm was highly successful in
evolving effective neurons simultaneously to evolving effective cooperation among the
neurons. The result was highly effective networks for sparse reinforcement problems: that
class of problem where a series of decisions must be made before feedback is achieved.

Often this feedback is very general: for example, success or failure.

Research seems to indicate that the combination of genetic algorithms and neural networks
results in robust systems able to tackle a wide variety of problems.

3

1.3 Overview of Thesis

The remainder of this thesis will be consist of several parts. First, an in-depth discussion of
neural networks will review the basic problems encountered when designing application
specific networks. This will be followed by and overview of genetic algorithms, and a dis-
cussion of previous applications of EAs to neural networks. Chapter [V will present the
structure of the system developed for this thesis. and Chapter V will discuss the experi-
ments performed and results obtained. Finally. conclusions will be drawn in Chapter VL.

and directions for future work suggested.

2 Neural Networks

The process of designing neural networks is subject to many pitfalls. This chapter provides
an introduction to neural networks, followed by a more studied review of the backpropaga-
tion algorithm. Finally, the most common problems encountered in training backpropaga-
tion networks. initial weights, number of hidden units, training time. and evaluation
method, are discussed: the most common solutions for dealing with these problems are pre-

sented simuitaneously.

2.1 Neural Networks: A brief history

2.1.1 In The Beginning

Since the creation of simple computing machines and automata. researchers have been
trying to make computers more that just complex calculators. They have been trying to
make a machine that would think and reason as a human might. It is not surprising, then,
that neural networks have their roots in psychology [Blum]. Early models of the workings
of the brain were to lay the foundations for research into how the brain solves problems,
and later, how to build machines that would solve problems in a manner similar to the
human brain. Hence. the neural network approach is that of designing an algorithm mod-

eled after the way the human brain works; a computer that ultimately thinks in the same

manner as people.

The first neural network model was formulated by McColloch and Pitts in 1943 [Zuradal].
Their network used digital neurons. and had no ability to learn [Blum|. The idea of [earning
ability in a neural network came from psychology with the work of psychologist Donald
Hebb. Hebb devised the model by which learning is achieved through changes in synaptic
strengths within the brain [Zurada]. This model, which came to be called Hebbian Ieaming.

was the foundation for a neural system which could learn.

2.1.2 Learning

Neuropsychologist D. O. Hebb described a rule for updating synapse strength between neu-

rons in two distinct layers. Known as Hebbian learning, it was described by Hebb as fol-
lows: {Haykin; Mehrotra]

When an axon of cell A is near enough to excite a cell B and

repeatedly or persistently takes part in firing it, some growth

process or metabolic changes take place in one or both cells

such that A’s efficiency as one of the cells firing B, is
increased.

Mathematically, this can be described by the equation:

Aw. . = cx.x.
i, J ij

where ¢ is a small constant often referred to as the learning rate and w;; designates the
strength of the connection from the jth node to the ith node. x; and x; denote the activation
levels of the nodes. Thus, the change to the strength of the connection between two nodes

is a proportion of the product of their activations; j’s efficiency at firing i is increased.

This idea was implemented by Frank Rosenblatt in 1958 to create a two-layer network
called a perceptron. [Blum, 1992 & Zurada. 1992| Rosenblatt’s learning rule centered on
the calculation of weight adjustment of synapses as a proportion of the error between the
output neurons and the target, or expected, values. Rosenblatt also developed a theorem,
the perceptron convergence theorem, by which he was able to prove that the weights of his
model would converge to produce the desired results if such results were possible. Rosen-
blatt attempted to create a three-layer perceptron, but he was unable to conceive of a sound

way of updating the weights between the input and middle, or hidden, layer of neurons.

Due to problems of linear separability, which will be discussed later. the application for
two-layer networks was limited. The lack of a provable algorithm for updating hidden layer
synapses in multilayer networks was a major problem. Some work continued to be done
with two-layer networks. but despite such applications as associative memory and other
learning based on Stephen Grossberg’s models of the brain, the practical application of
neural networks was limited. |Blum, 1992] Research into neural networks entered a stag-
nation phase, partly due to the multilayer problem, but at least partially due to the “modest

computational resources available™ then [Zurada, 1992].

2.1.3 Overcoming the Block

Finally, in 1974, the backpropagation network was developed by Werbos. It was largely
ignored by the scientific community [Mehrotra]. The algorithm was independently redevel-
oped in 1985 by Parker and LeCun [Haykin]. The modern version of the algorithm, how-

ever, was popularized by Rummelhart, Hinton, and Williams [Mehrotra, Haykin].

Backpropagation allowed the training of those hidden layers that had been a stumbling
block for so long. With this block removed. the potential application domain of neural net-
works was widened immensely. Backpropagation is a powerful algorithm for problem
solving which, unlike two-layer networks. is able to effectively deal with non-linear pattern
recognition. For some types of problems backpropagation allows solutions to be found

which would be very difficult with conventional computer science techniques. [Blum,

1992]

2.1.4 Onward

With the discovery of backpropagation, neural networks were freed from their limited two-
layer incarnation. The ability to use multiple layer networks opened up a huge realm of pos-
sibilities. Though currently not useful for all types of problems. neural networks are full of
unexplored potential. [t is “this mix of failure and success [that] offers the tantalizing sug-
gestion that research will eventually produce artificial systems capable of performing a
large percentage of the tasks that now require human intelligence, hence the exponentially

increasing growth of neural network research.” | Wasserman|

2.2 Neural Network Basics

2.2.1 Overview

The basic unit of a neural netwerk is a neuron. Neurons compose layers, and layers in turn

compose a network. The following sections will detail each component of a neural network.

2.2.2 The Neuron

A neuron is a computational unit which takes a vector of input values and produces an
output value. (Figure [.1) Inputs can be received from other neurons or directly as input. A
single output value is generated. which is either sent to each of the neurons in the next layer

or becomes part of the final output of the network.

Figure 2.1. A simple neuron [Blum. 1992]

synapse

[aputs Output

Ly Neuron

2.2.3 Mechanics

[nputs into the neuron are multiplied by the weights in the synapses. Biologically speaking,
the synapse is that area between the end of one neuron and the start of the next one. The
input synapses of biological neurons are normally located on dendrites — cellular filaments
which consist, in essence, of many places for "upstream’ neurons to ‘plug in’. The dendrite
sums the activity from the synapses that occur on its surface. If the sum exceeds a threshold
value, then the neuron discharges, or sends an output to the next neurons in the chain. Thus,
a high activation of a particular neuron may cause a subsequent neuron to fire even if other

neurons connecting to the same target neuron have low activations. Repeated propagation

across a synaptic cleft results in the strengthening of its ability to propagate signals

{Haykin: Mehrotra: Mitchell|.

In the neural network model used in artificial intelligence, the synaptic strengths are repre-
sented as a vector of weights, one per input to the neuron. The incoming values are multi-
plied by the weights in the synapses, and the products summed. The accumulated input to

the neuron is the dot product of the input vector and the synaptic weights vector:

n
x = E Iw, Equation 2.1.
i=0
This weighted sum is often referred to as the neuron’s stimulus. Next. the neuron then
applies an activation function. f{.x), to the sum x. This activation value is the output of the
neuron. [n some cases, a threshold or bias value, 8, is added to x before the activation func-
tion is applied. Thus, like its biological counterpart, an artificial neuron fires when the sum

of its inputs meets the criteria determined by the activation function.

2.2.4 The Activation Function

The activation function, f{x). is usually a nonlinear function which indicates the effect on
the neuron of the inputs. For discrete neural networks a function f(x) such that f(x) produces
1 if x>0, -1 where x < 0, and doesn’t change the previous value of f(x) if x=0 might be
appropriate [Blum, [992]. For nondiscrete and analog networks, sigmoid functions are

often appropriate, such as

flo =

Il +e

10

where f(x) is in the range [0.1]. This function is illustrated in figure 1.2.

Figure 2.2. Graph of sigmoid function.

2.2.5 Learning

A neuron’s learning is effected through the adjustment of the synaptic weights. Learning
takes place through the use of a learning rule. which is an algorithm for the adjustment of
the synaptic weights. The speed of learning is moderated via a learning rate, «. The learn-
ing rate is usually in the range O - |, and is used to calculate the change to each synaptic
weight. There are many algorithms for synaptic weight adjustment [Blum, 1992]. A general
learning rule is expressed in equation 2.2.

Aw = ale Equation 2.2,
Here, the change to the weight is expressed as a product of the learning rate, «, the input,
[, and the error in the neuron’s output, e. / can be thought of as the proportion of the error,
e, that the input is responsible for contributing. The input to the neuron could either be

direct input from the environment or the activation of the previous neuron. Similarly, the

11

error could be a measure of the difference between the produced value and the expected
value in the environment, or the difference between the actual and desired activation of the

next neuron. Note that this adjustment is effected once for every input into the neuron.

2.2.6 The Layer

A layer is a number of neurons operating together, each neuron receiving the same inputs.
What makes a layer an effective computational element is that each neuron has different
synaptic weights which. when multiplied with the inputs, give each neuron a different value
to which it applies its activation function. Normally all the neurons in a layer have the same
activation function. It is also possible, however, for different neurons in a layer to have dif-
ferent activation functions. This is a highly advanced, often domain-specific subject. and is

beyond the scope of this thesis.

Figure 2.3. A Layer of Neurons

To next layer or

From inputs or

previoug layer outputs
—__>

___>

The main purpose behind a layer of neurons is that it can learn more patterns than a single
neuron, and it can produce multiple output values rather than the single output which a

single neuron produces. This allows the distribution of a problem over many neurons.

12

The learning of a layer lies in the adjustment of its synaptic weights. This happens much as
in section 2.2.5. with the learning formula applied to each neuron in the layer. Obviously
some of the parameters of Equation 2.2 can be calculated once for the entire layer. Input to
the layer can be represented as a single vector. as each neuron in the current layer gets input
from all inputs in the preceding layer. Since this general neural network model has every
neuron in the current layer connected to every neuron in the subsequent layer, the error for
a layer can be calculated once. However, this is only one possible approach to training

layers of neurons.

Thus, a neuron is a basic functional unit. Many neurons combined comprise a layer. It has
been noted that a layer can be connected to inputs and outputs in the environment directly,

or to other layers of neurons. Layers of neurons, rather unsurprisingly. comprise a network.

2.2.7 The Network

A network is the end result when layers of neurons are connected in sequence. The first
layer receives inputs from the environment, and the final layer returns outputs to the envi-
ronment. Hence, these two layers are respectively termed the input and output layers. The
neurons making up a layer are often referred to as units, and as such the neurons comprising

the input and output layers are the input and output units [Weiss & Kulikowski].

There are many different possible layouts for a network involving physical attributes such
as connection of the units. and with differences in learning algorithms and their application.
Some networks feed their outputs back into their inputs, while others modify their own

structures as a result of their learning. Different network models vary in the range of prob-

i3

lems they can be used to solve. In general, however, any network with more than two layers
of neurons is referred to as a multi-layer network. Layers between the input and output
layers are called hidden layers.

Figure 2.4. A Multi-layer Network
Output Layer

synapse
weight

/ matrices
[nput Layer ’ J

2.2.8 Linear Separability

Hidden Layer

Though the concept of multi-layer networks has been introduced, no justification for com-
plicating the network layout with multiple layers has been given. Why not just use two-
layer networks with many nodes and adjust the weights accordingly? The solution reason
involves the comparative topology of two-layer and multi-layer networks. Two-layer net-
works are, in essence, linear entities. By their nature they can only classify data that is lin-

early separable.

Consider a set of data that is divisible into two classes. The data can be graphed in two
dimensions and the two classes separated by a straight line as in Figure 1.5. For multidi-
mensional data of n dimensions, the data will be separable with an n-dimensional separa-
tion. That is, data in 3 dimensions will be separable with a plane, and higher dimensions

will be separable with an appropriate hyperplane [Wasserman|.

14

Figure 2.5. Linecarly Separable Data

¢ O O

ONNG' O Class | data

o O @ Class 2 daa

o
[O
® ®
®
o Lincar Separation Line

Figure 2.6. Lincarly Inseparable Data: The xor function [Blum. 1992]

098
0

- S

Some data, however, are not separable in this manner. Consider the graph of the exclusive-
or function in Figure 2.5. There is no way to draw a line which separates the X’s from the
0’s. In some problems, there might be additional data which could be used to add another
dimension to the problem. [magine, for example, an extra piece of data which would indi-
cate a move to another plane for either of the two X values. [n that case, a simple 2-layer
network could be used with an extra input factor [Wasserman]|. In the case of the exclusive-
or function. this extra data could be a logical and or a logical or of the x and y values. This

15

addition would serve to place one of the special cases in a different plane. thus rendering
them separable by a 2-layer network. Ordinarily, however, the data is linearly inseparable.
The use of additional data in this manner is not always feasible, as analysis of the dataset
to discover such data may be a non-trivial task. Nevertheless, because a third dimension
that would create separable data can be conceived of. this problem is solvable by a multi-

layer network which will not require the use of additional input factors.

The purpose. therefore. of multi-layer networks is to solve problems in which the data is
not linearly separable. If the data can be made separable by the addition of further input fac-
tors. this may be desirable as the resulting neural network would be simpler. However. as

this is not always possible. multi-layer networks are required.

Having discussed the fundamentals of neural networks, and explored the rationale behind
multi-fayer networks. it is possible to focus on a particular type of multi-layer network: the

backpropagation network.

2.3 Backpropagation

2.3.1 The Network Model

The problem with the neural network learning models described thus far is that they define
weight changes for the output layer only: the weight changes are based on an error term
only available at the output layer. This was the problem that Rosenblatt encountered: a lack
of a “teacher’ (error term) for the hidden units. To solve linearly inseparable problems,

multi-layer networks are required. Thus, a method of training the hidden layer is called for.

16

Backpropagation refers to the backwards distribution of error used to train a multi-layer
network. In particular. backpropagation proposes a method of estimating the error of a
hidden layer in a neural network and so permits the use of the learning law for hidden units.
This allows for adjustment of the hidden layer’s synapses even though the desired output
of the hidden units is not known. Though a 3-layer network will be discussed here, the pro-
cess could be recursively applied for more hidden layers. However, this is rarely necessary

for more than one or two hidden layers [Wasserman|.

Backpropagation is effectively able to solve a wide range of problems. and as such is a good
model to study with regards to new research. Backpropagation is one of the most com-
monly used supervised training algorithms |Blum, 1992]. However. because backpropaga-
tion is a supervised learning algorithm., it is required that a set of “fact™ data be obtainable
which associates input patterns with correct outputs. Also. backpropagation has few if any
self-organizing aspects and as such a very good “sense” of the problem with regards to net-

work topology (number of units per layer. for example) is necessary [Blum].

2.3.2 Supervised and Unsupervised Learning

Supervised learning is a process of presenting input patterns to the neural network and com-
paring the produced output to the desired result. The synaptic weights of the network are
then updated according to the learning rule of the network model being used. The key factor

is that it is required that the desired outputs be known, and that learning is done separately

from the recall process.

17

Unsupervised learning. by contrast. makes weight adjustments which are not based on

comparison with target output values. It is also known as self-organization [Blum, [992].

Backpropagation is a supervised learning paradigm: unsupervised learning is beyond the

scope of this thesis.

2.3.3 The Learning Algorithm

The backpropagation learning algorithm operates in several steps. First. a pattern of

data is presented to the network. and the current activations are computed from the inputs

to the outputs. [Weiss and Kulikowski, 1991 | Then the output layer error is computed and

hidden layer error is approximated in turn. Finally. the second and then the first (hidden)

layer of synapses is updated. The formulae used are as follows:

L.

]

Calculation of hidden-layer neuron activations:

h = F(iWl) Equation 2.3.
In this case, h is the vector representing the hidden layer neurons. i is the input vector to
the network, Wl is the first set of synaptic weights (a matrix). between the input and

hidden layers. and F is a sigmoid activation function.

. Calculation of output-layer neuron activations:

o = F(hW2) Equation 2.4.

The new variables here are o, the output layer vector, and W2, the matrix of the second
set of synaptic weights, between the hidden and output layers.
Calculation of the error in the output layer. This is the observable, non-hidden error.

The output layer error is represented by the vector d, and is calculated by comparison

with the target output values in the vector t as follows:

d = o(l ~0)(t-0) Equation 2.5.

o(1-0) is the first derivative of the sigmoid function, used to calculate the error gradient.

18

4. Estimation of the hidden layer error which will be called e. This ts the crux of the back-
propagation model. The difference between the target and produced values for the hid-

den layer is estimated by taking the product of the output layer error and the second set
of synaptic weights:

e = h(l-n)W2d Equation 2.6.
Hence the name backpropagation: the output layer error is weighed backwards, with
the synaptic weights. such that it approximates the error of the hidden layer. In other

words. the error of the output is being weighed to estimate how big the error must have

been before it reached the hidden layer.

5. The synaptic weights of the second layer. W2, are then adjusted by adding to W2 the
term:

ahd + BAW2, | Equation 2.7.
The second term is the product of the momentum term, @ . and the change in synaptic

weights on the previous pass (time t-1).
6. Finally, the hidden layer’s synaptic weights are adjusted by adding to W1 the term:

aie + @AWL, | Equation 2.8.

Again the momentum term is used, a discussion of which follows.

2.3.4 The Hidden Layer

A significant issue in backpropagation is the choice of the number of hidden units. This
depends entirely on the particular problem to be solved. and the desired performance of the
trained network. For example, a classification problem might be easily solved by having
one hidden unit per training pattern. With this model. it can be shown that each hidden unit
would effectively learn to recognize a single pattern. This might be a good approach for a
network expected to perform a repetitive task with no unexpected data; that is, one with a

“complete” set of facts known and available for training. However, if the network were

19

expected to generalize its learning to new information not in its training facts, it would
likely do poorly. This is due to the fact that while each hidden neuron is good at effectively
recognizing a single pattern of the problem. there exists no overlap in the learning to atllow
the network to effectively generalize its “knowledge™. The exact number of hidden units
required for a generalization problem is variable. and dependent on the exact problem. This

is why experts are often required to implement neural network systems.

2.3.5 Momentum

The momentum term is multiplied with the previous change in a synapse’s weight. This is
shown in equations 2.7 and 2.8. The resulting product is added to the learning adjustment
to produce the total adjustment to the current synaptic weight. The obvious question is:

what is the momentum term for?

2.3.5.1 The Problem

In training a neural network, there are two difficulties which occur. The first is that, with a
low learning rate, a network may take a long time to learn a set of facts. This will be further
demonstrated later in the thesis. The difficulty problem is that a network with a high learn-
ing rate may encounter a thrashing problem. As the network converges upon the ideal value
for the data, the high learning rate causes it to overshoot that ideal value. Then, on the next
training cycle, the network will generate a synaptic update in reverse (the error will have
the opposite sign) in an attempt to remedy the “over-learning” on the previous pass. It is
therefore possible for the error calculation to produce the same numbers, with only the

signs changing (depending on which side of the target value the actual output is on), on both

20

sides of the target value. Since the learning rate is constant, the network will “thrash™; that
is, it will alternate between values on both sides of the desired value without ever actually
converging to the desired value. It is also possible for this to happen over a period of several
weight adjustments. This problem is endemic to high learning rates in backpropagation,

and to say that it is undesirable is an understatement.

2.3.5.2 The Contradiction

An ideal neural network is one which quickly and accurately converges to the target values.
Unfortunately, the available approaches thus far each preclude this ideal. If a small learning
rate is used, the network takes an inordinate amount of time to train. Hence, speed is sacri-
ficed for accuracy. If a large learning rate is used the network trains much faster. However,
several detrimental situations arise. A large learning rate may cause the network to start
with weights of the wrong sign, which will then take a long time to reverse. Even if this
problem is circumvented, the network may have trouble converging because the learning
rate may be too large to bring the network to its optimal point: thrashing will result. These
situations defeat the purpose of a large learning rate for faster learning, and sacrifice accu-
racy. Thus, the only usable option of the two is the former, as accuracy is paramount. The
result is slow training. The only other option is to reduce the learning rate during the train-
ing. As this slows down the learning, it will not be dwelt upon. Rather, another solution,

momentum, is the means by which this problem is most easily solved.

21

2.3.5.3 The Solution

The momentum term puts a weight on how much a synapse’s previous weight adjustment
(it's learning) should effect its current weight adjustment. The momentum term is multi-
plied by the previous result of the learning formula. that is, the previous weight adjustment.
[n essence, the second term of Equations 7 an 8 is equivalent to adding a percentage of the

last weight adjustment to the current adjustment.

The benefit of a momentum term is twofold. effectively dealing with both the major prob-
lems discussed above. First, the time it takes the network to train drops. This is due to the
momentum term influencing the change in synaptic weights. Once the network is training
in one direction toward the ideal point, the momentum term allows it to pick up speed.
Since momentum is applied to each iteration, the effect “snowballs™. The training actually
picks up speed. making increasingly larger jumps toward the target value until it arrives at

or passes over the target value. This leads to the second case, that of passing over the target

value.

Momentum also solves the thrashing problem discussed earlier. Consider that when a net-
work oversteps its target value, the next pass may recalculate the same amount of “correc-
tion™ as the original error (or some portion thereof to enable a cycle over several updates).
With momentum, the adjustment in the new, opposite direction is added to a percentage of
the direction in which the network was previously moving. In the case of an overstepped
target, these two values wiil have opposite signs. While this may cause an overstep in the

opposite direction, it must be less than the previous overstep due to the momentum term.

22

This process continues, with each overstep of the target value becoming smaller as the
momentum term influences the current weight change with the previous one. Eventually,

the synaptic weights will converge upon the target values.

Thus. momentum allows a network to train faster, both by permitting a higher learning rate
and “snowballing” synaptic weight adjustment. When using high learning rates. momen-
tum also tempers a backpropagation network’s tendency to “thrash™ around the target
values without ever actually achieving them. Momentum allows a twofold gain in perfor-
mance at a usually low implementation cost. All the implementor must do is maintain a list
of the last adjustment to each synapse. Momentum makes backpropagation much easier to

deal with and far less temperamental in its training.

2.3.6 Bias Values

[n section 2.2.3. it was mentioned that sometimes a threshold. or bias. value is added to the

term in the summation of Equation [. This would give the equation:

x = é Iw;+8; Equation 2.9.

i=0
The bias values are adjusted on each pass with the product of the learning rate and the error
in the neuron’s output. [Blum, 1992| The effect of bias values is to give the network a short
cut to achieving its pattern separation. Referring to the linear separability problem of figure
2.5, consider that the threshold value corresponds to the y-intercept of the line separating

the classes. Thus, the network can focus more exclusively of learning the essential slope of

23

the line. Meanwhile. the y-intercept position is learned by the threshold values. Naturally,

this extrapolates into higher dimensions.

2.4 Training Problems in Backpropagation

2.4.1 Initial Weights

The most obvious problem encountered in training backpropagation networks is that of
their initial weights. That is. what values should the initial weight matrices be set to in order
to obtain optimum performance? [n order to answer this question, it is necessary to consider

why the initial weights are important.

Gradient descent refers to the practice of minimizing the error of a function over several
iterations. In a backpropagation network, a generalized least mean squared algorithm is
used to modify network weights. The goal is to minimize the mean squared error between
the desired and actual outputs of the network. [Mehrotra| Where the error for a pattern p is
given by £, = 2(1,,.‘)2. with k the node from the output layer and | the squared error
between the output and desired value, backpropagation must discover a vector that mini-
mizes E,. Since the output of the network is a function of its weights, so must E be a func-
tion of the network weights. [Mehrotra| Thus, the starting weights of a neural network
affect not only the initial outputs but also the error and, thus, the gradient descent. In other
words. every set of starting weights for a backpropagation network has a different gradient
descending to the state of minimum error. Some may take many iterations, some only a few,

and some may become stuck in local minima. unable to progress. Since the number of pos-

24

sible combinations of weights is infinite for real weights. and the danger of poor weights

so great, how does one choose a starting set of weights with a reasonable gradient descent?

The most commonly used method to combat the problem of initial starting weights is to run
multiple trials of multiple networks. The idea is to eliminate the problem by running a par-
ticular network architecture with a number of different starting weights. The performance
of a particular set of network parameters is determined by considering alt the sample runs
of that network and comparing it to those of networks with other parameters. Since there
are so many network parameters, such as hidden units, layers. activations. and so forth,
adding even more trials makes the number of potential runs far too large for an exhaustive
search. Rather. trials tend to be guided either by previous knowledge about the data. or the
intuition of the expert crafting the network. Clearly a system which removes the burden of
this trial and error process from the neural network professional is desirable. The running
time of such a system need not be an improvement over the previous method: it is the selec-

tion strategy that must first be optimized.

2.4.2 Number of Hidden Units

One of the most difficult choices a neural network designer must make in designing a back-
propagation network is how many hidden units to employ. To begin, a small number of
hidden units is usually better at generalizing to unseen data. A large number of hidden units
tends to be a superior memorizer; however, the data to be learned can make a significant
difference. For simple data for which the dimensionality, or number of classes, is known,

it is often optimal to choose one hidden unit per data class. Unfortunately, data sets from

25

the real world are not always well structured. Classes may overlap, be discontiguous. or
have other properties which mean that a greater (or fewer) number of hidden nodes may
actually be optimal. Combine this with the fact that each network has to be run many times

with different starting values. and a guaranteed optimal solution becomes intractable.

2.4.3 Length of Training

Once a few networks are chosen with numbers of hidden units that are likely to work well,
the designer must decide how long to train the network for. If. as is usually the case. the
network will have to generalize previously unseen data. then training the network for a long
period of time may be counterproductive; the network will memorize the data rather than
extract the patterns contained therein. This is less of a problem if one of the networks has
an appropriate number of hidden nodes to generalize sufficiently. However, the previous
section discussed the problems in determining such a number to any degree of certainty.
Similarly, training the network for too short a time results in a network that performs sub-
optimally on the known data. Ideally, if a method could be devised for selecting the number
of hidden units with near-optimality, this problem would largely disappear. Alternately, a
method of stopping training at the optimal point in training would also solve this problem.
Again, trial runs of different lengths only compound the number of required trials, as they

must be combined with the previous problems.

2.4.4 Evaluation Strategies

The final stumbling point in this maze of pitfalls is the evaluation strategy. That is, in what

manner does one determine the performance, both significant and relative, of a neural net-

26

work? If one uses data that the network has been trained on. this biases the networks in
favour of memorized patterns. If one uses new data the networks are biased in favour of
generalization, but usually at the cost of accuracy on the training set. A combination of
these numbers might be desirable, but what combination? Finally. using test data — data
withheld during the training phase — to evaluate the network and determine how to use that
network’s parameters in future iterations can be considered to contradict the idea of test
data. That is, the held out data is. in fact, influencing the network architecture. In some
cases it is therefore deemed necessary to hold out a third set of data as the final test set.
Thus, in addition to selecting the discussed training parameters of the networks, selecting

the evaluation strategy is itself no trivial decision.

2.5 Summary

This chapter has provided an introduction to the topic of neural networks. A brief history
was followed by a more in-depth look at the subject. Finally. the backpropagation algo-
rithm was reviewed. and the major problems in its use examined. To be able to discuss the
application of evolutionary algorithms to neural networks. it is now necessary to examine

evolutionary algorithms in more detail.

27

3 Evolutionary Algorithms

3.1 Background

Genetic algorithms. also called evolutionary algorithms (GAs or EAs). were developed by
John Holland at the University of Michigan [Goldberg. 1989]. With his students and col-
leagues. Holland set out to achieve two goals. First, to “abstract and rigorously explain the
adaptive processes of natural systems”, [Goldberg, 1989] and second. to “design artificial

systems software that retains the important mechanisms of natural systems.” [ibid|

[n other words. Holland was trying to find out how natural. biological systems manage to
be so adaptive. and how this knowledge might be applied to artificial systems. The power
of genetic algorithms lies in their robustness: they effectively balance the need for effi-
ciency with the need and ability to survive in many environments. It is this higher level of
adaptation which is sought for artificial systems. No artificial system is as flexible, effi-
cient, or robust as a biological system. Biological systems demonstrate self-repair, self-
guidance, and reproduction on a level which the most sophisticated artificial systems

cannot even begin to attempt. [Goldberg, 1989]

Thus, Holland’s reasoning was that if robustness is desired, why not model artificial sys-
tems after the most robust behavior known: that of biological systems. However, this is not

just a “shot in the dark™. or an appeal to the elegance or aesthetics of natural systems:

28

“Genetic algorithms are theoretically and empirically proven to provide robust search in

complex spaces.” [ibid]

3.2 Mechanics

3.2.1 Overview

Evolutionary optimization schemes are patterned after Charles Darwin’s theory of natural
selection. That is. the fittest members of a population survive to pass their traits on to their

offspring. This results, hopefully. in the propagation of beneficial traits.

When applied to artificial intelligence (Al). this means that a population of potential solu-
tions to a problem is constructed. Simultaneously, a representation capable of describing a
member of the population is defined. Each member of the population is evaluated to deter-
mine how well it solves the problem in question. Based on this fitness value, the represen-
tations are manipulated by operators such as crossover, mutation, reproduction, and so
forth, according to some algorithm. Conversion of the new representations to solutions

results, hopefully, in a superior solution combining traits of previous, partially successful

solutions {Goldberg].

An understanding of the three basic genetic operators, crossover, reproduction, and muta-
tion, will be helpful in the succeeding sections. Crossover is the exchange of genetic infor-
mation between two (though possibly more) individuals in a population [Goldberg|.
“Genetic” information refers to the fact that the process involves an exchange of the sub-

stance of the uniqueness of each individual; an exchange of inherited traits.

29

Reproduction, also referred to as selection, is the propagation (selection) of individuals into
a new population. This selection is based upon the fitness of the individual judged relative
to the population. Thus, a highly fit individual may be copied several times into a new pop-

ulation [Goldbergj|.

Mutation. the last of the basic operators. is the occasional random alteration of the value of
a gene; a spontaneous change in the genetic code of an individual. [n evolutionary algo-
rithms mutation plays the role of preventing the loss of potentially important genetic mate-
rial. especially due to overzealous reproduction and crossover within the population

[Goldberg]. The mechanics of each of these operators will become clear through the rest of

this chapter.

3.2.2 A Simple Example of an Evolutionary Algorithm

Consider the problem of navigating a simple maze. The possible operations at any point are:

e turn left 90 degrees
¢ turn right 90 degrees

¢ go forward to next wall or intersection

Consider also that it is known that the maze can (or must) be navigated with no more than

ten consecutive operations. [t does not matter if the maze is navigated in less than ten oper-

ations.

30

Figure 3.1. A Simple Mazc. Action begins at start. facing in the direction of the arrow.

out
}
start
Table 3.1. Potential Solutions

A B C D
forward forward forward forward
forward right right right
forward forward forward forward
left forward left left
forward forward forward forward
forward forward left forward
right right forward right
forward forward right forward
ieft left forward right
forward forward forward forward

The success of a potential solution can be measured by first determining the point at which
it was furthest along the correct path. Then, the distance is calculated by counting the
number of forward steps required to complete the maze. Thus, a population of potential

solutions might appear as in table 3.1. These potential solutions are named A, B. C, and D.

31

A sequence of steps follows. For the sake of brevity, the above operations are abbreviated
to left. right, and forward. respectively. These operations are the encoding of the move-
ments of each potential solution. They comprise the genome, or genetic code, of the indi-
viduals. If it is not possible to go forward at a particular point in an individual’s path when
that individual’s genes indicate a forward move, no movement occurs. It is reasonable to
assume that the final step for each solution is forward, as the potential solutions must step

out of the maze to be successful.

Figure 3.2. Position of Solutions

start

Figure 3.2 illustrates the position of each solution after they terminate. The current direc-
tion is not indicated. The lowercase letter indicates the point at which the corresponding
solution was furthest along the correct path. Note that no solution has exited the maze (exit-
ing the maze is one more step; that is. the solution must end up on out), and that there is no
lowercase D because it would be in the same place as the uppercase D. The distance from
the exit of the closest points are 5. 4, 3, and [for A, B. C. and D, respectively. Distance has

been measured as the number of forward moves necessary, not counting turns.

Now, four new solutions are created based on the performance of the previous 4. These will
be created, to maintain the simplicity of this example. by combining each of the two best
solutions with one of the inferior solutions. That is. A will combine with C, and B with D.
This is accomplished by choosing a random point and mixing the solutions — a technique
known as crossover. For this example. all solution will be mixed between the fifth and sixth

operations. The result is shown in table 2.

Table 3.2. New solutions after mixing

A B’ C D’
forward forward forward forward
forward right right right
forward forward forward forward
left forward left left
forward forward forward forward
left forward forward forward
forward right right right
right forward forward forward
forward right left left
forward forward forward forward

Examination will prove that potential solutions C’ and D’ now solve the maze as required.
Naturally, this is a much simplified example, but it serves to demonstrate the salient points
of genetic algorithms: that through a process of combining partial solutions, improved and

possibly optimal solutions can be obtained.

33

Thus, genetic algorithms function by manipulating a pool of ‘chromosomes’ in a popula-
tion. A chromosome is a string which represents a coding for a parameter set: a representa-
tion of a potential solution to a problem. A genetic algorithm evaluates each chromosome
for its fitness: how well it is performing relative to other chromosomes in the population.
Based on the fitness of the chromosomes. the genetic algorithm selects members of the pop-
ulation (chromosomes from a group of chromosomes) tor reproduction, crossover, and
mutation. This selection is done randomly, but is weighted by the relative fitness of the
chromosomes. That is, a particularly fit member of a population has a much better chance
at reproduction than an unfit member, and so forth. An detailed exampic serves to illustrate

this process further.

3.2.3 A Detailed Example of a Genetic Algorithm

Consider a black box consisting of 5 switches each with two positions. For every combina-
tion of on and off values for the switches, the box produces a numeric output. The problem
is to determine the setting of switches which produces the largest output value from the box.

A genetic search for this value works as follows:

First, a representation for a chromosome must be constructed which represents the param-
eters of the problem. Since the problem has five binary switches as parameters, the chro-
mosome can be a string of 5 binary numbers. Next, an initial population is generated
randomly. Say an initial population of 5 chromosomes is desired. With five bits per chro-
mosome, a coin would be flipped 25 times to generate the initial population. Thus, the ini-

tial population is:

34

11011
01111
10101
00110
10011

The black box will serve as the evaluator of each string’s fitness. The switches on the box
are set to reflect the [’s and O’s in the strings. and the value output from the box is recorded.

Consider that the black box produced the following, where fitness is the black box’s output:

Chromosomes Fitness
11011 729
1111 225
10101 441
00110 36
10011 361

However. the genetic algorithm requires that the fitness of each chromosome be known rel-
ative to the others. To achieve this, simply sum the fitness values and take each chromo-

some’s relative fitness as a percentage of the total fitness of the population:

Chromosomes Fitness Relative Fitness (%)
11011 729 40.7

01111 225 12.6

10101 441 24.6

00110 36 2

10011 361 20.1

Total fitness: 1792

With this information, the reproduction operator is applied. The purpose of the reproduc-
tion operator is to select, based on the fitness value. which members of the population will
have the opportunity to mate. Thus, this is not reproduction in the biological sense: it could

more correctly be called selection for reproduction. This selection is achieved by creating

35

a cumulative probability based on the relative fitnesses. Goldberg calls this a “roulette
wheel” because each chromosome is allotted slots on the wheel according to how fit that
chromosome is relative to the others. Chromosome L. for example. would be allotted slots
0 through 40.7, chromosome 2 would be in slots 40.7 through 53.3 (40.7+12.6) and so
forth. The effect of this is that for each member of the population a random number between
0 and 100 is generated. That number will determine which member of the population to
reproduce. A random number of 50, for example. indicates that chromosome number 2
should be reproduced as 50 is greater or equal to 40.7 and less than 53.3. Note that the
implication is that the same chromosome may be selected more than once. This means that
selection for reproduction can completely remove some members from the population.
However, the gain from this behaviour is that successfully selected chromosomes will mate
more often. Since they are. probabilistically. more fit. they will pass on their better genes

to the next generation in greater numbers.

Now consider the following 5 random numbers chosen by the genetic aigorithm. The chro-

mosomes they select for reproduction are indicated in the next column:

Random Chromosome selected
46.6
61.8
52
98
19
Thus. the new population looks like this:
Chromosomes
1 111

H U~ WN

-+~ o

~ O r O
O
o e

[= = BN e By]

36

The next step is to allow the chromosomes to mate. Mating is carried out by selecting two
chromosomes at random for this example. However, some underlying scheme could be
used if desired. Since there are five members in the population, only 4 will be paired. Hence
random numbers between | and 5 are generated in pairs, each indicating a pair of chromo-
somes to “mate”. This process is stopped when one chromosome is left unpaired: (if a

random number is generated more than once, it will be ignored and a new one generated)

Thus, chromosomes 4 and 5 are paired, as are 2 and |. Chromosome number 3 is left alone

and merely passes through this section of the algorithm untouched.

Crossover is now applied to the pairs. To effect this, a random number is chosen for each
pair which represents the number of points at which a chromosome could be broken. Since
the example contains chromosomes of five bits, there are 4 potential breaking points, or

loci. They are generated as:

Pair Locus
4-5 3
2-1 2

Crossover is applied by swapping the chromosome pairs around the locus point:

Chromosome 1:0 1 1 11
(the space indicates the locus)
Chromosome 2:1 0 1 01

Crossover completed:

Chromosome 1°:0 1 1 O
Chromosome 2°:1 0 1 1

37

The other pair is crossed over in a similar manner. Note that this coincidentally produces
chromosomes identical to the parents. The new population now appears as follows. with

new fitness values. This new population completely replaces the original population.

Chromosomes Fitness Relative Fitness (%)
01101 169 6.7

10111 529 21

11011 729 29

10011 361 14.3

11011 729 29

Total fitness: 2517

Notice that the overall fitness of the population has increased to 2517 from the original
[792. Note also the chromosome with the lowest initial fitness was dropped completely
from the population during reproduction. The current population now contains two chro-
mosomes of the form "I 1 O I . This means that the chance of that chromosome being
selected for reproduction is even higher in subsequent iterations. If the genetic process of
reproduction and crossover is applied repeatedly to this population, within a relatively short
period of time the optimal value of “1 | I | 1" will be achieved. It has probably been
observed by the reader that the black box performs a square on the decimal equivalent of
the five bit binary number represented by the chromosome. However, the beauty of the
genetic approach is that the actual function is irrelevant; an optimal coding will be found

in the case of most “black boxes”.

The only genetic operator not used in the preceding example is the mutation operator. In

nature, genetic robustness of a species is aided by random mutation of genes. When not

38

influenced by external sources, mutation is actually very rare. and chances are mutants will
die off fairly quickly. Occasionally, however, a mutant has some new trait which makes it

more fit to survive in its environment. Thus, the new trait is added to the gene pool.

In genetic algorithms, it is possible to lose genetic material, as it were, or not to have had
itin the first place. This can be caused by overzealous reproduction and crossover operators
selecting what appear to be the most fit members but losing potentially useful genetic mate-
rial in the process. or can be merely random. (Recall reproduction’s “roulette wheel”

approach. A fit member may die off; there’s only a probability that it won't.)

Consider the previous example. Suppose that each population member had a zero at posi-
tion two. That is. each member of the population is of the form x O x x x, where xisa | or
0. Notice that no matter how much reproduction or crossover takes place. that position in
the chromosome will always contain a zero. With a mutation operator, genes on the chro-
mosome are randomly changed according to some probability. In this case, changing a gene
merely involves flipping the bit. De Jong’s study of genetic algorithms for function optimi-
zation suggested a low mutation probability inversely proportional to the population size.
[Goldberg, 1989| Goldberg suggests approximately one mutation per thousand bit position

transfers [ibid|. Thus, mutation plays a secondary yet important role in genetic algorithms.

3.2.4 Summary

[t has been shown that genetic algorithms allow a randomized search of a complex search
space. They effectively use “random choice as a tool to guide a search toward regions of

the search space with likely improvement”. [Goldberg, [989] Yet because they operate on

39

a coding of the problem. the problem itself is often irrelevant; the genetic algorithm itself
can operate on any problem once its parameters are coded. [t is this “directed randomness™
combined with the ability to search many options in parallel that makes genetic algorithms

a powerful search tool.

3.3 Comparison to Other Search Methods

At this point it would be useful to discuss genetic algorithms in comparison to other types
of search. This will give a greater insight into how genetic algorithms are able to do what
they do. and how they overcome some of the major pitfalls of other search algorithms. To
begin, Goldberg identifies three basic types of search: calculus-based. enumerative. and

random.

3.3.1 Calculus Based

Calculus-based search methods involve two classes. One class operates through solving
nonlinear sets of equations. These equations result from “setting the gradient of the objec-
tive function equal to zero.” {Goldberg]. That is, restricting the search to points with a slope
of zero in all directions. The second class of calculus search methods seek to move up a
local gradient. These are the classical “hill-climbing” algorithms. The trouble with these
methods is that they are susceptible to localized peaks in the domain space. If a start point
is selected close to a low peak, a higher peak will likely be missed all together. Also, cal-
culus based methods require continuity of the domain and existence of derivatives |ibid| In

the real world, this is not necessarily the case. Thus, except in limited. known domains, cal-

culus-based methods are insufficiently robust [ibid].

40

3.3.2 Enumerative

An enumerative scheme is one that evaluates each point in the search space in turn, seeking
the optimal point. The problem with this is obvious: except for very small search spaces.

this type of search will be terribly inefficient [Goldberg]|.

3.3.3 Random

Random search algorithms. in effect. attempt to rectify the pitfalls of calculus-based and
enumerative schemes. A random search involves sampling points in the search space at
random with the goal of locating an optimal point. While this may overcome the tendency

to get stuck on local peaks, in the long run this can be considered no more efficient than an

enumerative search [Goldberg|.

3.3.4 Random Versus Randomized

While random techniques suffer from the same efficiency problems as enumerative tech-
niques, they should not be confused with randomized techniques such as genetic algorithms
and simulated annealing. Randomized search algorithms use random elements to guide a

search for an optimum value [Goldberg].

3.3.5 Genetic Algorithms

Genetic algorithms are a randomized search method. They use randomness combined with
laws of probability to direct search in a direction where improvement is likely. More cor-
rectly, genetic algorithms direct a search in many directions that are likely. Goldberg iden-

tifies 4 ways that genetic algorithms differ from the traditional methods discussed above:

. Genetic algorithms “work with a coding of the parameter set, not with the parameters

41

themselves”. [Goldberg, 1989] That is. the algorithm generates many possibilities

simultaneously, and then evaluates them.

N

. Genetic algorithms use a population of potential solutions. They are inherently parallel,
and not restricted to considering a single point at a time as other methods are. This also

the reason for their robustness and ability to overcome local peaks in a search space.

3. Genetic algorithms use a fitness, or objective function to determine viability of poten-
tial solutions. They do not use derivatives, or “other auxiliary knowledge.” [ibid] Thus
they can be tailored to any domain where some judgement of the “goodness” of a result

can be made, regardless of whether or not the domain has a search space that conforms

nicely to the laws of calculus.

4. Genetic algorithms guide the transitions in the search space using probtabilistic, not
deterministic rules. Unlike a hill climbing search, for example, which might have a rule
to the effect of *“if a higher point exists adjacent to the current one. choose it”, genetic
algorithms assign likelihood of a good search direction based on the results of the pay-

off function relative to other directions being explored.

Thus. genetic algorithms produce a robust search algorithm which works across a wide
variety of domains. many of which are not suited to traditional search algorithms. Their
inherent parallelism allow them to search a space more efficiently and quickly than many
traditional algorithms. Though they are randomized, they are not random techniques: they

use randomness as a tool to direct search in promising directions.

3.4 Neural Networks as Candidates for Genetic Search

Having discussed the basics of backpropagation networks and genetic algorithms, the ques-
tion of combining the two is raised. While neural networks can be powerful tools for pattern

recognition, optimization, classification, and mapping problems in general, they are by no

means easily constructed. Traditionally, neural networks are designed and implemented by
specialists — professionals with in-depth knowledge of the strengths and weaknesses of var-
ious network architectures. While this results in well designed networks, it can also give
rise to certain problems. While the underlying algorithms may be relatively simple. net-
work parameters such as learning rate. momentum, initial weights, number of layers, and
number of units per hidden layer play a large part in the ability of a particular network to

solve a given problem.

Even when selected and implemented by an expert with knowledge both of neural networks
and the problem domain, the process is often little better than trial and error. A better way
to determine optimal parameter settings for a neural network is required. The goal of apply-

ing an evolutionary algorithm is to automate the now largely ad hoc process of neural net-

work design.

Thus, it is established that neural networks. by virtue of the complexity of their design. are
potentially good candidates for genetic search. In order to employ such an approach, how-

ever, it is necessary to ask whether evolutionary techniques are in fact suited to neural net-

works.

3.4.1 Motivation for Evolutionary Networks

What is the advantage of evolving neural networks? EAs offer a much more flexible
approach. Neural networks are. in essence, a hill ciimbing search. As such, they are subject
to the pitfalls, discussed in section 3.3.1, of getting stuck on local features of the solution

space. Neural networks use an error calculation to compute a gradient to direct the search;

43

for example. the backpropagation network [Haykin|. These methods require smooth, con-
tinuous activation functions in order to derive gradient information [Moriarty|. [n contrast,
evolutionary algorithms do not perform direct calculation of gradients. Instead. they focus
on blanketing the search space with potential solutions. This results in a far more global
search which is much less likely to succumb to local features of the solution space. These
advantages give evolutionary algorithms a much wider range of options; an EA might use
linear thresholds. splines. or product units where traditional neural networks might require
a smooth sigmoid function [Moriarty|. Further, computation of gradients in the more com-
plex neural networks. such as recurrent networks. can be quite costly. EAs do not require

these expensive calculations.

Thus, EAs complement the traditional neural network gradient-descent techniques quite
well. Their simuitaneous global search allows large, irregular search spaces to be covered

in an automated manner. removing human drudgery, and human error. from the equation.

3.5 Neural Networks and Evolution in the Literature

Applying genetic algorithms to neural networks is not a new idea. Maureen Caudill, David
Stork, Ronald Keesing, Peter Korning, and others have discussed genetic algorithms as a

(=24

means of optimizing network structure.

3.5.1 Initial Weights

Caudill proposes an algorithm which focused on initial network weights to produce a net-
work more suited to learning a particular problem [Caudill|. She refers to this as a net-

works’s “nature”, that is, its inherent ability to solve a particular problem. This idea was

44

explored in more detail by Stork and Keesing, who went on to patent a technique

[USP5245696|.

The general idea is to use evolutionary algorithms to discover networks which are predis-
posed to learning a particular problem. The alternate view. that of training the network
incrementally. is discussed in the next section. All the reviewed research has focused on
similar networks. That is. the network structure is not an issue — all the networks have the
same number of layers. hidden units, and so forth. The question is whether or not networks
of varying topologies may be the focus of the same evolutionary algorithm. This would
result in an EA which is able to explore a much larger solution space and hence find a better

solution.

3.5.2 Training and Evolution

A different approach is to train the networks for a set amount of time. run the EA on them,
and then train them further. These methods can run into problems, however. if the weights
of the network are manipulated by the EA. To overcome this problem, sometimes the EA
is used as the sole method of training or. alternately, the EA is used until it can do no better,

and the job is finished with gradient descent.

Korning discusses the various attempts to apply genetic algorithms to neural networks.
Whitley, Miller, Romaniuk, Zhang, and Myhlenbein have all attempted genetic optimiza-
tion of network architecture. [Korning| Others have attempted training a neural network’s
weights and thresholds. Korning criticizes these attempts for using too high a mutation rate,

and too short a chromosome.

45

Korning argues that very long chromosomes, approaching 10000 bits. are required to effec-
tively allow a genetic algorithm effect “*hyperplane sampling”. [ibid.| Also, Korning argues
that the qualitative nature of a genetic search requires a fitness function other than the com-
monly used “least mean square™ function from backpropagation training. [ibid.] Korning
goes on to show how his method produces very good results. and points out that the gener-

alization abilities of his method are quite high. Thus, he believes that the future of genetic

algorithms and neural networks lies in more work being done in the representation and

evaluation areas.

3.5.3 Adaptive Neuroevolution

A new method of applying EAs to neural networks has recently been developed. Symbiotic.,
adaptive neuro-evolution (SANE) is a new neuro-evolutionary technique for solving com-
plex sequential decision tasks [Moriarty: Weeks & Burgess]. In a domain where traditional
neural network and evolutionary techniques have been at best moderately successful,
SANE demonstrates an ability to excel at tasks which offer small. infrequent feedback.
Developed by Moriarty and Miikkulainen, the key to SANE is a two-pronged attack at the
search space. The algorithm evolves neurons separately from networks. Thus, networks are
formed of evolved neurons and neurons are evaluated based on their participation in suc-
cessful networks. Since no single neuron alone can solve a complex problem, it behooves
the neurons to learn to cooperate. Thus the SANE algorithm is exemplary at maintaining

population diversity without resorting to high mutation rates.

3.5.4 Other Mentions

Other writers such as Timothy Masters and Philip Wasserman have also discussed genetic
algorithms within the context of neural networks, but have proposed no particular imple-

mentation [Masters; Wasserman|.

3.6 Summary

Research into genetic algorithms and their application to neural networks is ongoing. There
remain areas with very little research, such as “sexual reproduction™, diploidy. and domi-
nance. [Wasserman| It can be hoped that further research produces newer and better neural

network training systems.

47

4 Structure of the System

This chapter describes the system designed and implemented for this thesis.

4.1 Goal

[t is the goal of this thesis to study evolutionary algorithms applied to neural networks as a
method of automatic neural system generation. The ultimate goal is to create a system
which can be “turned on’, and will autonomously design a neural system equal in perfor-
mance to what a human expert would design. To this end. a system is presented which con-
sists of algorithms designed to construct backpropagation networks. All the algorithms
presented in this chapter were implemented and tested. The advantage of this system, of

course, is that it generates neural networks without human intervention.

4.1.1 Implementation

The implementation of the system consisted of two phases: first, the implementation of the

neural network architecture to be manipulated; second, the design and implementation of a

suitable evolutionary algorithm.

The system was implemented in as close to standard C++ as possible. The backpropagation
network was designed as a C++ class, while the evolutionary algorithm was implemented,
for convenience mostly, in standard C. [t is important to note the while the neural networks

are implemented in C++, care was taken not to sacrifice the speed of the implementation.

48

Thus, the object-oriented design was carefully constructed to avoid common C++ overhead

problems.

4.2 Neural Network Implementation

Backpropagation was chosen as the neural network model for the system. The advantage
of backpropagation is that it is a well known. proven and studied algorithm. The techniques

for using it are as rigorous and standardized as possible in Al

The backpropagation network, as previously described, was implemented in C++. The
main classes were a layer class, an abstract network class, and finally a class defining a spe-
cific type of network. In this case the third class was obviously backpropagation. The
classes were designed with two goals in mind: to simplify the coding of types of networks
other than backpropagation, and to retain as much of the speed of C while garnering some
of the benefits of C++. For this reason, complex C++ constructs requiring run-time over-

head were not employed. Rather, simpler but leaner solutions were sought.

4.2.1 The Layer

[n the class hierarchy, the base class is a layer. Arguably, a neuron might be the ideal base
case in such a design. However, this would add an extra level of object dereferencing to
access every weight. Additionally, the weights would not be easily accessible in other
orders. For example. assuming a neuron consisted of incoming connections. it would
require one object dereference to obtain all the weights into that neuron. Conversely, to
obtain one input weight for each neuron in the layer would require as many dereferences as

there are neurons. It is possible this could be circumvented by retaining a link to the previ-

49

ous neuron, but at best this incurs the same cost as the first case: an extra dereference. Thus.

the layer was chosen as the basic unit of the network.

4.2.2 The Network

The network class is an abstract class: that is. it cannot itself be instantiated. Rather. another
class must inherit it and define certain key functions such as the learning algorithm. The
network class consists of generic. network-specific parameters. such as learning rate, bias
terms. and number of [ayers. as well as a set of layer objects. To overcome C++ overhead.
the network was initially allowed access to the private members of a layer. However, C++
inheritance rules made this infeasible later in the implementation phase. Therefore. most,
if not all., member functions used to access layers, and some used to access networks, are

inline functions. This results in larger code, but this is not especially significant to this dis-

sertation.

4.2.3 The Backpropagation Class

The final class in the neural network hierarchy is the backpropagation class. This class
inherits the basic functionality of the network class and adds backpropagation-specific
items. Specifically. the backpropagation class adds class-specific constructors. a learning
function, activation function, and miscellaneous access and [/O functions. Note that while

backpropagation inherits from the network class, the network class contains, rather than

inherits, layers.

Thus, the backpropagation network encapsulates the following functionality. A backprop-
agation network is instantiated with a constructor which specifies the number of layers, the

50

length of the input and output vectors, the number of patterns (for training), pointers to the
desired outputs, and an array in which to place results. The network additionally contains
bias terms and a learning rate. The learning rate is fixed for the purposes of this experiment,
but it could easily be modified to be adjustable. The backpropagation class also contains a
learning function, an activation function (the sigmoid function described in chapter 2), and
an output function. The learning function works by being passed a number of cycles for

which to learn; the weight updating is done on-line; that is. after each pattern.

4.2.4 Network Evaluation

As discussed in chapter 2, it is necessary to partition the data presented to a neural network
into training and testing sets. The purpose of this practice is to better evaluate a network’s
future performance on new data. If a backpropagation network is trained on a single large
data set, it may begin to memorize some patterns instead of learning the general patterns of
the dataset. By presenting the network with testing data not used in training, it is possible
to better evaluate the network’s ability to generalize. Several terms derive from this prac-
tice. The classification rate is the ratio of patterns correctly classified compared to the total
number of patterns classified. Conversely, the rejection rate is equal to 1, less the classifi-
cation rate. Finally, the accuracy is the ratio of the number of correctly classified patterns

to the total number patterns. Naturally, these number exist for both the test and training sets.

An evolutionary algorithm requires some form of fitness evaluation to determine the rela-
tive goodness of the members in the population. The question when dealing with backprop-

agation networks is whether to base the fitness on the training set, the test set, or a

51

combination of the two. Since the intent is to produce networks more capable of learning
the generalities of the data, the first option is not useful for reasons described above. Due
to the difficulty in combining the performance numbers for the test and training sets into a
meaningful performance evaluation. it was decided to evaluate the networks solely on their
ability to classify the test set. To that end. the fitness of a network was calculated as the
number of correctly classified patterns as compared to the total number of patterns. It was
mentioned in chapter two that a common practice in neural networks is to withhold a third
partition for the very end upon which to test the final networks. This method was not used.
as this experiment was concerned with the ability of the evolutionary algorithm to create
networks and not the generation of networks by the standard design methods. Thus, it was
felt that to effectively measure the performance of the evolutionary algorithm, it must have

at its disposal all of the available data which a human designer would have.

4.2.5 System Verification

Following the creation of the backpropagation network, it was necessary to make certain

that it worked correctly. To perform this validation, several tests were performed:

e Training on the xor problem.

¢ Comparing the number of training cycles required to attain a certain level of perfor-
mance with a network trained by hand via another system.

» Comparing detailed output of the above for a few cycles to validate the algorithm. That
is, verifying that both networks produced precisely the same calculations for an entire
pass through the data set.

The first test was to create and train a backpropagation network on the xor problem. Any
backpropagation network should be able to learn this data. provided it has a minimum of 2

hidden units. Failure to do so would indicate an implementation error.

Once a backpropagation network was successfully learning the xor patterns. the network
was compared to a network which was known to operate correctly. Two identical networks
should achieve the same performance given the same training, regardless of the system. If.
from the same starting state. the two networks did not converge to the same answer in the

same number of cycles, a more subtle implementation error must be at work.

Finally. after the first two tests were successfully passed. every step of the network’s algo-
rithm was compared to the control network for two epochs of learning. This ensured that
precisely the same results were being produced. Additionally. final values some five to ten

epochs into training were also compared. This final validation ensures that no further minor

errors exist to corrupt the algorithm.

4.3 Evolutionary Algorithm

After implementing and verifying the backpropagation network, work began on the devel-
opment of a suitable evolutionary algorithm. This development was done in incremental
steps, not dissimilar from the evolutionary prototyping paradigm of software engineering.

The approximate steps taken in the development of the EA are summarized below.

1. Run a single network for n epochs at a time until performance starts to degrade.

2. Run multiple networks as in 1.

53

3. Run multiple networks, n epochs at a time, removing the worst performers after every

set of n. Stop after a fixed number of sets or when only a few networks remain.

4. Apply reproduction to trained networks.
5. Apply reproduction crossover and mutation to trained networks.

6. Apply reproduction. crossover, and mutation to initial network weights using both dis-

tributed and uniform learning epochs.

7. Method 6, but allow the best performers to pass on their learned genome with some
probability.

For methods one through four. a fitness function was developed. By the time method five
was reached, the fitness function had been finalized. The following sections discuss the rep-

resentation upon which the EA operates, and then discuss the steps above in further detail.

4.3.1 Representation

[n order to operate on neural networks, the evolutionary algorithm requires a representation
of those networks which is easily manipulable. The salient features are the network

weights, the number of layers. and the number of hidden units.

The number of layers is deemed irrelevant for the purposes here, as extra layers rarely add
much to the neural network. This is due to Kolmogorov’s theorem [Bishop|. Thus. it is
assumed that al! networks in the system are two layer networks. (An input layer, one hidden

layer. and an output layer.)

The network weights are the key features for the evolutionary algorithm, as the EA is look-
ing for an optimal set of weights. As there are two distinct layers, it makes sense to encode

the weights on two distinct chromosomes; mixing of weights across layer boundaries is not

54

investigated for the purposes of this thesis. Thus, two strings are created which catenate
each weight matrix into a single vector. These two vectors are stored together, and consist

of the EA’s representation of a neural network.

Fortunately, the number of inputs and outputs for each networks are fixed. as they depend
upon the data in use. Therefore. the precise number of genes, representing weights, in a
chromosome created in the above manner can be calculated at any time. Additionally, a
value indicating the length of a chromosome is stored in the first position of that chromo-
some. This obviates the need for extra calculations by the algorithm. This system of encod-

ing is easily extensible to additional network types and topologies.

4.3.2 Pre-reproduction approaches

The first method used to develop the EA was the most trivial possible method. The goal
was to automate the network training to continue running until the performance of the net-
work on either the test data, training data. or some combination thereof, began to degrade.
[niually. the system was run with all the data in an attempt to automate the process of learn-
ing all the data. This is similar to what experts do with a new set of data. By training the
networks on the entire set of data, they are able to determine the overall ““learnability” of
the data set. Preferably this is done with a small number of hidden units. As the number of
hidden units increases, the network begins to memorize more of the specific records. This
behaviour is undesirable: since the network is intended to work with data it has not been

trained on, learning the general patterns in the data is more important. Thus, a smaller

55

number of hidden units indicates a more likely ability to learn the general patterns in the

data.

The algorithm worked by running the network for several sets with n epochs in a set, where
N was a suitable number that was predefined. Every set. the system would check to see if
performance had improved. degraded, or stayed the same. If it had degraded. then the
system would stop. The problem with this approach is that gradient descent algorithms
often have “bumps’: sections in the solution space where the error becomes temporarily
worse before becoming substantially better. Later versions of this basic algorithm took into
account ‘bumps’ in the gradient descent algorithm by requiring two consecutive degrada-

tions to stop the run.

The obvious next step to this simple algorithm was to run a number of networks in this
manner simultaneously. The first iterations of this improvement merely ran all of the net-
works for a fixed number of epochs and presented the best ones. Later, networks whose per-
formance had degraded prior to the end of the run were not trained further. A final
adjustment was to remove poorly performing networks from the run entirely. This was
accomplished through a variety of methods. The most successful involved eliminating net-
works whose performance was below the nth percentile for that iteration, or generation. [n
other words, the current average fitness of the population, minus some percentage of the
standard deviation. For example, killing off networks in every generation which were per-
forming below the average less the standard deviation meant that the top 84% of networks

were retained. Conversely, the worst 16% were removed from the population. Note that it

56

is not possible to remove networks performing too close to the average, or else when the
population begins to converge (which will happen due to continued training) all the net-
works will suddenly be removed! This iteration of the algorithm did not attempt to replace
the removed members, but rather ran either for a fixed number of sets or until only a few

networks remained.

4.3.3 The Fitness Function

Throughout the previous development. the fitness function was also in constant flux. Ini-
tialiy. when the entire data set was being learned, the total sum squared error (TSS) was
used. This quickly gave way to the number correct, or the percent correct. as much less
unwieldy numbers than the TSS. Upon the introduction of separate test and training sets. a
new fitness evaluation had to be formulated. For example. the percent correct in the test set
was somewhat effective in encouraging the networks to learn to generalize. Unfortunately,
as this does not take into account the performance on the training set, the ability to identify
some special-case patterns in the training set might be lost. Also. as the networks increased
their performance on the training set, test set performance tended to fall oft; the networks
were overfitting the training set [Haykin; Mehrotra]. A happy medium was required which
sought out a balance between the two. One method was the product of the classification
rates of the test and training sets. The classification rate is the percentage of correctly clas-
sified patterns in the total number of patterns classified. Thus the network is not penalized
for patterns if it is able to indicate that it is uncertain as to their classification. Thus, a higher

evaluation with this function indicates a higher ability to make accurate predictions.

57

Once again, however, increased performance in the test set causes an undesirable decline
in training set performance. For this reason. and because the data set was known to be train-
able (able to be learned to a high degree of accuracy) [Wolberg; Mangasarian; Scuse|, the
final evaluation used in the later stages of the experiments was the percent performance on

the test set only. This ensured the evolution of networks with the highest ability to gener-

alize.

4.3.4 Standard Genetic Operations

Before discussing the standard genetic operators. it is necessary to briefly review the rep-
resentation chosen for the system. Recall that network layers consist of weight matrices.
Thus, for this system, a multi-chromosome representation was chosen where each layer, or
rather, the weight matrix preceding the layer, was transformed into a separate chromosome.
Thus, each chromosome becomes a linear representation of the corresponding weight
matrix. For the sake of simplicity, this study will be limited to two-layer networks; that is,
networks with one hidden layer. [t follows that only chromosomes that originate from the
same relative layers will be allowed to cross. By thus restricting the motion of genetic mate-
rial, it is possible to focus more upon the effects of the base system. Also. this would appear
to be the approach taken by biological systems: only homologous chromosomes cross over.

not any chromosomes at random. Future work may indeed include networks of differing

numbers of layers and cross-layer mating.

The next step towards the evolutionary algorithm is implementing the standard genetic

operators of reproduction, crossover, and mutation.

58

The EA developed for this thesis uses standard roulette wheel reproduction as discussed in
Chapter 3. Mutation is also standard. and the mutation rate was set to one mutation in one
thousand weight copy operations, or 0.1%. The mutation rate is purposely kept at this low
level, as this is not a study of the effects of mutation, but rather an attempt to learn about
the evolutionary potential of these networks. Therefore. a high mutation rate would be

counterproductive. as it would confuse the results.

Crossover, on the other hand. involved some new ideas. Most of the literature invol ves pop-
ulations of networks of the same architectures. that is, the weight matrices have the same
dimensions. The authors have been concerned with performance rather than architecture
optimization {Stork & Keesing, Caudill. etc.|. Since the system constructed herein differs
in that aspect, crossover is implemented by choosing a crossover point on the shorter of the

two chromosomes (if one is shorter). This effectively deals with the problem of differing

network structures.

4.4 Consolidation: The System

The combination of the neural network and the evolutionary algorithm constitute the entire
system. While the basics of genetic representation and operation have been presented, there
remain a variety of ways in which the two systems can interact. [Caudill, Stork, Moriarty |.
The evolutionary system devised herein is a synthesis of several ideas. Caudill proposed
the mating of trained network weights in 1991. Her work followed that of Keesing and
Stork in 1990, which focused on the mating of initial weights based on the performance of

partially trained systems. With the addition of the innovation of distributed learning epochs

59

(to be discussed shortly), Stork and Keesing went on to patent this technique a few years

later [USP5245696|. A conversation with Dr. Stork indicates that further work was not

realized and the system was left where it was.

Indeed. the literature is rife with examples of evolutionary algorithms used to optimize
neural network performance [Caudill; Stork: Dodd: Chang|. However, on the subject of
automating the creation of neural networks, especially when considering increasing the
EA’s degrees of freedom to operate on the networks. there appears to be a marked absence.
This dissertation briefly explores each of these ideas as applied to backpropagation.
Finally, while mating of both trained and initial weights has been explored, a combination
of the two does not seem to have been attempted. Thus. the final incarnation of the system
involves an attempt to probabilisticaily allow trained weights to be passed into the subse-
quent population to mix with the gene pool of initial weights. The results. presented in the

next chapter, are encouraging.

4.4.1 Mating Trained Weights

The first, and perhaps the most obvious, way to combine neural networks with evolutionary
algorithms is to alternate cycles of neural network learning and performance evaluation
with evolutionary optimization. This approach is straightforward, and at first would seem

to be the obvious method. However, there are several inherent drawbacks to this technique.

4.4.1.1 Lamarkian Evolution

Lamark was a scientist of the late nineteenth century who proposed that evolution was
directly influenced by the experiences of individual organisms in their lifetime |Mitchell].

60

The classic example of Lamarkian evolution is that of a giraffe with a short neck which
stretches to reach leaves in tall trees all its life. Subsequently. its offspring have longer
necks, which they stretch further, and so forth. While current scientific evidence contradicts
this model rather vehemently, there is naturally a tendency to attempt Lamarkian tech-
niques for use in artificial systems such as Al and neural networks. Indeed. studies have

shown that these processes can improve artificial evolutionary algorithms [Mitchell. Cau-

dill].

However, the fact remains that biological systems do not operate in this manner. [Mitchell,
Stork & Keesing] The exceptions are the lowest forms of life, such as planaria. Since arti-
ficial intelligence is concerned with modeling higher brain functions, should the evolution-
ary optimizations used upon learning systems be a reflection of those used upon the lowest

forms of stimulus-response processing?

4.4.1.2 Mixing Weights in Neural Nerworks

A neural network, particularly a backpropagation network. depends upon the gradient
descent of the error in order to learn. Networks are typically robust in that, because the
learning is distributed among all the network weights, damage to the network or noise in
the data does not necessarily cause complete failure of the network. However, recall that
backpropagation begins with a random starting point and then applies the learning algo-
rithm to minimize the error over the training time; different starting weights lead to com-
pletely different learning curves. By crossing over networks with two different sets of

starting weights, it is unlikely that the resulting amalgam will be any better than a third net-

61

work with a random starting point. The fact that the system presented herein also mixes net-
works of varying topology (specifically the number of hidden units) merely compounds the
unlikelihood of a genetic operation resulting in a network that is anything more than a new
random starting point for gradient descent learning. Finally, the further the networks are
along in their total training, the more specialized their weights, and the less likely that

genetic operations will produce anything useful.

4.4.1.3 Nurture overcomes Nature

Another problem arising from the mating of trained weights is the fact that the learning
algorithm, backpropagation in this case. is highly effective. The design of the algorithm
allows it to learn from nearly any starting point. This means that the longer the network is
trained, the greater its ability will become: this is the whole point of gradient descent. How-
ever, when combined with an evolutionary system, the two become inextricably inter-
twined: the learning process is performing local search, which moves all population
members closer to potential solutions. The EA in turn performs a global search. However,
the diversity of its population has been reduced by the previous local search. The network
weights which were once widely different may now be tending down the error gradient to
the same local minimum in the solution space. The more training sessions that are used, the
greater the effect it has on the evolutionary algorithm. Thus, the inherent goodness of any
particular network structure or starting point is lost, overwhelmed by the efficient learning

strategy. The nurturing of the system has overcome any inherent nature that may have been

discernible.

4.4.2 Mating Initial Weights

The alternative to the method of section 4.4.1 is the mating of initial weights. In short, this
method trains networks for a short period of time. evaluates their fitness. and then mates
their initial weights based on this information. In essence. this is akin to true biological evo-
[ution: the success of the parent influences its ability to pass on its initial genetic makeup.
How then do improvements occur? In biology, species are improved through the Baldwin

effect [Mitchell].

4.4.2.1 The Baldwin Effect

Proposed by J. M. Baldwin near the end of the nineteenth century, the Baldwin effect rec-
ognizes that environmental pressure may favour individuals with the capability to learn
[Mitchell]. Individuals more capable of learning are more likely to survive, and therefore
reproduce. It follows that an organism able to learn many traits will be less dependent upon
genetically encoded traits. Thus, a more diverse gene pool is supported which allows for
learning to compensate for traits not fully developed by the genetic code. The ability to

learn indirectly accelerates the rate of evolution.

4.4.2.2 Baldwin Evolution in Neural Networks

The realization of the Baldwin effect in neural networks is straightforward. Instead of
mating weights which have been trained by the learning algorithm, the initial weights are
mated. The fitness of the network, however, is evaluated through the performance of the
network after a set amount of learning. In essence, this modification to the evolutionary
algorithm gives the neural networks a ‘life’ which is distinct from their genetic makeup. A

network’s performance in its life determines the relative fitness of its genome compared to

63

other individuals in the population. This approach is successfully demonstrated by Stork
and Keesing. Further, they discovered that distributed learning trials produce better perfor-

mance.

4.4.2.3 Distributed Learning Trials and Baldwin Evolution

Stork and Keesing discovered that randomly choosing the number of learning epochs for
each individual in a population of neural networks gave much improved performance than
using the same number of leaning trials for all networks. [Keesing & Stork] This makes
intuitive sense when one considers the biological paradigm. No two organisms are exposed
to exactly the same amount or type of stimulus. Modifying the number of learning epochs
on an individual basis mirrors this biological truth. Unfortunately. there is no straightfor-
ward way to modify the type. as opposed to amount, of stimulus other that to break up the

training data into random partitions. Due to lack of data. this is not always feasible.

4.4.3 Probabilistic Lamarkian Learning Transfer

The final enhancement presented by this dissertation is that of probabilistic Lamarkian
learning transfer (PLLT). Earlier. section 4.4.1.1 mentioned that studies had shown that
Lamarkian techniques can improve artificial evolutionary algorithms. The question this
raised was under what circumstances Lamarkian techniques could improve the previously
discussed Baldwin-type models. It was postulated that this could be accomplished by
allowing the best networks in the system of section 4.4.2 transfer their trained weights,

rather than their initial weights, to their offspring with a certain probability. By restricting

the frequency of this occurrence, it is possible to artificially boost the performance of the

evolutionary system via a pseudo-Lamarkian process.

PLLT allows new genetic material to be introduced into the population. Because there is a
possibility of a network mating with itself, thus producing identical progeny. this also, in
effect, allows particularly successful networks to. in essence. ‘live’ longer. Thus, a well
performing network has the chance of keeping it’s learning through a generation (or per-

haps more). instead of always losing it.

Figure 4.1. The Basic Evolutionary Algorithm

step 1: NN '—‘—> —NN’

step 2: NNL—"">_"' Fit
step 3: NN—— ‘_""""Chr

Chr—__
step 4: e Chr’
Fit—

Chr’ —= GEeeodd)— = NN

65

4.4.4 The Algorithm Revisited

The evolutionary system developed uses the basic algorithm described in figure 4.1. The
algorithm begins with a population of neural networks. NN. These are trained via the [earn-
ing process to obtain trained networks, NN’. Next, the trained networks are evaluated to
produce a fitness measure, Fit, for each member of the population. Step 3 takes the original
networks and encodes them into chromosomes. Chr. with which the evolutionary algorithm
can work. The chromosomes and their corresponding fitnesses are sent to the evolutionary
algorithm in step 4. The result is a new set of encodings. Chr’. which represents the off-
spring of the previous generation. Finally. in step 5. the new encodings are converted to a

new set of networks, NN’’. The process repeats for as many generations as desired.

This presents the basic algorithm. In the case of PLLT, a few extra steps occur. Step three
has the addition indicated in figure 4.2: with a probability influenced by the fitness, some
members of the set NN, the trained networks, are encoded into chromosomes. This selec-
tion process uses a lower and upper bound. When a network’s fitness is greater than the
lower bound, a uniform variate is generated between these two bounds. If the network’s fit-
ness exceeds this variate, its trained, rather than initial. weights are encoded into the gene

pool. Next, these members are added to the evolutionary algorithm in step four.

In order to maintain a population of constant size, after the PLLT chromosomes are created
(Step 3b), enough additional chromosomes are added in the traditional manner (Step 3a) to
make a total population equal in size to the previous generation. [t is important to note that

the genes created in step 3b are passed into the EA for mating. They do not immediately

66

find their way into the next generation. Such behaviour might indeed be desirable, but is in

the scope of future work.

Figure 4.2. PLLT Moditied Evolutionary Algorithm

step 3a: NN—— ——>Chrl

step 3b: Flt

step 4:

4.5 Summary

The focus of this thesis is one of unifying a learning system and a search system. The com-
bination should result in an evolutionary learning system, where the powers of each system
both support the strengths and compensate for the lacks of the other. The goal of this work
is to remove the drudgery from neural network design: Once a task has been identified as

being a candidate for a neural network approach, the ideal situation would be the mere acti-

67

vation of a system which would automatically generate the most appropriate, accurate net-

work.

This system is a step in that direction. While the network type and architecture are limited.
no feasible reason has been encountered to suggest that multiple network types and config-
urations could not be added to the same genetic pool. Thus, the lessons learned in this appli-
cation of genetic algorithms to backpropagation networks should hold true for at least
several other architectures. Minor modifications will probably suffice to add more network

types to the system.

Freeing humans from the unnecessary drudgery of network creation will allow research in
more elaborate areas of learning and evolution to take place. The ability to set up neural

systems without human intervention is a vital step on the path to fully adaptive. autono-

mous intelligent systems.

68

5 Experimentation

5.1 Description

This chapter will describe the performance of the system described in chapter 4 in an exper-
imental environment. Specifically, a dataset will be selected on which the system will be

trained. The system’s results will be compared to that of known results of expert-designed

neural networks.

5.2 Purpose

The purpose of this experiment is to demonstrate the practical validity of the theoretical
designs presented in previous chapters. It will be demonstrated that the system described

herein is a viable and effective alternative to having experts design neural networks by

hand.

5.3 Materials

The materials used in the experiment consisted of a computer and associated hardware. the

system whose design was described in Chapter 4. and a dataset from an Al data repository

on the internet.

5.3.1 Computer

For this experiment, the system was run on a Power Macintosh 8600/300. This computer

system runs on a 300 Mhz Motorola PowerPC 604ev microprocessor on an Apple Com-

69

puter designed motherboard with 128 megabytes of interleaved RAM, and | megabyte
inline level two cache running at 100 MHz. This machine was running MacOS version 8.5.
As previously mentioned, the evolutionary system has been designed to be highly portable,

and contains very little platform-specific code.

The evolutionary system itself was written using the Metrowerks Codewarrior compiler,
release 4. The accompanying SIOUX-WASTE (Simple Input and Output User eXchange)
console library was used for console output. This library actually aids portability because
itallows standard C++ console input and output to be used on a platform without a standard
command-line console. The code was written entirely in C++; however C++ specific fea-
tures, such as classes and overloading, were used sparingly (only when their use was

deemed to overcome the traditional speed loss in using C++ over plain C).

5.3.2 Dataset

The dataset chosen for this experiment was the Wisconsin Diagnostic Breast Cancer
(WDBC) dataset. The set consists of five hundred sixty-nine records, each with thirty vari-
ables. Each record is classified as either malignant or benign. Three hundred fifty-seven
cases are benign, while two hundred twelve are malignant. The data are known to be nearly
linearly separable when all thirty input features are used. There are a few patterns which
are on the class boundaries: thus, achieving 100% accuracy is a problematic endeavor. Pre-
viously, the best predictive accuracy obtained at the University of Wisconsin, Madison, is

97% through the use of repeated ten-fold crossvalidations [WDBC.doc]|.

70

5.3.2.1 Features

The thirty features of this dataset are computed from a digital image of a fine needle aspi-
rate (FNA) of a breast mass [WDBC]. “The... {image analyzer| ...computes values for each
of ten characteristics of each nuclei. measuring size. shape and texture. The mean, standard

error and extreme values of these features are computed, resulting in a total of 30 nuclear

features for each sample.” [WDBC; Mangasarian|

Figures 5.1 and 5.2 show two examples of the images processed by the image analyzer and

turned into records in the dataset. The features computed for each cell nucleus by the image

analyzer are as follows: [WDBC.doc|

a)

b)
c)
d)
e)

h)

)
J)

When the mean, standard error, and extreme values are added to these ten features for each

radius (mean of distances from center to points on the
perimeter)

texture (standard deviation of gray-scale values)
perimeter
area

smoothness (local variation in radius lengths)

perimerer”)
area - 1.0

concavity (severity of concave portions of the con-
tour

concave points (number of concave portions of the
contour

compactness (

symmetry
fractal dimension (“coastline approximation™ -1)

cell, the result is the thirty features per sample.

71

Figure 5.1. Benign Breast Mass [92-5311]

Figure 5.2, Malignant Breast Mass (Cropped) [91-5691 |

72

This thirty-feature dataset was normalized — converted to values in the range [0,1] —for use
in this experiment. Furthermore, the benign-malignant result was converted into two fea-
tures per record. A 1 in one category indicated a malignant mass. while a | in the other cat-
egory indicated a benign mass. A pair of ones or a pair of zeros is undefined. and indicates
no classification. For the purposes of this experiment, the ID tag was dropped from the

dataset: it has no bearing on the diagnosis.

5.4 Methodology

In order to assess the performance of the evolutionary system, a comparison must be made
to a known quantity. Since the goal of the system is to eliminate the need for humans in the
neural network design process. it seems reasonable to compare the system’s performance
to that of hand-designed neural networks. To this end. several results were available. First.
the results from the University of Wisconsin where the data was first used [Mangasarian|.
Second, two neural network designers (the author of this dissertation. and the main advisor)

independently created networks in an attempt to determine the best possible rate of classi-

fication.

5.4.1 The Train/Test Strategy

One of the most frequently used strategies in creating neural networks is the train/test strat-
egy. Because of the ever-present danger that a neural network will memorize a set of pat-
terns rather than generalize them, the dataset is split into two portions. The network is
trained on the first, but tested on the second. Unfortunately, the choice of how many and

which patterns to allocate to each set is something of a devil’s alternative. Allocating more

73

patterns to the training set ensures that the network learns these patterns well. However. the
testing data may therefore not be representative of the entire dataset. and the network may

perform poorly on the test set.

Consider, for example, the possibility of an entire class being inadvertently placed into only
the testing set. The trained networks will perform inordinately poorly on the training set.
Conversely. one might opt for adding more data to the test set. Unfortunately, this means

that now the training set may not be representative. Thus. with either choice, there are risks.

54.1.1 k-fold cross validation

[t is possible to estimate the maximum possible neural network performance by using k-
fold cross validation. In this type of validation. the data is divided into k partitions. One par-
tition is chosen to test. and the remainder to train. This data is used to train several net-
works, whose performance is either averaged. or the best performer is chosen. Then. the

process is repeated choosing a different partition as the test set. This is repeated for each of

the k partitions.

The average of the results is a good predictor of how well the system will perform. If this
is done with a partition size of one pattern, that is k = n where n is the total number of pat-
terns, the average performance represents an approximation of the maximum possible per-
formance obtainable with the neural network model. Clearly, this method is
computationally very expensive. However, there is another problem with this technique:
after the trials are complete and a number representing the projected system performance

is obtained, there is no single ‘best’ network. That is to say, while this technique is very

74

good at predicting theoretical network capabilities, it does not, upon completion, generate
a usable network. [nstead. such a network must be created from the knowledge garnered
during the crossvalidation runs. By contrast. an evolutionary algorithm functions by main-
taining a population of real solutions. As such. the EA can at any time. implementation per-

mitting, produce a neural network of known. as opposed to theoretical, ability.

5.4.1.2 Separating the Validation of the Algorithms

For this experiment, the focus is on the validation of the evolutionary algorithm as a viable
and effective method of designing neural networks. Therefore, using k-fold cross validation
within the system would incur needless computational expense. Thus, the experiment
involving the evolutionary system uses a straight holdout approach to testing. The holdout
chosen for the aforementioned dataset is 500 training patterns, 69 test patterns. The results
of the system on this dataset will be compared to networks designed by hand, as well as to

the best results obtained using leave-one-out cross validation.

5.4.2 Training by hand

When training networks by hand. varying numbers of hidden units were employed with a
wide variety in training epochs. The results were compared. and the best were selected. The
performance measure used was the accuracy on the test set, the classification rate, and the
value cutoffs, or thresholds. These cutoffs are the values for which a network output is
taken to mean |, O, or neither. Forall runs in this experiment, numbers greater than 0.9 were

taken to be I, numbers less than 0.1 were taken to be 0, and numbers in between 0.1 and

0.9 were taken to be neither.

75

Using between 4 and 8 hidden units appeared to give the best results, with some networks
performing well with fewer or greater numbers of hidden units. The best networks classi-
fied 98.55% of unseen data. These were rare, and usually had around six hidden units. By
far the most common “best’ result was 97.0588%. Again. it was apparent that provided the
networks did not have so many hidden units that they memorized the training data rather
than learning the inherent patterns, a variety of networks with different numbers of hidden
units could potentially perform well. Thus, for this particular dataset, there is a range of
possible numbers of hidden units that produce equally good results. The observed variabil-

ity comes from the initial weights of the network.

5.4.3 N-fold Crossvalidation

An independent test using n-fold crossvalidation, with n=569, showed that it definitely pos-
sible to classify 98.55% of unseen data. This confirms the results obtained above by the
human expert. That is. a human designing networks by hand was able to achieve the theo-

retical maximum accuracy as determined by the n-fold crossvalidation method [Scuse].

Finally, it should be noted that 97.5% is the best figure obtained at the University of Wis-

consin, where this data originated.

5.5 Experiment

After creating hand-trained networks to provide a basis for comparison, the evolutionary
algorithm was then employed. First, some trial runs were carried out. The purpose of the
trial runs was to determine the best combinations of features discussed in chapter 4. Then

long runs were performed to determine the best results attainable with the combinations of

76

features determined in the previous step. This was necessary because testing every possible

combinations of features would have been computationally prohibitive with short runs, let

alone trying to do it with long runs.

5.5.1 Setup

To begin, small numbers of networks were created and run for a small number of genera-
tions. Once the system wasgdetermined to be performing correctly. twenty networks were
created by a network-generating function. These networks ranged in their number of hidden
units from one to ten. with two networks of each. These networks were run for varying
numbers of generations, starting with ten. but eventually settling with fifty as a reasonable
number of generations. As explained in chapter 4, and with the exception of PLLT, all
genetic operations were performed with initial weights as opposed to trained weights.
Where PLLT was used, the parameters were 0.9 to 0.97. (That is, a uniform variate between
0.9 and 0.97 was generated. If the current network’s fitness was greater, the network was

allowed to pass on its trained weights.) These networks gave rise to the following observa-

tions.

The training from section 5.4.2 indicated that five thousand to ten thousand epochs were
more than sufficient to learn the data in most cases. Literature suggests that for evolutionary
algorithms, using five to ten percent of the total required epochs seems to give the best per-
formance [Caudill; Stork]. This information, combined with experimentation, lead to the

choice of 250 to 500 as the number of epochs per generation.

77

¢ Each of distributed learning and PLLT. gave some increase in performance.

o Using 250 (5% of 5000) epochs for every network (uniform learning), the networks
failed to achieve even the ‘easy’ result of 97% accuracy on unseen data.

o With the exception of uniform learning, all of the aforementioned were capable of find-
ing the ‘easy’ answer. That is, 97% accuracy on unseen data. However. their abilities

varied.

¢ Distributed learning. using a uniform variate with a mean of 250 (from 0 to 500) for the
number of epochs. produced the 97% figure. but with 20 networks, this result appeared

only once in 50 generations.

¢ Distributed learning with PLLT produced the 97% figure over 20 times in 50 genera-
tions.

These results indicated that distributed learning with and without PLLT were the best per-
formers. Thus, these two models were to be used for several extended runs. To accomplish
this, the population size was increased to 100. This was accomplished by applying the same
algorithm as before, only now there would be ten networks of each number of hidden units.
Thus, the new population has many times the diversity of the previous test. With more start-
ing positions, it was hypothesized that the distributed learning would be able to produce the
97% figure, and possibly the 98% figure. [t was also hypothesized that the distributed

PLLT algorithm would be able to produce the sought-after 98% accuracy on new data. The

results follow.

e With 100 networks, the distributed learning produced networks achieving 97% accu-
racy more than 20 times, especially in the latter part of the run.

¢ The distributed learning alone did not produce 98% accuracy.

o Using distributed PLLT, 97% accuracy was to be had anywhere from over 100 times to
over 1000 times in the course of a run. It existed in each and every generation.

78

* Using distributed PLLT, 98% accuracy occurred anywhere from 2 through 8 times in a
run. It was almost always in the very late part of the run, if anywhere. It is important to
note that the way the PLLT parameter was set, networks with this performance always

pass on their trained weights.

Due to the probabilistic nature of evolutionary algorithm, it is not surprising that once the
98% figure appears. it does not always carry through to the next generation: the continued
training, selection. mating. and mutation. are almost certain to evolve that set of weights
into something different. Because of the delicate nature of backpropagation networks. this
new network is not necessarily the equal of its parents. There are a number of possible ways

of overcoming this shortcoming which will be discussed in chapter 6.

Another point that is of note is that the crossing over of trained weights did not cause an
overabundance of poor networks. One might suspect that crossing weights of trained nst-
works would produce garbage more often than not. However, consider the following
extract. Of a population of 100 networks. 69 passed on their trained weights. This means
that their minimurmn accuracy was 90%. Of the subsequent generation. 79 networks had a
resulting fitness of greater than 0.9. Seven networks had a fitness in the range 0.7 = x <0.8,
one network had a fitness in the range 0.6 = x < 0.7, seven networks had a fitness in the
range 0.2 = x < 0.3, and six had a fitness of 0. With 69 networks using trained weights in
this population, it would be expected that much more of the population would be poor per-
formers. There are several explanations for this. First, the learning may completely correct
for this. Second, networks which are approaching the same minimum in the solution space

may be crossing over, thus helping each other to get closer to the minimum. Finally, it may

79

be that there is an abundance of networks all following the gradient descent algorithms to
the same minimum, and as such they all reproduce amongst themselves, giving an errone-
ous impression as to the true diversity of the population. This answer can be determined by
testing the fitness of a population before training as well as after. [f the networks have a
uniform fitness distribution. then that will rule out the second possibility in favour of the
first or last. The last possibility is the trickiest to weed out. [t would require an algorithm
to compare the weights of several networks and, by calculating if they were within some
tolerance of each other, determine if they belonged to the same local minimum on the solu-

tion space.

5.6 Conclusion

To summarize. it does appear that distributing the number of learning epochs results in a
higher occurrence of well-performing networks. This confirms the work of Keesing and
Stork. The use of PLLT not only increases the number of good networks, but provides the

impetus required to get the networks over the last obstacle to get the 98% theoretical max-

imum accuracy.

The most success was had with the Probabilistic Lamarkian Learning Transfer method dis-
cussed in 4.4.3. Note that this does not mean that the non-PLLT method of section 4.4.2
was unsuccessful: rather, the PLLT method produced the best results more consistently and

in greater number.

80

Using a large population. over many generations, it has been established that the evolution-
ary system can produce networks which correctly classify 98.55% of unseen data. This is
consistent with the best classification obtained to date on this dataset. Further, the evolu-
tionary system is able to obtain this result with relatively low computational expense on
today’s desktop hardware. (Runs of 100 networks for 50 generations took from 6 to 8
hours). Finally. and most importantly, these results were achieved without the intervention
or superviston of an expert. While numerous refinements can undoubtedly be made to this
approach, this experiment has demonstrated that automatic generation of neural networks
via evolutionary algorithms is capable of attaining the maximum accuracy on a particular
dataset. [t remains to be determined as to whether the performance would be equaily high
on other datasets. However, while the generic applicability of a particular evolutionary
system requires further testing, evolutionary algorithms do indeed provide a viable and

effective alternative to having experts design neural networks by hand.

81

6 Conclusion

6.1 Summary

6.1.1 Successes

This study has developed a framework which allows for the automation of the neural net-
work creation process. As demonstrated in chapter 5, the system developed within this
framework was successful in attaining the maximum accuracy on unseen data. Further. this

result was reached in a reasonable amount of time on a common desktop computer system.

The system was able to determine the best backpropagation architecture to use with regards
to the number of hidden units. This ability opens new possibilities which will be discussed
in section 6.2. Of particular note are two novel approaches taken by this system: the mating
of chromosomes of unequal length. and the use of a pseudo-Lamarkian process, dubbed
PLLT. to enhance the performance of the algorithm. While these results are encouraging,

there are, naturally. several caveats to be considered.

6.1.2 Caveats

Like any study, the successful results must be considered in light of their shortcomings. It

is important to consider a few important points: the dataset, the limited flexibility, and other

factors.

6.1.2.1 Daraset

The system was tested, as described in chapter 5, with the Wisconsin Diagnostic Breast
Cancer dataset. The creation of the system was not directly biased by the dataset, as the
experimenter was blind to the nature of the dataset. That is, the dataset was presented as
raw data, and was not identified to the experimenter until the experiment was complete.
However, the fact remains that to date the system has only been tested on the WDBC
dataset. To properly validate the ideas in this dissertation. further testing on a variety of

datasets will be necessary.

6.1.2.2 Limited flexibility

The experiment in chapter 5 was designed as a testbed for a number of evolutionary ideas.
As such, the actual freedom of the system was somewhat constrained; the evolutionary
algorithm was free only to choose the number of hidden units in the networks. [t is felt that
this is a significant achievement over previous methods which focus more on evolutionary
algorithms as an optimization method. However, this is only one step in the development
of a general-purpose evolutionary system. It is hypothesized that the system will work
equally well when additional degrees of freedom are given it. For example, no impediments
are known which would prevent the system from being able to choose the number of layers
in addition to the number of networks (though this is unlikely to be beneficial as noted in
4.3.1), or to create hierarchies of networks for use in gating or voting systems, or even con-
sider networks of several different types (for example. backpropagation, radial basis, and
Hopfield networks) all in the same population. However, these facets remain to be tested.

They will be discussed in somewhat more depth in section 6.2.

83

6.2 Future Work

This thesis has left open a plethora of avenues for future work. The most obvious of these

will be detailed herein.

6.2.1 Improved Implementation

While an attempt was made to keep the system efficient, it is nearly always possible to do
a better job. A more rigorous software design. with a focus on efficiency of the neural net-
works and interaction between the evolutionary algorithm and the networks would only
benefit the system. Possibly a language other that C++ is better suited to the problem. For-
tran, for example, excels at mathematical calculation, and Pascal or Modula give a high
degree of structure. While this is an incidental concern. not directly related to the ability of
the system or the validity of the evolutionary framework., it should be a concern in any seri-

ous software implementation.

6.2.2 Curved Fitness Functions

[t was remarked in chapter 5 that even when an accuracy of 98% was achieved. it did not
necessarily carry over to the next generation. Part of the reason behind this irritating behav-
iour is that when the total and percent fitnesses are calculated. 98% does not achieve a much
bigger portion of the fitness space than 97%. Consider a population of 4 networks. three of
which have a fitness of 0.97, and one of which has the sought-after 0.98 fitness. The total
fitness for this population is 3.89. When it is time for the reproduction phase. the roulette
wheel approach gives 24.94% of the wheel to each of the 0.97 networks. and only 25.19%

to the one network with 98% accuracy. Clearly, this approach does not favour the 98%

84

accuracy much over the 97% accuracy. If such accuracy is important to the application of

the system, either a different reproduction scheme or a different fitness function may be

required.

For example, the experiment in chapter 5 used 69 patterns in the test set. Thus. the maxi-
mum number of correct patterns is 69. The elusive 98% accuracy figure corresponds to 68

correct patterns. Now consider the equation

- |
T T 69 —x

where x is the number of test patterns correct for a network. This equation produces the
graph in figure 6.1. By using the value of y for the fitness evaluation of a network success-
fully classifying x patterns, it is possible to make the change between 97% and 98% accu-

racy non-linear. To further adjust the curve, an exponent could be added to x, producing

69 — "

This is one example of how the fitness function could be tailored to produce a non-linear
evaluation. Thus, the evolutionary system would perceive 98% to be significantly better

than 97%, depending upon the tuning of the exponent n.

35

Figure 6.1. Graph ot y =

69 —x

64 65 66 &7 68 69

Naturally, it is important not to evaluate this function for x=69 and n=I. Using such a fit-
ness function (69.5 or 70 in place of 69 are two examples of the possibilities) would help

ensure that better networks always survived.

6.2.3 Other Genetic Operators

The experiments performed to date have made use of the most basic genetic operators:
reproduction, crossover, and mutation. There exist a variety of other operators: for exam-
ple, double point crossover, sexual versus asexual reproduction, elitism, and so forth. Each
of these methods has advantages and drawbacks. Any future work in this area shouid cer-

tainly include some exploration of different genetic operators.

86

6.2.4 Network Types

For the experimental purposes of this thesis. it was explained that backpropagation net-
works were chosen. It was further suggested that while the current system only selects dif-
ferent numbers of hidden units. there was no foreseeable reason why other attributes, such
as the number of layers. might not also be selected. [ndeed. taking this idea one step further.

there is no reason to stick with a single type of network.

Different neural network models learn in different ways. Radial basis networks employ a
learning strategy that excels at learning local features of the solution set. Contrast this to
the global approach of backpropagation. Other network models have other strengths. There

are several ways that additional network models could be added to the system.

6.2.4.1 Mixed Population

One possibility is to have a population consist of networks of several different types.
Mating might be only among like members. or possibly even among unlike members
(though this seems improbable). The evolutionary algorithms would search for the best net-

works without regard to their type. merely their ability.

6.2.4.2 Segregated Population

This method is similar to the above, but in this case the best networks from each type of

network would be selected separately, thus enforcing a wider diversity of the population.

6.2.4.3 Cooperative Population

[n this extension of the aforementioned methods the evolutionary algorithm would be

designed to take into account each network’s unique abilities. Thus, situations where a

87

backpropagation network could do broad classification and a radial basis network subclas-
sification might arise. This approach could give rise to the automatic generation of gating.

voting, or hierarchical networks.

6.2.5 Survival Traits

The next two possibilities lie in the area of rewarding or restricting certain actions based

upon the fitness of individual networks.

6.2.5.1 Prevent Inbreeding

Biologically speaking. inbreeding. the mating of closely related organisms. is considered
harmful to the gene pool. This is because the practice amplifies poor traits without the pos-
sibility of a corresponding introduction of new, possibly superior traits. Thus, the gene pool
is said to stagnate. No research appears to have been done using the prevention of inbreed-

ing as a means of promoting population diversity in an artificial evolutionary system.

6.2.5.2 Age-correlated Fitness

[n the system as described in chapter 4. probabilistic Lamarkian learning transfer is intro-
duced as a way of introducing new genes into the gene pool. This practice, while referred
to as Lamarkian. can also be viewed as a method of increasing the granularity of the aging
process for the population members. That is, it gives certain members of the population the
ability to live longer than a single generation. As discussed in section 4.4.4, this might
include allowing the PLLT-generated chromosomes to pass directly into the next genera-
tion. This idea could be further exploited by correlating the fitness of an individual to its

age. Thus, older individuals which had managed to survive longer would be considered to

88

have better genes, and thus would rate a higher fitness. This idea in combination with that
in 6.2.2 might produce some very interesting results, as it would overcome some of the
main problems encountered in the design of this system: difficulty in keeping good net-
works in the population. and difficulty in selecting marginally better networks for repro-

duction due to the high fitness of the population.

6.2.5.3 Dataser Partitioning

One of the tenets behind the use of distributed learning cycles was that in the biological
world, every organism does not receive the same amount of learning. Similarly, in the bio-
logical realm, not every organism receives the same zvpe of learning. An avenue for future
exploration would be the partitioning of the dataset among the networks of the population
such that the networks each receive a different training set. A new partition would be gen-
erated for each network in each generation. Testing would be performed on a partition that
none of the networks had been trained on. Naturally, there are many possible permutations
of this approach. For example, the ability to partition a dataset for distribution to the mem-
bers of a neural network population could be of use in the creation of gating, voting, and
hierarchical networks as discussed in section 6.2.4.3. The use of such partitioning methods
would theoretically increase the diversity of the gene pool and result in more robust indi-

viduals of higher fitness.

6.3 Conclusion

This dissertation has presented a framework to allow for the automatic creation of neural

networks to solve a task. The implication of such a system is two-fold. By removing the

89

requirement that an expert design a neural system. the technology comes within reach of a
greater number of potential applications. Secondly. the divorcing of the expert from the

drudgery of day-to-day creation will allow for the study of more interesting problems.

The system designed and presented herein successfully produced networks with the maxi-
mum theoretical accuracy on previously unseen data. The benefit is that it runs unattended
as opposed to requiring the constant attention of an expert. The system is by no means a
finished product; many avenues are open for future exploration. It is felt, however, that the
basis of the underlying theories is promising, and that future work will result in increasing

flexible automated neural network design systems.

Once it is possible to generate neural networks in an accurate, automated fashion. problems
involving more complex applications can be considered. Network collaboration and sparse
reinforcement problems are two such areas. Indeed. the ability to generate neural networks
for small tasks will lead to their application in ever-larger tasks. The future holds the prom-
ise of systems which can create hierarchical systems of networks working in concert, much
as the biological brain. Within a few short years, the computational power of computers
will rival that of the human brain [Kurzweil{. All that is required, then, is a system to orga-
nize that power into an artificial intelligence. The twenty-first century holds great promise

as the century that the Holy Grail of Al may finally come within our grasp.

90

Bibliography

Aleksander, .. & Morton, H. (1993). Neurons and svmbols: the stuff that mind is made of.
New York: Chapman & Hall.

Baldi. P.. & Brunak. S. (1998). Bioinformatics: the machine learning approach. Cam-
bridge, MA: MIT Press.

Bishop, C. M. (1995). Neural networks for pattern recognition. Oxford: Clarendon.

Blum. A. (1992). Neural Networks in C++: An Object-Oriented Framework for Building
Connectionist Svstems. New York: John Wiley & Sons.

Caudill, M. (1991, March). Evolutionary Neural Networks. A/ Expert, pp. 28-33.

Chang, E. I.. & Lippmann, R. P. (1991). Using genetic algorithms to improve pattern clas-
sification performance. In R. Lippmann. J. Moody, & D. Touretzky (Ed.), Advances in
neural information processing svstems 3 (pp. 797-803). San Mateo, CA: Morgan Kauf-

mann Publishers.

Dodd, N. (1990). Optimisation of network structure using genetic techniques. In J/CNN
international joint conference on neural nerworks (Vol.3) (pp. 965-970). San Diego.

Freeman, J. A., & Skapura, D. M. (1991). Neural networks: algorithins, Applications, and
programming techniques. Reading, MA: Addison-Wesley.

Fullmer, B. & Miikkulainen, R. (1992). Using Marker-Based Genetic Encoding of Neural
Networks To Evolve Finite-State Behaviour In F. J. Varela and P. Bourgine (editors)
Toward a Practice of Autonomous Systems: Proceedings of the First European Confer-
ence on Artificial Life (ECAL-91, Paris, France), 255-262. Cambridge, MA: MIT Press.

91

Goldberg, D. E. (1989). Genetic Algorithms is Search, Optimization, and Machine Learn-
ing. Reading, MA: Addison-Wesley.

Haykin, S. (1994). Neural nerworks: a comprehinsive foundation. New York: Macmillan

College.

Keesing, R., & Stork, D. G. (1991). Evolution and learning in neural networks: the number
and distribution of learning trials affect the rate of evolution. In R. Lippmann. J.
Moody, & D. Touretzky (Ed.). Advances in neural information processing systems 3
(pp-804-810). San Mateo, CA: Morgan Kaufmann Publishers.

Korning. Peter G. (n.d.). Training Neural Networks by means of Genetic Algorithms Work-
ing on Very Long Chromosomes. [On-line|. Available: ftp://archive.cis.ohio-state.edu/
pub/neuroprose/korning.nnga.ps.Z

Kurzweil, R. (March 1. 1999). When machines think. Maclean’s, pp. 54-57. Toronto:
Maclean Hunter Publishing.

Langton, C. G. (Ed.). (1997). Artificial life: an overview. Cambridge, MA: MIT Press.

Law, A. M., & Kelton, W. D. (1991). Simulation Modeling and Analysis. New Y ork:
McGraw-Hill.

Luger, G. F., & Stubblefield. W. A. (1993). Artificial intelligence: Structures and strate-
gies for complex problem solving (2nd ed.). Menlo Park, CA: Benjamin/Cummings.

Mangasarian, O. (1999). Machine learning for cancer diagnosis and prognosis. |[On-line}.
Available: http://www.cs.wisc.edu/~olvi/uwmp/cancer.htmi

Masters, T. (1993). Practical Neural Nerwork Recipes in C++. San Diego, CA: Academic

Press.

Mehrotra, K., Mohan, C. K., & Ranka, S. (1997). Elements of artificial neural nerworks.
Cambridge, MA: The MIT Press.

Mitchell, T. M. (1997). Machine Learning. Boston, MA: McGraw-Hill

92

Montana, D. J.. & Davis, L. (1989). Training feedforward neural networks using genetic
algorithms. In Sridharan, N. S. (Ed.), Proceedings of the eleventh international joint
conference of artificial intelligence (pp.762-767). San Mateo, CA: Morgan Kaufmann.

Moriarty, D. E. (1997). Symbiotic Evolution of Neural Networks in Sequential Decision
Tasks. Ph.D. Dissertation: Technical Report A[97-257, Department of Computer Sci-
ences. The University of Texas at Austin.

Pinker, S. (1997). How the mind works. New York: W. W. Norton & Company.

Rao. V., & Rao, H. (1995). C+ + neural nerworks and fuzzy logic (2nd ed.). New York: MIS
Press.

Rawlins. Gregory J. E. (Ed.). (1991). Foundations of Genetic Algorithms. San Mateo. CA:
Morgan Kaufmann.

Rogers, J. (1997). Object-oriented neural nerworks in C++. San Diego: Academic Press.

Rumelhart, D. E., McClelland, J. L., et. al. (1986) Paralle! distributed processing: explo-
rations in the microstructure of cognition: voluinel : foundations. Cambirdge, MA: The

MIT Press.

Russell. S.. & Norvig, P. (1995). Artificial intelligence: a modern approach. Upper Saddle
River, MJ: Prentice Hall.

Schildt, H. (1995). C++: The Complete Reference (2nd ed.). Berkeley, CA: Osborne
McGraw-Hill.

Schildt, H. (1995b). C: The Complete Reference (3rd ed.). Berkeley. CA: Osborne
McGraw-Hill.

Scuse. D. (1999). Personal communication: July, 1999.

Stevens, W. R. (1992). Advanced Programming in the UNIX Environment. Reading, MA:
Addison-Wesley.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: an introduction. Cambridge,
MA: MIT Press.

93

United States Patent. Stork, D. G., & Keesing, R. C. (1993). Evolution and learning in
neural networks: the number and distribution of learning trials affect the rate of evolu-
tion. Patent Number: 5,245.696.

Wasserman, P. D. (1993). Advanced Methods in Newral Computing. New York: Van Nos-
trand Reinhold.

WDBC. University of Wisconsin, Madison. (1999). machine-learn. {On-line]. Available:
ftp://ftp.cs.wisc.edu/math-prog/cpo-dataset/machine-learn/

WDBC.doc. University of Wisconsin. Madison. (1999). machine-learn. [On-line|. Avail-
able: ftp:/ftp.cs.wisc.edu/math-prog/cpo-dataset/machine-learn/WDBC/WDBC.doc

Weeks. E. R. & Burgess, J. M. (1997. August). Evolving artificial neural networks to con-
trol chaotic systems. Physical Review E (Vol. 56, No. 2). pp. 1531-1540.

Weiss. S. M.. & Kulikowski, C. A. (1991). Computer Svstems that Learn. San Francisco,
CA: Morgan Kaufmann.

Whitley, L. D. (Ed.). (1993). Foundations of genetic algorithms 2. San Mateo. CA: Morgan
Kaufmann.

Winston, P. H. (1993). Artificial intelligence (3rd ed.). Menlo Park, CA: Addison-Wesley.

Wolberg, W., Street, W. N.. & Mangasarian, O. (1995). Wisconsin Diagnostic Breast Can-
cer. [On-line]. Available: ftp://ftp.ics.uci.edu/pub/machine-learning-databases/breast-

cancer-wisconsin/wdbc.names

Zurada, J. M. (1992). Introduction to Artificial Neural Systems. St. Paul, MN: West Pub-
lishing Company.

94

Appendix A

This appendix consists of a sample run output.

A.1 Long run, full EA with PLLT

This run has been truncated. Only the first five and final five generations are shown in the

interests of space conservation.

A.l.1 First Five Generations

Sat Jul 3 00:06:49 1999
Random Seed: 6458

569 patterns, 30 inputs, and 2 outputs.
Reading in...

Finished Reading.

Splitting...
Allocating
Copying training input
allocating training output
Copying training target
Copying testing input
allocating testing output
Copying testing target

Split off first 500 patterns to train,
69 to test.

Seed in Netset: B874

Final Random Seed = 8974
Starting runs for 100 networks.
50 generations.

250 epochs of training per set.

Distributed Learning
Continued learning range: 0.9 to 0.97

Generation 0

Network:
0

VNN -

Fitness:

OO0 0o o

0.956522

0.84058 23

0

0.927536
0.913043
0.942029
0.927536
0

0.942029
0.956522
0.869565
0]

0.956522
0.942029
0.927536

O O oo

0.942029
0.898551
0.927536
0.927536
0.956522
0.956522
0.927536
0.942029
0.927536
0.927536
0

0.%42029
0.855072
0.913043
0.913043
0.927536
0

0.927536
o]

0.927536
0.927536
0.927536
0.942029
0.927536
0.942029

Epochs:
209
202
369
242
489
469

246
83

185
359

400
482
43

299
463
262
205
308
131
20

384
439
340
117
235
487
430
280
302
224
191
118
391
23

71

132
333
382
199
465
190
453
157
367
198
437

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

0.927536
0.898551
0

0.898551
0.898551
0.927536
0.927536
0.927536
0.913043
0.898551
0.942029
0

.913043

.913043
.884058

[= =N elNelNolNolNe NNl

0.913043
0.956522
0.956522
0

0.956522
0.913043
0.913043
0.927536
0.956522
0.869565

O O o

0.942029
0.927536
0.898551
0.927536
0.463768
0.956522
0.956522
0.913043
0.913043
0.826087
0.826087
0.942029
0.956522
0.898551
0.942029
0.956522
0.927536

166
111
491
457
118
346
415
266
110
120
456
392
415
66

107
100
55

461
197
253
409
180
491
458

240
109
83

439
448
53

23

99

371
393
311
74

121
414
446
476
183
262
32

55

273
387
101
297
465
340

A-3

Total fitness:
Real average:

Miss-0 avg:

66.913

0.66913

0.916617

starting continuance
ending continuance

Continued nets:

Generation elapsed run time:
Generation 1

Network:
0

O 00~ O W N~

NN RNNNNNNPRE B & b e s
WA B WNKHOWVWONGARU & WNHO

w wKN
= O W

W W w
o owN

30

Fitness:
0.971014
0.971014
0.246377
0.942029
0.971014
0

0.913043
0.913043
0.927536
0

0.927536
0.927536
0.956522
0.710145
0

0.927536
0.913043
0.898551
0

0.927536
0.927536
0.956522
0

0

0.971014
0.971014
0.927536
0.942029
0.217391
0.927536
0.927536
0.956522
0.927536
0.927536
0.942029

449 s,

Epochs:
202
243
15
211
395
53
64
234
275
157
348
147
35
369
11
199
65
77
282
222
71
109
177
417
385
432
280
412
187
226
226
497
143
140
234

or 7.48333 min.

A4

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

0.956522
0.927536
0.927536
0.956522
0

0.927536
0.913043
0.927536
0

0.927536
0.913043
0.942029
0.927536
0

0.956522
0.927536
0.942029
0.927536
0.956522
0.942029
0.956522
0.942029
0.927536
0

0.927536
0.942029
0.956522
0

0.956522
0

0.942029
0.927536
0

0.913043

© OO O0OOo

0.956522
0.942029
0.956522
0.927536
0.927536
0.927536
0.942029
0.942029
0.869565
0.927536
0.927536
0.927536

214
174
260
296
223
354
105
405
119
164
179
395
117
91

393
292
276
3601
393
248
196
376
94

447
339
345
468
74

417

380
217

221
22

302
308
298
241
434
243
498
306
230
284
337
415
37

199
311
479

A-5

86 0.927536 110
87 0.927536 154
88 0.898551 63

89 o 1

90 0.666667 133
21 0.942029 300
92 0.927536 217
93 0 65
94 0.927536 183
95 0.942029 316
96 0.927536 375
97 0.927536 265
98 0.956522 495
99 0.884058 40

Total fitness: 72.8841

Real average: 0.728841
Miss-0 avg: 0.911051
starting continuance

ending continuance
Continued nets: 35

Generation elapsed run time: 477 s, or 7.95 min.
Generation 2

Network: Fitness: Epochs:
(o] 0.942029 143
1 0.710145 29
2 0.246377 435
3 0.971014 265
4 0.956522 492
5 0 323
6 0.927536 294
7 0.942029 223
8 0.956522 173
9 0.971014 35
10 0.956522 467
11 0.956522 488
12 0.927536 328
13 0.956522 490
14 0.971014 342
15 0.942029 466
16 0.971014 380
17 0.913043 47
18 0.217391 114
19 0 432
20 0.956522 460

A-6

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

0.913043
0.927536
0.971014
0.956522
0.9420289
0.971014
0.971014
0.188406
0.942029
0.956522
0.927536
0.913043
0.246377
0.942029
0.217391
0

0.927536
0.956522
0.942029
0.927536
0]

0

0.971014
0

0.927536
0.927536
0.927536
0.927536
0.942029
0.927536
0]

0

0.956522
0.927536
0.927536
0.927536
0.942029
0.956522
0.913043
0.869565
0.942029
0.927536
0.927536
0

0.927536
0.956522
0.942029
0.927536
0.927536
0.898551
0.913043

52

114
371
499
338
494
481
43

387
186
279
92

20

312
79

498
214
464
309
229
412
23

400
38

435
446
246
346
351
184
453
371
417
162
369
306
445
488
130
102
208
307
209
133
249
490
188
313
187
56

258

72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Total fitness:
Real average:

Miss-0 avg:

0

0.956522
0.826087
0.927536
0.942029
0.927536
0.869565
0.913043
0.318841
0.927536
0.927536
0.927536
0.956522
0.956522
0

0.956522
0.971014
0.956522
0.913043
0.884058
0.956522
0

0.942029
0.971014
0

0.927536
0.217391
0.956522

76.4203

0.764203

0.878394

starting continuance
ending continuance

Continued nets:

42

442
397
20

166
338
162
74

100
55

159
282
246
220
395
207
495
303
439
140
47

355
73

361
384
15

211
93

355

Generation elapsed run time: 538 s, or 8.96667 min.

Generation 3

Network:
0

AWM B W N

Fitness:
0.173913
0.971014
0.927536
0.797101
0.971014
0.942029
0.724638

Epochs:

450
444
324
206
214
398
418

A-8

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57

0.971014
0.173913
0

0.971014
0.724638
0.913043
0.956522
0.971014
0.971014
0.710145
0.927536
0.927536
0.971014
0.971014
0.202899
0.681159
0.956522
0.956522
0.217391
0.956522
0.927536
0

0.927536
0.927536
0.942029
0.942029

0.73913 479

0.927536
0

0.971014
0.971014
0.913043
0.956522
0.971014
0.956522
0.913043
0.927536
0.855072
0

0.971014
0.956522
0.927536
0.9565z2
0.927536
0.927536
0.898551
0

0.971014
0

0.913043
0

400
431
414
325
113
97

476
292
485
455
282
439
430
212
57

10

194
391
240
473
271
169
210
197
235
322

183
273
126
14

100
471
327
127
96

154
42

87

127
316
195
384
279
451
357
319
332
319
82

337

A-9

58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Total fitness:
Real average:

Miss-0 avg:

0

0.956522
0.913043
0.927536
0.942029
0.971014
0.927536
0.942029
0.927536
0.927536
0

0.927536
0.956522

.956522
.927536

.927536

OC OO0 O0O0COO0OO0

0.956522
0.492754
0.971014
0.971014
0.927536
0.942029
0

0.898551
0.913043

0.84058 24

0

0.971014
0.173913
0.942029
0.942029
0.956522
0.927536
0.927536
0.956522
0.724638

72.4203

0.724203

0.872534

starting continuance
ending continuance

34

449
121
278
334
434
101
467
43

295
49

313
175
483
352
344
438
300
23

341
115
297
386

321
433
25

317
365
56

117

209
494
11

405
253
305
153
268
428
483

Continued nets:

Generation elapsed run time:
Generation 4

Network:
0

O~ Wb WwN

Bl B W WWWWWWWWWNNNNDNNNRNDNNDNIRER R e O
WNHOWONAUAWNHOUOUOMNOAWUL AR WNEODWOWONNOWLS WNPM-O

43

Fitness:
0.956522
0.942029
0.971014
0.956522
0

0.971014
0

0.246377
0.956522
0.971014
0.956522
0

0.971014
0.971014
0.942029
0.695652
0.898551
0.971014
0.231884
0.927536
0.971014
0.971014
0.942029
0.971014
0.927536
0.971014
0.971014
0.710145
0.217391
0.927536
0.913043
0.942029
0.956522
0.246377
0.217391
0.956522
0.927536
0.971014
0.956522
0.956522
0.971014
0

0

0.913043

573 s, or 9.55 min.

Epochs:

449
291
249
483
63
129
67
178
393
114
194
4
314
372
400
209
123
197
481
420
232
158
432
462
94
351
265
235
129
335
89
101
108
60
295
428
242
328
486
230
456
87
469
58

44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94

0.942029
0

0.724638
0.927536
0.956522
0.927536
0.971014
0.942029
0.927536
0.942029
0.927536
0.710145
0.217391
0.681159
0.855072
0.956522
0.913043
0.913043
0.217391
0.913043
0.217391
0

0.913043
0.898551
0.927536
0.956522
0.956522
0.971014
0

0.927536
0

0.652174
0.971014
0.971014
0.913043
0.956522
0.956522
0.942029
0.898551
0

0.971014
0.217391
0.942029
0.942029
0.188406
0.971014
0.927536
0.956522
0.956522
0

0.927536

88
99
461
86
489
286
336
44
263
295
40
425
135
86
29
148
171
80
339
84
349
173
142
129
197
158
411
240

353
37

99

312
481
20

352
209
103
91

56

117
144
362
294
88

315
386
109
332
473
215

95
96
97
98
99

Total fitness:
Real average:

Miss-0 avg:

0.913043
0.217391
0.898551
0.942029
0.927536

74.5362

0.745362

0.837486

starting continuance
ending continuance

Continued nets:

Generation elapsed run time:

A.l.2 Final Five Generations

Generation 45

Network:

o

W Oo~NOwm s W=

43

Fitness:
0.971014
0

0.971014
0.927536
0

0.971014
0.971014
0.942029
0.231884
0.956522
0.956522
0.942029
0.956522
0.956522
0.942029
0.971014
0.956522
0.956522
0.971014
0.971014
0.956522
0.971014
0.956522
0.971014
0.971014
0.971014

174
464
222
329
393

525 s,

Epochs:
311
332
321
97
137
367
211
131
258
176
89
47
27
228
23
220
434
417
85
369
324
467
449
372
389
448

or 8.75 min.

26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76

0.942029
0.971014
0.927536
0.956522
0.956522
0.956522
0.652174
0.971014
0.971014
0.942029
0.956522
0

0.753623
0.956522
0.956522
0.971014
0.971014
0.971014
0.971014
0.956522

0.73913 266

0.956522
0.942029
0.956522
0.956522
0.753623
0.971014
0

0.753623
0.971014
0.956522
0.913043
0.971014
0.246377
0.985507
0.942029
0.956522
0.971014
0.956522
0.956522
0.942029
0.753623
0.956522
0.971014
0.971014
0.956522
0.753623
0

0.927536
0.942029
0.956522

12

110
103
158
69

443
40

346
362
179
219
11

31

132
425
261
276
161
159
476

255
146
241
103
65

78

297
379
464
499
495
131

24

482
234
404
294
97

26

340
352
233
228
300
360
122
437
202
321

77 0.971014 300

78 0.971014 248
79 0.971014 491
80 0.956522 239
81 0.971014 223
82 0.971014 306
83 0.956522 27

84 0.927536 381
85 0.753623 274
86 0.971014 319
87 0.971014 393
88 0.956522 66

89 0.956522 145
90 0.942029 354
91 0.942029 471
92 0 151
93 0.942029 323
94 0.956522 435
95 0 404
96 0.956522 139
97 0.956522 175
98 0 261
99 0.231884 293

Total fitness: 84.2464
Real average: 0.842464
Miss-0 avg: 0.915721
starting continuance

ending continuance
Continued nets: 72

Generation elapsed run time: 340 s, or 5.66667 min.
Generation 46

Network: Fitness: Epochs:
0 0.246377 151
1 0.927536 313
2 0.971014 169
3 0.956522 440
4 0.942029 437
5 0.956522 183
6 0.710145 202
7 0.942029 158
8 0.956522 103
9 0.942029 56
10 0.971014 233
11 0.927536 177

12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62

0.942029
0.971014
0.971014
0.927536
0.927536
0.971014
0.971014
0.927536
0.956522
o

0.710145
0.246377
0

0.246377
0

0.971014
0.231884
0.971014
0.231884
0.971014
0.246377
0

0.971014
0.956522
0.956522
0.956522
0

0.565217
0.927536
0.231884
0.971014
0.217391
0.942029
0.971014
0.971014
0.971014
0.898551
0.971014
0.956522
0.971014
0.942029
0.956522
0.927536
0.956522
0.971014
0.356522
0.956522
0.971014
0.942029
0.971014
0.246377

382
468
208
329
236
142
146
237
366
159
365
215
240
185
126
271
105
278
478
72

122
478
359
482
65

184
243
16

247
42

392
350
96

335
489
209
59

105
223
282
248
490
104
483
498
21

66

206
277
346
150

A-16

63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

Total fitness:
Real average:

Miss-0 avg:

0.971014
0.94202¢%
0.971014
0.898551
0.971014
0

0

0.971014
0.971014
0.913043
0

0.956522
0.971014
0.710145
0.942029
0.681159
0.956522
0.231884
0.971014
0.971014
0.971014
0

0.971014
0.971014
0.956522
0

0.971014
0.956522
0.971014
0

0.956522
0.971014
0.956522
0.942029
0.913043
0.956522
0.956522

76.4638

0.764638

0.859143

starting continuance
ending continuance

Continued nets:

Generation elapsed run time:

60

400
94

132
314
98

342
117
168
248
255
59

183
451
380
47

167
481
248
435
51

178
177
358
300
89

352
78

472
454
127
143
234
408
214
92

3990
495

336 s, or 5.6 min.

A-17

Generation 47

Network:
0

W~ WN

vhvhvbvbolhphrbnh-huwwwwwwwwwNNNNNNNNNND—'HHHI—'O—‘Hb—'b—'
OaxlmmthHOlO(D\lO\mrwal—‘OlDCO\JG\W:&WNHOWQ\IU\U\AUNH’C—;w

Fitness:
0.942029
0.971014
0.942029
0.956522
0.666667
0.956522
0.956522
0.971014
0.246377
0.956522
0.942029
0.942029
0.971014
0.942029
0.956522
0.971014
0.971014
0.942029
0.956522
0.956522
0.971014
0.942029
0.956522
0.927536
0.956522
0

0.971014
0.985507
0.942029
0.956522
0.942029
0.956522
0

0.971014
0.956522
0.681159
0.246377
0.971014
0.217391
0.956522
0.971014
0.956522
0.942029
0.942029
0.956522
0.971014
0.971014
0.971014
0.942029

Epochs:

157
462
432
356
42

21

291
406

175
137
179

79

163
389
60

82

441
14

129
472
462
334
24

317
75

208
439
41

385
111
388
183
221
89

352
53

255
58

141
205
92

317
143
452
347
373

A-18

49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

0.927536
0.956522
0.971014
0.956522
0.942029
0.913043
0.971014
0.971014
0.956522
0

0.971014
0

0.202899
0.753623
0.942029
0.942029
0.231884
0.681159
0.956522
0.956522
0.927536
0.971014
0.188406
0

0.956522
0

0.956522
0.942029
0.971014
0.971014
0.956522
0.956522
0.927536
0.956522
0.971014
0.710145
0.971014
0.956522
0.956522
0.246377
0.956522
0.956522
0.971014
0.971014
0.971014
0.724638
0

0.956522
0.971014
0.971014
0.956522

382
415
31

458
51

330
282
321
451
115
242
173

408
115
392
250
82

227
337
32

458
104
394
247
203
395
102
371
157
167
481
168
52

370
398
242
386
34

119
379
405
476
362
330
459
76

493
459
190
416

A-19

Total fitness: 82.3478
Real average: 0.823478
Miss-0 avg: 0.88546
starting continuance

ending continuance
Continued nets: 64

Generation elapsed run time: 336 s, or 5.6 min.
Generation 48

Network: Fitness: Epochs:
0] 0.956522 171
1 0 14
2 0.971014 294
3 0.956522 52
4 0.927536 222
5 0.956522 3
6 0.0434783 9
7 0 381
8 0 395
9 0.898551 63
10 0 179
11 0.637681 47
12 0.971014 52
13 0.971014 432
14 0.971014 176
15 0.956522 314
16 0.942029 241
17 0.956522 23€
18 0 272
19 0.971014 465
20 0.971014 72
21 0.956522 63
22 0.3956522 265
23 0.971014 457
24 0.971014 468
25 0.898551 366
26 0.971014 454
27 0.956522 81
28 0.971014 448
29 0.942029 458
30 0.971014 35
31 0.217391 214
32 0.971014 391
33 0.971014 46
34 0 193

35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81l
82
83
84
85

0.956522
0.942029
0.942029

o oo

0.942029
0.942029
0.927536
0.971014
0.971014
0.246377
0.956522
0.956522
0.956522
0.956522
0.927536
0.971014
0.956522
0.971014
0.942029
0.913043
0.971014
0.971014
0.942029
0.956522
0.971014
0.971014
0.971014
0.246377
0.971014
0.971014
0.927536
0.971014
0.942029
0.956522
0.956522
0.942029
0.956522
0.753623
0.956522
0.753623
0.956522
0.971014
0.971014
0.971014
0.927536
0.971014
0.971014
0.623188
0.971014

34

415
100
458
301
330
454
99

72

313
459
124
452
236
119
165
240
315
458
316
84

10

119
192

335
398
289
382
11

224
408
305
129
313
224
330
247
467
267
69

85

271
379
179
257
162
441
130
193
101

86
87
88
89
9¢
91
92
93
94
95
56
97
98
89

Total fitness:
Real average:

Miss-0 avg:

0.971014
0

0.927536
0.971014
0.246377
0.971014
0.971014
0

0.942029
o

0.956522
c

0.956522
0.94202¢9

78.3768

0.783768

0.900883

starting continuance
ending continuance

Continued nets:

Generation elapsed run time:
Generation 49

Network:
0

W O bW N

69

Fitness:
0.971014
0.927536
0.956522

-971014

ool ol oo

0.956522
0.971014
0.942029
0.971014
0.971014
0.927536
0.927536
0.971014
0.971014
0.246377
0.724638
0.956522
0.913043

417
349
182
351
1
110
211
65
434
273
14
198
273
230

321 s, or 5.35 min.

Epochs:

284
259
218
430
16

226
282
208
177
438
178
229
241
349
156
198
157
31

179
478
97

21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71

0.942029
0.956522
0.246377
0.956522
0.942029
0.956522
0.956522
0.724638
0.956522
0.956522
0.971014
0.753623
0.971014
0.942029
0.971014
0.724638
0.971014
0.956522
0.956522
0.971014
0.971014
0.971014
0.246377
0.971014
0.971014
0

0.971014
0.956522
0.956522
0.971014
0.956522
0.971014
0.956522
0.927536
0.971014
0.971014
0.956522
0.971014
0.956522
0.913043
0.913043
0.956522
0.942029
0.231884
0.246377
0.971014
0.956522
0.942029
0.942029
0.956522
0

342
187
10

372
491
37

284
214
258
160
468
329
316
241
64

401
431
467
202
462
497
127
409
311
143
135
497
388
414
245
398
292
232
33

72

352
155
413
346
425
134
268
291
355
284
455
491
244
371
269
324

A-23

72 0.956522 475

73 0.956522 39
74 0.927536 130
75 0.971014 111
76 0.971014 151
77 0.971014 467
78 0.971014 61
79 0.956522 235
80 0.956522 371
81 0.246377 475
82 0.724638 247
83 0.724638 95
84 0.753623 18
85 0.971014 304
86 0.956522 219
87 0.942029 11
88 0.956522 478
89 0.956522 36
90 0.956522 468
91 0.913043 429
92 0.231884 469
93 0.956522 422
94 0.681159 20
95 0.942029 34
96 0.927536 386
97 0.971014 70
98 0.956522 297
99 0.971014 142

Total fitness: 83.029
Real average: 0.83029

Miss-0 avg: 0.883287

Total elapsed run time: 21676 s, or 361.267 min.

A-24

Appendix B

This appendix contains the C++ code for the evolutionary and neural systems.

B.1 Neural Network Code

B.1.1 Debug.h

//#define VERBOSE_NN
#include <iostream.h>

B.1.2 NLayer.h
//Layer.h

#include <string.h> //for memset
#include "Debug.h"

typedef double (*SimpActFunc)(const double in});
typedef double * (BatchActFunc)(const double* in, const double* out);

class NLayer

{

public:
//layer Constructor:
NLayer();

NLayer(int numin, int numnodes, double wrange, double brange);

//Destructor
~NLayer();

//set fuctions
bool SetBatchActivation(double * (*Batch)(const double* in, const

double* out));
bool SetSimpleActivation(double (*Simple)(const double in));

inline const double *SetInput(double *in){return (Input=in);}
inline const double *SetOutput(double *out){return (Output=out);}

B-1

inline bool OutputIsNull(){return (Output==NULL);}

inline bool InputIsNull(){return (Input==NULL);}

inline double *GetOutput(){return Output;}

inline const double *GetInput(){return Input;}

inline double **SetWeights(double** wts){return(Weights=wts);}
inline const int NumNodes(){return outsize;}

inline const int NumIn(){return insize;}

inline double *GetET(){return ErrorTerm;}
inline const double SetETElement(int i, double towhat) {return

ErrorTerm{i]=towhat;}

inline const double GetETElement(int x){return ErrorTerm[x];}
inline const double GetOutElement(int i){return Output(il];}
inline const double GetInElement(int i){return Input[i];}

inline const double GetWeightElement (int i, int Jj){return

Weights[1][]j]1:}
inline const double SetWeightElement(int i, int j, double x) {return

Weights[i][j}=x;}

inline const double GetBiasElement(int i){return Bias(i];}
inline const double SetBiasElement(int i1, double x){return

Bias([i]=x;}
void pieceofship(){return;}

//recurrent vectors must have an initial input. (Later)

//0ther
double* Evaluate();//Evaluate input*weights, apply activation.
double* BackPass (double*source, double* dest);//Take array pointed

to by
//double * and pass through
weights.
//MUST be the right size array.
void DumpWeights():;
private:

int insize, outsize;
const double *Input;//Allocated outside. We don't go
//about modifying our

own inputs.
double *Output;//Allocated outside
double **Weights;//Allocated inside
double *ErrorTerm;//Allocated inside

B-2

double *Bias;//Bias term allocated inside

//Activation mechanisms
//All this activation stuff is easily solved. Layers have ONE

activation
//function. Multiple layers at the same level are possible.

That deals with
//everything, because in a fully connected graph, it's all

isomorphic anyway.

//We will provide 2 activation functions. A batch one and a
simple one. Either

//or both can be used.

//This is the Batch Activation. It takes an array of double

in, a pointer
//to sufficient memory, and returns a pointer to that memory

that it "filled in"
double* (*BatchActivation)(const double* in, const double* out);

//This is the simple Activation. It takes a double and returns

a double
double (*SimpleActivation)(const double in);

//It may also be beneficial to add one which modifies its
paramaters.

//Recurrence mechanisms (Ignore for now)

bool Done;

int RecurrenceCount;

int RecurrencelLimit;

//Recurrence test function here: tests whether it's time to

terminate a recurrence
}:
B.1.3 neural.h

//Neural.h
#include "NLayer.h"

//If you want debug output, #define VERBOSE_NN
#include "Debug.h"
//#include <string.h> //for memset

class NeuralNet

{

protected:

B-3

double **Input;//an array of input vectors; ie an array of

double arrays.

double **QOutput;//Array of output vectors

double **Desired;//Array of Output Vectors

double **layerVecs;//an array of double arrays-

points to the

//Each layer of the network

//memory "between"
//allocate each one as output

when we allocate each NLayer.

//Thus, processing layer ([0]

outputs to layerVec([0], etc.

//Obviously, there is one less

of these than the number of

//layers, as the last one

points to output.

puts input into

int
sizes

int
int
int
int

int
int

//unnecessary:
//layervecs{{] is the "fan" ie

everything.

numLayersizesSet;//How many layers are allocated with

numLayers;//Number of layers in Network

numActivations;

numPatterns; //Number of Input Patterns to be processed.
whichPattern;//Input pattern currently being processed.

invecSize;//number of elements in input vector.
outVecSize;//number of elements in output/desired vector.

NLayer**layers;//ptr to ptr so we can allocate one by one

SimpActFunc* ActRecord;

double weightRange;//note that these are not arrays of

values, one

double biasRange;//for each layer; they should be, but there

is no
//reason for this at this time.
double lrate; //the learning rate;
public:
bool Run(bool output); //Produce Output to Input
bool Run(bool output, double **in,//Produce Output to Input
for

double **out, int num);//given non-training array

B-4

bool Evaluate(); //Evaluate a single pattern
virtual bool Learn(int cycles) = 0;//Learn Input

//NeuralNet(int nlayers, int inputSize, int outputSize, int

numpats,
// double **invecs, double**outvecs);

NeuralNet(int nlayers, int nactivations, int inputSize, int

outputSize,
int numpats, double** invecs, doublex*x*

outvecs, double** desvecs,
double learn=.1);

~NeurallNet();
bool AllocateActivationList(int howMany);

//The way Assign and SetSimple -Activation work is as follows.
//SetSimple- is called to set the network's activation array

to point to the
//activation function. AssignActivation is used to associate

an activation in
//this master list (in the network) with a particular layer.

The caveat to this
//is IFF there is only one activation function for the

network,
//SetSimpleActivation will sense this and automatically fill

in all the layers,
//precluding the need to call AssignActivation.
bool AssignActivation(int which, int layer);

bool SetSimpleActivation(int which, SimpActFunc thefunc);

bool SetLayerSize(int whichlayer, int layerin, int
layernodes);

bool Connect(int source, int destination);
bool Connect(NLayer source, NLayer destination);

bool TestConnecticns();
bool SetLayerWeights(int thelayer, double** theWeights);
double GetLayerWeight(int theLayer, int i, int j)
{return layers[theLayer]-
>GetWeightElement (i,3j);}
double SetLayerWeight(int thelLayer, int i, int Jj, double

value)

B-5

{return layers[thelayer]-
>SetWeightElement (i, j,value);}

void DumpNet();

virtual void PrintStats(ostream& foo=cout);

inline const int GetNumLayers(){return numLayers;}
inline const int GetLayerSize(int which) {return

layers([which]->NumNodes();}
inline const int GetLayerInSize(int which) {return

layers[which]->NumIn();}
inline const double GetWeightRange() {return weightRange;}

}:
B.1.4 backprop.h

//backprop.h
#pragma once

#include *“neural.h"

class BPNet: public NeuralNet

{
private:
static inline double Sigmoid(const double in);
public:
BPNet(int nlayers, int* sizes, int insize, int outsize, int
numpats,

double** inv, double** ocutv, double** desv);

bool Learn(int cycles);
void PrintStats(ostream& foo=cout});

¥i
B.1.5 NLayer.cc

//Layer.cc

#include <stdlib.h>

#include <iomanip.h>
#include "NLayer.h"

//Layer Definitions
NLayer: :NLayer ()

{
}

B-6

NLayer: :NLayer(int numin, int numnodes, double wrange, double brange)

{

//Sets size, but leaves input and output to be connected.

//Set up layer size
insize = numin;
outsize = numnodes;
Input=NULL;
Output=NULL;

#ifdef VERBOSE_ NN

cout<<"Initial ranges; weights:

"<<brange<<endl<<endl;

#endif

"<<wrange<<"

bias:

Weights = new double*[insize]l;//DON'T FORGET TO RANDOMIZE!!

//this is the random seed I used for testing with Dr. Scuse's data

//srand(1574);

for(int i=0;i<insize;i++)

{

Weights{i]=new double[outsize];

for(int j=0;j<outsize; j++)

Weights[i][j]= (wrange- -wrange)*(double(rand())/
RAND MAX)+ -wrange;

}

ErrorTerm=new double[outsize];

Bias=new double[outsize];
for(int i=0;i<outsize;i++)

Bias[i]=(brange- -brange)*(double(rand())/RAND MAX)+ -

brange;

}

//Set activation functicns to NULL

BatchActivation=NULL;
SimpleActivation=NULL;

NLayer: :~NLayer()

{

delete[] Bias;

for(int i=0;i<insize;i++)
delete([] Weights{i];

delete[] Weights;

delete{} ErrorTerm;

bool NLayer::SetBatchActivation(double * (*Batch) (const double* in, const
double* out))

{
//Set up Batch Activation

return BatchaActivation = Batch;

}

bool NLayer::SetSimpleActivation(double (*Simple)(const double in))
{ //why can't this be inline?

//Set up Simple Activation
return SimpleActivation = Simple;

double* NLayer::Evaluate()

{
//Outputs a pointer to the array we filled up, or NULL if
//something went wrong (though the array may be filled up
//anyway. it probably is.

//We assume that the Output array is zeroed... who should do that?
//We had better, because it has to be done every time.

//This has been tested in the debugger; it works.

memset ((void*)Output, '\0', sizeof(double)*outsize);

//Now, the way this works, is for every input value, ie position

//on the input vector, i, each is multiplied by every one of it's

//associated weights, [i,j], and added to the appropriate output

//vector element, j. Thus, on each pass, with each subsequent input

//vector, the ocutputs are accumulated until i hits the top (insize)

//and at that point they're all there. This was done this way because

//The inputs are accessed over and over again, and this method
groups

//these accesses. The weights are accessed once each, so it doesn't
matter.

//However, each output vector element is accessed as many times as
the

//number of input elements. Thus, since writing is slower, this
could

//be a bottleneck in performance. To access the output vector
elements

//once each (at the cost of the input element optimization) we can
swap

//the two ‘'for' conditions. The rest stays the same.

//Note: if we want to be really anal, we can determine which
//will have the greater number of accesses, input or output, and
//run the appropriate code.

B-8

//Zero the output array with bzero or memzero or something.

for(int i=0;i<insize;i++)
for(int j=0; j<outsize; j++)

{
Output[j]+=Input[i] * Weights[i][j]+Bias[]];//Every

Output is the

}

if (BatchActivation)
{ if (Output==BatchActivation(Output, Output))
return Output;

}

else if (SimpleActivation)
for(int i=0;i<outsize;i++)
Output[i}=SimpleActivation(Output([i]);

return Output;

}
double* NLayer::BackPass(double*source, double*dest)
{
//The difference between this and Pass is that this function uses
//insize and outsize for the bounds in the opposite way of pass.
//source and dest are provided for convenience, and must be EXACTLY
//the right size. that is, dest is of size insize and source 1is of
//size outsize
//returns a pointer to dest.
//dest will be set to zero and modified.
memset ((void*)dest,*\0', sizeof(double)*insize);
for(int i=0;i<insize;i++)
for(int j=0;j<outsize;j++)
{
dest([i]+=source(j] * Weights[{i]([(j];//Every Output is
the
}
return dest;
}

void NLayer::DumpWeights()
{

for(int i=0;i<insize;i++)

for(int j=0;j<outsize;j++)

cout<<setprecision(15)<<Weights([i}[j]<<" :

cout<<endl;

B.1.6 neural.cc

//Neural.cc
#include <iostream.h>

#include "neural.h”

J e ettt
//MNeuralNet Definitions

//

//

// NeuralNet::NeuralNet(int nlayers, int inputSize, int outputSize, int
numpats,

// double **invecs, double**outvecs)

/7 {

// //Allocate number of layers

// layers = new NLayer*[nlayers];

// numLayers=nlayers;

// numLayersizesSet=0;

/7

// ActRecord=NULL;

// numActivations=0;

//

// //set all the layers to NULL

// for (int i=0;i<numLayers;i++)

// layers([i]=NULL;

//

/7

// //now, allocate the memory between the layers. ie the containers
// layerVecs = new double*{nlayers-1];

// //allocate the input container

// //no. point at Input as necessary.

// //layervVecs[0] = new double [inputSize}];

//

// numPatterns=numpats;//set the number of input/output patterns to
process.

// whichPattern=0; //set which pattern we're currently processing.
//

/7 Input=invecs;

// Output=outvecs;

/7 0}

.........

!/
..o..NeuralNet-... ----- 4 e e v e e e e e e o s -

.........

NeuralNet: :NeuralNet(int nlayers, int nactivations, int inputSize, int
outputSize,

..................................

int numpats, double** invecs,

double**outvecs, double** desvecs,
double learn)

//Set learning rate
lrate=learn;

//Allocate number of layers
layers = new NLayer*[nlayers];
numLayers=nlayers;
numLayersizesSet=0;
invecSize=inputSize;
outVecSize=outputSize;

//Allocate number of activations
ActRecord=new SimpActFunc[nactivations];

numActivations=nactivations;

//set all activations to NULL
for(int i=0;i<nactivations;i++)
ActRecord(i]=NULL;

//set all the layers to NULL
for (int 1i=0;i<numLayers;i++)
layers[i]=NULL;

//now, allocate the memory between the layers. ie the containers
layerVecs = new double*[nlayers-1];
//allocate the input container

//no. point at Input as necessary.

//layerVecs[0] = new double [inputSize];

numPatterns=numpats;//set the number of input/output patterns to

process.
whichPattern=0; //set which pattern we're currently processing.

Input=invecs;
Cutput=outvecs;
Desired=desvecs;

//set default range values
weightRange=1;
biasRange=1;

#ifdef VERBOSE_NN
cout<<invecs[0][0]<<invecs[0][1l]<<endl;
cout<<invecs[l][0]<<invecsfl][1l]<<endl;
cout<<invecs({2][0]<<invecs[2][1l]<<endl;
cout<<invecs[3][0]<<invecs({3][l]l<<endl;

#endif

...

.........

//
..... ~NEeULrALNE L = = = = ¢« o s v s o e ot o v o s s oo oo s oo o6 assssesaocssaseccoecssonssossose

.........

//Need a destructor!!!!
NeuralNet: : ~NeuralNet ()
{
delete[] ActRecord;
for(int i=0;i<numLayers;i++)
delete layers[i];
for(int i=0;i<(numLayers-1);i++)
delete{] layerVecs([i];
delete[] layerVecs;
delete{] layers;

s

//Later, we will need to differentiate between simple and batch

activations.
/7

...

bool NeuralNet::AllocateActivationList(int howMany)

{

if (numLayersizesSet!=numLayers)

{
#ifdef VERBOSE_ NN

cout<<"Size of Layer not allocated in
NeuralNet::AllocateActivationList"<<endl;

B-12

#endif
return false;

}

//how many activation functions will we need?

if (ActRecord!=NULL) //if it already exists
delete [}JActRecord; //delete it

numActivations=howMany; //allocate the new memory

return ActRecord=new SimpActFunc[howMany];

...

..

.........

bcol NeuralNet::AssignActivation(int whichact, int whichlayer)

{

//This function assigns the layer layers[whichlayer] the activation
//function found in ActRecord{whichact]. It returns an error for

overflow etc.

if (whichact>=numActivations || whichlayer>=numLayers)

{
#ifdef VERBOSE_NN

cout<<"Error - out of range layer or activation index

in"<<endl;
cout<<"NeuralNet::AssignActivation"<<endl;
#endif
return false;

}

layers{whichlayer]->SetSimpleActivation(ActRecord[whichact]);

#ifdef VERBOSE_NN
if (ActRecord[whichact]==NULL)
cout<<"Warning - assigning null function to layer

"<<whichlayer<<endl;
#endif

//This could also be done as
//layers{whichlayer].SetSimpleActivation(ActRecord[whichact]);

return true;

B-13

bool NeuralNet::SetSimpleActivation(int which, SimpActFunc thefunc)
{
//Set the activation of ActRecord[which] to thefunc
if (tnumActivations) //ie if it's zero
{
#ifdef VERBOSE_NN
cout<<"Error - no activation functions allocated in
SetSimpleActivation"<<endl;
#endif
return false;

b

//if we're trying to se a function slot that doesn‘t exist
if (which>=numActivations || which<0)

{

#ifdef VERBOSE_ NN
cout<<"Error - Activation function slot is out of range

in"<<endl;
cout<<"NeuralNet::SetSimpleActivation"<<endl;

#endif
return false;

}
ActRecord[which]=thefunc;

//if we only have 1 activation function, set it for all the layers
if (numActivations==1 && which==0)//do a double check so we don't

screw up
for (int i=0;i<numlayers;i++)

AssignActivation(0,1);
//This is

real bad programming practice. <grin>
return true;

...

.........

..

.........

bool NeuralNet::SetLayerSize(int whichlayer, int layerin, int layernodes)

{

//whichlayer is the index of the layer we're setting, starting at
zero

//layerin is how many inputs, and layernodes is how many nodes. ie
layerin

//is the number of nodes in the previous layer.

//maybe later I'll make it automatic :)

//NLayer foo(layerin, layernodes);

//first the debugging
if (Input==NULL || Output==NULL||whichlayer>=numLayers)

#ifdef VERBOSE_NN
{

cout<<"Error: Input and OCutput to Neural Network not"<<endl;
cout<<" allocated or Layer doesn't exist in "<<endl;
cout<<" NeuralNet: :SetLayerSize"<<endl<<endl;

#endif
return false;
#ifdef VERBOSE_NN

}
#endif

//now the important stuff
bool initialstatus=layers[whichlayer]; //use this to determine if

we increment
//

numLayersizesSet
bool toreturn;

if (layers[whichlayer]!=NULL)
delete layers{whichlayer];

//Sets the size for a layer

if (layers([whichlayer]=new NLayer(layerin,
layernodes,weightRange,biasRange))

//1if the allocation worked

{
if (numLayersizesSet<numLayers && !initialstatus)
numLayersizesSet++;
if (whichlayer==0)
layers[whichlayer]->SetInput(Input[whichPattern]);
//Allocate the array to store this layer's output. There are
layernodes

//outputs, one for each neuron/node in the layer.
//don't do it if we're the last layer.

if (whichlayer!=numLayers-1)//if it's not the last layer

B-15

toreturn=layers[whichlayer]-
>SetOutput(layerVecs{whichlayer] =
new double[layernodes]):

else
toreturn=layers([whichlayer]-
>SetOutput (Output(whichPattern]);

#ifdef VERBOSE_NN
if (!toreturn)//if we pointed at a null
{
cout<<"Warning: Pointing at Null in
NeuralNet: :SetLayerSize"<<endl;

cout<<" While setting layer
"<<whichlayer<<"."<<endl<<endl;
}
#endif

return toreturn;
}//if

#ifdef VERBOSE NN

cout<<"Memory Allocation Failure in
NeuralNet: :SetLayerSize"<<endl<<endl;

#endif

return false;

...

bool NeuralNet::Connect(int source, int destination)

{

//Connect source layer to destination layer. Exploit the fact that
//we're a friend.

//By convention, only connect destination to point to source.
//that is, destination's input is source's output.

//Assume source is allocated, otherwise return false
1f (layers[source]->OutputIsNull())
{

cout<<"Warning: Pointing layer "<<destination<<"‘'s input to

cout<<"layer "<<source<<"'s output, which is NULL."<<endl;

B-16

//return layers([destination]->SetInput(layers{source]->Output);
return layers[destination]->SetInput(layerVecs[source]);

//This will work only if we initialize to NULL in the constructor
//for the layers.

//we do this by passing NULL to our layer constructors.

...

bool NeuralNet::Connect (NLayer source, NLayer destination)

{

return destination.SetInput(source.GetOutput());

...

bool NeuralNet::TestConnections()

{

//This function tests each layer to ensure that its input and ocutput
//are not NULL. It does not ensure that non-NULL values are valid
bool retval=true;

for (int i=0;i<numPatterns;i++)
{
if(layers{i}j->InputIsNull())
cout<<"Input of layer "<<i<<" is NULL."<<endl;
if(layers[i]->OutputIsNull(})
cout<<“Output of layer "<<i<<" is NULL."<<endl;
retval=retval&&(layers[i])->GetInput() && layers[i]-
>GetOutput ())

}

if (numLayersizesSet!=numLayers)

{

cout<<numLayers-numLayersizesSet<<"” of "<<numLayers<<" not

set."<<endl;
cout<<"Layer test returned "<<retval<<"."<<endl;

return false;

B-17

return retval;

...

bool NeuralNet::SetLayerWeights(int thelayer, double** theWeights)
{

//Warning. The layer class asumes it owns its weights. It will
//dispose of the memory passed it when the destructor is called,
//either explicitly or implicitly. This may cause a problem if
//the weights are on the stack.

//add error checking.

return layers[thelayer]->SetWeights (theWeights);

...............................

.........

bool NeuralNet::Run(bool cutput)
{//runs through and evaluates each pattern

for (whichPattern=0;whichPattern<numPatterns;whichPattern++)

{//set which pattern
layers[0]->SetInput(Input[whichPattern]);//set input layer

to pattern
layers[numLayers-1]->SetOutput (Output[whichPattern]);//set

output layer

for(int i=0;i<numLayers;i++)//I could make this an inline

function
layers[i]->Evaluate();

}

if (output)
{
cout<<"In";
for(int 1=0;i<inVecSize;i++)
cout<<" "

B-18

cout<<" Qut"<<endl;

for (int i=0;i<numPatterns;i++)
{
for(int j=0;j<inVecSize;j++)
printf("%1.3f " ,Input{ij(j]));
//cout<<Input{il[]]<<" ";
cout<<"== ";
for(int j=0;j<outVecSize; j++)
printf("%1.3f ",Output[i][(]j]):;
//cout<<Output[i][jI<<" ";
cout<<endl;
}
cout<<endl;
}//output

whichPattern=0;//reset for next time

layers{[0}->SetInput(Input[whichPattern]);//set input layer to
pattern

layers[numLayers-1]->SetOutput (OQutput[whichPattern]);//set output

layer
return true;
}
//
//
----- Run-..-.......-.................-.......--.-......-.-.-.-.---..-..

bool NeuralNet::Run(bool output, double **in,double **out, int num)
{ //Produce Output to Input for given non-training array

//runs through and evaluates each pattern
for (whichPattern=0;whichPattern<num;whichPattern++)

{//set which pattern
layers([0]->SetInput(in[whichPattern]);//set input layer to
pattern
layers[numLayers-1]->SetOutput (out[whichPattern});//set
output layer

for(int i=0;i<numLayers;i++)//I could make this an inline
function
layers[i]->Evaluate();

s

if (output)
{

B-19

cout<<"In";
for(int i=0;i<inVecSize;i++)
cout<< " " ;

cout<<" Out"<<endl;

for (int 1i=0;i<num;i++)
{
for(int j=0;j<inVecSize;j++)
printf("%1.3f ",in(i]1[(j]);
//cout<<Input[i][jI<<" ";
cout<<"== ";
for(int j=0;j<outVecSize;j++)
printf(“%1.3f ",out[i][j]);
//cout<<Output[i][]]<<" ";
cout<<endl;
}
cout<<endl;
}/ /output

whichPattern=0;//reset for next time

layers{0]->SetInput(Input(whichPattern]);//set input layer to
pattern

layers{numLayers-1]->SetOutput (Output{whichPattern});//set output
layer

return true;

...

.........

void NeuralNet::DumpNet ()

{
for(int i=0;i<numLayers;i++)
{
cout<<"Layer "<<i<<endl;
layers([i]—->DumpWeights();
cout<<endl;
}
}
//

...

.........

B-20

..... PrintStats-------------------'--"-'--------------'-'--"---'--'-'
void NeuralNet::PrintStats(ostream& foo)
{

//print out:network architecture

// numlayers

// units per layer

// 2222

// weight range

// bias range

// random seed --NO. external. Has nothing
to do with network

// learning rate

foo<<" ——cwmmm Network StatS——-——-—-~————cmmer—e e
"<<endl<<endl;

//archetecture:

foo<<"Network has "<<numLayers<<" processing lavers:"<<endl;
for (int 1i=0;i<numLayers;i++)
foo<<"Layer "<<i+l<<" has "<<layers[i]->NumNodes()<<"

nodes. "<<endl;

//weight range:
foo<<"Weights initialized to +-"<<weightRange<<endl;

//bias range:

foo<<"Bias initialized to +-"<<biasRange<<endl;

//Learning Rate:

foo<<"Learning Rate: "<<lrate<<endl;

fOOKE " m et ——————————— — e — e —

"<<endl<<endl;

}

B.1.7 backprop.cc

/ /backprop.cc

#include "backprop.h"

#include <iomanip.h>

#include <console.h>

#include <Events.h>//this is for 'press s to save' functionality.

#include <Sioux.h>

BPNet: :BPNet (int nlayers, int* sizes, int insize, int outsize, int
numpats,

double** inv, double** outv, double** desv):
NeuralNet(nlayers,l,insize, outsize, numpats,inv,

outv, desv)

{

//nlayers- number of processing layers

B-21

//insize-~ number of input items(length of an input vector)

//outsize- number of output items
//numpats-~ number of patterns (number of input and output vectors

//inv - array of input vectors (size insize)
//outv - array of output vectors (size outsize)
//desv ~ array of desired vectors (size outsize)

//backprop specific:
//sizes ~-size of each processing layer

int i;

//set up the links.
SetLayerSize(0,insize, sizes[0]);//set the first processing layer
//to take

insize inputs and have
//sizes[0]

neurons

for (i=l;i<nlayers-1;i++)//for each layer
SetLayerSize(i,sizes[i-1],sizes[i]);

SetLayerSize(nlayers-1,sizes[nlayers-2]},outsize);//set the last

processing
//layer to take sizes[nlayers-2] inputs and have

outsize neurons.
//we could work this jinto the previous loop, but let's

do it this way.
//that means that sizes can be one value short. let's

say it shouldn't
//be; we always pass a size for EACH processing layer.

//set activation, which should be a private member??
SetSimpleActivation(0,Sigmoid);

for (i=0;i<nlayers-1l;i++)//Connect up the layers
Connect(i,i+l);

//done

----- Sigrnoid**..-oo.....------------

A R

inline double BPNet::Sigmoid(const double in)
{

return 1.0/(l.0+exp(-in));

}

...

.........

bool BPNet::Learn(int cycles)
{
int ncycles;
//overrides class lrate:
//double lrate=0.1;
int i,j,k,pattern;//counters
double tss;

EventRecord event;

clock_t ptime, starttime;

//cycles is number of times to cycle.
starttime=clock();
ptime=clock()+10*CLOCKS_PER_SEC;

char c¢;
for(ncycles=0;ncycles<cycles;ncycles++)//for each cycle
{

//if ((ncycles+1)%100==0)
/7 cout<<ncycles<<endl;

if (clock()>=ptime)
{
//if (kbhit())
if (GetNextEvent(mDownMask |mUpMask,&event))
SIOUXHandleOneEvent(&event);
if (GetNextEvent(keyDownMask,&event))
{
//if {(event.modifiers&cmdKey)
//SI0UXHandleOneEvent (&event) ;

//else

{
c=event.message&charCodeMask;
//cout<<c<<endl;
if(c=='s")

cout<<"I would save here. “<<endl;
cout<<"Starting cycle "<<ncycles<<endl;
cout<<" Estimate ";
cout<<(cycles-ncycles)*(double((ptime-

starttime)/CLOCKS_PER_SEC)/ncycles);
cout<<" seconds remaining."<<endl;

}//else
}
ptime=clock()+10*CLOCKS_PER_SEC;
}
// if (ncycles%$500==0)
// if (kbhit())

B-23

// cout<<"Starting cycle "<<ncycles<<endl;

#ifdef VERBOSE_BP
tss=0;
#endif

for(pattern=0; pattern<numPatterns; pattern++)//for each
pattern

#ifdef VERBOSE_ BP
cout<<" Evaluating Pattern "<<pattern<<endl;
#endif

layers([C0]->SetInput(Input[pattern]);//set input layer

to pattern
layers[numLayers~1]->SetOutput(Output[pattern]);//set

output layer

//evaluate the network, 1e forward pass
for(i=0;i<numLayers;i++)
layers([i]->Evaluate();

//if((ncycles+1)%100==0)
/74 cout<<"In out"<<endl;

// cout<<theNet.Input[pattern][0]<<theNet.Input[pattern|[l]<<"
"<<theNet.Output[pattern][0]<<endl;
/7%

//now the backward pass.

//compute output-layer error
#ifdef VERBOSE_BP
cout<<" Computing output-layer error"<<endl;
#endif
for (i=0;i<layers{numLayers-1]->NumNodes();i++)//for
each output neuron

{

//The error term for the neuron is the difference
between the output and

//desired/target, ie the output of the layer's
ith neuron - the desired

//pattern’s ith member.

//theNet. layers[numLayers-1]->ErrorTerm(i]=

7/
theNet.layers[numLayers-1}->Output(i]

// -
theNet.Desired[pattern][i];//d=o-t

//d=t-o
layers[numLayers-1]->SetETElement (i,

B-24

(Desired[pattern][i] -
layers[numLayers-1]->GetOutElement (i))

)7
//Multiply the difference by l-o...

layers{numLayers-1]->SetETElement(i,//d=(1-0) (t-
o)
(layers[numLayers-1]->GetETElement (i) *
(1.0-

layers[numLayers-1]->GetOutElement (1))
)):

//Multiply by o, ie the output
layers[numLayers-1]->SetETElement(i,//d=0o(1l-

o) (t—-0)
(layers[numlLayers-1]->GetETElement (i) *

layers(numLayers-1]->GetOutElement (i))

)
//if (/*((pattern==0)]|| (pattern==3))&&*/((ncycles+1)%100==0))

7/ cout<<"Pattern "<<pattern<<" Error: "<<layers[numLayers-1]-
>GetETElement (i)<<endl;

}//output-layer error

#ifdef VERBOSE_BP
cout<<" Computing hidden layer errors"<<endl;

#endif
//now compute error for each hidden layer. This

corresponds to any layer with
//output, ie any and all layerVecs except the last one.

Do in reverse.

for(i=numLayers-2;i>=0;i--)//for each hidden layer

{
#ifdef VERBOSE_BP
cout<<” Layer "<<i<<endl;
#endif

//calculate the last layer's error*Wts and place

in current layer's
//error term. (W2d)

layers[i+l]->BackPass(layers[i+1]->GetET(),

layers[i]->GetET());

for(j=0;j<layers[i]->NumNodes();j++)//for each
neuron in the current

{
//(ith) layer

//Multiply error by 1 minus this layer's
output ((1l-h)w2d)

double temp=(l.0-layers[i]-
>GetOutElement(3));

layers[i]->SetETElement(]j,layers[(i]-
>GetETElement(j)*temp);

//Multiply by this layer's output (h(l-
h)w2d)
temp=layers[i]->GetOutElement(Jj);

layers([i]->SetETElement(j,layers{il-~
>GetETElement(]j)*temp);

}//for each neuron
}//hidden-layer errors

#ifdef VERBOSE_BP
cout<<" Updating Weights"<<endl;
#endif

//update all weights, starting with last, working to
first.
//implement momentum here later.
//update Bias too
for(i=numLayers-1;i>=0;i--)//for each layer
{
for(j=0;j<layers[i]->Numin();j++)
for(k=0;k<layers[i]->NumNodes () ;k++)
{
double temp2;
if((i-1)<0)
temp2=Input([pattern][j];
else
temp2=layers[i]-
>GetInElement(j);
temp2*=layers[i]->GetETElement(k);
temp2*=lrate;
layers[i]-
>SetWeightElement(j,k, (temp2+

layers[i]->GetWeightElement(j,k))

B-26

}
//update Bias

for (k=0;k<layers[i]->NumNodes();k++)
layers([i]->SetBiasElement(k, (layers[i}-

>GetBiasElement (k) +

{lrate*layers{i]->GetETElement(k)))

}//for each layer - weight update

#ifdef VERBOSE_BP
cout<<" Completed Weight Update"<<endl;

for (i=0;i<layers{numLayers-1]->NumNodes();i++)
tss+=layers[numLayers-1]->GetETElement(i)*
layers [numLayers-

1]->GetETElement (i) ;
#endif

// cout<<"tss: "<<tss<<endl;

}//for pattern
layers{0]->SetInput(Input[pattern]);//set input layer to

pattern
layers[numLayers-1]->SetQutput (Output[pattern]);//set output
layer
//update tss
// if ((ncycles+1)%100==0)
/7 {
// cout.setf(ios_base::fixed, ios_base::floatfield);
7/ cout<<"TSS: "<<setprecision(20)<<tss<<endl;
// cout.setf(0, ios_base::floatfield);
7/ //
cout<<setiosflags(ios::fixed)<<setprecision(30)<<tss<<endl;
// //cout<<setiosflags(ios::scientific);
// //printf("%2.30£f\n",tss);
// }

#ifdef VERBOSE_BP
cout<<" Completed pattern”<<endl;
#endif

}//for cycles

return false;

}
void BPNet::PrintStats(ostream& foo)

B-27

NeuralNet::PrintStats(foo);

B.2 Evolutionary System and Supporting System Code

B.2.1 genetic.h

//genetic.h
#include "backprop.h”

const double MutationRate=.001;
const double MutationRange = 1.0;

typedef double Gene;

typedef Gene* Chromcsome;

typedef Chromosome* Genome;

typedef Genome* GenePool;

Genome Encode(BPNet &theNet);

GenePool EncodePopulation(BPNet** &theNets, int popSize);

BPNet** DecodePopulation(GenePool allGenes, int popSize, ostream&
filerecord);

bool Decode(BPNet &theNet, Genome theGenes);

void DestroyPop(GenePool prevgen, BPNet** gtheNets, int popSize):
void DestroyPop (GenePool &prevgen, int* sizes, int popSize);

bool Cross(Chromosome x, Chromosome Y);

bool Mate(Genome x, Genome Yy);

inline void Mutate({Chromosome x, Chromosome y);

Genome CopyGenome (const Genome& src, BPNet* net);

B.2.2 netparms.h

//netparms.h

/ /#pragma once
/%

#ifndef NETPARMS
#define NETPARMS
*/

extern int numPats,numIn,numoOut;
extern int trainPats, testPats;

extern double ** trainln;
extern double ** trainoOut;
extern double ** trainTarget;

//#endif

B.2.3 genetic.cc

//genetic.cc

#include "genetic.h"
#include <math.h>
#include "netparms.h”

......................................

..

Genome Encode(BPNet &theNet)
{

//encode each layer of the neural net into a 1-D
//array of doubles. Return an array of those arrays.

Genome retval;
int size,i,]j,whichLayer,genepoint;
//double temp;

retval=new Chromosome[theNet.GetNumLayers()];

for (i=0;i<theNet.GetNumLayers();i++)
{

//let's store the size of the gene in the first (0th) element
size=theNet.GetLayerSize(i)*theNet.GetLayerInSize(1i);
retval([i]=new Gene[size+l];

retval[i][0]=size;

//for (3j=0;j<=size;j++);

B-29

// retval[i]{]j]=0.0;

//ie, the first element of the array is a number which tells
//how many _more numbers are in the array. Eg, the string

"abcd”
//would be stored as "4abcd". So to loop, we start at 1 and

//go to <=4
}

//ck, because there's no way to know, I‘ve decided to do this in
//column-major order. That is, go down the columns first, and read

//into the array.

//the number of rows = the number of inputs to the layer. The
//number of hidden units/outputs corresponds to the number of

//columns
//for each Layer

for (whichLayer=0,genepoint=1;
whichLayer<theNet .GetNumLayers():;
whichLayer++,genepoint=1)

//for each column/node:
for(j=0; j<theNet.GetLayersSize(whichLayer) ; j++)

¢ //for each row/input
for(i=0;i<theNet.GetLayerInSize(whichLayer);i++,genepoint++)
¢ //temp=theNet.GetLayerWeight(whichLayer,i,]j);
retval [whichLayer] [genepoint |=theNet.GetLayerWeight(whichLayer,i,j);

//retval{whichLayer][genepoint]=temp;
//note: instead of genepoint I could use i+3j+l

return retval;

...

.........

B-30

GenePocl EncodePopulation(BPNet** &theNets, int popSize)
{

//This function takes an array of networks, and a population size

and returns
//its genepool
GenePool genetics;

int i;

genetics=new Genome[popSize];

for (i=0;i<popSize;i++)
if (i==12)
genetics[1i}=Encode(*theNets[i]);

else
genetics{i]=Encode(*theNets([i]);

return(genetics);

...

..

bool Decode (BPNet &theNet, Genome theGenes)
{

int whichLayer, genepoint, i, J;

for (whichLayer=0,genepoint=1l;
whichLayer<theNet.GetNumLayers();
whichLayer++,genepoint=1)
//for each column/node:
for(j=0; j<theNet.GetLayerSize(whichLayer); j++)
//for each row/input

for(i=0; i<theNet.GetLayerInSize(whichLayer);i++,genepoint++)

theNet.SetLayerWeight (whichLayer, i, j,theGenes[whichLayer][genepoint]);
//I could use SetWeights here, but then I'd have

to delete the already
//allocated memory, and it just seems kind of

messy and foolish.
return true;

B-31

...

BPNet** DecodePopulation(GenePool allGenes, int popSize, ostream&
filerecord)

{
BPNet** retval;

int layersizes[2]={1,2};//This array will be passed to the BP

constructor.
//We*ll change the 0Oth

element every time.
int 1i;

//allocate the array of bpnet pointers
retval=new BPNet*[popSize];

for(i=0;i<popSize;i++)

{
layersizes[0]=allGenes[i][0]{0]1/30.0;//take the ith

network's
//first layer's size, and
//divide by the number of inputs
//to get the number of hidden units.
retval{i]=new
BPNet (2, layersizes,numIn,numOut,trainPats, trainIn,trainoOut,

trainTarget);

//set all the weights from the correct chromosome.
Decode(*(retval[i]), allGenes([i]);

//dump it.
//filerecord<<"Network "<<i<<endl;

//retval([i]->PrintStats(filerecord);
//filerecord<<endl;

}

return retval;

B-32

...

.........

...

.........

void DestroyPop(GenePool prevgen, BPNet** g&theNets, int popSize)
{

int i,73;

for (i=0;i<popSize;i++)

{
for (3j=0;j<theNets[i]->GetNumLayers();Jj++)
delete[] prevgen[il[j];
delete[] prevgen[i];
}

delete[] prevgen;

...

...

void DestroyPop(GenePool &prevgen, int* sizes, int popSize)

{
int i,y;

for (i=0;i<popSize;it++)

{
for (j=0;j<sizes[i];j++)
delete([] prevgen[i]{j];
delete[] prevgen{i];
}

delete(] prevgen;
prevgen=NULL;

B-33

...

.........

...

ooooooooo

bool Cross(Chromosome x, Chromosome y)

{

//Now, since chromosomes have their size as the 0th element,
//our life is made easier.

//Let's declare a couple of pointers to make life easier.

Chromosome smaller, bigger;
int cut, i;

double temp;

//First, determine which is smaller
if(x[0]1<y[0])

{
smaller=x;
bigger=y;
}
else
{
smaller=y;
bigger=x;
2

//now, generate a cut point, which is a number between ! and

Smaller([0]
//Discreen uniform = (top+l)*rand+bottom

cut= floor((smaller[0]) * ((double)rand()/RAND MAX) + 1);
//I decided that since same-size arrays can cross, I want to

enforce
//at least one exchanged gene, hence smaller[0] is the top.

//now, take the cut stuff our of the bigger, and put it in temp.
//Simultaneously copy from smaller to bigger.

for(i=l;i<=cut;i++)

{
temp=bigger([i];
bigger(i]=smaller[i];
smaller([i]=temp;

}

B-34

return true;

...

.........

......................................

.........

bool Mate(Genome x, Genome Y)

{
//this function will be changed depending on what type of mating we
want
//to do. For now, let's select which layer to cross over randomly.
//We may later want to consider inter-layer mating.
int which;
double coin;
//generate random [0,1] continuous
coin=(double)rand()/RAND_ MAX;
which=((coin<=.5)20:1);
Cross (x[which], y{which]);
Mutate(x[which], yf[which]);
return true;
}
//
//

inline void Mutate(Chromosome x, Chromosome y)

{

//mutate the two chromosomes based on Binomial Variate.
int i;

B-35

for (i=1l;i<=x[0];1i++)

if ((double)rand()/RAND_MAX<=MutationRate)
x[{i] = (MutationRange- -MutationRange)=*
(double(rand())/RAND_MAX)+ -

MutationRange;

for (i=l;i<=y[0];i++)

if ((double)rand()/RAND_MAX<=MutationRate)
v[{i] = (MutationRange- -MutationRange)¥*
(double(rand())/RAND_MAX)+ -

MutationRange;

.........

..

..

Genome CopyGenome(const Genome& src, BPNet* net)
{ //passing pointer to bpnet, so no destructor called.

//makes a copy of src
Genome dest;
int 1i;

dest=new Chromosome[net->GetNumLayers()]:;

for(i=0;i<net->GetNumLayers();it++)

{

}

dest[i]=new Gene[(int)(src[i][0]1+1)1;

memcpy(dest([i],src[i], (src[i]1[0]+1)*sizeof(double)});
//for(j=0;j<=src[i]1[{0];j++)
/7 dest[ij[j)=src[i](]];:

return dest;

}

B.2.4 main.cc

#include
#include
#include
#include
#include

<iostream>
"backprop.h”
"genetic.h"
<time.h>
<consocle.h>

B-36

#include <fstream.h>

using namespace std;//introduces namespace std

//Useful Functions
void PrintBanner (ostream& out=cout);
inline void NextDigit(ifstream& thestream);
int EvaluateBinary (int &unclass, double tolerance, int numPats, int
vecSize,
double **Output, double **Target);
double CalcTSS(int numPats, int vecSize, double **Output, double

**Target) ;
void NetSet (BPNet** garray, int howmany, ofstream& filerecord);

//Variables

int numPats,numIn,numout;
int trainPats, testPats;

int layersizes[2]={4,2};//last one must equal numOut

double ** inArray=NULL;
double ** outArray=NULL;
double ** targetArray=NULL;

double ** trainIn=NULL;
double ** trainOut=NULL;
double ** trainTarget=NULL;

double ** testIn=NULL;
double ** testOut=NULL;
double ** testTarget=NULL;

//misc control stuff

unsigned int seed=6458; //1574
int split=0;

int epochsPerCycle=250;

int numGens=50;

int eachgen;//a counter
ofstream outfile("neural.out");
bool continuance=true;

int continuers;

double contbot=.9;

double conttop=.97;

//population control
int popSize=100; //size of population, ie number of networks

B-37

//MUST BE EVEN NUMBER
BPNet **Population;//The population. [Array of Networks}]

GenePool theGenes=NULL, newGenes=NULL;//array of genomes for each netork;
int* genomeSize;//this array is to store the size of the genome,
//ie how many chromosomes for a particular

individual

//.. MATNG =+ * == s s cctecscscsccccencecscosassosen
int main(int argc, char*argv[})
{
argc=ccommand (&argvy) ;
i1f (argc<2)
return 1;

int i; //a useful counter that doesn't %"&* up the debugger.

clock_t TStart,TEnd,TTime;
TStart=clock();
srand(seed);

PrintBanner();
PrintBanner (outfile);

//reading in data file

if (argc==3)
split=atoi(argvi2]});
ifstream infile(argv([l}]);

if(!infile.is open())

{
cout<<"error opening file."<<endl;
return 1;

}

infile>>numPats;
NextDigit(infile);
infile>>numIn;
NextDigit(infile);
infile>>numOut;
NextDigit(infile);

cout<<numPats<<" patterns, "<<numIn<<" inputs, and "<<npumOut<<"

outputs. "<<endl;
outfile<<numPats<<" patterns, “<<numIn<<" inputs, and "<<numOut<<"

outputs. "<<endl;

//allocate array sizes, first dimension

B-38

inArray=new double*[numPats];
outArray=new double*[numPats];
targetArray=new double*[numPats];

//allocate pattern lengths, second dimension
for (i=0;i<numPats;i++)
{
inArray[i]=new double[numIn];
}
for (i=0;i<numPats;i++)
outArray[i]=new double[numOut]j;
for (1=0;i<numPats;i++)
targetArray[i]=new double[numOut];

NextDigit(infile);
//Read in

cout<<"Reading in..."<<endl<<endl;
for (i=0;i<numPats;i++)

{
for(int j=0;Jj<numIn; j++)
{
infile>>inArray[i}[]];
NextDigit(infile);
}
for(int j=0;j<numOut;j++)
{
infile>>targetArray[i]{ij];
NextDigit(infile);
}
}

cout<<"Finished Reading."<<endl<<endl;
//finished reading in data file

//do split of data file.
if (split)
{
cout<<"splitting..."<<endl;
trainPats=split;
testPats=numPats-split;

//split them...

cout<<" Allocating“"<<endl;

//first allocate array sizes, first dimension
trainIn=new double*{trainPats];

trainOut=new double*(trainPats];
trainTarget=new double*[trainPats];

testIn=new double*[testPats];
testOut=new double*[testPats];

B-39

testTarget=new double*[testPats];

//allocate pattern lengths and copy patterns
cout<<" Copying training input"<<endl;
for (i=0;i<trainPats;i++)

{
trainIn[i]=new double[numInj};
for(int j=0;j<numIn;j++)
trainIn[(i](j]l=inArray{i]{j]:
}
cout<<" allocating training output"<<endl;
for (i=0;i<trainPats;i++)
{
trainOut([i]=new doublef{numOut];
}
cout<<" Copying training target"<<endl;
for (i=0;i<trainPats;i++)
{
trainTarget[i]=new double[numOut];
for(int j=0;j<numOut; j++)
trainTarget([i](]j]=targetArray(i][]j];
}

cout<<" Copying testing input"<<endl;
for (i=0;i<testPats;i++)

{
testIn[i]=new double[numIn];
for(int j=0; j<numIn;j++)
testIn{i][j]=inArray([(ittrainPats][]j];
}
cout<<" allocating testing output"<<endl;
for (i=0;i<testPats;it++)
{
testOut[i]=new double[numOut];
}

cout<<" Copying testing target"<<endl<<endl;
for (i=0;i<testPats;i++)

{
testTarget[i]=new double[numOut];
for(int 3j=0;j<numOut; j++)
testTarget[i]{j]l=targetArray[it+trainPats][]J];
}

cout<<"Split off first "<<split<<" patterns to train,"<<endl;
cout<<numPats-split<<" to test.\n"<<endl;
outfile<<"Split off first "<<split<<" patterns to

train, "<<endl;
outfile<<numPats-split<<" to test.\n"<<endl;

B-40

else

{
cout<<"No split\n"<<endl;
outfile<<"No split\n"<<endl;
testIn=trainIn=inArray;
testOut=trainOut=outArray;
testTarget=trainTarget=targetlArray;
testPats=trainPats=numPats;

}

//~——-End of File stuffe————---- o ——
//variables

int testCorrect, testClassified, testUnclassified;

double* testFitList= new double[popSize];//array of fitnesses
double testTotalFitness=0;//total fitness of test set.

int nonzeros;

double roulette;
double cumTotal;//cumulative total for roulette wheel.

//Set up the networks
NetSet (Population,popSize,outfile);
theGenes=EncodePopulation(Population,popSize);

genomeSize=new int[popSizej;

cout<<"Starting runs for "<<popSize<<" networks."<<endl:;
cout<<numGens<<" generations."<<endl;
cout<<epochsPerCycle<<" epochs of training per set."<<endl<<endl;

outfile<<endl<<endl;
outfile<<"Starting runs for "<<popSize<<" networks."<<endl;

outfile<<numGens<<" generations."<<endl;
outfile<<epochsPerCycle<<" epochs of training per
set."<<endl<<endl;

cout<<"Distributed Learning"<<endl;
outfile<<"Distributed Learning"<<endl;

if (continuance)

{

cout<<"Continued learning range: "<<contbot<<" to

"<<conttop<<endl;
outfile<<"Continued learning range: "<<contbot<<" to

"<<conttop<<endl;

B-41

}

clock_t genStart, genEnd, genTime;

for (eachgen=0;eachgen<numGens ; eachgen++)

{
genStart=clock();

cout<<"Generation "<<eachgen<<endl;
outfile<<"Generation "<<eachgen<<endl;

testTotalFitness=0;
nonzeros=0;

cout<<"Network:\t"<<"\tFitness:\tEpochs:"<<endl;
outfile<<"Network:\t"<<"\tFitness:\tEpochs:"<<endl;

for (int whichnet=0;whichnet<popSize;whichnet++)//for each
network

{
epochsPerCycle=(500.0-0.0)* (double(rand())/

RAND MAX)+0.0;

Population[whichnet]->Learn(epochsPerCycle);

//Run the member on the training and test data.
Population[{whichnet]->Run(false, testIn, testOut,

testPats);
//Population{whichnet]->Run(false, trainIn, trainOut,

trainPats);

//evaluate performance on the test set.
testCorrect=EvaluateBinary(testUnclassified, .1,

testPats,numOut, testOut, testTarget);
testClassified=testPats-testUnclassified;
testTotalFitness+=testFitList[whichnet]=testCorrect/

(double)testPats;
cout<<"\t"<<whichnet<<"\t\t\t"<<testFitList[whichnet]<<"\t";

outfile<<"\t"<<whichnet<<"\t\t\t"<<testFitList[whichnet]<<"\t";
if(testFitList[whichnet]==0)

{
cout<<"\t\t";
outfile<<"\t\t";
}
else

nonzeros++;

B-42

cout<<epochsPerCycle<<endl;
outfile<<epochsPerCycle<<endl;

}//for each network

//ok, we've trained each network, and got the total fitness.
Now we. ..

//output total fitness:
cout<<endl<<"Total fitness: "<<"\t"<<testTotalFitness<<endl;

outfile<<endl<<"Total fitness:

"L\ t"<<testTotalFitness<<endl;
cout<<endl<<"Real average: "<<"\t"<<testTotalFitness/

popSize<<endl;
outfile<<endl<<"Real average: "<<"\t"<<testTotalFitness/

popSize<<endl;
cout<<endl<<"Miss-0 avg: "<<"\t"<<testTotalFitness/

nonzeros<<endl<<endl;
outfile<<endl<<"Miss-0 avg: "<<"\t"<<testTotalFitness/

nonzeros<<endl<<endl:;

i1f (eachgen+l==numGens)
break;

//allocate the new genes

newGenes= new Genome[popSize];
continuers=0;

cout<<"starting continuance"<<endl;
if (continuance)

{

continuers=0;
for(i=0;i<popSize;i++)//for every memmber in the

population
{ //generate a continuous random number from

contbot to conttop
roulette=(conttop-contbot)* (double(rand())/

RAND MAX)+contbot;

//Now, if our fitness is greater than that number,

continue:
if(roulette<testFitList{i])

{

newGenes|[continuers |=Encode (*Populationf{i]);
genomeSize[continuers++]=Population[i]-

>GetNumLayers();

B-43

}

cout<<"ending continuance"<<endl;

//For each member in the population member, spin the roulette

wheel
//and place that member of the genePool into a new population.

for(i=continuers; i<popSize;i++)

{

//Now we spin our roulette wheel. Generate a number from

0 to TotalFitness.
//note that we have to be careful of the ends of the

range.
roulette=(testTotalFitness-0.0)*(double(rand(}))/

RAND MAX)+ 0.0;
cumTotal=0.0;
for(int k=0;k<popSize;k++)//for each net/pop member

{

if(roulette==testTotalFitness)

{

newGenes|[i]=CopyGenome (theGenes[k],Population(k]);
genomeSize[1i]=Population[k]-

>GetNumLayers () ;
break;

}

cumTotal+=testFitList[k];

if(roulette<cumTotal)

{

newGenes|[1]=CopyGenome (theGenes[k],Population(k]);
genomeSize[i]=Population[k]-
>GetNumLayers();
break;

}
y//for k

}//for i, each new pop member.

//mate every pair, delete the old networks while we're about
it.
for(i=0; i<popSize;i+=2)
{
Mate(newGenes{1i], newGenes[i+l]);
delete Populationfi}];

B-44

delete Population[i+l1l];
}

delete[] Population;

//create new networks
Population=DecodePcpulation(newGenes, popSize, outfile);

//after cross over etc, delete theGenes before we delete the
old networks.

DestroyPop (theGenes,genomeSize,popSize);

theGenes=newGenes;

newGenes=NULL;

cout<<"Continued nets:\t"<<continuers<<endl<<endl;
outfile<<"Continued nets:\t"<<continuers<<endl<<endl;

ocutfile<<"Gen "<<eachgen+l<<" nets."<<endl;
for(i=0; i<popSize;i++)

{
outfile<<"Network "<<i<<endl;
Population[i]->PrintStats(outfile);
outfile<<endl;

}

cout<<endl;

genEnd=clock();

genTime=(genEnd-genStart)/((double) CLOCKS_PER_SEC);

cout << endl << "Generation elapsed run time: "

<< genTime<<" s, or " <<(double)(genTime/60.0)<<"

min. "<< endl;

outfile << endl << "Generation elapsed run time: "
<< genTime<<" s, or " <<(double)(genTime/60.0)<<"

min."<< endl;

}//for each generation

for(i=0;i<popSize;i++)

{
outfile<<"Network "<<i<<endl;
Population[i]->PrintStats(outfile);
outfile<<endl;

}

TEnd=clock();
TTime=(TEnd - TStart) / ((double) CLOCKS_PER_ SEC);

cout << endl << "Total elapsed run time:
<< TTime<<" s, or " <<(double)(TTime/60.0)<<" min."<< endl;

B-45

outfile << endl << "Total elapsed run time:
<< TTime<<" s, or " <<(double) (TTime/60.0)<<" min."<< endl;

outfile.close();
return 0;

..

..

.........

inline void NextDigit(ifstream& thestream)

{
while (!isdigit(thestream.peek()) && thestream.peek()!=EOF)
thestream.ignore();
}
/7
//

..

int EvaluateBinary (int &unclass, double tolerance, int numPats, int

vecSize,
double **Output, double **Target)

//returns then number of successful
//classifications within tolerance

bool good;//tells whether the current pattern is good or not.
double up,down;//lower and upper bounds

int numgood=0;

unclass=0; //number unclassified;
up=l.0-tolerance;
down=0.0+tolerance;

for (int i=0;i<numPats;i++)//for every pattern

{

good=true;

B-46

for (int j=0;j<vecSize; j++)//for each element of the current

pattern
{
if (Output{i]{j]j<up && Output[i][j]>down)
{
good=false;
unclass++;
break;
}
if (Target[i][j]==1.0 && Output([i][j]<down)
{
good=false;
break;
}
if (Target[i][j]==0.0 && Output[i]{]]>up)
{
good=false;
break;
}
}//for each element
1f (good==true) //if we got here because the pattern was OK,
numgood++; //increment the number of correct
patterns.

}//for each pattern

return numgood;

...

.........

.........

double CalcTSS(int numPats, int vecSize, double **Qutput, double **Target)
{ . - .

int 1,3;

double tss=0;

double TSS=0;

double out;

for(i=0; i<numPats;i++)//for each pattern
for(j=0;j<vecSize; j++)
{
out=Output[i][]j];
tss=Target{i][0]-out;//t-o

B-47

//tss*=1l-out; //1-0

//tss*=out; //0
tss*=tss;
TSS+=tss;
}
return TSS;
}
//
//
..... PrintBanner-.....-.--o--n--...---—-.--..............--.........-..

void PrintBanner(ostream& out)

{
time_t thetime;
thetime=time (NULL) ;
out<<ctime(&thetime)<<endl;
/ /Random Seed:
out<<"Random Seed: "<<seed<<endl<<endl;
}
//
//

...

void NetSet (BPNet** &array, int howmany, ofstream& filerecord)

{
int HUS[20]={1,1,2,2,3,3,4,4,5,5,6,6,7,7,8,8,9,9,10,10};
//the number of hidden units in each of the networks. Later,

this
//can be generated randomly.
int layersizes([2]={l1,2};//This array will be passed to the BP

constructor.
//We'll change the 0th

element every time.
clock_t clockSeed;
unsigned int aseed;

array=new BPNet*[howmany];

B-48

clockSeed=clock();
aseed=(unsigned int)clockSeed;

//aseed=9040343;

//aseed=7793;

//aseed=24238324;

cout<<"Seed in Netset: "<<aseed<<endl<<endl;
filerecord<<"Seed in Netset: "<<aseed<<endl<<endl;

for(int i=0;i<howmany;i++)

{
filerecord<<"Network "<<i<<endl;
filerecord<<"Seed = "<<aseed<<endl;
srand(aseed++) ;

//create the network..

//bad bad bad. I'm using globals. now I‘ve put them in the
netparms.h header.

layersizes{0]=HUs[1%20];

array(il=new
BPNet (2, layersizes,numIn,numOut, trainPats,trainln,trainlOut,
trainTarget);

//dump it.

array(i]->PrintStats(filerecord);

filerecord<<endl;

}//for
filerecord<<"Final Random Seed = "<<aseed<<endl<<endl;
cout<<“"Final Random Seed = "<<aseed<<endl<<endl;

srand(aseed++);

B-49

